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Preface

Human participation plays an essential role in most decisions when analyzing data.
The huge storage capacity and computational power of computers cannot replace
the human flexibility, perceptual abilities, creativity, and general knowledge. A
proper interaction between human and computer is essential. Moreover, such an
interaction is one of the areas in computer science that has evolved a lot in recent
years. Progresses and innovations are mainly due to new analysis methods, growth
of computer power, and the development of interactive software.

Real data in technologies and sciences are often high dimensional. So it is very
difficult to understand these data and extract patterns. One way to achieve such an
understanding is to make a visual insight into the data set. Here a hopeful view may
be put on the visualization of multidimensional data.

Visual data mining is the field where the human is integrated in the data analysis
process. It covers data visualization and graphical presentation of information. The
fundamental idea of visualization is to provide data in some visual form that would
let the human understand them, gain insight into the data, draw conclusions, and
directly influence a further process of decision making. The advantage of visual
analysis is that it is much easier for a decision maker to detect or extract some
useful information from the graphical representation of data than from raw numbers.
It allows us to detect the presence of clusters, outliers, or various regularities in
the data.

The goal of this book is to disclose and present a variety of methods for
multidimensional data visualization. The emphasis is put on the new research
results and trends in this field, including optimization, artificial neural networks,
combinations of algorithms, parallel computing, different proximity measures, and
nonlinear manifold learning. A large number of applications, presented in this book,
allow us to discover the new advantages of visual data mining.

This work is intended for scientists and researchers in any field of study where
complex and multidimensional data must be visually represented. It may also serve
as a useful research supplement for PhD students in operations research, computer
science, various fields of engineering, and natural and social sciences.
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vi Preface

This book consists of five chapters and an appendix. Chapter 1 introduces multi-
dimensional data and the concept of visualization. Strategies for multidimensional
data visualization are overviewed in Chap. 2. Multidimensional scaling based on
global optimization is considered in Chap. 3. In Chap. 4, various combinations of
multidimensional scaling and artificial neural networks are presented and examined.
Applications of visualization, presented in Chap. 5, cover problems in social sci-
ences, medicine, pharmacology, and environmental monitoring. Multidimensional
data sets for testing the visualization algorithms are presented in the appendix.

The authors gratefully acknowledge the contributions of many people, who
helped them in different ways to complete the book. The authors want to con-
vey special thanks to their colleagues from the Systems Analysis Department
of Vilnius University Institute of Mathematics and Informatics who helped to
attain the results of this book via discussions, research projects, and studies.
Thanks here to Dr. Jolita Bernatavičienė, Dr. Sergėjus Ivanikovas, Dr. Rasa Kar-
bauskaitė, Dr. Virginijus Marcinkevičius, Dr. Viktor Medvedev, Prof. Jonas Mockus,
Dr. Alma Molytė, Dr. Remigijus Paulavičius, Dr. Povilas Treigys, Vytautas Tiešis,
and Prof. Antanas Žilinskas. The authors also thank Janina Kazlauskaitė and
Aidas Žandaris for their valuable technical support.

The authors owe a deep gratitude to Prof. Panos Pardalos, a distinguished
professor at the University of Florida and a director of the Center for Applied
Optimization, with whose encouragement and inspiration the book took its present
shape. The authors highly appreciate the initiative of Springer for paying attention
to the current and growing importance of a special field of data mining—the
multidimensional data visualization. At this opportunity, we would like to thank
Springer’s Senior Editor Elizabeth Loew for her maintenance and advice along
the way.

Vilnius, Lithuania Gintautas Dzemyda
Olga Kurasova

Julius Žilinskas
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ê Number of training epochs in SOM
E(Y ) Relative error of multidimensional scaling
Ek kth eigenvector of matrix
EKM König’s topology preservation measure
EQE Quantization error
ES Sammon’s Stress
ETE Topographic error
η Learning rate; optimization step parameter
γ Number of training blocks in the integrated combina-

tion of SOM and neural gas with MDS
hc

i j Neighborhood function in SOM
kx, ky Number of rows and columns of self-organizing map
L Number of layers in the neural network
λk Eigenvalue corresponding to the kth eigenvector
m Number of objects; number of points
m̃ Number of reference vectors of SOM or neural gas
Mi = (mi1,mi2, . . . ,min) Reference vector (neuron) of neural gas
Mi j = (m1

i j ,m
2
i j, . . . ,m

n
i j) Reference vector (neuron) of SOM

M̂c(l) Reference vector of winning neuron for Xl

n Number of features; dimensionality of multidimen-
sional space

nl Number of neurons of the lth layer

xi



xii Notation

r Number of winning neurons
rkl Correlation coefficient between the features xk and xl

R = {rkl , k, l = 1, . . . ,n} Correlation matrix
R

n n-dimensional space
R

d d-dimensional space
ρr Raw Stress of MDS
ρn Normalized Stress of MDS
ρ1 Stress-1 of MDS
ρSp Spearman’s coefficient
Sn Unit sphere
Vi = (vi1,vi2, . . . ,vin) n-dimensional point corresponding to the ith feature
Ti = (ti1, ti2, . . . , tid) Target vector of desired values of the neural network

output
ti j Desired response of jth output of the neural network to

Xi

wi j Weights in Stress function; weights in the neural net-
work

xi j Value of the jth feature of the ith object; the jth
coordinate value of the ith n-dimensional point Xi

x j The jth feature; the jth coordinate of n-dimensional
point

X = {X1,X2, . . . ,Xm} Matrix (set) of n-dimensional points
Xi = (xi1,xi2, . . . ,xin) The ith object, the ith n-dimensional point
Y = {Y1,Y2, . . . ,Ym} Matrix (set) of d-dimensional points
Yi = (yi1,yi2, . . . ,yid) The ith d-dimensional point corresponding to the ith

n-dimensional point (object)
yi j The jth coordinate value of the ith d-dimensional point

Yi

y j The jth coordinate of d-dimensional point



Chapter 1
Multidimensional Data and the Concept
of Visualization

It is often desirable to visualize a data set, the items of which are described by
more than three features. Therefore, we have multidimensional data, and our goal
is to make some visual insight into the data set analyzed. For human perception,
the data must be represented in a low-dimensional space, usually of two or three
dimensions. The goal of visualization methods is to represent the multidimensional
data in a low-dimensional space so that certain properties (e.g. clusters, outliers)
of the structure of the data set were preserved as faithfully as possible. Such a
visualization of data is highly important in data mining because recent applications
produce a large amount of data that require specific means for knowledge discovery.
The dimensionality reduction or visualization methods are recent techniques to
discover knowledge hidden in multidimensional data sets.

The example, presented in Fig. 1.1, shows how the data visualization allows
us to detect the presence of clusters, outliers, or regularities in the analyzed
data. Here, a set of six-dimensional data items is visualized on a plane by a
dimensionality reduction technique. It is evident that some items of the data set form
separate clusters–outliers, and the remaining ones are scattered near to a line. These
clusters–outliers and distribution around the line, can be clearly observed visually on
a plane and cannot be recognized directly from the table without a special analysis. It
is desirable to preserve certain properties of the structure of the data set as faithfully
as possible when transferring from seven dimensions to two.

Such a possibility to present multidimensional data in a visual form is not one and
only. A large number of methods have been developed for multidimensional data
visualization [17,27,55,74,94,109,117,187]. A review of the methods is presented
in Chap. 2.

At first, we determine the principal notions and terms used in this book. We
analyze multidimensional data, methods of their visualization, as well as problems
arising in this research area. Here, we confront with two principal terms: object and
feature. The term object can cover various things: people, equipment, products of
manufacturing, plants, natural phenomena, etc. An object is characterized by some
features. For example, the patient is an object, he (she) can be described by a number

G. Dzemyda et al., Multidimensional Data Visualization: Methods and Applications,
Springer Optimization and Its Applications 75, DOI 10.1007/978-1-4419-0236-8 1,
© Springer Science+Business Media, LLC 2013
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5.86 2.91 −4.19 −8.49 0.43 −1.13
0.31 −1.14 −2.25 −2.60 −1.58 2.17

11.58 2.97 −14.31 −14.18 3.46 −0.99
15.14 5.46 −20.15 −16.61 0.87 0.31
−1.25 0.39 0.40 2.50 0.16 −0.13

−14.42 −3.81 12.65 13.92 1.94 0.93
5.90 3.36 −10.09 −7.96 −0.85 0.89

−9.55 −0.93 9.71 11.53 2.54 −1.41
13.98 3.41 −20.10 −11.60 −0.59 −1.55
0.85 0.37 −2.40 −3.83 −1.15 0.86

−5.96 −2.06 7.90 9.44 1.06 −1.46
6.39 6.82 −12.52 −8.35 2.05 0.49

−3.92 −1.66 6.54 2.82 −1.70 0.65
3.99 −0.83 −3.87 −1.85 −1.05 1.08

−10.36 −2.47 12.88 10.64 0.76 −0.75
2.62 3.72 9.95 7.88 −0.91 −0.37
0.76 2.63 9.47 10.40 0.35 1.02
2.71 2.99 8.75 10.28 −0.59 2.34

13.84 7.71 −7.00 −6.33 −0.68 1.57

→

Fig. 1.1 Example of visualization

of features, such as name, sex, age, and diagnostic test results like blood pressure
and cholesterol level.

Objects are also called items, instances, samples, and observations. Features
are called attributes, parameters, properties, variables, and dimensions. Objects
described by the same features x1,x2, . . . ,xn form a data set. Assume that any
feature may take some numerical values. A combination of values of all features
characterizes a particular object

Xi = (xi1,xi2, . . . ,xin) , i ∈ {1, . . . ,m},

where n is the number of features, m is the number of objects, and i is the
order number of the object. If the objects Xi = (xi1,xi2, . . . ,xin), i = 1, . . . ,m are
described by more than one feature, the data characterizing the objects are called
multidimensional data. If the number of features is n, then X1,X2, . . . ,Xm are the
n-dimensional data items. Often, Xi = (xi1,xi2, . . . ,xin) are interpreted as points in
the multidimensional space R

n, where n defines the dimensionality of the space.
The coordinate values of point Xi are values of the features xi1,xi2, . . . ,xin. In such a
case, we have a matrix (table) X of numerical data:

X = {X1,X2, . . . ,Xm}=
{

xi j, i = 1, . . . ,m, j = 1, . . . ,n
}
, (1.1)

and the ith row of this matrix is a point Xi ∈ R
n, where Xi = (xi1,xi2, . . . ,xin), i ∈

{1, . . . ,m} and xi j is the jth coordinate of the ith point, and m is the number of points
in the data set. The data point Xi contains feature values of corresponding object. If
the data set consists of a lot of objects, i.e., the number m is large enough, then the
data set is called a large data set. If the number n is large, then the data set is called
a high-dimensional data set.
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A natural idea arises to present multidimensional data, stored in such a table
(matrix), in some visual form. It is a complicated problem followed by extensive
researches, but its solution allows a human being to gain a deeper insight into the
data, draw conclusions, and directly interact with the data.

Sometimes, it does not suffice to refer to Xi as a point, so the notion of a vector
can be useful to enlarge the properties of points. The points X1,X2, . . . ,Xm can be
conceived as vectors bound to the origin (0,0, . . . ,0). So, one can alternate between
the notions of point and vector whenever it seems useful to do so.

Note that there are cases where we do not have and cannot get a set of
numerical values of the features characterizing a particular object. However, we can
estimate proximities between two objects. Let us determine the notion of proximity
between two objects Xi and Xj. Proximity is the general term of dissimilarity.
A (dis)similarity is a proximity that indicates how two objects Xi and Xj are
(dis)similar. The (dis)similarity is denoted by δi j. If δi j is a similarity, a high δi j

value indicates that the objects Xi and Xj are very similar. For dissimilarities, a small
δi j value indicates that the objects are very similar. When the proximities are known,
the visualization of objects X1,X2, . . . ,Xm may be carried out using the matrix of
their proximities Δ = {δi j, i, j = 1, . . . ,m}. The advantage is that the dimensionality
n can be unknown. This often happens, for example, in psychological tests. A can
be obtained from matrix X applying some proximity measure, too. The methods of
multidimensional data visualization can be divided into two groups:

• Direct visualization methods, where each feature, characterizing a multidimen-
sional object, is represented in a visual form

• Projection, so-called dimensionality reduction, methods, allowing us to represent
the multidimensional data on a low-dimensional space

Our target is not to enumerate all methods and describe them in detail but to
present the most typical approaches and representatives of each group.

There is no formal mathematical criterion to estimate the visualization quality
in direct visualization methods. All the features that characterize multidimensional
data are represented in a visual form acceptable to a human. These methods may be
classified into geometric, iconographic, and hierarchical visualization techniques.
This book touches the representatives of all these visualization techniques:

1. Geometric methods:

(a) Scatter plots
(b) Matrix of scatter plots
(c) Multiline graphs
(d) Andrews curves
(e) Parallel coordinates
(f) Radial visualization (RadViz) and its modifications GridViz and PolyViz

2. Iconographic displays:

(a) Chernoff faces
(b) Star glyphs
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3. Hierarchical displays:

(a) Dimensional stacking
(b) Trellis display
(c) Hierarchical parallel coordinates

Methods that allow us to represent multidimensional data from R
n in a

low-dimensional space R
d , d < n, are called projection (dimensionality reduction)

methods. If the dimensionality of the projection space is small enough (d = 2 or
d = 3), these methods may be used to visualize the multidimensional data. In such
a case, the projection space can be called a display, embedding, or image space.

The projection methods usually invoke formal mathematical criteria by which
the projection distortion is minimized. Several projection methods are discussed in
this book:

1. Linear projection methods:

(a) Principal component analysis
(b) Linear discriminant analysis
(c) Projection pursuit

2. Nonlinear projection methods:

(a) Multidimensional scaling
(b) Locally linear embedding
(c) Isometric feature mapping
(d) Principal curves

Artificial neural networks may also be used for visualizing multidimensional
data. They realize various nonlinear projections. The following methods are
discussed:

1. Self-organizing map
2. Neural gas
3. Curvilinear component analysis
4. Multidimensional scaling using artificial neural networks

(a) Supervised learning strategy
(b) Unsupervised learning strategy
(c) Combinations of self-organizing map and neural gas with multidimensional

scaling

5. Auto-associative neural network
6. NeuroScales

We have presented one of the possible classifications of methods for multidimen-
sional data visualization. Other reviews and classifications are in [27,73,74,94,109,
117, 118, 187, 195, 217].

The best way to investigate the visualization methods is to use the test data sets
with the known structure. The performance of the methods, presented in this book,
is illustrated on the real-life and artificial data sets.



Chapter 2
Strategies for Multidimensional
Data Visualization

In this chapter, an analytical review of methods for multidimensional data
visualization is presented. The methods based on direct visualization and projections
are described. Some quantitative criteria of the visualization quality are also
introduced.

2.1 Direct Visualization

The direct data visualization is a graphical presentation of the data set that provides
a qualitative understanding of the information contents in a natural and direct
way. The commonly used methods are scatter plot matrices, parallel coordinates,
Andrews curves, Chernoff faces, stars, dimensional stacking, etc. [94].

The direct visualization methods do not have any defined formal mathematical
criterion for estimating the visualization quality. Each of the features x1,x2, . . . ,xn

characterizing the object Xi = (xi1,xi2, . . . ,xin), i ∈ {1, . . . ,m}, is represented in a
visual form acceptable for a human being.

2.1.1 Geometric Methods

Geometric visualization methods are the methods where multidimensional points
are displayed using the axes of the selected geometric shape [187].

Scatter plots are one of the most commonly used techniques for data representa-
tion on a plane R

2 or space R
3. Points are displayed in the classic (x,y) or (x,y,z)

format [73, 74, 94]. Usually, the two-dimensional (n = 2) or three-dimensional
(n = 3) points are represented by this technique. A two-dimensional example is
shown in Fig. 2.1.

Using a matrix of scatter plots, the scatter plots can be applied to visualize more
higher dimensionality data. The matrix of scatter plots is an array of scatter plots

G. Dzemyda et al., Multidimensional Data Visualization: Methods and Applications,
Springer Optimization and Its Applications 75, DOI 10.1007/978-1-4419-0236-8 2,
© Springer Science+Business Media, LLC 2013
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two-dimensional points

displaying all possible pairwise combinations of features. If n-dimensional data
are analyzed, the number of scatter plots is equal to n(n−1)

2 . In the diagonal of the
matrix of scatter plots, a graphical statistical characteristic of each feature can be
presented, for example, a histogram of values. The matrix of scatter plots is useful
for observing all possible pairwise interactions between features [73]. The matrix of
scatter plots of the Iris data is presented in Fig. 2.2 (see a description of the data set in
Appendix A). We can see that Setosa flowers (blue) are significantly different from
Versicolor (red) and Virginica (green). The scatter plots can also be positioned in a
non-array format (circular, hexagonal, etc.). Some variations of scatter plot matrices
are also developed [94].

In multiline graphs, we draw n curves (line graphs) that represent the features
depending on the order number of objects [94]. An example for Auto MPG data is
presented in Fig. 2.3 (see a description of the data set in Appendix A).

Andrews curves plot each n-dimensional point Xi, i ∈ {1, . . . ,m} as a curve (sum
of sinusoids) using the function:

fi(t) =
xi1√

2
+ xi2 sin(t)+ xi3 cos(t)+ xi4 sin(2t)+ xi5 cos(2t)+ · · · , −π < t < π ,

where xi1,xi2, . . . ,xin are the values of coordinates of the point Xi [2].
Andrews curves of the Iris and Auto MPG data sets are presented in Fig. 2.4.

The curves are obtained by the Matlab system (http://www.mathworks.com), where
different species of irises (Fig. 2.4a) and classes of auto by the origin (Fig. 2.4b) are
painted in different colors.

The curves of the same species of irises are near one to another and form a pencil
of lines. Setosa (blue curves) irises significantly differ from the other two species
(Fig. 2.4a). The curves of the Auto MPG data are more intermixed. If the classes
were not marked by different colors, it would be very difficult to separate them
(see Fig. 2.4b).



2.1 Direct Visualization 7

0 1 2
petal width

2 4 6
petal length

2 3 4
sepal width

5 6 7 8
0

1

2

sepal length

pe
ta

l 
w

id
th

2

4

6

pe
ta

l 
le

ng
th

2

3

4

se
pa

l 
w

id
th

5

6

7

8
se

pa
l 
le

ng
th

Fig. 2.2 Scatter plot matrix of the Iris data: blue—Setosa, red—Versicolor, green—Virginica
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Fig. 2.3 Multiline graphs of the Auto MPG data: blue—USA, green—Japan, red—Europe
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Fig. 2.4 Andrews curves: (a) Iris data (blue—Setosa, red—Versicolor, green—Virginica),
(b) Auto MPG data (blue—USA, green—Japan, red—Europe)

An advantage of this method is that it can be used for the analysis of data of a
high dimensionality n. A shortcoming is that when visualizing a large data set, i.e.
with large enough m, it is difficult to comprehend and interpret the results.

Parallel coordinates as a way of visualizing multidimensional data are proposed
by Inselberg [103]. In this method, coordinate axes are shown as parallel lines that
represent features. An n-dimensional point is represented as n− 1 line segments,
connected to each of the parallel lines at the appropriate feature value.

The Iris data set is displayed by using parallel coordinates in Fig. 2.5. The image
is obtained using the system Orange (http://orange.biolab.si/). Different colors
correspond to the different species of irises. We see that the species are distinguished
best by the petal length and width. It is difficult to separate the species by the sepal
length and width.

The parallel coordinate method can be used for visualizing data of high dimen-
sionality. However, then the coordinates must be spaced much nearer one to the
other. When the coordinates are dense, it is difficult to perceive the data structure.
When displaying a large data set, i.e. when the number m of objects is large, the
interpretation of the results is very complicated, often it is almost impossible.

Hierarchical parallel coordinates are one of the variations of the parallel
coordinates [67]. When visualizing a large data set by the hierarchical parallel
coordinates, the number of overlapping lines, obtained by the parallel coordinates,
decreases. The data are represented on the hierarchical parallel coordinates as
follows:

• First, the data are grouped into some clusters by one of clustering methods
[45, 83].

• Afterwards, the data are represented on the parallel coordinates; the centers of
clusters are highlighted; the color intensity of the members of clusters depends
on how far they are from the cluster center; different clusters are displayed by
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Fig. 2.5 Iris data represented on the parallel coordinates: blue—Setosa, red—Versicolor,
green—Virginica
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Fig. 2.6 Iris data represented on the hierarchical parallel coordinates: blue—Setosa,
red—Versicolor, green—Virginica

different colors (see Fig. 2.6). The image is obtained using the system Xmdv
(http://davis.wpi.edu/xmdv/).

Hierarchical parallel coordinates allow a visual presentation of clustered data.
Radial visualization (RadViz) and its modifications PolyViz and GridViz are de-

veloped at the Institute for Visualization and Perception Research of the University
of Massachusetts (http://www.uml.edu/centers/IVPR/).
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Fig. 2.7 Iris data visualized by the RadViz method: blue—Setosa, red—Versicolor,
green—Virginica

The Iris data visualized by RadViz is presented in Fig. 2.7, where the petal length,
petal width, sepal length, and sepal width are dimensional anchors. The image is
obtained using the system Orange (http://orange.biolab.si/).

The Breast Cancer data visualized by the RadViz method are presented in Fig. 2.8
(see a description of the data set in Appendix A). Most of the malignant cases (red)
concentrate in the center; however, it is almost impossible to separate them from the
benign cases (blue).

In this method, a circle is drawn, and n so-called dimensional anchors represent-
ing features are fixed on this circle uniformly. The spring paradigm is applied to
display multidimensional data. n springs are allocated to each n-dimensional object.
One end of all the n springs is connected among them; other ends of the springs are
connected to different dimensional anchors [93]. The position of connection of n
springs represents one object.

The spring constants have the values of features of multidimensional objects. The
values of features should be normalized in the range [0, 1] so that the minimal value
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Fig. 2.8 Breast Cancer data visualized by the RadViz method: blue—benign, red—malignant

of each feature was equal to 0 and the maximal one was equal to 1. Each object is
displayed as a point in the position that produces a sum of spring forces equal to 0.

Denote the anchors by S1,S2, . . . ,Sn, where S j = (s j1,s j2), j = 1, . . . ,n. When
visualizing a set of multidimensional data X = {X1,X2, . . . ,Xm}, where Xi =
(xi1,xi2, . . . ,xin), the two-dimensional points Yi = (yi1,yi2), i = 1, . . . ,m, are calcu-
lated by the formula:

Yi =
∑n

j=1 S jxi j

∑n
j=1 xi j

.

Some modifications of the RadViz method are developed: grid visualization
(GridViz) and polygon visualization (PolyViz) [94]. GridViz places the dimensional
anchors (fixed spring end) on a rectangular grid but not on a circle. The spring
paradigm is the same as in RadViz: the points are plotted where the sum of the spring
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Fig. 2.9 Iris data visualized by the PolyViz method: blue—Setosa, red—Versicolor,
green—Virginica

forces is zero. In the GridViz case, feature labelling is difficult, but the displayed data
dimensionality can be much higher. A shortcoming of RadViz is that n-dimensional
objects with quite different values of features can appear at the same point. If the
dimensional anchors are segments of lines, the overlapping of points is reduced. The
segments are called anchor segments. The polygon visualization (PolyViz) method
was developed for this purpose (see Fig. 2.9). In the figure, springs start from the
points corresponding to the values of a particular feature on the anchor segment.
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a b c

Fig. 2.10 Iris data visualized by Chernoff faces: (a) Setosa, (b) Versicolor, (c) Virginica

2.1.2 Iconographic Displays

The aim of visualization of multidimensional data is not only to map the data onto
a two- or three-dimensional space but also to help perceiving them. The second
aim may be achieved visualizing multidimensional data by iconographic display
methods. They are also called glyph methods. Each object that is defined by the n
features is displayed by a glyph. Color, shape, and location of the glyph depend on
the values of features. The most famous methods are Chernoff faces [29] and the
star method [26]; however, some methods of more complicated other glyphs may
be used as well [58, 125, 179, 216].

Chernoff faces are designed by Chernoff for visualization of multidimensional
data [29]. In Chernoff faces, data features are mapped to facial features, such as
the angle of eyes and the width of a nose. The Iris visualized by Chernoff faces
are presented in Fig. 2.10, where sepal length corresponds to the size of face, sepal
width corresponds to the shape of forehead, petal length corresponds to the shape
of jaw, and petal width corresponds to the length of nose. We see that the faces
corresponding to Setosa irises significantly differ from the faces corresponding
to Versicolor and Virginica irises. The faces corresponding to Versicolor and
Virginica irises differ less among themselves. The Matlab system is used (http://
www.mathworks.com) to obtain the image in Fig. 2.10.
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a b c

Fig. 2.11 Iris data set visualized by star glyphs: (a) Setosa, (b) Versicolor, (c) Virginica

Other glyphs commonly used for data visualization are stars [26]. Each object is
displayed by a stylized star. In the star plot, the features are represented as spokes
of a wheel circle, but their lengths correspond to the values of features. The angles
between the neighboring spokes are equal. The outer ends of the neighboring spokes
are connected by line segments. The Iris data plotted by star glyphs are presented
in Fig. 2.11, where the stars corresponding to Setosa irises are smaller than the two
other species. The larger stars correspond to Virginica irises. The Matlab system is
used to obtained the image in Fig. 2.11, too.

2.1.3 Hierarchical Displays

Hierarchical displays create a structure of an image such that some features are
embedded in displays of other features. Visualization of some features is displayed
in the structure depending on the values of other features. Here we introduce two
such techniques: dimensional stacking [213] and trellis display [5].

A predecessor of dimensional stacking was the general logic diagrams [176].
Only the Boolean data values 0 and 1 are displayed. M. Ward extends this method
later on [213].
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The scheme of dimensional stacking is as follows:

• The ranges of values of a feature, characterizing the objects, are divided into
subranges; a recommendation is that the number of such subranges is not more
than five.

• Two selected features, called the outer features, are represented by a grid; the
numbers of rows and columns are equal to the numbers of subranges.

• When displaying other two features, called the inner features, a new grid is
created at each cell of the outer grid; the grids, displaying the inner features,
are embedded into all the cells of the outer grid.

• The recursive embedding continues until all features are displayed.
• The cell of the last embedding is colored, if there are objects, the feature values

of which are in subranges corresponding to this cell.
• If the classes of objects are known, the color of the cell is selected according to

the class of the objects; moreover, the classes are overlapping; colors of the cell
may overlap, too.

The Iris data, visualized by the dimensional stacking method, are presented in
Fig. 2.12. We see that Setosa irises (black cells) are displayed separately from the
other two species. The other two species overlap.

The dimensional stacking method can be used for exploring clusters and outliers.
However, when the dimensionality of data exceeds eight, the display of data and
comprehension of the results are difficult.

The dimensional stacking technique is implemented in the package Xmdv [213].
The trellis display method [5] is similar to the dimensional stacking. The name

of the method is derived from the Latin word “tri-liceum” which means a frame
of lattice-work used for climbing plants. The Auto MPG data, visualized by trellis
display, are presented in Fig. 2.13.

At first, two features are selected. They are called axis variables. In Fig. 2.13,
the axis variables are weight and miles per gallon (MPG). Other features are called
conditioning variables. The ranges of the values of these features are divided into
nonoverlapping subranges. The origin and number of cylinders are conditioning
variables in Fig. 2.13. The panel plots are drawn for each pair of subranges. The
panel plots can be scatter, bar, surface plots, etc.

2.2 Dimensionality Reduction

It is difficult to perceive the data structure using the direct visualization methods,
particularly when we deal with large data sets or data of high dimensionality.

Another group of visualization methods (so-called projection methods) is based
on reduction of the dimensionality of data. Their advantage is that each
n-dimensional object is represented as a point in the space of low-dimensionality d,
d < n, usually d = 2. There exist a lot of methods that can be used for reducing the
dimensionality. The aim of these methods is to represent the multidimensional data
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Fig. 2.12 Iris data visualized by dimensional stacking

in a low-dimensional space so that certain properties (such as distances, topology,
or other proximities) of the data set were preserved as faithfully as possible. These
methods can be used to visualize the multidimensional data if a small enough
resulting dimensionality is chosen.

Figure 2.14 shows two possible ways of projections of the three-dimensional
points (n = 3) onto a plane (d = 2). We can see two clusters of points on the
projection plane in Fig. 2.14a and only one cluster on the projection plane in
Fig. 2.14b.

The example in Fig. 2.14 demonstrates that different projections of the same data
can reveal different aspects of the data structure (clusters, outliers, etc.). Indeed,
some projections can fail to reveal any structure. Therefore, the proper choose of
projection is an important problem. When visualizing multidimensional data, we
confront with two often contradictory aims. On the one hand, we want to reduce the
dimensionality of data in the simplest way. On the other hand, we want to preserve
the original information as much as possible.

The projection methods are used for transformation of multidimensional data
to a low-dimensional space. The aim of these methods is to represent the multidi-
mensional data in a low-dimensional space so that certain properties of the data set
were preserved as faithfully as possible. These methods can be used to visualize the



2.2 Dimensionality Reduction 17

8

co
nd

it
io

ni
ng

 v
ar

ia
bl

e 
– 

th
e 

nu
m

be
r 

of
 c

yl
in

de
rs

6
<6

ax
is
 v

ar
ia

bl
es

M
P
G

weight
conditioning variable – origin (USA, Europe, Japan)

the number of cylinders < 6 the number of cylinders < 6 the number of cylinders < 6

the number of cylinders = 6 the number of cylinders = 6 the number of cylinders = 6

the number of cylinders = 8 the number of cylinders = 8 the number of cylinders = 8
JapanEuropeUSA

JapanEuropeUSA

JapanEuropeUSA

5

10

15

20

25

30

35

40

45

50

1500 2500 3500 4500 5500

5

10

15

20

25

30

35

40

45

50

1500 2500 3500 4500 5500

5

10

15

20

25

30

35

40

45

50

1500 2500 3500 4500 5500

5

10

15

20

25

30

35

40

45

50

1500 2500 3500 4500 5500

5

10

15

20

25

30

35

40

45

50

1500 2500 3500 4500 5500

5

10

15

20

25

30

35

40

45

50

1500 2500 3500 4500 5500

5

10

15

20

25

30

35

40

45

50

1500 2500 3500 4500 5500
5

10

15

20

25

30

35

40

45

50

1500 2500 3500 4500 5500

5

10

15

20

25

30

35

40

45

50

1500 2500 3500 4500 5500

Fig. 2.13 The Auto MPG data visualized by trellis display

multidimensional data if a sufficiently small dimensionality of the projection space
R

d is chosen (d = 2 or d = 3). We call the space R
d as a display or image space

since its points can be observed visually.
Suppose that the multidimensional data set is defined by a matrix

X = {X1,X2, . . . ,Xm}=
{

xi j, i = 1, . . . ,m, j = 1, . . . ,n
}
.

Here m is the number of objects (n-dimensional points Xi ∈ R
n, where Xi =

(xi1,xi2, . . . ,xin), i ∈ {1, . . . ,m}). xi j is the jth coordinate corresponding to the jth
feature.

One needs to find a transformation of the points Xi = (xi1,xi2, . . . ,xin), i =
1, . . . ,m, into points Yi =(yi1,yi2, . . . ,yid), i= 1, . . . ,m, that are on a low-dimensional
space R

d , d < n. One-dimensional space (d = 1) can also be used; however, more
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Fig. 2.14 Example of projections of three-dimensional points

information can be preserved when observing points on a plane (d = 2) or a 3D
space (d = 3).

There are some formal mathematical criteria of the projection quality. These
criteria are optimized in order to get the optimal projection of multidimensional
data onto a low-dimensional space. The main goal is to preserve the proportions of
distances or estimations of other proximities between the multidimensional points
in the image space as well as to preserve or even to highlight other characteristics
of the data multidimensional data (e.g., clusters). There are linear and nonlinear
projection methods.

Linear projection methods pursue a linear transformation of data. There are
various linear transformations: rotation, shearing, reflection, scaling, etc.

A linear transformation may be described by linear equations

Yi = XiA. (2.1)

If d = n, i.e. Yi = (yi1,yi2, . . . ,yin) and Xi = (xi1,xi2, . . . ,xin), then A is a square
matrix, consisting of n rows and n columns. The matrix A is called a transformation
matrix. If a linear transformation is used for dimensionality reduction, then d < n,
Yi = (yi1,yi2, . . . ,yid), i = 1, . . . ,m, and A is a matrix, consisting of n rows and d
columns.

Let us analyze a simple case of the linear transformation, if n= d = 2. Let us have
a point Xi = (xi1,xi2). Transform it linearly to a point Yi = (yi1,yi2) using a matrix

A =

(
a11 a12

a21 a22

)
.

In the case of rotation, the elements of matrix A can be expressed using
trigonometric functions:

A =

(
cos(α) −sin(α)

sin(α) cos(α)

)
,
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where α is the rotation angle between the axes x1 and y1, as well as between the
axes x2 and y2. The coordinate system (x1,x2) is rotated around the origin (0,0)
counterclockwise by α to get a coordinate system (y1,y2) (see Fig. 2.15). Such
a matrix A is called a rotation matrix. The coordinates of the point Yi may be
expressed as

yi1 = xi1 cos(α)+ xi2 sin(α),

yi2 = xi2 cos(α)− xi1 sin(α).

Actually, (yi1,yi2) is a linear transformation of the point Xi to the coordinate
system (y1,y2).

If the aim is to reduce the dimensionality, the point Yi can be comprised of less
coordinates, for example, d = 1, Yi = (yi1). In this case, we get a transformation of
the point Xi to the one-dimensional space.

A nonlinear transformation may be described as follows:

Y = f (X),

where f is a nonlinear function and

Y = {Y1,Y2, . . . ,Ym}= {yi j, i = 1, . . . ,m, j = 1, . . . ,n}.

The nonlinear transformation is more complicated than the linear one and re-
quires more time-consuming computations. However, such a transformation allows
us to preserve the characteristics of multidimensional data better as compared with
the linear transformation if d < n, i.e. the data are projected to a lower-dimensional
space.
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Fig. 2.16 Projections: (a) linear, (b) nonlinear

The linear and nonlinear projections are illustrated in Fig. 2.16. Let the
two-dimensional points X1,X2, . . . ,X8 be spread so that the distances between the
nearest points are equal, i.e. d(Xi,Xi+1) = d(Xi+1,Xi+2), i = 1, . . . ,6. If we project
them to the one-dimensional space using the linear projection (to the line y1), equal
distances between the nearest points are not preserved (see Fig. 2.16a). However, in
the case of the nonlinear projection, when the proper transformation is found, the
distances between the nearest points remain equal (see Fig. 2.16b).

There are many visualization methods based on the linear and nonlinear projec-
tion. The most popular methods are discussed in this section: principal component
analysis [171], linear discriminant analysis [63], multidimensional scaling [14, 31],
isometric feature mapping [200], and locally linear embedding [184].

2.2.1 Proximity Measures

The aim of projection methods is to transform multidimensional data to a
low-dimensional space so that the proximity of the data was possibly preserved.
Therefore, proximity measures should be defined. Some proximity measures are
introduced below.

Often, the proximity is measured using the Euclidean distance, which belongs
to the group of Minkowski distances. The Minkowski distance between two objects
Xk = (xk1,xk2, . . . ,xkn) and Xl = (xl1,xl2, . . . ,xln) is defined by the formula

dq(Xk,Xl) =

{
n

∑
j=1

|xk j − xl j|q
} 1

q

.
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The following distances may be derived for different q:

• City-block or Manhattan distance, q = 1:

d1(Xk,Xl) =
n

∑
j=1

|xk j − xl j|.

• Euclidean distance, q = 2:

d2(Xk,Xl) =

√
n

∑
j=1

|xk j − xl j|2.

• Chebyshev distance, q = ∞:

d∞(Xk,Xl) = max
j

∣
∣xkl − xl j

∣
∣ .

Here the distances between two objects Xk and Xl satisfy the following condi-
tions:

• d(Xk,Xl) is a nonnegative real number.
• d(Xk,Xk) = 0.
• d(Xk,Xl) = d(Xl ,Xk), i.e. the distance from object Xk to object Xl is equal to the

distance from object Xl to object Xk.
• d(Xk,Xl) ≤ d(Xk,Xj) + d(Xj,Xl),i.e. the distance between any two objects Xk

and Xl cannot be larger than a sum of distances between objects Xk, Xj and Xl ,
Xj (triangle inequality).

Some other proximity measures are also possible: Canberra distance [132],
Bray-Curtis dissimilarity [16], correlation, etc.

2.2.2 Principal Component Analysis

The principal component analysis (PCA) is a well-known data analysis technique
invented in 1901 by Pearson [171]. It is a way of linear transforming a set X
of n-dimensional points X1,X2, . . . ,Xm into another set Y of n-dimensional points
Y1,Y2, . . . ,Ym. The property of the set is that the largest part of its information
content is stored in the first few coordinates (components) of points Yi, i = 1, . . . ,m.
The principal component analysis is often used to reduce the dimensionality of
multidimensional points Xi, i = 1, . . . ,m, by discarding some of the components
of the points Yi and by leaving only the first (principal) d ones. The principal com-
ponent analysis projects the data linearly into a low-dimensional space preserving
the variance of the data best.
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x1

x2
PC1

PC2

Fig. 2.17 The first (PC1) and
second (PC2) principal
components

The main idea of PCA is to reduce the dimensionality of data by performing a
linear transformation and rejecting a part of the components, variances of which
are the smallest ones [110, 169, 198]. When analyzing the data set X , a direction in
R

n with the maximal variance is found. This direction defines the first principal
component. Other principal components maximize the variance of a data set in
the directions orthogonal to the previous principal components. So, the principal
components are uncorrelated and ordered by decreasing variances [110]. Figure 2.17
illustrates a two-dimensional case with two principal components PC1 and PC2.

The principal component analysis needs a correlation or covariance matrix of
features. Suppose we have a data matrix X (1.1). The rows of this matrix correspond
to the objects X = {X1,X2, . . . ,Xm}, and the columns correspond to the features
x1,x2, . . . ,xn characterizing the objects.

A correlation is a number that describes the degree of relationship between two
features. The correlation coefficient rkl between the features xk and xl is computed
by the formula

rkl =
∑m

i=1(xik − x̄k)(xil − x̄l)√
∑m

i=1(xik − x̄k)2 ∑m
i=1(xil − x̄l)2

, (2.2)

where

x̄k =
1
m

m

∑
i=1

xik and x̄l =
1
m

m

∑
i=1

xil .

The correlation matrix R = {rkl , k, l = 1, . . . ,n} consists of the correlation
coefficients obtained by formula (2.2). The diagonal elements rkk, k = 1, . . . ,n, are
equal to 1. This matrix is symmetric.

The covariation coefficient ckl between the features xk and xl is computed by the
formula
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ckl =
1

m− 1

m

∑
i=1

(xik − x̄k)(xil − x̄l). (2.3)

If k= l, expression (2.3) is a variance formula, i.e. ckk is the variance of feature xk.
The covariance matrix C consists of the covariance coefficients:

C = {ckl , k, l = 1, . . . ,n}. (2.4)

It follows from formulas (2.2) and (2.3) that the correlation coefficient is equal to

rkl =
ckl√
ckkcll

. (2.5)

If the features xk and xl are not correlated, their covariance coefficient is equal to
zero: ckl = clk = 0,k �= l.

Let us describe the eigenvector and the eigenvalue of the covariance matrix.
The eigenvalue λk and the eigenvector Ek corresponding to λk are solutions of
the equation CEk = λkEk. Here Ek is a vector-column. The value of λk is found
from the characteristic equation |C−λkI| = 0, where I is an identity matrix of the
same order as the matrix C and |.| denotes a determinant of the matrix. The number
of eigenvectors is equal to n. There is a lot of methods to find eigenvectors and
eigenvalues.

Let us sort the eigenvectors Ek, k = 1, . . . ,n, in descending order of the corre-
sponding eigenvalues (λ1 ≥ λ2 ≥ λ3 ≥ ·· · ≥ λn). The matrix A = (E1,E2, . . . ,En) is
called a principal component matrix. The columns of this matrix are the eigenvectors
Ek, k = 1, . . . ,n corresponding to the eigenvalues λ1 ≥ λ2 ≥ λ3 ≥ ·· · ≥ λn. Each
column of the matrix A is orthogonal to any other column. Usually, Ek, k = 1, . . . ,n
of unit length are used.

Let us transform the points Xi, i = 1, . . . ,m, to points Yi, i = 1, . . . ,m, by the
formula

Yi = (Xi − X̄)A, i = 1, . . . ,m, (2.6)

where Xi = (xi1,xi2, . . . ,xin), X̄ = (x̄1, x̄2, . . . , x̄n), A = (E1,E2, . . . ,En), A is a trans-
formation matrix. Yi = (yi1,yi2, . . . ,yin), obtained by formula (2.6), are points in the
new coordinate system (y1,y2, . . . ,yn). The eigenvectors Ek, k = 1, . . . ,n represent
the basis set of this system. The covariance matrix of components y1,y2, . . . ,yn of
the points Yi, i = 1, . . . ,m is equal to

⎛

⎜
⎝

λ1 0
. . .

0 λn

⎞

⎟
⎠ .

We may use only a few first eigenvectors for transforming multidimensional data
instead of all the eigenvectors of the covariance matrix. Suppose that the matrix Ad
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consists of the first d eigenvectors. Then it is possible to define a transformation
analogous to (2.6):

Yi = (Xi − X̄)Ad , i = 1, . . . ,m.

In this way, a projection of the point Xi to the d-dimensional space is derived.
Some properties of the eigenvalues λ1,λ2, . . . ,λn are as follows:

1. ∑n
k=1 λk = ∑n

k=1 ckk.
2. λ1 ≥ maxkckk.
3. λn ≤ minkckk.

It follows from the second property that the first eigenvector E1 describes the
first principal component y1, the variance of which is the highest one among
λ1,λ2, . . . ,λn. The second eigenvector E2 describes the second principal component
y2, the variance of which is the second one according to the value.

It follows from the third property that the last eigenvector En describes the
principal component yn, the variance of which is smallest. Therefore, if only the
first d eigenvectors are used, the components with the smallest variances will be
rejected.

In order to derive the principal components, it suffices to find the highest
d eigenvalues and the corresponding eigenvectors of matrix C. This matrix has
specific properties: it is symmetric and nonnegative definite; therefore, special fast
algorithms are used. Artificial neural networks are also used for finding the principal
components [86, 168, 185].

The advantage of the principal component analysis is the simplicity of its idea.
This fact influences its popularity and wide application.

The examples of application of PCA are presented in Fig. 2.18. The Iris and
the Breast Cancer data sets are visualized by two principal components. We do
not present labels and units for both axes in the figure because we are interested
in observing the interlocation of points on a plane only. We see in Fig. 2.18a that
Setosa irises (marked in blue) are faraway from Versicolor (red) and Virginica
(green) irises. There is no exactly expressed boundary between these two species. A
large amount of the points corresponding to the benign tumor data (blue points) are
concentrated in one area, and the other points corresponding to the malignant tumor
data (red) are spread widely (see Fig. 2.18b). In Fig. 2.18a and b, we can observe
clusters of points corresponding to particular classes of n-dimensional objects.

In the literature, some authors prefer to define the principal components using
the correlation matrix instead of the covariance one. The correlation between a pair
of features is equivalent to the covariance divided by the product of the standard
deviations of two features (2.5).

Although PCA is widely used for multidimensional data visualization, it has
some shortcomings. It is not good for data of nonlinear structures, consisting of
arbitrarily shaped clusters or curved manifolds.
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a b

Fig. 2.18 The data visualized by PCA: (a) Iris data (blue—Setosa, red—Versicolor,
green—Virginica) and (b) Breast Cancer data (blue—benign, red—malignant)

Fig. 2.19 Example of the
principal curve

During the past 50 years, many works have appeared proposing extensions of
the principal components to data with a nonlinear structure. Principal curves are a
nonlinear generalization of principal components [36, 87, 88]. The principal curve
provides a nonlinear summary of the data (see Fig. 2.19). The advantages of the
principal curves comparing with the principal components are described in [87].
The idea of the principal curves can be extended to principal surfaces.
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Fig. 2.20 Visualization of
Iris data by LDA:
blue—Setosa,
red—Versicolor,
green—Virginica

2.2.3 Linear Discriminant Analysis

In contrast to most other dimensionality reduction methods, a linear discriminant
analysis (LDA) is a supervised method. The method is often called Fisher’s
discriminant analysis [63]. In a supervised strategy, some known properties of data
(e.g., belonging of the objects to one of classes) are applied. LDA transforms mul-
tidimensional data to a low-dimensional space, maximizing the linear separability
between objects belonging to different classes [43, 44, 68].

Suppose that the data matrix X (1.1) consists of k submatrices X (1),X (2), . . . ,X (k),

where k is the number of classes. The rows of X ( j)
i , i = 1, . . . ,m j, of X ( j) correspond

to objects that belong to the jth classes. Here m j is the number of objects in the jth
class. The number of all objects m = ∑k

j=1 m j.
The scheme of LDA algorithm is as follows:

1. Covariance matrix C (2.4) of the whole data set X and covariance matrices C( j),
j = 1, . . . ,k, of each class are computed. The within-class scatter is defined: Sw =

∑k
j=1 p jC( j), where p j =

mj
m . The between-class scatter is defined: Sb =C− Sw.

2. The eigenvectors and eigenvalues of the matrix S = S−1
w Sb are computed. The

eigenvectors are sorted in descending order of the corresponding eigenvalues.
d eigenvectors corresponding to the highest eigenvalues are selected (under the
requirement that d < k).

3. The transformation Yi = (Xi − X̄)Ad , i = 1, . . . ,m, is performed, where Ad is a
d-column matrix consisting of the eigenvectors corresponding to the highest d
eigenvalues of matrix S. Here X̄ = (x̄1, x̄2, . . . , x̄n) is the vector of averages of the
features.

The difference between LDA and PCA is that, in addition, the known classes of
objects are applied. The Iris data set, visualized by LDA, is presented in Fig. 2.20.
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2.2.4 Multidimensional Scaling

Multidimensional scaling (MDS) refers to a group of methods that are widely used
for dimensionality reduction and visualization of multidimensional data [14]. The
data of MDS are a matrix consisting of pairwise proximities of the objects.

Let us denote the pairwise proximity of the ith and jth objects by δi j. If
the objects are defined by the multidimensional points Xi = (xi1,xi2, . . . ,xin), i =
1, . . . ,m, the proximity can be measured by the distance between points: δi j =
d(Xi,Xj), where various distances described in Sect. 2.2.1 can be used. The distance
between points in a low-dimensional space Yi and Yj corresponding to the ith and
jth objects is denoted by d(Yi,Yj).

The goal of multidimensional scaling is to find low-dimensional points Yi =
(yi1,yi2, . . . ,yid), such that the distances between the points in the low-dimensional
space were as close to the proximities as possible. The least-squares objective
function (raw Stress) to be minimized can be written as

σr(Y ) = ∑
i< j

wi j(d(Yi,Yj)− δi j)
2, (2.7)

where Y = {Y1,Y2, . . . ,Ym} and wi j are nonnegative weights.
The normalized Stress is defined as follows:

σn(Y ) =
∑i< j wi j(d(Yi,Yj)− δi j)

2

∑i< j wi jδ 2
i j

. (2.8)

The normalization using the parameter ∑i< j wi jδ 2
i j gives a clear interpretation of

the visualization quality that depends less on the number of objects m and the scale
of proximities.

The relative error is defined as follows:

E(Y ) =
√

σn(Y ) =

√√
√
√∑i< j wi j(d(Yi,Yj)− δi j)

2

∑i< j wi jδ 2
i j

. (2.9)

The reason for using E(Y ) rather than the normalized error σn(Y ) is that σn(Y ) is
almost always very small in practice, so E(Y ) values are easier to discriminate [14].

Often wi j = 1, then formula (2.9) becomes as follows:

E(Y ) =

√√
√√∑i< j (d(Yi,Yj)− δi j)

2

∑i< j δ 2
i j

. (2.10)
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Stress-1 [126] is defined by the formula

σ1(Y ) =

√√
√√∑i< j (d(Yi,Yj)− δi j)

2

∑i< j(d(Yi,Yj))
2 . (2.11)

The relation between the normalized Stress and Stress-1 is discussed in [14].
In fact, the Stress functions (2.7)–(2.11) are various cases of multidimensional data
projection error.

There exists a multitude of variants of MDS with different weights and optimiza-
tion algorithms. The global optimization methods for minimizing MDS Stress are
investigated in Chap. 3. Various local optimization strategies are discussed below.

2.2.4.1 SMACOF Algorithm

The multidimensional scaling Stress function (2.7) can be minimized in the
majorization way [81]. The idea of majorization is to replace iteratively the original
complicated function f (x) by an auxiliary function g(x,z), where z is some fixed
value [14]. The function g(x,z) has to meet some requirements to be called a
majorizing function of f (x). The auxiliary function g(x,z) should be:

• Simpler to minimize than f (x)
• Not smaller than the original function, i.e. f (x) ≤ g(x,z)
• Touch f (x) at the so-called supporting point z, i.e. f (z) = g(z,z)

The set Y = {Y1,Y2, . . . ,Ym} of d-dimensional points may be iteratively calculated
by the so-called Guttman transform formula:

Y (t + 1) =V+B(Y (t))Y (t), (2.12)

where t is the order number of iteration, B(Y (t)) has the elements

bi j =

{
− wi jδi j

d(Yi,Yj)
, for i �= j and d(Yi,Yj)�= 0,

0, for i �= j and d(Yi,Yj) = 0,

bii = −
m

∑
j=1, j�=i

bi j.

V is a matrix of weights with the entries

vi j = −wi j, for i �= j,

vii =
m

∑
j=1, j�=i

wi j ,
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and V+ denotes the Moore–Penrose pseudoinverse of V . It is shown in [14] that in
the case wi j = 1, (2.12) is simplified to

Y (t + 1) =
1
m

B(Y (t))Y (t). (2.13)

The SMACOF (Scaling by MAjorization of a COmplicated Function) algorithm
is summarized as follows:

1. Set t = 0 and the initial values of the low-dimensional points Y (0).
2. Compute the value of the Stress function σr(Y (t)) by (2.7).
3. Compute Y (t + 1) by (2.12).
4. Compute σr(Y (t + 1)) by (2.7).
5. Increase the iteration counter t by one: t = t + 1.
6. If σr(Y (t−1))−σr(Y (t))< ε or t is equal to the maximum number of iterations,

then stop (ε is a small positive constant), else go to Step 3.

Various modifications of MDS have been proposed to visualize large data sets:
steerable multidimensional scaling (MDSteer) [215], incremental MDS, relative
MDS [163], landmark MDS [193], diagonal majorization algorithm (DMA) [206],
etc.

The diagonal majorization algorithm [206] attains a slightly worse MDS projec-
tion error than SMACOF (2.12), but computing is faster and requires essentially less
computing memory [11]. The DMA uses a simpler majorization function comparing
with (2.12):

Y (t + 1) = Y (t)+
1
2

diag(V )−1 [B(Y (t))−V ]Y (t). (2.14)

2.2.4.2 Relative Mapping

Relative mapping [164] can be used for mapping new objects, when some objects
had been mapped before. It may be of interest to see where new objects are
visualized among the already mapped objects. To get a mapping that presents the
previously mapped objects together with the new ones, a complete rerun of the
MDS algorithm on all the objects is required. The relative mapping can be used
to visualize new objects while preserving the previously obtained mapping. Such
an optimization problem has a smaller number of variables and takes much shorter
computing time. This is achieved by modifying the Stress function:

ER(Ym̂+1, . . . ,Ym) =
m

∑
i, j=m̂+1,i< j

wi j(δi j − d(Yi,Yj))
2

+
m

∑
i=m̂+1

m̂

∑
j=1

wi j(δi j − d(Yi,Ŷj))
2, (2.15)
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where m̂ is the number of previously mapped points and Ŷj are previously mapped
points. The number of variables is (m− m̂)d instead of md.

The relative mapping may be used in the relative multidimensional scaling
method to visualize large data sets. The visualization process is divided into
three steps:

1. The basic objects are chosen.
2. The basic objects are visualized by the MDS algorithm.
3. The remaining objects are visualized using the relative mapping.

If objects are defined by multidimensional points, then the basic objects may be
chosen according to k-means clustering [163].

The strategies of selecting basic objects are investigated in [8, 10]. The visual-
ization results are very dependent on the selected set of the basic objects. The basic
objects should be selected so that they were distributed as uniformly as possible all
over the data set, which yields better results of the obtained visualization.

2.2.4.3 Sammon’s Mapping

Sammon’s mapping is one of the MDS methods [188]. The Stress function of
Sammon’s mapping is as follows:

ES(Y ) =
1

∑k<l δkl
∑
i< j

(δi j − d(Yi,Yj))
2

δi j
. (2.16)

Sammon’s Stress ES(Y ) is coincident with the function σr(Y ) (2.7), if

wi j =
1

∑k<l δklδi j
.

Due to the normalization (division by δi j), the preservation of small values of
proximities is emphasized.

Various optimization methods could be used to minimize the function ES(Y )
when projecting multidimensional objects on the plane (d = 2). Sammon has
proposed a strategy for minimizing ES(Y ) in [188]. The coordinates yik, i = 1, . . . ,m,
k = 1,2, of the two-dimensional points Yi ∈ R

2 are computed by the iteration
formula:

yik(t + 1) = yik(t)−η�(t),

� =

∂ES
∂yik∣
∣
∣ ∂ 2ES

∂y2
ik

∣
∣
∣
, (2.17)
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where t denotes the order number of iteration and η is an optimization step
parameter. The coordinates of all m points Yi ∈ R

2, i = 1, . . . ,m, are recomputed
at an iteration.

In order to find partial derivatives, the following formulas are used:

∂ES

∂yik
=−2

c ∑
i�= j

(
δi j − d(Yi,Yj)

δi jd(Yi,Yj)

)
(yik − y jk), (2.18)

∂ 2ES

∂y2
ik

= −2
c ∑

i�= j

1
δi jd(Yi,Yj)

(

δi j − d(Yi,Yj)− (yik − y jk)
2δi j

d2(Yi,Yj)

)

, (2.19)

c = ∑
i< j

δi j.

In fact, the results of ES(Y ) minimization depend on η and on the initial coor-
dinates of points Y1,Y2, . . . ,Ym. Based on results of experiments, it is recommended
in [120,188] that η ∈ [0.3,0.4]. However, a larger value η can be used as well [53].

The analysis of a relative performance of different algorithms in reducing the
dimensionality indicates that Sammon’s mapping is one of widely used visualization
methods. Although there are presently other optimization algorithms for minimizing
(2.16), the algorithm proposed by Sammon [188], based on (2.17), is successfully
applied in many researches [48, 49, 115, 120, 122].

Some modifications of Sammon’s algorithm have been proposed [50,162]. There
the Seidel-type coordinate descent [114, 141] is applied, where the coordinates
of two-dimensional points Yi are recalculated using the coordinates, obtained in a
current iteration:

y jk =

{
y jk(t + 1), for j = 1, . . . , i− 1,
y jk(t), for j = i, . . . ,m.

