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Preface

This volume contains revised papers that were presented at the international workshop

entitled Computational Methods for Algebraic Spline Surfaces (“COMPASS”), which

was held from September 29 to October 3, 2003, at Schloß Weinberg, Kefermarkt (Aus-

tria).

The workshop was mainly devoted to approximate algebraic geometry and its ap-

plications. The organizers wanted to emphasize the novel idea of approximate impliciti-

zation, that has strengthened the existing link between CAD / CAGD (Computer Aided

Geometric Design) and classical algebraic geometry. The existing methods for exact

implicitization (i.e., for conversion from the parametric to an implicit representation

of a curve or surface) require exact arithmetic and are too slow and too expensive for

industrial use. Thus the duality of an implicit representation and a parametric represen-

tation is only used for low degree algebraic surfaces such as planes, spheres, cylinders,

cones and toroidal surfaces. On the other hand, this duality is a very useful tool for de-

veloping efficient algorithms. Approximate implicitization makes this duality available

for general curves and surfaces.

The traditional exact implicitization of parametric surfaces produce global repre-

sentations, which are exact everywhere. The surface patches used in CAD, however,

are always defined within a small box only; they are obtained for a bounded parameter

domain (typically a rectangle, or – in the case of “trimmed” surface patches – a subset

of a rectangle). Consequently, a globally exact representation is not really needed in

practice. Instead of a single exact high–degree implicit representation, the methods of

approximate implicitization produce piecewise implicit surfaces of relatively low de-

gree, which may cover the shape with any desired accuracy. This results in so–called

algebraic spline surfaces, which can be expected to replace the exact implicit represen-

tation in many algorithms.

Compared to the traditional parametric representations, such as rational curves and

surfaces (so–called Non-Uniform-Rational-B-Splines – NURBS), algebraic spline sur-

faces offer several computational advantages. For instance, by exploiting the duality be-

tween implicit and parametric representation, the intersection of two surfaces can easily

be traced if one of the surfaces is given in implicit, and the other surface is given in para-

metric form. In this case, the problem can be reduced to a two-dimensional root-finding

problem. In the case of two parametric surfaces, one has to solve a four–dimensional

problem instead. As another advantage, the fitting of surfaces to scattered data, which

is a fundamental tool for generating free-form geometry from prototypes, can be done

without mapping the data into a plane – a process which often limits the flexibility and

usefulness of the surface fitting techniques which are available today. We also fore-

see a number of other applications, e.g., in the computer game industry, virtual reality,

medical imaging, and scientific computing.

The workshop, and the papers collected in this volume, was devoted both to the

theoretical fundamentals and to the various computational aspects which arise in appli-

cations of approximate algebraic geometry. These applications are based on techniques
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developed in different branches of mathematics and computer science, including nu-

merical analysis and scientific computing, algebraic geometry, applied geometry, and

computer graphics. For instance, numerical methods are needed to efficiently gener-

ate implicit representations, and algebraic techniques are essential for detecting and

analyzing singularities, which may help to solve practical problems arising in applied

geometry and computer graphics.

Traditionally, these fields are represented by several fairly disjoint scientific com-

munities, which traditionally do not communicate much. In order to stimulate the ex-

change of ideas, and to promote interdisciplinary research, the workshop brought to-

gether experts from the various fields involved.

The papers included in this volume provide an overview about the state-of-the-art

in approximative implicitization and various related topics, including both the theoreti-

cal basis and the existing computational techniques. This can be expected to encourage

and promote the use of approximate implicitization for solving geometric problems in

computer-aided design. In some of the papers and in the panel discussion at COMPASS,

which is also documented in this volume, the authors try to identify a number of prob-

lems (both theoretical and practical ones) which need to be addressed by the different

research communities, in order to exploit the potential of implicit representations.

The editors are convinced that this volume will support the mutual exchange of ideas

between the various research communities, promoting interdisciplinary research. The

interactions between different mathematical disciplines such as approximation theory,

classical algebraic geometry and computer aided geometric design will play an essential

role for exploiting the new idea of approximate algebraic geometry.

The editors of this volume are indebted to the European Science Foundation (ESF)

for providing generous financial support of the COMPASS event, which was organized

as an ESF Exploratory workshop (EW 02/55). They would like to thank the staff at

Springer–Verlag, Heidelberg, for the constructive cooperation during the preparation

production of these proceedings. The time and the effort of the 37 referees, whose

reports have greatly helped to improve the quality and the presentation of the material,

is gratefully acknowledged. Last, but not least, they would like to thank Elmar Wurm

and Martin Aigner for collecting the papers and preparing the final manuscript.

Oslo and Linz, May 2004 Tor Dokken

Bert Jüttler
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Pål Hermunn Johansen

Numerical and Algebraic Properties of Bernstein Basis Resultant Matrices . . . . . 107
Joab R. Winkler

Polynomial C2 Spline Surfaces Guided by Rational Multisided Patches . . . . . . . 119
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Approximate Parametrisation of Confidence Sets⋆

Zbyněk Šı́r

Charles University, Sokolovská 83, Prague, Czech Republic,

sir@karlin.mff.cuni.cz

Abstract. In various geometrical applications, the analysis and the visualization

of the error of calculated or constructed results is required. This error has very

often character of a nontrivial multidimensional probability distribution. Such

distributions can be represented in a geometrically interesting way by a system of

so called confidence sets. In our paper we present a method for an approximate

parametrisation of these sets. In sect. 1 we describe our motivation, which con-

sists in the study of the errors of so called Passive Observation Systems (POS).

In sect. 2 we give a result about the intersection of quadric surfaces of revolu-

tion, which is useful in the investigation of the POS. In sect. 3 we give a general

method for an approximate parametrisation of the confidence sets via simulta-

neous Taylor expansion. This method, which can be applied in a wide range of

geometrical situations, is demonstrated on a concrete example of the POS.

1 Motivation

Our research was motivated by concrete problem of the analysis and the visualization

of the errors of so called Passive Observation Systems (POS).

1.1 Passive Observation Systems

The POS have been successfully constructed and produced in Czech Republic since the

1960’s as an alternative to the classical radars. These systems, which do not transmit

any signal (therefore passive), are based on the principle of the time difference. A pulse

in the transmission of an object (a plane) is received at four (or more) observation sites.

In practice any plane is forced to transmit some signals, at least in order to ensure its

orientation. From the differences of the time of reception of the pulse the position of

the object can be determined.

The POS have two main advantages comparing to the standard radars. As they do

not transmit any signal they can not be itself detected and have very low energy con-

sumption.

In addition the error of the POS has a different characteristic comparing to the clas-

sical radars. For this reason a simultaneous use of the POS and the classical radars can

be very interesting. For more details about the principle of the POS and for the basic

information about their precision see [1, Chapter 5].

⋆ The author’s research has been supported by the grant No. 201/03/D113 of the Czech Science

Foundation.



2 Z. Šı́r

1.2 Geometry of POS

The construction of POS creates many difficult problems on the level of the electrical

engineering, but the underlying geometry is quite simple. Let a pulse transmitted by an

object X be received at the sites A and A′ respectively at times tA and tA′ . Multiplying

the difference tA − tA′ by the speed of the signal (typically the speed of light) we get

the difference dAA′ of distances from the object X to the sites A and A′. The object X
must therefore lie on one of sheets of the two-sheet hyperboloid of revolution, which is

determined by its foci A, A′ and the measured difference of distances dAA′ . The sign

of dAA′ indicates which of the two sheets must be taken.

Repeating the same procedure for two other pairs of sites (B, B ′) and (C, C ′), we

get in all three hyperboloids on which the object X must lie and its position can be

therefore determined as their intersection. The space coordinates [x1, x2, x3] of X are

then computed from the measured distance differences dAA′ , dBB′ and dCC′ .

The difference vector [dAA′ , dBB′ , dCC′ ] can be easily computed from [x1, x2, x3],
and the corresponding mapping F : [x1, x2, x3]→ [dAA′ , dBB′ , dCC′ ] can be explicitly

expressed. If the sites A, A′ have the space coordinates [a1, a2, a3] and [a′
1, a

′
2, a

′
3]

respectively, then for example

dAA′ =
√

(x1 − a1)2 + (x2 − a2)2 + (x3 − a3)2

−
√

(x1 − a′
1)

2 + (x2 − a′
2)

2 + (x3 − a′
3)

2.

On the other hand the inversion mapping F−1 can not be in general expressed ex-

plicitly and the position of X must be computed from [dAA′ , dBB′ , dCC′ ] numerically

as a solution of a system of algebraic equations of the total degree 8.

In practice a network of observation sites should be used. But the smallest oper-

ational system consists of four sites only. In this case one site O = A′ = B′ = C ′

is considered as central one and the position of the object X is computed from the

distance differences [dAO, dBO, dCO]. In the sequel we will restrict ourselves to this

simplest case. As we will show, in this case an explicit inversion formula for F −1 can

be always given.

1.3 Measurement Error of the POS

Suppose, that a pulse is received at four observation sites O, A, B and C at times tO, tA,

tB and tC . The error of the vector [tO, tA, tB, tC ] of independently measured times can

be well modeled by a multivariate normal distribution, characterized by its mean value

[0, 0, 0, 0] and the variation-covariation matrix having on the diagonal the variations of

the time errors at the four sites, which are not necessarily the same
⎡
⎢⎢⎣

σO
2 0 0 0

0 σA
2 0 0

0 0 σB
2 0

0 0 0 σC
2

⎤
⎥⎥⎦ . (1)

The differences dAO, dBO and dCO have no more independent errors, but the error

of the vector [dAO, dBO, dCO] has still a normal distribution characterized by its mean

value [0, 0, 0] and the variation-covariation matrix
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c2

⎡
⎣

σA
2 + σO

2 σO
2 σO

2

σO
2 σB

2 + σO
2 σO

2

σO
2 σO

2 σC
2 + σO

2

⎤
⎦ , (2)

where c is the speed of light. See [3] for the details about multivariate distributions and

their characteristics.

If we compute the position [x1, x2, x3] using dAO, dBO and dCO we transform the

error distribution by the mapping F−1. The transformed distribution will be no more

normal. For this reason the mean value and the variation-covariation matrix are no more

sufficient characteristics of this transformed error distribution.

In fact the analysis of such complex multivariate distributions is a difficult problem.

This is due to the fact that the standard concepts used in in the case of one dimensional

distributions, are insufficient for the description of the geometry of the multivariate

distributions. We are convinced that the methods of the applied geometry would be

very useful in the analysis of both theoretical distributions and experimental data. See

[2] for one possible approach based on the concept of the data depth.

1.4 Confidence Sets

The confidence sets (called also tolerance regions) are perhaps geometrically the most

interesting characteristics of probability distributions.

Definition 1. For a given random variable U having the density function pU and for a

given probability α ∈ (0, 1] we define the confidence set CU,α as a region for which

∫

x∈CU,α

pU (x) = α (3)

In other words a confidence set is a region in which the random variable U lies with the

probability α. In practice α is set quite high, for example 0.99, and thus a confidence

set is simply a region in which the random variable lies with a reasonable certitude.

It is clear from the definition, that for a given probability α < 1 there is in general

more then one confidence set. There are natural additional properties which can be

required of the confidence sets. First of all the confidence sets should be as small as

possible in order to give good information about the probability density. For the same

reason their boundaries should be the iso-lines (iso-surfaces) of the density function. In

the case of multivariate normal distributions it is customary to use suitable ellipsoids as

confidence sets. These ellipsoids satisfy both additional requirements (see for example

[3, 45.9]).

The distribution of the error of the vector [dAO, dBO, dCO] can be described by a

system of ellipsoids (confidence sets) depending on the probability α and on the values

[dAO, dBO, dCO] (the error may in general depend on the value of [dAO, dBO, dCO]).
Transforming this system by F−1 we will get a new system of confidence sets describ-

ing the error of the position [x1, x2, x3]. The boundaries of these new confidence sets

will be iso-surfaces of the new density function.
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2 Explicit Inversion Formula

The importance of an explicit formula for F−1 is obvious from the previous section. As

X is obtained as intersection of three quadric surfaces, the resulting system of equations

has degree 8. Therefore there is seemingly no possibility to obtain an explicit expression

for F−1. However for concrete examples, we were able to reduce the degree of the

problem and even obtain a simple explicit formula. A deeper investigation of this fact

has shown, that this simplification is due to the following interesting property.

2.1 Intersection of Quadric Surfaces of Revolution

Proposition 2. Let S1, S2 be two quadric surfaces of revolution, each of which ob-

tained by rotating a conic section around its main axis. (The only axis for a parabola

and the axis passing through the foci for an ellipse or an hyperbola.) Suppose that S1

and S2 have a common focus. Then their intersection can be decomposed into curves

of degree 2.

A

p

2d

1d

F

Proof. Let F be the common focus. Clearly the axes of S1 and S2 intersect in the

point F and therefore they lie in a plane. The previous fig. represents this plane and its

intersections with all mentioned objects.

We can characterize the surfaces S1 and S2 using the focus-directrix property of

the generating conic sections. Obviously the surface S1 is precisely the set of points in

the space, having a constant ratio of distances to the focus F and a directrix plane d1,

perpendicular to the main axis: S1 = {X, |XF |
|Xd1| = r1} for some fixed ratio r1. For r1 =

1 we get a paraboloid, for r1 < 1 an ellipsoid and for r1 > 1 a two-sheet hyperboloid.

In the same way the surface S2 can be characterized as the set S2 = {X, |XF |
|Xd2| = r2}

for some plane d2 perpendicular to the axis of S2 and for some fixed ratio r2.

For the points of the intersection X ∈ S1∩S2 we thus get
|Xd1|
|Xd2| = r2

r1
. This equality

characterizes all the points lying in two planes passing through the intersection d1 ∩ d2.

One of these planes is denoted p on the figure. As the intersection of a quadric surface

with a plane is of degree 2, the intersection S1 ∩ S2 must have a component of degree

2. As S1 ∩ S2 is itself of degree 4, the proposition is proved. ⊓⊔

So the intersection of two hyperboloids, which is in general a curve of degree 4, will

have components of degree 2 (conic sections) if the two hyperboloids share a focus.

Consequently the degree 8 system describing a general POS will be decomposed if

two of hyperboloids have a common focus. If particular if the three hyperboloids have a
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common focus - the site O - the problem will be reduced twice and the resulting system

can be decomposed to the degree 2 systems. In this case therefore an explicit inversion

formula can be always obtained.

We will not describe this explicit formula in general, but we will study in detail

one particular example. In this example the situation is simplified even more by the

additional condition, that the four sites A, B, C, O are coplanar.

2.2 Example

Let us consider the POS in which the four sites lie in one plane and have the coordinates:

O = [0, 0, 0], A = [30, 0, 0], B = [−15, 26, 0] and C = [−15,−26, 0]. The mapping

F is then expressed by formulae:

dAO =
√

x2
1 − 60x1 + 900 + x2

2 + x2
3 −

√
x2

1 + x2
2 + x2

3

dBO =
√

x2
1 + 30x1 + 901 + x2

2 − 52x2 + x2
3 −

√
x2

1 + x2
2 + x2

3

dCO =
√

x2
1 + 30x1 + 901 + x2

2 + 52x2 + x2
3 −

√
x2

1 + x2
2 + x2

3

(4)

We implicitise these equations and obtain implicit algebraic equations of the three

hyperboloids HAO, HBO and HCO . For example the implicit equation of HAO is

4d2
AO

(
x2

1 + x2
2 + x2

3

)
−
(
900− 60x1 − d2

AO

)2
= 0.

Due to the Proposition 2 any two of these hyperboloids intersect in two conic sec-

tions. Because of the symmetry with regard to the plane x3 = 0 these conics lie in

the planes perpendicular to the plane x3 = 0. Their projections to this plane will be

therefore lines.

For the determination of the 8 intersections of the hyperboloids HAO, HBO and

HCO we first evaluate the resultant with respect to x3 of the implicit equations of HAO

and HBO. Because of the previous observations this resultant (of degree 4 in x1, x2) can

be factorised in two linear factors (each of them of with multiplicity two) describing two

stright lines p1 and p2. In a similar way from the equations of HAO and HCO we get

two lines q1 and q2. As intersection of this two pairs of lines we get four points Xi,j =
pi ∩ qj , i, j = 1..2, each of them being projection of two symetrical intersections of

the three hyperboloids. The signs of dAO, dAO and dAO will indicate which of the four

points Xi,j must be taken. The last coordinate xi
3 can be calculated from the equation

of any of the three hyperboloids.

Let us give the explicit formula of one of the 4 pairs of solutions of our example

system (4):

x1 =
dAO(d2

BO + d2
CO − 1802) + (900− d2

AO)(dBO + dCO)

60(dAO + dBO + dCO)
(5)

x2 =
dAO(d2

CO − d2
BO) + (d2

AO − 2dBOdCO − 2702)(dBO − dCO)

104(dAO + dBO + dCO)
(6)

x3 = ±
√

P6(dAO, dBO, dCO)

dAO + dBO + dCO
(7)
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where P6(dAO, dBO, dCO) is a polynomial of degree 6 in dAO, dBO and dCO.

The x3 is usually supposed to be positiv, as the object (plane) is usually ”over” the

observation sites.

A similar explicit form of F−1 can be in general obtained for any POS having the

four sites in a plane. In this case, the first two coordites x1, x2 can be expressed as

rational functions in dAO, dBO and dCO, but the expression of x3 will involve a square

root.

If the four sites are not coplanar, an explicit formula can be still obtained, but square

roots will appear in the expressions of all coordinates.

For a general POS, based on three independent pairs of sites (A, A′), (B, B′) and

(C, C ′), no closed expression of F−1 can be obtained.

3 Approximate Representation

The explicit inversion formula is not available for the POS in the general position. In

some other cases the inversion formula can be too complicated. For this reason we will

describe in this section a general method for the approximation of F −1.

3.1 General Setting

Let us consider the following general setting. Suppose that x = [x1, . . . , xn] is a set

of parameters which is transformed by a local diffeomorphism F to a second set of

parameters y = [y1, . . . , yn]:

F : [x1, . . . , xn] → [y1, . . . , yn] (8)

Suppose in addition that an algebraic implicitisation of F is available. We mean by this

a system of algebraic equations

G(x, y) = 0 (9)

which hold if and only if y = F (x).
Next suppose that in the space of parameters y the system of confidence sets (for

example a system of ellipsoids) is described. We want to obtain a description of the

transformed system of the confidence sets in the space of the parameters x.

3.2 Implicit Representation

If the confidence sets in the space of parameters y are described implicitly we can obtain

an implicit description in the space of parameters x in a straightforward way. Suppose,

that the boundaries of the confidence sets in the space of parameters y are given by

implicit equations

Eα,y(y) = 0 (10)

depending algebraically on the measured value y. Then substituting y = F (x) and

y = F (x) in this equations we get mplicit representations of the boundaries of the

confidence sets in the space x depending on x.

The drawbacks of this methods are obvious. As the transformation F is not neces-

sarily rational, we obtain in general a complicated (non algebraic) implicit representa-

tion depending in a complicated way on x.
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3.3 Approximation by the Taylor Expansion

Another natural possibility is to approximate the inversion F−1 by its Taylor expansion

in a suitable point y:

F−1(y) = F−1(y)+D1F
−1
y (y−y)+

1

2
D2F

−1
y (y−y)+

1

6
D3F

−1
y (y−y)+ . . . (11)

where DiF
−1
y is the i-th total differential of F−1 at the point y. See [4, par. 3.14] for the

details about the multivariate Taylor expansion. The value of x = F−1(y) can be cal-

culated numerically from (9) and the operators DiF
−1
y can be obtained by the implicit

differentiation of (9), or from the known partial derivatives of F at the point x. This ap-

proximation can be used for an approximate representation of the confidence sets in the

space of parameters x. In particular if we have a parametrisation of the boundaries of

the confidence sets in the space of parameters y, we can compose this parametrisation

with the Taylor expansion and this way obtain an approximate parametrisation of the

boundaries of the confidence sets in the space of parameters x.

The disadvantage of this approach is that the Taylor expansion can give a sufficiently

good approximation in the proximity of the point y but will not be sufficient for more

distant points.

3.4 Symbolic Computation of the Taylor Expansion

We propose a different approach, which consists in the symbolic computation of the

Taylor expansion simultaneously in all points. If the mapping F−1 can not be expressed

explicitly, there is no hope to get a general expression of the Taylor expansion depend-

ing on the point y. On the other hand it is possible to get such general expression

depending on the target point x = F−1(y).

The total differentials DiF
−1
y can be symbolically computed via partial differentia-

tion of the equality

G(F−1(y), y) = 0 (12)

For example by taking all the partial derivatives of the first order ∂
dyi

for i = 1..n, we

obtain a system of n linear equations for n unknown partial derivatives ∂F−1

dyi
. The co-

efficients of these equations are polynomials in y and F−1(y). This system can be sym-

bolically solved and we get ∂F−1

dyi
in the form of a rational function of y and F−1(y). If

we use in a similar way the higher partial derivatives of (12), we get the same king of

expression for the higher partial derivatives. See [4, par. 4.5] for more details about the

implicit differentiation.

Substituting these expressions into (11), we obtain the Taylor expansion having all

the coefficients dependent rationally on y and F−1(y). In this expression we can simply

substitute F (x) for y and x for F−1(y) and we obtain the desired simultaneous Taylor

expansion depending on x.
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3.5 Example

Let us demonstrate the described general procedure on the following example. Consider

a two-dimensional version of the POS, which can be used for example for the location

of ships on the surface of sea. In this case F−1 can be expressed explicitely, but using

squre roots.

Suppose that we have three observation sites with coordinates O = [0, 0], A =
[30, 0] and B = [−26, 15]. For to be coherent with the general notation introduced in

the paragraph 3.1, we will denote the distance differences dAO and dBO by y1 and y2.

The mapping F is then given by:

y1 =
√

x1
2 − 60x1 + 900 + x2

2 −
√

x1
2 + y1

2

y2 =
√

x1
2 + 52x1 + 901 + x2

2 − 30x2 −
√

x1
2 + x2

2
(13)

Implicitisating these formulae we get a system of algebraic equations G:

y1
4 − 4 y1

2x1
2 − 4 y1

2x2
2 + 120 y1

2x1 − 1800 y1
2 + 3600 x1

2−
−108000 x1 + 810000 = 0

y2
4 − 4 y2

2x1
2 − 4 y2

2x2
2 − 104 y2

2x1 + 60 y2
2x2 − 1802 y2

2+
+2704 x1

2 − 3120 x1x2 + 900 x2
2 + 93704 x1 − 54060 x2 + 811801 = 0

(14)

By implicit partial differentiation we were able, using the program Maple 8, to

symbolically compute the partial derivatives of F−1 up to the degree 3. As the formulae

become quickly very complicated, let us give just one example. The first component of

the first partial derivative ∂F−1

dy1
at the point F ([x1, x2]) is equal to

`
780 x1 + 13515 − 15 y2

2 − 450 x2 + 2 y2
2x2

´
y1

`
2 x1

2 − 60 x1 + 900 − y1
2 + 2 x2

2
´
/

(−780 x1
2y1

2 + 702000 x1
2 + 1633500 x1 − 1815 x1y1

2 − 182452500 + 202725 y1
2+

+15 y2
2x1y1

2 − 13500 x1y2
2 + 202500 y2

2 − 225 y2
2y1

2 − 902 x2x1y1
2 − 405000 x1x2+

+6075000 x2 − 30176 x2y1
2 + 1800 y2

2x2x1 − 27000 y2
2x2 + 56 y2

2x2y1
2 + 780 x2

2y1
2)

(15)

Substituting (13) into this expression we get ∂F−1

dy1
depending on the target point [x1, x2].

Doing the same for all partial derivatives up to the degree 3, we get a general Taylor ex-

pansion of the third order, in all points, depending on [x1, x2]. This general expression

can be now used for the simultaneous description of the system of the confidence sets

representing the error of x.

Let us suppose, for simplicity, that the time measurement error is the same at the

three sites and is independent on the measured values. For a given probability the system

of the confidence sets representing the error of [y1, y2] consists simply of the circles

of the same radius. If we take a parametrisation of these circles and compose it with

general Taylor expansion, we get the parametrisation of the system of confidence sets

representing the error of [x1, x2].
The fig. 1 shows the position of the three sites O (central), A (right) and B (left) and

the 3rd order approximation of several confidence sets (scaled by 100) corresponding to

the error of x at the points marked by small crosses. These confidence sets correspond

to the probability α = 0.99 in the case of a standard time measurement error.

The practical interpretation of this fig. is as follows: If an object is situated at a

point marked by a small crosses, then the POS will with the probability 99% detect its
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Fig. 1. System of the confidence sets representing the error of x, scaled by 100

position within the corresponding set. The obtained general description of the system

of the confidence sets is clearely very usefull for the visualisation and the analysis of

the precision of the POS and of its range of operation.

–0.15

–0.1

–0.05

0

0.05

0.1

0.15

–2 –1 1 2 3

Fig. 2. Approximation of the confidence set at the point x = [60, 2], using the Taylor expansion

of order 1 (dotted line), 2 (thin solid line) and 3 (thick solid line). Note the different scaling of

both axes

The fig. 2 shows more in detail the approximate parametrisation of the confidence

set at the point x = [60, 2], using the Taylor expansion of the 1st, the 2nd and the 3rd

order. The first order approximation gives an ellipse. The third order approximation is

indiscernible from the numerically computed confidence set.

4 Conclusion

The application of the described methods is not limited to the POS. The result pre-

sented in the paragraph 2.1 can be very useful in the construction of any devices using

the quadric surfaces of revolution. This is for example the case of various observation

systems based on the sum of distances, in which the ellipsoids occur.
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The method described in the paragraph 3.4 can be applied in all situations satisfying

the general setting 3.1. It is particularly interesting in the cases, in which we are inter-

ested by the analysis and the visualisation of the error depending not on the measured

values y, but on the resulting values x. Let us mention for example the case of parallel

robots, for which we want to know which positions can be reached with a prescribed

precision.
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Challenges in Surface-Surface Intersections

Vibeke Skytt

SINTEF, Norway

Abstract. Tangential and singular situations are still challenges in a system for

surface-surface intersections. This paper presents several real world examples of

hard intersection problems, and proposes methods on how to deal with them. In

particular, solutions which use the possibility of representing a parametric surface

as an algebraic surface through the use of approximate implicitization, are in fo-

cus. This allows us to transform an intersection between two parametric surfaces

to the problem of finding zeroes of a function of two parameters.

1 Introduction

An important part of a CAD system is the ability to perform Boolean operations. These

operations are again totally dependent on having access to a stable intersection function-

ality. Intersections between two surfaces are of particular interest, but also intersections

involving curves are important, both in its own right and because they appear as parts

of a surface-surface intersection.

The type of surfaces involved in a Boolean operation depends on the surfaces sup-

ported by the CAD system. Simple algebraic surfaces and parametric surfaces of type

NURBS and rectangular Bezier surfaces have a most widespread use. This article will

concentrate on intersections between two surfaces where either both surfaces are of type

NURBS or where one NURBS surface is intersected with an algebraic surface.

Curve and surface tangency frequently arise in modern design. The preferred sur-

face models often have smooth transitions between surfaces. The CAD system which

produced a surface model will often be able to avoid intersections between for instance

tangential surfaces. However, a geometry model is often shared between several sys-

tems using a standard geometry format. Then history information tends to get lost, and

intersections that otherwise would be avoided are performed. A good intersection pack-

age should be able to handle tangential and singular situations in order to meet the needs

of current computer aided design.

This article will focus on finding solutions to singular intersection cases and related

problems and illustrate it through an extensive use of examples. The intersections are

computed using a combination of recursive subdivision and marching methods. The

intersection problem will be formulated in the next section with special emphasize on

tangential intersections and tolerances. Next, we will give an overview of methods for

surface intersections and of typical situations that provide challenges for the intersec-

tion. More emphasize is put on recursive subdivision in sect. 4. Section 5 discusses

the tolerance aspect for intersections between one parametric and one algebraic surface

while sect. 6 gives a short presentation of approximate implicitization. Finally, we will

go deeper into some aspects of recursive subdivision and illlustrate it by examples of

singular intersection problems.
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2 Problem Formulation

Two parametric surfaces F (u, v) : R2 → R3 and G(s, t) : R2 → R3 that are map-

ping from planar parameter domains into 3 dimensional geometry space, are given. The

surfaces intersect if F (u, v) = G(s, t) for some quadruples (u, v, s, t). We want to

compute all parameter values where the two surfaces intersect. In practice this problem

formulation does not make sense. Due to the surface representation in the computer

and to how the surfaces were constructed initially, a tolerance must be introduced. We

want to find all parameter values of the two surfaces where the distance between the

surfaces is less than a given tolerance, i.e. |F (u, v)−G(s, t)| < ε. The tolerance ε will

depend on the accuracy with which the surfaces were constructed. This accuracy will

again depend on the parent CAD system. Large tolerances will, in general, give rise

to more complicated intersection problems than smaller ones. Computing intersections

within a tolerance will imply that every intersection result will be an area. This area

will normally be represented by the most significant point or curve within the area. For

transversal intersections the difference between the exact and the tolerance depended

formulation, is small, for tangential and singular cases the difference is large.

An intersection between one algebraic surface G((x, y, z)T ) = 0, and one paramet-

ric surface F (u, v) : [a1, a2] × [b1, b2] → R3, is solved if we compute all parameter

pairs (u, v) where the two surfaces are closer than the tolerance ε. More elaboration on

this topic can be found in sect. 5.

Consider a curve-curve intersection as illustrated in fig. 1. Two curves intersect in

isolated points or in coincidence intervals. The points can be of type

Transversal It is a clear unique intersection. A small perturbation of the given curves

lead to small changes in the resulting intersection point.

Near transversal The two curves intersect transversally, but there is a small angle be-

tween the curve tangents in the intersection point. If the input curves are perturbed

slightly, the topology of the intersection point will remain, but the position can

change by a large distance.

Tangential The curves intersect in one point, but a small perturbation of one of the

curves can change the position of the intersection point significantly. The intersec-

tion result easily change from tangential to near tangential or near transversal.

Near tangential The curves do not intersect, but lie closer than the tolerance in an area,

or the curves intersect in two points, and the curves lie closer than the tolerance in

an interval including the intersection points. A perturbation of a curve can change

the configuration completely.

Intersections between other types of input objects can be classified correspondingly,

the case of two parametric surfaces will be treated in some detail in sect. 9.

3 Surface-Surface Intersections

Similar to the curve case will transversal surface-surface intersections represent a sta-

ble and well defined problem. Tangential and singular situations are much more com-

plicated and represent challenges in surface-surface intersection. However, also other
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intersection

Size of tolerance

Near transversal/

near tangential
Near tangential
intersection

Near tangential
intersection

Tangential

intersection

Transversal

Fig. 1. Categories of curve-curve intersections

challenging situations exist and we will present a few of them in this section. Before

going into the difficult situations we will shortly present some often used methods for

computing intersections as the challenges will vary depending on the chosen method.

More information on methods for surface-surface intersections can be found in e.g. [2],

[9], [10], [16], [17] and [19].

Lattice evaluation A curve or point mesh is generated from the surfaces. The curve

mesh of each surface is intersected with the other surface to detect intersection

tracks. A restricted initial mesh can lead to loss of small intersection loops or iso-

lated points or to wrong connectivity.

Marching methods From one point on the intersection curve, we find a new point on

the curve. The direction of the curve in the given point is computed from local

information and a guess on the step length for the marching is made. It is important

to ensure that there exist start points for every intersection curve. Start points can

be found by performing intersections between boundary curves or other curves

in one surface and the other surface. A search for closed inner intersection loops

can be performed to avoid loosing intersection tracks. Care must be taken to avoid

jumping between different intersection branches during marching, and singular and

near singular situations can create problems. Marching approaches are discussed

in [1], [3], [11] and [8].

Recursive subdivision For the intersection of two NURBS surfaces recursive subdi-

vision is an often used approach. Recursive methods are based on the idea that

the intersection problem gets simpler if we perform subdivision and intersect sub-

surfaces. However, if care is not taken the sub-problems can get more complicated

than the original problem. Subdivision can be performed until sub-pieces do not

intersect or the sub-pieces are flat enough to represent intersections between them

as linear curve pieces. At each recursion step, intersection points at the boundaries

of the sub surfaces are computed. If the number of recursion steps is limited, inter-

section results can get lost. Otherwise the process can be very resource demanding.

A combination of recursive subdivsion with some marching method speed up the

intersection. A more detail view on this combined method is presented in sect. 4.

See also [7].
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The remaining part of this section mainly concentrates on challenging situations for

subdivision methods although the same situations tend to create problems also for other

methods.

Singular and near singular intersections are challenging situations. Several intersec-

tion curves meet or do almost coincide in a singular branch point. Typically, there is an

area around the branch point where the two surfaces lie closer than a tolerance. This

problem is a main topic for this paper and described in sect. 9. Tangential and near tan-

gential intersection curves are also the result of a singular intersection problem and a

small part of the much more complicated problem of partial coincidences. This problem

treated in sect. 10.

One issue in a recursive subdivision method is to decide whether two surfaces or

sub surfaces may intersect at all. This can be difficult if the surfaces are curved, nearly

parallel and lie close together. The impliciation is that the recursion can be very deep.

This problem is discussed with some detail in sect. 7.

Intersection between constant parameter curves in one surface and the other sur-

face is a part of both the recursive subdivision and the lattice evaluation method for

surface-surface intersection. A transversal intersection on the level of surface-surface

intersection may lead to tangential intersections at the curve-surface level. The inter-

sections can take a long time and the output can be inaccurate. Figure 1 illustrates that

the position of an intersection point can be badly defined. The situation occurs if some

intersection curve is tangential to a surface boundary. It can also occur for constant pa-

rameter curves internal to the surface, but it is often possible to avoid it by a wise choice

of constant parameter curves to intersect. The implication for a subdivision method is

that the position of subdivision must be carefully selected. A uniform approach will not

always give a good result.

Constant parameter curves in the two surfaces can be nearly parallel and at the

same time almost parallel to an intersection curve. This is a situation that frequently

occur in design and that is hard to avoid even if a good subdivision strategy is applied.

It will, similar to the situation described above, create unstable lower order intersection

problems.

Degenerate surfaces can create problems if an intersection curve passes close to

the degeneracy. Intersections close to a degenerate edge in a surface are unstable and

especially the iterations involved in a surface-surface intersection are sensitive to de-

generacies. Thus, special treatment of these parts of the surfaces is recommended.

Not well-behaved surfaces, for instance surfaces with highly non-isometric param-

eterization or very close, distinct knots, are critical. There is a risk of numerical in-

stabilities. Iterations, especially of Newton type, can be unstable when the surface

parametrization is far from isometric.

Some of the situations described above will be treated in more detail in later sec-

tions. The surface intersection challenges will be illustrated through the use of real

world examples appearing as problem cases in Boolean operations.
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4 Recursive Subdivision

We will in the remaining parts of this paper focus on computation of intersections, and

in particular singular ones, using a combination of recursive subdivision and marching.

A short description of a recursive procedure is outlined below. Here we assume that two

parametric surfaces are given, but a similar procedure apply for a problem involving

one parametric and one implicit surface. The examples to be presented is computed

according to this procedure.

– Make sure that all intersections on the surface boundaries are found. This leads

to intersection problems of a reduced number of parameter directions, i.e. curve-

surface intersections. These intersection problems are solved following a similar

approach to the one described here. Intersections at the surface boundaries and

curve endpoints are computed before any intersections in the inner of the objects.

– Check if any intersections are possible. This is normally done by performing a box

test. More sophisticated interception methods can also be used, see sect. 7.

– Check if there is any possibilities for a closed inner intersection loops. This is de-

noted a simple case test, see sect. 8. For curve-curve intersections and surface-

curve intersections, a simple case implies that not more than one intersection point

between the geometry objects can exist.

– If a simple case situation is reached, all intersection points found at the bound-

aries are connected into tracks. These tracks will later be refined or marched out to

achieve good approximations to the true intersection curves. In the case of curve-

curve or surface-curve intersections, we iterate to an intersection point.

– Otherwise, check for total coincidence.

– If no further subdivision is possible, define the most consistent intersection result

for this situation. The situation should be avoided through a good subdivision strat-

egy since its occurence imply bad performance and possibly inaccurate results. It

is included as a security net.

– If there are still possibilities for intersections and no simple case, subdivide the

current geometry objects to simplify the problem. The decision on how to subdivide

is very crucial, and the performance of the intersection procedure is very dependent

on this decision.

– Treat sub-problems. It is no limits on the number of recursions.

– Clean up in intersection results.

The result of this procedure is the complete topology of the intersection result. All

intersection points at surface boundaries are exactly computed and so are the singular

intersection points. The correctness of the result can be guaranteed, but there might be a

performance problem for complicated intersection cases. We will later look at details in

the recursive procedure that can be improved in order to cope with for instance singular

situations, but first we will have a look at intersections involving an implicitely defined

surface.
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5 Intersections Between one Parametric and one Algebraic

Surface

So far the considerations on surface-surface intersections have mainly been focused

on intersections between two parametric surfaces. In many aspects the methods for

handling intersections between one parametric and one algebraic surface are similar.

The expression for the parametric surface is put into the implicit equation resulting in a

function. The task is then to compute all zeroes of this functions. This may be handled

correspondingly to the case of two parametric surface, but due to the reduced number

of parameter directions, it is normally less complicated. Alternatively, special methods

for computing the zeroes of a function can be applied, see [17] and references therin.

However, a special emphasize has to be put on the tolerance concept.

One parametric surface F (u, v) : R2 → R3 and one algebraic surface H(x, y, z) =
0 are defined. We want to compute all intersections between these two surfaces relative

to a given tolerance ε. This problem simplifies to the problem of computing all zeroes

of a function of two parameters

f(u, v) = H(Fx(u, v), Fy(u, v), Fz(u, v))

with respect to a tolerance δ, i.e. we want to find parameters (u∗, v∗) such that f(u∗, v∗) <
δ. We will now shortly outline the relation between the tolerances ε and δ.

In an intersection between one parametric and one implicitly defined surface, we can

define a (u, v) which is the direction in which the error in geometry space is measured.

The expression H(F (u, v)− εa(u, v)) is zero where the distance between the two sur-

faces is exactly ǫ with respect to the direction of measurement. We require |a(u, v)| ≡ 1.

Performing Taylor expansion of this expression, we get

H(F (u, v)− εa(u, v)) ≈ H(F (u, v))− ǫ∇H(F (u, v)) · a(u, v) (1)

plus higher order terms in ε. We now set

δ = |H(F (u, v))| ≈ ε|∇H(F (u, v)) · a(u, v)| ≤ ε|∇H(F (u, v))| (2)

We choose the direction of error measurement to always be equal to the gradient of the

implicitly defined surface H in the point closest to the current point F (u, v). Then we

can choose the tolerance for the transformed problem to be

δ = δ(u, v) = ε|∇H(F (u, v))| (3)

The higher order terms in ε will be neglect-able if ε is sufficiently small. However, if

the gradient of the implicit surface varies in the area of interest, the tolerance δ is non-

constant. This is a problem only for tangential intersections. Transversal intersections is

less sensitive to tolerances, but tangential intersections might get lost using a too small

tolerance. For planes, spheres and cylinder, δ will be constant.

Figure 2 illustrates a situation where the tolerance ε is quite large. A very small B-

spline surface is intersected with a cylinder, and using the tolerance δ as outlined above,

the result is total coincidence. However, at least one corner of the B-spline surface
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Fig. 2. Intersection between a small B-spline surface and a cylinder

is more distant from the cylinder than ε. To see what happens consider a circle with

radius r and center in origo. We want to find the conditions for coincidence between

a parametric curve in the plane f(t) = (x(t), y(t)) and this circle with respect to the

tolerance ε. A point (x, y) on the curve is closer than the tolerance to the circle if

r − ε <
√

x2 + y2 < r + ε

Elaborating this expression, we get

r2 − 2rε + ε2 < x2 + y2 < r2 + 2rε + ε2

|x2 + y2 − r2 − ε2| < 2rε

Thus, higher order terms of ε enters the expression in a way that translates the coinci-

dence interval for the function H created by inserting the expression for the B-spline

curve into the equation of the circle. The same situation occurs when a B-spline surface

is inserted into a cylinder equation. Note that the positions of the exact zeroes of H are

not changed. For small tolerance values the term ε2 is neglectable, but in this particular

example the introduction of this term resulted in the intersection result shown in the

second picture of fig. 2. Only two of the boundaries of the B-spline surface are found

to intersect the cylinder. Parts of the inner of the surface are closer to the cylinder than

the tolerance although this is not represented in the intersection result.

6 Approximate Implicitization

In many cases we prefer to deal with a problem of two parameter directions instead

of a problem with four directions. The algebraic surface which is intersected with a

parametric surface can be a conic surface which is supported by the CAD system using
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the intersection code, but it can also be an algebraic surface generated from a parametric

one to simplify the intersection process. This surface will, in order to avoid a very high

polynomial degree, be an approximation to the given parametric surface. The concept

of approximate implicitization allows us to create a dual surface represented as a low

degree algebraic surface, to a given parametric surface.

The approximate implicitization approach is based on combining an unknown al-

gebraic surface H(x) = 0 of total degree m and a known parametric surface F (u, v).
The unknown coefficients of the algebraic surface is organized in the vector b. This

combination can be written

0 = H(F (u, v)) = (Db)T (s)

The entries in the matrix D are products of the coefficients of the coordinate functions

of F (u, v), and T (s) contains piece-wise polynomial basis functions of the surface.

In our case T (s) contains basis functions that are a partition of unity, and then the

smaller singular values of D identifies coefficient vectors of H that can be used for

approximating F (u, v). If the algebraic surfaces are represented by a Bernstein basis

in a barycentric coordinate system the approach has nice numerical properties. The

topic was first introduced in in [4] and later in [5], see also [6]. See [22] for exact

implicitization.

7 Interception Testing

Interception testing is a fundamental tool in recursive subdivision. The purpose of in-

terception testing is to check whether two geometry objects may intersect, or whether a

function may have any zeroes. If no intersection is possible the current sub problem is

solved. The classical method for interception is box testing. Coordinate boxes surround-

ing the two objects are created. Intersection between these boxes is easily checked, and

if the boxes do not intersect, the objects cannot intersect either. We can also make ro-

tated boxes, i.e. the boxes are rotated according to some properties of the combination

of geometry objects in order to improve the interception. A standard rotation by letting

the box corners be cut off whenever possible also improves the interception at a low

cost. Peters and Wu present some new methods for interception in [18]. For a function,

a box is similar to an interval. The intersection tolerance must be taken into account

while doing box testing to avoid loosing near tangential intersections. The first picture

in fig. 3 shows a surface-surface intersection where interception by coordinate boxes

has very good efficiency.

Another approach is to place a plane or a cylinder or some other simple standard

geometry between the geometry objects, i.e. we want to define a splitting geometry

that separates the two objects. If these objects do not intersect the standard geometry,

they do not intersect each other either. However, intersection cases occur where none of

these tools are effective for interception, see the second surface configuration in fig. 3.

For near parallel, non-planar, parametric, sculptured surfaces, the box testing is not

effective. The recursion continues very deeply and the performanc is not acceptable.

The same is true for nearly parallel curves or a curve lying very close to a surface. We

want the problem in some sense to become flat, and do so by generalizing the concept
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Fig. 3. Surface configurations where there are no intersections between the surfaces

of splitting geometry. The object representing the splitting geometry can be any kind of

algebraic surface, not only a standard conic. Moreover, instead of placing the splitting

geometry between the two initial curves or surfaces, it is defined to coincide with one

of the objects. If the other object does not intersect the splitting geometry, it does not

intersect the object being coincident to the splitting geometry either.

Assume that two parametric surfaces F (u, v) and G(s, t) are given. Assume also

that a good algebraic approximation, H , to G exist, see sect. 6, i.e. H(G(s, t)) ≈ 0.

Then we can define the function f(u, v) = H(F (u, v)). If this function does not have

any zeroes with respect to the tolerance δ outlined in sect. 5, then the surfaces F and G
do not intersect. The problem illustrated in the second picture of fig. 3 is easily solved

by this approach. However, δ is, as we have seen, not a constant. It is a function in u
and v and it is dependent on the gradient of the algebraic surface H . Thus, H does not

only need to be a good approximation to G(s, t) in the area where G exist, it must also

posses a gradient that is close to constant in this area.

8 Simple case Situations

The aim is to know when we have enough information to define the topology of an

intersection problem in a recursive subdivision setting or whether a start point to all

intersection tracks are found in a marching approach. The action is to check for a simple

case situations.

For the problem of finding all zeroes in a function of one parameter or to compute

intersections between two curves or between a curve and a surface, it is a simple case

situations if there cannot be more than one zero or one intersection point in the cur-

rent problem. In surface-surface intersection or the problem of computing zeroes of a

function of two parameters, there is a simple case where there is no closed intersection
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loops in the surfaces or function. In a recursive subdivision method, one goal is to reach

a simple case situation.

In the function case, we look for monotonicity. If one parameter direction exists

where the function is monotone, the situation is simple, and we can stop subdividing. If

the function have two parameters, this parameter direction can be a combination of the

two main parameter directions.

Two surfaces cannot intersect in a closed inner loop if their corresponding surface

normals do not overlap. This can be checked by bounding all possible surface normals

by a cone and check whether these cones overlap. The loop detection problem is exten-

sively treated in [20], [21], [13], [14] and [24]. Similarly, two curves cannot intersect in

more than one point if the cones surrounding the curve tangents do not overlap. Then

the possible intersection point can be found by iteration. Iterating for a closest point

gives a more stable result than a direct iteration for the intersection point.

In surface-surface intersection a simple case situation implies that all intersection

curves between the two surfaces intersect the boundaries of the current surfaces. In-

tersection points at the boundaries are already found at this stage, and they can be

connected into tracks. The direction of the intersection curve in a point is an important

tool in order to make correct connections, and this direction can normally be found by

computing the cross product of the two surfaces in this point. In singular situations a

more complex computation is required, see [12]

A monotonicy test for a function of two parameters is a stronger tool than a check

for overlap between two cones bounding surface normals. The assumption is that we

allow for monotonicity in other parameter directions than the two standard ones. Since

an intersection between two parametric surfaces can be transformed to the problem

of computing zeroes of a function through the use of approximate implicitization, the

monotonicity test tool can be available also for intersections between two parametric

surfaces. Figure 7 shows an intersection problem where four intersection curves meet

in a singular point. Two of the curves lie in the same quadrant of the parameter domain

for both surfaces. Thus, a simple case situation will never be reached for recursive

subdivision alone independent on the recursion depth. However, if only one parameter

domain exists and a corresponding function has two zero curves in the same quadrant

of this domain, there might still be some parameter direction where the function is

monotone.

9 Singular Surface-Surface Intersections

Tangential and singular situations frequently occur in design, and even if the knowl-

edge of e.g. a tangential surface-surface intersection prevents the designing system to

perform an intersection between the related surfaces, a solid- or surface model often

has a second life outside of the originating CAD system. Then it is no guard against

performing such an intersection. We have to accept that tangential and singular surface-

surface intersections exist, and should be handled in the best possible way.

Not only do singular situations exist, they are seldom very accurately described.

We see two intersection curves that almost meet in a singular point, and where the

surfaces in this point are closer than the given tolerance. We see two intersection curves
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Intersection curves

that almost meet in

a singularity

Intersection curves meeting in 

a branch point that is an

exact singularity

Intersection curves
that almost meet
in a singularity

Fig. 4. Categories of branch points

that intersect in two points where the whole area is in intersection. Cases exist where

surfaces almost touch in one curve, or intersect in two extremely close curves. Figure 4

illustrates some configurations. The direction of the intersection curves are shown by

arrows.

Given two parametric surfaces F (u, v) and G(s, t), the parameter quadruple (ũ, ṽ, s̃, t̃)
represent a singular intersection point if

Fu(ũ, ṽ) · (F (ũ, ṽ)−G(s̃, t̃)) = 0

Fv(ũ, ṽ) · (F (ũ, ṽ)−G(s̃, t̃)) = 0

Gs(s̃, t̃) · (F (ũ, ṽ)−G(s̃, t̃)) = 0

Gt(s̃, t̃) · (F (ũ, ṽ)−G(s̃, t̃)) = 0

and |F (ũ, ṽ)−G(s̃, t̃)| < ε. Singular intersection points can be of several types:

Isolated singularity The point does not belong to any intersection curves. If the inter-

section point exists only within a tolerance, we have to take care not to loose the

point.
Tangential intersection point The point belongs to a tangential intersection curve. If

the point is exact, there is a unique tangential intersection curve passing through

this point. Normally, it will be possible to compute the direction of this curve in the

point using second derivative information from the surface, but not the orientation.

Tracing of tangential intersections is treated in [12] and differential geometry of

the curves in [23]. If the point is a near singularity, there will be two intersection

curves very close to each other. The directions of the two curves are very similar,

but the two curves have opposite orientation. The area between the curves does also

belong to the intersection.
Branch point Several intersection curves meet in the point. If the point is exact, it is

normally possible to compute the directions of the various curves in the point.

Figure 5 shows a near singular situation. The two surfaces intersect in two intersec-

tion curves that lie very close in an area. Subdivision in the singular point between the
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Fig. 5. Two intersection curves do almost meet in a singular point

intersection curves leads to sub problems where a simple case situation can be recog-

nized. The singular point is found by iteration.

Two surfaces that intersect in a near singularity very often have almost parallel

constant parameter curves in the singular intersection point. To reach a simple case

situation, it is crucial to place singular intersection points at corners of the sub surfaces.

If subdivision along these guide lines is to be performed for both surfaces, we construct

very tangential curve-curve and surface-curve intersections.

Figure 7 shows two surfaces that intersect. Using a very small tolerance, the inter-

section curves are separate. For the tolerance given by the CAD system, the two curves

meet in a singular intersection point, but the accuracy in this point is not good. More-

over, the different intersection branches can not be separated by subdivision since two

of the intersection curves lie in the same quarter of the surface. The strategy is to sub-

dive in the singularity. Then each sub problem is transformed to a problem of comput-

ing zeroes of a function by the means of approximate implicitization. We can then use

the monotonicity approach in simple case checking for each sub problem, and simple

case situations are reached. In this case, subdivision in the singularity leads to unsta-

ble curve-surface intersections. Thus, finding a clean representation of the intersection

results in the area around the singular point is a challenge.

10 Partial Coincidences and Tangential Intersections

Also partial coincidences are singular situations. Figure 8 shows a partial coincidence

between two B-spline surfaces. The surfaces are made by loft through a set of planar

profiles where some of the profiles are the same for both surfaces. This approach cre-

ates two surfaces that lie very close in a large area, but they differ more than the given

tolerance. There is a lot of singular branch points, and tangential and nearly tangential
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Fig. 6. Two intersection curves do almost meet in a singular point

Fig. 7. Two intersection curves intersect in a singular point within the tolerance

intersection curves in this area. Computing these intersections are very effort demand-

ing and error proof and do not give a useful result for the application. Other methods

for construction is in this case required to reduce the demand on the surface intersection

functionality.

Figure 9 shows an intersection problem where a partial coincidence area is well de-

fined. The two surfaces touch exactly in the area. The boundaries of the partial coinci-

dence area follow constant parameter curves in the surfaces. In this case the coincidence

in the inner of the area is verified by sampling, but also methods that use approximate

implicitization and transform the problem to a function, can be used.

Also surfaces that intersect in tangential intersection curves provide a partial co-

incidence situation that is possible to handle. Two surfaces touch along a curve. Due

to the most common construction methods this tangential intersection curve will be a

constant parameter curve in one of the surfaces when both surfaces are parametric. The

true intersection with respect to the tolerance is an area around the intersection curve.

We represent this area by the curve itself.

Near tangential intersection curves are more complex. One surface is attached to

a curve in another surface to create a smooth transition by approximate methods, for

instance when creating a blend between two surfaces. The blend surface approximately

intersects the two initial surfaces along their boundaries, and the intersection curves are

nearly tangential. In reality there are a lot of minor intersections in an area close to the

boundaries. The application is typically not interested in these intersections although the

entire areas where they occur are not partial coincidence areas. The information that a

near tangential intersection curve is found along a blend boundary is more constructive.

Figure 10 shows an intersection between a blend surface and one of its mothers.

Figure 11 shows two surfaces intersecting tangentially along the boundary of one

of the surfaces. Moreover, there are two intersection curves joining the tangential inter-
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Fig. 8. Partial coincidence

section curve in branch points that are singularities if high order. These branch points

are hard to find by iteration. We follow the trend of the transversal intersection curves

toward the singular points to find appropriate positions for the branch points.

11 Conclusion

In general, finding transversal intersections is a stable and well defined problem. Com-

puting tangential intersections, on the other hand, is highly unstable. The intersection

appears and disappears depending on the size of the tolerance, the classification can

change from one or more points to intervals or partial coincidence surfaces or the other

way around, and the positioning the intersection results can be changed significantly by

a small change in the input geometry.

We want to represent this unstable intersection result in a relatively stable way.

Thus, we seek to represent the singularites and classify them according to their type:

singular branch point, tangential intersection curve, near tangential intersection curve,

and so on. The main properties of the current intersection are reported while details in

the critical area can be found by a post process if required.

The choices of subdivision directions and positions in recursive subdivision are ac-

tively used to achieve sub problems where good interception methods or the recognition

of a simple case can solve the problem. Moreover, we want to avoid creating compli-

cated intersection problems of a reduced number of parameter directions by choosing

a wrong position for subdivision. The subdision strategy is a very important part of a

recursive subdivision method.

It is a challenge to be able to separate intersection problems that can be handled by

a wise choise of tools, from the problems where a solution is not realistic, see fig. 8.

The type of problems where we put our effort should be real life problems where we

have a good chance to find a solution.
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Fig. 9. A well defined partial coincidence between two surfaces

Fig. 10. Intersection between a blend surface and its mother

Fig. 11. Tangential intersection with singularities
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Computing the Topology of Three-Dimensional

Algebraic Curves⋆

G. Gatellier, A. Labrouzy, B. Mourrain, and J.P. Técourt

GALAAD, INRIA

BP 93, 06902 Sophia Antipolis

Abstract. In this paper, we present a new method for computing the topology of

curves defined as the intersection of two implicit surfaces. The main ingredients

are projection tools, based on resultant constructions and 0-dimensional polyno-

mial system solvers. We describe a lifting method for points on the projection of

the curve on a plane, even in the case of multiple preimages on the 3D curve. Re-

ducing the problem to the comparison of coordinates of so-called critical points,

we propose an approach which combines control and efficiency. An emphasis in

this work is put on the experimental validation of this new method. Examples

treated with the tools of the library AXEL
1 (Algebraic Software-Components for

gEometric modeLing) are showing the potential of such techniques.

1 Introduction

Numerical modeling plays an increasingly role in fields at the border between data

processing and mathematics. This is the case for example in CAD (Computer-aided de-

sign, where the objects of a scene or a piece to be built are represented by parameterized

curves or surfaces such as NURBS), robotics (problem of the parallel robot, or vision),

or molecular biology (rebuilding of a molecule starting from the matrix of the distances

between its atoms obtained by NMR). A fundamental operation in this context is the

intersection of geometric models, which leads to algebraic questions.

In this paper, we focus on the problem of computing the topology of the intersection

of two algebraic surfaces. Such a question is critical in many solid geometry operations,

involved in the digital modeling or construction process of shapes. In the case of two

parameterized surfaces, in order to reduce to such a situation, we may compute the

implicit equation of one of the rational surfaces [4]. This reduces the problem of inter-

section to the case of an implicit and a parameterized representation, which boils down,

by substitution, to the case of a curve defined by an implicit equation in the plane of

parameters. Our main concern will be the case of implicit curves, either in the plane or

defined by two polynomial equations, in a 3-dimensional space.

This intersection problem received a lot of attention in the past literature. See for in-

stance [9, 19, 16]. Different techniques (subdivision, lattice evaluation, marching meth-

ods) have been experimented [18, 10, 1, 13, 12, 19], but they suffer from the problem of

certifying the topology of the result.

⋆ This work is partially supported by GAIA II IST-2001-34919 European project
1
http://www-sop.inria.fr/galaad/logiciels/axel/
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In this paper, we present a new method to compute the topology of an algebraic

curve in 3D, based on an extension of the 2D approach [13], [11]. Our objective is to de-

vise a certified and output-sensitive method, in order to combine control and efficiency.

We show that it reduces to the comparison of coordinates of points of intersections of

two curves or three surfaces. This task can be fulfilled by using exact methods, such as

the one described in [3], [8], which reduces to comparison of roots of univariate prob-

lems. Our approach is combining symbolic and numeric techniques, in order to filter

the numerical computation. We present preliminary experiments in the library AXEL
2

(Algebraic Software-Components for gEometric modeLing), devoted to algebraic tools

for geometric modeling. We are interested in the efficiency and also in the numeri-

cal behavior and stability of the method. The experiments are made using the package

SYNAPS
3 [6] (SYmbolic and Numeric APplicationS), which provides a set of polyno-

mial solvers. We apply in particular solvers, based on algebraic manipulations [20], or

resultant constructions. This leads to eigenvalue computations, which are performed by

LAPACK subroutines [2]. For more details on the polynomial solving algorithms, we

refer to [8].

The main objective being the description of the curve of intersection of two implicit

surfaces, the method that we present yields “only” the topology of such a curve, that is

a graph of 3D points, connected by segments, with the same topology as the algebraic

curve. Producing a good geometric approximation of the curve, which is the next step

of a complete method, will not be considered here. It consists in applying marching

techniques on the regular branches of the curve.

In the next section, we will describe quickly the algebraic ingredients that we need.

The algorithm will be detailed in section 3 and some implementation topics and exper-

imentations are presented in the last section.

2 Algebraic Tools

In this section, we introduce different algebraic tools that will be used later.

2.1 Resultant and Projection

For any polynomials p1, . . . , pk ∈
�

[z], we denoted by 〈p1, . . . , pk〉 the vector space

spanned by these polynomials. Let
�

[z]d be the space of polynomials of degree less or

equal to d, with basis {1, . . . , zd}.
Let us consider two univariate polynomials P and Q of

�
[z].

P =

p∑

k=0

akzk, Q =

q∑

k=0

bk zk.

We need first the following definition:

2 http://www-sop.inria.fr/galaad/logiciels/axel/
3
http://www-sop.inria.fr/galaad/logiciels/synaps/
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Definition 1. The Sylvester matrix of P and Q is the matrix of the application

�
[z]q−1 ⊕

�
[z]p−1 −→

�
[z]p+q−1

(u, v) P u + Q v

of the form

Syl(P, Q) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

ap bq

ap−1
. . . ap bq−1

. . . bq

... ap−1

... bq−1

a0

... b0

...

. . . a0
. . . b0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

Definition 2. Determinantal polynomial. LetM be a matrix k×l with l ≤ k. We define

the determinantal polynomial ofM:

detpol(M) = det(Mk) zk−l + · · ·+ det(Ml)

whereMj denotes the submatrix ofM consisting of the l− 1 first rows ofM followed

by the jth.

Definition 3. The polynomial subresultant of order i associated to P and Q is:

Si = detpol(zq−i−1 P, . . . , P, zp−i−1 Q, . . . , Q) =

l∑

k=0

Si,kzk

See [21]. These polynomials can be computed efficiently by Sturm-Habicht sequences

[3]. Notice that S0 is the determinant of the Sylvester matrix (i.e the resultant) of P and

Q.

We will use the following result:

Proposition 4. The last polynomial Sk associated to P and Q with Sk,k �= 0 is the

greatest common divisor of P and Q.

Another important property is:

Proposition 5. The corank of the Sylvester matrix associated to P and Q is the degree

of gcd(P, Q).

Proof. Let D = gcd(P, Q) and δ = deg(D). Then we have

corank(Syl(P, Q)) = p + q − dim〈P, z P, . . . , zq−1 P, . . . , Q, z Q, . . . , zp−1Q〉.

As dim〈P, z P, . . . , zq−1 P, . . . , Q, z Q, . . . , zp−1Q〉 = dim〈D, z D, . . . , zp+q−1−δ D〉,
we deduce that corank(Syl(P ,Q)) = δ.
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2.2 Solving 0-Dimensional Systems

In this section, we are interested in solving polynomial systems of dimension 0 i.e that

admit a finite number of (complex) solutions. Different approaches exist to solve such

systems [8]. We focus on the algebraic approach that transforms the resolution problem

into linear algebra problems.

Here are some notations: R = R[x, y, z], f1 = 0, . . . , fm = 0 with fi ∈ R, the equa-

tions we want to solve, I = (f1, . . . , fm) is the ideal generated by these polynomials,

A = R/I the quotient algebra. We denote by

V(f1, . . . , fm) = {(x, y, z) ∈ � 3, fi(x, y, z) = 0, i = 1, . . . , m},

the variety of � 3 defined by the equations fi(x, y, z) = 0.

We deduce from the structure of the quotient algebra A, the solutions V(I), from

the following theorem:

Theorem 6. Assume that V(I) = {ξ1, . . . , ξd}. We have:

– Let a ∈ A. The eigenvalues of the operator Ma (and M t
a) are a(ξ1), . . . , a(ξd).

– The common eigenvectors of (M t
a)a∈A are (up to a scalar) 1ξ1

, . . . , 1ξd
where 1ξi

is the linear form 1ξi
: p −→ p(ξi).

This theorem reduces the resolution to a linear algebra problem [8] if we are able to

work in A. In order to turn this theorem into an effective method, we have to construct

the matrices of multiplication in A. For this purpose, we compute so called normal

forms. One way is to use Groebner bases but for numerical stability, we prefer to use

general normal forms [17], [20].

