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FOREWORD

This IMA Volume in Mathematics and its Applications

NONLINEAR COMPUTATIONAL GEOMETRY

contains papers presented at a highly successful one-week workshop held
on May 29–June 2, 2007 on the same title. The event was an integral
part of the 2006–2007 IMA Thematic Year on “Applications of Algebraic
Geometry.” We are grateful to all the participants for making this workshop
a very productive and stimulating event.

We owe special thanks to Ioannis Z. Emiris (Department of Infor-
matics and Telecommunications, National and Kapodistrian University of
Athens), Frank Sottile (Department of Mathematics, Texas A&M Univer-
sity), and Thorsten Theobald (Institut für Mathematik, Johann Wolfgang
Goethe-Universität) for their superb role as workshop organizers and ed-
itors of these proceedings. We also thank Ron Goldman (Department of
Computer Science, Rice University) for his valuable contribution in orga-
nizing the workshop.

We take this opportunity to thank the National Science Foundation
for its support of the IMA.

Series Editors

Fadil Santosa, Director of the IMA

Markus Keel, Deputy Director of the IMA
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PREFACE

An original goal of algebraic geometry was to understand curves and
surfaces in three dimensions. From these roots, algebraic geometry has
grown into a theoretically deep and technically sophisticated field. Re-
cently, questions from robotics, computer vision, computer-aided geometric
design and molecular biology, together with the development of computa-
tional methods, have brought these original questions back to the forefront
of research. The implicitization of parametric surfaces, the geometry of
molecules, mechanical design and computer vision all lead to problems that
are challenging from the perspective of computational algebraic geometry.

In recent decades, computational geometry has developed as a disci-
pline at the intersection of mathematics and computer science that pro-
vides effective and algorithmic methods for treating geometric problems.
For natural reasons, the primary focus in computational geometry has been
on polyhedral (piecewise-linear) problems.

The challenge has arisen to combine the applicable methods of alge-
braic geometry with the proven techniques of piecewise-linear computa-
tional geometry (such as Voronoi diagrams and hyperplane arrangements)
to generalize the latter to curved objects. These research efforts may be
summarized under the term nonlinear computational geometry. In this
area, the development of reliable and practical algorithms is often based
on interrelated techniques that incorporate both symbolic and numerical
elements.

Within the thematic year Applications of Algebraic Geometry 2006/
2007 at the Institute for Mathematics and its Applications in Minneapolis,
a week-long workshop was devoted to this topic of nonlinear computational
geometry. This workshop took place from May 29 to June 2, 2007, and was
organized by I.Z. Emiris, R. Goldman, F. Sottile, and T. Theobald. Around
100 experts in this emerging field attended.

The present volume is comprised of nine contributions covering the
spectrum of topics from the workshop. Its purpose is to establish a col-
lection of research and expository articles describing the state-of-the-art in
nonlinear computational geometry and the challenges it poses for compu-
tational geometry, algebraic geometry, and geometric modeling.

In the first chapter, Spectral techniques to explore point clouds in
Euclidean space with applications in structural biology, Frédéric Cazals,
Frédéric Chazal and Joachim Giesen survey recent progress in spectral
techniques for machine learning, such as the principal component analysis
(PCA) and multi-dimensional scaling (MDS), in order to identify structure
in point clouds. The authors then offer an overview of such methods ap-
plied to understanding the geometry of large molecules and, in particular,
the important open problem of protein folding in bioinformatics.

vii



viii PREFACE

Algebraic hypersurfaces in space may have dual descriptions in terms
of an implicit equation or via a parametric representation. Transform-
ing one of these representations into the other and understanding their
connection is an ubiquitous task in nonlinear geometric computations. In
the chapter Rational parameterizations, intersection theory and Newton
polytopes, Carlos D’Andrea and Mart́ın Sombra exploit recent advances
in algebraic geometry and combinatorial geometry to describe the New-
ton polytope and the support of the implicit equation of a given rational
parametric hypersurface, by means of invariants of its parameterization.

When transferring classical problems from the space Rn to the space of
lines, i.e., to the Grassmannian manifold, problems and structures obtain
an additional nonlinear component. In the chapter Some discrete properties
of the space of line transversals to disjoint balls, Xavier Goaoc describes the
state-of-the-art in generalizing classical statements from convex geometry
(in particular Helly’s Theorem and geometric transversals) to the space of
lines, and shows how these can lead to algorithmic applications.

Many problems in kinematics have natural formulations in terms of
polynomial equations, and already more than a century ago these formu-
lations were studied and applied to kinematics. In Algebraic geometry and
kinematics, Manfred Husty and Peter Schröcker explain how the classical
Study mapping can be used to transform kinematic problems into algebraic-
geometric problems and discuss the analysis of mechanisms from a modern
point of view.

In geometric modeling of real-world phenomena, offsets—surfaces at a
constant normal distance to a given surface—frequently arise. Even when
the original surface is rational, its offsets often are not, and it is a challenge
to understand those surfaces with rational offsets. Rimvydas Krasauskas
and Martin Peternell survey this in Rational offset surfaces and their mod-
eling applications. A particular focus is given on Pythagorean normal sur-
faces as well as on the viewpoint afforded by Laguerre geometry.

In his contribution A list of challenges for real algebraic plane curve vi-
sualization software, Oliver Labs discusses the issue of correctly visualizing
a real plane algebraic curve. The occurrence of singularities can make this
task quite challenging. Particularly difficult are those curves which contain
“complicated” singularities such as high tangencies or many halfbranches.
The exposition describes several classes of curves to serve as benchmarks
for future visualization software.

In the chapter Subdivision method for arrangement computation of
semi-algebraic curves, Bernard Mourrain and Julien Wintz present a syn-
thesis of existing approaches, enhanced with new tools, to compute ar-
rangements of semi-algebraic sets in a certified and efficient manner. Their
approach is to apply a subdivision technique and to analyze the topological
structure through this process. These concepts and methods are illustrated
by an implementation in the geometric modeler Axel.

Solving problems in nonlinear computational geometry exactly often



PREFACE ix

leads to geometric predicates of high algebraic degree. In the chapter
Invariant-based characterization of the relative position of two projective
conics, Sylvain Petitjean studies these predicates for the fundamental prob-
lem of characterizing the relative position of two given conics. For his
bounds, he applies methods of classical invariant theory.

In the architectural design of glass/steel panel structures, free-form
surfaces may be approximated by polyhedral surfaces with hexagonal facets.
The final chapter, A note on planar hexagonal meshes, Wenping Wang and
Yang Liu first describes the applications and the theory of such surfaces.
It then discusses different algorithms for generating hexagonal meshes, in-
cluding a new one proposed by the authors.

We hope that the reader will enjoy the articles in the volume and that
the articles offer the reader an overview of the current developments in
nonlinear computational geometry.

Acknowledgments: The editors wish to thank the Institute for Mathe-
matics and its Applications for providing an inspiring and fruitful workshop
atmosphere as well as for their help in editing the volume.

Ioannis Z. Emiris
Department of Informatics & Telecommunications
National and Kapodistrian University of Athens
http://cgi.di.uoa.gr/∼emiris/index-eng.html

Frank Sottile
Department of Mathematics
Texas A&M University
http://www.math.tamu.edu/∼sottile

Thorsten Theobald
Institut für Mathematik
Johann Wolfgang Goethe-Universität
http://www.math.uni-frankfurt.de/∼theobald/
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SPECTRAL TECHNIQUES TO EXPLORE POINT CLOUDS
IN EUCLIDEAN SPACE, WITH APPLICATIONS TO

COLLECTIVE COORDINATES IN STRUCTURAL BIOLOGY

FRÉDÉRIC CAZALS∗, FRÉDÉRIC CHAZAL† , AND JOACHIM GIESEN‡

Abstract. Life sciences, engineering, or telecommunications provide numerous sys-
tems whose description requires a large number of variables. Developing insights into
such systems, forecasting their evolution, or monitoring them is often based on the in-
ference of correlations between these variables. Given a collection of points describing
states of the system, questions such as inferring the effective number of independent
parameters of the system (its intrinsic dimensionality) and the way these are coupled
are paramount to develop models. In this context, this paper makes two contributions.

First, we review recent work on spectral techniques to organize point clouds in
Euclidean space, with emphasis on the main difficulties faced. Second, after a care-
ful presentation of the bio-physical context, we present applications of dimensionality
reduction techniques to a core problem in structural biology, namely protein folding.

Both from the computer science and the structural biology perspective, we expect
this survey to shed new light on the importance of non linear computational geometry
in geometric data analysis in general, and for protein folding in particular.
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2 FRÉDÉRIC CAZALS, FRÉDÉRIC CHAZAL, AND JOACHIM GIESEN

1. Introduction.

1.1. Geometric data analysis and spectral point cloud pro-
cessing. Modeling the climate, understanding the interplay between pro-
teins, metabolites and nucleic acids making up a regulation network within
a cell, or unraveling the connexions between spiking neurons are example
problems where a large number of variables interplay in a complex non lin-
ear way. Developing insights into such systems, forecasting their evolution,
or monitoring them is often based on the inference of correlations between
these variables. More precisely, learning such correlations from experiments
is paramount to model development, as theory and experimental inference
are tightly coupled.

Consider a complex system, and assume we are given a number of
observations describing different states of the system. In such a setting,
we are interested in the question of inferring the effective number of in-
dependent parameters of the system (its intrinsic dimensionality) and the
way these are coupled. To meet these challenges, a set of new geometric
methods, known as manifold learning, have been developed in the machine
learning community mainly over the past decade. These methods are based
upon the assumption that the observed data –a point cloud in some n di-
mensional space, lie on or are close to a submanifold M in Rd.

Naturally, given the variety of situations, one cannot expect a single
method to meet all needs. Nevertheless, many of the most popular ap-
proaches boil down to spectral methods. Note that the term spectral method
is ambiguous and used differently within different communities, e.g., in nu-
merical methods for partial differential equations it often involves the use
of the fast Fourier transform. Here we want to use the term in the sense
of data analysis similar as van der Maaten et al. did [51]. That is, for us
in a spectral method, a symmetric matrix is derived from the point cloud
data and the solution to a given optimization problem can be obtained
from the eigenvectors of this matrix. We should mention that the term
spectral method is also used in mesh processing in the geometric modeling
community where the symmetric matrix is obtained from the connectivity
of the mesh, see [58] for an overview. The geometric optimization problems
that lead to a spectral technique are mostly of a least squares nature and
include the following classical (and archetypical) problems:

(1) Find the k-dimensional subspace that approximates the point cloud
best in a least squares sense.

(2) Find the embedding of the point cloud in k-dimensional space that
preserves the distances between the points best possible in a least
squares sense.

The first problem is called principal component analysis (PCA) as it
asks for the principal directions (components) of the data. It essentially
is a data quantization technique: every data point gets replaces by its
projection onto the best approximating k-dimensional subspace. The loss



TECHNIQUES TO EXPLORE POINT CLOUDS IN EUCLIDEAN SPACE 3

incurred by the quantization is the variance of the data in the directions
orthogonal the best approximating k-dimensional subspace. As long as
this variance is small PCA can also be seen as denoising the original data.
Many machine learning techniques including clustering, classification and
semi-supervised learning [32], but also near neighbor indexing and search
can benefit from such a denoising.

The second problem is called multi-dimensional scaling (MDS). An
important application of MDS is visualization of the point cloud data: the
data points get embedded into two- or three-dimensional space, where they
can be directly visualized. The main purpose of visualization is to use the
human visual system to get insights into the structure of the point cloud
data, e.g., the existence of clusters or—for data points labeled with discrete
attributes—relations between this attributes. MDS visualization remains
to be a popular tool for point cloud data analysis, but of course a lot of
information will get lost (and in general cannot be restored by the human
visual system) if the intrinsic dimension of the data points is larger than
three.

Recently the focus in point cloud data analysis shifted: more emphasis
is put on detecting non-linear features in the data, although processing
the data for visual inspection still is important. What drives this shift
in focus is the insight that most features are based on local correlations
of the data points, but PCA and MDS both have only a global view on
the point cloud data. The shift towards local correlations was pioneered
by two techniques called ISOMAP [48, 21] and Locally Linear Embedding
(LLE) [45, 46]. It is important to note that focusing on local correlations
does not mean that one loses the global picture: for example the global
intrinsic dimension of the data can be estimated from local information,
whereas it is often (when the data are embedded non-linearly) not possible
to derive this information from a purely global analysis. ISOMAP and LLE
and their successors (some of which we will also discuss here) can be used
both for the traditional purposes data quantization and data visualization.
In general they preserve more information of the data (than PCA and
MDS) while achieving a similar quantization error or targeting the same
embedding dimension for data visualization, respectively.

1.2. Spectral methods and alternatives.
Advantages of spectral methods. Consider a point cloud P sampled

from a manifold M embedded in Rd. In this survey, we focus on a set of
quite famous methods following a common thread, as they ultimately re-
sort to spectral analysis. They all intend to find the best embedding of the
dataset P into an Euclidean space Rk with respect to some quadratic con-
straint reflecting different geometric properties of the underlying manifold
M . The embedding of the data that minimizes the quadratic constraint can
then be interpreted as the best k-dimensional embedding of the data with
respect to the geometric property we aim to preserve. In most cases, the
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quadratic minimization problem boils down to a general eigenvalue prob-
lem ensuring to find a global minimum. Moreover, the embedding can be
found by easy-to-implement polynomial time algorithms.

This provides a substantial advantage over iterative or greedy methods
based upon Expectation-Maximization like algorithms that do not provide
guarantees of global optimality. In particular, for quite large data sets,
the methods we consider still provide results when iterative and greedy
methods fail due to complexity issues. Another advantage of “spectral
methods” is that the quadratic constraint leads to a measurement of the
quality of the embedding1. At last, “spectral methods” have been widely
used and studied in many applications areas (graph theory, mesh processing
[58],...) giving rise to a large amount of efficient theoretical and algorithmic
tools that can be used for dimensionality reduction.

Approaches not covered. As our focus is on spectral techniques, a num-
ber of dimensionality reduction techniques are not covered in this paper.
While the reader might consult [51] for a rather exhaustive catalog, the
following comments are in order about the missing classes:

• EM-based methods: a large set of manifold learning algorithms
developed in the machine learning community adopt a probabilistic
point of view, so as to maximize a likelihood (Self Organizing Maps,
Generative Topographic Mapping, Principal curves, etc. See [8] for
example.). Some of them, like principal curves [31] or generative
topographic mapping [9] for example, aim to fit the data set by a
parameterized low dimensional (in general 1 or 2) manifold. They
usually assume that the topology of the manifold is known and
simple (simple curves, planes, discs) and do not allow to deal with
data sampled from more complicated shapes.

• Methods related to the Johnson-Lindenstrauss lemma: the
Johnson-Lindenstrauss lemma addresses the dimensionality reduc-
tion problem of a general point cloud (not necessarily sampled
around a low dimensional manifold) in the perspective of preserv-
ing the pairwise distances between the points. An extension to
points and flats and algebraic surfaces has been proposed in [1].

• Kernel methods: a number of methods, including some of the
methods we shall discuss, can be interpreted in the framework of
kernel methods. See [29, 53] for example.

• Methods targeting non manifold shapes: more recently, some ge-
ometric inference methods have been developed in the case where
the shape underlying the data is not assumed to be a smooth man-

1For example, in [48], the quality of the embedding obtained is assessed resorting to
the residual variance σk(k, d) defined by:

σk(k, d) = 1−R2(D̂k, Dd) (1)

with R(D̂k, Dd) the correlation coefficient taken over all entries of matrices D̂k and Dd.
The closer to zero this variance, the better the approximation.
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ifold. They lead to promising but preliminary results for dimen-
sionality reduction of general shapes [11, 12].

1.3. An application in structural biology: Protein folding. As
an application of dimensionality reduction techniques in general, and of
spectral methods in particular, we shall give a detailed account of one of
the core open problems in structural biology, namely protein folding: how
does a protein reach its folded-, i.e., its biologically active state, from the
unfolded one? As of October 2007, about 1,000 genomes have been fully
sequenced or are about to be so, while the Protein Data Bank contains (a
mere) 40,000 structures. The question of understanding folding so as to
predict the structure of a protein from its sequence is therefore central2,
to foster the understanding of central mechanisms in the cell, but also to
perform protein engineering with applications ranging from drug design to
bio-technologies.

Aside these general incentives, a number of technical ones advocate
this particular problem.
First, the question of folding is closely related to a specific d-dimensional
manifold which associates an energy to a conformation (the energy land-
scape), on which point clouds are sampled thanks to simulations techniques
like the prototypical molecular dynamics method. Thus, the underlying
mathematical structure is a manifold and not a (stratified) complex of ar-
bitrary topology.
Second, assuming the folded and unfolded conformations correspond to
(significant) local minima of the energy landscape, the problem is tanta-
mount to understand transitions on this landscape, i.e. paths joining these
minima. The difficulty of the problem is rooted in two facts: the high-
dimensionality of the landscape (d = 3n or d = 6n as argued below, with n
the number of atoms), and its complex topography which reflects the com-
plex interactions (forces) between atoms. These intrinsic difficulties call
for dimensionality reduction techniques, so as to exhibit a small number
of new variables (typically one or two), called the reaction coordinates, ac-
counting for the transition. These coordinates should match the effective
large amplitude - slow frequency degrees of freedom of the system, thus
providing a simplified view of the process, and easing its interpretation.
Thus in essence, one wishes to quantize information located on a non lin-
ear manifold, while retaining the essential features.
Third, as opposed to a large number of multi-dimensional data sets, folding
features a stimulating interplay between modeling and experiments. The
point clouds studied in folding are indeed closely related to a number of
experiments in bio-physics, so that one can precisely assess the quality and
the interest of dimensionality reduction procedures. Example such experi-
mental methods are dynamic NMR, protein engineering (φ-value analysis),

2At least for proteins consisting of a single polypeptidic chain, as the formation of
multimers also poses docking questions.
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laser initiated folding, etc. Describing these procedures is clearly beyond
the scope of this survey, and the reader is referred to [84, 75] for starting
pointers.

1.4. Notations and paper overview. Throughout this paper we
will be using the following notations:

P point cloud
n number of point is P
d dimension of the Euclidean space form which the points

in P are drawn
k target dimension.

The paper is organized as follows. Section 2 presents the two archetyp-
ical spectral methods used to explore point clouds, namely PCA and MDS.
The question of localizing neighborhoods is discussed in Section 3, while
methods meant to accommodate non linear geometries are discussed in Sec-
tion 4. The application of dimensionality reduction techniques to protein
folding is discussed in Section 5. To conclude, Section 6 discusses a number
of research challenges.

2. PCA and MDS. In the following we assume that the points in
P are centered at the origin, i.e.,

∑n
i=1 pi = 0. Note that this can always

achieved by a simple translation: let p̄ = 1
n

∑n
i=1 pi and p′i = pi − p̄, then∑n

i=1 p′i = 0.
Principal component analysis (PCA) asks for the k-dimensional sub-

space of Rd that approximates the point set P best possible in a
least squares sense and projects P onto that subspace, whereas multi-
dimensional scaling (MDS) in its basic form aims for the k-dimensional
embedding of P that preserves the pairwise inner products of the points in
P best possible in a least squares sense. In both cases k can range from 1
to d− 1.

Though different in their motivation and objective, PCA and MDS are
almost identical in a technical sense: both can be formulated in terms of
eigenvectors of some positive semi-definite matrix derived from the point
set P , which itself can be written as a (d× n)-matrix as follows:

P =

 p11 . . . pn1

...
...

p1d . . . pnd

 ,

where pij is the j’th component of the point pi ∈ P . From the matrix P
one canonically derives two positive semi-definite matrices,

(1) the covariance matrix C = PPT , and
(2) the Gram matrix G = PT P .

The covariance matrix is a (d× d)-matrix and can also be written as C =∑n
i=1 pip

T
i , whereas the Gram matrix has dimension n×n and can also be
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written as G =
(
pT

i pj

)
. Both matrices are intimately linked also via their

eigenvectors and eigenvalues. We have the following observation.
Observation 1. The matrices C and G have the same non-zero

(positive) eigenvalues (and thus the same rank).
Proof. Let v ∈ Rd be an eigenvector of C with eigenvalue λ > 0, then

PT v is an eigenvector of G also with eigenvalue λ as can be seen from the
following simple calculation:

GPT v = PT PPT v = PT Cv = λPT v.

Similarly, if u ∈ Rn is an eigenvector of G with eigenvalue µ > 0, then Pu
is an eigenvector of C with eigenvalue µ.

One important issue with both PCA and MDS is how to
choose/determine k (the intrinsic dimensionality of the point cloud data).
Sometimes there is a “large” gap in the eigenvalue spectrum of C or G,
respectively, and k is then often chosen as the number of eigenvalues above
this gap.

2.1. PCA. As mentioned earlier PCA asks for the k-dimensional sub-
space of Rd that approximates the point set P best possible in a least
squares sense. Let us discuss this for the case k = d − 1 first. In this
case we are looking for a unit vector v ∈ Rd such that the sum of the
squared lengths of the projections (vT pi)v is minimized. Formally this can
be written as

min vT PPT v
s.t. ‖v‖2 = 1.

From the Lagrange multiplier theorem one derives the following condition
for an optimal solution to this optimization problem: λv = PPT v = Cv.
That is, an optimal solution is the subspace orthogonal to an eigenvector
of the covariance matrix C and the value of the optimization problem at
an optimal solution is vT PPT v = vT Cv = λ‖v‖2 = λ. Hence we are
looking for an eigenvector associated to the smallest eigenvalue of C and
the optimal solution is spanned by all eigenvectors of the covariance matrix
C except the one corresponding to the smallest eigenvalue.

Let λ1 ≥ . . . ≥ λd ≥ 0 be the eigenvalues of C, v1, . . . , vd ∈ Rd a cor-
responding orthonormal eigenbasis and Pk =

∑k
i=1 viv

T
i , k = 1, . . . , d, the

projector on the k’th invariant eigenspace, i.e., the eigenspace spanned by
the first k eigenvectors. Iteratively it follows that the best approximating k-
dimensional subspace of Rd in a least square sense is spanned by v1, . . . , vk.
The k’th order PCA is then given as the following transformation:

pi 7→ Pkpi = pi − (I− Pk)pi.

In a way Pkpi is seen as the signal conveyed with the point pi and (I−Pk)pi

is seen as noise.
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2.2. MDS. Multi-dimensional scaling is aiming for a k-dimensional
embedding of P that preserves the pairwise inner products pT

i pj as well as
possible in a least squares sense3. Note that all inner products are stored as
entries in the Gram matrix G. Let µ1 ≥ . . . ≥ µn ≥ 0 be the eigenvalues of
G, let u1, . . . , un ∈ Rn be a corresponding orthonormal eigenbasis and let
Qk =

∑k
i=1 uiu

T
i , for k = 1, . . . , n, be the projector on the k’th invariant

eigenspace. We have the following observation:
Observation 2. The matrix QkG is the best rank k approximation

of the Gram matrix G in the sense that

‖QkG−G‖2 = argminQ: (n×n)-matrix of rank k‖QG−G‖2.

The matrix QkG can also be interpreted as a matrix of inner products.
To see this we use (a) the projector property Q2

k = Qk, (b) symmetry
QT

k = Qk, and (c) the commutator property QkG = GQk, and get

QkG = Q2
kG = QkGQk = QkPT PQk = QT

k PT PQk = (PQk)T PQk,

which shows that QkG is the matrix of inner products of the columns
of PQk = (QkPT )T . Here the (n × d)-matrix QkPT is the projection
of the rows of P onto the space spanned by u1, . . . , un. The k’th order
MDS maps the point pi to the i’th column QkPT , i.e., the i’th column of
PQk. This column is uniquely specified by its coefficients αi

1, . . . , α
i
k in the

orthonormal basis u1, . . . , uk. Representing the points pi by (αi
1, . . . , α

i
k)

gives the thought for least squares optimal k-dimensional embedding of the
point set P .

3. Localization.

3.1. Neighborhood criteria. In using PCA and MDS, feature pre-
serving data quantization and visualization can be enhanced by taking only
local relations among all the data points into account. Localization the rela-
tions means choosing neighborhoods for each data point, i.e., building a (in
general directed) neighborhood graph on the data points. The right choice
of neighborhood is crucial for the localized version of PCA and MDS to
work properly. Commonly used methods to define the neighborhoods are:

(1) κ nearest neighbors: connect every pi to its κ nearest neighbors
(in terms of Euclidean distance) in P .

(2) symmetric κ nearest neighbors: connect pi to its κ nearest neigh-
bors and all points in this neighborhood to each other.

(3) fixed neighborhood: given ε > 0, connect every pi to all points in
P that have distance less than ε to pi.

(4) relative neighborhood: given ρ > 1, connect every pi to all neigh-
bors at distance ρ times the distance of pi to its nearest neighbor.

3Observe that completely preserving the inner products allows us to recover P up
to a rotation, i.e., completely preserving the pairwise inner products also preserves the
pairwise distances ‖pi − pj‖.
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An important observation is that (1) and (2), i.e., κ nearest neigh-
bors and symmetric κ nearest neighbors, respectively, do not automatically
adapt to the intrinsic dimension of the point cloud data. Intuitively, if the
intrinsic dimension is large also κ needs to be large in order to cover a mean-
ingful neighborhood for a data point (we expect this neighborhood to grow
exponentially in the intrinsic dimension), whereas if the intrinsic dimension
is small, for the same value of κ one already covers data points quite far
away. Methods (3) and (4), fixed- and relative neighborhood, both auto-
matically adapt to the intrinsic dimension, but cannot—in contrast to the
κ nearest neighbor methods—adapt to non-uniform or anisotropic spacing
of the data points. In practice a good choice for the value of the parameter
ρ of (4) may be easier to find than for the value of ε in (3).

More neighborhood graphs are discussed by Yang [56] who also pro-
vides experimental results.

3.2. Dimension detection using PCA. We have seen above that
knowing the local dimension at a data point can guide the right choice of
parameter κ when computing the κ nearest neighbors neighborhood. On
the other hand, using that given p ∈ M , there exists a small neighborhood
of p in which M is close to its tangent space at p, it is appealing to use
localized versions of PCA to infer the local intrinsic dimension of M at p
from the point cloud data P . With a good neighborhood N(p) ⊂ P of
p ∈ P one can estimate the intrinsic dimension at p by a localized version
of PCA. The localized version uses the local covariance matrix Cp of the
points

p′i = (pi − p)− 1
n

∑
pi∈N(p)

(pi − p) for pi ∈ N(p).

Intuitively, if the local dimension at p is k, then we expect a gap in the
eigenvalue spectrum of Cp in the sense that k’th largest eigenvalue is much
larger than the (k+1)’st eigenvalue and the k largest eigenvalues are roughly
of the same magnitude. That is, we expect a threshold θ such that

λj

λ1
≥ θ for j ≤ k and

λj

λ1
≤ θ for j > k.

Indeed, Cheng, Wang and Wu [13] were able to prove the existence of such a
threshold θ under the assumption that the data are sampled from a smooth
manifold and obey a sampling condition. The sampling condition rules out
locally non-uniform or anisotropic spacing of the sample points. Under
this assumption fixed- and relative neighborhoods should work. Cheng et.
al use the relative neighborhood for their proof. Though their threshold
parameter θ depends on parameters of the sampling condition they report
good results in practice using a threshold of θ = 1/4.

It is important to remark that when the sampling conditions are not
fullfilled or when the size of the neighborhoods are not well-choosen, the



10 FRÉDÉRIC CAZALS, FRÉDÉRIC CHAZAL, AND JOACHIM GIESEN

previous method usually leads to unclear and confusing estimations. In
particular the dimension estimation may depend on a “scale” (in the pre-
vious case the size of the neighborhoods) at which the data is considered:
assume that P samples a planar spiral with gaussian noise in the normal
direction to the curve. At a “microscopic” scale, P just looks like a finite
set of points and its dimension is 0. At a scale of the size of the standard
deviation of the noise, P seems to locally sample the ambient space and the
localized PCA method will probably estimate M to be 2-dimensional. At a
higher, but not too big, scale the localized PCA will provide the right esti-
mation and at large scales, it will again provide a 2-dimensional estimation.
Various notions of dimension (q-dimension, capacity dimension, correlation
dimension, etc...) have been introduced to define the intrinsic dimension of
general shapes (including non smooth shapes and fractal sets). They give
rise to algorithmically simple methods that simultaneously provide dimen-
sion estimations at different explicit scales allowing the user to select the
one which is most relevant for his purpose. An introduction to this subject
may be found in [39].

4. Turning non-linear. The linear and global aspects of PCA and
MDS make them inefficient when the underlying manifold M is highly non
linear. Designing non-linear dimensionality reduction methods that lead
to good results for non linear smooth manifolds is an active research area
that gave rise to a big amount of literature during the last decade. In
this section, we quickly present a set of quite famous dimension reduction
methods that take advantage of the localization techniques presented in the
previous section and that have interesting geometric interpretations. They
also have the advantage of leading to easy to implement polynomial time
algorithms that prove more efficient with larger data sets than the ones
usually involved in iterative or greedy methods (like e.g. the ones involving
EM or EM-like algorithms). We also discuss the guarantees provided by
these methods.

Recall that in the following the considered data sets P ⊂ Rd are as-
sumed to be sampled on/around a possibly unknown smooth manifold M
of dimension k. The common thread of the few methods presented below
is that they all aim to find a projection P̂ ⊂ Rk of the data set minimizing
a quadratic functional φ(P̂ ) that intends to preserve (local) neighborhood
information between the sample points.

4.1. Maximum variance unfolding (MVU). PCA and MDS per-
form poorly when data points are not close to an affine subspace, i.e., they
are both based on an inherent linearity assumption. Especially, both meth-
ods fail when the data points are close to a “curled up” linear space—the
most famous example is the so called Swiss roll data set, points sampled
densely from a curled up planar rectangle in R3. The idea behind maximum
variance unfolding (MVU), introduced by Weinberger and Saul [52, 55, 54],
is to unfold the data, i.e., to transform the data set to a locally isometric
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data set, that is closer to an affine subspace. The unfolding aims at max-
imizing the distance between non-neighboring points (after some choice of
neighborhood) while preserving the distances between neighboring points.

Technically MVU proceeds as follows: let D = (dij = ‖p−pj‖2) be the
symmetric (n × n)-matrix of pairwise distances. Choose a suited neigh-
borhood for each point in P (Weinberger and Saul choose the symmetric
κ-nearest neighbors) and let the indicator variable nij be 1 if either pi is in
the neighborhood of pj or pj is in the neighborhood of pi, and 0 otherwise.
From D an unfolding, a positive semi-definite (n × n)-matrix K = (kij)
(interpreted as the Gram matrix of the unfolded point set) is computed
through the following semi-definite program (SDP)

Maximize the trace of K subject to
(1) K is positive semi-definite

(2)
n∑

i,j=1

kij = 0

(3) kii − 2kij + kjj = dij for all (i, j) with nij = 1.
From K a lower dimensional embedding can be computed as described for
MDS.

4.2. Locally linear embedding (LLE). LLE is a method intro-
duced in [45, 46] that intends to take into account the local linearity of the
underlying manifold M to perform the reduction of dimension. In a first
step, LLE discards pairwise distances between widely separated points by
building a neighborhood graph G (see Section 3). The goal of this first step
is to connect only close points of P so that the neighbors of each vertex
pi in G are contained in a small neighborhood of pi which is close to the
tangent space of the underlying manifold M at pi. To take this local lin-
earity into account, LLE computes for each vertex pi of the graph its best
approximation as a linear combination of its neighbors. More precisely,
one computes a sparse matrix of weights Wi,j that minimize the quadratic
error

ε(W ) =
n∑

i=1

‖pi −
∑

j∈N(pi)

Wi,jpj‖2

where N(pi) is the set of the vertices that are connected to pi in G. This
is a simple least square problem. Solving it with the additional constraint

∀i,
∑

j∈Ngb(pi)

Wi,j = 1

makes the weights invariant to rescaling, rotations and translations of the
data (the weights thus characterize intrinsic properties of the data). The
weights matrix is then used to perform the dimensionality reduction: given
k < d, the points pi are mapped to the points p̂i ∈ Rk that minimize the
quadratic function
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Φ(p̂i) =
∑

i

‖p̂i −
∑

j

Wi,j p̂j‖2

This quadratic minimization problem classically reduces to solving a sparse
n×n eigenvalue problem. As for MDS, the LLE algorithm projects the data
in a low dimensional space, no matter what the mapping is. To provide
satisfactory result, the data have to be sufficiently dense to insure that the
neighbors of a given point provide a good approximation of the tangent
space of M . Moreover, even if the data are dense enough, the choice of
the neighbors may also be awkward: choosing a too small or too large
neighborhood may lead to very bad estimates of the tangent space.

4.3. ISOMAP. ISOMAP is a version of MDS introduced in [48, 21],
where the matrix of inner products or Euclidean distances, respectively, is
replaced by the matrix of the geodesic distances between data points on
M . In a first step, ISOMAP builds a neighborhood graph such that the
distances between points of P in the graph are close to the geodesic dis-
tances on M . Once the geodesic distance matrix has been built, ISOMAP
proceeds like classical MDS to project P in Rk.
One of the advantage of ISOMAP is that it provides convergence guar-
antees. First, it can be proven that if the data are sufficiently densely
sampled on M , the distance on the neighbor graph is close to the one on
M [20, 44, 26]. Nevertheless, in practice robust estimation of geodesic dis-
tances on a manifold is an awkward problem that requires rather restrictive
assumptions on the sampling. Second, since the MDS step in the ISOMAP
algorithm intends to preserve the geodesic distances between points, it pro-
vides a correct embedding if M is isometric to a convex open set of Rk.
The convexity constraint comes from the following remark: if M is an open
subset of Rk which is not convex, then there exist a pair of points that can-
not be joined by a straight line contained in M . As a consequence, their
geodesic distance cannot be equal to the Euclidean distance. It appears
that ISOMAP is not well-suited to deal with data on manifolds M that do
not fulfill this hypothesis. Nevertheless some variants (conformal ISOMAP
[21]) have been proposed to overcome this issue. Note also that ISOMAP
is a non local method since all geodesic distances between pairs of points
are taken into account. As a consequence ISOMAP involves a non-sparse
eigenvalue problem which is a main drawback of this method. To partly
overcome this difficulty some variant of the algorithm using landmarks have
been proposed in [21].

4.4. Laplacian eigenmaps. This method introduced in [4, 3] follows
the following general scheme: first a weighted graph G with weights Wi,j is
built from the data. Here the weights measure closeness between the points:
intuitively the bigger Wi,j is, the closer pi and pj are. A classical choice for
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the weights is given by the Gaussian kernel Wi,j = exp(−‖pi−pj‖2
4σ ), where

σ is a user-defined parameter4. Second the graph G is embedded into Rk in
such a way that the close connected points stay as close as possible. More
precisely the points pi are mapped to the points p̂i ∈ Rk that minimize

φ(P̂ ) =
∑
i,j

‖p̂i − p̂j‖2Wi,j .

There is an interesting and fundamental analogy between this discrete min-
imization problem on the graph G and a continuous minimization problem
on M . Indeed, it can be seen that minimizing φ on the functions defined
on the vertices of G corresponds (in a discretized version) to minimiz-
ing

∫
M
‖∇f‖2 on the space of functions f defined on M with L2 norm

‖f‖2L2 =
∫

M
‖f‖2 = 1. From the Stokes formula, this integral is equal to∫

M
L(f)f , where L is the Laplace-Beltrami operator on M and its minimum

is realized for eigenfunctions of L. Similarly the minimization problem on
G boils down to a general eigenvector problem involving the Laplacian of
the graph. Indeed the Laplace operator on G is the matrix L = D −W ,
where D is the diagonal matrix Di,i =

∑
j Wi,j . It can be seen as an oper-

ator acting on the functions f defined on the vertices of G by subtracting
from f(pi) the weighted mean value of f on the neighbors of pi. By a
classical computation, one can see that φ(P̂ ) = tr(P̂T LP̂ ), where P̂ is the
n× k matrix with i-th row given by the coordinates of p̂i. It follows that,
given k > 0, the minimum of φ is deduced from the computation of the
k +1 smallest eigenvalues of the equation Ly = λDy (the smallest one cor-
responding to the eigenvalue 0 has to be removed). The analogy between
the discrete and continuous setting extends to the choice of the weights of
G: choosing Wi,j = exp(−‖pi−pj‖2

4σ ), where σ is a user-defined parameter,
allows to interpret the weights as a discretization of the heat kernel on M
[4]. From the side of the guarantees, the Laplacian eigenmaps only involve
intrinsic properties of G so they are robust to isometric perturbations of
the data. Moreover, the relationship with the Laplacian operator on M
provides a framework leading to convergence results of L to the Laplace
operator on M [3].

4.5. Hessian eigenmaps (HLLE). ISOMAP provides guarantees
when the unknown manifold M is isometric to a convex open subset of Rk.
Although the hypothesis of being isometric to an open subset of Rk seems
to be rather reasonable in several practical applications, the convexity hy-
pothesis appears to be often too restrictive. HLLE is a method introduced
in [24] intending to overcome this convexity constraint. The motivation of
HLLE comes from a rather elementary result stating that if M is isomet-
ric to a connected open subset of Rk then the null-space of the operator
defined on the space of C2-functions on M by

4To obtain a sparse matrix W the values of Wi,j that are smaller than some fixed
small threshold are usually set to 0.
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H : f →
∫

M

‖Hessf(m)‖2dm

where Hessf is the Hessian of f , is a (k + 1)-dimensional space spanned
by the constant functions and the “isometric coordinates” of M . More
precisely, if there exists an open set U in Rk and an isometric embedding
φ : M → U then it can be proven that the constant functions and the func-
tions φ1, · · ·φk, where φi is the i-th coordinate of the map φ, are contained
in the null-space of H. Moreover, the constant functions span one dimen-
sion of this null-space and the k functions φi span the k other dimensions.
It is thus appealing to estimate this null space in order to recover these
isometric coordinates to map M isometrically on an open subset of Rk. To
do this the algorithm follows the same scheme as LLE and the estimation
of the null-space of H reduces to an eigenvalue computation of a sparse
n×n matrix. As a consequence HLLE allows to process dimensionality re-
duction for a larger class of manifolds M than ISOMAP. The quality of the
reduction is obviously closely related to the quality of the approximation
of the kernel of the operator H. Nevertheless, it is important to notice that
the algorithm involves the estimation of second order differential quantities
for the computation of the Hessian while LLE requires only first order ones
to approximate the tangent space of M . To be done efficiently this usually
needs a very dense sampling of M . At last, note that HLLE is the same
as Laplacian Eigenmaps where the Laplacian operator has been replaced
by H.

4.6. Diffusion maps. Diffusion maps [15] provide a method for di-
mensionality reduction based upon Markov random walks on a weighted
graph G reflecting the local geometry of P . The graph G is built in a
similar way as for Laplacian Eigenmaps: the larger is the weight of an
edge, the “closer” are its endpoints. In particular G can be built using the
discretization of the heat kernel on M (see Section 4.4). From the weights
matrix W one constructs a Markov transition matrix Π by normalizing the
rows of W

Πi,j =
Wi,j

d(pi)
where d(pi) =

∑
k

Wi,k is the degree of the vertex pi

Πi,j can be interpreted as the probability of transition from pi to pj in one
time step. The term Πt(i, j) of the successive powers Πt of Π represent the
probability Πt(pi, pj) of going from pi to pj in t steps. The matrix Π can
be seen as an operator acting on the probability distributions supported
on the vertices of G. It admits an invariant distribution φ0 defined by
φ0(pi) = d(pi)P

j d(pj)
. The idea of diffusion maps is thus to define a metric

between the points of P which is such that at a given t > 0 two points
pi and pj are close if the conditional distributions of probability Πt(pi, .)
and Πt(pj , .) are close. The choice of a weighted L2 metric between the
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Fig. 1. An example of a graph G (the weights are given by the heat kernel ap-
proximation, see text) with points that are close or far to each other with respect to the
diffusion metric: the points x and y are close to each other while the points x and z are
far away because G is “pinched” between the two parts containing x and z. So there
are few paths connecting x to z.

conditional distributions allows to define a diffusion metric between the
points of P

D2
t (pi, pj) =

∑
k

(Πt(pi, pk)−Πt(pj , pk))2

φ0(pk)

which is closely related to the spectral properties of the random walk on
G given by Π. Intuitively, two points pi and pj are close if there are
many paths connecting them in G as illustrated on Fig. 1. Note that the
parameter t representing the “duration” of the diffusion process may be
interpreted as a scale parameter in the analysis. Given k and t > 0, the
diffusion map provides a parameterization and a projection of the data set
which performs a dimensionality reduction that minimizes the distortion
between the Euclidean distance in Rk and the diffusion distance Dt. The
diffusion map is obtained from the eigenvectors of the transition matrix Π
and the eigenvalues to the power t of the transition matrix. The diffusion
maps framework reveals deep connections with other areas (such as spectral
clustering, spectral analysis on manifolds,...) that open many questions
and make it an active research area. For a more detailed presentation
of diffusion maps and its further developments the reader is referred to
[15, 16, 37].

5. Applications in structural biology: the folding problem. In
this section, we first recall the intrinsic difficulty of folding proteins on a
computer –Section 5.1, and bridge the gap between folding and dimension-
ality reduction –Section 5.2. We then proceed with a detailed account of
the bio-physical context by discussing the question of cooperative motions
within a protein –Section 5.3, and make the connexion to Morse theory and
singularity theory along the way. Finally, we review techniques to derive
meaningful so-called reaction coordinates –Section 5.4.
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5.1. Folding: from experiments to modeling. Anfinsen was
awarded the 1972 Nobel prize in chemistry for his work on ribonuclease,
especially concerning the connection between the amino acid sequence and
the biologically active conformation5. Since then, Anfinsen’s dogma states
that for (small globular) proteins, the sequence of amino-acids contains
the information that allows the protein to fold i.e. to adopts its (essen-
tially unique) native structure, or phrased differently, the 3d structure that
accounts for its function. At room temperature, the folding of a protein
typically requires from millisecond to seconds, while the time-scale of the
finest (Newtonian) physical phenomena involved is the femtosecond.

When compared to femtoseconds, folding times are rather slow, which
points towards a process more complex than a mere descent towards a
minimum of energy. On the other hand, such folding times are definitely
too fast to be compatible with a uniform exploration of an exponential
number conformations6. This observation is known as Levinthal’s paradox
[90], and scales the difficulty of folding from a computational perspective.

5.2. Energy landscapes and dimensionality reduction.

5.2.1. Potential and free energy landscape. Consider a system
consisting of a protein and the surrounding solvent, for a total of n atoms.
Each atom is described by 3 parameters for the position and 3 for its
velocity (momentum). In the following, depending on the context, we shall
be interested in a parameter space of dimension d = 3n (positions) or
d = 6n (positions+velocities), the latter being called the phase space. As
the system is invariant upon rigid motions, one could work with d − 6
degrees of freedom, but we skip this subtlety in the following. From this d-
dimensional parameter space, one defines the the energy landscape [99], i.e.
the d dimensional manifold obtained by associating to each conformation
of the system an energy (potential energy or free energy7). Since the water
molecules are critical to model appropriately the electrostatic interactions,
n typically lies in the range 104 to 105 for a system consisting of a protein
and its aqueous environment.

5.2.2. Enthalpy-entropy compensation, energy funnel,
ruggedness and frustration.

Energy funnels. Folding may be seen as the process driving a het-
erogeneous ensemble of conformations populating the unfolded state to a
homogeneous ensemble of conformations populating the folded or native
state. To intuitively capture one major subtlety of folding, it is instructive
to examine the variation of the enthalpy H and entropy S of the system

5See http://nobelprize.org/nobel prizes/chemistry/laureates/1972/index.

html
6Recall that the side-chains of the amino-acids take conformations within finite sets

–the so-called rotamers [86, 73], whence a priori an exponential number of conformations.
7As will be shown with Eq. (2), a free energy landscape is obtained from the potential

energy landscape by projecting onto selected coordinates.
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Fig. 2. Folding funnel.The variability of conformations encodes the entropy of the
system, while its energy level encodes the proximity to nativeness. Adapted from [67].

protein+solvent. While the protein folds, more native contacts between
atoms get formed, whence an enthalpy decrease. On the other hand, two
phenomena account for an entropic drop down: first, the conformational
variability of the protein decreases; second, the structure of the solvent
around the protein changes. This latter re-organization, known as the hy-
drophobic effect, corresponds to the fact that water molecules line-up along
the hydrophobic wall formed by the molecular surface of the protein. Over-
all, the variations of the enthalpy and entropy almost cancel out, resulting
in a small variation of the free energy G = H − TS of the system. This
phenomenon is known as the enthalpy-entropy compensation [75], and can
be illustrated using energy landscapes, as seen from Fig. 2. On this fig-
ure, the vertical axis features the free energy, and the horizontal one the
entropy: while the folding process progresses, the free energy (slightly) de-
creases and the landscape becomes narrower—the entropy decreases. Such
a landscape is generally called a folding funnel [67].

While the previous discussion provides a thermodynamic overview of
the folding process, Levinthal’s paradox deals with a kinetic problem—how
come the folding process is so fast? Travelling down the folding funnel8 pro-
vides an intuitive explanation: the protein is driven towards the minimum
of energy corresponding to the native state by a steep gradient along the

8The fact that the kinetic pathway follows the thermodynamic one is non trivial,
and in general unwarranted, see [75, Chapter 19].
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energy surface. This intuitive simplified view, however, must be amended
in several directions.

Ruggedness and frustration. Two important concepts which help to
describe landscapes are ruggedness or roughness and frustration. Rugged-
ness refers to the presence of local minima, which in a folding process may
correspond to partially folded states. Frustration refers to the presence of
several equally deep minima separated by significant barriers, which may
prevent the system from reaching the deepest one. The fact that most
proteins seem to have a single native state9 seems to advocate a minimal
frustration principle. Yet, even for non frustrated landscapes, several levels
of ruggedness may exist. In particular, on the easy side of the spectrum,
one finds proteins folding with a two-states kinetics, i.e. without any in-
termediates [85].

Ruggedness / frustration may actually come from two sources, namely
from the interaction energy between atoms of the protein, and/or from the
conformational entropy [68]. The enthalpic frustration comes from local
minima of the interaction potential energy. For the entropic frustration,
observe that the folding process is accompanied by a loss of conformational
entropy (of the protein). If this loss is heterogeneous and larger than the
energetic heterogeneity, the corresponding free energetic landscape becomes
frustrated.

5.2.3. Cooperativity and correlated motions. Another concept
related to minimally frustrated folding funnels is that of cooperative motions
between atoms. Cooperativity stipulates that when one atom is moving,
atoms nearby must move in a coherent fashion. This is rather intuitive
for condensed states where local forces (repulsion forces as atoms cannot
inter-penetrate, hydrogen bonding) are prominent. At a more global scale,
cooperation is likely to also be important, e.g. due to electrostatic inter-
actions. From a technical point of view, simple illustrations of correlated
motions are provided by normal modes studies10, as well as correlations
between positional fluctuations11.

Having mentioned correlated motions of atoms, the fact that dimen-
sionality reduction techniques play a key role in modeling folding (and more
generally the behavior of macro-molecular systems) is expected. First, the

9As opposed to many polymers which exist under a number of energetically equiva-
lent inter-convertible states.

10Assuming the system is at a minimum of its potential energy V , the dominant term
in the Taylor series expansion of V is the quadratic one. Diagonalizing the corresponding
quadratic form yields the so-called normal modes, whose associated eigenvectors are
collective coordinates. See for example [97].

11Given a molecular dynamics simulation, one may investigate the correlations be-
tween the atomic fluctuations —with respect to a reference conformation. Both PCA
and MDS have been used for this problem: in [78, 59], the average covariance matrix of
the positional fluctuations is resorted to, while [83] computes the average Gram matrix.
See also [89] for a characterization of pairwise atomic correlations based of Pearson’s
coefficients and relatives.
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d degrees of freedom are certainly not equivalent, as different time-scales
are clearly involved: from small amplitude - high frequency vibrations apart
from chemical bonds, to large amplitude - slow frequency deformations of
the protein. Second, the constraints inherent to the large amplitude mo-
tions are such that one expects the effective parameters to lie on some lower-
dimensional manifold representing the effective energy landscape, that is
the one accounting for transitions.

5.3. Bio-physics: Pre-requisites.

5.3.1. Molecular dynamics simulations. The simulation data we
shall be concerned with are essentially molecular dynamics (MD) data.
(The reader is referred to [77] for alternate simulation methods, such as
Monte Carlo simulations or Langevin dynamics.) A MD simulation is a
deterministic process which evolves a system according to the Newtonian
laws of motion. Central in the process is the force field associated to the
system, or equivalently the potential energy stemming from the interac-
tions between atoms. A typical potential energy involves bonded terms
(energies associated to covalent bonds), and non bonded terms (Van der
Waals interactions and electrostatic interactions). From the potential en-
ergy V associated to two atoms, one derives an associated force. Given
these forces, together with the positions and momenta of the atoms, one
determines the configuration of the system at time t + ∆t. Practically, ∆t
is of the order of the femtosecond, so that in retaining one conformation
every 10, long simulations (beyond the nanosecond) result in a number of
conformations > 100, 000.

5.3.2. Models, potential energy landscapes and their rugged-
ness. As exploring exhaustively the energy landscape of large atomic mod-
els is not possible, a number of coarse models mimicking the properties of
all atoms models have been developed. We may cite the united residues
model [74]; the BLN model [63] which features three types of beads only
(hydrophilic, hydrophobic, neutral); the 20 colors beads model [71], which
accommodates anisotropic interactions between residues so as to maximize
packing of side chains.

Such coarse models deserve a comment about the ruggedness of po-
tential energy landscapes. Ruggedness and frustration are indeed clearly
related to the complexity of the force field governing the system, since non
local interactions between atoms are likely to yield local minima of the
landscape —cf the Go models thereafter. On the other hand, non local
interactions are likely to help the protein to overcome local energy barri-
ers (to escape the local minima of the rugged landscape) due to solvent
collisions, non-native contacts, etc. See for example [92].

Having mentioned energy landscapes and MD simulations, a crucial
remark is in order. Following the gradient vector field of the energy on
the potential energy surface amounts to a mere energy minimization. But
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MD simulations are more powerful, since a system evolved by a MD can
cross energy barriers thanks to its kinetic energy12. Another way to cross
barriers is to resort to a Monte Carlo simulation [77].

5.3.3. Morse theory and singularity theory. As outlined above,
the properties of a system are described by its energy landscape. To investi-
gate transitions of our macro-molecular system, the topographical features
of the landscape i.e. its minima, maxima, and passes are of utmost impor-
tance [99]. These features are best described in terms of Morse theory [91]
as well as singularity theory [23], which in our setting amounts to studying
the gradient vector of the energy function on the manifold.

Following classical terminology, a critical point of a differentiable func-
tion is a point where the gradient of the function vanishes, and the func-
tion is called a Morse function if its critical points are isolated and non-
degenerate. For a critical point p of such a function, the stable (unstable)
manifold W s(p) (Wu(p)) is the union of all integral curves associated to the
gradient of the function, and respectively ending (originating) at p. Locally
about a critical point of index i (the Hessian has i negative eigenvalues), the
(un-)stable manifold is a topological disk of dimension i (d− i). The stable
and unstable manifolds are also called the separatrices, as they partition
the manifold into integral curves having the same origin and endpoint. In a
more prosaic language, they are also called watersheds, by analogy with wa-
ter drainage. In particular, under mild non degeneracy assumptions of the
energy landscape, a transition between two adjacent minima is expected to
correspond to the stable manifold of index one saddle joining the minima
–a result known as the Murrell-Laidler theorem in bio-physics [99].

If Morse theory provides a powerful framework to describe energy land-
scapes, the pieces of information provided should be mitigated by the rel-
ative energies associated to critical points of various indices. As already
noticed at the end of Section 5.3.2, the thermal energy of the system indeed
allows barrier crossing.

5.3.4. Free energy landscapes and reaction coordinates. In
classical chemistry, a chemical systems moves from one minimum of energy
to another following the minimum energy path, which, as just discussed is
expected to go through index one saddles and intermediate minima. For
complex systems such as a protein in its aqueous solution, things are more
involved [72, 65, 69]. The different parameters have different relaxation
times: fast parameters are those describing the solvent, as well as the vari-
ables accounting for the fast vibrations apart from covalent bonds of the
protein; slow ones account for the large amplitude motions of the protein.
Because the system equilibrates faster for some coordinates than others,

12If the internal (potential+kinetics) energy remains constant along the MD simula-
tion, the system is Hamiltonian, and a large number of mathematical results apply [94].
We shall get back on this issue in the outlook.
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we may partition the parameters as x = (q, s). Denote V (x) the poten-
tial energy of the system. By focusing on q and averaging out the other
parameters, one defines the free energy landscape, which is the kinetically
relevant one, by:

W (q) = −kT ln
∫

exp
[
− V (q, s)

kT

]
ds. (2)

Coordinates q which provide kinetically relevant informations on tran-
sitions are called reactions coordinates. Finding such coordinates is chal-
lenging, even on simple systems. We illustrate these difficulties with a two
dimensional system corresponding to a two states folding protein, whose
unfolded and folded states are respectively denoted A and B. If q is the
reaction coordinate sought, obvious requirements are (i) q takes different
values qA and qB for these states, and (ii) q is such that the free energy
W has a maximum at some value q∗ in-between qA and qB . When these
conditions are met, q is called an order parameter. If q provides in addition
informations about the kinetics of the transitions, it is called a reaction
coordinate. As illustrated on Fig. 3(a,b), these are different notions. In
particular, Fig. 3(b) features a parameter q which is a good order param-
eter but not a reaction coordinate. For example, the dashed trajectory
passes through q∗ but does not correspond to a transition. In the ideal
setting, for a reaction coordinate, the unstable manifold of the index one
saddle joining the two minima separates the points which are committed to
one state or the other, and thus determines the so-called Transition State
Ensemble (TSE).

Practically, dealing with reaction coordinates poses several problems.
First, for a system such as a protein and its solvent, one does not know a
priori which variables are the slow ones. This issue is further discussed at
the end of Section 5.4.3. Second, if there is not a unique coordinate which
is slower than the remaining ones, a multi-dimensional analysis must be
carried out. Third, computing a free energy profile from Eq. (2) requires
the coordinates over which the integration is performed to be equilibrated.

5.3.5. Folding probability pfold. To probe the relevance of a pa-
rameter as a reaction coordinate, one resorts to the committor probability,
i.e. the probability of being committed to a given state [72]. More precisely,
for any state x in the system, this is the probability of arriving say at B
before before arriving at A within some time ts. If the potential energy de-
pends on positions and momenta, averaging is understood w.r.t. momenta.
By studying this probability along a given path, one locates points near
the TSE, since such points are equally committed to both states. Denote
Dirac’s delta function δ, and let < z >E the average of quantity z over
an ensemble E. To probe the interest of an order parameter as a reaction
coordinate, one studies the distribution of the committor probability at
q = q∗, that is
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Fig. 3. Potential energy landscape, with separatrices of the saddle in red: an order
parameter may not be a good reaction coordinate. Adapted from [65].

P (pB) =< δ[pB(x, ts)− pB ] >q∗ , pB ∈ [0, 1].

For a good reaction coordinate, one expects P (pB) to be sharply peaked
at pB = 1/2. This is the case on Fig. 4(a), but not on Fig. 4(b) where
P (pB) is bimodal, meaning that the orthogonal coordinates are such that
commitment to the two states occurs. The reader is referred to [72, 66, 65]
for example physical systems featuring various committor’s distributions.

The notion of transition state is also closely related to that of transition
path [82, 64]. Define a transition path TP as a path in phase space that
exits a region about the unfolded state, and reaches a region about the
folded state. A collection of transition paths determines a conditional phase
space density p(x | TP ), and one has

p(TP | x) =
p(x | TP )p(TP )

peq(x)
, (3)

with peq(x) the equilibrium probability of state x and p(TP ) the fraction
of time spent on transition paths. Transition states are naturally defined
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Fig. 4. Probing a reaction coordinate by computing the committor probabilities pB.
Adapted from [66].

as points maximizing p(TP | x). Moreover, denoting x a point with same
position and reversed momentum, and pA(x) the probability of reaching
state A before state B from x, it can be shown [82] that

p(TP | x) = pA(x)pB(x) + pA(x)pB(x). (4)

An important property of this equation is that one can project x onto
a lower dimensional space –see Section 5.4. Denoting r = r(x) such a
coordinate, it can be shown [82] that

p(TP | r) =
p(r | TP )p(TP )

peq(r)
. (5)
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Fig. 5. Crossing the Transition State on a rugged energy landscape: the system
moves from one watershed (state U) to a neighboring watershed (state F ) by crossing
the energy landscape pass. Adapted from [69].

Practically, the difficulty with pfold and related quantities are several
[69]. First, the concept is bound to simple landscapes corresponding to two
states folding processes. Most importantly, estimating pfold requires sam-
pling the TSE, which either requires long simulations –usually out of reach,
or some form of importance sampling to favor the rare events corresponding
to crossings of the TSE.

5.4. Inferring reaction coordinates. In the following, we review
some of the most successful techniques to analyze transitions. We focus on
the methodological aspects, and refer the reader to the original papers for
a discussion of the insights gained, including connexions with experimental
facts. As it can be seen from [69] for example, assessing the relevance of a
particular coordinate can be rather controversial.

