DISCRETE ano COMPUTATIONAL

GEOMETRY

SATYAN L. DEVADOSS
JOSEPH O'ROURKE

Discrete and Computational

GEOMETRY

This page intentionally left blank

Discrete and Computational

GEOMETRY

—

N ,,

/
|

\
g

S /(‘V
)

2
/

B
r

;
KL

e

\
//
4

A
>

A
) =

y/

SATYAN L. DEVADOSS
and
JOSEPH O'ROURKE

PRINCETON UNIVERSITY PRESS
PRINCETON AND OXFORD

Copyright © 2011 by Princeton University Press

Requests for permission to reproduce material from this work should be sent to

Permissions, Princeton University Press

Published by Princeton University Press,

41 William Street, Princeton, New Jersey 08540

In the United Kingdom: Princeton University Press,

6 Oxford Street, Woodstock, Oxfordshire OX20 1TW

All Rights Reserved
Library of Congress Cataloging-in-Publication Data

Devadoss, Satyan L., 1973—

Discrete and computational geometry / Satyan L. Devadoss and Joseph O’Rourke.
p. cm.

Includes index.

ISBN 978-0-691-14553-2 (hardcover : alk. paper)

1. Geometry-Data processing. 1. O’Rourke, Joseph. 1I. Title.

QA448.D38D48 2011

516.00285-dc22 2010044434

British Library Cataloging-in-Publication Data is available
This book has been composed in Sabon

Princeton University Press books are printed on acid-free paper, and
meet the guidelines for permanence and durability of the Committee on
Production Guidelines for Book Longevity of the Council on Library

Resources

Typeset by S R Nova Pvt Ltd, Bangalore, India
press.princeton.edu

Printed in China

10 9 8 76 5 4 3 21

SLD Dedication.
To my family, for their unconditional love of this ragamuffin.

JOR Dedication.
In memory of Michael Albertson.

This page intentionally left blank

Preface

1 PoLvcons
1.1 Diagonals and Triangulations
1.2 Basic Combinatorics
1.3 The Art Gallery Theorem
1.4 Scissors Congruence in 2D
1.5 Scissors Congruence in 3D

2 CONVEX HULLS
2.1 Convexity
2.2 The Incremental Algorithm
2.3 Analysis of Algorithms
2.4 Gift Wrapping and Graham Scan
2.5 Lower Bound
2.6 Divide-and-Conquer
2.7 Convex Hull in 3D

3 TRIANGULATIONS
3.1 Basic Constructions
3.2 The Flip Graph
3.3 The Associahedron
3.4 Delaunay Triangulations
3.5 Special Triangulations

4 VORONOI DIAGRAMS
4.1 Voronoi Geometry
4.2 Algorithms to Construct the Diagram

4.3 Duality and the Delaunay Triangulation
4.4 Convex Hull Revisited

5 CURVES
5.1 Medial Axis
5.2 Straight Skeleton
5.3 Minkowski Sums
5.4 Convolution of Curves

X

13
20
26

33
36
39
42
46
48
51

59
66
73
79
87

98
104
107
113

118
125
128
132

Contents

viii

CONTENTS

5.5
5.6

Curve Shortening
The Heat Equation

5.7 Curve Reconstruction

6 POLYHEDRA

6.1
6.2
6.3
6.4
6.5
6.6

Platonic Solids

Euler’s Polyhedral Formula
The Gauss-Bonnet Theorem
Cauchy Rigidity

Shortest Paths

Geodesics

7 CONFIGURATION SPACES

7.1
7.2
7.3
7.4
7.5

Motion Planning
Polygonal Chains

Rulers and Locked Chains
Polygon Spaces

Particle Collisions

Appendix: Computational Complexity

Permissions

Index

138
144
148

156
162
170
177
188
200

206
215
221
229
237

245

249

251

Although geometry is as old as mathematics itself, discrete geometry
only fully emerged in the twentieth century, and computational geometry
was only christened in the late 1970s. The terms “discrete” and
“computational” fit well together, as the geometry must be discretized in
preparation for computations. “Discrete” here means concentration on
finite sets of points, lines, triangles, and other geometric objects, and is
used to contrast with “continuous” geometry, for example, smooth sur-
faces. Although the two endeavors were growing naturally on their own,
it has been the interaction between discrete and computational geometry
that has generated the most excitement, with each advance in one field
spurring an advance in the other. The interaction also draws upon two
traditions: theoretical pursuits in pure mathematics and applications-
driven directions often arising in computer science. The confluence has
made the topic an ideal bridge between mathematics and computer
science. It is precisely to bridge that gap that we have written this
book.