(2.20)

In the modification [50], the distances d(Yi,Yj) are recalculated each time when
(2.18)–(2.19) are computed. The distances d(Yi,Yj) are recalculated just once in one
iteration (at the end of the iteration) in the modification [162] .

The lowest projection error ES(Y )and the least influence of the parameter η have
been obtained using the modification [162].

2.2.5 Manifold-Based Visualization

Most of real-life data are multidimensional, but they are not truly high dimensional.
Multidimensional points just lie on a low-dimensional manifold embedded into
a high-dimensional space. A manifold is an abstract topological space, in which
the neighborhood of each point is a subset of the Euclidean space; however,
the global structure of a manifold may be more complicated. A line and a
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curve are one-dimensional manifolds. A plane, the surface of a ball, and a
toroid are two-dimensional manifolds. The neighborhood of each point on the
one-dimensional manifold is a line segment. The neighborhood of each point on
the two-dimensional manifold is a flat region. The surface of the Earth is also
a two-dimensional manifold. A manifold is a smooth low-dimensional surface
embedded in a higher dimensional space.

Multidimensional data can have meaningful hidden low-dimensional structures
in the sense of lying on or near to a smooth low-dimensional manifold. The intrinsic
dimensionality d � n of multidimensional data is defined as the minimal number of
parameters or latent variables necessary to describe the data. An important property
of a manifold is its topology, i.e. neighborhood relationships between the subregions
of the manifold.

Nonlinear manifold learning methods are topology preserving methods. The key
purpose of such methods is to preserve neighborhood relationships between points.
If multidimensional points are close to each other, the points representing them in
the low-dimensional space should also be close. In some cases, it is like unfolding
a nonlinear manifold.

A large number of nonlinear manifold learning methods have been proposed over
the last decade: locally linear embedding (LLE) [184, 190], isometric feature map-
ping (ISOMAP) [200], Laplacian eigenmaps (LE) [6], Hessian LLE (HLLE) [41],
etc. These methods are supposed to overcome the difficulties experienced with
other classical nonlinear approaches. They are able to recover the intrinsic geo-
metric structure of nonlinear multidimensional data. Local approaches (e.g., LLE,
Laplacian eigenmaps) attempt to preserve the topology (the local geometry) of
the data. In addition, global approaches (e.g., ISOMAP) attempt to preserve
geometry at all scales: nearby multidimensional points are projected to nearby
points in a low-dimensional space and faraway multidimensional points to faraway
low-dimensional points.

2.2.6 Isometric Feature Mapping

Isometric feature mapping (ISOMAP) can be assigned to the group of multidimen-
sional scaling. ISOMAP is designed for dimensionality reduction as well as for
visualization of multidimensional data [200, 218]. An assumption is made that the
multidimensional points are located on a lower-dimensional manifold. Therefore,
geodesic distances are used as a measure of proximity between the multidimensional
points.

Usually, Euclidean distances between the points (as a proximity measure) are
used in multidimensional scaling. In this case, the existence of a manifold is not
taken into consideration.

In ISOMAP, the geodesic distance is a proximity measure between the multidi-
mensional points. A geodesic distance is the length of the shortest path between two
points along the surface of a manifold.
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a b

Fig. 2.21 The estimate of distances between two points of a spiral: (a) Euclidean distance and
(b) geodesic distance

In order to compute the geodesic distances between n-dimensional points from
{X1,X2, . . . ,Xm}, it is necessary to build a weighted graph over the points that are
vertices of the graph. The vertices corresponding to the neighboring points are
connected using edges. The neighborhood of the point Xi can be defined in two
ways: (1) by a fixed number of the nearest points and (2) by all the points within
some fixed distance from Xi. The weights of edges are Euclidean distances between
the corresponding points. Using one of the algorithms for the shortest path in the
graph, for example, Dijkstra’s algorithm [40], the shortest path length between the
pair of points is computed. This length is an estimate of the geodesic distance
between the points.

The estimate of the Euclidean distance between two points is shown in Fig. 2.21a,
and the estimate of the geodesic distance between the same points is shown in
Fig. 2.21b.

The matrix of geodesic distances between all multidimensional points is formed.
This matrix defines dissimilarities between the objects. It can be used as data for
multidimensional scaling.

The ISOMAP algorithm can be summarized as follows:

1. The neighbors of each multidimensional point are chosen from {X1,X2, . . . ,Xm}.
2. A weighted graph is constructed.
3. The geodesic distances between the pairs of all points are computed; a dissimi-

larity matrix is formed.
4. The projection of multidimensional points to a low-dimensional space (projec-

tion space) is obtained by multidimensional scaling.
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a b

Fig. 2.22 Data for manifold learning: (a) S-manifold and (b) the points on the S-manifold

a b

c d

Fig. 2.23 Visualization of the points on the S-manifold: (a) MDS, (b) PCA, (c) ISOMAP, and
(d) LLE

The S-manifold is presented in Fig. 2.22a, n = 3. The points on the manifold
are shown in Fig. 2.22b, m = 1000. Projections of the points obtained by ISOMAP
are presented in Fig. 2.23c. Projections of the points, obtained by multidimensional
scaling using Euclidean distances, are presented in Fig. 2.23a. We see that the
structure of the manifold is well preserved by ISOMAP because the S-manifold
is unfolded: the farthest points on the manifold remain the farthest ones on the
projection as well (see Fig. 2.23c). The farthest points obtained by multidimensional
scaling (Fig. 2.23a) as well as by PCA (Fig. 2.23b) are pale blue (Fig. 2.23a). These
points are the farthest in multidimensional space in the sense of Euclidean distances.
However, they are not farthest in the sense of geodesic distances on the S-manifold.
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2.2.7 Locally Linear Embedding

Locally linear embedding (LLE) is a nonlinear method for dimensionality reduction
and manifold learning [184,190]. Given a set of data points distributed on a manifold
in a multidimensional space, LLE is able to project the data to a low-dimensional
space by unfolding the manifold (see Fig. 2.23d). LLE works by assuming that
the manifold is well sampled, i.e. there are enough data; each data point and its
neighbors lie on or close to a locally linear patch. Therefore, a data point can be
approximated as a weighted linear combination of its neighbors. The basic idea
of LLE is that such a linear combination is invariant under linear transformations
(translation, rotation, and scaling), and therefore, it should remain unchanged after
the manifold has been unfolded to a low-dimensional space. The low-dimensional
configuration of data points is obtained by solving two least-squares optimization
problems.

The LLE algorithm and its modifications are widely employed in the multidi-
mensional data visualization and analysis: face recognition [82, 158, 219, 220], the
image-based facial animation system for describing mouth images [143], analyzing
a gait cycle [95], hand gesture recognition and tracking [69], visualizing economic
data [142], recognizing handwritten digits [180], the exploratory analysis and
visualization of data sets in speech and audio processing [108], and medical data
analysis [209].

The LLE algorithm transforms the set X of n-dimensional points Xi, i = 1, . . . ,m
(Xi ∈ R

n) to a set Y of d-dimensional points Yi, i = 1, . . . ,m (Yi ∈ R
d).

The LLE algorithm consists of three steps:

• In the first step, we identify k neighbors of each data point Xi. As the neighbors,
k-nearest points from the set X may be chosen according to the Euclidean
distance.

• In the second step, we compute the weights wi j that reconstruct each
n-dimensional point Xi best from its neighbors minimizing the following error
function:

ELLE(W ) =
m

∑
i=1

∥
∥
∥∥
∥

Xi −
m

∑
j=1

wi jXj

∥
∥
∥∥
∥

2

. (2.21)

where W = {wi j, i, j = 1, . . . ,m}; wi j = 0, if Xi and Xj are not neighbors;
and ∑m

j=1 wi j = 1; ‖·‖ is the Euclidean distance. This is a typical least-squares
optimization problem, the minimum of which can be found by solving a linear
system of equations.

• In the third step, we map each data point Xi to a low-dimensional point Yi, which
best preserves a multidimensional neighborhood geometry, represented by the
weights wi j. So, the weights are fixed, and coordinates of low-dimensional points
are sought by minimizing the following function:



36 2 Strategies for Multidimensional Data Visualization

ELLE(Y ) =
m

∑
i=1

∥
∥
∥
∥
∥

Yi −
m

∑
j=1

wi jYj

∥
∥
∥
∥
∥

2

subject to:
m

∑
i=1

Yi = 0 and
1
m

m

∑
i=1

Y T
i Yi = I,

where I is the identity matrix consisting of d rows and d columns. The most
straightforward method for computing the d-dimensional coordinates (d < n) is
to find the bottom d+ 1 eigenvectors of the sparse matrix

M̄ = (I −W)T (I −W)T ,

where I is the identity matrix, consisting of m rows and m columns.
These eigenvectors are associated with the d + 1 smallest eigenvalues of

M̄. The bottom eigenvector, the eigenvalue of which is closest to zero, is the
unit vector with all equal components, and it is discarded. The remaining d
eigenvectors form the d embedding coordinates of points Yi.

LLE may also be generalized using other distances apart from Euclidean. For
example, the kernel distance may be used to find the nearest neighbors in the kernel
feature space, instead of finding neighbors in the original multidimensional space (as
the original LLE does). Kernel-based learning methods (support vector machines,
the kernel PCA and others [32]) are often used in machine learning and data mining.
In [34], the use of distances that are based on Mercel kernels is explored. As a result,
a new kernelized form of LLE, called KLLE, has been proposed.

The various Mercel kernels (the polynomial kernel, the radial basis function
kernel (Gaussian kernel), the linear kernel) are applied to LLE [34]. The linear
kernel is used in [111]. Regularization algorithms for the LLE are examined, and
a new algorithm is proposed in [112].

The most important step to success of LLE is to choose the proper number k
of the nearest neighbors for each data point [113]. The mapping quality is rather
sensitive to this parameter. If k is too small, a continuous manifold can falsely be
divided into disjoint submanifolds. In this way, the mapping does not reflect any
global properties (Fig. 2.24, e.g., k = 5). The large number of the nearest neighbors
k causes smoothing or elimination of small-scale structures in the manifold; the
mapping loses its specific character, for example, k = 100, and behaves like PCA
and MDS (Fig. 2.23a and b).

The results of LLE [190] are typically stable over some range of neighborhood
sizes. Figure 2.24 shows the results of the LLE algorithm with different numbers of
the nearest neighbors k. Reliable images are obtained over a wide range of values,
i.e. k ∈ [8;30]. However, as mentioned in [190], the size of that range depends on
various properties of the data, such as the sampling density and manifold geometry.
The dependence of LLE results on the sampling density is shown in Fig. 2.25.
Two S-manifolds were investigated. One data set consists of 1000 points, and the
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k = 5 k = 6 k = 7

k = 8 k = 10 k = 16

k = 20 k = 30 k = 31

k = 40 k = 70 k = 100

a b c

d e f

g h i

j k l

Fig. 2.24 Visualization of the points on the S-manifold by LLE with different number of the
nearest neighbors k

other one consists of 2000 points. In both cases, k = 50. LLE failed to unravel the
S-manifold of 1000 points and succeeded in unraveling the manifold of 2000 points.

One of the applications of the LLE method is the analysis of images. For
example, the data set consists of pictures of the same moving object. Features of
pictures are color parameters of pixels. Since the number of pixels in the picture is
usually large, the dimensionality of the analyzed data is very large.

For example, a set of uncolored pictures, obtained by gradually (by 5◦) rotating
a duckling around, was analyzed [166]. The number of pictures is m = 72. The
pictures consist of 128× 128 grayscale pixels; therefore, the dimensionality of data
is n = 16,384. Intuitively, one would expect multidimensional data that represent
these pictures to lie on a manifold parameterized by a rotation angle.
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a b

Fig. 2.25 Visualization of the points on the S-manifold by LLE, k = 50: (a) m = 1000, (b) m =
2000

Fig. 2.26 Visualization of pictures of a rotating duckling by LLE; larger circles mark representa-
tive samples of the pictures: (a) k = 4, (b) k = 9

The results of LLE are presented in Fig. 2.26. Since the duckling was gradually
turned around, a better representation is obtained in Fig. 2.26a as k = 4, because, in
this case, we see the points on a circle.

2.3 Quantitative Criteria of Mapping

When visualizing multidimensional data, it is necessary to estimate the quality of
mapping. If the structure of the multidimensional data is known in advance, the
quality of visualization is evaluated by how well the structure is preserved in the
mapping. However, when the structure is not known, it is necessary to use some
quantitative measures of the visualization quality.
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Usually, visualization methods involve the optimization of a certain criterion.
The problem of objective comparison of the mapping results arises when different
criteria of the mapping quality were optimized.

One of the objectives of multidimensional data visualization is preservation of
proximity (e.g., distance, topology, neighborhood relationships). Therefore, some
numerical measures are used to estimate the preservation of proximity [7,12,59,71,
111].

Let the set {X1,X2, . . . ,Xm}, Xi ∈ R
n, be mapped to the set {Y1,Y2, . . . ,Ym}, Yi ∈

R
d . Assume that the points Xi1,Xi2, . . . ,Xik are the neighbors of Xi and Yi1,Yi2, . . . ,Yik

are the neighbors of Yi, k is the number of neighbors, d < n. The obtained mapping is
called a topology preserving transformation; if for any i, when Xi j is the jth nearest
neighbor of Xi, then Yi j is the jth nearest neighbor of Yi, i.e.

∀i d(Xi,Xi1) < d(Xi,Xi2)< · · ·< d(Xi,Xik)

=⇒ d(Yi,Yi1) < d(Yi,Yi2)< · · ·< d(Yi,Yik),

where:

• d(Xi,Xi j) is the distance between the points Xi and Xi j, (Xi,Xi j ∈ R
n).

• d(Yi,Yi j) is the distance between the points Yi and Yi j, (Yi,Yi j ∈ R
d).

The measure, estimating how exactly the topology is preserved, is called a
topology preservation measure. The measure, estimating how exactly the distances
between all the points are preserved, is called a distance preservation measure.
Some MDS measures (2.7)–(2.11) may be used to estimate distance preservation. If
a transformation is the distance preservation, then the transformation is the topology
preservation as well. However, the opposite proposition is not true.

2.3.1 Spearman’s Coefficient

Spearman’s coefficient, the so-called Spearman’s rho, is a statistical test to assess the
degree of correlation existing between two sets of data. It can be used to estimate
the preservation of interpoint distance order (topology preservation) when mapping
n-dimensional data points to the d-dimensional points [12].

From the distances d(Xi,Xj), i < j, we form an array DX = {dk, k = 1, . . . ,m′}
where

dk = d(Xi,Xj), k = (i− 1)

(
2m− i

2

)
+( j− 1), m′ =

m(m− 1)
2

.

From the distances d(Yi,Yj), i < j, we form an array DY in the same way. Let the
rank of the kth element in DY and DX be rX (k) and rY (k), respectively. Spearman’s
coefficient ρSp is defined by the formula
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ρSp = 1− 6∑m′
k=1 (rX (k)− rY (k))

2

(m′)3 −m′ ,−1 ≤ ρSp ≤ 1. (2.22)

In the case of the ideal topology preservation, Spearman’s coefficient is equal
to one.

2.3.2 König’s Topology Preservation Measure

The measure is introduced by König [122]. It was successfully applied in [59,
111, 128]. König’s topology preservation measure assesses the preservation of
neighborhoods of points, while Spearman’s coefficient assesses the preservation
of interpoint distance order for all the points in n-dimensional and d-dimensional
spaces.

König’s measure has two parameters—sizes of neighborhoods: μ and ν (μ < ν).
Assume that:

• Xi j, j = 1, . . . ,μ , are μ nearest neighbors of the n-dimensional point Xi, where
Xi j ∈ {X1,X2, . . . ,Xi−1,Xi+1, . . . ,Xm}, and the distances between Xi and its
neighbors Xi j and Xik satisfy the following inequality:

∥
∥Xi −Xi j

∥
∥< ‖Xi −Xik‖with j < k;

• Yi j, j = 1, . . . ,ν , are ν nearest neighbors of the d-dimensional point Yi.
• rX (i, j) is the order number of Xi j in the data set {X1,X2, . . . ,Xm}, note that 1 ≤

rX (i, j) ≤ m and rX (i, j) �= i.
• rY (i, j) is the order number of Yi j in the set {Y1,Y2, . . . ,Ym}, note that Yi is mapped

to Xi.

König’s measure for the ith point and its jth neighbor is calculated by the formula

Ei j
KM =

⎧
⎪⎪⎨

⎪⎪⎩

3, if rX (i, j) = rY (i, j),
2, if rX (i, j) = rY (i, l), l ∈ (1, . . . ,μ), j �= l,
1, if rX (i, j) = rY (i, t), t ∈ (μ + 1, . . . ,ν),μ < ν,
0, else.

(2.23)

König’s measure for all the points is calculated as follows:

EKM =
1

3mμ

m

∑
i=1

μ

∑
j=1

Ei j
KM. (2.24)

The range of EKM is between 0 and 1, where 1 indicates an ideal neighborhood
preservation and 0 indicates the absence of preservation.



Chapter 3
Optimization-Based Visualization

In this chapter, we consider one of the most popular approaches of multidimensional
data visualization, known as multidimensional scaling (MDS) [14, 31, 127, 139,
150, 191, 202]. The essential part of this technique is optimization of a function
possessing many optimization adverse properties [231]. By means of MDS, a set
of objects can be represented as a set of points in a low-dimensional space and
exposed in this way to a human expert for a heuristic analysis. The data for
MDS is a pairwise similarity/dissimilarity between the objects—it is not necessary
to have multidimensional points as data. Application areas of MDS vary from
psychometrics [197] and market analysis [39, 165] to mobile communications [75]
and pharmacology [232].

3.1 Formulation of Optimization Problems
in Multidimensional Scaling

A set of m objects is considered pairwise dissimilarities of which are given by
an m×m matrix Δ with the real elements δi j, i, j = 1, . . . ,m. It is supposed that
dissimilarities are nonnegative, δi j ≥ 0, symmetric, δi j = δ ji, and δii = 0. Frequently,
the considered objects are multidimensional points, and dissimilarities are defined
by a distance in the multidimensional space.

The image of a set of objects is sought as a set of points Yi ∈Rd , i = 1, . . . ,m, in a
low-dimensional projection space with pairwise distances between the image points
that fit the corresponding dissimilarities. Usually, Minkowski distances dq (Yi,Yj)
between the points Yi and Yj are used:

dq (Yi,Yj) =

(
d

∑
k=1

∣∣yik− y jk

∣∣q)1/q

,
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where Yi = (yi1,yi2, . . . ,yid) and Yj =
(
y j1,y j2, . . . ,y jd

)
. The formula defines Eu-

clidean distances as q = 2 and city-block distances as q = 1. The most frequently
used distances are Euclidean. However, MDS with other Minkowski distances in
the projection space can be even more informative than MDS with the Euclidean
distances [3].

The problem of constructing images of the considered objects is reduced to a
minimization of the accuracy of fit criterion, for example, of the least squares Stress
function

S (Y ) =
m

∑
i=1

m

∑
j=1

wi j (d (Yi,Yj)− δi j)
2 , (3.1)

where Y = (Y1,Y2, . . . ,Ym), d (Yi,Yj) denotes the distance between the points Yi and
Yj; wi j are positive weights: wi j > 0, i, j = 1, . . . ,m. Since d (Yi,Yj) = d (Yj,Yi),
d (Yi,Yi) = 0, and δi j = δ ji, δii = 0, wi j = wji, it is possible to sum up only either
i < j or j < i terms as in the formulas of raw Stress (2.7):

σr (Y ) = ∑
i< j

wi j (d (Yi,Yj)− δi j)
2

and normalized Stress (2.8):

σn (Y ) =
∑i< j wi j (d (Yi,Yj)− δi j)

2

∑i< j wi jδ 2
i j

.

A relative error

E (Y ) =

√
S (Y )

∑m
i=1 ∑m

j=1 wi jδ 2
i j

=
√

σn (Y ) (3.2)

is often used to compare accuracies of scaling for different sets of objects. Such a
criterion depends less on the number of objects and given dissimilarities.

The everywhere differentiable S-Stress is defined by

SS (Y ) = ∑
i< j

wi j
(
d2 (Yi,Yj)− δ 2

i j

)2
.

Sometimes instead of the least squares Stress, the least absolute deviation
(L1-norm) Stress function is used:

SL1 (Y ) = ∑
i< j

wi j
∣∣d (Yi,Yj)− δi j

∣∣ .
Image points representing the objects considered can be found by minimizing the

fit criterion. Mathematically, the optimization problem is represented as

f ∗ = min f (Y ) ,
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where f (Y ) is a nonlinear objective function f : RN →R of continuous variables Y
and N is the number of variables. Besides the minimum f ∗, one or all minimizers
Y ∗ (the points where the function is minimal):

Y ∗ : f (Y ∗) = f ∗

should be found.
Although the Stress function (3.1) is defined by an analytical formula, which

seems rather simple, its minimization is not easy. It is usually multimodal—there
exist many local minima [76]. When no assumptions on unimodality are included
into the formulation of the optimization problem, it is called a problem of global
optimization [65, 97, 203].

Global optimization of the Stress function is difficult; therefore, frequently only
a local minimum is sought. Although the improved local search procedures are
used for some applications of multidimensional scaling, certain applications can
be solved only by means of global optimization. Two examples of such applications
are described in [149]. One of the applications is the estimation of the position of
a GSM mobile phone, using the measured powers of six signals received from the
surrounding base stations. Another application is an interpretation of the results on
experimental testing of soft drinks [72]. It is shown in [149] that there are many local
minima for these problems, and interpreting the data on the basis of the achieved
configuration from local minima leads to different results. So it is necessary to
find the global minimum and the corresponding configuration which explains the
data best.

Minimization of the Stress function is a difficult global optimization problem:

• The function usually has many local minima.
• The minimization problem is high dimensional: the number of variables is

N=md.
• The function is not everywhere differentiable.
• It is invariant with respect to translation, rotation, and mirroring.

Some of the mentioned difficulties could be avoided at least partially. It
is possible to avoid invariance when introducing constraints or fixing some of
the coordinates of image points. The invariance with respect to translation can be
avoided by centering the image requiring that the sum of coordinate values of image
points be zero:

m

∑
i=1

yik = 0, k = 1, . . . ,d, (3.3)

or by fixing the point visualizing the first object at the origin:

y1k = 0, k = 1, . . . ,d.

The invariance with respect to mirroring and rotation can be avoided by fixing
some other coordinates of other points and introducing nonnegativity constraints.
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The point that represents the second object should lay on the positive first axis, the
point for the third object—on the positive half plane, and so on. This can be defined
by the constraints:

yik = 0, i = 2, . . . ,d, k = i, . . . ,d,

yi(i−1) ≥ 0, i = 2, . . . ,d+ 1.

In this case, non-fixed coordinates are variables of the optimization problem, and
the dimensionality of the optimization problem is reduced: N = d (m− (d+ 1)/2).

Global optimization problems are classified as difficult in the sense of the
algorithmic complexity theory. Therefore, global optimization algorithms are com-
putationally intensive, and the solution time crucially depends on the dimensionality
of a problem. Large practical problems, unsolvable with the available computers,
always exist. When the computing power of usual computers is insufficient to solve
a practical problem, the high-performance parallel computers can be helpful.

3.2 Differentiability Analysis of the Least Squares
Stress Function

Many global optimization methods for minimizing the Stress function with the
Euclidean distances include auxiliary local minimization algorithms. Differentia-
bility of an objective function at a minimizer is an important factor for a proper
choice of a local minimization algorithm. The well-known result on differentiability
of the Stress function with the Euclidean distances at a local minimizer [137]
is generalized for the Minkowski distances in [80]: if wi jδi j > 0 for all i, j =
1, . . . ,m, i �= j, positiveness of distances holds at a local minimizer—image points
are not coincident in the projection space. In the case of the Minkowski distances
q> 1 or d = 1, it means that the Stress function is differentiable at a local minimizer.

The result on differentiability of the Stress function with the Minkowski distances
at a local minimizer [80] does not include the case of the city-block distances
(q = 1). It has been shown in [227] that positiveness of distances at a local minimizer
does not imply differentiability of the Stress function with the city-block distances.
Examples of images at minimizers show that the values of coordinates of image
points in the projection space d > 1 can be equal, and therefore, the Stress function
can be non-differentiable at a minimizer in the case of the city-block distances.

Let Y ∗ be a local minimizer of S (Y ). Then a directional derivative with respect
to an arbitrary directional vector V is not negative: DV S (Y ∗) ≥ 0. Therefore, the
inequality

DV S (Y ∗)+D−V S (Y ∗)≥ 0 (3.4)

holds for an arbitrary vector V . The formula of DV S (Y ∗) :

DV S (Y ∗) =
m

∑
i=1

m

∑
j=1

2wi j
(
d
(
Y ∗i ,Y

∗
j

)− δi j
)

DV d
(
Y ∗i ,Y

∗
j

)
(3.5)
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includes DV d(Y ∗i ,Y ∗j ), a compact expression of which can be obtained using the
following formula:

DVi jk d
(
Y ∗i ,Y

∗
j

)
=

⎧⎪⎨
⎪⎩

vik− v jk, ify∗ik− y∗jk > 0,

v jk− vik, ify∗ik− y∗jk < 0,∣∣vik− v jk
∣∣ , ify∗ik− y∗jk = 0,

(3.6)

where Vi jk denotes a vector, all the components of which are equal to zero except
those corresponding to y∗ik, y∗jk, k = 1, . . . ,d. Formula (3.6) can be written in the
following shorter form:

DVi jk d
(
Y ∗i ,Y

∗
j

)
=
∣∣vik− v jk

∣∣sign
((

y∗ik− y∗jk
)(

vik− v jk
))

, (3.7)

where the “sign(·)” denotes a nonsymmetric signum function: sign(t)= 1, for t ≥ 0,
and sign(t) = −1 for t < 0. The expression of DV d(Y ∗i ,Y ∗j ) based on (3.7) is as
follows:

DV d
(
Y ∗i ,Y

∗
j

)
=

d

∑
k=1

∣∣vik− v jk

∣∣sign
((

y∗ik− y∗jk
)(

vik− v jk
))

. (3.8)

From (3.4), (3.5), (3.8), it follows the inequality

4
d

∑
k=1

∑
(i, j)∈Qk

wi j
(
d
(
Y ∗i ,Y

∗
j

)− δi j
)∣∣vik− v jk

∣∣≥ 0, (3.9)

where Qk = {(i, j) : y∗ik = y∗jk}.
Since inequality (3.9) is not satisfied in the case d(Y ∗i ,Y ∗j ) = 0, d(Vi,Vj) > 0

and d (Vr,Vs) = 0, (r,s)�= (i, j), the inequalities d(Y ∗i ,Y ∗j )> 0 at the local minimum
point Y ∗ should hold for all i�= j. The positiveness of distances d(Y ∗i ,Y ∗j )> 0 means
that the points in the projection space (images of the considered objects) are not
coincident. The proof is similar to that in [80], but some modification was needed,
since that formulae do not cover the case of the city-block distances.

The positiveness of distances between image points, that correspond to a local
minimizer of the Stress function, does not imply the differentiability of (3.1) at the
minimizer, when the city-block distances are used. Such a conclusion distinguishes
the MDS version with the city-block distances from all the other MDS versions with
the Minkowski (q > 1) distances. On the other hand, it does not prove the existence
of cases with non-differentiable local minima. A simple example illustrating a
possibility of the non-differentiable local minimum is presented below.
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Let us consider an example of two-dimensional scaling where the data are δ12 =
δ14 = δ23 = δ34 = 1, δ13 = δ24 = 3:

Δ =

⎛
⎜⎜⎝

0 1 3 1
1 0 1 3
3 1 0 1
1 3 1 0

⎞
⎟⎟⎠

and wi j = 1. The set of vertices of the square centered at the origin and with the sides
equal to 4/3 is a potential image of the considered objects. This image corresponds
to the eight-dimensional (md = 8) point Y ∗, where

y∗11 = y∗21 = y∗12 = y∗42 =−
2
3
, y∗31 = y∗41 = y∗22 = y∗32 =

2
3
.

We will show that Y ∗ is a local minimizer of S(Y ). The directional derivative of S(Y )
with respect to an arbitrary directional (unit) vector V at the point Y ∗ is equal to

DV S (Y ∗) = 4(|v11− v21|+ |v12− v42|+ |v22− v32|+ |v31− v41|)/3≥ 0. (3.10)

It is obvious that
DV S (Y ∗)> 0, (3.11)

unless all the summands in (3.10) are equal to zero. In the latter case, the directional
vector should satisfy the following equalities:

v11 = v21, v12 = v42, v22 = v32, v31 = v41, (3.12)

implying the differentiability of S (Y ∗+ tV) with respect to t. Rather a long initial
expression of

d2

dt2 S (Y ∗+ tV) ,

using the elementary algebra, can be reduced to the following one:

d2

dt2 S(Y ∗+ tV) = 4
(
(v12− v22)

2 +(v11− v31 + v12− v32)
2

+(v11− v41)
2 +(v21− v31)

2 +

+ (v21− v41 + v22− v42)
2 +(v32− v42)

2
)
, (3.13)

implying the validity of the inequality

d2

dt2 S (Y ∗+ tV)|t=0 > 0 (3.14)
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for all directional vectors satisfying (3.12), unless all the summands in (3.13) are
equal to zero. From the equalities

d2

dt2 S (Y ∗+ tV) = 0

and (3.12), it follows that the components of V satisfy the equalities

v11 = v21 = v31 = v41, v12 = v22 = v32 = v42, (3.15)

implying the equality
S(Y ) = S(Y +V).

Therefore, inequalities (3.11) and (3.14) prove that Y ∗ is a local minimizer of S(Y ).
Since the Stress function can be non-differentiable at a local minimizer, the

application of local descent methods with a high convergence rate, for example,
of different versions of the Newton method, seems questionable.

3.3 Optimization Algorithms for Scaling

Multidimensional scaling (MDS) is a generalization of unidimensional scaling
(UDS) (d = 1) [153] to the multidimensional case (d > 1). The essential part of these
techniques is optimization [231]. In this section, we review optimization algorithms
for UDS and MDS.

Minimization of the Stress function with equal weights for d = 1 can be changed
into a combinatorial maximization of Defays criterion [35]:

max
ψ∈Ψ

m

∑
i=1

(
∑
j>i

δψ(i)ψ( j)−∑
j<i

δψ(i)ψ( j)

)2

,

where Ψ is the set of all possible permutations of 1, . . . ,m. The optimal permutation
ψ∗, found using the maximization, defines the optimal sequence of objects. Then
the coordinate values of image points are found by

Yψ∗(1) = 0,

Yψ∗(i+1) = Yψ∗(i) +
1
m

(
∑
j>i

δψ∗(i)ψ∗( j)−∑
j<i

δψ∗(i)ψ∗( j)

− ∑
j>i+1

δψ∗(i+1)ψ∗( j) + ∑
j<i+1

δψ∗(i+1)ψ∗( j)

)
, i = 1, . . . ,m− 1.
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The number of local minima for the problem of UDS was estimated in [173].
A “smoothing technique” approach was presented there to locate the globally
optimal solution.

A branch-and-bound method for obtaining the guaranteed globally optimal
solution to the problems of UDS was presented in [23]. An interchange test and
new bounding procedures were used to improve the computational performance.

A guaranteed solution of larger problems is not possible; therefore, heuristic
approaches are used. A simulated annealing approach for the problem of UDS, by
maximizing the Defays criterion, was presented in [21]. This algorithm includes
efficient storage and computation methods to facilitate a rapid evaluation of trial
solutions.

Quadratic assignment methods to generate initial permutations for UDS were
developed in [18]. The methods include locally optimal pairwise interchange,
simulated annealing, and hybrid. It has been shown that substantial improvements
of UDS can be achieved using the starting permutations, obtained when solving a
quadratic assignment problem.

An algorithm that implements simulated annealing for UDS was presented
in [161]. The strategy is based on a weighted alternating process: permutations and
pointwise translations are used to locate the optimal configuration.

A recursive dynamic programming strategy for some problems, including UDS,
was discussed in [100]. Four different optimization strategies for UDS have been
compared in [99]: dynamic programming, iterative quadratic assignment heuristic,
smoothing technique [173], and nonlinear programming reformulation [133]. The
results show that the first two strategies are better than the other two and should lead
to optimal solutions, if some random starts are used.

A mixed integer programming formulation for the least absolute deviation UDS
was developed in [194]. Integer linear programming models for UDS were discussed
in [20]. In the case of least absolute deviation UDS, the objective function is
piecewise linear.

A special geometry of the squared error loss function for UDS has been employed
in [174]. The developed algorithm is linear in the number of parameters, as the
global minimum for each coordinate is conditioned on every other coordinate being
fixed.

One of the most popular algorithms for MDS is SMACOF [136]. The algorithm
is based on a majorization approach [76] which replaces iteratively the original
objective function by an auxiliary majorization function, which is much simpler
to optimize. The convergence properties of MDS algorithms were studied in [138].
It has been proved that the majorization method is globally convergent. In almost
all cases, the convergence is linear, with the convergence rate close to a unity. The
majorization algorithm has been extended to deal with the Minkowski distances with
1≤ q≤ 2, and an algorithm that is partially based on majorization for q outside this
range was proposed in [80].

The tunneling method for global minimization was introduced and adjusted to
MDS with general Minkowski distances in [77]. The tunneling method alternates a
local search step, in which the local minimum is sought, with a tunneling step in
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which a different configuration is sought with the same value of the Stress function
as the previous local minimum. In this manner, successively better local minima are
obtained, and the last one is often the global minimum.

A method for MDS, based on combining a local search algorithm with an
evolutionary strategy of generating new initial points, was proposed in [151]. Its
efficiency is investigated by numerical experiments. The testing results in [75, 149]
have proved that the hybrid algorithm, combining an evolutionary global search with
an efficient local descent, is the most reliable though most time-consuming method
for MDS with the Euclidean distances. The advantages of genetic algorithms in
MDS with nonstandard Stress criteria were discussed in [60].

The concept of sequential estimation in MDS was introduced in [160]. The
sequential estimation method refers to continually updated estimates of the config-
uration as new observations are added. A locally optimal design of the experiment
was constructed.

Globalized Newton’s method for the Stress and S-Stress functions was developed
in [116]. A deterministic annealing algorithm for the S-Stress functions was
presented in [119] and experimentally compared with gradient descent methods.

General methods for MDS can be applied in the case of the city-block distances,
if they do not rely on the differentiability of the objective function at a minimizer.
However, there are some methods developed especially for the city-block MDS.

A survey of the city-block MDS was presented in [3]. The topics include theoret-
ical issues, algorithmic developments and their implications for seemingly straight-
forward analyses, isometries with other distances, and links to graph-theoretical
models.

A combinatorial approach for the city-block MDS was proposed in [98], where
the combinatorial local search is used to construct good object orders along
dimensions, and least squares are used to estimate the coordinates of image points
for the objects, based on the object orders.

A distance smoothing approach for city-block MDS was proposed in [78]. The
technique allows avoiding of local minima in the optimization. The technique was
extended to any Minkowski distance, and a majorization algorithm with a monotone
nonincreasing series of Stress values was developed in [79].

A heuristic algorithm, based on simulated annealing for the two-dimensional
city-block scaling, was presented in [19]. The heuristic algorithm starts from the
partition of each coordinate axis into equally spaced discrete points. Simulated
annealing is used to search the lattice, defined by these points, to minimize the least
squares or least absolute deviation loss function. The object permutations for each
dimension of the solution, obtained by the simulated annealing algorithm, are used
to find a locally optimal set of coordinates by quadratic programming.

A two-stage approach for the city-block MDS was proposed in [140]. The least
squares regression is used to obtain a local minimum of the Stress function in the
first stage. Simulated annealing is used in the second stage of the method.

A multivariate randomly alternating simulated annealing procedure with per-
mutation and translation phases has been applied to develop an algorithm for
multidimensional scaling in any Minkowski metric in [212].
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A two-level minimization method for the two-dimensional projection space was
proposed in [227], where a problem of combinatorial optimization is tackled by
an evolutionary search at the upper level and a problem of quadratic programming
is tackled at the lower level. A parallel version of the algorithm is proposed and
investigated in [225]. A generalized method for an arbitrary dimensionality of the
projection space is developed and experimentally compared with other approaches
in [228]. A branch-and-bound algorithm for the upper-level combinatorial problem
is proposed in [230] and its parallel version in [237].

In the following sections, we describe some optimization algorithms for multi-
dimensional scaling. The visualization accuracy cannot be predicted theoretically
because of the complexity of the underlying global optimization problem. We in-
vestigate the relative error (3.2) of fitting experimentally. In visualization problems,
the heuristic acceptability of images is also very important.

Several sets of multidimensional points, corresponding to well-understood geo-
metric objects, are needed for the experimental investigation. We want to choose
difficult test problems, that is, difficult to visualize geometric objects. The data with
desired properties correspond to the multidimensional objects that equally extend
in all dimensions of the multidimensional space, for example, sets of vertices of
multidimensional simplices and hypercubes. A dissimilarity between vertices is
measured by the distance in a multidimensional space; we consider the Euclidean
and the city-block distances. Global optimization problems of an increasing com-
plexity correspond to the increasing dimensionality of the multidimensional space n
and the increasing number of vertices m. The data sets of the vertices of the standard
simplex, the unit simplex, and the unit hypercube are described in Appendix A.
In this chapter, we call the corresponding data sets “Standard Simplex,” “Unit
Simplex,” and “Hypercube.” The property of the described geometric objects is the
symmetric location of vertices; this property is expected in the images. Another class
of artificial data sets is error-perturbed distance data proposed by [79] and described
in Appendix A. We refer to these data sets as “GHM.”

We also use empirical data sets, frequently used as test problems for MDS
algorithms: “Cola” and “Morse Code” which are also described in Appendix A.
Another class of empirical data sets is obtained from pharmacological binding
affinity data described in Chap. 5. The binding affinity data are represented through
a matrix: one dimension corresponds to different ligands tested in a series of
experiments, while the other dimension represents different proteins. A heuristic
analysis can be made by visualizing data sets as the properties of proteins or ligands.
Dissimilarities of proteins are computed as distances between multidimensional
points, defined by the log10-transformed binding affinities. Dissimilarities of lig-
ands are computed as distances between multidimensional points, defined by the
log10-transformed binding affinities, representing ligands. We refer to dissimilarities
of three human and five zebra fish α2-adrenoceptor proteins, computed as distances
between multidimensional points the correspond to the rows of Table 5.7, as
“Ruuskanen1” (m = 8), and to dissimilarities of m = 20 ligands, computed as
distances between multidimensional points that correspond to the columns of
Table 5.7, as “Ruuskanen2.” Dissimilarities of human, rat, guinea pig, and pig
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α2-adrenoceptor proteins, computed as distances between multidimensional points
that correspond to the rows of Table 5.9, are referred as “Uhlen1” (m = 12).
Dissimilarities of ligands, computed as distances between nine-dimensional points
the correspond to the columns of Table 5.10, are referred as “Hwa12” (m= 9), while
dissimilarities of a wild type and mutant proteins, computed as distances between
six-dimensional points, that correspond to the rows of Table 5.10, are referred as
“Hwa21” (m = 12).

All objects in the data sets are considered equally important; therefore, during
the experiments, all the weights wi j in (3.1) are set equal to one.

The algorithms have been implemented in C++, and g++ 3.2.3 has been
used for compiling. The external quadratic programming package quadprog 1.4–7,
available at http://cran.r-project.org, is used for solving the quadratic programming
problems in two-level algorithms. Experiments have been done by a personal com-
puter with a 3 GHz Pentium IV processor and the Scientific Linux 3.0.5 operating
system. The efficiency of parallel algorithms has been evaluated experimentally on
the cluster of computers, consisting of nodes with the Intel(R) Core(TM)2 Quad
processor Q6600. Four processing cores are running at 2.4 GHz each and sharing
8 MB of L2 cache and a 1066 MHz front side bus. Each of the four cores can
complete up to four full instructions simultaneously. If any of these is different,
it is stated explicitly.

3.4 Hybrid Evolutionary Algorithm for Multidimensional
Scaling

The idea of evolutionary search is to maintain a population of the best (with
respect to the Stress value) solutions, the crossover of which can generate better
solutions [159]. In order to minimize (3.1), a hybrid algorithm has been imple-
mented, the combines a genetic algorithm (similar to that used in [151]), and a local
minimization algorithm. The genetic algorithm ensures the globality of search. The
local descent ensures an efficient search for local minima. Some authors call such
algorithms memetic [30]. From the point of view of evolutionary optimization, the
algorithm consists of the following “genetic operators”:

• Random (with a uniform distribution) selection of parents
• Two-point crossover
• Adaptation to environment (modeled by local minimization)
• Elitist survival

Interpreting the vector of variables in (3.1) as a chromosome, the crossover operator
is defined by the following formula:

Y = arg min f rom(Ŷ1, . . . ,Ŷβ ,Y̌β+1, . . . ,Y̌γ−1,Ŷγ , . . . ,Ŷm),

where Y is the chromosome of the offspring; Ŷ and Y̌ are chromosomes of
the selected parents; β and γ are two integer random numbers with a uniform
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Algorithm 1 Hybrid evolutionary algorithm for multidimensional scaling
Input: m; d; δi j, wi j, i, j = 1, . . .,m; np; ninit; tc (nc)
Output: S∗, Y ∗
1: Generate the initial population:
2: Generate ninit uniformly distributed random vectors Y of dimension md.
3: Perform local minimization starting from the best np generated vectors.
4: Form the initial population from the local minimizers found.
5: while tc time has not passed (nc number of generations has not exceeded) do
6: Randomly with a uniform distribution select two parents from the current population.
7: Produce an offspring by means of crossover and local minimization.
8: if the offspring is more fitted than the worst individual of the current population, then
9: the offspring replaces the latter.

10: end if
11: end while

distribution over 1, . . . ,m; and it is supposed that the parent Ŷ is better fitted than the
parent Y̌ with respect to the value of Stress. arg min f rom(Z) denotes an operator
of calculation of the local minimizer of (3.1) from the starting point Z.

The pseudo-code is outlined in Algorithm 1. The idea is to maintain a population
of the best (with respect to the Stress value) solutions, the crossover of which
can generate better solutions. The size of population np is a parameter of the
algorithm. The initial population is generated by local searching starting from
np points that are best (with respect to the Stress value) from a sample of ninit

randomly generated points. The population evolves by generating offsprings. The
minimization terminates after the predetermined computing time tc or the predefined
number of generations nc.

Although different local minimization techniques have been tried in MDS
problems by many authors, there is no united opinion on the efficiency of the
tried techniques. Moreover, a relative performance of the local minimization
algorithm, started from a random point, not necessarily can be generalized to its
relative performance when starting from the points rather close to local minimizers
generated by the genetic algorithm. Therefore, we have experimentally investigated
the hybrid algorithm with two characteristic local minimization subroutines.

It is well known that the Stress function with the Euclidean distances in
the projection space is differentiable at a local minimizer [137]. Assuming the
smoothness of the Stress function along the descent trajectory, a conjugate gradient
method can be expected appropriate for minimizing the Stress function with the Eu-
clidean distances. The non-differentiability of the Stress function with the city-block
distances is analyzed in Sect. 3.2; to minimize the Stress function with the city-block
distances, a direct search method (without using derivatives) is needed. We have
chosen two widely accessible algorithms for the experiments: the conjugate gradient
algorithm by Fletcher–Reeves–Polak–Ribiere and the direction-set algorithm by
Powell. The implementations of [175] were used. The conjugate gradient algorithm
requests derivatives of the objective function; the approximation of derivatives by
finite differences is applied, formally extending the applicability of the algorithm to
the case of the city-block distances. The experiments have been done to investigate
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Table 3.1 Performance of the hybrid algorithm for MDS with the Euclidean distances

Conjugate gradient local search Powell’s local search

n m E∗min E∗mean E∗max perc, % E∗min E∗mean E∗max perc, %

Unit Simplex

5 6 0.2122 0.2122 0.2122 100 0.2122 0.2122 0.2122 100
6 7 0.2482 0.2482 0.2482 100 0.2482 0.2482 0.2482 100
7 8 0.2744 0.2744 0.2744 100 0.2744 0.2744 0.2744 100
8 9 0.2942 0.2942 0.2942 100 0.2942 0.2942 0.2942 100
9 10 0.3097 0.3097 0.3097 100 0.3097 0.3097 0.3097 100
10 11 0.3221 0.3221 0.3221 100 0.3221 0.3221 0.3221 100
11 12 0.3317 0.3317 0.3317 100 0.3317 0.3317 0.3317 100
12 13 0.3394 0.3394 0.3395 95 0.3394 0.3394 0.3394 100
13 14 0.3457 0.3457 0.3458 94 0.3457 0.3457 0.3457 100
14 15 0.3509 0.3509 0.3511 68 0.3509 0.3509 0.3509 100
15 16 0.3554 0.3555 0.3556 44 0.3554 0.3554 0.3554 100
16 17 0.3593 0.3595 0.3598 25 0.3593 0.3593 0.3593 100
17 18 0.3628 0.3630 0.3633 15 0.3628 0.3628 0.3628 100
18 19 0.3660 0.3662 0.3664 7 0.3660 0.3660 0.3660 100
19 20 0.3688 0.3691 0.3693 7 0.3687 0.3687 0.3687 100
20 21 0.3714 0.3716 0.3718 3 0.3713 0.3713 0.3713 100

Hypercube

3 8 0.2439 0.2439 0.2439 100 0.2439 0.2439 0.2439 100
4 16 0.3003 0.3003 0.3004 99 0.3003 0.3003 0.3003 100
5 32 0.3343 0.3379 0.3421 1 0.3320 0.3321 0.3330 74
6 64 0.3746 0.4286 0.4470 1 0.3505 0.3509 0.3532 41

difficulties caused by non-differentiability of the Stress function in the case of the
city-block distances. In these experiments, the parameters of the algorithm have
been set to np = 60, ninit = 6000, and tc = 10s. The dimensionality of the projection
space is d = 2.

Let us begin with the case of the Euclidean distances. The performance of
the hybrid algorithm with different local search methods can be assessed from the
data presented in Table 3.1. Minimal, average, and maximal values of the relative
error (3.2) in 100 runs (E∗min, E∗mean and E∗max) are presented in the table to show
the quality of the solutions found. The percentage of runs (perc), when the value
of the relative error differs from E∗min by less than 10−4, is presented in the table
as a criterion of reliability of the algorithm. It can be seen from the table that
the algorithm with Powell’s local search performs better than with the conjugate
gradient local search. It is worth mentioning that during 10 predefined seconds,
more crossovers have been performed in the case where the conjugate gradient
local search is used. The local search by the conjugate gradient takes less time than
by Powell’s method, but it seems that the conjugate gradient algorithm frequently
terminates prematurely.

The performance of the hybrid algorithm for MDS problems with the city-block
distances can be assessed from the estimates of the same criteria, presented in
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Table 3.2 Performance of the hybrid algorithm for MDS problems with the city-block
distances

Conjugate gradient local search Powell’s local search

n m E∗min E∗mean E∗max perc, % E∗min E∗mean E∗max perc, %

Unit Simplex

5 6 0.1869 0.1869 0.1869 100 0.1869 0.1869 0.1869 100
6 7 0.2247 0.2247 0.2247 100 0.2247 0.2247 0.2247 100
7 8 0.2569 0.2569 0.2569 100 0.2569 0.2569 0.2569 100
8 9 0.2759 0.2759 0.2759 100 0.2759 0.2759 0.2759 100
9 10 0.2936 0.2936 0.2936 100 0.2936 0.2936 0.2936 100
10 11 0.3058 0.3058 0.3058 100 0.3058 0.3058 0.3058 100
11 12 0.3167 0.3167 0.3177 97 0.3167 0.3167 0.3167 100
12 13 0.3249 0.3250 0.3259 84 0.3249 0.3249 0.3249 100
13 14 0.3325 0.3327 0.3338 69 0.3325 0.3325 0.3328 99
14 15 0.3384 0.3388 0.3400 45 0.3384 0.3385 0.3389 96
15 16 0.3439 0.3442 0.3453 46 0.3439 0.3441 0.3445 53
16 17 0.3484 0.3488 0.3497 34 0.3484 0.3487 0.3493 34
17 18 0.3526 0.3531 0.3543 14 0.3526 0.3530 0.3536 7
18 19 0.3562 0.3567 0.3578 10 0.3562 0.3566 0.3573 2
19 20 0.3595 0.3602 0.3616 3 0.3595 0.3600 0.3604 1
20 21 0.3623 0.3634 0.3646 6 0.3624 0.3629 0.3634 3

Hypercube

3 8 0.2245 0.2245 0.2245 100 0.2245 0.2245 0.2245 100
4 16 0.2965 0.2967 0.2999 83 0.2966 0.2968 0.2974 19
5 32 0.3332 0.3380 0.3494 1 0.3315 0.3320 0.3350 5
6 64 0.4163 0.4788 0.5157 1 0.3516 0.3561 0.3784 5

Table 3.2. Again, the hybrid algorithm with Powell’s local search performs better
than with the conjugate gradient. The comparison of Tables 3.1 and 3.2 shows that
the results for the problems with the city-block distances are worse than the results
for the problems with the Euclidean distances. This fact shows a necessity to search
for better approaches to optimize the Stress function with the city-block distances.

3.5 Two-Level Optimization of Stress with City-Block
Distances

Stress function (3.1) with the city-block distances d1 (Yi,Yj) can be redefined as

S (Y ) =
m

∑
i=1

m

∑
j=1

wi j

(
d

∑
k=1

∣∣yik− y jk
∣∣− δi j

)2

. (3.16)

Let A(P) denote a set such that

A(P) =
{

Y |yik ≤ y jk for pki < pk j, i, j = 1, . . . ,m, k = 1, . . . ,d
}
, (3.17)
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where P = (P1, . . . ,Pd), Pk = (pk1, pk2, . . . , pkm) is a permutation of 1, . . . ,m; k =
1, . . . ,d. A(P) is not empty since it contains, for example, the points with equal
coordinates yik = c, i = 1, . . . ,m, k = 1, . . . ,d, where c is an arbitrary constant.

For Y ∈ A(P), (3.16) can be rewritten in the following form [228]:

S (Y ) =
m

∑
i=1

m

∑
j=1

wi j

(
d

∑
k=1

(
yik− y jk

)
zki j− δi j

)2

,

where

zki j =

{
1, pki > pk j,

−1, pki < pk j,

∣∣∣∣k = 1, . . . ,d, i, j = 1, . . . ,m.

Therefore, for fixed P and Y ∈ A(P), S (Y ) is a quadratic function implying that the
minimization problem

min
Y∈A(P)

S (Y ) (3.18)

is a quadratic programming problem. The objective function in (3.18) can be written
in the following form:

S (Y ) =
m

∑
i=1

m

∑
j=1

wi j

(
d

∑
k=1

(
yik− y jk

)
zki j− δi j

)2

=
m

∑
i=1

m

∑
j=1

wi jδ 2
i j− 2

m

∑
i=1

m

∑
j=1

wi jδi j

d

∑
k=1

(
yik− y jk

)
zki j

+
m

∑
i=1

m

∑
j=1

wi j

(
d

∑
k=1

(
yik− y jk

)
zki j

)2

.

The first summand is a constant with respect to yik, i = 1, . . . ,m, k = 1, . . . ,d, and
needs not be taken into account in the minimization. Let us assume δi j = δ ji, δii = 0,
and wi j = wji. The second summand is a linear function that can be simplified as
follows:

−2
m

∑
i=1

m

∑
j=1

wi jδi j

d

∑
k=1

(
yik− y jk

)
zki j

=−2
m

∑
i=1

m

∑
j=1

wi jδi j

d

∑
k=1

yikzki j + 2
m

∑
i=1

m

∑
j=1

wi jδi j

d

∑
k=1

y jkzki j

=−4
m

∑
i=1

m

∑
j=1

wi jδi j

d

∑
k=1

yikzki j

=−4
d

∑
k=1

m

∑
i=1

yik

m

∑
j=1

wi jδi jzki j.
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Similarly, the third summand can be written as a quadratic function

m

∑
i=1

m

∑
j=1

wi j

(
d

∑
k=1

(
yik− y jk

)
zki j

)2

=
m

∑
i=1

m

∑
j=1

wi j

d

∑
k=1

d

∑
l=1

(
yik− y jk

)(
yil− y jl

)
zki jzli j

=
d

∑
k=1

d

∑
l=1

m

∑
i=1

m

∑
j=1

(
yikyil− yiky jl− y jkyil + y jky jl

)
wi jzki jzli j

=
d

∑
k=1

d

∑
l=1

m

∑
i=1

m

∑
j=1

yikyilwi jzki jzli j +
d

∑
k=1

d

∑
l=1

m

∑
i=1

m

∑
j=1

y jky jlwi jzki jzli j

−
d

∑
k=1

d

∑
l=1

m

∑
i=1

m

∑
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d

∑
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d

∑
l=1

m

∑
i=1

m

∑
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d

∑
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d

∑
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∑
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d

∑
l=1

m

∑
i=1
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Furthermore, the linear and quadratic parts can be divided by 4 without influencing
the minimization.

In view of (3.17), Y ∈ A(P) implies that

yik ≤ y jkforpki < pk j, i, j = 1, . . . ,m, k = 1, . . . ,d,

which is equivalent to constraints

y{ j|pk j=i}k ≤ y{ j|pk j=i+1}k, k = 1, . . . ,d, i = 1, . . . ,m− 1,

and can be redefined as

y{ j|pk j=i+1}k− y{ j|pk j=i}k ≥ 0, k = 1, . . . ,d, i = 1, . . . ,m− 1.
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The Stress function and constraints are invariant with respect to translation
(addition of constant values to yik, i = 1, . . . ,m). We exclude this unfavorable
property (w.r.t. optimization) by centering the solution by means of the following
constraints (3.3):

m

∑
i=1

yik = 0, k = 1, . . . ,d.

Summarizing the above algebra, the problem of minimization of S (Y ) over A(P)
is reduced to the quadratic programming problem

min

[
−

d

∑
k=1

m

∑
i=1

yik

m

∑
j=1

wi jδi jzki j

+
1
2

(
d

∑
k=1

d

∑
l=1

m

∑
i=1

yikyil

m

∑
t=1,t�=i

wit zkit zlit −
d

∑
k=1

d

∑
l=1

m

∑
i=1

m

∑
j=1, j�=i

yiky jlwi jzki jzli j

)]

s.t.
m

∑
i=1

yik = 0, k = 1, . . . ,d,

y{ j|pk j=i+1}k− y{ j|pk j=i}k ≥ 0, k = 1, . . . ,d, i = 1, . . . ,m− 1,

which can be written in the matrix form as presented below:

min

(
−BTY +

1
2

Y TQY

)
(3.19)

s.t.CY = 0, (3.20)

AY ≥ 0, (3.21)

where Y is a vector of md elements, corresponding to the coordinate values of image
points; B is a vector of md elements:

bkm−m+i =
m

∑
j=1

wi jδi jzki j , k = 1, . . . ,d, i = 1, . . . ,m;

Q is a square md×md matrix with the elements

q(km−m+i)(lm−m+ j) =

{
∑m

t=1,t�=i wit zkit zlit , i = j,

−wi jzki jzli j , i�= j,

where k, l = 1, . . . ,d, i, j = 1, . . . ,m; C is a d×md matrix with the elements

ck j =

{
1, j = km−m+ 1, . . .,km,

0, otherwise,
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where k = 1, . . . ,d, j = 1, . . . ,md; and A is an (m− 1)d ×md matrix with the
elements

a(km−k−m−1+i) j =

⎧⎨
⎩

1, pk( j−km+m) = i+ 1,
−1, pk( j−km+m) = i,
0, otherwise,

where k = 1, . . . ,d, i = 1, . . . ,m− 1, j = 1, . . . ,md.
The polyhedron Y ∈ A(P) is defined by linear inequality constraints (3.21). The

equality constraints (3.20) ensure centering of the solution with respect to each
coordinate to avoid translated solutions. A feasible set, defined by (3.20) and (3.21),
is not empty since at least the point yik = 0, i = 1, . . . ,m, k = 1, . . . ,d is feasible.