5.4.1. Reaction coordinates? In order to prove efficient to investi-
gate folding, funnels such as that of Fig. 2 must be made quantitative, that
is, one needs to specify what the axis account for. The variables parame-
terizing the axis are called reaction coordinates, and a quantitative energy
landscape is displayed on Fig. 5. We now discuss several ways to design
such coordinates.

5.4.2. Contacts based analysis. Following the work of Go [80], a
natural way to tackle Levinthal’s paradox consists of introducing a bias in
the energy function towards native contacts, i.e. contacts observed in the
folded state. More precisely, two residues which are not adjacent along the
primary sequence of the protein form a native contact if they are spatially
close in the protein’s native state. Such pairs of residues are associated
a favorable interaction energy, while the remaining ones are associated a
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Fig. 6. Folding process down a folding funnel: fraction of native contacts Q in-
creases, free energy F (Q) crosses a barrier, pfold increases. Adapted From [69].

repulsive, neutral or less attractive interaction energy. Figure 6 illustrates
a folding process down a funnel, described using the fraction of native
contacts. On one hand, energy landscapes obtained with Go models are
generally minimally frustrated. On the other hand, as discussed in Section
5.2, removing non local contacts may impair the folding process. At any
rate and regardless of the energy model used, the fraction of native con-
tacts Q can be used as reaction coordinate. Alternative empirical reaction
coordinates, also exploiting the resemblance of a particular conformation
with the native state, are being used: the radius of gyration (the root mean
square distance of the collection of atoms from their center of mass), the
effective loop length and the partial contact order [68]. In particular, the
latter two coordinates are used in [68] to measure the fraction of confor-
mations that are actually accessible amongst the conformations with the
same degree of nativeness Q. Such measures are directly related to the
entropy of the system along the folding route, and thus allow one to assess
the entropic ruggedness of the free energy landscape.

The native contacts can be used in a more elaborate fashion. Following
[64], denote Q the matrix such that Qij = 1 if the distance between residues
i and j is less than some cutoff (e.g. 12Å), and 0 otherwise. Using a
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weight matrix W = (wij), the contact matrix is projected onto a reaction
coordinate defined by r =

∑
ij wijqij . Starting from a random initialization

of matrix W , the weights are optimized so as to maximize a Gaussian fit
of p(TP | r) –see Eq. (5). In doing so, one ensures that all reactive
configurations are condensed in a single peak.

5.4.3. Dimension reduction based analysis. If one discards the
momenta of the points, an important question is to come up with a sim-
plified representation of the 3n dimensional energy landscape. Not sur-
prisingly, PCA and MDS have been used for this purpose13. A typical
illustration is provided by [62], where a PCA analysis of the conforma-
tions is first performed. Using the two most informative eigenvectors, an
approximation of the landscape termed the energy envelope is computed.
Fine informations on barriers between watersheds of minima might be lost
–the ruggedness observed on a landscape computed from two PCA coordi-
nates is at best questionable, but one expects to retain the overall shape
of the watersheds. In [87], a PCA analysis is carried out on the critical
points of an energy landscape, rather than on the whole point cloud. This
analysis yields new coordinates, which can be plugged into the potential
energy function.

One step towards a finer analysis is made in [70], where an adaptation
of ISOMAP is used to derive new coordinates. The adaptions w.r.t. the
standard ISOMAP algorithm are threefold. First, the computation of the
nearest neighbors is done resorting to the least RMSD (lRMSD)14. Sec-
ond, following [21], landmarks are used to alleviate the pairwise geodesic
distance calculations. Third, the point cloud is trimmed to get rid of redun-
dancies, which are expected in particular near the minima of potential en-
ergy. These conformations are later re-introduced into the low-dimensional
embedding, which is important in particular to recover statistical averages.
To assess the performance of the dimensionality reduction, a residual vari-
ance calculation is performed. For a two states folding protein, the tran-
sition state identified from the maximum of the free energy profile W (x1)
associated to the first embedding coordinate x1 is in full agreement with
pfold. (A result also holding for the reaction coordinate Q in this case.)
Motivated by the fact that 95% of the running time is devoted to the cal-
culation of nearest neighbors, a further improvement is proposed in [95].
Assume m landmark conformations have been selected. Following the strat-
egy used by the General Positioning System, each conformation (a point
R3n) is represented as a m-dimensional point whose coordinates are the
lRMSD distances to the m landmarks. In the corresponding m-dimensional
space, the l > k nearest neighbors of a point can be computed using the

13Notice this analysis is different from the investigation of positional fluctuations
mentioned in Section 5.2.

14The Root Mean Square Deviation computed once the two structures have been
aligned.
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Euclidean distance, from which the k nearest ones according to the lRMSD
are selected.

To finish up this review, one should mention methods which do not
provide a simplified embedding of the landscape, but resort instead to a
clustering of the nodes in parameter space [81, 79]. Nodes within the same
watershed should belong to the same cluster, from which a Configuration
Space Network (CSN) can be built. In some cases, quantitative informa-
tions (e.g. free energies) can even be retrieved.

Remark 5.1. Having discussed dimensionality reduction techniques,
one comment is in order. If one does not know a priory which are the slow
variables, integrating Eq. (2) is not possible. This accounts for a three-
stage strategy which consists of performing a simulation, performing a di-
mensionality reduction to infer candidate reaction coordinates, and probing
them using pfold.

5.4.4. Morse theory related analysis. Energy landscapes govern
the folding process of proteins, but also the behavior of a number of physical
systems such as clusters of atoms, ions or simple molecules [67, 99]. For
some of these systems which exhibit a small number of stable crystalline
geometries and a large number of amorphous forms, exploring the landscape
exhaustively is impossible. Yet, a qualitative analysis can be carried out
by focusing on selected critical points. In [88, 60, 63], sequences of triples
minimum - saddle - minimum are sought, and super-basins are built from
their concatenation. In a related vein, the relative accessibility of potential
energy basins associated to minima is investigated in [61], so as to define the
so-called disconnectivity graph (DG). More precisely, two constructions are
performed in [61]. The first one, based on the canonical mapping, focuses
on the relative height of energy barriers, which governs transitions between
states, thus encoding the kinetic behavior of the system. The second one,
based on the canonical mapping, probes the potential energy surface at pre-
defined values of the energy, thus encoding global topological properties of
the landscape. Mathematically, constructing either DG is tantamount to
tracking the topological changes of the set V −1(]∞, v]) when increasing v.
As such changes occur at critical values only [91], the graph built when all
critical values are available is called the contour tree15. In [61], a discrete
set of energies are used to probe the topological changes of the level sets,
though.

If one focuses on the relative accessibility of basins, one problem aris-
ing is that the DG built does not have any privileged embedding —the
vertical axis encodes an energy, but the horizontal one does is meaning-
less. To complement the topological information by a geometric one, the

15Consider the level sets of a Morse function f , and call a connected component of
a level set f−1(h) a contour. Further contract every contour to a point. The graph
encoding the merge/split events between these contours is called the Reeb graph, or the
contour tree if the domain is simply connected [76].
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following is carried out in [96]: first, similarly to [87], a PCA of critical
points is carried out, from which a two-dimensional embedding of these
critical points is derived; next, the DG is rendered as a three-dimensional
tree, the z coordinate corresponding to the potential energy. Interestingly,
such representations convey the (lack of) frustration of BLN models [63],
depending on the interaction energy used.

6. Outlook.
Algorithms. Exploring a high-dimensional point cloud with the meth-

ods discussed and mentioned raises critical issues which should be kept in
mind. First, it is usually assumed that the data points lie on a manifold.
But for complex data corresponding e.g. to physical phenomena featuring
bifurcations, a stratified complex might actually be the true underlying
structure. Even in the manifold case, since the underlying manifold M is
unknown, the geometric quantities we aim to preserve have to be estimated
from the data set. Coming up with robust estimators poses difficult ques-
tions, especially since noisy data (i.e. not exactly sampled on M) has to
be accommodated from a practical standpoint. Worse, the sampling con-
ditions insuring that the geometry can be correctly inferred from the data
usually depend on some assumptions on M ... which is unknown! These
questions have been widely studied in computational geometry, in partic-
ular for the three dimensional surface reconstruction problem, but remain
largely open in a broader setting.

Closely related to the previous questions are those concerning the con-
vergence and theoretical guarantees. As discussed earlier, dimensionality
reductions methods are not well suited for all situations. It is thus impor-
tant to identify the necessary assumptions on M so as to ensure satisfactory
results. We have seen in Section 4 that one can answer this question for
some of the methods (ISOMAP, HLLE). It is also interesting to have in-
formations on the asymptotic behavior of the considered methods when
the samples become denser and denser and converge to M . In this way,
Hessian eigenmaps and diffusion maps reveal interesting asymptotic con-
nections with classical operators defined on the underlying manifold M
that need to be further explored.

Protein folding. In spite of three decades of intense research, the prob-
lem of protein folding is still open. In the context of energy landscapes and
dimensionality reduction, a number of further developments are called for.

A variety of (molecular dynamics) simulations are being performed:
depending on the system studied (all atoms/coarse, explicit/implicit/no
solvent), either the temperature, the pressure or the internal energy of the
system are kept constant. For example, if the temperature is held constant
using a thermostat —for example the Nose-Hoover, part of the internal
energy of the system is dissipated into the thermostat. If the internal
energy of the system is conserved, then, the system is Hamiltonian.

For Hamiltonian systems, a large number of mathematical results ex-
ist. For example, using the geometrization of Hamiltonian dynamics, a
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trajectory of the system corresponds to a geodesic of a suitable Rieman-
nian manifold [94]. This point of view is not really used in recent folding
studies, which focus on Morse related analysis of potential and free energy
surfaces. The study of the relationship between folding properties inferred
from energy landscapes on the one hand, and from Hamiltonian dynamics
on the other hand deserves further scrutiny.

Practically, one or two reaction coordinates are usually dealt with,
a rather stringent limitation. Methods based on manifold learning are
appealing in this perspective, since the dimensionality of the embedding
can be estimated. But a critical step for these methods is that of the
neighborhood selection. On one hand, the samples are generally processed
in a uniform way since the same number of neighbors is used for all points.
On the other hand, Morse theory tells us that the local density of samples
about a critical point is related to its index. Therefore, a segmentation
of the point cloud might be in order before resorting to dimensionality
reduction techniques. Doing so might allow one to bridge the gap with
Morse theory related methods, whose focus has been on the decomposition
of the landscape into basins –as opposed to the design of new coordinates
accounting for transitions.

Another key problem is that of stability, in the context of rugged /
frustrated landscapes. Ideally, multi-scale analysis of landscapes should be
developed, so as to asses what is significant and what is not at a given
scale. Topological persistence and more generally tools developed in com-
putational topology might be helpful here. Such analysis might also allow
one to spot cascades of minor events in the folding process, such cascades
triggering major events –cf phase transitions.

Finally, an improved analysis of landscapes would have another dra-
matic impact, namely on the simulation processes themselves. Should a
finer understanding of cooperative motions be available, steered simula-
tions favoring these coordinates should allow one to move faster along a
(rugged) landscape.

Hopefully, a finer geometric and topological analysis of non linearities
arising on energy landscapes will help in making simulation able to cope
with biologically relevant time scales.

Acknowledgments. F. Cazals wishes to acknoledge Benjamin Bou-
vier, Ricardo Lima, Marco Pettini and Charles Robert for stimulating dis-
cussions.
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INTERSECTION THEORY, AND NEWTON POLYTOPES

CARLOS D’ANDREA† AND MARTÍN SOMBRA‡

Abstract. The study of the Newton polytope of a parametric hypersurface is
currently receiving a lot of attention both because of its computational interest and
its connections with Tropical Geometry, Singularity Theory, Intersection Theory and
Combinatorics. We introduce the problem and survey the recent progress on it, with
emphasis in the case of curves.

Key words. Parametric curve, implicit equation, Newton polytope, tropical geom-
etry, Intersection Theory.
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1. Introduction. Parametric curves and surfaces play a central role
in Computer Aided Geometric Design (CAGD) because they provide
shapes which are easy to plot. Indeed, a rational parametrization allows to
produce many points in the variety using only the elementary operations
(±, ×, ÷) of the base field.

For instance, consider the folium of Descartes (Figure 1). This plane
curve can be defined either by the equation x3 + y2 − 3xy = 0 or as the
image of the rational map

C 99K C , t 7→

(

3t

1 + t3
,

3t2

1 + t3

)

. (1)

The parametric representation is certainly more suitable for plotting
the curve. If instead we plot it using only its implicit equation, the result
is bound to be poor, specially around the singular point (0, 0) (Figure 2).

This is because in order to produce many points in the folium in this
way, we have to solve as many cubic equations. This is certainly more
expensive than evaluating the parametrization and moreover, the resulting
points are typically not rational but live in different cubic extensions of Q.

On the other hand, if we are to decide whether a given point lies in
the folium or not, it is better to use the implicit equation. For instance, it
is straightforward to conclude that (−2, 1) does not belong to the folium
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Fig. 1. The folium of Descartes.

Fig. 2. The folium of Descartes according to the Maple command implicitplot.

by evaluating the equation: (−2)3 + 13 − 3(−2) = −1 6= 0. If we were to
find that out from the parametrization (1), we would have to determine if
the system of equations

−2 =
3t

1 + t3
, 1 =

3t2

1 + t3

admits a solution for t ∈ C or not, which is a harder task.
Depending on which kind of operation one needs to perform on a cer-

tain parametric variety, it may be convenient to dispose of the parametric
representation or of the implicit one. Efficiently performing the passage
from one representation to the other is one of the central problems of
Computational Algebraic Geometry. In the present text we will mostly
concentrate in one these directions: the implicitization problem, consisting
in computing equations for an algebraic variety given in parametric form.
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In precise terms, the implicitization problem is: let ρ1, . . . , ρn ∈
C(t1, . . . , tn−1) be a family of rational functions and consider the map

ρ : Cn−1
99K Cn , t = (t1, . . . , tn−1) 7→ (ρ1(t), . . . , ρn(t)). (2)

Suppose that the Zariski closure Im(ρ) of the image of this map is a hyper-
surface or equivalently, that the Jacobian matrix (∂ρi

∂tj
(t))i,j has maximal

rank n − 1 for generic t ∈ Cn−1. The ideal of this parametric (or unira-
tional) hypersurface is generated by a single irreducible polynomial and the
problem consists in computing this “implicit equation”.

This problem is equivalent to the elimination of the parameter vari-
ables from some system of equations. For instance, to compute the implicit
equation of the folium from the parametrization (1), one should eliminate
the variable t from the system of equations

(1 + t3)x − 3t = 0 , (1 + t3) y − 3t2 = 0, (3)

that is, we have to find the irreducible polynomial in C[x, y] vanishing at
the points (x, y, t) satisfying (3) for some t ∈ C.

The same procedure works in general. For a parametrization like in (2),

write ρi(t) = pi(t)
qi(t)

for some coprime polynomials pi, qi for 1 ≤ i ≤ n.

The implicit equation of the hypersurface Im(ρ) can then be obtained by
eliminating the variables t1, . . . , tn−1 from the system of equations

q1(t)x1 − p1(t) = 0, . . . , qn(t)xn − pn(t) = 0.

This elimination task can be effectively done either with Gröbner bases or
with resultants [3] but in practice, this can be too expensive. For instance,
for a ∈ N consider the parametrization

ρ : C → C2 , t 7→

(

t(t − 1)a

(t + 1)a+1
,

(t + 1)a

t(t − 1)a−1

)

. (4)

It is not hard to check by hand that the implicit equation of the image of
this map is

2 − xa−1ya − xaya+1 = 0.

However, all current implementations of Gröbner bases and resultant algo-
rithms fail to solve the problem for moderately large values of a, because
of the increasing number of intermediate computations involved.

2. The Newton polytope of the implicit equation. Instead of
trying to compute the implicit equation of a parametric hypersurface, we
will focus in the problem of determining its Newton polytope. We will work
with Laurent polynomials, that is expressions of the form x−1

2 +x−2
1 x2 where

the exponents can be any integer numbers.
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Fig. 3. The Newton polygon of the folium of Descartes.

Definition 2.1. The Newton polytope N(F ) ⊂ Rn of a Laurent poly-
nomial F ∈ C[x±1

1 , . . . , x±1
n ] is the convex hull of the exponents in its mono-

mial expansion.

This notion readily extends to hypersurfaces: we define the Newton
polytope N(Z) of a hypersurface Z ⊂ Cn as the Newton polytope of its
implicit equation; this polytope is well defined because the equation is
unique up to a scalar factor. For the case n = 2 we will apply the more
usual terminology of “polygon” instead of polytope. For instance, the
Newton polygon of the folium x3

1 + x3
2 − 3x1x2 = 0 is the convex hull

Conv
(

(1, 1), (3, 0), (0, 3)
)

(Figure 3).

The Newton polytope tells us which are the possible exponents occur-
ing in a given Laurent polynomial: if the polytope is small, then the poly-
nomial is sparse, in the sense that it has few monomials. It is an important
refinement of the notion of degree: if we denote by S := Conv(0, e1, . . . , en)
the standard simplex of Rn, the degree of a polynomial F ∈ C[x1, . . . , xn]
is the least integer d such that N(F ) ⊂ dS. Note that the Newton polytope
of a polynomial (and a fortiori that of a hypersurface) is always contained
in the octant (R≥0)

n.

From now on, we will focus in the following problem: determine the
Newton polytope of a hypersurface given by a rational map ρ : Cn−1

99K

Cn. This problem is currently receiving a lot of attention because of its con-
nections with Tropical Geometry, Singularity Theory, Intersection Theory
and Combinatorics. The Newton polytope does not characterize the hy-
persurface but retains a lot of relevant information and as a consequence of
the research done during the last years, we now know that in plenty of cases
its computation is much simpler than that of the full implicit equation.

A preliminary version of this question was first posed by B. Sturmfels
and J.-T. Yu. In the context of the sparse elimination theory, their question
can be resumed in: “can I predict the Newton polytope of the implicit
equation from the Newton polytopes of the input parametrization?” In
precise terms:
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Fig. 4. The Newton polygon of the implicit equation of (5).

Problem 2.2. Let P1, . . . , Pn ⊂ Rn−1 be lattice polytopes with non-
empty interior and consider the family of n Laurent polynomials in n − 1
variables

ρi =
∑

a∈Pi∩Zn−1

λi,a ta1

1 · · · t
an−1

n−1 ∈ C

[

t±1
1 , . . . , t±1

n−1

]

for 1 ≤ i ≤ n and λi,a ∈ C generic. Determine the Newton polytope of the
image of the parametrization t 7→ (ρ1(t), . . . , ρn(t)).

A lattice polytope in Rn−1 is a polytope whose vertices lie in Zn−1. The
hypothesis that the Pi’s have non empty interior ensures that the image of
the parametrization is a hypersurface for a generic choice of the coefficients
λi,a (that is, in some non empty open set of the space of parameters).
The Newton polytope of this hypersurface does not depend on this generic
choice although the equation itself does.

As an example, let us consider the parametrization proposed by
A. Dickenstein and R. Fröberg [8]:

ρ : C → C2 , t 7→
(

t48 − t56 − t60 − t62 − t63, t32
)

. (5)

The Newton polytopes of the defining polynomials are relatively small: the
real interval [48, 63] and the singleton {32}. The exponents are rather
large, but in any case the implicit equation can be computed via the
Sylvester resultant. It’s Newton polygon is the triangle with vertices
(32, 0), (0, 48), (0, 63).

This example was studied by I. Emiris and I. Kotsireas, who succeeded
in determining the polygon by analysing the behavior of the resultant under
specialization, thus showing that it is sometimes possible to access to the
Newton polytope without computing the implicit equation [8]; see also [7]
for further applications of this method.

The recent irruption of Tropical Geometry in the mathematical
panorama has boosted the interest in the problem. The tropical variety
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associated to an affine hypersurface is a polyhedral object, equivalent to
its Newton polytope in the sense that one can be recovered from the other
and viceversa. In this direction, Sturmfels, J. Tevelev and J. Yu succeeded
in determining the tropical variety (and thus the Newton polytope) of a
hypersurface parametrized by generic Laurent polynomials [15, 16] and im-
plemented the resulting algorithm [17, 18].

From another point of view, A. Esterov and A. Khovanskĭı have shown
that the Newton polytope of the implicit equation of a generic parametriza-
tion can be identified with the mixed fiber polytope in the sense of P. Mc-
Mullen, hence providing a different characterization of this object [9].

2.1. The Newton polygon of a parametric curve. If one wants
to determine the Newton polytope in all cases and not just in the generic
ones, it is clear that finer invariants of the parametrization must be taken
into account.

In this section we will focus in the case of parametric plane curves,
which has been recently solved in the papers [4, 5, 15, 20]. In this case, the
Newton polygon is determined by the multiplicities of the parametrization.
Let ρ : C 99K C2 be a map given by rational function f, g ∈ C(t) \ C. For
a point v in the projective line P1, the multiplicity of ρ in v is

ordv(ρ(t)) :=
(

ordv(f(t)), ordv(g(t))
)

∈ Z2,

where ordv(f) denotes the order of vanishing of f at v. Recall that the
order of vanishing at v = ∞ of a rational function p

q
∈ C(t) (p, q ∈ C[t])

equals deg(q) − deg(p).

The basic properties of these multiplicities are:

• ordv(ρ) = (0, 0) except for a finite number of v ∈ P1 and
•

∑

v∈P1 ordv(ρ) = (0, 0).

We next define an auxiliary operation which produces a convex lattice
polygon from a balanced family of vectors of the plane. Let B ⊂ Z2 be
a family of vectors which are zero except for a finite number of them and
such that

∑

b∈B b = (0, 0). We denote by P(B) ⊂ (R≥0)
2 the (unique)

convex polygon obtained by: 1) rotating −90◦ the non-zero vectors of B,
2) concatenating them following their directions counterclockwise and 3)
translating the resulting polygon to the first quadrant (R≥0)

2 in such a way
that it “touches” the coordinate axes (Figure 5). The zero-sum condition
warrants that the polygonal line closes at the end of the concatenation step.

The tracing index (or degree) ind(ρ) ≥ 1 is the number of times the
parametrization ρ runs over the curve when t runs over C. When ind(ρ) =
1, we say that the parametrization is birational.

The solution to the problem of the computation of the Newton polygon
of a parametric plane curve can be found in the papers of Dickenstein, E.-
M. Feichtner, Sturmfels and Tevelev [5, 15, 20] and also in ours [4].
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1)B ⊂ Z2

×2

P(B)

3)2)

Fig. 5. The operation P(B).

Theorem 2.1. Let ρ : C 99K C2 be a rational map and set C := Im(ρ),
then

N(C) =
1

ind(ρ)
P

(

(ordv(ρ))v∈P1

)

. (6)

Example 1. Consider the parametrization

ρ : t 7→
( 1

t(t − 1)
,
t2 − 5t + 2

t

)

.

Its multiplicities are

ord0(ρ) = (−1,−1) , ord1(ρ) = (−1, 0) , ord∞(ρ) = (2,−1)

and ordvi
(ρ) = (0, 1) for each of the two zeros v1, v2 of the equation

t2 − 5t + 2 = 0, while ordv(ρ) = (0, 0) for v 6= 0,±1,∞, v1, v2. Figure 5
illustrates the family B and the associated polygon P(B).

Theorem 2.1 tells us that this polygon is ind(ρ) times the actual New-
ton polygon of the curve. It is easy to check that the constructed polygon
is non contractible, in the sense that it is not a non trivial integer multiple
of another lattice polygon. We conclude that the parametrization is bira-
tional (that is, ind(ρ) = 1) and that N(C) = P(B). These results can be
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contrasted with the implicit equation of the curve: 1 − 16x − 4x2 − 9xy −
2x2y − xy2 = 0.

Similarly, Theorem 2.1 allows to determine the Newton polygon of the
folium of Descartes and of the Dickenstein-Fröberg example. Again, the
additional data ind(ρ) = 1 is a consequence of the non contractibility of
the resulting polygon.

2.2. Tropical geometry and Intersection Theory. We will sketch
here the two different methods for proving Theorem 2.1: Tropical Geometry
and Intersection Theory.

Tropical Geometry can be regarded as the geometry of the min-plus
algebra (R,⊕,⊙), where the operations are defined as

x ⊕ y = min(x, y) , x ⊙ y = x + y.

To simplify the exposition, we will only deal with polynomials in C[x, y],
although the theory extends naturally to multivariate polynomials with
coefficients in a valuated field.

The tropicalization of a polynomial F =
∑N

j=0 λjx
aj ybj ∈ C[x, y] is

the concave piecewise linear function

tF : R2 → R , x 7→
N

⊕

j=0

x⊙aj y⊙bj = min
j

〈(aj , bj), (x, y)〉. (7)

Here,
⊕

stands for the tropical sum and 〈·, ·〉 is the standard inner product

of R2. The tropical variety TF ⊂ R2 is defined as the set of points in R2

where this function is not smooth. It can be deduced from (7) that TF

consists exactly in the union of the outer normal directions to the edges of
N(F ). To each of these directions δ we can assign a multiplicity mδ ≥ 1,
which coincides with the lattice length of the edge of N(F ) normal to the
given direction. We recall that the lattice length ℓ(S) of a lattice segment
S is the number of points in Z2 ∩ S minus 1.

This setting allows to interpret the Newton polygon as a certain degen-
eration of the curve and to study it with tools of Tropical Geometry. The
proof given in [5,12] of Theorem 2.1 is based in the so-called “Kapranov
Theorem” [6] and the Bieri-Groves Theorem. Moreover, their method al-
lows them to treat higher-dimensional hypersurfaces parametrized by prod-
ucts of linear forms [5, 15].

As an illustration, Figure 6 shows the tropical variety associated to
the curve in the example 1:

As we can see, the tropical variety plus the corresponding multiplicities
are in correspondence with the vectors in Figure 5 and Theorem 2.1 can
be easily reformulated in tropical terms.

On the other hand, in our paper [4] we propose a method which reduces
the determination of the Newton polygon to the computation of the number
of solutions of some polynomial systems of equations.



INTERSECTION THEORY AND NEWTON POLYTOPES 43

2

1 1

1

Fig. 6. The tropical curve associated with C : 1 − 16x − 4x2 − 9xy − 2x2y − xy2 = 0.

The support function of a polygon Q ⊂ R2 is defined as

hQ : R2 → R , x 7→ max{〈u, x〉 : u ∈ Q}.

It is a convex piecewise affine function which completely characterizes Q.
Let ρ : C 99K C2 be a rational parametrization and set C := Im(ρ). Then,
for σ ∈ (N \ {0})2 it can be shown that

hN(C)(σ) =
1

ind(ρ)
#

{

(t, x, y) ∈ C3 : xσ1 = f(t), yσ2 = g(t),

(8)
ℓ0 + ℓ1x + ℓ2y = 0

}

for generic ℓ0, ℓ1, ℓ2 ∈ C. The proof of Theorem 2.1 reduces then to the
determination of this number of solutions, which can be obtained via the re-
finement of the Bernštein-Kušnirenko-Khovanskĭı (BKK) Theorem recently
obtained by P. Philippon and the second author [13].

Identity (8) holds also in higher dimensions. However, there is no
analogue for n ≥ 3 of the estimation in [13] and so for the moment, this
method cannot be extended to higher dimension.

3. Some applications and consequences. Besides of its theoreti-
cal interest, the Newton polytope is useful for computational purposes. Its
knowledge allows to speed-up computations and gives interesting informa-
tion about the solutions of polynomial systems of equations. Here we point
out two applications.

3.1. Computing the implicit equation with numerical inter-

polation. The Newton polytope tells us which exponents might occur
in the implicit equation and thus allows us to compute it via a suit-
able interpolation algorithm. Suppose we are given a parametrization
ρ = (f, g) : C 99K C2 and that we want to compute the implicit equa-
tion E(x, y) ∈ C[x, y] of its image curve. A possible strategy is to apply
Theorem 2.1 to obtain its Newton polygon Q and use this information to
recover E. We have
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E(x, y) =

N
∑

j=0

λjx
aj ybj

where the (aj , bj)’s are the integer points in Q and the λj ∈ C are un-
known. To determine these coefficients, we can evaluate ρ in N + 1 points
τ0, . . . , τN ∈ C where ρ(τi) is defined. We then obtain a homogeneous
system of linear equations in the λj ’s, of size (N + 1) × (N + 1):

E(ρ(τk)) =

N
∑

j=0

λjf(τk)aj g(τk)bj = 0 for 0 ≤ k ≤ N.

If the interpolation points τk are generic enough, the solution space of
this system is of dimension 1 and the polynomial E(x, y) can be com-
puted as some (any) generator of this space. This approach is most useful
when Q has few points integer points, which for instance is the case of the
parametrization (4), where the number of integer points is 3 for any a ∈ N.

3.2. Intersecting parametric curves. In the practice of CAGD, it
is important to be able to determine where two modelled shapes cut each
other. Typically, this amounts to compute the intersection of two curves
or surfaces given in parametric form. This task can be done by computing
the implicit equation of one of the two varieties but as explained, this can
be too expensive. If we only have access to the Newton polytope, we will
not be able to compute this intersection but we still can say something
about the number of intersection points of two parametric curves or about
the degree of the intersection curve of two parametric surfaces.

For two plane curves C, D ⊂ C2, the BKK Theorem says that the
number of their intersection points in (C×)2 is bounded above by the mixed
volume

Area(N(C) + N(D)) − Area(N(C)) − Area(N(D))

with equality in the generic case. Here, the “+” denotes the Minkowski
(that is, pointwise) sum of polygons in the plane. For instance, let C, D ⊂
(C×)2 be the curves respectively parametrized by

t 7→
( (t + 1)2

2 t (1 − t)
,
4 t (t − 1)3

(t + 1)5

)

, t 7→
(

t,
10

t3

)

.

In Figure 7 we see the corresponding polygons and their Minkowski sum.
The mixed volume is the area of the shaded zone, which is equal to 2.

Hence C and D have at most two points in common, which turn out
to be (1.33, 4.22) and (−4.17,−0.14) (Figure 8).

3.3. Generic parametrizations. With Theorem 2.1 at our disposal,
we can easily answer Problem 2.2 for the case n = 2 :



INTERSECTION THEORY AND NEWTON POLYTOPES 45

Fig. 7. The mixed volume of two polygons.
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Fig. 8. The intersection of two parametric curves.

Corollary 3.1. For D ≥ d, E ≥ e let

p(t) = αdt
d + · · · + αDtD , q(t) = βet

e + · · · + βEtE ∈ C[t±1] (1)

such that αd, αD, βe, βE 6= 0 and gcd(t−dp(t), t−eq(t)) = 1. Set ρ = (p, q)
and C := Im(ρ), then

N(C) =
1

ind(ρ)
P

(

(D − d, 0), (0, E − e), (−D,−E), (d, e)
)

.

In particular, parametrizations by generic Laurent polynomials produce
equations whose Newton polygon is typically a quadrilateral (Figure 9).

The proof of this corollary is simple: we have ord0(ρ) = (d, e) and
ord∞(ρ) = (−D,−E). Let v1, . . . , vr 6= 0 be the different roots of t−dp(t)
and mi ≥ 1 the multiplicity of vi in p, then

ordvi
(ρ) = (mi, 0) for 1 ≤ i ≤ r
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e E

d

D

Fig. 9. The Newton polygon of a generic Laurent polynomial parametrization.

as we assume that p and q do not share roots in the torus. Similarly,
let w1, . . . , ws 6= 0 be the roots of t−eq(t) and nj ≥ 1 be their respective
multiplicities. For the same reasons as above

ordwj
(ρ) = (0, nj).

Theorem 2.1 then shows that ind(ρ)N(C) is obtained by rotating −90◦ and
concatenating the vectors (d, e), (−D,−E), (mi, 0) and (0, nj), for 1 ≤ i ≤
r and 1 ≤ j ≤ s. But the (mi, 0)’s are all pointing in the same direction
and so they concatenate together into the vector

∑

i(mi, 0) = (D − d, 0).
Similarly, the (0, nj)’s concatenate together into

∑

j(0, nj) = (0, E − e),
which concludes the proof.

Moreover, it can be shown that for a parametrization like (1), the
Newton polygon of the implicit equation equals

1

ind(ρ)
P

(

(D − d, 0), (0, E − e), (−D,−E), (d, e)
)

if and only if αd, αD, βe, βE 6= 0 and gcd(t−dp(t), t−eq(t)) = 1. If besides
the vectors (D−d, 0), (0, E−e), (d, e) are not collinear, then ρ is birational.

Note that the polygon does not depend on the actual values of the
roots of p and q, it only depends on the hypothesis that they are disjoint
and that we know the sum of their multiplicities. This is a general principle:
for computing the Newton polygon of a parametrization ρ = (f, g), we do
not need full access to the zeros and poles of f and g. It suffices with
partial factorizations of the form

f(t) = α
∏

p∈P

p(t)dp , g(t) = β
∏

p∈P

p(t)ep

where P ⊂ C[t] is a finite set of relatively prime polynomials, dp, ep ∈ N

and α, β ∈ C×. Such factorizations can be obtained with gcd’s operations
only, which is certainly easier than extracting roots and poles.

Back to the world of generic parametrizations, the second case to tackle
is when we have two rational functions with the same denominator. It turns
out that the resulting Newton polygon has at most five edges (Figure 10).
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(E − F, D − F )

D

d

Ee

Fig. 10. The Newton polygon of a parametrization by generic rational functions
with the same denominator.

Corollary 3.2. Given D ≥ d, E ≥ e and F ≥ 0, let

p(t) = αdt
d+· · ·+αDtD, q(t) = βet

e+· · ·+βEtE , r(t) = γ0+· · ·+γF tF .

Set ρ =
(

p
r
, q

r

)

∈ C(t)2 and C := Im(ρ), then

N(C) =
1

ind(ρ)
P

(

(D − d, 0), (0, E − e), (F − D, F − E), (d, e), (−F,−F )
)

if and only if αd, αD, βe, βE , γ0, γF 6= 0 and t−dp(t), t−eq(t), r(t) are pair-
wise coprime.

Finally, we consider the case when the parametrization is given by
two generic rational functions with different denominators. The resulting
polygon has at most six edges (Figure 11).

Corollary 3.3. Given D ≥ d, E ≥ e, F, G ≥ 0, let

p(t) = αdt
d + · · · + αDtD , q(t) = βet

e + · · · + βEtE ∈ C[t±1]

and

r(t) = γ0 + · · · + γF tF , s(t) = δ0 + · · · + δGtG ∈ C[t].

Set ρ =
(

p
r
, q

s

)

and C := Im(ρ), then

N(C) =
1

ind(ρ)
P

(

(D−d, 0), (0, E−e), (F−D, G−E), (d, e), (−F, 0), (0,−G)
)

if and only if αd, αD, βe, βE , γ0, γF , δ0, δG 6= 0 and t−dp(t), t−eq(t), r(t), s(t)
are pairwise coprime.

4. The general case vs the generic case. Now suppose we start
from the other endpoint, that is suppose that we are given the equation
E(x, y) of a parametric curve. What does its Newton polytope tell us about
the (unknown) parametrization?
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Ee

(E, F )

(G, D)

Fig. 11. The Newton polygon of a generic parametrization by rational functions
with different denominators.

A first natural question is whether N(E(x, y)) can be any lattice poly-
gon. As we have seen, the polygons produced by generic parametrizations
are very special: they have at most six edges and some of them are in
prefixed directions.

Before answering this question, let us fix a lattice polygon Q ⊂ (R≥0)
2

with non empty interior and touching the coordinate axes. We will identify
C#(Q∩Z

2) with the C-vector space of polynomials whose Newton polygon
is contained in Q. Consider the set

M◦
Q :=

{

F ∈ C[x, y] : N(F ) = Q, F defines a parametric curve in C2
}

⊂ C#(Q∩Z
2)

and let MQ denote its Zariski closure. Recall that ∂Q denotes the border
of Q.

Theorem 4.1 ([4]). MQ is a parametric variety of dimension
#(∂Q ∩ Z2).

In particular, dim(MQ) ≥ 3 as Q must have at least three edges. It turns
out that any lattice polygon with non empty interior and supported in the
coordinate axes is the Newton polygon of a parametric curve.

A further consequence of this result is that the codimension of MQ

equals the number of lattice points in the interior of Q. This is interest-
ing for the inverse problem: given a polynomial E(x, y) ∈ C[x, y], decide
whether it defines a parametric curve or not and if it is the case, compute
a parametrization.

If the Newton polygon of the equation has a lot of points in its interior,
then the probability that E defines a parametric curve is low. If neverthe-
less this is the case, the corresponding parametrization will be defined by
#(∂Q∩Z2) degrees of freedom, and hence the efficiency of the computation
of such a parametrization should be correlated with the number of lattice
points in ∂Q and not with the number of lattice points in the whole of Q.
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Some pointers to the literature:
• Parametric curves in general: [1, 14, 21]
• Numerical interpolation methods: [2, 10, 19]
• Newton polytopes and specialized resultants: [7, 8]
• Newton polytopes and Tropical Geometry: [5, 12, 15,

16, 17]
• Newton polytopes and mixed fiber polytopes: [9, 11, 17]
• Newton polytopes and Intersection Theory: [4, 13]
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and its Applications (IMA) and specially to the organizers of the Workshop
on Non-Linear Computational Geometry held there during the Spring 2007,
where this project was started.
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SOME DISCRETE PROPERTIES OF THE SPACE OF

LINE TRANSVERSALS TO DISJOINT BALLS

XAVIER GOAOC∗

Abstract. Attempts to generalize Helly's theorem to sets of lines intersecting con-
vex sets led to a series of results relating the geometry of a family of sets in Rd to the
structure of the space of lines intersecting all of its members. We review recent progress
in the special case of disjoint Euclidean balls in Rd, more precisely the inter-related no-
tions of cone of directions, geometric permutations and Helly-type theorems, and discuss
some algorithmic applications.

Key words. Geometric transversal, Helly's theorem, line, sphere, geometric per-
mutation, cone of directions.

1. Introduction. Lines intersecting or tangent to prescribed geomet-
ric objects are central to various problems in computational geometry and
application areas; typical examples include visibility [26, 64] or shortest
path [61] computation and robust statistics [14, 67]. To design e�cient
algorithms for these problems, one �rst has to understand the geometry
of the underlying sets of lines. A natural embedding of the space of lines
in P3(R) is as a quadric in P5(R), the Klein (or Plücker) quadric; in some
sense this is optimal1, so line geometry is, at least in dimension 3, inherently
nonlinear.

Let C be a collection of subsets of Rd, or objects for short. Denote
by Tk(C) the set of k-transversals to C, that is of k-dimensional a�ne sub-
spaces that intersect every member of C. Helly's theorem [42] asserts that
if C consists of convex sets then T0(C) is nonempty if and only if T0(F ) is
nonempty for any subset F ⊂ C of size at most d + 1. Whether Helly's
theorem generalizes to other values of k is a natural question which was,
to my knowledge, �rst investigated in the 1930's by Vincensini [76]. The
answer turns out to be negative in general but positive when the geometry
of the objects is adequately constrained. The study of how the geome-
try of the objects in C determines the structure of Tk(C), and subsequent
developments of similar �avor, is now designated as geometric transversal
theory [34].

Helly's theorem was recently generalized to line transversals (k = 1)
to disjoint (Euclidean) balls in Rd, answering in the positive a conjecture
of Danzer [23] who settled the 2-dimensional case. This generalization
builds on a series of results concerning two notions: cone of directions
and geometric permutations. This survey gives a comprehensive overview
of these investigations by presenting, in a uni�ed language, the results of

∗Loria - INRIA Nancy Grand-Est. (goaoc@loria.fr).
1Indeed (i) there does not exist any homeomorphism between the lines in R3 and an

open subset of P4(R), and (ii) any algebraic homeomorphism between lines in R3 and
points in P5(R) has degree at least 2 [65, Remarks 2.1.4 and 2.1.6, p. 143].
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a bx

Fig. 1. The internal center of similitude x of two balls, represented in a 2-plane
through their centers.

several papers [3, 7, 16, 17, 19�21, 45, 48, 53, 73, 81], new extensions of
these results and some of their algorithmic consequences. Although some
results generalize to other settings, the discussion will focus on the case of
line transversals to disjoint balls.

1.1. Notations and terminology. We denote by Rd the real d-
dimensional a�ne space or, equivalently, the Euclidean d-dimensional
space; the Euclidean metric is the only one we consider over Rd. We denote
by Pd the real d-dimensional projective space and by Sd−1 the space of di-
rections in Rd, which we identify with the unit sphere. Recall that a great
circle of Sd is a section of Sd by some 2-�at through its center. We write
Ao the interior of a set A and use arrows to denote vectors; in particular,

we write
−→
` a direction vector of an oriented line `. We use 〈−→u ,−→v 〉 and

∠(−→u ,−→v ) to denote, respectively, the dot product of and the angle between
vectors −→u and −→v .

A ball is closed unless otherwise speci�ed: the ball of center c and
radius r is the set of points x such that |c− x| ≤ r. In particular, disjoint
balls are not allowed to be tangent; for the sake of simplicity, we say that
several balls are disjoint if they are pairwise disjoint. A unit ball is a ball
with radius 1; since transversal properties are unchanged under scaling,
results obtained for unit balls usually extend to congruent balls, i.e. sets of
balls with equal radii. The radius disparity of a set of balls is the ratio of
the largest radius to the smallest. The internal center of similitude of two
disjoint balls in Rd with respective centers a, b and radii ra, rb is the point
rba+rab
ra+rb

(see Figure 1); this point is sometimes referred to as the geometric

center [81] or the center of gravity [47] of the two balls.

We use the terms collection or family for an unordered set, and se-
quence for an ordered set. We denote by |X| the cardinality of a set X.
Given a sequence C, we denote by ≺C the corresponding ordering on its
elements. A subsequence of a sequence is a subset of its members, ordered
as in the sequence. A k-transversal to a collection C is an a�ne subspace
of dimension k that intersects every member of C; for the sake of simplic-
ity, we say transversal for 1-transversal, that is line transversal, and speak



XAVIER GOAOC 53

1

2

3

(123, 321)

(1
32

, 2
31

)

(213, 312)
Fig. 2. Three disks with three geometric permutations.

of the common intersection of a family for the common intersection of its
members. Depending on the context, a transversal may be oriented or not.
An oriented transversal to a collection C of convex sets induces an ordering
on C, and a partial ordering if some of its members intersect. A geomet-
ric permutation of C is a pair of orderings, one reverse of the other, on
C induced by the two orientations of some transversal (see Figure 2). A
transversal to a sequence C is order-respecting if it meets the members of
C in the order ≺C . The directions of all order-respecting transversals to C
make up a subset of Sd−1 called the cone of directions of C and denoted
K(C).

The projection along a direction −→u is the orthogonal projection on
some hyperplane with normal −→u ; since we consider properties invariant
under translation of the hyperplane, all such hyperplanes are equivalent.

A pinning con�guration is a ordered pair (C, `) where C is a collection
of objects having ` as an isolated transversal, in the sense that ` is an
isolated point of T1(C). Equivalently we say that C pins the line `. A
pinning con�guration (C, `) is minimal if no proper subset of C pins `.

1.2. Content and organization. We start by recalling, in Section 2,
some variants of Helly's theorem used in the rest of the paper. We then
discuss, in Section 3, the convexity of the connected components of the pro-
jection of T1(C) in the space of directions, the so-called cones of directions,
when C consists of disjoint balls; we present the two existing approaches
to proving this result [3, 16, 19, 40, 45] and discuss some of its immediate
consequences. In Section 4, we review the bounds obtained on the number
of geometric permutations of disjoint balls [7, 20, 21, 48, 53, 73, 81]. Sec-
tion 5 then discusses Helly-type theorems for line transversals to disjoint
balls. Speci�cally, we present the known bounds on the constants k for
which the following statements hold:
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(a) a sequence of disjoint balls has a transversal if every subsequence
of size at most k has an order-respecting transversal,

(b) a collection of disjoint balls (with adequate constraints on the radii)
has a transversal if every subset of size at most k has a transversal,

(c) if a transversal to n disjoint balls is isolated then it is an isolated
transversal to a subset of at most k of the balls.

The smallest such constants are referred to as, respectively, the Hadwiger,
Helly2 and pinning numbers. Section 6 reviews the connection between
Helly-type theorems and LP-type problems [4] and the impact of the
bounds on the Helly number on the computational complexity of �nd-
ing a transversal to a family of disjoint balls. We conclude this paper by
commenting some open problems in Section 7.

1.3. Related surveys. For an overview of geometric transversal the-
ory we refer to the surveys of Wenger [79] and Goodman et al. [35]. A
detailed account on early generalizations of Helly's theorem can be found
in the article by Danzer et al. [24] and more recent developments are pre-
sented in the survey of Eckho� [27]. The overlap of the present survey has
with the, related, ones of Sottile and Theobald [74] and Holmsen [44] is
limited, so they can be read in conjunction. For a discussion of the com-
putational aspects of lines in space we refer to the survey of Pellegrini [64]
and the notes of the Alcala lecture by Pach and Sharir [63, Chapter 7].

2. Helly's theorem. Helly's theorem [42] of 1923 3 forms, together
with Radon's and Caratheodory's theorems, the basis of convex geome-
try [57].

Theorem 2.1. A �nite family of n ≥ d + 1 convex sets in Rd has
a point in common if and only if every d + 1 members have a point in
common.

One way to restate Helly's theorem is that the emptiness of the inter-
section of any �nite number of convex sets in Rd can be decided by looking
only at subsets of size at most d + 1. Other results of similar �avor are
called Helly-type theorems; the typical formulation is that a collection C has
property P if and only if every subset of C of size at most k has property
P (k being independent of |C|). The smallest integer k for which a given
theorem holds is called the associated Helly number. In this section, we
review some of these results used when dealing with transversals.

2.1. Spherical Helly theorem. There are several generalizations of
Helly's theorem on the sphere Sd involving various notions of convexity [66].
Recall that a set A ⊂ Sd is strongly convex if it does not contain any pair
of antipodal points and if it contains for any two points in A the smallest
great circle arc that connects them. A strongly convex set A ⊂ Sd is strictly

2That is, the Helly number for sets of line transversals in the classical sense.
3It is sometimes dated from 1913, the year when Helly communicated it to

Radon [24].
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strongly convex if any great circle intersects its boundary in at most two
points.

Theorem 2.2. A �nite family of n ≥ d + 2 strongly convex sets in Sd

has a point in common if and only if every d + 2 members have a point in
common.

Proof. Consider a family C of strongly convex sets on a sphere Sd

embedded in Rd+1 with center O. Replacing each set X ∈ C by X ′ =
CH(X ∪ {O}) \ {O}, where CH(·) denotes the convex hull operator, we
get a family C′ of convex sets in Rd+1 that has a common intersection if
and only if C has a common intersection. The statement follows.

With additional constraints on the sets one may reduce the Helly num-
ber to d+1. One simple example is if all sets in the family are contained in
some open hemisphere of Sd, as one can map that hemisphere to Rd while
preserving the convexity structure. Another situation of interest is when
the diameter4 of the sets is bounded [66, Theorem 3]:

Theorem 2.3. A �nite family of n ≥ d + 2 convex sets in Sd, each of
diameter less than 2π

3 , has nonempty intersection if and only if every d+1
members have nonempty intersection.

2.2. Topological Helly theorem. Helly's theorem still holds if con-
vexity is replaced by some weaker topological condition. Recall that a
homology cell is a nonempty set with trivial homology. In particular, we
use the following variant [25] of Helly's topological theorem [43]:

Theorem 2.4. Let C be a �nite family of open subsets of Rd such that
the intersection of any r elements of C is a homology cell for r ≤ d. Then
all sets in C have a point in common if and only if every d+1 members do.

Recall that a set is contractible if it is homotopic to a point. The
above theorem remains true if �homology cell� is replaced by �contractible
set� since contractible subsets of Rd are homology cells (homology being
invariant under homotopy); we will, in fact, only need this simpler variant.

2.3. Helly's theorem for unions of sets. The previous theorems
do not apply to families of disconnected sets, as they are neither convex nor
homologically trivial. Helly's theorem does, however, generalize to collec-
tions such that any members intersect in a bounded number of convex sets.
The following theorem was conjectured by Grünbaum and Motzkin [39]
and proven by Amenta [5]:

Theorem 2.5. Let C be a collection of sets in Rd such that the inter-
section of any nonempty �nite sub-family of C is the disjoint union of at
most k closed convex sets. Then all sets in C have a point in common if
and only if every k(d + 1) members do.

The same argument as in the proof of Theorem 2.2 yields:

4The diameter of X ⊂ Sd is the maximal opening angle of any great circle arc
contained in X.
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Corollary 2.1. Let C be a collection of sets in Sd such that the
intersection of any nonempty �nite sub-family of C is the disjoint union of
at most k closed convex sets. Then all sets in C have a point in common if
and only if every k(d + 2) members do.

Similar generalizations were obtained for the topological versions of
Helly's theorem [2, 58]. We use the following corollary of a theorem of
Matou²ek [58, Theorem 2]:

Theorem 2.6. For any d ≥ 2, k ≥ 1 there exists a number h(d, k)
such that the following holds. Let C be a collection of sets in Rd such that
the intersection of any nonempty �nite sub-family of C has at most k path-
connected components, each of them contractible. Then C has a point in
common if and only if every h(k, d) members have a point in common.

2.4. Convexity structure on the Grassmannian. Transversals to
convex sets provide an elegant way to de�ne a �convexity� structure on the
Grassmaniann [31, 33]: convex sets of k-�ats are simply de�ned as the
sets of k-transversals to convex objects. When k = 1 and the objects are
restricted to axis-aligned boxes, the resulting structure is known as frame
convexity. In fact, frame convexity, when restricted to ascending lines5, is
isomorphic to the ordinary notion of convexity on some convex subset of
R2d−2; through this isomorphism, Helly's theorem essentially corresponds
to Santaló's theorem [68], one of the earliest Helly-type theorems for line
transversals [32]. As the examples of Santaló [68] and Danzer [23] show,
Helly's theorem does not extend to the more general convexity structure of
Goodman and Pollack [33].

3. Cone of directions. One of the speci�cities of the set of transver-
sals to disjoint balls 6 is the following convexity property [16, Theorem 1]:

Theorem 3.1. The cone of directions of any sequence of disjoint balls
in Rd is a strictly, strongly convex subset of Sd−1.

The use of the convexity of the cone of directions for proving Helly-
type theorems for line transversals can be traced back to Vincensini [76]. In
dimension 3 or more, Theorem 3.1 was �rst asserted7 for the case of thinly
distributed families of balls [40], i.e. families where the distance between
the centers of any two balls is at least twice the sum of their radii.

3.1. Reduction. We �rst explain why Theorem 3.1 follows from the
case of 3 balls in 3 dimensions.

Lemma 3.1. If C is a sequence of disjoint balls in Rd then K(C) is
convex if K(X ∩ T ) is convex for any triple X ⊂ C and any 3-transversal
T to X.

5A line is ascending with respect to a coordinate frame if it can be oriented so that
all coordinates are nondecreasing.

6This property implies that the Hadwiger number is bounded (see Lemma 5.1),
which is not the case for disjoint translates of a convex set [46].

7Although Hadwiger's article does not contain a proof of this claim, its editor seems
to have been provided with the details [3].
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Proof. The statement follows from two facts: (i) K(C) is convex if
K(C ∩ T ) is convex for every 3-transversal T of C and (ii) K(C) is convex if
K(X) is convex for any subsequence X ⊂ C of size d.

Let ` and `′ be two order-respecting transversals to a sequence C of
disjoint convex sets in Rd and T some8 3-space that contains their span.
Observe that T is a 3-transversal to C whose vector space contains any

direction in the great circle spanned by
−→
` and

−→
`′ . Thus, if K(C ∩ T ) is

convex then K(C) contains the shorter arc of the great circle between
−→
`

and
−→
`′ . As a consequence, we get that if K(C ∩ T ) is convex for every

3-transversal to C, then K(C) is convex. This proves claim (i).
Applying Helly's theorem to the projection of C along some direction

−→u , we �nd that C has a transversal with direction −→u if and only if every
subset of size d has a transversal with direction −→u . Since two parallel lines
intersect disjoint convex sets in the same order,

K(C) =
⋂

X⊂C,|X|=d

K(X),

and claim (ii) follows.
This reduction holds more generally for sequences of disjoint convex

sets.

3.2. Analytic approach. The �rst published proof of Theorem 3.1
came for families of disjoint unit balls in R3 [45]. This case was not covered
by Hadwiger's statement since two unit balls within distance δ ∈ (0, 2) are
disjoint but not thinly distributed.

Let C be a sequence of disjoint unit balls in R3 and u, v ∈ K(C).
Consider some coordinate axis, say z, normal to these two directions and
let R denote some plane parallel to z. Let Quv

C ⊂ R× S1 denote the set of
(t, α) such that there is an oriented line in the plane z = t that intersects
the sequence C in the right order and makes an angle α with R. The
projection of Quv

C on the second coordinate is exactly the intersection of
K(C) with the great circle through u and v; the convexity of Quv

C for all
pairs u, v ∈ K(C) thus implies that of K(C). Let A and B be two balls such
that A ≺ B in C; de�ne similarly Quv

AB ⊂ R×S1 as the set of all (t, α) such
that there is an oriented line in the plane z = t that intersects A before B
and makes an angle α with R. Helly's theorem implies that

Quv
C =

⋂
A≺B in C

Quv
AB ,

so it su�ces to prove the convexity of Quv
AB . Using symmetries with respect

to translation and rotation, the convexity of Quv
AB reduces to the convexity

of the function

8If ` and `′ are skew T is unique.
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A

B

Fig. 3. Two balls such that Quv
AB is not convex, in the (x, z) plane (left). Three

slices at (x, y) planes (regularly spaced along the y axis) showing that the �middle� of
two existing transversals is not a transversal (right).

G : t 7→ arcsin

(√
1− z2 +

√
1− (z − b)2

a

)
,

on the interval [ b
2 , 1], where a and b parameterize the respective positions

of the centers. Elementary calculus su�ces to conclude.

3.3. Extending the analytic approach. The convexity of Quv
AB

is stronger than that of the cone of directions: it requires that if C has
transversals with directions −→u and −→v in planes z = zu and z = zv, then
for any t ∈ [0, 1] it has a transversal with direction t−→u + (1 − t)−→v in
the plane z = tzu + (1 − t)zv. This property does, in fact, not hold for
disjoint balls with arbitrary radii; Figure 3 depicts an example of two 3-
dimensional disjoint balls for which the nonconvexity of certain sets Quv

C
can be ascertained [36]; the balls have centers (0, 0, 0) and (3.9, 0, 8.6) and
radii 1 and 8.44. Of course, this nonconvexity may (and, in fact, does)
disappear when Quv

C is projected on the second coordinate, so this does not
disprove Theorem 3.1. It does, however, show that the previous approach
requires a constraint stronger than the balls' disjointedness. That approach
was, nevertheless, extended in two directions.

Ambrus et al. [3] used this technique to prove Theorem 3.1 for d-
dimensional unit balls such that the distance between any two centers is

at least 2
√

2 +
√

2. The key observation is that the distance between two
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Fig. 4. Intersection patterns for the projections of three balls along a direction on
the boundary of their cone of directions: direction of inner special bitangent (left) and
of tritangent(right).

centers in the section of such a sequence by any of its 3-transversals is at
least 2

√
1 +

√
2; this guarantees the convexity of the function G for these

sections, and thus for the d-dimensional balls (by the argument used to
prove Lemma 3.1).

Cheong et al. [19] proved Theorem 3.1 for sequences of balls where
every pair is isometric to the section of two higher-dimensional disjoint
unit balls by some d-transversal; such pairwise-in�atable pairs are charac-
terized by the property that the squared distance between their centers is
at least twice the sum of their squared radii9. The convexity of Quv

AB is
�rst established for disjoint unit balls in R4 via extensive computations10,
then deduced for pairwise-in�atable balls in R3 and �nally extended to
pairwise-in�atable balls in Rd.

3.4. The algebraic approach. The general case of Theorem 3.1 was
proven by Borcea et al.[16] by showing that the algebraic arcs that make up
the boundary of K(C) do not contain any in�exion point. By Lemma 3.1,
it su�ces to consider the case where C is a triple of disjoint balls in R3.

Boundary arcs. The directions that belong to the boundary of K(C)
can be characterized in terms of projection patterns [19, Lemma 9 and 11]:

Lemma 3.2. A direction −→u belongs to the boundary of K(C) if and
only if the projections of the balls of C along −→u intersect in a single point.

An immediate consequence is that the directions in the interior of K(C)
are exactly the directions of transversals to the open balls in C:

K(Co) = Ko(C).

The intersection of the projections of a triple C of balls in R3 along −→u ∈
∂K(C) belongs to the boundary of either two or three disks (see Figure 4).
The boundary of K(C) thus decomposes into two types of arcs, directions

9This is, somewhat unexpectedly, simply Hadwiger's condition of being thinly-
distributed where every distance is replaced by its square. Note that disjoint unit balls
are pairwise-in�atable.

10Although computer algebra systems such as Maple [56] were instrumental in devel-
oping these computations, the resulting proof can still be checked manually.
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of inner special bitangents, i.e. tangents to two balls through their inner
center of similitude11, and of tritangents. The directions of inner special
bitangents make up a circle on S2, so the local convexity of arcs of the �rst
type is trivial. The directions of tritangents make up an algebraic curve of
degree 6 on S2, the direction-sextic of the triple of balls, that is not convex
in general. It is thus important to identify the directions of tritangents
that belong to the boundary of K(C) [16, Proposition 3]:

Lemma 3.3. The direction of a tritangent ` is on the boundary of the
cone of directions of three balls (for the adequate ordering) if and only if `
intersects the triangle spanned by their centers.