We summarize the main stages of the resolution process, in the following algorithm:

Algorithm 7. — Solving 0-dimensional system. Input: I = (f1, . . . , fm).

– Compute a basis ofA and polynomials which yield a normal form reduction modulo

I .

– Deduce the matrices of multiplication by x, y, z in the basis of A.

– Compute simultaneous eigenvectors of M t
x, M t

y, M t
z and the corresponding eigen-

values[8].

Output: V(I) = {ξi(with multiplicity), i = 1, . . . ,dimA}.

3 Topology of Algebraic Curves

By definition, a three dimensional algebraic curve C � = V(f1, . . . , fm) (fi ∈
�

[x, y, z])
is an algebraic variety of dimension 1 in � 3. We denote by I(CC) ⊂ �

[x, y, z], the

ideal of the curve CC (that is the set of polynomials which vanish on CC) and by

g1, . . . , gs ∈
�

[x, y, z] a set of generators: I(CC) = (g1, . . . , gs). By Hilbert’s Null-

stellensatz [5, 15], we have I(V(f1, . . . , fk)) =
√

I ⊂ �
[x, y, z]. It can be proved [7],

[15], that 3 polynomials g1, g2, g3 ∈
�

[x, y, z] are enough to generate I(CC).
For simplicity reasons, we will consider here that the curve is described as the in-

tersection of two surfaces P1(x, y, z) = 0, P2(x, y, z) = 0, with P1, P2 ∈
�

[x, y, z].
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We assume that the gcd of P1 and P2 in
�

[x, y, z] is 1, so that V(P1, P2) = C � is of

dimension 1, and all its irreducible components are of dimension 1. We are interested

in describing the topology of the real part

C � = {(x, y, z) ∈ � 3, P1(x, y, z) = 0, P2(x, y, z) = 0},

that we will denote hereafter by C.

In this paper, we assume that I(C) = (P1, P2) or equivalently that (P1, P2) is a

reduced ideal: (P1, P2) =
√

(P1, P2).
We will not consider examples such as P1 = x2 + y2 − 1, P2 = x2 + y2 + z2 − 1,

where (P1, P2) = (x2 + y2− 1, z2) and I(C) = (x2 + y2− 1, z), so that the curve C is

defined “twice” by the equations P1 = 0, P2 = 0 (the two surfaces intersect tangently

along C). Such a property can be tested by projecting into a generic direction and testing

if the equation computed from the resultant of P1, P2, is squarefree, or by more general

methods such as computing the radical of (P1, P2) [14].

The general idea behind the algorithm that we are going to describe is as follows:

we use a sweeping plane in a given direction (say parallel to the (y, z) plane) to detect

the critical positions where something happen. We also compute the positions where

something happen in projection on the (x, y) and (x, z) plane. Then, we connect the

points of the curve of C on these critical planes. This yields a graph of points, connected

by segments, with the same topology as the curve C.

3.1 Critical Points and Generic Position

In this section, we precise what we mean by the points where something happen. These

points will be called hereafter critical points.

Definition 8. Let I(C) = (g1, g2, . . . , gs) and let M be the s× 3 Jacobian matrix with

rows ∂xgi, ∂ygi, ∂zgi.

– A point p ∈ C is regular (or smooth) if the rank of M evaluated at p is 2.

– A point p ∈ C which is not regular is called singular.

– A point p = (α, β, γ) ∈ C is x-critical (or critical for the projection on the x-axis)

if the curve C is tangent at this point to a plane parallel to the (y, z)-plane i.e the

multiplicity of intersection of the plane with I(C) at p is greater or equal to 2. The

corresponding α is called a x-critical value.

A similar definition applies for the orthogonal projection onto the y and z axis or onto

any line in space. Notice that a singular point is critical for any direction of projection.

If I(C) = (P1, P2), then the x-critical points are the solutions of the system

P1(x, y, z) = 0, P2(x, y, z) = 0, (∂yP1∂zP2 − ∂yP2∂zP1)(x, y, z) = 0. (1)

In the case of a planar curve defined by P (x, y) = z = 0, with P (x, y) squarefree

so that I(C) = (P (x, y), z), this yields the following definitions: a point (α, β)

– is singular if P (α, β) = ∂xP (α, β) = ∂yP (α, β) = 0.

– is x-critical if P (α, β) = ∂yP (α, β) = 0.
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This allows us to describe the genericity condition that we require for the curve C,

in order to be able to apply the algorithm:

Definition 9. Let

Nx(α) = #{(β, γ) ∈ � 2 st. (α, β, γ) is a x− critical point of C}.
We say that C is in a generic position for the x-direction, if

– ∀α ∈ R, Nx(α) � 1, and
– there is no asymptotic direction of C parallel to the (y, z)-plane.

We will show that by a random change of variables, the curve can be put in a generic po-

sition. In practice, instead of changing the variables, we may choose a random direction

for the sweeping plane.

3.2 The Projected Curves

The algorithm that we are going to describe, uses the singular points of the projection

of C onto the (x, y) and (x, z)-planes. We denote by C ′ (resp. C′′) the projection of the

curve C onto the (x, y) (resp. (x, z))-plane. The equation of the curve C ′ is obtained as

follows. We decompose the polynomials P1, P2 in terms of the variable z:

P1(x, y, z) = ad1
(x, y)zd1 + ... + a0(x, y)

P2(x, y, z) = bd2
(x, y)zd2 + ... + b0(x, y)

with ad1
(x, y) �= 0 and bd2

(x, y) �= 0. Then, the resultant polynomial

G(x, y) = Resz(P1, P2)

vanishes on the projection of the curve C on the plane (x, y). Conversely, by the resultant

theorem [8], G(x, y) = 0 defines exactly the projection C ′ of the curve C if ad1
(x, y)

and bd2
(x, y) do not vanish simultaneously on a component of dimension 1 of C ′, that

is, if the gcd c(x, y) of ad1
(x, y) and bd2

(x, y) in
�

[x, y] is 1. If it’s not the case, G is

a non-trivial multiple of the implicit equation of C ′. Such a situation can be avoided, by

a linear change of variables. Nevertheless, since the critical points of the curve defined

by G(x, y) = 0 contains the critical points of C ′, we will see hereafter that this change

of variable is not necessary.

Notice, that G(x, y) is not necessarily a squarefree polynomial. Consider for in-

stance the case P1 = x2+y2−1, P2 = x2+y2+z2−2, where g(x, y) = (x2+y2−1)2.

In this case, there are generically two (complex) points of C above a point of C ′.
We can easily compute the gcd of G(x, y) and ∂yG(x, y) (using proposition 4), in

order to get the squarefree part g(x, y) = G(x, y)/gcd(G(x, y), ∂yG(x, y)) of G(x, y).
Similarly, for the projection C′′ of C on the (x, z)-plane, we compute

H(x, z) = Resy(P1, P2)

and its square-free part h(x, z) from the gcd of H(x, z) and ∂zH(x, z). The equation

h(x, z) = 0 defines a curve which is exactly C ′′, if the gcd of the leading components

of P1, P2 in y is 1. Its set of singular points contains those of C ′′.
In order to analyse locally the projection of the curve C, we recall the following

definition:
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Definition 10. [22] Let X be an algebraic subset of
� n and let p be a point of X .

The tangent cone at p to X is the set of points u in
� n such that there exist a se-

quence of points xk of X converging to p and a sequence of real numbers tk such that

limk→+∞ tk(xk − p) = u.

Notice, that at a smooth point of C, the tangent cone is a line.

Proposition 11. Let p′ = (α, β) be a x-critical point of C′, which is not singular. Then

α is the x-coordinate of a x-critical point of C.

Proof. Let V be the set of points p ∈ C, which project onto p′. From the previous defi-

nition, we directly deduce that the projection of the tangent cone at p ∈ C is contained

in the tangent cone of the projection of p. Thus the tangent cone of C ′ at p′ = (α, β)
contains the projection of the tangent cones of the points p ∈ V . Since p′ is regular,

its tangent cone is a line parallel to the y direction. Therefore, the tangent cones of the

points p ∈ V are in the plane x − α = 0, parallel to the plane (y, z). This implies that

the intersection of C with the plane x−α = 0 contains a point of multiplicity ≥ 2, that

is a x-critical point. In other words, α is the x-coordinate of a x-critical point of C.

3.3 Lifting a Point of C′

The problem we want to tackle here is the following: Assume we are given two surfaces

defined by two implicit equations P1 = 0 and P2 = 0. Let us consider the projection of

the curve of intersection of the two surfaces on the (x, y)-plane. Starting from a point

(x0, y0) of the projected curve, how can we find the z-coordinate of the point(s) above

(x0, y0) ?

We note P (z) = P1(x0, y0, z), Q(z) = P2(x0, y0, z) and p = deg(P ), q =
deg(Q). Consider the Sylvester submatrix Syl1(x0, y0) of the application

�
[z]q−2 ⊕

�
[z]p−2 −→

�
[z]p+q−2

(u, v) �→ P u + Q v

If ξ is a common root of P and Q then (1, ξ, . . . , ξp+q−2) is in the kernel of the trans-

pose of Syl1(x0, y0). If we assume that Syl1(x0, y0) is of maximal rank, and if ∆i

denotes the minor of Syl1(x0, y0) obtained by removing the row i, then the (non-

zero) vector [∆1,−∆2, . . . , (−1)p+q−1∆p+q−1] is in the kernel of the transpose of

Syl1(x0, y0). Thus (1, ξ, . . . , ξp+q−2) and [∆1,−∆2, . . . , (−1)p+q−1∆p+q−1] are lin-

early dependent. We deduce that ξ = −∆p+q−1
∆p+q−2 = −S1,0(x0,y0)

S1,1(x0,y0) .

This method allows us to lift a point on C, if there is only one point above (x0, y0),
but it can be generalized when there are several points above. This generalization is

closely related to the subresultant construction of univariate polynomials [21]. Here we

want to exploit linear algebra tools from a numerical perspective. The aim is to make the

matrix of multiplication by z in the quotient algebra
�

[z]/(P1(x0, y0, z), P2(x0, y0, z))
appear, in order to compute its eigenvalues which yields z-coordinate of the points

above (x0, y0) [8].

We proceed as follows: Given a point (x0, y0) of the projected curve C′, we con-

struct the Sylvester matrix associated to P (z), Q(z). By construction, the columns of
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this matrix are P, z P, . . . , zq−1 P, Q, z Q, . . . , zp−1 Q, using 1, z, . . . , zp+q−1 as a ba-

sis. Assume that the kernel of the transposed Sylvester matrix Syl(x0, y0) has dimension

d and is generated by Λ1, . . . , Λd.

By transposition, we can interpret the Λi (i = 1 . . . d) as linear forms over � p+q−1[z]
vanishing on P, z P, . . . , zq−1 P, Q, z Q, . . . , zp−1 Q. We can extend the Λi over

�
[z],

considering that these forms vanish over all the ideal generated by P and Q. So they

can be considered as elements of the dual of A =
�

[z]/(P (z), Q(z)). As the linear

forms Λi are independent, they also form a basis of this dual space. The coefficients of

Λi in the dual basis (1∗, . . . , (zd−1)∗) of the monomial basis {1, z, . . . , zd−1} of A are

[Λi(1), Λi(z), . . . , Λi(z
d−1)]. By definition of the transposed operator, for any a ∈ A,

M t(Λi)(a) = Λi(Mz(a)) = Λi(z a). Thus we have the relation:

⎛
⎜⎝

Λ1(z) . . . Λd(z)
...

...

Λ1(z
d) . . . Λd(z

d)

⎞
⎟⎠ = M t

z

⎛
⎜⎝

Λ1(1) . . . Λd(1)
...

...

Λ1(z
d−1) . . . Λd(z

d−1)

⎞
⎟⎠

where Mz is the operator of multiplication by z in
�

[z]/(P (z), Q(z)).
As d = dimker(Syl(x0, y0)) = dimA, and as (1, z, ..., zd−1) form a basis of the

quotient space, the matrix

⎛
⎜⎝

Λ1(1) . . . Λd(1)
...

...

Λ1(z
d−1) . . . Λd(z

d−1)

⎞
⎟⎠

is invertible. We deduce that computing the generalized eigenvalues of the previous

matrices yields the eigenvalues of the operator Mz of multiplication by z in A, that is

the z-coordinate of the points above (x0, y0).
We summarize the algorithm here:

Algorithm 12. — Lifting the projection.

– Compute the Sylvester matrix S = Syl(x0, y0).
– Compute a basis Λ1, . . . , Λd of the kernel of St.

– Extract the submatrix A0 of the coordinates of Λ1, . . . , Λd corresponding to the

evaluations in 1, . . . , zd−1.

– Extract the submatrix A1 of the coordinates of Λ1, . . . , Λd corresponding to the

evaluations in z, . . . , zd.

– Compute the generalized eigenvalues of A1 and A0 and output the corresponding

z-coordinates of the point above (x0, y0).

The last step can be replaced by the computation of det(A1−z A0) and an univari-

ate root finding step.

3.4 Computing Points of C at Critical Values

In this section, we are going to describe how we check the genericity condition and how

we compute a finite set of points, which will allow us to deduce the topology of C.
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First, we check that there is no asymptotic direction parallel to the (y, z) -plane, by

testing if the curve C has a point at infinity in the plane x = 0. This is done by checking

if the system

P⊤
1 (0, y, z) = P⊤

2 (0, y, z) = 0

has a non-trivial solution, where P⊤ is the homogeneous component of highest degree

of a polynomial P . It reduces to computing the projective resultant of these two ho-

mogeneous polynomials. Since the number of asymptotic directions of C is finite, by a

generic linear change of variables, we can avoid the cases where C has an asymptotic

direction parallel to the (y, z) plane.

Next, we compute the x-critical points of C by solving the system (1), using algo-

rithm 7. This computation allows us to check that the system is zero-dimensional and

that the x-coordinate of the real solutions are distinct. If this is not the case, we perform

a generic change of coordinates.

The cases for which we have to do a change of coordinates are those where a com-

ponent of C is in a plane parallel to (y, z) or where a plane parallel to (y, z) is tangent

to C in two distinct points. Such cases are avoided by a generic change of coordinates.

We denote by Σ0 = {σ0
1 , . . . , σ

0
k0
} the x-coordinates of the x-critical points: σ0

1 <
· · · < σ0

k0
.

Next, we compute the singular points of C ′ as (a subset of) the real solutions of the

system

g(x, y) = 0, ∂xg(x, y) = 0, ∂yg(x, y) = 0, (2)

and of C′′, as (a subset of) the real solutions of

h(x, z) = 0, ∂xh(x, z) = 0, ∂zh(x, z) = 0. (3)

We denote by Σ1 = {σ1
1 , . . . , σ

1
k1
} the x-coordinates of these singular points: σ1

1 <
· · · < σ1

k1
.

Let us denote by Σ = Σ0 ∪Σ1 = {σ1, . . . , σl} (with σ1 < · · · < σl) the sequence

of all the x-coordinate computed so far.

An important property of the projected curves C ′ and C′′, that will be used in the

algorithm, is the following:

Proposition 13. The arcs of the curve C ′ (resp. C′′) above ]σi, σi+1[ do not intersect.

Proof. By definition, the arcs of C ′ above ]σi, σi+1[ can only intersect at the x-critical

points of C′. Let σ be the x-coordinate of such a point. According to proposition 11, σ
is either

– the x-coordinate of a x-critical point of C (∈ Σ0),

– or the x-coordinate of a singular point of C ′ (∈ Σ1).

Thus, σ ∈ Σ and σ �∈]σi, σi+1[, which implies that the arcs of C ′ above ]σi, σi+1[ do

not intersect. The same proof applies for C ′′.
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3.5 Connecting the Branches

The approach that we are going to describe now for the branch connection, can be seen

as an extension of the approach of [13], [11] to the three-dimensional case.

The previous step yields a sequence of strictly increasing values

Σ = {σ1, . . . , σl},

such that above ]σi, σi+1[, the branches of C are smooth and the arcs of C ′, C′′ do not

intersect. We will use this property to connect the points of C above the values σi.

Notice that proposition 13 is still true if we refine the sequence σ1, . . . , σl. In particular,

it is valid if we consider the x-coordinates of the singular points of a curve, defined by

a multiple of the equation of C ′ (resp. C′′). It is also valid, if we insert new values in

between these critical values: δ0 < σ1 < µ1 < · · · < σl < δ1, where µi := σi+σi+1

2
for i = 0, . . . , l − 1, and δ0, δ1 are any value such that ]δ0, δ1[ contains Σ. We denote

by

α0 < · · · < αm

this new refined sequence of values and by Li, the set of points on C above αi, for

i = 0, . . . , m. These points are computed, either

– by substituting x = αi and solving the 2-dimensional system P1(αi, y, z) = 0,

P2(αi, y, z) = 0.

– or by computing the points of C ′ above αi and by lifting them to C (algorithm 12).

This construction implies the following lemma, which is used in the next theorem, in

order to describe how the computed points have to be connected:

Lemma 14. Two distinct points of a regular section of C with the same y-coordinate

(resp. z-coordinate) are connected to two points of the next section, with the same y-

coordinate (resp. z-coordinate) or to a critical point.

Proof. We denote by L the regular section at x = α of C and by L′ the next section, at

x = α′. Let p = (α, β, γ) ∈ L, q = (α, β, δ) ∈ L with γ �= δ. They are connected by C
respectively to p′ = (α′, β′, γ′), q′ = (α′, ǫ′, δ′) ∈ L′. Assume that β′ �= ǫ′. Then there

are two arcs of the projection C ′, connecting (α, β) to (α′, β′) and to (α′, ǫ′), above

[α, α′]. This implies that there exists a point r ∈ C ′ with x(r) ∈ [α, α′[ belonging

to 3 branches. Such a point cannot be regular, in contradiction with the fact that C ′ is

smooth above [α, α′[. Exchanging the role of y and z, we get the same property for the

z-coordinates.

Theorem 15. Under the genericity condition of definition 9, the curve C can connect

the points Li to the points Li+1, only in one way.

Proof. By construction, for any pair (αi, αi+1), at least one of the two values is not in

Σ. Let us assume that αi �∈ Σ and αi+1 ∈ Σ (the treatment of the other possibility

being symmetric). To simplify the notations, let L = Li ⊂ C and L′ = Li+1 ⊂ C.

By the genericity assumption, L′ contains at most one x-critical point c of C. Since

αi �∈ Σ, each point in L is regular. Moreover, by construction, the arcs of C above
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]αi, αi+1[ have no x-critical point. Since there is no asymptotic direction of C in the

(y, z)-direction, by the implicit function theorem, a (regular) point p ∈ L is connected

by an arc of C, to a point of L′. Conversely, each regular point of L′ is connected by an

arc of C to a single point of L, which implies that |L| ≥ |L′|.
We are going to prove by induction on |L′| that there is a unique way to connect the

points of L to the points of L′, if the arcs of the (x, y) and (x, z) projections of C do not

intersect above ]αi, αi+1[.
If |L′| = 1, the curve connects any point of L to the unique element of L′.
Let us assume that the induction hypothesis is true for the cases where |L′| <

|Li+1|. Let q′ be the greatest point of L′, for the lexicographic order with x > y > z
and let V ′ be the set of points of L′ which y-coordinate is y(q′). Let s be the cardinal

of V ′.
Assume first that c �∈ V ′. This implies that the points of V ′ are regular. We denote

by V the set of s greatest points of L for the lexicographic order with x > y > z.

We denote by p the point of V with the greatest y-coordinate among those with

greatest z-coordinate. We are going to proof that C has to connect p ∈ L and q ′ ∈ L′.
Assume the converse, so that we have p ∈ L connected to p′ ∈ L′ and q ∈ L

connected to q′ ∈ L′, with p �= q, p′ �= q′. We consider the following possible cases:

1. q ∈ V, p′ ∈ V ′. Then we have z(p′) < z(q′) (since q′ is the greatest point of V ′

for the lexicographic ordering). From lemma 14, we deduce that z(p) �= z(q) and

as p has the greatest z-coordinate of V , we have z(q) < z(p). This implies that

the projection on the (x, z)-plane of the arcs of C connecting p to p′ and q to q′

intersect. It contradicts the hypothesis that C ′′ is smooth above ]αi, αi+1[.
2. q �∈ V, p′ ∈ V ′. Since every (regular) point of V ′ is connected to a single point

in L and |V | = |V ′|, there exists a point r of V connected to a point r′ �∈ V ′. By

definition of V ′, we have y(r′) < y(q′), thus by lemma 14, we have y(r) �= y(q)
and as the y-coordinate of the points not in V are smaller that those in V , we have

y(r) > y(q). This implies that the projection on the (x, y)-plane of the arcs of C
connecting r to r′ and q to q′ intersect. This contradicts the hypothesis that C ′ is

smooth above ]αi, αi+1[.
3. q ∈ V, p′ �∈ V ′. Then there exists a point r′ of V ′ connected to a point r �∈ V . By

definition of V ′, we have y(r′) > y(p′), thus by lemma 14 we deduce y(r) �= y(p).
As r �∈ V and as the y-coordinate of the points not in V are smaller that those in

V , we have y(r) < y(p). It leads to another contradiction, since C ′ is smooth above

]αi, αi+1[.
4. q �∈ V, p′ �∈ V ′. As p′ �∈ V ′, we have y(p′) < y(q′), thus by lemma 14, y(p) �=

y(q). As q �∈ V and as the y-coordinate of the points not in V are smaller that those

in V , we have y(q) < y(p).It leads to another contradiction, since C ′ is smooth

above ]αi, αi+1[.

In all these cases, we obtain a contradiction. Thus p and q′ have to be connected by an

arc of C, above [αi, αi+1]. Removing these points respectively from L and L′, we apply

the induction hypothesis to proof the result.

Suppose now that c is in V ′ but not in the set W ′ of points with the same y-

coordinate as the lowest point of L′. We apply the same proof, replacing greatest by

smallest in the previous constructions.
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The last case, which remains to be treated, is the case where L′ = V ′ = W ′ is the

set of points with the same y-coordinate as the x-critical point c. We define p as the

point of L with greatest y-coordinate among those with greatest z-coordinate and q ′ as

the point with greatest z-coordinate.

If q′ �= c, then p has to be connected to q′. Otherwise p ∈ L is connected to p′ ∈ L′

and q ∈ L connected to q′ ∈ L′, with p �= q, p′ �= q′. Then we have z(p′) < z(q′). By

lemma 14 we deduce z(p) �= z(q) and as p has the greatest z-coordinate: z(p) > z(q),
which contradicts the fact that C ′′ is smooth above ]αi, αi+1[. Thus the curve C connects

p to q′. Removing these points respectively from L and L′, we apply the induction

hypothesis to conclude.

If q′ = c and the point with the smallest z-coordinate in L′ is not c, we apply the

same construction, replacing greatest by smallest.

The remaining case is when |L′| = 1, which has already been treated.

To summarize, the connection of the branches from one plane section of C to the

next one, is performed as follows:

Algorithm 16. — Connecting the branches.

If there is no x-critical point in Li and possibly a x-critical point c of C in Li+1, do the

following:

1. Decompose Li+1 into the subsets V ′
1 , . . . , V ′

k of the points with the same y-coordinate,

listed by increasing y. Let sj = |V ′
j |.

2. Compute the index j0 such that c ∈ V ′
j0

. Decompose Li into the subsets V1, . . . , Vk

in the following way:

– For j > j0, Vj is the set of sj greatest points for the lexicographic order with

x > y > z, among Li − ∪l>jVl.

– For j < j0, Vj is the set of sj smallest points for the lexicographic order,

among Li − ∪l<jVl.

– Vj0 is the remaining set of points Li − ∪l �=j0Vl.

3. For j �= j0 connect the points of Vj to the points of V ′
j , according to there z-

coordinates, by segments.

4. For j = j0, let A′
j0

(resp. B′
j0

) be the set of regular points of V ′
j0

, with z-coordinate

< z(c) (resp. > z(c)).

– Connect the |A′
j0
| points of smallest z-coordinates in Vj0 to the points in A′

j0
,

according to their z-coordinate, by segments.

– Connect the |B′
j0
| points of greatest z-coordinates in Vj0 to the points in B′

j0
,

according to their z-coordinate, by segments.

– Connect the remaining points in Vj0 to c, by segments.

If there is a x-critical point of C in Li, exchange the role of Li and Li+1 in the previous

steps.

Proposition 17. Assume that we are in a generic position. Then the topology of the

curve above the segment [αi, αi+1] is the same as the set of segments produced by the

algorithm 16.
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Proof. Since we are in a generic position, by theorem 15, the algorithm 16 produces

the only way the arcs of the curve C above [αi, αi+1] connect the points of Li to the

points of Li+1. Since the algorithm only involves the coordinates of the end points, the

projection of these segments on the (x, y) and (x, z) planes either coincide or do not

intersect above ]αi, αi+1[. Consequently, the curve C above [αi, αi+1] is homeomorph

to the set of segments joining the corresponding end points.

3.6 The Algorithm

We summarize the complete algorithm below:

Algorithm 18. — Representation of the curve C defined by P1(x, y, z) = P2(x, y, z) =
0.

Input: polynomials P1(x, y, z), P2(x, y, z).

– Compute the x-critical points of C and their x-coordinates Σ := {σ0
1 , . . . , σ0

k} with

σ0
1 < · · · < σ0

k.

– Check the generic position; If the curve is not in a generic position, apply a random

change of variables and restart from the first step.

– Compute the square-free part g(x, y) of Resz(P1, P2).
– Compute the square-free part h(x, z) of Resy(P1, P2).
– Compute the singular points of the curves g(x, y) = 0 and h(x, z) = 0 and insert

their x-coordinate in Σ.

– Compute the µi, δ0, δ1 and the ordered sequence α1 < · · · < αl. Above each αi

for i = 1, . . . , l, compute the set of points Li on the curve C.

– For each i = 0, . . . , l − 1, connect the points Li to those of Li+1 by algorithm 16.

Output: the graph of 3D points connected by segments, with the same topology as the

curve C.

Remark 19. This algorithm can be easily adapted to the computation of the topology of

C in a box (resp. bounded domain), by considering the points on the border of the box

(resp. domain) as x-critical points.

Remark 20. By a generic change of variables, the set of x-coordinates of the x-critical

points of C′ will contain those of C and the resolution of the system (1) can be replaced

by the computation of the x-critical points of C ′ and by a lifting operation on C. This

allows us to treat unreduced curves, such that I(C) �= (P1, P2), by using only the

squarefree part of G(x, y) and H(x, z). However the verification, a posteriori, of the

correctness of the result is more delicate.

4 Implementation and Experiments

The previous algorithm has been implemented in the C++ library called AXEL
4 (Al-

gebraic Software-Components for gEometric modeLing), where classes for implicit

curves and surfaces are available:

4
http://www-sop.inria.fr/galaad/logiciels/axel/
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namespace implicit

{

template<class C, class R> curve2d<C,R=MPol<C> >;

template<class C, class R>

curve3d<C,R=shared_object<std::vector<MPol<C> > > >;

template<class C, class R> surface<C,R=MPol<C> >;

}

where C is the type of coefficient and R is the internal representation used to store

the object. In the case of a planar curve curve2d, the default value is a bivariate

polynomial MPol<C> from the SYNAPS
5 library. For a 3D curve, the default value is a

vector of multivariate polynomials. For a 3D surface, the default value is a multivariate

polynomial MPol<C> from the SYNAPS library.

Since the algorithm depends heavily on the algebraic solver used to recover the

critical points of C, we parameterize the implementation as

template <class M>

class Projection

{

...

template <class G, class Surface>

void topology(G & graph, const Surface & s0, const

Surface & s1);

template <class G, class Curve3d>

void topology(G & graph, const Curve3d & c0);

...

}

where the parameter M is the type of method used to solve the 0-dimensional systems.

The class Projection represents the type of method that we used, to compute the

topology of the curve.

Our tests are based on solvers provided by the SYNAPS library, such as Newmac

(see [20]). Here is an illustration of the way it can be used:

...

typedef double coef;

MPol<coef> P=..., Q= ...;

vector<MPol<coef> > v; v.push_back(P); v.push_back(Q);

implicit::curve3d c(v);

affine::point_graph<coef> g;

Projection<Newmac<coef> > Method;

Method.topology(g,c);

...

5
http://www-sop.inria.fr/galaad/logiciels/synaps/
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Other examples which are currently under test are:

Projection<Newmac<QQ> >().topology(g,c);

Projection<Sylvester<double> >().topology(g,c);

Projection<Subdivision<double> >().topology(g,c);

Notice that the solutions given from equations (1) are computed numerically, and we

have to sort the lists of critical values to check the generic position of the curve and the

points in the lists Li. For this purpose, we introduce two thresholds ǫx and ǫy which

are the precision on the x-coordinate and the y-coordinate. We have ǫy ≫ ǫx because

the computation of the y-coordinate has already noisy input (the x-coordinate with

a precision ǫx). Concretely, this means that given a curve C we are able to compute

correctly the topology, if two critical points are separated at least by 2ǫx on the x-

coordinate, and two points on C with the same x-coordinate are separated by ǫy at least.

In the cases where we are not able to distinguish within the precision ǫx, ǫy , two

strategies can be applied. Either we use an exact method for representing the solution

of the corresponding polynomial system, assuming exact input. Or we consider input

polynomial with approximate coefficients and we identify the x-points which are within

the prescribed precision. This is what has been experimented.

We run a non-optimized implementation of the algorithm, on cases case where the

resultant does not define twice or more the projected curves. The solver that we use is

the one of Ph. Trébuchet [20], giving the biggest precision for the smallest ǫx, ǫy, ǫz

(about 10−6), compared with the resultant solvers. Further experiments are required to

analyse the behavior of such solvers and to compare them correctly, in the context of

the topology computation problem. The experimentations have been performed on a

Pentium 2Ghz workstation.

4.1 Examples of Planar Curves

The algorithm that we describe, can be easily specialized to the case of planar curves.

This is illustrated by fig. 1. The topology of the curve is represented by a graph of 2D

points. The time needed to compute this graph of points is given in seconds.

4.2 Examples of 3D Curves

Figure 2 presents some experiments with 3D curves defined by two polynomials, show-

ing the set of segments describing the topology of the curve and the time needed to

compute them (in seconds).



42 G. Gatellier et al.

(a) (b) (c)

a) P = −y8 + x7 − 7x6y +21x5y2 − 35x4y3 +35x3y4 − 21x2y5 +7xy6 − y7 +8y6 − 7x5 +35x4y −
70x3y2 + 70x2y3 − 35xy4 + 7y5 − 20y4 + 14x3 − 42x2y + 42xy2 − 14y3 + 16y2 − 7x + 7y − 2

time: 0.77s

b) P = 35.9x6 + 2589.4x4y2 + 46728x2y4 + 1296y6 + 217x5 + 15588x3y2 + 2.7994e + 05xy4 −
2303.9x4 − 72774x2y2 + 3.7066e + 05y4 − 15583x3 − 5.5969e + 05xy2 + 26044x2 − 7.4529e +

05y2 + 2.7976e + 05x + 3.7333e + 05

time: 0.16s

c) P = −8y7−7x6 +42x5y−105x4y2 +140x3y3−105x2y4 +42xy5−7y6 +48y5 +35x4−140x3y+

210x2y2 − 140xy3 + 35y4 − 80y3 − 42x2 + 84xy − 42y2 + 32y + 7

time: 0.28s

Fig. 1. Examples of planar curves

(a) (b) (c) (d)

a) P = 0.85934x2 + 0.259387xy + 0.880419y2 + 0.524937xz − 0.484008yz + 0.510242z2 − 1

Q = 0.95309x2 + 0.303149xy + 0.510242y2 − 0.200075xz + 0.64647yz + 0.786669z2 − 1

time: 0.17s

b) P = −0.125x2 −0.0583493xy +0.493569y2 +0.966682xz−1.5073yz−0.368569z2 −0.865971x−
0.433067y − 0.250095z

Q = x2 + y2 + z2 − 2

time: 0.15s

c) P = 2x2 + y2 + z2 − 4

Q = x2 + 2xy + y2 − 2yz − 2z2 + 2zx

time: 0.13s

d) P = x4 + y4 + 2x2y2 + 2x2 + 2y2 − x − y − z

Q = x4 + 2x2y2 + y4 + 3x2y − y3 + z2

time: 1.21s

Fig. 2. Examples of space curves
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Abstract. This paper deals with some mathematical objects that the authors have

named ǫ–points (see [8]), and that appear in the problem of parametrizing approx-

imately algebraic curves. This type of points are used as based points of the linear

systems of curves that appear in the parametrization algorithms, and they play an

important role in the error analysis. In this paper, we focus on the general study

of distance properties of ǫ–points on algebraic plane curves, and we show that

if P ⋆ is an ǫ–point on a plane curve C of proper degree d, then there exists an

exact point P on C such that its distance to P ⋆ is at most
√

ǫ if P ⋆ is simple,

and O(
√

ǫ
1/2d

) if P ⋆ is of multiplicity r > 1. Furthermore, we see how these

results particularize to the univariate case giving bounds that fit properly with the

classical results in numerical analysis.

1 Introduction

An important step, and usually a hard step to deal with, in the development and anal-

ysis of approximate algorithms consists in estimating how “close” the input and the

output of the algorithm are. If one is working with algebraic objects, for instance with

polynomial gcd’s (see [3]), this question may be approached by measuring relative er-

rors of polynomials. However, when one is working with geometric entities, like for

instance algebraic curves or algebraic surfaces, this approach might not be sufficient. It

may happen that, even though the implicit equations of the input and output are close

like polynomials, the algebraic varieties that they define (i.e. their set of zeroes) are far

when seen as point of the usual Euclidean space. For example, we consider a tolerance

ǫ = 0.005, and three circles C1, C2 and C3 of equations

f1(x, y) = 1 + y + 0.008x2 + 0.007y2,

f2(x, y) = 1.004994 + y + 0.012994x2 + 0.011994y2,

f3(x, y) = 1.00501 + y + 0.008x2 + 0.007y2.

⋆ This work is partially supported by BMF2002-04402-C02-01 (Curvas y Superficies: Fun-

damentos, Algoritmos y Aplicaciones), Acción Integrada Hispano-Austriaca HU2001-0002

(Computer Aided Geometric Design by Symbolic-Numerical Methods), and GAIA II (IST-

2002-35512).
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The relative error of the polynomials are

‖f1 − f2‖
‖f2‖

= 0.004969183896 < ǫ,

‖f1 − f3‖
‖f3‖

= 0.0049850250 < ǫ.

However, when plotting the circles (see Fig. 1) one realizes that C1, C2 are not close,

but C1, C3 are close.
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Fig. 1. C1 (big circle), C2 (small circle), C3 (circle in dots)

This phenomenon can be controlled, for instance, by requiring that each geometric

entity lies in the offset region of the other at some small distance (see [8, 9] for further

details). In the previous example, one clearly sees that even though the relative errors

are smaller than the tolerance, the circles C1, C2 do not satisfy the offset property while

C1, C3 do.

A powerful technique to handle this difficulty, i.e. guaranteeing that an algebraic

curve (or an algebraic surface) is within the offset region of another, is the use of ǫ–

points (see Definition 1), and more precisely, distance properties of this type of points.

For instance, applying Corollary 17, Corollary 20, and Corollary 21, in this paper, one
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may directly deduce the offset property by means of the existence of ǫ–points.

The notion of ǫ–point of an algebraic variety (in practical applications, a curve or

a surface over the field of the real numbers) is quite intuitive. It essentially consists in

a point such that when substituted in the implicit equations of the variety gives values

of small modulus. Observe that the notion of ǫ-point generalizes the concept of “exact”

point, since every exact point on a variety is an ǫ–point, for any ǫ > 0. Note that, in the

previous example, almost all exact points on C1 are ǫ–points on C3, but this is not true

for C1 and C2

Theoretical properties and algorithmic questions of this type of mathematical ob-

jects have been studied by several authors for the univariate case. For instance, bound

analysis of roots of univariate polynomials can be found in [2, 6, 7], formulae for sepa-

rating small roots of univariate polynomials are given in [10], the problem of construct-

ing univariate polynomials with exact roots at some specific ǫ–roots (see Definition 6

for the notion of ǫ–root) is analyzed in [5], condition numbers of ǫ–roots are studied in

[11], etc.

Nevertheless, the corresponding problems for the bivariate case have not been stud-

ied so extensively, and only some contributions can be found in the literature (see e.g.

[4, 8, 9]). In this paper, we focus on the problem of analyzing distance properties of ǫ–

points for the bivariate case; i.e. ǫ–points of algebraic curves. More precisely, we show

that if P ⋆ is an ǫ–point on a plane curve C of proper degree d, then there exists an exact

point P on C such that its distance to P ⋆ is at most
√

ǫ if P ⋆ is simple, and O(
√

ǫ
1/2d

)
if P ⋆ is of multiplicity r > 1. As a consequence, we give theoretical results to guaran-

tee that an algebraic curve lies in the offset region of another at some small distance.

Furthermore, we see how these results particularize to the univariate case giving bounds

that fit properly with the classical results in numerical analysis.

This paper is structured as follows. In sect. 2 we introduce the basic notions and

we state some preliminary properties of ǫ–points and ǫ–roots. Section 3 is devoted to

the analysis of distance properties of ǫ–points for the univariate case; i.e. for ǫ–roots.

Section 4 focusses on the corresponding analysis of distance properties for the bivariate

case.

2 Basic Notions and Preliminary Results

In this section, we recall the basic notions on ǫ–points, we introduce the concept of

proper degree of an algebraic plane curve, and we establish some basic properties of

these type of objects. In addition, we see how these definitions may be specialized to

the case of univariate polynomials.

Throughout this paper, we fix a tolerance 0 < ǫ < 1 and we will use the poly-

nomial ∞–norm; i.e if p(x, y) =
∑

i,j∈I ci,jx
iyj ∈ C[x, y] then ‖p(x, y)‖ is defined

as max{|ci,j | / i, j ∈ I}, where for c ∈ C, |c| denotes its modulus. In particular if



48 S. Pérez-Dı́az et al.

p(x, y) is a constant coefficient ‖p(x, y)‖ will denote its modulus. Similarly one in-

troduces ‖p(x)‖ ∈ C[x]. We also will use the Euclidean distance ‖ · ‖2 in the usual

unitary Cn. To be more precisely, if p = (a1, . . . , an) ∈ Cn then ‖p‖2 is defined as√
|a1|2 + · · ·+ |an|2.

We start with the notion of ǫ–point on an algebraic affine plane curve. As we have

mentioned in the introduction, the notion of ǫ–point is quite intuitive and, for the curve

case, it essentially consists in points such that when substituted in the implicit equa-

tion of the curve one gets values of small modulus. Nevertheless, for our purposes and

taking into account that we will be working in the frame of algebraic geometry, we are

also interested in introducing the additional notion of ǫ–singularity. This is also quite

intuitive, and it basically consists in asking the ǫ–point to be also an ǫ–point of some

partial derivatives. More precisely, one has the following definition.

Definition 1. We say that P ⋆ = (a⋆, b⋆) ∈ C2 is an ǫ–(affine) point of an algebraic

plane curve C defined over C by a polynomial f(x, y) ∈ C[x, y] of degree d, if there

exists r ∈ IN, 1 ≤ r ≤ d, such that

1. for 0 ≤ i + j ≤ r − 1, it holds that

∣∣∣∣
∂i+jf

∂ix∂jy
(P ⋆)

∣∣∣∣ < ǫ · ‖f(x, y)‖,

2. there exist i0, j0 ∈ IN with i0 + j0 = r such that

∣∣∣∣
∂rf

∂i0x∂j0y
(P ⋆)

∣∣∣∣ ≥ ǫ · ‖f(x, y)‖.

If r = 1 we say that P ⋆ is an ǫ–(affine) simple point. Otherwise, we say that P ⋆ is an

ǫ–(affine) singularity of multiplicity r.

Observe that the bounds in the conditions (1) and (2), in Definition 1, involve the

tolerance and the given polynomial norm. This fact guarantees that the notion of ǫ–

point of an algebraic curve C does not depend on the choice of the implicit equation.

In addition, note that condition (2) in Definition 1 requires that some partial derivative

specialized at the ǫ–point is, in modulus, greater than the tolerance. This fact guarantees

the exact value of the multiplicity of the ǫ–singularity. Nevertheless, for the study of

some of the distance properties developed in the subsequent sections, we need to be

more restricted on this condition, and we impose in (2) a bigger bound that leads to the

notion of ǫ–strong point. More precisely, we consider the following definition.

Definition 2. We say that P ⋆ = (a⋆, b⋆) ∈ C2 is an ǫ–(affine) strong point of an

algebraic plane curve C defined over C by a polynomial f(x, y) ∈ C[x, y] of degree d,

if there exists r ∈ IN, 1 ≤ r ≤ d, such that

1. for 0 ≤ i + j ≤ r − 1, it holds that

∣∣∣∣
∂i+jf

∂ix∂jy
(P ⋆)

∣∣∣∣ < ǫ · ‖f(x, y)‖,
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2. there exist i0, j0 ∈ IN with i0 + j0 = r such that

∣∣∣∣
∂rf

∂i0x∂j0y
(P ⋆)

∣∣∣∣ ≥
√

ǫ · ‖f(x, y)‖.

If r = 1 we say that P ⋆ is an ǫ–(affine) strong simple point. Otherwise, we say that P ⋆

is an ǫ–(affine) strong singularity of multiplicity r.

Note that from the above definition it follows that any ǫ–strong singularity of mul-

tiplicity r is indeed an ǫ–singularity of multiplicity r.

In the analysis of distance properties of ǫ–points of positive multiplicity, i.e ǫ–

singularities, we will have to use the degree of the algebraic curve. However, since we

are working under a fixed tolerance, it may happen that the leading terms of the defin-

ing polynomial are ”superfluos”, and therefore the degree of the curve is not properly

counted. In order to control this phenomenon, we give the following definition where

the notion of proper degree is introduced.

Definition 3. We say that a polynomial f(x, y) ∈ C[x, y] has proper degree d if there

exist ip, jp ∈ IN, with ip + jp = d, such that

∣∣∣ ∂df
∂ip x∂jp y

∣∣∣
ip!jp!

≥ √ǫ · ‖f(x, y)‖.

We say that a plane algebraic curve has proper degree d if its defining polynomial has

proper degree d.

Note that the defining polynomial of a plane algebraic curve is unique up to multi-

plication by elements of the ground field, in our case C. However, in Definition 3 the

norm of f(x, y) appears and therefore the notion of proper degree of a plane curve is

well defined.

In addition, we observe that the definition of proper degree of a polynomial im-

plies that there exists a coefficient of the homogeneous form of maximum degree of the

polynomial f(x, y), such that its modulus is bigger than
√

ǫ · ‖f‖. Therefore, the notion

does not depend on whether the polynomial is represented around any point of C2 as a

Taylor expansion.

In the following, we state some properties on ǫ–singularities of curves with proper de-

gree.

Proposition 4. Let f(x, y) ∈ C[x, y] be a polynomial of proper degree d > 0, and let

P ⋆ ∈ C2 be an ǫ–singularity of multiplicity r of f(x, y). Then, there exists s ∈ ZZ with

r ≤ s ≤ d, such that P ⋆ is an
√

ǫ–singularity of multiplicity s of f(x, y)
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Proof. Note that since P ⋆ is an ǫ–singularity of multiplicity r of f(x, y), then for 0 ≤
i + j ≤ r − 1, it holds that

∣∣∣∣
∂i+jf

∂ix∂jy
(P ⋆)

∣∣∣∣ < ǫ · ‖f‖ ≤ √ǫ · ‖f‖.

Now, if there exist i0, j0 ∈ IN with i0 + j0 = r satisfying that
∣∣∣∣

∂rf

∂i0x∂j0y
(P ⋆)

∣∣∣∣ ≥
√

ǫ · ‖f‖,

then s = r, and the statement follows. Otherwise, one reasons inductively: since f(x, y)
has proper degree d > 0, then there exist ip, jp ∈ IN, with ip + jp = d, such that

∣∣∣ ∂df
∂ipx∂jpy

∣∣∣
ip!jp!

≥ √ǫ · ‖f‖,

which implies that

∣∣∣∣
∂df

∂ipx∂jpy

∣∣∣∣ ≥
√

ǫ · ip!jp! · ‖f‖ ≥
√

ǫ · ‖f‖,

and therefore the result follows. ⊓⊔
Proposition 5. Let f(x, y) ∈ C[x, y] be a polynomial of proper degree d > 0, and let

P ⋆ ∈ C2 be an ǫ–singularity of multiplicity r of f(x, y). Then, there exists s ∈ ZZ with

r ≤ s ≤ d, and there exist non-negative integers i0, j0 such that s = i0 + j0, and
∣∣∣∣

∂sf

∂i0x∂j0y
(P ⋆)

∣∣∣∣ ≥
√

ǫ · i0!j0! · ‖f(x, y)‖.

Proof. Let us assume that for every i, j ∈ IN with 0 ≤ i + j ≤ d, it holds that
∣∣∣∣

∂i+jf

∂ix∂jy
(P ⋆)

∣∣∣∣ <
√

ǫ · i!j! · ‖f‖.

Then, in particular for ip, jp ∈ IN, with ip + jp = d, we have that
∣∣∣ ∂df
∂ipx∂jp y

∣∣∣
ip!jp!

≥ √ǫ · ‖f‖,

which is impossible because we are assuming that f(x, y) has a proper degree d. Fur-

thermore, note that since P ⋆ is an ǫ–singularity of multiplicity r, then for 0 ≤ i + j ≤
r − 1, it holds that

∣∣∣∣
∂i+jf

∂ix∂jy
(P ⋆)

∣∣∣∣ < ǫ · ‖f‖ ≤ √ǫ · i!j! · ‖f‖.

Thus, we deduce that r ≤ s ≤ d. ⊓⊔
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These notions can be straightforward specialized to the case of univariate polyno-

mials in terms of roots. Since we will consider a different treatment to the univariate

case and to the bivariate case, we give the formal definitions for univariate polynomials,

More precisely, one has the following concepts.

Definition 6. We say that a⋆ ∈ C is an ǫ–root of multiplicity r of a polynomial h(x) ∈
C[x], if for 0 ≤ i ≤ r − 1, it holds that

∣∣∣∣
∂ih

∂ix
(a⋆)

∣∣∣∣ < ǫ · ‖h(x)‖,

and ∣∣∣∣
∂rh

∂rx
(a⋆)

∣∣∣∣ ≥ ǫ · ‖h(x)‖.

If r = 1 we say that a⋆ is an ǫ–simple root of h(x).

Definition 7. We say that a⋆ ∈ C is an ǫ–strong root of multiplicity r of a polynomial

h(x) ∈ C[x], if for 0 ≤ i ≤ r − 1, it holds that
∣∣∣∣
∂ih

∂ix
(a⋆)

∣∣∣∣ < ǫ · ‖h(x)‖,

and ∣∣∣∣
∂rh

∂rx
(a⋆)

∣∣∣∣ ≥
√

ǫ · ‖h(x)‖.

If r = 1 we say that a⋆ is an ǫ–simple strong root of h(x).

Note that, as in the bivariate case, the above definitions imply that any ǫ–strong root

of multiplicity r is an ǫ–root of multiplicity r. In addition, the notion of proper degree

of a univariate polynomial can be defined as follows.

Definition 8. We say that a polynomial h(x) = adx
d + · · ·+a0 ∈ C[x], where ad �= 0,

has proper degree d if

|ad| ≥
√

ǫ · ‖h(x)‖.
Finally, in Propositions 9 and 10, we see how Propositions 4 and 5 can be stated for

the univariate case. Their proofs are very similar and we omit them.

Proposition 9. Let h(x) ∈ C[x] be a polynomial of proper degree d > 0, and let

a⋆ ∈ C be an ǫ–root of multiplicity r of h(x). Then, there exists s ∈ ZZ with r ≤ s ≤ d
such that a⋆ is an

√
ǫ–root of multiplicity s of h(x). ⊓⊔

Proposition 10. Let h(x) ∈ C[x] be a polynomial of proper degree d > 0, and let

a⋆ ∈ C be an ǫ–root of multiplicity r of h(x). Then, there exists s ∈ ZZ with r ≤ s ≤ d
such that ∣∣∣∣

∂sh

∂sx
(a⋆)

∣∣∣∣ ≥
√

ǫ · s! · ‖h(x)‖.

⊓⊔
To finish this section, we observe that ǫ–points on algebraic curves can be computed;

see for instance sect. 2 in [8]. A similar reasoning can be done for ǫ–roots.
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3 ǫ–Roots

In this section, we study distance properties of ǫ–roots of univariate polynomials over

the complex numbers. We start recalling the following well known results on the sensi-

tivity of roots of perturbed polynomials.

Lemma 11. Let h⋆(x), p(x), h(x) ∈ C[x], such that

h(x) = h⋆(x) + ǫ · p(x),

and h(x) is not a constant. Then, if a⋆ ∈ C is a root of multiplicity r of h⋆(x), it holds

that there exists a root a ∈ C of h(x) such that

|a− a⋆| ≤
(

r! · ǫ · |p(a⋆)|
|∂rh⋆

∂rx (a⋆)|

)1/r

.

Proof. See sect. 5.8, pp. 303 in [2]. ⊓⊔
Lemma 11 focusses on distance properties of roots of a polynomial and its per-

turbation. Now, we see how the same analysis can be done for the case of ǫ–roots of

a polynomial. We first study how close strong ǫ–roots and exact roots of a univariate

polynomial are.

Theorem 12. Let h(x) ∈ C[x], and let a⋆ be an ǫ–strong root of multiplicity r of h(x).
Then, there exists a root a ∈ C of h(x) such that

|a− a⋆| ≤
(
r! · √ǫ

) 1
r .

Proof. Let d be the exact degree of h(x). We consider the polynomial

g(x) = h(x + a⋆) =

d∑

i=0

∂ih
∂ix (a⋆)

i!
xi =

r−1∑

i=0

∂ih
∂ix (a⋆)

i!
xi +

d∑

i=r

∂ih
∂ix (a⋆)

i!
xi.

Let

g⋆(x) =

d∑

i=r

∂ih
∂ix (a⋆)

i!
xi,

and

q(x) =

r−1∑

i=0

∂ih
∂ix (a⋆)

i!
xi.

Note that since a⋆ ∈ C is an ǫ–strong root of multiplicity r of h(x) we have that

∣∣∣∣
∂ih

∂ix
(a⋆)

∣∣∣∣ < ǫ · ‖h‖, for i = 0, . . . , r − 1,

and then we may write q(x) = ǫ · p(x), where

p(x) =
r−1∑

i=0

bix
i,
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and

|bi| =

∣∣∣∂ih
∂ix (a⋆)

∣∣∣
i! · ǫ < ‖h‖, for i = 0, . . . , r − 1.

Thus, we get that

g(x) = g⋆(x) + ǫ · p(x).

In these conditions, since

g⋆(x) =
d∑

i=r

∂ih
∂ix (a⋆)

i!
xi,

we have that ∂ig⋆

∂ix (0) = 0 for i = 0, . . . , r−1, and
∣∣∣∂rg⋆

∂rx (0)
∣∣∣ =

∣∣∂rh
∂rx (a⋆)

∣∣ ≥ √ǫ·‖h‖ >

0. Thus, we deduce that 0 is an exact root of multiplicity r of the polynomial g⋆(x).
Now, by Lemma 11, we deduce that there exists a root x0 ∈ C of g(x) such that

|x0| ≤
(

r! · ǫ · |p(0)|
|∂rg⋆

∂rx (0)|

)1/r

.

Now, observe that since a⋆ ∈ C is an ǫ–strong root of multiplicity r of h(x) we have

that

|p(0)| = |b0| =
|h(a⋆)|

ǫ
<

ǫ · ‖h‖
ǫ

= ‖h‖,
and ∣∣∣∣

∂rg⋆

∂rx
(0)

∣∣∣∣ =

∣∣∣∣
∂rh

∂rx
(a⋆)

∣∣∣∣ ≥
√

ǫ · ‖h‖.

Thus,

|x0| ≤
(

r! · ǫ · ‖h‖√
ǫ · ‖h‖

)1/r

= (r! · √ǫ)1/r.

Finally, since x0 ∈ C is a root of g(x), then a = x0 + a⋆ ∈ C is a root of h(x), and

|a− a⋆| = |x0| ≤ (r! · √ǫ)1/r.

⊓⊔
From Theorem 12 one has the following corollary.

Corollary 13. Let h(x) ∈ C[x], and let a⋆ be an ǫ–strong simple root of h(x). Then,

there exists a root a ∈ C of h(x) such that

|a− a⋆| ≤ √ǫ.

⊓⊔
As one may see there is a non-surprising different behavior between simple and singu-

lar ǫ–point. The bound for the simple case is quite sharp. However, the bound for the

singular case introduces the factorial of the multiplicity. These bounds are given for the

case of strong ǫ–roots. In the next theorem we see that, if one changes the hypothesis of

being strong by asking proper degree, one gets a new bound where the factorial is not

involved.
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Theorem 14. Let h(x) ∈ C[x] be a polynomial of proper degree d > 0, and let a⋆ be

an ǫ–root of multiplicity r of h(x). Then, there exists s ∈ ZZ such that r ≤ s ≤ d, and

there exist a root a ∈ C of h(x) such that:

|a− a⋆| ≤ (
√

ǫ)
1
s .

Proof. First, since a⋆ is an ǫ–root of multiplicity r of h(x), and since h(x) has proper

degree d > 0, by Proposition 10, one deduces that there exist s ∈ ZZ with r ≤ s ≤ d,

such that ∣∣∣∣
∂sh

∂sx
(a⋆)

∣∣∣∣ ≥
√

ǫ · s! · ‖h‖.

Let s be the minimal integer satisfying this property.

We consider the polynomial

g(x) = h(x + a⋆) =
d∑

i=0

∂ih
∂ix (a⋆)

i!
xi =

s−1∑

i=0

∂ih
∂ix (a⋆)

i!
xi +

d∑

i=s

∂ih
∂ix (a⋆)

i!
xi.

Let

g⋆(x) =

d∑

i=s

∂ih
∂ix (a⋆)

i!
xi,

and

q(x) =

s−1∑

i=0

∂ih
∂ix (a⋆)

i!
xi.

Note that 0 is an exact root of multiplicity s of the polynomial g⋆(x) since

∂ig⋆

∂ix
(0) = 0, for i = 1, . . . , s− 1,

and ∣∣∣∣
∂sg⋆

∂sx
(0)

∣∣∣∣ =

∣∣∣∣
∂sh

∂sx
(a⋆)

∣∣∣∣ ≥
√

ǫ · s! · ‖h‖ > 0.

Furthermore, since s the minimal integer satisfying that

∣∣∣∣
∂sh

∂sx
(a⋆)

∣∣∣∣ ≥
√

ǫ · s! · ‖h‖,

one has that ∣∣∣∣
∂ih

∂ix
(a⋆)

∣∣∣∣ <
√

ǫ · i! · ‖h‖, for i = 0, . . . , s− 1.

In this conditions, since

q(x) =
s−1∑

i=0

∂ih
∂ix (a⋆)

i!
xi,
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we may write q(x) =
√

ǫ · p(x), where

p(x) =

s−1∑

i=0

bix
i,

and

|bi| =

∣∣∣∂ih
∂ix (a⋆)

∣∣∣
i! · √ǫ

< ‖h‖, for i = 0, . . . , s− 1.

In particular observe that

|p(0)| = |b0| =
|h(a⋆)|√

ǫ
<

ǫ · ‖h‖√
ǫ

=
√

ǫ · ‖h‖.

Now, by Lemma 11 we deduce that there exists a root x0 ∈ C of g(x) such that

|x0| ≤
(

s! · √ǫ · |p(0)|
|∂sg⋆

∂sx (0)|

) 1
s

=

(
s! · √ǫ · |p(0)|
|∂sh
∂sx (a⋆)|

) 1
s

≤
(

s! · ǫ · ‖h‖√
ǫ · s! · ‖h‖

) 1
s

=
√

ǫ
1
s .

Finally, since x0 ∈ C is a root of g(x), then a = x0 + a⋆ ∈ C is a root of h(x), and

|a− a⋆| = |x0| ≤
√

ǫ
1
s ≤ √ǫ

1
d .

⊓⊔
From Theorem 14, one has the following corollary.

Corollary 15. Let h(x) ∈ C[x] be a polynomial of proper degree d > 0, and let a⋆ be

an ǫ–root of multiplicity r of h(x). Then, there exists a root a ∈ C of h(x) such that:

|a− a⋆| ≤ (
√

ǫ)
1
d .

⊓⊔

4 ǫ–Points on Curves

In this section, we focus on the analysis of the bivariate case, i.e we study distance prop-

erties of ǫ–points, and we see how the results in the previous section can be generalized.

From these distance properties we deduce results on the offset behavior of the curve.

For this purpose, first we give a particular treatment to the case of ǫ–simple points,

where we impose the condition of being strong. Secondly, we deal with the general

case, i.e. ǫ–points of any multiplicity and non necessarily strong, but assuming proper

degree.

Theorem 16. Let C be a plane algebraic curve over C, and let P ⋆ ∈ C2 be an ǫ–strong

simple point of C. Then, there exists an exact point P ∈ C2 of C such that

‖P ⋆ − P‖2 ≤
√

ǫ.
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Proof. Let f(x, y) ∈ C[x, y] be the defining polynomial of C, and let f(x, y) be ex-

pressed as

f(x, y) =
d∑

i+j=0

ai,j(x− a⋆)i(y − b⋆)j ,

where P ⋆ = (a⋆, b⋆). We consider the univariate polynomial h(t) = f(t, b⋆). Note that

h(t) =
d∑

i=0

ai,0(t− a⋆)i ∈ C[x].

Now, observe that |h(a⋆)| = |a0,0| = |f(P ⋆)| < ǫ · ‖f‖. Moreover, since P ⋆ is an

ǫ–strong simple point of C, it holds that there exist i0, j0 ∈ IN with i0 + j0 = 1 such

that ∣∣∣∣
∂f

∂i0x∂j0y
(P ⋆)

∣∣∣∣ ≥
√

ǫ · ‖f‖.

Let us assume w.l.o.g that i0 = 1 and j0 = 0. Then,
∣∣∣∣
∂h

∂t
(a⋆)

∣∣∣∣ = |a1,0| =
∣∣∣∣
∂f

∂x
(P ⋆)

∣∣∣∣ ≥
√

ǫ · ‖f‖.

Therefore a⋆ is an ǫ–strong simple root of h(t). Hence, by Corollary 13, one deduces

that there exists a root a ∈ C of h(t) such that

|a− a⋆| ≤ √ǫ.

Then, if P = (a, b⋆) ∈ C2 it holds that f(P ) = f(a, b⋆) = h(a) = 0; i.e P is an exact

point of C, and

‖P ⋆ − P‖2 = |a− a⋆| ≤ √ǫ.

⊓⊔
The next corollary shows how two curves are locally related, in terms of their offsets

(see [1] for definition of offsets), when ǫ–simple points appear.

Corollary 17. Let C and C⋆ be two plane algebraic curves over C defined by the poly-

nomials f(x, y), f⋆(x, y) ∈ C[x, y], respectively. Let P ∈ C2 be an exact point of C
that is an ǫ–strong simple point of C⋆. Then, in the neighborhood of the point P , the

curve C is contained in the offset region of C⋆ at distance at most 2
√

ǫ.

Proof. Since P = (a, b) is an ǫ–strong simple point of C⋆, by Theorem 16, one deduces

that there exists an exact point P ⋆ = (a⋆, b⋆) ∈ C2 of C⋆ such that ‖P ⋆ − P‖2 ≤
√

ǫ.

In this situation, we consider the tangent line to C⋆ at P ⋆; i.e T ⋆(x, y) = nx(x− a⋆) +
ny(y − b⋆), where (nx, ny) is the unit normal vector to C⋆ at P ⋆. Then, we bound the

value ‖T ⋆(P )‖2:

‖T ⋆(P )‖2 ≤ |nx| · |a− a⋆|+ |ny| · |b− b⋆| ≤ ‖P ⋆ − P‖2(|nx|+ |ny|) ≤ 2
√

ǫ.

Therefore, reasoning as in Subsection 2.2 of [4] one deduces that, in the neighborhood

of the point P , the curve C is contained in the offset region of C⋆ at distance at most

2
√

ǫ. ⊓⊔
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Once ǫ–simple points have been analyzed, we study the distance properties of ǫ–

singularities. As we have mentioned above, we will assume that curves are given with

proper degree.

Theorem 18. Let C be a plane algebraic curve over C of proper degree d > 0, and let

P ⋆ ∈ C2 be an ǫ–singularity of multiplicity r of C. Then, there exists s ∈ ZZ such that

r ≤ s ≤ d, and there exists an exact point P ∈ C2 of C such that

‖P ⋆ − P‖2 ≤
√

2
√

ǫ
1
2s .

Proof. Let f(x, y) ∈ C[x, y] be the defining polynomial of C, and let f(x, y) be ex-

pressed as

f(x, y) =
d∑

i+j=0

ai,j(x− a⋆)i(y − b⋆)j ,

where P ⋆ = (a⋆, b⋆) ∈ C2. Note that since P ⋆ ∈ C2 is an ǫ–singularity of multiplicity

r of C, by Proposition 5, we deduce that there exists s ∈ ZZ with r ≤ s ≤ d, and there

exist non-negative integers i1, j1 such that s = i1 + j1, and

∣∣∣∣
∂sf

∂i1x∂j1y
(P ⋆)

∣∣∣∣ ≥
√

ǫ · i1!j1! · ‖f‖.

Let s = i1 + j1 be the minimal integer satisfying this property.

Now we distinguish two different cases depending on the values of i1 and j1.