The structure of the minimization problem (3.18) is favorable to apply a two-level
minimization:

min
P

S (P) , (3.22)

s.t.S (P) = min
Y∈A(P)

S (Y )∼min

(
−BT

PY +
1
2

Y TQPY

)
,s.t.

CY = 0,
APY ≥ 0,

(3.23)

where the upper-level problem is a combinatorial problem, defined over the set P
of d-tuple of permutations of 1, . . . ,m (one permutation per each coordinate of
the projection space), and the lower-level problem is a quadratic programming
problem with a convex quadratic objective function and linear constraints setting the
sequences of coordinate values of the point defined by permutations P. The problem
at the lower level is solved using an algorithm for convex quadratic programming.

Globalism of search is ensured by the upper-level algorithms. The upper-level
combinatorial problem can be solved using different algorithms. Small problems
can be solved by the explicit enumeration. Such a bi-level method is a covering
method for global optimization with a guaranteed accuracy. In this case, subregions
are polyhedrons A(P) where the exact minimum can be found using convex
quadratic programming. The branch-and-bound method can be applied as well
ensuring a guaranteed accuracy. Genetic algorithms seem perspective for larger
dimensionalities. In this case, the guarantee to find the exact solution is lost, but
good solutions can be found in acceptable time.

Let us define a different decomposition of an optimization problem which is more
convenient in some cases, for example, in the derivation of a two-level minimization
problem with a combinatorial problem at the upper-level and a system of linear
equations at the lower level [235]. Let us change the variables into

vlk = y{ j|pk j=l+1}k− y{ j|pk j=l}k, k = 1, . . . ,d, l = 1, . . . ,mk,

where mk < m is the number of different values of the kth coordinate minus one.
Here, pki = pk j can be permitted even for i �= j. In the case Pk is a permutation of
1, . . . ,m, this is not permitted, and mk = m− 1.
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The polyhedron Y ∈ A(P) can be defined by vlk ≥ 0, k = 1, . . . ,d, l = 1, . . . ,mk.
The interior of the polyhedron can be defined by vlk > 0. For Y ∈ A(P), the Stress
function with the city-block distances can be rewritten in the following form:

S (Y ) =
m

∑
i=1

m

∑
j=1

wi j

(
d

∑
k=1

mk

∑
l=1

vlkzlki j− δi j

)2

,

where

zlki j =

{
1, min(pki, pk j)≤ l < max(pki, pk j),

0, otherwise.

The quadratic function S (Y ) can be written in the following form:

S (Y ) =
m

∑
i=1

m

∑
j=1

wi j

(
m

∑
k=1

nk

∑
l=1

vlkzlki j− δi j

)2

=
m

∑
i=1

m

∑
j=1

wi jδ 2
i j− 2

m

∑
i=1

m

∑
j=1

wi jδi j

d

∑
k=1

mk

∑
l=1

vlkzlki j +
m

∑
i=1

m

∑
j=1

wi j

(
d

∑
k=1

mk

∑
l=1

vlkzlki j

)2

.

The first summand is a constant with respect to vlk, k = 1, . . . ,d, l = 1, . . . ,mk, and
needs not be taken into account in the minimization. The second summand is a linear
function which can be rewritten as follows:

−2
m

∑
i=1

m

∑
j=1

wi jδi j

d

∑
k=1

mk

∑
l=1

vlkzlki j =−2
d

∑
k=1

mk

∑
l=1

vlk

m

∑
i=1

m

∑
j=1

wi jδi jzlki j.

Similarly, the third summand can be written as a quadratic function:

m

∑
i=1

m

∑
j=1

wi j

(
d

∑
k=1

mk

∑
l=1

vlkzlki j

)2

=
m

∑
i=1

m

∑
j=1

wi j

d

∑
k=1

mk

∑
l=1

d

∑
u=1

mu

∑
t=1

vlkvtuzlki jztui j

=
d

∑
k=1

mk

∑
l=1

d

∑
u=1

mu

∑
t=1

vlkvtu

m

∑
i=1

m

∑
j=1

wi jzlki jzvui j.

Therefore, the minimization of S (Y ) over A(P) is equivalent to

min

(
−2

d

∑
k=1

mk

∑
l=1

vlk

m

∑
i=1

m

∑
j=1

wi jδi jzlki j +
d

∑
k=1

mk

∑
l=1

d

∑
u=1

mu

∑
t=1

vlkvtu

m

∑
i=1

m

∑
j=1

wi jzlki jztui j

)
,

s.t.vlk ≥ 0, k = 1, . . . ,d, l = 1, . . . ,mk,
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which can be written in the matrix form as presented below:

min

(
−BTV +

1
2

V TQV

)

s.t.V ≥ 0,

where V is a vector of ∑d
k=1 mk elements that correspond to differences between the

coordinate values of the image points; B is a vector of the same number of elements:

blk =
m

∑
i=1

m

∑
j=1

wi jδi jzlki j , k = 1, . . . ,d, l = 1, . . . ,mk;

Q is a square
(
∑d

k=1 mk
)× (∑d

k=1 mk
)

matrix with the elements

q(lk)(tu) =
m

∑
i=1

m

∑
j=1

wi jzlki jztui j ,

where k,u = 1, . . . ,d, l = 1, . . . ,mk, t = 1, . . . ,mu.
The coordinate values of the image points can be found from the corresponding

minimum point of the constrained quadratic problem:

y∗ik =
pki−1

∑
l=1

v∗lk.

Therefore, similarly as presented previously, a two-level minimization problem
with a combinatorial problem at the upper-level and a quadratic programming
problem at the lower level can be defined:

min
P

S (P) ,

s.t.S (P) = min
Y∈A(P)

S (Y )∼min

(
−BT

PV +
1
2

V TQPV

)
,s.t.V ≥ 0.

One can see that the linear equality and inequality constraints have been avoided
comparing with the decomposition presented earlier, and only the bound constraints
V ≥ 0 have been left. Such constraints are checked and managed easier. Moreover,
the number of elements of V (and variables of the lower-level problem) is at least
by d smaller than the number of elements of Y .

Since QP is positive semidefinite, the objective function of a quadratic problem
is convex. Therefore, a convex quadratic programming method can be applied to the
lower level problem.

If the minimum point of the Stress function is not on the boundary of the
polyhedron Y ∈ A(P), then it can be found by solving a system of linear equations,
searching where the gradient of the quadratic function is zero. If it is on the
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boundary of the polyhedron, then the gradient is zero at the point which is not in
the polyhedron. However, it is possible to define A(P′) (corresponding either to the
polyhedron A(P) or its faces and edges):

A
(
P′
)
=

{
Y

∣∣∣∣∣ yik < y jk for p′ki < p′k j,

yik = y jk for p′ki = p′k j,
i, j = 1, . . . ,m, k = 1, . . . ,d

}
.

Here, p′ki can be equal to p′k j even if i�= j, and therefore, they can define polyhedrons
A(P′) which are faces and edges of the polyhedron A(P). If p′ki = p′k j for i�= j, then
yik = y jk and one of these variables is eliminated from the problem. It is possible
to find the minimum points of the Stress function by solving the systems of linear
equations, searching where the gradient of the reduced quadratic function is zero in
polyhedrons A(P′).

A two-level problem with quadratic programming at the lower level can be
redefined as a two-level minimization problem with a combinatorial problem at the
upper level and a system of linear equations at the lower level:

min
P′

S
(
P′
)
,

s.t.S
(
P′
)
= min

Y∈A(P′)
S (Y )∼V TQP′ = BT

P′ , s.t.V > 0.

If the solution of a system of linear equations is not in the polyhedron A(P′), then the
lower-level problem is not feasible. This can be easily checked by testing whether
V ∗> 0, which is computationally cheaper than to check linear inequality constraints
if the decomposition presented previously was used.

3.5.1 Explicit Enumeration in Two-Level Optimization

All the unique solutions of a combinatorial problem are evaluated in the algorithm
of explicit enumeration in the two-level optimization of the Stress function with
the city-block distances. The number of feasible solutions of the upper-level
combinatorial problem is (m!)d . A solution of MDS with the city-block distances
is invariant with respect to mirroring when changing the direction of coordinate
axes or exchanging the coordinates. Figures 3.1 and 3.2 illustrate mirrored solutions
as d = 2. As it can be seen from Fig. 3.1, there are 2d equivalent solutions which
can be represented by one of them. Similarly, it can be seen from Fig. 3.2 that there
are groups of d! equivalent solutions which can be represented by one of them.

The search set and optimization time can be reduced taking into account
symmetries of this kind. The number of solutions to be enumerated can be reduced
to (m!/2)d by refusing mirrored solutions with respect to changing the direction
of each coordinate axis. It can be further reduced to approximately (m!/2)d/d!
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Fig. 3.1 Mirrored solutions with respect to changing directions of coordinate axes in the case
d = 2 and the corresponding permutations that define the sequence of coordinate values of the
image points representing the objects a and b
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Fig. 3.2 Pairs of mirrored solutions with respect to exchange of coordinates as d = 2 and the
corresponding permutations that define the sequence of coordinate values of the image points
representing the objects a, b, and c

by refusing mirrored solutions with the exchanged coordinates. It is not exactly
(m!/2)d/d!, since not all feasible solutions belong to the groups of d! equivalent
solutions. Denoting u = m!/2, the number of solutions to be enumerated is u in the
case d = 1, (u2 + u)/2 in the case d = 2, (u3 + 3u2 + 2u)/6 in the case d = 3, and
(u4 + 6u3 + 11u2 + 6u)/24 in the case d = 4. For a special case of data, the Stress
function is invariant to mirroring some of the points with respect to a diagonal; such
an invariance is known as Bortz indeterminacy [14, 15].

A detailed explicit enumeration algorithm for MDS is given in Algorithm 2.
Enumeration begins with the permutation (1, . . . ,m) for every coordinate. To avoid
mirrored solutions with a changed direction of the coordinate axis, the main cycle
continues while j > 2, which means that the coordinate values of the point,
representing the first object, will never be smaller than the corresponding coordinate
values of the point representing the second object. In the case of d = 1 and m = 3,
all the possible permutations are “123”, “132”, “231”, “213”, “312”, and “321”.
Here, each numeral represents the value of p1i. To avoid mirrored solutions with
a changed direction of the coordinate axis, permutations with pk1 > pk2 can be
forbidden, because, for example, “123” and “321” represent equivalent solutions.
In this case, permitted permutations are “123”, “132”, and “231”.

If d = 2 and m = 3, permitted permutations would be “123/123”, “123/132”,
“123/231”, “132/123”, “132/132”, “132/231”, “231/123”, “231/132”, and
“231/231.” Here, each numeral represents pki, and “/” separates the coordinates.
To avoid mirrored solutions with the exchanged coordinates, some restrictions on
permutations are set. Let us define the order of permutations: for the permutations
of 1,2,3, it is “123” ≺ “132” ≺ “231”, and for the permutations of 1, . . . ,4, it is
“1234” ≺ “1243” ≺ “1342” ≺ “2341” ≺ “1324”≺ “1423” ≺ “1432” ≺ “2431” ≺
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Algorithm 2 Explicit enumeration algorithm for multidimensional scaling
Input: m; d; δi j, wi j, i, j = 1, . . .,m
Output: S∗; Y ∗; nqpp
1: pki← i, i = 1, . . .,m, k = 1, . . .,d // Initialize starting permutations
2: j← m+1; k← d +1; S∗ ← ∞; nqpp← 0
3: while j > 2 do
4: if j > m, then
5: if minY∈A(P) S(Y )< S∗, then // Evaluate solution
6: S∗ ←minY∈A(P) S(Y ); Y ∗ ← argminY∈A(P) S(Y )
7: end if
8: j← m; k← d
9: end if

10: if j > 2, then
11: // Form next tuple of permutations
12: if pk j = 0, then
13: pk j ← j
14: if k > 1 and Pk ≺ Pk−1, then // Detect refusable symmetries
15: pki← p(k−1)i, i = 1, . . . , j
16: end if
17: k← k+1
18: else
19: pk j ← pk j−1
20: if pk j = 0, then
21: pki← pki−1, i = 1, . . ., j−1
22: k← k−1
23: if k < 1, then
24: j← j−1; k← d
25: end if
26: else
27: find i: pki = pk j , i = 1, . . ., j−1
28: pki← pki +1; k← k+1
29: end if
30: end if
31: end if
32: nqpp← nqpp+1
33: end while

“2314”≺ “2413”≺ “3412”≺ “3421.” The permutation Pk cannot precede Pl for k >
l (l < k⇒ Pl  Pk). Therefore, tuples of permutations “132/123”, “231/123”, and
“231/132” are not permitted, as they represent symmetric solutions to “123/132”,
“123/231”, and “132/231”, respectively. Thus, in this case, permitted permutations
are “123/123”, “123/132”, “123/231”, “132/132”, “132/231”, and “231/231.”

The performance of a two-level algorithm for MDS with the explicit enumeration
of solutions of the upper-level combinatorial problem and a convex quadratic
programming algorithm for the lower-level problem is shown in Table 3.3. The
numbers of objects in the problems are shown in the first column. The results of
experimental investigation are shown using two columns for each dimensionality
of the projection space (d = 1, d = 2 and d = 3). The time of optimization in
seconds (t, s) and the numbers of the lower-level quadratic programming problems
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solved (NQPP) are given in the left columns. The value of relative error (E∗),
corresponding to the minimum of the Stress function, is given in the right columns.
The number of quadratic programming problems solved grows very fast with the
number of objects m, and they are exactly as predicted.

Analogously, the explicit enumeration algorithm can be built for a combinatorial
problem at the upper-level when the lower-level problem is a system of linear
equations [235]. In the case d = 1 and m = 3, possible sequences for P′ are “123”,
“122”, “132”, “121”, “231”, “112”, “111”, “221”, “213”, “212”, “312”, “211”,
and “321.” To avoid mirrored solutions with a changed direction of the coordinate
axis, analogously to the case of permutations P, the sequences with pk1 > pk2 and
pk1 = pk2&pk1 > pk3 can be forbidden, as, for example, “112” and “221” represent
equivalent solutions as well as “123” and “321.” In this case, permitted permutations
are “123”, “122”, “132”, “121”, “231”, “112”, and “111.”

Let us compare the number of lower-level problems in the case they are
quadratic programming problems and systems of linear equations. The results of
experimental investigation are shown in Table 3.4. All the values of relative errors
E∗, corresponding to the minima of the Stress function, are coincident in both
approaches—the same solutions of the problems have been found. The numbers
of systems of linear equations (NSLE) are much larger than that of quadratic
programming problems (NQPP), which is not surprising.

If the lower-level problem is feasible, the solution of the system of linear
equations is in the polyhedron A(P′). Therefore, the minimum point of the Stress
function is in the polyhedron, and there is no need to look for the minimum
point on the faces and edges of this polyhedron. Thus, if the system defined
by “123/123” has the solution with V > 0, it is not necessary to solve systems
defined by “123/122”, “123/112”, “122/122”, “122/112”, “112/112”, “123/111”,
and “111/111.” The numbers of feasible systems of linear equations (NFSLE) are
shown in Table 3.5. All lower-level problems are feasible for the problems of
Standard Simplices as m = 1. It means that, in this case, all possible polyhedrons
A(P) contain minimizers of the Stress function, and therefore, the Stress function
has m! minimizers. The numbers of feasible lower-level problems are smaller
for other data sets and for the case d �= 1, but the numbers are still quite large.
Moreover, even if only v12 > 0 when solving the system of linear equations defined
by “123/123”, it is not necessary to evaluate the system defined by “123/112.” This
encourages the development of an algorithm which takes into account the results
of solution of lower-level problems. Not only the number of systems required to be
solved would be reduced, if this were taken into account, but also the number of
feasible lower-level problems might be used to count the number of minimizers of
the Stress function. It is proved in [80] that the distances between image points are
positive at a local minimizer of the Stress function. Therefore, it is possible to avoid
the coincidence of image points. It can be done avoiding, for example, the systems
defined by “112” and “112/112.” That would also reduce the number of lower-level
problems and make the approach more attractive, but a further investigation should
be performed. Only the approach, based on quadratic programming problems, will
be considered further in this book; however, many features should be valid in the
case, where the lower level problems are systems of linear equations as well.
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Table 3.4 Comparison of the numbers of lower-level problems in the explicit enumeration

E∗

Standard Unit Empirical
d m Simplex Simplex Hypercube data sets NQPP NSLE

1 3 0.3333 0.0000 3 7
1 4 0.4082 0.3651 0.4082 12 38
1 5 0.4472 0.4140 60 271
1 6 0.4714 0.4554 360 2342
1 7 0.4879 0.4745 2520 23647
1 8 0.5000 0.4917 0.4787 Ruuskanen1 0.2975 20160 272918
1 9 0.5092 0.5018 Hwa12 0.0107 181440 3543631
1 10 0.5164 0.5113 Cola 0.3642 1814400 51123782
1 11 0.5222 0.5176 19958400 811316287

2 3 0.0000 0.0000 6 28
2 4 0.0000 0.0000 0.0000 78 741
2 5 0.1907 0.0000 1830 36856
2 6 0.2309 0.1869 64980 2743653
2 7 0.2621 0.2247 3176460 279602128

Table 3.5 The numbers of feasible lower-level problems

NFSLE

Standard Unit Empirical
d m NSLE Simplex Simplex Hypercube data sets

1 3 7 7 7
1 4 38 38 38 38
1 5 271 271 219
1 6 2342 2342 1907
1 7 23647 23647 17026
1 8 272918 272918 186599 221975 Ruuskanen1 210195
1 9 3543631 3543631 2378067 Hwa12 1350181
1 10 51123782 51123782 34412855 Cola 49208660
1 11 811316287 811316287 519221622

2 3 28 25 21
2 4 741 426 380 421
2 5 36856 20670 11139
2 6 2743653 1414761 606634
2 7 279602128 118027269 44663090

If the interchange of some objects does not change dissimilarity data, the
interchange of points, representing these objects, does not change the value of
the Stress function. In this case, there exist equivalent solutions and equivalent
subregions of the feasible region. The search space can be reduced to search only in
one equivalent subregion and find only one of the equivalent solutions [233]. In a
continuous optimization, it is possible to restrict the sequence of the first coordinate
values of the image points of interchangeable objects. In a combinatorial upper-level
algorithm of two-level optimization, it would be equivalent to permitting only some
of permutations of the first coordinate P1.
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Let us consider some geometric data sets. The distances between any two vertices
of the standard simplex are equal. If the ith row and column of the dissimilarity
matrix (A.1) were simultaneously interchanged with the jth row and column, the
matrix would not be changed. In other words, the interchange of any ith and
jth objects does not change dissimilarity data, and the interchange of points,
representing these objects, does not change the value of the Stress function. It is
possible to restrict the search space to find only one of the equivalent solutions by
constraining the sequence of values of the first coordinate of image points. In a
continuous optimization, the constraints would be y11 ≤ y21 ≤ ·· · ≤ ym1, which are
equivalent to one permitted permutation of the first coordinate in the upper-level
combinatorial problem: P1 = (1,2, . . . ,m). In this case, the number of solutions to
enumerate is equal to 1 as d = 1, equal to u = m!/2 as d = 2, equal to (u2 +u)/2 as
d = 3, and equal to (u3 + 3u2 + 2u)/6 as d = 4. The computational complexity of
the explicit enumeration is reduced by approximately u/d times to approximately
ud−1/(d− 1)!.

In the case of the Unit Simplex, if the ith (i > 1) row and column were simul-
taneously interchanged with the jth ( j > 1) row and column of the dissimilarity
matrix (A.2), the matrix would not be changed. It is possible to restrict the search
space to find only one of the equivalent solutions by constraining the sequence of
values of the first coordinate of image points, except that representing the vertex
at the origin. In a continuous optimization, the constraints would be y21 ≤ y31 ≤
·· · ≤ ym1, which are equivalent to m (which is further reduced to �m/2� by refusing
mirrored solutions) permitted permutations of the first coordinate in the upper-level
combinatorial problem: P1 = (l,1,2, . . . , l− 1, l + 1, . . . ,m), l ≤ m/2. In this case,
the number of solutions to be enumerated is equal to �m/2� as d = 1. It is not trivial
to estimate the numbers in other cases of d because of refusal of other invariances
explained before; therefore, an experimental investigation is needed.

It is more difficult to define interchange of objects which does not change the
dissimilarity matrix (A.3) of a Hypercube, but the data are symmetric as can be
seen looking at a cube. It is possible to restrict the search space so that at least the
vertex at the origin be represented by the leftmost point in the image. In a continuous
optimization, the constraints would be y11 ≤ yi1, i = 2, . . . ,m, which are equivalent
to permitted permutations of the first coordinate with p11 = 1.

The efficiency of the two-level algorithm with the explicit enumeration of a com-
binatorial problem, coping with symmetries of data, and a quadratic programming
method has been evaluated experimentally. The results are shown in Table 3.6 and
can be compared with that of Table 3.3, where the symmetry of data is ignored. The
performance is measured using the optimization time t, s, and the smallest relative
error E∗. We also present the number of the lower-level quadratic programming
problems solved (NQPP).

The numbers of the quadratic programming problems solved are coincident
with the theoretical estimates derived. As it can be seen from Table 3.6, the
problems of d = 1 of the Standard Simplices can be solved by solving one quadratic
programming problem, the search space being restricted. The number of quadratic
programming problems solved to find the global solution in d-dimensional scaling
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Table 3.6 Performance of the algorithm based on the explicit enumeration with a restricted search
space

d = 1 d = 2 d = 3

m t , s (NQPP) E∗ t , s (NQPP) E∗ t , s (NQPP) E∗

Standard Simplex
3 0.00 (1) 0.3333 0.00 (3) 0.0000 0.00 (6) 0.0000
4 0.00 (1) 0.4082 0.00 (12) 0.0000 0.00 (78) 0.0000
5 0.00 (1) 0.4472 0.00 (60) 0.1907 0.09 (1830) 0.0000
6 0.00 (1) 0.4714 0.01 (360) 0.2309 5.01 (64980) 0.0000
7 0.00 (1) 0.4879 0.10 (2520) 0.2621 379.88 (3176460) 0.0945
8 0.00 (1) 0.5000 1.01 (20160) 0.2825 31681 (203222880) 0.1250
9 0.00 (1) 0.5092 11.89 (181440) 0.2991
10 0.00 (1) 0.5164 153.88 (1814400) 0.3115
11 0.00 (1) 0.5222 2121.6 (19958400) 0.3217
12 0.00 (1) 0.5270 31170 (239500800) 0.3300
13 0.00 (1) 0.5311
14 0.00 (1) 0.5345

Unit Simplex

3 0.00 (2) 0.0000 0.00 (4) 0.0000 0.00 (7) 0.0000
4 0.00 (2) 0.3651 0.00 (18) 0.0000 0.01 (99) 0.0000
5 0.00 (3) 0.4140 0.01 (108) 0.0000 0.14 (2574) 0.0000
6 0.00 (3) 0.4554 0.02 (720) 0.1869 8.49 (101160) 0.0000
7 0.00 (4) 0.4745 0.25 (5760) 0.2247 695.19 (5446080) 0.0000
8 0.00 (4) 0.4917 2.90 (50400) 0.2569 66686 (381049200) 0.0992
9 0.00 (5) 0.5018 37.16 (504000) 0.2759
10 0.00 (5) 0.5113 560.84 (5443200) 0.2936
11 0.00 (6) 0.5176 7813.0 (65318400) 0.3058
12 0.00 (6) 0.5236 122360 (838252800) 0.3167
13 0.00 (7) 0.5279
14 0.00 (7) 0.5320

Hypercube

4 0.00 (6) 0.4082 0.00 (57) 0.0000 0.01 (308) 0.0000
8 0.06 (5040) 0.4787 5483.0 (88908120) 0.2245

with a restricted search space is equal to the number of quadratic programming
problems solved in (d− 1)-dimensional scaling of the original problem. Although
the solution time in such a case is increased because of larger quadratic problems,
the dimensionality of the global optimization problems solved in an acceptable
time is the same as for (d − 1)-dimensional scaling of the original problem. In
two-dimensional scaling, the problem with m= 12 has been solved instead of m= 8,
and in three-dimensional scaling, the problem with m = 8 instead of m = 6 has been
solved. The dimensionality of the largest global optimization problems solved is
N = 24 for d > 1.

As seen in Table 3.6, the problems d = 1 of the Unit Simplices can be solved
by solving �m/2� quadratic programming problems, when the search space is
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restricted. Although the number of quadratic programming problems solved to find
the global solution in d-dimensional scaling with the restricted search space is larger
than the number of quadratic programming problems solved in (d−1)-dimensional
scaling of the original problem, the dimensionality of the global optimization
problems solved in an acceptable time is the same as for (d−1)-dimensional scaling
of the original problem.

In the case of Hypercubes, a small increase of performance is noticed when the
search space is restricted. A larger increase could be expected if all the symmetries
of such problems were considered.

The approach is valuable in finding exact solutions of geometric problems the
data of which are symmetric. However, in empirical data sets, symmetries are not
known, and therefore, this approach is not considered further.

Although the dimensionality of MDS problems solvable by means of enumer-
ation cannot be large because of an exponentially growing number of potential
solutions, it is important to implement and apply such an algorithm for the problems
of the highest possible dimensionality. A parallel computation enables solution of
larger problems by the explicit enumeration [236]. It can be assumed that generation
of the solutions to be explicitly enumerated requires much less computational
time than their enumeration which requires solution of the lower-level quadratic
programming problems. Therefore, it is possible to implement a parallel version of
the explicit enumeration where each process runs the same algorithm, generating
solutions which should be enumerated explicitly, but only each (size)th is explicitly
enumerated in each process. The first process (of rank= 0) explicitly enumerates the
first, (size+1), etc., generated solutions. The second process (of rank= 1) explicitly
enumerates the second, (size+ 2), etc., generated solutions. The (size)th (rank of
which is size− 1) process explicitly enumerates the (size)th, (2size), etc., generated
solutions. The results of different processes are collected when the generation of
solutions and explicit enumeration are finished. The standardized message-passing
communication protocol MPI can be used for communication between parallel
processes. Detailed steps are given in Algorithm 3, built from Algorithm 2 by adding
some steps necessary for parallelization.

The efficiency of parallelization can be evaluated using the standard criteria,
taking into account the optimization time and the number of processes. A commonly
used criterion of parallel algorithms is the speedup:

ssize =
t0

tsize
, (3.24)

where t0 is the time used by the sequential algorithm and tsize is the time used by
the parallel algorithm implemented in size processes. The speedup divided by the
number of processes is called the efficiency of parallelization:

esize =
ssize

size
. (3.25)
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Algorithm 3 Parallel explicit enumeration algorithm for multidimensional scaling
Input: m; d; δi j, wi j, i, j = 1, . . .,m; rank; size
Output: S∗; x∗; nqpp
1: pki← i, i = 1, . . .,m, k = 1, . . .,d // Initialize starting permutations
2: j← m+1; k← d +1; S∗ ← ∞; nqpp← 0
3: while j > 2 do
4: if j > m, then
5: if nqp%size = rank, then
6: if minY∈A(P) S(Y )< S∗, then // Evaluate solution
7: S∗ ←minY∈A(P) S(Y ); Y ∗ ← argminY∈A(P) S(Y )
8: end if
9: end if

10: j← m; k← d
11: end if
12: if j > 2, then
13: // Form next tuple of permutations
14: if pk j = 0, then
15: pk j ← j
16: if k > 1 and Pk ≺ Pk−1, then // Detect refusable symmetries
17: pki← p(k−1)i, i = 1, . . . , j
18: end if
19: k← k+1
20: else
21: pk j ← pk j−1
22: if pk j = 0, then
23: pki← pki−1, i = 1, . . ., j−1
24: k← k−1
25: if k < 1, then
26: j← j−1; k← d
27: end if
28: else
29: find i: pki = pk j , i = 1, . . ., j−1
30: pki← pki +1; k← k+1
31: end if
32: end if
33: end if
34: nqpp← nqpp+1
35: end while
36: Collect S∗, Y ∗ from the different processes, keep the best. Sum up nqpp.

The performance of the parallel algorithm, composed of the explicit enumeration
of a combinatorial problem and quadratic programming, on the SUN Fire E15k
high performance computer for test problems Standard Simplex and Unit Simplex
with d = 2 and m = 7 is shown in Table 3.7 and Fig. 3.3. The dimensionality
of global optimization problems is N = 14. The optimization takes up to 20 min
by a single process. Different numbers of processes from 1 to 24 have been
used. The optimization takes less than one minute by 24 processes. The speedup
is almost linear and equal to the number of processes and theefficiency of the
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Table 3.7 Performance of
the explicit enumeration on
the SUN Fire E15k parallel
computer for test problems
with d = 2 and m = 7

Standard Simplex Unit Simplex

size t , s ssize esize t , s ssize esize

1 1037 1.00 1.00 1299 1.00 1.00
2 518 2.00 1.00 650 2.00 1.00
4 261 3.97 0.99 327 3.97 0.99
8 134 7.73 0.97 168 7.75 0.97
12 90 11.58 0.96 111 11.69 0.97
16 67 15.44 0.97 84 15.54 0.97
20 55 18.95 0.95 68 19.17 0.96
24 46 22.50 0.94 57 22.60 0.94
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Fig. 3.3 Performance of the parallel explicit enumeration on the SUN Fire E15k parallel computer

parallel algorithm is close to one. This is because a decomposition in the explicit
enumeration leads to a predictable number of independent subproblems. Therefore,
the algorithm scales well.

Although the efficiency of parallelization is good, the computational power of
one process is considerably lower than that of personal computers. The optimization
of these problems on a personal computer takes approximately 2 min (see Table 3.3).
Therefore, a similar experiment is performed on a cluster of personal computers.

The performance of the parallel algorithm, composed of the explicit enumeration
of a combinatorial problem and quadratic programming, on a cluster of personal
computers for test problems with d = 2 and m= 8 is shown in Table 3.8 and Fig. 3.4.
The dimensionality of the global optimization problems is N = 16. The optimization
takes up to 2 h by a single process. Different numbers of processes from 1 to 16 have
been used. The optimization takes less than 10 min by 16 processes. The speedup
is almost linear and equal to the number of processes, and the efficiency of the
parallel algorithm is close to one. Therefore, the algorithm scales well on a cluster
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Table 3.8 Performance of
the explicit enumeration on a
cluster of personal computers
for test problems with d = 2
and m = 8

size t , s ssize esize t , s ssize esize

Standard Simplex Unit Simplex

1 5894 1.00 1.00 6750 1.00 1.00
2 3005 1.96 0.98 3409 1.98 0.99
4 1523 3.87 0.97 1734 3.89 0.97
8 775 7.60 0.95 886 7.62 0.95
16 401 14.69 0.92 454 14.87 0.93

Hypercube Ruuskanen1

1 7268 1.00 1.00 7088 1.00 1.00
2 3668 1.98 0.99 3576 1.98 0.99
4 1852 3.92 0.98 1818 3.90 0.97
8 947 7.68 0.96 919 7.71 0.96
16 493 14.75 0.92 478 14.84 0.93
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Fig. 3.4 Performance of the parallel explicit enumeration on a cluster of personal computers

Table 3.9 Performance of
the explicit enumeration on a
cluster of personal computers
(16 processes) for larger
problems

Data set d m t , s (NQPP) E∗

Standard Simplex 1 14 47152 (43589145600) 0.5345
2 9 41644 (16460327520) 0.2991

Unit Simplex 1 14 53149 (43589145600) 0.5320
2 9 47026 (16460327520) 0.2759

Hwa12 2 9 58501 (16460327520) 0.0000

of personal computers as well. Test problems with d = 1, m = 14 and d = 2, m = 9
have been solved using 16 processes, and the results are shown in Table 3.9. The
optimization takes 12–16 h for such problems. It would take longer than one week
if a sequential version was used by a single process.
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3.5.2 Branch-and-Bound Algorithm for MDS

The main concept of branch-and-bound is to search for the optimum, by construct-
ing a search tree so that only some of the feasible solutions should be explicitly
evaluated, detecting subsets of feasible solutions which cannot contain optimal
solutions. The bound for the objective function over a subset of feasible solutions
should be evaluated and compared with the best objective function value found so
far. If the evaluated bound is worse than the known function value, the subset cannot
contain optimal solutions and the branch of the search tree, describing the subset,
can be pruned. The fundamental aspect of branch-and-bound is that the earlier the
branch is pruned, the smaller the number of complete solutions to be explicitly
evaluated is.

Evaluation of the bounds for the objective function is the most important part of
the branch-and-bound technique. If the bounds are not tight, the search could lead to
the complete enumeration of all feasible solutions. This is not acceptable practically
for all but the smallest problems, because the number of feasible solutions of
combinatorial optimization problems grows exponentially with the size of the
problem. Construction of a bound depends on the objective function and the type
of subsets of feasible solutions over which the bound is evaluated.

A branch-and-bound algorithm for multidimensional scaling with the city-block
distances has been proposed in [230]. A subset of feasible solutions of the
upper-level combinatorial problem is represented by a partial solution, where only
m of m objects are considered. Such a partial solution is defined by d-tuple of
permutations P of 1, . . . ,m. The lower bound for the Stress function is a value
of the partial Stress function at the minimum point of the lower-level quadratic
programming problem for m objects over a polyhedron A

(
P
)
:

min
Y∈A(P)

S
(
Y
)
= min

Y∈A(P)

m

∑
i=1

m

∑
j=1

wi j

(
d

∑
k=1

∣∣yik− y jk

∣∣− δi j

)2

, (3.26)

where Y = (Y1, . . . ,Ym). Assignment of other objects later in the search should not
change the sequence of coordinate values of image points of the earlier assigned m
objects, and consideration of other objects cannot decrease the value of the Stress
function (it can only be increased).

A search tree for d = 1 is shown in Fig. 3.5. Each numeral represents the value of
p1i, i= 1, . . . ,m. To avoid mirrored solutions, the search tree begins with a root node,
representing a partial solution “12”, and therefore, the image point, representing
the second object, will never be to the left from the image point, representing the
first object. The lower bound for the objective function over this partial solution is
not evaluated because it represents the whole set of solutions to be analyzed. The
image point, representing the third object, can be added to the right of the first two,
between them, or to the left of them. Therefore, assignment of the third object is
represented by three branches in the search tree ending with the nodes “123”, “132”,



3.5 Two-Level Optimization of Stress with City-Block Distances 75

12

123 132 231

1234 1243 1342 2341 1324 1423 1432 2431 2314 2413 3412 3421

12345 12354 12453 13452 23451

Fig. 3.5 A search tree for d = 1

and “231.” Although the sequence numbers of the first two objects can be changed
(13 and 23) after assigning the third object, their sequence is not changed (1 < 2,
1 < 3, and 2 < 3). The image point, representing the fourth object, has four possible
positions, and therefore, assigning the fourth object is represented by four branches.
Again, although the sequence numbers of the first three objects can be changed
after assignment of the fourth object, their sequence is not changed. Assignment
of the fifth object would be represented by five branches and so on. If the value of
the partial Stress function (3.26) at the minimum point of the lower-level quadratic
programming problem is greater for a partial solution than the value of the Stress
function at the minimum point of the already evaluated complete solution, the subset
of feasible solutions, represented by a partial solution, cannot contain the optimal
solution. Therefore, the branch, representing such a partial solution, can be pruned,
which means that a further search in this subset is not performed. For d = 1, the
number of feasible solutions is m!/2.

A search tree for d = 2 is shown in Fig. 3.6. Each numeral represents the value
of pki, k = 1, . . . ,d, i = 1, . . . ,m. Lower rows represent greater k. To avoid mirrored
solutions, the search tree begins with a root node, representing a partial solution
“12/12.” Therefore, the image point, representing the second object, will never be
to the left or down from the image point, representing the first object (see Fig. 3.1).
The lower bound over this partial solution is not evaluated because it represents the
whole set of solutions to be analyzed.

The image point, representing the third object, horizontally can be to the right
of the first two, between them, or to the left of them. Therefore, assignment of
the third object is represented by three branches in the search tree ending with the
nodes “123/12”, “132/12”, and “231/12.” Vertically, it can be below the first two,
between them, or above them. Therefore, the node “123/12” has three branches
ending with the nodes “123/123”, “123/132”, and “123/231.” If the intermediate
level of the nodes with permutations of different size is omitted, the assignment of
the third object can be represented by nine branches in the search tree ending with
the nodes “123/123”, “123/132”, “123/231”, “132/123”, “132/132”, “132/231”,
“231/123”, “231/132”, and “231/231.”

However, to avoid mirrored solutions with the exchanged coordinates, some
restrictions on permutations are set. Let us define the order of permutations like
that in Fig. 3.5 (the same as in the previous section): for permutations of 1,2,3,
it is “123” ≺ “132” ≺ “231”, and for permutations of 1, . . . ,4, it is “1234” ≺
“1243” ≺ “1342” ≺ “2341” ≺ “1324” ≺ “1423”≺ “1432” ≺ “2431” ≺ “2314” ≺
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Fig. 3.6 A search tree for d = 2. Intermediate levels are shown in gray in the upper picture and
omitted in the lower one

“2413” ≺ “3412” ≺ “3421.” The permutation Pk cannot precede Pl for k > l (l <
k⇒ Pl  Pk). Therefore, partial solutions “132/123”, “231/123”, and “231/132”
are not permitted, as they represent solutions symmetric to “123/132”, “123/231”,
and “132/231”, respectively (see Fig. 3.2). Taking this into account, assignment of
the third object is represented by six branches in the search tree.

The image point, representing the fourth object, has four possible positions
horizontally and the same number vertically, and therefore, assignment of the fourth
object is represented by up to 16 branches. Again, although the sequence numbers of
the first three objects can be changed after assigning the fourth object, their sequence
is not changed. Assignment of the fifth object would be represented by up to 25
branches and so on.

For d = 2, the number of feasible solutions to be analyzed is m!2/8+m!/4. Sim-
ilarly to the case d = 1, if the value of the partial Stress function (3.26) at the mini-
mum point of the lower-level quadratic programming problem is greater for a partial
solution than the value of Stress at the minimum point of the already evaluated
complete solution, the branch representing such a partial solution can be pruned.

A search tree for d = 3 is shown in Fig. 3.7. Similar restrictions hold as that in
the case d = 2. If d = 3, the number of feasible solutions to be analyzed is m!3/48+
m!2/8+m!/6. Similarly, a search tree can be built for larger values of d.
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Fig. 3.7 A search tree for
d = 3. Intermediate levels are
shown in gray in the upper
picture and omitted in the
lower one

An iteration of the classical branch-and-bound algorithm processes the node
in the search tree that represents an unexplored subspace of the solution space.
The iteration has three main components: selection of the node to be processed,
branching, and bound calculation. There are three main strategies of selection:

• Best first—select the node with a minimal lower bound.
• Depth first—select the node which is farthest from the root node.
• Breadth first—select the node which is nearest to the root node.

The proposed branch-and-bound algorithm is built using the “depth first” selection,
and its structure is similar to that of algorithms in [22]. The advantage of the depth
first strategy is that the search tree can be constructed sequentially to avoid storing
of unbranched nodes. This is very important when the search tree is big. The breadth
first search requires storing of unbranched nodes in the first-in, first-out structure.
The best first search requires storing of unbranched nodes in the priority queue
structure, which requires not only memory resources, but also the insertion and
removal of nodes takes at least logarithmic time to the number of nodes in the queue
in the worst case.

The branch-and-bound algorithm for multidimensional scaling with the
city-block distances is shown in Algorithm 4. Evaluation of a partial solution
corresponds to the bound calculation. The search tree is constructed sequentially by
implementing the depth first search. The order of permutations has been described
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before in this section. Verification of the order of permutations in a tuple (Pk ≺ Pk−1)
enables us to avoid mirrored solutions with the exchanged coordinates. The main
cycle continues while m > 2 avoiding mirrored solutions with a changed direction
of the coordinate axis.

The efficiency of the branch-and-bound algorithm for multidimensional scaling
has been evaluated experimentally. The performance is measured using the opti-
mization time t and the smallest relative error (3.2) found. We also present the
number of the lower-level quadratic programming problems solved.

The problems with d = 1 can be efficiently solved by maximizing the Defays [35]
criterion using branch-and-bound [23]. However, the problems with d = 1 have been
included in the experimental investigation of the branch-and-bound algorithm for
multidimensional scaling to have a larger set of problems and to investigate the
worst case scenario. The interchange of vertices of the standard simplex has no
impact on the problem, since all the vertices are equally distant from all the others.
Therefore, all lower-level quadratic programming problems (3.23) for the problems
of the Standard Simplices with d = 1 have the same minimum, and no partial
solution in the search tree can be pruned. In the worst case, the branch-and-bound
algorithm is more costly than the explicit enumeration of all feasible solutions
because of additional evaluation of bounds over partial solutions. It is of interest to
investigate the efficiency in the worst case. Analogously, the interchange of nonzero
vertices of the unit simplex does not affect the problem. The cube also has some
symmetries. It would be possible to take into account symmetries of the data sets
by restricting possible permutations and increasing the efficiency, as shown in the
previous section; however, symmetries in empirical data sets are not known and
therefore are not considered here.

The performance of the two-level algorithm for MDS with branch-and-bound
for the upper-level combinatorial problem and a convex quadratic programming
algorithm for the lower-level problem is shown in Table 3.10. The numbers of the
quadratic programming problems solved include the lower-level problems that cor-
respond to the evaluated complete and partial solutions of the upper-level problems.
However, quadratic programming problems for partial solutions are smaller than
that for complete solutions, since only some of the objects are considered there.

The results can be compared with the results of the algorithm, based on the
explicit enumeration of the upper-level problem, given in Table 3.3. For a better
comparison, the results are plotted in Fig. 3.8. The time of optimization is given
in a logarithmic scale. Dots represent the time of optimization of the considered
data sets with m objects in the d-dimensional projection space. The results of
various dimensional Simplices and Hypercubes are joined by lines. The results of
the algorithm, based on the explicit enumeration, mostly depend on the size of data
and dimensionality of the projection space as all the dots are near the lines the
influence of the particular data is modest; therefore, the data sets are not specified
in this plot.

The branch-and-bound algorithm behaves in the worst case scenario when highly
symmetric data sets of Simplices are used with d = 1. In the case of the Standard
Simplices, all lower-level problems for complete solutions are equivalent because
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Algorithm 4 Branch-and-bound algorithm for multidimensional scaling
Input: m; d; δi j, wi j, i, j = 1, . . .,m
Output: S∗; Y ∗; nqpp
1: pki← i, i = 1, . . .,m, k = 1, . . .,d // Initialize starting permutations
2: m← m+1; k← d +1; S∗ ← ∞; nqpp← 0
3: while m > 2 do
4: if k > d, then
5: if m > 2 and m < m, then
6: nqpp← nqpp+1
7: if minY∈A(P) S

(
Y
)≥ S∗, then // Evaluate partial solution

8: k← k−1
9: else

10: m← m+1; k← 1
11: end if
12: else
13: m← m+1; k← 1
14: end if
15: end if
16: if m > m, then
17: nqpp← nqpp+1
18: if minY∈A(P) S(Y )< S∗, then // Evaluate complete solution
19: S∗ ←minY∈A(P) S(Y ); Y ∗ ← argminY∈A(P) S(Y )
20: end if
21: m← m; k← d
22: end if
23: if m > 2, then
24: // Form next tuple of permutations
25: if pkm = 0, then
26: pkm ← m
27: if k > 1 and Pk ≺ Pk−1, then // Detect refusable symmetries
28: pki← p(k−1)i, i = 1, . . . ,m
29: end if
30: k← k+1
31: else
32: pkm ← pkm−1
33: if pkm = 0, then
34: pki← pki−1, i = 1, . . .,m−1
35: k← k−1
36: if k < 1, then
37: m← m−1; k← d
38: end if
39: else
40: find i: pki = pkm, i = 1, . . .,m−1
41: pki← pki +1; k← k+1
42: end if
43: end if
44: end if
45: end while
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Table 3.10 Performance of the MDS algorithm, based on branch-and-bound for the upper-level
problem

d = 1 d = 2 d = 3

m t , s (NQPP) E∗ t , s (NQPP) E∗ t , s (NQPP) E∗

Standard Simplex
3 0.00 (3) 0.3333 0.00 (6) 0.0000 0.00 (10) 0.0000
4 0.00 (14) 0.4082 0.00 (63) 0.0000 0.01 (133) 0.0000
5 0.00 (73) 0.4472 0.03 (1322) 0.1907 1.12 (23017) 0.0000
6 0.01 (432) 0.4714 0.85 (27255) 0.2309 25.49 (335771) 0.0000
7 0.05 (2951) 0.4879 59.61 (1655631) 0.2621 11111 (92710201) 0.0945
8 0.24 (23110) 0.5000 5107.0 (102073658) 0.2825
9 2.47 (204549) 0.5092 502844 (3574743410) 0.2991
10 28.33 (2018948) 0.5164
11 361.60 (21977347) 0.5222
12 4970.0 (261478146) 0.5270
13 73714 (3374988545) 0.5311

Unit Simplex

3 0.00 (3) 0.0000 0.00 (6) 0.0000 0.00 (10) 0.0000
4 0.00 (14) 0.3651 0.00 (73) 0.0000 0.02 (313) 0.0000
5 0.00 (73) 0.4140 0.03 (662) 0.0000 0.49 (9837) 0.0000
6 0.01 (432) 0.4554 0.51 (16076) 0.1869 46.67 (578691) 0.0000
7 0.03 (2951) 0.4745 17.65 (422940) 0.2247 2652.0 (20674563) 0.0000
8 0.32 (23110) 0.4917 1675.0 (29943080) 0.2569
9 2.77 (204549) 0.5018 134281 (1905072549) 0.2759
10 31.67 (2018948) 0.5113
11 404.64 (21977347) 0.5176
12 5545.0 (261478146) 0.5236
13 86436 (3374988545) 0.5279

Hypercube

4 0.00 (14) 0.4082 0.00 (73) 0.0000 0.02 (353) 0.0000
8 0.12 (11260) 0.4787 124.68 (2157090) 0.2245 6189 (35216122) 0.0000

Ruuskanen1

8 0.02 (665) 0.2975 3.85 (82617) 0.1096 838.68 (6381457) 0.0188

Hwa12

9 0.02 (2217) 0.0107 203.25 (2344833) 0.0000

Cola

10 0.78 (60077) 0.3642 15594 (204022569) 0.1675

Uhlen1

12 0.62 (36559) 0.2112 35951 (312924750) 0.0825

Hwa21

12 1.49 (71748) 0.1790
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Fig. 3.8 Comparison of the performance of MDS algorithms based on the explicit enumeration
(upper plot) and branch-and-bound (lower plot) for the upper-level problem



82 3 Optimization-Based Visualization

they are symmetric. Due to the symmetric data, no partial solution can be pruned.
In the worst case scenario, almost all the partial solutions should be evaluated as
well as all the complete solutions. The number of quadratic programming problems
solved is ∑m

i=3
i!
2 − m + 3 comparing to m!/2 of complete solutions, evaluated

by the algorithm of explicit enumeration. The optimization time and the number
of quadratic programming problems of the branch-and-bound algorithm are up
to 13% larger than that of the algorithm of explicit enumeration for problems
the optimization of which is longer than one second. Plots of the results for
d = 1 Simplices are very similar in both plots of Fig. 3.8. However, as d > 1,
even for Simplices, the branch-and-bound algorithm performs considerably better
than the explicit enumeration. Plots of these results fall down as the optimization
becomes faster. The Standard Simplices are more difficult problems than the Unit
Simplices in the case d > 1 for the branch-and-bound algorithm as they are more
symmetric. The plots for the Unit Simplices are lower than that for the Standard
Simplices.

The branch-and-bound algorithm performs much better than the algorithm based
on the explicit enumeration for Hypercubes and empirical data sets even as d = 1.
The number of lower-level quadratic programming problems, solved by applying
the branch-and-bound algorithm, is up to several thousand times smaller than the
number of such problems, solved applying the explicit enumeration. Respectively,
the solution time in the first case is up to ten thousand times shorter than in
the second case. Dots representing these results move down in the lower plot of
Fig. 3.8. However, it is even more important that the algorithm can solve larger
problems in acceptable time. Dots representing these results appear in the lower
plot of Fig. 3.8. Problems of up to m = 12 have been solved for the two-dimensional
projection space and up to m = 8 for the three-dimensional projection space. The
largest solved problems involve the global optimization with N =md = 24 variables.
The performance of the branch-and-bound algorithm is better for empirical data
sets than for geometric data sets with the same m as seen in Fig. 3.8, where dots,
corresponding to the results of empirical data sets, are lower than the respective
plots of geometric data sets.

Let us complete the discussion on the experimental results with a remark
about the qualitative influence of properties of the data used on the experimental
results. The geometric data sets imply the properties of minimization problems
which are most disadvantageous for the branch-and-bound algorithm compared to
the explicit enumeration; because of symmetries in data, the objective function
S (Y ) has many global minimum points, and all of them should be explored
by the algorithm that guarantees finding of the global minimum. In this case,
branching subsequently generates a large number of subproblems with the minimum
lower bounds requesting further branching of these subproblems. Therefore, the
performance of the branch-and-bound algorithm, in this case, is similar to the
performance of the explicit enumeration.

Contrary, these geometric data sets are favorable to heuristic algorithms, since
the number of good local (including global) minimizers is relatively large implying
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Fig. 3.9 Histograms of the levels of partial and complete solutions: black—evaluated and
gray—non-branched

a considerable probability to find a good local minimum even in one local descent.
In data sets, corresponding to empirical problems, symmetries are absent implying
the properties of (3.1) more favorable for the branch-and-bound algorithm and less
favorable for heuristic algorithms.

A parallel version of the branch-and-bound algorithm for multidimensional
scaling has been developed in [237]. The developed parallel branch-and-bound
algorithm belongs to the second type of parallelism according to the classification
proposed in [70]. It is an asynchronous multiple pool algorithm: processes sepa-
rately investigate different branches of the search tree.

The parallel branch-and-bound algorithm for multidimensional scaling with
city-block distances is shown in Algorithm 5. Each process runs the same algorithm
generating and branching partial solutions up to some level l: m ≤ l. Each sizeth
partial solution at the level m = l + 1 is evaluated and branched if needed, where
size is the number of processes. The first process (with rank = 0) evaluates and
branches the first, (size+ 1), etc., generated partial solutions. The second process
(with rank = 1) evaluates the second, (size+ 2), etc., partial solutions. The sizeth
process (rank of which is size− 1) evaluates the sizeth, 2size, etc., solutions. In this
way, different branches of the search tree are investigated by different processes.
The evaluation of a partial solution corresponds to the bound calculation. The
search tree is constructed by implementing the depth first search. The results
of different processes are collected at the end of computation. The standardized
message-passing communication protocol MPI is used for communication.

Histograms of the levels of partial solutions for some of the data sets are shown in
Fig. 3.9. The numbers of evaluated partial or complete solutions are shown in black,
and the numbers of non-branched partial solutions are shown in gray. The level of
partial solutions where a decomposition is performed (denoted by l in Algorithm 5)
should be chosen so that the number of partial solutions at the decomposition
level would be enough for an even distribution of work between the processes,
but not too large since partial solutions are not evaluated and discarded before the
decomposition level is reached. Values 5 and 6 seem appropriate from Fig. 3.9.

The results of the parallel branch-and-bound algorithm for multidimensional
scaling when solving test problems with different values of l are shown in
Table 3.11. The columns “1×1” represent the results of one process, “1×4” by one
computer with 4 nodes running 4 parallel processes, and “2×4” and “4×4” represent
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Algorithm 5 Parallel branch-and-bound algorithm for multidimensional scaling
Input: m; d; δi j, wi j, i, j = 1, . . .,m; rank; size
Output: S∗; Y ∗; nqpp
1: pki← i, i = 1, . . .,m, k = 1, . . .,d // Initialize starting permutations
2: m← m+1; k← d +1; S∗ ← ∞; nqpp← 0; lc←−1
3: while m > 2 do
4: if k > d, then
5: if m > 2 and m < m and m > l, then
6: if m = l +1, then lc← (lc+1)%size end if
7: if m > l +1 or rank = lc, then
8: nqpp← nqpp+1
9: if minY∈A(P) S

(
Y
)≥ S∗, then // Evaluate partial solution

10: k← k−1
11: else
12: m← m+1; k← 1
13: end if
14: else
15: k← k−1
16: end if
17: else
18: m← m+1; k← 1
19: end if
20: end if
21: if m > m, then
22: nqpp← nqpp+1
23: if minY∈A(P) S(Y )< S∗, then // Evaluate complete solution
24: S∗ ←minY∈A(P) S(Y ); Y ∗ ← argminY∈A(P) S(Y )
25: end if
26: m← m; k← d
27: end if
28: if m > 2, then
29: // Form next tuple of permutations
30: if pkm = 0, then
31: pkm ← m
32: if k > 1 and Pk ≺ Pk−1, then // Detect refusable symmetries
33: pki← p(k−1)i, i = 1, . . . ,m
34: end if
35: k← k+1
36: else
37: pkm ← pkm−1
38: if pkm = 0, then
39: pki← pki−1, i = 1, . . .,m−1
40: k← k−1
41: if k < 1, then m← m−1; k← d end if
42: else
43: find i: pki = pkm, i = 1, . . .,m−1
44: pki← pki +1; k← k+1
45: end if
46: end if
47: end if
48: end while
49: Collect S∗, Y ∗ from the different processes, keep the best. Sum up nqpp.
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Table 3.11 Results of the parallel branch-and-bound algorithm for multidimensional scaling

size = 1×1 size = 1×4 size = 2×4 size = 4×4

l t1, s NQPP t4, s NQPP t8, s NQPP t16, s NQPP

Ruuskanen1, m = 8, d = 3

0 479 6381457
4 480 6403810 219 10085145 173 14201943 133 21415601
5 841 13887913 291 16040461 179 18143183 106 20847563
Hwa12, m = 9, d = 2

0 121 2344833
4 121 2346237 80 5138135 65 6986355 53 10742968
5 122 2407591 48 3135785 31 3699097 21 5014227
6 217 5488888 58 5565997 31 5842364 18 6199196
7 612 208871963
Cola, m = 10, d = 2

0 9032 204022569
4 9011 204022487 3212 229324265 2108 270022713 1349 326420931
5 8991 204037437 2391 212954615 1466 226026528 792 244647590
6 8999 206189960 2405 212379122 1380 224377631 761 241643940
7 15189 396725753 4607 410841540 2700 433396504 1388 438645561
Uhlen1, m = 12, d = 2

0 20515 312924750
4 20494 312925348 10754 556642796 21847 1278648079 18532 2149661364
5 20428 312960596 7579 386113225 5054 508285836 4516 751368922
6 20522 315503838 6360 363849948 4721 461364157 3302 570468417
7 27674 506947703 17241 947746934 47190 2370684051 28521 3044562204

the results on 2 and 4 computers with 4 nodes each running 8 and 16 processes,
respectively. The time of optimization in seconds and the number of lower-level
quadratic programming problems solved (NQPP) are shown as well.