This generalizes to higher dimensions and follows from the property
that the balls centered at the vertices of a simplex and going through a
given point have no other common intersection if and only if that point
belongs to the simplex.

Controlling the �exes. Proving Theorem 3.1 essentially amounts to
showing that the boundary of the cone of directions of three disjoint balls
does not contain in�exion points of the curve of directions of tritangents;
these, also called �exes, are the intersections of the curve with its Hessian
and the sources of nonconvexity in an algebraic curve. Given a projection
pattern of a sequence C of three balls along some direction −→u ∈ ∂K(C), the
conditions that the Hessian of the direction-sextic of C vanishes in −→u , and
that the balls are disjoint exclude one another [16, Proposition 5]. This
approach avoids the apparently di�cult task of classifying the 72 �exes of
the direction-sextic12.

3.5. Strict convexity and tangents to spheres. The algebraic
approach immediately yields that the cone of direction is strictly convex,
in the sense that its boundary does not contain great circle arcs. This
property is also related [19, Proposition 4] to collections of spheres with
degenerate families of common tangents [74]. In R3, if the cone of directions
of three balls contains a great circle arc then these balls have in�nitely
many common tangents that meet one and the same line at in�nity [19,
Lemma 10]. Such con�gurations require the balls to intersect [60], so the
strict convexity follows for three, and hence n, disjoint balls in R3. The
generalization to higher dimensions is based on the following lemma:

Lemma 3.4. For any sequence C of disjoint balls in Rd and any great
circle Γ ⊂ Sd−1 there exists a 3-transversal T to C such that K(C) ∩ Γ =
K(C ∩T )∩Γ. Moreover, for any such 3-space we have ∂K(C)∩Γ ⊂ ∂K(C ∩
T ) ∩ Γ.

Proof. Since K(C) is convex, its intersection with Γ is a (possibly
empty) small great circle arc η. If η is reduced to a single point then
Lemma 3.2 implies that C has a unique transversal with direction in Γ,

11These lines are exactly the tangents to two balls contained in a common tangent
plane; they are sometimes referred to as limiting bitangents.

12This bound is tight if intersections are counted with multiplicities and over P2(C).
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and any 3-space T containing this transversal will do. Otherwise, let T
be some13 3-space containing the two transversals to C with directions in
∂η. As K(C ∩ T ) is convex, its intersection with Γ is a small great circle
arc. Since this arc contains ∂η it contains η, and the other inclusion is
immediate.

Let T be a 3-transversal to C such that K(C) ∩ Γ = K(C ∩ T ) ∩ Γ.
By Lemma 3.2, the projections of C along any direction −→u ∈ ∂K(C) ∩ Γ
intersect in a single point; the projections of C ∩T along −→u must then also
intersect in a single point, and −→u ∈ ∂K(C ∩ T ).

In particular, if the cone of directions of some sequence of disjoint balls
C in Rd contains a great circle arc Γ on its boundary, then Γ also appears on
the boundary of the section of C by some 3-transversal; the strict convexity
thus extends from the 3-dimensional case to higher dimensions.

3.6. Immediate consequences. Let C be a �nite collection of dis-
joint balls in Rd. The following are simple consequences of Theorem 3.1.

3.6.1. Topology of order-respecting transversals. Obviously,
two transversals to C that realize distinct geometric permutations belong
to di�erent connected components of T1(C). Theorem 3.1 implies that the
converse is true [19, Lemma 14]:

Theorem 3.2. The set of transversals to a �nite number of disjoint
balls in Rd in a given order is contractible.

Proof. Let C be a �nite sequence of disjoint balls and L its set of order-
respecting transversals. A transversal ` to C is barycentric if it goes through
the center of mass of the intersection of the projections of the balls in C
along

−→
` . For any direction v in K(C) there is a unique barycentric transver-

sal to C, which we denote bC(v). Let L∗ denote the set of order-respecting
barycentric transversals to C. The projection of a ball changes continuously
with the direction of projection, so bC is continuous. Since the direction
of a line changes continuously with the line, b−1

C is also continuous and bC
de�nes a homeomorphism between L∗ and K(C). By Theorem 3.1, K(C) is
convex and hence contractible. It follows that L∗ is also contractible. The
map {

L× [0, 1] → L
(`, t) 7→ ` + t(bC(v`)− `)

is continuous and shows that L∗ is a deformation retract of L. Since L∗ is
contractible, so is L.

3.6.2. Isotopy and geometric permutations. Two transversals to
C are said to be isotopic if one can be moved continuously into the other
while remaining a transversal during the motion, i.e. if they belong to the
same path-connected component of T1(C). Theorem 3.2 implies that the

13If the two transversals are skew, T is unique.
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number of geometric permutations of C is equal to the number of connected
components of T1(C):

Corollary 3.1. Two transversals to a �nite family of disjoint balls in
Rd are isotopic if and only if they induce the same geometric permutation.

Koltun and Sharir [55, Theorem 5.4] showed that the number of iso-
topy classes of transversals to n disjoint balls is O(n3+ε) for d = 3 and
O(n2d−2) for d ≥ 4; their proofs recast the set of transversals as a sandwich
region in an arrangement of hyperplanes and builds on a series of results
on the structure of such arrangements. With Corollary 3.1, Theorem 4.1
immediately improves these bounds.

3.6.3. Pinning con�gurations. Since T1(C) can be recast as an
union of cells in an arrangement of algebraic surfaces of bounded de-
gree [55], it has a bounded number of connected components. Thus, a
point in T1(C) is isolated if and only if it is a connected component of T1(C).
Minimal pinning con�gurations can then be characterized as follows:

Corollary 3.2. Let ` be an order-respecting transversal to a �nite
sequence C of disjoint balls in Rd. C pins ` if and only if no other transversal
to C realizes the same geometric permutation as `, or equivalently:

K(C) = {
−→
` } ⇔ Ko(C) = ∅ ⇔ K(Co) = ∅.

Proof. Since C pins ` if and only if {`} is a connected component of

T1(C), the �rst equivalence follows from Theorem 3.2. If K(C) = {
−→
` } then

Lemma 3.2 ensures that no other line realizes the same geometric permuta-
tion as `, and the second equivalence follows. The remaining equivalences
are straightforward.

Since a transversal is isolated if and only if no other transversal realizes
the same geometric permutation, and two lines are always contained in
some common 3-space, we have:

Corollary 3.3. A �nite collection C of disjoint balls in Rd pins a
line ` if and only if for every 3-space T that contains `, C ∩T pins ` in T .

4. Geometric permutations. The �rst investigation of geometric
permutations is, to the best of our knowledge, due to Katchalski, Lewis and
Liu [50]. Since then, the maximum number of geometric permutations was
studied for a variety of di�erent shapes: convex sets [6, 10, 28, 52, 70, 78],
boxes [80], fat convex sets [54], translates of a convex set [8, 9, 11, 51],
balls [73], congruent balls [20, 21, 48, 53, 73], balls with bounded radius
disparity [48, 81]. For disjoint balls, the bounds can be summarized as
follows:

Theorem 4.1. The maximum number of geometric permutations of a
family of n disjoint balls in Rd is Θ

(
nd−1

)
if the balls have arbitrary radii,

O
(
γlog γ

)
if the balls have radius disparity at most γ, at most 3 if the balls

have equal radii and at most 2 if, in addition, n ≥ 9 or n ≥ 4 and d = 2.
The following description of the geometric permutations in the case of unit
radius will be used in Section 5:
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Theorem 4.2. Two geometric permutations of n disjoint unit balls
in Rd, with n ≥ 9 or n ≥ 4 and d = 2, di�er by switching two adjacent
elements.

These bounds were obtained through essentially three techniques we now
review: separation sets, switch pairs and incompatible pairs.

4.1. Separation sets. Let C be a collection of disjoint convex sets
in Rd. A separation set H for C is a set of hyperplanes such that any two
members in C can be separated by a hyperplane parallel to some element in
H. An oriented transversal ` to two disjoint convex sets C1 and C2 meets C1

�rst if and only if for some hyperplane Π separating C1 and C2, ` meets the
halfspace containing C1 �rst; in other words, if ΓΠ denotes the hypersphere

of directions of Π, it depends on which side of ΓΠ
−→
` lies. Thus, the

geometric permutation realized by a transversal to C depends only on the
cell of the arrangement on Sd−1 of the hyperspheres of directions associated
with the members of H that contains its direction. As a consequence,
the number of geometric permutations of C is bounded by the complexity
of that arrangement, that is O

(
|H|d−1

)
, and n disjoint compact convex

objects have O(n2d−2) geometric permutations [78].

Upper bound for balls. Collections of disjoint balls admit small sep-
aration sets [73, Theorem 4.1]. The argument goes as follows. Let
C = {B1, . . . , Bn} be a collection of disjoint balls in Rd. Cover the sphere
of directions Sd−1 by spherical caps C1, . . . , Ck of given opening angle α.
For any 1 ≤ i ≤ n and 1 ≤ j ≤ k let Γi,j denote the cone with apex
the center of Bi induced by cap Cj and hi,j a hyperplane separating Bi

from the closest ball with larger radius and having its center in Γi,j , if any;
speci�cally, hi,j is chosen tangent to Bi and normal to the line through the
centers of the two separated balls (see Figure 5).

For α smaller than sin−1
(√

3−1
2

)
, the collection

{hi,j |1 ≤ i ≤ n, 1 ≤ j ≤ k}

separates any two balls in C. As a consequence, any collection of n disjoint
balls admits a separation set of size O(n), and has O(nd−1) geometric
permutations.

Lower bound for balls. The previous upper bound is asymptotically
tight [73, Theorem 4.5]. Consider n hyperplanes H1, . . . ,Hn in Rd going
through the origin, no d of them containing a line, and let Si denote the set
of directions parallel to Hi. Let ε > 0 be small enough such that any cell in
the arrangement A of {S1, . . . , Sn} on Sd−1 contains a point at distance at
least ε from every Si. For δ > 0, let (B1

i (δ), B2
i (δ)) be two balls centered on

the perpendicular to Hi through the origin, at distance δ from the origin
and separated by Hi; B1

i (δ) and B2
i (δ) have equal radius, chosen such that

a line through the origin intersects them if and only if it makes an angle
at least ε with Hi. The construction consists of a pair (B1

i (δi), B2
i (δi)) for
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C4
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C6
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Γi,1
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h
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h i,
6

Fig. 5. Construction of a small separation set of a collection of balls (d = 2,
k = 6, α = π

3
).

i = 1, . . . , n, where δ1 = 1 and δi+1 is chosen larger than the diameter
of
⋃

1≤t≤i

(
B1

t (δt) ∪B2
t (δt)

)
. By construction, any line through the origin

with direction at least ε away from each of the Si intersects all the balls.
There are as many classes of such lines as cells in A, that is Ω(nd−1), and
two lines with directions in di�erent cells realize di�erent orderings of the
balls.

4.2. Switch pairs. Let C be a family of n disjoint balls in Rd with
radius disparity at most γ that admits some transversal. Assume, w.l.o.g.
that the radius of the smallest ball in C is 1. For all asymptotic estimates
we assume that d is constant and n � γd−1.

For n large enough, the transversals to C are nearly parallel. Specif-
ically, a volume argument shows that the diameter of the set of centers

of balls in C is Ω
(

n
γd−1

)
; the angle between two transversals to C is then

O
(

γd

n

)
as the distance between them is at most 2γ along segments of

length Ω
(

n
γd−1

)
. We say that two transversals are oriented consistently if

the angle between their direction vectors is less than π/2, that is, close to
0 when the transversals are nearly parallel. A switch pair for C is a pair of
balls intersected in di�erent orders by two transversals to C oriented con-
sistently14. Switch pairs were investigated �rst for congruent disks in the
plane [72, 73], then for balls in higher dimensions, both for the unit radius
case [20, 48, 53] and the bounded radius disparity case [48, 81].

14A similar, but more general, notion is investigated by Asinowski et al. [9].
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4.2.1. Properties of a switch pair. For n su�ciently large, a ball
participates in at most one switch pair and two balls in a switch pair
appear consecutively in any geometric permutation of C ([53, Lemmas 2.8
and 2.9], [48, Lemmas 8 and 9] and [81, Lemmas 2.10 and 2.11]). These
properties follow from simple geometric considerations:

• the distance between two balls in a switch pair is O
(

γ2d+1

n2

)
([53,

Lemmas 2.6 and 2.7], [48, Lemma 6] and [81, Lemma 2.7]),
• the line through the centers of the balls in a switch pair makes

angle π
2 − O

(
γd

n

)
with any transversal to C ([53, Lemmas 2.6

and 2.7], [48, Lemma 6] and [81, Lemma 2.8]).
Consequently, to bound the number of geometric permutations of C it suf-
�ces to bound its number of switch pairs, as k switch pairs allow at most
2k geometric permutations.

4.2.2. Number of switch pairs. The number of switch pairs can be
bounded via considerations on the distances between their inner centers of
similitude. Let ∆ be the line through the centers of the two balls furthest
apart. The disjointedness of the balls and the upper bound on the distance
between two members of a switch pair imply that the projection on ∆ of the
inner centers of similitude of two switch pairs are distance at least

√
2−o(1)

and at most 2γ + o(1) apart ([81, Theorem 4.3], [53, Lemma 3.2] and [48,
Lemma 16]). An upper bound of 1 + b

√
2γc on the number of switch pairs

follows when n is large enough. In the planar case, a di�erent argument
based on incompatible pairs (see Section 4.3) yields the same result [81].

4.2.3. Hamming distance between geometric permutations.

The previous bound on the number of switch pairs yields that su�ciently
large collections of disjoint balls with radius disparity γ have at most

21+b
√

2γc geometric permutations. Number the m switch pairs of C and
assign to every geometric permutation of C a vector in {0, 1}m depending
on the ordering in which each pair is traversed. If two geometric permu-
tations di�er by the switching of k pairs then the radius disparity of the
balls is at least 2d

k
2 e−1 [81]. Thus, the number of elements that di�er, i.e.

the Hamming distance, between the vectors of two geometric permutations
is bounded by 2(1+ blog γc). The size of a subset of {0, 1}m with diameter

at most 2δ under the Hamming distance is O
(

(4m)δ

δ!

)
. Therefore, disjoint

balls with radius disparity at most γ have O
(
γlog γ

)
geometric permuta-

tions.

4.2.4. The case of unit balls. The previous result implies that suf-
�ciently large collections of disjoint unit balls have at most 4 geometric
permutations. This bound was reduced to 2 by ad hoc techniques.

In the plane. If C admits 3 geometric permutations it has at least
two switch pairs, say (A,B) and (C,D). Up to symmetries we can then
assume that the four disks admit the three geometric permutations ABCD,
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Table 1

The 12 geometric permutations on 1, . . . , 4.

α 1234 2143 1432 4123
β 1243 4312 1342 3124
γ 1324 3142 1423 4132

BACD, and ABDC. Thus, the cells of the Voronoi diagram of the centers
of these disks, where each cell inherits the label of the disk it contains, also
admit these three geometric permutations. An elementary case-study of the
con�gurations of four points in the plane shows that this is impossible [73].
Thus, any su�ciently large family of disjoint unit disks in R2 has at most
one switch pair and at most 2 geometric permutations.

In higher dimensions. A re�ned analysis shows that the distance be-
tween the inner centers of similitude of two switch pairs consisting of unit
balls is at most 1 + o(1) [20, Lemma 4]. Since this contradicts the lower-
bound of

√
2 − o(1) previously obtained for the same distance, it proves

that su�ciently large collections of disjoint unit balls have at most one
switch pair and 2 geometric permutations.

4.3. Incompatible pairs. An e�cient way to bound the size of a
set of permutations is to show that certain patterns cannot occur. Given
two geometric permutations gp1 and gp2 of C and two permutations on k
elements p1 and p2, we say that (p1, p2) is a sub-pattern of (gp1, gp2) if the
restriction of (gp1, gp2) to some k objects in C yields two permutations that
are equal, up to relabelling and reversing, to (p1, p2). Showing that cer-
tain pairs of permutations on four elements cannot occur as sub-patterns
of pairs of geometric permutations of disjoint unit balls led to bounds that
are tight in the plane [7] and almost tight in higher dimensions [21]. In
particular, these bounds also apply to small families, unlike those obtained
by studying switch pairs. The use of incompatible pairs for studying geo-
metric permutations can be traced back to Katchalski et al. [51, Section 5],
although they use a di�erent presentation.

4.3.1. Families with incompatible pairs. To bound the number
of geometric permutations of disjoint unit balls, the incompatible pairs in-
vestigated are of size 4 (for situations where larger families were considered
see eg. [8, 10]). The pairs of geometric permutations considered for disjoint
unit balls are

a = (1234, 2143), b = (1234, 1432),
c = (1234, 1423), d = (1234, 3142),

and Table 1 summarizes all 12 geometric permutations on 1, . . . , 4, divided
into three rows. Any pair of permutations in row α is equal, up to rela-
belling and reversing, to one of a or b and row β or γ can be obtained from
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α by adequate relabelling. Therefore, any quadruple of objects for which a
and b are incompatible has at most three geometric permutations, one from
each row (the same holds if b is replaced by (1234, 1423) [51]). Given three
di�erent geometric permutations σ1, . . . , σ3 of n ≥ 4 objects for which a
and b are incompatible, there are always 3 objects to which the restrictions
of the σi di�er [21, Lemma 1]; from there, one can prove that any family of
n objects for which a and b are incompatible has at most three geometric
permutations [21, Lemma 2]. Note that pairs other than a and b can be
used equivalently, for instance a and (1234, 4123) [7].

Similar arguments yield that any family of n objects for which the
pairs a, . . . , d are incompatible has at most two geometric permutations
that di�er only by the swapping of two adjacent elements [21, Lemma 3].
Proving Theorems 4.1 and 4.2 thus reduces to showing that the pairs a to
d are incompatible.

4.3.2. The planar case. Consider two intersecting transversals to
four disks, and mark on each line one point from each disk. Di�erent
situations arise depending on which half-line each point belongs (there are
29 such con�gurations). A careful analysis of these situations shows that
for families of disjoint unit disks the pairs a and b [51, Lemmas 1�3] and c
and d [7]15 are incompatible16. A di�erent proof, avoiding the discussion
of the 29 con�gurations, was given later by the same authors [9].

4.3.3. Higher dimensions. A proof that pair a is incompatible for
disjoint unit balls in Rd can be obtained through elementary, although te-
dious, geometric observations [21, Section 4]; this analysis essentially re�nes
the earlier proof that su�ciently large collections of disjoint unit balls have
at most one switch pair [20], another way to formulate the incompatibility
of a. The proof of incompatibility of b, c and d rests on the following crucial
observation:

Lemma 4.1 ([21], Lemma 7). Let −→v be a direction of a transversal to
3 disjoint unit balls in Rd and −→u the vector from the center of the �rst to
the center of the last ball met by that transversal. Then ∠(−→v ,−→u ) < π/4.

To see that pair b is incompatible, let −→v1 and −→v2 be two directions of
transversals intersecting four disjoint unit balls in, respectively, the orders
1234 and 1432. Let ci denote the center of ball i. By Lemma 4.1 we have
that ∠(−→v1 ,−−→v2) < π/2 since both −→v1 and −−→v2 make an angle less than π/4
with −−→c2c4. Also, ∠(−→v1 ,

−→v2) < π/2 as both −→v1 and −→v2 make an angle less
than π/4 with −−→c1c3, and we get a contradiction.

A packing argument ([21, Lemma 6]) shows that the intersection of
the solids bounded by two cylinders of radius 1 whose axis make angle at
least π/4 contains at most 8 points with smallest inter-point distance at

15The same result was obtained independantly by A. Holmsen in his master's thesis.
16For families of disjoint translates of a convex set, pairs a and b remain incompat-

ible [51] but pairs c and d cannot be both incompatible: indeed, there exist arbitrarily
large such families with three geometric permutations.
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least 2. Thus, two transversals to any collection of n ≥ 9 disjoint unit balls

in Rd make an angle of less than π/4. Now, let −→v and
−→
v′ be the direction

vectors of transversals to n ≥ 9 disjoint unit balls that realize, respectively,
the permutations 1234 and one of 1423 or 3142 on some subset of four balls.
Because there are n ≥ 9 balls,

∠(−→v ,
−→
v′ ) <

π

4

and Lemma 4.1 implies that the angle between −→v and −−→c2c4 is at most π
4 .

Consequently, the angle between
−→
v′ and −−→c2c4 is less than π

2 and the second
line should meet ball 2 before ball 4, a contradiction. Thus pairs c and d
are incompatible for any family of n ≥ 9 disjoint unit balls in Rd. This
proves Theorem 4.1 and Theorem 4.2 for d ≥ 3.

5. Pinning, Hadwiger and Helly numbers. The Helly-type the-
orems for transversals to disjoint balls essentially generalize two landmark
results in geometric transversal theory due to Hadwiger and Danzer.

Hadwiger's transversal theorem states that n disjoint17 convex sets
in the plane have a transversal if any 3 have a transversal consistent with
some global ordering of the family [41]. The bound on the Hadwiger number
shows that this theorem generalizes to disjoint balls in arbitrary dimension,
a situation that is remarkable as it is not the case for disjoint translates of
a convex set, not even in R3 [46].

Danzer proved that n disjoint unit disks18 in the plane have a transver-
sal if any 5 do [23], and conjectured that a similar result holds in higher
dimensions. The bound on the Helly number for disjoint unit balls is the
positive answer to this question.

5.1. Relationship between the pinning and Hadwiger num-

bers. In the plane, the pinning and Hadwiger numbers are the same,
namely 3. In higher dimensions, the convexity of the cone of directions
(Theorem 3.1) implies:

Theorem 5.1. If pd and hd denote respectively the pinning and Had-
wiger numbers of collections and sequences of disjoint balls in Rd then
hd ≤ pd + 1.

Proof. Let C be a sequence of at least n ≥ pd + 2 disjoint balls and as-
sume that every subsequence of size pd+1 has an order-respecting transver-
sal. Shrink continuously all balls by, for instance, multiplying all radii by
some parameter t ranging from 1 down to 0, until some subsequence X
of size pd + 1 is about to lose its last order-respecting transversal. By
Theorem 3.1, at that position K(X) is a single point and X has a unique

17This assumption can be dropped [77].
18Grünbaum proved the same statement for unit axis-parallel squares [37], and con-

jectured that it holds for collections of disjoint translates of a convex set, a conjecture
proven 30 years later by Tverberg [75].
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order-respecting line transversal `. Since (X, `) is a pinning con�guration,
there exists a subset Y ⊂ X of size at most pd such that Y pins `. Given
any Z ∈ (C \ Y ), the subsequence Y ∪ {Z} has size at most pd + 1 and
thus has some order-respecting line transversal `Z . Since (Y, `) is a pinning
con�guration, Y admits no order-respecting transversal other than `, and
thus `Z = ` and ` intersects Z. It follows that C has a line transversal, and
hd ≤ pd + 1.

Remark 5.1. The same proof yields that if every subsequence of size
pd + 2 has an order-respecting transversal then C has an order-respecting
transversal.

5.2. Bounds on the pinning and Hadwiger numbers. The cur-
rent bounds on the pinning and Hadwiger numbers, given by Theorem 5.3,
grow linearly with the dimension [19]. We sketch the proof of these bounds,
after giving a much simpler argument that yields a bound quadratic in the
dimension [3, 40, 45].

5.2.1. A simple quadratic bound. The pinning and Hadwiger
numbers can be bounded by applying Helly's theorem successively on Sd

and on the projections along certain directions, an argument already used
by Vincensini [76].

Lemma 5.1. The pinning and Hadwiger numbers of disjoint balls in
Rd are bounded from above by d(d + 1).

Proof. Let C be a sequence of disjoint balls in Rd and
(C

d

)
the set of

its subsequences of length d. As argued in the proof of Lemma 3.1,

K(C) =
⋂

X∈(Cd)
K(X),

and Theorem 3.1 yields that for any subsequence X the set K(X) is strictly
convex.

The spherical Helly theorem on Sd−1 (Theorem 2.2) implies that K(C)
is nonempty if and only if for any d + 1 elements X1, . . . , Xd+1 ∈

(C
d

)
the intersection

⋂
1≤i≤d+1K(Xi) is nonempty. In other words, C has a

transversal19 if and only if any subsequence of length at most d(d + 1)
has an order-respecting line transversal. This proves the statement for the
Hadwiger number.

Similarly, Ko(C) is the intersection of the Ko(X) for X ∈
(C

d

)
. Thus, if

C pins some order-respecting transversal `, the same arguments yield that
Ko(C) is empty if and only if Ko(X) is empty for some subsequence X ⊂ C
of length at most d(d + 1). Since K(C) ⊂ K(X) we deduce that K(X) is
a single point, and X pins ` as well. This proves the statement for the
pinning number.

Remark 5.2. If the balls are unit this bound becomes d2: by
Lemma 4.1, the cone of directions of any sequence of n ≥ 3 balls has

19In fact, C has an order-respecting transversal.
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opening angle at most π
4 , so we can apply Helly's theorem in Rd−1 instead

of Sd−1 (Theorem 2.3 instead of Theorem 2.2) in the previous proof.

5.3. A linear bound. For thinly distributed balls, Grünbaum [38]
obtained a linear bound on the Hadwiger number by applying Helly's topo-
logical theorem directly to the set of line transversals. More generally20,
we have:

Theorem 5.2. Let Ud be the set of all collections of balls in Rd

admitting a separation set of size 1. The pinning, Hadwiger and Helly
numbers of Ud are bounded from above by 2d− 1.

Proof. Let C = {B1, . . . , Bn} be a sequence of balls in Rd with sepa-
ration set {H} (in particular the balls are pairwise disjoint). Let ε denote
the minimal angle any transversal to two balls in C makes with H, and
let T (X) denote the set of transversals to a subsequence X ⊂ C making
an angle at least ε with H. Parameterizing lines by their intercept in two
translated copies of H recasts the T (Bi) as contractible subsets of R2d−2.
Thus, to apply Helly's topological theorem it su�ces to prove:

∀A1, . . . , A2d−2 ∈ C,
⋂

1≤i≤2d−2

T (Ai) is a homology cell.

Since C has a separation set of size one, any subsequence of C has at most
one geometric permutation. Therefore, for X, Y ⊂ C we have that

T (X) ∩ T (Y ) = T (X ∪ Y )

and the above condition follows from Theorem 3.2. Therefore, the Helly
number for thinly distributed balls in Rd is at most 2d − 1. Because all
subsequences have a unique geometric permutation, the bound on the Had-
wiger number follows. Since a transversal is isolated if the open balls have
no transversal in the same order, the bound on the pinning number also
follows.

Compatible directions. The same idea can be applied to more general
families of balls by restricting the set of possible directions of transversals
so that any subsequence of C has only one geometric permutation [19].
Speci�cally, call a direction −→u compatible with a sequence C if

∀A ≺ B in C, 〈−→u ,
−→
ab〉 > 0,

where a and b denote the respective centers of A and B; by extension, we say
that a transversal to X ⊂ C is compatible if its direction is. The directions
of compatible transversals to a subsequence X ⊂ C are the intersection
of K(X) with a polytope in Sd−1, and thus strongly convex; the same
proof as in Theorem 3.2 yields that the set of compatible transversals to

20Grünbaum's proof exploits the fact that the distance condition that characterizes
thinly distributed balls guarantees that the family has a separation set of size 1.
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X ⊂ C is contractible. Also, a compatible transversal to X, Y ⊂ C is order-
respecting on X∪Y . As a consequence, the proof of Theorem 5.2 yields [19,
Lemma 15]:

Lemma 5.2. If C is a sequence of disjoint open balls such that any
subset of size 2d − 1 has a transversal compatible with C, then C has a
compatible transversal.

We can now bound the pinning and Hadwiger numbers [19, Proposi-
tion 13]:

Theorem 5.3. The pinning and Hadwiger numbers for disjoint balls
in Rd are bounded from above by, respectively, 2d− 1 and 2d.

Proof. Let C be a sequence of disjoint balls in Rd that pins an order-
respecting transversal `. From Corollary 3.2 we get that the open balls
in C have no compatible transversal, and so Lemma 5.2 yields that some
subsequence X ⊂ C of size at most 2d − 1 has no transversal compatible
with C. Since K(X) is convex and the set of compatible directions, which is
open, intersects K(X) but not Ko(X), K(X) has empty interior and X pins
`. Thus, the pinning number is at most 2d − 1 and Theorem 5.1 bounds
the Hadwiger number by 2d.

5.4. Helly numbers. A family of examples by Danzer [23] (see
also [44, Figure 3]) shows that the Helly number of disjoint balls is al-
ready unbounded in dimension 2. It can, still, be bounded under addi-
tional assumptions, e.g. for thinly distributed balls (Theorem 5.2). The
case of congruent balls received particular attention and the bounds can
be summarized as follows:

Theorem 5.4. The Helly number of families of disjoint unit balls in
Rd is 5 for d = 2 and at most 4d− 1 for d ≥ 3.
We describe in Sections 5.4.1 and 5.4.2 the two techniques used to obtain
such bounds. We show in Section 5.4.3 that the requirement that the
balls be unit can be replaced by a bound on the number of geometric
permutations of all subfamilies (Theorem 5.6). This implies, for instance,
that the Helly number of a family of balls with radius disparity at most γ
can be bounded by a function of d and γ (Corollary 5.1).

5.4.1. Designing an ordering. Holmsen et al. [45] used the earlier
analysis of switch pairs [20, 48, 53, 81] to bound the Helly number of disjoint
unit balls in 3 dimensions by 22.

Let δ denote the smallest diameter of a set of centers of 31 disjoint
unit balls in R3 and C = {B1, . . . , Bn} a collection of at least 31 disjoint
unit balls in R3. Assume that the centers of B1 and Bn are the furthest
apart and let T denote the set of transversals to these two balls, oriented
from B1 to Bn. Say that (Bi, Bj) is a switch pair if there are transversals
in T that meet these two balls in distinct orders21. A result similar to

21Note that this de�nition slightly di�ers from that used in Section 4.
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Theorem 4.2 applies to families with less than 9 balls provided the centers
are su�ciently spread out [45, Theorem 3]:

Lemma 5.3. Any family of disjoint unit balls in R3 whose set of
centers has diameter at least δ has at most two switch pairs; the balls
of a switch pair appear consecutively in any geometric permutation of the
family.
We can then bound the Helly number as follows [45, Theorem 1]:

Proposition 5.1. The Helly number of collections of at least 31
disjoint unit balls in R3 is at most 22.

Proof. Assume that every subset of C of size at most 22 has a transver-
sal. We discuss the case where C has two switch pairs P1 and P2 (if C has
one or no switch pair the proof is similar). Lemma 5.3 implies that there
exists an ordering ≺′ on C′ = C \ (P1 ∪ P2) such that any transversal in
T to a subset of C′ respects ≺′. Since the balls in each switch pair are
consecutive, there are only 4 possible extensions of ≺′ into an ordering of
C, say ≺1, . . . ,≺4. Assume that for each i = 1, . . . , 4 there is a quadruple
Qi ⊂ C′ such that Qi∪P1∪P2 has no transversal in T respecting ≺i. Then
the at most 22 balls of the subset ⋃

1≤i≤4

Qi

⋃P1

⋃
P2

⋃
{B1, Bn}

have no common transversal, which contradicts the assumption. Conse-
quently, some extension ≺i of ≺ is such that for any quadruple Q ⊂ C′ the
balls in Q ∪ P1 ∪ P2 have a transversal in T respecting ≺i. It follows that
every 6-tuple in C has a transversal respecting ≺i, and since the Hadwiger
number of disjoint balls in R3 is at most 6 (by Theorem 5.3), we get that
C has a transversal.

Remark 5.3. This approach extends naturally to higher dimensions,
resulting on a bound of 4hd−2 for the Helly number of su�ciently large fam-
ilies of disjoint unit balls, where hd is the corresponding Hadwiger number.
The threshold above which a family of balls is �su�ciently large� increases
with the dimension.

Remark 5.4. Holmsen et al. [45] used a bound of 12 on the Hadwiger
number of disjoint balls in R3, thus obtaining a bound of 46 on the Helly
number. Their theorem thus omits the assumption that the family be large
enough.

5.4.2. The homotopy method. The technique used to bound the
Hadwiger number in terms of the pinning number in Theorem 5.1 can also
be used to bound the pinning number of disjoint unit balls [19, Theorem 2]:

Theorem 5.5. The Helly number for disjoint unit balls in Rd, d ≥ 2,
is bounded from above by 2pd + 1, where pd denotes the pinning number,
for disjoint balls in Rd.

Proof. Let C be a collection of disjoint unit balls in Rd such that any
subset of 2pd + 1 balls has a transversal, where pd denotes the pinning
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number for disjoint (unit) balls in Rd. Shrink uniformly the balls in C
until the �rst subset of 2pd + 1 balls, say F , is about to lose its last order-
respecting transversal. Any subset of F of size at least |F|− 2 has at most
two geometric permutations di�ering by the switching of two consecutive
balls 22. In the rest of this proof all balls are considered shrunk.

We �rst argue that we can assume that F has a unique transversal `.
Otherwise, F has only isolated transversals, each one corresponding to a
distinct geometric permutation. Theorem 4.2 yields that there are 2 such
lines, say `1 and `2. Each `i can be pinned by pd balls from F , so some
subset F ′ ⊂ F of size |F|− 1 su�ces to pin both of them and Theorem 4.2
implies that this subset has no other transversal. Consequently, every ball
in C \F ′ meets one of the `i. If all such balls meet `2, it is a transversal to
C and we are done; if some ball A misses `2 then F ′ ∪ {A} is a subset of
size at most |F| with ` = `1 as unique transversal.

Next, we argue that some proper subset F ′ of F has no other transver-
sal than `. Otherwise, let G be a subset of size pd that pins ` and for
Z ∈ F \G denote by `Z a transversal to F \{Z} other than `. Since G pins
`, the orderings ≺` and ≺`Z

di�er on G and thus on F \{Z} and, by Theo-
rem 4.2, they di�er by the swapping of two balls XZ and YZ . Since ≺` and
≺`Z

already di�er on G, we have that XZ , YZ ∈ G. For A,B ∈ F \ G, the
set F\{A,B} has three transversals (`, `A and `B) but, by Theorem 4.2, at
most two geometric permutations. Since ≺` and ≺`Z

disagree on G, we thus
get that `A and `B induce the same geometric permutation on F \ {A,B}
for any A,B ∈ F \ G. It follows that XZ and YZ are independent of the
choice of Z; call these two balls X and Y and let ≺ be the ordering on
F obtained by swapping X and Y in ≺`. Since F has no transversal in
the order ≺, Remark 5.1 implies that some subset H ⊂ F of size pd + 2
has no transversal respecting that order. Thus, F ′ = G ∪ H has no other
transversal than `; the balls X and Y both belong to H as otherwise ≺ and
≺` are equivalent, so F ′ has size at most 2pd and is a proper subset of F .

Let X be some ball in C. Since F ′ ∪ {X} has some transversal and `
is the only transversal to F ′, it follows that ` intersects X. Thus, C has a
transversal.

Note that this bound is not tight in the two-dimensional case [23].

5.4.3. Using Helly's theorem for unions of sets. Using Ma-
tousek's generalization of Helly's topological theorem (see Theorem 2.6), we
can replace the constraint on the radii radii by considerations on numbers
of geometric permutations:

Theorem 5.6. For any d ≥ 2 and k ≥ 1 there exists a number h?(d, k)
with the following property. Let C be a �nite family of disjoint open balls
in Rd such that any sub-family of C has at most k geometric permutations.
Then C has a line transversal if and only if every sub-family of size at most
h?(d, k) has a line transversal.

22Theorem 4.2 applies as p2 = 3 and pd ≥ 5 for d ≥ 3 (see Section 5.5).
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Proof. Let C = {B1, . . . , Bn} be a family of disjoint balls in Rd and Ti

the set of oriented line transversals to Bi. By Theorem 3.2, the intersection
of any number of Ti consists of at most k contractible components. The
Ti are subsets of the Grassmaniann G2,2d−2, which naturally embeds in
P2d−1; to apply Theorem 2.6, we embed (part of) the Ti in R2d−2.

We handle this technicality as follows. Let Π and Π′ be two parallel
planes and T ∗

i denote the set of oriented line transversals to ball Bi that
are not parallel to Π. By parameterizing all lines not parallel to Π using
their intersections with Π and Π′, we recast the T ∗

i as subsets of R2d−2.
The directions of lines in T ∗

i are exactly the directions of lines in Ti minus a
great hypersphere. Similarly, the directions of an intersection of T ∗

i consists
in the di�erence of at most k convex sets and a great hypersphere, which
is at most 2k convex sets. This implies that the intersection of any T ∗

i

has at most 2k connected components, and Theorem 2.6 applies. With
h?(d, k) = h(2d − 2, 2k), we thus get that if every subset of C of size
h?(d, k) has a line transversal not parallel to Π then C has a line transversal.
Now, observe that if a subset has a strict line transversal, then its cone of
directions has nonempty interior and it must have a line transversal not
parallel to Π.

By Theorem 4.1, this applies to case of balls of bounded radius dis-
parity immediately:

Corollary 5.1. The Helly number of a family of disjoint balls in Rd

with radius disparity at most γ can be bounded by a function of d and γ.

Remark 5.5. Unfolding the same approach using Amenta's general-
ization of Helly's theorem (see Corollary 2.1) requires to control the inter-
section of a set F of directions of transversals to d-tuples of balls. If F is
the set of all d-tuples of a family of balls, then this intersection consists of
at most k disjoint convex sets on the sphere Sd−1. If F consists of some
but not all d-tuples of a family of balls, the components of this intersection
are still convex, but it is not clear what their number is.

5.5. Lower bounds. This section discusses the few lower bounds
known for the pinning, Hadwiger and Helly numbers. First, we observe
that these numbers are monotone in the dimension:

Theorem 5.7. The pinning, Hadwiger and Helly numbers of disjoint
balls in Rd are nondecreasing in d.

Proof. Let C be a collection of balls in Rd such that all centers lie in
some k-�at Π. If ` is a transversal to C then so is the orthogonal projection
of ` on Π, as the orthogonal projection reduces the distance to the balls'
centers. As a consequence, any lower-bound example for the pinning, Had-
wiger and Helly numbers in Rk can be embedded in Rd for d ≥ k while
retaining its transversal properties, and these numbers are nondecreasing
with d.

Two-dimensional examples. In the plane, the pinning and Hadwiger
numbers of disjoint disks are at most 3; these bounds are easily seen to be
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(a) (c)(b)

Fig. 6. Lower bounds in the plane for the pinning (a), Hadwiger (b) and Helly (c)
numbers.

tight (c.f. Figure 6(a) and (b)). Also, the Helly number of disjoint unit
disks is exactly 5, as follows from the example of �ve unit disks centered
at the vertices of a regular pentagon, depicted by Figure 6(c) (see [23, 44]
for a more detailed description).

Higher dimensions. The upper bound for the pinning number of fam-
ilies of disjoint balls can be shown to be tight [18]:

Theorem 5.8. The pinning number of disjoint balls in Rd is exactly
2d− 1.

Call a pinning con�guration (C, `) stable if ` remains pinned when
the balls in C are perturbed by any su�ciently small (distinct) motions
that keep ` �xed. Theorem 5.8 follows from two observations: (i) in any
dimension there exists a �nite stable pinning con�guration (Figure 7 gives
an example for d = 3), and (ii) in Rd, any stable pinning con�guration has
size at least 2d− 1.

Theorem 5.8 also narrows the gap on the Hadwiger numbers:

Corollary 5.2. The Hadwiger number of disjoint balls in Rd is 2d−1
or 2d.

Since the example of Figure 6(a) can be embedded in R3, we also have
that not every minimal pinning con�guration has the same size.

6. Algorithmic aspects. The problem of computing a line transver-
sal to some given collection of sets, if one exists, has been studied in a
variety of situations: segments in the plane [15, 30, 62] and higher di-
mensions [13], convex polygons in the plane [15, 22], polyhedra in three
dimensions [13, 49], translates of a convex set in the plane [29]. For fami-
lies of balls, the best algorithms have complexity O(n) for n disjoint unit
disks in the plane [4, 29], O(n log n) for n intersecting unit disks in the
plane [29] and O(n3+ε) for n balls in three dimensions [1]; if the dimension
is part of the input, deciding if (intersecting) unit balls have a transversal
is NP-hard [59]. We complete these results by:

Theorem 6.1. A transversal to n disjoint balls with bounded radius
disparity in Rd can be computed in randomized O(n) time.
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1
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Fig. 7. Any con�guration of 5 disjoint balls whose projection along a common
tangent is as in the �gure is a stable pinning con�guration in R3.

This is remarkable as there is a Ω(n log n) lower bound for this problem
for n segments or n unit disks in the plane [12]. The constant in the
O() notation depends on the dimension and the radius disparity. The
same holds, in any �xed dimension, for thinly distributed collections of
balls or more generally any collection for which the number of geometric
permutations of any sub-family is bounded.

The next sections brie�y recalls the class of LP-type problems and uses
the connection it bears to Helly-type theorems [4] for deducing Theorem 6.1
from Theorem 5.4.

6.1. Generalized linear programming. The linear programming
problem, one of the fundamental problems in optimization, consists in max-
imizing some linear function while satisfying a family of linear equalities
and inequalities. Geometrically, it translates into �nding a point extremal
in some direction (the gradient of the linear function) inside a polytope
given as the intersection of half-spaces. Techniques for solving linear pro-
gramming such as the randomized incremental algorithm of Seidel [69] have
been known to solve other problems, for instance computing the smallest
enclosing circle of a planar point set. This observation was formalized by
Sharir and Welzl [71] in the framework of LP-type problems.

Let H be a set. Given F ⊂ H and x ∈ H we denote by F + x and
F − x respectively the union and the di�erence of F and {x}. An LP-type
problem is a pair (H, w) consisting of a set H and a map w : 2H → Ω,
where Ω is a totally ordered set with maximal element N , that satis�es for
any F ⊂ G ⊂ H and x ∈ H the two properties:

• Monotonicity : w(F ) ≤ w(F + x).
• Locality : if w(F ) = w(G) then

w(F + x) 6= w(F ) ⇔ w(G + x) 6= w(G).
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A subset F ⊂ H is a basis if it contains no proper subset with the same
image under w:

∀x ∈ F, w(F − x) < w(F ).

Any set F ⊂ H contains a basis B with w(B) = w(F ); B is called a basis
of F . A basis B is feasible if w(B) < N . The combinatorial dimension of
an LP-type problem is the maximal cardinality of a feasible basis. Sharir
and Welzl [71] showed that if the combinatorial dimension of an LP-type
problem (H, w) is bounded independently of |H|, then a basis of H can be
computed in randomized O(|H|) time [71].

If (H, w) is an LP-type problem of combinatorial dimension k, then
w(H) is equal to w(B) for some subset B ⊂ H of size at most k; thus, for
any λ ∈ R, any LP-type problem satis�es the following Helly-type theorem:

w(H) ≤ λ if and only if23 w(B) ≤ λ for any B ⊂ H of size at most k.

This connection goes, in fact, both ways [4] and a large class of Helly-type
theorems have a corresponding LP-type problem. The next section applies
this correspondence to Theorem 5.4.

6.2. LP-type formulation. Let C be a collection of disjoint closed
balls in Rd. Given a ball X of radius r and a real ρ ≥ 0 we denote by ρX
the ball with same center as X and radius ρr; given a collection F of balls
we also denote by ρF the collection {ρX|X ∈ F}. Let Ω = [0, 1] ∪ {N}
where N is maximal and the order on [0, 1] is the natural one. The map

φ :
{

2C → Ω
F 7→ min

({
ρ ∈ [0, 1]

∣∣ρF has a transversal
}⋃

{N}
)

associates to every sub-collection of balls the amount by which these balls
can be �de�ated� and still retain some transversal � possibly N if the sub-
collection had no transversal to begin with. Theorem 3.1 implies that if
φ(F ) < N then φ(F )F has only �nitely many transversals. If C is not
in generic position, there may be more than one such transversal and this
implies that (C, φ) may violate the locality condition (see Figure 8). Simply
put, the system of transversals to balls doesn't meet the �unique minimum
property� of Amenta [4]. This can be taken care of as follows24. Let ν(F )
denote the number of transversals to φ(F )F , with the convention that
ν(F ) = 0 whenever φ(F ) = N . De�ne Ω′ as ([0, 1]× Z)∪{(N, 0)}, ordered
lexicographically, and w = (φ, ν) : 2C → Ω′.

Lemma 6.1. (C, w) is a LP-type problem.
Proof. Let F,G ⊂ C and x ∈ C. If φ(F ) < N then w(F + x) = w(F )

if and only if x intersects every transversal to φ(F )F , so the monotonicity
follows. If F ⊂ G and w(F ) = w(G) then φ(F )F and φ(G)G have exactly
the same set of transversals, and the locality follows.

23The other direction follows from the monotonicity property.
24Amenta [4] asserts that a �standart perturbation argument� can also be used.
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Fig. 8. φ may not ful�ll the locality condition (with F = {2, 3, 4}, G = F + 5 and
x = 1).

To prove Theorem 6.1, it su�ces to observe that the combinatorial
dimension of (C, w) is bounded:

Lemma 6.2. For all collections C of disjoint balls in Rd with radius
disparity at most γ the combinatorial dimension of (C, w) is O

(
d2γlog γ

)
.

Proof. Let F ⊂ C be a basis and denote by H(d, γ) the size of the
largest family of disjoint balls in Rd with radius disparity at most γ that
has no transversal and is minimal for this property. Theorem 5.4 gives
that:

H(d, γ) = O
(
d2γlog γ

)
.

De�ne:

ρ = max{φ(B)|B ⊂ F,B 6= F}, and

µ = max{ν(B)|B ⊂ F,B 6= F, φ(B) = φ(F )}.

If ρ 6= φ(F ) then for any η ∈ (ρ, φ(F )), the family ηF has no transversal
but all its proper subsets do, and thus |F | ≤ H(n, γ). If ρ = φ(F ) then
let B be a basis contained in F such that φ(B) = φ(F ) and ν(B) = µ.
By de�nition of µ, for any proper subset B′ of B we have φ(B′) 6= φ(B)
and so the previous argument yields that B has size at most H(d, γ). Each
transversal to φ(F )B that is not a transversal to φ(F )F misses some ball
φ(F )X with X ∈ F \ B. Thus, since F is a basis, its size is at most
|B| + µ − ν(F ). It follows from Theorem 4.1 that µ = O

(
γlog γ

)
and the

statement follows.
Remark 6.1. The same technique yields that the combinatorial di-

mension is at most 2d− 1 for families of balls with a separation set of size
1 (using Theorem 5.2) and 4d − 1 for families of disjoint unit balls (using
Theorem 5.4).
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Fig. 9. For order-respecting transversals the locality condition is not satis�ed (with
F = {1, 2, 3}, G = F + 4 and x = 5).

Remark 6.2. If one de�nes

φ :

 2C → Ω
F 7→ min

({
ρ ∈ [0, 1]

∣∣ρF has an order-respecting transversal
}⋃

{N})

then the problem (C, φ) does not satisfy the locality assumption (see Fig-
ure 9). In this case, Theorem 3.2 ensures that the unique minimum prop-
erty is satis�ed.

7. Some open problems. To conclude this overview, we highlight a
few of the many questions that remain open.

1. Geometric permutations. What is the asymptotic behavior of the
maximum number of geometric permutations of n disjoint convex sets in
Rd? The gap between the Ω(nd−1) lower bound [73] and the O(n2d−2)
upper bound [78] was closed for disjoint balls [73] and fat objects [54]
in Rd and narrowed for sets of bounded description complexity in three
dimensions [55]. Also, what is the number of geometric permutations of
n ∈ {4, . . . , 9} disjoint unit balls or to few disjoint balls with bounded radius
disparity in dimension d ≥ 3? A better grasp of these questions may be
required to improve the current upper-bounds on the Helly number.

2. Hadwiger number of disjoint balls in R3. Are the pinning and Had-
wiger numbers equal in 3 dimensions? In the plane, the argument used in
Theorem 5.1 can be re�ned to prove that they are; intuitively, case analysis
shows that if three objects pin an order-respecting transversal that does not
intersect a fourth one, then three of the objects have no order-respecting
transversal. Since this analysis exploits the fact that in two dimensions
lines are also hyperplanes, it is not clear whether it generalizes to higher
dimensions.

3. Pinning number of convex sets. Are there arbitrarily large mini-
mal pinning con�gurations of convex sets in Rd, or are the corresponding
pinning numbers also bounded? Note that there are minimal pinning con-
�gurations of size six in R3 if the objects are not required to be strictly
convex (see Figure 10).
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Fig. 10. A minimal pinning con�guration consisting of 6 pieces of cylinder: the
line is constrained to remain in two planes by triples of cylinders.
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ALGEBRAIC GEOMETRY AND KINEMATICS

MANFRED L. HUSTY∗ AND HANS-PETER SCHRÖCKER∗†

Abstract. In this overview paper we show how problems in computational kinematics
can be translated into the language of algebraic geometry and subsequently solved using
techniques developed in this field. The idea to transform kinematic features into the
language of algebraic geometry is old and goes back to Study. Recent advances in
algebraic geometry and symbolic computation gave the motivation to resume these ideas
and make them successful in the solution of kinematic problems. It is not the aim
of the paper to provide detailed solutions, but basic accounts to the used tools and
examples where these techniques were applied within the last years. We start with
Study’s kinematic mapping and show how kinematic entities can be transformed into
algebraic varieties. The transformations in the image space that preserve the kinematic
features are introduced. The main topic are the definition of constraint varieties and their
application to the solution of direct and inverse kinematics of serial and parallel robots.
We provide a definition of the degree of freedom of a mechanical system that takes into
account the geometry of the device and discuss singularities and global pathological
behavior of selected mechanisms. In a short paragraph we show how the developed
methods are applied to the synthesis of mechanical devices.

Key words. Computational kinematics, kinematic mapping, constraint variety,
serial robot, parallel robot, singularity, self-motion, synthesis of mechanisms.

AMS(MOS) subject classifications. 70B15, 53A17.

1. Introduction. This chapter is devoted to the application of alge-
braic geometry in computational kinematics. We study the motions of
mechanical devices (linkages or robots) and their relation to individual
joint parameters, we design mechanisms such that they can perform certain
prescribed tasks and we explain “pathological” or surprising behavior of
mechanisms by relating them to well-known concepts of algebraic geometry.

The theoretical foundations of our topic are old and date back to the
19th century and beyond. It was, however, only the power of modern
computers, in particular algebraic manipulation systems and advances in
numerical computation [25], that allowed the application to “real” problems
in computational kinematics and mechanism science. Many previously
hopeless problems can nowadays be solved in fractions of a second. On the
other hand, scientists and engineers are constantly attacking new problems
just at the edge of feasibility.

2. Kinematic mapping. A fundamental concept of relating mechani-
cal structures with algebraic varieties is Study’s kinematic mapping [26, 27].
It associates to every Euclidean displacement γ a point c in real projective
space P 7 of dimension seven or, more precisely, a point on the Study quadric
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S ⊂ P 7. Sometimes it will be necessary to use also its complex extension
P 7(C). There exist other kinematic mappings besides Study’s ([3, 9, 21, 30])
but these topics are beyond the scope of the present text.

Within the kinematics community more often four by four matrices
incorporating translational and rotational part of the motion are used
(2.2). Matrix elements are the design parameters of the mechanism (often
called Denavit-Hartenberg parameters) and sines and cosines of the motion
parameters. To move to algebra one either uses tangent half substitution
transforming sines and cosines to algebraic values or adds the identity
sin2 +cos2 = 1.

A formal definition of Study’s kinematic mapping is given below in
Subsection 2.1. Our description is based on the original works of Study
[26, 27]. These are comprehensive and deep but not always easily readable
texts and, unfortunately, only available in German. Modern references on
the same topic include [15] or [23].

2.1. Study’s kinematic mapping. Euclidean three space is the
three dimensional real vector space R3 together with the usual scalar
product xT y =

∑3
i=1 xiyi. A Euclidean displacement is a mapping

γ : R3 → R3, x 7→ Ax + a (2.1)

where A ∈ SO(3) is a proper orthogonal three by three matrix and a ∈ R3

is a vector. The entries of A fulfill the well-known orthogonality condition
AT ·A = I3, where I3 is the three by three identity matrix.

The group of all Euclidean displacements is denoted by SE(3). It is a
convenient convention to write Equation (2.1) as product of a four by four
matrix and a four dimensional vector according to[

1
x

]
7→

[
1 oT

a A

]
·
[
1
x

]
. (2.2)

Study’s kinematic mapping κ maps an element α of SE(3) to a point
x ∈ P 7. If the homogeneous coordinate vector of x is [x0 : x1 : x2 : x3 : y0 :
y1 : y2 : y3]T , the kinematic pre-image of x is the displacement α described
by the transformation matrix

1
∆


∆ 0 0 0
p x2

0 + x2
1 − x2

2 − x2
3 2(x1x2 − x0x3) 2(x1x3 + x0x2)

q 2(x1x2 + x0x3) x2
0 − x2

1 + x2
2 − x2

3 2(x2x3 − x0x1)
r 2(x1x3 − x0x2) 2(x2x3 + x0x1) x2

0 − x2
1 − x2

2 + x2
3

 (2.3)

where

p = 2(−x0y1 + x1y0 − x2y3 + x3y2),
q = 2(−x0y2 + x1y3 + x2y0 − x3y1),
r = 2(−x0y3 − x1y2 + x2y1 + x3y0),

(2.4)
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and ∆ = x2
0 +x2

1 +x2
2 +x2

3. The lower three by three sub-matrix is a proper
orthogonal matrix if and only if

x0y0 + x1y1 + x2y2 + x3y3 = 0 (2.5)

and not all xi are zero. When these conditions are fulfilled we call [x0 : . . . :
y3]T the Study parameters of the displacement α.

The important relation (2.5) defines a quadric S ⊂ P 7 and the range
of κ is this quadric minus the three dimensional subspace defined by

E : x0 = x1 = x2 = x3 = 0. (2.6)

We call S the Study quadric and E the exceptional or absolute generator.
The parameterization (2.3) of SE(3) may look rather artificial and com-

plicated but it has an important feature: The composition of displacements
in Study parameters is bilinear (see Subsection 2.2). In [26] Study shows
that

• this requirement cannot be fulfilled with a smaller number of pa-
rameters and

• the representation of Euclidean displacements is unique, up to lin-
ear parameter transformations and transformations via identically
fulfilled relations between the parameters.

Moreover, the Study parameters are closely related to the ring of biquater-
nions or dual quaternions as we shall rather say. This will be on the agenda
in the coming Subsection 2.4. But first, we fill a gap that is so far missing
in our exposée.

For the description of a mechanical device in P 7 we usually need the
inverse of the map given by Equations (2.3) and (2.4), that is, we need to
know how to compute the Study parameters from the entries of the matrix
A = [aij ]i,j=1,...,3 and the vector a = [a1, a2, a3]T . Mostly in kinematics
literature a rather complicated and not singularity-free procedure, based on
the Cayley transform of a skew symmetric matrix into an orthogonal matrix
(see [8]), is used. The best way of doing this was, however, already known to
Study himself. He showed that the homogeneous quadruple x0 : x1 : x2 : x3

can be obtained from at least one of the following proportions:

x0 : x1 : x2 : x3 = 1+a11+a22+a33 : a32−a23 : a13−a31 : a21−a12

= a32−a23 : 1+a11−a22−a33 : a12+a21 : a31+a13

= a13−a31 : a12+a21 : 1−a11+a22−a33 : a23+a32

= a21−a12 : a31+a13 : a23−a32 : 1−a11−a22+a33.

(2.7)

In general, all four proportions of (2.7) yield the same result. If, however,
1 + a11 + a22 + a33 = 0 the first proportion yields 0 : 0 : 0 : 0 and is
invalid. We can use the second proportion instead as long as a22 + a33 is
different from zero. If this happens we can use the third proportion unless
a11 + a33 = 0. In this last case we resort to the last proportion which yields
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0 : 0 : 0 : 1. Having computed the first four Study parameters the remaining
four parameters y0 : y1 : y2 : y3 can be computed from

2y0 = a1x1 + a2x2 + a3x3,

2y1 = −a1x0 + a3x2 − a2x3,

2y2 = −a2x0 − a3x1 + a1x3,

2y3 = −a3x0 + a2x1 − a1x2.

(2.8)

Example 1. A rotation about the z-axis through the angle ϕ is described
by the matrix 

1 0 0 0
0 cos ϕ − sinϕ 0
0 sinϕ cos ϕ 0
0 0 0 1

 . (2.9)

Its kinematic image, computed via (2.7) and (2.8) is

r = [1 + cos ϕ : 0 : 0 : sinϕ : 0 : 0 : 0 : 0]T . (2.10)

As ϕ varies in [0, 2π), r describes a straight line on the Study quadric which
reads after algebraization

r = [1 : 0 : 0 : u : 0 : 0 : 0 : 0]T . (2.11)

Exercise 2.1. Compute the Study representation of the translations
in direction of the z-axis.

2.2. Fixed and moving frame. Suppose that α : x 7→ y = Ax + a
is a Euclidean displacement. The vectors x and y are elements of R3 but in
kinematics it is advantageous to consider them as elements of two distinct
copies of R3, called the moving space and the fixed space. The description
of α in Study parameters depends on the choice of coordinate frames –
moving frame and fixed or base frame – in both spaces. In kinematics,
the moving frame is the space attached to a mechanism’s output link, and
the fixed space is the space where the mechanism itself is positioned (see
Subsection 3).