1. First, we deal with the case j1 = 0 or i1 = 0. For instance, let j1 = 0. Note that

this implies that

|ai1,0| = |as,0| =

∣∣∣∣
∂sf

∂sx
(P ⋆)

∣∣∣∣
s!

≥ √ǫ · ‖f‖.

In these conditions, we prove that there exists a point P ∈ C2 on C such that ‖P ⋆−
P‖2 ≤

√
ǫ

1
s . Indeed; we consider the univariate polynomial h(t) = f(t + a⋆, b⋆).

Note that

h(t) =
d∑

i=0

ai,0t
i =

d∑

i=s

ai,0t
i +

s−1∑

i=0

ai,0t
i.

Let

h⋆(t) =
d∑

i=s

ai,0t
i,

and

q(t) =
s−1∑

i=0

ai,0t
i.
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Note that 0 is an exact root of multiplicity s of the polynomial h⋆(t), since

∂ih⋆

∂it
(0) = 0, for i = 0, . . . , s− 1,

and ∣∣∣∣
∂sh⋆

∂st
(0)

∣∣∣∣ =

∣∣∣∣
∂sf

∂sx
(P ⋆)

∣∣∣∣ ≥
√

ǫ · s! · ‖f‖ > 0.

Furthermore, since s is the minimal integer satisfying that
∣∣∣∣
∂sh

∂st
(0)

∣∣∣∣ =

∣∣∣∣
∂sf

∂sx
(P ⋆)

∣∣∣∣ = |as,0|s! ≥
√

ǫ · s! · ‖f‖,

one deduces that for 0 ≤ i ≤ s− 1, it holds that
∣∣∣∂ih

∂it (0)
∣∣∣

i!
= |ai,0| =

∣∣∣∂if
∂ix (P ⋆)

∣∣∣
i!

<
√

ǫ · ‖f‖.

In this conditions, since

q(t) =
s−1∑

i=0

ai,0t
i,

we may write

q(t) =
√

ǫ · p(t),

where

p(t) =
s−1∑

i=0

bit
i,

and

|bi| =

∣∣∣∂ih
∂it (0)

∣∣∣
i! · √ǫ

< ‖f‖, for i = 0, . . . , s− 1.

In particular, observe that

|p(0)| = |b0| =
|f(P ⋆)|√

ǫ
<

ǫ · ‖f‖√
ǫ

=
√

ǫ · ‖f‖.

Now, by Lemma 11 one deduces that there exists a root t0 ∈ C of h(t) such that

|t0| ≤
(

s! · ǫ · |p(0)|
|∂sh⋆

∂st (0)|

)1/s

=

(
s! · ǫ · ‖f‖
|∂sh⋆

∂st (0)|

)1/s

≤
(

s! · ǫ · ‖f‖√
ǫ · s! · ‖f‖

)1/s

=

(
ǫ√
ǫ

)1/s

=
√

ǫ
1
s .

Therefore,

P = (t0 + a⋆, b⋆) ∈ C2

is a point of the curve C, and

‖P ⋆ − P‖2 = |t0| ≤
√

ǫ
1
s .
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2. Now, we assume that 1 ≤ i1 ≤ j1 ≤ s− 1 ≤ d− 1, and let

i1 = min
1≤i≤s−1

{
i ∈ IN such that

∣∣∣∣
∂sf

∂ix∂s−iy
(P ⋆)

∣∣∣∣ ≥
√

ǫ · i!(s− i)! · ‖f‖
}

.

In these conditions, we prove that there exists a point P ∈ C2 on C such that

‖P ⋆ − P‖2 ≤
√

2
√

ǫ
1
2s .

Indeed; we consider the univariate polynomial h(t) = f(t1+d + a⋆, td + b⋆). Note

that

h(t) =
d∑

i+j=0

ai,jt
jd+i(1+d) =

d∑

i+j=s

ai,jt
jd+i(1+d) +

s−1∑

i+j=0

ai,jt
jd+i(1+d).

Let

h⋆(t) =
d∑

i+j=s

ai,jt
jd+i(1+d),

and

q(t) =
s−1∑

i+j=0

ai,jt
jd+i(1+d).

Since s is the minimal integer satisfying that

∣∣∣ ∂sf
∂i1x∂j1y

(P ⋆)
∣∣∣

i1!j1!
= |ai1,j1 | ≥

√
ǫ · ‖f‖,

one has that for 0 ≤ i + j ≤ s− 1, it holds that

|ai,j | =

∣∣∣ ∂i+jf
∂ix∂jy (P ⋆)

∣∣∣
i!j!

<
√

ǫ · ‖f‖.

In this conditions, since

q(t) =

s−1∑

i+j=0

ai,jt
jd+i(1+d),

we may write

q(t) =
√

ǫ · p(t),

where

p(t) =

s−1∑

i+j=0

bi,jt
jd+i(1+d),

and

|bi,j | =

∣∣∣ ∂i+jf
∂ix∂jy (P ⋆)

∣∣∣
i!j! · √ǫ

< ‖f‖, for i = 0, . . . , s− 1.
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In particular, observe that

|p(0)| = |b0,0| =
|f(P ⋆)|√

ǫ
<

ǫ · ‖f‖√
ǫ

=
√

ǫ · ‖f‖.

In addition, we also have that for i2, j2 ∈ IN with s ≤ i2 + j2 ≤ d and i2, j2 not

both simultaneously equal to i1, j1, it holds that

j2d + i2(1 + d) > j1d + i1(1 + d).

Indeed; if i2 + j2 = s then j2d + i2(1 + d) > j1d + i1(1 + d) if and only if

ds + i2 > ds + i1. This inequality holds because i1 < i2 (by definition of i1, and

taking into account that i1 �= i2 since i2, j2 not both simultaneously equal to i1, j1).

Now let i2 + j2 = s + ℓ, ℓ ≥ 1. Then j2d + i2(1 + d) > j1d + i1(1 + d) if and

only if dℓ + i2 > i1. This last inequality holds since 1 ≤ i1 ≤ s − 1 ≤ d − 1,

0 ≤ i2 ≤ d and then i1 − i2 ≤ s− 1 < d ≤ dℓ.

Thus, we have that for k = j1d + i1(1 + d) = i1 + ds, it holds that 0 is an exact

root of multiplicity k of the polynomial h⋆(t), since

∂ih⋆

∂it
(0) = 0, i = 0, . . . , k − 1,

and, ∣∣∣∂kh⋆

∂kt
(0)

∣∣∣
k!

= |ai1,j1 | =

∣∣∣ ∂sf
∂i1x∂j1y

(P ⋆)
∣∣∣

i1!j1!
≥ √ǫ · ‖f‖ > 0.

Now, by Lemma 11 one deduces that there exists a root t1 ∈ C of h(t) such that

|t1| ≤
(

k! · √ǫ · |p(0)|
|∂kh⋆

∂kt
(0)|

)1/k

=

(
k! · ǫ · ‖f‖
|∂kh⋆

∂kt
(0)|

)1/k

≤
(

k! · ǫ · ‖f‖√
ǫ · k! · ‖f‖

)1/k

=

(
ǫ√
ǫ

)1/k

= ǫ
1
2k = ǫ

1
2(i1+ds) .

Therefore,

P = (t1+d
1 + a⋆, td1 + b⋆) ∈ C2

is an exact point of the curve C, and

‖P ⋆ − P‖2 = ‖(t1+d
1 , td1)‖2 = |t1|d

√
|t1|2 + 1 ≤ ǫ

d
2k

√
ǫ

1
k + 1 ≤

ǫ
d

2(i1+ds)

√
ǫ

1
i1+ds + 1 ≤

√
2
√

ǫ
d

ds+s−1 ≤
√

2
√

ǫ
1

2s−1 ≤
√

2
√

ǫ
1
2s ≤

√
2
√

ǫ
1
2d .
⊓⊔
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From Theorem 18, one deduces the following corollary.

Corollary 19. Let C be a plane algebraic curve over C of proper degree d > 0, and let

P ⋆ ∈ C2 be an ǫ–point of C. Then, there exists an exact point P ∈ C2 of C such that

‖P ⋆ − P‖2 ≤
√

2
√

ǫ
1
2d .

⊓⊔
In Corollary 17, we have seen the local offset behavior of two curves when there exist

ǫ–strong simple points. The next corollary analyzes the phenomenon when ǫ–points

appear. The proof of Corollary 20 is similar and we omit it.

Corollary 20. Let C, and C⋆ be two plane algebraic curves over C of proper degree

d > 0, defined by the polynomials f(x, y) and f ⋆(x, y) respectively. If every exact

point of C is an ǫ–point of C⋆ then, the curve C is contained in the offset region of the

curve C⋆ at distance at most 2
√

2
√

ǫ
1
2d . ⊓⊔

The previous corollary can be specialized to the case of perturbed curves by adding an

small constant.

Corollary 21. Let C, and C⋆ be two plane algebraic curves over C of proper degree

d > 0, defined by the polynomials f(x, y) and f ⋆(x, y) respectively, such that f(x, y) =
f⋆(x, y)− ǫ · ‖f⋆(x, y)‖. Then, the curve C is contained in the offset region of the curve

C⋆ at distance at most 2
√

2
√

ǫ
1
2d . ⊓⊔
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Abstract. This paper investigates the use of separation measures for parametric

curves and surfaces toward the resolution of interference and intersections be-

tween curves and surfaces as well as collision detection. Two types of distance

separation measures are discussed.

While the trivial distance function can be derived quite efficiently, it is shown in

this work that this trivial distance function is not the optimal approach, in general.

A better and more efficient scheme that projects the distance onto the normal field

of either manifold is demonstrated to be superior in correctly detecting highly

coupled non-intersecting arrangements as such.

Finally, a few extensions that further ease the detection of intersection-free ar-

rangements, for both planar arrangements and arrangements in IR
3
, are also dis-

cussed.

1 Introduction and Background

Collision detection tests and intersection computations between curves and surfaces are

fundamental necessities in numerous fields, from robotics and navigation, through ani-

mation and simulation, all the way to modelling and Boolean operations. In curve-curve

and surface-surface intersection applications [4], the subdivision, divide-and-conquer

approach is a common solution due to its robustness and reasonable efficiency. A key

component in these divide-and-conquer schemes is efficient detection of interference-

free arrangements (IFA), when two curves or surfaces do not intersect. Early detection

of an IFA as such could yield great savings in computation times by directly pruning

large potential branches from the subdivision tree.

Many schemes exist to devise IFA guarantees. If the geometry is represented in the

Bézier or B-spline form, the axes-aligned bounding box of the control points is also

guaranteed to hold the geometry itself, taking into consideration positional information

only, from the input geometry. Then, during the subdivision process, if the bounding

boxes of the two manifolds undergoing the interference testing do not intersect, clearly

no intersection could occur between the two curves or surfaces. Similarly, two curves or
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surfaces, if represented in the Bézier or B-spline form, are also known to be contained in

the convex hull of their control points. Hence, the detection of no intersection between

their two convex hulls will either ensure an IFA scenario or guarantee that this branch

of the subdivision tree is completely purged.

The computation of bounding boxes as well as intersection tests between bounding

boxes is simple and efficient. In contrast, the computation of the convex hull of a set

of (control) points, and more so, the interference test between convex hulls, is far more

computationally intensive. While a convex hull bound is tighter compared to that of a

bounding box, in practice, the use of convex hulls as bounding interference tests is far

less common compared to axes-aligned bounding boxes’ use.

Other bounding schemes have also been developed. Slabs or oriented bounding

boxes (OBB) are bounding regions that are aligned along the major axis of the geome-

try in hand [2, 8], taking into consideration both positional and directional information

from the input geometry. Consider a horizontal or vertical line compared to a diagonal

one. Clearly, an axes-aligned bounding box will do miserably in bounding the diagonal

line. The OBB orients itself along the geometry and will be equally tight to any line in

an arbitrary orientation. The tighter the bounding geometry is, the lower the chance we

will mistakenly declare a potential intersection. Computationally, the OBBs are moder-

ately more expensive compared to axis-aligned regular bounding boxes, but due to the

fact that they are far tighter, they are used in many intersection and collision detection

tools.

In [7], pairs of parallel lines are used as bounding regions for curves. These parallel

lines, yet another variant of the OBBs, are denoted as “fat-lines”. In [6], “fat-arcs”

of certain width are proposed as an even tighter bound on planar curves. This fat arc

scheme is a generalization of the fat lines idea. For a fat arc with a radius that approaches

infinity, the fat arc converges to the fat line scheme. Nonetheless, fat arcs also take into

consideration second order curvature information and can tightly bound any arc or any

curve of almost constant curvature. The difficulty in using fat arcs stems from the need

for efficient computation of fat arcs and effective interference tests between fat arcs.

In [3], a bounding scheme to a given curve or surface in the form of a piecewise

linear sleeve (sleve in [3] terms) was devised. This scheme is unique in its conversion

of the freeform shape into a piecewise linear tight sleeve that closely holds the original

geometry. One clear application to sleeves is collision detection.

The problem of devising efficient bounds for surfaces is more difficult, and in many

cases, a simple bounding box is all that is needed. Even the extension of OBBs to three-

dimensions introduces many special cases that must be handled, such as the intersection

of two six-faced polyhedra, A and B, in a general position. One can reduce this interfer-

ence problem to the problem of a single shrunken face, A, versus an expanded six-faced

polyhedra, B, using the following process. Compute the minimal dimension of A and

B, d0, and assume without loss of generality that this minimal dimension is in A. Then,

offset A inside by d0/2 and offset B outside by d0/2. A will collapse into a single face

(or into a single edge or even into a point if two or more dimensions of A are the same),

A, and B will be expanded into a rounded box B̃. Alternatively, we can handle this case

by simply offsetting the six faces of B by d0/2 into a larger box. The revised offset of

B, B is somewhat larger than the rounded box, B̃ ⊂ B, yet B is also much simpler
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to further process. Nevertheless, this entire process is obviously more complex than a

comparison between two axis-aligned bounding boxes.

This paper presents an examination of a different separation scheme. Given two

manifolds we need to test for potential interference, we compute a distance related

function, D, between them, so that D vanishes if and only if the two objects intersect.

By examining D, we will be able to detect cases where the input manifolds are free of

intersection. Once we have shown this, we also consider a few ideas to further extend

these intersection-free detection tests for both planar arrangements and arrangements in

IR
3.

The rest of this paper is organized as follows. In sect. 2, we develop the theory be-

hind the distance functions’ approach and show that the simple distance square function

one can derive is not necessarily the approach to use. In sect. 3, we present few simple

examples using this distance approach. Then, in sect. 4, we consider several extensions

to further improve upon the intersection-free detection tests, and finally, in sect. 5, we

conclude.

2 Distance Maps and Projected Distance Maps

We start by considering parametric curves in the plane, though all we discuss here can

easily be extended into surfaces in IR
3. Consider two C1 continuous, regular parametric

curves, C1(t) and C2(r). Then, the first distance function (square) we consider is:

Lemma 1. Two regular planar parametric curves C1(t) and C2(r) do not intersect if

the following holds:

D1(r, t) : 〈C1(t)− C2(r), C1(t)− C2(r)〉 �= 0, ∀t, r.

Proof: Trivial by construction. Because condition D1 measures the distance (square)

between curve C1(t) and curve C2(r), for all t and r, and this distance is never allowed

to vanish, clearly there exist no t and r for which C1(t) and C2(r) coalesce. ⊓⊔

While trivial, D1(r, t) deserves some discussion. If the two input Ci curves are

polynomials of degrees m and n,D1(r, t) is also a polynomial with degrees (2m×2n).

Further, one can symbolically express the coefficients of D1(r, t) as functions of the

control points of the two Ci curves (see Appendix A). As an example, given two cubic

Bézier curves (m = n = 3), one is required to plug two sets of four control points

into the coefficients functions of D1 and extract the 72 = 49 coefficients. If all the

coefficients of D1 are positive, C1(t) and C2(r) never intersect.

Unfortunately, in many cases where C1(t) and C2(r) do not intersect, D1 will con-

tinue to possess negative coefficients. This is because, while D1(r, t) is a non-negative

function, it indeed may contain negative coefficients, especially when D1 needs to rep-

resent vanishing distances. This case is, in fact, quite common as will be shown in

sect. 3. We will further show in sect. 3 that the insertion of a few knots could also

significantly improve this convergence and offer a superior interference test. The knot
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insertion function could also be a-priori computed as an Alpha-refinement matrix that

maps the coefficients of D1 into their refined equivalent [1].

While D1(r, t) is the straightforward approach to take toward collision detection,

we also consider a second approach that not only reduces the degree of the computed

distance function but, in fact, also provides superior performance in most cases:

Lemma 2. Two C1 planar regular parametric curves C1(t) and C2(r) do not intersect

if either of the following holds:

D2(r, t) : 〈C1(t)− C2(r), N1(t)〉 �= 0, ∀t, r,

or

D3(r, t) : 〈C1(t)− C2(r), N2(r)〉 �= 0, ∀t, r,
where Ni denotes the unnormalized normal field of Ci.

Proof: Consider condition D2(r, t) : 〈C1(t)− C2(r), N1(t)〉 �= 0. The locus of points

{P | ∃t such that 〈C1(t)− P , N1(t)〉 = 0} in the plane is the set of points in the tan-

gent space of C1(t) or the set of points on one or more of tangent lines of C1(t). Because

we assume D2 never vanishes, no point of C2(r) can be on a tangent line of C1(t) for

all t and r. Because C1(t) is contained in its tangent space, C2(r) coalesces with no

point at C1(t). The proof for condition D3 is similar. ⊓⊔

As we have done for D1, one can symbolically express the coefficients of D2(r, t)
or D3(r, t) as functions of the control points of the two Ci curves (see Appendix A).

Let C1(t) and C2(r) be two (piecewise) polynomials of degrees m and n. Recog-

nizing that no unit normal field is required here, for (piecewise) polynomial curves, the

degrees ofD2(r, t) andD3(r, t) are going to be ((2m−1)×n) and (m× (2n−1)), re-

spectively. This is due to the fact that normal field Ni(t), of curve Ci(t) = (xi(t), yi(t))
can be computed as (−y′(t), x′(t)).

Assume Ci are linear segments. Lemma 2 reduces to the following conditions for

two line segments to be intersection-free. Consider the segments P0P1 and P2P3, Pi =
(xi, yi). Then,

D2(r, t) : 〈(P1 − P0)t + P0 − (P3 − P2)r − P2, (y0 − y1, x1 − x0)〉 �= 0

D3(r, t) : 〈(P1 − P0)t + P0 − (P3 − P2)r − P2, (y2 − y3, x3 − x2)〉 �= 0. (1)

Having the inner product with the normal equate with the cross product in the tan-

gent field (dealing with planar curves, we consider only the Z coefficient of the cross

product), one can rewrite D2(r, t) in eq. (1) as

0 = ((P1 − P0)t + P0 − (P3 − P2)r − P2)× (P1 − P0),

= (P0 × P1)− ((P3 − P2)r − P2)× (P1 − P0). (2)

Because condition (2) must hold for all r, condition D2 in essence examines whether

one segment is completely contained in one-half space of the infinite line through the

other segment. This linear case provides some intuition of the general case. Using
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D2(r, t) or D3(r, t), we can check if one curve interferes with the tangent space of

the other curves.

The extension of these distance functions to surfaces in IR
3 is straightforward:

D1(u, v, r, t) : 〈S1(u, v)− S2(r, t), S1(u, v)− S2(r, t)〉 �= 0,

D2(u, v, r, t) : 〈S1(u, v)− S2(r, t), N1(u, v)〉 �= 0,

D3(u, v, r, t) : 〈S1(u, v)− S2(r, t), N2(r, t)〉 �= 0. (3)

Lemmas 1 and 2 hold for surfaces as well. For Lemma 2, D2 and D3 examine if

points in one surface are contained in the two parameters family of tangent planes, or

the tangent space, of the other surface.

While the use of D2(r, t) and D3(r, t) is valid regardless of the shape of the curves,

the distance test offered by D2(r, t) and D3(r, t) is advantageous for inflection-free

curves. In many interference and/or intersection applications, the input curves are al-

ready subdivided at inflection points as a preprocessing stage, possibly by detecting

the locations on the curves where the curvature vanishes. Moreover, as will be shown

in sect. 3, even with inflection points, D2(r, t) and D3(r, t) can do quite well. The

same holds for two interacting surfaces where D2(r, t) orD3(r, t) are expected to shine

compared to D1(r, t), in non-hyperbolic regions. In our tests, presented in sect. 3, the

distance functions ofD2(r, t) andD3(r, t) were found, in most cases, to be much tighter

than D1(r, t), for both curves and surfaces. In Appendix A, the coefficients of the Di,

i = 1, 2, 3, functions are computed and presented as functions of the control points

of the given two polynomial curves. These are the functions one needs to evaluate in

order to determine the strict positivity or negativity of theDi functions, and using these

functions, detect IFA scenarios.

3 Examples

We start our demonstration with a figure of quadratic Bézier arrangements, in fig. 1. In

all presented figures, we first show the arrangement ((a) and (e) in fig. 1) and then draw

the three Di functions in order, using a (r, t,Di) coordinate system ((b)-(d) and (f )-(h)

in fig. 1). By inserting a single knot in both curves at 1/2, D3 is capable of detecting

this case as an IFA.

Figure 2 presents a cubic and a quartic that are tightly coupled, while neither is

completely convex. All three methods fail to detect this case as an IFA. Yet, after a

single knot insertion in both curves at 1/2, D3 successfully detects this case as an IFA.

Figure 3 presents our final example of a cubic and quadratic curve arrangement.

While tightly coupled in (a), D2 is still capable of detecting this case as intersection-

free. Further, in (e), an extremely tight arrangement is shown, so tight that in the draw-

ing’s resolution, the curves appear connected. With the refinement of both curves using

a single knot, at 1/2, D2 declares this case to be an IFA.

We continue and examine several examples of interacting surfaces. Here, equa-

tions (3) are computed as four-variate Bézier functions and their coefficients are ex-

amined for their signs. In fig. 4, two cases of quadratic surfaces, which are closely

coupled, are presented. The distance function that is projected onto the normal field of
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Fig. 1. Two quadratic polynomial curve arrangements. In (a) to (d), the original curves are con-

sidered. In (e) to (h), both curves are refined once at t = 1/2.

Fig. 2. Cubic and quartic polynomial curve arrangements. In (a) to (d), the original curves are

considered. In (e) to (h), both curves are refined once at t = 1/2.

either surface does poorly for hyperbolic cases as can be seen in (a) and (b). (b) is a

refinement of (a) at 1/4, 1/2, 3/4 in both u and v. In hyperbolic regions, the tangent

space spans both sides of the surface, vastly decreasing the probability of an IFA detec-

tion, whenD2 or D3 are used. Only D1 is capable of detecting this case as an IFA, after

the insertion of three knots in both surface directions, on both surfaces.

In contrast, when processing convex surfaces, the advantage of using either D2 or

D3 is clearly revealed. In fig. 4 (c) and (d), two highly coupled convex shapes are

presented. YetD2 is capable of detecting this case as an IFA after a single knot insertion

(see (d)) in both directions of both surfaces. The necessity for the geometry to be elliptic

should, in fact, be imposed only on one of the surfaces, the surface that the distance

vector is projected onto in its normal field. Hence, refinement will probably be more
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Fig. 3. Cubic and quadratic polynomial curve arrangements. In (a) to (d) and in (e) to (h), the

original curves are considered. In (i) to (l), both curves are refined once at t = 1/2.

Fig. 4. Two biquadratic polynomial surface arrangements without refinement ((a) and (c)) and

with refinement (b) at 1/4, 1/2, 3/4 and (d) at 1/2, in both u and v. In ((a) and (c)), D1, D2, and

D3 all failed to find this case to be intersection-free. In (b) and (d), only D1 and D2 respectively,

were successful in detecting this case as an IFA.

effective when applied to that surface. In fig. 4 (d), (only) distance function D3 was

capable of declaring this an IFA, even when one of the surfaces is hyperbolic.

Distance functions D2 and D3 are also expected to do well in parabolic or almost

parabolic surfaces. In fig. 5, (only) distance function D2 was capable of declaring this

arrangement to be an IFA, after a single knot insertion in both surface directions, on

both surfaces. Finally, fig. 5 (c) presents one case of having both elliptic and hyperbolic

surfaces interact.
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Fig. 5. A quadratic by linear (outer surfaces) and a quartic by linear (inner surface), almost devel-

opable polynomial surfaces’ arrangement without refinement (a) and with refinement (b)at 1/2
in both u and v. In (a), D1, D2, and D3 all failed to detect this case as intersection-free. In (b),

D2 was successful in detecting this case as an IFA. (c) presents a large elliptic biquadratic and

a small hyperbolic bicubic polynomial surface arrangement without refinement. As is, D3 was

successful in detecting this case as an IFA.

4 Refining the IFA Tests

In [7], parallel lines are employed as bounding regions of Bézier curves. This bounding

region was used in comparison with another curve, in an attempt to trivially eliminate

intersection-free arrangements. Further, in [5], double-cones were used to bound the

possible directions that the tangent field of a curve can assume, examining the direc-

tional span of the curves’ Hodograph, the derivative curve. Herein, we merge the two

processes and look at the common domain of two such bounding double-cones that

are placed at the two end points of the curve. These two double-cones intersects in a

double-wedge parallelogram shape that fully contain, and hence bound, the curve.

Let Cα
V (C) be the double-cone that bounds all the possible directions that the tangent

field of C(t), t ∈ [t0, t1] can assume (See fig. 6). Cone Cα
V (C) has an axial direction V

and an angular span of α and is assumed to span both the positive and negative tangent

directions; else, it is infinite in both its directions. Denote by Cα
V (C)[P ] the cone Cα

V (C)
positioned with its origin at P . Then, following [5],

Lemma 3. Consider a C1 planar regular curve C(t), t ∈ [t0, t1], and Cα
V (C), the

bounding cone of the tangent field of C(t). Then, C(t) ⊂ Cα
V (C), ∀t ∈ [t0, t1].

Proof: See [5]. ⊓⊔

Let Cα
V (C)

+
be the positive half of Cα

V (C) in the direction of the Hodograph and let

Cα
V (C)

−
be the negative half, in the opposite direction.

Then,

Lemma 4. C(t) ⊂ Cα
V (C)+[C(t0)]

⋂ Cα
V (C)−[C(t1)]

Proof: At t0, C(t) ⊂ Cα
V (C)

+
[C(t0)] and similarly at t1, C(t) ⊂ Cα

V (C)
−

[C(t1)].
Hence, C(t) is also contained in their intersection. ⊓⊔

The intersection of the two cones, as presented in Lemma 4, creates a double-wedge

or a parallelogram bounding region. Figure 7 shows a few examples.
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(a)

Cα
V (C)

(b)

Cα
V (C)−[C(t1)]

(c)

Cα
V (C)+[C(t0)]

(d)

Cα
V (C)−[C(t1)]

T

Cα
V (C)+[C(t0)]

Fig. 6. The bounding cone, Cα
V (C), in (a), is derived using the Hodograph of C(t) and has the

property that at the end of C(t), C(t) is completely contained in the negative infinite half of the

cone, Cα
V (C)−[C(t1)] (b), while at the beginning of C(t), C(t) is completely contained in the

positive infinite half of the cone, Cα
V (C)+[C(t0)] (c). (d) shows that the two half cones of (b) and

(c) could serve as a finite double-wedge bounding region to C(t).

(a)
(b) (c)

(d)

Fig. 7. Several examples of the double-wedge bounding regions, for planar quadratic ((a) and (b))

and cubic ((c) and (d)) curves

The parallelogram’s bounding region is quite tight, especially in cases where the

curve is almost straight. In a manner similar to oriented bounding boxes or the fat lines,

and unlike the axes-aligned bounding box, the parallelogram is orientation indepen-

dent. The difficulty in constructing and comparing two double-wedges is similar to that

of the oriented bounding box. In fact, the idea of offsetting one bounding region inside

and one bounding region outside, degenerating the first bounding region into a line, as

presented in the introduction to this work, could be employed as well. Further, one can

use this parallelogram bounding region to trivially reject intersection-free regions. If

the second curve is on the opposite side of either one of the four boundary lines of the

parallelogram region, that line serves as a separating line between the two curves. Test-

ing on which side of a line a curve is, or whether they potentially intersect, is simple. It

entails the evaluation of the signed distance of all the control points of the curves from

the line. Hence, we exploit the four infinite lines defining the bounding parallelogram
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and try them as separation lines between the two curves. Each curve has its own bound-

ing parallelogram, hence in all, eight lines should be tested. In practice, we found that

this parallelogram test reduced the computation times of curve-curve intersections by

several dozens percents. Yet clearly, such improvements are application dependent.

This trivial intersection-free rejection test could be extended to handling two sur-

faces. Here, a bounding cone for the possible tangent planes needs to be built, follow-

ing [5]. The surface is contained in the bounding tangent planes’ cone when its apex

is placed on a point in the surface. Placing the bounding tangents’ cone at the four

corner points of the surface, the surface is contained in the intersection of these four

cones. Unfortunately, this intersection is not necessarily convex and hence complex to

compute. However, each of the faces of the four bounding tangents’ cones, at the four

corners of the surface, could be tested as a potential separation plane between the two

surfaces. Each such face must hold its original surface on one side and if the second

surface is completely on the other side of the face, that face serves as a seperation face.

Once again, as the surface gets closer to being planar, the intersection of the four cones,

at the four corners of the surface will tightly bound the surface and the above seperation

scheme is more likely to succeed.

In [6], it is observed that for a cubic Bézier curve, C(t) =
∑3

i=0 Piθ
3
i (t), the width

of the oriented bounding box along edge P0P3 need not span all the width as asserted

by the distance to the furthest control point, either P1 or P2. Instead, if P1 and P2 are on

different sides of edge P0P3, the maximum width could be bound by 4/9 of this maxi-

mal distance and if P1 and P2 are on the same side of edge P0P3, the maximum width

could be bound by 3/4 of this maximal distance. This is easily proven by computing the

maximal contribution of θ3
i (t), i = 1, 2, which is 4/9, and the maximal contribution of

θ3
1(t) + θ3

2(t) together, which is 3/4.

Generalizing this result, one could effortlessly provide slightly tighter bounds on

the three functions of Di(r, t), as follows. Compute the extreme values over all the

coefficients of Di(r, t), di
jk, as di

min and di
max. Now let,

di
crnr = min

(
di
00, d

i
0m, di

n0, d
i
nm

)
,

where n and m are the degrees of Di(r, t), and let,

θi
crnr = min

r, s
(θm

0 (r)θn
0 (s) + θm

m(r)θn
0 (s) + θm

0 (r)θn
n(s) + θm

m(r)θn
n(s))

= min
r, s

((θm
0 (r) + θm

m(r))(θn
0 (s) + θn

n(s)) ,

minimum that occurs at r = s = 1/2. Then,

di
min = di

min ∗ (1− θi
crnr) + di

crnr ∗ θi
crnr,

is one possible tighter bound on the minimumDi. This last result stems from having all

four corner coefficients above or at level di
crnr and all other coefficients above or at level

di
min. Therefore, assume, in the worst case, that the four corners are all at level di

crnr

and the rest of the coefficients are all at level di
min, which yields this tighter bound.
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5 Conclusion and Future Work

In this paper, we established a bounding scheme that is capable of detecting interference-

free and/or intersection-free arrangements that are highly coupled, with the aid of dis-

tance functions that are projected onto the normal field of one of the manifolds. This

variant of distance functions was shown to be superior to regular distance functions for

(almost) convex planar curves and elliptic and parabolic surface regions. We further

extended this approach to allow somewhat tighter bounds by carefully analyzing the

extreme support locations of the corner coefficients of the scalar distance functions and

offering a tight double-wedge bounding region.

It is plausible that other bounding schemes, such as [3], could also be merged in and

help in establishing even tigher bounds compared to the presented appoarch in sect. 4.

Such synergies should be further examined.

While not presented in this work, the interference between curves and surfaces could

also be examined in a similar fashion, creating a trivariate distance function Di(u, v, t)
between curve C(t) and surface S(u, v). Refinement forces the control polygonal/mesh

to quadratically converge to the shape of the curve or surface. Hence, one can insert

several knots at once, achieving a tighter test for collision- or interference-free cases, at

the cost of more computation and having more coefficients for which to evaluate their

signs, in the Di functions.

All presented schemes are suitable for both curves and surfaces, including the exten-

sion of the parallelogram double-wedges that offer separating lines as an interference-

free detection scheme and extend it to separating planes in IR
3 between freeform sur-

faces. Similarly, and since the collision/intersection problem is reduced here to the exis-

tence of a non empty zero set of some constraint over the domain, any efficient scheme

that can efficiently detect or deny the existence of roots in the domain could be equally

employed. FInally, all the presented schemes could be applied to rational functions as

well, sometimes at the cost of doubling the degree of the distance functions due to the

quotient rule of differentiation and the addition of rationals.
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Appendix A: The Distance Functions for Two Bézier Curves

Given two Bézier curves C1(t) =
∑m

i=0 Piθ
m
i (t) and C2(r) =

∑n
j=0 Qjθ

n
j (r), con-

sider D1 = 〈C1(t)− C2(r), C1(t)− C2(r)〉,

D1(t, r) =

〈
m∑

i=0

Piθ
m
i (t)−

n∑

j=0

Qjθ
n
j (r),

m∑

i=0

Piθ
m
i (t)−

n∑

j=0

Qjθ
n
j (r)

〉
.

Because,

m∑

i=0

Piθ
m
i (t)−

n∑

j=0

Qjθ
n
j (r) =

m∑

i=0

Piθ
m
i (t)

n∑

j=0

θn
j (r)−

m∑

i=0

θm
i (t)

n∑

j=0

Qjθ
n
j (r)

=
m∑

i=0

n∑

j=0

(Pi −Qj)θ
m
i (t)θn

j (r),

we reduced the problem to a product of two vector surfaces. Consider two scalar Bézier

surfaces s1(u, v) and s2(u, v). Their product equals,

s1(u, v)s2(u, v) =

m∑

i=0

n∑

j=0

aijθ
m
i (u)θn

j (v)

p∑

k=0

q∑

l=0

bklθ
p
k(u)θq

l (v)

=
m∑

i=0

n∑

j=0

p∑

k=0

q∑

l=0

aijbklθ
m
i (u)θp

k(u)θn
j (v)θq

l (v)

=

m∑

i=0

n∑

j=0

p∑

k=0

q∑

l=0

aijbkl

(
m
i

)(
p
k

)
(
m+p
i+k

) θm+p
i+k (u)

(
n
j

)(
q
l

)
(
n+q
j+l

) θn+q
j+l (v)

=

m+p∑

r=0

n+q∑

s=0

crsθ
m+p
r (u)θn+q

s (v)

where:

crs =

min(r,m)∑

i=max(0,r−p)

min(s,n)∑

j=max(0,s−q)

ai,jbr−i,s−j

(
m
i

)(
p

r−i

)
(
m+p

r

)
(
n
j

)(
q

s−j

)
(
n+q

s

) . (4)

Back to D1(t, r), having m = p and n = q and interested only in the (simultaneous

positivity/negativity of all the) coefficients, we get using eq. (4),

d1
rs =

min(r,m)∑

i=max(0,r−m)

min(s,n)∑

j=max(0,s−n)

(Pi −Qj)(Pr−i −Qs−j)

(
m
i

)(
m

r−i

)
(
2m
r

)
(
n
j

)(
n

s−j

)
(
2n
s

) ,

r ∈ [0, 2m], s ∈ [0, 2n].
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Now consider D2 = 〈C1(t)− C2(r), N1(t)〉. It is easy to see that this constraint

for planar curves is similar to the constraint of D2 = (C1(t)− C2(r))× C ′
1(t) or

D2(t, r) =

⎛
⎝

m∑

i=0

Piθ
m
i (t)−

n∑

j=0

Qjθ
n
j (r)

⎞
⎠×

(
m

m−1∑

k=0

(Pk+1 − Pk)θm−1
k (t)

)

=

⎛
⎝

m∑

i=0

n∑

j=0

(Pi −Qj)θ
m
i (t)θn

j (r)

⎞
⎠×

(
m

m−1∑

k=0

(Pk+1 − Pk)θm−1
k (t)

)
.

Note that although we use the cross-product notation, result D2(t, r) is considered a

scalar function as the curves are planar, considering only the Z coefficient of the cross

product. Having p = m−1 and q = 0,D2(t, r) is a function of degrees ((2m−1)×n).
Because we are interested again in the (simultaneous positivity/negativity of all the)

coefficients, using eq. (4), these coefficients are,

d2
rs = m

min(r,m)∑

i=max(0,r−(m−1))

min(s,n)∑

j=max(0,s−0)

(Pi −Qj)× (Pr−i+1 − Pr−i)

(
m
i

)(
m−1
r−i

)
(
m+m−1

r

)
(
n
j

)(
0

s−j

)
(
n+0

s

) ,

= m

min(r,m)∑

i=max(0,r−m+1)

s∑

j=s

(Pi −Qj)× (Pr−i+1 − Pr−i)

(
m
i

)(
m−1
r−i

)
(
2m−1

r

)
(
n
j

)
(
n
s

) ,

= m

min(r,m)∑

i=max(0,r−m+1)

(Pi −Qs)× (Pr−i+1 − Pr−i)

(
m
i

)(
m−1
r−i

)
(
2m−1

r

) ,

r ∈ [0, 2m− 1], s ∈ [0, n].





Elementary Theory of Del Pezzo Surfaces

Josef Schicho

Radon Institute for Computational and Applied Mathematics,

Austrian Academy of Sciences

Josef.Schicho@oeaw.ac.at

Abstract. Del Pezzo surfaces are certain algebraic surfaces in projective n-space

of degree n. They contain an interesting configuration of lines and have a rational

parametrization. We give an overview of the classification with an emphasis on

algorithmic constructions (e.g. of the parametrization), on explicit computations,

and on real algebraic geometry.

1 Introduction

This paper is elementary in the sense that it does not use the concepts and terminology

of modern algebraic geometry, such as sheaves, schemes, divisors, or vector bundles.

My personal opinion is that these concepts belong more to the “algebraic” than to the

“geometric” part of “algebraic geometry”, and the goal was to write an introduction

to Del Pezzo surfaces for geometers and not for algebraists. This is also the reason

why the paper is of survey type, but it cannot be used as an introduction to the modern

theory of Del Pezzo surfaces. From that point of view, the main interest in Del Pezzo

surfaces is related to birational classification of algebraic varieties of higher dimension

(e.g. Calabi-Yau threefolds) or to arithmetic questions, and these relations are not even

touched upon here. Our main intention was to collect material about this classical topic

which could be of some interest to applied geometers. The main emphasis has been put

on algorithmic techniques and on examples. For this reason, it would have been more

justified to give the title “a very biased look at Del Pezzo surfaces”.

The paper does assume a good familiarity with projective geometry, and the de-

scribed algorithmic techniques can only be carried out if one can solve systems of alge-

braic equations in several unknowns.

The definition of Del Pezzo surfaces given in sect. 4 is not the usual one (which

uses canonical divisors), but it follows Del Pezzo [5], who encounters this class of

surfaces in his investigation of surfaces of degree n in IPn. In the course of arriving

at this definition, we give some theorems (Theorem 2, Theorem 5, Theorem 8, and

Theorem 11) and occasionally proofs. Of course, these theorems are classical facts

whose origins date back by centuries. A proof of Theorem 5 can be found in [7].

The unprojection algorithm in sect. 5 is original. Its advantage is that it makes a

uniform treatment of parametrization algorithms (see sect. 6) possible.

The classification of Del Pezzo surfaces in sect. 6 is due to [5]; a modern proof can

be found in [12]. No proof is contained in this paper because it would be too long and

too technical. A complete elementary proof of Theorem 17 would also be surprisingly
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complicated because the finiteness of resolution of singularities is not a priori clear. Of

course, the theorem also follows from the classification given in [5].

In the chosen approach, Del Pezzo surfaces of degree 2 and 1 are certainly unnatural

(they also do not arise in [5]). But as early as in [10], these cases are discussed together

with the other Del Pezzo surfaces, in the context of the classification of linear systems

of elliptic curves in the plane. Theorem 24 and Theorem 28 can be found in [4].

The real classification of Del Pezzo surfaces, especially Theorem 30, is due to [3].

Modern treatments can be found in [20, 15, 21]. The technique used in example 35 to

compute an improper parametrization (see also remark 36) is also mentioned in [3, 13,

17].

The author was supported by the Austrian science fund (FWF) in the frame of the

special research area SFB 013 and of project P15551.

2 Projective Varieties, Degree, and Projection

Let IPn denote complex projective space of dimension n. Let X ⊂ IPn be a projective

algebraic variety, i.e. the zero set of a homogeneous prime ideal. The dimension of X
can be defined as the smallest integer m such that there exists an n−m−1-dimensional

linear subspace disjoint from X . A generic linear subspace of dimension n −m inter-

sects X in a finite number of points. If we count with multiplicities, then this number

depends only on X , and this is a way to define the degree of X (following [8]).

Let p ∈ IPn be a point, e.g. p = (x0: . . . :xn) = (1:0: . . . :0) (the affine origin). Let

H be a linear hyperplane not containing p, e.g. the plane x0 = 0. The projection πp,H

with center p onto H is defined for all points except p. In the example, this is just the

omission of the first projective coordinate x0. - Let Y be the closure of the image of X
under this projection. It is again a projective variety. Its dimension is either m or m−1.

The second is the case if and only if X is a cone and p is its vertex, or X is a linear

space and p is a point on X .

Remark 1. The choice of H is not essential. A different choice leads to another pro-

jective image Y ′ which is projectively equivalent to Y . In the following, we will often

omit any explicit references to H .

If dim(Y ) = dim(X) = m, then there is a positive integer f such that the preimage

of a generic point of the projection map πp : X → Y has f points. In case f = 1, then

πp : X → Y is birational. The number f is called the tracing index of the projection.

A generic linear n −m − 1-subspace L of H intersects Y in deg(Y ) points. The

linear span of L and p intersects X in f · deg(Y ) points plus an intersection at p, that

has to be counted with multiplicity

r := deg(X)− f · deg(Y ). (1)

The number r is also called the multiplicity of X at p, and p is also called an r-fold point

of X . Nonsingular points have multiplicity 1, and points outside X have multiplicity 0.

Theorem 2. Let X ⊂ IPn be a projective variety of dimension m and degree d. Assume

that X is not contained in a proper linear subspace. Then d ≥ n−m + 1.
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Proof. We proceed by induction on n, fixing m. If n = m (obviously the smallest

possible value for n), then X = IPm and d = 1. The inequality is fulfilled.

Assume n > m. Let p be a nonsingular point of X . Let Y ⊂ IPn−1 be the image

of X under the projection from p. If Y were contained in a proper linear subspace L,

then X would be contained in the linear span of L and p, contradicting the assumption.

Therefore Y is not contained in a proper linear subspace.

Let f be the tracing index of the projection. Then

d = f · deg(Y ) + 1 ≥ f · (n−m) + 1 ≥ n−m + 1,

where the first inequality is a consequence of the induction hypothesis.

Remark 3. A closer look at the proof reveals that if equality holds, then the variety

is rational (i.e. birationally equivalent to a projective space). Indeed, in this case the

tracing index is always 1 in each projection step, so that we get a birational map from

X to IPm.

p

q

T

H=Y

π (q)

X

Fig. 1. Projection from a nonsingular point

Projections from nonsingular points are of special interest. Let X ⊂ IPn be a variety

of dimension m, and let p be a nonsingular point of X . The projection πp : X → Y
is not defined at p. But for any differentiable curve C : [0, 1] → X with C(0) = p,

the limit limt→0 πp(C(t)) exists and lies on Y . The set of all these limits is equal to

the intersection of the tangent space T of X at p with the projection hyperplane H (see

fig. 1).

Conversely, assume that we have a variety Y ⊂ IPn of dimension m and an m− 1-

dimensional linear subspace L on it. Can we construct a variety X ⊂ IPn+1 and a

nonsingular point p ∈ X such that Y is the image of X under the projection by p? We

will give partial answers to this question below.
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3 Varieties of Minimal Degree

Let C ⊂ IPn be a curve of degree n. (From now on, a statement such as C ⊂ IPn

implicitly implies the assumption that C is not contained in a proper linear subspace.)

By remark 3, C is rational. Therefore, C has a parametrization (P0(t): . . . :Pn(t)) with

polynomials P0, . . . , Pn of degree at most n (and the maximum is reached by at least

one of the Pi).

Since C is not contained in a proper linear subspace, the Pi are linearly independant.

But the vector space of all polynomials of degree at most n has dimension n+1, and so

the Pi form a basis. We can apply a projective transformation in order to transform this

basis into the standard basis Pi = ti, i = 0, . . . , n. This implies that, up to projective

transformations, there is precisely one curve C ⊂ IPn of degree n, which is also called

the rational normal curve of degree n.

Remark 4. The Steiner construction (see [7], p. 528–533), shows that for any n + 3
points in general position, there is a unique rational normal curve passing through them.

For surfaces, we have a similar classification (see [7], p. 525).

Theorem 5. Let S ⊂ IPn be a surface of degree n−1. Then S is either a rational scroll

Rn,r with parametrization (1:t: . . . :tn−r−1:s:st: . . . :str) for some r ≤ n−1
2 (up to pro-

jective transformation), or n = 5 and S is the Veronese surface V with parametrization

(1:t:t2:s:st:s2) (up to projective transformation).

R
2,0 V

R
18,6

R3,03,1
R

Fig. 2. Surfaces of minimal degree in lattice representation

Remark 6. Note that in both cases, the surface S is toric, i.e. parametrized by mono-

mials. Toric surfaces have recently been used in [11] in order to generate multi-sided

surface patches; they can be represented by lattice polygons in an obvious way. Ac-

tually, the surfaces of minimal degree are precisely the toric surfaces associated to a

polygon without interior lattice points (see fig. 2).

Clearly, R2,0 is the projective plane, and Rn,0 is the cone over the rational normal

curve of degree n − 1. The quadric surface R3,1 ⊂ IP3 has two rulings (families of

lines), namely the ruling of lines given by s = constant and the ruling of lines given by

t = constant.
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Remark 7. It is easy to see that the rational scroll Rn,r is a projection of Rn+1,r – just

omit the coordinate corresponding to tn−r. The Veronese surface is not the projection

of a surface in IP6 of minimal degree, because it does not contain any lines.

4 Curves of Almost Minimal Degree

We say that a variety X ⊂ IPn has almost minimal degree if deg(X) = n−dim(X)+2.

For any n ≥ 2, we can produce almost minimal curves C ⊂ IPn by “spoiling

rational normal curves”. Take a rational normal curve C ′ ⊂ IPn+1 of degree n + 1, and

a point p outside C. Let C be the image of C ′ under the projection from p. Since p is a

point of multiplicity 0, the degree of C is a divisor of n + 1. By Theorem 2, the degree

is greater than or equal to n + 1, therefore it is equal to n + 1.

Conversely, any rational curve of almost minimal degree C ⊂ IPn is a spoiled ratio-

nal normal curve. To show this, we write down a parametrization (P0(t) : · · · : Pn(t))
be a sequence of polynomials with maximal degree n + 1. Let Q(t) be a polynomial of

degree at most n + 1 that is linearly independent of P0, . . . , Pn. Then the curve defined

by (P0(t): . . . :Pn(t):Q(t)) is a rational normal curve, and C is the image of the pro-

jection from (0: . . . :0:1). (This point must be a point outside the rational normal curve

because its multiplicity is zero by the degree formula 1.)

There are also irrational curves of almost minimal degree; the first examples are

the nonsingular cubic plane curves. It is well-known that the nonsingular plane cubic

curves are elliptic, i.e. of genus one. Here is a general theorem on irrational curves of

almost minimal degree.

Theorem 8. Let C ⊂ IPn be an irrational curve of almost minimal degree. Then C is

elliptic and nonsingular.

Proof. We proceed by induction. If n = 2, it suffices to state that cubic plane curves

are either rational or elliptic, and the elliptic ones are nonsingular.

Let n ≥ 3. Let p be a nonsingular point on C. Let C ′ be the image of C under

projection from p. Let d := deg(C ′). Then d|n by the degree formula 1, and d ≥ n− 1
by Theorem 2. This implies that d = n, i.e. C ′ has almost minimal degree, and the

projection gives a birational map C → C ′. By induction hypothesis, C ′ is elliptic.

Since the genus is a birational invariant, C is also elliptic.

In order to show that C is nonsingular, let q be an arbitrary point of C, and let r
be its multiplicity. Let D be the image of C under projection from q. Then deg(D) is

a divisor of n + 1 − r, which is greater than or equal to n − 1. This leaves only the

cases r = 1 and deg(D) = n, or r = 2 and deg(D) = n− 1. In both cases, the tracing

index of the projection must be one, so that C and D are birationally equivalent. But

this rules out the second case, because D would then have minimal degree and therefore

be rational. Hence r = 1, and we showed that C has only points with multiplicity one.

Example 9. For any n ≥ 2, we have an elliptic curve C ⊂ IPn+1 of almost minimal

degree. Here is an example for n = 3m− 1.

Let C be the plane cubic with equation x3 + y3 + z3 = 0. Let f : IP2 → IPn be the

embedding given by

(x:y:z) �→ (xm: . . . :ym:xm−1z: . . . :ym−1z:xm−2z2: . . . :ym−2z2).
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The image of C is of degree 3m = n + 1.

For all other n, examples can be constructed by one or two steps of point projection

of the above example.

Remark 10. In general, it is not true that the absence of singularities of a curve of

almost minimal degree implies that the curve is elliptic. An example of a spoiled rational

normal curve without singularities is the “twisted quartic” in IP3 with parametrization

(1:t:t3:t4).

5 Surfaces of Almost Minimal Degree

We can produce surfaces of almost minimal degree by spoiling surfaces of minimal

degree, as we did in the previous section for curves. These surfaces are rational, and the

projections of rational scrolls are ruled surfaces.

As a base for some proofs on induction, we need to have a rough classification of

the cubic surfaces in IP3. We distinguish the following types.

1. Cubic surfaces with a double line. These are the projections of cubic rational scrolls

in IP4.

2. Cones over nonsingular cubic plane curves. These are irrational. They have a triple

point and no other singularities.

(Note that the cones over singular cubic plane curves are already falling into type 1

above.)

3. Cubic surfaces with isolated double points. These are rational. Indeed, projection

from a double point gives a birational map onto IP2.

4. Nonsingular cubic surfaces. These are also rational.

A much finer classification can be found in [2, 1].

Type 2 can easily be generalized to arbitrary dimension: the cone over an elliptic

curve of almost minimal degree is an irrational surface of almost minimal degree. It

is well-known [5, 6] that every irrational surface of almost minimal degree is a ruled

surface with elliptic base.

We define a Del Pezzo surface as a rational surface of almost minimal degree that is

not a spoiled surface of minimal degree. The cubic Del Pezzo surfaces are the surfaces

of type (3) and (4) above.

Theorem 11. Let S be a Del Pezzo surface.

a) S has at most isolated double points.

b) If S has degree at least 4, then the image of S under projection from a nonsingular

point p ∈ S is a Del Pezzo surface.

c) A generic hyperplane section of S is an elliptic curve of almost minimal degree.

d) The number of lines on S is finite.

Proof. (c): It is obvious that the generic hyperplane section has almost minimal degree.

They are not rational, because then the surface would be a spoiled minimal surface (this

is a consequence of the discussion of surfaces with rational hyperplane sections in [4]).

Hence they are elliptic.
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(b): Let S′ be the image of the projection. By the degree formula 1, S ′ has almost

minimal degree and is birationally equivalent to S. The hyperplane sections are pro-

jections from intersections of S with hyperplanes through p. Because of (c), these are

elliptic curves. So, S ′ is rational and has generic hyperplane sections of genus one. On

the other hand, S ′ cannot be a spoiled surface of minimal degree, because these have

generic hyperplane sections of genus zero. Hence S ′ is a Del Pezzo surface.

(a): By the degree formula 1, S cannot have points of multiplicity 3 or more. We

prove that the number of double points is finite, by induction on the degree. For degree

3, this follows from the classification of cubic surfaces above. For n > 3, choose a

nonsingular point and project; the image is again a Del Pezzo surface S ′ of degree n−1,

by (b). Therefore S ′ has only finitely many double points, by the induction hypothesis.

It follows that the number of double points on S is also finite, since the image of a

double point is a double point.

(d): We proceed by induction. For degree 3, it is well-known that any cubic surface

of type (3) or (4) has only finitely many lines. For n ≥ 4, assume indirectly that S has

infinitely many lines. Let p be a nonsingular point on S. Since S is not a cone with

vertex p, there are only finitely many lines through p. Hence there remain infinitely

many lines on the image S ′ of the projection from p. But S ′ is a Del Pezzo surface,

contradicting the induction hypothesis.

The lines on a Del Pezzo surface are interesting for several reasons. One of them

is that they can be used to construct a Del Pezzo surface of degree one higher which

projects to the given Del Pezzo surface.

Here is an explicit unprojection algorithm. It assumes that we have given a Del

Pezzo surface S ⊂ IPn and a line l lying on S.

1. Choose a generic linear form L(x0, . . . , xn) vanishing on l.
2. Compute the intersection of the hyperplane defined by L with S. As we will show

in Theorem 14, it consists of two components: the line l and a rational normal curve

C of degree n− 1.

3. Choose a generic quadratic form Q(x0, . . . , xn) vanishing on C. (We will show in

Theorem 14 that there exist such quadratic forms.)

4. Compute the image of S under the map given by

(x0: . . . :xn) �→
(

x0: . . . :xn:
Q(x0, . . . , xn)

L(x0, . . . , xn)

)
.

Example 12. Let S ⊂ IP3 be the surface given by

3x0x
2
1 + 3x0x

2
2 + 3x0x

2
3 − 3x3

0 − 10x1x2x3 = 0.

This cubic has 27 lines on it (see fig. 3). Let l be the line x0 = x3 = 0.

We choose the linear form L := x3. It intersects S in l and in the plane conic C
defined by x3 = x2

1 + x2
2 − x2

0 = 0.

Now we choose the quadric Q := x2
1 + x2

2 − x2
0.

To compute the image of the map defined in the unprojection algorithm, we intro-

duce a new variable x4. The equation Lx4 − Q = 0 holds on the image. A second
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Fig. 3. A cubic Del Pezzo surface with 27 real lines (picture courtesy of O. Labs)

equation can be found by writing the equation of S as linear combination of L and Q
and dividing by L, replacing Q/L by the new variable x4:

3x0(x
2
1 + x2

2 − x2
0) + (3x0x3 − 10x1x2)x3

x3
= 3x0x4 + 3x0x3 − 10x1x2 = 0.

The image is the intersection of these two quadratic forms in IP4, which is indeed a

surface of degree 4.

Remark 13. How do we know whether our choice of the linear or quadratic form in

steps 1 and 3 were general enough? In practice, the best strategy is just to try an arbitrary

one. There is a chance that the choice does not work, but the bad choices are of measure

zero in the set of all choices.

Theorem 14. The unprojection algorithm is correct.

Proof. We begin by proving the statement claimed in step 2: the hyperplane defined by

L intersects S in l and a rational normal curve of degree n − 1. In fact, it is clear that

l is a component of the intersection, and that the degrees of the remaining irreducible

components add up to n − 1, but we have to show that there is only one remaining

component.

Let p be a nonsingular point on l. The projection from p is a Del Pezzo surface S ′

by theorem 11. The line l projects to a point q ∈ S ′, which is either a single or a double

point (in fact, it is always a double point, as we will see in remark 15 below). Projection

from q is birational by the degree formula 1: let S ′′ be the image. The remaining com-

ponents project to a generic hyperplane section of S ′′. By Bertini’s theorem (see [9],

Thm. 8.18, p. 179; Rem. 8.18.1, p. 180), generic hyperplane sections are irreducible,

and the statement is proven.

The ideal of the rational normal curve C is generated by quadratic forms. Therefore

the generic quadratic form Q through C does not vanish identically on the line l. Con-

sequently, Q is not contained in the vector space generated by the quadratic multiples
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of L and the quadratic forms vanishing on S. This implies that the image S0 of the

unprojection constructed in step 4 is not contained in a linear subspace.

The degree of S0 is the number of intersections of S ′ with two generic hyperplanes

H1, H2. We can assume that the form defining H1 does not contain the new variable

xn+1 (by linear algebra). It defines a hyperplane H3 ⊂ IPn. The intersection points

of H1 and H2 and S0 correspond to the intersection points of S and H3 and some

quadric surface Q0, which we get when we multiply the equation of H2 by L and

replace L times the new variable by Q, minus the intersection points of S, L, and H3.

This number is 2n − (n − 1) = n + 1. Therefore S0 is a surface of almost minimal

degree.

There is an obvious projection from S0 to S (omitting the last coordinate). The

center is a nonsingular point, by the degree formula 1. Because S0 is rational and is not

a spoiled surface of minimal degree, S0 is a Del Pezzo surface.

Remark 15. Revisiting the above proof again, we can now show that if p is a nonsin-

gular point lying on a line l contained in S, then the image q of l under the projection

is a double point on the image S ′ of S. Let S′′ be the image of the projection from q.

The generic hyperplane section of S ′′ is a birational image of the rational normal curve

which forms together with L the intersection of S with a general hyperplane through L.

Hence S′′ is not a Del Pezzo surface, and q cannot be a nonsingular point.

6 Classification of Del Pezzo Surfaces

For the theory of Del Pezzo surfaces, the techniques of projection and unprojection are

very useful because they allow induction proofs (upward and downward). We can draw

an (infinite) directed graph of all Del Pezzo surfaces up to projective transformations,

with an edge from S1 to its images under projections from nonsingular points. The

natural question arises: is this graph connected?

It is clear that it would suffice to show that there is a path connecting any two cubic

Del Pezzo surfaces, because we can always do projection steps down to degree 3, and

these are the minimal vertices of the graph.

Another possible approach is to locate the maximal vertices of the graph.

Theorem 16. Let S be a Del Pezzo surface without a line. Then S is one of the follow-

ing three surfaces:

1. the nonsingular surface F9 ⊂ IP9 with parametrization (1:s:t:s2:st:t2:s3:s2t :
st2:t3);

2. the nonsingular surface F8 ⊂ IP8 with parametrization (1:s:s2:t:st:s2t:t2:st2 :
s2t2);

3. the surface G8 ⊂ IP8 with parametrization (1:s:s2:s3:s4:st:s2t:s3t:s2t2), which

has a double point at (0: . . . :0:1).

For the proof, which is beyond the scope of this paper, we refer to [12] or [18].

Theorem 17. Every sequence of successive unprojections terminates.



86 J. Schicho

If the sequence contains a nonsingular surface, then all subsequent unprojections are

also nonsingular, because we cannot get rid of double points by projection. Then it is

also clear that the sequence terminates, because by unprojecting nonsingular Del Pezzo

surfaces we cannot create new lines (as lines always project to lines), but we will erase

at least one line. This follows from the fact that all lines not passing through the center

of projection are also there on the image of projection. If the image is nonsingular, then

there is no line passing through the center, because such a line would project to a double

point (see remark 15).

Unprojection can create new lines if the exceptional line contains double points. We

do not give a termination proof for this case, because this would require a deeper anal-

ysis of the type of double points of Del Pezzo surfaces. For a full proof of termination

(using a different approach), we refer to [18].

F
8

G
8

F
9

Fig. 4. A piece of the graph of Del Pezzo surfaces

Corollary 18. The graph of Del Pezzo surfaces is connected. For every Del Pezzo sur-

face except F8 and G8, there is a sequence of unprojections terminating with F9.

Proof. To show that the graph is connected, it suffices to show that there are paths of

projections and unprojections connecting F9, F8, and G8. These paths are shown in

fig. 4. The lattice polygons represent monomial parametrizations of Del Pezzo surfaces

(see also remark 6).

The surfaces F8 and G8 have a group of projective automorphisms that acts transi-

tively on the nonsingular points. Therefore, there is, up to projective isomorphism, just

one projection image of F8 and one from G8, namely those depicted in fig. 4.

Let S be a Del Pezzo surface different from F8 and G8. Then there is a sequence of

unprojections terminating with F9, F8, or G8. If it terminates with F8 or G8, then the

last but one surface can also be unprojected to F9, as can be seen in fig. 4.

Corollary 19. Every Del Pezzo surface S ⊂ IPn except F8 and G8 has a parametri-

zation by cubic polynomials through 9 − n base points (infinitely near base points are

allowed).
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Proof. Every such Del Pezzo surface is a projection from S9, which is parametrized by

cubic polynomials. If S has degree n, then we need n projection steps, each introducing

one base point.

Here is an algorithm to construct a parametrization of an implicitly given Del Pezzo

surface. It assumes that we have given a Del Pezzo surface S ⊂ IPn in implicit form.

1. Reduce to the case n = 4 by some projection or unprojection steps.

2. Compute a line on S.

3. Project from the line. This is a birational map onto IP2.

4. Compute the inverse of the map.

5. Reverse the projection/unprojection steps from step 1.

Example 20. Let S be the cubic surface from example 12. We already did the unpro-

jection to a surface S0 ⊂ IP4 with equations

x3x4 − x2
1 − x2

2 + x2
0 = 3x0x4 + 3x0x3 − 10x1x2 = 0.

The surface S0 contains the line (3:3:3p:9p:p). The projection from this line is given by

(x0: . . . :x4) �→ (x0 − x1 : 3x2 − x3 : x2 − 3x4).
We do the linear coordinate change

(x0, . . . , x4) = (y3, y0 + y3, y2 + 3y4, y1 + 9y4, y4)

in order to move l to a coordinate subspace. The transformed system is

y1y4 − y2
0 − 2y0y3 − y2

2 − 6y2y4 = 3y1y3 − 10y0y2 − 30y0y4 − 10y2y3 = 0.