The numbers of lower-level problems increase when the number of running
processes is increased. They also increase when the level l is increased. When
l becomes 7, the increase is very evident and the time of optimization increases
significantly. Depending on the size of the problem (m), the best results are achieved
with l = 4,5 for m = 8 and l = 5,6 for the larger problems.

The efficiency of parallelization has been evaluated using the standard criteria,
taking into account the optimization time and the number of processes. The criteria
of parallelization of the branch-and-bound algorithm are shown in Fig. 3.10. Gray
curves represent the results with l = 4 for m = 8 and l = 5 for the larger problems,
and black curves represent the results with l = 5 for m = 8 and l = 6 for the larger
problems. The speedup is similar for both values of l. The efficiency is quite low
for m = 8 and l = 5 as well as m = 9 and l = 6 when running the algorithm on one
process. This is because the numbers of lower-level problems and time are almost
twice largerthan that for the smaller values of l. However, the efficiency on these
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Fig. 3.10 Speedup and efficiency of parallelization of the branch-and-bound algorithm for
multidimensional scaling

problems for smaller values of l drops below the mentioned curves when the number
of processes is increased. The results on larger problems are good for both values of
l, but l = 6 is preferable.

In the parallel branch-and-bound algorithm, the total number of expanded subsets
of feasible solutions may be different, depending on the number of processes.
A pseudo-efficiency is used to evaluate the efficiency of parallelization avoid-
ing the impact of the different number of expanded subsets. The criterion of
pseudo-efficiency is proposed in [178]:

pesize =
t1/T1

size× tsize/Tsize
,

where Tsize is the measure of the amount of work done by the algorithm using
size processes. A good measure of the amount of work must be chosen when the
pseudo-efficiency criterion is used. In [178], the amount of work is the number
of problem-states expanded during the solution. It is equivalent to the number
of lower-level problems solved in the case of the two-level MDS algorithm
with branch-and-bound at the upper level. The pseudo-efficiency of the parallel
branch-and-boundalgorithm for multidimensional scaling is shown in Fig. 3.11. The
results are good for all the problems tested which show that the load balance is good.
To achieve similar results of the parallel efficiency, dependence of the number of
lower-level problems solved on the number of processes should be reduced. That can
be achieved by exchanging the best function values found between the processes.
However, this may degrade the performance because of the required communication
between the processes.

The results of the parallel branch-and-bound algorithm for multidimensional
scaling on larger problems are shown in Table 3.12. The decomposition level l = 6
has been used. It is not feasible to solve these problems exactly without parallel
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Table 3.12 Results of the parallel branch-and-bound algorithm on larger problems

Data set d m E∗ Size (nodes × cores) t , s NQPP

Hwa21 2 12 0.0497 16 (4×4) 35887 4231701897
Hwa12 3 9 3.74×10−5 16 (4×4) 227834 24204433398

32 (8×4) 115350 24233054254

computing (it would take at least a week for Hwa21 m = 12, d = 2, N = 24 and six
weeks for Hwa12 m = 9, d = 3, N = 27). One can see from the comparison of the
results with 4× 4 = 16 and 8× 4 = 32 processes that the numbers of lower-level
problems solved differ by 0.1% and a relative efficiency of parallelization

re =
size1× tsize1

size2× tsize2

is 0.99. It shows that the proposed parallel branch-and-bound algorithm scales well.
A visual comparison of time required for the exact solution of multidimensional

scaling problems using the explicit enumeration, branch-and-bound, and parallel
branch-and-bound with 16 processes is given in Fig. 3.12. The speed of the explicit
enumeration almost does not depend on the data (δi j), and therefore, the results
of explicit enumeration on smaller geometrical data sets with m = 6, m = 7, and
m = 8 objects have been used to estimate and extrapolate its performance. The
branch-and-bound algorithm solves the Ruuskanen1 d = 2 problem more than 1000
(three orders of magnitude) times faster than the explicit enumeration. It is difficult
to find out this number for other problems, but it can be seen from the extrapolation
that the difference for other problems is even larger. One more order of magnitude is
attained by parallelization. This enabled us to solve Hwa21 d = 2 and Hwa12 d = 3
problems with 24 and 27 variables, respectively.
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Fig. 3.12 Time of optimization required for the explicit enumeration (lines), the
branch-and-bound algorithm (gray), and the parallel branch-and-bound algorithm with 16
processes (black)

3.5.3 Combinatorial Evolutionary Algorithm

The explicit enumeration of all feasible solutions and the branch-and-bound
algorithm are applicable to some size of problems. Evolutionary search [159] can
be applied for larger problems. Other than the algorithm described in Sect. 3.4, in
the two-level optimization, the permutations in P are considered as a chromosome
representing an individual [228].

The pseudo-code is outlined in Algorithm 6. The initial population of individuals
is generated randomly, and it is improved performing the local search. A mutation
is performed with a predefined probability by exchanging sequence numbers of two
random objects of a randomly chosen individual. The population evolves generating
offsprings from two randomly chosen individuals of the current population with the
chromosomes P̂ and P̌, where the first one corresponds to the better fitted parent.
The fitness of an individual is defined by the optimal value of the corresponding
lower-level problem. The chromosome of an offspring is defined by the following
formula:

Pk =
(

p̂k1, . . . , p̂kβ , p̃k1, . . . , p̃k(γ−β ), p̂kγ , . . . , p̂km
)
, k = 1, . . . ,d,



3.5 Two-Level Optimization of Stress with City-Block Distances 89

Algorithm 6 Evolutionary two-level algorithm for multidimensional scaling
Input: m; d; δi j, wi j, i, j = 1, . . .,m; np; ninit; tc (nc)
Output: S∗, Y ∗
1: Generate the initial population:
2: Generate ninit tuples of d random permutations of (1, . . . ,m).
3: Evaluate individuals solving lower-level problems.
4: Possibly improve using local search.
5: Form the initial population from the np best individuals.
6: while tc time has not passed (nc number of generations has not exceeded) do
7: Randomly with a predefined probability pmut perform mutation.
8: Randomly with a uniform distribution select two parents from the current population.
9: Produce an offspring by means of crossover.

10: Evaluate the offspring solving a lower-level problem.
11: Possibly improve using local search.
12: if an offspring is more fitted than the worst individual of the current population, then
13: the offspring replaces the latter.
14: end if
15: end while

where β and γ are two integer random numbers with a uniform distribution over
1, . . . ,m and p̃ki are numbers from the set {1, . . . ,m} not included into the set{

p̂k1, . . . , p̂kβ , p̂kγ , . . . , p̂km
}

and ordered in the same way as they are ordered in
(p̌k1, . . . , p̌km). The offspring is improved by performing the local search. An elitist
selection is applied: if the offspring is better fitted than the worst individual of the
current population, then the offspring replaces the latter. The minimization contin-
ues generating new offsprings and terminates after the predetermined computing
time tc or predefined number of generations nc.

A quadratic programming method can be applied to the lower-level prob-
lem (3.19). The minimum point of a quadratic programming problem is not
necessarily the local minimizer of the initial problem of minimization of the Stress
function (3.16). This is because the Stress function is minimized with respect
to P as well. If the minimum point of a quadratic programming problem is on
the border of the polyhedron A(P), the local minimizer of the Stress function is
possibly located in a neighboring polyhedron. Therefore, the minimization can be
continued by solving a quadratic programming problem over the polyhedron on
the opposite side of the border, defined by the active inequality constraints. The
permutations in P should be updated to define the neighboring polyhedron. If the
i, . . . , j inequality constraints AkY ≥ 0 are active, i≤ pkt ≤ j+1 should be updated to
i+ j+1− pkt . The quadratic programming is repeated while better values are found,
and some inequality constraints are active. The local minimization algorithm for
MDS with the city-block distances, based on the quadratic programming, is shown
in Algorithm 7. In the evolutionary optimization, it is important to avoid invariant
minimum points, since they may be treated as different individuals, although they
can be exactly of the same image just translated or mirrored in the projection space.
To avoid different minimizers, invariant with respect to mirroring in the projection
space, we change the resulting local minimum point if x1k > x2k, so that x1k ≤ x2k.



90 3 Optimization-Based Visualization

Algorithm 7 Local minimization algorithm for MDS with the city-block distances
based on quadratic programming
Input: n; m; δi j, wi j, i, j = 1, . . . ,n; xinit
Output: S∗, x∗
1: S∗ ← ∞
2: Compute P representing xinit
3: Find d, D, A and Ak from n; m; δi j, wi j, i, j = 1, . . . ,n and P
4: x∗ = argmin

(−dT x+ 1
2 xT Dx

)
, s.t.A0x = 0, Akx≥ 0, k = 1, . . . ,m.

5: while S(x∗)< S∗ and ∃k, l Ak
l x∗ = 0 do

6: S∗ ← S(x∗)
7: for k = 1, . . .,m do
8: for all blocks of consequent active constraints Ak

l x∗ = 0, i≤ l ≤ j do
9: for t = 1, . . . ,n do

10: if i≤ pkt ≤ j+1, then
11: pkt ← i+ j+1− pkt
12: end if
13: end for
14: end for
15: end for
16: Find d, D, A and Ak from n; m; δi j, wi j, i, j = 1, . . .,n and P
17: x∗ = argmin

(−dT x+ 1
2 xT Dx

)
, s.t.A0x = 0, Akx≥ 0, k = 1, . . . ,m.

18: end while
19: for k = 1, . . . ,m do
20: if x1k > x2k , then
21: for i = 1, . . . ,n do
22: xik←−xik
23: end for
24: end if
25: end for
26: S∗ ← S(x∗)

The first part of the experimental investigation aimed to compare the evolutionary
search for the upper-level problem with simpler random methods: uniform random
search and multi-start. In a pure random search, permutations P are generated
at random with equal probabilities. The initial permutations of multi-start are
generated in the same way as above; then the local minimization described above is
performed.

Testing of randomized heuristics is a complicated task as discussed in [96]. Since
the “best” testing methodology is not available, the methodology specific to the
problem seems most appropriate. To compare the algorithms for minimizing the
Stress function, we used the approach proposed in [79]. Since the algorithm is
supposed to be used in a multi-start mode, its performance can be assessed using
the distribution of random estimates of the global minimum, obtained in randomly
started runs. The mean and standard deviation of this distribution can be estimated
experimentally, for example, the mean (E∗) of global minimum estimates (of relative
error) found and their standard deviation (s.d. E∗) are shown in Table 3.13, where
the data were collected running each version of the algorithm 100 times for 10 s
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Table 3.13 Experimental comparison of different versions of the two-level algorithm with random
search, multi-start, and evolutionary algorithms at the upper level

Random search Multi-start Evolutionary

Data set m E∗ s.d. E∗ E∗ s.d. E∗ E∗ s.d. E∗

d = 2
Standard Simplex 8 0.2825 0.0000 0.2825 0.0000 0.2825 0.0000

12 0.3326 0.0008 0.3310 0.0004 0.3301 0.0002
16 0.3575 0.0009 0.3550 0.0005 0.3530 0.0004
20 0.3720 0.0011 0.3686 0.0004 0.3663 0.0003

Unit Simplex 8 0.2569 0.0000 0.2569 0.0000 0.2569 0.0000
12 0.3218 0.0015 0.3168 0.0002 0.3167 0.0000
16 0.3527 0.0016 0.3463 0.0006 0.3440 0.0002
20 0.3701 0.0019 0.3627 0.0005 0.3597 0.0002

Hypercube 8 0.2304 0.0091 0.2245 0.0000 0.2245 0.0000
16 0.3857 0.0095 0.3012 0.0021 0.2966 0.0002
32 0.4753 0.0056 0.3508 0.0060 0.3346 0.0021

e%
GHM 15 10 0.1695 0.0083 0.1293 0.0000 0.1293 0.0000

30 10 0.3084 0.0084 0.2711 0.0000 0.2711 0.0000
15 20 0.3708 0.0166 0.1872 0.0005 0.1868 0.0000
30 20 0.4282 0.0085 0.3034 0.0025 0.2967 0.0005

Morse Code 36 0.4073 0.0040 0.3329 0.0063 0.3125 0.0048

d = 3

Standard Simplex 8 0.1328 0.0014 0.1250 0.0000 0.1250 0.0000
12 0.2188 0.0030 0.2014 0.0001 0.2013 0.0000
16 0.2569 0.0026 0.2351 0.0008 0.2326 0.0005
20 0.2789 0.0028 0.2543 0.0006 0.2525 0.0005

Unit Simplex 8 0.1016 0.0009 0.0992 0.0000 0.0992 0.0000
12 0.2102 0.0043 0.1874 0.0000 0.1874 0.0000
16 0.2553 0.0042 0.2270 0.0007 0.2249 0.0006
20 0.2805 0.0042 0.2489 0.0006 0.2475 0.0005

Hypercube 8 0.0001 0.0000 0.0001 0.0000 0.0001 0.0000
16 0.3447 0.0091 0.1590 0.0000 0.1590 0.0000
32 0.4310 0.0064 0.2332 0.0108 0.2295 0.0106

e%
GHM 15 10 0.1602 0.0090 0.0906 0.0000 0.0906 0.0000

30 10 0.2080 0.0106 0.1298 0.0000 0.1298 0.0000
15 20 0.3364 0.0098 0.1699 0.0033 0.1631 0.0013
30 20 0.3610 0.0072 0.2492 0.0034 0.2383 0.0038

Morse Code 36 0.3404 0.0043 0.2339 0.0065 0.2320 0.0065

for each data set. Strictly speaking, such an information is sufficient neither to
evaluate the reliability of one randomized run in probabilistic terms nor to choose
the number of runs to ensure a desired reliability. This is due to the fact that the
theoretical distribution of found estimates of the global minimum is not known;
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it depends on a problem and on the parameters of the used algorithm. However,
a rough comparison of two algorithms using averages and standard deviations of
the found estimates, and taking into account the best-known estimate of the global
minimum of the considered problem, can be still reasonable as long as statistical
data are interpreted with a proper care.

The best mean values, obtained by all the versions of the algorithm, are shown in
bold font. A multi-start version of the algorithm performs much better, in terms of
E∗, than a pure random search due to the efficiency of the described local descent
method in the set of permutations, where the direction of descent is defined using
the solution of quadratic programming problems at the lower level. The evolutionary
version performs better, in terms of E∗, than the other two investigated versions.
As it can be expected, the algorithm performs better in terms of s.d. E∗ on problems
with smaller m. In this experiment, the size of population of the evolutionary
algorithm was equal to 60, the same number of random initial individuals has been
generated, and mutation has not been used.

The influence of the size of population, the number of initial random indi-
viduals (ninit), and the probability of mutation (pmut) on the performance of the
evolutionary algorithm has been investigated experimentally. For different sets of
parameters, 100 runs 10-s long have been performed. Summarizing the experimental
results, the following values of parameters could be recommended: the size of
population 60, the number of initial random individuals ninit = 100, and the
probability of mutation pmut = 0.01. The number of initial random individuals
and the probability of mutation influence the performance, but just a little. The
summarized results of investigation are given in Table 3.14.

An experimental investigation has been performed to compare the results with
different local minimization algorithms. Several versions of the algorithm were
tested. At the upper level, a genetic algorithm with np = 60, ninit = 6000, and
nc = 1200 has been used. At the lower level, different local minimization algorithms
have been used. The first local minimization is just a solution of a corresponding
quadratic programming problem. In the description of the results, the quadratic
programming is denoted as “qp.” Since the solution of a quadratic programming
problem is not necessary a local minimizer of the initial problem of minimization
of the Stress function, two extended versions of local minimization have been used.
The local minimization algorithm for MDS with the city-block distances, based
on the repeated quadratic programming described in Algorithm 7, is denoted as
“q.” The local minimization, using Powell’s method described in [175], is denoted
by “l.” We also compare the results with a hybrid algorithm for multidimensional
scaling, described in Algorithm 1, where the quadratic programming is not used and
Powell’s method is used for the local minimization.

The results are summarized in Table 3.15 and Fig. 3.13. To assess the perfor-
mance, the minimal, average, and maximal running times in seconds (tmin, tmean,
tmax) are estimated from 100 runs. Similarly, the minimal, average, and maximal
estimates of a relative error in 100 runs (E∗min, E∗mean, E∗max) are presented in the
table to show the quality of found solutions. The percentage of runs, where the
best-known estimate of the global minimum has been found (perc), is presented in
the table as a criterion of reliability for different versions of the algorithm.
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Table 3.14 Influence of the number of initial random individuals and the probability of mutation
on the performance of the evolutionary algorithm

ninit = 60 ninit = 100 ninit = 100
pmut = 0.00 pmut = 0.00 pmut = 0.01

Data set m E∗ s.d. E∗ E∗ s.d. E∗ E∗ s.d. E∗

d = 2
Standard Simplex 8 0.2825 0.0000 0.2825 0.0000 0.2825 0.0000

12 0.3301 0.0002 0.3300 0.0002 0.3300 0.0001
16 0.3530 0.0004 0.3529 0.0004 0.3527 0.0003
20 0.3663 0.0003 0.3661 0.0002 0.3661 0.0003

Unit Simplex 8 0.2569 0.0000 0.2569 0.0000 0.2569 0.0000
12 0.3167 0.0000 0.3167 0.0000 0.3167 0.0000
16 0.3440 0.0002 0.3440 0.0001 0.3440 0.0001
20 0.3597 0.0002 0.3596 0.0002 0.3596 0.0002

Hypercube 8 0.2245 0.0000 0.2245 0.0000 0.2245 0.0000
16 0.2966 0.0002 0.2966 0.0002 0.2966 0.0001
32 0.3346 0.0021 0.3354 0.0029 0.3355 0.0028

e%
GHM 15 10 0.1293 0.0000 0.1293 0.0000 0.1293 0.0000

30 10 0.2711 0.0000 0.2711 0.0000 0.2711 0.0000
15 20 0.1868 0.0000 0.1868 0.0000 0.1868 0.0000
30 20 0.2967 0.0005 0.2968 0.0008 0.2970 0.0012

Morse Code 36 0.3125 0.0048 0.3061 0.0027 0.3057 0.0028
d = 3
Standard Simplex 8 0.1250 0.0000 0.1250 0.0000 0.1250 0.0000

12 0.2013 0.0000 0.2013 0.0000 0.2013 0.0000
16 0.2326 0.0005 0.2326 0.0005 0.2326 0.0005
20 0.2525 0.0005 0.2526 0.0004 0.2526 0.0004

Unit Simplex 8 0.0992 0.0000 0.0992 0.0000 0.0992 0.0000
12 0.1874 0.0000 0.1874 0.0000 0.1874 0.0000
16 0.2249 0.0006 0.2251 0.0006 0.2249 0.0006
20 0.2475 0.0005 0.2475 0.0004 0.2476 0.0004

Hypercube 8 0.0001 0.0000 0.0001 0.0000 0.0001 0.0000
16 0.1590 0.0000 0.1590 0.0000 0.1590 0.0000
32 0.2295 0.0106 0.2263 0.0069 0.2260 0.0072

e%
GHM 15 10 0.0906 0.0000 0.0906 0.0000 0.0906 0.0000

30 10 0.1298 0.0000 0.1298 0.0000 0.1298 0.0000
15 20 0.1631 0.0013 0.1627 0.0012 0.1629 0.0016
30 20 0.2383 0.0038 0.2397 0.0038 0.2394 0.0031

Morse Code 36 0.2320 0.0065 0.2220 0.0055 0.2231 0.0055

The dynamics of minimization is illustrated using plots of “time to target” [62].
To evaluate time to target, an algorithm is run r times recording the running
time when the function value is obtained at least as good as the target value. Let
ti denote a sequence of time moments and ri denote the number of runs, where the
target value is found no later than ti. The target plot is a plot of ri/r against ti.
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Table 3.15 Results with different local minimization algorithms

Data set m qp q l tmin tmean tmax E∗min E∗mean E∗max perc, %

Hypercube 16 + 9.29 10.37 11.57 0.2965 0.2965 0.2969 97
+ + 21.81 26.93 31.15 0.2965 0.2965 0.2965 100
+ + + 61.43 99.54 117.46 0.2965 0.2965 0.2965 100
+ + 57.19 97.06 117.79 0.2965 0.2965 0.2965 100

+ 42.88 57.85 85.44 0.2965 0.2966 0.2970 34
Unit Simplex 13 + 3.24 3.60 4.04 0.3249 0.3250 0.3259 94

+ + 4.12 5.41 7.23 0.3249 0.3249 0.3259 98
+ + + 11.70 16.35 23.30 0.3249 0.3249 0.3249 100
+ + 11.30 15.61 22.70 0.3249 0.3249 0.3249 100

+ 16.39 25.53 35.57 0.3249 0.3249 0.3249 100

target value = 0.296536
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Fig. 3.13 Empirical probability distributions of time to target solution for (a) four-dimensional
Hypercube and (b) twelve-dimensional Unit Simplex

Several target plots, presented in the same figure, show a comparative efficiency of
the corresponding algorithms: the graph above the others indicates the most efficient
algorithm.

For the problem of visualization of the Hypercube, the version of the algorithm
indexed by “qp-q” is most efficient. The other versions of the algorithm, taking
into account a piecewise quadratic structure of the Stress function, are of a
similar efficiency. However, the version of the algorithm, not taking into account
a piecewise quadratic structure of the Stress function, is not quite reliable; the
best-known estimate of the global minimum has been found only in 34% of runs.
For the problem of visualization of the Unit Simplex, the version of the algorithm,
indexed by “qp-q”, is again most efficient. In this case, the performance of versions,
taking into account a piecewise quadratic structure of the Stress function, does not
differ so much from the version, not taking into consideration a piecewise quadratic
structure.
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A two-level minimization, combining the genetic search at the upper level and
a local minimization exploiting a piecewise quadratic structure of the objective
function at the lower level, is an efficient algorithm for middle-size MDS problems
with the city-block distances. A further development of the algorithm targeted at
larger problems seems perspective. A general idea to improve the performance of
the evolutionary search is to begin with a better genetic material. In the case of
MDS problems, the initial population can be composed of simple projections from
the original space to the projection space, for example, by the method of principal
components. The local minimization can be improved by a more sophisticated
exploitation of a piecewise quadratic structure of (3.1). The computing time can be
reduced by means of parallelization, since the developed version of the algorithm
can be parallelized rather easily.

The algorithm with the evolutionary search at the upper level and the local
minimization exploiting a piecewise quadratic structure of the objective function
at the lower level has been experimentally compared with a distance smoothing
algorithm [79] and a heuristic algorithm, based on simulated annealing [19].

Our algorithm as well as the smoothing algorithm (Smooth 4 available at
http://people.few.eur.nl/groenen) is supposed for using in the multi-start mode.
Therefore, to evaluate their performance, statistical data have been collected as
proposed in [79]); above, we have also used the same approach for the experimental
investigation of different versions of our algorithm. In Table 3.16, the results of
the experiments are presented. The version of our hybrid algorithm, defined by
the following parameters, has been used: the size of population of the evolutionary
algorithm was equal to 60, the number of random initial individuals was 100, and
the probability of mutation was 0.01. For each data set, 100 runs 10 s long have been
performed. The Smooth 4 algorithm has been run with the parameters recommended
by its author and given as defaults in his input file available at http://people.few.eur.
nl/groenen; 100 runs have been performed.

As the distance smoothing algorithm uses the local descent (termination condi-
tion defined by conv= 10−5), it naturally requires a shorter solution time. However,
the evolutionary algorithm finds better solutions in most cases, and the standard
deviation of the best found values is smaller. The evolutionary algorithm was outper-
formed by the smoothing algorithm for a Morse Code data set in three-dimensional
scaling. In this case, solution of lower-level quadratic programming problems
requires the inversion of 108× 108 matrices, and therefore, it is quite slow. It is
quite clear that the time limit of 10 s was insufficient for this problem.

The results in [19] contain the best-known estimate of the global minimum of the
Stress function (with the city-block distances) in a two-dimensional (d=2) MDS
problem with the Morse Code confusion data set, found before the application of
the proposed method. The estimate has been found by a heuristic algorithm, based
on simulated annealing tailored for two-dimensional city-block scaling. Some brief
results from [19] are presented in Table 3.17 under the heading “simulated anneal-
ing.” For the experiment oriented to record breaking, the following parameters of the
evolutionary algorithm have been chosen: the size of population was equal to 100,
the number of random initial individuals was 106, and the probability of mutation
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Table 3.16 Statistics of estimates of the global minimum found by the evolutionary algorithm and
by the distance smoothing algorithm [79]

Evolutionary Smoothing

Data set e% m E∗ s.d. E∗ E∗ s.d. E∗

d = 2
GHM 15 10 0.1293 0.0000 0.1457 0.0150

30 10 0.2711 0.0000 0.2878 0.0113
15 20 0.1868 0.0000 0.2071 0.0130
30 20 0.2970 0.0012 0.3093 0.0076

Morse Code 36 0.3057 0.0028 0.3106 0.0966
d = 3
GHM 15 10 0.0906 0.0000 0.1116 0.0146

30 10 0.1298 0.0000 0.1486 0.0086
15 20 0.1629 0.0016 0.1761 0.0065
30 20 0.2394 0.0031 0.2454 0.0063

Morse Code 36 0.2231 0.0055 0.2045 0.0062

Table 3.17 Statistics of estimates of the global minimum found by the evolutionary algorithm and
simulated annealing [19] on Morse Code problem (d = 2)

E∗ s.d. E∗ minS∗/2 maxS∗/2 t , s

Evolutionary algorithm
0.2953 0.0003 153.5395 154.5550 1000
0.2950 0.0003 153.1380 154.0815 2000
0.2949 0.0004 153.0355 153.9175 10000
Simulated annealing

153.2583 155.2006 1142
153.2411 155.5416 2309

was 0.01. 10 runs 1000, 2000, and 10000 s long have been performed. The results of
our experiments are given in Table 3.17 under the title “evolutionary algorithm.” The
minimum and maximum of the estimates of global minimum of the Stress function,
found in 10 runs, divided by 2 are given; for a direct comparison, we have presented
the experimental results here in the same form as they are presented in [19]. The
difference between the minimum and maximum of the best Stress function values is
smaller for the evolutionary algorithm. Better solutions are found when the allowed
solution time of the evolutionary algorithm is increased. However, it is possible that
similar values of the Stress function could be found with the simulated annealing
algorithm if the latter was run for a longer time.

To complete the summary of the experimental results, some comments on the
computation time should be made. A PC with 3 GHz Pentium IV processor and
Scientific Linux 3.0.5 has been used for the experiment. In the experiment described
in [19], the simulated annealing algorithm has been run for 10 times, and the best
value found was 153.2411. For the experiment, a PC with 400 MHz Pentium II
processor and Windows 98 has been used, and the computing time was 2.3× 104s.
The same problem has also been solved using the algorithm Smooth 4 with the
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Algorithm 8 Parallel evolutionary two-level algorithm for multidimensional scaling
Input: m; d; δi j, wi j, i, j = 1, . . .,m; np; ninit; tc (nc); rank
Output: S∗, Y ∗
1: Initialize a seed for a random number generator based on the number of a process (rank).
2: Generate the initial population:
3: Generate ninit tuples of d random permutations of (1, . . . ,m).
4: Evaluate individuals solving lower-level problems.
5: Possibly improve using local search.
6: Form the initial population from the np best individuals.
7: while tc time has not passed do
8: Randomly with a predefined probability pmut perform mutation.
9: Randomly with a uniform distribution select two parents from a current population.

10: Produce an offspring by means of crossover.
11: Evaluate the offspring solving a lower-level problem.
12: Possibly improve using local search.
13: if an offspring is more fitted than the worst individual of the current population, then
14: the offspring replaces the latter.
15: end if
16: end while
17: Collect S∗, Y ∗ from the different processes, keep the best.

parameters given above except the following conv= 10−6, maxiter= 104, and
nran=1000; the latter parameter ensures the same number of local descents as 10
independent runs of the algorithm with 100 multi-starts. The best Stress function
value found was equal to 154.6834. A PC with 3 GHz Pentium IV processor and
Windows XP has been used for this experiment. The time of computations in the
latter case is the shortest one—approximately 800 s.

A parallel version of the evolutionary algorithm with multiple populations [25]
has been developed [225] and is shown in Algorithm 8. Communications between
processes have been kept to the minimum to enable the implementation of the
algorithm on clusters of personal computers and the computational grid [210, 211].
Each process runs the same genetic algorithm with different sequences of random
numbers. It is ensured by initializing different seeds for a random number generators
in each process. The results of different processes are collected when the search is
finished after the predefined time tc. To make a parallel implementation as much
portable as possible, the general message-passing paradigm of parallel programming
has been chosen. The standardized message-passing communication protocol MPI
is used for communicating between parallel processes. A Sun Fire E15k computer
is used for experimental investigation.

The parallel evolutionary algorithm has been used to solve problems with
different multidimensional data [226]. The results are presented in Table 3.18.
Improvement of the reliability is significant, especially while comparing the results
of a single process with that of the available number of processes. In all cases,
the evolutionary algorithm finds the same global minima as that found by the
explicit enumeration and the branch-and-bound algorithm. These minima are found
with 100% reliability (100 runs out of 100) in 10 s, although the evolutionary
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Table 3.18 Performance of a
parallel version of the
evolutionary algorithm on the
SUN Fire E15k running 8
processes

m E∗min E∗mean E∗max perc, %

Unit Simplex

8 0.2569 0.2569 0.2569 100
10 0.2936 0.2936 0.2936 100
12 0.3167 0.3167 0.3167 100
14 0.3325 0.3325 0.3325 100
16 0.3439 0.3439 0.3443 94
18 0.3526 0.3529 0.3531 17
20 0.3595 0.3599 0.3602 2
Hypercube

8 0.2245 0.2245 0.2245 100
16 0.2965 0.2965 0.2965 100
32 0.3313 0.3314 0.3316 55
64 0.3513 0.3516 0.3522 7

algorithm does not guarantee that the global minima are found. Note that the
evolutionary algorithm solves these problems in seconds, while the algorithm of
explicit enumeration requires an hour on a cluster of three personal computers to
solve problems with N = 16 and a day on a cluster of ten personal computers to
solve problems with N = 18. Larger problems cannot be solved in acceptable time
by the algorithm with the explicit enumeration, but the evolutionary algorithm still
produces good solutions. The parallel evolutionary algorithm finds the minima of
artificial geometric test problems of up to N = 32 variables with 100% reliability
(100 runs out of 100 find the same minimum) in 10 s on a cluster of three personal
computers. Probably a more valuable result is that better function values have been
found [225] for the Morse code confusion problem with N = 72 variables than
published previously [19]. However, in this case, the algorithm has run for 2 h on 8
processes on the SUN Fire E15k.

Figure 3.14 shows how perc (the percentage of runs finding the best-known
solution) depends on the number of processes used. The curves represent a problem
of different dimensionality shown in the previously discussed tables. The curve
in the figure is located higher when the corresponding problem is solved more
reliably. Naturally, higher located curves represent the problems with a smaller
dimensionality. Generally speaking, the performance of the parallel algorithm
increases when the number of processes used is increased. The reliability of solution
of the largest problems is insufficient in all the cases, that is, using up to 8 processes.
For such problems, either the number of processes or solution time should be
considerably increased.

Although the improvement of reliability is significant when the number of
processes is increased, it is difficult to judge about the efficiency of parallelization.
We suggest to estimate the efficiency of parallelization by running the algorithm
for the fixed total computing (CPU) time (opposed to the wall clock time) on a
different number of processes. The experiment has been performed running the
parallel evolutionary algorithm for tc = 30s/size.
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Fig. 3.14 Performance improvement using the parallel evolutionary algorithm: (a) Hypercube and
(b) Unit Simplex

The results of the experiment on the SUN Fire E15k parallel computer are
presented in Table 3.19. Global minima of some problems have been found by
means of the explicit enumeration and the branch-and-bound algorithm. These
problems have been solved with 100% reliability by means of the evolutionary
algorithm, too. Larger problems cannot be solved in acceptable time by the
algorithm with the explicit enumeration or the branch-and-bound algorithm, but
the evolutionary algorithm still produces good solutions. The performance of the
algorithm does not depend significantly on the number of processes, as tc = 30s/p.
For middle-size problems, the algorithm performs better on 4 processes than on a
single process. This indicates that for these problems, randomness is too low when
a single process is used. For larger problems, the algorithm performs better on a
single process. The performance on a larger number of processes can be improved
by a closer cooperation of processes, for example, by interchange of the best solution
found during the search.

The results of a similar experiment on a cluster of personal computers are
presented in Table 3.20. For most of the problems, the algorithm performs better
when more processes are used. This indicates that randomness is too low and
the performance of the algorithm can be improved using mutations or several
populations even on a single process. The reliability decreases only for the largest
problems when more processes are used, indicating that, for these problems, the
allowed computing time is too short, if several processes are used.

In all the cases, the evolutionary algorithm finds the same global minima as that
found by the explicit enumeration and the branch-and-bound algorithm. Note that
the evolutionary algorithm solves these problems in seconds, while the algorithm of
explicit enumeration requires an hour to solve problems with m = 8 and a day to
solve problems with m = 9 with a cluster of computers.
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Table 3.19 Performance of the parallel evolutionary algorithm on the SUN Fire E15k parallel
computer; tc = 30s/size

size = 1 size = 4 size = 8 size = 12 size = 16

m perc, % E∗ perc, % E∗ perc, % E∗ perc, % E∗ perc, % E∗

Standard Simplex
8 100 0.2825 100 0.2825 100 0.2825 100 0.2825 100 0.2825

10 99 0.3115 100 0.3115 100 0.3115 100 0.3115 100 0.3115
12 79 0.3300 100 0.3300 100 0.3300 100 0.3300 98 0.3300
14 45 0.3429 87 0.3429 34 0.3429 6 0.3429 1 0.3429
16 26 0.3525 7 0.3525 1 0.3527 1 0.3527 1 0.3527
18 4 0.3599 1 0.3600 2 0.3606 1 0.3607 1 0.3609
20 2 0.3658 1 0.3665 2 0.3671 1 0.3670 1 0.3676
Unit Simplex
8 100 0.2569 100 0.2569 100 0.2569 100 0.2569 100 0.2569

10 100 0.2936 100 0.2936 100 0.2936 100 0.2936 100 0.2936
12 100 0.3167 100 0.3167 100 0.3167 100 0.3167 100 0.3167
14 92 0.3325 100 0.3325 49 0.3325 20 0.3325 13 0.3325
16 64 0.3439 8 0.3439 1 0.3439 1 0.3443 3 0.3443
18 19 0.3526 1 0.3527 1 0.3533 2 0.3534 2 0.3537
20 1 0.3595 1 0.3601 2 0.3607 2 0.3611 3 0.3615
Hypercube
8 100 0.2245 100 0.2245 100 0.2245 100 0.2245 100 0.2245

16 35 0.2965 1 0.2965 1 0.2965 1 0.2974 1 0.3009

Table 3.20 Performance of the parallel evolutionary algorithm on a cluster of personal computers;
tc = 30s/size

size = 1 size = 2 size = 3 size = 4 size = 5 size = 6

m perc E∗ perc E∗ perc E∗ perc E∗ perc E∗ perc E∗

Standard Simplex
8 100 0.2825 100 0.2825 100 0.2825 100 0.2825 100 0.2825 100 0.2825

10 100 0.3115 100 0.3115 100 0.3115 100 0.3115 100 0.3115 100 0.3115
12 86 0.3300 100 0.3300 100 0.3300 100 0.3300 100 0.3300 100 0.3300
14 57 0.3429 75 0.3429 91 0.3429 92 0.3429 95 0.3429 97 0.3429
16 20 0.3525 34 0.3525 49 0.3525 54 0.3525 76 0.3525 79 0.3525
18 9 0.3599 13 0.3599 18 0.3599 27 0.3599 30 0.3599 28 0.3599
20 4 0.3657 10 0.3657 12 0.3657 17 0.3657 17 0.3657 15 0.3657
Unit Simplex
8 100 0.2569 100 0.2569 100 0.2569 100 0.2569 100 0.2569 100 0.2569

10 100 0.2936 100 0.2936 100 0.2936 100 0.2936 100 0.2936 100 0.2936
12 100 0.3167 100 0.3167 100 0.3167 100 0.3167 100 0.3167 100 0.3167
14 89 0.3325 100 0.3325 100 0.3325 100 0.3325 100 0.3325 100 0.3325
16 72 0.3439 96 0.3439 97 0.3439 99 0.3439 100 0.3439 100 0.3439
18 40 0.3526 74 0.3526 87 0.3526 90 0.3526 93 0.3526 86 0.3526
20 35 0.3595 50 0.3595 70 0.3595 59 0.3595 40 0.3595 13 0.3595
Hypercube
8 100 0.2245 100 0.2245 100 0.2245 100 0.2245 100 0.2245 100 0.2245

16 89 0.2965 99 0.2965 100 0.2965 99 0.2965 100 0.2965 98 0.2965
32 8 0.3313 5 0.3314 1 0.3315 4 0.3319 1 0.3318 1 0.3348
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3.6 Impact of Used Distance Measure on Visualization

The majority of publications on MDS consider the Stress function with the
Euclidean distances. However, the interest in the methods, based on the city-block
distances, increases. The points, defined using different distance measures, can be
interpreted as different projections of the multidimensional objects in the projection
space [223]. Different projections can provide different information on objects, thus
enhancing the exploratory power of MDS methods. To understand which properties
of the objects can be best highlighted, using the Euclidean and city-block distances,
we investigate the images of various multidimensional data in this section.

We start from the visualization of well-understood geometric objects: vertices
of multidimensional simplices and cubes. Although it is not possible to imagine
geometrical figures in the space of dimensionality larger than 3, the properties
of well-understood geometric figures are known. Multidimensional simplices and
cubes are special on a symmetric location of vertices, and this feature is expected
in the images. Since the distances between any vertices of the standard simplex are
equal, the vertices are expected to be visualized equally to each other. In the image
of the unit simplex, a special central location of the image of the “zero” vertex is
expected, while the other vertices are expected to be shown equally distant from
the center. All the vertices of the hypercube are equally far from the center and
compose clusters (corresponding to edges, faces, etc.) containing 2k points, where k
is any integer number between 1 and n. Such features can be expected in the image
of the hypercube.

We use the Euclidean and city-block distances in our comparison. In this
investigation, we compare the images corresponding to the best-known Stress
function values ignoring the computational expenditure.

The images of the sixteen-dimensional Standard Simplex are shown in Fig. 3.15.
The images of the vertices are shown as circles. When the city-block distances are
used, the images of the vertices tend to form a square with a vertical
diagonal—two-dimensional cross polytope. Since such a figure is a two-dimensional
unit ball in the city-block metric, images of all the vertices are at a similar distance
from the center. It means that all the vertices are shown alike. In the case of the
Euclidean distances, the images of the vertices tend to form circles. However, the
images of the vertices in different circles are at very different distances from the
center. It means that the vertices are not shown alike.

The images of the 20-dimensional Unit Simplex are shown in Fig. 3.16. In this
case, the data depend on the distance measure used in the multidimensional space.
Therefore, the influence of distance measure in the multidimensional as well as
projection space is investigated. For example, Fig. 3.16b shows the image when
dissimilarities between the vertices are measured by the Euclidean distances in
the multidimensional space, and the city-block distances are used in the projection
space. As expected, the zero vertex of the Unit Simplex is shown at the center
of the images, corresponding to all the combinations of distances. The images,
corresponding to the city-block distances in the projection space, well visualize
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a b

Fig. 3.15 Sixteen-dimensional Standard Simplex, visualized by MDS with different distance
measure in the projection space: (a) Euclidean distances, E∗ = 0.3689 and (b) city-block distances,
E∗ = 0.3565

an equally distant location of other vertices with respect to the zero vertex. This
property is not highlighted in the images corresponding to the Euclidean distances
in the projection space. The distance measure, used in the multidimensional space,
does not influence the images significantly.

The images of the five-dimensional Hypercube are shown in Fig. 3.17. To make
representations more visual, the vertices adjacent to one of the vertices are joined by
lines. The images of the Hypercube, corresponding to the city-block distances in the
projection space, well visualize an equally distant location of all the vertices of the
Hypercube with respect to the center. This property is not visible in the images that
correspond to the Euclidean distances in the projection space. When the Euclidean
distances are used in the projection space, the vertices of the Hypercube tend to
form clusters and fill a disk. In this case, there is no uniformity in the location of
images of the vertices. All the images show the structure composed of 2d points,
as it is the case of the multidimensional Hypercube. The length of all edges in the
multidimensional space is equal, but this property is not preserved in any image.
The distance measure used in the multidimensional space does not influence the
image significantly.

Besides a qualitative assessment of informativeness of the images, it is of interest
to compare the best relative errors (3.2) quantitatively. The values are presented in
Figs. 3.16 and 3.17 to compare the visualization quality not only heuristically but
also with respect to the quantitative precision criterion. In both cases, the least error
is obtained in the case of the Euclidean distances in the multidimensional space
and the city-block distances in the projection space. This conclusion is consistent
with the known results on a different structure of distances in spaces of different
dimensionality; see, for example, [221]. If the same distance measure is used in
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a b

a d

Fig. 3.16 Twenty-dimensional Unit Simplex, visualized by MDS with different distance measures
in multidimensional and projection spaces: (a) Euclidean distances in both multidimensional
and projection spaces, E∗ = 0.3713; (b) Euclidean distances in the multidimensional space,
while city-block distances in the projection space, E∗ = 0.3588; (c) city-block distances in the
multidimensional space, while Euclidean distances in the projection space, E∗ = 0.3769; and
(d) city-block distances in both multidimensional and projection spaces, E∗ = 0.3623

both multidimensional and projection spaces, the least errors are obtained when the
city-block distances are used.

The images of the pharmacological data set Ruuskanen2 are shown in Fig. 3.18.
Ligands are numbered according to [186]. Agonists are indicated by the symbol “+.”
Antagonists are indicated by the symbol “×.” The binary tree clustering and the
principal component analysis have been used for the analysis of the problem
in [186]. In the binary tree, all agonist ligands cluster together except agonist 3,
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a b

c d

Fig. 3.17 Five-dimensional Hypercube, visualized using different distance measures in multidi-
mensional and projection spaces: (a) Euclidean distances in both multidimensional and projection
spaces, E∗ = 0.3320; (b) Euclidean distances in the multidimensional space, while city-block
distances in the projection space, E∗ = 0.3140, (c) city-block distances in the multidimensional
space, while Euclidean distances in the projection space, E∗ = 0.3592; and (d) city-block distances
in both multidimensional and projection spaces, E∗ = 0.3313

which clusters together with antagonist ligands. In the image of the principal
components, all agonists cluster together, but antagonist 16 is near this cluster.
Similarly, in the image of two-dimensional scaling with Euclidean distances,
antagonist 16 makes the separation difficult between agonist and antagonist clusters.
However, in the image of two-dimensional scaling with city-block distances, it is
possible to draw a line which separates agonists and antagonists.

The images of soft drinks data set Cola visualized using multidimensional scaling
are shown in Fig. 3.19. The images of soft drinks tend to form an ellipse-shaped
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Fig. 3.18 Images of 20 ligands binding human and zebra fish α2-adrenoceptors visualized by
MDS with (a) Euclidean distances, E∗ = 0.0581, and (b) city-block distances, E∗ = 0.0518

Tab

7-Up Slice

Dr. Pepper

Diet 7-Up
Diet Slice

Diet Pepsi

Classic Coke
Coke Pepsi

 Tab

 7-Up

 Slice

 Dr. Pepper

 Diet 7-Up

 Diet Slice

 Diet Pepsi

 Classic Coke

 Coke
 Pepsi

a b

Fig. 3.19 Images of Cola data set visualized by MDS with (a) Euclidean distances, (b) city-block
distances

structure when the Euclidean distances are used and a rotated rectangle when the
city-block distances are used. Similar clusters are formed in both images: Coke,
Classic Coke, and Pepsi as well as Slice and 7-Up with their diet variants. Dr. Pepper
differs from all the others. When the city-block distances are used, images of diet
variants of Slice and 7-Up are close to their classical variants. However, when the
Euclidean distances are used, the image of 7-Up is closer to that of Slice than to
Diet 7-Up. Therefore, images are different, but it is difficult to assess the advantages
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Fig. 3.20 Images of Morse Code confusion data visualized by MDS with (a) Euclidean distances
and (b) city-block distances

of different distance measures in this case. It is useful to analyze all the available
images to collect more information about the analyzed data.

The images of Morse Code confusion data are shown in Fig. 3.20. Objects of
different codes are represented by the corresponding codes. The images of Morse
Code confusion data remind that of a Hypercube. Such a similarity is reasonable
since Morse Code data indeed are a mixture of vertices of different dimensionality.
It can be seen from the images that the codes which differ by the last symbol only
are confused most often. The codes of one symbol are easily distinguishable from
the other codes. Clusters of images of the codes with one, two, and three symbols
can be seen, while the codes with four and five symbols form a joint cluster.

It is often useful to investigate MDS images produced by using various distance
measures. In this case, more information can be acquired by comparing to one image
with a particular distance measure. The given examples show that the distance mea-
sure used in the multidimensional space does not influence the images considerably.
The images that correspond to the city-block distances in the projection space can
be more informative than that corresponding to the Euclidean distances. Relative
errors are also smaller when the city-block distances are used in the projection space.
However, as it has been shown in the previous sections, the problems of MDS with
the city-block distances are more difficult to solve.

3.7 Impact of the Dimensionality of the Projection Space

The dependence of visualization error on the dimensionality of the projection space
is investigated in [234]. The visualization of geometric multidimensional data in a
three-dimensional space is investigated in [224] and of empirical multidimensional



3.7 Impact of the Dimensionality of the Projection Space 107

m

E*

4 6 8 10 12 14 16 18 20
0

0.5
d=1

d=2

d=3
d=4

m

E*

4 6 8 10 12 14 16 18 20
0

0.5
d=1

d=2

d=3
d=4

a b

Fig. 3.21 Dependence of the relative visualization error E∗ on the number of vertices m of
multidimensional Simplices and on the dimensionality of the projection space d: (a) Standard
Simplex and (b) Unit Simplex

data in [229]. The images in the three-dimensional projection space normally show
the structural properties of sets of the objects with an acceptable accuracy, and
widening of applications of stereo screens makes the three-dimensional visualiza-
tion very attractive.

A two-level global optimization algorithm, composed of evolutionary search and
quadratic programming for MDS with the city-block distances (see Sect. 3.5.3),
has been used to visualize Simplices of different dimensionality in the projection
space of different dimensionality. Figure 3.21 shows how the values of the relative
error (3.2) of the best solutions found depend on the number of vertices m of
multidimensional Simplices. Different graphs represent different dimensionalities
of the projection space d. Black circles represent the results when the global
optimization algorithm finds the same best function value in at least 10 runs out
of 100. Gray circles represent less reliable results. The relative visualization error
grows with the dimensionality of Simplices, as expected; however, the rate of growth
is decreasing fast. There is a considerable decrease of visualization error between
unidimensional and two-dimensional scaling, as well as between two-dimensional
and three-dimensional scaling.

Figure 3.22 shows how the values of the relative error of the best solutions
found depend on the dimensionality of the projection space d. Different graphs
represent Simplices of different dimensionality. The gray circles should be again
considered with care, since the same best function value has been found in less than
10 runs out of 100. As expected, the relative visualization error reduces when the
dimensionality of the projection space is increased, as it becomes easier to fit an
image to the data. Quite a large decrease of the visualization error can be reached
by changing the two-dimensional projection space into the three-dimensional one.
Although the visualization error can be further decreased using the projection space
of a larger dimensionality, the practical use of the dimensionality larger than three
is questionable.

Figure 3.23 shows how the values of the relative error of the best solutions found
for empirical data sets depend on the dimensionality of the projection space d.
Different graphs represent different data sets which are specified at the vertical
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Fig. 3.22 Dependence of the relative visualization error of multidimensional Simplices on the
dimensionality of the projection space d: (a) Standard Simplex and (b) Unit Simplex
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Fig. 3.23 Dependence of the relative visualization error of empirical data sets on the dimension-
ality of the projection space d

axis. Again, a relative visualization error reduces, when the dimensionality of the
projection space is increased. However, for these data sets, the relative visualization
error decreases more rapidly than for high-dimensional Simplices, even for the
problem Ruuskanen1, which is composed of 20-dimensional vectors. Visualization
errors are largest for the Cola data set; this is probably because the dissimilarity
data in this problem are collected by psychological testing; by contrast, the data
of other problems are distances between multidimensional points. Visualization in
the three-dimensional projection space seems most appropriate to the empirical data
sets considered.

The images in the three-dimensional projection space usually show the structural
properties of sets of the considered objects better than in the two-dimensional
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Fig. 3.24 Projections of the three-dimensional image of the thirteen-dimensional Standard
Simplex

space. The widening of applications of stereo screens makes the three-dimensional
visualization very attractive; however, it is difficult to demonstrate the advantages
of stereo images on the paper. The classical methods of the two-dimensional
visualization by means of orthogonal and isometric projections are much weaker
than a dynamic visualization on stereo screens. Nevertheless, some properties of the
data can be grasped from such projections.

Four projections are shown in Figs. 3.24–3.27: the left upper picture shows the
orthogonal projection on the xz-plane, the right upper picture shows the orthogonal
projection on the yz-plane, the left lower picture shows the orthogonal projection
on the xy-plane, and the right lower picture shows the isometric projection. In the
orthogonal projections, the x-axis directs to left, the z-axis directs up, and the y-axis
directs to right in the right upper picture and down in the left lower picture. In the
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Fig. 3.25 Projections of the three-dimensional image of the fourteen-dimensional Unit Simplex

isometric projection, the x-axis directs downleft, the y-axis directs downright, and
the z-axis directs up.

Projections of the three-dimensional images of vertices of the thirteen-
dimensional Standard Simplex are shown in Fig. 3.24. The images of vertices
are visualized as circles. It can be realized that the three-dimensional images
of vertices are at or near to the surface of octahedron—three-dimensional cross
polytope. The edges of the figure—outer joints between the images of vertices are
shown using lines to make representation more visual. Since the octahedron is a
three-dimensional unit ball in the city-block metric, the images of all vertices are at
a similar distance from the center. It means that all the vertices are shown alike.

Projections of the three-dimensional images of vertices of the fourteen-
dimensional Unit Simplex are shown in Fig. 3.25. The images are very similar to
that of the Standard Simplex shown in Fig. 3.24. The difference is that the image of
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Fig. 3.26 Projections of the three-dimensional image of the five-dimensional Hypercube

the zero vertex is in the center of the figure. All nonzero vertices are shown alike—at
a similar distance from the image of the zero vertex.

Projections of the three-dimensional image of vertices of the five-dimensional
Hypercube are shown in Fig. 3.26. The images of vertices are visualized as circles.
To make representations more visual, adjacent vertices are joined by lines. The lines
adjacent to two opposite vertices are darker. In the orthogonal projection, the images
of vertices shadow each other, and it is difficult to grasp volumetric information. The
isometric projection is more useful where the polyhedron can be seen. One can see
that the images of vertices form quadrangles representing faces of a Hypercube.

Projections of the three-dimensional image of the problem Ruuskanen2
are shown in Fig. 3.27. The ligands are numbered according to [186]. Agonists are
indicated by the symbol “+.”Antagonists are indicated by the symbol “×.” The
orthogonal projection shown in the left lower picture in Fig. 3.27 is quite similar
to a mirrored two-dimensional image shown in the previous section. Although
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Fig. 3.27 Projections of the three-dimensional image of the properties of 20 ligands binding
human and zebra fish α2-adrenoceptors; m = 20, E∗ = 0.0243

two agonists (2nd and 3rd) are near the cluster of antagonists in this projection,
it is possible to draw a line separating agonists and antagonists. The clusters of
agonists and antagonists are separable easier in the isometric projection in the
right lower picture of Fig. 3.27. It is possible to more easily draw separating line,
which means that it is possible to define various separating hyperplanes in the
three-dimensional image.



Chapter 4
Combining Multidimensional Scaling
with Artificial Neural Networks

The combination and integrated use of data visualization methods of a different
nature are under a rapid development. The combination of different methods
can be applied to make a data analysis, while minimizing the shortcomings of
individual methods. This chapter is devoted to visualization methods based on an
artificial neural network (ANN). The fundamentals of artificial neural networks
that are essential for investigating their potential to visualize multidimensional
data, are presented below. A biological neuron is introduced here. The model
of an artificial neuron is presented, too. Structures of one-layer and multilayer
feed-forward neural networks are investigated. Learning algorithms are described.
Some artificial neural networks, widely used for visualization of multidimensional
data, are overviewed, such as a self-organizing map (SOM), neural gas (NG),
curvilinear component analysis, auto-associative neural network, and NeuroScale.
Much attention is paid to two strategies of the combination of multidimensional
scaling (MDS) and artificial neural network. The first of them is based on the
integration of a self-organizing map or neural gas with the multidimensional scaling.
The second one is based on the minimization of MDS Stress using a feed-forward
neural network SAMANN. The possibility to train the artificial neural network by
MDS results is discussed, too.

4.1 Feed-Forward Neural Networks in Visualization

Artificial neural networks can be used not only for solving problems of clustering,
classification, function approximation, prediction, and optimization but also for
reducing the dimensionality of multidimensional data as well for a multidimensional
data visualization. Novel properties of multidimensional data may be discovered in
this way.

Various artificial neural networks and their learning algorithms have been
developed for visualization of multidimensional data [121, 123, 147, 167, 189].

G. Dzemyda et al., Multidimensional Data Visualization: Methods and Applications,
Springer Optimization and Its Applications 75, DOI 10.1007/978-1-4419-0236-8 4,
© Springer Science+Business Media, LLC 2013
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multidimensional space neural network projection space

Fig. 4.1 Scheme of a neural network for visualization of multidimensional data

Multidimensional scaling got some attention from artificial neural network
researchers, too [147, 214]. Research [55] is devoted to a wide spectrum of ANN
applications in the visualization process.

The general scheme of a neural network for reducing the dimensionality of
multidimensional data is presented in Fig. 4.1. The points from the multidimensional
space (n = 3) are mapped on the plane (d = 2).

Artificial neural networks are initiated as a model of biological neural systems.
The main aim of the theory of artificial neural networks is not to simulate biological
neurons exactly but to ascertain and adjust the mechanisms of interactions of
biological neurons in order to develop more efficient systems for information
processing. Nowadays, ANNs are widely used for several reasons. First of all, a
neural network is a powerful tool for simulation. Second, neural networks have
a possibility to learn from data samples. Having the data samples and using the
learning algorithms, a neural network is adjusted to the structure of data as well as
to learn to recognize new data that are not used in the learning.