Both types of transformations induce transformations of the Study
quadric and thus impose a geometric structure on P 7. Kinematic mapping
is constructed such that these transformations act linearly on the Study
parameters (that is, they are projective transformations in P 7). We are
going to compute their coordinate representations.

Consider a Euclidean displacement described by a four by four transfor-
mation matrix X, as in (2.3). It maps a point (1,a)T to (1,a′) = X · (1,a)T .
Now we change coordinate frames in fixed and moving space and compute
the matrix Y such that (1,b′)T = Y · (1,b)T is the representation of the
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displacement in the new fixed coordinate frame and the old moving coordi-
nate frame. This is slightly different from the typical change of coordinates
known from linear algebra where one describes the new transformation in
terms of new coordinates in both spaces but more suitable for application in
kinematics, in particular for describing the position of the end effector tool
or for concatenation of simple mechanisms. If the changes of coordinates in
fixed and moving frame are described by

(1,a)T = M · (1,b)T , (1,b′)T = F · (1,a′)T , (2.12)

we have Y = F · X · M. Denote now by y, x, f = [f0, . . . , f7]T and
m = [m0, . . . ,m7]T the corresponding Study vectors. Straightforward
computation (or skillful use of dual quaternions, see Subsection 2.4) yields

y = TfTmx, Tm =
[
A O
B A

]
, Tf =

[
C O
D C

]
, (2.13)

where

A=


m0 −m1 −m2 −m3

m1 m0 m3 −m2

m2 −m3 m0 m1

m3 m2 −m1 m0

 , B=


m4 −m5 −m6 −m7

m5 m4 m7 −m6

m6 −m7 m4 m5

m7 m6 −m5 m4



C=


f0 −f1 −f2 −f3

f1 f0 −f3 f2

f2 f3 f0 −f1

f3 −f2 f1 f0

 , D=


f4 −f5 −f6 −f7

f5 f4 −f7 f6

f6 f7 f4 −f5

f7 −f6 f5 f4

 ,

(2.14)

and O is the four by four zero matrix.
The matrices Tm and Tf commute and they induce transformations

of P 7 that leave fixed the Study quadric S, the exceptional generator E,
and the exceptional or absolute quadric F ⊂ E, defined by the equations

F : x0 = x1 = x2 = x3 = 0, y2
0 + y2

1 + y2
2 + y2

3 = 0. (2.15)

The quadrics S and F and the three space E are special objects in the
geometry of the kinematic image space. Later we will describe a mechanism
by a subvariety V of P 7. A non-generic position of V with respect to these
objects distinguishes its kinematic properties from a projectively equivalent
subvariety W .

Example 2. In Example 1 we saw that the kinematic image of a
continuous rotation about the z-axis is a straight line on the Study quadric.
From the considerations in this section it follows that the kinematic image
of a continuous rotation about an arbitrary axis is a straight line.

Consider now a straight line L ⊂ R3 and denote the foot points of the
common perpendicular to L and the z-axis Z by fL and fZ . Assuming the
common perpendicular of Z and L points in direction of the x-axis, the
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d

Z

fZ

α

a

L

fL

Fig. 1. Relative position of two lines Z and L (courtesy Martin Pfurner).

relative position of L with respect to Z can be specified by the z-coordinate
d of fZ , the distance a between fZ and fL and the angle α between Z and
L (Figure 1). The numbers d, a and α are called the Denavit-Hartenberg
parameters of the relative position of the line L with respect to the z-axis
(see [28, Section 2.3]).

The displacement that transforms the standard coordinate frame to
the coordinate frame with origin fL, x-axis in direction of the common
perpendicular, and z-axis in direction of L in matrix form reads

G =


1 0 0 0
a 1 0 0
0 0 cos α − sinα
d 0 sinα cos α

 . (2.16)

Its Study vector is

g = [2γ, 2 sinα, 0, 0, a sinα,−aγ,−d sinα,−dγ]T (2.17)

where γ = 1 + cos α. The kinematic image of the rotation about L is Tf · r
where Tf is obtained by substituting the components of g into (2.13).

Exercise 2.2. Compute the Study representation of all translations
in a fixed direction different from [0, 0, 1]T .

2.3. Planar and spherical kinematic mapping. The restriction
of Study’s kinematic mapping to certain three-spaces on the Study quadric
yields elements of two important subgroups of SE(3), the group of planar
Euclidean displacements SE(2) and the special orthogonal group SO(3)
whose elements are pure rotations without any translational component.
Both groups are of relevance in kinematics. Their kinematic mappings will
be introduced in this subsection.

The planar Euclidean motion group SE(2) can be embedded into SE(3)
by substituting x1 = x2 = y0 = y3 = 0 into (2.3). This yields the matrix
parameterization
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1
x2

0 + x2
3

 x2
0 + x2

3 0 0
−2(x0y1 − x3y2) x2

0 − x2
3 −2x0x3

−2(x0y2 + x3y1) 2x0x3 x2
0 − x2

3

 (2.18)

of SE(2) (we omit the last row and the last column). The group SE(2) can be
considered as kinematic pre-image of the three space x1 = x2 = y0 = y3 = 0,
minus its intersection with the exceptional generator E, and we identify this
three space with P 3. We describe its points by homogeneous coordinates
[x0 : x3 : y1 : y2]T .

The geometry of P 3 as range of planar kinematic mapping is governed
by a change of coordinates in the moving or fixed frame or, equivalently, by
its absolute figure consisting of the line x0 = x3 = 0 (the intersection of P 3

with the exceptional generator E) and the absolute points [0 : 0 : 1 : ±i]T

(the intersection of P 3 with the absolute quadric F ). This geometry is
called quasielliptic (see for example [4, p. 399]).

The spherical motion group SO(3) can be embedded into SE(3) via

1
∆

x2
0 + x2

1 − x2
2 − x2

3 2(x1x2 − x0x3) 2(x1x3 + x0x2)
2(x1x2 + x0x3) x2

0 − x2
1 + x2

2 − x2
3 2(x2x3 − x0x1)

2(x1x3 − x0x2) 2(x2x3 + x0x1) x2
0 − x2

1 − x2
2 + x2

3

 (2.19)

where ∆ = x2
0 + x2

1 + x2
2 + x2

3. It is the kinematic pre-image of the three
space y0 = y1 = y2 = y3 = 0. The absolute figure is the exceptional quadric
x2

0 + x2
1 + x2

2 + x2
3 = 0 and the corresponding geometry is elliptic (see for

example [6, Chapter VII]).

2.4. Euclidean displacements and dual quaternions. Kinematic
mapping is closely related to quaternion algebra. This relation shall be
illustrated in this section. The set of quaternions H is the vector space R4

together with the quaternion multiplication

(a0, a1, a2, a3) ? (b0, b1, b2, b3) = (a0b0 − a1b1 − a2b2 − a3b3,

a0b1 + a1b0 + a2b3 − a3b2,

a0b2 − a1b3 + a2b0 − a3b1,

a0b3 − a1b2 − a2b1 + a3b0).

(2.20)

The triple (H,+, ?) (with component wise addition) forms a skew field.
The real numbers can be embedded into this field via x 7→ (x, 0, 0, 0), and
vectors x ∈ R3 are identified with quaternions of the shape (0,x).

Every quaternion is a unique linear combination of the four basis
quaternions 1 = (1, 0, 0, 0), i = (0, 1, 0, 0), j = (0, 0, 1, 0), and k = (0, 0, 0, 1).
Their multiplication table is
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? 1 i j k
1 1 i j k
i i −1 k −j
j j −k −1 i
k k j −i −1

Conjugate quaternion and norm are defined as

A = (a0,−a1,−a2,−a3), ‖A‖ =
√

A ? A =
√

a2
0 + a2

1 + a2
2 + a2

3. (2.21)

Quaternions are closely related to spherical kinematic mapping. Con-
sider a vector a = [a1, a2, a3]T and a matrix X of the shape (2.19). Then
the product b = X · a can also be written as

b = a ? X ? a (2.22)

where X = (x0, x1, x2, x3) and ‖X‖ = 1. In other words, spherical
displacements can also be described by unit quaternions and spherical
kinematic mapping maps a spherical displacement to the corresponding
unit quaternion.

In order to describe general Euclidean displacements we have to extend
the concept of quaternions. A dual quaternion Q is a quaternion over the
ring of dual numbers, that is, it can be written as

Q = Q0 + εQ1, (2.23)

where ε2 = 0. The algebra of dual quaternions has eight basis elements 1, i,
j, k, ε, εi, εj, and εk and the multiplication table

? 1 i j k ε εi εj εk
1 1 i j k ε εi εj εk
i i −1 k −j εi −ε1 εk −εj
j j −k −1 i εj −εk −ε1 εi
k k j −i −1 εk εj −εi −ε1
ε1 ε εi εj εk 0 0 0 0
εi εi −ε1 εk −εj 0 0 0 0
εj εj −εk −ε1 εi 0 0 0 0
εk εk εj −εi −ε1 0 0 0 0

Dual quaternions know two types of conjugation. The conjugate quaternion
and the conjugate dual quaternion of a dual quaternion Q = x0+εy0+x+εy
are defined as

Q = x0 + εy0 − x− εy and Qe = x0 − εy0 + x− εy, (2.24)

respectively. The norm of a dual quaternion is

‖Q‖ =
√

QQ. (2.25)
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With these definitions, the equation b = X · a where X is a matrix of
the shape (2.3) can be written as

b = (εa)e ? X ? a (2.26)

where X = x + εy, ‖X‖ = 1, x = (x0, . . . , x3)T , y = (y0, . . . , y3)T , and
x · y = 0. The last condition is precisely the Study condition (2.5).

In other words, Euclidean displacements can also be described by unit
dual quaternions that satisfy the Study condition and kinematic mapping
maps a Euclidean displacement to the corresponding unit dual quaternion.
The algebra of dual quaternions provides a convenient way of computing in
Study coordinates (see for example [23, Chapter 9]).

2.5. Geometry of the Study quadric. In Subsection 2.2 our topic
was the geometry of the Study quadric S induced by coordinate changes in
the fixed and in the moving space. Here we study the projective properties
of S as hyper-quadric of seven dimensional projective space P 7. Our
description follows [23, Section 11.2].

Lines in the Study quadric S correspond either to a one parameter set
of rotations or to a one parameter set of translations. Lines through the
identity ([1 : 0 : · · · : 0]) correspond to one-parameter subgroups of SE(3)
and are either rotation or translation subgroups.

The maximal subspaces of S are of dimension three (“3-planes”). More
precisely, S is swept by two six dimensional families of 3-planes, called the
A-planes and the B-planes. The A-planes and the B-planes are translates of
the A-planes and the B-planes passing through the identity. Those 3-planes
passing through the identity are the three dimensional subgroups of SE(3).
They can be identified with SO(3) (the group of pure rotations) and with
SE(2) (the group of planar Euclidean transformations). It is important to
note that the exceptional three-space E, defined by x0 = x1 = x2 = x3 = 0,
is an A-plane. The intersection of two A-planes or two B-planes is either
empty or a one dimensional subspace. The intersection of an A-plane and a
B-plane is either a point or a two dimensional plane. Whether an A-plane
corresponds to SO(3) or SE(2) just depends on the intersection of the plane
with E. In case of a point intersection the A-planes correspond to SO(3)
and its translates; A-planes having line intersection with E correspond to
SE(2) and its translates. General B-planes correspond to rotations about
the axes in a plane, composed with a fixed displacement. The only B-plane
that intersects the exceptional generator in a plane corresponds to the
subgroup of all translations. All these cases belong of course to interesting
kinematic configurations, but it would be beyond the scope of this paper to
discuss all the possibilities. From algebraic point of view most attention
has to be paid to the exceptional generator E because points in this space
do not correspond to valid transformations in the pre-image space.

3. Mechanism theory. We start this section with a brief definition
of basic concepts in mechanism science. Our terminology follows that of
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Table 1
Important joint types.

Name Abbr. Dof Relative motion
revolute R 1 rotation about fixed axis
prismatic P 1 translation in fixed direction
cylindrical C 2 rotation about and translation along

fixed axis
helical H 1 rotation about and translation along

fixed axis, linear relation between trans-
lation distance and rotation angle

spherical S 3 rotation about axes through fixed point

[28, Section 1.2]. The fundamental object in computational kinematics is a
mechanism. This is an object consisting of several links that are connected
by joints.

A link is a collection of mechanical parts such that no relative motion
between the individual members can occur. A joint is a connection between
two links. It restricts the relative motion that is possible between the two
links. The joints can be classified according to the nature of this restriction.
The number of free parameters to describe this relative motion is called the
degree of freedom of the joint. A listing of the most important joint types,
their usual abbreviation, their degree of freedom, and a short description is
given in Table 1.

It is important to note that the kinematic image of all joints in Table 1
– with exception of the helical joint – is an algebraic variety. We restrict
ourselves to algebraic joints only. Luckily helical joints are of little relevance
in practice.

A collection of links that are connected by joints is called a kinematic
chain. A kinematic chain can be represented by a graph [28, Section 7.3.2]
where the links are the vertices and the joints are the edges. In a closed-loop
kinematic chain every link is connected to every other link by at least two
paths, in an open-loop kinematic chain every link is connected to every
other link by exactly one path. Of course there are also hybrid versions.

Finally, a mechanism is a kinematic chain where one of the links (the
base) is fixed to the ground or, in mathematical terminology, to a base
frame coordinate system. The remaining links are grouped into input links
and output links. Input links are actuated and move with respect to the
fixed link and the output links perform an according motion.

An example of a mechanism, a so-called planar 3R-linkage, is depicted
in Figure 2. It consists of three revolute joints a, b, and c, connected
by links of constant lengths. The joint a is fixed to the ground, b and c
can move along the paths imposed by the links ab and bc, respectively.
Attached to the last joint is the end effector tool. Typically, one is interested



ALGEBRAIC GEOMETRY AND KINEMATICS 95

a

b

c

Fig. 2. 3R-linkage.

a0

b0

c0

a

b

c

Fig. 3. 3RPR-platform.

Fig. 4. A general Stewart-Gough platform.

a b

c
d

Fig. 5. A planar four-bar mechanism.

in the motion of the end effector tool with respect to the base. The set of
all poses the end effector can attain is called the mechanism’s workspace.
The workspace is a subset of the Study quadric (or of planar or spherical
kinematic image space).

In Figure 3 we see a planar 3RPR-platform. It consists of three
legs, each composed of a revolute joint (R), a prismatic joint (P) and a
further revolute joint (R). Three revolute joints (a0, b0, c0) are fixed to the
ground, three of them (a, b, c) are attached to the end effector frame. This
mechanism is actuated by changing the lengths of the prismatic joints. It has
a three dimensional workspace, that is represented by a three dimensional
variety on the Study quadric.

The spatial counterpart to a 3RPR-platform is known as Stewart-Gough
platform. It consists of six legs and each leg is composed of a spherical, a
prismatic and a spherical joint (Figure 4). Between any two corresponding
spherical joints a prismatic joint is inserted. The spherical joints can rotate
freely about their center, the prismatic joints can extend or shrink in one
direction (the direction of the link in our case).

Figure 5 depicts a planar four-bar linkage, a further common linkage
type. It consists of four revolute joints connected by bars of fixed lengths.
Two revolute joints a, b are fixed to the base frame, the two remaining
joints c, d are attached to the end effector frame. The “missing” fourth
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bar is the ideal connection between a and b. The four-bar motion depends
only on one free parameter, the rotation of the driving crank. We say
that the mechanism has one degree of freedom. This is in contrast to 3R-
and 3RPR-manipulators which have three degrees of freedom and can,
at least theoretically, generate the complete group of planar Euclidean
displacements.

3.1. Serial and parallel manipulators. There is a fundamental
difference between the 3R-linkage of Figure 2 and the 3RPR-platform of
Figure 3. In case of the 3R-linkage, the joints are connected in a series
while in case of the 3RPR-platform each two RPR-legs form a loop with
end effector and base. The 3R-linkage is called a serial manipulator while
the 3RPR-platform is called a parallel manipulator.

Parallel manipulators offer several advantages over serial ones: higher
stiffness, higher payload capacity, lower inertia (see [28, p. 21]). On the other
hand, serial manipulators are simpler and their workspace is usually larger.
As far as computational kinematics is concerned, they exhibit a significantly
different behavior in direct and inverse kinematics (see Subsection 4.2).

4. Constraint varieties. In this section we demonstrate how kine-
matic mapping can be used to translate mechanisms to algebraic varieties in
P 7. These varieties describe the possible configurations of the mechanism
and are called constraint varieties. We start by computing the kinematic
images of fundamental building blocks of mechanisms (see Table 1). Then
we demonstrate how to combine these elements in order to describe more
complex mechanisms. The corresponding algebraic operations involve inter-
section of varieties and implicitization.

4.1. Kinematic image of elementary joints.

4.1.1. Revolute joints. A parametrized representation of the kine-
matic image of a revolute joint has already been computed in Examples 1
and 2. It is a straight line and computing its algebraic equations is elemen-
tary. Still, we will show how to carry out these computations explicitly
because this demonstrates a general procedure for obtaining constraint
varieties. Consider the kinematic image (2.10). It is given in a normal form
and we see that it is described by six linear equations

H1(x) : x1 = 0, H2(x) : x2 = 0, K0(x) : y0 = 0,
K1(x) : y1 = 0, K2(x) : y2 = 0, K3(x) : y3 = 0.

(4.1)

In order to obtain the constraint variety of a revolute joint in general position
we have to transform the hyperplanes Hi(x), Kj(x) via the projective
transformation Tf . This is done by substituting T−1

f x for x. The new
equations are

H ′
i(x) = Hi(T−1

f x), K ′
j(x) = Kj(T−1

f x). (4.2)
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This procedure not only works for linear equations but for algebraic equations
of arbitrary degree. Changes of coordinates in the moving frame are
performed by using Tm instead of Tf .

4.1.2. Prismatic joints. The kinematic image of a prismatic joint
can be computed in the same way as a revolute joint. We start with a
matrix describing a translation in a simple home position:

1 0 0 0
0 1 0 0
0 0 1 0
t 0 0 1

 (4.3)

The matrix (4.3) describes a translation in direction of the z-axis by the
vector [0, 0, t]T . Its kinematic image

t = [2 : 0 : 0 : 0 : 0 : 0 : 0 : −t]T (4.4)

is again a straight line on the Study quadric, parameterized by the trans-
lation distance t (compare Exercise 2.1). Note, however, that for t → ∞
we obtain a point of the absolute generator space E. This is a geometric
property in the sense that it is not affected by changes of the moving or the
base frame, and it distinguishes the images of rotations and translations.
The hyperplane equations describing (4.4) are:

H1(x) : x1 = 0, H2(x) : x2 = 0, H3(x) : x3 = 0,

K0(x) : y0 = 0, K1(x) : y1 = 0, K2(x) : y2 = 0,
(4.5)

and the transformed equations read again

H ′
i(x) = Hi(T−1

f x), K ′
j(x) = Kj(T−1

f x). (4.6)

4.1.3. Concatenation of joints. The movement of many industrial
robots can be described as a composition of six consecutive rotations about
axes in space. These robots are called 6R-robots and their degree of freedom
is six. Here, we compute the constraint variety to the composition of two
consecutive rotations (a “2R-chain”).

• We describe the rotation of the second axis A1 in its home position,
where it coincides with the z-axis. This is the set (4.1) of algebraic
equations Hi(x), Kj(x).

• Now we consider the relative displacement from the first axis A0

to A1 (Equation (2.16) or (2.17)). Transforming the second axes
according to (4.2) we obtain equations H ′

i(x), K ′
j(x). They describe

a configuration in space where A0 is in its home position.
• The rotation about A0 is described by (2.10), or after algebraization,

by the rational Study vector

[1 : 0 : 0 : t : 0 : 0 : 0 : 0]T . (4.7)
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Using the entries of this vector, we construct the matrix Tf = Tf (t)
and transform the equations H ′

i(x), K ′
j(x). The resulting hyper-

plane equations depend on t and constitute a hybrid representation
of our 2R-chain. Eliminating the parameter t (see [5, Chapter 3, §3])
we finally obtain a number of algebraic equations Li(x), describing
the constraint variety of a 2R-chain.

The extension of this procedure to an arbitrary number of revolute or
prismatic joints is straightforward.

Exercise 4.1. Compute the constraint variety of the 2R-chain with
axes A0 : x = y = 0 and A1 : x = z, y = 1. (Hint: Compute at first the feet of
the common normal of A0 and A1, then the Denavit-Hartenberg parameters
d, a and α; see Figure 1). Show that this variety is the intersection of the
Study quadric and a three dimensional space (this and the converse are
generally true, see [23, p. 256]).

Exercise 4.2. Compute the constraint variety of the PR-chain where
both, the revolute and the translation axes coincide with the z-axes. This is
the constraint variety of a cylindrical joint in home position.

4.1.4. Path constraints. So far, we have demonstrated how to op-
erate on a “joint level” in order to compute constraint varieties. This is
suitable for serial manipulators. When describing parallel manipulators it
is often favorable to start with a “path constraint”. Consider, for example,
the four-bar mechanism of Figure 5. The coupler motion is completely
defined by the condition that the two points have circular trajectories. Every
“circle constraint” translates into a constraint surface in the quasielliptic
space of planar Euclidean displacements. The kinematic pre-image of their
intersection curve is the four-bar motion.

As an example we compute the algebraic equation of the surface of all
planar displacements, such that the point (a, b)T moves on a circle with
center (ξ, η)T and of radius %. Using the matrix X of Equation (2.18) the
circle constraint reads

‖X · (1, a, b)T − (1, ξ, η)T ‖2 − %2 = 0. (4.8)

This is equivalent to a homogeneous polynomial of degree two in x0, x3, y1,
and y2. Hence the circle constraint surface is a quadric surface in P 3.

Exercise 4.3. Show that the circle constraint surface contains the
absolute points [0 : 0 : 1 : ±i]T and is tangent to the planes x0 ± ix3 = 0.

Exercise 4.4. Compute the circle constraint surface of spherical
kinematics and the sphere constraint surface of spatial kinematics (they are
quadratic as well). Show that both constraint surfaces contain the exceptional
quadric F .

4.2. Mechanism analysis. The topic of mechanism analysis is the
investigation of properties a certain mechanism exhibits. Thereby, the
mechanism type and its dimensions are known. Questions of interest concern
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the relation of joint parameters to the position and orientation of the end
effector, the topology and size of the workspace, and its singular positions
(singular in kinematic sense, not in the sense of algebraic geometry).

4.2.1. Direct and inverse kinematics. Direct and inverse kinemat-
ics are two basis tasks of mechanism analysis. In the direct kinematics
problem the state of the input joints is known and the displacement of the
end effector frame is sought. The inverse kinematics problem asks for the
state of the joints when the position and orientation of the end effector
frame are known.

Usually the direct kinematics problem is relatively easy for serial
manipulators but often difficult for parallel manipulators. Conversely, the
inverse kinematics problem is usually simple for parallel manipulators and
often complicated for serial manipulators.

Consider for example an 6R serial chain. If the rotation angles of the
individual joints are known, computing the end effector frame is just a
matter of multiplying consecutive transformation matrices [19, Section 4.4]
(direct kinematics). Conversely, it is not obvious at all how to choose
the joint angles such that the end effector attains a certain specified pose
(inverse kinematics). In the 1970s the inverse kinematics problem of a 6R
chain was called as the “Mount Everest Problem” of kinematics [7] but since
then efficient methods for computing its 16 solution sets were developed.
See [19, Section 2] for an overview.

On the other hand, computing the leg lengths of a Stewart-Gough
platform (SGP) is trivial when the position of the moving platform – and
hence also the position of the anchor points – in space is given (inverse
kinematics). The direct kinematics problem of finding the possible positions
to a given sequence of leg lengths is difficult. It amounts to computing the
intersection points of six sphere constraint surfaces and the Study quadric
and has 40 solutions over C. We give a short sketch of the solution algorithm.
If a point of the moving system is constrained to remain on a sphere we
obtain the following constraint equation:

h : R(x2
0 + x2

1 + x2
2 + x2

3) + 4(y2
0 + y2

1 + y2
2 + y2

3)− 2x2
0(Aa + Bb + Cc)

+ 2x2
1(−Aa + Bb + Cc) + 2x2

2(Aa−Bb− Cc) + 2x2
3(Aa + Bb + Cc)

+ 2x2
3(Aa + Bb− Cc) + 4[x0x1(Bc− Cb) + x0x2(Ca−Ac)

+ x0x3(Ab−Ba)− x1x2(Ab + Ba)− x1x3(Ac + Ca) (4.9)
− x2x3(Bc + Cb) + (x0y1 − y0x1)(A− a) + (x0y2 − y0x2)(B − b)
+ (x0y3 − y0x3)(C − c) + (x1y2 − y1x2)(C + c)
− (x1y3 − y1x3)(B + b) + (x2y3 − y2x3)(A + a)] = 0,

the expanded three dimensional version of (4.8) and part of the solution to
Exercise 4.4. In this equation we have seven design constants: the length
of the leg is encoded in R, the coordinates of the sphere center in the base
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are A, B, C and the the center of the spherical joint on the platform are a,
b, c. The direct kinematics problem is now transformed into an algebraic
intersection problem of seven quadratic varieties (six constraint equations
and the Study quadric S). The count of the number of solutions is not
as easy because a simple check of the equation (4.9) shows that each of
the equations contains the absolute quadric F in the exceptional generator
E : x0 = x1 = x2 = x3 = 0. A proof for the existence of 40 solutions in
the allowed part of S can be found in [29] or [23]. The solution algorithm
is straightforward: take differences of the constraint equations, which are
linear in yi, solve for the yi, substitute in the remaining equations. Three
essentially different equations remain. They are in the general case of degree
(8, 4, 4). Using resultants or Gröbner bases the univariate polynomial of
degree 40 can be computed and solved numerically.

Exercise 4.5. Show that the direct kinematics problem of a planar
3RPR-platform of Figure 3 has, in general, six solutions over C. (Hint: Use
the fact that the circle constraint surface (4.8) is a quadric that, according
to Exercise 4.4, contains the absolute points.)

Also the other discussed kinematic problems are related to algebraic
geometry by the fact that they give rise to systems of algebraic equations.
One is interested in efficient numeric or symbolic algorithms for their
solution, and in the maximum number of real solutions. Typically, like in
the direct kinematics of SGP these systems are sparse and offer a lot of
geometric structure that can be used to simplify computations.

4.2.2. Algebraic definition of degrees of freedom. There is a
long history in defining and computing the degree of freedom of a mechan-
ical system. Historically most of the developed formulas determine the
topological structure and fail whenever special design parameters cause
anomalies. Our informal definition at the beginning of Section 3 is an exam-
ple of that. Exceptional, pathological or overconstrained mechanisms need
special treatment. An overview of most of the classical concepts starting
with Euler’s formula up to the most recent developments can be found
in [1].

Within the setting of algebraic geometry and the theory developed in
this chapter it is natural to define the degree of freedom of a mechanism
as the Hilbert dimension of the algebraic variety associated with the me-
chanical device. Caution has to be taken with respect to reality of the
variety, components of different dimensions and parts of the variety that
are completely contained in the exceptional generator. This will be seen
explicitely in the following example.

Applying, for example, the above definition to the direct kinematics
of the Stewart-Gough platform we obtain: The Hilbert dimension of the
ideal spanned by the six sphere constraint equations (4.9) and the Study
condition (2.5) is two because every sphere constraint variety contains the
exceptional quadric F . But it is very well known that the direct kinematics
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p

p

Fig. 6. Two assembly modes of a four-bar and kinematic image.

of a general Stewart-Gough platform has 40 discrete solutions. That is,
for fixed leg lengths the degree of freedom is, in general, zero. Therefore,
the algebraic variety should have at least one zero dimensional component.
The dimensional problem can be overcome easily by adding a normalizing
condition (either x0 = 1 or x2

0 + x2
1 + x2

2 + x2
3 = 1) which removes the

exceptional generator from the ideal.
For a Stewart-Gough platform having special design parameters the

actual degree of freedom can be greater than zero. This interesting phe-
nomenon will be the topic in Subsection 4.2.4.

4.2.3. Workspace topology. The workspace of a mechanism is de-
fined as the union of all poses (position and orientation) the moving frame
can attain. Its kinematic image is a real algebraic variety. The topology of
this variety is an important property of a given mechanism.

Consider, as an example, the two manifestations of the four-bar mech-
anism in Figure 6. The four-bar has two assembly modes, that is, it can
be assembled in two different states and one state cannot be reached from
the other through a continuous series of four-bar displacements. This can
be seen from the fact that the trajectory of a point p in the moving frame
consists of two components. The kinematic image of the four bar motion is
the intersection curve of two quadrics. So from an algebraic point of view,
it is a complex curve, possibly having two disconnected real components.
From the practical view of a mechanical engineer, it could be a mechansim
having two different assembly modes.

Computing the workspace topology is an important task in theoretical
kinematics. Via kinematic mapping this relates to computing the topology
of algebraic varieties (see for example [10]). Even more important are
methods for deciding whether two given poses lie in different assembly
modes. In the language of real algebraic geometry this question can be
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formulated as follows. Given are two points p, q of an algebraic variety V .
Are p and q contained in two disconnected components of V or not? An
algorithmic solution for the case dim V = 1 is presented in [16]. A simple
test for four-bars is given in [22].

4.2.4. Mechanism singularities. The singular configurations of a
mechanism are an important topic in mechanism analysis. The precise
definition and classification of mechanism singularities is far beyond the
scope of this article (compare [31] and the references therein). In particular,
singular configurations of a mechanism do not necessarily correspond to
singularities of the mechanism’s constraint varieties. To obtain for example
a formal definition of singularity of parallel mechanisms we can follow the
exposition in [5] and apply the results therein to the constraint varieties of
the mechanism. Let V ∈ kn be a constraint variety and let p = [p0, . . . , p7]T

be a point on V . The tangent space of V at p, denoted Tp(V ), is the variety

TP (V ) = V(dp(f) : f ⊂ I(V)) (4.10)

of linear forms dp(f) of all polynomials contained in the ideal I(V) in point
p (see [5], page 486). With this definition we can immediately link the
tangent space to the local degree of freedom of the mechanism: The local
degree of freedom is defined as dim Tp(V ). Note that it can be different
from the global degree of freedom. Computationally the differentials are to
be taken with respect to the Study parameters xi, yi. In kinematics these
differentials are collected in the Jacobian matrix of the manipulator

J(fj) =
(

∂fj

xi
,
∂fj

yi

)
, (4.11)

where fj are polynomials describing the constraints, the Study condition,
and a normalizing condition. The normalizing condition has to be added to
avoid dimensional problems coming from the exceptional generator E. In a
nonsingular position of the mechanism the Jacobian J will have maximal
rank. A singular position is characterized by rank deficiency of J and, if V
is reduced, the defect is directly related to the local degree of freedom.

It should be noted that singularity of mechanisms has different meaning
when applied to serial or parallel robots. In case of a serial manipulator
singularity means loss of mobility, whereas in case of parallel manipulators
singularity means gain of mobility. Singular or near-singular configurations
have to be avoided because of unpredictable behavior of the platform,
because its resistance towards forces in certain directions becomes very
weak, and because the effect to manufacturing tolerances increases. The
kinematic image of all singular configurations constitutes the manipulator’s
singularity surface.

There is a vast literature on singularities of mechanisms. In this article
we confine ourselves to discussing singularities by means of a few examples.
Some of them will show that the tangent space of the constraint varieties
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Fig. 7. Singular configuration of a planar 3RPR-mechanism and singularity surface.

does not always has to be computed. In these cases geometric consideration
can replace the computation.

Planar 3RPR-platforms. A planar 3RPR-platform (Figure 3) is in a
singular configuration, if the straight lines determined by the axes of its three
legs intersect in a common point. It can be shown that this corresponds
to a configuration where two solutions of the direct kinematics problem
coincide. Therefore, the mechanisms behavior in a singular configuration
is unpredictable. This is illustrated in Figure 7. The manipulator is in
a singular configuration because the three legs meet in a common point
m. Suppose now that we want to actuate the manipulator by changing
the length of the leg through c0 while keeping fixed the remaining two leg
lengths. This inverse kinematics problem has two solutions in the vicinity
of the singular configurations.

The singularity surface Φ of a planar 3RPR-manipulator is depicted in
Figure 7. Its equation is found by writing the positions of a1, b1, and c1

in general form (using (2.18)) and expanding the concurrency condition of
three lines. Knowledge of geometric properties of Φ is helpful for singularity
avoiding motion planing.

Stewart-Gough platforms. A SGP parallel manipulator is in a singular
configuration when the Jacobian matrix (4.11) is rank deficient. There is
again a simple geometric explanation for the singularity. Consider the axes
of the legs of the manipulator. They are linearly dependent if they lie in a
linear complex, a linear congruence or are lines on a quadric surface (see [20]
for a definition of these concepts). There are more degenerate cases, which
will not be mentioned here, but all cases are treated exhaustively in [18].
Because of the condition detJ = 0 all singular positions of the manipulator
belonging to rank deficiency 1 of J are on a degree 12 hyper-surface in
P 7. Higher rank defect of J can be expressed by the vanishing of certain
sub-determinants and corresponds to an algebraic variety as well. Little is
known on that.
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If detJ ≡ 0, which means that the manipulator is singular indepen-
dently of the position, then the manipulator is called architectural singular.
One would expect that there are too many conditions that have to be
fulfilled to allow this phenomenon. But surprisingly this is not the case. In
[12] and [14] it is shown that for general SGP with arbitrarily distributed
centers of the spherical joints architectural singularity is only possible for
very degenerate designs. In the case of spherical joint centers being dis-
tributed in two planes four algebraic conditions are found which determine
the locations of the anchor points in the two planes.

Self-motions of SGP occur when the mechanism moves without changing
the leg length, that is with locked actuators. Algebraically this happens
when the six constraint varieties and the Study quadric S determine at least
a one dimensional ideal. The most famous example of this behavior is the
Griffis-Duffy platform (Fig. 8).

Depending on the special design variables the constraint varieties
determine various types of one dimensional ideals (see [13] and [24]). It also
can happen that the ideal consist of different components having different
dimensions. A simple example is the planar 3RPR-platform, when the base
anchor points and the platform anchor points form two congruent triangles
and the legs have the same length. The three constraint quadrics in the
kinematic image space have a circle in common and four more points, of
which two are the absolute points. The circle corresponds to the possible
parallel-bar motion and the two points correspond to two rigid assembly
modes. Self motions of platforms can be linked to an old and famous
question in kinematics which was the topic of a competition of the French
academy of science in 1904 (Prix Vaillant):

Déterminer et étudier tous déplacements d’une figure invari-
able dans lesquels les differents points de la figure décrivent
des courbes sphériques.
(Determine and study all displacements of a rigid body in
which distinct points of the body move on spherical paths.)

At the time posed this was a very difficult problem and not many
mathematicians were able to give even partial answers. Of course, there
are trivial cases: In a spherical motion all points move on a sphere. If
two rigid bodies are connected by five rods of fixed length with spherical
joints on both ends, one body can perform a one-parameter motion with five
spherical trajectories. These and other examples were of course known when
the prize question was posed. But the French academy wanted answers
to further questions: Are there non trivial motions where all (or “many”)
points move on spheres? What are the displacements and of which type are
the paths? Do such motions exist that have a higher degree of freedom?
Among the eight submitted papers, two were awarded a prize, one by Émile
Borel, the other by Raoul Bricard. Neither of them could give a complete
classification of non trivial motions where all points run on spheres (it
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Fig. 8. Griffis-Duffy platform. Fig. 9. Bennett mechanism with three poses.

is still missing) but they were able to describe numerous special cases.
All of these examples are of relevance in robotics since they lead to self-
motions of parallel manipulators of Stewart-Gough type (Section 4.2.2).
More information and historical references on this academic competition
can be found in [11].

4.3. Mechanism synthesis. Mechanism synthesis, as opposed to
mechanism analysis, deals with mechanisms of yet unknown dimensions.
The aim is to design a mechanism that is capable of performing a certain
task. The complete theory of mechanism synthesis is a vast field [17]. Once
the decision for a certain mechanism type is made, one has to determine
the mechanism dimensions, its position in space and the position of the end
effector tool with respect to the output link. The last step typically involves
the solution of a system of algebraic equations. Often it is necessary to
test the synthesized mechanism for violations of constraints that cannot be
easily incorporated into the equation system (for example assembly mode
defects, see Subsection 4.2.3).

Kinematic mapping based synthesis methods are most suitable for
motion generation. This means that the synthesized mechanism’s end effec-
tor has to attain certain poses, either exact or approximate. Accordingly,
one distinguishes between exact and approximate synthesis. Approximate
synthesis in kinematic image spaces in the sense of this text is problematic
because of difficulties to define a meaningful distance between two displace-
ments. Exact synthesis translates to the problem of interpolation by certain
families of algebraic varieties. In principle, the design equations can be
setup exactly as presented in Subsection 4.1. The only difference is that the
design parameters of the mechanism, for example the Denavit-Hartenberg
parameters of the relative position of two revolute axes, are unknown, while
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the coordinates of the kinematic image are eliminated by substituting the
coordinates of the prescribed poses.

As an example we show the design of a Bennett-mechanism from three
given poses of the coupler system (Figure 9). A Bennett mechanism is a
spatial closed 4R-loop mechanism. Generally a closed 4R would be rigid, but
special design conditions found by Bennett in 1903 allow a one parameter
motion [2]. The synthesis problem of a Bennett mechanism is completely
determined when three poses of the coupler system are known. Until recently
it was believed that the synthesis problem is of degree three. But a simple
consideration based on 4.1 shows that it is linear: opening the closed 4R
chain at the coupler link yields two 2R open serial chains. In the kinematic
image space both chains are three-planes. Two three planes in P 7 generally
have no intersection, which complies with the remark that a general 4R is
rigid. But in the Bennett case the intersection must be a plane which on
the other hand is completely defined by the three points. The kinematic
image of a Bennett motion is a conic section.
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RATIONAL OFFSET SURFACES

AND THEIR MODELING APPLICATIONS

RIMVYDAS KRASAUSKAS∗ AND MARTIN PETERNELL†

Abstract. This survey discusses rational surfaces with rational offset surfaces in
Euclidean 3-space. These surfaces can be characterized by possessing a field of rational
unit normal vectors, and are called Pythagorean normal surfaces. The procedure of
offsetting curves and surfaces is present in most modern 3d-modeling tools. Since piece-
wise polynomial and rational surfaces are the standard representation of parameterized
surfaces in CAD systems, the rationality of offset surfaces plays an important role in
geometric modeling. Simple examples show that considering surfaces as envelopes of
their tangent planes is most fruitful in this context. The concept of Laguerre geometry
combined with universal rational parametrizations helps to treat several different results
in a uniform way. The rationality of the offsets of rational pipe surfaces, ruled surfaces
and quadrics are a specialization of a result about the envelopes of one-parameter fam-
ilies of cones of revolution. Moreover a couple of new results are proved: the rationality
of the envelope of a quadratic two-parameter family of spheres and the characterization
of classes of Pythagorean normal surfaces of low parametrization degree.

Key words. rational surfaces, rational offsets, Pythagorean normal surfaces, LN
surfaces, canal surfaces, Laguerre geometry, universal rational parametrization.

1. Introduction and the history of rational offset surfaces.

When modeling real world objects one not only uses surfaces but has to take
into account the material thickness. Thus offsetting curves and surfaces is a
frequently used tool and it is present in most of the 3d-geometry-modeling
software nowadays. These systems typically represent parameterized curves
and surfaces as B-splines or piecewise rational (NURBS) curves and sur-
faces. This motivated several researchers [10, 7–9, 22, 20, 21, 27, 28, 34, 35],
just to name a few of them, to study rational curves and surfaces with ra-
tional offsets.

Given a parametric rational surface f(u, v) with unit normal vector
field n(u, v), the offset surfaces at distance d can be represented paramet-
rically by

fd(u, v) = f(u, v) + dn(u, v). (1.1)

Because of the normalization of the normal vector n, the offset surfaces
of rational surfaces f(u, v) are typically non-rational. This also holds for
curves. For instance the offsets of an ellipse are non-rational algebraic
curves of degree eight. But even if the rational surface f(u, v) possesses
rational offsets, the representation (1.1) is typically non-rational. This can
already be realized for a parabola c(t) = (t, t2), whose offsets are rational
curves of degree six, but the parametrization cd(t) = c(t) + dn(t) with

∗Vilnius University, Lithuania (rimvydas.krasauskas@mif.vu.lt).
†Vienna University of Technology, Austria (peternell@geometrie.tuwien.ac.at),

Grant Austrian Science Fund FWF under project S92.

©

I.Z. Emiris et al. (eds.), Nonlinear Computational Geometry, The IMA Volumes in   109
Mathematics and its Applications 151, DOI 10.1007/978-1-4419-0999-2_5,
  Springer Science + Business Media, LLC 2010



110 RIMVYDAS KRASAUSKAS AND MARTIN PETERNELL

n(t) = 1/
√

1 + 4t2(−2t, 1) is non-rational. An appropriate reparametriza-
tion of the parabola is required to represent the offsets by rational
parametrizations. Thus it is necessary to study this subject in more detail
to be able to decide whether the offset surfaces of a given rational surface
are rational and how to derive and construct rational parametrizations.

The rationality of a surface is determined by vanishing genus and sec-
ond plurigenus. But the computation of these invariants is quite complex
for surfaces given by parametric representations, such that determining the
rationality of offset surfaces is difficult. Additionally we note that here we
will denote a real surface as rational if and only if it admits a real rational
parametrization. There exist real surfaces possessing rational (improper)
parametrizations but their genus does not vanish, for instance offsets of
ellipsoids.

The analogous questions for curves have been studied for a long time
within the computer-aided-geometric-design community. Farouki [10, 7]
introduced the notion of PH curves, see also the survey [8] and the recent
book [9]. This term denotes polynomial curves p(t) with the property that
the norm of the tangent vector ṗ(t) is polynomial. This implies that the arc
length of p(t) is a polynomial. Setting ṗ = w(t)

(

u(t)2 − v(t)2, 2u(t)v(t)
)

with arbitrary polynomials u(t), v(t) and w(t), the norm ‖ṗ‖ as well as
the norm of the normal vector equals the polynomial w(t)(u(t)2 + v(t)2).
Consequently the unit normal vector is rational. The concept of PH curves
is also generalized to space curves, see e.g. [8].

Rational surfaces with rational offsets are more involved and the tech-
niques used for curves do not apply to surfaces directly. An explicit repre-
sentation of all rational surfaces with rational offsets has been given in [38].
Nevertheless it is not obvious how to decide the rationality of the offsets for
particular classes of surfaces. It has been proved that rational pipe surfaces
[28], rational ruled surfaces [42] and all regular quadrics [30] possess ratio-
nal offsets. These statements can also be found in [35] as specializations
of a more general result concerning envelopes of rational one-parameter
families of cones of revolution.

Since any cone of revolution is the envelope of a one-parameter fam-
ily of spheres as well as planes, the envelope is also generated by a two-
parameter family of spheres. Using the affine space R4 as model of the
four-dimensional manifold of spheres in Euclidean R3, the mentioned re-
sult reads: A rational ruled surface in the model space R4 represents a
two-parameter family of spheres whose envelope surface as well as its offset
surfaces possess rational parametrizations and these parametrizations can
be constructed explicitly. This result is a general statement about a class
of surfaces in R4 and their corresponding envelopes in R3.

The article describes the current status of research in the field of ra-
tional offset surfaces and it points to some new results and open questions.
It will provide a short introduction to some theoretical tools which are
necessary for their treatment. Section 2 provides a first and elementary
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introduction to rational offset surfaces which are constructed using the
Blaschke image of the space of planes. Section 3 deals with the special
family of rational surfaces possessing a ’linear normal vector field’. In Sec-
tion 4 we provide a theoretical investigation of the subject introducing to
Euclidean Laguerre geometry, the geometry of oriented spheres and planes
in R3 and its models. Section 5 gives rational parametrizations in full
generality and Section 6 deals with several special families of rational off-
set surfaces. Section 7 is devoted to modeling applications and finally we
conclude this article and discuss some open problems.

2. Different approaches to rational offset surfaces. We start
with defining rational surfaces with rational offsets, discuss these surfaces
as envelopes of spheres and planes and derive concepts to obtain an elegant
approach to deal with these surfaces.

Definition 2.1. A surface F in R3 is a Pythagorean normal surface
or PN surface if it possesses a rational parametrization f(u, v) and a ra-
tional unit normal vector field n(u, v) corresponding to f(u, v). The offset
surface Fd of F at oriented distance d admits a rational parametrization
fd(u, v) = f(u, v) + dn(u, v).

The rationality of a surface does not depend on a particular
parametrization. Since we take a constructive viewpoint we like to con-
struct parametrizations f(u, v) which directly lead to rational parametriza-
tions fd(u, v) of the offsets. The correspondence noted in Definition 2.1
means that n(u, v) is computed via normalizing the cross product fu × fv,

n(u, v) =
1

‖fu(u, v) × fv(u, v)‖
fu(u, v) × fv(u, v), (2.1)

with fu and fv as partial derivatives of f with respect to u and v, re-
spectively. If the norm ‖fu(u, v) × fv(u, v)‖ is a rational function, the
parametrization (1.1) is a rational representation of the offsets Fd of F

and is called PN-parametrization. But typically this norm involves square
roots even for rational offset surfaces and appropriate reparametrizations
have to be performed.

2.1. Offsets as envelopes of spheres and planes. Assuming
f(u, v) is a PN-parametrization of a rational offset surface F , the tangent
planes E(u, v) of F admit the rational representation

E(u, v) : n0(u, v) + n(u, v) · x = 0, with ‖n(u, v)‖2 = 1. (2.2)

The rational support function n0 = −n · f expresses the oriented distance
of the origin from E. Eqn. (2.2) interprets the surface F as the envelope
of the two-parameter family of tangent planes E(u, v). Likewise let the
offset surface Fd of F be considered as the envelope of its tangent planes.
Translating the planes E by the constant oriented distance d in direction
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of the normal vector n results in the tangent planes Ed of the offset surface
Fd, with

Ed(u, v) : n0(u, v) − d + n(u, v) · x = 0. (2.3)

Given a parameterized surface F with representation f(u, v), the off-
set surface Fd at distance d can be considered as the envelope of a two-
parameter family of spheres

S : (x − f(u, v)) · (x − f(u, v)) − d2 = 0, (2.4)

of radius d which are centered at the surface F . According to the enve-
lope condition an implicit equation of the offset surface Fd is obtained by
eliminating the surface parameters u and v from the system of equations

S : (x−f) · (x−f)−d2 =0,
∂S

∂u
: (x−f) · fu =0,

∂S

∂v
: (x−f) · fv =0. (2.5)

Note that these two approaches are not equivalent. The first interpre-
tation (2.3) yields one-sided offsets whereas the second one (2.5) results
typically in two sheets of the offset surface at both sides of F . If we con-
sider rational surfaces, both approaches might yield the same result if the
original surface F is traced twice and thus both orientations of the normal
vector field n(u, v) appear.

Now we focus on the interpretation of offset surfaces as the envelopes
of their tangent planes (2.3). For this reason we introduce to the manifold
of oriented planes of R3. Later we will see the close connection between
oriented planes and spheres in Section 4.

2.2. The space of oriented planes and the Blaschke model. We
consider the family of oriented planes E : e0 + e · x = 0, where e denotes
the unit normal vector of E, similar to (2.2). The real numbers e0, and
e = (e1, e2, e3) determine the oriented plane. We use (e1, e2, e3, e0) ∈ R4

with ‖e‖ = 1 as coordinates of oriented planes. Denoting the family of
planes of R3 by E , this defines the Blaschke mapping

β : E → R4, E : e0 + e · x = 0 7→ β(E) = (e1, e2, e3, e0), (2.6)

which identifies oriented planes E ∈ E of R3 with the family of points
β(E) ∈ R4. According to the normalization condition ‖e‖ = 1 the image
points β(E) are contained in the quadratic cone

B : y2
1 + y2

2 + y2
3 = 1, (2.7)

called the Blaschke cylinder B. Here we use y1, . . . , y4 as Cartesian coordi-
nates in R4.

The intersections of B with 3-spaces y4 = constant are copies of the
unit sphere S2 : x2

1 +x2
2 +x2

3 = 1 and B is a cylinder over S2. Consider two
parallel planes E : e0 +n ·x = 0 and F : f0 +n ·x = 0 with coinciding unit
normal n. Their image points β(E) and β(F ) are contained in a generating
line of B.
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2.3. The Blaschke image of a PN surface. The introduction of
the Blaschke mapping provides a theoretical background for the study of
PN surfaces and applies also to find rational parametrizations of these
surfaces.

Let F be a PN surface with representation f(u, v) and tangent planes
E(u, v) : e0(u, v) + e(u, v) · x = 0. The unit normal vector field e(u, v)
is a rational parametrization of the unit sphere S2. The Blaschke image
β(F ) = β(E(u, v)) is a rational surface in B with rational parametrization
β(E) = (e1, e2, e3, e0)(u, v).

Theorem 2.1. The Blaschke image β(F ) of a PN surface F is a
rational surface in B. Conversely, any rational surface in B is the Blaschke
image of a PN surface.

Given any rational two-dimensional surface S in the Blaschke cylinder
B, we have to consider it as image points of tangent planes. The envelope
of this two-parameter family of planes corresponding to the surface S ⊂
B is a PN surface in R3. Let S(u, v) = (s1, . . . , s4)(u, v) be a rational
parametrization of S. The corresponding family of tangent planes is

T (u, v) : s4(u, v) + s(u, v) · x = 0,

where s = (s1, s2, s3) denotes the unit normal vector of T . Comput-
ing the partial derivatives Tu(u, v) and Tv(u, v) of T (u, v) gives a PN-
parametrization f(u, v) of the surface F as solution of the system of linear
equations

T (u, v) : s4(u, v) + s(u, v) · x = 0,

Tu(u, v) :s4u(u, v) + su(u, v) · x= 0, (2.8)

Tv(u, v) :s4v(u, v) + sv(u, v) · x= 0.

Until now we have restricted our interest to two-dimensional surfaces in B.
But what about curves? Consider a rational curve C ⊂ B with representa-
tion C(t) = (c1, . . . , c4)(t). The corresponding surface β−1(C) = D is the
envelope of a one-parameter family of planes and thus a developable PN
surface. The generating lines g(t) are obtained as intersections T ∩ Tt and
are the solutions of the system of equations

T (t) : c4(t) + c(t)T · x = 0,
(2.9)

Tt(t) :c4t(t) + ct(t)
T · x= 0.

By the way, the intersection v(t) = T ∩ Tt ∩ Ttt is in general the singular
curve V of D. For special developable surfaces like cones and cylinders, V

degenerates to a point or an ideal point, respectively. We summarize these
results.

Theorem 2.2. The Blaschke image β(F ) of a developable PN surface
F is a rational curve in B. Conversely, any rational curve in B is the



114 RIMVYDAS KRASAUSKAS AND MARTIN PETERNELL

Blaschke image of a developable PN surface. The Theorems 2.1 and 2.2
can be found in a different form in [35]. There the stereographic projection
of the Blaschke cylinder to a 3-space and the corresponding projections of
the curves and surfaces β(F ) are investigated.

In the sequel we do not pay much attention to developable surfaces
and thus we assume that the family of tangent planes of considered surfaces
is two-dimensional, unless explicitly mentioned.

2.4. The Gaussian image of a PN surface. We consider a ratio-
nal offset surface F ⊂ R3 whose tangent planes have the form T (u, v) :
e0(u, v) + e(u, v) · x = 0, with ‖e‖ = 1. The Blaschke image β(F ) =
(e1, e2, e3, e0) of F consists of

• a rational parametrization e(u, v) of the unit sphere S2, and
• the support function e0(u, v) of F .

The parametrization e(u, v) of the unit normal vector field of F is the
Gaussian image of F . One can take apart the Blaschke image β(F ) and
study the Gaussian image e(u, v) and the support function e0(u, v) sepa-
rately. This constructive approach to PN surfaces is based on the study of
rational parametrizations of the unit sphere through the Gauss map.

2.5. Rational parametrizations of the unit sphere via stereo-

graphic projection. The easiest way to construct rational parametriza-
tions of the unit sphere S2 is as follows. Let a(u, v), b(u, v) and c(u, v) be
relatively prime bivariate polynomials. Then a rational parametrization
e = (e1, e2, e3) of S2 is obtained by

e1 =
2ac

n
, e2 =

2bc

n
, e3 =

a2 + b2 − c2

n
, with n = a2 + b2 + c2. (2.10)

This parametrization is a composition of a rational parametrization
x = (a

c
, b

c
) of R2 and the stereographic projection σ : R2 → S2 with center

(0, 0, 1)

σ(x) =

(

2x1

x2
1 + x2

2 + 1
,

2x2

x2
1 + x2

2 + 1
,
x2

1 + x2
2 − 1

x2
1 + x2

2 + 1

)

.

The parametrization (2.10) is geometrically evident but has the drawback
that it is dependent not only on the coordinate system but also on the
choice of the center for the stereographic projection. To avoid this we
will introduce universal rational parametrizations of S2 in Section 5. This
leads to universal parametrizations of the Blaschke cylinder B ⊂ R4 which
represent the most general approach to PN surfaces.

2.6. Rational parametrizations of PN surfaces in the simple

form. Starting from the parametrization (2.10) of the unit sphere one
can derive rational parametrizations of PN-surfaces as already developed
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Fig. 1. Parabolic Dupin cyclides and their offsets.

in [38]. Prescribing a rational function h(u, v) = f(u, v)/g(u, v), the tan-
gent planes of a rational offset surface take the form

T (u, v) : h +
2ac

n
x1 +

2bc

n
x2 +

a2 + b2 − c2

n
x3 = 0.

Multiplying by the denominator n gives a polynomial representation of the
tangent planes in the form

T (u, v) : fn + 2acgx1 + 2bcgx2 + g(a2 + b2 − c2)x3 = 0,

where f and g are polynomials without a common factor. This approach
is best illustrated by an example.

Example 1. Assume that a = u, b = v and c = 1. This leads to the
standard form of a rational parametrization of S2 by

(

2u

u2 + v2 + 1
,

2v

u2 + v2 + 1
,
u2 + v2 − 1

u2 + v2 + 1

)

.

Further we assume g = u2+v2+1 and choose f as an arbitrary quadratic
polynomial q(u, v). The surfaces whose tangent planes can be parameter-
ized by

T (u, v) : q(u, v) + 2ux1 + 2vx2 + (u2 + v2 − 1)x3 = 0 (2.11)

are known as parabolic Dupin cyclides. These surfaces are of algebraic
order 3 and form a family of surfaces which is closed under taking offsets
(see Fig. 1). The real singularities of the surfaces and their offsets might
be different.

3. Rational Surfaces with a linear normal vector field. A spe-
cial class of rational offset surfaces is formed by the offsets of rational sur-
faces which possess a linear normal vector field, see [13]. Moreover it has
been shown in [48] that the convolutions of these surfaces with all rational
surfaces are again rational.

A rational surface F is called an LN surface if there exists a rational
parametrization s(u, v) such that a normal vector field n(u, v) of S can be
linearly parameterized as
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n(u, v) = pu + qv + r, with p,q, r ∈ R3. (3.1)

Note that the normal vector field n(u, v) is in general not normalized and
not oriented. This is quite different from the previous approach to rational
offset surfaces via PN surfaces in Section 2.3. Later on we show how this
class of surfaces fits to the presented concept and how the Blaschke images
β(F ) of LN surfaces look like.

In the following we assume that rank(p,q, r) = 3, the coordinate vec-
tors n(u, v) parameterize points of an affine plane. This implies that the
unit normal vectors of F parameterize a two-dimensional subset of S2.
Otherwise the corresponding surface F is either a cylinder or a plane. An
appropriate choice of the coordinate system is p = (1, 0, 0), q = (0, 1, 0),
and r = (0, 0, 1), and the normal vector becomes n(u, v) = (u, v, 1)T , which
we assume below. The tangent planes T (u, v) of an LN surface F have the
quite simple representation

T (u, v) : h(u, v) + ux + vy + z = 0, (3.2)

where h(u, v) is a rational function. With respect to the chosen coordi-
nate system, the tangent planes T are graphs of linear functions over the
xy-plane. The representation (3.2) allows it to treat (u, v, h(u, v)) as affine
coordinates of T . Using (U, V, W ) as coordinate functions of planes, the
dual affine equation of an LN surface F is W = h(U, V ). This represen-
tation says that the tangent planes of LN surfaces are graphs of rational
functions.

This property has the following important consequence: For any vector
n = (u, v, 1)T there exists a unique tangent plane T (u, v) of F having
n as normal vector and there exists exactly one point of contact of F

and T . This unique-tangent-plane-property is the reason for the rationality
of the convolution surfaces with any arbitrary rational surface, see [48].
Summarizing we obtain

Corollary 3.1. The family of tangent planes T (u, v) of an LN sur-
face F can be represented in plane coordinates by the graph (u, v, h(u, v))
of a rational function h. Conversely, the graph of a rational function rep-
resents the tangent planes (3.2) of an LN surface. The convolution surface
F ⋆G of an LN surface F and any arbitrary rational surface G is a rational
surface.