This is a linear system for y3, y4. The inverse of the projection is given by the solution

to this system. The parametrization of S0 can then easily be computed by plugging into

the above change of coordinates. The parametrization of S is then computed even more

easy, we just have to truncate the last coordinate function.

Remark 21. In steps 1 and 2, we need some line on the surface. This can be done by

plugging the parametrization of a general line into the equations and solving for the

coefficients of the general line. It pays off to first project the surface into 3-space before,

because this reduces the number of unknowns.

For the inversion of a birational map, we refer to [16].

Remark 22. For nonsingular Del Pezzo surfaces of degree less than or equal to 7, the

number of lines depends only on the degree (e.g. nonsingular cubic surfaces have 27

lines). The incidence graph of the lines is also determined by the degree. See [12] for

details.

7 Del Pezzo Surfaces of Degree 2 and 1

In order to describe Del Pezzo surfaces of degree 2 and 1, we need to introduce a

generalization of projective spaces, namely weighted projective spaces (see also the

short note [14]).
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Let w := (w0, . . . , wn) be a vector of positive integers. Weighted projective space

IPw is defined as the quotient of Cn+1 − {0} by the equivalence relation identifying

(x0, . . . , xn) with (λw0x0, . . . , λ
wnxn), for any λ ∈ C∗. This is an algebraic variety of

dimension n. If w = (1, . . . , 1), then IPw is just IPn.

Weighted projective varieties are algebraic subvarieties of IPw. They are defined

by weighted homogeneous polynomials. The weigthed degree of a monomial summand

xe0
0 . . . xen

n is defined as
∑

i wiei, and a polynomial is weighted homogeneous iff all its

monomials have the same weighted degree.

For any projective variety X ⊂ IPn, the Hilbert function H : IN → IN is defined

by setting H(m) as the dimension of the quotient vector space of all forms of degree

m in x0, . . . , xn modulo the vanishing ideal of X . For large m, the function H is a

polynomial. Its degree is the dimension of X . If the dimension is r, then the leading

coefficient of the Hilbert polynomial times r! is equal to the degree of X (see [9]).

Using the Hilbert function, we can define the degree also for varieties in weighted

projective spaces. It is natural to define that a surface S has almost minimal degree d
if the leading coefficient of the Hilbert polynomial is d

2 , and the value of the Hilbert

function at m = 1 is d + 1. (In the case of ordinary projective space, this is equivalent

to saying that S has degree d and is contained in IPd but not in a linear subspace.)

When we add the restrictions that S is rational and not spoiled, we have defined

weighted Del Pezzo surfaces. It turns out that we get two new types of Del Pezzo sur-

faces, namely those of degree 2 and those of degree 1.

By definition, a Del Pezzo surface of degree 2 is a surface S ∈ IP1,1,1,2 defined

by a polynomial F of weighted degree 4, subject to the following conditions. We can

write F (x0, x1, x2, y) as cy2 + F2(x0, x1, x2)y + F4(x0, x1.x2) for a suitable constant

c and polynomials F2, F4 of degree 2 and 4, and we define the quartic polynomial

D(x0, x1, x2) := discy(F ) = F 2
2 − 4cF4.

1. The discriminant D is squarefree. (One can show that otherwise S is a spoiled

surface of minimal degree.)
2. The discriminant D has no four-fold point. This just excludes 4 lines meeting in a

point. (One can show that otherwise S is not rational.)

Let S be a Del Pezzo surface of degree 2. The projection onto the first three projec-

tive coordinates projects S onto IP2. This map is actually defined everywhere (because

the point (0:0:0:1) does not lie on S), and has tracing index 2. The inverse image of

a line l ⊂ IP2 is in general an elliptic curve on S. If l is a tangent to the discriminant

curve D = 0, then the inverse image is rational. If l is a bitangent, i.e. l is tangent at

two points, then the inverse image has two components, both of which are rational. In

such a case, the two components are called pseudo-lines. They play a similar role as the

lines of Del Pezzo surfaces in ordinary projective space.

Any pseudo-line l can be defined by a linear equation L(x0, x1, x2) = 0 and a

weighted quadratic equation of type y −Q(x0, x1, x2) = 0. The unprojection is given

as the image of S under the rational map defined by
(
x0, x1, x2,

y−Q
L

)
.

Example 23. Let S be the Del Pezzo surface given by the equation

y2 − 10x1x2y + 9x2
0x

2
1 + 9x2

0x
2
2 − 9x4

0 = 0
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in IP1,1,1,2. The discriminant is 100x2
1x

2
2 − 36x2

0x
2
1 − 36x2

0x
2
2 + 36x4

0. The line x0 = 0
is a bitangent. For computing the inverse image, we set x0 to 0 and get the equation

y2 − 10x1x2y, which factors into y(y − 10x1x2). Each of the two factors give one

pseudo-line.

We use the pseudo-line x0 = y = 0 for unprojection. The unprojection map is(
x0 : x1 : x2 : y

3x0

)
, and the image is the cubic surface

3x0x
2
1 + 3x0x

2
2 + 3x0x

2
3 − 3x3

0 − 10x1x2x3 = 0.

Projection from a nonsingular point of a cubic Del Pezzo surface S0 ⊂ IP3 (say the

point (0:0:0:1)) is more than just omitting the last coordinate: we also need to give a

value for the additional coordinate y of weight 2. This value is not uniquely determined.

It is the product of x3 with the leading coefficient of the cubic equation with respect to

x3 (which is a linear polynomial because (0:0:0:1) is a nonsingular point), plus an

arbitrary quadratic form in x0, x1, x2.

Theorem 24. Let S ⊂ IP1,1,1,2 be a Del Pezzo surface of degree 2. Then S has a

parametrization with the first three coordinate functions being cubics through 7 base

points, and the fourth coordinate function being a sextic vanishing doubly at the 7 base

points.

Proof. Every quartic has a bitangent. So, take one, and use one of the two pseudo-

lines in the preimage for unprojection. Let S0 be the resulting cubic Del Pezzo surface.

By Corollary 19, S0 has a parametrization (C0:C1:C2:C3) by cubic through 6 base

points p1, . . . , p6. By projection, we introduce an additional base point p7. The first

three coordinate functions C0, C1, C2 (which are part of the parametrization of S) pass

also through p7. The fourth component of the parametrization of S can be computed as

F := L(C0, C1, C2)C3 + Q(C0, C1, C2), where L is the equation of the tangent plane

to the projection center (0:0:0:1), and Q is an arbitrary quadratic form. Hence F has

degree 6, and vanishes doubly at p1, . . . , p6. But L(C0, C1, C2) vanished doubly at p7,

therefore F also has a double point at p7.

Remark 25. A nonsingular plane quartic has exactly 28 bitangents. Because a Del Pezzo

surface of degree 2 is nonsingular iff its discriminant is nonsingular, we see that the

number of pseudo-lines on a nonsingular Del Pezzo surface of degree 2 is 56.

Let us now turn to Del Pezzo surfaces of degree 1. By definition, this is a surface

S ∈ IP1,1,2,3 defined by a polynomial F of weighted degree 6, subject to the following

conditions. We can write F (x0, x1, y, z) as c1z
2 + c2y

3 + F1yz + F2y
2 + F3z +

F4y +F6 for a suitable constants c1, c2 and polynomials F1, F2, F3, F4, F6 in x0, x1 of

degree 1, 2, 3, 4, 6, and we define the polynomial D(x0, x1, y) := discz(F ) (a weighted

polynomial of degree 6).

1. The discriminant D is squarefree, and c2 �= 0. (One can show that otherwise S is a

spoiled surface of minimal degree.)

2. The discriminant D has at most one triple point. (One can show: if D is squarefree,

and c2 �= 0, then it has at most two triple points, and if it has two triple points, then

S is not rational.)
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Similar as for Del Pezzo surfaces of degree 2, chopping of the coordinate z gives

a rational map of tracing index 2. The image is the weighted projective plane IP1,1,2.

There are two kinds of pseudo-lines. When the inverse image of a curve of weighted

degree 2, not passing through the point (0:0:1), splits into two components, both of

them are pseudo-lines of the first kind. The second type arises as the inverse image of a

curve of weighted degree 1, if this inverse image contains a singular point.

Example 26. Let S ⊂ IP1,1,2,3 be given by the equation

z2 − y3 − x4
0x

2
1 − 2x3

0x
3
1 − x2

0x
4
1 = 0.

The inverse image of y = 0 splits into two pseudo-lines y = z± (x2
0x1 + x0x

2
1) = 0 of

the first kind.

The unprojection map with respect to one of them is

(x0:x1:y:z) �→
(

x0:x1:
z + x2

0x1 + x0x
2
1

y
:y

)
.

Its image is the surface in IP1,1,1,2 with equation

(x3y − 2x2
0x1 − 2x0x

2
1)x3 − y2 = 0.

Example 27. Let S ⊂ IP1,1,2,3 be the surface in example 26. The point p := (1:0:0:0)
is a double point of S. There is a unique form of weighted degree 1 vanishing at p,

namely x1. This gives the pseudo-line z2 − y3 = x1 = 0. Its unprojection map is

(x0:x1:y:z) �→
(

x0:x1:
y

x1
:
z

x1

)
,

and the equation of the image is

y2 − x3
2x1 − x4

0 − 2x3
0x1 − x2

0x
2
1 = 0.

Theorem 28. Let S ⊂ IP1,1,2,3 be a Del Pezzo surface of degree 1. Then S has a

parametrization with the first two coordinate functions being cubics through 8 base

points, the third coordinate function being a sextic vanishing doubly at the 7 base points,

and the fourth coordinate function being a ninetic vanishing triply at the 7 base points.

The proof is similar to the proof of Theorem 24.

Remark 29. The number of pseudo-lines on a nonsingular Del Pezzo surface of de-

gree 1 is 240. See [12] for a proof.

The parametrization algorithm in sect. 6 can easily be generalized to Del Pezzo

surfaces of degree 2 and 1. The so constructed parametrizations are of the type described

in the theorems 24 and 28.
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8 Real Del Pezzo Surfaces

If the system of equations defining a complex Del Pezzo surface are real numbers, then

set of real solutions – if not empty – form a real algebraic surface, which we call a real

Del Pezzo surface.

Projection from real nonsingular points and unprojection using real lines (or pseudo-

lines in degree 2 or 1) works exactly as in the complex case. A new construction is the

projection from a pair (p, p′) of complex conjugate points. Both points must be nonsin-

gular, and not lying on a common line on S. The result is over the complex numbers

isomorphic to the result of two subsequent projections. The result can be realized as a

real algebraic surface, because it is the projection from the line pp′, and this is a real

line.

Similarily, we have a new construction of unprojection using a pair of complex

conjugate lines (or pseudo-lines). The two lines must not meet in a nonsingular point,

because otherwise unprojection from one line would delete the other line.

Projection and unprojection are real birational maps. The number of connected com-

ponents is invariant under real birational maps. But this number is not always the same

for all real Del Pezzo surfaces. For instance, there are cubics with one component and

cubics with two component. Other examples are given below. Therefore, the real graph

of Del Pezzo surfaces is not connected.

Here is the classification of maximal vertices of this graph. The proof is again be-

yond the scope of this paper; we refer to [20].

Theorem 30. Let S be a real Del Pezzo surface without a real (pseudo-)line and with-

out a pair of complex conjugate (pseudo-)lines that do not intersect each other. Then S
is one of the following.

1. one of the surfaces F9, F8, or G8, appearing in the complex classification Theo-

rem 16. All these surfaces have one component;

2. a surface in IP8 with parametrization (1:s:s2:t:st:(s2 + t2)s:t2:(s2 + t2)t:(s2 +
t2)2), which has one component;

3. a Del Pezzo surface of degree 4 with two components;

4. a Del Pezzo surface of degree 2 with three or four components;

5. a Del Pezzo surface of degree 1 with five components.

Remark 31. It is easy to see that surface 2 in the above classification is isomorphic to

F8 over the complex numbers. Over the reals, they are not isomorphic. In order to see

this, note that F8 has two one-parameter-families of conics, setting either s or t to a

constant parameter. But surface 2 has no real conic at all.

Example 32. Let S ⊂ IP4 be the Del Pezzo surface

x2
1 + x2

2 − x2
0 = x2

3 + x2
4 − x1x2 = 0.

There are no real lines on S, and 8 complex lines. These are the lines piqj , i = 1, . . . , 4,

j = 1, 2, where p1, p2, p3, p4 are the four real intersection points of the conic C :
x2

1 + x2
2 − x2

0 = x3 = x4 = 0 with the hyperplanes x1 = 0 and x2 = 0, and q1, q2
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p
1

p
2

p
3

p
4

Fig. 5. Left: Planar picture of a Del Pezzo surface with 2 components. Right: A quartic curve with

28 real bitangents.

are the conjugate complex points (0 : 0 : 0 : 1 : ±i). For each i = 1, . . . , 4, the line

piq1 is conjugate to the line piq2, and this pair of conjugates meets in pi. Since pi is a

nonsingular point of S (the only singularities on S are q1 and q2), unprojection is not

possible.

In order to see the two connected components, we project the surface onto the first

three projective coordinates. The complex image is the conic C. The real image is the

subset of points on the conic for which the form x1x2 is positive or zero. This subset

of conics has two components, namely the arc connecting p1p2 and the arc p3p4 in the

notation as in fig. 5 (left).

Example 33. Let F (x0, x1, x2) be the quartic equation

F = 17(x4
1 + x4

2) + 30x2
1x

2
2 − 160(x2

1 + x2
2)x

2
0 + 380x4

0,

and let S be the Del Pezzo surface with equation y2 + F in IP1,1,1,2. The quartic F
has 28 real bitangents (see fig. 5, right). Each preimage splits into pair of complex

conjugate pseudo-lines, intersecting each other in two real points on the surface, namely

the preimages of the tangential points. Therefore unprojection is not possible.

The surface has 4 components, each projecting onto one of the four components of

the subset of the plane defined by F ≤ 0 (the black regions in fig. 5, right).

Example 34. An example of a Del Pezzo surface with 5 components is given by the

equation

x6
0 + x6

1 + 2(x4
0 + x4

1)y − 0.9x2
0x

2
1y − y3 + z2 = 0

in IP1,1,2,3.

Since a real parameterization of tracing index 1 is a real birational map, only the

surfaces with one component may have such a parametrization. For all maximal vertices

in the real graph of Del Pezzo surfaces that have only one component, we have given a
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parametrization in Theorem 30. It follows that a real Del Pezzo surface has a birational

parametrization if and only if it has one component.

We can say a bit more: projection does not increase the degree of the parametri-

zation; and for the maximal vertices, we have given parametrizations of degree 3 and

4. It follows that every real Del Pezzo surface with one component has a birational

parametrization of degree 3 or 4.

For real Del Pezzo surfaces with two, three, or four components, one can construct

parametrizations which are not birational. No such construction is known for Del Pezzo

surfaces with five components. In particular, we do not know if the surface in exam-

ple 34 has a real parametrization or not.

Example 35. In order to construct a parametrization of the surface S in example 32, we

first give a parametrization of the arc p1p2 of the conic C:

(x0:x1:x2) =

(
1:

2(t2 + 1)

(t2 + 1)2 + 1
:
(t2 + 1)2 − 1

(t2 + 1)2 + 1

)
,

by composing a well-known parametrization of the conic with the function t �→ t2 + 1.

This is an algebraic way of restricting the parameter space to the interval [1,∞).
This parametrization is plugged into the equation x2

3 +x2
4−x1x2, leaving the prob-

lem of parametrizing a circle with radius
2t2(t2+1)(t2+2)
((t2+1)2+1)2 . Such a parametrization can be

computed by a projection from the point
(

t(
√

2t2−2)
t2+2t+2 , (

√
2+2)t2

t2+2t+2

)
to a line followed by

an unprojection:

(x0:x3:x4) =

(
1: t(−

√
2t2+2−4ts−2ts

√
2+s2

√
2t2−2s2)

(t4+2t2+2)(1+s2) :

−t(−2t−
√

2t+2s
√

2t2−4s+2ts2+ts2
√

2)
(t4+2t2+2)(1+s2)

)

The computation was done with the help of the computer algebra system Maple. Con-

catenation of these two parametrizations gives a parametrization of S with tracing in-

dex 2.

Remark 36. The technique used in example 35 can be used to parametrize arbitrary Del

Pezzo surfaces of degree 4 with two components (and therefore all Del Pezzo surfaces

with two components, because we can reduce to degree 4 by unprojection): compute

a projection with conic fibers, restrict the parameter space algebraically, parametrize

the parametric family of conics. A similar technique can also be used for Del Pezzo

surfaces with 3 components (see also [13, 17]).

In order to parametrize Del Pezzo surfaces with 4 components, it is theoretically

possible to use the construction in [19] which works over arbitrary fields. Unfortunately,

the so constructed parametrization has tracing index 24 and is very complicated. The

author computed a parametrization of example 33 with this method, but the output fills

several pages.
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Abstract. The tangent developable of a curve C ⊂ P
3 is a singular surface with

a cuspidal edge along C and the flex tangents of C . It also contains a multiple

curve, typically double, and we express the degree of this curve in terms of the

invariants of C . In many cases we can calculate the intersections of C with the

multiple curve, and pictures of these cases are provided.

1 Introduction

If we have a curve on which tangents can be defined, then the associated tangent de-

velopable is the surface swiped out by the tangents. Tangent developables have a cus-

pidal edge, and are easy to generate. Since most developable surfaces are tangent de-

velopables, the Computer Aided Geometric Design community should be interested in

their properties. This article describes the local and global geometry of tangent devel-

opables.

For the local study of tangent developables we consider analytic real curves. Cleave

showed in [1] that for most curves the tangent developable has a cuspidal edge along

most of the curve. This was extended by Mond in [4] and [5] where he analyzed the tan-

gent developable of more special curves. This work was further extended by Ishikawa

in [3], and results from that article are used in sect. 3.

The following section contains figures illustrating the local behavior of tangent de-

velopables, and one may want to have a brief look at these before reading the rest of the

text.

In sect. 5 the tangent developables of complex projective algebraic curves are de-

scribed. Algebraic geometrical invariants are introduced and relations between these

invariants are taken from [6]. We also show that tangent developables of rational curves

of degree ≥ 4 have a double curve.

Many thanks goes to Ragni Piene for lots of good advice and considerable help with

this article.

2 Tangent Developables

Given a curve in some space, its tangent developable is the union of the tangent lines

to the curve. The tangent line at a singular point is defined as the limit of tangent lines

at non-singular points. If the curve is algebraic, then its tangent developable will be an

algebraic surface.
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Assume we have a parameterization of a curve with a non-vanishing derivative.

Then we can make a map that parameterizes the corresponding tangent developable.

Let U ⊂ R, γ : U → R3 be a map with a non-vanishing derivative. Define the map

Γ : U × R → R3 by

Γ (t, u) = γ(t) + uγ′(t) (1)

In this case the tangent developable of γ(U) is the image of Γ . The following example

uses this technique to calculate the implicit equation of a tangent developable.

Example 1 (The tangent developable of the twisted cubic). Consider the twisted cubic

curve parameterized by γ : R → R3 where γ(t) = (t, t2, t3). The tangent developable

is then the image of Γ : R
2 → R

3 where Γ (t, u) = (t + u, t2 + 2ut, t3 + 3ut2). The

algebra program Singular [2] can calculate the implicit equation of the surface:

z2 − 6xyz + 4x3z + 4y3 − 3x2y2 = 0.

In this case the implicit equation describe the same set of points as the the image of

Γ . However, when dealing with real parameterizations this is not always true.

Calculating the Jacobian ideal shows us that the tangent developable is singular ex-

actly at γ(R). Moreover, if the surface is intersected with a general plane, the resulting

curve will have a cusp singularity at each intersection point with γ(R).

Definition 2 (The type of a germ). Let γ be a smooth (C∞) curve germ, γ : (R, p)→
(R3, q). We say that the germ is of finite type if the vectors

γ′(p), γ′′(p), γ′′′(p), γ(4)(p), . . .

span R3. In this case, let ai = min{k | dim〈γ′(p), γ′′(p), . . . , γ(k)(p)〉 = i} and define

the type of the germ to be the triple (a1, a2, a3).

In this article we will only look at parameterizations where all the germs are of finite

type.

What does a tangent developable look like? Along most of the curve, the tangent

developable has a cuspidal edge singularity, so it is never smooth.

3 Local Properties of a Real Tangent Developable

We now want to study the local properties of the tangent developable close to the curve.

Now we are no longer forced to use complex numbers, so we choose to study only

real tangent developables. Since this is a local study, we now look at germs of curves

γ : (R, 0)→ (R3, 0), as in definition 2.

Cleave shows in [1] that the tangent developable of most smooth curves γ have a

cuspidal edge along most of the curve. That is, the cuspidal edge exists at intervals of

points of type (1, 2, 3). We have already decided only to look at curves where all the

points are of finite type, and for all of these curves we will have a cuspidal edge along

most of the curve.

In the language of Cleave: Given a curve with nonzero curvature and torsion at a

point γ(t0). If the tangent developable is intersected with a general plane through γ(t0),
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the resulting curve will have a cusp at that point. In [5] Mond provides drawings of the

tangent developable at points of type (1, 2, k) for 3 ≤ k ≤ 7. This is (in the language

of differential geometry) when the torsion vanishes to order ≤ 4.

This was extended by Goo Ishikawa in [3], where he proves the following: The local

diffeomorphism class of the tangent developable is determined by the type of the point

if and only if the type is one of the following: (1, 2, 2 + r) where r is a positive integer,

(1, 3, 4), (1, 3, 5), (2, 3, 4) or (3, 4, 5).
In other words, for these types we can restrict our study to curves on the form

x = tl1+1 =: ta

y = tl2+2 =: tb

z = tl3+3 =: tc

at the origin. For other types we have to include more terms (of the power series) in the

local parameterizations to study the point. In these cases we can get several different

real pictures, but since points of other types are quite exotic, they will not be analyzed

here.

Knowing this we can calculate local self intersection curves at points of type (1, 2, k)
quite easily:

Example 3 ((a, b, c) = (1, 2, k) for k ≥ 3). To find local self intersection curves we

need to solve the equation Γ (t, u) = Γ (s, v) where Γ is defined as in eq. (1), Γ (t, u) =
(t + u, t2 + 2tu, tk + ktk−1u). Some straightforward calculations leads us to solving

−(t2 − s2) + 2w(t− s) = 0

(1− k)(tk − sk) + kw(tk−1 − sk−1) = 0,

where w = t + u = s + v.

Assuming s �= t we (eventually) get

0 = 2(1− k)(tk − sk) + k(t + s)(tk−1 − sk−1)

= (2− k)(tk−1 + sk−1) + 2(tk−2s + tk−3s2 + . . . + tsk−2).

It is not hard to prove that s = −t is the only possible real self intersection by analyzing

the polynomial f(t) = (2−k)(tk−1+1)+2(tk−2+tk−3+. . .+t) and its derivative. The

real self intersection occurs exactly when k is even. This is compatible with what Mond

found in [4], but since Mond looked at C∞ curves he could only draw the conclusion

for k ≤ 7. Note that we have complex self intersections for all k ≥ 5.

Example 4 (Types (1, 3, 4), (1, 3, 5), (2, 3, 4) and (3, 4, 5)). Points of types (1, 3, 4),
(1, 3, 5) and (2, 3, 4) each have one local real self intersection curve, while points of

type (3, 4, 5) have no real self intersection curves. This was calculated using Singular

[2].

The following section contains pictures of all of these types.
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4 Illustrations

This section contains figures of tangent developables of different curves, each param-

eterized by a map t → (ta, tb, tc) for some triple (a, b, c). For each of the curves, the

origin is of type (a, b, c) and all other points (close to the origin) are of type (1, 2, 3).
For all the figures, we have drawn the points that are at a distance of ≤ 2 from the

origin, so the figures illustrate the local properties of the tangent developable.

The first five figures show points of type (1, 2, k). We can see that we have self

intersection curves exactly when k is even, as calculated in example 3.

In the first figure, all points are of type (1, 2, 3):

For most curves, the only types are (1, 2, 3) and (1, 2, 4). The following figure

shows a point of type (1, 2, 4):

The following figures show points of type (1, 2, k).
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The tangent developable of the curve (t, t2, t5)

The tangent developable of the curves (t, t2, t6) and (t, t2, t7)

The rest of the figures come from example 4. Note that for the points where k1(0) =
1 (types (1, 3, 4) and (1, 3, 5)) the line which is a cuspidal edge, but not part of the curve,

is an inflectional tangent line. This corresponds to the Plücker formula mentioned in

sect. 5, c = r0 + k1, where c is the degree of the cuspidal edge.

The tangent developable of the curve (t, t3, t4)
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The tangent developable of the curve (t, t3, t5)

The tangent developable of the curve (t2, t3, t4)

The tangent developable of the curve (t3, t4, t5)

5 The Tangent Developable of a Complex Algebraic Curve

To any projective algebraic curve, there are associated several invariants, most impor-

tantly the degree and genus of the curve. Classical algebraic geometry gives many rela-

tions between these values and the geometry of the curve. In [6] Piene obtained results

for the tangent developable, and the formulas have been taken from that article.
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In this section a curve will be a reduced algebraic curve C0 in the projective complex

3-space, P3
C

. We also assume that the curve spans the space. Let X ⊂ P3
C

denote the

tangent developable of C0.

Let h : C → C0 be the normalization map, so that C is the desingularization of C0.

Let g denote the (geometric) genus of the curve and r0 the degree. The rank r1 is defined

as the number of tangents that intersect a general line. Clearly this is the same as the

degree of the tangent developable. The class r2 is defined as the number of osculating

planes to C0 that contain a general point. The osculating plane at a point on the curve

is the plane with the highest order of contact with the curve at that point. Another point

of view is that the osculating plane at a point x0 is the limit of the planes containing x0,

x1 and x2 as x1, x2 → x0.

For each point p ∈ C, we can choose affine coordinates around h(p) such that the

branch of C0 determined by p has a (formal) parameterization at h(p) equal to

x = tl1+1 + . . .

y = tl2+2 + . . .

z = tl3+3 + . . .

with l0 := 0 ≤ l1 ≤ l2 ≤ l3. This (formal) parameterization is also a curve germ

γ : (C, 0) → (C3, 0). Because of this we extend the notion of the type to the complex

domain, and say that the type of the germ determined by p is equal to (l1+1, l2+2, l3+
3).

The coordinates are chosen such that p is the origin, the tangent is the line y = z =
0, and the osculating plane is z = 0. We call ki(p) = li+1−li the ith stationary index of

p. Since ki(p) �= 0 only for a finite number of points p we can define ki =
∑

p∈C ki(p).
If l1 = 0, then the germ is nonsingular. If l1 ≥ 1 we say that the germ has a cusp,

and if l1 = 1 the cusp is said to be ordinary. If l1 = 0 and l2 ≥ 1 we call the point h(p)
an inflection point or flex, and if l2 = 1 the flex is ordinary. If l1 = l2 = 0 and l3 ≥ 1
we say that the curve has a stall or a point of hyperosculation. For most curves we will

have no cusps and no flexes.

Now it is time to state the relations between these values, all taken from [6]:

r1 = 2r0 + 2g − 2− k0 (2)

r2 = 3(r0 + 2g − 2)− 2k0 − k1 (3)

k2 = 4(r0 + 3g − 3)− 3k0 − 2k1 (4)

Note that r1 ≥ 3 since since r1 is the degree of the tangent developable, and no quadric

surface with a cuspidal edge exists. Furthermore, r2 ≥ 3 since r2 is the degree of the

dual curve, and the dual curve must span the space. From the definition we get k2 ≥ 0.

The tangent developable X of C0 has degree µ0 = r1, rank µ1 = r2 (defined as the

class of the intersection of the tangent developable with a general plane, a plane curve)

and class µ2 = 0 (defined as the number of tangent planes containing a general line). Its

cuspidal edge consists of C0 and the flex tangents of C0. The cuspidal edge has degree

c = r0 + k1.

Formulas involving algebraic invariants, as those above, are often called Plücker

formulas, and such formulas is central in enumerative algebraic geometry. There are

lots of Plücker formulas, relating many different algebraic invariants.
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In addition to the cuspidal edge, X has a double (or higher order multiple) curve,

some times called the nodal curve of C0. It consists of points that are on more than one

tangent of C0. Eventual bitangents are part of the nodal curve.

Let b denote the degree of the nodal curve. If the nodal curve is double and the flexes

of C0 are ordinary, then [6] gives the following expressions for b:

2b = µ0(µ0 − 1)− µ1 − 3c = r1(r1 − 1)− r2 − 3(r0 + k1)

= r1(r1 − 4)− k0 − 2k1

= (2r0 + 2g − 2− k0)(2r0 + 2g − 6− k0)− k0 − 2k1.

For rational curves, g = 0, so then

2b = (2r0 − 2− k0)(2r0 − 6− k0)− k0 − 2k1.

In this case we see that

k2 = 4(r0 − 3)− 3k0 − 2k1 ≥ 0

implies

k0 = 4
3r0 − 4− 2

3k1 − 1
3k2 ≤ 4

3r0 − 4

We can find a lower bound for b for rational curves of degree r0 ≥ 4 by first elimi-

nating k1 (using eq. (4)) in the expression for b:

2b = (2r0 − 2− k0)(2r0 − 6− k0)− k0 − 2k1

= (2r0 − 2− k0)(2r0 − 6− k0) + 2k0 + k2 − 4r0 + 12

≥ (2r0 − 2− k0)(2r0 − 6− k0) + 2k0 − 4r0 + 12 (using k2 ≥ 0).

As a function in k0 the expression above is strictly decreasing (for k0 ≤ 4
3r0 − 4). In

other words, we can set k0 = 4
3r0 − 4 and not break the inequality:

2b ≥ (2r0 − 2− ( 4
3r0 − 4))(2r0 − 6− ( 4

3r0 − 4)) + 2( 4
3r0 − 4)− 4r0 + 12

= 4
9r0(r0 − 3).

We conclude that rational curves with b = 0 must have degree ≤ 3, and the twisted

cubic is the only one of these that is not planar. It follows that every rational curve

C0 of degree greater than 3 gives a tangent developable with a nodal curve of positive

degree.

We want to check if b = 1 is possible. If g = 0 and b = 1, then 2b ≥ 4
9r0(r0 − 3)

implies r0 = 4. Also, k0 ≤ 4
3r0 − 4 = 4

3 . This leads us to consider two cases, k0 = 0
and k0 = 1. If k0 = 0 the formula for b implies k1 = 5 and eq. (4) gives k2 = −6.

If k0 = 1 the formula for b implies k1 = 1 and eq. (4) give k2 = −1. The second

stationary index k2 cannot be negative, so b = 1 is impossible.

The following example shows that b = 2 actually can occur for g = 0 and r0 ≥ 4:

Example 5 (A singular curve of degree 4). Let the curve γ0 : C → C3 be given by

γ0(t) = (t, t2, t3 + t4). This is an imbedding that is one to one on points, so the degree
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is 4. Note that γ0 is nonsingular, but if we take the projective completion γ : P
1 → P

3

given by

γ(s; t) = (s4; s3t; s2t2; st3 + t4)

we get a singular curve. In fact, setting t = 1 yields the local parameterization at (0; 1),
s → (s4; s3; s2; s + 1). Let (w; x; y; z) be the projective coordinates for P3

C
. Since

1/(1+ s) = 1− s+ s2− s3 + . . . in a neighborhood of 0, setting z = 1 gives the local

parameterization

w = s2 − s3 + s4 − s5 + . . .

x = s3 − s4 + s5 − s6 + . . .

y = s4 − s5 + s6 − s7 + . . . .

We see that the type of the local parameterization is (2, 3, 4), and thus k0(γ(0; 1)) = 1
and k1(γ(0; 1)) = k2(γ(0; 1)) = 0. At any other point we see that the first and second

derivative are linearly independent, so each of them are of type (1, 2, n) for some value

of n. This means that we have k0 = 1 and k1 = 0. The degree of the curve is r0 = 4,

and the genus of the curve is g = 0 since the curve is rational. Now we can calculate

the rest of the invariants mentioned above.

From the formulas we get the rank of the curve, r1 = 5, the class of the curve,

r2 = 4, the second stationary index, k2 = 1, the degree of the surface µ0 = r1 = 5, the

rank of the surface µ1 = r2 = 4, and finally the degree of the nodal curve, b = 2.

Using Singular [2], we can verify some of the results. A Gröbner bases computation

gives us the implicit equation of the surface:

F = 3wx2y2 + 12x3y2 − 4w2y3 − 14wxy3 + 8x2y3 − 9wy4 − 4wx3z

−16x4z + 6w2xyz + 24wx2yz − 6w2y2z − w3z2

This equation is, predictably, of degree µ0 = r1 = 5. We can find the singular locus

by setting the four partial derivatives equal to zero. The last one,

1

2
· ∂F

∂z
= −2wx3 − 8x4 + 3w2xy + 12wx2y − 3w2y2 − w3z,

leads us to consider two cases, w = 0 and w �= 0.

The first case implies x = 0 from ∂F/∂z = 0, and then ∂F/∂w = 0 gives y = 0.

This leaves us with one point, namely (0; 0; 0; 1) = γ(0; 1), the singular point of the

curve.

If w �= 0 we can choose w = 1 and solve the system of equation quite easily. This

is because ∂F/∂z = 0 becomes

0 = −2x3 − 8x4 + 3xy + 12x2y − 3y2 − z, (5)

so we can substitute z into the other equations. In other words, assuming ∂F/∂z = 0,

the equation ∂F/∂y = 0 gives

0 = 16x6 + 8x5 − 32x4y + x4 − 16x3y + 16x2y2 − 2x2y + 8xy2 + y2

= (4x + 1)2(x2 − y)2.
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If x2 − y = 0, then eq. (5) gives z = x3 + x4, as expected.

Setting x = −1/4 in the rest of the equations gives us a solution for every y, so z
is a polynomial of degree 2 in y given by (5). This is the degree of the nodal curve that

we calculated earlier.

Note that most curves will have k0 = k1 = 0, with a nodal curve of degree b =
2(r0 + g− 1)(r0 + g− 3). Unless r0 = 3 and g = 0, the nodal curve will not be empty.

The cuspidal edge and the nodal curve may both be singular, and they will usually

intersect. If the nodal curve is double and the flexes are ordinary, X will have a finite

number of points with multiplicity ≥ 3. These points can be of different types.

If the nodal curve has a node at q outside the cuspidal edge, then q must lie on at

least 3 tangents, and therefore the nodal curve must have at least multiplicity 3 at q since

any selection of two out of three tangents will give a branch in the nodal curve.

The total number T of triple points of the tangent developable X of C0 is given in

[6] and is

T = 1
6 (r1 − 4)((r1 − 3)(r1 − 2)− 6g). (6)

The formula (6) is valid when the nodal curve is double. When the nodal curve is

more than double we have to use a generalized formula for the degree of the multiple

curves (also found in [6]). If the nodal curve consists of curves Dj , where Dj is ordinary

j-multiple, then the degrees bj of Dj satisfy

∑

j

j(j − 1)bj = r1(r1 − 1)− r2 − 3(r0 + k1), (7)

still assuming the flexes to be ordinary. Note that this is a very special case, and that

producing interesting examples with high j may be hard.

An example where the nodal curve is triple can be found in [7, p. 65], and we have

calculated, using Singular [2], the details1.

Example 6 (The equianharmonic rational quartic). Let α = 1
3

√
−3, let C0 be the ra-

tional curve defined by the map γ : P1
C
→ P3

C
where

γ(s; t) = (αs4 − s2t2; αs3t; αst3; αt4 − s2t2),

and let X be its tangent developable. A Gröbner bases computation gives us the implicit

equation F = 0 of the surface X . Here F is a polynomial of degree 6 in the projective

coordinates (w; x; y; z):

F = 12w2x3y + 3w4y2 − 72αw2x2y2 + 12w2xy3 − 256αx3y3

+18αw3xyz + 24wx3yz + 6w3y2z + 48αwx2y2z + 24wxy3z

+3w2x2z2 − 12αw2xyz2 + 12x3yz2 + 3w2y2z2 − 72αx2y2z2

+12xy3z2 + 4αw3z3 + 6wx2z3 + 18αwxyz3 + 3x2z4

1 There is an error in [7], m is not supposed to be
√
−3, but the same as α in the example,

m = 1
3

√
−3.
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Taking a primary decomposition of the Jacobian ideal of F , we find that the singular

locus of X consists of two components, the curve C0 and the conic D defined by z2 +
4xy = 0 in the plane w + z = 0.

We want to show that D is a triple curve of X . The conic D can be parameterized

by θ : P
1
C
→ P

3
C

where

θ(u; v) = (−2uv;−v2; u2; 2uv).

Using this parameterization we find the following: The point θ(u; v) lies on the tangent

to C0 at γ(s; t) if and only if

G(s, t, u, v) := s3u− 3αst2u + 3αs2tv − t3v = 0.

For a fixed (u; v) ∈ P1
C

, zeros of G(s, t, u, v) corresponds to points on C0 whose tangent

contain θ(u; v). For most (u; v) ∈ P1
C

we will get three distinct tangents. In fact, let

∆(u, v) denote the discriminant of G with respect to (s; t). In this case

∆(u, v) = (u2 + (3α + 1)uv − v2)(u2 − (3α + 1)uv − v2).

If ∆(u, v) �= 0, then the point θ(u; v) lies on three distinct tangents to C0.

Let A denote the four points on D corresponding to ∆(u, v) = 0. We conclude that

each point on D not in A lies on exactly three tangents of C0. This means that D is a

triple curve of X .

Moreover, A is exactly the intersection of D and C0, and these four points are the

only points on C0 whose local parameterization is not of type (1, 2, 3). In fact, the local

parameterizations in each point of A is of type (1, 2, 4). This means that k0 = k1 = 0
and k2 = 4. Furthermore, the degree of C0 is r0 = 4 and the formulas give the rank

r1 = 6 and the class r2 = 6 of the curve. The multiple curve only have one component,

the triple curve D, and this corresponds to b3 = 2 in eq. (7).

The set A form an equianharmonic set on D, and that is why C0 is called the equian-

harmonic rational quartic. Note that this example is very special and arise from the

thorough study [7] of the rational normal curve in P4
C

. The curve C0 is constructed by

projecting the rational normal curve in P4
C

from a general point on a quadric called the

nucleus of the polarity. The equation of the nucleus of the polarity is x0x4−4x1x3+3x2
2

and the projection centre of this example is (1, 0, α, 0, 1).

All the formulas in this section holds for curves in P
3
C

. We can not make similar

equalities for real curves, but the projective invariants of the complex curve give results

for the real part in the form of inequalities. However, these inequalities will not be made

explicit in this article.
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Abstract. Algebraic properties of the power and Bernstein forms of the com-

panion, Sylvester and Bézout resultant matrices are compared and it is shown

that some properties of the power basis form of these matrices are not shared

by their Bernstein basis equivalents because of the combinatorial factors in the

Bernstein basis functions. Several condition numbers of a resultant matrix are

considered and it is shown that the most refined measure is NP–hard, and that

a simpler, sub–optimal measure is easily computed. The transformation of the

companion and Bézout resultant matrices between the power and Bernstein bases

is considered numerically and algebraically. In particular, it is shown that these

transformations are ill–conditioned, even for polynomials of low degree, and that

the matrices that occur in these basis transformation equations share some prop-

erties.

1 Introduction

Many branches of science and engineering, including robotics [3], computer–aided ge-

ometric design [5, 10], computer graphics [9] and computer vision [11] require the

computation of the resultant of two polynomials. The power basis is the natural rep-

resentation of the polynomials in these applications, apart from computer graphics and

computer–aided geometric design, for which the Bernstein basis is the preferred rep-

resentation. This requirement has motivated the development of resultant matrices for

Bernstein polynonials and an investigation into their algebraic and numerical proper-

ties. In particular, the Bézout, companion and Sylvester resultant matrices for Bernstein

polynomials are developed in [2, 15, 17] respectively, and some of their properties are

considered.

A review of the companion, Sylvester and Bézout resultant matrices for Bernstein

basis polynomials is contained in sect. 2 and it is shown that the algebraic differences

between the power and Bernstein forms of each of these matrices arise from the combi-

natorial factors in the Bernstein basis functions. A discussion of the condition numbers

that may be used to assess the numerical stability of a resultant matrix is contained in

sect. 3. It is shown that the computation of an accurate and refined condition number

is NP–hard, but that it is easy to compute a sub–optimal condition number. The trans-

formation of a resultant matrix between the power and Bernstein bases is considered in

sect. 4 and it is shown that the condition number of the transformation increases rapidly

with the degrees of the polynomials. A summary of the paper is contained in sect. 5.
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2 Bernstein Basis Resultant Matrices

This section reviews the companion, Sylvester and Bézout resultant matrices for Bern-

stein polynomials and compares them to their power basis equivalents. The matrices are

constructed for the polynomials

p(x) =
m∑

i=0

ai

(
m

i

)
(1− x)

m−i xi and r(x) =
n∑

i=0

ci

(
n

i

)
(1− x)

n−i xi. (1)

The Bézout resultant matrix requires that the polynomials be of the same degree, from

which it follows that degree elevation must be applied to the lower degree polynomial.

2.1 The Companion Resultant Matrix

The companion resultant matrix of the polynomials p(x) and r(x) in (1) is [15]

p(M) =
m∑

i=0

ai

(
m

i

)
(I −M)

m−i M i, (2)

where M = E−1A is the companion matrix of r(x) and of order n × n. The matrices

A and E, both of which are also of order n× n, are

A =

⎡
⎢⎢⎢⎢⎣

0 1 0 0 · · · 0 0
0 0 1 0 · · · 0 0
· · · · · · · · ·
0 0 0 0 · · · 0 1
−c0 −c1 −c2 −c3 · · · −cn−2 −cn−1

⎤
⎥⎥⎥⎥⎦

, and (3)

E =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

(n
1)

(n
0)

1 0 0 · · · 0 0

0
(n
2)

(n
1)

1 0 · · · 0 0

· · · · · · · · ·
0 0 0 0 · · · ( n

n−1)
( n

n−2)
1

−c0 −c1 −c2 −c3 · · · −cn−2 −cn−1 +
(n

n)
( n

n−1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

The normalisation cn = 1 is required and it is noted that a companion matrix for a power

basis polynomial requires a similar normalising constraint. It is immediately obvious

that a companion matrix for a Bernstein polynomial has a more complex structure than

its power basis equivalent.

The differences between the companion matrices in these bases are readily apparent

by noting that if C is the power basis companion matrix of the monic polynomial

f(x) =

n∑

i=0

fix
i, fn = 1, (4)

with the same structure as A in (3), then

TC = CT T, (5)
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where T is the upper triangular Hankel matrix with entries {fi}n
i=0,

T =

⎡
⎢⎢⎢⎢⎢⎢⎣

f1 f2 f3 · · · fn−1 1
f2 f3 · · · · 1 0
f3 · · · · · 0 0
· · · · · · · ·

fn−1 1 0 · · · 0 0
1 0 0 · · · 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦

. (6)

Furthermore, it is easily verified that if

g(x) =

n∑

i=0

gix
i, (7)

then g(C) is a power basis companion resultant matrix for f(x) and g(x) that satisfies

Tg(C) = (Tg(C))
T

= (g(C))
T

T, (8)

since T is symmetric. This equation shows that T defines a similarity transformation

between g(C) and its transpose.

It is shown in [15] that (8) is not satisfied by M , that is, Tp(M) �= (p(M))T T
where the entries of T are the coefficients ci of r(x). This difference between the

companion resultant matrix for the power and Bernstein bases is due to the combi-

natorial factors in the Bernstein basis functions because it is shown in [12] that (5)

and (8) are satisfied by the scaled Bernstein basis, which is defined by the functions{
(1− x)n−ixi

}n

i=0
.

2.2 The Sylvester Resultant Matrix

The Sylvester resultant matrix S(p, r) for the polynomials (1) is developed in [17], but

a different method for its construction is now given. In order to simplify the derivation,

the matrix will be developed for specified m and n, but it will be readily seen that its

extension to general m and n follows easily.

A standard result in the theory of polynomials states that a necessary and sufficient

condition for the polynomials (1) to have a non–constant common divisor is that there

exist polynomials F (x) and G(x) such that

1. deg F (x) < deg r(x)
2. deg G(x) < deg p(x)
3. F (x)p(x) + G(x)r(x) = 0,

where deg denotes degree. As an example, assume that m = 2 and n = 3, in which

case the polynomials F (x) and G(x) are given by

F (x) = F0

(
2

0

)
(1− x)

2
+ F1

(
2

1

)
(1− x) x + F2

(
2

2

)
x2, and

G(x) = G0

(
1

0

)
(1− x) + G1

(
1

1

)
x,
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respectively. The expression F (x)p(x) + G(x)r(x) is therefore equal to

(
4

0

)
(1− x)4

(
F0

(
2
0

)
a0

(
2
0

)
+ G0

(
1
0

)
c0

(
3
0

)
(
4
0

)
)

+

(
4

1

)
(1− x)

3
x

(
F0

(
2
0

)
a1

(
2
1

)
+ F1

(
2
1

)
a0

(
2
0

)
+ G0

(
1
0

)
c1

(
3
1

)
+ G1

(
1
1

)
c0

(
3
0

)
(
4
1

)
)

+

(
4

2

)
(1− x)2 x2

(
F0

(
2
0

)
a2

(
2
2

)
+ F1

(
2
1

)
a1

(
2
1

)
+ F2

(
2
2

)
a0

(
2
0

)
+ G0

(
1
0

)
c2

(
3
2

)
+ G1

(
1
1

)
c1

(
3
1

)
(
4
2

)
)

+

(
4

3

)
(1− x)x3

(
F1

(
2
1

)
a2

(
2
2

)
+ F2

(
2
2

)
a1

(
2
1

)
+ G0

(
1
0

)
c3

(
3
3

)
+ G1

(
1
1

)
c2

(
3
2

)
(
4
3

)
)

+

(
4

4

)
x4

(
F2

(
2
2

)
a2

(
2
2

)
+ G1

(
1
1

)
c3

(
3
3

)
(
4
4

)
)

,

and since it must be zero for all values of x, it follows that

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1

(4
0)

0 0 0 0

0 1

(4
1)

0 0 0

0 0 1

(4
2)

0 0

0 0 0 1

(4
3)

0

0 0 0 0 1

(4
4)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

a0

(
2
0

)
0 0 c0

(
3
0

)
0

a1

(
2
1

)
a0

(
2
0

)
0 c1

(
3
1

)
c0

(
3
0

)

a2

(
2
2

)
a1

(
2
1

)
a0

(
2
0

)
c2

(
3
2

)
c1

(
3
1

)

0 a2

(
2
2

)
a1

(
2
1

)
c3

(
3
3

)
c2

(
3
2

)

0 0 a2

(
2
2

)
0 c3

(
3
3

)

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

F0

(
2
0

)

F1

(
2
1

)

F2

(
2
2

)

G0

(
1
0

)

G1

(
1
1

)

⎤
⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎣

0
0
0
0
0

⎤
⎥⎥⎥⎥⎦

.

The Sylvester resultant matrix of the polynomials (1) with m = 2 and n = 3 is defined

as the transpose of the product

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1

(4
0)

0 0 0 0

0 1

(4
1)

0 0 0

0 0 1

(4
2)

0 0

0 0 0 1

(4
3)

0

0 0 0 0 1

(4
4)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

a0

(
2
0

)
0 0 c0

(
3
0

)
0

a1

(
2
1

)
a0

(
2
0

)
0 c1

(
3
1

)
c0

(
3
0

)

a2

(
2
2

)
a1

(
2
1

)
a0

(
2
0

)
c2

(
3
2

)
c1

(
3
1

)

0 a2

(
2
2

)
a1

(
2
1

)
c3

(
3
3

)
c2

(
3
2

)

0 0 a2

(
2
2

)
0 c3

(
3
3

)

⎤
⎥⎥⎥⎥⎦

,

and its extension to arbitrary m and n yields the Sylvester resultant matrix for the

polynomials (1),

S(p, r) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a0

(
m
0

)
a1

(
m
1

)
a2

(
m
2

)
·

a0

(
m
0

)
a1

(
m
1

)
a2

(
m
2

)
·

a0

(
m
0

)
a1

(
m
1

)
· ·

· · ·
c0

(
n
0

)
c1

(
n
1

)
c2

(
n
2

)
·

c0

(
n
0

)
c1

(
n
1

)
c2

(
n
2

)
·

c0

(
n
0

)
c1

(
n
1

)
· ·

· · ·

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

D, (9)
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where

D = diag
[

1

(m+n−1
0 )

1

(m+n−1
1 )

· · · 1

(m+n−1
m+n−2)

1

(m+n−1
m+n−1)

]
.

It follows immediately from (9) that the striped pattern of the Sylvester resultant matrix

for power basis polynomials is not shared by its Bernstein basis equivalent S(p, r), and

that this is due to the combinatorial factors in the diagonal matrix D. Furthermore, it

is shown in [17] that this striped pattern is present in the Sylvester resultant matrix for

polynomials expressed in the scaled Bernstein basis because D reduces to the identity

matrix for this basis. This anomalous feature is analagous to the effect of the combina-

torial factors on the companion resultant matrix for Bernstein polynomials, as discussed

in sect. 2.1.

2.3 The Bézout Resultant Matrix

The Bézout resultant matrix Z(p, r) requires that the polynomials (1) be of the same

degree, and degree elevation must therefore be applied to the polynomial of lower de-

gree. If it is assumed that m < n, then degree elevation must be applied to p(x) a total

of (n−m) times.

The matrix Z(p, r) is defined by

p(x)r(y)− p(y)r(x)

x− y
=

n∑

i,j=1

zij

(
n− 1

i− 1

)
(1− x)(n−1)−(i−1)xi−1

×
(

n− 1

j − 1

)
(1− y)(n−1)−(j−1)yj−1,

where the entries zij = zji, i, j = 1, . . . , n, of Z(p, r) are [2]

zi,1 =
n

i
(aic0 − a0ci) , 1 ≤ i ≤ n,

zi,j+1 =
n2

i(n− j)
(aicj − ajci) +

j(n− i)

i(n− j)
zi+1,j , 1 ≤ i, j ≤ n− 1,

zn,j+1 =
n

(n− j)
(ancj − ajcn) , 1 ≤ j ≤ n− 1.

It was shown in sect.s 2.1 and 2.2 that some properties of the companion and Sylvester

resultant matrices of two power basis polynomials are not shared by their Bernstein

basis equivalents because of the combinatorial factors in the Bernstein basis functions.

This divergent characteristic extends to the Bézout resultant matrix of two Bernstein ba-

sis polynomials. In particular, it is shown in [1] that the Bézout resultant matrix Z(f, g)
of the power basis polynomials f(x) and g(x) in (4) and (7), respectively, is related

to the resultant matrix g(C), where C is the companion matrix of f(x) with the same

pattern as A in (3),

Z(f, g) = Tg(C), (10)

where T is defined in (6). It follows immediately from (8) that Z(f, g) is symmetric, as

required by the definition of the Bézout resultant matrix.
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It was shown in sect. 2.1 that the symmetry property (8) does not extend to the

Bernstein basis, and it therefore follows that (10) does not extend to the Bernstein basis,

that is, the equation that links the Bézout and companion resultant matrices for this basis

is not of the form (10).

Finally, it is interesting to note that since
∣∣∣∣
af(x) + bg(x) af(y) + bg(y)
cf(x) + dg(x) cf(y) + dg(y)

∣∣∣∣ = (ad− bc)

∣∣∣∣
f(x) f(y)
g(x) g(y)

∣∣∣∣ ,

it follows that the resultant of af(x) + bg(x) and cf(x) + dg(x) is proportional to the

resultant of f(x) and g(x) [4].

3 The Numerical Condition of a Resultant Matrix

The determination of the computational reliability of a resultant requires that a condi-

tion number of a resultant matrix be developed. These condition numbers for a resul-

tant matrix for polynomials in an arbitrary basis are considered in this section and it

is shown that the most refined condition number yields a difficult structure–preserving

matrix approximation problem.

Resultants were originally developed for the computation of the greatest common

divisor (GCD) of two polynomials, and this application enables several condition num-

bers of a resultant matrix to be developed and compared. In particular, consider the

companion and Bézout resultant matrices R = R(h, l) of the polynomials h = h(x)
and l = l(x), both of which are expressed in an arbitrary polynomial basis.1 This gen-

eral representation is appropriate because the discussion in this section is valid for all

bases of this class.

It is known that the degree of the GCD of two polynomials is equal to the rank

loss of their resultant matrix R, and that the coefficients of the GCD are obtained by

reducing R to row echelon form. It is appropriate, therefore, to define the condition

number of R as the reciprocal of the distance to unit loss of rank. This is intuitively

appealing because if R is near singularity, then a small perturbation in R is required

to reduce its rank by unity, and R is ill–conditioned. Conversely, if R is well–removed

from singularity, then a relatively large perturbation in R is required to reduce its rank

by unity, and R is well–conditioned. This argument is simple but there are several more

issues that must be considered for a complete discussion of the condition numbers of

R.

Let

R(r)(h, l) =
{
r
(r)
ij (h, l)

}n

i,j=1
and R(r−1) (h∗, l∗) =

{
r
(r−1)
ij (h∗, l∗)

}n

i,j=1
,

be, respectively, a resultant matrix of rank r for the polynomials h = h(x) and l = l(x),
and a resultant matrix of the same type (companion or Bézout) of rank (r − 1) for the

polynomials h∗ = h∗(x) and l∗ = l∗(x). The perturbations in the elements of R(r)(h, l)
are denoted by

δR(r)(h, l) =
{
δr

(r)
ij (h, l)

}n

i,j=1
.

1 The reason for the exclusion of the Sylvester resultant matrix is given at the end of the section.
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Four different condition numbers of R(r)(h, l) can be defined:

1. CN 1: Let ε(c) be the minimum constant such that
∣∣∣δr(r)

ij (h, l)
∣∣∣ ≤ ε(c)

∣∣∣r(r)
ij (h, l)

∣∣∣ , i, j = 1, . . . , n,

and the perturbed matrix R(r)(h, l)+δR(r)(h, l) and R(r−1) (h∗, l∗) have the same

structure, that is, the perturbed matrix is a resultant matrix for the polynomials

h∗(x) and l∗(x), it is of the same type as R(r)(h, l) and it has rank (r − 1). It

follows from the discussion above of the inverse relationship between the numerical

condition of a resultant matrix and its distance to singularity that this definition of

the perturbation of a matrix yields a condition number 1/ε(c).

2. CN 2: Let ε(n) be the minimum constant such that
∥∥∥δR(r)(h, l)

∥∥∥
2
≤ ε(n)

∥∥∥R(r)(h, l)
∥∥∥

2
,

and the perturbed matrix R(r)(h, l) + δR(r)(h, l) is a resultant matrix for the poly-

nomials h∗(x) and l∗(x), it is of the same type as R(r)(h, l) and it has rank (r−1).
Clearly, this definition of the perturbation of a resultant matrix yields a condition

number 1/ε(n).

3. CN 3: Let ε
(c)
approx be the minimum constant such that

∣∣∣δr(r)
ij (h, l)

∣∣∣ ≤ ε(c)
approx

∣∣∣r(r)
ij (h, l)

∣∣∣ , i, j = 1, . . . , n,

and the perturbed matrix R(r)(h, l) + δR(r)(h, l) has rank (r − 1). The condition

number of a resultant matrix that is associated with this perturbation is 1/ε
(c)
approx.

4. CN 4: Let ε
(n)
approx be the minimum constant such that

∥∥∥δR(r)(h, l)
∥∥∥

2
≤ ε(n)

approx

∥∥∥R(r)(h, l)
∥∥∥

2
,

and the perturbed matrix R(r)(h, l) + δR(r)(h, l) has rank (r − 1). This definition

of the perturbation of a resultant matrix yields a condition number 1/ε
(n)
approx.

Condition number CN1 is the most refined measure of the condition of a resultant ma-

trix because it is computed from the minimum componentwise distance to singular-

ity, such that the perturbed matrix is a resultant matrix of the same type that has unit

loss of rank. It follows, therefore, that this condition number requires that a structure–

preserving perturbation be computed. Condition number CN2 is slightly less refined

because the perturbation is measured in the normwise sense rather than the componen-

twise sense. It is, however, an accurate measure of the condition of a resultant matrix

because the perturbed matrix is a resultant matrix of the same type. Condition numbers

CN3 and CN4 are only approximate measures of the condition of a resultant matrix

because the structure of the perturbed matrix is not defined in these measures. In par-

ticular, the perturbed matrices are of rank (r − 1) but otherwise unspecified. Since a

normwise measure of a perturbation is less refined than a componentwise measure, it
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follows that the condition number CN4 is the least refined of the four condition numbers

specified above.

The computation of the componentwise condition numbers CN1 and CN3 is NP–

hard [7] and thus they are not practical measures of the numerical condition of a re-

sultant matrix. The condition number CN2 is difficult to compute because it requires a

structure–preserving perturbation, but condition number CN4 is easy to compute in the

2–norm. It follows, therefore, that this measure is the most practical of the four condi-

tion numbers specified above, but it is the least accurate because it is measured in the

normwise sense rather than the componentwise sense, and the structure of the perturbed

matrix is not specified.

The condition number CN4 is easily computed from the singular value decompo-

sition of R(r)(h, l). In particular, if σi (Rr) , i = 1, . . . , n, are the singular values of

R(r)(h, l), arranged in non–increasing order, then σr (Rr) is the minimum normwise

distance between R(r)(h, l) and the set of all matrices of rank (r − 1) [6]. It is shown

in [13–15] that it is necessary to normalise this distance because the singular values of

αp(M), where p(M) is defined in (2), are ασi (p(M)), and the singular values of the

Bézout resultant matrix Z(αp, βr) are αβσi (Z(p, r)). Specifically, since scaling the

coefficients of one or both polynomials does not change the roots of the polynomials,

it follows that this arbitrary scale factor must be removed, and this leads to the nor-

malised distance to singularity of a resultant matrix. This is defined as σr/σ1, and thus

the condition number CN4 of a resultant matrix of rank r that is associated with this

normalised distance is equal to σ1/σr.

This property of scale–invariance follows immediately for the companion resultant

matrix because
σ1 (αp(M))

σr (αp(M))
=

σ1 (p(M))

σr (p(M))
,

for all α �= 0, and for the Bézout resultant matrix because

σ1 (Z(αp, βr))

σr (Z(αp, βr))
=

σ1 (Z(p, r))

σr (Z(p, r))
,

for all α, β �= 0. This measure is used in [13] and [14, 15] to compare the numerical

condition of the companion resultant matrix for power basis and, respectively, scaled

Bernstein and Bernstein basis polynomials. Although this measure is not optimal, the

improvement in the numerical condition of the Bernstein form of the resultant matrix

over its power basis equivalent is large, which is in accord with the improved numerical

stability of the Bernstein basis with respect to the power basis.

It is important to note that the ratio σ1/σr cannot be used for the Sylvester resultant

matrix because

σ1 (S(αp, βr))

σr (S(αp, βr))
=

σ1 (S(p, r))

σr (S(p, r))
only if α = β �= 0, (11)

but this equation is not satisfied if α �= β. This feature of the Sylvester resultant ma-

trix arises because the coefficients of the polynomials are decoupled in this matrix. In

particular, it follows from (9) that each element of this matrix is a function of the co-

efficients of only one, and not both, polynomials, and this must be compared with the
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companion and Bézout resultant matrices, each of whose elements is a function of the

coefficients of both polynomials. This anomalous characteristic of the Sylvester resul-

tant matrix implies that the normalised distance to singularity can be made arbitrarily

small or large, merely by scaling one or both polynomials. It is instructive to note that

the Bézout resultant matrix is preferred to the Sylvester resultant matrix in [5] because

it yields results that are independent of the coordinate system that is imposed on curves

and surfaces when this matrix is used in geometric modelling applications. By contrast,

the Sylvester resultant matrix yields results that are dependent upon this coordinate

system, which is clearly unsatisfactory.

It is shown in [2] that the computation of the GCD from the Bézout resultant ma-

trix can be reduced to its block triangular factorisation. A fast algorithm that performs

this factorisation is described and it is shown that the numerical performance of the

method is strongly dependent upon the condition numbers of its trailing submatrices.

Computational experiments show that the Bernstein form of the Bézout resultant ma-

trix is numerically superior to its power basis equivalent because the growth of these

condition numbers for the Bernstein form of the matrix is much slower than it is for its

power basis equivalent. This result is therefore consistent with the results in [14, 15] for

the power and Bernstein forms of the companion resultant matrix.

4 The Transformation of a Resultant Matrix Between the Power

and Bernstein Bases

It was shown in sect. 3 that a resultant matrix of two Bernstein polynomials is numer-

ically superior to its equivalent power basis form. Since the polynomials that generate

resultant matrices are, in many applications, expressed in the power basis, it is natural to

determine the numerical condition of the transformation of a resultant matrix between

these bases. In particular, if this transformation is well–conditioned, then it is adequate

to construct the power basis resultant matrix, and then perform a basis transformation

in order to compute the resultant in the Bernstein basis.