4.1.1 Biological Neuron and Its Artificial Model

An artificial neural network is a representation of the human brain that tries to
simulate its learning process. The human brain consists of billions of neural cells
that process information. Each cell functions like a simple processor. In particular,
the most basic element of the human brain is a specific type of cell which, unlike
the rest of the body, is not able to regenerate. Since this type of cell is the only
part of the body that is not slowly replaced, these cells are assumed to provide
us with our abilities to remember, think, and apply previous experiences to our
every action. These cells are known as neurons. Each of these neurons can connect
with up to thousands of other neurons. A neuron is composed of an input structure
called dendrites, a cell body called a soma, and an output structure called an
axon. The cell body has a nucleus, which contains information on hereditary traits
and a plasma containing molecular equipment to produce the substance needed
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Fig. 4.2 The model of an
artificial neuron

by a neuron. A neuron receives signals from other neurons through its dendrites
and transmits signals, generated by its cell body, along the axon. The axon of a
neuron connects with dendrites of another neuron through so-called synapses. A
synapse is a place of the contact between two neurons (an axon of one neuron and a
dendrite of another neuron). When the impulse reaches the synapse terminal, certain
chemicals, so-called neurotransmitters, are released. The neurotransmitters diffuse
across the synaptic gap, to enhance or inhibit, depending on the type of synapse, the
receptor neuron tendency to emit electrical impulses. The synapse effectiveness can
be adjusted by the signals passing through it so that the synapses can learn from the
activities in which they participate. This dependence on history acts as a memory,
which is possibly responsible for the human memory [107].

In 1947, a model of an artificial neuron was proposed by McCulloch and Pitts
in [152]. The scheme of the model of a neuron is presented in Fig. 4.2. When
an artificial neuron is designed, three basic components are important. First, the
weights correspond to the synapses of a neuron. The strength of connection between
an input and a neuron is denoted by the value of the weight. Negative weight
values reflect inhibitory connections, while positive values designate excitatory
connections [90]. The next two components simulate the actual activity within the
neuron cell. An adder sums up all the inputs modified by their respective weights.
This activity is referred to as a linear combination. Finally, an activation function
controls the output values of a neuron. An acceptable range of output is usually
between 0 and 1, or −1 and 1.

The mathematical notation of the model of a neuron is as follows:

1. A neuron has some inputs (signals) x1,x2, . . . ,xn. Each connection between the
input xk and the neuron has a weight wk, k = 1, . . . ,n. Usually, the values of inputs
xk and weights wk are real numbers.

2. An adder sums up the products of the input values and their weights:

a = w1x1 +w2x2 + · · ·+wnxn =
n

∑
k=1

wkxk. (4.1)

The sum a is called an activation signal.
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3. A neuron output y is defined by the activation function f :

y = f

(
n

∑
k=1

wkxk− b

)
, (4.2)

where b is the bias (threshold).
For simplicity of notation, we often consider the bias b as the weight w0 =−b

of the constant input x0 = 1. We may rewrite (4.1) and (4.2) as follows:

a =
n

∑
k=0

wkxk,

y = f (a) = f

(
n

∑
k=0

wkxk

)
.

Various activation functions f (·) may be used:

• Threshold

f (a) =

{
1, if a≥ 0,
0, if a < 0,

(4.3)

• Sigmoid

f (a) =
1

1+ e−a , (4.4)

• Hyperbolic tangent

f (a) = tanh(a) =
ea− e−a

ea + e−a , (4.5)

• Other functions (a piecewise-linear function, the Gaussian function, etc.).

The sigmoid function (4.4) is one of most used activation function because its
derivative respect to a depends only on its value:

f ′(a) = f (a)(1− f (a)).

4.1.2 Artificial Neural Network Learning

Several artificial neurons might be connected together. The interconnected artificial
neurons compose an artificial neural network often called just a neural network.
The neural network can be viewed as a weighted directed graph where the nodes
are neurons and directed edges (with weights) are connections from the outputs of
neurons to the inputs of other or the same neurons [107].
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The artificial neural networks can be grouped into two main types according to
the structure of interconnections of neurons:

1. Feed-forward networks where no loop exists in the graph
2. Feed-back networks where some loops exist in the graph

The manner in which the neurons are structured is linked with the learning
algorithm, used to train the network [90]. The ability to learn is a substantial
property of intelligence. The learning process of ANN is described as the problem
of updating a network structure and connection weights so that the network was able
to perform the task assigned to it.

There exist three main learning paradigms:

1. Supervised learning (with a supervisor)
2. Unsupervised learning (without a supervisor)
3. Hybrid learning

In the supervised learning, values of inputs and desired values of outputs are
presented to a network. The network processes the inputs and compares its resulting
outputs with the desired outputs. Here, the values of the desired output must be
known in advance, for example, order numbers of classes and prediction values.

Sometimes, the desired values of outputs are not known. Then the unsupervised
algorithms can be used. In the unsupervised learning, the network is provided with
values of inputs only. In the methods of this type, a network is trained to find
correlations or similarities among objects defined by training data set. There is no
feedback telling which answer is or will be true. There is no supervisor signal in the
unsupervised algorithms.

There exist three strategies of the unsupervised learning:

1. Hebbian learning
2. Competitive learning
3. Self-organizing learning

These strategies are realized by neural networks of different structures and allow
us to solve different problems of data analysis.

The hybrid learning involves both the supervised and unsupervised algorithms: a
part of the weights is set in the unsupervised way, and the other part of the weights
is obtained in the supervised learning.

4.1.2.1 Perceptron

A feed-forward neural network is a network where only unidirectional forward
connections among neurons exist. A one-layer perceptron is the simplest form of a
feed-forward neural network. The algorithm of perceptron learning was developed
by Rosenblatt in 1962 [182]. In Fig. 4.3, a one-layer perceptron consisted of d
neurons, connected with n inputs, is presented. The number d of neurons is the
same as the number of outputs [192]. If the perceptron has one output, then
d = 1 [86, 90, 177].
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Fig. 4.3 A perceptron

Each output y j, j = 1, . . . ,d, of the perceptron is a function of the inputs
x1,x2, . . . ,xn computed by the formula:

y j = f (a j) = f

(
n

∑
k=0

wjkxk

)
, j = 1, . . . ,d, (4.6)

where wjk is the weight of connection that links the kth input with the jth neuron
and x0 is an additional input, usually, x0 = 1.

Suppose we have m multidimensional data points Xi = (xi1,xi2, . . . ,xin), i = 1,
. . . ,m. In the artificial neural network literature, these points are called input vectors,
because the values of their coordinates xi1,xi2, . . . ,xin will be presented to the neural
network as inputs.

The input vectors, Xi = (xi1,xi2, . . . ,xin), i = 1, . . . ,m, are associated with the
target vectors Ti = (ti1, ti2, . . . , tid) of the desired values, where ti j is the desired
response of the jth output to Xi. The order number of classes, prediction values,
etc., can serve as the desired values.

In the process of learning, the weights wjk are adjusted so that each output vector
Yi = (yi1,yi2, . . . ,yid) for the input vector Xi was as close to the vector Ti of the
desired values as possible, that is, the error was as small as possible.

The error measure E(W ) is defined as a function of the weight matrix W =
{wjk, j = 1, . . . ,d, k = 0, . . . ,n}. The most commonly used error function is the
sum of squared errors:

E(W ) =
m

∑
i=1

Ei(W ) =
1
2

m

∑
i=1

d

∑
j=1

(yi j− ti j)
2. (4.7)

If the error function E(W ) is differentiable with respect to the weights wjk, then
gradient-based optimization algorithms can be applied to find the minimum of this
function. The best known algorithm is the gradient descent one.

At first, the initial values of the weights wjk are generated at random. Then, the
gradient descent algorithm is used to move in the opposite direction of the gradient,
changing the values of the weights by the iterative formula:

wjk(t + 1) = wjk(t)+�wjk(t), (4.8)
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where

�wjk(t) = −η
∂E

∂wjk
=−η

m

∑
i=1

∂Ei

∂wjk
=

m

∑
i=1
�wi

jk(t),

�wi
jk(t) = −η

∂Ei

∂wjk
. (4.9)

Here, t is the order number of the iteration; wjk(t + 1) and wjk(t) represent the
updated (new) and current weight values, respectively; and η is a small positive
number, called a learning rate parameter, and the length of the gradient optimization
step is controlled by this parameter.

There are several strategies for updating the weights. For example, the weights
wjk are updated by (4.8) after each input vector has been presented to the network.

4.1.2.2 Multilayer Feed-Forward Neural Networks

Neural networks having more than one layer of neurons, where only forward
connections from the input towards the output are allowed, are called multilayer
perceptrons or multilayer feed-forward neural networks. Each such network consists
of inputs, the layer of outputs, and the layers of hidden neurons between the inputs
and outputs.

Suppose we have a multilayer neural network with L layers, marked by l =
0,1, . . . ,L, where l = 0 denotes inputs, l = 1, . . . ,L− 1 denotes hidden layers, and
l = L denotes the Lth layer (outputs). Each layer l has nl neurons. The inputs to
neurons in the lth layer correspond to the outputs of neurons in the layer (l− 1).

Therefore, the output value y(l)j of the jth neuron in the lth layer is computed as
follows:

y(l)j = f (a(l)j ) = f

(
nl−1

∑
k=0

w(l)
jk y(l−1)

k

)
, j = 1, . . . ,nl , l = 1, . . . ,L, (4.10)

where f (·) is the activation function of neurons, w(l)
jk are the weights of connections

between the kth neuron in the layer (l− 1) and the jth neuron in the lth layer, and

nl−1 is the number of neurons in the layer (l− 1), y(l)0 = 1, l = 0, . . . ,L− 1. a(l)j

represents the input to the jth neuron in the lth layer. y(l−1)
k is the output value of

the kth neuron in the layer (l− 1). Note that y(0)k = xk, k = 0, . . . ,n0, where n0 = n.

Following notations of one-layer perceptron, we use here nL = d and y(L)k = yk,
k = 1, . . . ,d.

The perceptron with one hidden layer of neurons is shown in Fig. 4.4. In the
general case, different layers of neurons and even different neurons can have
different activation functions f .
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Fig. 4.4 Multilayer feed-forward neural network (L = 2)

4.1.2.3 Error Back-Propagation Learning Algorithm

The network learning problem is to determine optimal weights

W =
{

w(l)
jk , j = 1, . . . ,nl , k = 0, . . . ,nl−1, l = 1, . . . ,L

}
.

In the multilayer perceptron learning, we face some problems. There is no
possibility to determine the desired output values of hidden neurons. If in the output
of the neural network we get undesirable values, it is impossible to determine exactly
which neuron is “responsible” for the error.

If the error and activation functions are differentiable, the gradient descent
strategy can be used for minimizing the error function to find the optimal weights.
The algorithm that implements the gradient descent strategy for a multilayer
feed-forward neural network is called an error back-propagation learning algorithm.

The development of the back-propagation learning algorithm for determining
weights in a multilayer perceptron has made these networks the most popular ones
among the researchers and users of neural networks. The algorithm consists of two
steps:

1. A forward-propagation of the values of input vectors from the inputs to the output
layer of the network

2. A back-propagation of the error from the output layer to all lower layers

The algorithm distributes the known error of an output neuron to all the hidden
neurons that are connected to it; the assigned error to the hidden neurons is
distributed among neurons connected to them. The back-propagation algorithm
starts from initializing the weights to small random values, random choice of an
input vector Xi from {X1,X2, . . . ,Xm}, and propagation of the signal forward through
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the network. The output vector Yi = (yi1,yi2, . . . ,yid) for the input vector Xi is
computed and the error function Ei(W ) (4.7) on the output layer L is estimated.
Thus, the forward-propagation phase is finished.

If the value of the error function Ei(W ) is not equal to zero, the weights W need

to be updated. Compute the error δ (L)
j of the jth neuron in the output layer

δ (L)
j = f ′(a(L)j )(yi j− ti j),

where f ′ is the derivative of the activation function f .

Compute the error δ (l)
k of the kth neuron for the preceding layers by propagating

the errors backward:

δ (l)
k = f ′(a(l)k )

nl+1

∑
s=1

w(l+1)
sk δ (l+1)

s

for l = (L− 1), . . . ,1.
Update the weights using

�w(l)
jk =−ηδ (l)

j y(l−1)
ik , (4.11)

where y(l−1)
ik is the output value of the kth neuron in the layer (l− 1); for an input

vector Xi, η is a positive constant that is called learning rate.
If all the weights are updated by (4.11), the next input vector Xi is presented to

the network, and the process is repeated again. The stopping criterion is either a
threshold of the error function or a maximum of the number of iterations (learning
steps). The sigmoid activation function (4.4) is used most frequently.

In order to improve the learning process, the rule defined by (4.11) must be
corrected. Such a rule is derived for updating the weights:

�w(l)
jk (t) =−ηδ (l)

j y(l−1)
ik +α�w(l)

jk (t− 1),

where t is the order number of the iteration and α is a positive constant (0 < α ≤ 1),
the so-called momentum constant.

4.1.2.4 Network Testing

When training is completed, the testing procedure follows. The testing is required
to estimate the quality of training that is characterized by the error criterion
(generalization error). Usually, the data set {X1,X2, . . . ,Xm} is divided into two
nonintersecting groups: the first group is used for training of the network and the
second one is used for testing. The testing data are usually not used for training.
The quality of training can be estimated with the training data, but in this case, we
do not know how the network behaves with the data that have never been seen by
the network before. It is necessary to observe both the training and testing qualities,
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Fig. 4.5 Training and generalization errors

because overtraining occurs. It is one of the important problems in applications
of the neural network. In the case of overtraining, the fitting on the training data
becomes almost perfect, but the generalization error becomes worse (see Fig. 4.5).

The well-known fact is that the number of data must be large enough to warrant a
good quality of the trained network. If the whole data set is small, it is not advisable
to divide it into two groups (training and testing). A cross-validation strategy is used
in this case. In the k-fold cross-validation, the data set is divided into k subsets of
(approximately) equal size. Each time, one of the k subsets is used in turn as the
test set, and the other k− 1 subsets are put together to form a training set. The
network is trained k times, each time leaving out one of the subsets from training
but using only the omitted subset to test. The value of error is calculated each time,
and finally, the values are averaged. If k is equal to the size m of the data set, this is
called leave-one-out cross-validation.

4.1.3 Visualization by Means of Feed-Forward Neural
Networks

4.1.3.1 Visualization Based on the Supervised Learning

One of the disadvantages of multidimensional scaling (MDS) is that there is no way
to project new data into a low-dimensional space without expensively regenerating
the entire configuration from the augmented data set. To project new data, one has
to run the program again using all the data (old data and new data). In order to
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Fig. 4.6 Visualization using
supervised learning:
blue—Setosa,
red—Versicolor,
green—Virginica

solve this problem, a method based on the standard multilayer feed-forward neural
network (Fig. 4.4) has been proposed in [181] and applied in [1]. This approach is
also suitable for visualization of large multidimensional data sets.

Let us consider the visualization of the set of n-dimensional points on the plane
(d = 2). Let the points Xi = (xi1,xi2, . . . ,xin), i = 1, . . . , m̂, m̂ < m, be mapped onto a
plane by an MDS algorithm or another visualization method, based on dimensional-
ity reduction. The two-dimensional points Yi = (yi1,yi2), i = 1, . . . , m̂, are obtained.
When this data set is augmented by the new data points Xm̂+1,Xm̂+2, . . . ,Xm, the goal
is to obtain their projections Ym̂+1,Ym̂+2, . . . ,Ym onto a plane.

The training data for a feed-forward neural network consist of n-dimensional
points Xi, i = 1, . . . , m̂, and two-dimensional points Yi, i = 1, . . . , m̂, corresponding
to Xi. The network should have n inputs x1,x2, . . . ,xn, a constant input x0 = 1, and
two outputs y1,y2. So, the coordinates xi1,xi2, . . . ,xin of the points Xi, i = 1, . . . , m̂,
are presented to the neural network as inputs, where the targets are the coordinates
yi1,yi2 of the points Yi, corresponding to Xi. The network is trained by the ordinary
error back-propagation learning algorithm (see Sect. 4.1.2). After training, the new
points Xk, k = m̂ + 1, . . . ,m, that were unseen by the network, that is, they are
not used for learning of the network, are presented to the trained network. The
coordinates yk1,yk2 of points Yk are obtained in the outputs.

The approach above is illustrated on the Iris data. A part of the data (120
four-dimensional points: 40 points of each Iris species) has been visualized by
the MDS method (Sammon’s mapping), and two-dimensional points are obtained
(see Fig. 4.6: Setosa irises are marked in blue, Versicolor in red, Virginica in green).
These data and visualization results (two-dimensional points) were used to train
the neural network, presented in Fig. 4.4. The network has one hidden layer and ten
neurons. Therefore, the training data set consists of these 120 points (the coordinates
of four-dimensional points presented to the network inputs), while the targets are the
coordinates of two-dimensional points.
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Fig. 4.7 An auto-associative neural network

After training the network, the remaining 30 points (10 of each species) are
presented to the trained network, and their two-dimensional projections are obtained
at the output of the network. The visualization results are presented in Fig. 4.6:
Setosa—dark blue, Versicolor—dark red, and Virginica—dark green. Here, we see
that the points unseen by the network have found proper places.

4.1.3.2 Auto-Associative Neural Network

An auto-associative feed-forward neural network [4,124] allows the dimensionality
reduction by taking the output values of all d neurons in the hidden, so-called
bottleneck layer, where d is chosen equal to the dimensionality of a low-dimensional
space. The n-dimensional training data are presented to both input and output layers
to obtain a reduced d-dimensional representation in the bottleneck layer. So, this
network is trained in an unsupervised way.

The auto-associative feed-forward neural network is often called as an auto-
encoder network [38,92]. It is a nonlinear generalization of the principal component
analysis that uses an adaptive, multilayer encoder network to transform the multi-
dimensional data into the low-dimensional space and a similar decoder network
to recover the data from the low-dimensionality. It is discovered in [92] that the
nonlinear auto-encoders work considerably better as compared to the widely used
methods such as the principal component analysis or locally linear embedding.

An auto-associative feed-forward neural network consists of two parts:

• The first part transforms the initial multidimensional data to a low-dimensional
space (mapping layer).

• The second part reconstructs the initial multidimensional data from the
low-dimensional projections obtained in the first part (reconstruction layer)
(see Fig. 4.7).
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Fig. 4.8 RBF neural network

During the network learning, the mean-squared error E(W ) between the input
vectors Xi = (xi1,xi2, . . . ,xin), i = 1, . . . ,m, and the corresponding output vectors
X ′i = (x′i1,x

′
i2, . . . ,x

′
in), i = 1, . . . ,m, is minimized in order to find optimal weights W

of the network:

E(W ) =
m

∑
i=1

n

∑
j=1

(xi j− x′i j)
2.

Thus, we desire that the network output values x′i1,x
′
i2, . . . ,x

′
in were as similar

to the input values xi1,xi2, . . . ,xin as possible. The d-dimensional projections Yi =
(yi1,yi2, . . . ,yid) of Xi = (xi1,xi2, . . . ,xin), i = 1, . . . ,m, are the output values of
neurons in the hidden bottleneck layer.

4.1.3.3 NeuroScale

The specific neural network model NeuroScale [145, 146, 201] uses a radial basis
function (RBF) neural network [144] to transform n-dimensional points to the
low-dimensionality. Another capacity of NeuroScale is to exploit additional knowl-
edge available in the data and to allow this knowledge to influence the mapping.
It allows the incorporation of supervisory information into a totally unsupervised
technique.

Suppose we have the n-dimensional points Xi = (xi1,xi2, . . . ,xin), i = 1, . . . ,m.
We wish to find their projections Yi = (yi1,yi2, . . . ,yid) to a low-dimensional space
R

d ,d < n. n inputs and d outputs are in the RBF network. The network consists of
the layer of basis functions and the output layer (see Fig. 4.8).

As in all the projection methods, we are looking for such points Yi where the
error

ENS(W ) = ∑
i< j

(d(Xi,Xj)− d(Yi,Yj))
2
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was minimal, where d(Xi,Xj) is the distance between the points Xi and Xj, and
d(Yi,Yj) is the distance between the points Yi and Yj, i, j = 1, . . . ,m. The coordinates
yi1,yi2, . . . ,yid of the points Yi are obtained at the RBF network outputs, when the
coordinates xi1,xi2, . . . ,xin of multidimensional points Xi, i = 1, . . . ,m are presented
to the inputs. The following forms of the radial basis functions are used:

ϕk(Xi) = ϕk (‖Xi− μk‖) , k = 1, . . . ,s,

that is, the value of ϕk depends on the distance between the point Xi and a certain
point μk, the so-called center of the radial basis function ϕk, where s is the number
of the basis functions.

A typical radial function in RBF is the Gaussian function:

ϕk(X) = e
−‖X−μk‖2

2σ2
k ,

where σk is the width factor.
The distance between the points Yi and Yj is computed as follows:

d(Yi,Yj) =
d

∑
l=1

(
s

∑
k=1

wlk [ϕk (‖Xi− μk‖)−ϕk (‖Xj− μk‖)]
)2

,

where wlk is the weight of connections between the kth basis function ϕk and the lth
output yl .

4.2 Self-Organizing Map and Neural Gas

Two vector quantization methods (self-organizing map (SOM) [120] and neural
gas (NG) [148]) based on a neural network are introduced in this section. The
principles of the self-organizing maps and neural gas are presented here. The
properties of SOM training are analyzed. Quality measures of the results obtained by
SOM and NG are experimentally tested. The ratios between the number of neurons
and that of neurons-winners are investigated, too. A comparative analysis of SOM
software is made.

Vector quantization is a method that usually forms a quantized approximation to
the distribution of the input data Xl ∈Rn, l = 1, . . . ,m, using a finite number m̃ of the
so-called reference (or codebook) vectors Mi ∈ R

n, i = 1, . . . , m̃, m̃� m. Once the
reference vectors are chosen, the approximation of Xl , l = 1, . . . ,m, means finding
the reference vector Mi closest to Xl usually in sense of the Euclidean distance [120].

The objective of vector quantization for a given data set X is to discover a
predetermined number m̃ of reference vectors Mi ∈R

n, i = 1, . . . , m̃, m̃� m, which
guarantee the minimization of some distortion measure (usually the Euclidean
distance) for all the points from the data set X . In other words, the aim of
quantization methods is to choose the values of reference vectors so that they would
represent the properties of the analyzed data Xl ∈ R

n, l = 1, . . . ,m.



4.2 Self-Organizing Map and Neural Gas 127
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Fig. 4.9 SOM topologies: (a) rectangular, (b) hexagonal

Vector quantization is used for data compression, missing data correction,
classification, etc. It can be used for data clustering, too. In that case, the reference
vectors are representatives of clusters. Some methods for vector quantization are
based on neural networks: self-organizing map (SOM), learning vector quanti-
zation (LVQ) [120], and neural gas (NG). Here, the neurons correspond to the
reference vectors; therefore, the same notation is used both for neurons and
reference vectors.

4.2.1 Principles of Self-Organizing Map

A neural network architecture designed specifically for topographic mapping is the
self-organizing map (SOM) [120], which exploits an implicit lateral connectivity
in the output layer of neurons. SOM is used for both clustering and visualization
of multidimensional data. An important practical difference between SOM and
multidimensional scaling (MDS) (in the sense of data visualization) is that SOM
offers a possibility to visualize new points that were not used during learning
whereas MDS does not.

The self-organizing map (SOM) is a class of neural networks that are trained
in an unsupervised way using a competitive learning. First time it was described
by Finn scientist, Teuvo Kohonen, in 1982. Consequently, sometimes SOM is
called the Kohonen map or network. It is a well-known method for mapping a
multidimensional space onto a low-dimensional one. We consider here the mapping
onto a two-dimensional grid of neurons.

The self-organizing map is a set of nodes (grid), connected to each other via
a rectangular or hexagonal topology (see Fig. 4.9). The nodes are called neurons.
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Fig. 4.10 Two-dimensional rectangular SOM

The connections between the inputs and the nodes have weights, so a set of
weights corresponds to each node. The set of weights forms a reference vector Mi j,
i = 1, . . . ,kx, j = 1, . . . ,ky. So, the rectangular SOM is a two-dimensional array of
neurons M = {Mi j, i= 1, . . . ,kx, j = 1, . . . ,ky}. Here, kx is the number of rows, and ky

is the number of columns; the number of reference vectors is m̃ = kxky. The scheme
of the rectangular two-dimensional map is presented in Fig. 4.10. Each component
of the input vector is connected to each individual neuron. Any neuron is entirely
defined by its location on the grid (the order number of row i and column j) and by
the so-called reference vector, that is, we can consider a neuron as an n-dimensional
point or vector Mi j =

(
m1

i j,m
2
i j, . . . ,m

n
i j

)
∈R

n.

4.2.2 SOM Training

A self-organizing map is trained in an unsupervised learning. The training starts
from the components m1

i j,m
2
i j , . . . ,m

n
i j of the vectors Mi j initialized at random or

by the principal components [120]. If n-dimensional data points X1,X2, . . . ,Xm are
needed to map, the coordinates xi1,xi2, . . . ,xin of these points are presented to the
network as the inputs. Regarding this fact, these points are called input vectors.

At each learning step, the input vector Xl ∈ {X1,X2, . . . ,Xm} is presented to the
neural network. The Euclidean distances between Xl and each reference vector
Mi j are calculated and the neuron, whose reference vector M̂c is closest to Xl , is
designated as a winning neuron, c = argmini, j{‖Xl−Mi j‖}, c is a pair of indices of
the winning neurons of Xl . For simplicity, we use the same notation M̂c for winning
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Algorithm 9 SOM training
Input: X; M; ê; kx; ky

Output: M
1: for t = 1, . . ., ê do
2: for l = 1, . . . ,m do
3: for i = 1, . . .,kx do
4: for j = 1, . . . ,ky do

5: ‖Mi j−Xl‖←
√

∑n
p=1 (m

i j
p − xl p)2 // Euclidean distances are calculated

6: end for
7: end for
8: c← argmin

i, j
{‖Xl −Mi j‖} // indices of the winning neuron for Xl are found

9: for i = 1, . . .,kx do
10: for j = 1, . . .,ky do
11: Mi j(t +1)←Mi j(t)+hc

i j(Xl −Mi j(t)) // SOM learning rule
12: end for
13: end for
14: end for// the end of presenting of the input vectors
15: end for// the end of training

neurons. The components of the vector Mi j are adapted according to the general
learning rule:

Mi j(t + 1) = Mi j(t)+ hc
i j(t)(Xl−Mi j(t)), (4.12)

where t is the number of iteration (learning step), and hc
i j is the so-called neighbor-

hood function. hc
i j(t)→ 0, as t→ ∞. Usually,

hc
i j(t) = hc

i j(‖R̂c− R̂i j‖, t),

where R̂c and R̂i j are two-dimensional vectors, consisting of indices (order number
of rows and columns) of M̂c and Mi j . R̂c and R̂i j indicate the location of the winning
neuron M̂c and vector Mi j in the SOM grid after the tth iteration. ‖R̂c− R̂i j‖ is the
Euclidean distance between the vectors R̂c and R̂i j. When ‖R̂c− R̂i j‖ is increasing,
the value of the function hc

i j(t) approaches 0 (hc
i j(t)→ 0). The training is repeated

until the maximum number of iterations is attained. A pseudo-code of SOM training
is shown in Algorithm 9.

In the SOM training, input vectors should be presented to the network. Usually
it is expedient to present the set X to the network for several times. Three ways can
be used:

• All input vectors are presented to the network in consecutive order for several
times.

• All input vectors are presented to the network in random order for several times.
• One vector is picked at random, and it is presented to the network, afterward

another vector is picked and so on.



130 4 Combining Multidimensional Scaling with Artificial Neural Networks

1

1

1

1

1

1

1

1

2 2 2

2

2

2

2

1

1

2

1

1

3

2 2

2

2

2

3

1

3 3

Fig. 4.11 Neighborhood
orders in SOM

In the first two cases, all the input vectors are presented to the network the same
number of times, in the third case, not necessarily. The advantage of the second and
third cases over the first one is that the influence of numeration of the input vectors
is eliminated in learning.

Sometimes, the term training epoch is used. An epoch consists of m steps:
the input vectors from X1 to Xm are presented to the neural network in a consecutive
or random order. The consecutive order was used in [9, 47]. Both the orders
were examined in [56]. We use the random order in the experiments in this book,
because we want to eliminate the influence of numbering the input vectors in the
training process.

When the training is completed, the winning neurons are determined for all
data points Xl , l = 1, . . . ,m. The reference vectors of the winning neurons are
representatives of points Xl on the grid. Denote by M̂c(l) the reference vector of the
winning neuron for Xl . If the grid of neurons is interpreted as a plane (see Fig. 4.10),
the position of the points Xl on a plane is completely defined by the position of the
corresponding winning neuron on the grid.

Moreover, the number of winning neurons is much lower as compared with the
number m of points. Therefore, we get some clustering of the data set X . The number
of clusters is equal to the number of winning neurons.

Let us define some terms related with the structure of SOM: neighbor of the
neuron and neighborhood order. All the neurons adjacent to a neuron M̂c can
be defined as its neighbors of the first order (neighborhood order ηc

i j = 1), then the
neurons adjacent to the first-order neighbor, excluding those already considered, as
neighbors of the second order (neighborhood order ηc

i j = 2), etc. The neighborhood
orders in respect of the neurons marked are shown in Fig. 4.11. The neighborhood
order ηc

i j can be integrated into the neighborhood function instead of ‖R̂c− R̂i j‖ in
formula (4.12).

4.2.2.1 Properties of SOM Training

In the general case, the components of the reference vector Mi j are adapted
according to the learning rule (4.12). There are some realizations of SOM training,
one differs from others in the expression of the neighborhood function hc

i j. They are
heuristic functions; therefore, there are no strict mathematical proofs of convergence
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of the learning process, and different learning rules can produce different maps.
Usually, some stable groups of the data points remain in all maps; however, some
points may be assigned to different groups in each map. That is an advantage of
the method, because the main target of visualization is to help perceive the data, to
discover their structure, to hypothesize over the data set, etc. Some maps help to do
it more effectively.

In this section, one specific rule of rectangular SOM training is introduced.
This rule is used in our further investigations. The neighborhood function is as
follows [47]:

hc
i j =

α
αηc

i j + 1
, (4.13)

where

α = max

(
ê+ 1− e′

ê
,0.01

)
.

Here, ê is the number of training epochs, e′ is the order number of the current
epoch (e′ ∈ [1, ê]), and ηc

i j is the neighborhood order between Mi j and M̂c. The

value of the neighborhood function hc
i j for the reference vector M̂c of the winning

neuron is maximal. The value decreases as the order number of the epoch e′ and the
neighborhood order ηc

i j increases.
In each iteration, the reference vector Mi j is recalculated if

ηc
i j ≤max [α max(kx,ky),1] , (4.14)

where kx is the number of rows and ky is the number of columns of the SOM grid.
Formula (4.14) ensures that the reference vectors of all the neighbors of winning

neurons are recalculated at the beginning of SOM training, later on, only the
reference vectors of the near neighbors are recalculated.

Denote:

• k = max(kx,ky).
• η(e′) = max [α max(kx,ky),1] = max[αk,1].
• n′ is the integer number that indicates how much the neighborhood order has

been decreased as compared with the maximal one (k).

It follows from (4.14) that ηc
i j = k, as e′ = 1. Usually kx and ky (and k) do not

exceed tens. In this case, the following proposition is valid [53].

Proposition. For a rectangular SOM, if k ≤ 100, in the epoch e′ =
[
(n′−1)ê

k

]
+ 2

(n′ = 1, . . . ,k− 1), the maximal neighborhood order ηc
i j is smaller than that in the

(e′ − 1) epoch by one if 1 < e′ ≤ ê+ 1− ê
k . The maximal neighborhood order does

not decrease and remains equal to one (ηc
i j = 1) for ê+ 1− ê

k < e′ ≤ ê.
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Proof. The value α = max
(

ê+1−e′
ê ,0.01

)
decreases, as the order number of the

current epoch grows. It reaches the minimum if ê+1−e′
ê = 0.01, that is, e′= 0.99ê+1.

In this case,

α =

⎧⎨
⎩

ê+ 1− e′

ê
, if 1≤ e′ ≤ 0.99ê+ 1,

0.01, if 0.99ê+ 1 < e′ ≤ ê.

The function η(e′) decreases, as the order number e′ of the current epoch grows.
It reaches the minimum, as αk = 1. In this case, ê+1−e′

ê k = 1 and e′ = ê+ 1− ê
k .

It follows that:

(a) If 1≤ e′ ≤ 0.99ê+ 1, then

η(e′) = max[αk,1] =

⎧⎨
⎩

ê+ 1− e′

ê
k, if 1≤ e′ ≤ ê+ 1− ê

k ,

1, if ê+ 1− ê
k < e′ ≤ ê.

(b) If 0.99ê+ 1 < e′ ≤ ê, then

η(e′) = max[αk,1] =

{
0.01k, if k≥ 100,

1, if 0 < k < 100.

When comparing the conditions 1 ≤ e′ ≤ 0.99ê+ 1 and 1 ≤ e′ ≤ ê+ 1− ê
k for

k ≤ 100, the second one is stronger and

η(e′) = max[αk,1] =

⎧⎨
⎩

ê+ 1− e′

ê
k, if 1≤ e′ ≤ ê+ 1− ê

k ,

1, if ê+ 1− ê
k < e′ ≤ ê.

It is necessary to find ē ∈ R such that η(ē) = k− (n′ − 1). Such ē is a threshold
point, at which the neighborhood order of the recalculated neurons is ηc

i j = k−
(n′ − 1). In the first epoch, e′ with the order number greater than ē (e′ = [ē] + 1),
the neighborhood order will decrease by one, as compared with the (e′ − 1) epoch.

Therefore, ê+1−ē
ê k = k− (n′ −1) and ē = k+(n′−1)e

k = (n′−1)e
k +1. The proposition is

proved. ��
It follows from this proposition that the dependence of the number of recalculated

reference vectors on the order number of epoch is of a staircase form and decreases

after each e′ =
[

n′ ê
k

]
−
[
(n′−1)ê

k

]
, n′ = 1, . . . ,k− 2, number of epochs.
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4.2.3 Neural Gas

The neural gas (NG) is a biologically inspired adaptive algorithm, proposed in [148].
The algorithm was named neural gas because of the dynamics of the reference
vectors that distribute themselves like gas within an n-dimensional space. Denote the
reference vectors by M1,M2, . . . ,Mm̃, where Mi ∈ R

n, i = 1, . . . , m̃, m̃ is the number
of reference vectors. The set of the reference vectors is M = {M1,M2, . . . ,Mm̃}.

In the neural gas training, the Euclidean distances between the input vector Xl

and each reference vector Mi = (mi1,mi2, . . . ,min), i = 1, . . . , m̃, are calculated. The
distances

‖M1−Xl‖, . . . ,‖Mm̃−Xl‖
are sorted in an ascending order. Let us rename the reference vectors depending on
the distances by W1,W2, . . . ,Wm̃, where Wk ∈ {M1,M2, . . . ,Mm̃}, k = 1, . . . , m̃, and

‖W1−Xl‖ ≤ ·· · ≤ ‖Wm̃−Xl‖.

The neuron, the reference vector of which is W1, is called a winning neuron. The
reference vector Wk, k = 1, . . . , m̃, is adapted according to the learning rule:

Wk(t + 1) =Wk(t)+E(t)hλ(Xl−Wk(t)),

where t is the order number of iteration, tmax is the number of training steps, tmax =
ê×m, and ê is the number of training epochs.

E(t) = Eg

(
E f

Eg

) t
tmax

, hλ = e
− (k−1)

λ(t) , λ (t) = λg

(
λ f

λg

) t
tmax

.

The values of the parameters λg, λ f , Eg, E f are selected before the training. After
the NG training, the set of reference vectors W = {W1,W2, . . . ,Wm̃} is obtained. The
pseudo-code of neural gas training is presented in Algorithm 10.

Just like in SOM, when the training is completed, the winning neurons are
defined for all data points Xl , i = 1, . . . ,m. The reference vectors of these neurons
are representatives of the corresponding points Xi. However, the number of winning
neurons is much smaller as compared with that of points. Therefore, we get some
clustering of the data set X . The number of clusters is equal to the number of winning
neurons. The possibility to apply the NG training results in multidimensional data
visualization is investigated in Sect. 4.3.

4.2.4 Quality Measures of SOM and Neural Gas

After a large number of training steps, the network has been organized, and
n-dimensional points X1,X2, . . . ,Xm have been mapped. Each point is assigned



134 4 Combining Multidimensional Scaling with Artificial Neural Networks

Algorithm 10 NG training
Input: X; M; tmax; m̃; λg; λ f ; Eg; E f

Output: W
1: for t = 0, . . ., tmax do
2: for l = 1, . . . ,m do
3: for i = 1, . . ., m̃ do

4: ‖Mi−Xl‖←
√

∑n
p=1 (mip− xl p)2 // Euclidean distances are calculated

5: end for
6: {W1,W2, . . . ,Wm̃} ← SORT ASCENDING(‖M1 − Xl‖, . . . ,‖MN − Xl‖) // here Wk ∈

{M1,M2, . . . ,Mm̃, k = 1, . . . , m̃ and ‖W1−Xl‖ ≤ . . .≤ ‖Wm̃−Xl‖
7: E(t)← Eg

(
E f
Eg

) t
tmax

8: λ (t)← λg

(
λ f
λg

) t
tmax

9: for k = 1, . . ., m̃ do

10: hλ ← e
− (k−1)

λ(t)

11: Wk(t +1)←Wk(t)+E(t)hλ (Xl −Wk(t)) // NG learning rule
12: end for
13: end for// the end of presented of the input vectors
14: end for// the end of training

to its winning neuron, that is, the points are distributed among the elements of
the map. Some elements of the map may remain unrelated with any point from
{X1,X2, . . . ,Xm}, but there may occur elements related with some points.

After SOM and NG have been trained, it is important to know whether they have
properly adapted themselves to the training (or testing) data. Usually, the quality of
SOM and NG is evaluated based on the quantization.

The quantization error describes how accurately the neurons respond to the given
data set. If all Xl , l = 1, . . . ,m are coincident with the reference vectors of their
winning neurons, then the error is equal to 0. Normally, the number m of data points
exceeds the number of winning neurons, and the quantization error is thus always
different from 0. The quantization error EQE is defined by the following formula:

EQE =
1
m

m

∑
l=1

‖Xl− M̂c(l)‖, (4.15)

where M̂c(l) is the reference vector of the winning neuron for Xl . The quantization
error EQE is the average distance between data points and their winning neurons.

The quantization error (4.15) is used to estimate the quantization quality not only
of SOM but also of the neural gas. In that case, M̂c(l) =W1 for Xl .

The topology preservation measure describes how well SOM preserves the
topology of the data set. Other than the quantization error, it considers the structure
of the map. The topographic error may be great even if the quantization error is
small.

Denote by M̂c′(l) the reference vector, the distance to Xl of which is the second in
size after M̂c(l). The topographic error ETE is defined as follows:
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ETE =
1
m

m

∑
l=1

u(Xl), (4.16)

where u(Xl) is equal to 1 if the winning neuron M̂c(l) for Xl and neuron M̂c′(l) are
not adjacent. Otherwise, u(Xl) is equal to 0.

In order to estimate which method (SOM or NG) is more suitable for quantiza-
tion, some data sets (Chainlink, Target, Iris, Hepta, Rand Clust5, Rand Clust10)
are used in the experimental investigation. See a description of the data sets in
Appendix A. At first, the points X1,X2, . . . ,Xm are quantized by the neural gas and
the self-organizing map. Quantization errors EQE (4.15) are calculated to estimate
the quality of quantization. Recall that the quantization error shows the difference
between the points X1,X2, . . . ,Xm and the reference vectors M̂1,M̂2, . . . ,M̂r of
winning neurons, where r is the number of winning neurons.

The dependence of the quantization error on the number of winning neurons
is presented in Fig. 4.12. The quantization error decreases if the number of the
winning neurons is increasing. As we see in Fig. 4.12, the quantization errors of NG
are significantly smaller than that of SOM when the number of winning neurons
is approximately equal. It means that the neural gas is more suitable for vector
quantization. The possible reason is that SOM has a fixed grid structure.

4.2.5 Numbers of Winning Neurons in SOM and NG

The numbers of winning neurons in SOM and NG are examined here. Chainlink,
Target, Auto MPG, Hepta, Rand Clust5, and Rand Clust10 data sets are used
in the experimental investigation. It is of interest to investigate in which method
more neurons become winners. The ratios between the number of winning neurons
and the total number of SOM and NG neurons, depending on the number of
total neurons, are presented in Fig. 4.13. It is shown that the ratios for NG are
larger than that for SOM: about 80% of neurons become winners for NG. If the
number of neurons is large, only about 50% of them become winners for SOM.
The investigation proves that SOM is more useful than the neural gas for solving
clustering problems.

4.2.6 SOM for Multidimensional Data Visualization

The self-organizing map is a powerful and widely used tool for visualizing
multidimensional data. It is able not only to visualize but also to cluster [64].

SOM allows us to transform the multidimensional data to some discrete structure
defined by a grid of neurons. It can be treated as a distribution of multidimensional
data on the plane. The position of the winning neurons on the grid indicates the
location of data on the plane.
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Fig. 4.12 Quantization error of SOM (left) and NG (right). (a) Chainlink (filled circles) and Target
(empty circles); (b) Rand Clust10 (filled circles) and Rand Clust5 (empty circles); (c) Iris (filled
circles) and Hepta (empty circles)

In the case of the rectangular topology of SOM, we can draw a simple table with
the cells corresponding to the neurons. Such a table is called the SOM table. The
table cells, corresponding to winning neurons, can contain:
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Fig. 4.13 Number of winning neurons in SOM (filled circles) and NG (empty circles): (a) Chain-
link, (b) Hepta, (c) Target, (d) Auto MPG, (e) Rand Clust5, (f) Rand Clust10

1. The order numbers of data points corresponding to the analyzed objects
2. The labels of classes the objects belong to
3. The amounts of points, the winning neurons of which are the same

The examples of three cases are presented below. In the first case, the coastal
dune data and their vegetation in Finland [91] are analyzed by SOM, and the results
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Table 4.1 Coastal dune data
on the SOM, a table is filled
with the order numbers of
data points

4, 6, 7 3 1, 2, 16

10, 11, 12, 13 5, 8, 9, 14, 15

Table 4.2 Iris data on the
SOM, a table is filled with the
labels of classes

3 3 3 2 1 1
3 2 1 1
3 3 2 2 1 1
3 3 3 2 1
3 3 2 1

3 2 2 2 2
3 3 3 2

2, 3 3 2 2 2
2 2 2 2 2
3 2 2 3 2 2 2 2 2

Fig. 4.14 Histogram of the
distribution of Iris data
among neurons

are presented in Table 4.1. Here, the order numbers of points are noticed in the
cells (see the description of coastal dune data in Sect. 5.3.3). The second case is
used if data sets with the known classes are analyzed by SOM, for example, the
Iris data set. Then, the labels of classes are noticed in the cells. In Table 4.2, the
numbers are labels of the classes corresponding to the Iris species. In the third case,
histograms can be used. At first, winning neurons are found for each data point, then
the numbers of the points, for which winning neurons are the same, are calculated,
and the histogram is drawn (see Fig. 4.14).

Tables 4.1 or 4.2 are not informative enough, because the table does not answer
the question, how much the data points of the neighboring cells are close in the
n-dimensional space. Therefore, it is necessary to seek some ways of improving the
quality of visual presentation of SOM which facilitates the interpretation of results.
Several techniques have been developed. However, due to the nature of SOM, not
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a single technique has proved to be superior to others. Several different visual
presentations of the same SOM are useful to comprehend the results completely.

A U-matrix (unified distance matrix) is one of the most popular techniques to
illustrate the clustering of reference vectors in SOM. It has been developed by Ultsch
and Siemon in [208], as well as by Kraaijveld et al. in [123].

The U-matrix (4.17) shows the relations between the neighboring neurons. It has
(2kx− 1) rows and (2ky− 1) columns. Odd rows have (2ky− 1) elements, and even
rows have kx elements.

U-matrix=

⎛
⎜⎜⎜⎜⎜⎜⎝

u11 u11|12 u12 u12|13 · · · u1ky

u11|21 − u12|22 − ·· · u1ky|2ky
...

...
...

...
. . .

...
u(kx−1)1|kx1 − u(kx−1)2|kx2 − ·· · u(kx−1)ky|kxky

ukx1 ukx1|kx2 ukx2 ukx2|kx3 · · · ukxky

⎞
⎟⎟⎟⎟⎟⎟⎠
. (4.17)

The values of elements ui j|i( j+1) are distances between the neighboring neurons
Mi j and Mi( j+1). ui j|(i+1) j are distances between the neighboring neurons Mi j and
M(i+1) j. The values of ui j can be the average of neighboring elements of the
U-matrix, for example, if ui j has four neighbors, then ui j =

(
ui( j−1)|i j + ui j|i( j+1)+

u(i−1) j|i j + u(i+1) j|i( j+1)
)
/4; if the number of the neighbors is smaller, the average

is computed with a smaller number of elements.
In SOM, the U-matrix is represented by shades in a gray scale (or, eventually,

pseudo-color scales might be used). If the average distance of neighboring neurons
is small, a light shade is used; dark shades represent large distances: high values
of the U-matrix indicate a cluster border; uniform areas of low values indicate the
clusters themselves [120, 121].

A cluster landscape formed over SOM visualizes the classification of objects.
The interpretation is left to the reader: the clusters are indicated by light shades and
the border with darker shades, respectively [120,121]. The U-matrix of the Iris data
set is presented in Fig. 4.15. The Nenet system is used.

Each component of the SOM reference vector corresponds to one feature of
the objects (coordinate of data points). Each component may be represented using
the idea of U-matrix visualization. In this way, the so-called component planes are
obtained. The component planes of each feature of the Iris are presented in Fig. 4.16.
We can see what influence is made by one or another feature on clustering.

Usually, the two-dimensional U-matrix is used; however, the three-dimensional
SOM visualization has been proposed to help us in highlighting the clusters of SOM.

4.2.7 Comparative Analysis of SOM Software

At the present time, a lot of software that realizes SOM has been developed. The
software differs one from another in the realization and visualization capabilities.
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Fig. 4.15 Visualization of
Iris data by the U-matrix

In this section, similarities of the SOM software systems, their differences, advan-
tages, and imperfections have been investigated. The data on coastal dunes are used
for the experimental comparison of the graphical result presentations.

The following software systems have been used in the experiments:

• SOM-PAK that has been developed at the Neural Networks Research Centre
(NNRC), Laboratory of Computer and Information Science of Helsinki Univer-
sity of Technology (http://www.cis.hut.fi/research/som pak/).

• SOM-TOOLBOX that has been developed at the NNRC like SOM-PAK (http://
www.cis.hut.fi/somtoolbox/).

• Viscovery SOMine: experiments were carried out using standard edition version
3.0, a demo version of which was free (http://www.viscovery.net).

• Nenet, a demo version of which is free (http://koti.mbnet.fi/∼phodju/nenet/Nenet/
General.html).

• Kleiweg’s system that was developed at the Groningen University in the Nether-
lands (http://www.let.rug.nl/∼kleiweg/kohonen/kohonen.html).

A certain analysis of several systems (SOM-PAK, SOM-TOOLBOX, Viscovery
SOMine, and Nenet) has been made by Deboeck [33]. The first difference of our
study is in the application of real data (of ecological nature) to the analysis. The
second difference is that Deboeck [33] paid attention to the system’s technical
characteristics only. Our analysis tries to compare the graphical result presentation
by different systems and the level of understandability of the presentation [51].

The data on coastal dunes [91] have been analyzed. The data set consists of
m = 16 data points V1,V2, . . . ,V16 containing n = 16 coordinates. Each data point
describes different properties of coastal dunes. These points are obtained in the
analysis of the correlation matrix of some features, using the method presented in
Sect. 5.3. See a detailed description of data in Sect. 5.3.3.
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Fig. 4.16 Component planes of Iris data: (a) sepal height, (b) sepal width, (c) petal height,
(d) petal width

The experiments with the system Nenet have been done using a smaller
dimensionality of data points V1,V2, . . . ,Vm (m = 16, n = 6), because the Nenet
demo version has limited capabilities (the maximal dimensionality of the points
is restricted by 6).

The systems use various realizations of the idea of the U-matrix. The results
are presented in Figs. 4.17–4.21. The rectangular SOM of size 4× 4 has been used
in experiments (kx = ky = 4) with all the systems except Viscovery SOMine which
allows the hexagonal topology only.

In SOM-PAK, the U-matrix is used. The color of the SOM table cells depends
on the values of elements of the U-matrix. Additional rows and columns separate
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Fig. 4.17 Visualization by
SOM-PAK

Fig. 4.18 Visualization by
SOM-TOOLBOX

neurons. There are two types of cells in the SOM table. The cells filled by
the order number of data points or dots correspond to neurons (see Fig. 4.17).
The other cells are intermediate. The color of these cells indicates the distances
between the neighboring neurons: lighter intermediate cells between the nodes mean
that the neurons, corresponding to these nodes, are nearer than that between which
the intermediate cells are darker.

The system SOM-TOOLBOX also provides additional rows and columns that
separate neurons; however, the intermediate cells are not divorced from the nodes
(Fig. 4.18). The color of the nodes and of the intermediate cells is selected in the
same way as in SOM-PAK.

Nenet (Fig. 4.20) and Kleiweg’s systems (Fig. 4.21) colorize the borders between
any pair of the neighboring neurons. The system Viscovery SOMine separates the
clusters by lines automatically. It is able to detect the number of clusters. Most of
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Fig. 4.19 Visualization by Viscovery SOMine: (a) automatically detected six clusters, (b) by force
into four clusters

Fig. 4.20 Visualization by
Nenet

the results by SOM-PAK and Nenet indicate four clusters in the data set. Therefore,
in Viscovery SOMine, we used both the automatic detection of the number of clusters
(Fig. 4.19a) and forced a partition into four clusters (Fig. 4.19b).

Kleiweg’s system automatically provides the so-called minimal spanning tree
(Fig. 4.21). A minimal spanning tree is obtained by linking all the reference vectors
of the winning neurons together, using the smallest possible square difference
between the linked vectors [120]. The minimal spanning tree describes the similarity
relations of the winning neurons. The lines are marked in different dashes. The more
solid the line, the smaller the distance between the reference vectors of the winning
neurons is.



144 4 Combining Multidimensional Scaling with Artificial Neural Networks

8, 9

14

12

10, 11

5

13

7

3

15

4, 6

1 , 2

16

Fig. 4.21 Visualization by
Kleiweg’s system

Table 4.3 Summary of clusters

System Clusters

SOM-PAK Four clusters: {V1 ,V2,V3,V16}, {V4,V6,V7}, {V5 ,V8,V9,V14,V15},
{V10 ,V11,V12,V13}. V3 has a tendency to form a separate
cluster

SOM-TOOLBOX The first cluster is {V10 ,V11,V12,V13}. We can assume that there
is a second large cluster {V1,V2,V5,V8,V9,V14,V15,x16}.
However, it may be divided into two subclusters:
{V1 ,V2,V16} and {V5,V8,V9,V14,V15} The third large cluster
is {V3,V4,V6,V7}. However, the elements in this cluster are
not so strong-related like in the previous ones

Viscovery SOMine Four clusters: {V1 ,V2}, {V3 ,V4,V6,V7}, {V10 ,V11,V12,V13},
{V5 ,V8,V9,V14,V15,V16}. Six clusters: {V1,V2}, {V3,V6},
{V4 ,V7}, {V10 ,V11,V12,V13}, {V5}, {V5 ,V8,V9,V14,V15,V16}

Nenet Four clusters: {V3 ,V4,V6,V7}, {V5,V8,V9,V14,V15,V16},
{V10 ,V11,V12,V13}, {V1 ,V2,V16}

Kleiweg’s system Four clusters: {V3 ,V4,V6,V7}, {V5,V8,V9,V14},
{V10 ,V11,V12,V13,V15}, {V1,V2,V16}

The results of the visual analysis are summarized in Table 4.3, where various ten-
dencies for similarities of V1,V2, . . . ,V16 and forming their clusters are pointed out.

The general conclusions are drawn as follows:

• A certainly strong cluster is {V10,V11,V12,V13} that is formed in all the cases.
• Rather strong clusters are {V5,V8,V9,V14,V15}, {V3,V4,V6,V7}, and {V1,V2,V16}.

The goal of this section was to compare the graphical result presentation
using different SOM software systems and to intuitively evaluate the level of
understandability of the presentations. We see that each form of visual presentation
of the results has advantages. However, better results could be obtained via a joint
use of the systems.
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4.3 Combinations of SOM or Neural Gas with MDS

As shown in Sect. 4.2.1, SOM provides structured information on the set of
objects, described by n-dimensional data points. Several nodes (neurons) of the grid
become winning neurons. Besides from the position on the grid, the neurons are

characterized by n-dimensional reference vectors Mi j =
(

m1
i j,m

2
i j, . . . ,m

n
i j

)
∈ R

n.

A natural idea arises to apply the dimensionality reduction methods to additional
mapping of the reference vectors of the winning neurons on the plane. MDS may
be used for such purposes. This idea can be applied to the reference vectors of the
winning neurons of neural gas as well.

Let us denote the reference vectors of the winning neurons by M̂1,M̂2, . . . ,M̂r,
where r is the number of the winning neurons. Sometimes, we will refer to this
notation as the winning neurons.

Consecutive and integrated combinations of SOM and NG with MDS are
discussed and examined below.

4.3.1 Consecutive Combination

A shown in the previous sections, the reference vectors of the winning neurons
represent one or more data points, and the number r of winning neurons is smaller
than the number m of data points. Thus, we can move from the analysis of m
n-dimensional data points X1,X2, . . . ,Xm to the analysis of r n-dimensional reference
vectors M̂1,M̂2, . . . ,M̂r of the winning neurons. Therefore, a smaller data set can be
used by MDS. The consecutive combination of SOM or NG and MDS has been
investigated in [7, 47, 53, 59, 122, 128, 129, 131].

The algorithm of consecutive combination of SOM or NG and MDS is as follows
(see Fig. 4.22):

1. At first, all multidimensional data points X1,X2, . . . ,Xm are processed using SOM
or NG.

2. Then the obtained reference vectors M̂1,M̂2, . . . ,M̂r of the winning neurons are
displayed, using one of the MDS methods. Usually, the total number r of winning
neurons is smaller than m.

The main reason of the combination is to improve the visualization of SOM
results. Moreover, such a combination allows us to decrease the computation time
of visualization as compared with alone MDS, when m is large.

4.3.1.1 Investigation of Time Consumption

An investigation has been performed, using the Ellipsoidal data set (m = 1338,
n = 100) (see a description of the data set in Appendix A). The SOM training
has been repeated for several times with various numbers m̃ of neurons. Various
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Fig. 4.23 The time consumption: dashed—alone MDS, blue—SOM, red—MDS after SOM,
green—consecutive combination of SOM and MDS

numbers r of winning neurons have been obtained. In Fig. 4.23, we present the
following:

1. The computing time of alone MDS, where all the points of the ellipsoids have
been analyzed (black dashed line)
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a b

Fig. 4.24 Visualization of an Ellipsoidal data set: (a) all data points are mapped by MDS, (b) only
259 reference vectors of the winning neurons are visualized by MDS

2. The dependence of the SOM training time on the number r of winning neurons
(blue curve)

3. The dependence of MDS on r, where only the reference vectors of the winning
neurons are analyzed by MDS (red curve)

4. The dependence of the total time of the consecutive SOM and MDS combination
on r (green curve)

We see that if r is smaller than 500, it is worth to use the combination in order to
save the computational time, as compared with alone MDS. If NG is used instead of
SOM, similar results are obtained.