3.1. The Blaschke image of LN surfaces. Since LN surfaces F are
very special concerning their normal vectors and tangent planes, also their
Blaschke image β(F ) is of a special kind. To obtain rational parametriza-
tions of their Blaschke image β(F ) we have to reparameterize and normalize
the unit normal vector field. Inserting the rational reparametrization

u =
2s

1 − s2 − t2
, v =

2t

1 − s2 − t2
(3.3)
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into the representation (3.2) and normalizing the normal vector leads to

T (s, t) :
1−s2−t2

1+s2+t2
h(s, t)+

2s

1+s2+t2
x+

2t

1+s2+t2
y+

1−s2−t2

1+s2+t2
z = 0, (3.4)

which exhibits that LN surfaces are rational offset surfaces (PN surfaces).
The reparametrization (3.3) induces an orientation to the plane T (s, t) as
well as to the surface F . The substitution (3.3) is not one-to-one, but there
exist parameters

s′ =
−s

s2 + t2
, and t′ =

−t

s2 + t2
,

for which u(s, t) = u(s′, t′) and v(s, t) = v(s′, t′) holds. The normal vector
n(u, v) = (u, v, 1) corresponds to and is parallel to the two oriented unit
normal vectors

n(s, t)=−n(s′, t′)=

(

2s

1+s2+t2
,

2t

1+s2+t2
,
1−s2−t2

1+s2+t2

)

=(n1, n2, n3). (3.5)

This further implies that the function h satisfies h(s, t) = h(s′, t′). Putting
things together we see that T (s, t) and

T (s′, t′) : −
1 − s2 − t2

1 + s2 + t2
h(s′, t′) − (n1x + n2y + n3z) = 0

describe the same carrier plane but have different orientations according
to oppositely pointing unit normals n(s, t) = −n(s′, t′). Finally we realize
that the Blaschke image β(F ) = (n1, n2, n3, n0) of an LN surface has the
special property that n0 is a rational function over the unit sphere S2

satisfying n0(x) = −n0(−x), if x and −x are antipodal points in S2.
Corollary 3.2. Let F be an LN surface whose tangent planes T

are given by (3.2). There exists a reparametrization (3.3) which shows the
rational offset property of LN surfaces. The Blaschke image β(F ) = (n, n0)
is a function over S2 which satisfies n0(x) = −n0(−x) for x ∈ S2.

4. Laguerre geometry approach. Thinking about surface offsets
as wave fronts in different time moments naturally leads to the notion of
4-dimensional Minkowski space. This section explains duality between the
Gaussian sphere and the Blaschke cylinder in terms of projective Minkowski
space and its dual. Relations with the three main models of the classical
Laguerre geometry are established.

4.1. Gaussian sphere in projective Minkowski space. The clas-
sical 4-dimensional Minkowski space M is an affine space R4 with a
Minkowski scalar product defined for every pair of vectors v and w by

〈v,w〉 = v1w1 + v2w2 + v3w3 − v4w4. (4.1)
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A vector v (or a line with a direction v) is called isotropic (light-like)
if 〈v,v〉 = 0. The Euclidean space R3 will be embedded as hyperplane
x4 = 0 in M. Restricting the Minkowski scalar product (4.1) to R3 gives
the Euclidean scalar product.

The projective Minkowski space MP is a projective closure of M with
the infinite hyperplane ω: x0 = 0 containing the absolute quadric Ω: x2

1 +
x2

2+x2
3−x2

4 = 0. Points and vectors of the affine Minkowski space M will be
treated differently. Points (x1, . . . , x4) ∈ M will be identified with points
[1, x1, . . . , x4] in the affine part of MP , and vectors (x1, . . . , x4) ∈ M will
be used to represent points [0, x1, . . . , x4] in ω. Then the equation of Ω ⊂ ω

has a compact form 〈v,v〉 = 0, for vectors v in M. Futhermore, it will be
convenient to identify the absolute quadric Ω with the Gaussian sphere S2

in R3 using the following bijective correspondence:

S2 → Ω, n 7→ n+ = (n, 1). (4.2)

An oriented surface F ◦ in R3 is a surface F and a field of unit normals
n : x 7→ n(x), i.e. the classical Gaussian map n : F → S2. By the identi-
fication (4.2) this is a map n+ : F → Ω. Define an isotropic hypersurface
Γ(F ◦) ⊂ MP as a union of isotropic lines connecting all points x ∈ F

with n+(x) ∈ Ω. The affine part of any such line can be parametrized by
x + tn+(x), t ∈ R. Hence the orthogonal projection of any hyperplane
section Γ(F ◦)∩ {x4 = d} to R3 is exactly the offset F ◦

d of F ◦ at the signed
distance d.

The isotropic hypersurface Γ(S◦) of an oriented sphere S◦: (x−m)2 =
r2 in R3 is the union of all isotropic lines intersecting at the point
s = (m,±r) ∈ M, where m is the center and |r| is the radius of S. It
is easy to check that the outward pointing normals correspond to negative
radius (in other sources of Laguerre geometry this choice might be oppo-
site). Therefore, Γ(S◦) coincides with the isotropic cone Γ(s) with vertex
s defined by the equation

Γ(s) : 〈x − s,x− s〉 = 0. (4.3)

Laguerre transformations of MP are projective transformations that
preserve Ω. Lines in MP are called space-like, isotropic, or time-like de-
pending whether their ideal points are outside of Ω, at Ω or is inside the
quadric Ω. Similarly planes and hyperplanes in MP are classified as space-
like, isotropic, or time-like if they do not intersect Ω, are tangent to Ω or
intersect Ω in more than one point, respectively.

For an oriented plane E◦ : e0 + eT · x = 0 in R3 with normal vector e,
‖e‖ = 1, its isotropic hypersurface E+ = Γ(E◦) is the hyperplane

E+ : e0 + 〈e+,x〉 = 0, x ∈ M. (4.4)

Let −E◦ : −e0 − eT ·x = 0 be the same plane E with the opposite orienta-
tion. Then E− = Γ(−E◦) is different from E+. Both E+ and E− are the
unique isotropic hyperplanes that contain E and are tangent to Ω.
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4.2. Dual projective Minkowski space and the Blaschke cylin-

der. Let MP ∗ be the space dual to the projective Minkowski space MP .
Points in MP ∗ are hyperplanes H ⊂ MP . The set of oriented planes in
R3 is in 1–1 correspondence E◦ 7→ E+ (4.4) with the set of hyperplanes in
MP that are tangent to Ω. The latter set by duality

Γ(E◦) : e0 + 〈e+,x〉 = 0 7→ [1, e, e0] = β(E◦) (4.5)

defines the dual quadric Ω∗ ⊂ MP ∗ with the equation y2
0 = y2

1 + y3
2 + y2

3 .
The affine part y0 6= 0 of Ω∗ is exactly the Blaschke cylinder defined in
Section 2.2 by the equation (2.7). Note that Ω∗ has just one additional real
point [0, 0, 0, 1] at infinity. Therefore, it is natural to call the dual Gaussian
sphere Ω∗ the Blaschke cylinder and denote it by the same letter B.

An oriented surface F ◦ considered as family of oriented tangent planes,
defines a surface β(F ◦) ⊂ B, which is called the Blaschke image of F ◦.
Going back to the point representation, one can check that the dual of the
Blaschke image β(F ◦)∗ is an isotropic hypersurface Γ(F ◦). This means
that Γ(F ◦) can be calculated as envelope of all isotropic hyperplanes H ,
H ∈ β(F ◦)∗.

For any surface Φ or curve in M, define the isotropic hypersurface
Γ(Φ) = (Φ∗∩B)∗. This is the envelope of all isotropic hyperplanes tangent
to both Φ and Ω. Γ(Φ) can be calculated as an envelope of all isotropic
cones Γ(x), x ∈ Φ, as well. The cyclographic image of Φ ⊂ M in R3 is
defined as intersection γ(Φ) = Γ(Φ) ∩ R3.

Remark 4.1. In general γ(Φ) is an oriented surface of two sheets. In-
deed, any of its tangent planes inherits orientation from the unique isotropic
tangent hyperplane of Γ(Φ) at the same point. There are exactly two tan-
gent hyperplanes at any point of Φ (it is a double surface of Γ(Φ)). For ex-
ample, if F ◦

1 and F ◦
2 are two oriented surfaces in R3 then Φ = Γ(F ◦

1 )∩Γ(F ◦
2 )

is a surface in M, and γ(Φ) = F ◦
1 ∪ F ◦

2 . The case of two cylinders will be
considered in Example 6. In a recent paper [17] sufficient conditions are de-
rived when a rational parametrization of Φ generates PN parametrizations
on F ◦

1 and F ◦
2 .

4.3. Three models of Laguerre geometry. The classical Laguerre
geometry has three main models that are described in the following table.

Euclidean model Cyclographic model Blaschke model

Ambient Euclidean space Minkowski space Blaschke cylinder

space R3
M B

Basic oriented planes E
◦

isotropic hyperplanes points

elements oriented spheres S
◦

points hyperplane sections

Basic relations oriented contact incidence incidence

The correspondence between the Euclidean and the cyclographic
model is defined by the maps E◦ 7→ E+ and S◦ 7→ Γ(S◦) = Γ(x),x ∈ M.
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The cyclographic mapping E+ 7→ γ(E+) and x 7→ γ(x) establishes the
inverse correspondence. Thereby γ(E+) = E◦ denotes the oriented plane
E◦ ∈ R3 corresponding to E+ ∈ M and γ(x) denotes the oriented sphere
in R3 corresponding to the point x ∈ M. For the computation of the
cyclographic image γ(Φ) of a surface Φ ∈ M see Section 4.4.

The Blaschke model is focusing on the dual point of view. It is related
to the cyclographic model via duality. Laguerre transformations appear in
the cyclographic model as special affine transformations of M

L(x) = λA ·x+a, with AT ·Ic ·A = Ic, Ic = diag(1, 1, 1,−1), λ ∈ R (4.6)

where x 7→ Ax is a Lorentz transformation, i.e. a linear transformation
preserving the Minkowski scalar product (4.1). Laguerre transformations
in the Blaschke model are defined by duality.

Laguerre transformations in the Euclidean model can be defined indi-
rectly as follows. For an oriented surface F ◦ ⊂ R3, its Laguerre transfor-
mation L(F ◦) is computed by the formula L(F ◦) = L(Γ(F ◦)) ∩ R3. For
example, let L be the translation in x4-direction by −d: x4 7→ x4−d. Then
L(F ◦) = F ◦

d is the offset surface of F ◦ at distance d.

4.4. Cyclographic images of parametric curves and surfaces in

M. A two-parameter family of spheres S(u, v) : (x − m(u, v))2 = r(u, v)2

with centers m(u, v) and radii r(u, v) corresponds to a parametrized surface
Φ : f(u, v) = (m, r)(u, v) in M. Let F (u, v) = Γ(f(u, v)) be the correspond-
ing two-parameter family of isotropic cones with vertices f(u, v). Then Γ(Φ)
is the envelope of this family, which can be computed as solution of

F : 〈x − f,x − f〉 = 0,

Fu : 〈x − f, fu〉 = 0, (4.7)

Fv : 〈x − f, fv〉 = 0,

where Fu and Fv denote the partial derivatives of F with respect to u and
v. The solution of (4.7) consists of all isotropic lines that are orthogonal
to Φ in the Minkowski sense (4.1).

Comparing systems (4.7) and (2.5) we recognize that the cyclographic
image γ(Φ) = Γ(Φ) ∩ R3 of the parametrized surface Φ : f(u, v) =
(m, r)(u, v) is the envelope of the two-parameter system of spheres S(u, v)
in R3. We note that only the points f of Φ whose tangent planes Tf spanned
by fu and fv are space-like or isotropic, will contribute to the real part of
the cyclographic image γ(Φ) .

A one-parameter family of spheres S(t) : (x − m(t))2 = r(t)2 cor-
responds to a curve s(t) = (m, r)(t) in M. By similar calculations the
isotropic hypersurface Γ(s) consists of all isotropic lines that intersect the
curve orthogonally. The cyclographic image γ(s) = Γ(s) ∩ R3 is the en-
velope of the family of spheres S(t) and is called canal surface. It is real
exactly if tangent vectors ṡ are space-like or isotropic

〈ṡ(t), ṡ(t)〉 = ||ṁ(t)||2 − ṙ(t)2 ≥ 0. (4.8)
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5. Universal rational parametrizations of the sphere and the

Blaschke cylinder. Dietz, Hoschek and Jüttler [6] noticed that Bézier
curves and surface patches on the unit sphere S2 can be represented uni-
formly by introducing the generalized stereographic projection δ : R4 → S2

δ(a, b, c, d) = (a2 +b2+c2+d2, 2ac+2bd, 2bc−2ad, a2+b2−c2−d2). (5.1)

In complex notations z = a + bi, w = c + di this construction has the
following form [18]

PS(z, w) = (|z|2 + |w|2, 2Re(zw̄), 2Im(zw̄), |z|2 − |w|2), (5.2)

and is called a universal rational parametrization of S2 (see [4, 19] for
details). Since PS : C2 → S2 is homogeneous PS(λz, λw) = |λ|2PS(z, w),
λ ∈ C, PS defines also a map from a complex projective line CP 1 to S2,
which is essentially the Riemann sphere construction.

The universal property of PS is formulated in the following theorem.
Here we call a finite collection of polynomials (f0, f1, . . .) irreducible if
gcd(f0, f1, . . .) = 1.

Theorem 5.1. Any irreducible solution f = (f0, . . . , f3) ∈
R[t1, . . . , tk]4 of the unit sphere equation f2

0 = f2
1 + f2

2 + f2
3 has the form

f = PS(F) with an irreducible F = (z, w) ∈ C[t1, . . . , tk]2, which is deter-
mined uniquely up to a complex constant multiplier λ, |λ| = 1.

We call F = (z, w) a lifting of f and denote it by ˜f = F. The lifting
can be calculated using a simple formula [20]

˜f =
(

h(f0 + f3)/(f1 − f2i), h
)

, h = gcd(f1 − f2i, f0 − f3). (5.3)

The formula (5.3) enables the lifting of rational Bézier curves of degree 2k

and tensor product patches of degree (2k, 2l) on S2 to the corresponding
polynomial curves of degree k and surfaces of bi-degree (k, l) in C2, respec-
tively. This universal rational parametrization technique was used to find
Bézier patches on S2 of minimal degree with given boundary curves, see
[19]. Theorem 5.1 can be applied for polynomials of arbitrary number of
variables.

Example 2. Consider a parametrization f which is the opposite on
S2 to PS(z, w):

f = (−|z|2 − |w|2, 2Re(zw̄), 2Im(zw̄), |z|2 − |w|2).

Let us calculate a lifting: h = gcd(2z̄w,−2|z|2) = z̄, and ˜f =
(z̄(−2|w|2)/(2z̄w), z̄) = (−w̄, z̄). Therefore, a point PS(−w̄, z̄) is the oppo-
site of PS(z, w).

Projectively the Blaschke cylinder B is a cone over a sphere, since its
equation is y2

0 = y2
1 + y2

2 + y3
3 (y4 is arbitrary) in MP . In complex setting

this equation can be transformed to the binomial one (y0 − y3)(y0 + y3) =
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(y1 − iy2)(y1 + iy2). Therefore B is a real part of a toric variety (see
e.g. [49]). According to a general theory [4], B has the universal rational
parametrization in the slightly more complicated form:

PB(z, w, f, g)=
(

g(|z|2+|w|2), 2gRe(zw̄), 2gIm(zw̄), g(|z|2−|w|2), f
)

. (5.4)

The map PB : C2 × R2 → R5 is homogeneous, PB((λ, ρ) ∗ (z, w, f, g)) =
|λ|2ρPB(z, w, f, g), with respect to the following multiplication:

(λ, ρ) ∗ (z, w, f, g) = (λz, λw, |λ|2ρf, ρg), λ ∈ C, ρ ∈ R. (5.5)

Theorem 5.2. Any irreducible solution h = (h0, . . . , h4) ∈
R[t1, . . . , tk]4 of the Blaschke cylinder equation h2

0 = h2
1 + h2

2 + h2
3 has the

form h = PB(H), where H = (z, w, f, g) ∈ C[t1, . . . , tk]2 × R[t1, . . . , tk]2

and the pairs (z, w) and (f, g) are irreducible. H is determined uniquely
up to multiplication by (λ, ρ) defined in (5.5), with |λ|2ρ = 1.

Example 3. Consider the particular parametrization of the Blaschke
cylinder ι : I3 → B:

ι : I3 = R3 ∪ R → B, (u, v, f) 7→ PB(u + vi, 1, f, 1), f 7→ PB(1, 0, f, 1),

which is called the isotropic model of Laguerre geometry. The composition
with the Blaschke map Λ = ι−1 ◦β describes the change from the Euclidean
model to the isotropic model. It will be useful for modeling applications in
Section 7.1.

6. Special cases of PN surfaces. Important examples of PN sur-
faces are generated as envelopes of rational one parameter families of sim-
plest primitive shapes: planes, spheres or circular cones (cylinders).

Envelopes of planes are exactly developable surfaces. Developable PN
surfaces were already characterized by Theorem 2.2 as rational curves in
the Blaschke cylinder (see Section 2.3). The other classes of PN surfaces
are now discussed in the subsequent sections.

6.1. Canal surfaces. A canal surface is the envelope of one-
parameter family of spheres in R3 defined by a spine curve m(t) and a
radius function r(t). In 1995 Lü [27] proved the surprising result: A canal
surface defined by a rational spine curve and a rational radius function is
rational. See also [28] for the details of the proof.

Later this result was proved by different methods: geometric approach
[34], Clifford algebra formalism [2, 3] and a universal rational parametriza-
tion of a sphere [20]. Here we describe the approach in [34, 20] which gives
bounds of rational parametrization degree.

As it was explained in Section 4.4, a canal surface is the cyclographic
image γ(s) of a curve s(t) = (m, r)(t) in M. It is real exactly if 〈ṡ(t), ṡ(t)〉 ≥
0 (see (4.8)), and its isotropic hypersurface Γ(s) consists of all isotropic
lines that intersect the curve orthogonally. Therefore, we can look for a
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parametrization of Γ(s) in the form F(s, t, λ) = s(t) + λn+(s, t), where
〈ṡ(t),n+(s, t)〉 = 0. The latter condition means that isoparametric curves
at(s) = n(s, t) of a Gauss map n(s, t) define a family of circles as planar
sections of the unit sphere S2,

〈ṡ(t),x+〉 = 0, x+ = (x, 1), x ∈ R3. (6.1)

If such a rational Gauss map n(s, t) exists then a rational parametrization
f(s, t) of the canal surface γ(s) = Γ(s)∩R3 can be calculated by substitution
f(s, t) = F(s, t,−s4(t)). Equivalently, f(s, t) can be expressed in terms of
the spine curve m(t) and the radius function r(t)

f(s, t) = m(t) − r(t)n(s, t). (6.2)

Consider the slightly more general case. Let Πt : 〈v(t),x+〉 = 0
be a family of planes with polynomial coefficients v(t), where D(t) =
〈v(t),v(t)〉 ≥ 0, D(t) 6≡ 0. Then the polynomial D(t) can be factorized

D(t) =
∏

i

(t − zi)
pi(t − z̄i)

piρ(t)2, zi ∈ C \ R, ρ(t) ∈ R[t]. (6.3)

Theorem 6.1 ([20]). There exists a rational parametrization n(s, t)
of the unit sphere S2 of bidegree (2, n), such that all isoparametric curves
at(u) = n(s, t) are plane sections S2 ∩ Πt. There is a constructive method
for finding such parametrization n(s, t) with

n = 2 max(⌈m/2⌉, m−
∑

i

⌈pi/2⌉), m = degv(t), (6.4)

where pi are multiplicities of complex roots of the polynomial D(t) defined
in (6.3).

The proof is based on the universal rational parametrization of the
sphere (5.2), where PS is treated as a map RP 3 → S2. For any rep-
resentation of D(t) as a sum of squares there is a minimal solution
n(s, t) = PS(r(s, t)), which is an image of a certain ruled surface r(s, t)
of implicit degree m in RP 3. Minimal directrices of r(s, t) with compli-
mentary degrees m0 + m1 = m can be found using µ-basis methods [1].
The goal is to find the minimal n = 2 max(m0, m1) in the list of all min-
imal solutions, which is achieved by a constructive procedure up till the
value (6.4).

Remark 6.1. The related problem of finding a decomposition of a
real polynomial as a sum of two squares over Q was considered in [25].
It was proved that the problem is equivalent to partial factorization of of
the polynomial, and a decomposition algorithm was presented in case the
solution is defined over Q.

Theorem 6.1 can be applied to a family of planes (6.1) with v(t) =
d(t)ċ(t), when d(t) is a common denominator of all rational ċi(t), i =
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Fig. 2. Examples of canal surfaces of bidegree (2, 4), (2, 6), (2, 10).

1, . . . , 4. If c(t) is a rational curve of degree k then in general degv(t) =
2k − 2. Using the inequality degt f(s, t) ≤ deg c(t) + degt n(s, t) (see (6.2))
one can derive the following degree bounds.

Corollary 6.1 ([20]). A canal surface γ(c) defined by a rational
curve c(t) in R4 of degree k admits a rational parametrization f(s, t) of
bidegree (2, n), where

(i) n = 3k − 2 if D(t) > 0 (all roots are complex),
(ii) n = 5k − 6 if D(t) has at least one complex root.
(iii) n = 5k − 4 if D(t) has all real roots.

The case (i) of this corollary gives in general the minimal possible
degree, and the case (ii) was proved in [34]. The following example shows
that and the case (iii) cannot be improved.

Example 4. Consider a canal surface γ(c) (see Fig. 2 middle) defined
by the curve

c(t) =
(

0,
1 − t2

2(1 + t2)
,

t

1 + t2
,−

t

1 + t2

)

.

Then v(t) = (1 + t2)2ċ(t) = (0,−2, 1 − t2,−1 + t2) and D(t) = 4t2 has
no complex roots. Therefore there is only one factorization of D(t) that
defines a unique minimal parametrization n(t, u) = PS((1 − s)X + sY ),
with X = (i(t2 −1), 2t), Y = (1, 0), of degree (2, 4). The canal surface γ(c)
is parametrized by f(s, t) (see (6.2)) of bidegree (2, 6), which is minimal
possible.

6.2. Rational ruled surfaces in M. Rational ruled surfaces in R3

are PN surfaces if they are non-developable. This result was proved in
[35, 31] and generalized to any rational ruled surface Ψ in M in the sense
that its cyclographic image γ(Ψ) in R3 is rational.

The Blaschke model will be most convenient for understanding this
result. Let a rational ruled surface Ψ in M be defined by two directrices
c(t) and d(t). The key idea is to construct a Gaussian map n(s, t) which
for any fixed t defines normals along a common touching curve between
the envelope surface γ(Ψ) and a cone of revolution defined by a line going
through points c(t) and d(t). This is equivalent to the condition
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〈n+(s, t),d(t) − c(t)〉 = 0, (6.5)

which forces isoparametric curves of n(s, t) to be the prescribed family of
circles. Therefore, such n(s, t) can be generated using Theorem 6.1. Then
a support function h(s, t) is computed from the equation

h(s, t) + 〈n+(s, t), c(t)〉 = 0. (6.6)

Finally it remains to go back from the Blaschke image to γ(Ψ), i.e. to
compute the envelope of tangent planes h(s, t) + 〈n(s, t),x〉 = 0 in R3.

Example 5. Let Ψ be a hyperbolic paraboloid x3 = x1x2 in R3 with
two directrices c(t) = (0, t, 0, 0) and d(t) = (1, t, t, 0). The Gaussian map
can be calculated as

n(s, t) = PS(−st + i(1 − s), 1 − 3s − ist) (6.7)

=
(−4st + 8s2t,−2s2t2 + 2 − 8s + 6s2, 4s − 8s2)

(1 − 4s + 5s2 + s2t2)
.

One can check directly that the condition (6.5) is fulfilled. Then the
Blaschke image is derived using (6.6), and finally a point representation of
any offset of Ψ is generated of bidegree (4, 5). Compare with a parametriza-
tion of bidegree (6, 6) that is generated by treating Ψ as LN surface (see
Section 3).

6.3. Characterization of PN surfaces of low parametriza-

tion degree. For a PN surface F parametrized by f(s, t) consider the
parametrization of its isotropic hypersurface Γ(F ) in the form F(s, t, u) =
f(s, t) + un+(s, t) (see Section 6.1), and a family Φt of its isoparametric
ruled subsurfaces Φt(s, u) = F(s, t, u). Define the PN degree of the PN
parametrization of F with respect to s as implicit degree of Φt. Then any
general Laguerre transform of f(s, t) (see Section 4.3) will have the same
PN degree in s.

It was shown in previous Sections 6.1 and 6.2 that the simplest PN
surfaces admit parametrizations f(s, t) with degs(f) ≤ 4. Now we are going
to show that they can be almost characterized by this degree.

Theorem 6.2. If a PN surface F parametrized by f(s, t) has PN
degree m ≤ 4 in s then F is:

(i) a developable PN surface if m = 1;
(ii) a rational canal surface if m = 2;
(iii) an envelope of a rational family of circular cones if m = 3;
(iv) an envelope of a rational family of circular cones or Dupin cyclides

if m = 4.

Proof. If m = 1 then the surface Φt is a plane and its projection to
R3 is also a plane containing normals n(s, t) along the line Φt(s, 0). Hence
n(s, t) is constant for any fixed t, and F is developable.
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In the case m = 2 the surface Φt is a quadric that spans a time-like
hyperplane in M, that can be moved to a standard position x3 = 0 using
an appropriate Laguerre transformation. Then all normals along the conic
Φt(s, 0) will be in the same plane. Thus these conics are circles and Φt are
cones with vertices c(t) that trace a curve in M. Then F is a canal surface
γ(c).

In the case m = 3 the surface Φt is a ruled cubic, which cannot be a
cone (since otherwise its vertex belongs to Ω and F is developable). Then
there is exactly one linear directrix lt in Φt for every parameter t, i.e. they
define a rational family of circular cones γ(lt) with the envelope F .

In the last case m = 4 the surface Φt is a ruled quartic. By the
same arguments as above this cannot be a cone. Then Φt has a family of
conics cv as directrices. Since all canal surfaces γ(cv) are touching along
a common quartic curve Φt(s, 0), conics cv have only space-like tangents.
Such canal surfaces have been studied in [24], where it has been proved
that there exists a circular cone in the family γ(cv), except in the Dupin
cyclide case (see [24], Corollary 2). Therefore F is an envelope of these
circular cones.

Examples with m = 3, 4 are provided by branching blend surfaces of
bidegree (3, 6) and (4, 8) in Section 7.4 (see also [21]). The latter case
corresponds to a family of Dupin cyclides.

6.4. Offsets of regular quadric surfaces in R3. Regular quadrics
are one of the simplest surfaces in R3. Nevertheless it is not obvious that
their offsets admit rational parametrizations. Investigating conics in the
plane it is quite clear that the offset curves of ellipses and hyperbolas are
non-rational whereas the offsets of circles and parabolas are rational curves.
Lü [30] has been the first who proved that the offsets of all regular quadrics
admit rational parametrizations. For the paraboloids this is not difficult,
for ellipsoids and hyperboloids this is quite involved.

The existence of rational parametrizations of the offsets of regular
quadrics can be shown as follows. Let Φ be a two-dimensional quadric
in M, then Φ is contained in a hyperplane of M. We are studying the
isotropic hypersurface Γ(Φ) corresponding to Φ. The intersection of Γ(Φ)
with x4 = 0 is the cyclographic image γ(Φ), the envelope of the two-
parameter family of oriented spheres corresponding to Φ. If Φ is contained
in a hyperplane x4 = d, the envelope γ(Φ) is the offset surface of Φ.

The isotropic hypersurface Γ(Φ) is the envelope of common tangent
hyperplanes of the pencil of quadrics λΦ+µΩ in MP . The quadrics Φ and
Ω are considered as sets of tangent hyperplanes, which implies that they
are singular hypersurfaces in this pencil.

The intersection surface of two hyperquadrics in MP is a rational
quartic del Pezzo surface. This del Pezzo surface is dual to the isotropic
hypersurface Γ(Φ). This implies that the two parameter family of tangent
hyperplanes of Γ(Φ) can be rationally parametrized. Intersecting Γ(Φ)
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with x4 = 0 gives a parametrization of γ(Φ) as set of tangent planes. This
construction proves the following result.

Proposition 6.1. The cyclographic images γ(Φ) of two dimensional
quadrics Φ ⊂ M are surfaces admitting rational parametrizations.

We demonstrate also an alternative way to construct rational PN
parametrizations of the offset surfaces of quadrics in R3. Let Φ be a quadric
surface in M, contained in a space-like hyperplane, for instance x4 = 0. We
show that the pencil of quadrics λΦ + µΩ in MP contains a ruled quadric
surface Ψ and Γ(Φ) = Γ(Ψ) holds. Then the cyclographic images γ(Φ) and
γ(Ψ) agree and rational parametrizations can be constructed as described
in Section 6.2.

Theorem 6.3. All regular quadrics are PN surfaces.
Let Φ be a regular quadric possessing real points. Quadrics of revolu-

tion are canal surfaces and thus the rationality of their offsets follows from
Section 6.1. If Φ itself is a ruled quadric surface in M, we may directly
apply the method outlined in Section 6.2.

Otherwise let Φ be contained in the hyperplane x4 = 0. The pencil of
dual hyperquadrics λΦ+µΩ in M defines the isotropic hypersurface Γ(Φ).
All singular quadrics in this pencil possess the same isotropic hypersurface
Γ(Φ). The offset surfaces of Φ at distance d are obtained as hyperplane
sections Γ(Φ) ∩ {x4 = d}. We will find a real ruled quadric Ψ in all of the
three cases which have to be discussed.

• Let Φ be an ellipsoid in x4 = 0. Then Φ (with a > b > c) and Ψ
are given by the equations

Φ:
x2

1

a2
+

x2
2

b2
+

x2
3

c2
=1, x4 =0, Ψ:

x2
1

a2 − b2
−

x2
3

b2−c2
+

x2
4

b2
=1, x2 =0.

• Let Φ be a two sheet hyperboloid in x4 = 0. Then Φ (with b > c)
and Ψ are given by the equations

Φ:
x2

1

a2
−

x2
2

b2
−

x2
3

c2
=1, x4 =0, Ψ:

x2
1

a2+b2
+

x2
3

b2−c2
−

x2
4

b2
=1, x2 =0.

• Let Φ be an elliptic paraboloid in x4 = 0. Then Φ (with b > c) and
the hyperbolic paraboloid Ψ are given by the equations

Φ:
x2

1

a2
+

x2
2

b2
−2x3 =0, x4 =0, Ψ: −

1

a2−b2
x2

2+
1

a2
x2

4 =2x3−a, x1 =0.

6.5. Quadratic triangular Bézier surfaces in M. In Section 6.2
it has been proved that the cyclographic images γ(F ) of rational ruled sur-
faces F in M are PN surfaces. Besides this result not much has been known
about rationality of cyclographic images. Recently it has been proved in
[36] that any quadratic triangular Bézier surface in M possesses a rational
envelope surface of the corresponding family of spheres. This result can
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Fig. 3. Left: Ellipsoid of revolution and outside offset. Right: General ellipsoid
and inside offset.

directly be proved starting with an appropriate parametrization w(s, t) of
the absolute quadric Ω and solving the equations (4.7).

Let

f(u, v) =
1

2
a1u

2 + a2uv +
1

2
a3v

2 + a4u + a5v + a6, with ai ∈ R4 (6.8)

be a parametrization of a quadratic triangular Bézier surface F spanning
R4. For convenience we use the monomial basis instead of the Bernstein
basis for the representation of F .

In order to solve (4.7), we may start with a rational parametrization
w(s, t) of Ω, which obviously satisfies 〈w,w〉 = 0. A possible choice is
w(s, t) = (2s, 2t, 1 − s2 − t2, 1 + s2 + t2). The conditions 〈w, fu〉 = 0 and
〈w, fv〉 = 0 are linear in u and v. Thus, a solution of the system of linear
equations

(

〈w, a1〉 〈w, a2〉
〈w, a2〉 〈w, a3〉

)(

u

v

)

=

(

−〈w, a4〉
−〈w, a5〉

)

(6.9)

is a rational reparametrization u = a(s, t), v = b(s, t) for the quadratic
triangular Bézier surface F . It can be proved that the determinant of the
coefficient matrix of (6.9) does not vanish identically expect for quadrati-
cally parameterized planes F . The isotropic lines i(s, t) : f(s, t) + λw(s, t)
are solutions of (4.7) and form a rational parametrization of the isotropic
hypersurface Γ(F ) through F . The intersection Γ(F ) ∩ R3 is the envelope
γ(F ) of the two-parameter family of spheres corresponding to F .

7. Modeling applications. Our first non-trivial modeling applica-
tions of surfaces with rational offsets are related to Dupin cyclides (see
Fig. 4, left). These are special canal surfaces which are cyclographic im-
ages of Minkowski circles, i.e. conics in M that intersect Ω in two points
(see details in [5, 23]). Dupin cyclides were proposed to be used as blending
surfaces between natural quadrics by Pratt [46, 47] (see Fig. 4). For exam-
ple, any two circular cones with a common inscribed sphere can be blended
by a part of a Dupin cyclide bounded by two circles (Fig. 4, middle). In
terms of the cyclograpic model this is a simple rounding of two intersect-
ing space-like lines by an arc of a Minkowski circle. Similar blending is
available between a circular cylinder (or cone) and a plane (Fig. 4, right).
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Fig. 4. Using patches of cyclides for blending.

More sophisticated modeling schemes with patches of Dupin cyclides
bounded by circles were considered in [50]. A very special of blending
between two circular cylinders using parabolic Dupin cyclides was proposed
in [51].

7.1. Modeling with parabolic cyclides. The technique described
in Example 1 can be used to develop a surface modeling scheme based
on parabolic Dupin cyclides in [33] . Let scattered data elements (ai, Ai)
be given in R3, where ai are vertices incident with the oriented planes Ai.
The goal is to construct a C1 PN surface, which interpolates the given data
and which is composed of triangular patches of parabolic Dupin cyclides.
The concept is the following. The data (ai, Ai, ) are mapped by Λ to
the isotropic model I3 (see also Example 3). The images are scattered
data elements, say (bi, Bi), with Λ(Ai) = Bi. The data (bi, Bi) will be
interpolated by a C1 function Ψ, which is piecewise quadratic, using the
method of Powell–Sabin [45]. Returning to the standard model we obtain a
C1 interpolating surface Λ−1(Ψ) composed of parabolic Dupin cyclides. We
note that in general the triangular cyclide pieces are tangent to each other
along cubics and not along circles. This already indicates that this method
is rather different from other surface modeling schemes, using (parabolic)
Dupin cyclides, as [46, 50] and others. However, smooth surfaces with
vanishing Gaussian curvature along curves other than straight lines can
never be modeled with parabolic Dupin cyclides.

7.2. Approximations with developable PN surfaces. Very few
applications of developable PN surfaces are known. In [26] developable sur-
faces are modeled with pieces of circular cones. A more general method for
the recognition and reconstruction of developable surfaces was proposed in
[32]. The approximation problem with given data points as measurements
from a developable surface and estimated tangent planes is translated to a
curve fitting problem which is solved on the Blaschke cylinder. Then the
constructed curve is interpreted as one-parameter family of tangent planes
and their envelope is calculated.

7.3. Blending natural quadrics with canal surfaces. Canal
surfaces defined by general conics in M can be used for blending
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Fig. 5. Blendings of cylinders/cones of bidegree (2, 4) along quartic curves.

Fig. 6. Bisector of two cylinders and their blending of bidegree (2, 10).

cones/cylinders in more general positions (Fig. 5) along quartic boundary
curves as was shown in [24].

Results on rational parametrizations [34, 20] have been used in [15]
to develop a theory on rational variable radius rolling ball blends between
natural quadrics in arbitrary positions. Here we will consider just one
illustrative example.

Example 6. Let Qa and Qb be two cylinders in R3 defined by equa-
tions x2

1 + x2
2 = r2

a and x2
2 + x2

3 = r2
b , where 0 < ra < rb (Fig. 6, right).

Consider lines La and Lb in M such that their cyclographic images are
given cylinders Qa and Qb. Then an intersection of their isotropic hyper-
surfaces is a quartic surface Φ = Γ(La)∩Γ(Lb) in M which projects exactly
to the bisector of the cylinders in R3 (Fig. 6, left).

Any curve on Φ defines a canal surface touching both cylinders, i.e.
a rolling ball blend. Unfortunately a fixed radius case corresponds to a
non-rational curve on Φ. Nevertheless, a certain rational quartic curve
s ⊂ Φ can be found [22]. This construction generates a canal surface of
bidegree (2, 10) which is minimal possible according to Corollary 6.1. It
is impossible to construct such a blending with a boundary circle on the
cylinder Qa, since the corresponding curve on Φ and the associated canal
surface are non-rational.
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Fig. 7. Boundary curves Ca, Cb and their images na, nb on the Gaussian sphere.

7.4. Branching blend of natural quadrics using non-canal PN

surfaces. The blending in Example 6 can be improved by using PN sur-
faces that are more general than canal surfaces. Here we sketch the con-
struction proposed in [21].

The goal is to generate a branching blend of cylinders Qa and Qb

defined in Example 6, which is a PN surface bounded by a circle Ca, x3 = h,
on the vertical cylinder Qa and by a rational curve Cb on the upper side of
the horizontal cylinder Qb (see Fig. 7, left).

The general scheme of the proposed method consists of three steps.
Step 1: Gaussian map. Normals along Ca and Cb define two curves

on the unit sphere: a circle na on the equator and a circular arc nb on
the plane section x1 = 0, see Fig. 7 (right). In order to build a symmetric
Gaussian map it remains to find a Bézier representation of the spherical
quarter. Methods of [19] can be directly applied: a linear combination of
the liftings ña and ñb to C2 (see Section 5)

(z, w) = (1−s)(1−it)ña+sñb, ña = (1−it, t−i), ñb = (1+t2, 2kt). (7.1)

with the resulting unique parametrization in a homogeneous form n(s, t) =
PS(z, w) of degree (2, 4), where homogeneous coordinates are used n =
(n0, . . . , n3). Note, that the parameter k controls the endpoints of the
arc nb.

Step 2: Support function. Points sa = (0, 0, h, ra) and sb = (0, 0, 0, rb)
in Minkowski space M represent two spheres: touching the cylinder Qa

along Ca, and the cylinder Qb along a circle with the normal nb. Their
Blaschke images are constructed with the same fixed Gaussian map n(s, t)
and represented in the universal rational parametrization form (5.4) with
ga = gb = 1 and certain polynomials fa and fb of bidegree (2, 4). The
formula f(s, t) = fa(s, t) + s2(fb(1, t) − fa(1, t)) defines a polynomial that
is in C1-contact with fa along s = 0 and coincides with fb on s = 1.
Then the parametrization (n(s, t), f(s, t)) = PB(z, w, f, 1) is the dual of
the blending solution.

Step 3: Back to the point representation. From the dual representation
e0(s, t) + 〈e(s, t),x〉 = 0, e0 = f , e = (n1, n2, n3), in Euclidean space we
obtain the point representation by calculating the envelope (cf. (2.8)).
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Fig. 8. Various branching blends between cylinders and Dupin cyclides.

If the dual data is of bidegree (dt, du) then the bidegree of the solution
(x1, x2, x3) is (3ds − 2, 3dt − 2) in general. Since (ds, dt) = (2, 4) we can
expect a solution of bidegree (4, 10). Fortunately there exists a unique
value of k in the expression of nb (7.1) that enables us to drop bidegree
down to (3, 6).

It was proved in [21] that this is the minimal possible Laguerre invari-
ant bidegree. The construction can be generalized to a few other positions
of the given cylinders and then extended to any possible position by apply-
ing appropriate Laguerre transformations. Moreover by applying inversions
similar PN branching blends can be generated between Dupin cyclides and
cylinders or cones of bidegree (4, 8). These possibilities are illustrated in
Fig. 8.

8. Conclusions and open problems. We have given an overview
of Pythagorean normal surfaces including their short history, an introduc-
tion to the language of Laguerre geometry, review of the most important
classes of PN surfaces and their applications in geometric modeling. It has
been shown that the dual approach in combination with universal rational
parametrization ideas seems to be most promising not only for theoretical
investigations but also for solving very practical modeling problems. There
are still many questions that need to be discussed. Here are a few open
problems for future research:

• Results on minimal parametrization degree of canal surfaces in Sec-
tion 6.1 raises similar questions for other classes of PN surfaces.
It is most important to understand possible reductions of degree
when going from the dual representation to the point representa-
tion. Similar problems for PH curves were considered in [11].

• A free-form modeling scheme with PN surfaces without restric-
tions on the Gaussian curvature is a challenge. Perhaps the mod-
eling scheme with parabolic cyclide patches (see Section 7.1) can
be generalized using the universal rational parametrization of the
Blaschke cylinder.

• Pieces of isotropic hypersurfaces of PN surfaces (e.g. between a
surface and its offset) in Minkowski space projected down to Eu-
clidean space R3 give nice examples of 3D rational parametriza-



RATIONAL SURFACES WITH RATIONAL OFFSETS 133

tions of solids. Sufficient non-degeneracy conditions of such
parametrizations will be useful in modeling.

We hope that this survey will help interested researches and people
from industry to get an adequate impression about achieved results and the
state of art in investigations of PN surfaces and their modeling applications.
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[17] Kosinka J. and Jüttler B., MOS surfaces: Medial Surface Transforms with

Rational Domain Boundaries, in: R. Martin, M. Sabin, J. Winkler (eds.),
The Mathematics of Surfaces XII, Lecture Notes in Computer Science 4647,
pp. 245–262, 2007.



134 RIMVYDAS KRASAUSKAS AND MARTIN PETERNELL

[18] Krasauskas R., Universal parametrizations of some rational surfaces, in: A. Le
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A LIST OF CHALLENGES FOR REAL ALGEBRAIC PLANE

CURVE VISUALIZATION SOFTWARE

OLIVER LABS∗

Abstract. Recently, the visualization of implicitly given algebraic curves and sur-
faces has become an area of active research. Most of the approaches either use raytrac-
ing, subdivision or sweeping techniques to produce a good approximate picture of the
varieties, sometimes by using hardware equipment such as graphics processing units.

We provide a list of equations of plane curves which may serve as a list of benchmarks
for visualization software. In most cases, we give whole series of examples which yield
equations for infinitely many degrees. Even for low degrees, there is currently no software
which visualizes all examples correctly in real–time, so we call them challenges.

For most of the equations in our list, we are able to prove that they are at least
close to the most difficult possible ones. For convenience, our list is also available in
the form of a text file. Moreoever, the paper includes a brief introduction to some
of the terminology from singularity theory for researchers from the computer graphics
community because singularities appear frequently when treating complicated cases.

Key words. Real algebraic geometry, computational geometry, geometric model-
ing, plane curves, singularities, visualization, algorithms, benchmarks, challenges.

AMS(MOS) subject classifications. Primary 14H45, 14B05, 14P05, 14Q05.

Introduction. A real algebraic plane curve of degree d in R2 is the
zero–set of a possibly reducible polynomial of degree d in two variables
with real coefficients; in this paper, we restrict ourselves to examples with
rational, exact coefficients. We provide a list of equations of real plane
curves which may serve as a list of benchmarks for visualization software.
In most cases, we give whole series of examples which yield equations for
infinitely many degrees. Dispite a lot of recent research activity, there is
currently no software which visualizes all examples correctly in real–time,
even for moderate degrees, so we call them challenges.

Most curves in our list are singular or are at least in some way related
to singularities. After a short discussions of the term correct visualization,
we thus give a brief introduction to singularity theory. Our examples which
are presented in the remaining part of the article can roughly be divided
into the following categories:

1. many or higher solitary points,
2. high tangencies at isolated singularities (e.g., Ak-singularities),
3. many or complicated isolated singularities,
4. many or complicated non–isolated singularities,
5. small deformations of one of the singular ones mentioned above.
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(a) (b) (c)

Fig. 1. (a) shows the plane curve e = y2 + x2(x + 1) (mind the solitary singular
point in the center of the picture). (b) shows a bad visualization of it, (c) shows a
correct visualization.

The items above suggest that our examples will be difficult to visualize
mainly because of their geometry and not just because of their coefficient
size. This is indeed true; in particular, all our examples have rational coef-
ficients and the number of digits needed to represent these is moderate. To
keep the equations as simple as possible, many of our examples are actually
reducible, i.e. they are products of several (often two) equations. Of course,
in many cases, one could write down irreducible equations yielding similar
visualization problems, but these would be a lot more complicated, so we
do not include them here. To perform a fair comparison between several
algorithms based on our examples, one should thus not allow a factoriza-
tion prior to the main algorithm. Likewise, although the list does not try
to produce dense polynomials in the sense that most monomials occur, this
can often be realized by a simple coordinate change.

The list presented in this article will be updated on our website [Lab03]
if problems become known which are more challenging than those given
here. We will also provide the output of some of the existing visualization
tools for each of the examples in our list in order to allow comparisons.

The first draft of this paper was written at the CMA at the University
of Oslo. I thank all people there for their hospitality and the wonderful
and inspiring atmosphere. In particular, I thank R. Piene for giving me
the opportunity to stay at this great place for a month.

1. On correct visualizations of real algebraic plane curves.

For simplicity, in this paper, we just ask for a correct image of the given
plane curve up to pixel level: A pixel of the visualization area shall be
colored in black if and only if the plane curve contains at least one point
inside this pixel. This has the advantage that plane curves with solitary
points are represented in a topologically correct way (see Figure 1). For
our solutions given in this article, we always choose an area such that all
singular points and all points with horizontal or vertical tangents can be
seen in the picture.

The notion of correct visualization given above differs from another
natural one which asks for a result reflecting the whole topology of the
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plane curve correctly. E.g., if one of the unit squares of the visualization
area contains two ovals1 inside each other then our notion of correct visu-
alization above just shows one black pixel and does not mention the extra
information about the geometry inside the pixel. In that case, the image
shown thus won’t be topologically correct.

1.1. An algorithm which produces correct visualizations. Be-
fore giving the challenges, we sketch a straightforward algorithm which is
guaranteed to produce correct visualizations (up to pixel level) for a given
equation of a plane curve C with rational coefficients as described above:

• Compute all zeros of C along the sides of the pixels (there are algo-
rithms which assure correct output, e.g., using Sturm sequences),
and draw a black pixel for all those squares containing a root.

• Compute all real points satisfying C(x, y) = 0 and ∂C
∂y

(x, y) = 0
up to a precision which ensures in which square the points lie
(there are algorithms which yield certified results, e.g., Roullier’s
approach using Gröbner basis), and draw a black pixel for all those
squares containing one of these points.

Of course, there are other algorithms which yield certified results and
which may run faster. E.g., the website http://exacus.mpi-inf.mpg.de

provides a web interface to the algorithm implemented in the Exacus library
which even yields topologically correct output up to sub–pixel level.

1.2. The main visualization strategies. All known visualization
methods with certified results are rather slow already from a moderate
degree and a moderate number of pixels on. So, the challenge is to find an
algorithm which works both correctly and fast.

Many algorithms try to use inexact computations for speed ups. For
such algorithms, it is challenging to increase the number of curves which
can be visualized correctly. Our list is an attempt to give developers of
exact algorithms a tool to test the efficiency and to give developers of
inexact algorithms a tool to test the correctness of their methods.

To understand the main difficulties, it is important to understand the
basic visualization strategies which are currently used. A large class of
algorithms first computes points (or at least an approximation of their x-
coordinates) with vertical or horizontal tangents (which include the singular
points) and then uses this information in order to ensure the topology of the
output, e.g. using sweeping techniques. The initial step is often quite time–
consuming; our list provides examples for which the number of singular
points or points with vertical tangents is high.

Other algorithms proceed by subdividing the screen recursively either
until the topology within a small rectangle can be guaranteed or until some

1An oval is a smooth connected component of a real plane curve which is intersected
by any other plane curve in an even number of points (counting multiplicities).
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x3 + y2 x4 + y2 x4 − y2 y9 −
14

10
x2y2 + 14

10
x3

(a) (b) (c) (d)

Fig. 2. Plane curves with isolated singularities at the origin O = (0, 0), (a) is
an A2-singularity or cusp, (b) is a higher solitary point, (c) is an A3-singularity or
tacnode, (d) is a more complicated singularity, a J13-singularity to be precise.

heuristic criterion tells the algorithm not to search deeper. Such algorithms
usually have difficulties near singular or almost singular situations because
there is still no efficient criterion known which says that a given rectangle
does or does not contain exactly one singular point. Some heuristics work
fine at very simple singularities, but most fail at higher singularities or
almost singular points. Thus, our list also provides examples with compli-
cated singularities and points which are almost singular in some sense.

2. Some notions from singularity theory. As mentioned earlier,
many of our challenges will be related to singularities. In this section,
we thus provide a short introduction to the necessary notions: A critical
point of a real plane curve f ⊂ R2 of degree d is a point p ∈ R2 s.t.
∂f
∂x

(p) = ∂f
∂y

(p) = 0. If in addition f(p) = 0 then p is called a singular

point or singularity (see also Figure 2). f is called smooth if it does not
contain any singular point. p is an isolated singularity of f if there is an
open neighborhood V ⊂ R2 of p which does not contain any other critical
point. p is called non–isolated if this is not the case; for plane curves, this
simply means that p is contained in a multiple factor of f , i.e. f is of the
form f = gk·h with k ≥ 2 and deg(g) ≥ 1 with p ∈ {g = 0}. A solitary
point is an isolated singularity p s.t. there is an open neighborhood V ⊂ R2

of p which does not contain any other point of the plane curve. Singularities
have been classified in many respects. We only mention a few cases and
refer to [AGZV85, BK86, Dim87] for details.

The multiplicity multp(f) of a singularity p ∈ Rn of a plane curve f

is simply the degree of the lowest order term of f after translation of p to
the origin. E.g., for the plane curves x2−y2, x2 +y2 and xy−y5, the origin
(0, 0) ∈ R2 has multiplicity 2, i.e. it is a double point ; for x3 +y3 +x4 ·y3,
the origin is a triple point , etc. This definition makes sense because a
generic line l(t) through a k-tuple point p intersects the curve f(x, y) with
multiplicity k at p.

However, the multiplicity is only a very rough mean of classification
of the singularities which can occur on plane curves; there are several nat-
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ural ways of detailing further. E.g., after translation of a point p to the
origin, the tangent cone tangconep(f) of f at a point p is the sum of all
terms of the lowest degree. An isolated singularity p of multiplicity m of a
plane curve is called ordinary if and only if tangconep(f) factors over the
complex numbers into m different straight lines. E.g., for x2 − y2−x3 = 0,
the origin is an ordinary double point as well as for x2 + y2 − x3 = 0 (two
complex conjugate lines intersect at the origin), and for xy(x+y)−y4 = 0,
the origin is an ordinary triple point.

But there are many double points apart from the ordinary ones. E.g.,
a singularity of a plane curve is called an Ak-singularity (or singularity
of type Ak) if it can be written after a coordinate change which is locally
a diffeomorphism in the form: xk+1 ± y2 = 0. Often, one specifies the
sequence of signs together with the name of the singularity because many of
the corresponding singularities differ essentially. E.g., x2 +y2 = 0 and x2−
y2 both define A1-singularities in the complex classification, over the reals
the first is of type A+

1 (sometimes denoted by A
•

1 because it is topologically
a solitary point), the second is of type A−

1 . The Ak-singularities are only
the very beginning of a classification of singularities developed by Arnold,
see section 8 and [AGZV85] for more information.

The index k appearing in the name Ak is the so-called Milnor num-
ber µ(f) of a singularity f of that type. In general, for a hypersurface
singularity f at the origin, it is defined as the dimension of the Milnor
algebra :

µ(f) := dimQ Q{x1, . . . , xn}

/〈

∂f

∂x1
, . . . ,

∂f

∂xn

〉

,

where Q{x1, . . . , xn} denotes the ring of convergent power series and 〈. . . 〉
denotes the ideal generated by the given polynomials. This dimension can
be computed easily using local variants of Gröbner bases, so-called stan-
dard bases [GPS06]. It can also be computed in general purpose computer
algebra systems by computing all points which vanish on all the partial
differentials mentioned above: the Milnor number of f at the origin is then
simply the multiplicity of the origin. For an Ak-singularity with equa-
tion f = xk+1 + y2, we find ∂f/∂x = (k + 1)xk, ∂f/∂y = 2y. Thus a
bases for the Milnor algebra is given by 1, x, . . . , xk−1 which shows that
µ(f) = k. There is a nice topological definition of the Milnor number, but
we do not have enough place to describe that here. The Tjurina number
τ(f) := dimQ Q{x1, . . . , xn}/〈f, ∂f

∂x1

, . . . , ∂f
∂xn

〉 is another important invari-
ant which measures the complexity of a singularity in a way similar to the
Milnor number. In most of our examples, the Tjurina number actually
equals the Milnor number; e.g., in the case of the Ak singularities men-
tioned above. However, for more complicated singularities this is usually
not the case.

From a visualization point of view, one of the most basic invariants of a
real isolated singular point of a plane curve is its number of halfbranches:
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In a neighborhood V ⊂ R2 of such a point p of a plane curve C, the set of
points of C in V \{p} consists of a finite number of connected components,
each of which is topologically a segment if V is small enough (see [BCR98,
prop. 9.5.1]). The plane curves (a)–(d) shown in Figure 2 have 2, 0, 4, and
4 halfbranches at the singular point. Halfbranches always occur in pairs
of two which together form the complex branches. Of course, some sin-
gularities have more branches than twice the number of real halfbranches,
e.g., x2 + y2 = 0 has two complex branches which are complex conjugate
to each other, but no real halfbranch.

3. Solitary points. We already encountered the problem of visualiz-
ing solitary points (see, e.g., figure 1). Our first set of problems thus gives
examples of plane curves with such features.

3.1. Many solitary points. Visualizing a plane curve with exactly
one singularitiy at the origin correctly is significantly easier than the more
general case with many singularities. The reason for this is that we can use
computer algebra methods to analyze the local structure of the singularity
at the origin. However, once we have many singularities, it is not easy to
perform this analysis efficiently. This is why we give examples of plane
curves with many singularities — and in this first case ordinary solitary
double points (A

•

1 singularities).
The maximum possible number of solitary points on a plane curve of

degree d, denoted by µ2
A

•

1

(d), is the genus g(d) of a smooth plane curve if

d 6= 2, 4:

µ2
A

•

1

(d) = g(d) =
1

2
(d − 1)(d − 2), if d 6= 2, 4. (3.1)

Because of their relation to smooth Harnack curves (i.e., curves which
have the maximum possible number of connected components, see section
4) those curves which attain this bound are called rational Harnack
curves. Shustin already provided a construction of such curves for each
degree d using his singular version of Viro’s patchworking method [Shu98].
But his construction is not easy to perform explicitly, so for our list we
take the rational Harnack curves which were constructed in [KO06] and call
them KOd(x, y). The equations of the curves KOd(x, y) can be obtained as
follows: Define the polynomials

fd(x, y) :=

d−1
∏

k,l=0

(

e
2kπi

d x + e
2lπi

d y + 1
)

.

One can show that there exists a real polynomial KOd of degree d with:

KOd(x
d, yd) = fd(x, y). (3.2)

For d 6= 2, 4, these KOd(x, y) have exactly µ
A

•

1

(d) = g(d) solitary points

which is the maximum possible number; in addition, they have exactly one
smooth real branch not containing any singular point.
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KO3 KO4 KO5 KO6

Fig. 3. Some plane curves KOd (see challenge 1). For d = 6, it is not possible to
distinguish some of the 1

2
(d − 1)(d − 2) solitary points in our visualization.

Challenge 1. Visualize the plane curves

KOd(x, y) = 0

for d = 4, 5, 6, . . . .
Solution: A correct visualization has to show those of the 1

2 (d − 1)(d − 2)
solitary points which lie in the rectangular area R in which we want to
visualize the curve. As always, we choose R such that all singular points and
all points with vertical or horizontal tangents are contained in it. Figure 3
shows four examples. 2

3.2. Higher solitary points. The examples mentioned in the pre-
vious challenge are the most difficult possible ones in the sense that they
reach the maximum possible number of solitary points. The solitary points
in those examples are ordinary double points (A

•

1-singularities), and can
locally be written in the form x2 + y2 = 0. However, solitary points can
become a lot more involved than just ordinary double points which happen
to be solitary. E.g., the zeroset of the polynomials

SPk,l := x2k + y2l, k, l ∈ N, (3.3)

obviously only consists of the origin. To understand the difficulties which
numerical visualization approaches might have with visualizing such soli-
tary points, let us look at an example.

Example 1. For a real polynomial function of degree d in one variable,
the greatest possible multiplicity of a root is d, realized by the example xd.
In more variables, an analogue to this is the following example: f = xd+yd.
Here, f |x=0 = yd also has a root of multiplicity d (as well as f |y=0 = xd).

However, other plane curve singularities may have much higher orders
of convergence towards zero along some specifically chosen curve. To show
this, let us consider the plane curve:

g = (y − xk)2 + y2k, k ∈ N.

A diffeomorphic coordinate change ϕ which maps the origin to itself clearly
does not change the multiplicity structure at the origin. We take

ϕ : R2 → R2, (x, y) 7→ (x, y − xk)
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Fig. 4. From left to right: A good and a bad visualization (considering a small
function value as zero) of the plane curve g(x, y) = (y − xk)2 + y2k, k = 2, and the
graph of this function seen from two different directions.

which is a diffeomorphism with jacobian matrix

Jϕ =

(

1 k·xk−1

0 1

)

.

This yields the new polynomial

(g ◦ ϕ−1)(x, y) = y2 + x2k2

+ r(x, y),

for some r(x, y), and one can show that there exists another diffeomorphism
which transforms away the r(x, y). In total, we find that g has the same

multiplicity structure as y2 + x2k2

. The example of this plane curve g

illustrates a well-known trick which produces plane curves with high Milnor
number; variants also exist for other types of singularities, see e.g. [Wes05].