In line with this goal, our presentation is sprinkled with both algo-
rithms and theorems, with sometimes the theorem serving as the main
thrust (e.g., the Gauss-Bonnet theorem), and sometimes an algorithm the
primary goal of a section and theorems playing a supporting role (e.g., the
flip graph computation of the Delaunay triangulation). As our emphasis
is on the geometry of the subject, the algorithms presented in this book
are strongly rooted in geometric intuition and insight. We describe the
algorithms independent of any particular programming language, and
in fact we do not even employ pseudocode, trusting that our boxed
descriptions can be read as code by those steeped in the computer science
idiom. Thus, no programming experience is needed to read this book.
Algorithm complexities are discussed using the big-Oh notation without
an assumption of prior exposure to this style of thinking, which is (lightly)
covered in the Appendix.

We include many proofs that we feel would interest a mathematically
inclined student, presenting them in what we hope is an accessible style.
At many junctures we connect to more advanced concerns, not fearing,
for example, to jump to higher dimensions to make a relevant remark.
At the same time, we connect each topic to applications that were often
the initial motivation for studying the topic. Although we include careful

Preface

X

PREFACE

proofs of theorems, we also try to develop intuition through visualization.
Geometry demands figures!

Some exposure to proofs is needed to gain that mystical “mathematical
maturity.” We invoke calculus only in a few sections. A course in
discrete mathematics is the more relevant prerequisite, but any course
that presents formal proofs of theorems would suffice, such as linear
algebra or automata theory. The material should be completely accessible
to any mathematics or computer science major in the second or third
year of college. In order to reach interesting advanced topics without
the careful preparation they often demand, we sometimes offer a proof
sketch (always marked as such), instead of a long, detailed formal
proof of a result. Here we try to convince the reader that a formal
proof is likely to be possible by sketching in the outlines without the
details. Whether the reader can imagine those details from the outline
is a measure of mathematical experience. A parallel skill of “computa-
tional maturity” is needed to imagine how to implement our algorithm
descriptions.

The book is studded with Exercises, which we have chosen to place
wherever they are relevant, rather than gather them at the end of each
chapter. Some merely test a grasp of the foregoing material, most require
more substantive thought (suitable for homework assignments), and
starred exercises % are difficult, often connecting to a published paper. A
solutions manual is available to instructors from the publisher.

Rather than include a scholarly bibliography, we have opted instead
for “Suggested Readings™ at the end of each chapter, providing pointers
for further investigation. Between these pointers and websites such
as Wikipedia, the reader should have no difficulty exploring the vast
area beyond our coverage. And what lies beyond is indeed vast. The
Handbook of Discrete and Computational Geometry runs to 1,500 pages
and even so is highly compressed. Our coverage represents a sparse
sampling of the field. We have chosen to cover polygons, convex hulls,
triangulations, and Voronoi diagrams, which we believe constitute the
core of discrete and computational geometry. Beyond this core, there is
considerable choice, and we have selected several topics on curves and
polyhedra, concluding with configuration spaces. The selection is skewed
to the research interests of the authors, with perhaps more coverage of
associahedra (first author) and unfolding (second author) than might be
chosen by a committee of our peers. At the least, this ensures that we
touch on the frontiers of current research.

Because of the relative youth of the field, there are many accessible
unsolved problems, which we highlight throughout. Although some have
resisted the assaults of many talented researchers and may be awaiting
a theoretical breakthrough, others may be accessible with current
techniques and only await significant attention by an enterprising reader.

The field has expanded greatly since its origins, and the new con-
nections to areas of mathematics (such as algebraic topology) and new

application areas (such as data mining) seems only to be accelerating. We
hope this book can serve to open the door on this rich and fascinating
subject.

Acknowledgments. Vickie Kearn was the ideal editor for us: firm
but kind, and unfailingly enthusiastic. A special thanks goes to wise
Jeff Erickson, who read the entire manuscript in draft, corrected many
errors, suggested many exercises, and in general educated us in our own
specialties to a degree we did not think possible. We are humbled and
grateful.