It is shown [16] that the transformation of the companion resultant matrix p(M),
which is defined in (2), to its power basis form is

p(M) = B−1q(N)B, (12)

where M is the companion matrix of r(x), which is defined in (1), N is the companion

matrix of the power basis form of r(x) with the same pattern as A in (3), and q(x) is

the power basis form of p(x). The elements of B and B−1, bjk and b−1
jk , respectively,

are given by [16]

bjk =

⎧
⎨
⎩

n−k
n

(k
j)

(n−1
j )

j = 0, . . . , n− 1; k = j, . . . , n− 1,

0 k < j,

and

b−1
jk =

{
(−1)k−j

(
n
j

)(
n−1−j

k−j

)
j = 0, . . . , n− 1; k = j, . . . , n− 1,

0 k < j.
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It is shown in [16] that B is totally non–negative, and that BBT and BT B are os-

cillatory. It follows, therefore, that the singular vectors of B have well–defined sign

patterns.

Equation (12) can be cast into a linear algebraic equation by the Kronecker product

and vec operator [7],
(
B−T

⊗
B
)

vec p(M) = vec q(N). (13)

The coefficient matrix of this equation, which is of order n2×n2, is non–singular since

B is non–singular.

The transformation of the Bézout resultant matrix between the power and Bernstein

bases [2] has a similar form to (12) and is given by

Zb = WT ZpW, (14)

where Zp is the Bézout resultant matrix of two power basis polynomials, Zb is the

Bézout resultant matrix of the same polynomials but expressed in the Bernstein basis,

and the elements wij , i, j = 1, . . . , n, of W , the transformation matrix between the

power and Bernstein bases of degree (n− 1), are

wij =

{(
j−1
i−1

)(
n−1
i−1

)−1
i ≤ j,

0 i > j.

It is shown in [18] that W has the same properties as B, that is, it is totally non–negative,

and WW T and W T W are oscillatory.

The application of the Kronecker product and vec operator to (14) yields a linear

algebraic equation whose coefficient matrix is non–singular and of order n2 × n2,
(
W−T

⊗
W−T

)
vec Zb = vec Zp. (15)

It is shown in [8] that if the singular values of X and Y are, respectively,

σi(X), i = 1, . . . , n, and σj(Y ), j = 1, . . . , n,

then the singular values of the Kronecker product X
⊗

Y are σi(X)σj(Y ), i, j =
1, . . . , n. The application of this result to (13) and (15) shows that the condition num-

bers of the coefficient matrices of these equations are

κ2

(
B−T

⊗
B
)

= κ2(B)2 =

(
σ1(B)

σn(B)

)2

, and

κ2

(
W−T

⊗
W−T

)
= κ2(W )2 =

(
σ1(W )

σn(W )

)2

,

respectively. Figure 1 shows that the 2–norm condition numbers of the coefficient ma-

trices in (13) and (15) increase rapidly with n, and that the difference between the

condition numbers is small. The large value of the condition numbers, even for small

values of n, implies that these basis transformations should not be performed because

they may be severely ill–conditioned. The same transformation of the Sylvester resul-

tant matrix cannot be considered because, as shown in (11), the ratios of the singular

values of this matrix are not scale–invariant.
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5 Summary

This paper has considered some algebraic and numerical properties of resultant matri-

ces for Bernstein polynomials. It has been shown that Bernstein basis resultant matri-

ces differ in some important aspects from their power basis and scaled Bernstein basis

equivalents because of the combinatorial factors in the Bernstein basis functions. For

example, it was shown that the Sylvester resultant matrix for Bernstein polynomials is

not striped, an upper triangular Hankel matrix T does not define a similarity transform

between a Bernstein basis companion resultant matrix and its transpose, and the Bézout

and companion resultant matrices for Bernstein polynomials are not related by T .

It was shown that the Sylvester resultant matrix has some theoretical problems be-

cause a simple condition number that is appropriate for the other resultant matrices can-

not be used for this matrix. This anomalous behaviour arises because the coefficients of

the polynomials are decoupled in the matrix.

Four condition numbers of a resultant matrix were considered and it was shown that

the componentwise measures are NP–hard, and that a structure–preserving normwise

measure yields a difficult matrix approximation problem. The easiest condition number

to compute is the least accurate because it is measured in the normwise manner rather

than the componentwise manner, and the structure of the perturbed matrix that has unit

loss of rank is not specified.

The condition numbers of the transformation of the companion and Bézout resultant

matrices between the power and Bernstein bases were computed, and it was shown that

they increase rapidly with the degrees of the polynomials. The combination of this

result and the enhanced numerical stability of Bernstein basis resultant matrices with

respect to their power basis equivalents implies that resultants should be evaluated from
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Bernstein basis resultant matrices directly, and that a basis transformation should not be

performed.
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Abstract. An algorithm is presented for approximating a rational multi-sided M-

patch by a C2 spline surface. The motivation is that the multi-sided patch can be

assumed to have good shape but is in nonstandard representation or of too high

a degree. The algorithm generates a finite approximation of the M-patch, by a

sequence of patches of bidegree (5, 5) capped off by patches of bidegree (11, 11)
surrounding the extraordinary point.

The philosophy of the approach is (i) that intricate reparametrizations are permis-

sible if they improve the surface parametrization since they can be precomputed

and thereby do not reduce the time efficiency at runtime; and (ii) that high patch

degree is acceptable if the shape is controlled by a guiding patch.

1 Introduction

When constructing C2 spline surfaces using a finite number of tensor-product Bézier

patches such as [4, 11, 13, 7], the shape is often unsatisfactory near extraordinary points

where more or less than four patches meet since the curvature is not evenly distributed or

shows local extrema not implied by the surrounding data [10]. For subdivision schemes,

the cause of shape artifacts has recently been analyzed and made explicit (see [9], [6]).

By contrast, rational multisided M-patches [5], joined smoothly to a surrounding

B-spline complex, appear to consistently yield good shape. This paper does not verify

the emperical observation of good shape but explores the technical challenge of how to

transfer a good M-patch into a standard spline framework.

M-patches are rational and can therefore be represented as a collection of rational

tensor-product Bézier subpatches. If the number of sides is 5 or 6, a variant of the

M-patch can be represented as a collection of rational tensor-product Bézier patches of

bidegree (8, 8). But for a general m-sided M-patch, the bidegree is (4(m−2), 4(m−2)).
The idea pursued in this paper is to capture the shape of the M-patch with a C2

approximation of moderate bidegree. We describe a finite approximation of the M-

patch, by a sequence of patches of bidegree (5, 5) but with patches adjacent to the

extraordinary point of bidegree (11, 11). A key point is the definition of reparametriza-

tions that improve the surface parametrization when approximating the M-patch. These

reparametrization, maps R
2 → R

2, decompose the domain m-gon into C2-connected
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annuli or rings and a central piece. The surface approximation consists correspondingly

of nested annuli and a final cap. Each annulus and the cap pick up second order Hermite

data from the M-patch.

The bidegree of the central, extraordinary patches is still high, but all experiments

with constructions of lower the bidegree have so far resulted in a considerably reduction

of the surface quality. The paper focuses on the technical challenge of creating a C2

surface that Hermite-interpolates a given M-patch.

One of the key ideas, construction of good reparametrizations and composition with

a polynomial patch that determines the shape is a logical extension of similar ideas

proposed in [11, 13, 7].

The paper is organized as follows.

Section 2 defines M-patches and the transition of the M-patch to an existing spline com-

plex.

Section 3 defines the transitional reparametrizations and the patches of bidegree (5, 5).
Section 4 describes the cap of patches of bidegree (11,11) that approximates the M-

patch near the extraordinary point.

The exposition expects familiarity with standard representations of geometric de-

sign. The tensor-product Bernstein-Bézier and (uniform) B-spline representations (see

[1, 3, 12]) have the form
∑d1

i=0

∑d2

j=0 cijb
d1
i (u)bd2

j (v), where bd
i is the ith basis func-

tion. In the case of the Bernstein-Bézier form, bd
i (u) :=

(
d
i

)
(1− u)d−iui. In particular,

one can choose the domain as a unit square and then associate layers of coefficients cij ,

j ≤ k with kth derivatives perpendicular to an edge of the square. In the following,

we will often refer to the three boundary layers of a polynomial to mean the layers

of coefficients cij , j ≤ 3 that determine position, first and second derivative across a

boundary. Catmull-Clark subdivision [2] generalizes the refinement of bicubic uniform

splines to control nets with nodes of arbtrary valence as illustrated in Fig. 1

Fig. 1. Three steps of Catmull-Clark subdivision

2 M-patches and their tensor-border

In this section, we review the construction of rational multi-sided patches, called M-

patches [5]. First, M-patches are defined. Then a control structure, called tensor-border,

is defined that mimicks the behavior of tensor-product patches along the boundary. Such
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a control structure can be derived from an M-patch by combining M-patch basis func-

tions as in [5] or, as in our context, by reparametrization. A third subsection sketches

such a reparametrization. That is, the M-patch composed with the reparametrization has

tensor-border structure, suitable for smoothly joining the patch to a an existing spline

complex and filling an m-sided hole.

2.1 Definition of M-Patches

(n,0;s−1)=(0,0;s) (1,0;s) (n,0;s)

(n−1,1;s−1)=(0,1;s) (1,1;s) (n−1,1;s)

(0,n;s)

Fig. 2. A nested polygon net NPn
5

Let Pm be a regular m-gon, m > 4, with center 0 and vertices

vs := (cos sα, sin sα), α = 2π/m, s = 0, 1, . . . , m− 1.

Subscripts are assigned in a cyclic fashion, e.g. vs+1 = v0 if s = m − 1 and vs−1 =
vm−1 if s = 0. We abbreviate c := cosα.

An m-sided nested polygon net NPn
m of depth n is a set of points in R2,

n− i− j

n
vs +

i

n
vs+1 +

j

n
0, 0 ≤ s ≤ m− 1, 0 ≤ i + j ≤ n

connected as shown in Fig.2. That is, each triangle △vsvs+10 is triangulated in the

manner of Greville abscissae of the Bézier form. There are mn(n + 1)/2 + 1 points in

NPn
m. It is convenient to refer to the point

((n− i− j)vs + ivs+1 + j0)/n by the triple (i, j; s)

where (n− j, j; s− 1) = (0, j; s).
An edge Es is a line through the vertices vs, vs+1. We set

ℓs(x, y) := −x cos(sα +
α

2
)− y sin(sα +

α

2
) + cos

α

2
.
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The linear function ℓs is zero on the edge Es and positive at the other points of Pm. The

edges Es−1 and Es+1 intersect at a point ks.

Set C(x, y) = cos2(α/2)
cos2 α − x2 − y2. The equation C(x, y) = 0 defines a circle

passing through the points ks. For q = (i, j; s) we define

fq := kn
ijg

n−i−j
s gi

s+1g
j ,

where

gs := C
∏

σ �=s−1,s

ℓσ, g :=
m−1∏

σ=0

ℓσ.

and kn
ij are positive numbers that satisfy kn

ij = kn
n−i−j,j and kn

i0 =
(
n
i

)
. Examples are

given in [5]. The functions fq are the basis functions of M -patch.

Definition 1. The m-sided M -patch with the control points qσ ∈ R
3 and their weights

wσ, σ ∈ NPn
m, is the image of the mapping F : Pm → R3 defined by the formula

F =

∑
σ∈NPn

m
wσqσfσ∑

σ∈NPn
m

wσfσ
. (1)

2.2 Tensor-border Structure

To be able to tie an M-patch into a tensor-product spline complex and fill an m-sided

hole, we define a tensor-border net with quadrilateral mesh cells. In fact, a tensor-border

net is a collection of overlapping quadrilateral nets as shown in Fig. 3. The connectivity

and enumeration is as follows.

For fixed integers m, n, k ≤ [n/2] an m-sided tensor-border net Tm(n, k) of degree

n and order k is indexed by the set of triples

[i, j; s], s = 0, . . . , m− 1, i = 0, . . . , n, j = 0, . . . , k.

The triples are identified via

[i, j; s] = [j, n− i; s + 1], for i ≥ n− k.

Here, we use the notation [i, j; s] to avoid confusion with the subscripts of the basis

functions of M-patches.

Definition 2. A patch F has a tensor-border of order k and of degree n with the ver-

tices qσ, σ = [i, j; s] ∈ Tm(n, k), if, along each edge Es, it can be locally reparametrized

by maps ρk;s : R2 → R2 with parameters (u, t) in such a way that the crossderivatives

∂κ
t up to order k,

∂κF ◦ ρk;s

∂κt

∣∣∣
t=0

, κ ≤ k,

coincide with the crossderivatives of the tensor-product patch of bidegree (n, n) with

the control points qij := q[i,j;s].

The reparametrization ρk;s is defined in the next subsection.
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[0,0] [1,0] [2,0] [n,0]

[i,j;s]=[i,j]

[0,1] [1,1] [2,1] [n,1]

[0,2]
[1,2] [2,2]

[n,2]

Fig. 3. Tensor-border net of order 2

2.3 Reparametrizations to Form a Tensor-Border

It is convenient to construct the reparametrizations ρk;s in Bézier form. Since we are

interested in crossderivatives up to order 2, the first three layers of Bézier control points

are calculated. We construct the reparametrizations ρ2;s based on two simpler maps ρ0;s

and ρ1;s, as follows.

(1) ρ0;s := vs(1− u) + vs+1u for u on the edge Es;
(2) ρ1;s is of bidegree (3, 3) (see Fig. 4 left) and its Bézier coefficients ρ1;s

i0 ,i = 0, . . . , 3
represent ρ0;s in degree-raised form;
the coefficients ρ1;s

01 and ρ1;s
31 are defined by symmetry;

ρ1;s
11 := sc1vs, ρ1;s

21 := sc1vs+1, where

sc1 :=
3 + 12c + 4c2 + 8c3

9(1 + 2c)
.

(3) ρ2;s is of bidegree (5, 5) (see Fig. 4 right) and its Bézier coefficients ρ2;s
ij ,i =

0, . . . , 5, j = 0, 1, represent ρ1;s in degree-raised form;
the coefficients ρ2;s

02 , ρ2;s
12 , ρ2;s

42 , ρ2;s
52 are defined by symmetry;

ρ2;s
22 := sc2vs, ρ2;s

32 := sc2vs+1, where

sc2 :=
5 + 41c + 129c2 + 168c3 + 132c4 + 120c5 + 48c6 + 32c7

25(1 + 2c)3
.

Theorem 3. After reparametrization with ρ2;s an M-patch of depth 4 has a tensor-

border of order 2 and of degree 7.

The proof is analoguous to Proposition 11 of [5].

One further challenge of the construction is that the tensor-border is C∞ along the

domain edge Es while the corresponding edge in the spline complex is a spline of finite

smoothness. The two can be joined by a annulus of patches that match the spline data

on the outside and form, along each inside edge, a single polynomial.
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(0,0) (1,0) (2,0) (3,0)

(0,1) (3,1)

(1,1) (2,1)

(0,0) (1,0) (2,0) (5,0)

(0,1)

(0,2)

(5,1)

(5,2)

(2,2)

(2,1)

(1,1)

(1,2)

vs vs+1

vs−1

vs vs+1

vs−1

Fig. 4. Reparametrizations of M -patches: ρ1;s for the first cross-derivatives; ρs := ρ2;s for the

first and second cross-derivatives

3 Approximating the M-Patch by Successive Annuli of Bidegree

(5,5)

We now assume that the M-patch has been constructed by fixing the tensor-border to

match the given spline complex in a C2 fashion and fill its m-sided hole. The goal of the

following construction is to approximate the M -patch by annuli of the tensor-product

patches of bidegree (5, 5). Degree (5, 5) allows matching second order data from an

outer annulus and, independently, using three inner layers of Bézier coefficients to pick

up second order Hermite data from concentric curves surrounding the central point Q
of the M-patch. An infinite sequence of these annuli can be constructed in the spirit of

subdivision surfaces, but here we will generate only a few annuli before capping off

with the construction detailed in sect. 4.

3.1 Outline of the Construction

The control points of Bézier patch G(u, v) of bidegree (5,5) are fully determined by the

values of its Taylor expansions

∂i
u∂j

vG, 0 ≤ i, j ≤ 2,

at the corners (0, 0), (1, 0), (0, 1), (1, 1). These (Hermite) data are derived by reparametriz-

ing the domain polygon Pm and calculating the derivatives of the reparametrized M-

patch. Calculating the derivatives of this composition is a routine job if the reparametriza-

tions is given.

Free parameters are determined by minimizing the following functional.
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Definition 4. For a function h with parameters (u, v) in the unit square I2 = [0..1]2,

we define the functional

F5(h) :=

∫ ∫

I2

∑

i+j=5,i,j≥0

(
5

i

)
(∂i

u∂j
vh)2.

For a mapping h = (h1, h2) : I2 → R2,

F5(h) := F5(h1) + F5(h2).

3.2 The C2 Transition Between the Reparametrizations ρ2;s and a Bicubic C2

Reparametrization

(b) (c) (d) (e) (a)

ABO

C

C ′

D

D′

E

E′

τ1

τ2

τ3

γ0
1

γ0
2

γ0
3

ρs
1

ρs
0

ρs−1
3

ρs−1
2

Fig. 5. Three inner layers, corresponding to second-order boundary data, of the bidegree (3,3)

reparametrization τi are constructed in (b),(c),(d). Three outer layers of the (5,5) partitioned

tensor-border reparametrization ρ2;s are shown (a). The reparametrization γ0 of bidegree (5,5) in

fig. (e) is the result of juxtaposing the three inner and outer layers.

The reparametrization ρ2;s : R2 → R2 is of bidegree (5,5). This is an unnecessarily

high bidegree for forming an m-sided C2 annulus. Since the bidegree of the innermost

patches increases with the degree of the reparametrization, it is convenient to transition

to a C2 annulus of bidegree (3,3) whose properties are well-known and that can be

refined by the well-known Catmull-Clark rules.

To transition between the high-degree reparametrization ρ2;s and a (piecewise) bicu-

bic C2 reparametrization τ : R
2 → R

2 of the first annulus, a reparametrization γ0 of

bidegree (5,5) is stitched together from the boundary layers of Bézier coefficients of

ρ2;s and τ : the outer three layers Hermite-interpolate ρ2;s up to second order and the

inner three layers are taken from τ .

If, as is natural, we choose a bicubic τ with m-fold symmetry, we can define its

relevant part by five spline control points A,B,C,D,E, each in R2 (see Fig. 5 b). Here,

we say relevant part, since we only need the innermost three layers of Bézier coefficients

of the bicubic annulus for γ0. A third annulus would only be needed if we wanted

to define the complete bicubic τ . The innermost three layers are defined by a central
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spline control point 0 = (0, 0) and two surrounding annuli of spline control points.

Under symmetry, with A fixed to establish scale, there are a total of 5 scalar degrees of

freedom. Due to symmetry, it suffices to describe one sector of γ0.

(a) The reparametrization ρ2;s(u, v) (for s = 0) of bidegree (5, 5) is subdivided into

four parts

ρs
k := ρ2;s

(k

4
(1− u) +

1 + k

4
u,

1

4
v
)
, k = 0, . . . , 3.

Two pieces ρs
1, ρs

0 of ρ2;s and two pieces of ρs−1
3 , ρs−1

2 of ρ2;s−1 form an L-shape.

Of this (outer) L-shape, we need only calculate three layers in Bézier form as shown

in Fig. 5 a. By construction of ρ2;s, the overlap of ρs
0 and ρs−1

3 is consistent.

(b,c) The (undetermined) control points A, . . . , E (Fig. 5 b) determine the three bound-

ary layers of a second (inner) L-shape made up of bicubic patches (Fig. 5 c).

(d) The three layers of Bézier coefficients in (c) are degree-raised to bidegree (5, 5)
(Fig. 5 d).

(e) Now the partial Bézier control nets of the two L shapes constructed in (a) and (d)

are simply juxtaposed to form a composite L shape, consisting of three parts γ0
1 , γ0

2 ,

γ0
3 of bidegree (5, 5) (Fig. 5 e). The control points A, . . . , E are chosen to minimize

the functional F5(τ1) + F5(τ2) + F5(τ3) of these parts.

One sector of the first annulus of the biquintic reparametrization γ0 for m = 8 is shown

in Fig. 6 as the rightmost triple of patches. By construction, γ0 is non-singular along

inner and outer annulus edges.

3.3 Subsequent Annuli of Bidegree (5,5)

The first annulus of reparametrizations was created with the help of B-spline control

points A, . . . , E. We apply Catmull-Clark subdivision rules to these points and convert

the contracting control point nets to contracting annuli of bicubic C2-reparametrization

γk (Fig. 6).

The subdivided B-spline control point nets converge rapidly to the characteristic

configuration. The characteristic configuration defines a bicubic annulus γc, the charac-

teristic map. At the Kth iteration, we transition from γK to γc using a second single an-

nulus of reparametrizations of bidegree (5,5) that Hermite-blends inner and outer parts

of the two annuli exactly as in the construction of γ0. The nth subsequent reparametriza-

tion can then be chosen as γK+n = λnγc where

λ :=
1

16
(c + 5 +

√
(c + 9)(c + 1))

is the subdominant eigenvalue of Catmull-Clark subdivision.

From basic facts of Catmull-Clark subdivision, it follows that the constructed reparametriza-

tions γk are C2 within each annulus and join C2 with adjacent annuli.
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0

Fig. 6. A sector of the contracting sequence of reparametrizations γk. The grey parameter lines

reveal the bidegree: (3, 3) except for the outermost layer shown on the right which is of bidegree

(5, 5).

3.4 Annuli of Bézier Patches

We now construct annuli of Bézier patches of bidegree (5,5) that

– are internally C2 and and join C2 with the adjacent annuli and that

– approximate the M-patch.

Every reparametrization γk is composed with the map F that defines the M-patch.

Denote the composition G with parameters (u, v). Each bidegree (5, 5) patch is con-

structed as follows.

3 3

333

3 3 34 4 4

4 4 4

4 4 4 3

1 1 1

111

1 1 1

2 2 2

222

2 2 2

Fig. 7. Grouping of the Bernstein-Bézier coefficients of a patch of bidegree (5, 5)

(1) the values of ∂i
u∂j

vG for 0 ≤ i, j ≤ 2. are calculated at the vertices (0, 0), (1, 0),
(0, 1), (1, 1);

(2) the calculated data are converted to Bézier form as a part of a patch of bidegree

(5, 5);
(3) the four parts are merged into one patch of bidegree (5, 5) (see Fig. 7);
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(4) the first three layers – marked in Fig. 8 left – of a new, inner annulus are replaced

by the subdivided C2 extension of the last three layers – marked in Fig. 8 right – of

the old, outer annulus.

Fig. 8. C2 extension of the data to inner annulus

Since the reparametrizations are (parametrically) C2 and non-singular across patch

boundaries,

• the patches are C2 in each annulus and
• adjacent annuli join C2.

Remark 5. If we make the sequence of patches infinite, we obtain a guided subdivision

construction of degree (5,5). Such a construction can be shown to have a limit point Q,

that is the image of the center of the domain polygon under the M-patch. Furthermore,

the surface is G1 and the limit of the tangent planes is the tangent plane of the M-

patch at Q. Experiments show that any curvature oscillation is very small. A similar

construction of bidegree (6,6) can be shown to be curvature continuous with the limit

of Gaussian and mean curvatures equal the corresponding curvatures of the M-patch at

Q. However, here, we are concerned only with the finite construction.

4 A Spline Cap of Bidegree (11,11)

In this section, we will develop a ‘cap’ of m patches of bidegree (11, 11) that are G2-

joined around Q, the central point of the M-patch. While this bidegree is higher than

recent C2 constructions in the literature, it has well-controlled shape. Following the

approach from [7], the three boundary layers of the patches are taken from the compo-

sition PW7 ◦ γ̃s where γ̃s : R
2 → R

2 is a reparametrization and PW7 : R
2 → R

3

defines the shape. The construction of the relevant layers of the maps is as follows (see

Fig.s 9, 11):

(1) Set

v′
s :=

(
cos

(
sα− α

2

)
, sin

(
sα− α

2

))
, vs :=

( cos(sα)

cos(α/2)
,

sin(sα)

cos(α/2)

)
.
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(2) the (three boundary layers of the) symmetric tensor-product reparametrizations γ̃s

are defined in each sector v′
s0v

′
s+1;

(3) an auxiliary piecewise C2 mapping PW7 of degree 7 is constructed in each of the

triangles△0v′
svs and△0vsv

′
s+1;

(4) the composition PW7 ◦ γ̃s is a tensor-product of bidegree (11, 11); its three bound-

ary layers are well-defined from the earlier construction an can be extracted.

We now describe the relevant layers of maps PW7 and γ̃s in detail.

4.1 The 135-Reparametrizations γ̃s

In this section, we construct the reparametrization γ̃s shown in Fig. 9. The reparametriza-

tion is almost completely pinned down by the requirements that

– γ̃s is a piece of a control net with m-fold symmetry and

– the ith boundary layer of γ̃s in Bézier form represents a curve of degre 2i + 1.

The remaining degrees of freedom are denoted by ti and are set by minimizing a func-

tional. Note that this calculation is done once and for all and we get specific Bernstein-

Bézier coefficients γ̃s
ij that define the first three layers of a polynomial γ̃s of bidegree

(5,5).

γ̃s
00

γ̃s
10

γ̃s
30

γ̃s
50

γ̃s
22

γ̃s
32

γ̃s
52

a0

a1

a2

a3

Fig. 9. Boundary layers of Bernstein-Bézier coefficients of the 135-reparametrization γ̃s

• γ̃s
i0 := (1 − i/5)0 + (i/5)v′

s, i = 0, . . . , 5; the points γ̃s
0i, i = 1, . . . , 5, are

symmetric to the points γ̃s
i0;

• the points γ̃s
i1, i = 0, . . . , 5, represent a cubic with the control points a0 := γ̃s

01,

a1 := (2/3)0 + (1/3)v′
s + (1/5) tan(α/2)

−→
Ns, a2 := (1/3)0 + (2/3)v′

s + t0
−→
Ns,

a3 := v′
s + t1

−→
Ns in degree-raised form where

−→
Ns := (− sin(sα−α/2), cos(sα−

α/2)) is the normal perpendicular to the edge vs,vs+1; the points γ̃s
1i, i = 2, . . . , 5,

are symmetric to the points γ̃s
i1;
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• γ̃s
22 := (1− t2)0 + t2vs, γ̃s

i2 := (1− ti)0 + tiv
′
s + 2(γ̃s

i1 − γ̃s
i0), i = 3, . . . , 5; the

points γ̃s
2i, i = 3, . . . , 5, are symmetric to the points γ̃s

i2.

The three boundary layers of the reparametrization just constructed define curves of

degree 1, 3 and 5. Therefore γ̃s is denoted as 135-reparametrization. The reparametriza-

tions ρ2;s from sect. 2.3 are also of type 135.

Suppose R ≥ 2 annuli of Bézier surfaces of bidegree (5, 5) are to be generated

before the final cap of bidegree (11, 11). We now fix the free parameters ti and adjust

the contracting reparametrizations of the last two annuli. This procedure is explained

below and illustrated for the case R = 3 in Fig. 10. As usual, due to symmetry, only

one sector need be considered.

γ1;1
ij

γ2;1
ij

γ3;1
ij

γ1;R−1
ij

γ2;R−1
ij

γ3;R−1
ij

γ1;R
ij

γ2;R
ij

γ3;R
ij

γR+1
ij

γ1;R−1
50

γ1;R
50

γ1;R
55

0→

Fig. 10. Finite sequence of reparametrizations

(1) The contracting reparametrizations γr, defined in sect. 3, are degree-raised to bide-

gree (5, 5); the control points of these reparametrizations are denoted by γ1;r
ij , γ2;r

ij ,

γ3;r
ij .

(2) the points γk;r
ij , r ≤ R− 2, remain unchanged;

(3) the part of γk;R−1
ij that guarantees a C2 join to the previous (R − 2)-th annulus

remain unchanged;

(4) the points γ̃s
ij are denoted γR+1

ij ;

(5) the points γ1;R
ij , 3 ≤ i, j ≤ 5, are changed to Hermite-interpolate the three bound-

ary layers of γR+1
ij ; this guarantees a C2 join between γ1;R and γR+1 for those

layers; the points γ3;R
ij are changed analoguously;

(6) the remaining points γk;R−1
ij , γk;R

ij are changed to satisfy the conditions of symme-

try and of a C2 join;

(7) the reparametrizations defined by the new points γk;R−1
ij and γk;R

ij are γk;R−1 and

γk;R, respectively; the remaining coefficients of γk;R−1 and γk;R and the parame-
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ters ti, i ∈ {0, 1, 3, 4, 5} are determined by minimizing the functional

3∑

k=1

(F5(γ
k;R−1) + F5(γ

k;R));

(8) the points γR+1
ij , 3 ≤ i, j ≤ 5, are determined via the C2 conditions for joining γR

to γR+1.

(9) the parameter t2 is calculated by minimizing a functional F5(γ
R+1), where γR+1

is the reparametrization controled by the points γR+1
ij , 0 ≤ i, j ≤ 5.

4.2 A Total Degree 7 C2 Approximation of the Geometry

vs

vs+1

v′

s

v′

s+1

0

Fig. 11. Schematic view of the Bernstein-Bézier coefficients of three pieces of the auxiliary map-

ping PW7 of total degree 7

The sector v′
s0v

′
s+1 is split into the triangles△0v′

svs and△0vsv
′
s+1. The control

points of a piecewise C2 mapping PW7 of degree 7 over △0v′
svs, respectively over

△0vsv
′
s+1, are denoted by q2s

ijk and q2s+1
ijk , i + j + k = 7. The common central point

is q2s
700 = q2s+1

700 .

Let rep := uγR+1
50 + vγR+1

05 + (1− u− v)0 and G = F ◦ rep, where F defines the

M-patch. The values of

∂i
u∂j

vG, 0 ≤ i + j ≤ 4 at (0, 0)
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are calculated and converted to Bézier form of total degree 4. These define a quartic

mapping T4. The points qs
ijk, i ≥ 3, (in Fig. 11 marked as the small disks) are control

points of T4 after raising the degree to 7.

The remaining control points insure a C2 join between adjacent sectors and are

marked as big disks in Fig. 9. For these points the conditions of C2 join are the same as

for the control points of tensor-product surfaces. They are uniquely determined by the

requirement that data derived from PW7 ◦ γ̃s be joined C2 to the patches of bidegree

(5, 5) from the R-th annulus.

The control points marked as the circles do not affect the construction.

Remark 6. Splitting the sector v′
s0v

′
s+1 into the triangles △0v′

svs and △0vsv
′
s+1

simplifies the intermediate expressions so that a computer algebra system can derive

explicit formulas.

4.3 Capping Patches of Bidegree (11, 11)

We now describe how the Bézier patches Gs
Q, s = 1, . . . , m of bidegree (11, 11) are

constructed that cap off the construction at the extraordinary point Q.

(1) (2) (3)

(4) (5)

Q

← 11 →

← 9 →
Fig. 12. Construction of the capping patch Gs

Q

The cross-derivatives of PW7 ◦ γ̃s(u, v),

PW7 ◦ γ̃s|v=0, (PW7 ◦ γ̃s)v|v=0, (PW7 ◦ γ̃s)vv|v=0

are of degrees 7, 9 and 11 respectively. For each edge of Gs
Q emmanating from Q, this

data defines the first three layers of Bézier coefficients so that Gs−1
Q and Gs

Q are joined
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with curvature continuity, i.e. the cap is internally curvature continuous. Fig. 12 (1)

shows these layers colored black.

The data of the ordinary patches from the R-th annulus, adjacent to the extraordi-

nary patches, are colored grey. These data, degree-raised to bidegree (11, 11) and C2

extended, define three new layers for the remaining two edges of Gs
Q that are not con-

nected to Q. The cap is thereby joined C2 to the innermost ordinary annulus.

In Fig. 12 (2), the layers of both types are colored black while the remaining 36
inner control points qij , 3 ≤ i, j,≤ 8 are colored grey. These 36 inner control points

are determined by the guiding M-patch as follows.

• The four corners of already defined control points (marked in Fig. 12 (3) by the

dashed lines) are each rerepresented in bidegree (9, 9) form;
• the degree-decreased corners are connected to form a part of a patch of bidegree

(9, 9); this part is displayed via black lines in Fig. 12 (4);
• the remaining 16 inner control points q9

i,j (marked as grey circles in Fig. 12 (4))

are in 1− 1 corresponence to the 16 corner control points of one quarter G̃ of the

patch; these corner control points are marked in Fig. 12 (4) as the black circles and

in turn they are defined by the values of

∂i
u∂j

vG̃, 0 ≤ i, j ≤ 3

at the corresponding corner;

• the just mentioned control points q9
i,j are fixed using the M-patch:

(a) the reparametrization γR+1 from sect. 4.1 corresponding to the same sector as

Gs
Q is selected;

(b) the composition F ◦ γR+1 is subdivided into four;
(c) the control points q9

ij are calculated to match the compositions;

• The auxiliary patch of bidegree (9, 9) is degree-raised to bidegree (11, 11); its 36
inner control points (with indices ij, 3 ≤ i, j ≤ 8) are taken as the inner control

points qij of Gs
Q.

Remark 7. The order 1 part of a tensor-border structure of an extraordinary patch is of

degree 9. Hence no information is lost when an auxilary patch of bidegree (9, 9) is built.

The remaining tensor-border structure is defined either by the piecewise mapping PW7

of degree 7 or by adjacent ordinary patches of bidegree (5, 5). Thus the tensor-border of

an extraordinary patch is controlled by the auxiliary patch. An auxiliary patch of bide-

gree (9, 9) simplifies the implementation of the algorithm since only partial derivatives

of lower order must be calculated for the guide surface.

5 Conclusion

We have presented the construction of a polynomial C2 spline surface that approximates

a rational multi-sided M-patch. The key of the approach is the construction of a C2

reparametrization to transmit the data of a guiding M-patch to the spline surface.

The method can be applied to other surfaces, not necessarily rational and it can be

used to construct an infinte sequence of annuli in the sprit of subdivision algorithms.
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(a)

(b)

(c)

Fig. 13. A sample surface based on an unsymmetric monkey saddle and valence m = 8. (a)

shows the initial data, three annuli of bidegree (5,5) and the cap of bidegree (11,11). (b) is a

bitmap placed as an environment map onto the surface (c); of course only interactive, detailed

(sectional) curvature analysis and reflection lines can establish the claim of good shape which, in

turn, depends on the assumption that the M-patch has good shape.
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Abstract. This paper examines recursive Taylor methods for multivariate poly-

nomial evaluation over an interval, in the context of algebraic curve and surface

plotting as a particular application representative of similar problems in CAGD.

The modified affine arithmetic method (MAA), previously shown to be one of

the best methods for polynomial evaluation over an interval, is used as a bench-

mark; experimental results show that a second order recursive Taylor method (i)

achieves the same or better graphical quality compared to MAA when used for

plotting, and (ii) needs fewer arithmetic operations in many cases. Furthermore,

this method is simple and very easy to implement. We also consider which order

of Taylor method is best to use, and propose that second order Taylor expansion

is generally best. Finally, we briefly examine theoretically the relation between

the Taylor method and the MAA method.

1 Introduction

The aim of range analysis is to find the range of a function (usually a polynomial) in one

or several variables over an input interval. In practice, finding an exact range is difficult,

and it is more usual to find a range which includes the actual range. Information about

the range of a function f , and related functions such as its partial derivatives, inverse,

etc. are of considerable interest to people working in the fields of numerical and func-

tional analysis, differential equations, linear algebra, approximation and optimization

theory and other disciplines [7].

Range analysis has many important applications in CAGD and computer graphics,

including the plotting and localisation of implicit curves and surfaces. Implicit surfaces

are of direct use, for example, in CSG solid modelling, while implicit curves can be

used to represent the intersection of two parametric surfaces, or the silhouette edges of

a parametric surface with respect to a given view [10]. Many other geometric opera-

tions can also be performed by finding the simultaneous solution of a set of non-linear

equations in several variables, and range analysis provides a means of localising such

solutions [6]. Both as an interesting example in its own right, and as a representative

problem, we thus consider in this paper the problem of solving f(x, y) = 0 in a rect-

angle or f(x, y, z) = 0 in a cuboid, and more particularly the problem of plotting this
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curve or surface into a set of pixels or voxels. Clearly, for other problems, e.g. finding

the intersection of two surfaces, producing a pixel or voxel grid may not be appropriate,

but our overall methodology and conclusions concerning localisation of implicit curves

and surfaces remain valid.

Parametric curves or surfaces are very easy to plot. On the other hand, implicit

curves or surfaces can not be plotted so readily. Implicit curve or surface plotting meth-

ods can be classified into two categories. The first are continuation methods [2–4],

which are efficient. They find one or more seed cells (pixels or voxels) on a curve or a

surface, and then trace the curve or surface continuously through appropriate adjacent

cells—only cells containing the curve or surface are visited. However, continuation

methods have one fundamental difficulty, that of finding a complete set of initial seed

cells.

Subdivision methods [5, 8, 10–14] make up the second approach. These methods

start with the whole plotting region itself as an initial cell. If a cell can be proven to

be empty, it is discarded; otherwise it is subdivided into smaller cells, which are then

visited recursively, until the cells reach pixel size. All pixels which contain the curve

are thus guaranteed to be retained. In this way large portions of the plotting region can

be discarded quickly and reliably at an early stage, leading to an efficient method. Such

methods are generally based on ideas from interval arithmetic.

When f(x, y) is a polynomial in two variables x and y, the curve is an algebraic

curve. Similarly when f(x, y, z) is a polynomial in three variables x, y and z, the surface

is an algebraic surface. Algebraic curves or surfaces are a rich family, with several

plotting methods [5, 8, 13] that exploit the properties of polynomials.

Taubin’s method [13] is well known; we have shown in [5] that Taubin’s method

is equivalent to performing interval arithmetic on centered forms but without consid-

eration of the even or odd properties of powers of polynomial terms. We have further

shown that interval arithmetic on centered forms method is less accurate than a mod-

ified affine arithmetic method (MAA) which does take into consideration the even or

odd properties.

In this paper we propose the use of a recursive Taylor method for function range

evaluation and use it to plot algebraic curves and surfaces. We combine it with a point

sampling technique and a subpixel (or subvoxel) technique to improve the results.

In our previous papers [5, 8] we showed that the modified affine arithmetic method is

one of the best methods for polynomial evaluation over an interval, for use in recursive

subdivision methods for plotting algebraic curves—we thus compare the Taylor method

with that method. Our test results show that, when used for plotting algebraic curves

and surfaces at a given resolution, the recursive Taylor method can give same or better

graphical accuracy as the MAA method, and needs fewer arithmetic operations in most

cases. Furthermore, this recursive Taylor method is simple and very easy to implement.

We also consider which order Taylor method to use, and show that 2nd order Taylor

expansion seems to be best for general use.

Finally we examine theoretically the relation between the recursive Taylor method

and the modified affine arithmetic method.

As noted above, the recursive Taylor technique presented in this paper is a gen-

eral efficient method for computing bounds on a polynomial: its use here for algebraic
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curve and surface drawing is just an example application. The recursive Taylor method

presented in this paper can be easily generalized to an arbitrary number of dimensions.

2 The Subdivision Algorithm

Subdivision algorithms for plotting implicit curves and implicit surfaces have much in

common. We mainly focus on the case of plane implicit curves in this section.

In the following we use the standard notation that an interval A represents a range

of real values between a and a such that a < a and is written [a, a].
The main idea of subdivision algorithms [11] for plotting implicit curves over a

rectangular array of pixels is to consider various regions, initially the whole plotting

region, [x, x] × [y, y], and to estimate bounds [f, f ] guaranteed to contain all values of

f(x, y) over this region. This is done using some range analysis method to estimate the

range of the function. If 0 /∈ [f, f ], this means that the curve cannot pass through region,

which therefore can be discarded. Otherwise the region is subdivided horizontally and

vertically at its mid point into four sub-regions, and the pieces are considered in turn.

The process stops when any region not yet discarded reaches pixel size.

In a basic version of the algorithm, we may just plot this pixel as if it did contain

the curve. This can result in a “fat” curve if the bounds on the function obtained by

range analysis method are too conservative, i.e. extra pixels which are actually not on

the curve are plotted. Later, we will consider how to process the pixel-sized regions

further to remove some, but not all, of the extraneous pixels. The basic procedure is

summarized in fig. 1.

PROCEDURE Plot Curve(x, x, y, y):

[f, f ] = Bound(f, x, x, y, y);

IF f ≤ 0 ≤ f THEN

IF x − x ≤ Pixel size AND y − y ≤ Pixel size THEN

Plot Pixel(x, x, y, y)
ELSE Subdivide(x, x, y, y).

PROCEDURE Subdivide(x, x, y, y):
x0 = (x + x)/2;
y0 = (y + y)/2;
Plot Curve(x, x0, y, y0);

Plot Curve(x, x0, y0, y);
Plot Curve(x0, x, y0, y);
Plot Curve(x0, x, y, y0).

Fig. 1. Subdivision algorithm for curve plotting

The key step in subdivision algorithms of this type is to estimate the bounds [f , f ] on

f(x, y) over the region [x, x] × [y, y]; this is done using some range analysis method.

Different range analysis methods for computing the bounds have different effects on
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accuracy and efficiency of the plotting algorithm [5]. Generally, the more accurate the

estimate is, the better the graphical result will be, and also less subdivision will be

required. However, more accurate estimates usually need more arithmetic operations,

which reduces the efficiency of the plotting algorithm. Obviously, accuracy and effi-

ciency are to some extent trade-offs. In the next section we will present a Taylor method

for computing these bounds.

In order to reduce the uncertainties associated with the regions remaining at pixel

level, which may or may not contain the curve, as noted above, we use two further

techniques. Point sampling [12] is done for regions of pixel size by evaluating the values

of f(x, y) at the four corner points of the pixel. If they do not all have the same sign

(or zero), then the pixel must be include the curve (as f is a continuous function);

otherwise, the pixel may or may not be on the curve. Thus, after point sampling, all

pixels in the plotting region belong to one of three classes: (i) pixels discarded by the

basic subdivision method, which are surely not on the curve, (ii) pixels accepted by the

point sampling technique, which are surely on the curve, and (iii) pixels whose status is

still not clear, and may or may not be on the curve. We now further attempt to discard as

many pixels as possible in the third class. To this end we use a subpixel technique [14].

We subdivide pixels in the third category into four subpixels. If all four subpixels can

be discarded by the range method, we discard this pixel, otherwise we keep the pixel.

A major advantage of the subdivision algorithm presented above is that it finds all

points on the curve, and can handle singularities with no special processing. Thus, it

can handle problems where continuation methods may typically fail, including curves

with multiple components, cusps, self-intersections, touching components, and isolated

points.

The subdivision algorithm for plotting implicit surfaces is a direct generalisation

to three variables of the planar implicit curve algorithm. Plotting implicit space curve

cases can also readily be done by finding regions simultaneously containing zeros of

two implicit functions in three variables.

3 Taylor Method for Bounds

Constructing the natural inclusion function [10] giving the exact range of a function

over an interval is often not easy, and may be impossible for general functions f(x, y).
Here we use a simple Taylor method [1] for computing bounds of f(x, y) over [x, x]×
[y, y], which can be combined with point sampling and subpixel techniques to solve the

implicit curve plotting problem in a reliable, accurate and efficient way. For now, we

assume the choice of a second order Taylor method, but we will return to the choice

of order later. Suppose f(x, y) has continuous second derivatives on [x, x] × [y, y]. In

many practical applications in CAGD and computer graphics, the functions encountered

satisfy this condition, at least piecewise. To estimate the bound of f(x, y) on [x, x] ×
[y, y], we expand f(x, y) at the mid point (x0, y0) of the region [x, x] × [y, y] using
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Taylor’s formula:

f(x, y) = f(x0, y0) + hfx(x0, y0) + kfy(x0, y0) +
1

2
h2fxx(x0 + θh, y0 + θk)

+
1

2
k2fyy(x0 + θh, y0 + θk) + hkfxy(x0 + θh, y0 + θk),

where

(x, y) ∈ [x, x]× [y, y], x0 =
x + x

2
, y0 =

y + y

2
, 0 < θ < 1,

h = x− x0 ∈ [−x− x

2
,
x− x

2
] =

x− x

2
[−1, 1],

k = y − y0 ∈ [−
y − y

2
,
y − y

2
] =

y − y

2
[−1, 1].

Suppose we know the interval bounds Bxx, Byy, Bxy of the three second derivatives

fxx(x, y), fyy(x, y), fxy(x, y) of the function f(x, y) over the region [x, x] × [y, y]
such that fxx(x, y) ∈ Bxx, fyy(x, y) ∈ Byy , fxy(x, y) ∈ Bxy . Let x1 = (x − x)/2,

y1 = (y− y)/2. Then the bounds [f, f ] of f(x, y) over the region [x, x]× [y, y] can be

expressed as

[f, f ] = f(x0, y0) + x1fx(x0, y0)[−1, 1] + y1fy(x0, y0)[−1, 1]

+
1

2
x2

1Bxx[−1, 1] +
1

2
y2
1Byy [−1, 1] + x1y1Bxy[−1, 1].

(To apply interval computation to the above formula, real numbers are converted

where necessary to intervals with equal lower and upper bounds.)

The main potential limitation of this method is that we need estimates for the bounds

Bxx, Byy, Bxy of the three second derivatives fxx(x, y), fyy(x, y), fxy(x, y) of f(x, y)
on the region [x, x] × [y, y]. (Note that the first derivatives required need only be com-

puted at a specific point, and thus can readily be found.) For general implicit curves,

finding bounds on the second derivatives is a difficult problem. However, as we show in

the next section, they can be readily computed for algebraic curves.

Similarly, for surface plotting, to estimate the bound of f(x, y, z) on [x, x]× [y, y]×
[z, z], we may expand f(x, y, z) at the mid point (x0, y0, z0) of the region [x, x] ×
[y, y]× [z, z] using Taylor’s formula:

f(x, y, z ) = f(x0, y0, z0) + hfx(x0, y0, z0) + kfy(x0, y0, z0) + lfz(x0, y0, z0)

+
1

2
h2fxx(x0 + θh, y0 + θk, z0 + θl) +

1

2
k2fyy(x0 + θh, y0 + θk, z0 + θl)

+
1

2
l2fzz(x0 + θh, y0 + θk, z0 + θl) + hkfxy(x0 + θh, y0 + θk, z0 + θl)

+hlfxz(x0 + θh, y0 + θk, z0 + θl) + klfyz(x0 + θh, y0 + θk, z0 + θl)

where

(x, y, z) ∈ [x, x]×[y, y]×[z, z], x0 =
x + x

2
, y0 =

y + y

2
, z0 =

z + z

2
, 0 < θ < 1,
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h = x− x0 ∈ [−x− x

2
,
x− x

2
] =

x− x

2
[−1, 1],

k = y − y0 ∈ [−
y − y

2
,
y − y

2
] =

y − y

2
[−1, 1].

l = z − z0 ∈ [−z − z

2
,
z − z

2
] =

z − z

2
[−1, 1].

Suppose we know the interval bounds Bxx, Byy , Bzz, Bxy, Bxz, Byz of the six sec-

ond derivatives fxx(x, y, z), fyy(x, y, z), fzz(x, y, z), fxy(x, y, z), fxz(x, y, z), fyz(x, y, z)
of the function f(x, y, z) over the region [x, x]× [y, y]× [z, z] such that fxx(x, y, z) ∈
Bxx, fyy(x, y, z) ∈ Byy , fzz(x, y, z) ∈ Bzz , fxy(x, y, z) ∈ Bxy , fxz(x, y, z) ∈ Bxz ,

fyz(x, y, z) ∈ Byz . Let x1 = (x − x)/2, y1 = (y − y)/2,, z1 = (z − z)/2,. Then the

bounds [F , F ] of f(x, y, z) over the region [x, x]× [y, y]× [z, z] can be expressed as

[F, F ] = f(x0, y0, z0) + x1fx(x0, y0, z0)[−1, 1] + y1fy(x0, y0, z0)[−1, 1]

+z1fz(x0, y0, z0)[−1, 1] +
1

2
x2

1Bxx[−1, 1] +
1

2
y2
1Byy[−1, 1] +

1

2
z2
1Bzz[−1, 1]

+x1y1Bxy[−1, 1] + x1z1Bxz[−1, 1] + y1z1Byz[−1, 1].

As above, again we need estimates for the bounds Bxx, Byy , Bzz , Bxy , Bxz , Byz .

4 Finding Bounds on Derivatives

When f(x, y) = 0 represents an algebraic curve, f(x, y) is a polynomial function of

two variables. In this case the three second derivatives fxx(x, y), fyy(x, y), fxy(x, y)
are themselves also polynomials in two variables with lower degrees in x or y or both.

Therefore we can use a recursive technique to estimate the bounds of the second deriva-

tives, as given by the algorithm in fig. 2. Here, “IF f ≡ c RETURN Interval[c, c]”

Bound(f, x, x, y, y):
IF f ≡ c RETURN Interval[c, c]
ELSE

x0 = (x + x)/2; y0 = (y + y)/2; x1 = (x − x)/2; y1 = (y − y)/2;

[f, f ] = f(x0, y0) + x1fx(x0, y0)[−1, 1] + y1fy(x0, y0)[−1, 1]

+ 1
2
x2

1[0, 1]Bound(fxx, x, x, y, y) + 1
2
y2
1 [0, 1]Bound(fyy, x, x, y, y)

+x1y1[−1, 1]Bound(fxy, x, x, y, y);

RETURN Interval[f, f ].

Fig. 2. Recursive Taylor algorithm for polynomial bounding

tests if f is a constant, and if so terminates the recursion—the bound on a constant can

be trivially computed. (Recursion could also be stopped one step earlier, as it is easy to

compute exact bounds for linear functions.)

Note that only in the case that f is a polynomial can we guarantee that such recur-

sion will terminate. For polynomials, successive differentiation must eventually result

in a constant, which is not true for other functions.

A similar recursive technique can be used for trivariate polynomials.
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5 Examples

In the above sections we proposed a recursive Taylor method combined with point sam-

pling and a subpixel technique for plotting algebraic curves and surfaces. In this section

we give some examples demonstrating the accuracy and efficiency of these methods.

Most of the examples we give involve low degree polynomials. While it is conceiv-

able that somewhat different conclusions might be drawn for the cases of higher degree

polynomials, other tests we have done on further higher degree polynomials support the

conclusions here. Furthermore, in most CAGD applications, the polynomials used are

generally of a low degree, justifying our choice of low degree test cases.

5.1 Algebraic Curves

Examples 1 to 10 are the same examples for plotting algebraic curves given in a recent

survey of methods [5], with plotting region [0, 1]×[0, 1] and resolution 256×256 pixels.

They were designed to test the efficiency and accuracy of range evaluation methods

on a variety of problem cases, including curves with cusps, self-intersections, closely

adjacent loops, and so on.

The corresponding figures produced by the new recursive Taylor (RT) method (in-

cluding the use of point sampling and subpixel techniques, denoted RT++) are shown

in Figures 3 to 12. The survey [5] showed that the modified affine arithmetic method

(MAA) is one of the best methods for plotting algebraic curves. Therefore we have

compared the recursive Taylor method with the MAA method. A detailed quantitative

comparison of the MAA and RT methods, and also their variants MAA++ and RT++

which include point sampling and subpixel techniques, is given in Table 1 (left) for

these examples.

Table 1 (left) shows, for each example, how many pixels are plotted by the different

methods (the fewer, the more accurately the method has found the curve), the number

of subdivisions used in the computation (the fewer, the better, as less stack operation

overheads result), and the number of addition and multiplication operations used overall

(the lower, the better).

The recorded number of additions and multiplications in Table 1 (left) does not in-

clude the arithmetic operations used to differentiate the polynomial. An implementation

of the recursive Taylor method should calculate all necessary coefficients of the deriva-

tives of the polynomial just once at the beginning, and store them in an array, to avoid

differentiation of the polynomial during the subdivision process every time a derivative

is needed. The number of arithmetic operations used to differentiate the polynomial

once only is relatively small and can be neglected.

From Table 1 (left) we can see that in one case out of ten (Example 4), the recursive

Taylor method produced better graphical quality than the modified affine arithmetic

method (fewer pixels were plotted). The corresponding graphical output for the RT

method is shown in fig. 14, where 801 pixels were plotted, and for the MAA method

in fig. 13, where 816 pixels were plotted. (These two figures only differ in the lower

left corner). In the other nine test cases the recursive Taylor method produced the same

graphical quality as the modified affine arithmetic method.
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Fig. 3. Example 1: 15
4

+ 8x − 16x2 +
8y − 112xy + 128x2y − 16y2 + 128xy2 −
128x2y2 = 0, plotted by RT++ method (522

pixels)
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Fig. 4. Example 2: 20160x5 − 30176x4 +
14156x3−2344x2+151x+237−480y = 0,

plotted by RT++ method (432 pixels)
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Fig. 5. Example 3: 0.945xy−9.43214x2y3 +
7.4554x3y2 + y4 − x3 = 0, plotted by RT++

method (601 pixels)

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

Fig. 6. Example 4: x9 − x7y + 3x2y6 − y3 +
y5 + y4x − 4y4x3 = 0, plotted by RT++

method (774 pixels)

In seven out of ten cases, the recursive Taylor method needed fewer arithmetic op-

erations in total (the number of additions plus the number of multiplications) than the

modified affine arithmetic method (Examples 2,4,6,7,8,9,10). In Examples 2,6,9,10 the

number of arithmetic operations needed by the recursive Taylor method was much fewer

than (less than half of) those for the modified affine arithmetic method. Although the

recursive Taylor method needed more arithmetic operations than the modified affine
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Fig. 7. Example 5. − 1801
50

+ 280x− 816x2 +
1056x3 − 512x4 + 1601

25
y − 512xy +

1536x2y − 2048x3y + 1024x4y = 0, plot-

ted by RT++ method (456 pixels)
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Fig. 8. Example 6: 601
9

− 872
3

x + 544x2 −
512x3+256x4− 2728

9
y+ 2384

3
xy−768x2y+

5104
9

y2 − 2432
3

xy2 + 768x2y2 − 512y3 +
256y4 = 0, plotted by RT++ method (456

pixels)
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Fig. 9. Example 7: −13 + 32x − 288x2 +
512x3 − 256x4 + 64y − 112y2 + 256xy2 −
256x2y2 = 0, plotted by RT++ method (460

pixels)
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Fig. 10. Example 8: − 169
64

+ 51
8

x − 11x2 +
8x3 + 9y − 8xy − 9y2 + 8xy2 = 0, plotted

by RT++ method (808 pixels)

arithmetic method for Examples 1,3,5, we note that the numbers of arithmetic opera-

tions needed by both methods for these examples were very similar.

One minor disadvantage of the recursive Taylor method is that it often needs a few

more recursive operations than MAA.
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Fig. 11. Example 9: 47.6 − 220.8x +
476.8x2−512x3+256x4−220.8y+512xy−
512x2y + 476.8y2 − 512xy2 + 512x2y2 −
512y3 +256y4 = 0, plotted by RT++ method

(1088 pixels)
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Fig. 12. Example 10: 55
256

− x + 2x2 − 2x3 +
x4 − 55

64
y + 2xy − 2x2y + 119

64
y2 − 2xy2 +

2x2y2 − 2y3 + y4 = 0, plotted by RT++

method (772 pixels)
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Fig. 13. Example 4, plotted by the MAA

method (816 pixels)
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Fig. 14. Example 4, plotted by the RT method

(801 pixels)

Point sampling and subpixel techniques further improved the graphical quality of

RT and MAA methods, especially for Examples 4,7,9 where the improvements are

significant. However, for Examples 1,2,3,5,6,8,10 the improvements only affected a

few pixels and insignificant. Of course, the price to pay for these improvements is an

increase in arithmetic operations: every pixel which cannot be discarded by the basic

subdivision process needs to be examined further. We can however see from Table 1

(left) that the increased number of arithmetic operations is not greatly significant. This is
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Table 1. Comparison of 2D (left) and 3D (right) RT, MAA, RT++, MAA++ methods

Ex. Method Pixels Subdi- Addi- Multipli-

plotted visions tions cations

1 RT 526 571 415688 343892

1 MAA 526 563 404262 171226

1 RT++ 522 575 436316 385080

1 MAA++ 522 567 421448 207820

2 RT 433 461 241581 205717

2 MAA 433 459 601510 407812

2 RT++ 432 462 253193 234577

2 MAA++ 432 460 611148 434354

3 RT 608 637 1116344 936757

3 MAA 608 634 1178329 646933

3 RT++ 601 653 1143206 992682

3 MAA++ 601 650 1202312 694836

4 RT 801 845 4662221 4461229

4 MAA 816 857 6773822 6302500

4 RT++ 774 876 4844054 4748416

4 MAA++ 774 903 7139018 6757864

5 RT 464 627 664231 575815

5 MAA 464 611 599656 339853

5 RT++ 456 635 690161 630353

5 MAA++ 456 619 621248 387781

6 RT 460 567 442025 414092

6 MAA 460 560 1329630 788830

6 RT++ 456 573 469450 478064

6 MAA++ 456 566 1362826 853306

7 RT 512 629 445039 386359

7 MAA 512 627 873923 476708

7 RT++ 460 719 512886 472534

7 MAA++ 460 717 986288 569061

8 RT 818 829 563844 422917

8 MAA 818 827 855337 397078

8 RT++ 808 843 595997 476088

8 MAA++ 808 841 886530 444873

9 RT 1144 1281 998825 935312

9 MAA 1144 1269 3012696 1787102

9 RT++ 1088 1351 1106039 1131219

9 MAA++ 1088 1339 3214325 2018571

10 RT 784 849 662153 609761

10 MAA 784 845 2006376 1190110

10 RT++ 772 861 710484 710732

10 MAA++ 772 857 2068693 1294219

Ex. Method Voxels Subdi- Addi- Multipli-

plotted visions tions cations

11 RT 1791 592 397403 229152

11 MAA 1791 592 326348 110727

11 RT++ 1791 592 432100 278177

11 MAA++ 1791 592 361045 159752

12 RT 3992 1353 918367 588609

12 MAA 3992 1353 3289042 1476259

12 RT++ 3952 1401 1163930 953372

12 MAA++ 3944 1401 3513741 1733406

13 RT 3712 1433 958102 589014

13 MAA 3712 1433 1084217 692199

13 RT++ 3712 1433 1023606 713910

13 MAA++ 3712 1433 1149721 817095

14 RT 3272 1129 756950 491169

14 MAA 3272 1129 2735177 1231875

14 RT++ 3176 1249 1145079 1038878

14 MAA++ 3192 1249 3048966 1515888

15 RT 2192 985 4455080 3265689

15 MAA 2144 985 13108130 11792931

15 RT++ 1904 1337 5603358 4948007

15 MAA++ 1920 1289 16804088 15499281

16 RT 2376 1153 5232146 3831834

16 MAA 2344 1121 14953054 13456863

16 RT++ 2148 1497 6291409 5435377

16 MAA++ 2104 1433 18908261 17434612

17 RT 5276 1841 7081323 4483139

17 MAA 5256 1837 6948311 5854917

17 RT++ 4896 2265 8662097 6658461

17 MAA++ 4976 2241 8576707 7662017

18 RT 9424 2865 12975392 9497889

18 MAA 9376 2769 36866234 33149195

18 RT++ 7236 5313 21000658 20340451

18 MAA++ 7792 5169 64451180 59649509

19 RT 1832 961 4290881 3139995

19 MAA 1816 961 12656417 11259579

19 RT++ 1572 1249 5248699 4536725

19 MAA++ 1624 1233 15851779 14407101

20 RT 3428 1197 3139078 2100954

20 MAA 3416 1169 3739482 4352652

20 RT++ 3288 1425 3913112 3195292

20 MAA++ 3288 1385 4474204 5400382

because the RT and MAA methods already provide close to the best possible graphical

quality at the given resolution, and thus the numbers of pixels left to be examined further

by point sampling and subpixel techniques are relatively small.

5.2 Algebraic Surfaces

We have also experimented with algebraic surface plotting, as outlined below. Note

that our main purpose in this paper is to compare our new range analysis method with

existing methods, in this case for localising the surface to specific regions (voxels). We

only use voxel plotting as a representative application; the graphical results of surface

plotting shown at a resolution of 32×32×32 are clearly crude. Such an approach is not

meant to be a useful surface rendering algorithm in itself. A realistic surface plotting
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y

Fig. 15. Example 11: The plane plotted by 3D

RT++ method (1791 voxels)
Fig. 16. Example 12: The sphere plotted by

3D RT++ method (3952 voxels)

algorithm would, for example, attempt to find a linear fit to the surface and estimate its

normal in each region where the surface has been localised.

Example 11: this plots the plane f(x, y, z) = x + 2y + 3z − 2 inside the box box

[−1, 1] × [−1, 1] × [−1, 1], with resolution 32 × 32 × 32 voxels. Figure 15 shows the

plane plotted by the 3D recursive Taylor method using point sampling and subpixel

techniques. A total of 1791 voxels were plotted.

Example 12: this plots the sphere f(x, y, z) = 100x2 +100y2 +100z2− 81 inside

the box [−1, 1]×[−1, 1]×[−1, 1], with resolution 32×32×32 voxels. Figure 16 shows

the sphere plotted by the recursive Taylor method using point sampling and subpixel

techniques. A total of 3952 voxels were plotted.

Example 13: this plots the cylinder f(x, y, z) = 100x2 + 100y2 − 81 inside the

box [−1, 1]× [−1, 1]× [−1, 1], with resolution 32× 32× 32 voxels. Figure 17 shows

the cylinder plotted by the recursive Taylor method using point sampling and subpixel

techniques. A total of 3712 voxels were plotted.

Example 14: this plots the cone f(x, y, z) = 100x2 + 100y2− 81z2 inside the box

[−1, 1]× [−1, 1]× [−1, 1], with resolution 32× 32× 32 voxels. Figure 18 is the cone

plotted by the recursive Taylor method using point sampling and subpixel techniques.