Singularities which are related via such a diffeomorphic coordinate
change are called right–equivalent. In these terms, at the origin the
plane curve g is right–equivalent to y2 + x2k2

, the origin of g is thus called
A2k2−1 singularity. E.g., for k = 3, g has degree 6 and its singularity at the

origin is right–equivalent to g̃ = y2+x2·32

which defines an A17-singularity.
So, although the degree of g is only 6, it behaves at the origin basically as
the polynomial g̃ = y2 + x18 of degree 18.

To understand the numerical issues involved here, we look at the points
(ε, 0), which have distance ε from the origin, g̃ takes the values g̃(ε, 0) =
ε18. Figure 4 illustrates this; it shows two visualizations of our original
plane curve g = (y − xk)2 + y2k for the case k = 3, (the left two images)
together with its graph in R3 (the right two images). The leftmost image
shows a point which is correct (the only solution to g = 0 is the origin).
However, a bad numerical algorithm might produce a picture similar to
the second one because g(x, y) is very close to zero (in the second picture,
|g(x, y)| < 10−3) inside the black s-shaped area. The graph of the func-
tion g(x, y) illustrates this: seen from one direction it looks basically like
a parabola, but seen from some other direction we see that the function is
a lot flatter — from our algebraic computations above, we know that it is
basically of the form x 7→ x17 along the s-shaped area.
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To formalize the observations from the previous example, we introduce
the following notion which measures the order at which the graph of a
function f(x, y) tends to zero around a solitary point:

Definition 3.1. Let f(x, y) be a real plane curve with a solitary point
at p ∈ R2. We denote by Cp(ε) the circle around p with radius ε. Let

mp,f (ε) := min{|f(a, b)| s.t. (a, b) ∈ Cp(ε)}.

Then for ε → 0, mp,f (ε) = O(εz) for some z ∈ Q. We call zerotangf (p) :=
z the zero–tangency of f at p.

Example 2. We compute the zero–tangency for some simple plane
curve singularities and also for the singularity already considered in the
previous example. The latter one shows that the zero–tangency can be
quadratic in the degree. This is the property which makes it particularly
difficult for numerical algorithms to distinguish such solitary points from
small connected components of plane curves:

1. f = x2 + y2, p = (0, 0). Obviously, zerotangf (p) = 2.
2. f = x2 + y2k, k ≥ 1 p = (0, 0). Then, zerotangf (p) = 2k.
3. f = x2k + y2k, k ≥ 1, p = (0, 0). Then, zerotangf (p) = 2k.
4. f = (y − x2k)2 + y4k, k ≥ 1 p = (0, 0). Then, zerotangf (p) = 2k2

because f is an A
•

2k2−1 singularity as we have seen in example 1.

The most interesting curve in this example is the one which already
occurred in example 1; we take a closer look at the singularities occurring
there: It might be astonishing that for almost all degrees d, the maximum
number k(d) such that there exists a singularity of type A

•

k(d) on a plane
curve of degree d is not known, even over the field of complex numbers.
Currently, the best known upper and lower bounds are (see [GZN00], the
asymptotic upper bound already follows from Varchenko’s spectral bound
[Var83], the upper bound in the cited paper is only slightly better):

15

28
d2

/ k(d) /

3

4
d2.

The authors of the cited paper give examples in degrees d = 28 · s + 9
for s = 0, 1, 2, . . . . This is not convenient for our list for which we need
examples in low degree. So, we follow the idea presented in the example
above:

Challenge 2. Visualize the plane curves

SPk,l := x2k + y2l,

for k = 1, 2, 3, . . . and l = 1, 2, 3, . . . , and

f2
k,l,+(x, y) := (y − xk)l + yk·l (3.4)

for k = 2, 4, . . . and l = 2, 4, 6, . . . .
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Fig. 5. One way to try to visualize algebraic plane curves is to compute all zeros
along some grid. This may miss some important features of the curve, as in the picture.

Solution: These examples only contain a single solitary point. There is
thus no need for a figure. However, their zero–tangencies differ quite a bit:
zerotangSPk,l

((0, 0)) = deg(SPk,l), but zerotangf2

k,l,+
((0, 0)) = l·k2 which is

quadratic in the degree for a fixed value of l. 2

4. Smooth curves with many components. In many respects,
the solitary points from the previous section are similar to small connected
components of real plane curves. Harnack already showed in the 19th cen-
tury [Har76] that a smooth plane curve cannot have more than g(d) + 1
connected components where g(d) = 1

2 (d− 1)(d− 2) is the genus of a (and
thus any) smooth algebraic plane curve of degree d. Moreover, he was also
able to prove that this number can actually be achieved which showed that
the maximum possible number b2

0(d) of connected components on a smooth
plane curve of degree d satisfies:

b2
0(d) = g(d) + 1. (4.1)

So, from this point of view the most difficult visualization challenge will be
smooth curves of degree d having exactly g(d) + 1 connected components.

4.1. Harnack curves. However, when considering the known algo-
rithms for visualizing algebraic plane curves within a given rectangular
area, we have to be a bit more specific. E.g., a simple algorithm chooses
a certain number of horizontal and vertical lines (figure 5), computes the
points of the curve on these lines, and draws these. If one of the connected
components is entirely contained in one of the small rectangles formed by
the sets of lines as in the figure, then this näıve method will not draw
this component at all. As already mentioned, there are ways to solve this
problem, but these are usually quite time–consuming.

The first trivial examples of plane curves which produce the problems
indicated above are x2 +y2−ε = 0 or y2 +x2(x+1)−ε = 0 for some small
ε. In higher degrees the most complicated examples are those which have
the maximum possible number b2

0(d) of small ovals.
Such examples can be provided in the following explicit constructive

way: Let KOd(x, y) be the rational Harnack curve of degree d given in (3.2)
which have exactly g(d) solitary points which is the maximum possible
number. In addition, they have exactly one component which is not an
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gKO4,0.1
gKO5,0.1

gKO4,0.01
gKO5,0.01

Fig. 6. Some curves gKOd,ε(x, y) for d = 4, 5 for ε = 0.1, 0.01 (see challenge 3).

oval, i.e. it is a pseudo–line. Brusotti’s theorem (see, e.g., [BR90]) tells us
that we can deform each of these g(d) solitary points into small ovals. An
explicit way of doing this is the following (see [Cos92] for a more general
case):

˜KOd,ε(x, y) := KOd(x, y) + εx ·
∂KOd(x, y)

∂x
+ εy ·

∂KOd(x, y)

∂y
(4.2)

for some small ε > 0.
Challenge 3. Visualize the plane curves

˜KOd,ε(x, y)

for ε = 10−i for i = 1, 2, 3, . . . and d = 2, 3, . . . .
Solution: The visualization has to show all the g(d) = 1

2 (d−1)(d−2) ovals
if the rectangular area in which we want to see the curve is large enough.
If ε is too big then some of the ovals might join. We give a few explicit
cases in Figure 6. 2

4.2. Nested ovals. Some of the ovals might be nested , i.e. one oval
is contained in one or more others. It is still an open question which
topological configurations of ovals are actually possible for a real algebraic
plane curve. Hilbert already knew that there have to be some restrictions,
and he posed the question on these configurations as his 16th problem.

As mentioned in the introduction, most of the time, we restrict our-
selves to the easier task of just finding one point within each unit square
in the rectangular area of interest. But as some algorithms try to produce
topologically exact results, we give some simple examples of curves with
nested ovals:

Challenge 4. Visualize the plane curves

Nest2d,ε,k := (x + y) · εk+⌊d/2⌋ +

⌊d/2⌋
∏

j=1

(x2 + y2 − εj) (4.3)

for d = 2, 3, . . . , k = 0, 1, 2, 3, . . . and some small ε > 0, e.g. ε = 10−i for
i = 1, 2, 3, . . . .
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Nest26,0.1,1 Nest26,0.1,2 Nest28,0.1,4 Nest28,0.1,6

Fig. 7. Some curves Nest2
d,ε,k

(see challenge 4).

Solution: For ε > 0 small enough or k ≥ 0 big enough, the curve con-
sists of exactly ⌊d/2⌋ nested ovals which is the maximum possible number
according to Bézout’s theorem. In Figure 7, we show both cases. 2

4.3. Small non–real ovals. To numerical visualization tools, a curve
which is locally of the form

SPk,l,ε := x2k + y2l + ε, k, l ∈ N, ε > 0, (4.4)

poses serious problems if ε > 0 is small enough. A software which performs
exact computations will detect that these polynomials do not have any real
root. But a numerical software might draw one or more pixels because the
function (x, y) 7→ x2k + y2l is very close to zero even far from the origin, in
particular for large values of k, l. Similarly, we can take the plane curves
f2

k,l,+(x, y) = (y − xk)l + yk·l of challenge 2 having higher solitary points
and deform them slightly.

Challenge 5. Visualize the plane curves

SPk,l,ε = x2k + y2l + ε

for k, l ∈ N, and

f2
k,l,+,ε(x, y) := (y − xk)l + yk·l + ε (4.5)

for k = 1, 2, 3, l = 2, 4, 6, . . . for some small ε > 0, e.g. ε = 10−i for
i = 1, 2, 3, . . . .
Solution: All plane curves have no real point, so we do not show a
figure. 2

If we want to produce curves which have such a local feature at many
points, we can use the curves KOd(x, y) with many solitary points and take
small deformations of them. As some of the solitary points of KOd(x, y)
are local maxima of the graph {z − KOd(x, y) = 0} ⊂ R3 and some others
are local minima, we always get some small ovals if we add or subtract a
small constant ε from these equations, and also some non-real “ovals”.

Challenge 6. Visualize the plane curves

KO−
d,ε(x, y) := KOd(x, y) − ε (4.6)
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KO+

4,0.1
KO−

4,0.1
KO+

5,0.1
KO−

5,0.1

Fig. 8. Some curves which are small deformations of the rational Harnack curves
with the maximum possible number of solitary points. Some of the solitary points are
deformed into small ovals (appearing as dots in the pictures), some have disappeared
into the complex domain (see challenge 6).

and

KO+
d,ε(x, y) := KOd(x, y) + ε (4.7)

for d = 3, 4, . . . and for some small ε > 0, e.g. ε = 10−i for i = 1, 2, 3, . . . .
Solution: The curves KOd have one connected component which is not an
oval, i.e. a pseudo–line. In a neighborhood of this component, the function
KOd(x, y) takes positive values on one side and negative values on the
other. This causes all those solitary points of KOd to disappear which are
on one of the sides of the pseudo–line, depending on the sign in front of
the ε of KO±

d,ε(x, y). The others become small ovals if ε is small enough.2

5. High tangencies at isolated singularities. In this section, we
restrict ourselves to singularities with up to two complex branches and thus
up to four real halfbranches. Later, we will mention some curves which have
more complicated singularities. To produce equations yielding curves of low
degrees with few halfbranches and high tangencies, we use again the trick
mentioned in section 3.2 which yields A−

k -singularities for a high Milnor
number k. As mentioned before, the maximum possible number k(d) such
that there exists a singularity of type Ak(d) on a plane curve of degree d is
not known in most cases and we use the plane curves f2

k,l(x, y) which yield
high Milnor numbers.

Challenge 7. Visualize the plane curves

f2
k,l,−(x, y) = (y − xk)l − yk·l (5.1)

for k = 2, 3, . . . and l = 2.
Solution: The examples have two pairs of real halfbranches which are hard
to distinguish close to the singular point, see Figure 9. For subdivision
visualization algorithms which are based on rectangular grids, these curves
are very hard to visualize correctly in an efficient way. 2
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f
2

2,2,− f
2

3,2,− f
2

4,2,− f
2

5,2,−

Fig. 9. The plane curves f2

k,l,−
(x, y) for l = 2 and k = 2, 3, 4, 5 which have degree

4, 6, 8, 10 and singularities of type A7, A17, A31, A49 (see challenge 7).

p

c1(ε)

c2(ε)
c2

c1

ε

|c1(ε) − c2(ε)| = O(ε
tang(c1,c2)

)

Fig. 10. The definition of tangency of two halfbranches c1, c2 of a plane curve at
an isolated singularity p.

To make the problem coming from the halfbranches which are close
to each other more precise, we introduce the notion of tangency of an
isolated singularity p of a real plane curve f as follows2:

Definition 5.1. Let ci, i = 1, 2, . . . , N be the real halfbranches of a
real plane curve f at a singular point p. Then the tangency tangf (p) of f

at p is the maximum of the tangencies of the
(

N
2

)

pairs of halfbranches ci

where the tangency tang(ci, cj) between two such components ci, cj , i 6= j,
is defined as follows.

If the ci and cj have different tangent directions at p then
tang(ci, cj) = 1. If ci and cj have the same tangent direction t at p, but ci

is on one side of the perpendicular to t through p and cj on the other then
tang(ci, cj) = 0.

In the remaining case (see Figure 10) let ci(ε) := ci ∩ C(0,0)(ε) be the
point of ci at distance ε from p (we choose ε > 0 small enough, s.t. this
intersection is unique). Then for ε → 0, |ci(ε)− cj(ε)| = O(εtang(ci,cj)) for
some rational number tang(ci, cj) ∈ Q. We call tang(ci, cj) the tangency

of ci and cj. The tangency of the singularity p is the maximum
tangency of all pairs of real halfbranches. We denote the tangency of a

real plane curve f at p by tangp(f).

2Similar notions have already appeared in the literature, e.g. in Arnold’s overview
paper from 1968 on singularities of smooth mappings, c.f. [Arn81, p. 3–45].
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As a diffeomorphism is locally a linear isomorphism, two singularities
which are right–equivalent have the same tangency. The tangencies of
normal forms of singular points are particularly easy to compute:

Example 3.

1. The tangencies of the two halfbranches c1, c2 of the normal forms
xk+1 + y2 of an A−

k -singularity, k even, are tang(c1, c2) = k+1
2 (=

d
2 ). Thus, the tangency of an Ak-singularity, k even, is:

tang(A−
k ) =

k + 1

2
.

2. The tangencies of the plane curves f2
k,2,−(x, y) of degree d = 2k

from the challenge above are (as A2k2−1-singularities):

tang(0,0)(f
2
k,2,−) =

2k2

2
=

2d2

8
.

3. The normal forms xk+1 +y2 of an A
•

k-singularity, k odd, are plane
curves which only consist of a solitary double point. They have no
real halfbranch, so their tangency is zero:

tang(A
•

k) = 0.

4. The tangencies of the normal forms of the so-called singularities
of type E±

6k+1 with equation y · (yk−2 ± x2) are: k − 2 (= d − 1)

(for E−
6k+1) and 1 (for E+

6k+1).

6. High tangencies at non–isolated singularities. In the case of
plane curves, a non–isolated singularity is basically just a point which is
contained in some multiple component of the curve. So, for plane curves
non–isolated singularities are in principal not a big visualization issue be-
cause it is not difficult to compute the squarefree part of a polynomial, at
least if the input data is exact.

However, if we allow small deformations of plane curves with multi-
ple components (e.g., because we work with limited precision) then these
components will no longer be multiple, but only approximately multiple.
Good visualizations of such plane curves are not easy; in fact, it is not even
clear what a good visualization of such a curve should be. Should it be
an exact visualization of the deformed curve or should it be a visualization
of the original one? If one is interested in the latter one, then one has to
answer the quite non-obvious question what the original curve was when
starting from a deformed one. In the case of non–isolated singularities,
this is related to the question of computing approximate greatest common
divisors which is a hard problem. Approximate isolated singularities are
probably an even harder object of study.
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Fig. 11. Some graphs of plane curves with non–isolated singularities.

The same difficulty comes up when working with only a small number
of digits which has become quite common recently because of the inven-
tion of graphics cards with many processors. Rounding the coefficients
of a plane curve with multiple components yields a curve which only has
approximately multiple components.

These are some reasons to include examples of plane curves with non-
isolated singularities. Such singularities can basically be divided into two
classes: points on the one–dimensional component which have the same
type of singularity as all points on the component in some small neighbor-
hood, and the other points. The former are simply multiple components,
the latter are multiple components which contain in addition a higher sin-
gular point on them.

A natural way to measure the type of singularity of the first kind
of points (and thus all but finitely many points) is to take the type of the
isolated singularity of a generic line section through the non–isolated singu-
larity; this type is called transversal type of the non–isolated singularity.
This yields a polynomial in a single variable; the highest possible multi-
plicity is achieved by xd where d is the degree of the plane curve. Thus,
the non–isolated singularity with the most complicated transversal type of
singularity on a plane curve of degree d is given by f(x, y) = xd.

To obtain examples of the more complicated type of non–isolated sin-
gularities, we combine the multiple line xd with other multiple components
or isolated singularities, some of which have the same tangent direction as
the multiple component. To get an idea about the difficulty of the chal-
lenge, take a look at the graphs shown in Figure 11.

Challenge 8. Visualize the plane curves

nim := xm,

nim,k := xm · yk,

nixm,n,k,l := xm · (f2
k,l,−(x, y))n,

niym,n,k,l := ym · (f2
k,l,−(x, y))n,

for k, l, m, n = 2, 3, 4, . . . .
Solution: A correct visualization of the plane curves nim consists of a
single vertical line; nim,k are two lines which intersect in a right angle
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ni4,2 ni5,3 nix5,2,3,2 niy5,2,3,2

Fig. 12. Visualizations of some non–isolated singularities: the components of the
plane curve shown in the images have higher multiplicities (see challenge 8).

(see Figure 12). nixm,n,k,l and niym,n,k,l are the unions of a vertical, resp.
horizontal, straight line, and the plane curve f2

k,l,−(x, y) (see challenge 7).
This causes trouble to software which does not compute the squarefree part
first or which only deals with few digits such that the multiple component
does only appear as an approximately multiple component. 2

7. Many isolated singularities. Plane curves with many singulari-
ties are plane curves with small genus, e.g. rational curves which are curves
with genus zero. Similar to section 3.1 the difficulty in visualizing a plane
curve with many singularities correctly is caused by the fact that it is not
trivial to work with the coordinates of the singular points, in particular if
they live in some higher extension of Q.

In this section, we explain briefly a general and classically known
method for globalizing the local structure of a singularity. Certainly, Shus-
tin’s singular version of Viro’s patchworking method provides a very pow-
erful method (at least in the case of plane curves) for doing this; however, it
is not so easy to write down a list of explicit equations via this method. So,
we use the classical strategy mentioned previously. Let us start by consid-
ering the A2-singularity given by f = x3 − y2. Essentially, near the origin
O, the curve f is the difference of the smooth curve g : x = 0 (tripled!)
and another smooth curve h : y = 0 (doubled!) with the property that g

and h have different tangent directions near the origin (i.e. g and h are
transversal near O). As the type of a singularity only depends on the
local behaviour of the curve, we can replace g and h by any other two plane
curves which are smooth at O and which meet transversally at O.

In this way, we can easily produce plane curves with many real singu-
larities which are locally of the type xk − yl:

Challenge 9. Visualize the plane curves

Ck,l := (dfold⌊l/k⌋)
k − (x2 + y2 − 1)l

for 2 = k ≤ l. Here,



154 OLIVER LABS

C2,5 C2,8

Fig. 13. Some plane curves with many real singularities which all have higher
tangencies (see challenge 9).

dfoldd(x, y) :=
d

∏

j=1

(

x · sin
2πj

d
+ y · cos

2πj

d

)

are the d straight lines through the origin discussed in section 8.1.
Solution: The ⌊l/k⌋ · 2 singularities Ck,l at the intersections of the circle
x2 +y2−1 with the d straight lines are of the type xk −yl. For fixed k, the
number of these singularities grows linearly in the degree d = 2l, and also
the Milnor number of the singularity grows linearly in d. It is not difficult
to show that this is asymptotically optimal, see Figure 13. 2

There are many variants of the construction above. E.g., we can use
the plane curves f2

k,l,− mentioned in challenge 7:
Challenge 10. Visualize the plane curves

F 2
k,l,m,− := (y − ((x − 1) · (x − 2) · · · (x − m))⌊k/m⌋)l − yk·l

for l = 2, k = 2, 3, . . . , 2 ≤ m ≤ k.
Solution: From the discussion above and challenge 7, it is clear that the
plane curves F 2

k,2,m,− have m singularities of type Aj for j = ⌊k/m⌋ ·k · l−
1 = 2k⌊k/m⌋ − 1 (see Figure 14). For a fixed number m of singularities,
the Milnor number j grows quadratically in the degree d = k

2 . Conversely,
for fixed j, the number m of singularities grows quadratically in the degree.
It is not difficult to show that this is asymptotically optimal. 2

The coordinates of the singularities of the plane curves from the pre-
vious challenge are rational. As already mentioned, for some visualization
algorithms, it is much harder to work with examples whose singularities
have non-rational coordinates. To get such plane curves, we adapt the pre-
vious examples by replacing the product (x − 1) · · · (x − m) by a function
f(x) which has only real roots none of which is rational for deg f even
and one of which is rational for deg f odd. To give a concrete example,
consider the so–called Tchebychev polynomial Tm(x) ∈ R[x] of degree m

with critical values −1 and +1. This can either be defined recursively by
T0(x) := 1, T1(x) := x, Tm(x) := 2·x·Tm−1(x) − Tm−2(x) for m ≥ 2,
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d = 4, 2 A3 d = 8, 3 A7 d = 8, 4 A7 d = 12, 6 A11

Fig. 14. Some plane curves with many real singularities (see challenge 10):
F 2

2,2,2,−, F 2

4,2,3,−, F 2

4,2,4,−, F 2

6,2,6,−. The figure also shows their degree and number
and type of singularities on them.

FTT2

2,4,− FTT2

2,5,− FTT2

3,4,− FTT2

3,5,−

Fig. 15. Some plane curves with many real higher singularities most of which have
non–rational coordinates (see challenge 12).

or implicitly by Tm(cos(x)) = cos(mx). Most polynomials Tm(x) have no
rational root apart from 0.

Challenge 11. Visualize the plane curves

FT2
k,l,m,− := (y − Tm(x))⌊k/m⌋)l − yk·l

for l = 2, k = 2, 3, . . . , 2 ≤ m ≤ k.
Solution: Essentially, these curves look similar to those in the previous
challenge, so we do not show any pictures here. 2

When also replacing the variable y in the previous challenge by the
Tchebychev polynomial Tm(y), we obtain curves whose number of higher
singularities is at least m2 while their coordinates are non–rational in most
cases. In addition to the constructed higher singularities, some other sin-
gularities such as real nodes or solitary points may appear:

Challenge 12. Visualize the plane curves

FTT2
k,m,− := (Tm(y) − Tm(x)k)2 − Tm(y)2k,

for k = 2, 3, . . . , m = 2, 3, . . . .
Solution: We only give four examples in Figure 15: k = 2, 3, m = 4, 5. 2
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To obtain similar equations with only solitary points as real singular-
ities at non–rational coordinates, one may use

FTT2
k,m,+ := (Tm(y) − Tm(x)k)2 + Tm(y)2k. (7.1)

We do not include a visualization of these curves because they only consist
of higher solitary points whose coordinates are the roots of the Tm.

8. Complicated isolated singularities. What is a complicated sin-
gularity? This is not a common notion in singularity theory. Most singu-
larities which occurred in this article up to now did not have more than
four halfbranches at the singular points. For us, a complicated singular-
ity should thus have more than 4 halfbranches. This criterion alone also
applies to ordinary singularities (see the following section) which do not
look very complicated. We thus also give examples of isolated singularities
which are not ordinary and which have more than four halfbranches. Al-
gebraically, it turns out that there are two other natural measures for the
complexity of a singularity, namely the corank and the modality. We will
dicsuss these notions further down.

8.1. Ordinary singularities. We already mentioned ordinary plane
curve singularites in the introduction: An ordinary m-fold point is locally
the intersection of exactly m different straight lines, in particular all com-
plex branches have pairwise different tangent directions at the singular
point. Ordinary singularities are very special. From the point of view of
the tangency these are the easiest singularities because their tangency is
by definition just 1.

Nevertheless, ordinary singularities are quite interesting. E.g., there is
a number which is strongly related to these points, the so–called delta in-
variant . We do not give a formal definition of this notion, but intuitively,
a singularity with delta invariant δ concentrates δ ordinary double points.
It is related to the Milnor number and the number r of complex branches
through the singular point via the formula:

µ = 2δ − r + 1. (8.1)

E.g., let us consider an ordinary 3-fold point (see Figure 16(a)). When
moving one of the three lines slightly (figure 16(b)), we see that we find
three ordinary double points in a small neighborhood of the original singu-
larity. Similarly, if we take an ordinary m-fold point, we get

(

m
2

)

ordinary
double points when moving m − 2 of the lines slightly in a generic way.
A deformation of a singular point p which produces several singularities
whose delta invariants sum up to the delta invariant of p is called a delta
constant (or δ-constant) deformation . According to equation (8.1),
an ordinary m-fold point thus has Milnor number 2·

(

m
2

)

−m+1 = (m−1)2:
The Milnor numbers of ordinary double, triple, quadruple points are 1, 4, 9.
An A2k-singularity of a plane curve has only one branch and Milnor num-
ber 2k; a δ-constant deformation into a curve with only ordinary double
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(a) (b) (c) (d)

Fig. 16. (a) an ordinary triple point, (b) a δ-constant deformation of an ordinary
triple point, (c) an A8-singularity, (d) a δ-constant deformation of an A8-singularity
(with δ-invariant 4).

points thus has 2k/2 = k such singularities (see Figure 16). The δ invariant
is a very important number because the genus of an irreducible plane curve
f of degree d is

g(f) =
(d − 1)(d − 2)

2
−

∑

s singularity of f

δ(s), (8.2)

where δ(s) denotes the δ-invariant of the singularity s. Together with the
fact g(f) ≥ 0, this formula yields in particular an upper bound on the
maximum possible number µ(s, d) of singularities of any fixed type s on a

plane curve of degree d, namely: µ(s, d) ≤ (d−1)(d−2)
2δ(s) . This number µ(s, d)

is only known in very few cases.
Challenge 13. Visualize the plane curves

dfoldd(x, y) =
d

∏

k=1

(

x · sin
2πk

d
+ y · cos

2πk

d

)

and

dfoldfl
d(x, y) = dfoldd(x, y) − (x2 + y2)⌊d/2⌋+1

for d = 2, 3, 4, 5, 6, . . . .
Solution: The curves dfoldd are just d-gon symmetric sets of d straight lines
through the origin. There is thus no need for a figure. Notice that these
polynomials actually do have rational coefficients; but it is more convenient
to write them down with sin and cos. These curves are obviously those with
the maximum possible number of halfbranches at a singularity of a plane
curve of degree d.

The curves dfoldfl
d have the same singularities, but are not factorizable

into d straight lines and look like flowers similar to the curves shown in
Figure 17 (but all branches have different tangent directions). 2
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dfold4,1 dfold4,2 dfold4,3 dfold4,4

Fig. 17. The plane curves dfoldk,l for k = 4, l = 1, 2, 3, 4 (see challenge 14) of
degree 10, 12, 22, 24, respectively.

Fig. 18. The plane curve fl42 of degree 18 at two different zoom levels.

8.2. Some isolated singularities With many halfbranches. The
curves dfoldd with one ordinary d-fold singularity are those with the points
with the highest number of halfbranches possible for a fixed degree. How-
ever, their tangency is quite low, namely 1. We now provide examples with
arbitrarily high tangency and also an arbitrary number of halfbranches:

Challenge 14. Visualize the plane curves

dfoldk,l(x, y) := (dfoldk(x, y))2 − (x2 + y2)k+l.

for k = 2, 3, 4, 5, 6, . . . and l = 1, 2, 3, . . . .
Solution: These curves look like flowers, see Figure 17. 2

It is not difficult to adapt the construction above to obtain similar
plane curves with more than two halfbranches having the same tangent
direction at the singular point. When using the trick from challenge 7
this produces plane curves with nice singularities. To give an example, we
consider the plane curve

fl4k := (((y − xk)2 − y2k) · ((y − xk)2 − 2y2k))

·(((x − yk)2 − x2k) · ((x − yk)2 − 2x2k)) − (xy)4k+1, k ≥ 2.

fl4k has exactly two tangent directions at the singular point and 8 half-
branches for each of them (figure 18).

8.3. Complicated singularities. As mentioned in the introduction
to section 8, the term complicated singularity is not a commonly used one.
We basically mean singularities which have not too small invariants such
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as the number of branches, the corank, and the modality (see below for
the definitions of these notions). The complicated singularities presented
in this section are neither Ak-singularities nor ordinary singularities.

The corank of an algebraic plane curve f at a point p is defined
as the corank of the Hessian matrix, i.e. the matrix of the second partial
derivatives of f at p. The corank of a plane curve singularity is thus at most
2. Basically, the corank is the number of variables needed to define the type
of the singularity up to right equivalence. More precisely, the generalized
Morse Lemma tells us that for any hypersurface given by a polynomial
h(x1, . . . , xn) with an isolated singularity at p there is a diffeomorphism
which brings h into the form:

g(x1, . . . , xc) ± x2
c+1 ± · · · ± x2

n,

where c = corank(h). From this it is clear that the corank is some rough
measure for the complexity of the singularity. E.g., the ordinary double
points x2±y2 are the only plane curve singularities with corank 0, i.e. with
a Hessian matrix of full rank.

Another measure for the complexity of a singularity is the so-called
modality. We will not give a precise definition of this here, but we will
just illustrate it using an example: Three lines in the plane through the
origin can always be transformed into a specific set of three lines, e.g. x, y,
x − y, by a local diffeomorphism. However, four lines cannot; indeed, the
cross–ratio of the four slopes is an invariant. Thus, the class of ordinary
singularities of multiplicity four (i.e. locally the intersection of four lines)
depends on one parameter. And this is the number of moduli, called the
modality which is 1 in the example. Singularities with modality zero
are called simple singularities. These are the singularities of types A±

k

(xk+1 ± y2 = 0, k ≥ 1), D±
k (x2y± yk−1 = 0, k ≥ 4), E±

6 (x3 ± y4 = 0), E±
7

(x3 ± xy3 = 0), E±
8 (x3 ± y5 = 0). These singularities have many beautiful

relations with other areas of mathematics. Here, we only mention Lie
groups who gave their name to the corresponding singularities (see, e.g.,
[Dur79]) and regular polyhedra.

For our list of challenges we only give those singularities which have
one modulus, called unimodal singularities, and which are part of a
series of equations for infinitely many degrees. For explicit equations of
even more complicated singularities (e.g., with modulus 2 or corank 3),
see [AGZV85, volume I, chapter 17]. The cited chapter also contains a
list of some exceptional singularities of small degree which do not fall into
any of the series. Moreover, the book presents Arnold’s classification algo-
rithm which determines the singularity type of a given explicit equation.
Notice that we did not try to find equations of the lowest possible degree
for the singularities mentioned in the following challenge although there
are certainly realizations of these singularities in lower degrees similar to
the curves f2

k,2,+ of degree 2k given in challenge 2 which define A2k2−1-

singularities with a normal form of degree 2k2.
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X
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9+3
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9+4

J
−
10+3

J
−
10+4

Fig. 19. Some of the complicated singularities mentioned in challenge 15 for a = 5/7.

Y
−+

7,5
Y

−+

6,8
eY

−−
5

eY
−−
6

Fig. 20. Some of the complicated singularities mentioned in challenge 15 for a = 5/7.

Challenge 15. Visualize the plane curves

name normal form restrictions

J±
10+k x3 ± x2y2 + ay6+k a 6= 0, k > 0

X±±
9+k ±x4 + x2y2 ± ay4+k a 6= 0, k > 0

Y ±±
r,s ±x2y2 ± xr + ays a 6= 0, r, s > 4

˜Y ±±
r ±(x2 ± y2)2 + axr a 6= 0, r > 4

for generic real values of the parameter a, e.g. a = 5/7, 9/7, 13/7.
Solution: We cannot give visualizations of all possible cases here. For a few
images see Figures 19 and 20. Please consult our website [Lab03] for more
pictures. Note that the number of halfbranches changes with the choice of
the signs. E.g., ˜Y ++

4+2m and X++
9+2m, m ∈ N, define solitary points although

the number of complex branches is 4 in both cases. 2

9. Other interesting examples. In this section we mention some
examples which do not fit well into any of the other sections, but which are
interesting from several points of view. We start with discriminants and
then give some equations of plane curves on which several of the visualiza-
tion issues discussed in previous sections occur at the same time.

9.1. Discriminants. The first examples we consider here are discrim-
inants of polynomials in one variable which are of the form

fa,b(x) = xk + axl + b, k > l > 0.
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SA2,2 SA4,2 SA2,4

Fig. 21. Some plane curves SAk,l with one higher solitary point and other singu-
larities (see challenge 17).

The discriminant D of fa,b is the polynomial which describes those pa-
rameters (a, b) for which fa,b has a double root, i.e. D is the resultant with
respect to x of f and its derivative f ′(x). For k = 4, l = 2, this is obvi-
ously b·(4b− a2) which has an A2-singularity at (a, b) = (0, 0). Most of the
singularities occurring in this way have already appeared before, so that
we do not make up a challenge for these.

Instead, we will have a look at a discriminant of two polynomials in
two variables: Recently, while searching for trinomial systems with many
real roots, the authors of [DRRS07] studied the discriminant of the system

x6 + ay3 − y, y6 + bx3 − x.

It turns out that this is the simplest known trinomial system to possess
(a, b), e.g. P = (44/31, 44/31), making a trinomial system have 5 roots in
the positive quadrant (see [DRRS07] for proofs and for the equation of the
discriminant). The nice thing about this example is the fact that a correct
visualization of the plane curve D helped the authors to find the point P .

Challenge 16. Visualize the discriminant D ∈ Q[a, b] of the system

x6 + ay3 − y, y6 + bx3 − x.

Solution: See [DRRS07] for many details on the curve. 2

9.2. Plane curves with several difficulties. We now give some
equations of plane curves which admit several of the challenges covered
in the other sections at the same time. Our first examples have a high
solitary point with a high zero–tangency and also singular points with high
tangencies:

Challenge 17. Visualize the plane curves

SAk,l : (y − 1 − xk)l·(y − xk)l + (y − 1)kl+1ykl

for k, l = 2, 4, 6, . . . .
Solution: These curves have a solitary point in (0, 1) and some other sin-
gularities with high tangencies. 2



162 OLIVER LABS

SA2,4,0.001 SA4,2,0.001 SA2,4,−0.001 SA4,2,−0.001

Fig. 22. Some plane curves SAk,l,ε (see challenge 18).

Now, we give some examples which have real singular points with high
tangencies as well as several critical points with small critical values and
singular points with imaginary coordinates:

Challenge 18. Visualize the plane curves

SAk,l,±ε : (y − 1 − xk ± ε)l·(y − xk + ε)l + (y − 1)kl+1ykl

for k, l = 2, 4, 6, . . . and ε = 10−m for m = 1, 2, 3, . . . .
Solution: These curves have one singularity with high tangency at the
origin. In addition, they have many critical points and many singularities,
several of which have imaginary coordinates. 2

To finish, here are some examples of plane curves which have a solitary
point with a high tangency at the origin which is very close to a one-
dimensional component of the curve. These will be very difficult to visualize
for a numerical visualization software which treats small values as zero
because for the examples given below the result will be incorrect, even
topologically, in many cases (see Figure 23). A subdivision method which
only has a heuristic stopping criterion for the recursive search will run into
trouble for similar reasons.

Challenge 19. Visualize the plane curves

SCAk,l,±ε :
(

(y − xk)l + ykl
)

·(y2 − x2 + ε) + ykl+2

for l = 2, k = 2, 3, 4, . . . and ε = 10−m for m = 1, 2, 3, . . . .
Solution: These plane curves of degree 2k + 2 have an A

•

2k2−1-singularity
at the origin very close to which there is a one-dimensional real part of the
plane curve (see Figure 24). 2

A problem of a similar kind is the visualization of the following plane
curves:

Challenge 20. Visualize the plane curves

SAAk,l,±ε :
(

(y − xk)l + ykl
)

·((x − yk)l − xkl − ε) + (xy)kl

for l = 2, k = 2, 3, 4, . . . and ε = 10−m for m = 1, 2, 3, . . . .
Solution: These plane curves of degree 4k have an A

•

2k2−1-singularity at
the origin very close to which there is a one-dimensional real part of the
plane curve (see Figure 25). 2
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SAA2,2,0.001 SAA2,2,0.001 SAA2,2,0.001 SAA2,2,0.001

+10
−17

+10
−17

+10
−16

+10
−16

zoomed in zoomed in

Fig. 23. We visualize the plane curve SAA2,2,0.001 + ε̃ from challenge 20 for sev-
eral values of ε̃ in order to visualize the difficulties which the curves SAA2,2,0.001 pose
to numerical software. The two leftmost pictures show the curve for ε̃ = 10−17 at
two different zoom-levels; these pictures are topologically almost correct: the number
of connected components is the right one, but the solitary point at the origin has been
replaced by a small oval which looks like a short line. However, the two rightmost pic-
tures (ε̃ = 10−16) are wrong, even topologically: locally, the three connected components
become a single one.

SCA2,2,0.001 SCA2,2,0.001 SCA4,2,0.001 SCA4,2,0.001

−10
−15

−10
−21

Fig. 24. Some plane curves with a higher solitary point close to a one-dimensional
component of the curve (see challenge 19). Algorithms treating small absolute values
as zero produce topologically wrong results for such examples.

SAA2,2,0.001 SAA2,2,0.001 SAA3,2,0.001 SAA3,2,0.001

zoomed in zoomed in

Fig. 25. The plane curves SAA2,2,0.001 and SAA3,2,0.001 , each at two different
zoom-levels (see challenge 20).
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A SUBDIVISION METHOD FOR ARRANGEMENT

COMPUTATION OF SEMI-ALGEBRAIC CURVES

BERNARD MOURRAIN∗ AND JULIEN WINTZ∗

Abstract. This chapter covers the use of subdivision methods in algebraic geom-
etry with an emphasis on intersection, self-intersection, and arrangement computation,
for the case of semi-algebraic curves with either implicit or parametric representation.
Special care is given to the genericity of the subdivision, which can be specified whatever
the context is, and then specialized to meet the algorithm requirements.

Key words. Symbolic-numeric computation, topology, intersection, arrangement,
polynomial solvers, mathematical software.

AMS(MOS) subject classifications. 68W30, 65D17.

1. Geometric processing on semi-algebraic sets. In geometric
modeling, the representation of shapes is naturally based on semi-algebraic
models such as B-Spline parameterizations or implicit equations. A geo-
metric object is described by assembling pieces of these primitives. When
several objects have to be manipulated, for instance, to perform Construc-
tive Solid Geometry (CSG) operations (e.g., intersection, union, difference
of volumes), the topological structure of the resulting shape has to be de-
termined, together with a geometric description of the different elements
which constitute this structure. Arrangement computation enables solving
such problems. The first task is to determine the topology of one geometric
object, that is, to analyse how this object decomposes the ambient space
into connected regions, and how the boundaries of these regions are linked.
The next step is to consider several objects, either incrementally or all at
once. The arrangement computation describes the topological structure
induced by the union of all the geometric primitives. This decomposition
is made of connected regions, along with adjacency relationship on their
boundary.

The effective use of such a decomposition in geometric computations,
requires the ability to efficiently perform geometric queries such as point
locations. In the case of a huge number of geometric primitives, manipulat-
ing the whole set of objects could be a bottleneck for many algorithms. It
is thus critical to have the capacity to filter the computation, for instance,
by exploiting a hierarchical structure with different levels of details.

The representation of shapes in application domains such as Computer
Aided Geometric Design (CAGD) is based on semi-algebraic models such as
B-Spline parameterizations. This yields compact representations which are
easy to handle, through so-called control points. Piecewise linear models
are also heavily used in practice, but they represent an approximation
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of the shape which requires storing large amount of data to increase the
degree of accuracy. The numerical stability of the computation performed
on these models is a critical issue, which needs to be handled carefully,
especially near singularities. This is typically the case when performing
geometric operations such as intersection, which are intensively used in
arrangement computations. In particular, the arrangement computation
should be able to efficiently and robustly deal with object representation
known with uncertainties, such as intersection points.

Arrangements of geometric objects is a field of computational geometry
which has been studied for years [1], initially with simple objects such as
line segments [4], circular arcs and curves are still investigated [22, 14, 11,
18] and can be used for computing an arrangement of surfaces [20]. The
current methods mainly use a sweep approach [4]. They focus on events,
which are critical points for a projection direction. The events are sorted
before a critical value and the order after this critical value is deduced from
information at the critical points.

More recently, sweep-line algorithms for computing an arrangement
of arbitrary algebraic curves have emerged [8], making use of resultants to
compute roots when the sweep-line encounters an event, another alternative
is eigenvalue methods [18]. In [5] the authors present another context
for computing an arrangement of a set of curves defined on a continuous
two-dimensional parametric surface, while sweeping the parameter space.
Finally, we mention an attempt at computing elements of an arrangement
of implicit curves using interval arithmetic in a subdivision process [15].

When using sweep methods, events are treated when the sweep line
encounters points of interest, where a projection on a line becomes critical,
reducing the dimension of the problem but increasing its computational
difficulty (for instance by computing resultants). Moreover, the projection
step onto a subspace of smaller dimension is systematically followed by a
lifting operation to come back to the initial space. Most of the existing
approaches rely on exact geometric computation models. When dealing
with segments, this is not really an obstacle, but for general semi-algebraic
objects, these operations are delicate from a numerical point of view, since
we are working at critical values. They require the manipulation of alge-
braic numbers, and their complexity could be a problem with large bitsize
input polynomials.

In this paper, our aim is to describe a new method to compute ar-
rangements of semi-algebraic sets, which allows filtering techniques, pro-
viding different level-of-details for the representation of the arrangement,
and which requires as an external tool, the isolation of intersection points.
The algorithm follows a subdivision approach, which focuses on regularity
criteria and regular regions. We avoid the analysis at critical values by
enclosing the singular points in a domain from which the problem at hand
can be solved.
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Subdivision algorithms appear in various fields of algebraic geometry
such as topology, intersection and self-intersection computation, solution of
non-linear equations. Such methods are less sensitive to numerical instabil-
ity, while using approximations of objects and of their intersection points.
Their application to arrangement computation has emerged such as in [7]
where interval arithmetic is used to classify cells in the subdivision process.
Subdivision methods are also very efficient for isolating the roots of poly-
nomial equations, which appear in geometric problems [21, 9, 13, 19]. They
have also been extended for the approximation of one or two dimensional
objects [2, 16, 17].

The new method that we describe in this paper for computing ar-
rangements of semi-algebraic curves aims at exploiting the power of these
methods to localize the zeroes of polynomials. It is combining a subdivi-
sion approach with known algorithmic geometry schemes, bridging a gap
between these two research areas. By storing geometric information on the
zero locus of the functions which define the algebraic curves in hierarchi-
cal structures, we provide an efficient way to localize intersection points
of region boundaries. It prevents useless computation by stopping the
subdivision as soon as the topology of the object is known in a cell of sub-
division. Moreover, the framework can be naturally extended to compute
an arrangement of semi-algebraic surfaces in dimension 3.

The chapter is organized as follows. In the next section, we describe the
generic subdivision scheme and the combination of ingredients applied on
regions. In Section 3, we describe more specifically the local computation
performed on these regions. In Section 4, we describe the tools needed to
handle the semi-algebraic models we are manipulating. Finally, we show
some examples in Section 5 and we conclude.

2. Subdivision approach and criterion of regularity. In this sec-
tion, we describe in more details the generic subdivision approach, its be-
havior being the same whatever the representation of input objects is, as
long as some representation specialized routines are provided. These spe-
cialized functions are described in the last section.

2.1. Subdivision. The subdivision process decomposes the initial do-
main into sub-domains in such a way that the structure (or the topology) of
the objects inside these sub-domains is uniquely determined from informa-
tion computed on the boundary. For that purpose, we need to check the
existence and unicity of some characteristic points inside these domains.
The method exploits, as a main ingredient, solvers which isolate the real
roots of polynomial equations. The only requirement that these external
solvers must satisfy is to enclose distinct solutions into boxes which are
disjoint one from the other.

The input of the algorithm is a sequence Σ = {o1 . . . on} of semi-
algebraic curves in the plane and an initial box B0 ⊂ R2. Here is the
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general scheme that we follow in the static case, i.e. considering all objects
at once:

Algorithm 2.1: A generic subdivision algorithm

Input: a list of objects O and a box B0 ⊂ R2.
Output: a list of regions.
Create a quadtree Q and set its root to B0;
Create a list of cells C and initialize it with [B0];
while C 6= ∅ do

c = pop(C) ;
o = objects(O, c) ;
if regular(o, c) then
Q ← topology(o, c) ;

else
C ← subdivide(o, c) ;

end

end

return fusion(Q) ;

A quadtree is initialized with the initial bounding box B0. Its root
is appended to a list of cells. The function objects returns the list o of
objects which are considered as active in c (those that intersect the cell).
The algorithm checks the list o of objects lying in c for regularity. If
not regular, the cell is subdivided into smaller cells, building a hierarchy
of cells in the quadtree. These cells, appended to the list of cells are then
checked for regularity and subdivided further if not regular. Finally regions
are computed in regular cells and stored in the corresponding leaves of the
quadtree and merged traversing the tree from its leaves to its root to obtain
the set of regions determining the arrangement. The following operations
remain to be clarified:

regular: the specific operation which checks if regions in a cell of the
subdivision can be computed from the intersection of the active objects
with the boundary, i.e. if the objects in the list are regular in the cell.

subdivide: the operation which subdivides a cell into four children,
saving computation effort.

topology: the specific operation which computes regions in a regu-
lar cell.

fusion: the operation which reconstructs the connected components
in the global arrangement from the regions stored in each leaf node of
the tree.

2.2. Regularity criterion. Basically, an object in a cell, is said to
be regular if the topology of the regions is uniquely determined from the
intersection points of this object with the boundary of the cell. We have
chosen the configurations, shown in Figure 1, in which the active objects
are said to be regular.
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(a) (b) (c)

Fig. 1: Regular cells.

The first case (a) is the easiest configuration in which, the region is
the whole cell. The object is then considered as non-active in the cell. The
second case (b) is a cell in which the curve has either no x-critical point
(with vertical tangent) or no y-critical point (with horizontal tangent). In
this case, the topology of the curve inside the cell is uniquely determined
from its intersection with the boundary. The connecting algorithm used
to get the curve segments from points on the border of the cell will be
described in Section 2.4. In the last case (c), all the branches of the object
are intersecting at a unique (singular) point of the cell, in a star-shaped
configuration. To analyse the topology around this point, we should be able
to compute the number of branches stemming out from a self-intersection
point. See [3] for the algorithm to obtain regions.

This set of conditions is sufficient to deduce the topological structure
of each object in a cell as we will see in Sections 2.4 and 3.3. It involves the
isolation of specific points of the curves and their insertion in x-regular or
y-regular branches of these curves. This operation is supplied as a special-
ization of the generic subdivision arrangement algorithm. A specialisation
of these functions for the different representations of semi-algebraic curves
that we consider is described in Section 4.1.

This strategy of subdivision is to deal with some degenerate cases
such as intersection points of more than 2 curves. It can also be optimised
by requiring a limiting number of active objects or of branches of these
objects in a cell. If, for instance, we require at most one branch per cell,
the region computation will be simplified but the depth of the subdivision
might increase, depending of the geometric configuration.

2.3. Subdividing a cell. When a cell is determined not regular, it is
subdivided into smaller parts, generally more likely to be regular. When we
subdivide the cell, we compute the intersection of the active objects in the
cell with the new boundary and update the geometric information attached
to the cell such as points of interest on the border or inside the cell.
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Fig. 2: Subdivision algorithm.

During the subdivision of a cell, points already computed will be dis-
tributed in child cells. We call this process vertical inheritance, since points
of interest are distributed from a parent, to its children, in a tree hierarchy
of cells. This inheritance is processed by locating the points in the children.

Another way to avoid computation is to consider adjacency relation-
ships between child cells. Indeed, once a cell has been checked for regularity,
generated points on the border of the cells can be inherited to its adjacent
cells. This process takes place inside one level of the hierarchical tree, it is
therefore called horizontal inheritance.

2.4. Topology. The topology step consists of computing the region
structure defined by one curve o, from the information on the boundary of
the cell. We assume that the curve is x or y-regular in the cell, that is with
no vertical or no horizontal tangent. Suppose that we are in the first case of
x-regularity. To each point p of o on the boundary of the cell, we associate
an x-index defined as the sign of the scalar product of the normal to o at
p interior to the cell and the unit vector in the x-direction. It is positive
if a branch is appearing in the cell, when we sweep in the x-direction
and negative if the branch is disappearing. If the sign is 0, depending on
the multiplicity of intersection of the curve with the boundary and the
orientation of the gradient, we duplicate or not the point and associate it
with a positive and/or negative sign.

The algorithm of connection chooses a pair of consecutive points a, b

on the boundary, so that a is of x-index +, b is of x-index − and a has
the smallest x-coordinate. The branch (a, b) is formed and the pair (a, b)



BERNARD MOURRAIN AND JULIEN WINTZ 171

f1

f2

f1

f2

f3

f3

+

+

−

−

Fig. 3: Generic scheme to compute a region from information on the border
of a subdivision cell.

is remove from the set of points on the boundary. This process is applied
recursively, until no point is left on the boundary of the cell (see [3] for
more details).

The construction of regions is based on this connection algorithm and
illustrated in Figure 3. Regions are constructed while turning around the
border of the cell and connecting border points together in loops, using the
branch connections, as shown in Figure 3.

It is even more easy in the case of a star-shaped curve, since each
intersection point of the object and the boundary of the cell is connected
together with the singular point lying in the cell. See [3] for an algorithm
to count the number of branches at a singular point.

When several objects are active in a cell and each of these objects is
regular, regions defined by each object are computed as described above.
They are then merged (or arranged), using the updating algorithm de-
scribed in Section 3.3.

2.5. Fusion. At the end of the subdivision process, the quadtree con-
tains regions computed in regular cells in its leaf nodes, internal nodes keep
track of the subdivision structure. To get the set of regions defined by one
object, or by a set of objects, omitting the subdivision process which lo-
cally ensures a correct topology in regular cells, these small regions have to
be merged. To do so, we traverse the quadtree from its leaves to its root,
merging the regions inside a level of the tree and across levels, in a process
called fusion.

To be consistent regarding adjacency relationships, children nodes of
an internal node are merged in the following order: the two cells located
in top nodes, the two cells located in bottom nodes and the resulting top
cell together with the resulting bottom cell. Regions determined in the
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Fig. 4: Fusion of regions.

corresponding cells are merged together, resulting in a new set of regions
which are the unions of adjacent regions as shown in Figure 4.

This algorithm brings local regions determined in regular cells asso-
ciated with leaf nodes, up to the root, computing their union if they are
adjacent across the levels of the tree. The root node finally contains regions
determined by the object or the set of objects for which the subdivision
process has been initiated.

Once these regions have been computed, they are inserted into an
augmented influence graph, the data structure used to represent the de-
composition of the space [6].

3. Region representation and computation. The subdivision
scheme described above assures the transition from the (semi)algebraic
representation of an object to its geometry, producing regions, either con-
sidering objects one by one or all at once.

This section focuses on defining in great details the structure of a re-
gion and the associated data used to facilitate the manipulation of regions.

3.1. Region representation. A region is traditionally defined by a
set of elements of incremental dimensions with respect to the one of the
input space: vertices, edges and faces. When computing an arrangement of
semi-algebraic curves, regions are faces, incidence edges of which are curved
segments with continuous representation. Vertices are some markers that
help to somehow provide a discretization of these continuous objects.

The set of vertices of an arrangement is mainly defined by intersection
operations on the input objects. In some cases, stronger conditions on the
edges can be assumed such as a monotonicity requirement. In this case, x

and y critical points will be inserted in order to turn the edges into mono-
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Fig. 5: Building the region segmentation.

tone ones. Also, some objects may have a representation which can induce
degenerate points such as isolated singular points or self-intersections, usu-
ally referred to as singularities. These points appear explicitly as vertices in
the arrangement, even if they are isolated. They provide a better accuracy
in the description of a region and a certified topology.

The set of edges defining a region can also be constrained regarding
some requirements. Indeed, we can afford the edges to be non intersect-
ing, which means that a region will be “on the same side” of the oriented
boundary. The orientation of edges is a paramount aspect when defining a
region, so that Boolean operators can decide on which side of an edge lies
the interior of the region.

This discretization is a main requirement for the input of usual algo-
rithms dealing with regions such as Boolean operators, in which oriented
edges are required to compute the resulting region.

This data structure can be enriched to enhance further operations in
the case of a dynamic arrangement algorithm. Such algorithm maintains
its solution under insertion or removal of objects, and conflict detection is
a critical operation which needs to be performed efficiently.

3.2. Region segmentation. In the case where regions are computed
for an object with no regard of existing objects, they may conflict with
regions determined by another object, already inserted into the augmented
influence graph.

To help locating such a conflict in efficient way, we associate with a
region, an additional data structure called the region segmentation. It is
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a binary tree in which leaf nodes are associated with an edge of a region,
together with its corresponding bounding box, and internal nodes are as-
sociated with the bounding box of the union of their children bounding
boxes. Figure 5 gives a hint on how to compute such a structure: the list
of edges is flattened then traversed from left to right computing unions of
boxes, in order to provide a balanced data structure.

Once regions have been processed to build the segmentation, it is very
easy to find out whether two regions intersect, whatever the type of objects
defining their edges are.

To do so, we “intersect” the respective segmentations associated with
two regions, that is, beginning with the roots, we check the nodes and
recursively proceed to their children as long as their associated boxes in-
tersect. If two bounding boxes associated with two leaf nodes respectively
(containing the edges) do intersect, the algorithm, shown below, provides
a list of conflict zones, in which actual intersection points can be computed
using representation specific procedures.

This query on the respective segmentations of two regions provides
an efficient test to check regions for intersection and does not require any
further algebraic computation. If objects do intersect, it will yield a list
of reduced domains improving the efficiency of the algebraic tools used to
isolate the intersection points.

Algorithm 3.1: Querying region segmentations for conflict

Input: two segmentation nodes n1 and n2

Output: a list L of conflict zones
if !intersect(n1, n2) then

return L ;
end

if isLeaf(n1) and isLeaf(n2) then
L ≪ intersect(n1, n2) ;

else if isLeaf(n1) and !isLeaf(n2) then
L ≪ query(n1, left(n2)) ;
L ≪ query(n1, right (n2)) ;

else if !isLeaf(n1) and isLeaf(n2) then
L ≪ query(left(n1), n2) ;
L ≪ query(right(n1), n2) ;

else
L ≪ query(left(n1), left(n2)) ;
L ≪ query(left(n1), right(n2)) ;
L ≪ query(right(n1), left(n2)) ;
L ≪ query(right(n1), right(n2)) ;

return L ;

3.3. Updating regions. This section addresses the problem of re-
solving conflicts between regions. This resolution consists of dividing con-
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flicting regions into sets of regions, the union of which covers the conflicting
regions. This set of regions is composed of the intersection of conflicting
regions and of the difference of this intersection with original regions.

First, we consider the case of a static algorithm for computing an
arrangement in a cell in which several objects are regular after the sub-
division step. Secondly, we describe a dynamic algorithm which processes
the regions defined incrementally by the objects. In this case, conflicts are
dealt with directly during the subdivision process which takes into account
intersections between the objects.

Let us describe first the static approach. When checking a cell contain-
ing several objects for regularity, we have to check whether pairs of objects
do intersect or not. Let us assume that we have computed the regions
R0, . . . ,Rs defined by the objects o1, . . . , ok in the cell. These are con-
nected components the boundary of which consists of either sub intervals
of the boundary of the cell or branches of the curves o1, . . . , ok connecting
two points on the boundary of the cell.

Consider now the regular object ok+1 and, for each of its branches,
consider one of its end points on the boundary of the cell. It belongs to a
region Ri0 . We check where the object ok+1 intersects the objects on the
boundary of Ri0 .

If a branch of ok+1 does not intersect another object, we split the region
Ri0 in two sub regions sharing the branch of ok+1 on their boundary.

If ok+1 does intersect another object oj0 of the boundary of Ri0 :
1. We insert the point on the corresponding branch of oj0 and split

the region Ri0 into two sub regions (deduced from the intersection
point and the points of ok+1 on the boundary).

2. We take the region Ri′
0
6= Ri0 which is sharing the branch of oj0

on its boundary.
3. We repeat the intersection computation between ok+1 and the ob-

ject on the boundary of the new region Ri′
0
.

4. If new points of intersection are found, the cell is subdivided and
the same process is applied on the sub cells.

5. Otherwise the region Ri′
0

is split in two sub regions (deduced from
the intersection point and the points of ok+1 on the boundary).

Secondly, considering the dynamic algorithm, we process objects one
by one, computing regions defined by an object in a subdivision process,
and resolving conflicts with other regions in an efficient manner involv-
ing the region segmentation structure introduced here before, in a second
time. The approach also allows us to directly compute Boolean operations
on the regions defined by different objects, without computing the whole
arrangement structure (see Figure 6 for the case of an intersection compu-
tation of two conflicting regions). Again, this Boolean operation will work
just the same way whatever the representation chosen for objects defining
the edges of the region, as long as intersection methods are provided in a
specialization of it.
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Fig. 6: A generic boolean operation.