Satyan Devadoss: To all my students at Williams College who have
learned this beautiful subject alongside me, while enduring my brutal
exams, [am truly grateful. I especially thank Katie Baldiga, Jeff Danciger,
Thomas Kindred, Rohan Mehra, Nick Perry, and Don Sheehy for being
on the front line with me, with special thanks to Tomio Ueda for literally
laying the foundation to this book.

I am indebted to my colleagues and mentors Colin Adams, Mike Davis,
Tamal Dey, Peter March, Jack Morava, Frank Morgan, Alan Saalfeld,
and Jim Stasheff, all of whom have given generously of their time and
wisdom over the years. Thanks also go to the Ohio State University,
the Mathematical Sciences Research Institute, and the University of
California, Berkeley, for their hospitality during my sabbatical visits
where parts of this book were written. The NSF and DARPA were also
instrumental by their support with grant DMS-0310354.

Joseph O’Rourke: I thank my students Nadia Benbernou, Julie DiBi-
ase, Melody Donoso, Biliana Kaneva, Anna Lysyanskaya, Stacia Wyman,
and Dianna Xu, all of whose work found its way into the book in one
form or another. I thank my colleagues and coauthors Lauren Cowles,
Erik Demaine, Jin-ichi Ito, Joseph Mitchell, Don Shimamoto, and Costin
Vilcu, who each taught me so much through our collaborations. The early
stages of my work on this book were funded by a NSF Distinguished
Teaching Scholars award DUE-0123154.

Satyan L. Devadoss
Williams College

Joseph O’Rourke
Smith College

PREFACE

Xi

This page intentionally left blank

Discrete and Computational

GEOMETRY

This page intentionally left blank

POLYGONS

Polygons are to planar geometry as integers are to numerical mathemat-
ics: a discrete subset of the full universe of possibilities that lends itself to
efficient computations. And triangulations are the prime factorizations
of polygons, alas without the benefit of the “Fundamental Theorem
of Arithmetic” guaranteeing unique factorization. This chapter intro-
duces triangulations (Section 1.1) and their combinatorics (Section 1.2),
and then applies these concepts to the alluring art gallery theorem
(Section 1.3), a topic at the roots of computational geometry which
remains an active area of research today. Here we encounter a surprising
difference between 2D triangulations and 3D tetrahedralizations.

Triangulations are highly constrained decompositions of polygons.
Dissections are less constrained partitions, and engender the fascinating
question of which pairs of polygons can be dissected and reassembled
into each other. This so-called “scissors congruence” (Section 1.4) again
highlights the fundamental difference between 2D and 3D (Section 1.5),
a theme throughout the book.

1.1 DIAGONALS AND TRIANGULATIONS

Computational geometry is fundamentally discrete as opposed to con-
tinuous. Computation with curves and smooth surfaces are generally
considered part of another field, often called “geometric modeling.”
The emphasis on computation leads to a focus on representations of
geometric objects that are simple and easily manipulated. Fundamental
building blocks are the point and the line segment, the portion of a
line between two points. From these are built more complex structures.
Among the most important of these structures are 2D polygons and their
3D generalization, polyhedra.

A polygon' P is the closed region of the plane bounded by a finite
collection of line segments forming a closed curve that does not intersect
itself. The line segments are called edges and the points where adjacent
edges meet are called vertices. In general, we insist that vertices be true
corners at which there is a bend between the adjacent edges, but in some

1 Often the term simple polygon is used, to indicate that it is “simply connected,” a concept we
explore in Chapter 5.

2 CHAPTER 1. POLYGONS

RMA:

(d)
Figure 1.1. (a) A polygon. (b)-(d) Objects that are not polygons.

circumstances (such as in Chapter 2) it will be useful to recognize “flat
vertices.” The set of vertices and edges of P is called the boundary of
the polygon, denoted as dP. Figure 1.1(a) shows a polygon with nine
edges joined at nine vertices. Diagrams (b)—(d) show objects that fail to
be polygons.

The fundamental “Jordan curve theorem,” formulated and proved by
Camille Jordan in 1882, is notorious for being both obvious and difficult
to prove in its full generality. For polygons, however, the proof is easier,
and we sketch the main idea.

Theorem 1.1 (Polygonal Jordan Curve). The boundary dP of a polygon
P partitions the plane into two parts. In particular, the two compo-
nents of R\ dP are the bounded interior and the unbounded exterior.?