A total of 3176 voxels were plotted.

Example 15: this plots the torus f(x, y, z) = 64 − 500x2 + 625x4 − 500y2 +
1250x2y2 + 625y4 + 400z2 + 1250x2z2 + 1250y2z2 + 625z4 inside the box [−1, 1]×
[−1, 1]× [−1, 1] with resolution 32× 32× 32 voxels. Figure 19 is the torus plotted by

the recursive Taylor method using point sampling and subpixel techniques. A total of

1904 voxels were plotted.

Example 16: this plots the cyclide f(x, y, z) = −459 + 15600x − 55000x2 +
90000x4−45000y2+180000x2y2+90000y4+12600z2+180000x2z2+180000y2z2+
90000z4 inside the box [−1, 1]× [−1, 1]× [−1, 1], with resolution 32×32×32 voxels.
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Fig. 17. Example 13: The cylinder plotted by

3D RT++ method (3712 voxels)
Fig. 18. Example 14: The cone plotted by 3D

RT++ method (3176 voxels)

y

Fig. 19. Example 15: The torus plotted by 3D

RT++ method (1904 voxels)

y

Fig. 20. Example 16: The cyclide plotted by

3D RT++ method (2148 voxels)

Figure 20 is the cyclide plotted by the recursive Taylor method using point sampling

and subpixel techniques. A total of 2148 voxels were plotted.

Example 17: this plots a self-intersecting surface f(x, y, z) = 16− 32x− 25x2 +
50x3 − 25y2 + 50xy2 − 25z2 + 50xz2 inside the box [−1, 1]× [−1, 1]× [−1, 1], with

resolution 32× 32× 32 voxels. Figure 21 is the self-intersecting surface plotted by the

recursive Taylor method using point sampling and subpixel techniques. A total of 4896

voxels were plotted.

Example 18: this plots a pair of parallel surfaces f(x, y, z) = 1296 − 3625x2 +
2500x4− 3625y2 + 5000x2y2 + 2500y4− 3625z2 + 5000x2z2 + 5000y2z2 + 2500z4
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Fig. 21. Example 17: The self-intersecting

surface plotted by 3D RT++ method (4896

voxels)

Fig. 22. Example 18: The pair of parallel sur-

faces plotted by 3D RT++ method (7236 vox-

els)

inside the box [−1, 1]×[−1, 1]×[−1, 1] with resolution 32×32×32 voxels. Figure 22 is

the pair of parallel surfaces plotted by the recursive Taylor method using point sampling

and subpixel techniques. A total of 7236 voxels were plotted.

Example 19: this plots a pair of just-touching surfaces (two spheres sharing a tan-

gent plane) f(x, y, z) = −16x2 + 25x4 + 50x2y2 + 25y4 + 50x2z2 + 50y2z2 + 25z4

inside the box [−1, 1] × [−1, 1] × [−1, 1], with resolution 32 × 32 × 32 voxels. Fig-

ure 23 is the pair of tangent spheres plotted by the recursive Taylor method using point

sampling and subpixel techniques. A total of 1572 voxels were plotted.

Example 20: this plots a cone-like surface with a line singularity f(x, y, z) = −1+
4x − 4x2 + 2y2 − 8xy2 + 8x2y2 + 8z2 inside the box [−1, 1] × [−1, 1] × [−1, 1],
with resolution 32 × 32 × 32 voxels. Figure 24 is the cone-like surface plotted by the

recursive Taylor method using point sampling and subpixel techniques. A total of 3288

voxels were plotted.

Table 1 (right) gives a detailed quantitative comparison for these surface examples

of the 3D MAA and 3D RT methods, and also of their improvements which include

point sampling and subpixel techniques, 3D MAA++ and 3D RT++.

From Table 1 (right) we can see that:

– In 4 out of 10 cases (Examples 11–14) the RT method plotted the same number of

voxels as the MAA method. In the other 6 cases (Examples 15–20) the RT method

plotted slightly more voxels than the MAA method.

– In 9 out of 10 cases (all but Example 11) the RT method needed fewer arithmetic

operations than the MAA method.

– In 5 out of 10 cases (Examples 14,15,17–19) the RT++ method plotted fewer voxels

than the MAA++ method. In 3 cases (Examples 11,13,20) the RT++ method plotted

the same number of voxels as the MAA++ method. In the other 2 cases (Examples

12,16) the RT++ method plotted slightly more voxels than the MAA++ method.
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Fig. 23. Example 19: The pair of just touching

surfaces plotted by 3D RT++ method (1572

voxels)

Fig. 24. Example 20: The cone like surface

with a line singularity plotted by 3D RT++

method (3288 voxels)

– In 9 out of 10 cases (all but Example 11) the RT++ method needed fewer arithmetic

operations than the MAA++ method.

Overall we may probably conclude that the 3D RT++ method is the best choice in

terms of accuracy and efficiency.

6 Why use Order Two Taylor Expansion?

In sect. 4 we proposed an order 2 recursive Taylor method for finding the bound of a

polynomial, and in sect. 5 we gave some examples to show that this method works well.

Clearly, however, we could have chosen to use some other order for our Taylor expan-

sion, so we will now justify why we use a second order expansion rather than some

other order, particularly order 1, 3 or 4. To do so we give an experimental comparison

between recursive Taylor methods of orders 1–4.

We first begin by explicitly stating order 1, 3 and 4 recursive Taylor algorithms

for evaluating a bivariate polynomial f(x, y). An order 1 recursive Taylor algorithm is

given in fig. 25, while an order 3 recursive Taylor algorithm is given in fig. 26, and an

order 4 recursive Taylor algorithm is given in fig. 27.

Using the same curves from Examples 1–10 as before, we compared the accuracy

and efficiency of order 1, 2, 3 and 4 recursive Taylor methods, using the same criteria

of assessment as before. The test results are shown in Table 2 (left).

From Table 2 (left) we can see that:

– The order 1 recursive Taylor method is less accurate than order 2, 3 and 4 recursive

Taylor methods.

– Usually, but not always, the order 1 method needs more arithmetic operations than

order 2, 3 and 4 methods (Example 2 is a counterexample).
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Bound(f, x, x, y, y):
IF f ≡ c RETURN Interval[c, c],
ELSE

x0 = (x + x)/2; y0 = (y + y)/2; x1 = (x − x)/2, y1 = (y − y)/2;

[f, f ] = f(x0, y0) + x1Bound(fx, x, x, y, y)[−1, 1] +
y1Bound(fy, x, x, y, y)[−1, 1];

RETURN Interval[f, f ].

Fig. 25. Order 1 recursive Taylor algorithm

Bound(f, x, x, y, y):
IF f ≡ c RETURN Interval[c, c],
ELSE

x0 = (x + x)/2; y0 = (y + y)/2; x1 = (x − x)/2, y1 = (y − y)/2;

[f, f ] = f(x0, y0) + x1fx(x0, y0)[−1, 1] + y1fy(x0, y0)[−1, 1]

+ 1
2
x2

1[0, 1]fxx(x0, y0) + 1
2
y2
1 [0, 1]fyy(x0, y0) + x1y1[−1, 1]fxy(x0, y0)

+ 1
6
x3

1[−1, 1]Bound(fxxx, x, x, y, y + 1
6
y3
1 [−1, 1]Bound(fyyy, x, x, y, y)

+ 1
2
x2

1y1[−1, 1]Bound(fxxy, x, x, y, y)+ 1
2
x1y

2
1 [−1, 1]Bound(fxyy, x, x, y, y);

RETURN Interval[f, f ].

Fig. 26. Order 3 recursive Taylor algorithm

Bound(f, x, x, y, y):
IF f ≡ c RETURN Interval[c, c],
ELSE

x0 = (x + x)/2; y0 = (y + y)/2; x1 = (x − x)/2, y1 = (y − y)/2;

[f, f ] = f(x0, y0) + x1fx(x0, y0)[−1, 1] + y1fy(x0, y0)[−1, 1]

+ 1
2
x2

1[0, 1]fxx(x0, y0) + 1
2
y2
1 [0, 1]fyy(x0, y0) + x1y1[−1, 1]fxy(x0, y0)

+ 1
6
x3

1[−1, 1]fxxx(x0, y0) + 1
6
y3
1 [−1, 1]fyyy(x0, y0)

+ 1
2
x2

1y1[−1, 1]fxxy(x0, y0) + 1
2
x1y

2
1 [−1, 1]fxyy(x0, y0)

+ 1
24

x4
1[0, 1]Bound(fxxxx, x, x, y, y)+ 1

24
y4
1 [0, 1]Bound(fyyyy, x, x, y, y)

+ 1
6
x3

1y1[−1, 1]Bound(fxxxy, x, x, y, y)

+ 1
6
x1y

3
1 [−1, 1]Bound(fxyyy, x, x, y, y)

+ 1
4
x2

1y
2
1 [0, 1]Bound(fxxyy, x, x, y, y);

RETURN Interval[f , f ].

Fig. 27. Order 4 recursive Taylor algorithm

– In 9 out of 10 cases the order 2 recursive Taylor method has the same accuracy as

order 3 and 4 methods. In the other case (Example 4) the order 2 method is more

accurate than the order 3 and 4 methods.

– In 6 out of 10 cases, the order 2 recursive Taylor method needs fewer arithmetic

operations than the order 3 method (Examples 1,2,6,7,9,10).

– In all cases the order 4 recursive Taylor methods has the same accuracy as the order

3 method.

– In 6 out of 10 cases order 4 recursive Taylor method needs fewer arithmetic opera-

tions than the order 3 method (Examples 1,4,6,7,9,10).
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Table 2. Comparison of order 1, 2, 3 and 4 RT methods under resolution 256 × 256 (left) and

resolution 16 × 16 (right)

Ex. Method Pixels Subdi- Addi- Multipli-

plotted visions tions cations

1 1 550 631 795049 536562

1 2 526 571 415688 343892

1 3 526 567 460441 429975

1 4 526 563 252186 287257

2 1 438 497 248387 191938

2 2 433 461 241581 205717

2 3 433 460 246584 240250

2 4 433 459 334228 357296

3 1 619 681 1771000 1265762

3 2 608 637 1116344 936757

3 3 608 636 793926 808037

3 4 608 634 887844 1000846

4 1 843 952 12534981 9330145

4 2 801 845 4662221 4461229

4 3 816 860 3767717 4179094

4 4 816 857 2149817 3043237

5 1 484 803 1171467 869116

5 2 464 627 664231 575815

5 3 464 615 518665 535267

5 4 464 611 691345 764062

6 1 492 710 1053137 762808

6 2 460 567 442025 414092

6 3 460 560 743610 707035

6 4 460 560 281964 357439

7 1 562 755 990114 684256

7 2 512 629 445039 386359

7 3 512 627 644351 600905

7 4 512 627 273019 327424

8 1 846 895 612153 402862

8 2 818 829 563844 422917

8 3 818 827 258064 246520

8 4 818 827 337480 352408

9 1 1336 1625 2410713 1745518

9 2 1144 1281 998825 935312

9 3 1144 1269 1685062 1601793

9 4 1144 1269 639200 809781

10 1 844 997 1479305 1059079

10 2 784 849 662153 609761

10 3 784 845 1122246 1056562

10 4 784 845 425760 529126

Ex. Method Voxels Subdi- Addi- Multipli-

plotted visions tions cations

1 1 58 57 72137 48662

1 2 48 49 35848 29648

1 3 44 49 39969 37331

1 4 44 45 20266 23077

2 1 36 52 26059 20168

2 2 32 36 18977 16167

2 3 32 34 18348 17878

2 4 32 33 24200 25868

3 1 55 57 148840 106370

3 2 43 48 84512 70927

3 3 43 47 58950 60007

3 4 43 45 63340 71404

4 1 76 68 898473 668713

4 2 63 53 293765 281053

4 3 63 52 228897 253830

4 4 62 50 126073 178387

5 1 156 85 124747 92240

5 2 88 77 81927 70915

5 3 84 77 65225 67207

5 4 82 77 87465 96562

6 1 100 84 125089 90484

6 2 57 74 57845 54202

6 3 55 72 95878 91179

6 4 55 72 36344 46095

7 1 80 67 88282 60928

7 2 58 51 36311 31467

7 3 58 49 50663 47181

7 4 58 49 21507 25708

8 1 64 59 40545 26662

8 2 58 51 34876 26137

8 3 58 49 15400 14676

8 4 58 49 20128 20980

9 1 108 85 126601 91558

9 2 88 73 57193 53472

9 3 88 69 92038 87393

9 4 88 69 34976 44181

10 1 92 85 126537 90535

10 2 68 65 50905 46849

10 3 64 65 86646 81562

10 4 64 65 32880 40846

Obviously the order 1 recursive Taylor method is not as good as the order 2, 3 or 4

methods in accuracy or speed. On the other hand, we note that the order 3 and 4 re-

cursive Taylor methods are not always at least as accurate as the order 2 method (see

Example 4), or as efficient (see Example 2). While it is clear that the order 1 method

can be rejected on grounds of poor performance, choice amongst the higher order meth-

ods is less clear-cut. Unsurprisingly, in most cases, using higher-order recursive Taylor

methods leads to fewer recursive operations, but the decrease between using orders 1

and 2 is much greater than between using orders 2 and 3, and between higher orders.

Overall the above results suggest using an order 2 recursive Taylor method as the best

compromise between accuracy and efficiency, and ease of implementation.
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However, a word of warning is necessary. This judgement strictly applies only to

256×256 resolution. If we reduce the resolution to 16×16 we get the results shown in

Table 2 (right). This Table shows that under these conditions, a second order expansion

need neither be most accurate (see Examples 1,4,5,6,10), nor most efficient. (The accu-

racy of the second order method is still quite close to that of the third and fourth order

methods in all cases, however). Clearly, these results show that a theoretical proof that

any particular order expansion is the best choice is not possible.

7 Theoretical Connection Between Taylor Method and MAA

In this section we briefly consider a theoretical relation between the Taylor method and

the modified affine arithmetic method. It only concerns the intervals output by a direct

(i.e. non-recursive) Taylor method and the MAA method; furthermore, it does not say

how many operations are needed by each method.

Theorem 1 Given a degree n polynomial, suppose m > n, and we perform an order

m Taylor method. The output interval is equivalent to that produced by the modified

affine arithmetic method.

Proof We only prove the theorem here in the univariate case. The proofs for multivariate

cases are similar.

Let f(x) =
∑n

i=0 aix
i be the degree n polynomial in one variable whose range we

wish to estimate over [x, x]. Let x0 = (x + x)/2, and x1 = (x − x)/2 > 0. Then the

centered form of f(x) on [x, x] is

f(x) = f(x0) +
n∑

i=1

f (i)(x0)

i!
(x− x0)

i. (1)

It is known that the modified affine arithmetic method produces the same results as

carrying out interval arithmetic on the centred form method with proper consideration

of even and odd properties of polynomial terms [9]. If we evaluate f(x) on [x, x] using

the modified affine arithmetic method we get

fMAA[x, x] = f(x0) +

n∑

i=1

f (i)(x0)

i!
xi

1 ×
{

[0,1], if i is even

[-1,1], if i is odd

}
(2)

On the other hand, when m > n, the degree m Taylor form of f(x) on [x, x] is the

same as eq. 1, because for any integer i > n, f (i)(x) = 0 when f(x) is a degree n
polynomial. Therefore if we evaluate f(x) on [x, x] using a degree m Taylor method,

we get the same interval as in eq. 2.

More work is needed to compare theoretically the intervals produced by the re-

cursive Taylor method with those from MAA, and also to compare the numbers of

operations. We intend to study these issues in the near future.
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8 Conclusions

From the above experiments we can see that recursive Taylor methods can produce

at least as good graphical results as the modified affine arithmetic method, and often

need fewer arithmetic operations. Furthermore, the recursive Taylor method is simple

and very easy to implement. One minor disadvantage of the recursive Taylor methods

are that they often need a few more recursive operations than MAA. Repeating our

earlier conclusions, overall we suggest using the second order recursive Taylor method

as the best compromise (in terms of order) between accuracy and efficiency, and ease

of implementation.
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Abstract. We discuss how approximate implicit representations of parametric

curves and surfaces may be used in algorithms for finding self-intersections. We

first recall how approximate implicitization can be formulated as a linear algebra

problem, which may be solved by an SVD. We then sketch a self-intersection al-

gorithm, and discuss two important problems we are faced with in implementing

this algorithm: What algebraic degree to choose for the approximate implicit rep-

resentation, and – for surfaces – how to find self-intersection curves, as opposed

to just points.

1 Introduction

Self-intersection algorithms are important for many applications within CAD/ CAM.

Suppose we try to create an offset surface within a CAD system with an offset distance

larger than the radius of curvature at some points on the surface. Offset surfaces are not

in general rational, and it is therefore necessary to make a NURBS approximation. In a

typical CAD-system, surfaces are often represented in terms of degree (3, 3) NURBS

surfaces. A NURBS approximation of such an offset surface is shown in fig. 1. We

would like to have parts of this surface trimmed away, or maybe even to have it rejected

as an illegal surface. This requires an algorithm to find the self-intersection curves, or

at least to detect that there are self-intersections.

Implicitization is the process of converting a parametric representation of a curve or

surface into an implicit one. Figure 2 shows the implicit representation of a cubic curve

with a node, given by the zero contour of the implicit function. Implicit representations

have many uses. One example is finding intersections between different objects. Ray

tracing is a simple case of this, where the parametric form of the ray – a straight line

– is inserted into the implicit equation for a surface in order to get an equation in the

parameter of the ray. This can then be solved to find the point, or points, of intersection.

Note that self-intersections cannot be treated in this relatively simple way because in-

serting the parametric form into the implicit form for the same object gives identically

zero. Thus, finding true self-intersections is a much harder problem.

⋆ This work was supported by the EU project GAIA II, IST-2001-35512
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Fig. 1. NURBS approximation of an offset surface. Made within the CAD-system ’thinkdesign’

from CAD-vendor think3.
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Fig. 2. Implicit representation of a nodal cubic

In this paper, we discuss an algorithm for finding self-intersections of NURBS

curves and surfaces. This algorithm has in part grown out of the long-time experience

collected at SINTEF [4, 12], and is still under development. The intersection problem

has been studied a lot during the last few decades; for a partial list of references, see

[12]. The present algorithm is optimized towards giving certifiable answers with respect

to the self-intersections, rather than for speed. Therefore, central to the algorithm is an

implicitization step and the use of implicit functions in detecting the self-intersections.
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This will give us more information about the situation and secures the quality of the

results compared to many brute force algorithms. Tangential (self-)intersections are in

general difficult and will not be considered in this paper. We will therefore assume that

all intersections are transversal.

Implicitization in CAGD has for a long time meant using classical algebraic tech-

niques like resultants [10, 8] or Gröbner bases [3]. However, it is desirable to use ap-

proximate implicit representations of low algebraic degrees, which requires new meth-

ods. One recent method is the scattered data fitting method developed by Jüttler et al.

[13]. This is very flexible but not accurate or fast. The method of choice for our algo-

rithm is the one developed by Dokken [5, 6], which performs better on accuracy and

speed [14]. This method essentially transforms the implicitization problem into the lan-

guage of linear algebra. As far as we know, this is the simplest way to formulate the

problem.

In the following, planar Bézier curves p(t) of degree n are defined in terms of n+1
control points ci by

p(t) =

n∑

i=0

ciBi,n(t), t ∈ [0, 1], (1)

where the basis functions Bi,n are Bernstein polynomials:

Bi,n(t) =

(
n
i

)
(1− t)n−iti. (2)

The unnormalized normal n is defined by

n(t) = Rπ/2
dp

dt
(t), (3)

where Rπ/2 =
(

0 −1
1 0

)
is a matrix that rotates a vector by an angle of π

2 . Implicit

curves of degree d are defined in terms of a polynomial function q(x). In the actual

implementation of the algorithm we use barycentric coordinates x = (u, v, w) with

respect to a triangle enclosing the curve. This improves numerical stability. Thus, for

the implicit function we have

q(x) =
∑

i+j+k=d

bijkBijk,d(x), u + v + w = 1, (4)

where

Bijk,d(x) =
d!

i!j!k!
uivjwk, i + j + k = d, (5)

are the Bernstein polynomials over this triangle. These 1
2 (d + 1)(d + 2) monomials

constitute a basis for the polynomials of degree d. In barycentric coordinates q is a

homogeneous polynomial.

We may now sketch the self-intersection algorithm for curves. We are given a

NURBS curve of degree n in the plane and we want to find the parameter values that
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correspond to self-intersections. Let us assume for simplicity that we are dealing with a

non-rational3 parametric curve – that is, the NURBS is in fact a B-spline.

1. Split the curve into Bézier segments.

2. For each segment p, find candidates to self-intersection parameters. To do this,

– find an implicit representation q,

– form the quantity ∇q(p(t)) · n(t) and find the roots.

3. For each pair of segments p1 and p2, find candidates to parameters for ordinary

intersections. To do this,

– find the implicit representations q1 and q2,

– form the quantities q1(p2(t)) and q2(p1(t)) and find the roots.

4. Identify parameters for true self-intersections from the list of candidates. To do this,

find pairs of parameters from this list whose corresponding 2D points match.

Although we have omitted the details, the structure of this algorithm should be

straightforward. However, two things we will discuss further is the implicitization and

the use of the quantity ∇q(p(t)) · n(t). Thus, in the next section we will discuss exact

implicitization. We will show that this is a linear algebra problem – in particular, it

is an SVD problem. In sect. 3 we explain why ∇q(p(t)) · n(t) is useful for finding

self-intersections.

In sect. 4 we start considering surfaces, in particular tensor product B-splines. Un-

like for curves, exact implicitization will typically require too high degrees, so if we

want an algorithm similar to the one for curves, we need to find an approximate im-

plicit representation. Approximate implicitization is the subject of sect. 5. Finally, in

sect. 6 we discuss what are probably the two most important problems to solve before

we can get an industrial strength surface intersection algorithm: What degree to choose

for the approximate implicitization, and how to find self-intersection curves, as opposed

to just points.

2 Implicitization

We are given a Bézier curve p(t) of degree n. We want to find a polynomial q(x) such

that the zero-set {x|q(x) = 0} contains p.

First of all, we want the degree d of q to be as small as possible for achieving exact

implicitization. If p is sufficiently general, then d = n. If the true degree of p is smaller

than n, for example if p is obtained by degree elevating a curve of lower degree, we

still get an exact implicit representation, but with possible additional branches. This will

typically produce phantom candidates for self-intersections in our algorithm, but that is

not a problem because of the processing of the candidates at the end of the algorithm.

Thus we choose d = n, and we must find a nontrivial 1
2 (d + 1)(d + 2)-dimensional

vector b of coefficients of q such that

q(p(t)) = 0. (6)

3 In this paper, ’non-rational’ means ’polynomial’. This is standard terminology in CAGD, see

e.g. Farin’s book [7].
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This turns out to give a matrix equation in b [5, 6]. To see this we calculate q(p(t)) by

using the product rule for Bernstein basis functions:

Bi,m(t)Bj,n(t) =

(
m
i

)(
n
j

)

(
m + n
i + j

) Bi+j,m+n(t). (7)

From this we have that q(p(t)) can be expressed in a Bernstein basis of degree nd. We

organize the basis functions in an (nd+1)-dimensional vector B(t)T = (B0,nd(t), . . . ,
Bnd,nd(t)). Thus we find that inserting p in q yields the factorization

q(p(t)) = B(t)TDb, (8)

where D is an M ×N matrix with M = nd + 1 and N = 1
2 (d + 1)(d + 2). Since B is

a basis, we see that the problem we need to solve is the matrix equation

Db = 0. (9)

The standard method for solving a matrix equation like (9) is to use SVD [9]. The

theory of the SVD states that we can find the decomposition D = UWVT , where U
is an M ×N column-orthogonal, W an N ×N diagonal, and V an N ×N orthogonal

matrix. The singular values of D are the numbers on the diagonal of W. The solution to

Db = 0 is an eigenvector corresponding to the vanishing singular values in W. If there

is exactly one singular value equal to zero, we can find the associated eigenvector from

the corresponding column in V. If there are more than one, any linear combination of

the corresponding columns will solve (9). Note that we avoid problems with the trivial

solution b = 0 to (9). We may always normalize b and thereby q(x).
An example of this method of implicitization is the nodal cubic Bézier curve in

fig. 3. The result we have already seen in fig. 2. This implicitization is numerically

very exact, and a plot of q(p(t)) as a function of t would show zero to within machine

precision.

Rational Bézier curves can be treated in essentially the same way. In barycentric

coordinates a rational Bézier curve is given by

p(t) =

∑n
i=0 wiciBi,n(t)∑n
i=0 wiBi,n(t)

, (10)

where ci are the control points and wi are the weights. Since the implicit function q
is homogeneous in barycentric coordinates, the denominator

∑
i wiBi,n(t) leads to a

polynomial that factors out in the expression for q(p(t)). This means that the non-

rational procedure can be applied with just the numerator
∑

i wiciBi,n(t) instead of p
itself.

3 Finding Self-Intersections

The other issue we need to discuss is how to find the self-intersections of a Bézier curve

p(t) once an implicit representation q(x) is provided. For each self-intersection point

we want to find the two corresponding parameters t1 and t2 such that

p(t1) = p(t2), t1 �= t2. (11)
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Fig. 3. Nodal cubic Bézier curve

This does not include cusps, which are “degenerate” self-intersections. We will briefly

mention cusps later.

At a self-intersection point p0 = p(t1) = p(t2) in the plane the gradient of the

implicit function q vanishes:∇q(p0) = 0. In fact p0 is a saddle point of q, which looks

like a hyperbolic paraboloid locally around p0. One way to find the self-intersection

parameter values is to form [∇q(p(t))]2 and find the roots of this expression. However,

this is not the optimal quantity for this purpose, because the polynomial degree is 2n(d−
1), which is unnecessarily high, and all roots are located at minima. A better choice is

the quantity

∇q(p(t)) · n(t), (12)

where n is the normal. The polynomial degree of (12) is nd − 1. This quantity is pro-

portional to the projection of ∇q on the normal vector along the curve, and has the

advantage that it changes sign at roots corresponding to transverse – i.e. non-tangential

– self-intersections.

For the nodal cubic of fig. 3, the gradient dotted with the normal is plotted in fig. 4.

The two roots occur at t1 = 0.25 and t2 = 0.75, which are the correct parameters for

the self-intersection.

Roots of∇q ·n should be regarded as candidates for self-intersections. Indeed,∇q
may vanish along the curve p(t) if q is reducible so that the additional factors represent

extra branches, or if p(t) reaches the endpoint, as we increase t, before the curve has

time to complete the loop and self-intersect. This is why the last step of the algorithm

is needed.
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Fig. 4. ∇q · n for the nodal cubic of fig. 3

4 Surfaces

We now turn to surfaces. In this case we are given a tensor product NURBS surface.

Let us assume this to be non-rational. Thus the surface consists of tensor product Bézier

patches:

p(u, v) =
∑

i,j

cijBi,n1
(u)Bj,n2

(v), (13)

where the degree is (n1, n2) and cij are the (n1 + 1)(n2 + 1) control points. The

unnormalized normal vector n(u, v) is defined by

n(u, v) = ∂up(u, v)× ∂vp(u, v). (14)

Like for curves we use barycentric coordinates x = (u, v, w, x) in our implementation,

this time defined over a tetrahedron enclosing the surface. Then algebraic functions of

degree d can be written

q(x) =
∑

i+j+k+l=d

bijklBijkl,d(x), u + v + w + x = 1, (15)

with

Bijkl,d(x) =
d!

i!j!k!l!
uivjwkxl, i + j + k + l = d, (16)

the tetrahedral Bernstein basis. The polynomials Bijkl,d are now the 1
6 (d+1)(d+2)(d+

3)-dimensional basis of degree d functions. Again, in barycentric coordinates q(x) is a

homogeneous function.

What we want now is an algorithm for finding self-intersections like the one for

curves. Ideally this would look like:
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1. Split the surface into Bézier patches.

2. For each patch p(u, v), find candidates to self-intersection curves in the (u, v)-
plane. To do this,

– find an implicit representation q,

– form ∇q(p(u, v)) · n(u, v) and find the roots.

3. For each pair of patches p1(u, v) and p2(u, v), find candidates to parameter curves

for ordinary intersections. To do this,

– find the implicit representations q1 and q2,

– form q1(p2(u, v)) and q2(p1(u, v)) and find the zero curves in the (u, v)-plane.

4. Identify the curves in the parameter plane for true self-intersection curves from the

list of candidates. To do this, find pairs of parameter curves from this list whose

corresponding 3D curves match.

Unfortunately it is difficult to implement the algorithm in this way. There are es-

sentially two problems. First, the necessary degree for exact implicitization is too high,

both with respect to numerical stability and to speed. Hence the need to find an approx-

imate implicit representation. For a chosen degree, the next section provides a review

of how this can be done along the lines of the exact implicitization of sect. 2. However,

this leads to the problem of what degree to choose. Second, self-intersection curves are

difficult to handle.

In the current implementation of the algorithm, we have settled for a compromise

to both these problems. We choose d = 4 for the approximate implicitization, based on

the expectation that this degree is high enough to capture even complicated topologies.

Our experience with this choice is good. Furthermore, instead of working with full

self-intersection curves in the parameter plane, we work with points sampled on them.

A sampling density must then be chosen, and a density of roughly 100 × 100 in the

parameter plane for each patch gives acceptable results.

These two compromises lead to a change in the last step of the algorithm, since now

also an iteration procedure is required for matching the points in 3D. This matching

works roughly as follows. We loop over every pair of points from the list of candidates.

Each pair of points in the (u, v)-plane corresponds to two points on the surface. We

consider the squared Euclidean distance in 3D space between these two surface points.

This is a four-variate function depending on the u and v parameter for the first and

second points. Now we look for a minimum of this function. This is where the itera-

tions come in – in our current implementation, a conjugate gradient method is used. If

the iteration converges, and if the found minimum is a zero of the distance function,

then we have a match and we record the corresponding parameters as points on a self-

intersection curve. Then we go on with the next pair, etc. The points found in this way

will in general not coincide exactly with the candidates we started with, but they still

have the property that they lie on self-intersection curves.

An example is given by the offset surface we have already seen in fig. 1. As men-

tioned in the introduction, this is a realistic industrial example. It consists of many (ra-

tional) polynomial surface patches and has a very complex self-intersection structure.

The result of running our algorithm on this surface is shown in fig. 5, where we have

plotted points in the parameter plane that corresponds to points on the self-intersection

curves in 3D space.
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Fig. 5. Self-intersection points in the parameter plane of the offset surface in fig. 1

5 Approximate Implicitization

Although approximate implicitization is mostly relevant for surfaces, we will use curve

language for simplicity in the following discussion. However, the results can easily be

transferred to the surface case.

An implicitly defined curve q(x) = 0 approximates a parametric curve p(t) within

the tolerance ǫ if we can find a vector-valued function ∆p(t) such that

q(p(t) + ∆p(t)) = 0 (17)

and

max
t
|∆p(t)| ≤ ǫ. (18)

∆p does not need to be continuous. In fact, for nontrivial topologies like self-intersections,

p + ∆p may jump from one branch of q to another as we increase t.
We may Taylor expand (17) in ∆p around p:

q(p(t)) +∇q(p(t)) ·∆p + · · · = 0. (19)

Thus, provided ∆p is small and the coefficients of q are normalized in some way, the

quantity maxt |q(p(t))| is a meaningful measure of how well q approximates p. This

quantity is the “algebraic distance”.

How do we find an approximate implicit function q such that the algebraic distance

is as small as possible? Again we get an answer from linear algebra. If we insert the

Bézier segment p(t) into a function q with unknown coefficients b we obtain the fac-

torization in eq. (8),

q(p(t)) = B(t)T Db. (20)
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Since B(t) is a Bernstein basis, ‖B(t)‖ ≤ 1 for all t ∈ [0, 1]. Thus we get the inequality

max
t
|q(p(t))| ≤ ‖Db‖. (21)

Furthermore, the theory of the SVD tells us that

min
‖b‖=1

‖Db‖ = σmin, (22)

where σmin is the smallest singular value of D. If we choose the corresponding eigen-

vector bmin as the coefficients of q we have

max
t
|q(p(t))| ≤ σmin. (23)

Thus, choosing the vector bmin of coefficients gives us the implicit function we are

looking for.

If we choose an algebraic degree d for q much lower than the required degree for

exact implicitization, it may be that even the smallest singular value σmin is greater

than a given tolerance ǫ. It is then possible to improve the situation by subdividing. This

leads us to consider convergence rates for approximate implicitization. Let us consider

a curve p(t) and pick out an interval [a, b] ⊂ [0, 1] from the parameter domain with

length h, that is, b− a = h. If we approximate the curve on this interval by an implicit

function q(x) of degree d we will have

|q(p(t))| = O(hk+1), t ∈ [a, b], (24)

as h goes to zero, where the integer k + 1 is the convergence rate. Dokken [5] proved

that k = 1
2 (d + 1)(d+ 2)− 2. Likewise for a surface p(u, v) we get a convergence rate

from

|q(p(u, v))| = O(hk+1) (25)

with k =
⌊

1
6

√
9 + 132d + 72d2 + 12d3 − 3

2

⌋
(see [5]). The notation ⌊· · · ⌋ means that

’· · · ’ is rounded downwards to the nearest integer. Thus, for surfaces an approximate

implicitization of degree 4 will have convergence rate O(h7).
If we are not satisfied with the algebraic distance we get from implicitizing a sur-

face, we may dramatically improve the situation with a few subdivisions of the param-

eter plane. It is therefore a useful strategy to include subdivision in a self-intersection

algorithm that is based on implicitization.

6 Two Open Problems

Finally, in this section we address the two problems mentioned previously: What degree

d should we choose for the implicit representation of a surface in our algorithm? And,

also for surfaces, how do we describe and find self-intersection curves, as opposed to

just points?
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6.1 What Degree d Should we Choose?

For NURBS curves there is no problem with using the required degree for exact implic-

itization in our algorithm. That is, for a curve of degree n, we may use d = n. For all

realistic test cases we have tried, this gives a fast and reliable algorithm.

For a NURBS surface of degree (m, n), the required degree for exact implicitization

is in general d = 2mn. Thus the realistic case of degree (3, 3) surfaces needs d = 18. A

polynomial in 3D of this degree will in general have 1330 terms, which gives very poor

precision and long evaluation times. Furthermore, the matrix D in the implicitization

becomes so large that the SVD is very slow and has problems with converging.

There are several possibilities to overcome this. One is to choose some fixed low

degree d and hardcode this in the algorithm. Another is to use some adaptive procedure

where we start with a low value for d and then increase it until some requirement is met.

We have experimented with both of these possibilities. The requirement in the adaptive

procedure was that the smallest singular value in the SVD of D should be smaller than

some number. However, it turned out to be very time consuming and not noticeably

better than the hardcoding possibility. As already mentioned, d = 4 leads to acceptable

results in all test cases we have tried.

Could we just as well manage with d = 3, which might lead to a faster algorithm?

After all, implicitly defined surfaces of degree 3 are the simplest ones that may exhibit

self-intersection curves. However, for d = 3 it turns out that the quality of the candidates

to self-intersection points obtained from sampling the zeros of∇q ·n are very poor. This

means that the iteration procedure in the matching step leads either to discarding most

of the candidates or to produce a large number of redundant matches which is time

consuming. On the other hand, for d = 4 iteration leads to matching for most of the

candidates without too much redundancy.

An example is the surface shown in fig. 6, which has a closed self-intersection curve.

The degree of the exact implicit representation is 6. Candidates and the result after

iteration for d = 3 is shown in fig. 7, while the result for d = 4 is shown in 8.

Nevertheless, it is a suboptimal solution to hardcode the degree once and for all. It

would be better to be able to determine for each surface patch which degree would be

most suitable. But for the moment it is an open problem how to do that efficiently inside

the algorithm.

6.2 How do we Find Self-Intersection Curves (as Opposed to Points)?

A possible strategy to finding self-intersection curves is to first find points on these

curves and then use a marching technique to “march them out”. The goal here would

be to obtain a description of the intersection curves in terms of B-spline (or NURBS)

curves in the parameter domain. We have already said a lot about finding such points,

so let us discuss marching.

Marching is an iterative procedure, which can be used to trace out intersection

curves [1, 2] (see [12] for more references). We start with a point on or nearby the

curve, and then proceed by taking small steps at a time in a cleverly chosen direction

until some stopping criterion is met. For instance, we stop when we reach the edge of

the parameter domain or when the curve closes on itself.



166 J.B. Thomassen

Fig. 6. Surface with points on self-intersection curve. Supplied by think3.
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Fig. 7. Parameter plane with candidates and self-intersections obtained after iteration for the sur-

face in fig. 6 for Degree 3

One problem we are faced with when marching out a self-intersection curve is the

marching onto a singularity, which in this case means a point on the surface where the

unnormalized normal vanishes. The normal is used in order to find the direction of the

next step in the marching. A singularity of this kind is a cusp. For example, the surface

in fig. 6 has two singularities, plotted in fig. 9. Closed self-intersection curves typically

have singularities on them.
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Fig. 8. Parameter plane with candidates and self-intersections obtained after iteration for the sur-

face in fig. 6 for Degree 4
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Fig. 9. The parameter plane of the surface in fig. 6, with self-intersection points and two cusp-like

singularities

Thus, the solution is to identify all the isolated singularities and start the marching

from these points. It is not difficult to find isolated cusp singularities. For instance, we

may look for the zeros of [n(u, v)]2, which are also minima.

Unfortunately in real life things are not that easy. It may often happen that entire

curves of cusp singularities exist. An example of this is the surface in fig. 10. Points

sampled from the cusp curves and self-intersection curves in the parameter plane are

plotted in fig. 11. As we may see from the plot, in order to start marching we would need
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Fig. 10. Bent pipe surface with “supersingularities”. Surface provided by think3.
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Fig. 11. Parameter plane of the pipe surface with self-intersection points and points on the cusp

curves

to locate an intersection point between a self-intersection curve and a cusp curve. This

is a very special kind of singularity, let us call it a “supersingularity”. At the moment

we do not know how to properly characterize and find such supersingular points. Until

we do, the treatment of self-intersection curves in such cases is another open problem.
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7 Conclusion

We have described how we may use implicit representations of curves and surfaces

in an algorithm for finding self-intersections. We have also described how to find the

implicit representation given a NURBS curve or surface. We do this by formulating it

as a linear algebra problem. For curves we may use an exact implicitization, while for

surfaces it is necessary to use an approximate implicitization.

By using the implicit representation q and the normal vector n we are able to find

candidates for the parameters of self-intersections by looking for the roots of∇q ·n. For

curves, where we use exact implicitization, the self-intersection parameters are included

in the list of candidates. For surfaces, it is necessary to process the candidates with an

iterative procedure to match them in order to get points on the self-intersection curves.

Surfaces are much more challenging than curves, and we have described two open

problems: How do we choose the degree for the approximate implicitization, and how

do we deal with the fact that self-intersections are in general curves?

Acknowledgements I thank Tor Dokken for discussions, and for reading and com-

menting on the manuscript.
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Abstract. We discuss the singularities of some rational algebraic surfaces in

complex projective space. In particular, we give formulas for the degrees of the

various types of singular loci, in terms of invariants of the surface. These enumer-

ative results can be used, on the one hand, to show the existence of singularities

in the complex case, and, on the other hand, as an “upper bound” for the singu-

larities that can occur on a real rational surface.

1 Introduction

The simplest rational surfaces spanning projective 3-space are the quadric and cubic

surfaces. The classification of real and complex quadric surfaces is very old, and the

nonsingular and singular complex and real cubic surfaces were classified in the 19th

century by Cayley, Salmon, Schläfli, Klein, Zeuthen (see [5, 13, 7, 19, 15]). Affine real

2- and 3-dimensional geometry was the object of intense study among 19th century

mathematicians, but eventually the focus shifted to projective complex algebraic geom-

etry, which from many points of view is much simpler. The classical work in algebraic

geometry remains a rich source of inspiration for people working in Computer Aided

Geometric Design (CAGD).

In this article, the objects of study are surfaces that admit a rational parameteriza-

tion; because of the methods used, we choose to work in the complex projective setting.

The two types of rational parameterizations most commonly used in CAGD are the “tri-

angular” and “tensor product” parameterizations. These are patches of what in algebraic

geometry are called Veronese and Segre surfaces. Some times these parameterizations

have base points; we shall look at some examples, namely Del Pezzo surfaces and

monoid surfaces.

In the GAIA II project “Intersection algorithms for geometry based IT-applications

using approximate algebraic methods” we realized the need for a better understanding

of the singularities of algebraic curves and surfaces that are used in geometric model-

ing. Though the work presented here is carried out in the complex projective setting, the

enumerative results can be interpreted as an “upper bound” for the singularities that may

appear in the real affine case. There are of course a lot of hard and interesting problems

that can not be addressed via these methods, such as determining the number of con-

nected components and positions of a real curve or surface (cf. Hilbert’s 16th problem),

questions of boundedness and of equidimensionality, and the problem of determining

which real forms a given complex singularity may have.
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2 Numerical Characters of a Projected Surface

Let PN
C , or PN for short, denote the complex projective N -space. Let S be a nonsingular

surface and let S →֒ P
N be any embedding of S. One can show that for most linear

projections p : S → P3, the induced map p : S → X := p(S) is finite and birational,

and X has only ordinary singularities. By this we mean the following: Let Γ := Sing X
denote the singular locus of X , and let P ∈ Γ . Assume P = (1 : 0 : 0 : 0) and that

f(x1, x2, x3) is the equation of X in the affine space where x0 �= 0. Consider the Taylor

series expansion of f , which, by abuse of notation, we also denote by f . Then, up to

change of coordinates, there are only three possibilities [9, p. 202]:

1. The point P is a point where the surface X intersects itself transversally, i.e., we

have f = x1x2+ terms of higher degree, and #p−1(P ) = 2. All but finitely many

points of Γ are of this type.

2. The point P is a point where three sheets of the surface intersect transversally, i.e.,

we have f = x1x2x3+ terms of higher degree, and #p−1(P ) = 3. This point is a

triple point of the curve Γ and of the surface X .

3. The point P is a point of selfintersection of the surface where the projection map is

ramified. Here we have f = x2
2−x1

2x3+ terms of higher degree, and #p−1(P ) =
1. Such points are called pinch points. (The real part of the surface at such a point

is the Whitney umbrella.)

The curve Γ is called the nodal curve of X; its only singular points are the triple points

(the pinch points are not singular on Γ ).

Introduce the following numerical characters:

n := deg X

m := deg Γ

t := # triple points of X and of Γ

ν2 := # pinch points of X

c2
1 := K2

S = the self intersection of the canonical divisor of S

c2 := the second Chern class of S (= the topological Euler characteristic of S).

Then we have the following formulas [9, Prop. 1, p. 211]:

c2
1 = (n− 4)2n− (3n− 16)m + 3t− ν2 (1)

c2 = n(n2 − 4n + 6)− (3n− 8)m + 3t− 2ν2 (2)

Subtracting (1) from (2) gives

ν2 = 2n(2n− 5)− 8m + c2
1 − c2 (3)

and substituting (3) in (1) gives

3t = 3(n− 8)m− n(n2 − 12n + 26) + 2c2
1 − c2 (4)
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The sectional genus π of S is the geometric genus of a general hyperplane section of S.

By the adjunction formula it is given by 2π − 2 = deg KS + n.

Among the other characters considered classically are:

µ2 := class of X

µ1 := rank of X

ǫ1 := rank of Γ

Recall that the class of X is the number of tangent planes containing a given line, hence

it is the same as the degree of the dual surface of X; the rank of X is the number of

tangent lines in a given plane through a given point in that plane (hence is equal to the

class of a plane section of X); the rank of the curve Γ is the number of tangent lines to

Γ that meet a given line. From the formulas in [9, Thm. 2, p. 204; Prop. 3, p. 212] we

deduce the following formulas for the characters of the projected surface:

µ1 = n(n− 1)− 2m (5)

µ2 = n(2n− 5)− 4m + c2 (6)

ǫ1 = n(n2 − 14n + 31)− 2m(n− 13) + 1
2 (3c2 − 5c2

1) (7)

3 The Veronese Surfaces

The dth Veronese embedding of the plane P2 is the map

vd : P
2 → P

N ,

where N :=
(
d+2
2

)
− 1, given by

vd(t0 : t1 : t2) = (ti00 ti11 ti22 )i0+i1+i2=d.

In affine coordinates, this is just the triangular parameterization

(t1, t2) �→ (t1, t2, t
2
1, t1t2, t

2
2, . . . , t

d
2)

We want to study the surface X ⊂ P3 obtained by projecting the nonsingular surface

S = vd(P
2) to P3 from a linear subspace L ⊂ PN of dimension N − 4. The surface X

has a rational parameterization by polynomials of degree d, and, conversely, any surface

in P
3 that has such a parameterization is obtained in this way.

Assume d ≥ 2, L ∩ vd(P
2) = ∅, and that the induced morphism p : P2 → X

is birational. In this case, the degree of X is n = d2. Since the morphism p is finite

(because it is a projection), it is equal to the normalization map of X . It is well known

that therefore, X can have no isolated singular points, so that Sing X is either empty or

purely one-dimensional.

The following proposition shows that X must be singular, and gives a bound for the

degree of the singular locus.
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Proposition 1. In the situation above, set Γ := Sing X . Then Γ is a curve, of degree

deg Γ ≤ 1
2d(d− 1)(d2 + d− 3).

Moreover, equality holds if and only if the components of Γ are ordinary double curves

or cuspidal edges on X .

Proof. Let H ⊂ P
3 be a general plane, and set C := X ∩H . Then C is a plane curve

of the same degree, d2, as X . Let D denote the inverse image of C in P2; this is a plane

curve of degree d, birationally equivalent to C. It follows from Bertini’s theorem that

D is nonsingular, and therefore D is equal to the desingularization of C. Hence, the

sectional genus π of S, by definition equal to the geometric genus g(C) of C, is equal

to the geometric genus of D, namely

π = g(C) = g(D) =
(
d−1
2

)
.

By the genus formula for the plane curve C, we have

(
d−1
2

)
=
(
d2−1

2

)
−∑

x∈Sing C δx,

where δx denotes the δ-invariant of the point x ∈ Sing C. Note that δx ≥ 1, with

equality if and only if x is an ordinary double point (a node) or an ordinary cusp,

i.e., if and only if the components of Γ are ordinary double curves or cuspidal edges

on X . Since d ≥ 2 by assumption, we get
∑

x∈Sing C δx > 0, hence C is singular.

Using Bertini’s theorem again, we have Sing C = H ∩ Sing X = H ∩ Γ , therefore

#Sing C = #H ∩ Γ = deg Γ . The last equality holds because, since H is general, we

may assume that H and Γ intersect transversally.

If we consider a general projection of the dth Veronese surface S = vd(P
2), we

have n = d2, c2
1 = 9, and c2 = 3. Moreover, from Proposition 1, we have

m = 1
2d(d− 1)(d2 + d− 3).

Then (3) and (4) give the following formulas:

ν2 = 6(d− 1)2

t = 1
6 (d− 1)(d5 + d4 − 11d3 − 2d2 + 42d− 30)

From (5), (6), and (7), we get

µ1 = 3d(d− 1)

µ2 = 3(d− 1)2

ǫ1 = 3(d− 1)2(d− 2)(d + 3)

Example 2. Consider the case d = 2. From Proposition 1, we get deg Γ ≤ 3. Since in

this case the rank ǫ1 of Γ is 0, Γ must be a union of lines. If the lines are of multiplicity

two on X , the formula for the number t of triple points of Γ applies, so that we have

t = 1. One can show that there are three possibilities: (i) Γ is the union of three lines
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meeting in a non-planar triple point, and each line contains two pinch points; (ii) Γ is

the union of two intersecting lines, one of these is an ordinary double line on X and the

other is a “tacnodal” line (meaning that a plane intersects X in a curve with a tacnode,

or A3 singularity1); (iii) Γ is a “higher order tacnodal” line on X , meaning a plane

intersection has an A5 singularity at the intersection with Γ .

A general plane section C = X ∩ H is a plane rational quartic curve, with three

nodes in case (i), one node and one tacnode (an A3 singularity) in case (ii), and one A5

singularity in case (iii). In all cases, the rank of X is µ1 = 6, and its class is µ2 = 3.

So the dual surface X∨ ⊂ (P3)∨ is a cubic surface, of rank equal to the rank of X ,

namely 6, and of class 4, equal to the degree of X . From this, it follows that the cubic

surface X∨ must be singular (otherwise it would have class 12), but that it cannot have

a one-dimensional singular locus, since the rank is the maximum possible for a cubic,

by (5). In fact, it is known classically that in case (i), X∨ is equal to a cubic surface

with 4 nodes and containing 9 lines (see [17], p. 153).

To determine the type of the dual surface in the cases (ii) and (iii), since, by reci-

procity, the dual surface of X∨ is X , one could try to use the classification of cubic

surfaces: there are in all five types of cubic surfaces that have a dual surface of degree

4 [4, p. 255]. Instead we used Singular [18] to compute the equation of the dual of a

typical surface in each of the cases (ii) and (iii).

Case (ii): We may assume the surface has equation

w4 − 2w2x(y + z) + x2(x− z)2 = 0.

The dual surface is the cubic

4stu− v2(s + t) = 0.

Using the methods of [4, Lemma 3, p. 249] one finds that this cubic surface has two A1

singularities and one A3 singularity,2 and it contains five lines.

Case (iii): We may assume the surface has equation

(wy − z2)2 − xy3 = 0.

The dual surface is the cubic

s2u− 4tuv + v3 = 0.

This cubic surface has one A1 and one A5 singularity, and it contains two lines.

Note that the deformations (iii) → (ii) → (i), obtained by changing the center of

projection, correspond to deformations of the dual surfaces, which fits with the defor-

mations of simple singularities

A1A5 → 2A1A3 → 4A1

1 A plane curve has an Ak singularity at the origin if the “local normal form” of its defining

polynomial is x2 + yk+1 [2, pp. 20–28]. An ordinary node is A1, an ordinary cusp is A2.
2 A surface in 3-space has an Ak singularity at the origin if the “local normal form” of its

defining polynomial is x2 + y2 + zk+1 [2, pp. 20–28].
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coming from the deformations

A5 → A1A3 → 3A1

corresponding to removing each time one inner vertex of the Dynkin diagram and its

adjoining edges (as in [4, pp. 255–256] for Ê6 → A1A5 and Ê6 → 3A2).

One of the real versions in case (i) of this example is Steiner’s Roman surface. There

are three different real types in case (i), depending on the reality of the components of

Γ and of the pinch points, two different real types in case (ii), and one in case (iii). This

is all explained, with pictures, in [1, 6].

4 The Segre Surfaces

The Segre embedding of bidegree (a, b) of the product P
1 × P

1 is the map

σa,b : P
1 × P

1 → P
N ,

where N := (a + 1)(b + 1)− 1, given by

σa,b((s0 : s1), (t0 : t1)) = (si
0s

a−i
1 tj0t

b−j
1 )i=0,...,a,j=0,...,b.

In affine coordinates, this is the tensor product parameterization

(s, t) �→ (s, t, st, s2, t2, s2t, st2, . . . , satb).

We want to study the surface X ⊂ P
3 obtained by projecting σa,b(P

1 × P
1) to P

3

from a linear subspace L ⊂ PN of dimension N − 4.

If a = b = 1, then X = σ1,1(P
1 × P1) is a nonsingular quadric surface in P3. So

assume a > 1 or b > 1, that L ∩ σa,b(P
1 × P1) = ∅, and that the induced morphism

P1 × P1 → X is birational. In this case, the degree of X is n = 2ab. As in the case of

the Veronese surfaces, X can have no isolated singularities.

Proposition 3. In the situation above, set Γ := Sing X . Assume a > 1 or b > 1. Then

Γ is a curve, of degree

deg Γ ≤ 2a2b2 − 4ab + a + b.

Moreover, equality holds if and only if the components of Γ are ordinary double curves

or cuspidal edges on X .

Proof. Let H ⊂ P3 be a general plane, and set C := X ∩H . Then C is a plane curve

of the same degree, 2ab, as X . Let D denote the inverse image of C in P1×P1; this is a

curve of bidegree (a, b), birationally equivalent to C. It follows from Bertini’s theorem

that D is nonsingular, and therefore D is equal to the desingularization of C. Hence,

the sectional genus π of S, equal to the geometric genus g(C) of C, is equal to the

geometric genus of D:

π = g(C) = g(D) = ab− a− b + 1.
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By the genus formula for the plane curve C, we have

ab− a− b + 1 =
(
2ab−1

2

)
−∑

x∈Sing C δx,

so that
∑

x∈Sing C δx > 0, and hence C is singular. Using Bertini’s theorem again, we

have Sing C = H ∩ Sing X = H ∩ Γ , therefore #Sing C = #H ∩ Γ = deg Γ . The

last equality holds because, since H is general, we may assume that H and Γ intersect

transversally.

As in the previous section, if the projection is general, we get formulas for the

degree of the double curve of X and the number of its triple points and pinch points.

For S = σa,b(P
1 × P

1), we have c2
1 = 8 and c2 = 4, so Prop. 3 gives:

m = 2a2b2 − 4ab + a + b. (8)

This gives the following formulas, using (3), (4), (5), (6), and (7):

ν2 = 4(3ab− 2a− 2b + 1) (9)

t = 4
3ab(a2b2 + 11)− 8a2b2 + 2ab(a + b)− 8(a + b) + 4. (10)

µ1 = 2(3ab− a− b)

µ2 = 2(3ab− 2a− 2b + 2)

ǫ1 = 12a2b2 − 4ab(a + b)− 42ab + 26(a + b)− 14

Example 4 (The biquadric surface). Consider the case a = b = 2. The surface X
has degree 8. If the projection is general, X has a double curve of degree 20 and rank

ǫ1 = 50, with 20 triple points and 36 pinch points. The surface has rank µ1 = 16 and

class µ2 = 12. Its sectional genus is π = 1.

Example 5 (The bicubic surface). Consider the case a = b = 3. Then X has degree 18.

If the projection is general, X has a double curve of degree 132 and rank ǫ1 = 540, with

520 triple points and 64 pinch points. The surface has rank µ1 = 42 and class µ2 = 34.

Its sectional genus is π = 4. In spite of the presence of all these singularities in the

global situation, patches of these surfaces are used extensively in CAGD as bicubic

splines.

5 Del Pezzo Surfaces

Consider the 3rd Veronese map v3 : P2 → P9. For r ≤ 6, take r points P1, . . . , Pr in

general position in P2 and let L ⊂ P9 denote the linear space spanned by the points

v3(P1), . . . , v3(Pr). The (closure of the) image of the projection p : v3(P
2) ��� P

9−r

with center L, is a nonsingular surface S9−r, called a Del Pezzo surface; it is isomorphic

to P2 blown up in the r points Pi. For r = 6, the resulting surface S3 is a nonsingular

cubic surface in P3, and this is a standard way of representing cubic surfaces. (For more

on Del Pezzo surfaces, see Schicho’s article in these proceedings [12].) If r ≤ 5, we
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may project such a surface S9−r to P
3; the projection is a rational surface Xn of degree

n = 9− r and with characters c2
1 = n = 9− r and c2 = 12− n = 3 + r.

The inverse image in Sn of a general plane section of Xn is a curve isomorphic to a

nonsingular cubic plane curve, hence the surfaces Xn all have sectional genus 1. If the

projection to P
3 is general, Xn will have a double curve of degree

m =
(
n−1

2

)
− 1 = 1

2 (9− r)(6− r) .

Using again the formulas of sect. 2, we get

ν2 = 4(n− 3) = 4(6− r)

t =
(
n−2

3

)
= 1

6 (7− r)(6− r)(5− r) .

µ1 = 2(9− r) = 2n

µ2 = 12

ǫ1 = 2(n− 3)2 = 2(6− r)2

Example 6 (r = 5). For r = 5, we get a quartic surface S4 in P4. It is well known

that S4 is the complete intersection of two quadric hypersurfaces, and, conversely, all

such complete intersections are obtained in this way [3, Prop. IV.16, p. 67]. The cubic

surface (r = 6) contains 27 lines; more generally, one can show that S9−r contains

precisely r +
(
r
2

)
+
(
r
5

)
lines [3, Prop. IV.12, p. 63], and hence there are 16 lines on S4.

A general projection X4 ⊂ P3 will have a double curve of degree 2 and rank 2.

There are 4 pinch points and no triple points. A thorough study of the surface S4 and

all possible projections of it can be found in [16].

By considering points P1, . . . , Pr that are not in general position, and/or projections

that are not general, we can of course produce many more types of singular Del Pezzo

surfaces.

6 Rational Scrolls

A rational normal scroll of type (d1, d2) is a surface S ⊂ P
d1+d2+1 obtained as follows:

Choose disjoint subspaces Pdi ⊂ Pd1+d2+1, i = 1, 2, and rational normal curves

vdi
: P

1 → P
di ⊂ P

d1+d2+1.

Let S be the ruled surface swept out by the lines joining corresponding points vd1
(P )

and vd2
(P ). If t �→ (1, t, t2, . . . , tdi) are affine parameterizations of the curves, then an

affine parameterization of S is given by

(t, λ) �→ (t, t2, . . . , td1 , λt, λt2, . . . , λtd2).

(For a more precise description, with homogeneous coordinates, see [11].)

The degree of the surface S is n = d1 + d2, so a hyperplane section will be a curve

of degree d1 + d2 spanning a Pd1+d2 , hence this curve is necessarily rational. So the

sectional genus of any rational scroll is π = 0.
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We may assume d1 ≤ d2. If d1 = d2 = b > 0, we say that S is balanced. In this

case, S ∼= P1 × P1, and S = σ1,b(P
1 × P1) is equal to the Segre surface of bidegree

(1, b). If 0 ≤ d1 < d2, then S is isomorphic to the Hirzebruch surface Fe, where

e := d2 − d1.

For all S we have c2
1 = 8 and c2 = 4. If d1 > 0 and the projection S → P

3

is general, X will have a nodal curve of degree m, with t triple points and ν2 pinch

points. As in the previous section, these numbers can be computed, in terms of the

degree n = d1 + d2 of X . We find:

m = 1
2 (n− 1)(n− 2) =

(
n−1

2

)
(11)

ν2 = 2(n− 2) (12)

t = 1
6 (n− 2)(n− 3)(n− 4) =

(
n−2

3

)
(13)

µ1 = 2(n− 1)

µ2 = n

ǫ1 = 2(n− 2)(n− 3)

In particular, as is of course well known, the only nonsingular rational scroll X ⊂ P3

occurs when d1 = d2 = 1, i.e., when S = X = σ1,1(P
1 × P

1) ⊂ P
3 is a quadric

surface. Note that the fact that the degree µ2 of the dual surface X∨ is equal to the

degree of X , holds for all (nondevelopable) scrolls (see [10, Prop. 7, p. 341]).

Example 7 (Balanced scrolls). Consider the case of a balanced scroll, d1 = d2 = b.

Then we saw above that S is equal to the Segre surface σ1,b(P
1 × P1). So, both (8) and

(11) give that a general projection X has a nodal curve of degree m = (2b− 1)(b− 1);
from (9) or (12), X has ν2 = 4(b− 1) pinch points, from (10) or (13), it has t =

(
2b−2

3

)

triple points. For example, if d1 = d2 = 2, X has degree 4 and its nodal curve has

degree 3; it has 4 pinch points and no triple points.

Thus we see that in order to get new examples from these rational scrolls, we must

take d2 > d1. For example, with d1 = 2 and d2 = 3 we obtain a quintic scroll X ⊂ P
3

with a nodal curve of degree 6.

Example 8 (d1 = 1). Consider the case d1 = 1, d2 = 2. Then S ⊂ P
4 is a cubic

normal scroll, and a general projection X ⊂ P3 is a cubic scroll with a nodal line, and

no other singularities. This is in fact the only example of an irreducible cubic surface in

P3 which has a singular locus of dimension 1 and is not a cone.

If d1 = 1 and d2 = 3, then a general projection X has degree 4 and a nodal curve of

degree 3, hence a general plane section is a trinodal quartic. Further, there are 4 pinch

points and no triple points in this case.

Example 9 (d1 = 0). When d1 = 0, d2 = 1, then S = P
2 is a plane. When d1 =

0, d2 = 2, S ⊂ P3 is a cone over a conic and has the vertex as the only singular point.

When d1 = 0, d2 ≥ 3, S ⊂ Pd2+1 is a cone over a rational normal curve D2 of degree

d2. Though the formulas above do not apply, one sees that a general projection X will

have singular lines corresponding to the
(
d2−1

2

)
nodes of the plane projection of the

curve D2 from the vertex of S.



180 R. Piene

7 Monoid Surfaces

Another type of rational algebraic surface treated classically, and of potential interest in

CAGD (see [14, 8]), are the monoid surfaces. These are irreducible surfaces in 3-space

with a singular point of multiplicity one less than the degree of the surface. Monoid

surfaces are rational, as can easily be seen by exhibiting a rational parameterization; we

shall do this below. We have already seen some examples of such surfaces: any singular

irreducible cubic surface in P
3 is a monoid, and any general projection of the Veronese

surface v2(P
2) is a monoid. We note that general projections of rational scrolls of degree

4 have no triple points, hence are not monoids.

If X ⊂ P3 is a monoid surface of degree n, we may assume that the point P := (0 :
0 : 0 : 1) is a point of multiplicity n − 1. The defining polynomial of the surface can

then be written as

F (x0, x1, x2, x3) = x3fn−1(x0, x1, x2) + fn(x0, x1, x2),

where fi is homogeneous of degree i. Since F is irreducible, fn is not identically 0, and

fn−1 and fn have no nonconstant common factors. If fn−1 = 0, then X is a cone over

a plane curve of degree n; in what follows, we shall only consider monoids that are not

cones.