The idea behind this method, inspired from an algorithm proposed
in [23] is to perform a walk-about on the border of regions, from an in-
tersection point to another, regarding precomputed navigation information
depending on the Boolean operation at hand. This method assumes the
regions to be oriented in a way depending on the operation at hand. For
the case of an intersection computation, edges have to be oriented coun-
terclockwise (the interior then lies on the left of the edges), for the case of
an union computation, edges have to be oriented clockwise (in which case
the interior of the region lies on the right of the edges). This precondition
can easily be met directly when computing the topology of regions inside
regular cells (see Section 2.4).

First, using representation specific methods, we compute intersection
points in the list of conflict zones provided by the query on the respec-
tive region segmentations. Then, to each one of those, we associate a
so-called navigation information which decides on which region the walk-
about continues, from an intersection point to another. This information
can be computed in various ways also depending on the Boolean operation
at hand. In the case of an intersection computation, the walk-about will
continue on the region which edge is on the left of the other, in the case of
a union computation, the walk-about will continue on the region, incident
edge of which is on the right of the other (see Figure 6(a)). The resulting
region is then constructed during the walk-about adding vertices as well as
edges, considering adequate adjacency relationships (see Figure 6(b)).

4. Algebraic operation on semi-algebraic sets. We have pre-
sented a generic algorithm. Generic means that its overall behavior will
always be the same, assuming some required functionalities on the specific
object types . The algorithm therefore provides an abstraction of represen-
tation related functions. A generic algorithm can never be used out of the
box, without providing these specific functionalities, it has to be specialized.

In the semi-algebraic curve arrangement algorithm example, these spe-
cific methods are mainly used for the regularity test and for the region
intersection. Geometrically, they include the ability to compute:
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• x and y critical points,
• self-intersection points or isolated points,
• cell-curve intersection points,
• curve-curve intersection points.

The only challenge left is to provide algebraic algorithms to compute
these features. Having such tools, being able to express the underlying
algebraic problems ends in being able to test the cells for regularity since
we only have to count the number of features in a cell.

4.1. Isolating real roots. A critical operation, which we have to
perform in an arrangement computation, is to isolate the roots of poly-
nomial equations. In such a computation, we start with input polyno-
mial equations (possibly with some incertitude on the coefficient) and we
want to compute an approximation of the real roots of these equations or
boxes containing these roots. Such operation should be performed very
efficiently and with guarantee, since they are used intensively in geometric
computations.

Hereafter, we will describe subdivision solvers which exploit the prop-
erties of Bernstein bases. The Bernstein basis is often used in a subdivision
process involving algebraic curves since it is a very convenient representa-
tion to encode the restriction of a multivariate polynomial, within a given
domain.

Univariate Bernstein basis. Given an arbitrary univariate polyno-
mial function f(x) ∈ K, we can convert it to a representation of degree d

in Bernstein basis, which is defined by:

f(x) =
∑

i

biB
d
i (x) with Bd

i (x) =

(

d

i

)

xi(1− x)d−i,

where bi are usually referred to as control coefficients. Such a conversion is
done through a basis conversion [10]. The above formula can be generalized
to an arbitrary interval [a, b] by a variable substitution x′ = (b − a)x + a.
We denote by Bi

d = (x; a, b)
(

d
i

)

(x−a)i(b−x)d−i(b−a)−d the corresponding
Bernstein basis on [a, b].

Using De Casteljau subdivision, the representation of a univariate
polynomial in the Bernstein basis associated with any (sub-)interval can
be deduced from its representation on the initial interval.

Multivariate Bernstein basis. The univariate Bernstein basis rep-
resentation can be generalized to multivariate ones. Briefly speaking, we
can rewrite the definition (see equation 4.1) in the form of tensor products.
Suppose for x = (x1, ..., xn) ∈ Rn, f = (x) ∈ K[x] having the maximum
degree d = (d1, ..., dn) has the form:

f(x) =

d1
∑

k1=0

...

dn
∑

kn=0

bk1...kn
Bd1

k1
(x1)...B

dn

kn
(xn).
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The De Casteljau subdivision for the multivariate case proceeds simi-
larly to the univariate one, since the subdivision can be done independently
with regards to a particular variable xi. The Descartes’ law also applies
for the multivariate case. For a polynomial of n variables, the coefficients
can be viewed as a tensor of dimension n.

Univariate Bernstein solver. Let us consider first an exact poly-
nomial f =

∑d
i=0 aix

i ∈ Q[x]. Our objective is to isolate the real roots of
f , i.e. to compute intervals with rational endpoints that contain one and
only one root of f , as well as the multiplicity of every real root. Here is
the general scheme of the subdivision solver that we consider, augmented
appropriately so that it also outputs the multiplicities. It uses an external
function V (f, I), which bounds the number of roots of f in the interval I.

Algorithm 4.1: Real root isolation

Input: A polynomial f ∈ Q[x], such that deg(f) = d and
L (f) = τ .

Output: A list of intervals with rational endpoints, which contain
one and only one real root of f and the multiplicity of
every real root.

Compute the square-free part of f , i.e. fred ;
Compute an interval I0 := (−B, B) ;
Initialize a queue Q with I0 ;
while Q 6= ∅ do

Pop an interval I from Q and compute v := V (f, I) ;
if v = 0 then discard I ;
if v = 1 then output I ;
if v ≥ 2 then split I into IL and IR and push them into Q ;

end

Determine multiplicities of real roots, using fred ;

Another interesting property of the univariate Bernstein representa-
tion related to Descartes rule of signs is that there is a simple yet efficient
test for the existence of real roots in a given interval. It is based on the
number of sign variation V (bk) of the sequence bk = [b1, . . . , bd] that we
define recursively as follows:

V (bk) = V (bk−1) +

{

1 if bkbk−1 < 0
0 otherwise

With this definition, we have:

Proposition 4.1. Given a polynomial f(x) =
∑n

i biB
d
i (x; a, b), the

number N of real roots of f on ]a, b[ is less than or equal to V (b), where
b = (bi)i=1...n and N ≡ V (b) mod 2.

With this proposition,
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• if V (b) = 0, the number of real roots of f in [a, b] is 0.
• if V (b) = 1, the number of real roots of f in [a, b] is 1.

The approach can also be extended to polynomials with interval co-
efficients, by counting 1 sign variation for a sign sub-sequence (+, ?,−) or
(−, ?, +), 2 sign variations for a sign sub-sequence (+, ?, +) or (−, ?,−),
1 sign variation for a sign sub-sequence (?, ?), where ? is the sign of an
interval containing 0. Again in this case, if a family f of polynomials is
represented by the sequence of intervals b̄ = [b̄0, . . . , b̄d] in the Bernstein
basis of the interval [a, b]: if V (b̄) = 0, all the polynomials of the family
f have no roots in [a, b], if V (b̄) = 1, all the polynomials of the family f

have one root in [a, b].
This subdivision algorithm, using interval arithmetic, yields either in-

tervals of size smaller than ǫ, which might contain the roots of f = 0 in
[a, b] or isolating intervals for all the polynomials of the family defined by
the interval coefficients.

Multivariate Bernstein solver. We consider here the problem of
computing the solutions of a polynomial system











f1(x1, . . . , xn) = 0
...
fs(x1, . . . , xn) = 0

in a box B := [a1, b1]× · · · × [an, bn] ⊂ Rn.
The method for approximating the real roots of this system, that we

describe now uses the representation of multivariate polynomials in Bern-
stein basis, analysis of sign variations and univariate solvers. The output
is a set of small-enough boxes, which contain these roots. This subdivision
solver can be seen as an improvement of the Interval Projected Polyhedron
algorithm [21].

In the following, we use the Bernstein basis representation of a multi-
variate polynomial f of the domain I := [a1, b1]× · · · × [an, bn] ⊂ Rn:

f(x1, . . . , xn) =

d1
∑

i1=0

· · ·

dn
∑

in=0

bi1,...,in
Bi1

d1
(x1; a1, b1) · · ·B

in

dn
x(xn; an, bn).

Definition 4.1. For any f ∈ R[x] and j = 1, . . . , n, let

mj(f ; xj) =

dj
∑

ij=0

min
{0≤ik≤dk,k 6=j}

bi1,...,in
B

ij

dj
(xj ; aj , bj)

Mj(f ; xj) =

dj
∑

ij=0

max
{0≤ik≤dk,k 6=j}

bi1,...,in
x B

ij

dj
(xj ; aj , bj).
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Theorem 4.1 (Projection Lemma). For any u = (u1, . . . , un) ∈ I,
and any j = 1, . . . , n, we have

m(f ; uj) ≤ f(u) ≤M(f ; uj).

As a direct consequence, we obtain the following corollary:

Corollary 4.1. For any root u = (u1, . . . , un) of the equation f(x) =
0 in the domain I, we have µ

j
≤ uj ≤ µj where

• µ
j

(resp. µj) is either a root of mj(f ; xj) = 0 or Mj(f ; xj) = 0 in

[aj , bj] or aj (resp. bj) if mj(f ; xj) = 0 (resp. Mj(f ; xj) = 0) has
no root on [aj , bj ],
• mj(f ; u) ≤ 0 ≤Mj(f ; u) on [µ

j
, µj ].

The solver proceeds in the following main steps:
1. applying a preconditioning step to the equations;
2. reducing the domain;
3. if the reduction ratio is too small, then split the domain;

until the size of the domain is smaller than a given ǫ.

The algorithm is parameterized by the preconditioning strategy, the re-
duction strategy and the subdivision strategy. It can be proved that the
reduction based on the polynomial bounds m and M behaves like New-
ton iteration near a simple root, that is we have a quadratic convergence,
using a local preconditioning. For more details on this method, including
complexity bounds and practical behavior, see [19]. This approach is com-
patible with the sleeve techniques used for univariate polynomials, Using
machine precision arithmetic, the guarantee that the computed intervals
contain the roots of f , is obtained by controlling the rounding mode dur-
ing the De Casteljau computation.

4.2. Implicit curves. In this section, we describe the two operations
of the arrangement computation which are specialized for implicit curves,
namely the isolation of specific points and the insertion of points on the
branches of a regular curve.

We denote by fk(x, y) ∈ R[x, y] the polynomial defining the implicit
curve corresponding to the object ok. The root isolation operations will be
performed on the Bernstein representation of fk on D = [a, b]× [c, d]:

fk(x, y) =

dx,k
∑

i=0

dy,k
∑

j=0

bk
i,j Bi

dx,k
(x; a, b)B

j
dy,k

(y; c, d),

where Bi
d(x; u, v) =

(

d
i

)

(x− u)i(v − x)d−i (v − u)−d (for 0 ≤ i ≤ d, u < v).
Here is the list of points that we have to compute:
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• The intersection locus of an implicit curve and borders of a subdivi-
sion cell (e.g., with coordinates [xmin, xmax]×[ymin, ymax]) can be obtained
by solving the univariate equations f(xmin, y) = 0 and f(xmax, y) = 0 in y

for left and right vertical borders, and f(x, ymin) in x and f(x, ymax) in x

for bottom and top horizontal borders.

• The critical points in the x-direction (resp. the y-direction) can be
obtained by (resp.) solving:

{

fk(x, y) = 0
∂yfk(x, y) = 0

and

{

fk(x, y) = 0
∂xfk(x, y) = 0

• To compute singular points (isolated or self-intersection points), we
solve (e.g., using the multivariate subdivision solver):







fk(x, y) = 0
∂xfk(x, y) = 0
∂yfk(x, y) = 0

• The intersection points of two curves ok, ol in a cell are obtained by
solving the bivariate system:

{

fk(x, y) = 0
fl(x, y) = 0

Finally, the insertion of a point p on one of the branches of a regular
curve, say a x-regular curve is performed as follows: The point p is given by
an isolating box B = I1 × I2 ⊂ R2. We consider the x-monotone branches
of C, which overlap the interval I1 = [m1 − δ1, m1 + δ1] (m1 ∈ R, δ1 > 0).
The localization of p is performed by computing the solutions α1, . . . , αn1

(resp. β1, . . . , βn2
) of f(m1, y) = 0 above (resp. below) the interval I2. If

n1 + n2 + 1 is not the total number of branches above the interval I1, we
refine the isolating box B. Otherwise, we the point p is on the (n1 + 1)th

branch of o above I1 starting from the top.

4.3. Parametric curves. Parametrized objects feature many repre-
sentations. We present the case of polynomial rational curves and the one
of B-Spline curves, giving a hint on how to compute the elements needed
for the specialization of our generic algorithm for these representations.

A uniform rational polynomial curve is defined by the formula:

c(t) =

(

x(t)

w(t)
,

y(t)

w(t)

)

where x(t), y(t), z(t) are polynomial functions evaluated to obtain the image
of t ∈ I ⊂ R by c in R2.
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(−,−)

(+,−)
(+,+)

(+,−)

(−,−)

(−,+)

(a) Segmenting the curve. (b) Querying the segmentation.

Fig. 7: A generic procedure to compute features of a piecewise linear curves.

It is possible to compute intersection points of a uniform rational curve
with any line segment parallel to the axis, by solving the following univari-
ate problems:

y(t)− yminw(t) = 0 and xmin ≤ x(t) ≤ xmax

y(t)− ymaxw(t) = 0 and xmin ≤ x(t) ≤ xmax

x(t)− xminw(t) = 0 and ymin ≤ y(t) ≤ ymax

x(t)− xmaxw(t) = 0 and ymin ≤ y(t) ≤ ymax

as well as the critical points:

x′(t)w(t) − x(t)w′(t) = 0 y′(t)w(t) − y(t)w′(t) = 0

and self-intersection points: c(t)|∃(t, s), t 6= s verifying

{

x(t)w(s)−x(s)w(t)
t−s

= 0
y(t)w(s)−y(s)w(t)

t−s
= 0.

The approach naturally extends to B-Spline curves defined as piecewise
rational parameterized curves [10]. Since Descartes rule of sign is still valid
for the representation of a curve c:

c(t) =

∑n
i=0 piBi,d,τ (t)

∑n
i=0 wiBi,d,τ (t)

in the the B-Spline basis Bi,d,τ associated with the node sequence τ =
(τ1, τ2, . . ., τn+k) in degree d, the subdivision solvers described in Section
4.1 also work for this type of representation.

4.4. Piecewise linear curves. The treatment of piecewise linear
curves p0, . . . , ps (with pi ∈ R2) is similar to the case of parametric
curves and is illustrated in Figure 7. First, to each segment pi, pi+1

we associate a so-called “monotony code” (corresponding to the sign of

the coordinates of the vector
−→

pipi+1. Then, segments are gathered in a
monotonous segmentation, a balanced binary tree data structure, similar
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Fig. 8: Computing an arrangement of 200 concentric circles in Axel.

to the region segmentation which is queried the same way to compute self-
intersection points. The only difference between the region segmentation
and the monotonous segmentation is that in the latter, curve segments
are gathered with regard of their monotony code, Mk = M(tk, tk+1) =
(sign(x(tk+1)− x(tk)), sign(y(tk+1)− y(tk))), Figure 7(a). These segmen-
tations are then compared to find non adjacent intersecting nodes (com-
paring the coordinates of their associated edges’ bounding boxes) in which,
intersection points are computed using usual methods 7(b).

5. Examples. Rather than analysing the complexity of the algorithm
(which is not a trivial task), this section explains how it behaves on some
examples. Since piecewise linear and parametric representations do not
represent a high computational challenge, we will focus on implicit repre-
sentation.

The algorithm has been implemented within the algebraic geometric
modeler Axel 1. The software is a “proof of concept” prototype and focuses
on genericity and if no optimization is provided, the algorithm is slowed
down for visualization purposes. Timings are only given as an indication
of the practical behavior. Experiments have been run on an Intel 4 CPU
3.40GHz computer with 1024Mo. RAM.

5.1. Concentric circles. The first example, as shown in Figure 8 is
the one of 200 concentric circles given implicitly by the equation x2 + y2−
r2 = 0 where r is the radius of the circle, considered from 1 to 200.

1http://axel.inria.fr.
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This example illustrates the importance of the choice of a set of regu-
larity criteria used to drive the subdivision process and the topology com-
putation of regions. Indeed, with a large amount of curves, close one to the
other, considering only one segment of curve in a regular cell would lead
to a huge number of subdivisions. Increasing the depth of the quadtree
and therefore producing a bigger set of local regions in regular cells induc-
ing a longer fusion process. Considering the regularity criterion exposed
in Section 2.2 and the connecting algorithm explained in Section 2.4, the
algorithm behaves as follows:

Subdivision process: 11.919s
– # curve-cell intersections: 1240
– # curve-curve intersections: 0
– # singular points: 0
– # critical points: 800
– quadtree depth: 8

Fusion process: 42.465s
– # regions: 201.

5.2. Singular implicit curves in degenerate configuration. In
the next example, we consider a set of 15 implicit curves in degenerate
configuration. Among the curves, three of them are singular, including
a Descartes pholium and two other singular curves, one which contains 4
intersecting circles at the singular point: x8 +4x6y2 +6y4x4 +4y6x2 +y8−
4x6 − 12y2x4 − 12y4x2 − 4y6 + 16x2y2, the other one with 4 branches at
another coincident singular point: x6 + y2x4 − y4 ∗ x2 − 2x4 − y6 + 2y4 +
x2 − y2 + xy, see Figure 9.

To prevent large subdivision at the intersection locus of the two pre-
vious curves we use the topological degree [3] of the curve to compute the
number of branches stemming out from the singularity, and, compared to
the number of intersection points on the border of the cell we can detect a
star shape structure and compute the topology accordingly.

Subdivision process: 7.224s
– # curve-cell intersections: 865
– # curve-curve intersections: 112
– # singular points: 7
– # critical points: 63
– quadtree depth: 10

Fusion process: 15.675s
– # regions: 142.

This last example has been computed with a reduced set of regularity
criteria using univariate subdivision solvers to produce curve-cell inter-
section points while curve-curve intersection points, critical and singular
points are computed by the mean of multivariate subdivision solvers.
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Fig. 9: Computing an arrangement of 15 implicit curves of degree up to 8
in degenerate configuration in Axel.

More examples and illustrations of the algorithm can be found on the
Axel’s website 2 3.

Summary and outlook. In designing the arrangement algorithm,
special attention has been given to genericity, combining existing subdi-
vision algorithms in various fields of algebraic geometry such as topology,
intersection and self-intersection computation, together with known algo-
rithmic geometry schemes, bridging a gap between these two research areas.

Another emphasis has been put on exactness by providing certified
methods. For example, using topological degree, we are able to ensure a
geometric configuration even though we use approximate tools for obtaining
the points. This certification relies directly on the isolation certification
provided by the external polynomial solver.

Finally, this algorithm is currently partially implemented in the alge-
braic geometric modeler Axel, making extensive use of design patterns [12]
to be consistent with its generic design. A special care has been given to
keeping underlying data structures accessible to the user for queries such
as point locations or Boolean operations.

We are currently investigating the adaptation of the method to higher
dimension for computing an arrangement of semi-algebraic surfaces. Since
the subdivision scheme naturally extends to any dimension, this exten-
sion only requires the provision of specialized implementation of algebraic
operations.

2http://axel.inria.fr/user/screenshots.
3http://axel.inria.fr/user/screencasts.
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INVARIANT-BASED CHARACTERIZATION OF THE

RELATIVE POSITION OF TWO PROJECTIVE CONICS

SYLVAIN PETITJEAN∗

Abstract. In this paper, we give predicates of bidegree at most (6, 6) in the input
for characterizing the relative position of two projective conics. By relative position
we mean the morphology of the intersection, the rigid isotopy class and which conic is
inside the other when applicable. The predicates are derived by analyzing the algebraic
invariant theory of pencils of conics and related constructions.

1. Introduction. Geometric computing with curved objects is often
plagued with robustness issues. For instance, most commercial modeling
or CAGD software choke on near-degenerate problem instances.

Various attempts at better handling degeneracies among non-trivial
objects have led to the unfolding of the paradigm of exact geometric com-
puting. Recall that a geometric object is really two things: a combinatorial
structure (which for instance encodes the incidence properties of the ele-
ments constituting the object) and numerical quantities (coordinates) de-
scribing the embedding of the object in space. Since there are consistency
constraints governing the relation between combinatorial information and
numerical quantities, the numerical instability of geometric algorithms is
intimately linked to this double nature of geometric objects. Working un-
der the paradigm of exact geometric computing means doing calculations
in which numerical quantities are evaluated to su�cient precision (exactly
if needed) in order for the underlying combinatorial structure to be math-
ematically exact.

The dependence of combinatorial decisions on numerical computations
is encapsulated in the notion of geometric predicates. Evaluating a geomet-
ric predicate often means determining the sign of a polynomial expression
in the input coe�cients. The sign itself encodes the answer to a simple
geometric query like �are two given surfaces disjoint, tangent, or transver-
sally intersecting?�. The paradigm of exact geometric computing requires
the predicates to be evaluated exactly, ensuring that the branchings of the
algorithm are correct, that the software will not crash, loop inde�nitely
or output a wrong answer, and thus that the topological structure of the
output is correct.

To improve algorithm performance, the evaluation of predicates is in
general performed using a mix of interval, �oating-point arithmetic (when
the value of the expression is su�ciently far from zero) and exact arithmetic
(otherwise). The degree of the polynomials expressing geometric predicates
is a direct measure of the required number of bits and therefore of the
e�ciency of the implementation: the higher the degree of the predicate,
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the more often the arithmetic �lters will fail and the more costly the exact
evaluation will be. Translating each geometric decision in predicates of (as)
low degree (as possible) is therefore critical to strictly limit the arithmetic
demands of the implementation.

Past work. Finding simple predicates for determining the intersection
type and relative position of a pair of simple curved objects has recently re-
ceived a lot of attention. Wang and Krasauskas [31] and Liu and Chen [22]
obtained the characterization of certain positions of ellipses using tech-
niques from computer algebra, but gave no complete classi�cation. Etayo
et al. [12] have completely tackled the case of two ellipses using tools from
real algebraic geometry (Sturm-Habicht sequences). Systematizing those
ideas and adopting a more global point of view, Briand [4] characterized
the rigid isotopy classes of two arbitrary conics. Some of the predicates
obtained have however unnecessary high degrees, as we shall see.

A lot less is known in 3D. Wang et al. [32] have characterized what it
means for two ellipsoids to be separated. More recently, Tu et al. [28] and
Dupont et al. [10] have showed two somewhat di�erent ways of extracting
information from a pencil of quadrics so as to obtain exact morphological
classi�cation. However, they don't exhibit simple, discriminating polyno-
mial functions of the input and control on the degree of the predicates is
largely lost by intermediate constructions.

Contributions. In this paper, we consider the problem of characterizing
the type of the intersection and the relative position of two plane projec-
tive conics with simple, low-degree predicates. More precisely, we prove
the following:

Theorem 1.1. The real projective type of the intersection of a pair
of conics of P2(R), their rigid isotopy class and which conic is inside the
other in nested cases can be determined with predicates of bidegree at most
(6, 6) in the coe�cients of the conics.

Instrumental in the proof of this result is the recourse to algebraic
invariant theory, i.e. the study of the intrinsic properties of polynomial
systems. Algebraic invariants were a hot topic in the 19th century. They
were perceived as a bridge between geometry and algebra by the mathe-
maticians of that era (culminating with Klein's famous Erlangen Program,
and the view of geometry as the study of the properties of a space that are
invariant under the action of a group of transformations).

It is only natural that algebraic invariants should appear in this con-
text, since the type of the intersection of two conics is unchanged by pro-
jective transformations. However, their relevance to the �elds of geometric
computing and computational geometry has hitherto been largely unno-
ticed. People have occasionally stumbled upon quantities of invariantal
nature (see for instance [8] on the sweeping of arrangements of circle arcs)
but have usually failed to grasp their signi�cance. For these reasons, we
have chosen to give in this paper a fairly detailed introduction to this topic
from a classical perspective.
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The invariant theory of pairs of conics is an old subject that was ex-
plored by the classics (cf. [15]). That of pencils of conics, which is more
relevant for studying properties of the intersections, is less well-known: it
has been investigated by Todd [26, 27] around the mid of the 20th century,
though only over the complex numbers. Briand [4] has also elements of
the complex invariant theory of conics, but uses tools from real algebra
(subresultant sequences) to conclude in the real case. Building upon Todd
and Briand's work, we are able to fully exploit the invariant theory of pen-
cils of conics to improve upon known results and produce a set of simple,
low-degree predicates.

Paper outline. The organization of the paper is as follows. After some
notations and preliminaries (Section 2), we enumerate in Section 3 the
di�erent orbits of pencils of conics under the action of the projective linear
group and the classes of pairs of conics under rigid isotopy. Section 4 gives
a gentle introduction to algebraic invariant theory and presents the main
tools needed for computing invariants and covariants. The invariant theory
of pairs of conics is developed in Section 5. Then we consider in Section 6 a
special type of invariant objects, called combinants, which are intrinsically
attached to pencils of conics. We put things together and show in Section 7
how to distinguish between pencil orbits with low-degree predicates. In the
nested cases, we also show in Section 8 how to decide which conic is inside
the other. Finally, we give some examples in Section 9, one of which involves
a conic depending on a parameter, before concluding.

2. Preliminaries. In what follows Pk(K) denotes the projective space
of dimension k over the �eld K. A conic of the projective plane P2(R) is
two things:

• an algebraic object: an element of P(S2(R3∗)), the projectivization
of the space S2(R3∗) of real ternary quadratic forms. The algebraic
conic associated to the quadratic form QS is denoted by [QS ];

• a geometric object: the zero set, in P2(R), of the algebraic conic,
denoted by [QS = 0].

(We will distinguish between these di�erent objects only when needed.)
A conic is proper or non-singular if its quadratic form is; it is degenerate
otherwise.

Recall that a real (resp. complex) congruence is a transformation
of the general linear group GLn(R) (resp. GLn(C)), represented by an
invertible n × n matrix with entries in R (resp. C). The subgroup of
GLn(K) consisting of matrices with determinant equal to 1 is the special
linear group SLn(K).

Attached to the quadratic form QS of a conic is a real 3×3 symmetric
matrix S such that QS = xT Sx, where x are coordinates of R3. Note that
a quadratic form QS is proper i� detS 6= 0. Since S is symmetric, all of its
eigenvalues are real. Let σ+ and σ− be the numbers of positive and negative
eigenvalues of S, respectively. The rank of S (and QS) is the sum of σ+ and
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σ−. The inertia of S (and QS) is the ordered pair (σ+, σ−). By Sylvester's
Inertia Law, the inertia is invariant by real congruence transformations,
i.e. ∀P ∈ GL3(R) the matrices S and PT SP have the same inertia [20].
Actually, the inertia encodes all the invariant information of a real ternary
quadratic form under the action of GL3(R).

The dual quadratic form associated to a quadratic form QS of R3 is
the quadratic form QS′ on R3∗ whose matrix S′ is the adjoint of S, i.e.
the transpose of the cofactor matrix, written adj (S). Note that if QS has
rank 3 (resp. 2, 1, 0), then QS′ has rank 3 (resp. 1, 0, 0). The conic dual
to [QS ] is [QS′ ]. The corresponding geometric conic is a subset of the dual
projective space P2(R)∗ and represents the set of lines tangent to [QS = 0].

A pencil of conics is a line in P(S2(R3∗)). The pencil is said to be
non-degenerate if it contains proper conics. All conics of a given pencil
share a set of common points, called the base points of the pencil. They
are the intersection points of any two distinct conics of the pencil. In the
complex projective space, non-degenerate pencils of conics always have four
base points, when counted with multiplicities.

Given two ternary quadratic forms QS and QT , the line spanned by
[QS ] and [QT ] is called the pencil generated by QS and QT . Attached to
this pencil is a binary cubic

D = det (λS + µT )

called the characteristic form of the pencil.

3. Classi�cation of intersections of conics. There are nine orbits
of non-degenerate pencils of conics under the action of PGL3(R), i.e. the
projective linear group. Their identi�cation was obtained by Levy [21] (and
also follows from Uhlig's canonical form of a pair of real symmetric matri-
ces [30]). Table 1 gives representatives of each orbit and the morphology
of the (real) intersection associated with each orbit. The top part of this
table focusses on non-degenerate pencils, for which the orbits belong to
�ve groups (denoted I, II, III, IV and IV using Levy's nomenclature) cor-
responding to distinct morphologies over the complex numbers. Group I

corresponds to generic intersections of two conics, i.e. four simple (real or
complex) points. For the sake of completeness, the bottom part of the table
also lists representatives of orbits of degenerate pencils (the nomenclature
is ours), stopping when the pencil of conics boils down to a pencil of binary
quadratic forms.

The classi�cation of ordered pairs of real projective conics modulo
rigid isotopy, which corresponds to a real deformation of the equations of
the conics that does not change the nature (real or complex, multiplicity)
of the intersection points of the two conics, was obtained by Gudkov as a
byproduct of his extensive classi�cation of real curves of degree 4 in the real
projective plane (see [16] for a brief survey in English as well as references
to the original Russian articles). Briand [4] re-establishes this classi�cation,
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Table 1

Representatives of pencil orbits under the action of PGL3(R) and associated
morphology.

Orbit Real morphology QS QT

I four simple points x2 − z2 x2 − y2

Ia empty set x2 + z2 x2 + y2

Ib two simple points yz x2 + y2 − z2

II two simple points and a double point y2 − z2 xy
IIa a double point y2 + z2 xy
III two double points z2 x2 − y2

IIIa empty set x2 + y2 z2

IV a simple point and a triple point xz + y2 yz
V a quadruple point y2 z2 + xy

VI conic x2 + y2 − z2 x2 + y2 − z2

VIa empty set x2 + y2 + z2 x2 + y2 + z2

VII D ≡ 0, no singular point in common xy xz
VIII+ D ≡ 0, common singular point pencil of binary quadratics

proving that each rigid isotopy class is determined by an orbit of pencils
of conics under PGL3(R) and the position of the two conics with respect
to the singular conics in the pencil they generate. Call arc of the pencil a
maximal range of pencil parameters not corresponding to a singular conic.
Label a class by an N (for �neighbors�) when its representatives are on a
same arc of the pencil and by an S (for �separated�) otherwise. Briand
shows that there are 14 equivalence classes for unordered pairs of proper
non-empty conics under rigid isotopy and exchange, of which Figure 1 gives
a graphical representation.

Among the 14 classes for pairs,

IN, IS, IaS, IbN, IIS, IIaS, IIIS, IVN

are also equivalence classes for ordered pairs of proper non-empty conics
under rigid isotopy. In addition, each class of pairs among

IaN, IIaN, IIIN, IIIaN,VN

splits into two classes for ordered pairs, corresponding to one conic lying
inside1 the other. Finally, the class of pairs IIN splits into two classes
for ordered pairs, corresponding to one conic lying inside the other in the
neighborhood of the double point. Table 2 gives representatives for these
last six classes.

1Note that it makes sense to talk about inside/outside since any proper non-empty
conic cuts out the real projective plane into two connected components, one homeomor-
phic to a Möbius band � the outside � and the other homeomorphic to an open disk �
the inside.
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a. IbN

IN IS

IaSIaN

b. VN

IIaN IIaS

IIIN IIIS

IIN IIS

IIIaN

IVN

Fig. 1. Morphology of the intersection for a pair of representative conics inside
each rigid isotopy class. a. Generic cases. b. Non-generic cases.

Table 2

Representatives for equivalence classes of pairs of proper non-empty conics under
rigid isotopy leading to two classes for ordered pairs, corresponding to one conic lying
inside the other (only near the double point for IIN). For all pairs given here, [QS = 0]
lies inside [QT = 0].

Class QS QT

IaN 2x2 − y2 + z2 3x2 − 2y2 + z2

IIN y2 − z2 + xy y2 − z2 + 2xy
IIaN y2 + z2 + xy y2 + z2 + 2xy
IIIN z2 + x2 − y2 z2 + 2x2 − 2y2

IIIaN x2 + y2 − z2 x2 + y2 − 2z2

VN xz − y2 − x2 xz − y2 + x2

4. Algebraic invariant theory: an overview. The classical the-
ory of invariants is the study of the intrinsic properties of polynomials and
polynomial systems, i.e. properties that are una�ected by a change of vari-
ables and are not attached to a speci�c coordinate system. The study of
invariants is intimately linked to the problem of equivalence (can a polyno-
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mial system be transformed into another through an appropriate change of
coordinates?) and the related problem of the canonical form (�nd a trans-
formation that puts a polynomial system into a particularly simple form).

Founded by Sylvester and Cayley in the years 1850, the theory of in-
variants and covariants was explored by Hilbert, Clebsch, Gordan and oth-
ers around 1880 and rediscovered in the 1960's by Dieudonné and Dixmier,
in particular.

Here, we go through the basic elements of the classical theory of alge-
braic invariants. The interested reader is referred to old ([14, 15, 29]) or
modern ([23, 25]) sources for more information on this fascinating subject.

4.1. Invariants of n-ary forms. The invariant theory of forms is a
central chapter of classical invariant theory. We state it here by considering
the action of GLn(K) on forms in Kn, which descends to an action of
PGLn(K) on hypersurfaces in Pn−1(K).

Let K be a �eld of characteristic zero, which will be set to C or R
later. Let

f(x1, x2, . . . , xn) =
∑

ai1i2···in
xi1

1 xi2
2 · · ·xin

n (4.1)

be a n-ary form (i.e. a homogeneous polynomial in n variables) of degree
d on K, where x = (x1, . . . , xn) are coordinates of Kn and the coe�cients
ai1i2···in

are in K. The sum in (4.1) is over the
(
n+d−1

d

)
n-tuples of nonneg-

ative integers (i1, i2, . . . , in) such that i1 + i2 + · · ·+ in = d.

Let (Kn)∗ be the set of all linear forms γ : Kn → K. (Kn)∗ is the
vector space dual to Kn. All n-ary forms of degree d form a K-vector
space of dimension

(
n+d−1

d

)
. It can be identi�ed with Sd(Kn)∗, the d-th

symmetric power of (Kn)∗. It implies that f can be identi�ed to the vector
a = (. . . , ai1i2···in

, . . .) of its coe�cients. Thus f = f(x) = f(a,x) and a
represent the same element of Sd(Kn∗).

De�ne linear forms ui on (Kn)∗ such that ui(xj) = δij ,∀i, j. u =
(u1, . . . , un) are coordinates dual to x, i.e. tangential coordinates. Let
K[a,x,u] be the ring of polynomials in the coe�cients of f , the primal
variables and the dual variables. K[a,x,u] is the ring of polynomials over
the vector space Γ = Sd(Kn∗) ⊕ Kn ⊕ (Kn)∗. The action of the general
linear group GLn(K) on Kn induces a natural action on Γ. For each trans-
formation P of GLn(K), represented by a non-singular n × n matrix with
coe�cients in K, the action P : (a,x,u) 7→ (a,x,u) is de�ned by the
equations

x = P x, f(a,x) = f(a,x),

the dual coordinates u undergoing the dual transformation

u =
(
P−1

)T
u.
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A polynomial C ∈ K[a,x,u] is a concomitant of f under the action of
GLn(K) if

C(a,x,u) = (detP )w C(a,x,u),

where the integer w is called the weight (or index ) of C. A concomitant
is said to be (multi-) homogeneous if it is homogeneous as a polynomial
in the coe�cients of a, as a polynomial in the variables x1, . . . , xn and as
a polynomial in the variables u1, . . . , un. In that case, the total degree of
C in the elements of the vector of coe�cients a is called the degree of the
concomitant. Its total degree in the variables x is called the order of C.
Finally, its total degree in the dual variables u is called the class of C.

In many situations, it is desirable to consider not just one but a col-
lection of n-ary forms (not necessarily of the same degrees) fi(ai,x), i =
1, . . . , p. As before, we consider the natural action of the group GLn(K)
on the polynomial ring in x, u and the ai's. A polynomial J ∈
K[a1, . . . ,ap,x,u] is a joint concomitant of the forms f1, f2, . . . , fp if

J(a1, . . . ,ap,x,u) = (detP )w J(a1, . . . ,ap,x,u),

for all P ∈ GLn(K). When J is multi-homogeneous, its dependence on
the di�erent vectors of coe�cients a1, . . . ,ap is measured by aggregat-
ing its degree αi in each ai in a multi-degree (α1, . . . , αp). When the
forms all have the same degree, any concomitant C(a,x,u) induces trivial
joint concomitants Ji(a1, . . . ,ap,x,u) = C(ai,x,u) for any i = 1, . . . , p.
Vice-versa, if J(a1, . . . ,ap,x,u) is a joint concomitant, then its trace
C(a,x,u) = J(a, . . . ,a,x,u) gives a concomitant of individual forms.

19th-century terminology, due to Sylvester, further classi�ed (joint)
concomitants as:

• invariants, when the order and the class are 0,
• covariants, when the class is 0, but not the order,
• contravariants, when the order is 0, but not the class,
• mixed concomitants, when neither the order nor the class are 0.

Remark 4.1. The invariants as we just de�ned them are relative
since they are only preserved up to some power of the determinant of the
transformation. What is particularly interesting about them is therefore
not their value, but rather their vanishing or non-vanishing, as well as
possibly their sign (when the weight is even). Note though that given two
(relative) invariants of same weight one can construct an absolute invariant
by dividing them.

Let us now give some well-known examples of concomitants and joint
concomitants:

• The most simple covariant of a form f is f itself.
• A trivial example of a mixed concomitant is U = 〈x,u〉 =∑n

i=1 xi ui, which �encodes� the pairing between Kn and (Kn)∗.
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It satis�es the de�nition of a concomitant for weight 0, indepen-
dently of any actual form, and is therefore known as the universal
concomitant.

• The Hessian det
(

∂2f
∂xi∂xj

)
of a n-ary form f of degree d is a covari-

ant of f of weight 2, degree n and order n(d− 2) [25, Prop. 4.4.2].
• The Jacobian ∂(f1,...,fn)

∂(x1,...,xn) = det
(

∂fj

∂xi

)
of n n-ary forms fi of degree

di, i = 1, . . . , n, is a joint covariant of weight 1, order
∑

di−n and
multi-degree (1, 1, . . . , 1) [25, Ex. 4.4.4].

• The resultant of n n-ary forms fi of degree di, which vanishes
if and only if the system {f1(x) = · · · = fn(x) = 0} has a non-
zero solution, is a joint invariant of multi-degree (δ1, . . . , δn), where
δi =

∏
j 6=i dj [7].

• The discriminant of a form f of degree d in n variables, which
vanishes if and only if the projective hypersurface [f = 0] has a
singularity, is an invariant of degree n(d− 1)n−1 [13, Chapter 13].
It is the resultant of the n partial derivatives of f .

• Recall that the dual variety X∗ of a subvariety X in Pn−1 is the
closure in the dual projective space (Pn−1)∗ of the locus of hyper-
planes in Pn−1 which are tangent to X at some nonsingular point
of X. The operation of taking the dual of a hypersurface de�nes a
contravariant [9, Exercise 5.8].

4.2. Key results. The key results in invariant theory are conse-
quences of the general abstract algebraic results proved by David Hilbert
around 1890 [17, 18], which subsequently formed the foundation of modern
commutative algebra.

Let K = C. The algebra of concomitants of f is the C-algebra gener-
ated by the concomitants of f . The algebra of invariants (resp. covariants,
contravariants) of f is the sub-algebra of the algebra of concomitants gen-
erated by the invariants (resp. covariants, contravariants) of f . The �rst
fundamental result is the �niteness of bases of these algebras.

Theorem 4.1 (Hilbert's Finiteness Theorem). The algebra of con-
comitants of one or several forms under the action of the general linear
group over C has a �nite number of generators. Members of a minimal sys-
tem of generators of the algebra of concomitants (resp. invariants, covari-
ants, contravariants) are called fundamental concomitants (resp. funda-
mental invariants, fundamental covariants, fundamental contravariants).

The fundamental concomitants are, in general, not independent (that
is, the algebra they generate is not a free algebra). There can exist non-
trivial algebraic relations among them, called syzygies. The second fun-
damental result of algebraic invariant theory is another consequence of
Hilbert's work:

Theorem 4.2. The algebra of concomitants of one or several forms
under the action of the general linear group over C has a �nite basis of
syzygies.
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4.3. Computing concomitants. Classically, the fundamental prob-
lem in the theory of invariants is to calculate the invariants/concomitants
and to completely describe them. The calculation itself builds upon two
ingredients:

• the observation that a concomitant of a concomitant of a form
(resp. a system of forms) is a concomitant of the form (resp. the
system of forms) itself (cf. [11, �45] for a proof);

• various formal processes that were developed to this end. We will
here describe two such processes: transvection and polarization.

4.3.1. Transvection and Cayley's Ω-process. The process of
transvection (from the German Überschiebung) was described in 1885 by
the German mathematician Paul Gordan (cf. [23, Chapter 5] for a detailed
presentation and a historical perspective). The basic idea is that concomi-
tants can be recovered by taking the trace of certain naturally de�ned joint
concomitants.

Binary forms. We �rst focus on binary forms. Transvection is based
on an invariant di�erential operator originally introduced by Cayley. Let us

use two independent sets of variables x(1) = (x(1)
1 , x

(1)
2 ), x(2) = (x(2)

1 , x
(2)
2 ) ∈

C2. We consider the joint action of GL2(C) on the Cartesian product
space C2×C2, given by simultaneous linear transformations (x(1),x(2)) 7→
(P−1x(1), P−1x(2)). The second order di�erential operator

Ωx =

∣∣∣∣∣∣
∂

∂x
(1)
1

∂

∂x
(2)
1

∂

∂x
(1)
2

∂

∂x
(2)
2

∣∣∣∣∣∣ =
∂2

∂x
(1)
1 ∂x

(2)
2

− ∂2

∂x
(2)
1 ∂x

(1)
2

is known as the Cayley Ω-process with respect to the variables x(1) and
x(2). Under the simultaneous linear transformation above, the Ω-process
undergoes the transformation

Ωx 7→ (detP ) Ωx,

proving at once its covariance.
Definition 4.1. The k-th transvectant of two binary forms f1(x)

and f2(x), x = (x1, x2), is the function

(f1, f2)k = (Ωx)k
[
f1(x(1))f2(x(2))

]∣∣∣∣ x1=x
(1)
1 =x

(2)
1

x2=x
(1)
2 =x

(2)
2

.

The invariantal nature of transvectants follows from the covariance of
the Ω-process.

Theorem 4.3 ([23, Theorem 5.4]). If f1 and f2 have respective de-
grees q1 and q2 and respective weights w1 and w2, then (f1, f2)k is a joint
covariant of f1, f2 of weight w1 + w2 + k and order q1 + q2 − 2k. In par-
ticular, if f has degree q, (f, f)k is a covariant of f of weight k, degree 2
and order 2q − 2k.



THE RELATIVE POSITION OF TWO PROJECTIVE CONICS 199

Expanding (Ωx)k leads to the simple explicit formula

(f1, f2)k =
k∑

i=0

(−1)i

(
k

i

)
∂kf1

∂xi ∂yk−i

∂kf2

∂yi ∂xk−i
.

Observe that (f1, f2)k = (−1)k(f2, f1)k so the k-th transvectant is sym-
metric in f1, f2 when k is even, skew-symmetric when k is odd.

The process of transvection generalizes certain well-known operations.
The �rst transvectant of f1 and f2 is their Jacobian determinant. The
second transvectant of a form with itself is a scalar multiple of its Hessian
determinant. If f1 = a1x

2 + a2xy + a3y
2, then − 1

2 (f1, f1)2 = a2
2 − 4a1a3 is

the discriminant of f1, i.e. the simplest example of an algebraic invariant.
If in addition f2 = a4x + a5y, then

1
2
((f1, f2)1, f2)1 = a1a

2
5 − a2a4a5 + a3a

2
4,

which is nothing but the resultant of f1 and f2.
Starting from one or several forms, concomitants can therefore be pro-

duced by taking successive transvectants and composing those transvec-
tants. Actually, a consequence of the First Fundamental Theorem of In-
variant Theory is that, over C, all polynomial covariants and invariants2

of a system of binary forms can be expressed that way [23, Theorems 6.14
and 6.23]. More precisely, in the case of a single binary form f , every
concomitant is a linear combination of composed transvectants of the form

(. . . , ((f, f)r1), f)r2 , . . . , f)rl
.

The determination of an explicit polynomial basis for the covariants of
a general binary form is an extremely di�cult problem. However, a result
due to Stroh and Hilbert constructs an explicit rational basis for a form of
arbitrary degree (see Theorem 4.4 below). Assume the binary form f has
degree n > 3. De�ne integers l,m such that l = m − 1 when n = 2m is
even and l = m when n = 2m+1 is odd. The only covariant of order 1 of f
(up to a constant factor) is f itself. There exist m independent quadratic
(i.e., degree 2) covariants

Sk = (f, f)2k, k = 1, . . . ,m.

Sk has order 2n − 4k and weight 2k. In particular, S1 is the Hessian of f
and, when n is even, n = 2m, Sm has order 0, and is therefore an invariant
of f . Beyond, there are many cubic (i.e., degree 3) covariants. The most
important are:

Tk = (f, Sk)1 = (f, (f, f)2k)1, k = 1, . . . , l.

2In the case of binary forms, contravariants are obtained from covariants by a simple
determinantal reweighting [23, Example 4.5]. This identi�cation does not carry over to
the case of n-ary forms, n > 2, for which there exist non-trivial contravariants.
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Tk has order 3n − 4k − 2 and weight 2k + 1. Then, the Stroh-Hilbert
Theorem states that the n fundamental covariants f, S1, . . . , Sm, T1, . . . , Tl

form a rational basis for all the covariants.
Theorem 4.4 ([23, Theorem 6.32]). Let C be any polynomial co-

variant of the binary form f of degree n. Then, for some power N > 0,
the covariant fNC can be written as a polynomial in the n fundamental
covariants f, S1, . . . , Sm, T1, . . . , Tl.

n-ary forms. Transvection can be generalized to n-ary forms (cf. [23,
Chapter 10]). Let us give a presentation of this generalization in the case
of ternary forms, using the notations of Olver. Let f1, f2, f3 be three forms
in the ternary variable x = (x1, x2, x3). Their tensor product f1 ⊗ f2 ⊗
f3 is identi�ed with the polynomial f1(x(1))f2(x(2))f3(x(3)) in the three
independent ternary variables x(1),x(2) and x(3). The multiplication map
f1 ⊗ f2 ⊗ f3 → f1f2f3 is denoted using the �trace� notation, i.e.

tr
(
f1(x(1))f2(x(2))f3(x(3))

)
= f1(x)f2(x)f3(x).

The Cayley operator Ωx acts on such a tensor product by the di�erential
operator

Ωx =

∣∣∣∣∣∣∣∣
∂

∂x
(1)
1

∂

∂x
(2)
1

∂

∂x
(3)
1

∂

∂x
(1)
2

∂

∂x
(2)
2

∂

∂x
(3)
2

∂

∂x
(1)
3

∂

∂x
(2)
3

∂

∂x
(3)
3

∣∣∣∣∣∣∣∣ .

If F1, F2, F3 are three forms in the variables x (primal) and u (dual), one
de�nes their transvectant as

(F1, F2, F3)m
n = tr

(
Ωn

xΩm
u

3∏
i=1

Fi(x(i);u(i))
)
.

Then (F1, F2, F3)m
n is a joint concomitant of the forms F1, F2, F3.

If F1, F2, F3 are themselves concomitants of a ternary form f , then
(F1, F2, F3)m

n is a concomitant of the form f , etc. Note that many con-
comitants and joint concomitants we have already encountered can be em-
bodied as transvectants. For instance, the Jacobian of three ternary forms
f1, f2, f2 is (up to a scalar) the transvectant (f1, f2, f3)01 and the Hessian
of the ternary form f is (up to a scalar) the transvectant (f, f, f)02.

4.3.2. Polarization. Knowing the concomitants of a form of Sd(Kn∗)
does not yield the joint concomitants of a collection of forms of Sd(Kn∗) in
an obvious way. Polarization leads to such a construction [33].

Let again K[a,x,u] be the ring of polynomials over the vector space
Γ = Sd(Kn∗) ⊕ Kn ⊕ (Kn)∗. Let δ ∈ K[a,x,u] be multi-homogeneous of
total degree d in the coe�cients of a. Write

δ(λf1 + µf2) =
d∑

i=0

λd−iµiδi(f1, f2), λ, µ ∈ K, f1, f2 ∈ Sd(Kn∗).



THE RELATIVE POSITION OF TWO PROJECTIVE CONICS 201

The δi's are called (partial) polarizations of δ. We then have the following
result (adapted from [19, Sec. 4.5]).

Theorem 4.5. If G is any subgroup of GLn(K), then δ is a con-
comitant of forms of Sd(Kn∗) under the action of G if and only if all δi

are joint concomitants of pairs of forms of Sd(Kn∗) under the action of G.
Moreover, if δ has order p, class q and weight w, then δi has order p, class
q, weight w and bidegree (d− i, i).

Though we stated it here for pairs of forms, the polarization construc-
tion can easily be extended to any collection of forms.

4.4. Pencils of conics. A pencil of conics of P2(R) is determined by
a pencil of real ternary quadratic forms, i.e. a plane through the origin in
S2(R3∗). Let f and g be a pair of real ternary quadratic forms generating
the pencil λf + µg,w = (λ, µ) ∈ R2, and let F be the space of all such
pairs. Denote by P(F) the space of pairs of conics. Pencils of conics are
generated by elements of P(F).

The group GL3(R) acts naturally on R3 (and P2(R)), and thus on F
(and P(F)). The action on F is by linear substitutions in x = (x, y, z) (the
�space variables�) and therefore by simultaneous transformation of f and
g. The concomitants with respect to this action are those C such that

C(f ◦θ, g◦θ;x, y, z;λ, µ) = (det θ)w1C(f, g; θ(x, y, z);λ, µ), ∀θ ∈ GL3(R).

There is also a natural action of the group GL2(R) on R2 (and P1(R)), and
thus on F (and P(F)). The action on F is by linear substitutions in f
and g and by linear reparameterization of w (the �pencil variables�). The
concomitants with respect to this action are those C such that

C(θ(f, g);x, y, z; θ(λ, µ)) = (det θ)w2C(f, g;x, y, z;λ, µ), ∀θ ∈ GL2(R).

We thus have an action of GL3(R) ×GL2(R) on F (and P(F)). Sylvester
(1853) calls the concomitants C with respect to this combined action com-
binants. In what follows, we will use the term combinant when C does
not depend on the variable w = (λ, µ), otherwise we will talk about a
combinantal form.

The action of GL3(R) × GL2(R) on pairs of real ternary quadratic
forms descends to an action of PGL3(R) on pencils of conics. That this
action induces a partitioning of the space of pencils exactly according to
the type of their base points follows from the following result.

Theorem 4.6 ([21]). Two non-degenerate pencils of conics are equiva-
lent under the action of PGL3(R) if and only if they have the same numbers
of real and imaginary base points of each multiplicity.

The roadmap for the rest of this paper is as follows. We start in
Section 5 by identifying the concomitants of f and g under the sole action of
GL3(C) on the space variables. We then move on to the study of combinants
of the pencil in Section 6, by �rst looking at the invariant theory of the
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characteristic form. We �nally show that the GL3(R)-invariants of a certain
quadratic combinant allow to discriminate in many cases between the orbits
of pencils of conics under the action of PGL3(R) and we complete the
characterization in Section 7.

5. Invariant theory of pairs of ternary quadratic forms. Let
QS , QT be two ternary quadratic forms and S = (si), T = (tj) the asso-
ciated 3 × 3 symmetric matrices. We consider from now on the si's and
tj 's as indeterminates and we work in this section over C. We review the
invariant theory of the pair QS , QT under the action of GL3(C), which has
been known for over a century.

Note that many results of this section could have been stated for a
pair of n-ary quadratic forms. We have chosen to privilege concreteness
over generality.

One of the indirect goals of this paper is to minimize the degree of the
invariantal quantities discriminating between pencil orbits. In this section
and the next, the dependence to input data (the coe�cients of the conics)
will be measured by a bidegree (dS , dT ), where dS (resp. dT ) is the total
degree in the coe�cients of QS (resp. QT ).

5.1. Invariants. Let us consider the characteristic form of the pencil
generated by QS , QT

D(λ, µ) = det (λS + µT ) = aλ3 + bλ2µ + cλµ2 + dµ3.

Clearly, the coe�cients of D are preserved by a simultaneous congruence
transformation S = PT SP, T = PT TP of S and T (up to some power of
the determinant of the transformation), by property of the determinant.
This invariance also follows by polarization, applying Theorem 4.5 with
f1 = QS , f2 = QT and taking the discriminant as invariant map δ. a has
bidegree (3, 0), b has bidegree (2, 1), c has bidegree (1, 2) and d has bidegree
(0, 3). All four coe�cients have weight 2.

It turns out a, b, c, d are the fundamental joint invariants of QS , QT .
Theorem 5.1 ([15, Chapter XIII]). The coe�cients of D are the

generators of the algebra of joint invariants of a pair QS , QT of ternary
quadratic forms under the action of GL3(C). Every other joint invariant
writes as a homogeneous and isobaric polynomial in those coe�cients.

5.2. Non-constant concomitants. Let us now identify the funda-
mental covariants and contravariants.

5.2.1. Preliminary result. In what follows we will use the follow-
ing lemma, corollary of Jacobi's fundamental lemma on the minors of an
adjoint.

Lemma 5.1. Let A be a n× n matrix. The adjoint A′ = adj (A) of A
is such that adj (A′) = (det A)n−2A.

Before moving on, we prove a preliminary lemma:



THE RELATIVE POSITION OF TWO PROJECTIVE CONICS 203

Lemma 5.2. Let QA be a ternary quadratic form, with associated
matrix A. Let A′ = adj (A). QA′ is a contravariant of QA of degree 2 and
weight 2. Qadj (A′) is a covariant of QA of degree 4 and weight 2.

Proof. We consider the e�ect of a scaling x 7→ x = P−1x, with P = λI,
where I is the identity matrix of size 3. The dual variables undergo the
transformation u = λu. In view of QA = xT Ax = QA, the transformed
matrix A is λ2A. Therefore adj (A) = adj (A) = λ4 adj (A) and

Qadj (A) = uT adj (A)u = λ6Qadj (A) = (det P )2 Qadj (A),

showing that Qadj (A) is a contravariant of weight 2. Its degree follows
immediately from the de�nition of the adjoint.

Since adj (A′) = (det A) A (Lemma 5.1) and det A is an invariant of
weight 2, Qadj (A′) is a covariant of weight 2. By de�nition, its degree
is 4.

5.2.2. Covariants. Let S′ = adj (S) and T ′ = adj (T ) be the adjoint
matrices of S and T respectively. Let U be the symmetric matrix de�ned by

adj (λS′ + µT ′) = aSλ2 + Uλµ + dTµ2.

Let us denote by QU = xT Ux the associated quadratic form, x =
(x0, x1, x2). Let �nally G be the Jacobian

G(x) =
1
8

∂(QS , QT , QU )
∂(x0, x1, x2)

.

Lemma 5.3. QU and G are joint covariants of QS and QT under the
action of GL3(C). QU has bidegree (2, 2) and weight 2. G has bidegree
(3, 3) and weight 3.

Proof. By polarization, QU is a joint concomitant of QS′ , QT ′ of
bidegree (1, 1) in the coe�cients of QS′ , QT ′ (apply Theorem 4.5 with
f1 = QS′ , f2 = QT ′ and the duality map as concomitant map δ). Since QS′

and QT ′ are themselves joint contravariants of QS , QT of bidegree (2, 0) and
(0, 2) respectively, we conclude by composition that QU is joint covariant
of QS , QT of bidegree (2, 2). In view of Lemma 5.2, its weight is 2.

The covariance of the Jacobian has already been mentioned in Sec-
tion 4.1. Since QU is a joint covariant of QS and QT , G is a also a joint
covariant by composition. Since QS , QT , QU have bidegree (1, 0), (0, 1)
and (2, 2) respectively, this adds up to G having bidegree (3, 3). Finally,
note that

∂( · , · , · )
∂(x0, x1, x2)

= (det P )
∂( · , · , · )

∂(x0, x1, x2)

when x = (x0, x1, x2) undergoes the transformation x = Px. Since the
weights of QS , QT , QU are 0, 0 and 2 respectively, the weight of G is 3.
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It turns out that the joint invariants and covariants we identi�ed above
form a complete, irreducible system.

Theorem 5.2 ([15, Chapter XIII]). Every joint covariant of QS , QT

can be expressed as an integral function of a, b, c, d, QS , QT , QU and G.
Remark 5.1. The joint covariants QS , QT , QU and G are not alge-

braically independent. They satisfy a fundamental syzygy which, when
QS = QT = 0, reduces to

G2 = Q3
U .

5.2.3. Contravariants. Let now E be the symmetric matrix de-
�ned by

adj (λS + µT ) = λ2S′ + λµE + µ2T ′.

As previously, let us denote the quadratic form associated to E by QE =
uT Eu, u = (u0, u1, u2). Let also H be the Jacobian

H(u) =
1
8

∂(QS′ , QT ′ , QE)
∂(u0, u1, u2)

.

Proceeding as for Lemma 5.3, we prove the following.

Lemma 5.4. QE and H are joint contravariants of QS and QT under
the action of GL3(C). QE has bidegree (1, 1) and weight 2. H has bidegree
(3, 3) and weight 5.

Proof. By polarization QE is a joint contravariant of QS , QT of bide-
gree (1, 1) (apply Theorem 4.5 with f1 = QS , f2 = QT and the duality map
as contravariant map δ). Also, in view of Lemma 5.2, QE has weight 2.

Since QE is a joint contravariant of QS′ , QT ′ , H is a joint contravariant
by composition. Since QS′ , QT ′ , QE have bidegree (2, 0), (0, 2) and (1, 1)
respectively, this adds up to H having bidegree (3, 3). Finally,

∂( · , · , · )
∂(u0, u1, u2)

= (det P )−1 ∂( · , · , · )
∂(u0, u1, u2)

,

proving at once the weight of H is 5 (sum of the weights of QS′ , QT ′ , QE

minus 1).