The visualization results of the Ellipsoidal data set, where all the points (m =
1338) are mapped by MDS and only 259 winning neurons (r = 259) of SOM are
mapped by MDS, are presented in Fig. 4.24. We do not present legends and units
for both axes in the figure, because we are interested in observing the interlocation
of points on a plane. We see here a similar quality of visualization, while the
computing time has been essentially saved. This is an advantage of visualization
of the reference vectors of the winning neurons, instead of a direct visualization of
the data set X .

4.3.1.2 SOM Combinations with Sammon’s Mapping and SMACOF

Sammon’s mapping is one of the MDS methods. In Sammon’s Stress function
(2.16), the squared difference between the dissimilarity δi j of objects Xi and Xj and
its representative distance d(Yi,Yj) in the low-dimensional space is weighted by δ−1

i j .
Hence, smaller dissimilarities have more weight in the error function than larger
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Table 4.4 Spearman’s coefficient

Iris HBK Wood Wine Breast Cancer Rand Clust10

SOM-SN 0.99664 0.98705 0.95675 0.98805 0.98310 0.83153
SOM-SF 0.99864 0.99026 0.96069 0.98919 0.98318 0.81109

ones [31]. On the contrary, SOM tries to join the data points that describe objects, the
distances between which are small, to one neuron. So, it is expedient to combine two
methods of a different nature (SOM and Sammon’s mapping). Sammon’s mapping
is applied in the combination with SOM in [47, 122]. In [47], such a combination
has been examined and grounded experimentally.

The results of analysis, when comparing the combination of SOM and Sammon’s
mapping and that of SOM and MDS, where its Stress function is minimized by the
SMACOF algorithm, are illustrated in [7]. There, the SMACOF algorithm is used
to minimize the Stress function (2.7) if wi j = 1.

Denote the combination of SOM and SMACOF as SOM-SF and the combination
of SOM with Sammon’s mapping as SOM-SN.

The results of the comparative analysis of SOM-SF and SOM-SN are shown
below. Some data sets of a different nature were used in the experiments: Iris (m =
150, n = 4), Wood (m = 20, n = 5), HBK (m = 75, n = 4), Wine (m = 178,
n = 13), Breast Cancer (m = 699, n = 9), and Rand Clust10 (m = 100, n = 10).
Descriptions of the data sets are presented in Appendix A. The data sets are of
different dimensionality n and have the various number m of points. The structure
(clusters, outliers) of these data sets is known. That enables us to draw conclusions
on the visual results obtained by the consecutive combination of the methods.

The results of the SOM training quality depend on the initial values of the
reference vectors Mi j = (m1

i j,m
2
i j, . . . ,m

n
i j). Therefore, it is advisable to train SOM

several times, using different sets of the initial reference vectors, and to choose a
trained map such that the SOM quantization error EQE (4.15) was the least one. The
experiments have been repeated for 100 times, and a set of the reference vectors of
winning neurons, given the least SOM quantization error EQE, was chosen. Then
the set of the reference vectors was visualized using the MDS. In the experiments,
the number of iterations of Sammon’s and SMACOF algorithms has been chosen so
that the computing time of both cases was approximately equal.

The values of Spearman’s coefficient ρSp (see Sect. 2.3.1) have been calculated
(Table 4.4). The quality of visualization, obtained by the SOM-SF algorithm, is
better, as compared with the visualization by SOM-SN, in most cases. However, the
difference between the values of Spearman’s coefficient is insignificant; therefore,
mappings are similar (Fig. 4.25). Therefore, both SOM-SF and SOM-SN can be
used in the visualization of multidimensional data with quite a good quality. This
grounds the possibility of application of other MDS methods with SOM, because in
most researches, SOM is applied together with Sammon’s mapping so far.
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a b

Fig. 4.25 Visualization of the HBK data set: (a) SOM-SN, (b) SOM-SF

4.3.1.3 SOM and Neural Gas with SMACOF

The reference vectors of the winning neurons, obtained by the neural gas, may be
visualized by multidimensional scaling, too [59,129]. MDS based on the SMACOF
minimization jointly with SOM or NG is used in the experiments below.

Five data sets (Iris (m= 150, n= 4), Auto MPG (m= 398, n= 7), Chainlink (m=
1000, n = 3), Hepta (m = 212, n = 3), Rand Clust10 (m = 100, n = 10)) are used in
the experimental investigations. Each data set has some specific characteristics. The
descriptions of the data sets are presented in Appendix A.

After quantizing the data points X1,X2, . . . ,Xm by the neural gas and the
self-organizing map, the reference vectors M̂1,M̂2, . . . ,M̂r of the winning neurons
are visualized by multidimensional scaling, and two-dimensional pointsY1,Y2, . . . ,Yr

are obtained. König’s measure EKM (2.24) and Spearman’s coefficient ρSp (2.22)
are calculated to estimate the visualization quality. The number m̃ of the winning
neurons in SOM and NG is chosen experimentally so that the number r of winning
neurons was equal to 100, 200, and 300 for the Chainlink and Auto MPG; to 50,
100, and 150 for the Iris; to 50, 100, and 200 for the Hepta; and to 50, 80, and 100
for the Rand Clust10 data sets.

Since the results of SOM and NG depend on the initial values of the reference
vectors, 40 experiments have been carried out for each data set with different
initial values of the reference vectors. The values of the measures EKM and ρSp are
calculated and averaged. The confidence intervals of the averages are also calculated
(a confidence level is equal to 0.95).

When calculating König’s measure EKM, it is necessary to select values of
two parameters μ and ν that define sizes of neighborhood in n-dimensional and
d-dimensional spaces, respectively. In the experiments, μ = 4, and ν is changed
from 6 to 50. The averaged values of EKM are shown in Figs. 4.26–4.28. In Fig. 4.26a
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Fig. 4.26 Values of König’s measure for Chainlink data (gray—SOM, black—NG): (a) r = 100,
(b) r = 200
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Fig. 4.27 Values of König’s measure for Auto MPG data (gray—SOM, black—NG): (a) r = 100,
(b) r = 200

and Fig. 4.27a, the confidence intervals of the averages are also shown. In the other
cases (Figs. 4.26b, 4.27b and 4.28), the confidence intervals are not presented
because they are very narrow. We see that EKM is larger in the SOM case as
compared with the NG case, except for the Chainlink data, where the number
of winning neurons is equal to 100. We conclude that the topology is preserved
precisely when the reference vectors of the winning neurons, obtained by SOM, are
mapped by MDS. It means that the SOM preserves the neighborhood better. In the
Chainlink data case, the confidence intervals are wide, they are overlapping, and
therefore, the results obtained are unreliable. When the number of winning neurons
is increasing, the confidence intervals are narrowing for all data sets. Naturally, for
small values of the parameter ν , the values of EKM are lower than that for higher ν;
however, starting from a certain value of ν , the values of EKM do not change at all
or change but slightly.
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Fig. 4.28 Values of König’s measure for Rand Clust10 data (gray—SOM, black—NG): (a) r =
50, (b) r = 80

The averaged values of Spearman’s coefficient ρSp are presented in Fig. 4.29.
The values of Spearman’s coefficient are higher in the NG case for the Chainlink
and Hepta data and in the SOM case for the Auto MPG and Iris data. The values of
Spearman’s coefficient are large enough (in many cases, ρSp > 0.9), which means
that the mapping results are good in the sense of topology preservation, where
n-dimensional points are transformed into two dimensions. The investigation shows
that both SOM and NG are suitable for a combination with MDS.

4.3.1.4 Examples of Visualization Using a Consecutive Combination

If n-dimensional reference vectors M̂1,M̂2, . . . ,M̂r of the winning neurons are
mapped by multidimensional scaling, two-dimensional points Y1,Y2, . . . ,Yr are
obtained and presented using a scatter plot. Visualization of three artificial data
sets (Chainlink, Target, and Hepta) is presented in Figs. 4.30–4.32. Since the classes
of multidimensional points are known, the color of points on the plane indicates
the respective class. Figures 4.30–4.32 show how the mapping changes, when the
number of winning neurons is growing. In the case of NG, the data structure is
visible even when the number r is small enough. In the case of SOM, the data
structure is visible in the case with larger r.

In Fig. 4.33, when analyzing the Iris data set, the reference vectors of the
winning neurons of SOM and NG are visualized by MDS. The scatter plot points,
corresponding to the different species (Setosa, Versicolor, and Virginica), are
marked in blue, red, and green, respectively. The points, corresponding to the
reference vectors of the winning neurons for both Versicolor and Virginica, are
marked in brown. The quantization error of SOM is much larger (EQE = 0.3222)
than that of NG (EQE = 0.0379). However, we see more concentrated clusters when
SOM is used.
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Fig. 4.29 Values of Spearman’s coefficient (gray—SOM, black—NG): (a) Chainlink, (b) Auto
MPG, (c) Iris, (d) Hepta

4.3.2 Integrated Combination

The idea of the integrated combination of quantization and MDS is as follows:
multidimensional points X1,X2, . . . ,Xm are analyzed by using MDS, taking into
account the process of SOM or NG training [53, 130].

Note that the integrated combination is based on the iterative minimization of the
MDS Stress. It is important to select the proper initial values of two-dimensional
points Y1,Y2, . . . ,Ym. Initial values of two-dimensional projections of the reference
vectors of the winning neurons are determined by the intermediate SOM or NG
training results.

The integrated combination consists of two parts:

1. SOM or NG training
2. Computing two-dimensional points that are two-dimensional representations of

the reference vectors of the winning neurons by MDS
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a b

c d

e f

Fig. 4.30 Visualization of Chainlink data obtained by SOM (left) and NG (right): (a) r = 20, (b)
r = 20, (c) r = 39, (d) r = 40, (e) r = 149, (f) r = 150
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a b

c d

e f

Fig. 4.31 Visualization of Target data obtained by SOM (left) and NG (right): (a) r = 24, (b)
r = 20, (c) r = 99, (d) r = 95, (e) r = 274, (f) r = 271
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a b

c d

Fig. 4.32 Visualization of Hepta data obtained by SOM (left) and NG (right): (a) r = 25,
(b) r = 20, (c) r = 97, (d) r = 95

a b

Fig. 4.33 Visualization of Iris data obtained by: (a) SOM (EQE = 0.3222), (b) NG (EQE = 0.0379)
(blue—Setosa, red—Versicolor, green—Virginica, brown—mixture of Versicolor and Virginica)
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Fig. 4.34 The integrated combination of SOM and NG with MDS

The difference of the integrated combination from the consecutive one is that
these two parts are performed alternately.

At first, some notation and definitions are introduced:

• Let the data set X consists of n-dimensional points X1,X2, . . . ,Xm, where
Xi = (xi1,xi2, . . . ,xin), i = 1, . . . ,m. We need to get the two-dimensional points
Y1,Y2, . . . ,Ym, where Yi = (yi1,yi2), i = 1, . . . ,m, that are the projection of
n-dimensional points on the plane.

• The neural network (SOM or NG) is trained using ê training epochs.
• All the ê epochs are divided into equal training parts—blocks.
• Denote the number of the blocks as γ . Each block contains ν ′ training epochs

(ê = ν ′γ).
• Denote by q the order number of a block (q = 1, . . . ,γ).
• Denote the reference vectors of the winning neurons, obtained by the qth block as

M̂(q)
1 ,M̂(q)

2 , . . . ,M̂(q)
rq , and two-dimensional projections of these reference vectors,

calculated by MDS as Y (q)
1 ,Y (q)

2 , . . . ,Y (q)
rq , where Y (q)

i = (y(q)i1 ,y(q)i2 ), i = 1, . . . ,rq.
Note that the number of the winning neurons rq will be smaller than or equal
to m.

We have suggested the following way of integrating SOM or NG and MDS
(see Fig. 4.34):

Step 1: Network training begins (q = 1). After the first ν ′ training epochs,

the training is stopped temporarily. The reference vectors M̂(1)
1 ,M̂(1)

2 , . . . ,M̂(1)
r1 of

the winning neurons, obtained after the first block (q = 1) of the training process,
are analyzed by MDS. There is a unique relation between a winning neuron and the
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corresponding point (or several points) from the data set X = {X1,X2, . . . ,Xm}. The

initial coordinates of two-dimensional points Y (0)
i = (y(0)i1 ,y(0)i2 ), i = 1, . . . ,r1, must

be chosen. The initial coordinates
(

y(0)i1 ,y(0)i2

)
can be set for MDS as follows:

(a) At random in the interval (0,1)

(b) On a line: y(0)i1 = i+ 1
3 , y(0)i2 = i+ 2

3

(c) By transforming the reference vectors M̂(1)
1 ,M̂(1)

2 , . . . ,M̂(1)
r1 to two largest prin-

cipal components

(d) By selecting two components of M̂(1)
1 ,M̂(1)

2 , . . . ,M̂(1)
r1 , variances of which are the

maximal

After MDS has been performed, the two-dimensional projections Y (1)
1 ,Y (1)

2 , . . . ,Y (1)
r1

of the reference vectors M̂(1)
1 ,M̂(1)

2 , . . . ,M̂(1)
r1 of the winning neurons are obtained.

Steps from 2 to γ: Network training is continued (q = 2, . . . ,γ). The reference vec-

tors M̂(q)
1 ,M̂(q)

2 , . . . ,M̂(q)
rq of the winning neurons obtained after each qth block of the

training process are analyzed by MDS. The initial coordinates of two-dimensional

points Y (q)
1 ,Y (q)

2 , . . . ,Y (q)
rq for MDS are selected taking into account the result of

the block (q− 1). Note that rq �= rq−1 in general. The way of selecting the initial

coordinates of Y (q)
1 ,Y (q)

2 , . . . ,Y (q)
rq is presented below. We must determine the initial

coordinates of each two-dimensional point Y (q)
i , correspondent to the reference

vectors M(q)
i , i = 1, . . . ,rq, of the winning neurons. This is done as follows:

• Determine the points from X = {X1,X2, . . . ,Xm} that are linked with M(q)
i , that is,

points to which corresponding neurons become the winning neurons. Note that

some points from X can be linked with the same M(q)
i . Denote these points by

Xi1 ,Xi2 , . . .|(Xi1 ,Xi2 , · · · ∈ {X1,X2, . . . ,Xm}) .

• Determine the reference vectors of the winning neurons of the block (q− 1) that
were linked with Xi1 ,Xi2 , . . . Denote these vectors as follows:

M(q−1)
j1

,M(q−1)
j2

, . . .
∣∣∣(M(q−1)

j1
,M(q−1)

j2
, · · · ∈

{
M(q−1)

1 ,M(q−1)
2 , . . . ,M(q−1)

rq−1

})
and their two-dimensional projections, obtained as a result of MDS as

Y (q−1)
j1

,Y (q−1)
j2

, . . .
∣∣∣(Y (q−1)

j1
,Y (q−1)

j2
, · · · ∈

{
Y (q−1)

1 ,Y (q−1)
2 , . . . ,Y (q−1)

rq−1

})
.

• There are two possible ways of assignment of initial coordinates of two-
dimensional points for MDS:

By proportion: The initial coordinates of Y (q)
i are set to the mean values of the

coordinates of points {Y (q−1)
j1

,Y (q−1)
j2

, . . .}. In Fig. 4.35 (top), two points Y (q−1)
j1
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Yj1     ,Yj2 

Yi(q)

Yi(q)

(q– 1) (q– 1) Yj3     
(q– 1)

Yj1     ,Yj2 
(q– 1) (q– 1) Yj3     

(q– 1)

Fig. 4.35 Two ways of
assignment: by
proportion (top), by
midpoint (bottom)

and Y (q−1)
j2

are coincident, the point Y (q)
i = 1

3

(
Y (q−1)

j1
+Y (q−1)

j2
+ Y (q−1)

j3

)
is

closer to the points Y (q−1)
j1

Y (q−1)
j2

than to Y (q−1)
j3

.

By midpoint: As the coincident points can be among the points {Y (q−1)
j1

,Y (q−1)
j2

, . . .}, the initial coordinates of Y (q)
i are set to the mean values of the coordinates

of the noncoincident points Y (q−1)
j1

,Y (q−1)
j2

, . . . . In Fig. 4.35 (bottom), Y (q)
i =

1
2

(
Y (q−1)

j1
+Y (q−1)

j3

)
.

After the assignment, the two-dimensional points Y (q)
1 ,Y (q)

2 , . . . ,Y (q)
rq , where

Y (q)
i =(y(q)i1 ,y(q)i2 ), i= 1, . . . ,rq, corresponding to the reference vectors M̂(q)

1 ,M̂(q)
2 , . . . ,

M̂(q)
rq of the winning neurons are computed by MDS.
The training of the neural network is continued until q = γ . After the γth

block, we get two-dimensional projections Y (γ)
1 ,Y (γ)

2 , . . . ,Y (γ)
rγ of the n-dimensional

reference vectors M(γ)
1 ,M(γ)

2 , . . . ,M(γ)
rγ of the winning neurons that are uniquely

linked with the points X1,X2, . . . ,Xm. The two-dimensional points Y (γ)
1 ,Y (γ)

2 , . . . ,Y (γ)
rγ

can be presented on a scatter plot (see Fig. 4.34).

4.3.3 Comparative Analysis of Combinations

4.3.3.1 Combinations of SOM and Sammon’s Mapping

In this section, a comparative analysis of combinations of SOM and Sammon’s
mapping is made. The experiments below and in [53] have shown that, namely,
the integrated combination of SOM and Sammon’s mapping is very good in search
for a more precise projection of multidimensional data in the sense of Sammon’s
Stress function ES(Y ) (2.16) that defines the projection error, where the reference
vectors of the winning neurons of SOM are visualized by Sammon’s mapping.

Denote:

• SOMSam(a c) the consecutive combination of SOM and Sammon’s mapping
• SOMSam(b c) the consecutive combination of SOM and the modification of

Sammon’s mapping, presented in Sect. 2.2.4.3
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Table 4.5 The ratios between projection errors by SOMSam(a c) and SOMSam(a i)

e 100 100 100 100 100 200 200 200 200 200 200 300 300 300 300 300
ν 50 25 20 10 5 50 40 25 20 10 5 50 25 20 10 5
γ 2 4 5 10 20 4 5 8 10 20 40 6 12 15 30 60

[2×2] 2.30 2.85 2.84 2.85 2.86 3.07 3.09 3.12 3.11 3.10 3.15 3.25 3.30 3.29 3.23 3.34
[3×3] 1.11 1.14 1.14 1.20 1.26 1.12 1.14 1.18 1.20 1.25 1.31 1.15 1.20 1.22 1.27 1.30
[4×4] 1.49 1.66 1.67 1.75 1.79 2.85 2.96 3.06 3.10 3.18 3.23 4.60 4.83 4.92 4.95 5.05
[5×5] 1.03 1.04 1.05 1.06 1.06 1.04 1.05 1.06 1.06 1.07 1.07 1.06 1.07 1.07 1.07 1.08
[6×6] 1.07 1.08 1.11 1.13 1.13 1.11 1.20 1.20 1.22 1.23 1.24 1.23 1.24 1.25 1.26 1.27

Table 4.6 The ratios between projection errors by SOMSam(b c) and SOMSam(b i)

e 100 100 100 100 100 200 200 200 200 200 200 300 300 300 300 300
ν 50 25 20 10 5 50 40 25 20 10 5 50 25 20 10 5
γ 2 4 5 10 20 4 5 8 10 20 40 6 12 15 30 60

[2×2] 2.90 3.86 3.89 3.95 3.96 4.18 4.19 4.29 4.27 4.30 4.37 4.37 4.48 4.46 4.42 4.53
[3×3] 1.09 1.12 1.09 1.13 1.18 1.07 1.09 1.11 1.12 1.15 1.20 1.08 1.12 1.14 1.17 1.19
[4×4] 1.61 1.93 1.93 2.02 2.07 3.06 3.18 3.24 3.29 3.34 3.42 4.84 5.14 5.19 5.21 5.26
[5×5] 1.03 1.04 1.04 1.04 1.05 1.04 1.04 1.04 1.04 1.05 1.05 1.04 1.04 1.04 1.05 1.05
[6×6] 1.08 1.07 1.11 1.12 1.12 1.17 1.24 1.24 1.25 1.25 1.26 1.40 1.41 1.41 1.43 1.43

• SOMSam(a i) the integrated combination of SOM and Sammon’s mapping
• SOMSam(b i) the integrated combination of SOM and the modification of

Sammon’s mapping

The combinations have been examined while analyzing the data of coastal
dunes [91]. The data set consists of m = 16 data points V1,V2, . . . ,V16 containing
n = 16 coordinates. Each data point describes different properties of coastal dunes.
These points have been obtained by analyzing the correlation matrix of some
features using the method presented in Sect. 5.3.1. See a detailed description of data
in Sect. 5.3.3.

The cases with various parameters of the algorithms and their constituent parts
have been analyzed:

• Size of SOM (2× 2, 3× 3, 4× 4, 5× 5, 6× 6)
• Number of training epochs ê (100, 200, 300)
• Number of training blocks γ and the number of epochs ν ′ per each training block

(ê = ν ′γ)
• Values of the parameter η in Sammon’s mapping (0.1,0.11, . . . ,1.99,2)

Under the same initial conditions, the Sammon’s Stress (2.16) has been calcu-
lated. The experiments have been repeated for 200 times with different (random)

initial values of the components of the reference vectors Mi j =
(

m1
i j,m

2
i j, . . . ,m

n
i j

)
∈

R
n of the SOM neurons.
The ratios between the averaged projection errors, obtained by SOMSam(a c)

and SOMSam(a i) (see Table 4.5) and by SOMSam(b c) and SOMSam(b i) (see
Table 4.6), have been calculated. It is apparent from Tables 4.5 and 4.6 as well
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Fig. 4.36 Dependence of the projection error on the parameter η , [3 × 3] SOM is
used, ê = 200, γ = 40: blue—SOMSam(a c), red—SOMSam(b c), green—SOMSam(a i),
black—SOMSam(b i)
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Fig. 4.37 Dependence of the projection error on the parameter η , [6× 6] SOM is used, ê = 200,
γ = 40: blue—SOMSam(a c), red—SOMSam(b c), green—SOMSam(a i), black—SOMSam(b i)

as Figs. 4.36 and 4.37 that these ratios are always greater than one. Moreover, the
average ratio between the errors, obtained by SOMSam(b c) and SOMSam(b i),
is higher than that got by SOMSam(a c) and SOMSam(a i). Figures 4.36 and
4.37 show the dependence of the projection error, obtained by all the four cases,
on the parameter η = (0.1,0.11, . . . ,1.99,2.0). For η > 1, the projection error,
got by SOMSam(a c) and SOMSam(a i), is much greater than that, obtained by
SOMSam(b c) and SOMSam(b i). This error increases with an increase in η . The
errors, obtained by SOMSam(b c) and SOMSam(b i), are small enough even at
higher values of η (1 < η < 2). Thus, we can analyze the cases with η < 2 using
SOMSam(b c) and SOMSam(b i) and just cases with η < 1 using SOMSam(a c)
and SOMSam(a i). This proves the advantage of the integrated combination.
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Table 4.7 Coastal dune data
on the SOM (the first
experiment)
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Fig. 4.38 Visualization of coastal dune data by: (a) SOMSam(b c) (ES = 0.0890), (b) SOM-
Sam(b i) (ES = 0.0764) (the first experiment)

In the experiments below, we analyze the mappings obtained by SOMSam(b c)

and SOMSam(b i). We generated a set of initial values Mi j=
(

m1
i j,m

2
i j, . . . ,m

n
i j

)
∈ R

n

and got the same SOM results by SOMSam(b c) and SOMSam(b i) (Table 4.7) and
different locations of the data points on a plane (Fig. 4.38). We do not present the
scales of variables in figures, because we are interested in observing the interlocation
of points on a plane. The dimensionality of SOM is 6× 6, the number of epochs is
200, and the number γ of training blocks is 40. The value of η was selected equal
to 0.35.

Let us connect the points that correspond to the marginal cells of Table 4.7 by
lines. As a result, we get two polygon lines (Fig. 4.38). From these two polygon
lines, we can assume that the SOM results are better represented on a plane by the
integrated combination SOMSam(b i) since the lines in Fig. 4.38a do not intersect
as compared with Fig. 4.38b.

The same experiment has been done generating on other set of the initial values of
Mi j. The results are presented in Table 4.8 and Fig. 4.39. They also do not contradict
the assumption above.

All that indicates that the integrated combination is better than the consecutive
one. Moreover, the locations of data points by the consecutive combination SOM-
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Table 4.8 Coastal dune data
on the SOM (the second
experiment)
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Fig. 4.39 Visualization of coastal dune data by: (a) SOMSam(b c) (ES = 0.0725), (b) SOM-
Sam(b i) (ES = 0.0694) (the second experiment)

Table 4.9 The values of the MDS relative error subject to the initialization and assignment ways
for the Iris data set; SOM is used in the combinations (EQE = 0.2225, r = 93)

Random Line PCs Variances

Consecutive 0.0363 0.0366 0.0276 0.0265

In
te

gr
at

ed

γ ν M P M P M P M P

2 100 0.0385 0.0386 0.0484 0.0484 0.0395 0.0436 0.0438 0.0438
4 50 0.0371 0.0373 0.0265 0.0271 0.0382 0.0269 0.0382 0.0382
8 25 0.0335 0.0296 0.0265 0.0265 0.0265 0.0265 0.0347 0.0265
10 20 0.0281 0.0265 0.0347 0.0265 0.0265 0.0265 0.0265 0.0265
25 8 0.0298 0.0290 0.0347 0.0265 0.0347 0.0265 0.0347 0.0265

Sam(b s) (see Figs. 4.38a and 4.39a) for different sets of the initial values of Mi j

are more different than that obtained by the integrated combination SOMSam(b i)
(see Figs. 4.38b and 4.39b), that is, the integrated combination is less dependent on
the initial values of the reference vectors.

Moreover, we see that even a slight reduction in the projection error changes the
location of points on a plane essentially. This fact proves the necessity to put every
effort for minimizing Sammon’s Stress ES(Y ) (2.16).
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Table 4.10 The values of the MDS relative error subject to the initialization and assignment ways
for the Iris data set; NG use used in the combinations (EQE = 0.0988, r = 94)

Random Line PCs Variances

Consecutive 0.0489 0.0642 0.0335 0.0358

In
te

gr
at

ed

γ ν M P M P M P M P

2 100 0.0451 0.0452 0.0381 0.0561 0.0335 0.0335 0.0335 0.0335
4 50 0.0399 0.0417 0.0335 0.0335 0.0335 0.0335 0.0335 0.0335
8 25 0.0366 0.0363 0.0335 0.0335 0.0335 0.0335 0.0335 0.0335
10 20 0.0392 0.0384 0.0335 0.0335 0.0335 0.0349 0.0349 0.0349
25 8 0.0369 0.0388 0.0506 0.0335 0.0335 0.0335 0.0335 0.0335

4.3.3.2 Combinations of SOM and NG with MDS

In this section, the comparative analysis of the consecutive and integrated combina-
tions of SOM and NG with MDS is made. Some experiments have been carried out
in order to ascertain:

1. Which initialization of two-dimensional points is most suitable in the consecutive
combination, as well as in the first block of the integrated combination (when
the points are generated at random (a), on a line (b), according to two principal
components (PCs) (c), according to the components with the largest variances
(d)) (see Sect. 4.3.2 for details).

2. Which way of assignment of the initial coordinates of two-dimensional points
for MDS in the integrated combination is the most suitable one (by midpoint (M)
or by proportion (P)).

The results of experimental investigation of some data sets of a different nature
and size are presented here: Iris (m = 150, n = 4), Hepta (m = 212, n = 3), and
Rand Data (m = 1500, n = 5) (here, each component is generated at random in the
interval (0,1)). SOM and NG are trained during 200 training epochs (ê = 200).
The training process is divided into γ = 2,4,8,10,25 blocks in the integrated
combination and ν ′ = 100,50,25,20,8, respectively. The SMACOF algorithm was
used to minimize the MDS raw Stress (2.7) with wi j = 1. 100 iterations are
performed by SMACOF. The values of the MDS relative error E (2.9) subject
to the initialization and assignment ways for three data sets are presented in
Tables 4.9–4.14. When choosing a random initialization, ten experiments are done
for each data set, and the averaged values are presented in Tables 4.9–4.14 and
Fig. 4.40. The smallest values are given in italics, and the most frequent values are
given in bold. The number m̃ of neurons is set such that the same or a similar number
r of the winning neurons were obtained by both vector quantization methods SOM
and NG in order to compare the results in the sense of the MDS relative error.

When comparing the results, obtained by the consecutive and integrated com-
binations, smaller values of the MDS relative error are obtained by the integrated
combination in most cases. Thus, the integrated combination is superior to the
consecutive one. It is quite evident if the points are initiated on a line or at random
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Table 4.11 The values of the MDS relative error subject to the initialization and assignment ways
for the Hepta data set; SOM is used in the combinations (EQE = 0.3115, r = 86)

Random Line PCs Variances

Consecutive 0.2182 0.2270 0.2042 0.2042

In
te

gr
at

ed

γ ν M P M P M P M P

2 100 0.2004 0.2066 0.1994 0.1994 0.1994 0.1994 0.1994 0.1994
4 50 0.2078 0.2345 0.1994 0.1994 0.1994 0.2042 0.2270 0.2487
8 25 0.1994 0.2109 0.1994 0.2270 0.1994 0.1994 0.1994 0.2270
10 20 0.1994 0.2051 0.1994 0.2042 0.1994 0.1994 0.1994 0.2042
25 8 0.1994 0.2081 0.1994 0.1994 0.1994 0.1994 0.1994 0.1994

Table 4.12 The values of the MDS relative error subject to the initialization and assignment ways
for the Hepta data set; NG is used in the combinations (EQE = 0.1765, r = 94)

Random Line PCs Variances

Consecutive 0.2053 0.2115 0.1964 0.1964

In
te

gr
at

ed

γ ν M P M P M P M P

2 100 0.1877 0.1877 0.2043 0.2043 0.1964 0.1964 0.2043 0.2043
4 50 0.2084 0.2084 0.2322 0.2322 0.2043 0.2043 0.2056 0.2056
8 25 0.2194 0.2194 0.1964 0.1964 0.1964 0.1964 0.1964 0.1964
10 20 0.2008 0.2052 0.1964 0.1964 0.1964 0.1964 0.1964 0.1964
25 8 0.2115 0.2031 0.2115 0.1964 0.2115 0.1964 0.2115 0.1964

Table 4.13 The values of the MDS relative error subject to the initialization and assignment ways
for the Rand Data set; SOM is used in the combinations (EQE = 0.2139, r = 394)

Random Line PCs Variances

Consecutive 0.3223 0.3189 0.3153 0.3140

In
te

gr
at

ed

γ ν M P M P M P M P

2 100 0.3244 0.3247 0.3252 0.3237 0.3241 0.3239 0.3241 0.3216
4 50 0.3217 0.3225 0.3217 0.3220 0.3217 0.3220 0.3218 0.3229
8 25 0.3176 0.3200 0.3178 0.3148 0.3176 0.3142 0.3177 0.3206
10 20 0.3157 0.3155 0.3164 0.3162 0.3164 0.3164 0.3164 0.3167
25 8 0.3159 0.3161 0.3162 0.3161 0.3160 0.3161 0.3162 0.3161

Table 4.14 The values of the MDS relative error subject to the initialization and assignment ways
for the Rand Data set; NG is used in the combinations (EQE = 0.1380, r = 400)

Random Line PCs Variances

Consecutive 0.3202 0.3223 0.3119 0.3103

In
te

gr
at

ed

γ ν M P M P M P M P

2 100 0.3192 0.3143 0.3179 0.3179 0.3125 0.3123 0.3140 0.3116
4 50 0.3168 0.3159 0.3160 0.3160 0.3183 0.3187 0.3115 0.3140
8 25 0.3129 0.3122 0.3132 0.3157 0.3115 0.3115 0.3103 0.3115
10 20 0.3124 0.3131 0.3116 0.3223 0.3116 0.3119 0.3115 0.3103
25 8 0.3115 0.3115 0.3115 0.3220 0.3115 0.3115 0.3115 0.3115
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Fig. 4.40 The values of the MDS relative error (blue—consecutive with SOM, red—integrated
with SOM, green—consecutive with NG, magenta—integrated with NG): (a) Hepta, (b) Iris

(Fig. 4.40). The values of the MDS relative error, obtained by the consecutive
combination, and the minimal values for γ of the error, obtained by the integrated
combination, are presented in Fig. 4.40.

In most cases, the MDS relative error is slightly larger if NG is used instead of
SOM in combinations. However, the quantization error EQE (4.15) is considerably
smaller; therefore, NG is more suitable in the combinations.

When the number γ of blocks of the integrated combination is increased, the
MDS relative error is rather fluctuating; however, the error is no larger than that
obtained by the consecutive combination.

The smallest value of the MDS relative error for the Iris data set is obtained if
the initial values of two-dimensional points are set according to variances, when
SOM is used in the consecutive combination, E = 0.0265 (Table 4.9) and according
to the principal components, when NG is used, E = 0.0335 (Table 4.10). Note that
the same minimal values of the MDS relative error are obtained by the integrated
combination, when various initializations are used.

The smallest value of the error E = 0.1994 for the Hepta data set is obtained
by the integrated SOM and MDS combination independently of initialization
(Table 4.11). When NG is used, the most frequent value E = 0.1964 is obtained
by the consecutive combination if the initial values are set according to variances or
PCs (Table 4.12). The same value is obtained by the integrated combination if the
initial values are set on a line. If the random initialization is used, the smallest value
E = 0.1877 is obtained by the integrated combination of NG and MDS, γ = 2.

The smallest value of the MDS relative error for Rand Data is obtained by the
consecutive combination (Tables 4.13 and 4.14). However, the tendency to error
decline is shown in the integrated combination, when the number γ of blocks is
increased.

The following conclusions on combinations have been drawn:

• Since the quantization error, obtained by NG, is considerably smaller than that
obtained by SOM, the number of the winning neurons being the same, it is
reasonable to use NG in the combinations, though the MDS relative error is
slightly larger in these cases.

• When two ways of assignment (by midpoint (M) and by proportion (P)) in the
integrated combination are compared, no great difference was noticed.
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• If the initialization according to the first two principal components or variances
is used, a small MDS relative error is obtained by the consecutive combination.
However, sometimes it is possible to get a smaller error by the integrated
combination.

• If the initialization at random or on a line is used, then the integrated combination
is superior to the consecutive one.

4.3.3.3 Parallelization of the Integrated Combination SOM and NG with
MDS

Due to its nature, the integrated SOM and NG with MDS combinations may be
separated into two independent processes: the first processor executes the SOM
or NG training and regularly, after each training block, prepares data for another
processor and the second processor executes MDS [52].

The scheme of the two-processor parallel algorithm is as follows:

1. The first processor starts executing the first training block and sends the obtained
reference vectors of the winning neurons to the second processor; the second
processor waits.

2. When the second processor gets the data, it executes MDS. Meanwhile, the first
processor executes the next training block.

3. After completing the current training block, the first processor:

• Takes the two-dimensional points, obtained by MDS, from the second proces-
sor

• Prepares the initial values of two-dimensional points for execution of the next
MDS and sends them to the second processor

• Sends the reference vectors of the winning neurons, obtained after the current
training block, to the second processor

• Continues the SOM or NG training

4. The second processor executes MDS as soon as it gets all the necessary data (see
item 3) from the first processor.

5. The sequence of operations 3 and 4 continues until the SOM or NG training is
completed.

The integrated combination is rather sophisticated; therefore, it is necessary to
evaluate its several peculiarities with a view to ensure the optimal performance.
Sammon’s mapping as one of MDS methods and SOM is used in the experiments.
Here, a larger number of training blocks may decrease the projection error but
requires much more computing time. Peculiarities of our realization of SOM are
determined by formulas (4.13) and (4.14). The computing time of one SOM training
block decreases with an increase in the order number q of the block, while the
computing time of Sammon’s mapping increases. This fact is grounded below.
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Fig. 4.41 Average dependence of computing time on the order number of the training epoch

The number of neurons, recalculated in an epoch, decreases with the growing
order number of epoch (and block, because one training block consists of ê

γ epochs)
due to the specifics of the SOM training. Therefore, the SOM training needs less
computing time when the order number of epoch increases. The dependence of the
computing time on the order number of epoch has a staircase form. Figure 4.41
illustrates the average dependence of computing time (in seconds) on the order
number of epoch. Thousand 20-dimensional points have been analyzed in the
experiments. The values of coordinates are generated at random in the interval
(−1,1). The [10×10] SOM has been analyzed. The experiments have been repeated
for 100 times with different (random) initial values of the components of the
reference vectors.

Figure 4.42a and b show the dependence of the mean number of the winning
neurons on the order number q of the training block (ê = 300, γ = 30). Hundred
experiments were carried out for both cases: (a) different (random) initial values
of the components of the reference vector were used, and (b) SOM was trained
by different sets of 1000 points the dimensionality of which is 20. When the
order number q of the training block increases, the number of the winning neurons
increases, too. That is why more n-dimensional points are analyzed by Sammon’s
mapping after training blocks with a higher-order number.

Therefore, the problem arises to select the optimal number of epochs ê and
training blocks γ for SOM, as well as iterations of Sammon’s mapping k.

The peculiarity of the integrated combinations is that it is impossible to estimate
the duration of separate tasks in advance. Therefore, the way of optimizing the
computing time is as follows: for a fixed number of the SOM training epochs ê
and the number of training blocks γ , choose the number of iterations of Sammon’s
mapping k such that the computing time of one training block be as similar to that of
Sammon’s mapping as possible. In this case, the tasks would be distributed between
both the processors more evenly. However, with a view to keep a high projection
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Fig. 4.42 Dependence of the number of the winning neurons on the order number q of the training
block

quality, we cannot decrease the number of iterations of Sammon’s mapping too
much. The inequality should hold: k ≥ 100.

Denote the computing time of the qth training block of SOM by t1(ê,γ,q) and
that of Sammon’s mapping of the results of the qth block by t2(k,q). In order to
get a lower value of the maximum completion time, it is necessary to choose the
number of iterations of Sammon’s mapping k such that

1
γ− 1

γ

∑
q=2

t1(ê,γ,q)≈ 1
γ− 1

γ

∑
q=2

t2(k,q− 1) and k≥ 100.

With a view to distribute the tasks between both the processors more evenly, we
have derived experimentally such a formula for iterations of Sammon’s mapping:

Sam it ≈ 35
ê
γ
. (4.18)

Speedup ssize (3.24) and efficiency esize (3.25) are two important measures of the
quality of parallel algorithms. In our case, the number of processors is size = 2.

The results indicate that the efficiency is e2 ≥ 0.8 if the parameters are chosen by
the proposed formula (4.18) (see the top of Table 4.15); otherwise, the processors
are used inefficiently (see the bottom of Table 4.15). Here, t1 and t2 is the computing
time to complete the same algorithm with one and two processors, respectively.

4.4 Curvilinear Component Analysis

A curvilinear component analysis (CCA) [37] is proposed as an improvement to
self-organizing maps. It has similarities with combinations of vector quantization
methods with multidimensional scaling, discussed in Sects. 4.3.1 and 4.3.2.
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Table 4.15 Speedup and efficiency of the parallel algorithm

Number of
Number of Number of Size of iterations of
training training training Sammon’s
epochs ê blocks γ block ê/γ mapping k t1 t2 s2 e2

300 30 10 350 67 41 1.63 0.82
300 15 20 700 66 41 1.61 0.81
300 25 12 400 66 40 1.65 0.83
300 25 12 420 67 40 1.68 0.84
400 20 20 700 86 53 1.62 0.81
400 40 10 350 88 54 1.63 0.82
400 80 5 175 91 54 1.67 0.84
300 10 30 100 37 34 1.09 0.54
300 50 6 600 128 93 1.38 0.69
400 20 20 200 57 46 1.24 0.62
400 10 40 300 54 46 1.17 0.59

The CCA algorithm is comprised of two steps:

1. The n-dimensional points X1,X2, . . . ,Xm are quantized by any vector quantization
method, and the n-dimensional points M1,M2, . . . ,Mm̃ are obtained, m̃≤ m.

2. The nonlinear projection of the reference vectors M1,M2, . . . ,Mm̃ is performed in
order to minimize the difference between the distances of the reference vectors
M1,M2, . . . ,Mm̃ and that of their projections Y1,Y2, . . . ,Ym̃.

Low-dimensional points Yi, i = 1, . . . , m̃, are searched by minimizing the cost
function:

ECCA(Y ) =
1
2

m̃

∑
i, j=1
i�= j

(d(Mi,Mj)− d(Yi,Yj))
2 F (d(Yi,Yj),λy) , (4.19)

where

• d(Mi,Mj) is the distance between the multidimensional points Mi and Mj.
• d(Yi,Yj) is the distance between the low-dimensional points Yi and Yj, corre-

sponding to the vectors Mi and Mj, i, j = 1, . . . , m̃.
• F(d(Yi,Yj),λy) is the weight function, the values of which are in the interval

[0,1] or (0,1). It must be a bounded and monotonically decreasing function. This
function allows the algorithm to focus on the preservation of small distances
rather than of large ones.

The weight function can be as follows:

• A simple step function

F (d(Yi,Yj),λy) =

{
1, if d(Yi,Yj)≤ λy,

0, if d(Yi,Yj)> λy,
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• An exponential function

F (d(Yi,Yj),λy) = e−λyd(Yi,Yj),

• A sigmoid function

F (d(Yi,Yj),λy) =
1

1+ e−λyd(Yi,Yj)
.

Some positive value should be assigned to the parameter λy.
When minimizing the cost function ECCA(Y ) (4.19), the components yik, i = 1,

. . . , m̃, i �= j, k = 1,2, of the two-dimensional points Yi ∈ R
2 are derived by the

iteration formula [37]:

yik(t + 1) = yik(t)+η(t)F (d(Yi,Yj),λy)

×(d(Mi,Mj)− d(Yi,Yj))
yik(t)− y jk(t)

d(Yi,Yj)
, ∀i �= j,

where t is the order number of iteration, η(t) = η0
1+t is the learning parameter

depending on t, j is fixed (chosen at random) in each iteration, and η0 is chosen
freely.

The projection part of the curvilinear component analysis is similar in its goal
to other nonlinear projection methods, such as multidimensional scaling. The CCA
method differs from MDS in some aspects [37]:

1. The weight function F (d(Yi,Yj),λy) introduced in the cost function (4.19).
2. Significant speedup due to the original method of minimization of (4.19).
3. The scale at which the distances between two-dimensional points have to be

preferably respected.

The curvilinear distance analysis is similar to the curvilinear component analysis
[134,135]. Not Euclidean but geodesic (curvilinear) distances are used in the initial
multidimensional space (as in the ISOMAP method, described in Sect. 2.2.6).

4.5 The Feed-Forward Neural Network SAMANN

A specific back-propagation-like learning rule has been developed to allow a
feed-forward artificial neural network to learn Sammon’s mapping in an unsuper-
vised way. The neural network training rule of this type was called SAMANN [147].
The advantage of the network is that when a new multidimensional point is
presented to the trained network inputs, a low-dimensional projection is obtained
on the outputs. Mao and Jain [147], who evaluated different types of network on
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eight different data sets, conclude that the SAMANN network preserves the data
structure, cluster shape, and distances better than many other projection methods.

The architecture of the SAMANN network is a multilayer perceptron where the
number of inputs is the dimensionality n of data, and the number of outputs is
specified as the reduced dimensionality d of data (see Fig. 4.4).

The data set analyzed consists of n-dimensional points X1,X2, . . . ,Xm. The values
of their coordinates are used for network training as inputs. The network should be
trained so that the coordinates of d-dimensional points Y1,Y2, . . . ,Ym were obtained
on the outputs of the network.

In Sammon’s mapping, the Stress (projection error) may be defined by the
following formula:

ES =
1

∑m−1
μ=1 ∑m

ν=μ+1 d(Xμ ,Xν)
∑m−1

μ=1 ∑m
ν=μ+1

(d(Xμ ,Xν)− d(Yμ ,Yν))
2

d(Xμ ,Xν)
, (4.20)

where

• d(Xμ ,Xν) is the Euclidean distance between the n-dimensional points Xμ and Xν .
• d(Yμ ,Yν ) is the Euclidean distance between the d-dimensional points Yμ and Yν ,

d < n.

The SAMANN network weight update rule has been derived in [147] and
discussed below. The idea of the network training is such that, at each step,
two n-dimensional points Xμ = (xμ1,xμ2, . . . ,xμn) and Xν = (xν1,xν2, . . . ,xνn) are
presented to the network one by one. It is desirable to get their projections Yμ =
(yμ1,yμ2, . . . ,yμd) and Yν = (yν1,yν2, . . . ,yνd) in the outputs of the network.

Let y(l)j , j = 1, . . . ,nl , l = 1, . . . ,L, be the output of the jth neuron in the lth layer,
where nl is the number of neurons in the lth layer and L is the number of layers. The
inputs of the network are the coordinates of the multidimensional data points, that

is, y(0)i = xi, i = 1, . . . ,n. w(l)
ji is the weight between the jth neuron in the lth layer

and the ith neuron in the layer (l− 1). The weight w(l)
j0 is a bias, y(l)0 = 1.

The output of the jth neuron in the lth layer can be written as

y(l)j = f

(
nl−1

∑
i=0

w(l)
ji y(l−1)

i

)
, l = 1, . . . ,L.

The sigmoid activation function (4.4) is used for calculating the output of each
neuron. The range of each output is (0,1). This is determined by the range of values
of a sigmoid function (4.4).

Denote:

λ =
1

∑m−1
μ=1 ∑m

ν=μ+1 d(Xμ ,Xν)
.
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The value of λ can be calculated before the network training. Then the mapping
error for a pair of the points Xμ and Xν can be found by the formula:

Eμν = λ
[
d(Xμ ,Xν)− d(Yμ ,Yν)

]2
d(Xμ ,Xν)

,

Sammon’s Stress (4.20) becomes as follows:

ES =
m−1

∑
μ=1

m

∑
ν=μ+1

Eμν .

The error Eμν is proportional to the difference between the distances d(Xμ ,Xν)
and d(Yμ ,Yν ); therefore, Eμν is appropriate for the weight updating rules when the
network is trained using pairs of multidimensional points.

The weight updating rule that minimizes Eμν is based on the gradient descent
method.

For the output layer (l = L)

∂Eμν

∂w(L)
k j

=

(
∂Eμν

∂d(Yμ ,Yν)

)⎛⎝ ∂d(Yμ ,Yν )

∂
[
y(L)μk − y(L)νk

]
⎞
⎠
⎛
⎝∂

[
y(L)μk − y(L)νk

]
∂w(L)

k j

⎞
⎠

=

(
−2λ

d(Xμ ,Xν)− d(Yμ ,Yν)

d(Xμ ,Xν )

)⎛⎝y(L)μk − y(L)νk

dXμ ,Xν

⎞
⎠

×
(

f ′
(

a(L)μk

)
y(L−1)

μ j − f ′
(

a(L)νk

)
y(L−1)

ν j

)
, (4.21)

where f ′
(

a(L)μk

)
and f ′

(
a(L)νk

)
are derivatives of the sigmoid function of the kth

neuron with respect to aμk and aνk in the layer L (output layer)

f ′(a(L)μk ) =
(

1− y(L)μk

)
y(L)μk , (4.22)

f ′(a(L)νk ) =
(

1− y(L)νk

)
y(L)νk . (4.23)

Let

δ (L)
k (μ ,ν) =−2λ

d(Xμ ,Xν )− d(Yμ,Yν )

d(Xμ ,Xν)d(Yμ ,Yν)

(
y(L)μk − y(L)νk

)
, (4.24)

Δ (L)
k j (μ) = δ (L)

k (μ ,ν)
(

1− y(L)μk

)
y(L)μk , (4.25)

Δ (L)
k j (ν) = δ (L)

k (μ ,ν)
(

1− y(L)νk

)
y(L)νk . (4.26)
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Inserting (4.22)–(4.26) into (4.21), we get

∂Eμν

∂w(L)
k j

= Δ (L)
k j (μ)y(L−1)

μ j −Δ (L)
k j (ν)y(L−1)

ν j .

The updating rule for the output layer is as follows:

Δw(L)
k j =−η

∂Eμν

∂w(L)
k j

=−η(Δ (L)
k j (μ)y(L−1)

μ j −Δ (L)
k j (ν)y(L−1)

ν j ), (4.27)

where η is the learning rate.
Analogously, we obtain the general updating rule for all the hidden layers, l =

1, . . . ,L− 1:

Δw(l)
ji =−η

∂Eμν

∂w(l)
ji

=−η(Δ (l)
ji (μ)y

(l−1)
μi −Δ (l)

ji (ν)y
(l−1)
νi ), (4.28)

where

Δ (l)
ji (μ) = δ (l)

j (μ)
(

1− y(l)μ j

)
y(l)μ j, (4.29)

Δ (l)
ji (ν) = δ (l)

j (ν)
(

1− y(l)ν j

)
y(l)ν j , (4.30)

and

δ (l)
j (μ) =

d

∑
k=1

Δ (l+1)
k j (μ)w(l+1)

k j , (4.31)

δ (l)
j (ν) =

d

∑
k=1

Δ (l+1)
k j (ν)w(l+1)

k j . (4.32)

Equations (4.27) and (4.28) are the main formulas in updating the weights.
In order to update the weights using these formulas, it is needed to present two
multidimensional points one by one to the network at each step of training. The
authors of [147] recommend either to build two identical networks or just to store
all the outputs for the first point before we present the second one.

The SAMANN unsupervised back-propagation algorithm can be generalized as
follows [147]:

1. Initialize the weights in the SAMANN network randomly.
2. Select a pair of multidimensional points at random, present these two points to

the network one at a time.
3. Update the weights in the back-propagation fashion starting from the output

layer.
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4. Repeat steps 2–3 for several times.
5. Present all the points X1,X2, . . . ,Xm to the network and evaluate its outputs and

compute Sammon’s Stress ES (4.20); if the value of ES is below a predefined
threshold or the number of iterations (from items 2–4) exceeds the predefined
maximum number, then stop; otherwise, go to item 2.

In our realization of the SAMANN training, instead of items 2–4, all possible
pairs of points X1,X2, . . . ,Xm are presented to the neural network once, and it is
one iteration of the network training. The results of experimental investigation
of SAMANN are discussed below. More detailed investigations may be found in
[104–106, 154–157].

4.5.1 Control of the Learning Rate

The rate, at which artificial neural networks learn, depends upon several controllable
factors. Obviously, a slower rate means that much more time is spent in accomplish-
ing the learning to produce an adequately trained network. At the faster learning
rates, however, the quality of learning may be insufficient. The rate is controlled
by the parameter η in (4.27) and (4.28). Usually η is called the learning rate.
The experiments, done in [154], have shown in what way the SAMANN network
training depends on the learning rate η .

The training of the SAMANN network is a very time-consuming operation.
The investigations have revealed that, in order to get a well-learned network, one
needs to select the learning rate η properly. It has been stated in [147] that the
projection of multidimensional data yields good results if the value η is taken from
the interval (0,1). In that case, however, the network training is very slow. Thus,
it is reasonable to look for the optimal value of the learning rate η that may not
necessarily be within the interval (0,1).

The experiments [154] demonstrate that with an increase in the learning rate
value, a smaller projection error ES is obtained. That is why the experiments
have been done with higher values of the learning rate beyond the limits of the
interval (0,1). In all the experiments, one hidden layer network with 20 hidden
neurons is used; the projection space dimensionality is d = 2. The results are
presented in Fig. 4.43. Two data sets were used in the experiments: Iris and HBK
data sets (see descriptions of the data sets in Appendix A). It should be noted that
the best results are at η > 1.

The experiments allow us to conclude that the optimal value of the learning
rate for the data sets is within the interval [10,30]. By selecting such values of
the learning rate, it is possible to economize computing time as compared with
the case of learning rate values from (0,1). However, with an increase in the
value of the learning rate, the projection error variations also increase, which can
cause certain network training problems. Lower values of the learning rate within
the interval (0,1) guarantee a more stable convergence to the minimum of the
projection error.
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Fig. 4.43 Dependence of the projection error on the learning rate η for: (a) Iris data; (b) HBK
data

4.5.2 Retraining of the SAMANN Network

After training the SAMANN network, a set of weights is fixed. A new point,
presented to the network, is transformed to the projection space very fast. If the
dimensionality of the projection space d = 2, then this new point is mapped on a
plane among the points, used for the network training and mapped by SAMANN.

However, while working with large data sets, there may appear a lot of new
points, which entail retraining of the SAMANN network after some time.

Let us name the set of points that have been used to train the network by the
primary set, and the set of the new points that have not yet been used for training
by the new set. Denote the number of points in the primary data set by m1 and the
number of points in the new data set by m2.

Two strategies for retraining the SAMANN network have been proposed and
investigated in [154]. The first strategy uses all the possible pairs of data points (both
from the primary and new data sets) for retraining. The second strategy uses a
restricted number of pairs of the points (each pair consists of one point from the
primary set and one point from the new set).

Before retraining, the SAMANN network is trained by m1 points from
the primary data set, the weights W1 of the network are obtained, the points from the
primary data set are transformed to the projection space, and the projection error the
ES(m1) is calculated.
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The strategies of the SAMANN network retraining are as follows:

1. In order to renew the weights of the network, it is retrained with all the m1 +m2

points, starting from values of the weights W1 as the initial ones. The new weights
W2 are found.

2. In order to renew the weights, pairs of points are simultaneously presented to the
network. A pair consists of one point from the primary data set and one point
from the new one. Let m1 <m2. The network is retrained with 2m2 points at each
iteration. Here, one iteration involves computations, where all the points from the
new data set are presented to the network once. The new weights W2 are found.

Three data sets have been used in the experiments:

• Iris data set.
• Austra data set [66]. The data set concerns the credit card application data in

Australia; m = 690, n = 14.
• A set of m = 300 randomly generated points; three spherical clusters with 100

points each, n = 5:

xi j ∈ [0,0.2], i = 1, . . . ,100, j = 1, . . . ,n,

√
n

∑
j=1

(0.1− xi j)2 ≤ 0.1,

xi j ∈ [0.4,0.6], i = 101, . . . ,200, j = 1, . . . ,n,

√
n

∑
j=1

(0.5− xi j)2 ≤ 0.1,

xi j ∈ [0.8,1], i = 201, . . . ,300, j = 1, . . . ,n,

√
n

∑
j=1

(0.9− xi j)2 ≤ 0.1.

Each data set is divided into two parts: the primary data set and the new data set.
The primary data set is used for training the SAMANN network, while the new data
set together with the primary data set is used for retraining the network. For the Iris
data set m1 = 100, m2 = 50; for the Austra data set m1 = 460, m2 = 230; and for the
randomly generated set m1 = 210, m2 = 90.