To find the explicit rational parameterization of X , consider the projection p : X ���
P

2 from the point P , so that p(a0 : a1 : a2 : a3) = (a0 : a1 : a2), for (a0 : a1 : a2 :
a3) ∈ X \ P . The inverse map p−1 : P

2 ��� X is given by

p−1(x0 : x1 : x2) =
(
x0 : x1 : x2,−fn(x0, x1, x2)/fn−1(x0, x1, x2)

)

=
(
x0fn−1(x0, x1, x2) : x1fn−1(x0, x1, x2) : x2fn−1(x0, x1, x2) : −fn(x0, x1, x2)

)
.

This rational map is defined outside the common zeros of fn−1 and fn, i.e., outside the

intersections of the two plane curves Cn−1 and Cn defined by these polynomials. As

in the case of Del Pezzo surfaces, this map can be viewed as the projection of the nth

Veronese embedding; the projection center is a linear space that intersects vn(P2) in the

points vd(Cn−1 ∩ Cn). (Computing the degree of the projected surface from this point

of view gives n = n2 − n(n− 1), as expected.)

Assume Q is a singular point on X different from P . Then the line through P and

Q will intersect X in at least n − 1 + 2 = n + 1 points (counted with multiplicities).

So Bezout’s theorem implies that the line must be contained in X . If a point (a0 :
a1 : a2) ∈ Cn−1 ∩ Cn, then the whole line in P3 projecting to this point will lie on X .

Moreover, it is easy to see, by looking at the partial derivatives of F , that if (a0 : a1 : a2)
is singular on both Cn−1 and Cn, then every point on this line will be singular on X .

Example 10 (Quartic monoids). In [4], cubic monoids were classified according to the

shapes and intersections of the plane curves f2 and f3. The same approach can be used

for monoids of higher degree.

Consider a quartic monoid X , given by F = x3f3 +f4 = 0. Depending on how the

curves f3 = 0 and f4 = 0 are, and how they intersect, we get various types of monoids

X . We can use SINGULAR [18] to compute the Milnor number and the type and normal
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form of the singularities of X . The “simplest” singularities come from taking f3 = 0 to

be a nonsingular curve. For example, if we take

F = (x3
0 + x3

1 + x3
2 − x0x1x2)x3 + x4

3,

then X will have a singularity with Milnor number 8 and of type T[3,3,3] (this type is

also called P8, see [2, p. 33]). If we let f3 = 0 have a node, we get something else: for

example, taking

F = (x2
1x2 − x2

0x2 − x3
0)x3 + x4

3

we obtain a singularity with Milnor number 9 and of type T[3,3,4]. Here is a worse

example, also starting with a nodal f3 = 0:

F = (x3
0 − x2

0x1 + x3
1 − x0x1x2)x3 + x1x

3
2 − x2

0x
2
2 + x3

0x2 − x4
0

defines a surface with a singularity with Milnor number 15 and of type T[3,3,10]. The

real type of the singularities will of course depend on the real types of the plane curves.3
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4. Bruce, J. W., Wall, C. T. C.; On the classification of cubic surfaces. J. London Math. Soc.

(2), 19 (1979), 245–256.

5. Cayley, A.: A memoir on cubic surfaces. Phil. Trans. Roy. Soc. London Ser. A 159 (1869),

231–326.

6. Coffman, A.; Schwartz, A. J.; Stanton, C.: The algebra and geometry of Steiner and other

quadratically parametrizable surfaces. Comput. Aided Geom. Design 13 (1996), no. 3, 257–

286.
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8. Pérez-Dı́az, S., Sendra, J., Sendra, J. R.: Parametrizations of approximate algebraic surfaces

by lines. Submitted.

9. Piene, R.: Some formulas for a surface in P
3. In Algebraic Geometry (Proc. Sympos., Trom-

soe, Norway 1977), ed. L. Olson, LNM 687, Springer-Verlag, 1978, 196–235.

10. Piene, R.: On higher order dual varieties, with an application to scrolls. Proc. Symp. Pure

Math. 40 (Part 2), AMS 1983, 335–342.

11. Piene, R., Sacchiero, G.: Duality for rational normal scrolls. Comm. Algebra 12(9–10)

(1984) 1041–1066.

12. Schicho, J.: Elementary theory of Del Pezzo surfaces, these proceedings.
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Abstract. In this paper we further the theoretical investigation, initiated in [1],

on the shape effect of a single control point, measured in terms of the sign of

Gaussian and mean curvatures of the underlying parametric surface. The so far

obtained theoretical results are illustrated by experimenting with three typical

NURBS surfaces, namely a cylinder, an ellipsoid and a torus.

1 Introduction and Preliminaries

Creating and processing the shape of curves and surfaces remains and will remain to be

a central issue in Computer Aided Geometric Design (CAGD). This is grounded on the

fact that, besides its intrinsic interest, the request for robust and efficient handling of the

shape is more or less present in every application that involves geometric information.

As an indication, a web-search via the keyword pairs: {shape, curves/surfaces} it is

likely to provide several hundred thousands of results; e.g., the search engine [4] yielded

519/744×103 outcomes, respectively.

In this context, Koras and Kaklis [1] initiated a study on the link between the shape of

smooth parametric surfaces, quantified on a first level via the sign of their Gaussian and

mean curvatures, and one of the most popular, among users and researchers, surface

representation approaches, the so-called control-point paradigm. The purpose of this

paper is to present additional pertinent theoretical results (see §§3, 4) and illustrate the

so far gained understanding on the shape effect of a control point, by experimenting with

NURBS surfaces (§5), more specifically with two typical 2nd-order algebraic surfaces:

a cylinder (§5.1) and an ellipsoid (§5.2) and a 4th-order surface: a torus (§5.3).

As previously noted, the theoretical basis of the present paper is provided in [1], where

the following problem is being investigated: For those parametric surface representa-

tions that adopt the control point paradigm, determine all admissible loci of a specific

control point for which the Gaussian or mean curvatures have prescribed signs at a

specific surface point. The basic outcome of this investigation is that, if our aim is to

preserve local convexity over a finite set of specific surface points, then the selected

control point is permitted to move within a convex polyhedron.



184 P. Kaklis and S. Dellas

To be more analytic, we have to introduce some notation and terminology. Let s(u, v),
be a parametric surface defined as

s(u, v) =
∑

ρ∈I

dρ Nρ(u, v), (u, v) ∈ Ω, (1)

where dρ are the so-called control points and {Nρ(u, v)}ρ∈I is an appropriate set of

weight functions, defined on a compactum Ω of R2, while I denotes the finite range

of the multi-index ρ. Next, we introduce a series of notions, namely the notions of

parabolic/minimal loci, elliptic/hyperbolic domains, mean-positive/mean-negative do-

mains (see Def. 1) and the notions of convex/concave domains (see Def. 2) for a control

point dl, that will be also referred to as the free control point.

Definition 1. a) The parabolic (minimal) loci of the control point dl, l ∈ I , with respect

to a point w̃ = (ũ, ṽ) of the parametric domain of definition, Ω, of the surface s(u, v),
consists of all possible locations of dl for which the Gaussian curvature K(w̃) (the

mean curvature H(w̃)) vanishes.

b) The parabolic loci separate the elliptic, DK+
, from the hyperbolic domain, DK−

, of

dl, where the Gaussian curvature is positive and negative, respectively.

c) Analogously, the minimal loci separate the positive-mean, DH+
, from the negative-

mean domain, DH−
, of dl, where mean curvature is positive and negative, respectively.

Definition 2. Let DK0
+/−

= DK+/−
∪ {p(dl; w̃) = 0} and DH0

+/−
= DH+/−

∪
{m(dl; w̃) = 0}, where p(dl; w̃) = 0, m(dl; w̃) = 0 represent the parabolic-

and minimal-loci surface, respectively. Then DK0
+
∩ DH0

+/−
will be correspondingly

referred to as the convex/concave domains of the control point dl, l ∈ I , with respect

to the parametric point w̃ ∈ Ω.

2 Parabolic Loci

Let us now recall from [1] the following auxiliary result: the parabolic-loci surface is a

quadric surface, defined by

p(dl; w̃) =
[
dT

l 1
]
Q(w̃)

[
dl

1

]
= 0, (2)

with rank(Q)≤2 and rank(Q44)≤2, Q44 denoting the upper-left 3×3 submatrix of

Q. Matrix Q depends on the first- and second-order partial derivatives of the function-

set {Nρ(u, v)}ρ∈I , namely:

Q( ew) =
1

2

2
4

buu (bvv)T + bvv (buu)T − 2buv (buv)T auubvv + avvbuu − 2 auvbuv

(auubvv + avvbuu − 2 auvbuv)T 2
`
auuavv − (auv)2

´

3
5

(3)

where

b� =
(
s(0)
v Nlu − s(0)

u Nlv

)
× s

(0)
�

+ Nl�

(
s(0)
u × s(0)

v

)
, � ∈ {uu, uv, vv}, (4)
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and

a� = [s(0)
u , s(0)

v , s
(0)
�

]. (5)

Here [a,b, c] signifies the standard triple scalar product of vectors a, b and c, s(0)(u, v)
is the remaining part of s(u, v) after subtracting dlNl(u, v), while the subscript u(v)
denotes partial differentiation with respect to the parameter u(v), respectively.

Combining this result with a standard classification theorem for quadric surfaces, we

are led to the following basic theorem:

Theorem 3. Let {λ1, λ2, 0} be the eigenvalues of the symmetric matrix Q44. The para-

bolic loci p(dl; w̃) = 0 of the control point dl with respect to the parametric point

w̃ ∈ Ω, of a surface defined as in (1), is a degenerate quadric, consisting of:

(i) A pair of real intersecting planes if λ1λ2 < 0 (rank(Q) = rank(Q44) = 2),

(ii) A pair of complex planes if λ1λ2 > 0 (rank(Q) = rank(Q44) = 2),

(iii) A pair of parallel (real or imaginary) planes if λ1λ2 = 0, rank(Q) = 2 and

rank(Q44) = 1 or

(iv) A pair of coincident planes if λ1λ2 = 0, rank(Q) = 1 and rank(Q44) = 1.

According to our numerical experience the case that occurs more frequently in practice

is case (i) of Theorem 3, for which parabolic loci consists of a pair of intersecting

planes; see planes P1 and P2 in the left of Figs 1. The elliptic domain of the free

control point is then one of the two resulting wedge pairs, that share equal dihedral

angles, the remaining wedge pair constituting the hyperbolic domain; see the elliptic

wedge pair, where K(w̃) > 0, and the hyperbolic wedge pair, where K(w̃) < 0, in

the afore-mentioned figure. Furthermore, recalling that local convexity (concavity) is

equivalent to ellipticity enhanced with the positivity (negativity) of either of the triple

products [su, sv, suu] or [su, sv, svv ], the convex(concave) domain is the one of two

elliptic wedges that lies in the positive(negative) halfspaces bounded by the planes

[su, sv, s�] = a� + dT
l b� = 0, � = uu, vv; (6)

the separating plane P3 in the right of Figs 1 is obtained by setting � = uu in (6).

3 Minimal Loci

The minimal-loci surface is a cubicoid, defined as

m(dl; w̃) =
[
dT

l 1
]
H(w̃)

[
dl

1

]
+ dT

l h3(w̃)(x2 + y2 + z2) = 0, (7)

where x, y and z are the cartesian coordinates of the free control point dl, while

H(w̃) =

[
1
2 (H2 + HT

2 ) 1
2h1

1
2h

T
1 h0

]
(8)

is a symmetric matrix with its entries being defines as below:

H2(w̃) = buu(quu)T − 2buv(quv)T + (auuβvv − 2auvβuv + avvβuu)I3, (9)
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Fig. 1. For the control point (big bullet) of a spherical patch and an interior parametric point ew:

parabolic loci (planes Pi, i = 1, 2), elliptic domain (K( ew) > 0), hyperbolic domain (K( ew) <
0), convex domain (K( ew) > 0, H( ew) > 0), concave domain (K( ew) > 0, H( ew) < 0) and

their separating plane P3.

h1(w̃) = avvquu + avvbuu − 2auvquv − auvbuv + auuqvv + auubvv, (10)

h0(w̃) = auuavv − 2auvauv + auuavv (11)

βrs = NlrNls, qrs = s(0)
r Nls + s(0)

s Nlr, r, s∈{u, v}, (12)

I3 denoting the 3×3 identity matrix, while h3(w̃) is a vector expressed as

h3(w̃) = βvvbuu − 2βuvbuv + βuubvv . (13)

As already noted, whenever the planes P1 and P2 intersect, the convex wedge is sep-

arated from its concave counterpart through the planes (6). Then, since the Gaussian

curvature should also vanish along their intersection, we conclude that [su, sv, suv] = 0
as well. By virtue of the two previous remarks we conclude that, whenever it exists,

the intersection line of P1 and P2 is a locus along which all three triple scalar prod-

ucts [su, sv, s�], � = uu, uv, vv, vanish. This in its turn implies that the minimal-loci

surface passes through the intersection of the two parabolic planes; see Fig. 2. It is

worth-noticing that, possessing aline on a nonsingular cubic surface, is a very useful

knowledge for building up a parameterization; see, e.g., [[2], §7].

Furthermore, it is readily seen from the righthand side of (7) that, as ‖dl‖→∞, the

third-degree terms become dominant and the minimal-loci surface tends to a plane,

namely

m(dl; w̃) = 0 → hT
3 dl = 0 as ‖dl‖→∞. (14)

4 On the Influence of the Extrema of the Weight Function of the

Free Control Point

Assuming that the weight functions {Nρ(u, v)}ρ∈I , appearing in the righthand side of

(1), are sufficiently differentiable, the results presented in the previous two sections hold
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Fig. 2. For the free control point (bullet) of Fig. 1: Parabolic planes (Pi, i = 1, 2), the plane

(P3) that separates the convex from the concave wedge, the minimal-loci cubicoid surface

(m(dl; ew) = 0), that passes through their common intersection line, and the partition of the

space according to the sign of the Gaussian, K(w), and mean, H(w), curvatures at the specified

parametric point ew.

independently of the specific properties of the function set. We shall now reveal a case

that links directly the properties of the parabolic and minimal loci with the behaviour

of the weight function Nl(u, v), that corresponds to the free control point dl, in the

vicinity of the selected parametric point w̃. More specifically, let

Nlu(w̃) = Nlv(w̃) = 0, (15)

which is a necessary condition for an extrema to arrive at w̃. Then b� (see (4)) can be

written as

b� = Nl�(s(0)
u × s(0)

v ), (16)

which implies that all three vectors b�, � = uu, uv, vv, are parallel. Thus, a pair of

real constants κ and λ, depending solely on the second-order partial derivatives of Nl

at w = w̃, exists, such that

bvv = κbuu, buv = λbuu. (17)

If, e.g., Nluu(w̃) �=0 then κ = Nlvv(w̃)/Nluu(w̃) and λ = Nluv(w̃)/Nluu(w̃). Substi-

tuting now (17) into the expression for the upper-left submatrix Q44 of Q (see eq. (3)),

we finally arrive at

Q44 = (κ− λ2)buu(buu)T . (18)

Combining (18) with the remark that, for any pair of non-zero vectors vi, i = 1, 2, the

rank of matrix v1(v2)
T is equal to 1, we can state

Lemma 4. If Nlu(w̃) = Nlv(w̃) = 0 and Nluu(w̃)Nlvv(w̃) − N2
luv(w̃) �=0 then

rank(Q44(w̃)) = 1.
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In view of parts (iii) and (iv) of Theorem 3, the above lemma simply means that, if it

is possible to change the sign of the Gaussian curvature at a parametric point w) = w̃,
where the hypotheses of the lemma hold true, then the parabolic-loci planesPi, i = 1, 2,
are (real) planes and, as a consequence, the convex(concave) domain becomes either a

halfspace or the infinitely extended strip that lies in between P1 and P2.

As for the minimal-loci surface, it can be readily seen from (12) that, if equalities (15)

hold true, then

βrs = 0, qrs = 0, r, s ∈ {u, v}, (19)

which, in view of (9) and (13), leads to

H2 = 0, h3 = 0. (20)

Then, substituting (20) into (7) we arrive at the following conclusion: if the first-order

partial derivatives of Nl(w) vanish at w = w̃, then the minimal loci surface degenerates

to a plane, namely m(dl; w̃) = h0 + dT
l h1 = 0.

5 Numerical Experimentation with NURBS

This section reports on our experimentation with Waterloo Mapple�, version 8, for

illustrating the theoretical results, obtained in the preceding sections, in the case of a

triplet of standard algebraic surfaces, more specifically a cylinder, an ellipsoid and a

torus, represented as NURBS surfaces.

For this purpose we have developed two Maple modules, namely the NURBS and the

ConvexDomain packages. The first package resides on the Maple’s built-in implemen-

tation of B−spline basis functions. The second one makes use of a GNU-distributed

Maple package on convex geometry, called convex and created by Mathhias Franz [3],

that can create and manipulate polytopes and polyhedra. One of its most useful, for

our purposes, features lies in its functionality to create a polyhedron by intersecting

a sequence of halfspaces and polyhedra. Thus, the creation of the convex polyhedron

that describes the convex domain of a control point dl with respect to a finite set of

parametric points w̃i, i = 1, ..., N, becomes straightforward.

Furthermore, our ConvexDomain package provides the functionality of evaluating the

Hausdorff distance between two convex polytopes, that is useful for monitoring the con-

vergence of convex domain sequences that result as the density of the chosen parametric

points increases. Note that the Hausdorff distance

d(K, L) := inf{σ |K + σB � L, L + σB � K} (21)

between two three-dimensional convex bodies K and L, has been implemented by us-

ing the maximum norm for defining the unit ball B in (21). The approach we have

adopted for “covering” the, in our test cases (see Figs. 3, 5 and 8) rectangular, influence

area of a free control point, can then be outlined as follows: we construct a sequence of

u− and v−uniform grids over the parametric domain of interest, evaluating the Haus-

dorff distance between the convex domains corresponding to each grid and the previous
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(coarser) one. When the Hausdorff distance gets smaller than a user-defined percent-

age of the diameter of the tolerance box we are working with, then we consider that

denseness of the grid is satisfactory for our purposes and the stopping criterion gets

activated.

5.1 Cylinder

If we adopt the popular CAGD parameterization of a cylinder, namely as a NURBS sur-

face of degree 1 with respect to the one of its variables, say u, then it is straightforward

to prove that the matrix Q in (3) degenerates to

Q = −
[
buv

auv

] [
(buv)T auv

]
. (22)

This implies that rank(Q)≤1, rank(Q44)≤1, and thus, by virtue of case (iv) of Theo-

rem 3, the parabolic loci of a control point dl with respect to any point w̃ in the para-

metric domain of definition of the cylinder surface will be a pair of coincident planes.

In addition, recall that a NURBS surface, which is of degree 1 with respect to one of

its variables, can be classified as ruled, implying that the Gaussian curvature of the

surface will remain non-positive for every possible location of dl. Then, the non-zero

eigenvalue matrix of Q44 will always be negative and, in conjunction with the fact that

the parabolic planes coincide, it is deduced that, for the chosen parameterization of the

cylinder, the convex domain will be constantly empty.

The parameterization dependency of the convex-domain notion, which is also true for

the other notions introduced in §1, can be alternatively illustrated by degree elevating

with respect to the u variable, which produces non empty convex domain; see Fig. 3.

Fig. 3. Left: the cylinder with its control-point net after one-level degree elevation with respect

to u. The darker area denotes the influence area of the free control point we have experimented

with. Right: The free-form convex polyhedron for a dense set of parametric points, “covering”

the whole influence area.
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5.2 Ellipsoid

The ellipsoid, appearing in Fig. 4, is represented as a NURBS surface of degree 2. The

surface consists of 8 patches, each containing a singularity at the pole. We have exper-

imented with two different control points, which are not on the poles and their area of

influence is limited within the boundaries of one and the same patch. On the basis of

our numerical experience we dare asserting that, for any control point with the above

characteristics, the convex domain is non-empty for any sample of parametric points

and in fact converges to a free-form convex polytope as the density of the sample in-

creases; see Fig. 5. Finally, the case of parallel parabolic planes (case (iii) of Th. 3),

implying that the convex domain is either a halfspace or an infinite strip (see comments

after Lemma 4),has been also observed; see Figs. 6.

Fig. 4. The ellipsoid with its control-point net. The influence area of the two control points, we

have experimented with, is depicted darker.

Fig. 5. Two instances of the free-form convex polytope for two different control points and a

dense set of parametric “covering” the whole (common) influence area.
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Fig. 6. Left: Parallel parabolic planes corresponding to a parametric point where Nl(u, v) be-

comes maximum. The convex domain is here a halfspace, limited by the tolerance box. Right:

Parallel parabolic planes for which the convex domain resides in the strip between them.

5.3 Torus

The torus, appearing in Fig. 7, is represented as a NURBS surface of degree 4, consist-

ing of 16 patches with half of them belonging to the elliptic part of the surface. We

have experimented with two control points, the one affecting an elliptic and the other a

hyperbolic patch. In the first case the convex domain converges, as the set of paramet-

ric points covers increasingly the whole elliptic patch, to a zero thickness finite plate

with free-form boundaries; see Fig. 8. For the second control point, that affects the hy-

perbolic patch of the torus (see in the left of Figs. 9, we find that the convex domain

becomes eventually empty as we try to cover the whole parametric area of its influence.

This is further illustrated in the right of Figs. 9, that has been obtained by evaluating,

for a dense sampling over the parameter domain, the sign of the product of the two

nonzero eigenvalues of submatrix Q44. Recall that, according to cases (i) and (ii) of

Th. 3, negative/positive sign of the eigenvalue product signifies existence/nonexistence

of real intersecting parabolic planes, respectively.

Fig. 7. The torus along with its control-point net. The darker elliptic part of the torus is the area

of influence of the first free control point, we have experimented with.
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Fig. 8. The free-form convex polytope for the control point of Fig. 7 and a dense set of parametric

points, “covering” its whole influence area.

Fig. 9. Left: The torus along with its control point net. The darker (hyperbolic) part of the torus

is the selected area of influence of the second free control point, we have experimented with.

Right: The hyperbolic part colored according to the existence (light gray) or not (dark gray) of

real intersecting planes.
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Abstract. The classical invariant theory from the 19th century is used to deter-

mine a complete system of 3rd order invariants on a surface in three-space. The

invariant ring has 18 generators and the ideal of syzygies has 65 generators. The

invariants are expressed as polynomials in the components of the first fundamen-

tal form, the second fundamental form and the covariant derivative of the latter,

or in the case of an implicitly defined surface – M = f−1(0) – as polynomials

in the partial derivatives of f up to order three.

As an application some commonly used fairings measures are written in invariant

form. It is shown that the ridges and the subparabolic curve of a surface are the

zero set of invariant functions and it is finally shown that the Darboux classifica-

tion of umbilical points can be given in terms of two invariants.

1 Introduction

An nth order invariant on a surface M in
� 3 is a function M → �

whose value at

a point P ∈ M depends only on the nth order Taylor expansion of a parameterization

of M around P , see Definition 2. E.g. the mean curvature H and the Gauss curvature

K are second order invariants, in fact any second order invariant can be written as a

function of H and K, so they form a complete system. In this paper a similar complete

minimal system are found for the third order invariants, together with the complete

system of relations.

The problem of finding such a system of generators and relations turns out to be a

purely algebraic question that was much studied in the 19th century. The literature is

immense, so we just refer to the books [1–6], and the survey [7]. Some of the classical

algorithms from that time will be used but they will be phrased in the modern language

of tensor analysis.

In Sect. 2 we give the precise definition of an invariant and we reduce the problem

to a purely algebraic one. The main results are the list of invariants in Table 1 which

forms a complete minimal system of generators and Theorem 8 which describe the

surprisingly simple structure of the invariant ring.

The proof of Theorem 8 is in three stages. In Sect. 3 we use an algorithm from the

19th century, cf. [1], to determine a minimal set of generators. In Sect. 4 we find a set

of relations – called syzygies – among these generators. Finally in Sect. 5 we show

that we have found enough syzygies, i.e., they generate the whole ideal of relations.

This is done by using Weyls character formula and the residue theorem to calculate the
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Hilbert-Molien series which tells the dimension of the space of invariants of a fixed

degree.

Section 6 is devoted to implicit surfaces, given by an equation f(x) = 0. It is

explained how the invariants can be expressed in terms of the function f .

Once the structure of the invariant ring is established it can be used without knowl-

edge of the proof. So the reader interested in applications only can skip most of the

paper and go directly to the examples. The way the theory is used is to perform a calcu-

lation using principal coordinates in which the first fundamental form, the second fun-

damental form and its covariant derivative is particular simple. The result is translated

into an expression of invariants and then Table 1 can be used to tell what the expression

is in an arbitrary parameterization. To demonstrate how this works we present some ap-

plications in Sect. 7. First we express some functions used as fairing measures in terms

of our invariants. Then we characterize ridges, the subparabolic curve, and the Darboux

classification of umbilical points using invariants.

2 Invariants on Surfaces

Let x0 be a point on a surface M ⊂ � 3 and denote the unit normal vector and the

tangent plane at x0 by Nx0
and Tx0

M respectively. Let r1, r2 be a basis for the tangent

space Tx0
M and let (x1, x2) denote the coordinates on Tx0

M with respect to this basis.

Around the point x0 we can write the surface as a graph of a function on the tangent

space. More precisely the map

(x1, x2) �→ x(x1, x2) = x0 + x1r1 + x2r2 + h(x1, x2)Nx0
, (1)

is a local parameterization of M . The inverse map is simply the orthogonal projection

M → Tx0
M , and h is the height of the surface over the tangent plane.

Normally the letter g is used for the first fundamental form, but we shall consider

three different forms and it seems natural to use the letters a, b, c. So we let aij = ri ·rj

be the components of the first fundamental form. We can Taylor expand the function h
to third order:

h(x1, x2) =
1

2
bijx

ixj +
1

6
cijkxixjxk + higher order terms , (2)

where we use Einsteins summation convention, so if an index appears once as a sub-

script and once as a superscript, then it is tacitly understood that we sum over it. We

may furthermore assume that bij and cijk are symmetric in the indices. We do not need

an explicit expression of h in order to determine the coefficients bij and cijk. Indeed,

we have

Proposition 1. The coefficients bij and cijk are the components of the second funda-

mental form and the covariant derivative of the second fundamental form respectively,

both with respect to the basis r1, r2.

Proof. In the parameterization (1) we have h(x1, x2) =
(
x(x1, x2)− x0

)
·Nx0

, so

bij =
∂2h

∂xi∂xj

∣∣∣∣
(0,0)

=
∂2x

∂xi∂xj

∣∣∣∣
(0,0)

·Nx0
,
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and this is exactly the components of the second fundamental form at x0. To first order

we have that ∂x
∂x1 = ri + bijx

jNx0
and as Nx0

⊥ ri the components of the first

fundamental are constant to first order: ∂x
∂xi · ∂x

∂xj ≈ aij . Likewise
∣∣ ∂x
∂x1 × ∂x

∂x2

∣∣2 ≈
|r1 × r2|2. Finally

∂2x

∂xi∂xj
·
(

∂x

∂x1
× ∂x

∂x2

)

≈ (bij + cijkxk)Nx0
·
(
(r1 + (b11x

1 + b12x
2)Nx0

)× (r2 + (b12x
1 + b22x

2)Nx0
)
)

= (bij + cijkxk)Nx0
· (r1 × r2) = |r1 × r2| (bij + cijkxk) .

So the components of the second fundamental form are to first order bij + cijkxk.

Moreover, the ordinary derivative has components cijk and as the Christoffel symbols

vanishes at x0 the covariant derivative at x0 agrees with the ordinary derivative and has

components cijk too. ⊓⊔
We have two interpretations of the quantities aij , bij , and cijk, as the coefficients of

a homogeneous polynomial in two variables (called a binary form) and as the compo-

nents of a k-form on M . We will also use a third interpretation, namely as the compo-

nents of an element of the space Sk � 2 of symmetric k-tensors on
� 2.

We have said that a third order invariant is a function that depends only on the third

order behaviour of the surface. We can now make this precise:

Definition 2. Let r : U → M ⊂ � 3 be a parameterization of a surface. Let the

components of the first fundamental form be a = a11, a12, a22, let the components of the

second fundamental form be b = b11, b12, b22, and let the components of the covariant

derivative of the second fundamental form be c = c111, c112, c122, c222. A third order

invariant is a function f : M → �
that can be written on the form f(r(u, v)) =

F (a(u, v),b(u, v), c(u, v)), where F : S2 � 2 × S2 � 2 × S3 � 2 → �
.

The function f is a function on the surface and is thus independent of the parameteriza-

tion. On the other hand, if we change the parameterization of the surface we change the

basis in the tangent plane and this in turn changes the components a,b, c of the three

forms on the tangent plane. So F can not be arbitrary; it has to be invariant under the

change of basis, i.e., under the action of GL2(
�

) on S2 � 2 × S2 � 2 × S3 � 2.

We want to determine a finite set F1, . . . , Fn of such invariant functions such that

an arbitrary invariant function F can be written

F (a,b, c) = F̂ (F1(a,b, c), . . . , Fn(a,b, c)).

We will in fact find a set of invariant polynomials such that any invariant polynomial

can be written in the form above. Then the same is true for arbitrary invariant functions

too, because such a set of polynomials separates orbits, see [3, Theorem 8.17]. The

advantage is that the polynomial problem is a purely algebraic problem.

3 The Generators

We first consider a slightly different problem. We will consider forms or symmetric

tensors over the complex numbers so we are given three binary forms aijx
ixj , bijx

ixj ,
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and cijkxixjxk where (x1, x2) = x ∈ � 2, and we ask for polynomials in the variables

a,b, c,x that are invariant under the action of SL2( � ). More precisely we want to

determine the structure of the invariant ring � [a,b, c,x]SL2( � ). A polynomial is the

sum of components, homogeneous in each set of variables a,b, c,x, and it is invariant

if and only if each of its homogeneous components is invariant.

In the classical literature a joint covariant of multi-degree (d1, d2, d3) and order k is

a homogeneous invariant polynomial which has degree d1 in a, degree d2 in b, degree

d3 in c, and degree k in x. In particular, the forms themselves are covariants, and a joint

invariant is a joint covariant of order 0.

An SL2-invariant will in general not be invariant under the action of GL2. Indeed,

a diagonal matrix ( t 0
0 t ) acts on xi by multiplication with t−1, on ai,j , bi,j by multipli-

cation with t2, and on ci,j,k by multiplication with t3, so an A ∈ GL2 acts on a joint

covariant by multiplication with detAρ, where 2ρ = 2d1 + 2d2 + 3d3 − k, we say that

it is a relative GL2-covariant of weight (or index) ρ.

The description of the invariant ring � [a,b, c,x]SL2 is a classical problem that was

studied intensely in the nineteenth century, and the two basic problems are the following

– Find a set of basic covariants C1, . . . , Cp, called a complete system, such that any

covariant can be written as a polynomial in the basic covariants. I.e., such that the

map φ : � [X1, . . . , Xp] → � [a,b, c,x], given by φ(P ) = P (C1, . . . , Cp) maps

onto � [a,b, c,x]SL2 .

– Find all syzygies among the basic covariants, i.e., find the kernel S of φ. That is,

all polynomials with P (C1, . . . , Cp) = 0.

In 1890 Hilbert showed that there always exists a finite system of generators and

relations, see [8]. I.e., there exists generators C1, . . . , Cp ∈ � [a,b, c,x] and syzygies

S1, . . . , Sq ∈ � [X1, . . . , Xp] such that the map Xi �→ Ci gives an isomorphism

� [X1, . . . , Xp]
/

(S1, . . . , Sq) ∼= � [a,b, c,x]SL2 ,

where (S1, . . . , Sq) denotes the ideal generated by S1, . . . , Sq.

Before Hilbert the emphasis was on the explicit construction of covariants, of-

ten using transvectants. They can be defined symbolically, see [1, Chapter III] or [2,

(20.18)] or they can be defined using differential operators, but we will use contraction

of tensors to define them. We can assume that the components fi1,...,in
of a polynomial

f = fi1,...,in
xi1 . . . xin are symmetric in the indices so we may consider them as com-

ponents of a symmetric tensor fi1,...,in
xi1 ⊗ · · · ⊗xin ∈ Sn( � 2). The rth transvectant

of two symmetric tensors f and g is denoted (f, g)(r) and is defined by having compo-

nents

(f, g)
(r)
ir+1,...,in,jr+1,...,jm

= S
(
εi1j1 . . . εirjrfi1,...,in

gj1,...,jm

)
, (3)

where εij is the completely anti symmetric symbol ε11 = ε22 = 0 and ε12 = −ε21 = 1.

The symbol S stands for symmetrization of the free indices. Observe that the symmetry

of f and g implies, that up to a sign, this is the only non zero contraction. As a contrac-

tion of a tensor is a new tensor we see that the transvectants of two covariants is a new
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covariant. Obviously

deg(f, g)(r) = deg f + deg g ,

order(f, g)(r) = order f + order g − 2r ,

weight(f, g)(r) = weight f + weight g + r .

It should be mentioned that all this is part of the representation theory of SL2 �

(or SU(2)), see [9]. The irreducible representations are the spaces Sn � 2 of symmetric

tensors, and a tensor product of two of these has the following decomposition

Sn
�

2 ⊗ Sm
�

2 =

⌊n+m
2 ⌋⊕

r=0

Sn+m−2r
�

2 .

The rth transvectant is exactly the projection from Sn
�

2 ⊗ Sm
�

2 to Sn+m−2r
�

2.

The following theorem tells us how to get a complete system for a single binary

form, see [1, § 86] or [2, Theorem 24.3].

Theorem 3. Any covariant of a binary form f of degree d in its coefficients can be

written as a linear combination of transvectants of the form itself and covariants of

degree d− 1.

As the only covariant of degree 1 is the form itself this shows that we can find a complete

system of covariants of single form consisting of transvectants. E.g. a complete system

of covariants for a single quadratic binary form a consists of the form itself and its

discriminant:

a = aijx
ixj , (a, a)(2) = 2(a11a22 − a12a12) , (4)

see [1, 2, 4, 5].

A complete system of single cubic form c consists of the form itself, its Hessian,

the discriminant of the Hessian and the Jacobian of the form with its Hessian:

c , H = (c, c)(2) , D = (H, H)(2) , T = (H, c)(1) , (5)

see [1, 2, 4, 5]. The joint covariants of a collection of forms can be created from com-

plete subsystems, see [1, § 103].

Theorem 4. If S1 and S2 are two finite and complete systems of forms, then there exists

a finite and complete system consisting of transvectants of products of elements of S1

and products of forms of S2.

The problem with this theorem is that we don’t know how many products we need to

form, before we take transvectants. But if one of the systems above is the complete

system (4) of a single binary quadratic form then more is true, see [1, § 141].

Theorem 5. If S1 is the system (4) for a quadratic form a, and S2 is an arbitrary sys-

tem, then the irreducible transvectants belong to one of the three classes, (C, ar)(2r−1),

(C, ar)(2r), and (C1C2, a
r)(2r), where C1 and C2 have odd order and the order of the

product C1C2 is 2r.
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By using this result twice we can find a complete system for two quadratic and one

cubic binary form, i.e., a complete system for the third order invariants of a surface.

The result is a rather large system and not all elements are needed. To get rid of the

superfluous elements we use the following important result, see [6, Chapter VIII, §7],

or [4, Chapter 4.3].

Theorem 6. If C, C1, . . . , Cn are covariants and C = p1C1 + · · · + pnCn for some

polynomials pi, then we can assume that pi are covariants too. In other words, if a

covariant is contained in the ideal generated by some covariants then it is contained in

the algebra generated by the same covariants:

C ∈ (C1, . . . , Cn)⇒ C ∈ � [C1, . . . , Cn] .

So using the results above we first find a large set of generators. Then we sort them

such that the partial ordering induced by the order and the multi degree is respected, i.e.,

k ≤ k′ ∧ d1 ≤ d′1 ∧ d2 ≤ d′2 ∧ d3 ≤ d′3 =⇒ C ≤ C ′. Finally we take each covariant

in turn and if it is contained in the ideal generated by the previous ones then we throw

it away otherwise we keep it. All this was done using the algebra program “Singular”

[10]. The result is a minimal system of generators consisting of 18 invariants, 13 linear

covariants, 6 quadratic covariants, and 4 cubic covariants. The 18 invariants are

(a, a)(2), (a, b)(2), (b, b)(2),
(
(c, c)(2), a

)(2)
,

(
(c, c)(2), b

)(2)
,

((
(c, c)(2), b

)(1)
, a
)(2)

,
(
c2, a3

)(6)
,

(
c(c, b)(2), a2

)(4)
,

(
(c, b)(2)

2
, a
)(2)

,
(
c2, b3

)(6)
,

(
c(c, b)(1), a3

)(6)
,

(
c
(
c, b2

)(3)
, a2

)(4)
,

(
(c, b)(2)

(
c, b2

)(3)
, a
)(2)

,
(
(c, c)(2), (c, c)(2)

)(2)
,

(
c
(
(c, c)(2), c

)(1)
, a3

)(6)
,

(
c
((

(c, c)(2), c
)(1)

, b
)(2)

, a2
)(4)

,
(
(c, b)(2)

((
(c, c)(2), c

)(1)
, b
)(2)

, a
)(2)

,
(
c
(
(c, c)(2), c

)(1)
, b3

)(6)
.

The symmetrization in (3) means that we in general will get a sum of different con-

tractions. But each contraction in such a sum is an invariant and at least one of them

is irreducible. So we can obtain a complete system where each generator is a single

contraction. In Table 1 we have listed one possible choice of generators along with their

multi-degree and weight. There are at first sight up to 218 terms, but the symmetries

reduces this number to 54, see [11] where the sums have been expanded.

4 The Syzygies

We now turn to the problem of finding all syzygies, i.e., all relations between the basic

invariants in Table 1. In this section we present a set of syzygies and in the next section

we prove that this set generates the ideal of syzygies.

Proposition 7. There are 39 syzygies of the form

JiJj = Q0
ij +

2∑

k=1

Qk
ijJk , 1 ≤ i ≤ j ≤ 2 or 3 ≤ i ≤ j ≤ 10 , (6)
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Table 1. The basic invariants, their multi-degree, and their weight. See [11] for expanded expres-

sions.
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=
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=
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=
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and 16 of the form

JiJj =

10∑

k=3

Qk
ijJk , 1 ≤ i ≤ 2 and 3 ≤ j ≤ 10 , (7)

where Qk
ij is a polynomial in I0, . . . , I7 of the form

Qk
ij =

∑
P

deg Iip=deg Ji+deg Jj−deg Jk

di1...ik
Ii1 . . . Iik

,

(deg J0 = 0). We furthermore have two syzygies of the form

Q1
i J1 + Q2

i J2 = Q0
i , i = 1, 2 , (8)

and eight of the form

Q3
i J3 + · · ·+ Q10

i J10 = 0 , i = 3, . . . , 10 , (9)

where Qk
i are polynomials of the form

Qk
i =

∑
P

deg Iip=(γi
1,γi

2,γi
3)−deg Jk

di1...ik
Ii1 . . . Iik

,

(deg J0 = 0), and the degrees (γi
1, γ

i
2, γ

i
3) are

(3, 2, 6) , (2, 3, 6) , (4, 1, 4) , (3, 2, 4) , (2, 3, 4) ,

(1, 4, 4) , (3, 1, 6) , (2, 2, 6) , (1, 3, 6) , (3, 3, 6) .
(10)

Proof. We only sketch the proof. Equations (6) and (7) are finite dimensional inhomo-

geneous linear equations in the coefficients of the polynomials Qk
ij . Using Maple or a

similar system it is not hard to solve these equations, see [11].

When the degrees (10) are known then the existence of the polynomials Qk
i in (8)

and (9) reduces to a finite dimensional linear algebra problem, but we have to be careful.

If we take syzygies of degree (1, 3, 6), (3, 1, 6), (2, 3, 4), and (3, 2, 4) and multiply with

I0, I2, I3, and I4 respectively we obtain four syzygies of degree (3, 3, 6). So when we

solve (9) to find the polynomials Qk
10, the space of solutions has dimension greater

than one. We need to pick a solution that is not a � [I0, . . . , I7] linear combinations of

syzygies of lower degree, but this is not hard to do using a computer algebra system,

see [11]. In fact, this is how the 65 syzygies were found in the first place. Starting

with low degree, Maple was used to determine syzygies of a fixed degree that can’t be

expressed as a � [I0, . . . , I7] linear combinations of the syzygies previously found. This

process was iterated until no new syzygies emerged for some degrees. We might at this

point believe we have all syzygies, but it is not proved – that will be done in the next

section.

To simplify the calculations we can pick a good basis for the tangent plane, so we

may assume that aij = δij and bij is diagonal and obtain the expressions in Table 2,

c.f. Sect. 7. ⊓⊔
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Note that if we eliminate a, b, c from the ideal (X0−I0, . . . , X7−I7, Y1−J1, . . . , Y10−
J10) in the ring � [X,Y,a,b, c] then we obtain a system of generators for the ideal of

syzygies. It is in principle possible to use Gröbner basis methods to do this, but the

present problem is apparently too large to be solved this way. At least my implementa-

tion in Singular ran for months and never terminated.

Now consider the ring � [X,Y] = � [X0, . . . , X7, Y1, . . . , Y10]. We introduce a

triple grading by letting

deg(Xi) = deg(Ii) = (αi
1, α

i
2, α

i
3), deg(Yi) = deg(Ji) = (βi

1, β
i
2, β

i
3). (11)

The values of (αi
1, α

i
2, α

i
3) and(βi

1, β
i
2, β

i
3) can be found in Table 1. We can in an ob-

vious manner consider Qk
ij and Qk

i as polynomials in X, i.e., as elements in � [X] and

we now put

Sij = YiYj −
(
Q0

ij(X) +
10∑

k=1

Qk
ij(X)Yk

)
, 1 ≤ i ≤ j ≤ 10 ,

Si = Q1
i (X)Y1 + Q2

i (X)Y2 −Q0
i (X) , i = 1, 2 ,

Si = Q3
i (X)Y3 + · · ·+ Q10

i (X)Y10 , i = 3, . . . , 10 ,

then deg Si = (γi
1, γ

i
2, γ

i
3) is given by (10). Now let � [a,b, c] denote the polynomial

ring in the variable aij , bij , cijk, and consider the map φ : � [X,Y] → � [a,b, c] given

by φ(Xi) = Ii and φ(Yi) = Ji. It preserves the grading, and maps onto the invariant

ring. The polynomials Sij and Si are in the kernel of φ, so if S is the ideal generated

by Sij and Si then we have a surjective map

� [X,Y]/S → � [a,b, c]SL2( � ) , (12)

and we want to show it is an isomorphism. If the degree is fixed then we have a linear

map between finite dimensional vector spaces, so we need only to show that the two

spaces have the same dimension. This is done in the next section.

5 The Structure of the Invariant Ring

Consider the subspace of invariants of multi-degree d = (d1, d2, d3) and denote the di-

mension by Dd. The Hilbert-Molien series is H(z) =
∑

Ddz
d, where zd = zd1

1 zd2
2 zd3

3 .

From the point of view of Lie group theory we have a representation of SL2( � ) on

Sd
(
S2
(

� 2
)
× S2

(
� 2

)
× S3

(
� 2

))
and the space of invariants of multi-degree d is

exactly the subspace where SL2( � ) acts trivially. We can split Sd in a direct sum

of irreducible representations and the number of times the trivial representation oc-

cur is Dd. This number can be computed by Weyls character formula, see [9]. Let

gn : SL2( � ) → GL
(
Sn( � 2)

)
be the n’th symmetric representation of SL2( � ),

let T be a maximal torus in SL2( � ) and let dt be a Haar measure on T , then with

(n1, n2, n3) = (2, 2, 3), we have

H(z1, z2, z3) =

∫

t∈T

∏
1≤i<j≤2

(
1− ti

tj

)

∏3
k=1 det(1− zkgnk

(t))
dt
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=
1

2π

∫ 2π

0

1− e−2iθ

∏3
k=1

(∏nk

l=0(1− zke(2l−nk)iθ)
) dθ

=
1

2πi

∫

S1

1− ζ−2

∏3
k=1

(∏nk

l=0(1− zkζ2l−nk)
)ζ−1 dζ

=
1

2πi

∫

S1

ζ5(ζ2 − 1)

Q(ζ)
dζ,

where

Q(ζ) = (ζ2 − z1)(1− z1)(1− z1ζ
2)(ζ2 − z2)(1− z2)(1− z2ζ

2)

(ζ3 − z3)(ζ − z3)(1− z3ζ)(1− z3ζ
3).

We will use the residue theorem to evaluate the last integral, and if we assume that

|z1|, |z2|, |z3| < 1 and that ξ2
1 = z1, ξ2

2 = z2, and η3 = z3 then the poles inside the

unit circle are ±ξ1,±ξ2, η, e±2πi/3η, z3. We use Maple to calculate the residues for the

eight poles and sum the results. The details can be found in [11] and the final result is

H(z1, z2, z3) =
1 +

∑10
j=1 z

βi
1

1 z
βi
2

2 z
βi
3

3 −∑10
k=1 z

γk
1

1 z
γk
2

2 z
γk
3

3 − z4
1z4

2z8
3

∏7
i=0

(
1− z

αi
1

1 z
αi

2
2 z

αi
3

3

) , (13)

where the exponents αj
i , βj

i , and γj
i are given in (11) and (10).

We now consider the corresponding series – called the Hilbert series – for the ring

at the left hand side of (12), but first we find a simple description of the ring. We

define the ideals S0 = (. . . , Sij , . . . ) and S1 = (S1, . . . , S10) and the rings R0 =
� [X] = � [X0, . . . , X7] and R1 = � [X,Y]/S0 = R0[Y]/S0. Then S = (S0 ∪ S1)
and � [X,Y]/S =

(
� [X][Y]/S0

)
/S1 = R1/S1. The syzygies Sij tells us that in the

ring R1 any element can be uniquely written as p = p0+
∑10

i=1 piYi where pi ∈ R0. Put

an other way, as an R0 module we have R1 = R0⊕R0Y1⊕· · ·⊕R0Y10. We now proceed

to look at S1 as an R0 module. As an R1 module it is generated by S1, . . . , S10 so as an

R0 module it is generated by S1, . . . , S10 and all products SiYj . We put S0 = Y1S2, and

using a computer algebra system we find that YiSj is contained in spanR0
{S0, . . . , S10}

for all i, j, see [11]. Observe that (γ0
1 , γ0

2 , γ0
3) = deg S0 = deg Y1 + deg S2 = (4, 4, 8)

which is the last exponent in the Hilbert-Molien series (13). So S1 is generated by

S0, . . . , S10 as an R0 module. Furthermore, we can write

⎡
⎣

S0

S1

S2

⎤
⎦ = A1

⎡
⎣

1
Y1

Y2

⎤
⎦ and

⎡
⎢⎣

S3

...

S10

⎤
⎥⎦ = A2

⎡
⎢⎣

Y3

...

Y10

⎤
⎥⎦ ,

where A1 and A2 are matrices with elements in R0. We find that detA2 = 2 detA1 �=
0 in R0, see [11]. So S1 is a free R0 module: S1 = R0S0 ⊕ · · · ⊕ R0S10. The Hilbert

series for the polynomial ring R0 is

H0(z1, z2, z3) =

(
7∏

i=0

(
1− z

αi
1

1 z
αi

2
2 z

αi
3

3

)
)−1

.
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The ring R1 is a free R0 module and has the Hilbert series

H1(z1, z2, z3) = H0(z1, z2, z3)

(
1 +

10∑

i=1

z
βi
1

1 z
βi
2

2 z
βi
3

3

)
.

The ideal S1 is a free R0 module too and has the Hilbert series

H2(z1, z2, z3) = H0(z1, z2, z3)

(
10∑

i=0

z
γi
1

1 z
γi
2

2 z
γi
3

3

)
.

So all in all we have that the Hilbert series for R1/S1 is

H(z1, z2, z3) = H1(z1, z2, z3)−H2(z1, z2, z3)

=

(
7∏

i=0

(
1− z

αi
1

1 z
αi

2
2 z

αi
3

3

)
)−1 (

1 +

10∑

i=1

z
βi
1

1 z
βi
2

2 z
βi
3

3 −
10∑

i=0

z
γi
1

1 z
γi
2

2 z
γi
3

3

)
.

This is exactly the same as the Hilbert-Molien series (13) for the ring of SL2 invariants.

As a consequence we have that the kernel of φ is S. This is our main result and we

formulate it as the following theorem.

Theorem 8. The map φ given by Xi �→ Ii and Yi �→ Ji induces an isomorphism

� [X,Y]
/
S ∼= � [a,b, c]SL2 .

I.e., any SL2-invariant can be written as a polynomial in I0, . . . , I7, J1, . . . , J10 and

any syzygy can be written as a � [X,Y]-linear combination of Si and Sij , i, j =
1, . . . 10. The map also induces an isomorphism

(
� [X]⊕ � [X]Y1 ⊕ . . . � [X]Y10

) /
S1
∼= � [a,b, c]SL2 .

I.e., any SL2-invariant I can be written as

I = p0(I0, . . . , I7) + p1(I0, . . . , I7)J1 + · · ·+ p10(I0, . . . , I7)J10 ,

and any syzygy among these is a � [X]-linear combination of S0, . . . , S10.

We really want to study invariants of binary forms over the reals, but this makes

no difference. A polynomial is invariant under the action of SL2(
�

) if and only if

it vanishes under the induced action of the Lie algebra sl2(
�

). The one-to-one cor-

respondence between homogeneous polynomials and symmetric tensors means that if

Id denotes the space of homogeneous SL2(
�

)-invariant polynomials of degree d (and

order 0) then we have

Id ⊆ Sd
(
S2,2,3

( � 2
))

= Sd
(
S2
( � 2

)
× S2

( � 2
)
× S3

( � 2
))
⊆ �

[a,b, c] ,

where Sd denotes the symmetric product. The invariant ring is
�

[a,b, c]SL2 =
⊕

d Id.

If we complexify we get

Id ⊗ � � ⊆ Sd
(
S2,2,3

( � 2
))
⊗ � � = Sd

(
S2,2,3

(
� 2

))
⊆ � [a] ,
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and as sl2( � ) = sl2(
�

)⊗ � � we see that the complex polynomials of multi-degree d
that vanishes under the action of sl2( � ) is Id ⊗ � � . In other words there is a one to

one correspondence between SL2(
�

)-invariants and SL2( � )-invariants.

Furthermore, we are in fact interested in GL2-invariants, i.e., invariants with weight

0. None of the polynomial invariants has weight 0, but as I0 > 0 we can obtain absolute

GL2-invariants by dividing with a suitable power of I0. If we let ρi and δi be the weight

of Ii and Ji respectively, and put

Îi =
Ii

I
ρi/2
0

and Ĵi =
Ii

I
δi/2
0

, (14)

then Î1, . . . , Î7, and Ĵ1, Ĵ2 are rational GL2(
�

)-invariants, but Ĵ3, . . . , Ĵ10 are only

invariant under the action of GL+
2 (

�
). They changes sign if the linear transformation

has a negative determinant, i.e., if the orientation is reversed. This gives the following

corollary.

Corollary 9. In Theorem 8 the field � can be replaced by
�

. Furthermore, any rational

GL+
2 (

�
)-invariant can be written as

p0 + p1Ĵ1 + · · ·+ p10Ĵ10

q0 + q1Ĵ1 + · · ·+ q10Ĵ10

,

and any rational GL2(
�

)-invariant can be written as

p0 + p1Ĵ1 + p2Ĵ2

q0 + q1Ĵ1 + q2Ĵ2

+
p3Ĵ3 + · · ·+ p10Ĵ10

q3Ĵ3 + · · ·+ q10Ĵ10

,

where pi and qi are polynomials in Î1, . . . , Î7.

6 Implicit Surfaces

We now consider an implicitly defined surface M = h−1(0), where h :
� 3 → �

. We

first assume that |∇h| = 1 in some neighbourhood of M , so h(x) is the signed distance

from M to x for x in that neighbourhood. If II and∇II denotes the second fundamental

form and its covariant derivative respectively, then d2h = −II ◦ π and d3h = −∇II ◦ π
where π :

� 3 → TpM is the orthogonal projection onto the tangent space. If we assume

that ∇h is the third basis vector for
� 3, then aij = δij , bij = hij , and cijk = hijk for

i, j, k = 1, 2. Furthermore

εij = εijkhk where εijk =

⎧
⎪⎨
⎪⎩

1 if i, j, k is an even permutation of 1, 2, 3

−1 if i, j, k is an odd permutation of 1, 2, 3

0 otherwise.

(15)

So to express the invariants in Table 1 in terms of the signed distance function we

simply make the above substitutions. At first we have to sum from 1 to 2 only, but as
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ε3jkhk = εi3khk = 0 we may sum from 1 to 3. The expression is now invariant so it

holds for an arbitrary direction of ∇h.

We now consider an arbitrary C3 function f :
� 3 → �

such that M = f−1(0) and

λ = |∇f | �= 0 in a neighbourhood of M . By differentiating the equation dh(∇h) =
|∇h|2 = 1 we see that ∇h is a null vector for the higher order derivatives of h, and

using this fact we obtain

hi =
1

λ
fi , (16)

hij =
1

λ
fij −

1

λ3

(
fikfkfj + fjkfkfi

)
+

1

λ5

(
fklf

kf l
)
fifj , (17)

hijk =
1

λ
fijk −

1

λ3

(
filf

lfjk + fklf
lfij + fjlf

lfki

)
+ terms with fi, fj , fk , (18)

where f l = δklfk = fl. As εijkfifk = εijkfjfk = 0 we can discard any term in

(17) and (18) that contains fi, fj , or fk as a factor. Summing up we have the following

result:

Theorem 10. Let f :
� 3 → �

be C3 functions such that λ = |∇f | �= 0 in a neigh-

bourhood of the implicitly defined surface M = f−1(0). The invariants in Table 1 can

be found by making the substitutions

εij �→ 1

λ
εijkfk , aij �→ δij ,

bij �→
1

λ
fij , cijk �→

1

λ
fijk −

1

λ3

(
filf

lfjk + fklf
lfij + fjlf

lfki

)
.

7 Applications

Coordinates on a surface where – at some point – the first fundamental form to first order

is δij and the second fundamental form to first order is diagonal are called principal

coordinates at that point. E.g. if we in (1) have that the basis r1, r2 for the tangent plane

is orthonormal and in the principal directions, then we have principal coordinates at x0.

Now a11 = a22 = 1, a12 = b12 = 0 so I0 = 1, Îi = Ii, Ĵi = Ji. If we put b11 = L,

b22 = N , c111 = P , c112 = Q, c122 = S, and c222 = T then we get the expressions in

Table 2.

The equations (∗) is a system of linear equations in P 2, PS, S2, Q2, QT, T 2

⎡
⎢⎢⎢⎢⎢⎢⎣

0 −1 −1 0 1 1
0 −N −L 0 N L
1 3 3 1 0 0

N3 3LN2 3L2N L3 0 0
N L + 2N 2L + N L 0 0
N2 2LN + N2 L2 + 2LN L2 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

P 2

Q2

S2

T 2

PS
QT

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎣

I3

I4

I5

I6

J1

J2

⎤
⎥⎥⎥⎥⎥⎥⎦

, (19)

and the equations (∗∗) is a system of linear equations in PQ, PT, QS, ST

(L−N)

⎡
⎢⎢⎣

0 −1 0 1
1 2 1 0
N L + N L 0
N2 2LN L2 0

⎤
⎥⎥⎦

⎡
⎢⎢⎣

PQ
QS
ST
PT

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

J3

J4

J5

J6

⎤
⎥⎥⎦ . (20)
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Table 2. The basic invariants in principal coordinates

I 1
=

L
+

N
,

I 2
=

L
N

,

(∗
)

I 3
=

P
S
−

S
2
−

Q
2

+
Q

T
,

(∗
)

I 4
=

N
P

S
−

L
S

2
−

N
Q

2
+

L
Q

T
,

(∗
)

I 5
=

P
2

+
3Q

2
+

3S
2
+

T
2

,

(∗
)

I 6
=

N
3
P

2
+

3L
N

2
Q

2
+

3L
2
N

S
2

+
L

3
T

2
,

I 7
=

3Q
2
S

2
−

P
2
T

2
−

4P
S

3
−

4Q
3
T

+
6P

Q
S

T
,

(∗
)

J
1

=
N

P
2

+
(L

+
2N

)Q
2

+
(2

L
+

N
)S

2
+

L
T

2
,

(∗
)

J
2

=
N

2
P

2
+
( 2L

N
+

N
2
) Q

2
+
( L

2
+

2L
N
) S

2
+

L
2
T

2
,

(∗
∗)

J
3

=
(L
−

N
)(

P
T
−

Q
S

)
,

(∗
∗)

J
4

=
(L
−

N
)(

P
Q

+
2Q

S
+

S
T

)
,

(∗
∗)

J
5

=
(L
−

N
)(

N
P

Q
+

(L
+

N
)Q

S
+

L
S

T
),

(∗
∗)

J
6

=
(L
−

N
)
( N

2
P

Q
+

2L
N

Q
S

+
L

2
S

T
)

,

J
7

=
2
( P

Q
3
−

S
3
T
) +

( P
2

+
3Q

2
−

3S
2
−

T
2
) P

T
+

3
( (Q

+
T

)2
−

(P
+

S
)2
) Q

S
,

J
8

=
2
( N

P
Q

3
−

L
S

3
T
) +

( N
P

2
+

(L
+

2N
)Q

2
−

(2
L

+
N

)S
2
−

L
T

2
) P

T

+
( (L

+
2N

)Q
2

+
2(

2L
+

N
)Q

T
+

3L
T

2
−

N
P

2
−

2(
L

+
2N

)P
S
−

(2
L

+
N

)S
2
) Q

S
,

J
9

=
2
( N

2
Q

2
−

N
(2

L
+

N
)S

2
) P

Q
+
( N

( N
P

2
+

(2
L

+
N

)Q
2
) −

L
( (2

N
+

L
)S

2
+

L
T

2
))

P
T

−
( 3N

2
P

2
−

N
(2

L
+

N
)Q

2
+

L
(L

+
2N

)S
2
−

3L
2
T

2
) Q

S
+
( L

(2
N

+
L

)Q
2
−

L
2
S

2
) S

T
,

J
1
0

=
2N

2
( N

Q
2
−

3L
S

2
) P

Q
+
( N

3
P

2
+

3L
N

2
Q

2
−

3L
2
N

S
2
−

L
3
T

2
) P

T

−
3
( N

3
P

2
−

L
N

2
Q

2
+

L
2
N

S
2
−

L
3
T

2
) Q

S
+

2L
2
( 3N

Q
2
−

L
S

2
) S

T
.
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The determinant of the matrix is in both cases (L − N)7 , so if L �= N , i.e, at a non-

umbilical point, we can solve the equations, and the solutions are

⎡
⎢⎢⎣

PQ
QS
ST
PT

⎤
⎥⎥⎦ =

1

(L−N)3

⎡
⎢⎢⎣

0 L2 −2L 1
0 −LN L + N −1
0 N2 −2N 1

(L−N)2 −LN L + N −1

⎤
⎥⎥⎦

⎡
⎢⎢⎣

J3

J4

J5

J6

⎤
⎥⎥⎦ . (21)

and

P 2 =
L3I5 − I6 − 3L2J1 + 3LJ2

(L−N)3
,

Q2 =
−L2NI5 + I6 + (L + 2N)LJ1 − (2L + N)J2

(L−N)3
,

S2 =
LN2I5 − I6 − (2L + N)NJ1 + (L + 2N)J2

(L−N)3
,

T 2 =
−N3I5 + I6 + 3N2J1 − 3NJ2

(L−N)3
,

PS = Q2 +
LI3 − I4

L−N
,

QT = S2 − NI3 − I4

L−N
.

(22)

Expressions similar to (22) were also found in [12], but there a different set of invariants

was used namely:

Λ1 =
I5

I3
0

, Λ2 =
2I0I3 + I5

I3
0

,

Λ3 =
I1I5 − I0J1

I4
0

, Λ4 =
2I0I1I3 + I1I5 − 2I2

0I4 − I0J1

I4
0

,

Λ5 =
I2
1I5 − 2I0I1J1 + I2

0J2

I5
0

, Λ6 =
I3
1I5 − I3

0I6 − 3I2
1J1 + 3I2

0I1J2

I6
0

.

In principal coordinates the principal curvatures are simply κ1 = L and κ2 = N ,

and the principal directions e1 and e2 are the coordinates directions. Furthermore, at

a non umbilical point – where κ1 �= κ2 – the directional derivatives of the principal

curvatures are given by ∂e1
κ1 = P , ∂e2

κ1 = Q, ∂e1
κ2 = S, and ∂e2

κ2 = T , see [12].

We will now give a couple of examples to demonstrate how this can be used.