As before, the system of joint contravariants formed by
a, b, c, d, QS′ , QT ′ , QE and H is both complete and irreducible.

Theorem 5.3 ([15, Chapter XIII]). Every joint contravariant of
QS , QT can be expressed as an integral function of a, b, c, d, QS′ , QT ′ , QE

and H.
We don't discuss here the case of mixed concomitants (cf. [15, Chapter

XIII]).
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5.3. Linking covariants and contravariants. There are multiple
relationships between the matrix forms of covariants and contravariants.
Two of particular importance in this paper are given in the following lemma,
the proof of which is deferred to Appendix A.

Lemma 5.5. The following identities hold:

adj (λS′ + µT ′ + κE) = aSλ2 + dTµ2

+ (cS + bT − U)κ2 + Uλµ + (bS + aT )λκ + (dS + cT )µκ,

adj (λS + µT + κU) = S′λ2 + T ′µ2

+ (bdS′ + acT ′ − adE)κ2 + Eλµ + (cS′ + aT ′)λκ + (dS′ + bT ′)µκ.

6. Combinants of pairs of ternary quadratic forms. Let us now
focus on the combined action of GL3(C) on the space variables and GL2(C)
on the pencil variable. In other words, we begin our investigation of com-
binants of the pencil.

6.1. Invariant combinants. We start with the case of combinants
that do not depend on the space variables, i.e. the invariants of the pencil.
Fortunately, they are easy to identify:

Theorem 6.1 ([1, Theorem 7], [24, Theorem 14]). The ring of in-
variants of pencils of quadratic hypersurfaces of Pn−1(C) under the action
of SLn(C) is isomorphic to the ring of invariants of binary forms of degree
n under the action of SL2(C).

More precisely, the invariants of a pencil of quadratic hypersurfaces
are the invariants of its characteristic form. Going back to the case of a
pencil of conics, the characteristic form D is a cubic:

D(λ, µ) = det (λS + µT ) = aλ3 + bλ2µ + cλµ2 + dµ3.

So in accordance with Theorem 6.1 let us review the well-known invariant
theory of cubics under the action of GL2(C) (see for instance [6]).

The non-constant covariants of D are D itself, its Hessian (degree 2,
order 2)

H(λ, µ) = −1
8

(D,D)2 = (b2 − 3ac)λ2 + (bc− 9ad)λµ + (c2 − 3bd)µ2,

and the Jacobian of D and H (degree 3, order 3)

G(λ, µ) = (D,H)1 = (2b3 + 27a2d− 9abc)λ3 + · · · .

The only invariant of D under the action of GL2(C) is its discriminant,
which is also (up to a scalar) the discriminant of H:

∆ =
1
6

(H,H)2 = b2c2 − 4ac3 − 4b3d− 27a2d2 + 18abcd.
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∆ is equal to the classical formulation of the discriminant of a cubic, that
is − 1

a Res (D,D′), if one considers for a moment D as a polynomial in λ
(assuming a 6= 0). ∆ > 0 when D has three simple real roots, ∆ < 0 when
D has a real root and two complex roots, and ∆ = 0 when D has a multiple
root.

We note that these covariants are not algebraically independent since
they satisfy the following syzygy:

4H3 − G2 − 33∆D2 = 0.

Clearly, the characteristic form D and its covariants are combinants
of the pencil. Since ∆ has bidegree (6, 6) in QS and QT (so even degree
in each of the input conics), its sign is also invariant on each real orbit of
pencils.

6.2. Covariant combinants. Let us now focus on the construction
of combinants of the pencil other than the invariants and covariants of the
characteristic form D. Note that our goal is to uncover some combinants
that we have identi�ed as being relevant to distinguish between pencil
orbits, not to make an exhaustive study (see Todd [27] for an attempt at
determining the complete irreducible system of combinants).

We will here start with simple combinantal forms and compute some
of their (joint) GL2(C)-invariants to generate combinants of the pencil.
We have already encountered several combinantal forms: the characteristic
form D, its Hessian H and

R(λ, µ) = λQS + µQT .

The quadratic form dual to R is also a combinantal form of the pencil. In
view of Section 5, this dual form is:

S(λ, µ) = λ2QS′ + λµQE + µ2QT ′ .

The discriminant of S (as a binary form) is a (contravariant) combinant of
the pencil:

B = −1
2
(S,S)2 = Q2

E − 4QS′QT ′ .

B has bidegree (2, 2) in the coe�cients of the input conics.
We now determine the main combinant that will be used in the rest

of the paper:
Proposition 6.1. The quadratic covariant

J = −cQS − bQT + 3QU

is a combinant of bidegree (2, 2) of the pencil of conics generated by QS and
QT . Its discriminant is equal to ∆.
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Proof. Let us �rst take the second transvectant of H and S:

1
2

(H,S)2 = 2(c2 − 3bd)QS′ + (9ad− bc)QE + 2(b2 − 3ac)QT ′ .

This quadratic contravariant is a combinant of the pencil. Let us compute
the adjoint of the associated matrix K, using Lemma 5.5. This gives:

adj (K) = ∆(−cS − bT + 3U).

Let J be the matrix −cS − bT + 3U . By duality, Q∆J = ∆J is a co-
variant combinant of the pencil. ∆ being itself an invariant of the pencil
(Section 6.1), we conclude that J is a combinant of the pencil (QS , QT ).

Using the second identity of Lemma 5.5, we show that

adj (J) = −K.

Taking adjoint on both sides, we get (Lemma 5.1):

adj (adj (J)) = (detJ) J,

= adj (K) = ∆J,

which proves, by Weyl's Principle (see Appendix A), that det J = ∆.

Now we know exactly what the invariants of a real ternary quadratic
form under the action of GL3(R) are and since J has even degree in S and
T , we conclude:

Corollary 6.1. The inertia of J is an invariant of the pencil orbits
under the action of PGL3(R).

The inertia in (J ) of J is found by inspection of the characteristic
polynomial of the associated matrix:

det (`I − J) = `3 − tr (J )`2 + γ (J )`−∆.

J being symmetric, Descartes' Rule of Signs [2] tells us that the number of
positive eigenvalues of J is the number of sign changes in the sequence

(+,− sgn (tr (J )), sgn (γ (J )),− sgn (∆))

and the number of negative eigenvalues is the number of sign changes in
the sequence

(−,− sgn (tr (J )),− sgn (γ (J )),− sgn (∆)).

Note that tr (J ) has bidegree (2, 2) and γ (J ) has bidegree (4, 4). They
are however not invariant quantities of the pencil.
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6.3. Geometric meaning. Let us now give a geometric interpreta-
tion of the vanishing or non-vanishing of some of the combinants we have
identi�ed. Though this interpretation is in no way needed for separating the
orbits (we can simply treat combinants as algebraic quantities and evaluate
them on the representatives of each orbit), linking simple combinants with
geometric loci associated with the pencil clearly illuminates the problem.

The interested reader is referred to [26, 27] for a deeper understanding
of the beautiful geometry behind pencils of conics.

Proposition 6.2. ∆ vanishes on all orbits except Orbits I, Ia and Ib.
Proof. The discriminant ∆ does not vanish exactly when D has only

simple roots. It is known to be equivalent to the intersection of the
conics being generic, i.e. made of four simple points over the complex
numbers [5].

Proposition 6.3 (Hesse). H vanishes identically i� D has a triple
root or D ≡ 0.

Corollary 6.2. H vanishes identically on Orbits V, VI, VIa, VII and
VIII+.

Assume for a moment that the intersection is made of four (real or
complex) points, i.e. the characteristic form D has three simple roots `i.
Each of the singular form `iQS +QT has rank 2. The three associated dual
forms have therefore rank 1, i.e. they are the squares of three linear forms
in dual space. Associated to these three forms, by duality, are three points
pi of P2(C) forming the vertices of a triangle. It can be shown that G = 0
is the equation of the sides of this triangle (and H = 0 is the product of
the three lines dual to the pi's). Since each side pipj of the triangle is the
polar of opposite vertex pk with respect to every conic of the pencil, G is
often called the self-polar triangle covariant.

G and H are invariantly attached to the pencil of conics, not just to
ternary quadratic forms generating it. That they are combinants of the
pencil can easily be seen algebraically: when QS (say) is replaced by a
linear combination of QS and QT , QU is replaced by a combination of
QS , QT and QU (since they are the only quadratic covariants of pairs of
ternary quadratic forms) and therefore the Jacobian G is unchanged. The
same goes for H.

Proposition 6.4. G and H vanish identically if the conic pencil
generated by QS and QT contains a conic of rank less than or equal to 1.

Proof. Let `0 be the pencil parameter of a conic of rank 1 or less. The
adjoint of the corresponding matrix vanishes identically, i.e.

adj (`0S + T ) = `20S
′ + `0E + T ′ ≡ 0. (6.1)

The three contravariants QS′ , QE , QT ′ are thus not linearly independent
and their Jacobian, i.e. H, vanishes identically. Now multiply the left-hand
side of (6.1) to the left by aS and to the right by dT :
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aS adj (`0S + T ) dT = adj (S′) adj (`0S + T ) adj (T ′),
= adj (T ′(`0S + T )S′) = adj (dS′ + a`0T

′) ≡ 0.

Expanding the last term gives

ad(dS + `0U + a`20T ) ≡ 0.

The three covariants QS , QU , QT are thus not linearly independent and
their Jacobian, i.e. G, vanishes identically.

Corollary 6.3. G vanishes identically on Orbits III, IIIa, V, VI, VIa,
VII and VIII+.

Proposition 6.5. B vanishes identically when the intersection QS ∩
QT is 1-dimensional.

Proof. The line L : 〈u,x〉 = 0 is tangent to λQS +µQT if u is such that

uT adj (λS + µT )u = S(λ, µ) = 0.

L meets the pencil of conics in a pencil of binary quadratic forms and
the section of the conic λQS + µQT by the line is singular if the line is
tangent to the conic. The combinantal form S is therefore a constant
multiple of the characteristic form of the pencil of binary quadratic forms.
The discriminant of this characteristic form, i.e. B, is zero exactly when
the quadratic forms of the pencil all share a common root, or in other
words when the conics of the pencil λQS + µQT have a 1-dimensional
intersection.

Corollary 6.4. B vanishes identically on Orbits VI, VIa and VII.
Remark 6.1. It would be interesting to have a better grasp of the

relationship between the vanishing or non-vanishing of simple combinants
and the characteristics of pencil orbits � multiplicities of roots of D, ranks
of attached conics � that naturally stem from Segre's classi�cation of pairs
of quadratic forms over the complex numbers (see [5]).

7. Distinguishing between pencil orbits. Let us now see how the
invariants and combinants we have identi�ed help distinguish between pen-
cil orbits.

Let us start with the case D(λ, µ) 6≡ 0. In light of Theorem 6.1, our
�rst �discriminant� will be the only invariant of the pencil under the action
of PGL3(C), i.e. ∆. Computing the sign of ∆ on the representative of each
pencil orbit given in Table 1, we immediately obtain the following:

• ∆ > 0: I, Ia;
• ∆ < 0: Ib;
• ∆ = 0: II, IIa, III, IIIa, IV, V.

There is thus nothing left to do when ∆ < 0.
When ∆ > 0, let us compute the inertia of J :
• I: in (J ) = (3, 0),
• Ia: in (J ) = (1, 2).
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To distinguish between Orbits I and Ia, we thus introduce the following
condition:

ZJ := tr (J ) > 0 ∧ γ (J ) > 0.

ZJ is true on Orbit I and false on Orbit Ia.
Let us now move to the case ∆ = 0. We evaluate the inertia of J on

each of the remaining orbits:
• II: in (J ) = (2, 0),
• IIa: in (J ) = (1, 1),
• III: in (J ) = (1, 0),
• IIIa: in (J ) = (0, 1),
• IV: in (J ) = (1, 0),
• V, VI, VIa: in (J ) = (0, 0).

We thus see that the sign of γ (J ) gives another discriminant:
• γ (J ) > 0: II;
• γ (J ) < 0: IIa;
• γ (J ) = 0: III, IIIa, IV, V, VI, VIa.

When γ (J ) = 0, the sign of the trace of J provides a further boundary line:
• tr (J ) > 0: III, IV;
• tr (J ) < 0: IIIa;
• tr (J ) = 0: V, VI, VIa.

To distinguish between the remaining cases, it is enough to note thatH 6≡ 0
and G ≡ 0 on Orbit III, while H ≡ 0 and G 6≡ 0 on Orbit IV. Then, B 6≡ 0
on Orbit V and B ≡ 0 on Orbits VI and VIa. Finally, D 6 0 on Orbit VI
and D > 0 on Orbit VIa.

Let us go brie�y over the cases where D(λ, µ) ≡ 0. Here again the
inertia of J allows to distinguish:

• VII: in (J ) = (1, 0);
• VIII+: in (J ) = (0, 0).

Consequently, tr (J ) 6= 0 on Orbit VII and tr (J ) = 0 otherwise.
We therefore obtain the decision tree displayed in Figure 2. It should

be noted that the predicate of largest degree we need to evaluate to de-
termine the pencil orbit is ∆ and therefore determining the type of the
intersection of two real projective conics can be achieved with predicates
of bidegree at most (6, 6) in the input conics. This improves upon the
results of Briand [4] who gives predicates of largest bidegree (13, 6) for
distinguishing between orbits.

8. Isotopy classes and inside-outside test. Deciding in which
rigid isotopy class a pair of conics lies knowing the orbit of the pencil they
generate is simple. Recall that a pair of conics is in class N if the conics are
on the same arc of the pencil (i.e., you can go from one to the other without
encountering a singular conic of the pencil), in class S otherwise. For two
di�erent classes N and S to exist inside an orbit, it is thus necessary that
the characteristic form D has all its roots real (three simple real roots, or a
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VI, VIa

≡ 0

Fig. 2. Characterization of the PGL3(R) orbit of a pencil of real projective conics.

simple root and a double root). Class N therefore corresponds to D having
all its roots real, non-zero and of the same sign. As observed by Briand [4],
this in turn implies, by Descartes' Rule of Signs, that

ac > 0 ∧ bd > 0.

Now assume a given pair of conics lies in one of the classes IaN, IIN,
IIaN, IIIN, IIIaN and VN. We want to decide which conic is inside the other.
We are therefore looking for an invariant characteristic of the ordered pair of
conics. In other words, while we previously considered symmetric quantities
(i.e., unchanged by the substitutions QS → QT , QT → QS , a → d, b →
c, c → b, d → a,QU → QU , G → −G), we now look for antisymmetric
quantities of invariantal nature. The simplest antisymmetric covariant that
is isobaric and has the same degree in both input conics (i.e., 2) is

QA = cQS − bQT .

Note that it has even degree in the coe�cients of both conics, so is really
an invariant of the algebraic conics under the action of GL3(C), not just of
the forms de�ning them. So its inertia is an invariant of the ordered pair
([QS ], [QT ]) under the action of GL3(R). Let us show here that it is also
invariant inside each rigid isotopy class.

The proof technique is the same as in [4]. Let

QS = Q0
S + t1Q

0
T , g = Q0

S + t2Q
0
T ,
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where Q0
S and Q0

T are taken (in that order) from Table 1. For the cases IIN,
IIaN, IIIN and IIIaN, the inner conic is the one �closer� to [Q0

S ], i.e. the one
whose parameter ti has smaller absolute value. Consider the determinant
of the matrix A associated to QA:

det A = ac3 − db3.

We prove the following:
Lemma 8.1. Let ([QS ], [QT ]) be an ordered pair of proper non-empty

conics. If ([QS ], [QT ]) is in Class IIN, IIaN or IIIN then [QS = 0] is inside
[QT = 0] i� detA > 0. If ([QS ], [QT ]) is in Class IIIaN then [QS = 0] is
inside [QT = 0] i� det A < 0.

To prove this, we evaluate detA on (QS , QT ). For instance for IIa,
we have

detA =
1

256
t21t

2
2(t2 − t1)2(t22 − t21),

so detA > 0 when |t2| > |t1|, proving the result. Note that Lemma 8.1
corrects several sign errors in [4].

The case of Class Ia is harder (Briand [4] fails to realize that the sign
of detA also gives the answer in this case and resorts to other methods).
For the representatives of Class Ia in Table 1, we have

detA = (t1t2 − 1)(t2 − t1)3(t1 + t2 + t1t2)(t1 + t2 + 1)

whose sign is not immediately clear. Note that QS and QT write as

(1 + ti)x2 + y2 + tiz
2,

so they are non-empty and proper i� either ti ∈ (−1, 0) or ti ∈ (−∞,−1).
For the two conics to be on the same arc (and therefore in the same isotopy
class) their parameters must both be in the same interval. [Q0

S ] and [Q0
T ]

both being of inertia (2, 0) (a point), separated at ti = −1 by a conic of
inertia (1, 1) (a pair of lines), in each case the inside conic is the one �closer�
to the extremity of the arc corresponding to a point.

Assume the ti's are in the �rst interval, i.e. ti ∈ (−1, 0). Then t1t2 <
−t1 < 1 and

t1 + t2 + t1t2 < t2 < 0.

Note in addition that

(t2 − t1)(t1 + t2 + 1) = t22 − t21 + t2 − t1. (8.1)

Here the inside conic is the one �closer� to [QS ], i.e. the one whose parameter
ti has smaller absolute value. If |t2| > |t1|, which means t1 > t2, (8.1) is
negative so putting things together yields detA < 0.
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Assume now the ti's are in the second interval, i.e. ti ∈ (−∞,−1).
Then t1t2 > 1 and

t1 + t2 + 1 < 0.

We rewrite detA as follows:

detA = (t1t2)4(t1t2 − 1)
(

1
t1
− 1

t2

)3 (
1
t1

+
1
t2

+ 1
)

(t1 + t2 + 1).

Note that(
1
t1
− 1

t2

) (
1
t1

+
1
t2

+ 1
)

=
(

1
t1

)2

−
(

1
t2

)2

+
1
t1
− 1

t2
. (8.2)

Here the inside conic is the one �closer� to [QT ], i.e. the one with smallest
|1/ti|. If |1/t2| > |1/t1|, which means 1/t1 > 1/t2, (8.2) is positive so
putting things together yields detA < 0.

We conclude as follows:
Lemma 8.2. Let ([QS ], [QT ]) be an ordered pair of proper non-empty

conics in Class IaN. Then [QS = 0] is inside [QT = 0] i� detA < 0.
The last case, that of Class VN, is treated by Briand [4]. He shows

that detA vanishes identically on Class VN but considers the trace tr (A)
of A and proves that [QS = 0] is inside [QT = 0] i� tr (A) < 0.

Overall, we have proved that the inside-outside test for pairs of conics
in classes IaN, IIN, IIaN, IIIN, IIIaN and VN can be carried out with pred-
icates of bidegree at most (6, 6) in the input conics (thereby �nishing the
proof of Theorem 1.1). This improves upon the results of Briand [4] who
gives predicates of largest bidegree (17, 8) for the same task.

Remark 8.1. There must be a fundamental reason for the invariance
of QA here which our �pedestrian� proof fails to grasp.

Remark 8.2. Consider the rigid isotopy classes CN for pairs of conics
that split into two classes CNi for ordered pairs. Briand [3] shows that
rigid isotopy is preserved by duality (i.e. by the mapping sending a conic
to its dual). More precisely, he shows that the classes for ordered pairs are
exchanged: CN1 ↔ CN2. In other words, if [QS = 0] is inside [QT = 0],
then [QT ′ = 0] is inside [QS′ = 0].

This is coherent with the invariance of detA. Indeed, by Lemma A.2,
the coe�cients of the characteristic form of the dual pencil ([QS′ ], [QT ′ ])
are a′ = a2, b′ = ac, c′ = bd, d′ = d2. Therefore, for the dual pair of conics,
we have:

detA′ = a′c′
3 − d′b′

3 = a2d2(b3d− c3a) = −a2d2 detA

and therefore the sign is reversed, as expected.

9. Examples. Let us now apply the decision procedure we just out-
lined to two examples.
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9.1. Example 1. Consider the pencil generated by the two conics of
equation: {

QS : x2 − 12xy − 12xz − 3y2 + 10yz + 12z2 = 0,
QT : −3x2 − 20xy − 8xz − 7y2 + 14yz + 11z2 = 0.

We wish to determine in which orbit this pencil lies.
The characteristic form of the pencil is:

D(λ, µ) = −25λ3 − 100λ2µ− 125λµ2 − 50µ3.

The discriminant of this form is ∆ = 0.
Let us now construct the combinant J . We start by determining the

covariant QU . For this, we compute the adjoints of S and T , then we
extract the coe�cient of λµ in the equation:

adj (λS′ + µT ′) = aSλ2 + Uλµ + dTµ2.

This gives, in equation form:

QU = 25x2 + 1100xy + 800xz + 325y2 − 850yz − 875z2.

Now we can form the combinant J :

J = −cQS − bQT + 3QU = −25(2x + 2y − z)2.

As expected, the discriminant of this ternary form (which is ∆) is zero. In
addition, we see that J has rank 1, i.e. γ (J ) = 0. Finally, tr (J ) < 0.
The decision tree of Fig. 2 tells us that the pencil lies in Orbit IIIa. As a
consequence, the intersection of the two conics is empty of real point.

Since ac > 0 ∧ bd > 0, where as before a, b, c, d denote the coe�cients
of the characteristic form, the pair of conics is in rigid isotopy class IIIaN
in view of the results of Section 8. In addition

detA = ac3 − db3 = −1171875 < 0,

implying by the results of Section 8 that [QS = 0] is inside [QT = 0].

9.2. Example 2. We now consider the pencil generated by the fol-
lowing pair of forms:{

QS : x2 + 2txy − 4txz + ty2 + z2 = 0,
QT : x2 + 2xy − 2yz − 3z2 = 0.

QS is a function of a parameter t (time, say) and we wish to know for which
values of this parameter the two conics have empty intersection. In other
words, we want to know when the pencil generated by QS and QT falls in
Orbit Ia or IIIa.
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a. b.

Fig. 3. Intersection of a deforming conic (in red) with a �xed conic (in blue). a.
Case where the intersection is made of four real points. b. Case where the intersection
is empty of real point.

The fundamental invariants of the pair of forms are:

a = t− t2 − 4t3, b = −4t + 7t2, c = −2 + 7t, d = 2.

We then obtain the discriminant ∆ of the characteristic form, a polynomial
of degree 6 in t:

∆ = t(32− 124t− 360t2 + 1536t3 + 676t4 − 3639t5).

∆ > 0 for t ∈ (−0.582,−0.333) and t ∈ (0, 0.504). On each of these
intervals, the morphology of the intersection does not change (otherwise,
we would by continuity go through a singular intersection, corresponding
to a zero of ∆). The condition

ZJ = tr (J ) > 0 ∧ γ (J ) > 0

is thus either globally veri�ed on each interval, or globally violated. It is
therefore su�cient to verify it for an arbitrary value of t inside each interval.
We �rst determine J in matrix form−1− 12t + 26t2 −6t + 7t2 3− 7t + 2t2

−6t + 7t2 −4t + 8t2 −4t + 19t2

3− 7t + 2t2 −4t + 19t2 −1− 10t + 33t2

 .

From this we compute

γ (J ) = −8 + 72t + 20t2 − 804t3 + 916t4, tr (J ) = −2− 26t + 67t2.

For the �rst interval, we evaluate for instance at t = t0 = −1/2:

γ (J )t0
=

475
4

, tr (J )t0
=

111
4

.
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The condition ZJ is thus satis�ed on this interval, which means the inter-
section is made of four simple real points (Fig. 3.a). For the second interval,
let us evaluate at t = t1 = 1/2:

γ (J )t1
= −41

4
, tr (J )t1

=
7
4
.

This time, the condition ZJ is violated, and the intersection is empty on
the whole interval (cf. Fig. 3.b).

The only other way for the intersection to be empty is for the pencil to
belong to Orbit IIIa. But this implies in particular that ∆ and γ (J ) vanish
simultaneously. A little calculation shows that the resultant of these two
polynomials is not zero, and therefore this case can not happen.

Now assume t is inside the second interval we have identi�ed above,
i.e. t ∈ (0, 0.504). b is negative on the whole interval and d is positive on
the whole interval, so bd < 0 implying by the results of Section 8 that the
ordered pair of conics is in isotopy class IaS.

10. Conclusion. In this paper we have proved, using tools from al-
gebraic invariant theory, that the projective type of the intersection of a
pair of conics, their rigid isotopy class and which of the two is inside the
other (when applicable) can be determined with predicates of bidegree at
most (6, 6) in their coe�cients. The results largely improve upon previous
approaches.

It would be interesting to prove or disprove that bidegree (6, 6) is
optimal. It is very likely that it indeed is since (6, 6) is the bidegree of the
discriminant (and only invariant) of the characteristic form whose vanishing
separates generic from non-generic cases. There may however be room for
improvement in the description of individual orbits, i.e. there may exist,
for some orbits, a set of predicates characterizing the orbits having lower
degree than the one we have identi�ed.

In applications, it may be interesting to restrict the range of input
conics to certain types, for instance parabolas only. This may lead to
fewer orbits, less predicates to evaluate and possibly predicates of lower
degree. Etayo et al. [12] have for instance characterized the relative position
of two ellipses using tools from real algebraic geometry (Sturm-Habicht
sequences). Future work will be devoted to understanding how their results
relate to ours and if/how the characterization of the positions of type-
speci�c conics can be obtained from our invariant-based approach.

Another obvious direction of research is the extension of the results
of this paper to quadrics in P3(R), which involves studying the invariant
theory of pairs of quaternary quadratic forms. This may however prove
quite di�cult since the algebra of combinants is largely more complex than
in the case of conics.

Acknowledgement. The author wishes to acknowledge Emmanuel
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APPENDIX

A. Proof of Lemma 5.5. We here give a proof of Lemma 5.5, split
across several lemmas.

To get rid of certain arti�cial restrictions appearing on coe�cients, we
will frequently call upon the following result, due to Hermann Weyl [33],
which we call Weyl's Principle:

Theorem A.1 (Principle of irrelevance of algebraic inequalities). A
polynomial F (x, y, . . .) over a �eld K vanishes identically if it vanishes nu-
merically for all sets of rational values x = α, y = β, · · · subject to a number
of algebraic inequalities

R1(α, β, · · · ) 6= 0, R2(α, β, · · · ) 6= 0, . . .

Recall that the coe�cients of the characteristic form of the pencil
generated by QS , QT are a, b, c, d, that the quadratic covariants of the pencil
are QS , QT , QU and that the quadratic contravariants of the pencil are
QS′ , QT ′ , QE .

Lemma A.1. We have the following identities:

aE = bS′ − S′TS′, dE = cT ′ − T ′ST ′.

Proof. Let us form the matrix product of λS + µT with its adjoint:

(λS + µT ) adj (λS + µT ) = det (λS + µT ) I,

where I is the identity matrix of size 3. Developing this product, we obtain
the following identities by term-by-term identi�cation of coe�cients:

SE + TS′ = b I, ST ′ + TE = c I.

It follows that:

S′TS′ = S′(b I − SE) = bS′ − aE.

Similarly, T ′ST ′ = cT ′ − dE.
Lemma A.2. The characteristic form of the dual pencil is:

det (λS′ + µT ′) = a2λ3 + acλ2µ + bdλµ2 + d2µ2.

Proof. We write:

S(λS′ + µT ′)T = dµS + aλT.

Taking determinant on both sides leads to:

a d det (λS′ + µT ′) = a(dµ)3 + b(dµ)2(aλ) + c(dµ)(aλ)2 + d(aλ)3.

We obtain the desired result by �rst assuming that ad 6= 0 and then ap-
plying Weyl's Principle.
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Lemma A.3. We have the following identities:

U = cS − ST ′S = bT − TS′T.

Proof. We now form the matrix product of λS′ + µT ′ with its adjoint:

(λS′ + µT ′) adj (λS′ + µT ′) = det (λS′ + µT ′) I.

We now need to develop this product and use Lemma A.2. We obtain the
desired identities by term-by-term identi�cation of the coe�cients, after
multiplying to the left by S as in the proof of Lemma A.1.

Let us now �nish the proof of Lemma 5.5.
Proof. We �rst note that:

ad (λS′ + κE) = (aλ + bκ)dS′ − dκS′TS′, (by Lemma A.1)

= (aλ + bκ)T ′TS′ − dκS′TS′,

= ((aλ + bκ)T ′ − dκS′)TS′.

Taking adjoint on both sides, using the development of adj (λS′ + µT ′) and
applying Lemma A.3, we obtain:

a2d2 adj (λS′ + κE) = adj (S′) adj (T ) adj ((aλ + bκ)T ′ − dκS′),

= aST ′(aS(−dκ)2

+ U(−dκ)(aλ + bκ) + dT (aλ + bκ)2),

= a2d2(aSλ2 + (bS + aT )λκ + (cS + bT − U)κ2).

We therefore have obtained the coe�cients of λ2, λκ and κ2 in the devel-
opment of adj (λS′ + µT ′ + κE), the restriction on a and d being lifted
by application of Weyl's Principle. The coe�cient of λµ being known, we
obtain the missing coe�cients by computing, by symmetry, adj (µT ′ + κE).

The second identity of Lemma 5.5 is obtained similarly.

REFERENCES

[1] D. Avritzer and R. Miranda. Stability of pencils of quadrics in P4. The Boletin
de la Sociedad Matematica Mexicana, III Ser. 5(2):281�300, 1999.

[2] S. Basu, R. Pollack, and M.-F. Roy. Algorithms in Real Algebraic Geometry,
Volume 10 of Algorithms and Computation in Mathematics. Springer-Verlag,
Berlin, 2003.

[3] E. Briand. Duality for couples of conics. Unpublished, 2005.
[4] E. Briand. Equations, inequations and inequalities characterizing the con�g-

urations of two real projective conics. Applicable Algebra in Engineering,
Communication and Computing, 18(1�2):21�52, 2007.

[5] T. Bromwich. Quadratic Forms and Their Classi�cation by Means of Invariant
Factors. Cambridge Tracts in Mathematics and Mathematical Physics, 1906.

[6] J. Cremona. Classical invariants and 2-descent on elliptic curves. Journal of
Symbolic Computation, 31(1/2):71�87, 2001.



THE RELATIVE POSITION OF TWO PROJECTIVE CONICS 219

[7] C. D'Andrea and A. Dickenstein. Explicit formulas for the multivariate re-
sultant. Journal of Pure and Applied Algebra, 164:59�86, 2001.

[8] O. Devillers, A. Fronville, B. Mourrain, and M. Teillaud. Algebraic
methods and arithmetic �ltering for exact predicates on circle arcs. Comput.
Geom. Theory Appl., 22:119�142, 2002.

[9] I. Dolgachev. Lectures on Invariant Theory. Cambridge University Press, 2003.
London Mathematical Society Lecture Note Series, Volume 296.

[10] L. Dupont, D. Lazard, S. Lazard, and S. Petitjean. Near-optimal parame-
terization of the intersection of quadrics: II. A classi�cation of pencils. Journal
of Symbolic Computation, 43(3):192�215, 2008.

[11] E. Elliott. An Introduction to the Algebra of Quantics. Clarendon Press, Oxford,
1913.

[12] F. Etayo, L. González-Vega, and N. del Rio. A new approach to char-
acterizing the relative position of two ellipses depending on one parameter.
Computer Aided Geometric Design, 23(4):324�350, 2006.

[13] I. Gelfand, M. Kapranov, and A. Zelevinsky. Discriminants, Resultants
and Multidimensional Determinants. Birkhäuser, Boston, 1994.

[14] O. Glenn. A Treatise on the Theory of Invariants. Ginn and Company, Boston,
1915.

[15] J.H. Grace and A. Young. The Algebra of Invariants. Cambridge University
Press, 1903.

[16] D.A. Gudkov. Plane real projective quartic curves. In Topology and Geometry
- Rohlin Seminar, Volume 1346 of Lecture Notes in Math., pages 341�347.
Springer-Verlag, 1988.

[17] D. Hilbert. Über die Theorie der algebraischen Formen. Math. Ann., 36:473�534,
1890.

[18] D. Hilbert. Über die vollen Invariantensysteme. Math. Ann., 42:313�373, 1893.
[19] H. Kraft and C. Procesi. Classical Invariant Theory, A Primer, 2000. Lecture

Notes.
[20] T. Lam. The Algebraic Theory of Quadratic Forms. W.A. Benjamin, Reading,

MA, 1973.
[21] H. Levy. Projective and Related Geometries. The Macmillan Co., New York,

1964.
[22] Y. Liu and F.-L. Chen. Algebraic conditions for classifying the positional rela-

tionships between two conics and their applications. J. Comput. Sci. Technol.,
19(5):665�673, 2004.

[23] P.J. Olver. Classical Invariant Theory. Cambridge University Press, 1999.
[24] D. Pervouchine. Orbits and Invariants of Matrix Pencils. PhD thesis, Moscow

State University, 2002.
[25] B. Sturmfels. Algorithms in Invariant Theory. Texts and Monographs in Sym-

bolic Computation. Springer-Verlag, 1993.
[26] J. Todd. Projective and Analytical Geometry. Pitman, London, 1947.
[27] J.A. Todd. Combinant forms associated with a pencil of conics. Proc. Lond.

Math. Soc., II Ser. 50:150�168, 1948.
[28] C. Tu, W. Wang, B. Mourrain, and J. Wang. Using signature sequences

to classify intersection curves of two quadrics. Computer Aided Geometric
Design, 2008, to appear.

[29] H.W. Turnbull. The Theory of Determinants, Matrices and Invariants. Blackie
(London, Glasgow), 1929.

[30] F. Uhlig. A canonical form for a pair of real symmetric matrices that generate a
nonsingular pencil. Linear Algebra and Its Applications, 14:189�209, 1976.

[31] W. Wang and R. Krasauskas. Interference analysis of conics and quadrics.
In Topics in Algebraic Geometry and Geometric Modeling, Volume 334 of
Contemp. Math., pages 25�36. Amer. Math. Soc., 2003.



220 SYLVAIN PETITJEAN

[32] W. Wang, J. Wang, and M.-S. Kim. An algebraic condition for the separation
of two ellipsoids. Computer Aided Geometric Design, 18(6):531�539, 2001.

[33] H. Weyl. The Classical Groups, Their Invariants and Representations. Princeton
University Press, 1946.



A NOTE ON PLANAR HEXAGONAL MESHES

WENPING WANG∗ AND YANG LIU∗

Abstract. We study the geometry and computation of free-form hexagonal meshes
with planar faces (to be called P-Hex meshes). Several existing methods are reviewed
and a new method is proposed for computing P-Hex meshes to approximate a given
surface. The outstanding issues with these methods and further research directions are
discussed.

Key words. Planar hexagonal meshes, Dupin indicatrix, polyhedral approxima-
tion.

1. Introduction. A hexagonal mesh with planar faces is a discrete
polyhedral surface in 3D whose faces are planar hexagons and whose ver-
tices have degree 3. It will be abbreviated as the P-Hex mesh through
out this paper. P-Hex meshes are used in architecture design of glass/steel
panel structures and provide a useful representation for various special sur-
faces, such as minimal surfaces or constant mean curvature surfaces [2], in
discrete differential geometry. (See Figure 1.) There are several existing
methods for computing a P-Hex mesh to approximate a given shape. We
will review these methods to motivate further research. In addition, we will
study the geometric properties of P-Hex meshes and present a new method
for computing P-Hex meshes. We will consider robust computation of offset
surfaces specific to P-Hex meshes.

The requirement on face planarity of P-Hex meshes arises naturally
in modeling of glass/steel panel structures in architecture. Each flat glass
panel, represented by a hexagonal face, is framed by beams which are
joined at nodes represented by the vertices of the mesh. The node com-
plexity, defined as the number of beams joined at a node, is a major con-
sideration in manufacturing cost. Since their vertices have degree 3, the
P-Hex meshes offer the simplest node complexity compared with meshes
with planar quadrilateral faces or triangle meshes [6].

Only a closed surface of genus 1 (e.g. a torus) may be tiled with a
P-Hex mesh. On a closed surface of genus 0, faces other than hexagons
must be used, provided that all the vertices are of degree 3 (for example,
see Figure 2). Assuming that only hexagons and pentagons are allowed,
it is easy to show that there have to be exactly 12 pentagons. A typical
soccer ball is an example of such a tiling of a surface of genus 0, which has
12 pentagons and 20 hexagons.

Two concepts important to the study of P-Hex meshes are conjugate
curve network and the Dupin indicatrix of a surface. Consider a point p
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Fig. 1. Left: a geodome constructed using a P-Hex mesh in the Eden Project in
UK; right: the convex parts of this model are constant mean curvature (CMC) surfaces
modeled by P-Hex meshes [6].

Fig. 2. Left: an ellipsoid tiled with P-Hex faces and 12 planar pentagons; right: a
torus tiled entirely with P-Hex faces.

on a surface S. Let Tp(S) denote the 2D space of tangent vectors to S
at p. Then the differential of the Gauss map, which is the differential dN
of the unit normal vector N of S at p, defines a self-adjoint linear map
on Tp(S). Two vectors v and w are conjugate at p if the inner product
〈dN(v), w〉 = 0 [7]; note that this relationship is symmetric, since dN is a
self-adjoint. In particular, at a point p on a developable surface the unique
ruling direction at p is conjugate to any other direction. A conjugate curve
network on S consists of two families of curves, F1 and F2, on S such that
at any point p ∈ S there is a unique curve in F1 and a unique curve in
F2 passing through p and the tangent vector to the curve in F1 and the
tangent vector to the curve in F2 are conjugate.

Suppose that we have a 2D local coordinate system on Tp(S) with
the x and y axes aligned with the principal curvature directions of S at
p. Then the Dupin indicatrix is a conic defined by κ1x

2 + κ2y
2 = ±1,

where κ1, κ2 are principal curvatures [7]. Specifically, when p is an elliptic
point, assuming that the two principal curvatures κ1 > 0 and κ2 > 0 by
changing the orientation of the surface if necessary, the Dupin indicatrix
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T1

T2

T3

Fig. 3. Three strips on a P-Hex mesh along the directions T1, T2 and T3.

is the ellipse κ1x
2 + κ2y

2 = 1. When p is a hyperbolic point, the Dupin
indicatrix consists of two hyperbolas κ1x

2 + κ2y
2 = ±1 having the same

pair of asymptotic lines. When p is a parabolic point, assuming that κ1 6= 0
and κ2 = 0, the Dupin indicatrix is the pair of lines κ1x

2 = ±1. The Dupin
indicatrix is not defined at a planar point, where κ1 = κ2 = 0. Within the
above 2D x-y coordinate system in Tp(S), the Dupin indicatrix has the
polar representation ρ = ±1/

√
|κ(θ)|, where κ(θ) is the normal curvature

of S in the direction of the vector (cos θ, sin θ)T .
We will take an asymptotic approach in our subsequent analysis. We

assume a sequence of P-Hex meshes converging to a surface S, with each
hex face h converging to the tangent plane of S at the center of h. An
asymptotic analysis is useful to designing numerical methods in practice
when a P-Hex mesh is a close approximation to a smooth surface and the
faces of the P-Hex meshes are sufficiently small.

A P-Hex mesh comprises three families of developable strips (see Fig-
ure 3). Here a developable strip is a surface consisting of a sequence of
planar faces joining consecutively along line segments. A developable trip
has a central curve formed by the polygon connecting the centers of con-
secutive hex faces of the strip. Note that the edges between consecutive
faces of a developable strip are the discrete rulings of the developable strip.
Therefore these edges are conjugate to the direction of the central curve,
as a consequence of the discrete analogue of the classic result for smooth
developable surfaces [7].

At the center of a hex face h, the central curves of the three strips
containing h define three directions. Meanwhile, we assume that in the
limit each pair of opposite edges of h are parallel, that is, h has central
symmetry. Therefore, the three pairs of opposite edges of h define another
three directions at the center of h. It follows that the first three directions
are conjugate to the latter three, respectively. Hence, the hex face is con-
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Fig. 4. Illustration for the proof of Theorem 1.

strained by a homothetic copy of the Dupin indicatrix, as summarized by
the following theorem. (A homothetic copy of a shape is the image of the
shape under uniform scaling and translation.)

Theorem 1: Let M be a P-Hex mesh converging to a surface S, with
each face of M converging to the tangent plane of S at the center of the
face. Let h be a face of M with its center being a point O on the surface
S. In the limit, h is inscribed to a homothetic copy of the Dupin indicatrix
of the surface S at O.

Proof. Refer to Figure 4. First we set up a local 2D coordinate system
on the tangent plane Γ of the surface S at O, with the coordinate axes in the
principal curvature directions at O. In the limit we can assume that h lies
on the tangent plane Γ, with its center at O. Due to its central symmetry,
the hex face h is uniquely determined by its vertex vectors V1, V2, V3, with
V4 = −V1, V5 = −V2, and V6 = −V3.

In the above 2D coordinate system on the tangent plane Γ, denote
Vi = (`i cos θi, `i sin θi)T , i = 1, 2, 3, subject to that `i > 0, θ1 < θ2 < θ3

and θ3 − θ1 < π. Consider any two consecutive vertices, say V1 and V2

(Figure 4). Note that the strip along the central curve direction D12 = (V1+
V2)/2 is conjugate to the ruling direction V2 −V1 with respect to the inner
product 〈X, Y 〉 ≡ XT diag(κ1, κ2)Y defined by the second fundamental
form. Therefore,

κ1(`21 cos2 θ1 − `22 cos2 θ2) + κ2(`21 sin2 θ1 − `22 sin2 θ2) = 0.

It then follows from Euler’s theorem that

κ(θ1)`21 − κ(θ2)`22 = 0, (1.1)

where κ(θj) is the normal curvature in the direction (cos θj , sin θj)T , j =
1, 2. Comparing (1.1) with the polar representation of the Dupin indicatrix
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Fig. 5. Upper: A P-Hex mesh tiling a torus; lower left: a convex P-Hex face is
in a first approximation inscribed to a homothetic copy of the Dupin conic, which is
an ellipse, when K > 0; lower right: a concave P-Hex face is in a first approximation
inscribed to a homothetic copy of the Dupin conic, which is a hyperbola, when K < 0.

given previously, we conclude that the six vertices of h lie on a homothetic
copy of the Dupin indicatrix.

The above analysis indicates that convex planar hex faces appear only
in an elliptic region of a surface, where the Gaussian curvature K > 0 and
the Dupin indicatrix is an ellipse, and the P-Hex faces are concave hexagons
in a hyperbolic region, where K < 0, since they are inscribed to hyperbolas
(see Figure 5). Even in an elliptic region, we in general cannot expect to
have P-Hex faces to be regular hexagons, since the Dupin indicatrix is in
general not a circle.

2. Existing methods. In [3] stereographic projection is used to map
a power diagram of a set of points in 2D, which is an extension of Voronoi
diagram, onto an ellipsoid to form a polyhedral surface with planar faces.
If the faces of the power diagram are hexagons, then a P-Hex mesh approx-
imating the ellipsoid will be generated. This method cannot be extended
to other types of quadrics, such as a hyperboloid of one-sheet, or more
general free-form surfaces.

An elegant and effective approach to computing a P-Hex mesh is based
on projective duality, which establishes a relationship between a triangular
mesh and a P-Hex mesh. In fact, this relationship has been used to de-
rive subdivision rules for P-Hex meshes from subdivision rules for triangle
meshes [4]. When applying this approach to generating a P-Hex mesh from
a triangle mesh, it suffers from the lack of robustness common to several
other existing methods.

Recall that projective duality is a transformation that maps a plane
aX + bY + cZ + dW = 0 in 3D prime space into the point Q(X, Y, Z,W )T
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Fig. 6. Left: a P-Hex mesh approximating a torus; right: the projective dual of
the torus with its triangulation corresponding to the P-Hex mesh in the left figure.

in homogenous coordinates in dual space, where Q is a given symmetric
matrix. With an affine specialization, we consider the particular duality
that maps a plane not passing through the origin, in the form ax + by +
cz + 1 = 0 in primal space, to a point (a, b, c)T in dual space. Under this
mapping, a surface S is mapped to another surface S′, called the dual of
S, consisting of points corresponding to the tangent planes of S. Clearly,
a P-hex mesh approximating a surface S is dual to a regular triangle mesh
approximating S′, the dual of S, with each hex face being dual to a degree
6 vertex of the triangle mesh. This property suggests the following method
for computing a P-Hex mesh. Given a surface S, first compute the dual
S′ of S, then compute a regular triangulation of S′, and finally map this
triangulation to a P-Hex mesh approximating S.

However, there are three major problems with this approach: 1) pro-
jective duality may have high metric distortion and parabolic points of S
give rise to singular points on S′ (see Figure 6). These make it difficult
to compute a good triangle mesh on S′; 2) Under projective duality the
correspondence between the points of S and the points of S′ is often not
one-to-one. This makes it difficult to map a triangulation of S′ in dual
space back to a P-Hex mesh of S in primal space; 3) It is not clear what
kind of triangle meshes of S′ correspond to P-Hex meshes whose faces are
free of self-intersection (see Figure 7). As the consequence of these draw-
backs, the method based on projective duality cannot be used to generate
P-Hex mesh tiling a free-form surface S. Moreover, even when S is con-
vex the method often generates invalid P-Hex meshes with self-intersecting
faces, as illustrated in Figure 7.

The method in [1] uses the supporting function defined over the Gaus-
sian sphere of a free-form surface S to compute a P-Hex mesh. The idea is
to first obtain a piecewise linear approximation of the supporting function
over a triangulation of the Gaussian sphere. Then it can be shown that the
surface determined by this piecewise linear supporting function is a P-Hex
mesh approximating the surface S.
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Fig. 7. Left: a convex surface S approximated by a self-intersecting P-Hex mesh;
right: the dual of S represented by a triangular mesh corresponding to the P-Hex mesh
in the left figure.

Consider a tangent plane ax + by + cz + 1 = 0 of S. With the
support function, this tangent plane is represented by the unit normal
vector (a/m, b/m, c/m) ∈ S2, where m = (a2 + b2 + c2)1/2, and its dis-
tance from the origin (0, 0, 0) to the plane, which is 1/m. Therefore, the
graph of the support function over S2 can be represented by the point
p = 1

m (a/m, b/m, c/m) = (a/m2, b/m2, c/m2). We recognize that p is the
inversion with respect to the sphere S2 of the point (a, b, c)T , which is the
dual point of the tangent plane ax + by + cz + 1 = 0. Hence, the support
function can be regarded as the composition of the duality and the spher-
ical inversion with respect to S2. Because of this, the method in [1] has
the same limitations of the other methods based on projective duality. As
a consequence, it can only be applied to a surface patch with all elliptic
points (K > 0) or all hyperbolic points (K < 0), and even in these simple
cases it often produces invalid P-Hex meshes.

The concept of parallel meshes is proposed in [6] for defining and com-
puting various types of offset surfaces of a mesh surface. It may also be
used for computing P-Hex mesh for simple surfaces, such as a surface patch
with K > 0 everywhere or K < 0 everywhere. With this method, for ex-
ample, the convex parts of the model in Figure 1(b) are modeled as P-Hex
meshes parallel to a convex Koebe mesh [6]. A restrictive assumption here
is that there is already a P-Hex mesh H available, and a new P-Hex mesh
H ′ approximating a given surface S will then be generated as a parallel
mesh of H. Moreover, again in this case the P-Hex mesh H ′ often contains
faces with self-intersection.

This review shows that no existing method is capable of computing
a valid P-Hex mesh of free-form shape. So it will be a breakthrough if
a robust method can be developed for computing valid free-form P-Hex
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meshes. There are two major problems we must address to achieve this
goal. The first is generality — we hope to have a method capable of com-
puting a P-Hex surface approximating any free-form surface, with elliptic,
hyperbolic, and parabolic regions all existing on the same surface. The sec-
ond is validity — as the most basic requirement by practical applications,
we need to ensure that the faces of the computed P-Hex mesh are free of
self-intersection. In addition, from the design point of view, there is a need
to explore the full flexibility of P-Hex meshes to allow fine control of the
shape and size of the hexagonal faces of a P-Hex mesh.

3. A new method. We will propose a simple method for computing
P-Hex meshes. This method has two main steps – we first compute an
initial hexagonal mesh that is close to a P-Hex mesh and then use local
perturbation to produce the final P-Hex mesh.

As input we start with a conjugate curve network on a target surface
S to be approximated (see the left figure of Fig. 8). Sampling these two
families of curves, we obtain a quad mesh that is nearly a planar quad mesh
[5]. Then we shift every other row of the quad mesh to form a brick-wall
layout, which consists of nearly planar hexagonal faces. (See the middle
figure of Fig. 8.)

In the second step we use nonlinear optimization to locally perturb the
above hexagonal mesh into an exact P-Hex mesh. Note that every 4-point
subset of the 6 vertices of a hex face defines a tetrahedron. Obviously, the
hex face is planar if and only if the volumes of all these tetrahedra are zero.
Therefore, the constraints of our optimization are that the volumes of all
the tetrahedra of all the hex faces be zero. To prevent the vertices of the
hex mesh from shifting away from the target surface S, we minimize an
objective function defined as the sum of the squared distances of the mesh
vertices to S. Thus, we end up with a constrained nonlinear least squares
problem. We have implemented a penalty method to solve this problem
and obtained satisfactory results. The flow of processing is illustrated using
a torus in Figure 8. Figure 9 shows the computation of a P-Hex mesh
approximating an open surface patch containing different types of curved
regions.

The new method can handle a general surface which contains both
regions of positive curvature and regions of negative curvature. Empiri-
cally, the face self-intersection are removed by using appropriate sampling
sizes of the input conjugate curve network. However, a clear theoretical
understanding of face self-intersection and a guaranteed practical measure
for avoiding it are still missing. We also need to point out that the new
method only produces approximately planar hexagonal faces due to its min-
imization nature, while previously duality-based methods produce exactly
planar hexagonal faces.

4. Offset mesh. A closely related issue is the computation of the
offset surfaces of P-Hex meshes, which are demanded for modeling multi-
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Fig. 8. Left: a conjugate curve network; middle: the hexagonal mesh obtained
by “shifting” alternative rows of the network in the left figure; right: a P-Hex mesh
obtained by locally perturbing the hexagonal mesh in the middle figure.

Fig. 9. Computation of a P-Hex mesh approximating an open surface. Left: a
conjugate curve network; middle: the intermediate hexagonal mesh; right: the final
P-Hex mesh after local perturbation.

layered supporting structures of a glass panel structure. The offset of a
polyhedral surface is the discrete analogue of the offset surface of a smooth
surface. There are several variants of the offset of a polyhedral surface; the
most obvious one is the constant-face-distance offset, which is a polyhedral
surface obtained by displacing each face of a given polyhedral surface by a
constant distance along the normal of the face. In the following, a polyhe-
dral surface will also be called a mesh, with the understanding that each
face of the mesh is a planar polygon.

The offset mesh is closely related to the notion of parallel meshes —
two meshes are parallel to each other if they are isomorphic and their
corresponding edges have non-zero lengths and are parallel to each other.
According to [6], the constant-distance offset of a smooth surface can be
extended to the setting of polyhedral surfaces in three different ways: (1)
constant face-distance offset; (2) constant edge-distance offset; and (3) con-
stant vertex-distance offset. In terms of parallel meshes, a mesh M pos-
sesses a constant face-distance offset if it has a parallel mesh M ′ whose
faces are tangent to S2; a mesh M possesses a constant edge-distance off-
set if it has a parallel mesh M ′ whose edges are tangent to S2; and a mesh
M possesses a constant vertex-distance offset if it has a parallel mesh M ′



230 WENPING WANG AND YANG LIU

whose vertices are on S2. In the three cases above, the parallel mesh M ′

is called the discrete Gaussian image of the given mesh M . Then an offset
mesh Md with offset distance d of the mesh M is given by Md = M +d ·M ′,
which is understood to be a vector expression for the corresponding ver-
tices of the three meshes M , M ′ and Md. We refer the reader to [6] for
more detailed discussions about the definition, existence and construction
of offset of general polyhedral surfaces.

In the following we will consider computing the offset meshes of P-
Hex meshes. An equivalent condition for a mesh M with planar faces to
possess a face-distance offset is that for every vertex v of M , all the faces
incident to v are tangent to a common cone of revolution. For this reason,
a mesh M possessing this property is also called a conical mesh. Obviously,
this condition is satisfied by any P-Hex mesh, since there are exactly three
faces incident to any vertex of a P-Hex mesh. That is, any P-Hex mesh
is a conical mesh; as a consequence, any P-Hex mesh possesses constant
face-distance offset P-Hex meshes.

Given a P-Hex mesh, its offset with the face-distance equal to a con-
stant d can be computed as follows. For each vertex, we offset the three
incident faces outward along their face normals by the distance d and in-
tersect the three planes containing the three offset faces to determine the
vertex of the offset mesh. Clearly, this approach will fail when the three
faces are co-planar and it is numerically unstable when the three faces are
nearly co-planar.

A more robust scheme is as follows. Let fi, i = 0, 1, 2, be the three hex
faces incident to a vertex v of a P-Hex mesh M . Let vd be the vertex of
the offset mesh Md corresponding to v. Let Ni denote unit normal vectors
of the fi. Let θi be the internal angle of fi at v. Then the “vertex” normal
vector Nv of M ar v, defined by vd − v, is parallel to

N̄v =
2∑

i=0

(tanβi + tan γi)Ni,

where βi = 1
2 (θi +θi+1−θi−1) and γi = 1

2 (θi +θi−1−θi+1), i = 0, 1, 2, mod
3. The proof of this formula is elementary so we omit it here. Using this
formula, the vertex vd can be determined by intersecting the line p(t) =
v+tN̄v with any one of the offset planes of the three faces. Figure 10 shows
a P-Hex mesh with its constant face-distance offset mesh.

Next we consider the constant vertex-distance offset of a P-Hex mesh.
An arbitrary P-Hex mesh may not possess a constant vertex-distance offset
mesh. According to the above discussion, a necessary and sufficient condi-
tion for a P-Hex mesh M to have a constance vertex-distance offset is that
it is parallel to a P-Hex mesh M ′ inscribed to the sphere S2. Clearly, if
there is such a mesh M ′, then every hex face of M ′ is inscribed to a circle.
Let h′ be a face of M ′. Let α′

i, i = 0, 1, . . . , 5, denote the six consecutively
ordered internal angles of h′ (see Figure 11). Then, since h′ is inscribed to
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Fig. 10. Left: a free-form P-Hex mesh and its constant face-distance offset mesh;
right: the Gauss image of the P-Hex mesh, whose faces are tangent to the sphere S2.
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Fig. 11. Left: a hex face h′ inscribed to a circle; right: a hex face h parallel to h′.

a circle, it is easy to show that α′
0 + α′

2 + α′
4 = α′

1 + α′
3 + α′

5. Let h be
the hex face of M corresponding to h′. Let the αi, i = 0, 1, . . . , 5, be the
corresponding angles of h. Since the edges of the face h are parallel to the
edges of the face h′ of M ′, αi = α′

i. Therefore α0 +α2 +α4 = α1 +α3 +α5.
Conversely, it is easy to see that if

α0 + α2 + α4 = α1 + α3 + α5 (4.1)

for a planar hex face h, then h is parallel to a hex face h′ that is inscribed
to a circle. From this it can be shown that, for an open P-Hex mesh M
surface, it possesses a constant vertex distance offset mesh if and only if
the angle condition (4.1) holds for every hex face h of M . That is to
say, the angle condition (4.1) is a necessary and sufficient condition for a
P-Hex mesh to possess constant vertex-distance offset meshes. Note that
this angle condition (4.1) is only a necessary condition on this existence of
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Fig. 12. Left: a P-Hex satisfying the angle condition given by Eqn. (4.1), with its
constant vertex-distance offset P-Hex mesh (superimposed); right: the Gauss image of
the P-hex mesh, whose vertices are on the sphere S2.

constant vertex-distance offset meshes of a P-Hex mesh of a more complex
topological type.

Figure 12 shows a P-Hex mesh whose faces satisfy the angle condition
(4.1), together with its constant vertex-distance offset mesh, computed by
integrating the angle condition (4.1) as a constraint in our local perturba-
tion method.

According to [6], a P-Hex mesh possessing a constant edge-distance
offset is necessarily parallel to a Koebe mesh, a mesh whose edges are
tangent to the unit sphere S2. This imposes significant restriction to the
kind of surface shapes that can be represented by such P-Hex meshes.
Also, the computation of the constant edge-distance offset meshes is more
involved than the other types. For the detail we refer the reader to [6].

5. Further problems. There are numerous open problems calling for
further research. First, it is important to understand the inherent degrees
of freedom of P-Hex meshes tiling a free form surface. Such an understand-
ing is fundamental to developing a general method for computing P-Hex
meshes. Second, the issue of avoiding face self-intersection of P-Hex faces
is still outstanding. All the existing methods, as well as the new method
we have proposed here, cannot ensure that the computed P-Hex mesh is
free of face self-intersection. We refer the reader to our recent technical
report [8] on yet another method for generating P-Hex meshes based on
tangent-duality and characterization of non-self-intersecting P-Hex faces in
that context.

In view of practical applications in shape design, it would be desirable
to be able to exert fine control over the the shape and size of the faces of a
P-Hex mesh. Also, a subdivision scheme for P-Hex meshes would be very
useful design tool. Finally, more research is needed on the computation
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of offset meshes of P-Hex meshes, especially in the case of constant edge-
distance offset meshes.
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