In the analysis of the strategies for the network retraining, the SAMANN network
had one hidden layer with 20 neurons and two outputs (d = 2).

The dependence of the projection error on the computing time in retraining the
SAMANN network is presented in Fig. 4.44. The second strategy enables us to
attain good results in a very short time as well as to get smaller projection errors
as compared to the first strategy. Figure 4.44c illustrates this fact best.

When analyzing the Austra data set, intensive fluctuations of the projection error
are possible if the first strategy is applied (see Fig. 4.44b). Moreover, we observe
here small projection errors from the very beginning of the training. These errors do
not decrease significantly in future iterations. When analyzing the Iris and randomly
generated data sets, we observe the decrease of the projection error by applying
the second strategy, while the decrease has almost stopped in the case of the first
strategy (see Fig. 4.44a). This is an advantage of the second strategy.
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Fig. 4.44 Dependence of the projection error on the computing time for: (a)—Iris, (b)—Austra,
(c) the randomly generated data; gray—the first strategy, black—the second strategy

The experiments lead to the idea of a possibility to minimize the SAMANN
network training time using data set by dividing the training process into two
subprocesses: (1) training of the network by a part of data set X = {X1,X2, . . . ,Xm}
and (2) retraining of the network by one of the retraining strategies above. That
would allow us to obtain a similar projection quality much faster.

The idea of division of the data set X = {X1,X2, . . . ,Xm} into subsets may be
useful while working with large multidimensional data sets, where it is important
to speed up the SAMANN network training. The algorithm in [106] divides
the SAMANN training data set into several parts. The SAMANN network is
trained using these parts independently in parallel. The final training is performed
using the whole data set X starting from the best set of weights obtained in parallel
processes.



Chapter 5
Applications of Visualization

This chapter is intended for applications of multidimensional data visualization.
Some application examples and interpretations of the results are presented. These
applications reveal the possibilities and advantages of the visual analysis. The
applications can be grouped as follows: in social sciences, in medicine and
pharmacology, and visual analysis of correlation matrices.

5.1 Visual Analysis of Social Data

Two applications of multidimensional social data visualization are presented here:
investigation of economic and social conditions of countries [56] and a qualitative
comparison of schools [196].

5.1.1 Economic and Social Conditions of Countries

This section deals with the analysis of economic and social features of the Central
European countries. The data are taken from the USA CIA The World Factbook
database (https://www.cia.gov/library/publications/the-world-factbook/). The data
of 1999 have been used, because the Central European countries were under the
rapid development and change in their economic and technological situation at this
time. Moreover, the state of the countries was different, and the goal of the research
is to observe visually these differences.

The widely used essential economic and social features are selected:

• Infant mortality rate (number of deaths per 1000 live births) (x1); the feature
is used instead of the life expectancy at birth as the latter accumulates the life
quality in a very long period.

G. Dzemyda et al., Multidimensional Data Visualization: Methods and Applications,
Springer Optimization and Its Applications 75, DOI 10.1007/978-1-4419-0236-8 5,
© Springer Science+Business Media, LLC 2013
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Table 5.1 Data set of economic and social conditions

Country Label

Infant
mortality
rate x1

GDP per
capita
(USD) x2

GDP in
industry and
services (%) x3

Exports per
capita
(thousands
of USD) x4

Telephones
per capita x5

Hungary 1 9.460 7400 97.00 2.0294 0.2118
Czech Republic 2 6.670 11300 95.00 2.3107 0.3252
Lithuania 3 14.710 4900 87.00 1.1667 0.3000
Latvia 4 17.190 4100 93.00 0.7917 0.2958
Slovakia 5 9.480 8300 95.20 1.9815 0.2519
Poland 6 12.760 6800 94.90 0.7047 0.2124
Romania 7 18.120 4050 81.00 0.3677 0.1166
Estonia 8 13.830 5500 93.80 1.8571 0.3786
Bulgaria 9 12.370 4100 74.00 0.5488 0.3378
Slovenia 10 5.280 10300 95.00 4.6000 0.3450
Average A 11.987 6675 90.59 1.6358 0.2775
Worst W 18.120 4050 74.00 0.3677 0.1166
Best B 5.280 11300 97.00 4.6000 0.3786

• Gross domestic product (GDP) per capita in US dollars obtained taking into
account the purchasing power parity of the national currency, but not the
exchange rate (x2).

• Percentage of GDP developed in industry and services (not in agriculture) (x3).
• Export per capita in thousands of US dollars (x4).
• Number of telephones per capita (x5).

Ten countries are compared: (X1) Hungary, (X2) Czech Republic, (X3) Lithuania,
(X4) Latvia, (X5) Slovakia, (X6) Poland, (X7) Romania, (X8) Estonia, (X9) Bulgaria,
and (X10) Slovenia.

Three additional objects XA, XW, and XB are introduced. They correspond to
the arrays of averages, the worst and best values of the features, respectively. The
values of features characterizing the object XA are obtained by averaging the values
of respective features over all the 10 countries; the values of features characterizing
the object XW are the worst (not the least) values of respective features over all the
10 countries; the values of features characterizing the object XB are the best values
of respective features over all the 10 countries.

Such an introduction of three artificial objects XA, XW, and XB is useful for
our analysis because of the possibility to have the basic points that describe the
imaginary average, the worst and the best countries.

The objects X1, X2, . . . , X10, XA, XW, XB are analyzed. Numerical data, describing
the objects, are given in Table 5.1, n = 5, m = 13.

The features x1,x2, . . . ,x5 characterize these objects in various economic and
social aspects. Their units of measurement are different, and their nominal values
differ in some orders. Therefore, it is necessary to unify the scales of features before
the analysis. It has been done for each feature x j as follows. The mean value x̄ j and



5.1 Visual Analysis of Social Data 181

Table 5.2 Country data on the SOM: a) [3×3], b) [4×4]

a
2, 10, B 1, 5, 6

A
7, W 9 3, 4, 8

b
W, 7 6 1

9 A 5
3 2

4 8 B, 10

 B,2,10

 1,5,6
 A

 W,7

 9

 3,4,8

 W,7

6
 1

 9

 A
 5

 3

 2

 4
8

 B,10

a b

Fig. 5.1 Visualization of country data by the consecutive combination: (a) [3×3] SOM, (b) [4×4]
SOM

variance σ2
j were computed on the basis of 13 values of the features and each value

xi j of the feature x j was transformed by the formula
xi j−x̄ j

σ j
, i = 1, . . . ,13. Moreover,

we changed the sign of xi1, keeping in mind that it is more convenient that higher
values of x1,x2, . . . ,x5 are better. Therefore, the data are scaled so that the averages
of the features are equal to 0, and the variances are equal to 1.

The results of analysis of the objects X1, X2, . . . , X10, XA, XW, XB, using
a self-organizing map (SOM) from the view of economic and social features
x1,x2, . . . ,x5, that is, n = 5, m = 13, are presented in Table 5.2. Two variations of
SOM, [3× 3] and [4× 4], are used. The labels 1, . . . ,10, and A, W, and B in the
tables indicate the order number of countries and the average, the worst, and the
best objects. However, the SOM tables do not answer the question how much the
countries corresponding to the neighboring cells are dissimilar. For example, the
9th country (Bulgaria) is shown very close to average in Table 5.2a. Is it right?
It is expedient to apply multidimensional scaling to additional mapping of the
reference vectors of winning neurons of SOM. The results of the consecutive SOM
and Sammon’s combination (see Sect. 4.3.1) are presented in Fig. 5.1. We see that
Bulgaria is not close to the average. The countries numbered by 1,5,6 and 3,4,8 are
much closer to the average.
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When analyzing the countries in terms of the economic and social features
(Table 5.2 and Fig. 5.1), we can see some groups of the countries. These groups
can be defined when analyzing Fig. 5.1a and b at the same time. These figures are
also much more informative than the corresponding tables.

The visual analysis allows us to draw the following conclusions:

• Group of the best countries consists of Slovenia (X10) and Czech Republic (X2),
because the object XB is visualized close to them.

• Group of the worst countries consists of Romania (X7) and Bulgaria (X9).
• Rest of the countries are around the average. However, we can visually group

these countries into two subgroups:

(a) Hungary (X1), Slovakia (X5), and Poland (X6)
(b) The Baltic states: Lithuania (X3), Latvia (X4), and Estonia (X8)

• Hungary (X1) is very similar to Poland (X6), and Latvia (X4) is very similar to
Estonia (X8).

5.1.2 Qualitative Comparison of Schools

The education system evolves intensively in all countries. It is important to highlight
the tendency in the advanced schools and to investigate the reasons that impede a
harmonious development of schools. It requires to reveal the qualification and age
of teachers and the dynamics of their number.

A qualitative comparison of Lithuanian schools from the standpoint of city/rural
district or gymnasium/secondary school is performed in [57, 196]. In most cases,
education in gymnasium is of a higher quality as compared with that in the usual
secondary schools. Usually, the gymnasium attracts the best teachers and pupils.
The same tendency can be noted when comparing education in city schools with the
rural district ones. It would be useful to get some knowledge of the influence of the
qualification, age, and number of teachers on the state of school.

We use the data from the Centre of Information Technologies in Education
(Lithuania). About 19 schools from Panevėžys city and 9 schools from Panevėžys
district are analyzed. Panevėžys is the northern Lithuanian city. In the tables and
figures of this section, the schools from the city are labeled by the order numbers
from 1 to 19, and that of the district are labeled by the numbers from 20 to 28.
There are two gymnasia (order numbers 1 and 2). The remaining schools are the
secondary ones. The teachers giving classes in the 5th–12th and gymnasium forms
are analyzed. Two data sets are investigated: 1997/1998 and 1999/2000 school years.
Such an analysis allows us to observe changes of schools with the lapse of time as
well as to look for the reasons. The results of the analysis are presented in simple
graphical form; therefore, they can be easily understood and interpreted.

The following five features x1,x2,x3,x4, and x5 were selected to describe a
school:
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Table 5.3 School data for the 1997/1998 school year

Label
Number of
teachers x1 x2 x3 x4 x5

1 62 35.48 3.23 8.06 12.90 −3.13
2 77 14.29 7.79 7.79 33.77 6.94
3 53 9.43 16.98 15.09 18.87 39.47
4 53 9.43 9.43 7.55 30.19 10.42
5 55 30.91 7.27 9.09 18.18 10.00
6 75 16.00 10.67 9.33 28.00 8.70
7 30 40.00 16.67 26.67 3.33 0.00
8 49 20.41 10.20 10.20 36.73 6.52
9 52 13.46 7.69 19.23 17.31 1.96
10 60 20.00 6.67 15.00 13.33 11.11
11 47 17.02 6.38 6.38 21.28 2.17
12 57 14.04 14.04 12.28 10.53 −6.56
13 75 13.33 10.67 13.33 18.67 −1.32
14 56 8.93 14.29 8.93 28.57 1.82
15 52 9.62 7.69 3.85 28.85 −5.45
16 67 10.45 8.96 1.49 29.85 8.06
17 73 17.81 12.33 2.74 32.88 10.61
18 51 7.84 17.65 17.65 41.18 8.51
19 58 6.90 17.24 3.45 37.93 7.41
20 18 0.00 16.67 27.78 22.22 −5.26
21 36 5.56 5.56 13.89 36.11 −12.20
22 20 15.00 5.00 15.00 25.00 0.00
23 20 0.00 15.00 0.00 45.00 11.11
24 23 8.70 13.04 26.09 30.43 4.55
25 26 3.85 3.85 11.54 26.92 −18.75
26 26 3.85 15.38 19.23 23.08 0.00
27 20 0.00 25.00 20.00 30.00 11.11
28 32 3.13 18.75 12.50 34.38 6.67

• Percent of teachers of the highest qualification (that have a degree of a method-
ologist or expert) (x1)

• Percent of teachers that do not have a desired qualification (i.e., who do not do
the job they were trained for) (x2)

• Percent of teachers whose age is over 55 years (x3)
• Percent of teachers who are younger than 35 years (x4)
• Percent of the annual increase in the number of teachers (x5)

The features describe schools in three aspects: qualification (x1, x2), age (x3, x4),
and dynamics x5 of the number of teachers.

Two data sets are presented in Tables 5.3 and 5.4 for the 1997/1998 and
1999/2000 school year, respectively, n = 5, m = 28.

The aim is to see how these features influence the evolution of a school and how
the schools may be grouped according to the selected features, whether the groups
change with the lapse of time.
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Table 5.4 School data for the 1999/2000 school year

Label
Number of
teachers x1 x2 x3 x4 x5

1 69 34.78 1.45 13.04 14.49 13.11
2 71 18.31 12.68 9.86 25.35 −7.79
3 49 6.12 20.41 10.20 16.33 0.00
4 61 13.11 4.92 9.84 22.95 8.93
5 56 41.07 7.14 8.93 16.07 3.70
6 74 22.97 9.46 12.16 22.97 −2.63
7 35 34.29 14.29 17.14 8.57 12.90
8 52 26.92 7.69 9.62 32.69 1.96
9 55 14.55 7.27 20.00 16.36 −1.79
10 68 19.12 5.88 16.18 16.18 15.25
11 45 20.00 6.67 4.44 8.89 0.00
12 56 25.00 5.36 12.50 1.79 −1.75
13 90 13.33 11.11 12.22 21.11 9.76
14 67 11.94 8.96 7.46 26.87 4.69
15 46 15.22 6.52 8.70 21.74 −2.13
16 61 13.11 8.20 0.00 18.03 −4.69
17 72 20.83 13.89 4.17 29.17 −2.70
18 57 10.53 15.79 14.04 35.09 1.79
19 69 7.25 8.70 4.35 40.58 6.15
20 18 0.00 22.22 27.78 16.67 0.00
21 43 4.65 11.63 11.63 32.56 13.16
22 19 15.79 10.53 26.32 26.32 11.76
23 20 0.00 10.00 10.00 25.00 5.26
24 28 10.71 14.29 25.00 17.86 16.67
25 34 2.94 17.65 14.71 38.24 3.03
26 24 4.17 4.17 12.50 16.67 9.09
27 19 0.00 15.79 15.79 31.58 11.76
28 31 6.45 16.13 16.13 25.81 −6.06

The units of measurement of the features are different, and their nominal values
differ in some orders. Therefore, it is necessary to unify the scales of features before
the analysis. The data are scaled so that the averages of the features are equal to 0
and the variances are equal to 1.

At first, the multidimensional data from Tables 5.3 and 5.4 are visualized by
Sammon’s mapping. It is possible to observe visually how the objects (in our case,
the schools) Xi = (xi1,xi2,xi3,xi4,xi5), i = 1, . . . ,28, are distributed. The result of
Sammon’s mapping is presented in Fig. 5.2. In the figure, labels indicate the order
numbers of the objects X1,X2, . . . ,X28. It is necessary to keep in mind that gymnasia
are labeled by 1 and 2 (the labels are bold in the figures), other secondary schools of
the Panevėžys city are labeled by 3–19, and secondary schools of the Panevėžys
district are labeled by 20–28 (the labels are underlined in the figures). Points
corresponding to the city schools are colored in blue, and those corresponding to
the district schools are colored in red.
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Fig. 5.2 Visualization of Panevėžys city and district school data by Sammon’s mapping:
(a) 1997/1998, (b) 1999/2000
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Fig. 5.3 Panevėžys city and district school data on [8× 8] SOM by SOM-PAK: (a) 1997/1998,
(b) 1999/2000

It is difficult to estimate the similarity of schools visually from Fig. 5.2. The
points that correspond to schools are almost evenly distributed by Sammon’s
mapping, and there is no possibility to draw conclusions about the clusters of similar
schools. However, when using the self-organizing map (SOM), it is possible to
notice some groups of similar schools much better. Two SOM systems SOM-PAK
(Fig. 5.3) and Kleiweg’s system (Fig. 5.4) and a consecutive combination of SOM
and Sammon’s mapping are used for data analysis (Fig. 5.5).

Interlocation of the data on SOM is shown in Tables 5.5 and 5.6 ([4× 4] SOM)
and Figs. 5.3 and 5.4 ([8×8] SOM). The cells of the tables are filled with the labels
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Fig. 5.4 Panevėžys city and district school data on [8 × 8] SOM by Kleiweg’s system:
(a) 1997/1998, (b) 1999/2000
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Fig. 5.5 Visualization of Panevėžys city and district schools by the consecutive combination of
SOM and Sammon’s mapping: (a) 1997/1998, (b) 1999/2000

of schools. The schools that are in closer cells are more similar and that in farther
cells are more different. Additional facilities of visualization of SOM are applied in
the figures. The results of Tables 5.5 and 5.6 are more comprehensible when they
are explored together with the results of Fig. 5.5, where the reference vectors of
winning neurons, obtained by SOM, are visualized by Sammon’s mapping. Points
corresponding to reference vectors of the winning neurons for both city and district
schools are marked in brown. Note that the results of the SOM-PAK system are
most difficult to comprehend. It is easier to interpret the results of Kleiweg’s system.
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Table 5.5 Panevėžys city
and district school data on
[4×4] SOM (1997/1998)

3, 27 20, 24, 26 21, 25
18, 28 9, 13, 22
19, 23 14 10, 12

2, 4, 8, 15, 16, 17 6, 11 1, 5, 7

Table 5.6 Panevėžys city
and district school data on
[4×4] SOM (1999/2000)

20 3, 28 18 21, 25, 27
22, 24 13 23 19
7, 10 4, 9, 26 8, 14

1 5, 12 6, 11, 15 2, 16, 17

The simplest interpretation is that of the results of the combination of SOM and
Sammon’s mapping, because we see the interlocation of schools, grouped by SOM,
on a plane.

It is possible to observe the groups of schools in Fig. 5.5. In the case of
the 1997/1998 school year (Fig. 5.5a), we see a group of city schools with both
gymnasia and one district school (no. 23). Some of the city schools are grouped
together around one gymnasium (no. 1). Other city schools and one district school
are grouped together around another gymnasium (no. 2). One city school (no. 3)
falls into the group of district schools (see Figs. 5.3a and 5.4a). In the case of
the 1999/2000 school year (Fig. 5.5b), we also see the groups of district and city
schools. Another district school (no. 26) falls into the group of city schools. The
gymnasium (no. 1) starts to be distinguished from other city schools. This fact is also
seen when comparing Tables 5.5 and 5.6; this school is a distinct cell in Table 5.6.

The qualitative comparison of schools from the standpoint of city/rural district
or gymnasium/secondary school allows us to disclose the peculiarities of both
advanced and weak schools. The results of analysis may help to plan the activities in
a particular school, to become more attractive in the context of all the schools in the
region. The set of features is not unique; it can be extended or modified depending
on the objectives of analysis.

5.2 Multidimensional Data in Medicine and Pharmacology

The visual data analysis is an important tool in medicine and pharmacology. This
section deals with the analysis of eye fundus, sleep structure of a patient, and
pharmacological binding affinity. In all the cases, proper insights are made as a
result of the visual analysis of multidimensional data.

5.2.1 Ophthalmological Data Analysis

Computer analysis of graphical ophthalmological data find many modern applica-
tions [24,204,205]. In this investigation, the objects under consideration are fundus
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Fig. 5.6 Ophthalmological data: (a) fundus of eye, (b) approximation of optic nerve disk (outer
ellipse) and excavation (inner ellipse)

of eyes (Fig. 5.6). Usually, ophthalmologists estimate the features of the morphology
of the optic nerve disk, excavation (cup), and neuroretinal rim by visually inspecting
fundus of eyes of patients. Excavation is a normally occurring depression or pit
in the center of the optic disk, also called a physiologic excavation or cup. The
neuroretinal rim is the tissue between the outer edge of the cup and the outer margin
of the disk. Planimetry of the optic disk photographs allows ophthalmologists to
measure the morphological features more precisely.

Four groups of features are measured for our investigation:

1. Features of an ellipse approximating the optic nerve disk (OND):

• Major axis (x1)
• Minor axis (x2)
• Semimajor axis (x3)
• Semiminor axis (x4)
• Horizontal diameter (x5)
• Vertical diameter (x6)
• Area (x7)
• Eccentricity (x8)
• Perimeter (x9)

2. Features of an ellipse approximating the excavation (EXC):

• Major axis (x10)
• Minor axis (x11)
• Semimajor axis (x12)
• Semiminor axis (x13)
• Horizontal diameter (x14)
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• Vertical diameter (x15)
• Area (x16)
• Eccentricity (x17)
• Perimeter (x18)

3. Derivative features:

• Ratio between EXC and OND horizontal diameters (x19 = x14/x5)
• Ratio between EXC and OND vertical diameters (x20 = x15/x6)
• Neuroretinal rim (NRR) area (x21 = x7 − x16)
• Ratio between NRR and OND areas (x22 = x21/x7)
• Ratio between EXC and OND areas (x23 = x16/x7)

4. Thickness of NRR parts:

• Inferior disk sector (x24)
• Superior disk sector (x25)
• Nasal disk sector (x26)
• Temporal disk sector (x27)

The values of the features x1,x2, . . . ,x27 have been measured on 42 patients. The
data set consists of the multidimensional points X1,X2, . . . ,X42 corresponding to the
fundus of eyes, where Xi = (xi1,xi2, . . . ,xi27), i = 1, . . . ,42. The numerical features
are evaluated from the photos of fundi. The values of the features can indicate some
diseases of eyes [9, 170]. In this investigation, we analyze normal and glaucoma
cases. Glaucoma is a group of diseases of the optic nerve, involving the loss of
retinal ganglion cells in a characteristic pattern of optic neuropathy. An increase
of the physiological excavation is typical for glaucoma. However, this disease can
be diagnosed even without evaluating the features of excavation, just basing on the
tests (increase of intraocular pressure, glaucomatous visual field defects, analysis of
retinal nerve fiber layer). We analyze here only the cases where the excavation was
identified by the photographs.

The points X1,X2, . . . ,X18 correspond to 18 patients whose glaucoma was not
diagnosed. These data represent the normal cases. Glaucoma was diagnosed for 24
patients, that is, the points X19,X20, . . . ,X42 correspond to glaucoma cases. The aim
of the analysis is to evaluate how the points, consisting of the features of eye fundus,
are spread, whether they form specific groups. Is it possible to identify glaucoma
using the visual analysis of multidimensional data defined by these features?

The results of the integrated combination of SOM and Sammon’s mapping
(Sect. 4.3.2) are presented in Fig. 5.7. Points corresponding to the normal cases are
colored in blue and that corresponding to the glaucoma cases are colored in red.
Points corresponding to reference vectors of the winning neurons for both cases are
marked in brown. When analyzing the patient data points, comprised of all the 27
features x1,x2, . . . ,x27, it is impossible to differentiate the diseased eyes from the
healthy ones (Fig. 5.7a). The points corresponding to the healthy eyes try to form a
group {X4,X7,X8,X9,X10,X13,X14,X15}; however, some points corresponding to the
glaucoma cases intermix with this group {X21,X22,X37}. A probable reason is due
to too many features, most of which are not essential for the problem.
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Fig. 5.7 Visualization of the ophthalmological data: (a) all the 27 features, (b) only 7 features of
excavation (red—glaucoma, blue—normal, brown—mixture)

It is possible to notice more regularities if only the excavation features are used.
Projections of the points, consisting of seven excavation features (x10,x11,x14, . . . ,x18),
are presented in Fig. 5.7b. Most of the points corresponding to the healthy eyes
{X7,X8,X9,X10,X13,X14,X15} are distributed in one corner (see Fig. 5.7b). The
points corresponding to the eyes damaged by glaucoma are in the opposite corner.
If we view the points starting from the top left corner of the picture, moving to
the bottom right corner, it is possible to notice that at first, there are only the
points corresponding to damaged eyes; later, the number of such points decreases;
and finally, there are only the points corresponding to the healthy eyes (Fig. 5.7b).
Therefore, the problem is to extract the proper set of features. The way to solve this
problem by the visual data analysis is discussed in Sect. 5.3.5.

5.2.2 Analysis of Heart Rate Oscillations with Respect
to Characterization of Sleep Stages

To diagnose sleep-related disorders and diseases, it is important to determine the
sleep structure of a patient. Contemporary methods are based on polysomnography;
however, it is extremely time-consuming and expensive. The results of recent
investigations show the dependence among some characteristics of heart rate and
sleep stages.

The procedure of recording the heart rate is comparatively cheap. However,
computer-aided conclusions about sleep stages, based on the analysis of heart rate,
are still not sufficiently reliable. In this section, several features, defined by the
methods of linear and nonlinear analysis of heart rate, are considered to assess their
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relevance to the dichotomy between a rapid eye movement sleep stage (REM) and
the first sleep stage (FSS). To analyze the heart rate variability, we have applied
methods, based on the statistical analysis of time series, as well as the methods of
nonlinear dynamics. The records of “R wave to R wave” interval (RR) sequences,
recently published on the Internet (http://www.pri.kmu.lt/datbank), have been used
as experimental data. The data set contains data of 45 healthy patients: 28 males and
17 females. The male age is from 17 to 61 (the average age is 36.9), weight is from
63 to 142 kg (the average weight is 88.9 kg), and the height is from 166 to 196 cm
(the average height is 180.1 cm). The female age is from 16 to 48 (the average age
is 32.2), weight is from 55 to 86 kg (the average weight is 67.1 kg), and the height
is from 164 to 180 cm (the average height is 169.4 cm).

The goal of this research was the assessment of features with respect to the
relevance to the patient-independent dichotomy between REM and FSS. These
two sleep stages were chosen for investigation since their heart rate variability
spectra are similar, and it is difficult to distinguish these sleep stages using spectral
methods. The heart rate (HR) is defined by the moments of systolic peaks in the
electrocardiogram (ECG). Most frequently, HR is presented either as a sequence
of RR intervals (time intervals between the peaks) or a sequence of reciprocal RR
values—beat numbers per second. We consider RR sequences using a model of time
series with equispaced values where the time increment is set equal to the average
RR interval.

The data analyzed contain the records of RR sequences and the corresponding
sleep stages. The latter are classified using polysomnography involving manual
scoring by experts to correct errors. The segments of RR sequences corresponding
to REM and to FSS, the length of which was no less than one minute, were
chosen for the analysis. There were 267 segments of RR sequences with REM and
109 segments with FSS. Nine features x1,x2, . . . ,x9 have been estimated for each
segment. The features include statistical, spectral, and nonlinear dynamics.

The statistical features are as follows:

• Mean (x1)
• Standard deviation (x2)

The power spectrum was parameterized by three features that mean the summary
normalized power of the frequency bands. The spectral features are as follows:

• Very low-frequency band 0.01–0.05 Hz (x3)
• Low-frequency band 0.05–0.15 Hz (x4)
• High-frequency band 0.15–0.5 Hz (x5)
• Ratio of normalized power in low- and high-frequency bands (x6 = x4/x5)

The features of nonlinear dynamics:

• Approximate entropy that defines the complexity of behavior of the time series
(x7) [172]

• Fractal scaling exponent of a detrended fluctuation analysis (DFA) that shows
segments of time series with a long-range dependency (x8) [28]
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Fig. 5.8 Visualization of segments of RR sequences: (a) nine-dimensional points,
(b) five-dimensional points (red—REM, blue—FSS)

• Slope of a curve of a progressive detrended fluctuation analysis (x9) [199]

We are interested in the structure of the set of multidimensional points represent-
ing the segments of RR sequences; there are m = 376 (267+109) nine-dimensional
points (n = 9). MDS is applied to the normalized data set, that is, mean values
and standard deviations of all features of the normalized data set are equal to
0 and 1, respectively. Figure 5.8a shows the image of a set of nine-dimensional
points representing the features of REM (red) and FSS (blue). The lines show the
projections of coordinate axes into the image plane. The lines that correspond to x5

and x7 are coincident. Three lines corresponding to x1, x2, and x9 are rather close.
These similarities suggest data reduction excluding x1, x2, and x5. The derivative
feature x6 is less informative than that of its ingredients.

Summarizing the discussion above, we can select the most relevant features for
dichotomy between REM and FSS. They are x3, x4, x7, x8, and x9. It is interesting to
compare the structure of the original data set and the structure of the reduced data
sets. The visualization of the reduced (five-dimensional) data set is presented in
Fig. 5.8b. The images presented in Fig. 5.8 are very similar. Therefore, a similar ac-
curacy of dichotomy can be expected in the case of the original (nine-dimensional)
data set and in the case of the reduced (five-dimensional) data set.

5.2.3 Pharmacological Binding Affinity

A protein is a complex organic compound that consists of amino acids joined
by peptide bonds; the sequence of amino acids is coded by the deoxyribonucleic



5.2 Multidimensional Data in Medicine and Pharmacology 193

acid (DNA). Proteins are building blocks of all living cells and viruses; they play
structural roles or, upon binding of a ligand (small molecule that binds to a protein),
serve for signaling, transport, and catalytic processes. The arrangement of amino
acids in the three-dimensional space into a stable, low-energy structure depends on
the analysis of binding affinities of ligands.

Pharmacological data, for example, the values of inhibition, are constants which
under the given experimental conditions link the affinity of a given ligand to a given
receptor protein. Inhibition constants are obtained by competition binding assays,
which test the ability of a ligand to displace a radioactive ligand (radioligand) from
the binding site. A ligand can be a natural neurotransmitter or pharmacological
drug that binds to a receptor, an agonist drug activates the receptor upon binding,
while an antagonist drug blocks the action of the receptor. Pharmacological data are
usually represented through a matrix, rows correspond to ligands tested in a series
of experiments, while columns correspond to receptors, which can be from different
types or subtypes or from different species or engineered mutants of these.

The analysis of such pharmacological data is very important. The correlation
between structural features of a group of ligands and similar variations in binding
affinity across subtypes and species may provide useful information for drug design.
On the other hand, the analysis of pharmacological properties of the adrenoceptors
can help to predict their structure. Ruuskanen et al. [186] used the principal
component analysis and binary trees of binding affinity data to analyze clustering
of the receptors and ligands. Binary trees provide an artificial clustering by pairs
that can be very misleading, but, on the other hand, it is easiest for the human
mind to interpret. Usually some useful information on the data may be lost when
the principal components are visualized. Although three principal components were
visualized by Ruuskanen et al. [186], the cumulative energy is less than 85%.

Multidimensional scaling of pharmacological binding affinity data was used for
visual representation of pharmacological data and a further analysis [232]. The
hybrid global optimization algorithm with the Euclidean and city-block distances
(see Sect. 3.4) has been used. Several data sets of pharmacological binding affinity
have been visualized:

• Three human and five zebra fish α2-adrenoceptor proteins (m = 8) [186],
Tables 5.7 and 5.8

• Human, rat, guinea pig, and pig α2-adrenoceptor proteins (m = 12) [207],
Table 5.9

• Wild type and mutant proteins (m = 12) [101], Table 5.10

Dissimilarities of receptors have been calculated using the Euclidean and
city-block distances between multidimensional points describing the log10-transformed
binding affinities.

Images of the binding affinity data of three human and five zebra fish (Danio
rerio) α2-adrenoceptors are shown in Fig. 5.9. The titles of human receptors begin
with the letter “h” and zebra fish receptors with “d.” Images in Fig. 5.9 show a
close similarity of dα2Da and dα2Db. We note clustering of zebra fish receptors in
the centers of images and human receptors around them. adrenoceptors hα2B and
dα2Da are located closer to each other than hα2A to dα2A, hα2B to dα2B, and hα2C
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Table 5.8 Dissimilarity matrix of three human and five zebra fish α2-adrenoceptor proteins
calculated using the city-block distances

hα2A dα2A hα2B dα2B hα2C dα2C dα2Da dα2Db

hα2A 0 10.1831 18.1173 18.9519 17.0474 15.7394 17.0255 16.5943
dα2A 10.1831 0 15.7345 14.0502 13.0642 11.8421 11.9610 11.6784
hα2B 18.1173 15.7345 0 8.60877 10.7763 7.48553 5.54032 6.84610
dα2B 18.9519 14.0502 8.60877 0 14.7345 7.93030 7.16783 8.19431
hα2C 17.0474 13.0642 10.7763 14.7345 0 10.7469 9.79503 10.1099
dα2C 15.7394 11.8421 7.48553 7.93030 10.7469 0 7.90562 8.43933
dα2Da 17.0255 11.9610 5.54032 7.16783 9.79503 7.90562 0 2.37351
dα2Db 16.5943 11.6784 6.84610 8.19431 10.1099 8.43933 2.37351 0

Table 5.9 Binding affinity data of human, rat, guinea pig, and pig α2-adrenoceptor
proteins [207]

Ligand

Protein MK912 RX821002 Rauwolscine Yohimbine RS79948-197

hα2A 1.2 0.62 3.8 3.7 0.6
pα2A 1.4 0.85 1.6 2.4 0.56
rα2A 1.8 0.68 34 50 0.42
gα2A 0.4 0.14 28 41 0.37
hα2B 1.4 3.8 4.6 14 0.46
pα2B 1.3 4.5 3.5 18 0.47
rα2B 1.1 2.6 9.3 14 0.18
gα2B 8.3 7.9 220 180 1.0
hα2C 0.086 1.8 0.78 3.0 0.77
pα2C 0.12 2.0 0.41 3.8 0.34
rα2C 0.075 0.55 1.6 2.8 0.19
gα2C 0.08 1.1 6.8 5.6 0.59

to dα2C. It is especially exposed in the image by MDS with the city-block distances
(see Fig.5.9b).

Images of the binding affinity data of human, rat, guinea pig, and pig
α2-adrenoceptors [207] are shown in Fig. 5.10. The titles of human receptors begin
with the letter “h,” rat receptors with “r,” guinea pig receptors with “g,” and pig
receptors with “p.” The images in Fig. 5.10 indicate the cluster of hα2B, pα2B,
and rα2B. The properties of a guinea pig α2B-adrenoceptor are quite different
from that of other visualized adrenoceptors. α2A-adrenoceptors of different species
form two clusters: hα2A with pα2A and rα2A with gα2A. α2C-adrenoceptors of
different species form a cluster. The images in Fig. 5.10 show that human and pig
α2-adrenoceptors are quite similar as compared to rat and guinea pig adrenoceptors.

Critical amino acids of α1a- and α1b-adrenoceptors have been analyzed by
Hwa et al. [101]. The goal of the analysis is to understand which amino acids are
involved in the specificity to binding certain ligands. Therefore, binding affinities
of α1a- and α1b-adrenoceptors and their engineered mutants with one or two amino
acids changed have been compared. For this reason, mutants have been engineered
by changing one or two amino acids in α1b-adrenoceptor by their equivalent in the
α1a-adrenoceptor. Binding affinities of the mutants have been analyzed in search of



196 5 Applications of Visualization

T
ab

le
5.

10
B

in
di

ng
af

fin
it

y
da

ta
of

w
il

d
ty

pe
an

d
m

ut
an

tp
ro

te
in

s
[1

01
]

L
ig

an
d

Pr
ot

ei
n

O
xy

m
et

az
ol

in
e

C
ir

az
ol

in
e

M
et

ho
xa

m
in

e
(–

)E
pi

ne
ph

ri
ne

(–
)N

or
ep

in
ep

hr
in

e
Ph

en
yl

ep
hr

in
e

Ph
en

to
la

m
in

e
5

M
et

hy
lu

ra
pi

di
l

W
B

41
01

α 1
b
-A

R
6.

05
5.

64
3.

16
5.

29
5.

25
4.

69
7.

13
6.

81
8.

29
S9

5T
/F

96
S

5.
54

5.
72

3.
26

5.
30

5.
32

4.
64

7.
45

6.
91

8.
25

T
17

4L
6.

25
5.

76
3.

12
5.

47
5.

37
4.

59
7.

00
6.

97
8.

08
L

18
2F

5.
94

5.
81

3.
16

5.
30

5.
44

4.
78

7.
29

6.
99

8.
05

A
20

4V
6.

90
6.

10
3.

96
5.

77
5.

76
5.

55
7.

31
7.

09
8.

17
S2

08
A

6.
18

5.
82

3.
16

5.
16

5.
16

4.
46

7.
13

6.
70

7.
66

A
31

3V
6.

18
5.

87
3.

39
5.

49
5.

54
4.

96
7.

51
6.

93
8.

76
L

31
4M

6.
34

6.
20

3.
76

5.
50

5.
43

4.
81

7.
40

7.
10

8.
35

α 1
a
-A

R
7.

34
6.

38
4.

43
5.

35
5.

12
4.

96
7.

96
8.

90
10

.3
1

V
18

5A
/M

29
3L

5.
91

5.
99

3.
79

5.
43

5.
41

4.
85

V
18

5A
5.

88
6.

14
3.

76
5.

29
5.

02
4.

81
M

29
3L

7.
03

6.
57

4.
34

6.
09

5.
92

5.
58



5.2 Multidimensional Data in Medicine and Pharmacology 197
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Fig. 5.9 Visualization of human and zebra fish α2-adrenoceptors by MDS with (a) Euclidean
distances, (b) city-block distances
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Fig. 5.10 Visualization of human, rat, guinea pig and pig α2-adrenoceptors by MDS with
(a) Euclidean distances, (b) city-block distances

the mutation becoming alike to the α1a-adrenoceptor. Similarly, the mutants of the
α1a-adrenoceptor have been engineered.

Images of the binding affinity data of receptors are shown in Fig. 5.11. The images
show that the mutants T174L, L182F, and S208A of the α1b-adrenoceptor are
similar to the wild type. Mutations S95T/F96S and A204V of the α1b-adrenoceptor
change the binding properties significantly, but do not make them alike to the α1a-
adrenoceptor. Similarly, mutation M293L of the α1a-adrenoceptor changes the bind-
ing properties significantly, but does not make them alike to the α1b-adrenoceptor.
The properties of mutant L314M of the α1b-adrenoceptor as well as of mutants
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Fig. 5.11 Visualization of wild type and mutant α1-adrenoceptors by MDS with (a) Euclidean
distances, (b) city-block distances

V185A and V185A/M293L of the α1a-adrenoceptor are similar and are located in
the middle between the properties of wild type α1a- and α1b-adrenoceptors.

5.3 Correlation-Based Visualization

The methods investigated in this section are oriented to the analysis of correlation
matrices and to the visual presentation of a set of features characterized by their
correlations. The theoretical and methodological background for such visualization
is given here. The results of experiments, carried out on the basis of correlation
matrices with the known clusters of features, are presented. Some real applications
are discussed, too.

5.3.1 Theoretical and Methodological Background

Any set of similar objects X1,X2, . . . ,Xm may be often characterized by common
features x1,x2, . . . ,xn. The values obtained by any feature xi can depend on the values
of other features x j, j = 1, . . . ,n, i�= j, that is, the features are correlated. There exist
groups of features that characterize different properties of the object. The problem
is to discover knowledge about the interlocation of features.

If we have a data matrix X = {xi j, i = 1, . . . ,m, j = 1, . . . ,n} for the analysis, we
can visualize both a set of objects and a set of features. The dimensionality of data on
objects is n, and the dimensionality of data on features is m. If the number m is very
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large (hundreds or thousands), the visualization of features becomes complicated
by a direct use of matrix X . The reason is that the dimensionality of the visualized
points, characterizing features, is very large and equals m, in this case.

Our approach, presented in this section and in [47], decreases the dimensionality
of data on features from m to n and the visualization follows. The approach consists
of three steps:

1. Building a correlation matrix for n features on the basis of the matrix X
2. Creating a set of n-dimensional points V1,V2, . . . ,Vn that correspond to features

x1,x2, . . . ,xn on the basis of the correlation matrix
3. Graphical presentation of the set of points V1,V2, . . . ,Vn using the methods based

on dimensionality reduction

Thus, the method is oriented to the analysis of correlation matrices via the visual
presentation of a set of features on a plane.

Sometimes, a correlation matrix of the features is known only, that is, we do
not know the source data for the correlation matrix. It is shown in [47] that the
correlation matrix is sufficient data for visualizing the features.

A lot of references to real correlation matrices may be found in [47]. Applications
of the recent research and technology development produce correlation matrices and
discover knowledge via their analysis: the references cover air pollution, vegetation
of coastal dunes, groundwater chemistry, minimum temperature trends, zoobenthic
species-environmental relationships, development and analysis of large environ-
mental and taxonomic databases, and curricula of studies (see [48, 49, 61, 102]).

An attempt to visualize the correlations by using the topographic maps is
made in [13]. A principal component analysis biplot version [110] for correlation
matrix visualization is included in the Brodgar software package for a multivariate
analysis and multivariate time series analysis (http://www.brodgar.com), oriented to
biological and oceanographical data. However, it does not show the interlocation
of features—only their location around the zero correlation may be seen. The
method, proposed in [47], gives a theoretically grounded possibility for a new view
to the analysis of correlations, in particular, to the visualization of data stored in
correlation matrices. Such a visualization makes it possible to discover additional
knowledge hidden in the correlation matrices and to make proper decisions.

The correlation matrix R = {ri j, i, j = 1, . . . ,n} of features x1,x2, . . . ,xn can be
calculated by analyzing the objects that compose the set X = {X1,X2, . . . ,Xm}. Here,
ri j is the correlation coefficient of features xi and x j defined by formula (2.2). The
specific character of the correlation matrix analysis problem lies in the fact that the
features xi and x j are related more strongly if the absolute value of the correlation
coefficient |ri j| is higher and less strongly if the value of |ri j | is lower. The minimal
relationship between the features is equal to 0. The maximal relationship is equal to
1 or −1.

Let Sn be a subset of an n-dimensional Euclidean space R
n containing such

points V = (v1,v2, . . . ,vn), V ∈ Sn, where ‖V‖ = ∑n
k=1 v2

k = 1, that is, Sn is a unit
sphere. The idea of analysis of a correlation is based on determining a set of points
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V1,V2, . . . ,Vn ∈ Sn corresponding to features x1,x2, . . . ,xn so that cos(Vi,Vj) = |ri j |
or cos(Vi,Vj) = r2

i j. It means that Vi and Vj will be closer if |ri j| or r2
i j is larger. Here,

Vi and Vj are conceived as vectors bound to the origin (0,0, . . . ,0). Note that cosines
between the vectors Vi and Vj are equal to their scalar product.

If only the matrix of cosines

K = {cos(Vi,Vj), i, j = 1, . . . ,n} (5.1)

is known, it is possible to create a set of points Vs = (vs1,vs2, . . . ,vsn) ∈ Sn, s =
1, . . . ,n as follows:

vsk =
√

λkeks, k = 1, . . . ,n, (5.2)

where λk is the kth eigenvalue of matrix K, Ek = (ek1,ek2, . . . ,ekn) is a normalized
eigenvector (the length of eigenvector is equal to one) that corresponds to the
eigenvalue λk. We see from (5.2) that the kth coordinate vsk of Vs depends on
the kth eigenvalue λk and on the sth component eks of the eigenvector Ek that
corresponds to λk.

Remark 1. The set {V1,V2, . . . ,Vn}, Vi ∈ Sn, i = 1, . . . ,n corresponding to the
features x1,x2, . . . ,xn exists if the matrix of scalar products (cosines) of V1,V2, . . . ,Vn

is nonnegative definite.

The correlation matrix R = {ri j, i, j = 1, . . . ,n} is nonnegative definite. There-
fore, the set of points V1,V2, . . . ,Vn ∈ Sn can be created, when the correlation
matrix R is used as the cosine matrix K. However, the values of the correlation
matrix may take both positive and negative values. So, the correlation matrix R is
acceptable directly for creating the set of points V1,V2, . . . ,Vn if all the elements of
the matrix are nonnegative only. In the general case, it is not acceptable, because
the value of strength of the relation of features is defined by the absolute value
of the correlation coefficient. Therefore, two other matrices may be of interest:
|R|= {|ri j|, i, j = 1, . . . ,n} and R2 = {r2

i j, i, j = 1, . . . ,n}.

We prove below that the matrix R2 = {r2
i j, i, j = 1, . . . ,n} is nonnegative definite

as well. Therefore, the set of points V1,V2, . . . ,Vn ∈ Sn may be created when R or R2

is used as K.

Proposition. Let R = {ri j, i, j = 1, . . . ,n} be a correlation matrix. The matrix R2 =
{r2

i j, i, j = 1, . . . ,n} is nonnegative definite.

Proof. Let us denote the lth eigenvalue of the matrix R by λl and the ith component
of the unit eigenvector of R corresponding to λl by eli. Let us analyze the quadratic
form

ψ(t1, . . . , tn) =
n

∑
i=1

n

∑
j=1

r2
i jtit j.
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It may be transformed as follows:

ψ(t1, . . . , tn) =
n

∑
i=1

n

∑
j=1

(
n

∑
s=1

λsesies j

)2

tit j

=
n

∑
i=1

n

∑
j=1

n

∑
k=1

n

∑
l=1

λkλlekieliek jel jtit j

=
n

∑
k=1

n

∑
l=1

λkλl

(
n

∑
i=1

ekieliti

)2

.

The correlation matrix R is nonnegative definite. Therefore, its eigenvalues are
nonnegative: λl ≥ 0, l = 1, . . . ,n and

n

∑
k=1

n

∑
l=1

λkλl

(
n

∑
i=1

ekieliti

)2

≥ 0,

that is, the quadratic form ψ(t1, . . . , tn) is nonnegative definite for any t1, . . . , tn.
From the nonnegative definiteness of the quadratic form ψ(t1, . . . , tn), there

follows nonnegative definiteness of the matrix R2.
The proposition is proved. ��

Remark 2. The nonnegative definiteness of the matrix |R| does not follow from that
of the matrix R: the matrix |R| may not be nonnegative definite if R has just one
negative element.

Remark 3. It follows from Proposition and Remark 2 that the set of points
V1,V2, . . . ,Vn ∈ Sn corresponding to the set of features x1,x2, . . . ,xn does exist if

(a) cos(Vi,Vj) = ri j, i, j = 1, . . . ,n, when all ri j ≥ 0, i, j = 1, . . . ,n.
(b) cos(Vi,Vj) = r2

i j, i, j = 1, . . . ,n.

Remark 4. It is expedient to use cos(Vi,Vj) = ri j, i, j = 1, . . . ,n if all ri j are
nonnegative. In this case, the scalar product of Vi and Vj is equal to the respective
correlation coefficient ri j. It is expedient to use cos(Vi,Vj) = r2

i j, i, j = 1, . . . ,n if
there exists just one ri j < 0. In this case, the scalar product of Vi and Vj is equal to
the squared value of the respective correlation coefficient ri j.

Remark 5. The set of points V1,V2, . . . ,Vn ∈ Sn, which corresponds to features
x1,x2, . . . ,xn, may be mapped on a plane trying to preserve distances between
V1,V2, . . . ,Vn. That leads to a possible visual observation of the layout of features
x1,x2, . . . ,xn on the plane.

The matrix R (when its elements are nonnegative) or the matrices |R| and R2 may
be considered as the proximity matrices, the elements of which are similarities. In
this case, visualization of features is possible using MDS without creation of a set
of points V1,V2, . . . ,Vn. However, when the points V1,V2, . . . ,Vn are known, there are
wider possibilities to analyze the set of features x1,x2, . . . ,xn, for example, using the
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Table 5.11 Correlation matrix R8 = {ri j, i, j = 1, . . .,8} of eight physical features

i/ j 1 2 3 4 5 6 7 8

1 1.000 0.846 0.805 0.859 0.473 0.398 0.301 0.382
2 0.846 1.000 0.881 0.826 0.376 0.326 0.277 0.415
3 0.805 0.881 1.000 0.801 0.380 0.319 0.237 0.345
4 0.859 0.826 0.801 1.000 0.436 0.329 0.327 0.365
5 0.473 0.376 0.380 0.436 1.000 0.762 0.730 0.629
6 0.398 0.326 0.319 0.329 0.762 1.000 0.583 0.577
7 0.301 0.277 0.237 0.327 0.730 0.583 1.000 0.539
8 0.382 0.415 0.345 0.365 0.629 0.577 0.539 1.000

cluster analysis or other data analysis methods. The method for visualization of a
set of features on the basis of their correlations has been applied to solve a number
of applied problems.

5.3.1.1 Experimental Investigation of Visual Presentation
of a Set of Features

The experiments were carried out on the basis of two correlation matrices with the
known ideal partition of features into groups. The known ideal partition serves as a
basis for evaluating the results of analysis.

The first experiment was carried out using the correlation matrix R8 of eight
physical features, measured on 305 schoolgirls (see [46, 47, 85]):

• Height (x1)
• Arm span (x2)
• Length of a forearm (x3)
• Length of a lower leg (x4)
• Weight (x5)
• Bitrochanteric diameter (x6)
• Chest girth (x7)
• Chest width (x8)

The correlation matrix is given in Table 5.11. The points corresponding to eight
physical features are presented in Table 5.12.

Wide investigations of these test data divided the features into two groups:

• {x1, . . . ,x4}
• {x5, . . . ,x8}

The features of the first group characterize shapeliness, while the features of the
second group characterize plumpness of girls. It is an ideal partition of features.

The second experiment was carried out using the correlation matrix R24 of 24
psychological tests on 145 pupils of the 7th and 8th forms in Chicago (see [46, 47,
85]). The correlation matrix is given in Table 5.13. The points corresponding to 24
tests are presented in Table 5.14.
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Table 5.12 Points Vi, i = 1, . . . ,8 corresponding to eight physical features

v1 v2 v3 v4 v5 v6 v7 v8

V1 0.8594 −0.3723 −0.0703 −0.0698 −0.1972 0.0656 −0.2357 0.1193
V2 0.8416 −0.441 0.0785 0.0442 0.1646 0.0311 −0.1032 −0.2244
V3 0.8131 −0.4586 0.0106 −0.0305 0.2614 −0.1695 0.0896 0.1496
V4 0.8396 −0.3953 −0.1005 0.0804 −0.2215 0.1084 0.2454 −0.0348
V5 0.758 0.5247 −0.1479 −0.0743 −0.1428 −0.3111 −0.0097 −0.0737
V6 0.6742 0.5333 −0.0508 −0.4627 0.1060 0.1771 0.0415 0.0021
V7 0.6172 0.5801 −0.2919 0.4087 0.1242 0.1116 −0.0297 0.0389
V8 0.6706 0.4185 0.5916 0.1434 −0.0529 0.0176 0.0122 0.0363

There are five groups of tests:

• Spatial perception {x1, . . . ,x4}
• Verbal tests {x5, . . . ,x9}
• Rapidity of thinking {x10, . . . ,x13}
• Memory {x14, . . . ,x19}
• Mathematical capabilities {x20, . . . ,x24}

The tests of the fifth group characterize a general development of the tested
person. The tests do not characterize separate parts of his intellect. Thus, classifying
all the tests into four groups, the algorithms distribute the tests of the fifth group
among the other four groups. The investigations in [47] have indicated that the
optimal partition of features is as follows:

• {x1, . . . ,x4,x20,x22,x23}
• {x5, . . . ,x9}
• {x10, . . . ,x13,x21,x24}
• {x14, . . . ,x19}

We will consider this partition as an ideal one.
The elements of both matrices R8 and R24 are positive. Therefore, their values

were not squared for the analysis (see Remarks 3 and 4).
In Fig. 5.12, we present Sammon’s mapping results of the points V1,V2, . . . ,Vn ∈

Sn calculated on the basis of matrices R8 (Fig. 5.12a) and R24 (Fig. 5.12b). In fact,
Fig. 5.12 shows the location of features on the plane. The indices of features are
given at the point showing the place of the feature. We do not present legends
and units for both axes in the figure, because we are interested in observing the
interlocation of points corresponding to the features on a plane only.

Mapping of eight physical features gives good results—we can visually observe
two clusters (see Fig. 5.12a). But it is impossible to evaluate the number of clusters
in Fig. 5.12b, when mapping 24 psychological tests. However, more correlated, both
tests and features are shown to be nearer to one another.