Sketch of Proof. Let P be a polygon in the plane. We first choose a fixed
direction in the plane that is not parallel to any edge of P. This is
always possible because P has a finite number of edges. Then any point
x in the plane not on 9P falls into one of two sets:

1. The ray through x in the fixed direction crosses 9P an even number
of times: x is exterior. Here a ray through a vertex is not counted as
crossing dP.

2. The ray through x in the fixed direction crosses 9P an odd number of
times: x is interior.

Notice that all points on a line segment that do not intersect 3P must
lie in the same set. Thus the even sets and the odd sets are connected.
And moreover, if there is a path between points in different sets, then
this path must intersect dP. O

This proof sketch is the basis for an algorithm for deciding whether a
given point is inside a polygon, a low-level task that is encountered every
time a user clicks inside some region in a computer game, and in many
other applications.

2 The symbol €\” indicates set subtraction: A\ B is the set of points in A but not in B.

1.1 DIAGONALS AND TRIANGULATIONS 3

(a) (b) (c) (d)

Figure 1.2. (a) A polygon with (b) a diagonal; (c) a line segment; (d) crossing
diagonals.

Exercise 1.2. Flesh out the proof of Theorem 1.1 by supplying arguments
to (a) justify the claim that if there is a path between the even- and
odd-crossings sets, the path must cross dP; and (b) establish that for
two points in the same set, there is a path connecting them that does
not cross oP.

Algorithms often need to break polygons into pieces for processing. A
natural decomposition of a polygon P into simpler pieces is achieved by
drawing diagonals. A diagonal of a polygon is a line segment connecting
two vertices of P and lying in the interior of P, not touching dP except
at its endpoints. Two diagonals are noncrossing if they share no interior
points. Figure 1.2 shows (a) a polygon, (b) a diagonal, (c) a line segment
that is not a diagonal, and (d) two crossing diagonals.

Definition. A triangulation of a polygon P is a decomposition of P into
triangles by a maximal set of noncrossing diagonals.

Here maximal means that no further diagonal may be added to the
set without crossing (sharing an interior point with) one already in
the set. Figure 1.3 shows a polygon with three different triangulations.
Triangulations lead to several natural questions. How many different
triangulations does a given polygon have? How many triangles are
in each triangulation of a given polygon? Is it even true that every
polygon always has a triangulation? Must every polygon have at least
one diagonal? We start with the last question.

Figure 1.3. A polygon and three possible triangulations.

4 CHAPTER 1. POLYGONS

Figure 1.4. Finding a diagonal of a polygon through sweeping.

Lemma 1.3. Every polygon with more than three vertices has a diagonal.

Proof. Let v be the lowest vertex of P; if there are several, let v be the
rightmost. Let a and b be the two neighboring vertices to v. If the
segment ab lies in P and does not otherwise touch 9P, it is a diagonal.
Otherwise, since P has more than three vertices, the closed triangle
formed by a, b, and v contains at least one vertex of P. Let L be a
line parallel to segment ab passing through v. Sweep this line from
v parallel to itself upward toward ab; see Figure 1.4. Let x be the
first vertex in the closed triangle abv, different from a, b, or v, that L
meets along this sweep. The (shaded) triangular region of the polygon
below line L and above v is empty of vertices of P. Because vx cannot
intersect dP except at v and x, we see that vx is a diagonal. O]

Since we can decompose any polygon (with more than three vertices)
into two smaller polygons using a diagonal, induction leads to the
existence of a triangulation.

Theorem 1.4. Every polygon has a triangulation.

Proof. We prove this by induction on the number of vertices 7 of the
polygon P. If n = 3, then P is a triangle and we are finished. Let 7 > 3
and assume the theorem is true for all polygons with fewer than 7
vertices. Using Lemma 1.3, find a diagonal cutting P into polygons Py
and P». Because both Py and P, have fewer vertices than n, P; and P,
can be triangulated by the induction hypothesis. By the Jordan curve
theorem (Theorem 1.1), the interior of Py is in the exterior of P,, and
so no triangles of P; will overlap with those of P,. A similar statement
holds for the triangles of P,. Thus P has a triangulation as well. O

Exercise 1.5. Prove that every polygonal region with polygonal holes,
such as Figure 1.1(d), admits a triangulation of its interior.

1.1 DIAGONALS AND TRIANGULATIONS

(a) (b) (c)

Figure 1.5. Polyhedra: (a) tetrahedron, (b) pyramid with square base, (c) cube, and
(d) triangular prism.