7.1 Fairing

Over the years there have been many suggestions of functions which should estimate

the ‘fairness’ of a surface, see [13] for an extensive treatment. As a simple example we

can take |∇H|2, where H = 1
2I1/I0 is the mean curvature, just as K = I2/I0 is the

Gauss curvature. In principal coordinates we have

H(x1, x2) =
1

2

(
(L + x1P + x2Q) + (N + x1S + x2T ) + higher order terms

)
,
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so at (0, 0) we have∇H = 1
2 (P + S, Q + T ) and hence

|∇H|2 =
P 2 + 2PS + S2 + Q2 + 2QT + T 2

4

If we now substitute (22) into the expression then we get

|∇H|2 =
P 2 + 3Q2 + 3S2 + T 2

4
+

LI3 − I4

2(L−N)
− NI3 − I4

2(L−N)

=
L3I5 − I6 − 3L2J1 + 3LJ2

4(L−N)3

+ 3
−L2NI5 + I6 + (L + 2N)LJ1 − (2L + N)J2

4(L−N)3

+ 3
LN2I5 − I6 − (2L + N)NJ1 + (L + 2N)J2

4(L−N)3

+
−N3I5 + I6 + 3N2J1 − 3NJ2

4(L−N)3
+

I3

2

=
(L3 − 3L2N + 3LN2 −N3)I5

4(L−N)3
+

(−1 + 3− 3 + 1)I6

4(L−N)3

+
(−3L2 + 3(L2 + 2LN)− 3(2LN + N2) + 3N2)J1

4(L−N)3

+
3L− (2L + N) + (L + 2N)− 3N)J2

4(L−N)3
+

I3

2

=
I5

4
+

I3

2
=

Î5

4
+

Î3

2
=

2I0I3 + I5

4I3
0

.

As I5 = P 2 + 3Q2 + 3S2 + T 2 in principal coordinates we could have done the calcu-

lation faster. In any case, we have performed the calculation using special coordinates,

but as both sides of the equality are invariant the equality holds in any parameterization.

In a similar manner – see [12] – it can be shown that

|∇K|2 =
2I0I2I3 + I0J2

I4
0

,

(
∇(|κ1|+ |κ2|)

)2
=

{
2I0I3+I5

I3
0

if I2 > 0 ,
2I0(4I0I2−I2

1 )I3+I2
1I5−4I0I1J1+4I2

0J2

I3
0 (I2

1−4I0I2)
if I2 < 0 ,

(
∇
(
κ2

1 + κ2
2

))2
= 4

2I2
0I2I3 + I2

1I5 − 2I0I1J1 + I2
0J2

I5
0

,

(
∂e1

κ1

)2
+
(
∂e2

κ2

)2
=

(I2
1 − I0I2)I5 − 3I0I1J1 + 3I2

0J2

I3
0 (I2

1 − 4I2)
,

1

π

∫ π

0

(
dκn

ds

)2

dφ =
6I0I3 + 5I5

16I3
0

.
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7.2 Ridges and the Subparabolic Curve

A surface has two focal surfaces or evolutes given as the locus of the two principal

centre of curvature. The focal surfaces will in general have cuspidal edges called ribs

lying over curves, called ridges, in the original surface, see [14]. The parabolic curve -

where the Gaussian curvature is zero – in the focal surfaces lies over a curve, called the

subparabolic curve, in the original surface, see [14].

If we in the tangent plane use rectangular coordinates (x, y) such that the axes are

in the principal directions, then we can write (2) as

z =
1

2

(
Lx2 + Ny2

)
+

1

6

(
Px3 + 3Qx2y + 3Sxy2 + Ty3

)
+ higher order terms .

The unit normal is to first order N ≈ (−Lx,−Ny, 1) and if L �= N then the principal

curvatures are to first order κ1 ≈ L + Px + Qy and κ2 ≈ N + Sx + Ty. The two

sheets of the focal surface are to first order given by
(

0,
L−N

L
y,

1

L
− P

L2
x− Q

L2
y

)
and

(
N − L

N
x, 0

1

N
− S

N2
x− T

N2
y

)
.

The cross products of the partial derivatives are
(

L−N

L3
P, 0, 0

)
and

(
0,

N − L

N3
T, 0

)

respectively. At a non umbilical point (21) shows that

(L−N)3PT = (L−N)2J3 − LNJ4 + (L + N)J5 − J6

=
(
(L + N)2 − 4LN

)
J3 − LNJ4 + (L + N)J5 − J6

=
(
Î1

2 − 4Î2

)
Ĵ3 − Î2Ĵ4 + Î1Ĵ5 − Ĵ6 .

We have assumed that L �= N , but if L = N then J3 = J4 = J5 = J6 = 0 so the

equation holds in this case too. This give us the required invariant description of the

ridges:

Theorem 11. The ridges of a surface is the zero set of the invariant function
(
I2
1 − 4I0I2

)
J3 − I2J4 + I1J5 − I0J6

I
9/2
0

.

We saw above that the ridges at non umbilical points are given by ∂e1
κ1 = 0 or

∂e2
κ2 = 0. Similar the subparabolic lines are given by ∂e2

κ1 = 0 or ∂e1
κ2 = 0, see

[14]. In principal coordinates we get the equation QS = 0, and at a non umbilical point

(21) shows that

(L−N)3QS = −LNJ4 + (L + N)J5 − J6 = −Î2Ĵ4 + Î1Ĵ5 − Ĵ6 .

Just as before this give us the invariant description of the subparabolic curve:

Theorem 12. The subparabolic curve of a surface is the zero set of the invariant func-

tion
−I2J4 + I1J5 − I0J6

I
9/2
0

.
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7.3 Darboux’s Classification of Umbilical Points

At an umbilical point the first and second fundamental form are proportional and then

13 of the 18 basic invariants can be expressed as linear combination of the others.

We are left with only 5 invariants I0, I3, I5, I7, and J7, and a single syzygy J2
7 =

Q(I0, I3, I5, I7). We have essentially the joint invariants of one quadratic and one cubic

binary form.

The Darboux’s classification depends on the pattern of the lines of curvatures around

the umbilical point, which in turn depends on whether there are one or three real root

lines of the cubic form c = ∇II, and in the latter case whether the three root lines are

contained in a right angle or not, see [14]. A root line of a cubic form is a direction where

it vanishes, and there is at least one root line which we can assume it is the x-axis. I.e.,

we may assume that P = 0. Then I7 = 3Q2S2−4Q3T and c = (3Qx2+3Sxy+Ty2)y.

The quadratic factor has the discriminant 3
4

(
4QT − 3S2

)
= − 3

4I7/Q
2 so we have

I7 < 0 ⇐⇒ c has 3 distinct real root lines,

I7 > 0 ⇐⇒ c has exactly 1 real root line.

lemon (le)monstar star

I7 > 0 I7 < 0, 3I0I3 + I5 > 0 I7 < 0, 3I0I3 + I5 < 0

Fig. 1. Curvature lines around an isolated umbilical point

In the case I7 < 0 we can assume that the three real root directions are v1 =
(α1, β1), v2 = (α2, β2), and v3 = (α3, β3) = (1, 0). The cubic form is then

c =
3∏

i=1

(βix− αiy) =
(
−β1β2x

2 + (α1β2 + β1α2)xy − α1α2y
2
)
y .

So 3Q = −β1β2 and T = −α1α2. Hence

(v1 · v2)(v1 · v3)(v2 · v3) = (α1α2 + β1β2)α1α2 = T 2 + 3QT =
3I0I3 + I5

I3
0

.

We can now see that if I7 < 0, then we have

3I0I3 + I5 > 0 ⇐⇒ The root lines of c are contained in a right angle,

3I0I3 + I5 < 0 ⇐⇒ The root lines of c aren’t contained in a right angle.
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This gives the classification in Fig. 1, where we have sketched the three generic patterns

possible for the lines of curvature around an isolated umbilical point.
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8. Hilbert, D.: Über die Theorie der algebraischen Formen. Math. Ann. 26 (1890) 473–534

9. Fulton, W., Harris, J.: Representation Theory. A First Course. Volume 129 of Graduate Texts

in Mathematics. Springer-Verlag (1991)

10. Greuel, G.M., Pfister, G., Schönemann, H.: SINGULAR 2.0. A Computer Algebra System

for Polynomial Computations, Centre for Computer Algebra, University of Kaiserslautern

(2001) http://www.singular.uni-kl.de/

11. Gravesen, J.: (Invariants) http://www.mat.dtu.dk/people/J.Gravesen/inv

12. Gravesen, J., Ungstrup, M.: Constructing invariant fairness measures for surfaces. Advances

in Computational Mathematics (2001)

13. Nowacki, H., Kaklis, P.D., eds.: Creating Fair and Shape-Preserving Curves and Surfaces. B.

G. Teubner, Stuttgart (1998) Papers from the International Workshop held in Kleinmachnow,

September 14–17, 1997.

14. Porteous, I.R.: Geometric Differentiation for the intelligence of curves and surfaces. Cam-

bridge University Press, Cambridge (1994)





Universal Rational Parametrizations

and Spline Curves on Toric Surfaces

Rimvydas Krasauskas and Margarita Kazakevičiūtė
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Abstract. Recently a constructive description of all rational parametrizations for

toric surfaces was described in terms of the universal rational parametrizations

(URP). We give an elementary introduction to this theory from the Geometric

Modelling point of view: toric surfaces are defined via homogeneous coordinates;

projections, singular cases, and non-canonical real structures are described; the

URP theorem is explained. A theory of rational C1 spline curves with certain

interpolation properties on toric surfaces is developed. Applications for smooth

blending of natural quadrics are sketched.

1 Introduction

Rational curves and surfaces are widely used in Geometric Modeling in the form of

NURBS, which became a standard in industry about 25 years ago. Nevertheless, the full

potential possibilities of NURBS were not completely realized because the geometry of

rational parametrizations appeared too complicated and simple constructive methods

were unavailable. Recently a constructive description of all rational parametrizations

for a large important subclass of rational surfaces called almost toric surfaces was de-

veloped in terms of Universal Rational Parametrizations (URP).

The concept of a universal rational parametrization has been known under different

names for about 10 years. URP first appeared as a generalized stereographic projection

for the sphere and the hyperbolic paraboloid in the papers of Dietz, Hoschek and Jüttler

[7, 8]. URP was extended to Dupin cyclides by Mäurer [17] under the name of general-

ized parameter representation, and to singular quadrics and the torus independently by

Krasauskas [13], where the term universal parametrization appeared for the first time.

Later it became clear that all these diverse examples are particular cases of almost toric

surfaces: they are either canonical or non-canonical real parts of complex almost toric

surfaces. For example, in recent papers [18, 10] several cases of cubic surfaces were

considered, which under closer inspection appear to be toric or almost toric. Recently

it was established by Cox, Krasauskas and Mustata [3] that all complex projective toric

surfaces (in fact also higher dimensional toric varieties) and their general projections to

lower dimensional projective spaces (i.e. almost toric surfaces) admit URP.

There are several reasons why (almost) toric surfaces are important in Geometric

Modeling: many low degree rational surfaces (all quadrics and Dupin cyclides) are toric

or almost toric, Bézier tensor-product and triangular surfaces are in fact parametrized
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by toric surfaces, and both can be generalized to multisided toric Bézier patches [15,

16].

This paper is devoted to an elementary introduction to toric surfaces and universal

rational parametrizations from the Geometric Modeling point of view. In sect. 2 we give

several important examples of URP and introduce a general notion of complex (almost)

toric surface, including singular case. In sect. 3 the URP Theorem is formulated and

explained. Section 4 is devoted to real structures on complex toric surfaces. The theory

of rational C1 spline curves on simplest toric surfaces is developed in sect. 5. Finally in

sect. 6 a sketch of one application is given: we show how these splines on toric surfaces

are used for smooth blending of natural quadrics.

2 Toric surfaces

A real d-dimensional projective space RP d can be regarded as a quotient of Rd+1 \
{0, . . . , 0}with respect to the multiplicative group R

∗ = R\0 action λ ·(x0, . . . , xd) =
(λx0, . . . , λxd). Thus points in RP d are usually represented by homogeneous coordi-

nates [x0, . . . , xd] unique up to a non-zero multiplier. Complex projective spaces CP d

are similarly defined: just change all appearances of R to C (complex numbers) in the

previous definition. In particular, C
∗ = C \ 0 denotes the multiplicative group of non-

zero complex numbers.

For simplicity, let us consider the complex case first. Rational curves and surfaces

in a projective space CP d can be treated as images of rational maps Ck ��� CP d,

where k = 1, 2. Therefore, these maps are represented by collections of polynomials

F = (f0, . . . , fd) in k variables. It is natural to cancel any common factors and to

consider irreducible collections, i.e. gcd(f0, . . . , fd) = 1.

2.1 Examples of Universal Rational Parametrizations

Let X ⊂ CP d be a surface (or a higher dimensional variety). We call an irreducible

collection of polynomials F = (f0, . . . , fd) in k variables rational parametrization

of X if the image of the corresponding rational map Ck ��� CP d is contained in

X . Note that this image may be smaller than X: for example, F can define a curve

C ��� X on a surface. Here we give two examples of surfaces with universal rational

parametrizations. We use different letters si and tj for variables in order to stress their

relation to the associated lattice polygons (sect. 2.2).

Example 1. Consider a quadric surface Q given by the homogeneous equation z0z3 =
z1z2 in the projective space CP 3. One obvious rational parametrization of Q is given

by the following formula in matrix form

PQ : (s0, s1, t0, t1) �→
(

s0t0 s1t0
s0t1 s1t1

)
=

(
z0 z1

z2 z3

)
. (1)

Theorem 8 in sect. 3 implies that all rational parametrizations of Q are of the form

PQ ◦ F for some F : Ck → C4 represented by polynomials, that satisfy

F = (s0, s1, t0, t1), gcd(s0, s1) = gcd(t0, t1) = 1. (2)
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Furthermore, although F is not unique, Theorem 8 describes the non-uniqueness pre-

cisely: if PQ ◦ F = PQ ◦ F ′ for other equivalent F ′ = (s′0, s
′
1, t

′
0, t

′
1) then

F ′ = (λs0, λs1, λ
−1t0, λ

−1t1) (3)

for some nonzero scalar λ.

In the language of Theorem 8, we say that PQ from (1) is a universal rational

parametrization of the quadric Q. The key property of the quadric Q is that it derives

from CP 1 × CP 1. If s0, s1 are homogeneous coordinates on the first factor CP 1 and

t0, t1 are homogeneous coordinates on the second factor, then PQ induces the Segre

embedding CP 1 × CP 1 −→ CP 3 whose image is Q.

Example 2. Consider the Steiner surface St in CP 3 defined in homogeneous coordi-

nates by the equation z2
1z2

2 + z2
2z2

3 + z2
3z2

1 = z0z1z2z3.

Fig. 1. The real Steiner surface with three double lines

Note that St is singular surface with three double lines (see Fig. 1)

z1 = z2 = 0, z2 = z3 = 0, z3 = z1 = 0. (4)

One can easy verify that

PSt(t0, t1, t2) = (t20 + t21 + t22, t0t1, t1t2, t2t0) (5)

is a rational parametrization of St.

Now Theorem 8 tells us that all rational parametrizations H of St are of the form

H = PSt ◦ F for some collection F satisfying

F = (t0, t1, t2), gcd(t0, t1, t2) = 1, (6)

provided the image of H does not lie in the lines (4). Furthermore, Theorem 8 implies

that F is unique up to a sign.
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By Theorem 8, (5) is the universal rational parametrization of the Steiner surface St.
In this case, the key property of St is that St derives from CP 2 via the map CP 2 → St
induced by (5). This map is not an embedding but is birational (i.e., is generically one-

to-one). Furthermore, the three lines (4) are the only places where this map fails to have

an inverse.

Both CP 1 × CP 1 and CP 2 are examples of smooth toric surfaces, and the coordi-

nates s0, s1, t0, t1 for CP 1×CP 1 and t0, t1, t2 for CP 2 are examples of homogeneous

coordinates of toric surfaces. Hence we expect that there should be a toric generaliza-

tion of these examples. For instance, we will see that the gcd conditions (2) and (6) are

dictated by the data that determines the toric surface.

2.2 Complex Toric Surfaces

Consider the lattice Z2 of points with integer coordinates in the plane R2 and a convex

lattice polygon ∆ ⊂ R2 (i.e. a convex polygon with vertices in the lattice). Let the

edges of the polygon ∆ be on the lines ℓi(x) = 0, i = 1, . . . , r, defined by the affine

forms ℓi(x) = 〈ni, x〉 + ai, where 〈 , 〉 is a scalar product on Z
2, the normals ni of

edges are inward oriented shortest vectors with integer coordinates.

With the lattice polygon ∆ we associate the rational map

P∆(u1, . . . , ur) = (p1, . . . , pd+1) =
∑

m∈∆∩Z2

qmu
ℓ1(m)
1 · · ·uℓr(m)

r , (7)

where qm ∈ Cd+1 are called homogeneous control points. P∆ defines a collection of

polynomials (p1, . . . , pd+1) in r variables (u1, . . . , ur) as a map Cr → Cd+1.

Definition 3. A toric surface X∆ is a subset in CP d which is parametrized by a rational

map P∆ with linearly independent control points qm, m ∈ ∆ ∩ Z
2.

It is well known that an implicit degree of X∆ in CP d is equal to the normalized

area Area(∆) of the polygon ∆, i.e. twice its usual Euclidean area (cf. [2, 4]).

We can treat P∆ as a rational map Cr ��� CP d which is well defined (at least in

the case of generic control points qm) outside of the exceptional set Z ⊂ Cr given by

the r monomial equations

û1u2 · · ·ur−1ûr = 0, û1û2u3 · · ·ur = 0, . . . u1u2 · · ·ur−2ûr−1ûr = 0.

where ûi means that the parameter ui is omitted [3]. We treat u1, . . . , ur as homo-

geneous coordinates and construct the abstract toric surface as follows. Consider a

subgroup in (C∗)r

G = {(λ1, . . . , λr) ∈ (C∗)r |∏r
i=1λ

〈ni,m〉
i = 1 for all m ∈ Z

2} (8)

with the natural action (λ1, . . . , λr) · (u1, . . . , ur) = (λ1u1, . . . , λrur) on Cr. Notice

that the exceptional set Z, the group G and the group action depends only on the col-

lection of normals {n1, . . . , nr} which encode all the information about the normal fan

Σ of the polygon ∆ (see details in [2]).
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Definition 4. The abstract toric surface associated with the fan Σ is defined as the

quotient

XΣ = (Cr \ Z)/G. (9)

The map P∆ is homogeneous in the following sense: if (λ1, . . . , λr) ∈ G then

P∆(λ1u1, . . . , λrur) = λ∆P∆(u1, . . . , ur), λ∆ =

r∏

i=1

λai . (10)

Therefore, the corresponding rational map Cr\Z ��� CP d factors into the composition

Cr \ Z → XΣ → X∆ ��� CP d. The first map Π∆ : Cr \ Z → XΣ is a well defined

natural projection to the quotient (9). The second map is the embedding of XΣ into CP d

(cf. [3]) with the image equal to the toric surface X∆. The third map π : X∆ ��� CP d

is a central projection and has the same image X ⊂ CP d as the whole composition.

Definition 5. We call X an almost toric surface if the map π : X∆ ��� CP d is suffi-

ciently nice:

(i) π has no base points;

(ii) π is birational (is an isomorphism between dense open subsets).

Both conditions (i) and (ii) are satisfied when the control points qm ∈ ∆ ∩ Z are

in general position. Unfortunately, their linear independence is possible only when the

dimension of CP d is high: d + 1 cannot be less than the number of lattice points in

∆. Therefore, usually in practice we deal with almost toric surfaces that are general

projections of toric surfaces from higher dimensional spaces. The following proposition

is useful for deciding if a given surface is almost toric.

Proposition 6. A projection X of a toric surface X∆ is almost toric if and only if their

implicit degrees coincide deg X = deg X∆, i.e. deg X is equal to the normalized area

of the lattice polygon ∆.

Proof. The proof follows directly from the degree formula for surfaces:

deg(π) deg X = deg X∆ − {number of basepoints},

where deg(π) is the generic number of points in X∆ which map to a point in X (see,

e.g. [5]).

2.3 Singular Case and Desingularization

From the general theory of toric varieties (cf. [4], [9]) follows that an abstract toric

surface XΣ can be singular only at the vertices. These singular points correspond to the

pairs of adjacent normals {ni, ni+1} that do not form an integer basis for the lattice Z2.

The singular case is reduced to a smooth case by a desingularization procedure. The

fan Σ is enriched to the regular fan Σ̃ (i.e. such that XΣ̃ is smooth) by adding additional

normals as shown in Fig. 2. Assume that Σ̃ has normals ñi, i = 1, . . . , s, and let ℓ̃i(x),
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i = 1, . . . , s, be affine forms that define supporting lines with these normals. Now we

can rewrite the formula (7) in new variables as follows

P∆, eΣ(ũ1, . . . , ũs) =
∑

m∈∆∩Z2

qmũ
ℓ̃1(m)
1 · · · ũℓ̃s(m)

s , (11)

This rational map defines parametrization of the initial singular toric surface X by the

abstract smooth toric surface XΣ̃ , which is called a desingularization of X . We will see

in sect. 3 that P∆, eΣ defines the URP for the singular surface X .

Fig. 2. Lattice polygons and their fans with desingularizations

Example 7. In the middle column of Fig. 2 we see a lattice triangle ∆ with vertices

(−1, 0), (1, 0), (0, 1) and its fan of dark arrows below. Two of the three normals (1,−1)

and (−1,−1) do not generate the entire lattice. In this case a regular fan Σ̃ has just one

additional normal (0,−1) (shown in grey), and we can write down the parametrization

(11) with linearly independent control points

P∆, eΣ : (s0, s1, t0, t1) �→
(

s0

s1t
2
0 s1t0t1 s1t

2
1

)
=

(
z0

z1 z2 z3

)
. (12)

This is the parametrization of a singular quadric C2 : z1z3 = z2
2 (i.e. z0 is arbitrary) in

CP 3.

3 URP Theorem

Fix a ring of polynomials R = C[t1, . . . , tk]. We recall from sect. 2.1 that a ratio-

nal parametrization of X ⊂ CP d is an irreducible collection of polynomials H =
(h1, . . . , hd+1) ∈ Rd+1 such that the image of a map Ck ��� CP d defined by H is

contained in X .

For Theorem 8 below a toric analogy of irreducibility is needed. We say that F =
(f1, . . . , fr) ∈ Rr is Σ-irreducible if gcd(fi1 , . . . , fis

) = 1 whenever no vertex of ∆
is incident with its edges defined by the lines ℓi1 , . . . , ℓis

.
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Theorem 8. Let P∆, X∆, π and a complex toric surface X ⊂ CP d be defined as

above, where XΣ is smooth and π : X∆ → X is sufficiently nice, with an inverse

defined on U ⊂ X which we assume to be maximal. Then P∆ is a universal rational

parametrization of X in the following sense:

1. If a collection F = (f1, . . . , fr) is Σ-irreducible, then P∆ ◦ F is a rational para-

metrization of X ⊂ CP d ∈ Rd+1.

2. Conversely, given any rational parametrization H ∈ Rd+1 of X whose image

meets U ⊂ X , there is a Σ-irreducible F = (f1, . . . , fr) ∈ Rr such that H =
P∆ ◦ F .

3. If F and F ′ are Σ-irreducible, then P∆◦F = P∆◦F ′ as rational parametrizations

if and only if F ′ = λ · F for some λ ∈ G, λ∆ = 1 (see (10)).

Here, for simplicity, we presented only the smooth case of the URP Theorem, which

is proved in general case of toric varieties of arbitrary dimensions in [3]. In a singular

case we should change P∆ to P∆, eΣ defined in (11), and U to U ′ = U∪(singular points).
Now we can check how Examples 1 and 2 of sect. 2.1 follow from Theorem 1.

In case of Example 1, the lattice polygon ∆ is the unit square in the plane with ver-

tices (0, 0), (1, 0), (1, 1), (0, 1). The inner normals (0, 1), (−1, 0), (0,−1), (1, 0) cor-

respond to variables t0, s0, t1, s1, A collection of polynomials F = (s0, s1, t0, t1) is

Σ-irreducible if gcd(s0, s1) = gcd(t0, t1) = 1 (this coincides with (2)), since only

these pairs of edges are not adjacent. Also it is easy to calculate the group G

G = {(λ1, λ1, λ2, λ2) | λ1, λ2 ∈ C
∗} = C

∗ × C
∗, (13)

and λ∆ = λ1λ2. Therefore, F is indeed defined up to multiplication of a group element

(λ1, λ1, λ2, λ2), where λ1λ2 = 1.

In Example 2 the variables t0, t1, t2 are associated with the inner normals (0, 1),
(−1,−1), (1, 0) of the lattice triangle ∆ with vertices (2, 0), (0, 0), (0, 2) (see Fig. 1(left)).

The Steiner surface St is a projection of the corresponding toric surface X∆ (this is a

well-known Veronese surface)

π : X∆ → St,

⎛
⎝

t20
t0t1 t0t2
t21 t1t2 t22

⎞
⎠ �→ (t20 + t21 + t21, t0t1, t1t2, t0t2).

Since X∆ has degree Area(∆) = 4 and its projection St has the same degree, from

Proposition 1 follows that St is almost toric. Therefore, we can apply Theorem 1 to

the projection PSt defined by (5). A collection of polynomials F = (t0, t1, t2) is Σ-

irreducible if gcd(t0, t1, t1) = 1 (cf. (6)), since all pairs of edges are adjacent. It is easy

to calculate the group: G = {(λ, λ, λ) | λ ∈ C
∗} = C

∗, and λ∆ = λ2. Therefore, F
is indeed defined up to multiplication of a group element λ ∈ C, where λ2 = 1, i.e.

λ = ±1.

Example 9. Consider a cubic surface W given by the homogeneous equation z0z
2
1 =

z2
2z3 in the projective space CP 3. The real part of W is called ‘Whitney umbrella’

(see Fig. 3). From Proposition 1 follows that W is alsmost toric, i.e. it is a sufficiently

nice projection of a Hirzebruch surface F1 embedded in CP 4, which is a toric surface
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associated with a lattice trapezoid ∆ (shown in Fig. 3(right)) and given by the rational

parametrization

P∆ : (s0, s1, t0, t1) �→
(

s1t0 s1t1
s0t

2
0 s0t0t1 s0t

2
1

)
=

(
z2 z1

z0 z4 z3

)
. (14)

Indeed, composing this map with a projection CP 4 → CP 3 that forgets z4 we get

P (s0, s1t0, t1) = (s0t
2
0, s1t1, s1t0, s0t

2
1) = (z0, z1, z2, z3). According to Theorem 8,

the parametrization P is a URP of the surface W .

Fig. 3. The ‘Whitney umbrella’ surface

4 Real Structures on Complex Toric Surfaces

A real variety is a pair (X, c), where X is a complex variety and c : X → X is an

anti-holomorphic involution, i.e. c̄ is holomorphic and c ◦ c = id. The involution c is

also called a real structure on X . The real part RcX of X is just the fixed-point set

{x ∈ X | c(x) = x}. The canonical real structure is defined by complex conjugation,

so that the fixed-point set in this case coincides with all points with real coordinates.

There are three main types of quadric surfaces in RP 3: double ruled, oval and sin-

gular. Consider first the complex quadric Q : z0z3 = z1z2 in CP 3 as in Example 1.

4.1 Real Structures on Quadrics

Let RQ be the canonical real part of the complex quadric Q. Then it is a real double

ruled quadric x0x3 = x1x2 in RP 3. RQ can be similarly parametrized using (1) with

all real variables. Then the group R∗×R∗ acts on R4, and generates the real Segre map

RP 1 × RP 1 → RP 3 which defines an isomorphism RQ ∼= RP 1 × RP 1.

Consider another involution c : (z0, z1, z2, z3) �→ (z̄0, z̄2, z̄1, z̄3) in CP 3. RP 3 can

be identified with the corresponding fixed point set RcP
3 ⊂ CP 3

RP 3 → RcP
3 ⊂ CP 3, (x0, x1, x2, x3) �→ (x0, x1 + ix2, x1 − ix2, x3), (15)
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which takes a real oval quadric S : x0x3 = x2
1 + x2

2 to the non-standard real part RcQ
of Q. The involution c naturally extends to the parametrization PQ via si �→ t̄i, i = 0, 1.

Calculating fixed points of (1) and using (15), we get a map

PS : C
2 → R

4, (s0, s1) �→ (s0s̄0, Re(s̄0s1), Im(s̄0s1), s1s̄1). (16)

The map PS is homogeneous in the sense that PS(λz0, λz1) = |λ|2PS(z0, z1) for every

λ ∈ C. This map is the parametrization of S by C2 \ (0, 0), where the group G = C∗

acts by complex multiplication. In fact, we have arrived at the classical Riemann sphere

construction CP 1 → S ⊂ RP 3. Indeed, S is a sphere in the affine coordinates x, y, z
if x0 = 1 + z, x1 = x, x2 = y, x3 = 1 − z. It is easy to check that the generalized

stereographic projection [7] coincides with PS .

4.2 Real Almost Toric Surfaces

Now we are ready to define the most general case of real surfaces with toric structures

that will be used in applications. Further details about different real structures on toric

surfaces (including structures with empty real parts) can be found in [6].

As earlier, we start with the lattice polygon ∆. In order to introduce a real structure,

we fix an affine involution c : Z
2 → Z

2 on the lattice that preserves the polygon ∆. In

general, c permutes the lattice points of ∆ ∩ Z and the edges of the polygon ∆. Hence

the normals {n1, . . . , nr} are also permuted – c(ni) = nσ(i), i = 1, . . . , r.

Definition 10. A real almost toric surface associated with a lattice polygon ∆ with an

involution c is the real part of a (complex) almost toric surface X parametrized by

P∆ (see (7)), where the anti-holomorphic involution acts on the domain ui �→ ūσ(i),

i = 1, . . . , r, and the control points are compatible with c – that is, q̄m = qc(m),

m ∈ ∆ ∩ Z.

The latter condition ensures that the image of the real part RcXΣ is mapped to the

canonical real part of CP d, i.e. the real almost toric surface RcX is contained in the

real projective space RP d.

Remark 11. In the case of canonical real structure Definition 10 gives real control

points qm. If we substitute variables ui by the corresponding affine forms then we get

exactly the definition of a toric Bézier patch B∆(x) = P∆(ℓ1(x), . . . , ℓr(x)) as defined

in [15, 16]. Therefore, all toric Bézier patches including tensor product Bézier surfaces

and triangular Bézier patches with generic control points are almost toric and have a

URP as formulated in Theorem 1.

4.3 The Torus Surface is Almost Toric!

Consider the particular case of a ring cyclide – the torus surface T in RP 3

(x2
1 + x2

2 + x2
3 + (a2 − b2)x2

0)
2 = 4ax2

0(x
2
1 + x2

2), a > b > 0.
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Via introducing an auxiliary variable x4, T can be described as a central projection of a

quartic surface T ′ given by the following two equations in RP 4

x2
1 + x2

2 = x2
4,

(a

b
x4 −

a2 − b2

b
x0

)2

+
(√a2 − b2

b
x3

)2

= x2
4.

Since on the left side of these equations we have sum of squares, we can treat T ′ as a

real part of the complex surface in CP 4

{
z1z2 = z2

4 ,
z0z3 = z2

4 ,
(17)

where the real structure is defined by the anti-holomorphic involution

c : (z0, z1, z2, z3, z4) �→ (z̄3, z̄2, z̄1, z̄0, z̄4). (18)

Now it is easy to check that this complex surface coincides with a toric surface X♦

associated with the lattice polygon ♦ (Fig. 2, right) and is parametrized by

P♦ :

⎛
⎝

s1 t0

t1 s0

⎞
⎠ �→

⎛
⎝

s2
0t

2
1

s2
0t

2
0 s0s1t0t1 s2

1t
2
1

s2
1t

2
0

⎞
⎠ =

⎛
⎝

z0

z1 z4 z2

z3

⎞
⎠ . (19)

Hence, the torus is a real almost toric surface according to Proposition 1. In order to

calculate the universal parametrization of RcX♦ consider the normal fan Σ = Σ(♦)

defined by 4 normals (solid arrows in Fig. 2). The desingularization Σ̃ is defined by 8

normals (additional grey arrows in Fig. 2). Hence we extend the list of facet variables

s0, s1, t0, t1 by additional variables u0, u1, v0, v1 and the following parametrization is

generated

P̃♦ :

⎛
⎝

s1 u1 t0
v0 v1

t1 u0 s0

⎞
⎠ �→

⎛
⎝

s2
0t

2
1u

2
0v0v1

s2
0t

2
0u0u1v

2
1 s0s1t0t1u0u1v0v1 s2

1t
2
1u0u1v

2
0

s2
1t

2
0u

2
1v0v1

⎞
⎠ (20)

The real structure (X♦, c) is defined by the anti-holomorphic involution (18) in CP 4,

which is associated with a central symmetry of ♦. The corresponding involution in the

parameter space is s0, t0, u0, v0 �→ s̄1, t̄1, ū1, v̄1. Denoting s0, t0, u0, v0 by s, t, u, v
for simplicity we get the universal parametrization of RcX♦ in RP 4

(s, t, u, v) �→
(
|v|2Re(st̄u)2, |v|2Im(st̄u)2, |u|2Re(stv)2, |u|2Im(stv)2, |stuv|2

)
.

Here we identify RP 4 with RcP
4 as follows (cf. (15))

(y0, y1, y2, y3, y4) �→ (y0 + iy1, y2 + iy3, y2 − iy3, y0 − iy1, y4).

The backward projection to RP 3 gives exactly the formula in [13], where variables s,

t, u, v were denoted by z1, z2, z3, z0 respectively.

More examples of real almost toric surfaces can be found in [14].
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5 Spline Curves on Toric Surfaces

As we have seen (almost) toric surfaces have natural intrinsic coordinates which are

called also homogeneous coordinates. In case of a projective plane these coordinates are

familiar homogeneous coordinates used in plane projective geometry. Rational Bézier

curves and surfaces traditionally are defined by affine control points and weights but

also there is a parallel more flexible description via homogeneous control points. Our

idea is to use toric homogeneous coordinates for modeling rational C1 spline curves of

minimal degree on toric surfaces. To begin, we consider an interpolation problem on

the projective line CP 1.

5.1 Interpolation on the Projective Line CP 1

Let us fix homogeneous coordinates (z0, z1) on CP 1. We say that a rational function in

the form of a pair of complex polynomials f(τ) = (f0(τ), f1(τ)) has degree (d0|d1) if

deg f0 = d0 and deg f1 = d1.

Proposition 12. For any integer numbers d0, d1 ≥ 0 there exists a unique rational

function of degree (d0|d1) that interpolates N = d0 + d1 + 1 general points on CP 1

at given real parameter values τ0 < τ1 < · · · < τN−1 ∈ R. Here N points are called

non-generic if any N − k of them can be interpolated by a rational function of degree

(d0 − k|d1 − k), 0 < k ≤ min(d0, d1), in the corresponding parameter values τi.

Proof. We denote proportional vectors in C2 by a ∼ b, the Hermitian scalar product

by 〈a,b〉 := a0b̄0 + a1b̄1, and introduce the operator (a0, a1)
⊥ = (−ā1, ā0). Let

vectors a0, . . . ,aN−1 ∈ C2 represent the given points on CP 1. Then the interpolation

conditions f(τi) ∼ ai (for non-zero f(τi)) are equivalent to the system of equations:

〈f(τi),a
⊥
i 〉 = 0, i = 0, . . . , d0 + d1. (21)

Since there are d0 + d1 + 1 linear homogeneous equations and d0 + d1 + 2 unknown

coefficients of polynomials f0(τ), f1(τ), the non-trivial solution exists. For any two

solutions f(τ) and g(τ) we have 〈f(τi),g(τi)
⊥〉 = 0 for all i. Hence the polynomial

〈f(τ),g(τ)⊥〉 of degree N−1 vanishes in N distinct points τi. Therefore, f(τ) ∼ g(τ)
and f(τ) is unique as a rational function. Also all f(τi) are non-zero, since otherwise

f0(τ) and f1(τ) should have common divisors, i.e. this contradicts the assumption that

the points are general.

Remark 13. Let points a0, . . . , am+n be given in affine coordinates of the complex line

C ⊂ CP 1. The explicit interpolation formula for parameter values τ0, . . . , τm+n with

a rational function of degree (m|n) was known to A. Cauchy [1, p. 432] (here we use

modern notations):

f1(τ)

f0(τ)
=

∑
[i]m⊂I

(
ai0 · · · aim

∏
j∈I\[i]m

τ−τj

(τi0
−τj)···(τim−τj)

)

∑
[k]m−1⊂I

(
ak0

· · · akm−1

(τk0
−τ)···(τkm−1

−τ)Q
j∈I\[k]m−1

(τk0
−τj)···(τkm−1

−τj)

) , (22)

where [i]m = {i0 < · · · < im} and [k]m−1 = {k0 < · · · < km−1} are ordered subsets

of the set I = {0, . . . , m + n}.
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Several particular cases of Proposition 2 are well-known:

(1) Real coefficients, degree (0|d): interpolation of N = d+1 points on R with a poly-

nomial function of deg = d. The Cauchy formula (22) reduces to the La Grange

interpolation polynomial.

(2) Real coefficients, degree (d|d): interpolation of N = 2d + 1 points on RP 1 with a

rational function of deg = d.

(3) Complex coefficients, degree (d|d): interpolation of N = 2d + 1 points on CP 1

with a rational curve of deg = d (or a curve of degree 2d on the sphere).

5.2 Splines on CP 1 and RP 1

We fix affine coordinate z = z1/z0 on CP 1. Let us first consider a case of degree (1|1)
function on a single interval [τ0, τ1] in the rational Bézier form:

f(τ) =
a0w0(τ1 − τ) + a1w1(τ − τ0)

w0(τ1 − τ) + w1(τ − τ0)
, (23)

where a0, a1 ∈ C can be considered as control points and w0, w1 ∈ C are non-zero

weights. Thus, f interpolates two endpoints ai = f(τi), i = 0, 1, with derivatives

vi = f ′(τi), i = 0, 1,

v0 =
(a1 − a0

τ1 − τ0

)w1

w0
, v1 =

(a1 − a0

τ1 − τ0

)w0

w1
,

and we get a simple relation

v0v1 =
(a1 − a0

τ1 − τ0

)2

. (24)

Therefore, the function f is uniquely determined by any three of given four parameters

a0, a1, v0, v1 satisfying Eq. (24). In the real case on RP 1 the weights should be positive

w0, w1 > 0 in order to get values in the interval with end points f(τ0), f(τ1). Also

v0v1 > 0, whenever a0 �= a1, i.e. f is either increasing or decreasing. So we can expect

only monotonic C1 splines of degree (1|1) on RP 1.

C1 spline interpolation problem on CP 1. For given parameter values τ0 < · · · <
τn−1 ∈ R and points a0, · · · , an−1 ∈ C, we are going to find a C1 rational spline of

degree (1|1) interpolating this data f(τi) = ai, i = 0, . . . , n− 1. Thus f restricted on

every interval [τi, τi+1] must be a fractional linear function fi,i+1 of type (23), such that

derivatives on the endpoints coincide f ′
i−1,i(τi) = f ′

i,i+1(τi) = vi. This results in the

system of n− 1 equations for n unknown derivatives:

vivi+1 = d2
i , di =

ai+1 − ai

τi+1 − τi
, i = 0, . . . , n− 2. (25)

For arbitrary choice of v0 all other vi are easily calculated:

vi =
(
D2

i v0

)(−1)i

, Di = d0d
−1
1 d2 · · · d(−1)i

i−1 , i = 1, . . . , n− 1. (26)
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We can close the spline f formally adding a point an = a0, an ‘interval’ τn−1 > τ0,

and the following equation:

vn−1v0 = d2
n−1, dn−1 =

a0 − an−1

τ0 − τn−1
. (27)

In the case of odd n we can find a unique v0 (up to a sign) from equation v2
0 = D−2

n .

In the case of even n there are infinitely many solutions if Dn = 1 and there is no

solutions otherwise.

The analogous C1 interpolation problem with rational degree (1|1) spline on RP 1

may be solved in the same way as on CP 1. As noted above, initial data should be

monotonic, i.e. a0 < · · · < an−1 ∈ R, or a0 > · · · > an−1.

C1 bi-arc spline on CP 1 and RP 1. Let points a0, a2 and derivatives v0, v2 are given.

Then using (25) for i = 0, 1 we derive the equation

a1 − a0

a2 − a1
= ±

√
v0

v2

with the unknown a1, which has two solutions on CP 1 and only one in the real case

(v0v1 > 0 and the sign should be plus).

Hermite interpolation problem with degree (1|2) rational curve on CP 1 and RP 1. For

given points a0, a2 ∈ C and derivatives v0, v1 ∈ C we look for a rational curve of

degree (1|2) interpolating this data on interval [0,1]: f(0) = a0, f(1) = a2 f ′(0) = v0,

f ′(1) = v1. We express f in a rational Bézier form

f(τ) =
a0w0(1− τ)2 + a1w12(1− τ)τ + a2w2τ

2

w0(1− τ) + w2τ
. (28)

where w1 = (w0 + w2)/2. To solve this problem we need to solve the system of

equations:

f ′(τ0) = v0, f ′(τ1) = v1 (29)

which gives control point a1 ∈ C and the ratio of weights w0, w2 ∈ C.

w2

w0
= −a2 − a0 − v0

a2 − a0 − v1
, a1 = a0 + v0

a2 − a0 − v1

v0 − v1
(30)

In the real case this system gives a bounded solution on the interval [0, 1] if w2w0 >
0. This is equivalent to a certain ‘convexity’ of initial data: v0 < a2 − a0 < v1 or

v0 > a2 − a0 > v1.

It is easy to check that (1|1) curves on the affine part C (with real coordinates

(Re(z), Im(z))) of CP 1 are circular arcs. Therefore, we have constructed on the plane

R2 open and closed circular interpolating C1 splines and special quartic curves with

given derivatives at the endpoints. The image of these curves under generalized stereo-

graphic projection (cf. sect. 4.1)

(z0, z1) �→
(
|z0|2 + |z1|2, 2Im(z0z̄1), 2Re(z0z̄1), |z0|2 − |z1|2

)

are a circular spline and quartic curves on the unit sphere respectively (see Fig. 4 (left)).
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Fig. 4. C1-splines on oval and double ruled quadrics

Remark 14. Quartic spherical rational curves are studied by Jüttler and Wang [11]. Our

quartics on the sphere uniquely interpolate Hermite data but they are not spherical in-

variant. Nevertheless the construction can be used for other oval quadrics and other toric

surfaces in nonsymmetric cases.

5.3 Splines on RP 1
× RP 1

Since any curve on RP 1 × RP 1 is encoded by two curves on a projective line, we can

use results from the previous section. These C1 splines have one disadvantage – they

are monotonic in both directions.

For example, we can interpolate even number of points on the double ruled quadric

RQ using the Segre map (1) and treating two pairs of variables (s0, s1) and (t0, t1)
as homogeneous coordinates of two copies of RP 1. Here monotonicity means that the

spline curve cannot touch any of ruling lines as in Fig. 4 (right). For splines of more

complicated shape splines of degree (1|2) at least in one direction are required.

Remark 15. It is clear how to apply this construction to any tensor product surface

of bidegree (p, q) with the resulting C1 splines of degree p + q. This is the minimal

possible degree of C1-splines on such surfaces (only isoparametric curves can have

lower degree). In traditional approach we draw at least quadratic C1-spline curves on

the square domain and then compose with the parametrization map. Hence, the resulting

splines are of degree 2(p + q).

5.4 Splines on Hirzebruch Surfaces

A Hirzebruch surface Fk is an abstract toric surface associated with the fan Σk =
{(1, 0), (0, 1), (−1,−k), (0,−1)}, k = 1, 2, 3, . . .. Here we are mostly interested in a
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canonical real part RFk of Fk. According to Definition 4, RFk is defined as a quotient

of the parameter space R4 \Z, Z = R2×{(0, 0)}∪ {(0, 0)}×R2, by the action of the

group G = R∗ × R∗:

(λ, µ) · (s0, s1, t0, t1) = (λs0, λµks1, µt0, µt1). (31)

Hence the formula (s0, s1, t0, t1) �→ (t0, t1) correctly defines a projection Φ : RFk →
RP 1.

Now we are ready to solve the following interpolation problem: for given points

ai ∈ RFk and a given interpolation f : R → RP 1 of their projections f(τi) = Φ(ai),
find such curve F : R → RFk that Φ ◦ F = f . For simplicity, let f have degree 1. This

means that some linear polynomials t0(τ), t1(τ) are fixed, and we can find a pair of

polynomials (s0(τ), s1(τ)) of degree (d|d + k) that interpolate N = 2d + k + 1 points

using Proposition 2.

We have seen in Example 9 that the cubic surface W is parametrized by RF1. There-

fore, using degree (1|2) functions in variables (s0, s1) we can interpolate any 4 points

(monotonic in the direction of (t0, t1)) with cubic curves and also solve the Hermite

interpolation problem.

Another interesting application is related to the quadratic cone C2.

Example 16. From Example 7 we know that the desingularization of C2 coincides with

the Hirzebruch surface F2. Using polynomials (i.e. rational functions of degree (0|2))
in ‘vertical variables’ (s0, s1) and rational functions of degree (1|1) in ‘horizontal vari-

ables’ (t0, t1) one can interpolate any three points on RC2. This leads to the theory of

C1-spline curves on RC2 similar to the splines of degree (1|1) on RP 1. In particular the

Hermite interpolation problem can be solved using biarc conical C1-splines on RC2.

5.5 Splines on a Hexagonal Toric Bézier patch

Fig. 5. Three cases of superscribed lattice polygons

We illustrate our approach to splines on general toric surfaces in the case of a hexag-

onal toric Bézier patch H (cf. [15, 16]) associated with lattice hexagon ∆ (shaded in

Fig. 5). Consider three different biquadratic parametrizations φi : RP 1 × RP 1 → H ,

i = 1, 2, 3 defined by skipping different opposite pairs of coordinates in the URP. For

example, f1 : (s0, s1, t0, t1) �→ P∆(s0, t0, 1, s1, t1, 1) is associated with circumscribed

square in Fig. 5 (left). Now we can draw C1 quartic splines of any shape on the hexago-

nal patch choosing locally the most convenient parametrization. For example, in Fig. 6
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we see a closed C1 bi-arc spline of degree 8 on a hexagonal patch of depth 2 (i.e. asso-

ciated with a hexagon shown on the right). This is the minimal possible degree of such

spline.

Fig. 6. A closed C1 degree 8 spline on a hexagon of depth 2

Similarly we can consider six different parametrizations of Hirzebruch type of the

hexagonal toric patch. These parametrizations correspond to the obvious six distinct

circumscribed trapezoids (as it is shown in Fig. 5, middle). So we generate Hermite in-

terpolation with quintic curves of any shape on the hexagonal patch of depth 1 choosing

locally the most convenient parametrization.

6 Application: Blending Natural Quadrics

Spheres, circular cylinders and circular cones are perhaps the most popular surfaces in

Geometric Modeling. These surfaces are called natural quadrics in order to distinguish

them from more general quadrics (e.g. elliptic cones). One exceptional property of nat-

ural quadrics is that their offset surfaces are of the same type. Therefore, it is natural to

use canal surfaces for smooth blending of natural quadrics. In fact, this blend is the tra-

ditional rolling ball blend. Unfortunately, if the radius of the ball is fixed, then its center

curve is not rational in most cases. There have been several attempts to use a ball with

rational radius when the corresponding canal surface can be rationally parametrized.

Here we propose a method that can help to improve this approach. We shall explain

our idea for the case of blending of two circular cylinders C1 : x2
2 + x2

3 = r2
1 and

C2 : x1
1 + x2

3 = r2
2 , where 0 < r1 < r2. (In [12] it is explained how two cylinders or

cones in very general position can be transformed into a few canonical cases including

this one.) Consider the space of all spheres in R3 as a 4-dimensional affine space R4

(or its projective version RP 4), where the first three coordinates are the center point of

a sphere and the last coordinate represents the radius of the sphere. The conditions that

a sphere touches both cylinders C1 and C2 can be described by the following system of

homogeneous equations in RP 4

{
x2

2 + x2
3 = (r1x0 − x4)

2,
x2

1 + x2
3 = (r2x0 − x4)

2.
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Fig. 7. Cylinder/cylinder blend and the curve π(γ) on the surface π(X)

This system can be transformed to the equivalent system

{
y2
3 = y0y4,

y2
3 = y1y2,

(32)

that describes a real toric surface X ⊂ RP 4. Indeed, X is a canonical real part of X♦,

which is defined by the same equations (17).

Our task is to find a particular family of spheres touching both cylinders. Hence

we need to find a curve γ on the surface X with some prescribed properties. A quartic

curve for this case is described in [12]. It can be proved that four is the minimal possible

degree for a curve on X with this topology. Let π : R4 → R3 denote the orthogonal

projection, that forgets x4. In Fig. 7(right) we see a projection π(X) (in fact a bisector

surface of both cylinders) and a spine curve π(γ) of the blending canal surface on π(X).
Unfortunately, as we can see in Fig. 7 (left) the blending ring has unwanted variation of

the width.

To fix this problem, the natural approach is to use C1 splines instead of the curve γ
in order to improve the shape.

We chose a ‘conical parametrization’ of the toric surface X that correspond to the

circumscribed triangle in Fig. 5 (right): variables s0, t1, u1, v0, v1 are substituted by 1

in the universal parametrization P̃♦ (see (20)):

F (s1, t0, u0) = P̃♦

⎛
⎝

s1 1 t0
1 1
1 u0 1

⎞
⎠ =

⎛
⎝

u2
0

t20u0 s1t0u0 s2
1u0

s2
1t

2
0

⎞
⎠ (33)

Therefore, we can use C1 splines on a Hirzebruch surface RF2 as in Example 16,

sect. 5.4. We fix degrees of polynomials deg s1 = deg t0 = 1 and deg u0 = 2. Hence,

(s1, t0) are treated as ‘horizontal variables and u0 is ‘vertical’. The particular choice of

these polynomials defines the curve γ(τ), which has four symmetric arcs. Using Her-

mite interpolation with biarc C1-splines one can modify γ(τ) in a symmetric fashion.
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Fig. 8. New cylinder/cylinder blend and the spline curve π(γ ′) on π(X)

The resulting curve γ′(τ) will have 8 quartic segments and will give us the desirable

shape shown in Fig. 8.

Final remark. Other cases of blending for natural quadrics also lead to toric surfaces.

For example, the case of an external sphere/cylinder blend defines a toric surface RcX♦

which has the non-canonical real structure (the same as in sect. 4). Since the required

closed curve is homotopic to point on RcX♦, it can be shown that the minimal degree

of such curve is 8. On the other hand, this curve can be approximated by a C1 quartic

spline!

7 Conclusions

In this paper we develop theory of toric surfaces in terms of toric homogeneous coordi-

nates and have made an attempt to explain universal rational parametrizations (UPR) in

quite elementary way. Theorem 1 (borrowed from [3]) describes the class of complex

surfaces that admit URP as a large subclass of all rational surfaces: they are sufficiently

nice projections of projective toric surfaces associated to lattice polygons. We extend

this class further by considering both canonical and non-canonical real parts of such

complex surfaces and call them real almost toric surfaces.

Our general idea is to develop design theory on abstract toric surfaces using ho-

mogeneous coordinates. This can reduce essentially the number of different cases that

require consideration, since lattice polygons with the same normal fans (or desingu-

larizations) have the same universal rational parametrizations. For example, all tensor

product Bézier surfaces have the same URP as the product of two real projective lines

RP 1 × RP 1, the cone Ck over a rational curve of degree k has the same URP as the

Hirzebruch surface Fk (sect. 5.4), toric Bézier patches of the different depths [16] have

the same URP etc.

We develop, as an example, a theory of rational spline curves of minimal degree

on toric surfaces. The key point is to use nice interpolation properties on the complex

projective line (Proposition 2) and distinguished directions on simplest toric surfaces.
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We conclude this paper with one blending construction between two cylinders,

where quartic splines on a certain toric surface are essentially used. This approach can

be extended to other blending cases between natural quadrics and is a subject of current

research.
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12. Kazakevičiūtė, M., Krasauskas, R.: Blending cylinders and cones using canal surfaces, in

Nonlinear Analysis: Modelling and Control, Vilnius, IMI, 5 (2000) 77–89

13. Krasauskas, R.: Universal parameterizations of some rational surfaces, in A. Le Méhauté, C.
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Panel Discussion

Contributors: Marc Daniel (MD), Tor Dokken (TD), Jens Gravesen (JG), Panagiotis

Kaklis (PG), Rimvydas Krasauskas (RK), Ralph R. Martin (RM), Bernard Mourrain

(BM), Josef Schicho (JS), Carlo Traverso (CT), Joab R. Winkler (JW)

Moderator: Bert Jüttler (BJ)

BJ: I have prepared a few questions to this audience for this panel discussion. Of

course, these are just suggestions; any other comments or questions are welcome.

This workshop has brought together experts from different communities: Computer

Aided Geometric Design, Symbolic Computation, and Algebraic Geometry.

Do you think that this combination has made sense? Did you benefit from the pre-

sentations and discussions at this workshop, also if they were not from your ”native”

field?

(Many:) Yes.

CT: During the programme of the workshop, new challenges for symbolic computation

have been identified. We have seen examples where other approaches [from CAGD,

B.J.] fail, and where symbolic techniques might help. It is unusual to see the failures of

others in conferences, but it helps to identify new problems.

JW: This combination forces you to live in a wider world, not just in your native field.

MD: Currently, we are experiencing a great change in CAGD. While the traditional

approaches relied almost exclusively on parametric representations, now implicitly de-

fined curves and surfaces start to play a greater role. It is very interesting to exploit the

advantages of both representations, and we will have to work to make the most out of

it.

RM: In the past, symbolic methods were often regarded as being too slow to be of

any practical use for geometric applications. This workshop has shown us that combin-

ing symbolic and numerical methods can be done in a useful way, to make practical

algorithms — for example, being able to replace rationals with reals for most of the

calculation, and only use more precise methods when specifically required.

JS: The workshop was a good opportunity to meet people who one does not meet

usually at workshops and conferences in my field; I have enjoyed this very much.
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JW: It has been stated by a leading mathematical authority that numerical analysis and

computational linear algebra will become increasingly important because many prob-

lems only have a numerical solution, and thus a discrete (eg linear algebraic) rather than

continuous (eg integral) equation is used to obtain the solution. The CAGD community

must be aware of these numerical issues in order that reliable solutions to difficult prob-

lems be obtained.

TD: It seems that the CAD industry is currently not very interested in new ideas. Due to

the concentration process CAD market, now very few vendors dominate the market, and

they are trying to maximize their profits, not necessarily to improve their products. As

another trend, high–end CAD systems are now being sold to everybody, since powerful

computers are now available to everyone. Still, many things in CAD systems have to be

improved, such as the robustness of intersection algorithms, and the data exchange. It

is currently not clear to me whether the CAD industry is ready to address these issues.

BJ: It is hoped that the combination of knowledge from different fields helps to solve

real problems and to gain new insights.

Which problems from Computer Aided Geometric Design, Symbolic Computation,

or Algebraic Geometry could benefit from the use of methods or results originating in

the other fields?

Are there any (obvious) (more or less) new questions in one of these fields, which

are motivated by the other ones?

RM: Is there a way to parameterize an implicitly defined curve or surface by functions

involving not only rational expressions, but also square roots, or even more general

functions? More usefully, can algorithms be devised for doing this? Methods to decide

if and when this is possible or not would be useful, but even more useful would be

algorithms to generate the parameterization.

As another question, Sturm sequences and their multivariate generalizations can

be used for counting the number of real zero-dimensional roots in a box. What if the

solutions have higher dimension? Is an algorithm possible to count the number of (real)

separate connected solution pieces of each degree which are contained in a box?

BM: The answer is yes! This is answered by Hermite’s Theorem.

CT: No, the situation becomes more difficult if one is interested in real solutions.

MD: Is there still a future for NURBS surfaces? Is it still interesting to concentrate on

these surfaces? Very often one starts from points, and it is not always straightforward

to generate surfaces. Perhaps it would be better to continue working with the points,

instead of bothering to generate surfaces.

BM: As an advantage, NURBS surfaces encode the geometry in a very compact way.
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TD: NURBS surfaces are in the standards! However, NURBS are currently used only

to represent relatively simple shapes. As a matter of fact, NURBS can represent much

more complex shapes, but currently we do not know how to do this. We should try to

develop techniques for fully exploiting the potential of NURBS representations. This is

closely related to the parameterization problem, that is, to the problem of parameteriz-

ing implicitly defined surfaces.

JS: In Bernard Mourrain’s talk, we have seen that it is difficult to correctly visualize

surfaces, especially in the neighborhood singularities. What precisely is the mathemat-

ical information needed for visualizing surface singularities correctly?

TD: A new approach, which exploits exploit capabilities of recent hardware, is to avoid

triangulation completely. Instead, the surface can be evaluated directly.

PK: I propose a “life–cycle” philosophy for CAD: During their life, from conceptual

design via numerical analysis and simulation to detailed construction and manufactur-

ing, curves and surfaces may need different representations, but the different representa-

tions should “talk to each other”. What we need is research on different representations,

also in order to explore the transformations between them. Obviously, different repre-

sentations of curves and surfaces are differently well suited for certain applications in

the product life cycle.

TD: Currently, a big problem is to built the results of numerical simulations into an

existing CAD model. More precisely, the results of a simulation has to be reflected in

the model. Currently, this is a very difficult problem in industry, and I expect that this

will not be fully solved within the near future.

RM: Many geometric problems can be viewed as finding the solutions to a set of alge-

braic (or more general implicit) equations in a set of unknowns. These may represent

geometry, constraints on the geometry, and so on.

Implicitization and parameterization can be looked at as being specific questions

regarding particular sets of equations: if we have multiple equations, how can we reduce

them to a single equation; if we have a single equation, how can we introduce extra

variables to help us e.g. draw the geometry?

In the more general setting, we can now ask a more general question — how can

we transform the set of equations into a new set of more or fewer, or just different,

equations, in more or fewer or just different variables? When it is better to decrease the

number of variables, at the expense of a more complicated representation? When is it

better to increase the number of variables, in order to obtain a simpler description?

Clearly, Groebner bases are related to this question, but are not the complete answer,

I believe, as the issue of parameterization is not really addressed by Groebner bases.

JS: In algebraic geometry, these are the concepts of projection vs. unprojection.

RK: Can we identify a class of surfaces which have a “good” implicit and parametric

representation at the same time? As a good class of candidates one could look at the

class of del Pezzo surfaces of degree 4, which we have seen in Josef Schicho’s talk.
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JG: I do not think that this will help. For instance, for practical problems from physics,

the geometry of an object might already be given. In this situation, the restriction to

such a special class of surfaces would make the life much more difficult.

TD: I agree that simple surfaces might not be flexible enough for everything. However,

I have observed that designers simply like certain shapes.In recent years, CAD systems

have not seen much development in user interfaces. Still, what we have are mostly 2D

interfaces! For instance, 3D curves still mainly generated by intersections. This is not

satisfying at all, and other techniques would be much better, since designers still have

big problems to get their ideas into the CAD system, and sometimes they simply give

up trying. So, the current CAD systems pose limits to the designers’ creativity, instead

of inspiring them. Perhaps, certain classes of surfaces, of CAD models can contribute to

shape modeling. But how can we achieve this? How can we explain better that certain

shapes, something like a library of shapes, are available?

RK: This is a question of good control handles!

TD: We need to interface of different technologies, perhaps virtual reality.

As another issue, intersection algorithms are still difficult. I believe that a better

theoretical basis for CAD will be needed in the future, since the growing demands for

accuracy make problems like intersection even more difficult.

JG: Is there sensible way to restrict CAD systems to stable singularities? I feel that

unstable singularities should be excluded beforehand, unless we are able to handle them

in a reliable way.

JW: What is a stable singularity?

RM: Part of the issue is what is primary information, and what is derived information.

An example of an unstable computation, given in the talk by Vibeke Skytt, is the attempt

to compute intersections between tangential surfaces, e.g. a blending surface, and one

of the base surfaces used to define it. Here the primary information is really the base

surface, and the trimming curve on the base surface which defines where the blend

meets it. The blend surface should be derived from this information, rather than trying

to compute the intersection curve from the two surfaces.

Some singularities can be avoided by being careful what operations the user inter-

face allows the user to perform.

BM: I believe that, singularities cannot always be avoided. Instead, it is better to find

the exact solution, and to deal with it directly.

JG: I agree.

TD: I have experienced that designers like singular shapes, and near-singular situations,

such as surfaces meeting each other tangentially or almost tangentially. Thus, we will

have to face these problems.
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JG: This approach should be embedded in the underlying design philosophy, that is, in

the user interface!

TD: According to my experience, trimmed surfaces often make problems.

RM: As a comment, the current version of STEP (the ISO standard for the exchange of

CAD data) does not include the design history. The ISO certainly see this as a serious

deficiency, and future versions will include such information. This will help to avoid

some of the singularities and other problems caused by exporting data from one system

and importing it into another with tighter tolerances. This symbolic information may

also help systems to ascertain what the designer’s intent was in singular cases.

TD: I agree, but converting design histories from one CAD system to another is much

more difficult than converting models. This would imply to standardize not only the

underlying representation, but even the available design tools? Already now, people

simply cannot design certain shapes, due to the lack of available tools. A further stan-

dardization would make things worse.

JG: Here, open standards would do much better! It should be possible to include new

methods, new types of surfaces or new classes of shapes into the standard.

TD: This may not be in the genuine interest of the CAD industry. Nevertheless, it

will be important for other industries. In any case, this is a great challenge, this design

history can sometimes be very, very difficult. For instance, if the design has partly be

obtained by a numerical simulation.

As another remark, I feel that something like a “CAGD-hikers guide to algebraic

geometry”, and vice versa might be helpful. We use many similar concepts, but they

come with different names.
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