The experiments show that, in general, it does not suffice to use Sammon’s
mapping for visualization of features.
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Table 5.14 Points Vi, i = 1, . . . ,24 corresponding to 24 psychological tests

Vi v1 v2 v3 v4 v5 v6 v7 v8

V1 0.6178 −0.0154 0.4217 −0.2083 0.0062 −0.007 −0.2049 −0.2453

V2 0.3998 −0.0842 0.4020 −0.2134 −0.3509 −0.2508 0.4501 0.0568

V3 0.4544 −0.1401 0.4071 −0.1601 0.3531 −0.4223 −0.0722 0.3580

V4 0.5104 −0.1867 0.3422 −0.2217 0.0480 0.2955 −0.3845 −0.1386

V5 0.6856 −0.3263 −0.3573 −0.0447 −0.1078 −0.1302 0.0882 −0.0079

V6 0.6927 −0.4255 −0.2607 0.0870 0.0056 −0.0901 −0.0235 −0.1504

V7 0.6668 −0.4140 −0.3474 −0.0695 0.0350 0.0231 −0.0787 −0.005

V8 0.6935 −0.2522 −0.1617 −0.1132 0.1282 −0.0785 −0.2023 0.1434

V9 0.6841 −0.4443 −0.2671 0.0955 0.0057 0.0864 0.0694 −0.1088

V10 0.4839 0.5270 −0.414 −0.1922 −0.0403 0.0333 0.0221 0.1602

V11 0.5771 0.4305 −0.2221 0.0556 −0.0567 −0.218 −0.0241 −0.3714

V12 0.4838 0.5515 −0.1452 −0.3212 −0.1433 0.0557 −0.1775 0.2524

V13 0.6287 0.2916 −0.0068 −0.3627 0.0312 −0.2476 −0.1881 −0.2271

V14 0.4478 0.0846 −0.0512 0.5537 −0.1747 −0.3817 −0.0548 0.0794

V15 0.4154 0.1291 0.0991 0.5322 −0.2963 0.1164 −0.0681 −0.0175

V16 0.5340 0.0796 0.4080 0.3178 −0.1571 −0.1633 −0.1382 −0.1430

V17 0.4879 0.2701 −0.0469 0.4735 0.2592 0.1423 −0.2143 0.2106

V18 0.5471 0.3746 0.1980 0.1567 0.1084 0.1957 0.0970 0.0328

V19 0.4758 0.1391 0.1203 0.1846 0.6184 −0.0212 0.3763 −0.1486

V20 0.6423 −0.2005 0.1432 0.0687 −0.256 0.1940 0.0248 0.3067

V21 0.6220 0.2239 0.1042 −0.1918 −0.1646 0.2049 0.2429 −0.1402

V22 0.6298 −0.1375 0.1514 0.0623 0.0755 0.3465 0.1491 −0.0849

V23 0.7122 −0.1123 0.1500 −0.1079 −0.0495 0.0760 0.0992 0.2480

V24 0.6810 0.2073 −0.2403 −0.0828 0.0984 0.0507 0.2226 0.0696

Vi v9 v10 v11 v12 v13 v14 v15 v16

V1 −0.1616 0.2123 0.0075 0.0811 0.1185 0.2346 −0.0090 −0.0667

V2 −0.2722 −0.1659 0.1355 −0.0842 −0.1823 −0.1335 −0.0755 0.1215

V3 −0.0464 0.0489 −0.0536 −0.1187 0.0421 −0.0871 −0.1004 −0.2339

V4 0.0601 −0.2857 0.0281 −0.3040 −0.1924 −0.0903 0.0517 0.0065

V5 −0.2371 −0.0314 −0.0581 0.0592 0.0645 −0.0729 0.1989 −0.0684

V6 −0.1012 −0.0755 0.0626 0.0029 −0.0636 0.1106 −0.2508 −0.0744

V7 0.0074 −0.1003 −0.0877 −0.0726 0.1197 0.0334 −0.2061 0.1453

V8 0.0897 −0.0919 −0.2461 0.1299 0.0523 −0.2322 0.2090 0.0741

V9 −0.1189 0.0862 0.095 0.0796 −0.1185 0.0572 0.1655 −0.0512

V10 0.0532 −0.115 −0.0674 −0.0582 −0.1343 −0.0023 −0.0195 −0.3523

V11 0.0131 0.0988 0.1757 0.1177 0.0201 −0.2715 −0.1210 −0.0925

V12 −0.091 0.194 0.0228 0.0088 0.0143 0.0408 0.0005 0.1042

V13 −0.0039 0.1205 0.0016 −0.0640 0.0551 0.0637 −0.0173 0.2329

V14 0.3004 0.0363 0.0927 −0.2877 0.0932 −0.0108 0.1789 0.1323

V15 −0.2713 0.2116 −0.4464 −0.2087 −0.0808 0.0435 −0.092 −0.0624

V16 0.2385 −0.2436 0.02 0.2955 −0.0867 0.1584 0.0777 −0.1499

V17 −0.1700 −0.0923 0.2186 0.1409 −0.2276 −0.1231 −0.1671 0.1727

V18 −0.3944 −0.2633 0.0493 0.0369 0.3220 −0.0002 0.2154 0.0126

V19 0.0833 0.0614 −0.218 0.0125 −0.0102 0.0415 −0.0645 0.0814

V20 0.1981 −0.0065 0.0885 0.1317 0.3276 0.0249 −0.2511 −0.0082

V21 0.2999 −0.1418 −0.2972 0.0611 0.0032 −0.1651 −0.0657 0.0653

V22 0.1418 0.3394 0.2844 −0.1854 0.0713 −0.2124 0.0710 −0.1379

V23 0.1103 0.2997 −0.0203 0.2054 −0.2839 0.0988 0.1401 0.0987

V24 0.1282 −0.1700 0.1435 −0.2043 −0.032 0.3785 0.0442 0.0087
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Table 5.14 (Continued)

Vi v17 v18 v19 v20 v21 v22 v23 v24

V1 −0.0936 −0.2803 0.0568 −0.0820 −0.1299 −0.1291 −0.1098 −0.0165

V2 0.1287 −0.0509 −0.0742 −0.0024 −0.046 −0.059 −0.0689 −0.0222

V3 −0.1141 0.0771 0.0963 0.0267 −0.0181 0.1288 0.0441 −0.0513

V4 −0.0900 0.0064 −0.1663 −0.0552 0.0535 −0.0422 0.1086 0.0140

V5 −0.1643 −0.085 −0.0195 0.1908 −0.0969 −0.0582 0.1795 0.1537

V6 0.0339 −0.0093 0.0396 −0.164 0.1875 0.1549 −0.1048 0.1668

V7 0.2002 −0.1752 0.1364 0.1035 0.0531 −0.0308 0.1307 −0.1659

V8 0.2210 0.0613 −0.0192 −0.1799 −0.1506 −0.0469 −0.1472 0.0270

V9 −0.1719 0.1127 −0.1724 0.066 0.0044 0.1225 −0.1375 −0.1885

V10 0.0351 −0.0863 −0.0221 0.0781 0.1288 −0.1951 −0.1176 −0.0251

V11 −0.0297 0.0793 −0.0312 −0.2142 −0.0519 −0.0298 0.1602 −0.0693

V12 0.0919 −0.1576 −0.2240 0.0090 −0.0132 0.2710 0.04370 0.0205

V13 0.0019 0.2897 0.0485 0.2210 0.0961 −0.0762 −0.0831 0.0396

V14 −0.1113 −0.1714 −0.0169 −0.0462 0.0911 −0.0212 −0.0578 −0.0062

V15 0.0635 0.1411 0.0081 −0.0103 −0.0677 −0.0067 0.0260 −0.0082

V16 0.2102 0.0099 −0.0259 0.1684 −0.0131 0.0912 0.0578 0.0000

V17 −0.1044 −0.0515 0.1062 0.1019 −0.1157 −0.0444 −0.0632 0.0236

V18 0.0191 0.0476 0.0974 −0.0806 0.1908 0.0334 0.0124 −0.0292

V19 0.0379 −0.0829 −0.2702 0.0267 0.0403 −0.0525 0.0299 0.0302

V20 −0.1020 0.1401 −0.2037 −0.0044 −0.0081 −0.1289 −0.0034 0.0186

V21 −0.2425 −0.0708 0.1853 0.0350 −0.0271 0.1600 −0.0632 −0.0012

V22 0.2127 −0.0066 0.1047 0.1211 −0.0294 0.0427 −0.035 0.0523

V23 −0.0231 0.0333 0.1353 −0.1361 0.1909 −0.0959 0.1342 −0.0021

V24 0.0166 0.1367 0.0928 −0.1146 −0.2532 0.0195 0.0527 0.0090
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Fig. 5.12 Visualization by Sammon’s mapping: (a) eight physical features, (b) 24 psychological
tests

Two sizes of rectangular SOM were used in the experiments: [3×3] and [4×4].
The experiments with SOM of different size render a possibility to discover the
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Table 5.15 Physical features
on [3×3] SOM

8 2, 3

5, 6, 7 1, 4

Table 5.16 Psychological
tests on [3×3] SOM

14–19 10–13, 21, 24

1–4, 20, 22, 23 5–9

Table 5.17 Physical features
on [4×4] SOM

4 2, 3
7 1

5 6 8

Table 5.18 Psychological
tests on [4×4] SOM

10, 11, 12, 24 17, 18 14, 15, 16
13, 21 19

1
2–4 20, 22, 23 5–9

weakest relations among subclusters of the features inside a cluster—the growing
size of SOM will cause splitting the cluster into smaller ones.

In Tables 5.15–5.18, the SOM results are presented. Indices of features are
noticed in the cells.

The features are spread among the cells of the tables (among the nodes of SOM).
The results in Tables 5.15 and 5.16 may serve as a good example of application
of SOM in clustering: we see four clusters separated by empty cells. Clustering of
the psychological tests coincides with the ideal partition. The results in Tables 5.17
and 5.18 need an additional analysis.

The advantage of application of SOM of different size in analyzing the same
data set can be clearly seen when comparing Tables 5.17 and 5.18. For example,
the group of the psychological tests {x14, . . . ,x19} that characterize memory was
divided even into three clusters: {x14,x15,x16}, {x17,x18}, and {x19}, as the size of
SOM was enlarged from [3× 3] to [4× 4]. We can conclude here that the group
{x14, . . . ,x19} contains similar tests, but this similarity is not homogeneous over all
the tests of this group.

The results of the consecutive combination of SOM and Sammon’s map-
ping (Sect. 4.3.1) give the answer to the questions, which remained open after the
application of SOM alone. In Figs. 5.13 and 5.14, we can observe the interlocation
of clusters. It means that we can visually determine which clusters are more
neighboring and which are less. In view of Table 5.18, one can draw a conclusion
that x1, x13, and x21 are similar. Fig. 5.13b, however, refutes such a proposition: x13

and x21 are similar indeed, but x1 is far from both x13 and x21.
Figures 5.13 and 5.14 render a possibility to observe visually the interloca-

tion of features both inside the clusters and on the whole. For example, see
Fig. 5.13a, where the appearance of two subclusters {x1,x4} and {x2,x3} in the
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 1,4
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 10-13,21,24

 1-4,20,22,23
 5-9

a b

Fig. 5.13 Visualization by the consecutive combination of [3×3] SOM and Sammon’s mapping:
(a) eight physical features, (b) 24 psychological tests
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 17,18
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2,3,4  20,22,23

 19

a b

Fig. 5.14 Visualization by the consecutive combination of [4×4] SOM and Sammon’s mapping:
(a) eight physical features, (b) 24 psychological tests

group {x1, . . . ,x4}, that characterizes the shapeliness, indicates that the shapeliness
is described by joining two pairs of features: height, length of the lower leg, and arm
span, length of the forearm. However, the features x1, . . . ,x4 that characterize the
shapeliness are interlocated closer than they are located with respect to the features
x5, . . . ,x8 that characterize the plumpness.
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5.3.2 Dimensionality Problem in the Visualization
of Correlation-Based Data

The goal of this section is to investigate the possibility to reduce the dimensionality
of points from the set {V1,V2, . . . ,Vn}, Vi ∈ Sn, and to evaluate the visualization
quality in dependence on the reduction level [54].

The experiments are carried out using the correlation matrix R24 of 24 psycho-
logical tests. We apply here two visualization methods: Sammon’s mapping and the
self-organizing map (SOM). These two methods are based on different principles,
and therefore, they supplement each other when used jointly. So, the integrated
combination of SOM and Sammon’s mapping is used, too (Sect. 4.3.2). [3×3] SOM
was used in the experiments.

A set of points V1,V2, . . . ,Vn was created using the correlation matrix R24.
Each point Vi contains 24 coordinates. However, a smaller number of coordinates
may be used when analyzing the set of points V1,V2, . . . ,Vn. The reason is that
the values of coordinates depend on the size of eigenvalues λk, k = 1, . . . ,n
(see formula (5.2)). Let the eigenvalues be numbered in descending order of their
size: λ1 ≥ λ2 ≥ ·· · ≥ λn. Therefore, the coordinates of points V1,V2, . . . ,Vn, with
larger order numbers, depend on the smaller eigenvalues. It leads to an idea that
it is expedient to reduce the dimensionality n by ignoring and eliminating the
coordinates with larger order numbers. The target of analysis is to evaluate the
influence of the number of coordinates of the points V1,V2, . . . ,Vn on the projection
of these points on the plane.

The SOM result, where only the first two coordinates of points V1,V2, . . . ,V24

are considered, that is, Vi = (vi1,vi2), i = 1, . . . ,24, is presented in Table 5.19a. In
Table 5.19b, the first three coordinates of V1,V2, . . . ,V24 are considered, that is, Vi =
(vi1,vi2,vi3), i = 1, . . . ,24. In Table 5.19c–f, the number of coordinates of the points
grows and takes values 5,9,14, and 24, respectively. We see four definite clusters,
where all the 24 coordinates are considered, that is, where Vi = (vi1,vi2, . . . ,vi24), i=
1, . . . ,24 (see Table 5.19f). These clusters correspond to the ideal partition discussed
in Sect. 5.3.1. However, the results of Table 5.19e are also good, because the tests
x20 and x21 of the fifth group now are placed in separate cells of SOM. In the ideal
partition, all the five features x20, . . . ,x24 are assigned to the other four groups. This
fact indicates the existence of some specific character in the tests of the fifth group.

In Figs. 5.15 and 5.16, we observe a distribution of the psychological tests,
characterized by the correlation matrix, on a plane. The numbers in the figures are
indices of the features x1,x2, . . . ,xn and the corresponding points V1,V2, . . . ,Vn.

In Fig. 5.15, we present the interlocation of points V1,V2, . . . ,V24 on a plane
after a direct application of Sammon’s mapping dependent on the number of the
considered coordinates: the first two, three, five, nine, fourteen, and all the 24
coordinates. As we see in Fig. 5.15e and f, the tests are almost evenly distributed
when 14- and 24-dimensional points are visualized. Nevertheless, some decision on
the interlocation of tests can be made: more similar tests are located nearer in the
figures, and their interlocation matches ideal partition rather well, but the borders
of clusters are not clearly visible. If the number of the considered coordinates is
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Table 5.19 [3×3] SOM
when various number of
coordinates are considered:
(a) two, (b) three, (c) five,
(d) nine, e) fourteen, and
(f) 24 coordinates

a
2, 14 3, 4 5, 6, 7, 8, 9, 20
15, 19 1, 16 22, 23

10, 11, 12, 13, 17, 18 21, 24
b

15, 18, 19, 21 13, 17 10, 11, 12, 24
14

1, 2, 3, 4, 16 20, 22, 23 5, 6, 7, 8, 9
c

14, 15, 17, 19 16 1, 2, 3, 4
18 20, 22, 23

10, 11, 12, 13, 21 24 5, 6, 7, 8, 9
d

10, 11, 12, 13, 21 24 5, 6, 7, 8, 9
18 20, 22, 23

14, 15, 17, 19 16 1, 2, 3, 4
e

10, 11, 12, 13, 24 21 1, 2, 3, 4, 22, 23
20

14, 15, 16, 17, 18, 19 5, 6, 7, 8, 9
f

14, 15, 16, 17, 18, 19 1, 2, 3, 4, 20, 22, 23

10, 11, 12, 13, 21, 24 5, 6, 7, 8, 9

smaller, certain clusters of points can be observed in a two-dimensional projection
(see Fig. 5.15c and d).

The results of the integrated combination are presented in Fig. 5.16. Here, the
clusters are better expressed and seen visually, when analyzing the points that
contain a larger number of coordinates (see Fig. 5.16e and f).

5.3.3 Environmental Data Analysis

The visualization of environmental data via the analysis of correlations is discussed
in this section. Correlations of environmental features and their analysis appear in
various research studies (see [61, 91, 102, 222]). The references cover air pollution,
vegetation of coastal dunes, groundwater chemistry, minimum temperature trends,
zoobenthic species-environmental relationships, and development and analysis of
large environmental and taxonomic databases.
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Fig. 5.15 Visualization of psychological tests by Sammon’s mapping, when various number of
coordinates are considered: (a) two, (b) three, (c) five, (d) nine, (e) fourteen, and (f) 24 coordinates
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Fig. 5.16 Visualization of psychological tests by the integrated combination, when various
number of coordinates are considered: (a) two, (b) three, (c) five, (d) nine, (e) fourteen, and
( f) 24 coordinates
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These applied problems are very urgent because of their ecological nature: a
visual presentation of data stored in the correlation matrices makes it possible for
ecologists to discover additional knowledge, hidden in the matrices, and to make
proper decisions [48].

The correlation matrices of meteorological and environmental features that
describe air pollution in the Vilnius city (10 features, n = 10) [222] as well as
the development of coastal dunes and their vegetation in Finland (16 features,
n = 16) [91] are analyzed visually here.

Ten meteorological and environmental features that describe the air pollution in
Vilnius are as follows:

• Concentrations of carbon monoxide CO (x1), nitrogen oxides NOx (x2), and
ozone O3 (x3)

• Vertical temperature gradient measured at the height of 2–8 m (x4)
• Intensity of solar radiation (x5)
• Boundary layer depth (x6)
• Amount of precipitation (x7)
• Temperature (x8)
• Wind speed (x9)
• Stability class of atmosphere (x10)

The correlation matrix R10 of these features is presented in Table 5.20.
Sixteen environmental features that describe the development of coastal dunes

and their vegetation in Finland are as follows:

• Distance from the water line (x1)
• Height above the sea level (x2)
• Soil pH (x3)
• Contents of calcium (Ca) (x4), phosphorous (P) (x5), potassium (K) (x6), and

magnesium (Mg) (x7)
• Mean diameter (x8) and sorting of sand (x9)
• Northernness in the Finnish coordinate system (x10)
• Rate of land uplift (x11)
• Sea level fluctuation (x12)
• Soil moisture content (x13)
• Slope tangent (x14)
• Proportion of bare sand surface (x15)
• Tree cover (x16)

The correlation matrix R16 of these features is presented in Table 5.21.
The correlation matrices R10 and R16 contain both positive and negative corre-

lation coefficients. Therefore, their squared values were used in creating the set of
points V1,V2, . . . ,Vn corresponding to features x1,x2, . . . ,xn. Here, n= 10 and n= 16,
respectively.

In Fig. 5.17, we present Sammon’s mapping results of the points V1,V2, . . . ,Vn

created on the basis of matrices R10 (Fig. 5.17a) and R16 (Fig. 5.17b), using the
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Table 5.20 Correlation matrix R10 = {ri j , i, j = 1, . . . ,10} of 10 meteorological and environmen-
tal features of air pollution

i/ j 1 2 3 4 5 6 7 8 9 10

1 1.00 0.78 −0.28 0.66 0.07 −0.33 −0.05 −0.09 −0.35 0.38
2 0.78 1.00 −0.37 0.63 −0.01 −0.31 −0.05 0.24 −0.38 0.37
3 −0.28 −0.37 1.00 −0.10 0.24 0.28 −0.11 0.18 0.64 0.04
4 0.66 0.63 −0.10 1.00 0.06 −0.45 −0.14 −0.06 −0.33 0.58
5 0.07 −0.01 0.24 0.06 1.00 −0.08 −0.05 0.09 −0.07 0.17
6 −0.33 −0.31 0.28 −0.45 −0.08 1.00 0.07 −0.10 0.60 −0.52
7 −0.05 −0.05 −0.11 −0.14 −0.05 0.07 1.00 −0.01 0.04 −0.11
8 −0.09 0.24 0.18 −0.06 0.09 −0.10 −0.01 1.00 0.01 0.23
9 −0.35 −0.38 0.64 −0.33 −0.07 0.60 0.04 0.01 1.00 −0.27
10 0.38 0.37 0.04 0.58 0.17 −0.52 −0.11 0.23 −0.27 1.00
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Fig. 5.17 Visualization by Sammon’s mapping: (a) features of air pollution, (b) features of coastal
dunes

method presented in Sect. 5.3.1. We observe the spread of features on a plane. Here,
we do not see any clusters. Nevertheless, some decision on the interlocation of
features can be made. We can visually evaluate the interlocation of features.

[4 × 4] SOM was used in the experiments, too. The results are presented in
Tables 5.22 and 5.23. The tables indicate that there are at least three clusters in
both sets of features.

In addition, the SOM-PAK software (see Sect. 4.2.7) was used. The results
are presented in Fig. 5.18. Here, light colors separate similar features, and dark
ones separate different features. For example, in Fig. 5.18b, we observe that x3 is
more similar to the cluster of features {x1,x2,x16} than to {x4,x6,x7}. Figure 5.18
indicates four clusters of the air pollution features and at least four clusters in the
coastal dune features.
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Table 5.22 Features of air
pollution on [4×4] SOM

5, 10 7
8

6 4
3 9 1, 2

Table 5.23 Features of
coastal dunes on [4×4] SOM

4, 6 5 8,9
7 15 14
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Fig. 5.18 [4×4] SOM by SOM PAK: (a) features of air pollution, (b) features of coastal dunes

The results of the consecutive combination of SOM and Sammon’s mapping
(see Sect. 4.3.1) are presented in Fig. 5.19. Here, the reference vectors of the winning
neurons of SOM (Tables 5.22 and 5.23) are visualized by Sammon’s mapping.
We can visually observe four clusters in Fig. 5.19a and at least four clusters
in Fig. 5.19b. However, in Fig. 5.19b, the cluster {x1,x2,x3,x16} can be divided
into two subclusters, x3 can form a separate cluster. Analogously, we can divide
{x4,x6,x7} into {x4,x6} and x7.

Comparing the results in Table 5.22 and Figs. 5.17a, 5.18a, and 5.19a on the
features of air pollution, we can conclude that there are two strong clusters:

• {x1,x2,x4} (concentration of carbon monoxide CO, concentration of nitrogen
oxides NOx, and a vertical temperature gradient measured at a 2–8 m height)

• {x3,x6,x9} (concentration of ozone O3, boundary layer depth, wind speed)

The remaining features are not strongly related to these two clusters but have
some similarities among themselves. From Fig. 5.17a, it follows that the feature x10

(stability class of atmosphere) is close to all the remaining features—it is located in
the center of the figure x10 is in the same cluster with x5 (intensity of solar radiation)
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Fig. 5.19 Visualization by the consecutive combination: (a) features of air pollution, (b) features
of coastal dunes

in Fig. 5.19a or with x8 (temperature) in Fig. 5.18a, and x7 (amount of precipitation)
is in the same cluster with x8 in Fig. 5.19a or with x5 in Fig. 5.18a. It follows that
the features x5,x7,x8,x10 can form a separate cluster—a third cluster {x5,x7,x8,x10}
(intensity of solar radiation, amount of precipitation, temperature, stability class
of atmosphere). One can see that in Table 5.23 and Fig. 5.17b, the interlocation
of features of coastal dunes is similar. The only difference is that clusters of the
features are more explicit in Table 5.23. The clusters are more explicit in Figs. 5.18b
and 5.19b as compared with Table 5.23; however, the interlocation of the clusters
of features in these figures differs much more as compared with Fig. 5.17b and
Table 5.23.

So, we can assume that the environmental features, describing the development
of coastal dunes and their vegetation in Finland, form four clusters:

• {x1,x2,x3,x16} (distance from the water line, height above the sea level, soil pH,
tree cover)

• {x4,x6,x7} (contents of calcium, contents of potassium, contents of magnesium)
• {x5,x8,x9,x14,x15} (contents of phosphorous, mean diameter of sand, sorting of

sand, slope tangent, proportion of bare sand surface)
• {x10,x11,x12,x13} (northernness in the Finnish coordinate system, rate of land

uplift, sea level fluctuation, soil moisture content)
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5.3.4 Visual Analysis of Curricula

We present here a visual analysis of curricula via the analysis of examination
results. Examination results are the main indicator of the quality of studies. During
the whole process of studies, from the first year to the last one, a lot of data on
how individual students take examinations of various academic subjects can be
accumulated. Our idea is to use the data on the results of examinations for the
analysis of the similarity of subjects. Such knowledge of subjects would make a
basis both for revising the present curriculum of studies and preparing new ones.

The examination results of two separate subjects are correlated when considering
a large number of students. There are some reasons for such a correlation. First of
all, the contents of the subjects (courses) are related. For example, the same subject
is studied during some semesters, or the subjects are of the same nature (e.g., algebra
and mathematical analysis). Other reasons for the correlation are possible, too.

The aim of this research is to analyze the correlations of subjects, using
multidimensional data visualization methods, and to discover knowledge about the
similarity of subjects [49].

The results of studies at the Faculty of Mathematics of Vilnius Pedagogical
University, Lithuania, are analyzed. The examination results cover 5 years: the
duration of studies was 4 years, and there were two streams of students that followed
the same curriculum of studies. The total number of students who started their
studies and got a diploma of a teacher of mathematics and computer science is
m = 41. The curriculum of studies consists of n = 25 academic subjects.

The list of subjects is as follows:

• Probability theory (x1)
• Methods of teaching mathematics (x2)
• Geometry 1 (x3)
• Pedagogy and psychology (x4)
• Geometry 2 (x5)
• Mathematical analysis 1 (x6)
• Pedagogy (x7)
• geometry 3 (x8),
• Psychology 1 (x9)
• Algebra (x10)
• Mathematical analysis 2 (x11)
• Foreign language (x12)
• Geometry 4 (x13)
• Psychology 2 (x14)
• Algebra and number theory 1 (x15)
• Mathematical analysis 3 (x16)
• Informatics 1 (x17)
• Algebra and number theory 2 (x18)
• Mathematical analysis 4 (x19)
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• Informatics 2 (x20)
• Development of training computer programs (x21)
• Methods of teaching informatics (x22)
• Packages for solving mathematical problems (x23)
• Algorithm theory (x24)
• Programming methods (x25)

The subjects may be divided into three groups:

• Mathematical subjects: x1,x2,x3,x5,x6,x8,x10,x11,x13,x15,x16,x18,x19

• Humanities: x4,x7,x9,x12,x14

• Computer science subjects: x17,x20,x21,x22,x23,x24,x25

The method for visual analysis of correlation matrices (see Sect. 5.3.1) is applied.
The correlation matrix R25 of 25 subjects is obtained on the basis of the examination
results. The matrix is presented in Table 5.24. The sample size to determine each
correlation coefficient is m = 41. The matrix R25 contains both positive and negative
correlation coefficients. Therefore, its squared values are used in creating the set
of points V1,V2, . . . ,Vn (Vi = (vi1,vi2, . . . ,vin), i = 1 . . . ,n) that correspond to the
subjects x1,x2, . . . ,xn, n = 25. The points form a curricula subject data set, for which
the visualization methods are applied.

The goal of analysis was to evaluate the place of computer science subjects in
the whole study process. Moreover, we needed to evaluate the mathematical level of
computer science subjects presented for students.

In Fig. 5.20, we present visualization results of Sammon’s mapping of the points
V1,V2, . . . ,V25. The order numbers of the subjects and places of their location on a
plane are given. Computer science subjects are underlined, mathematical subjects
are presented in bold, and the humanities are presented in italics. This kind of
notation allows us to perceive the results easier. The subjects are distributed evenly
if 25-dimensional points are visualized by Sammon’s mapping, but some decision
on subjects can be made. For example, the points representing “geometry 2” (x5)
and “mathematical analysis 1” (x6) are close, and those that represent “algebra and
number theory 2” (x18) and “informatics 2” (x20) are remote.

[4 × 4] SOM results are presented in Tables 5.25 and 5.26 using a different
number of training epochs—200 and 5000. It is difficult to estimate the number
of clusters from these tables.

The results of the consecutive combination of SOM and Sammon’s mapping are
presented in Fig. 5.21. We can visually observe four clusters.

Applications of visualization methods of a different nature allow us to identify
the nature of academic subjects via the analysis of their correlation matrix, obtained
on the basis of examination results:

1. Mathematical subjects and the humanities have a tendency of partitioning into
different groups. Only a purely mathematical subject “geometry 4” (x13) is closer
to the humanities rather than to the mathematical subjects (or a professor of
geometry puts subjective marks).
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Table 5.24 Correlation matrix R25 = {ri j, i, j = 1, . . . ,25} of 25 academic subjects
i/ j 1 2 3 4 5 6 7 8

1 1.000 0.591 0.466 0.331 0.287 0.608 0.228 0.464

2 0.591 1.000 0.472 0.346 0.503 0.710 0.277 0.548

3 0.466 0.472 1.000 0.180 0.460 0.539 0.055 0.474

4 0.331 0.346 0.180 1.000 0.196 0.169 0.257 −0.005

5 0.287 0.503 0.460 0.196 1.000 0.416 0.243 0.258

6 0.608 0.710 0.539 0.169 0.416 1.000 0.228 0.474

7 0.228 0.277 0.055 0.257 0.243 0.228 1.000 0.276

8 0.464 0.548 0.474 −0.005 0.258 0.474 0.276 1.000

9 0.246 0.312 0.119 0.157 0.367 0.434 0.203 0.081

10 0.532 0.714 0.490 0.187 0.523 0.584 0.223 0.479

11 0.665 0.712 0.503 0.059 0.533 0.715 0.257 0.594

12 0.093 0.162 0.165 0.112 0.152 0.080 0.287 0.235

13 0.394 0.392 0.287 −0.014 0.124 0.420 0.179 0.623

14 0.439 0.364 0.152 0.076 0.082 0.496 0.345 0.553

15 0.389 0.538 0.306 −0.003 0.332 0.506 0.145 0.403

16 0.329 0.561 0.334 −0.038 0.436 0.583 0.236 0.605

17 0.123 0.349 −0.045 −0.025 0.196 0.204 0.236 0.264

18 0.329 0.468 0.183 −0.258 0.238 0.420 0.277 0.673

19 0.347 0.310 0.362 −0.289 0.255 0.352 0.347 0.624

20 0.021 0.191 0.274 0.238 0.215 0.059 −0.076 0.039

21 0.028 0.250 0.137 0.279 0.206 0.092 0.119 0.000

22 0.276 0.213 0.150 −0.157 0.134 0.320 0.213 0.172

23 0.301 0.294 0.167 −0.056 0.178 0.302 0.515 0.377

24 0.512 0.509 0.357 −0.029 0.527 0.659 0.355 0.381

25 0.269 0.428 0.147 −0.199 0.270 0.351 0.277 0.482

i/ j 9 10 11 12 13 14 15 16

1 0.246 0.532 0.665 0.093 0.394 0.439 0.389 0.329

2 0.312 0.714 0.712 0.162 0.392 0.364 0.538 0.561

3 0.119 0.490 0.503 0.165 0.287 0.152 0.306 0.334

4 0.157 0.187 0.059 0.112 −0.014 0.076 −0.003 −0.038

5 0.367 0.523 0.533 0.152 0.124 0.082 0.332 0.436

6 0.434 0.584 0.715 0.080 0.420 0.496 0.506 0.583

7 0.203 0.223 0.257 0.287 0.179 0.345 0.145 0.236

8 0.081 0.479 0.594 0.235 0.623 0.553 0.403 0.605

9 1.000 0.279 0.321 0.374 0.141 0.249 0.340 0.460

10 0.279 1.000 0.660 0.223 0.310 0.274 0.699 0.631

11 0.321 0.660 1.000 0.299 0.540 0.426 0.547 0.663

12 0.374 0.223 0.299 1.000 0.327 0.290 0.205 0.461

13 0.141 0.310 0.540 0.327 1.000 0.599 0.274 0.639

14 0.249 0.274 0.426 0.290 0.599 1.000 0.269 0.478

15 0.340 0.699 0.547 0.205 0.274 0.269 1.000 0.596

16 0.460 0.631 0.663 0.461 0.639 0.478 0.596 1.000

17 0.173 0.252 0.309 0.153 0.053 0.034 0.055 0.277

18 0.025 0.521 0.628 0.189 0.448 0.344 0.596 0.559

19 0.048 0.285 0.584 0.169 0.410 0.318 0.393 0.551

20 0.091 0.244 −0.021 −0.070 −0.332 −0.283 0.160 0.013

21 0.000 0.220 0.054 0.115 −0.146 −0.179 −0.024 0.060

22 0.248 −0.060 0.194 −0.094 −0.045 0.307 0.006 0.041

23 0.195 0.084 0.305 0.210 0.303 0.552 0.016 0.289

24 0.350 0.649 0.662 0.143 0.274 0.300 0.641 0.547

25 0.151 0.457 0.375 0.087 0.109 0.291 0.394 0.367
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Table 5.24 (Continued)
i/ j 17 18 19 20 21 22 23 24 25

1 0.123 0.329 0.347 0.021 0.028 0.276 0.301 0.512 0.269

2 0.349 0.468 0.310 0.191 0.250 0.213 0.294 0.509 0.428

3 −0.045 0.183 0.362 0.274 0.137 0.150 0.167 0.357 0.147

4 −0.025 −0.258 −0.289 0.238 0.279 −0.157 −0.056 −0.029 −0.199

5 0.196 0.238 0.255 0.215 0.206 0.134 0.178 0.527 0.270

6 0.204 0.420 0.352 0.059 0.092 0.320 0.302 0.659 0.351

7 0.236 0.277 0.347 −0.076 0.119 0.213 0.515 0.355 0.277

8 0.264 0.673 0.624 0.039 0.000 0.172 0.377 0.381 0.482

9 0.173 0.025 0.048 0.091 0.000 0.248 0.195 0.350 0.151

10 0.252 0.521 0.285 0.244 0.220 −0.060 0.084 0.649 0.457

11 0.309 0.628 0.584 −0.021 0.054 0.194 0.305 0.662 0.375

12 0.153 0.189 0.169 −0.070 0.115 −0.094 0.210 0.143 0.087

13 0.053 0.448 0.410 −0.332 −0.146 −0.045 0.303 0.274 0.109

14 0.034 0.344 0.318 −0.283 −0.179 0.307 0.552 0.300 0.291

15 0.055 0.596 0.393 0.160 −0.024 0.006 0.016 0.641 0.394

16 0.277 0.559 0.551 0.013 0.060 0.041 0.289 0.547 0.367

17 1.000 0.348 0.235 0.023 0.233 0.064 0.231 0.267 0.396

18 0.348 1.000 0.659 −0.007 −0.093 0.111 0.368 0.576 0.616

19 0.235 0.659 1.000 −0.067 −0.073 0.281 0.454 0.555 0.401

20 0.023 −0.007 −0.067 1.000 0.553 0.108 −0.146 0.236 0.262

21 0.233 −0.093 −0.073 0.553 1.000 0.107 0.014 0.266 −0.069

22 0.064 0.111 0.281 0.108 0.107 1.000 0.591 0.272 0.323

23 0.231 0.368 0.454 −0.146 0.014 0.591 1.000 0.295 0.360

24 0.267 0.576 0.555 0.236 0.266 0.272 0.295 1.000 0.457

25 0.396 0.616 0.401 0.262 −0.069 0.323 0.360 0.457 1.000

2. The computer science subjects do not form a united group, these subjects range
from those of a purely mathematical nature to that of the humanities:

• Two computer science subjects—“algorithm theory” (x24) and “programming
methods” (x25)—are rather mathematized.

• Other computer science subjects—“informatics 1” (x17), “informatics 2”
(x20), “development of training computer programs” (x21), “methods of teach-
ing informatics” (x22), and “packages for solving mathematical problems”
(x23)—have the humanities shade.

Our method ensures the evaluation (of course, approximate) of the mathematical
level of different computer science courses, presented for students.

5.3.5 Analysis of Ophthalmological Features

An ophthalmological data set containing 27 features of eye fundus, measured on
138 patients, is analyzed in this section. A description of features x1,x2, . . . ,x27 is
given in Sect. 5.2.1. The correlation matrix R27 is presented in Table 5.27.
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Fig. 5.20 Visualization of
curricula subject data by
Sammon’s mapping

Table 5.25 Curricula subject
data on the SOM: 200
training epochs

4, 17, 20, 21 3, 5 1, 2, 6, 11
9, 12 10, 24

15
7, 14, 22, 23 13 8, 16 18, 19, 25

Table 5.26 Curricula subject
data on the SOM: 5000
training epochs

1, 2, 6, 11 3, 5 4, 17, 20, 21
10, 24 9

15 12
18, 19, 25 8, 16 13 7, 14, 22, 23

1,2,6,11
3,5
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10,24
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18,19,25
8,16
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9,12

10,24
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13
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Fig. 5.21 Visualization of curricula subject data by the consecutive combination: (a) 200 SOM
training epochs, (b) 5000 SOM training epochs
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Table 5.28
Ophthalmological features on
[6×6] SOM (experiment
No. I)

11, 13 16, 18 10, 12 2, 4, 5
15 14 7

20 22, 23 19 9
25 27 1, 3, 6

21, 26 24 17 8

Table 5.29
Ophthalmological features on
[6×6] SOM (experiment
No. II)

1, 3, 6 10, 12, 14 18 16 11, 13
9 15
7 27 29

2, 4, 5 20, 22, 23
21 25

8, 17 26 24

The goal of this investigation is to look for clusters of similar features in order
to decrease the dimensionality of the analyzed data by keeping representatives
of the clusters only. The decision is made on the visual presentation of features
x1,x2, . . . ,x27 on the basis of their correlation matrix.

The correlation matrix R27 contains both positive and negative elements. There-
fore, its squared values were used in creating the set of points V1,V2, . . . ,V27

corresponding to features x1,x2, . . . ,xn.
An integrated combination of SOM and Sammon’s mapping (see Sect. 4.3.2)

is used to visualize the points V1,V2, . . . ,V27. Seeking the more comprehensive
conclusions, two experiments with different control parameters are done.

In experiment No. I, the number of SOM training epochs is equal to 500. The
process of SOM training is divided into 50 blocks. The number of iterations in
Sammon’s mapping is equal to 500. The quantization error EQE = 0.257. Sammon’s
stress ES = 0.034. The visualization results are presented in Table 5.28 (SOM) and
Fig. 5.22a (integrated combination). Some groups of the features are observable.
Labels indicate the order numbers of the features x1,x2, . . . ,x27. In the figure, the
possible clusters of similar features are marked in different colors: {x1, . . . ,x7,x9}
are the features of OND ellipse, {x10, . . . ,x16,x18} are the features of EXC ellipse,
and the remaining features {x19, . . . ,x27} try to form a cluster, too. However, the
features x8 and x17 (eccentricities of OND and EXC ellipses) are distant from other
clusters. Such a division of features into three clusters are determined subjectively
by both their nature and location on the plane.

Some subclusters can be observable in each larger cluster, for example, the
features x1, x3, x6, x9 of OND ellipse are separated from the features x2, x4, x5,
x7. The same can be said about the other clusters. Similar clusters are formed in
SOM, too (see Table 5.28).

In experiment No. II, the number of SOM training epochs is equal to 300. The
process of SOM training is divided into 30 blocks. The number of iterations in
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Fig. 5.22 Ophthalmological features on the plane: (a) experiment No. I, (b) experiment No. II

Sammon’s mapping is equal to 1000, EQE = 0.297, ES = 0.038. The visualization
results are presented in Table 5.29 (SOM) and Fig. 5.22b (integrated combination).

When comparing the results of experiment No. II with that of experiment No. I,
we can note that the same large clusters of features remain in both cases. Some
other features appear in different subclusters. We can see that when comparing
Fig. 5.22b and Table 5.29 with Fig. 5.22a and Table 5.28. We see that the features
x8 and x17 are far from other clusters; however, they are near from one to another
and form a separate cluster. This is well seen in Fig. 5.22b. According to the values
of the obtained errors EQE, ES, the results of experiment No. I are better; however,
experiment No. II is useful to estimate the relations between the features, especially
if we observe the results of both experiments together.

We conclude that:

• The features x1, . . . ,x7, and x9 of OND ellipse form a separate large cluster that
is far from the other features. In this cluster of features, there are two subclusters
{x1,x3,x6,x9} and {x2,x4,x5,x7} (see Fig. 5.22).

• The features x10, . . . ,x16, and x18 of OND ellipse form a separate cluster. Two
subclusters {x11,x13,x15} and {x10,x12,x14,x18} comprise this cluster, but some-
times, the feature x16 is near to the first subcluster (see Fig. 5.22b), sometimes, it
is near to the second subcluster (see Fig. 5.22a).

• The features x8 and x17 (eccentricities of OND and EXC ellipses) are far from
the other features. Most probably, they form a separate cluster.

• The features x19, . . . ,x27 form one large cluster. The features x19, . . . ,x23 are
derived from other features, and the features x24, . . . ,x27 are neuroretinal rim
(NRR) features. However, several subclusters are inside the cluster. We notice
that the subclusters {x20,x22,x23} and {x21,x26} are steady, but the relation
between the other features are not so strong.



Appendix A
Test Data Sets

Some data sets are used to illustrate the methods for visualizing multidimensional
data and experimental investigations. The data sets are described by n-dimensional
points X1,X2, . . . ,Xm, where Xi = (xi1,xi2, . . . ,xin), i = 1, . . . ,m, or the dissimilarity
matrix Δ of size m×m. The coordinates of points are defined by the values of
features x1,x2, . . . ,xn of corresponding objects. The elements δi j of dissimilarity
matrix describe the proximity of the ith and jth objects.

The Iris data set consists of 150 flowers of three species: Setosa, Virginica, and
Versicolor. Each species is represented by 50 flowers [63]. The data set (m = 150,
n = 4) is presented in [66]. Four features of each flower were measured:

• Sepal length (x1)
• Sepal width (x2)
• Petal length (x3)
• Petal width (x4)

The Auto MPG data set is the data on the car produced in the USA, Europe, and
Japan in 1970–1982 (398 cars). The cars are described by nine features:

• MPG (miles per gallon) (x1)
• The number of cylinders (x2)
• Displacement (x3)
• Horsepower (x4)
• Weight (x5)
• Acceleration (x6)
• Model year (x7)
• Origin (x8)
• Car name (x9)

The last two features are not numerical; therefore, they are not used in the
visualization process. Therefore, the seven-dimensional (n = 7) points are used for
visualization. The data set (m = 398, n = 9) is presented in [66].

G. Dzemyda et al., Multidimensional Data Visualization: Methods and Applications,
Springer Optimization and Its Applications 75, DOI 10.1007/978-1-4419-0236-8,
© Springer Science+Business Media, LLC 2013
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The Wine data set is the result of a chemical analysis of wines grown in the same
region in Italy but derived from three different cultivars. The data set (m = 178,
n = 13) is presented in [66].Thirteen features are measured:

• Alcohol (x1)
• Malic acid (x2)
• Ash (x3)
• Alkalinity of ash (x4)
• Magnesium (x5)
• Total phenols (x6)
• Flavanoids (x7)
• Nonflavanoid phenols (x8)
• Proanthocyanins (x9)
• Color intensity (x10)
• Hue (x11)
• OD280/OD315 of diluted wines (x12)
• Proline (x13)

The Breast Cancer data set was obtained from the University of Wisconsin
Hospitals, USA. 699 observations of the breast cancer are collected. Each instance
has one of the two possible classes: benign or malignant. There are nine features:

• Clump thickness (x1)
• Uniformity of cell size (x2)
• Uniformity of cell shape (x3)
• Marginal adhesion (x4)
• Single epithelial cell size (x5)
• Bare nuclei (x6)
• Bland chromatin (x7)
• Normal nucleoli (x8)
• Mitoses (x9)

The data set is presented in [66]. There are some missing values of features, so
the objects with missing values are eliminated from the data set for visualization.
The visualized data set consists of 683 points (m = 683, n = 9).

The Wood data set contains the measurements on 20 wood samples of slash pine
cross sections. The original data are collected by Draper and Smith [42]. These data
were contaminated by replacing a few observations with outliers by Rousseeuw and
Leroy [183]. Five features are measured:

• Number of fibers per squared millimeter in springwood (x1)
• Percentage of springwood (x2)
• Percentage of light absorption in springwood (x3)
• Percentage of light absorption and summerwood (x4)
• Wood specific gravity (response variable) (x5)

The data set is presented in Table A.1. Four points X4,X6,X8,X19 are outliers.
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Table A.1 Wood data sets i x1 x2 x3 x4 x5 x6

1 0.573 0.1059 0.465 0.538 0.841 0.534
2 0.651 0.1356 0.527 0.545 0.887 0.535
3 0.606 0.1273 0.494 0.521 0.920 0.570
4 0.437 0.1591 0.446 0.423 0.992 0.450
5 0.547 0.1135 0.531 0.519 0.915 0.548
6 0.444 0.1628 0.429 0.411 0.984 0.431
7 0.489 0.1231 0.562 0.455 0.824 0.481
8 0.413 0.1673 0.418 0.430 0.978 0.423
9 0.536 0.1182 0.592 0.464 0.854 0.475
10 0.685 0.1564 0.631 0.564 0.914 0.486
11 0.664 0.1588 0.506 0.481 0.867 0.554
12 0.703 0.1335 0.519 0.484 0.812 0.519
13 0.653 0.1395 0.625 0.519 0.892 0.492
14 0.586 0.1114 0.505 0.565 0.889 0.517
15 0.534 0.1143 0.521 0.570 0.889 0.502
16 0.523 0.1320 0.505 0.612 0.919 0.508
17 0.580 0.1249 0.546 0.608 0.954 0.520
18 0.448 0.1028 0.522 0.534 0.918 0.506
19 0.417 0.1687 0.405 0.415 0.981 0.401
20 0.528 0.1057 0.424 0.566 0.909 0.568

The Rand Clust5 and Rand Clust10 data sets are formed as follows: ten five-
or ten-dimensional points are generated at random, and in the area of each point,
nine five- or ten-dimensional points are generated by normal distribution. In the first
case, m = 100, n = 5 and, in the second case, m = 100, n = 10.

The Ellipsoidal data set contains ten overlapping ellipsoidal-type clusters,
obtained by using a generator [84] (m = 1338, n = 100). This generator creates
ellipsoidal clusters with the major axis of an arbitrary orientation. The boundary of
a cluster is defined by four parameters: the origin (which is also the first focus); the
interfocal distance, uniformly distributed in the range [1.0,3.0]; the orientation of
the major axis, uniformly located among all the orientations; the maximum sum of
Euclidean distances to two foci, belonging to the range [1.05,1.15] – equivalent
to the eccentricity ranging from [0.870,0.952]. For each cluster, data points are
generated at a Gaussian-distributed distance from a uniformly random point on
the major axis in a uniformly random direction and are rejected if they lie outside
the boundary.

The HBK data set is a data set generated by Hawkins, Bradu, and Kass [89],
m = 75, n = 4. The points X1,X2, . . . ,X14 are outliers, created in two groups:
X1,X2, . . . ,X10 and X11,X12,X13,X14. The points X15,X16, . . . ,X75 form the largest
group. The data set is presented in Table A.2.

The Chainlink data set consists of points on two interlocking three-dimensional
rings, linearly inseparable, m = 1000, n = 3.

The Hepta data set consists of seven well-separated clusters of points, m = 212,
n = 3.
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Table A.2 HBK data set

i x1 x2 x3 x4 i x1 x2 x3 x4

1 10.1 19.6 28.3 9.7 39 2.1 0 1.2 −0.7
2 9.5 20.5 28.9 10.1 40 0.5 2 1.2 −0.5
3 10.7 20.2 31 10.3 41 3.4 1.6 2.9 −0.1
4 9.9 21.5 31.7 9.5 42 0.3 1 2.7 −0.7
5 10.3 21.1 31.1 10 43 0.1 3.3 0.9 0.6
6 10.8 20.4 29.2 10 44 1.8 0.5 3.2 −0.7
7 10.5 20.9 29.1 10.8 45 1.9 0.1 0.6 −0.5
8 9.9 19.6 28.8 10.3 46 1.8 0.5 3 −0.4
9 9.7 20.7 31 9.6 47 3 0.1 0.8 −0.9
10 9.3 19.7 30.3 9.9 48 3.1 1.6 3 0.1
11 11 24 35 −0.2 49 3.1 2.5 1.9 0.9
12 12 23 37 −0.4 50 2.1 2.8 2.9 −0.4
13 12 26 34 0.7 51 2.3 1.5 0.4 0.7
14 11 34 34 0.1 52 3.3 0.6 1.2 −0.5
15 3.4 2.9 2.1 −0.4 53 0.3 0.4 3.3 0.7
16 3.1 2.2 0.3 0.6 54 1.1 3 0.3 0.7
17 0 1.6 0.2 −0.2 55 0.5 2.4 0.9 0
18 2.3 1.6 2 0 56 1.8 3.2 0.9 0.1
19 0.8 2.9 1.6 0.1 57 1.8 0.7 0.7 0.7
20 3.1 3.4 2.2 0.4 58 2.4 3.4 1.5 −0.1
21 2.6 2.2 1.9 0.9 59 1.6 2.1 3 −0.3
22 0.4 3.2 1.9 0.3 60 0.3 1.5 3.3 −0.9
23 2 2.3 0.8 −0.8 61 0.4 3.4 3 −0.3
24 1.3 2.3 0.5 0.7 62 0.9 0.1 0.3 0.6
25 1 0 0.4 −0.3 63 1.1 2.7 0.2 −0.3
26 0.9 3.3 2.5 −0.8 64 2.8 3 2.9 −0.5
27 3.3 2.5 2.9 −0.7 65 2 0.7 2.7 0.6
28 1.8 0.8 2 0.3 66 0.2 1.8 0.8 −0.9
29 1.2 0.9 0.8 0.3 67 1.6 2 1.2 −0.7
30 1.2 0.7 3.4 −0.3 68 0.1 0 1.1 0.6
31 3.1 1.4 1 0 69 2 0.6 0.3 0.2
32 0.5 2.4 0.3 −0.4 70 1 2.2 2.9 0.7
33 1.5 3.1 1.5 −0.6 71 2.2 2.5 2.3 0.2
34 0.4 0 0.7 −0.7 72 0.6 2 1.5 −0.2
35 3.1 2.4 3 0.3 73 0.3 1.7 2.2 0.4
36 1.1 2.2 2.7 −1 74 0 2.2 1.6 −0.9
37 0.1 3 2.6 −0.6 75 0.3 0.4 2.6 0.2

38 1.5 1.2 0.2 0.9

The Target data set contains outliers, m = 770, n = 2. Since the dimensionality is
equal to 2, this set is used for testing the quantization methods (SOM and NG) only.

Three last data sets are taken from Fundamental Clustering Problems Suite
(http://www.uni-marburg.de/fb12/datenbionik/data/).

The Cola data set is based on experimental testing of several soft drinks [72]:
Pepsi, Coke, Classic Coke, Diet Pepsi, Diet Slice, Diet 7-Up, Dr Pepper, Slice,
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Table A.3 Dissimilarity matrix of Cola data

Classic Diet Diet Diet Dr.
Pepsi Coke Coke Pepsi Slice 7-up Pepper Slice 7-Up Tab

Pepsi 0 127 169 204 309 320 286 317 321 238
Coke 127 0 143 235 318 322 256 318 318 231
Classic Coke 169 143 0 243 326 327 258 318 318 242
Diet Pepsi 204 235 243 0 285 288 259 312 317 194
Diet Slice 309 318 326 285 0 155 312 131 170 285
Diet 7-Up 320 322 327 288 155 0 306 164 136 281
Dr. Pepper 286 256 258 259 312 306 0 300 295 256
Slice 317 318 318 312 131 164 300 0 132 291
7-Up 321 318 318 317 170 136 295 132 0 297
Tab 238 231 242 194 285 281 256 291 297 0

7-Up, and Tab. 38 students have tested ten (m = 10) different brands of soft
drinks. Each pair was judged on its dissimilarity in a nine-point scale (1—very
similar, 9—completely different). The matrix of accumulated dissimilarities Δcola

is presented in Table A.3.
The Morse Code confusion data set is presented by a similarity matrix in [14].

The number pf objects is m = 36: Morse codes of Latin letters and numerals. We
have used a dissimilarity matrix calculated from the similarity matrix according
to [19]. The dissimilarity matrix is given in Table A.4.

The Simplex-based data sets consist of all the vertices of n-dimensional simplices.
The number of vertices is m = n + 1. The distances between any two vertices
of the Standard Simplex are equal using any Minkowski distances. Without loss
of generality, a unit distance can be used: δi j = 1, i �= j. Two-dimensional and
three-dimensional standard simplices are shown in Fig. A.1. The dissimilarity
matrix of the standard simplex is as follows:

ΔSS =

⎛

⎜
⎜
⎜
⎜
⎜⎜
⎜
⎜
⎜
⎜
⎝

0 1 1 1 · · · 1 1
1 0 1 1 1 1
1 1 0 1 1 1
1 1 1 0 1 1
...

. . .
...

1 1 1 1 · · · 0 1
1 1 1 1 · · · 1 0

⎞

⎟
⎟
⎟
⎟
⎟⎟
⎟
⎟
⎟
⎟
⎠

. (A.1)

One vertex (“zero” vertex) of the Unit Simplex is at the origin 0,0, . . . ,0, and
the others are at the unit distance from the origin in each coordinate direction. The
vertices of the unit simplex can be defined by

vi j =

{
1, if i = j+ 1,
0, otherwise,

∣
∣
∣∣ i = 1, . . . ,n+ 1, j = 1, . . . ,n.
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a bFig. A.1 The standard
simplices: a) n = 2, b) n = 3

a bFig. A.2 The unit simplices:
(a) n = 2, (b) n = 3

Two-dimensional and three-dimensional unit simplices are shown in Fig. A.2.
A dissimilarity matrix of the unit simplex, computed with the city-block distances, is

Δ 1
US =

⎛

⎜
⎜
⎜⎜
⎜
⎜
⎜
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⎜
⎝

0 1 1 1 · · · 1 1
1 0 2 2 2 2
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1 2 2 0 2 2
...
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...
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1 2 2 2 · · · 2 0

⎞

⎟
⎟
⎟⎟
⎟
⎟
⎟
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⎟
⎠

, (A.2)

and that with the Euclidean distances is

Δ 2
US =

⎛
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1 0
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2 0
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2 · · · √2 0
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⎟
⎟
⎟
⎟
⎟
⎠

.

The Hypercube data set consists of vertices of an n-dimensional cube. The
number of vertices is m = 2n. The coordinates of the ith vertex of an n-dimensional
cube are equal either to 0 or to 1, and they are defined by a binary code of
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i = 0, . . . ,m−1. The dissimilarity matrix of an n-dimensional cube, computed using
the city-block distances, is

Δ 1
n-cube =

⎛

⎜
⎜
⎜
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2 1 1 0 3 2 2 1 n− 1 n− 2
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. . .
...
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⎠

.

(A.3)

The GHM data set consists of error-perturbed distance data [79]. The data
are generated using uniformly distributed random points Xi = (xi1,xi2, . . . ,xin),
i= 1, . . . ,m in the n-dimensional space. Dissimilarities are computed by the formula

δi j =
n

∑
k=1

∣
∣
∣x(e)ik − x(e)jk

∣
∣
∣ ,

where x(e)ik = xik +N (0,e(xik)) and N (0,e) denotes the normally distributed random
variable with zero mean and the standard deviation e. Eight cases of GHM are used
in the experiments: m = 10,20; n = 2,3; e(xik) = 0.15xik,0.3xik.
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195. Šaltenis, V., Aušraitė, J.: Data visualization: ideas, methods, and problems. Informat. Educ.
1(1), 129–148 (2002)
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211. Varoneckas, A., Žilinskas, A., Žilinskas, J.: Parallel multidimensional scaling using grid
computing: assessment of performance. Inform. Tech. Contr. 37(1), 52–56 (2008)

212. Vera, J.F., Heiser, W.J., Murillo, A.: Global optimization in any Minkowski metric: a
permutation-translation simulated annealing algorithm for multidimensional scaling. J.
Classif. 24(2), 277–301 (2007). DOI 10.1007/s00357-007-0020-1

213. Ward, M.O.: XmdvTool: integrating multiple methods for visualizing multivariate data. In:
VIS’94: Proceedings of the Conference on Visualization, pp. 326–333. IEEE Computer
Society Press, Los Alamitos, CA (1994)

214. van Wezel, M.C., Kosters, W.A.: Nonmetric multidimensional scaling: Neural networks
versus traditional techniques. Intell. Data Anal. 8(6), 601–613 (2004)

215. Williams, M., Munzner, T.: Steerable, progressive multidimensional scaling. In: INFOVIS’04:
Proceedings of the IEEE Symposium on Information Visualization, pp. 57–64. IEEE Com-
puter Society, Washington, DC (2004). DOI 10.1109/INFOVIS.2004.60

216. Wittenbrink, C.M., Pang, A.T., Lodha, S.K.: Glyphs for visualizing uncertainty in vector
fields. IEEE Trans. Visual. Comput. Graph. 2(3), 266–279 (1996). DOI 10.1109/2945.537309

217. Wong, P.C., Bergeron, R.D.: 30 years of multidimensional multivariate visualization. In: Sci-
entific Visualization, Overviews, Methodologies, and Techniques, pp. 3–33. IEEE Computer
Society, Washington, DC (1997)

218. Yang, L.: Sammon’s nonlinear mapping using geodesic distances. In: ICPR’04: Proceedings
of 17th International Conference on the Pattern Recognition, vol. 2, pp. 303–306. Washington
(2004)

219. Zhao, Q., Zhang, D., Lu, H.: Supervised LLE in ICA space for facial expression recognition.
In: ICNNB’05: Proceedings of International Conference on Neural Networks and Brain,
vol. 3, pp. 1970–1975 (2005). DOI 10.1109/ICIEA.2006.257259

220. Zhu, L., Zhu, S.A.: Face recognition based on extended locally linear embedding. In:
Proceedings of 1st IEEE Conference on Industrial Electronics and Applications, pp. 1–4
(2006). DOI 10.1109/ICIEA.2006.257259
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230. Žilinskas, A., Žilinskas, J.: Branch and bound algorithm for multidimensional scal-
ing with city-block metric. J. Global Optim. 43(2–3), 357–372 (2009). DOI 10.1007/
s10898-008-9306-x
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