That every polygon has a triangulation is a fundamental property that
pervades discrete geometry and will be used over and over again in this
book. It is remarkable that this notion does not generalize smoothly to
three dimensions. A polyhedron is the 3D version of a polygon, a 3D solid
bounded by finitely many polygons. Chapter 6 will define polyhedra more
precisely and explore them more thoroughly. Here we rely on intuition.
Figure 1.5 gives examples of polyhedra.

Just as the simplest polygon is the triangle, the simplest polyhedron
is the tetrabedron: a pyramid with a triangular base. We can generalize
the 2D notion of polygon triangulation to 3D: a tetrabedralization
of a polyhedron is a partition of its interior into tetrahedra whose
edges are diagonals of the polyhedron. Figure 1.6 shows examples of
tetrahedralizations of the polyhedra just illustrated.

Exercise 1.6. Find a tetrabedralization of the cube into five tetrabedra.

We proved in Theorem 1.4 that all polygons can be triangulated.
Does the analogous claim hold for polyhedra: can all polyhedra be

4L

5

d)

& AW <s

Figure 1.6. Tetrahedralizations of the polyhedra from Figure 1.5.

6 CHAPTER 1. POLYGONS

AR
.y) NZENNE JL==/ANE

Figure 1.7. Construction of the Schénhardt polyhedron from a triangular prism,
where (d) is the overhead view.

tetrahedralized? In 1911, Nels Lennes proved the surprising theorem that
this is not so. We construct an example of a polyhedron, based on the
1928 model by Erich Schonhardt, which cannot be tetrahedralized. Let
A, B, C be vertices of an equilateral triangle (labeled counterclockwise) in
the xy-plane. Translating this triangle vertically along the z-axis reaching
z = 1 traces out a triangular prism, as shown in Figure 1.7(a). Part
(b) shows the prism with the faces partitioned by the diagonal edges
AQ, BR, and CP. Now twist the top P OR triangle /6 degrees in the
(z = 1)-plane, rotating and stretching the diagonal edges. The result is
the Schonhardt polyhedron, shown in (¢) and in an overhead view in (d)
of the figure. Schonhardt proved that this is the smallest example of an
untetrahedralizable polyhedron.

Exercise 1.7. Prove that the Schombardt polyhedron cannot be
tetrabedralized.

UNSOLVED PROBLEM 1 Tetrahedralizable Polyhedra

Find characteristics that determine whether or not a polyhedron is
tetrahedralizable. Even identifying a large natural class of tetrahe-
dralizable polyhedra would be interesting.

This is indeed a difficult problem. It was proved by Jim Ruppert and
Raimund Seidel in 1992 that it is NP-complete to determine whether a
polyhedron is tetrahedralizable. NP-complete is a technical term from
complexity theory that means, roughly, an intractable algorithmic prob-
lem. (See the Appendix for a more thorough explanation.) It suggests
in this case that there is almost certainly no succinct characterization of
tetrahedralizability.

1.2 BASIC COMBINATORICS

1.2 BASIC COMBINATORICS

We know that every polygon has at least one triangulation. Next we show
that the number of triangles in any triangulation of a fixed polygon is the
same. The proof is essentially the same as that of Theorem 1.4, with more
quantitative detail.

Theorem 1.8. Every triangulation of a polygon P with n vertices has
n — 2 triangles and n — 3 diagonals.

Proof. We prove this by induction on #n. When #n = 3, the statement
is trivially true. Let » > 3 and assume the statement is true for all
polygons with fewer than # vertices. Choose a diagonal d joining
vertices @ and b, cutting P into polygons P; and P, having 7; and
n, vertices, respectively. Because a and b appear in both Py and P,, we
know 71 + 1, = n+ 2. The induction hypothesis implies that there are
n1 — 2 and ny — 2 triangles in Py and P, respectively. Hence P has

(m—=2)+(m—-2)=(m+m)-—4=n+2)—4=n—-2

triangles. Similarly, P has (71 — 3) + (72 — 3) + 1 = n — 3 diagonals,
with the +1 term counting d. O]

Many proofs and algorithms that involve triangulations need a special
triangle in the triangulation to initiate induction or start recursion. “Ears”
often serve as special triangles. Three consecutive vertices a, b, ¢ form an
ear of a polygon if ac is a diagonal of the polygon. The vertex b is called
the ear tip.

Corollary 1.9. Every polygon with more than three vertices has at least
two ears.

Proof. Consider any triangulation of a polygon P with n > 3 vertices,
which by Theorem 1.8 partitions P into # — 2 triangles. Each triangle
covers at most two edges of dP. Because there are 7 edges on the
boundary of P but only 7 — 2 triangles, by the pigeonhole principle at
least two triangles must contain two edges of P. These are the ears. [

Exercise 1.10. Prove Corollary 1.9 using induction.

Exercise 1.11. Show that the sum of the interior angles of any polygon
with n vertices is w(n — 2).

Exercise 1.12. Using the previous exercise, show that the total turn angle
around the boundary of a polygon is 2. Here the turn angle at a vertex
v is T minus the internal angle at v.

7

8 CHAPTER 1. POLYGONS

Exercise 1.13. Three consecutive vertices a, b, c form a mouth of a
polygon if ac is an external diagonal of the polygon, a segment wholly
outside. Formulate and prove a theorem about the existence of mouths.

Exercise 1.14. Let a polygon P with b holes have n total vertices
(including hole vertices). Find a formula for the number of triangles
in any triangulation of P.

X Exercise 1.15. Let P bea polygon with vertices (x;, y;) in the plane. Prove
that the area of P is

1
3 ’Z(xiyzel — Xi—1Yi)| -

Although the number of triangles in any triangulation of a polygon is
the same, it is natural to explore the number of different triangulations
of a given polygon. For instance, Figure 1.3 shows a polygon with three
different triangulations.

Exercise 1.16. For each polygon in Figure 1.8, find the number of distinct
triangulations.

Exercise 1.17. For each n > 3, find a polygon with n vertices that has a
unique triangulation.

The number of triangulations of a fixed polygon P has much to do with
the “shape” of the polygon. One crucial measure of shape is the internal
angles at the vertices. A vertex of P is called reflex if its angle is greater
than 7, and convex if its angle is less than or equal to 7. Sometimes it
is useful to distinguish a flat vertex, whose angle is exactly =, from a
strictly convex vertex, whose angle is strictly less than 7. A polygon P is
a convex polygon if all vertices of P are convex. In general we exclude flat
vertices, so unless otherwise indicated, the vertices of a convex polygon

O v W

Figure 1.8. Find the number of distinct triangulations for each of the polygons
given.

1.2 BASIC COMBINATORICS

are strictly convex. With this understanding, a convex polygon has the
following special property.

Lemma 1.18. A diagonal exists between any two nonadjacent vertices of
a polygon P if and only if P is a convex polygon.

Proof. The proof is in two parts, both established by contradiction. First
assume P is not convex. We need to find two vertices of P that do not
form a diagonal. Because P is not convex, there exists a sequence of
three vertices a, b, ¢, with b reflex. Then the segment ac lies (at least
partially) exterior to P and so is not a diagonal.

Now assume P is convex but there are a pair of vertices a and b
in P that do not form a diagonal. We identify a reflex vertex of P to
establish the contradiction. Let o be the shortest path connecting a to
b entirely within P. It cannot be that o is a straight segment contained
inside P, for then ab is a diagonal. Instead, o must be a chain of line
segments. Each corner of this polygonal chain turns at a reflex vertex —
if it turned at a convex vertex or at a point interior to P, it would not
be the shortest. O

For a convex polygon P, where every pair of nonadjacent vertices
determines a diagonal, it is possible to count the number of triangulations
of P based solely on the number of vertices. The result is the Catalan
number, named after the nineteenth-century Belgian mathematician
Eugeéne Catalan.

Theorem 1.19. The number of triangulations of a convex polygon with
n + 2 vertices is the Catalan number

1 2n
C”Zn—i-l(n)' (1.1)

Proof. Let P,,, be a convex polygon with vertices labeled from 1 to
n + 2 counterclockwise. Let 7,,, be the set of triangulations of P,,»,
where 7,4, has ,,, elements. We wish to show that #,, is the Catalan
number C,.

Let ¢ be the map from 7,,, to 7,41 given by contracting the edge
{1,7 + 2} of P,y2. To contract an edge ab is to shrink it to a point
¢ so that ¢ becomes incident to all the edges and diagonals that were
incident to either a or b. Let T be an element of 7, 1. What is important
to note is the number of triangulations of 7,,, that map to T (i.e.,
the number of elements of ¢~!(T)) equals the degree of vertex 1 in T.
Figure 1.9 gives an example where (a) five triangulations of the octagon
all map to (b) the same triangulation of the heptagon, where the vertex
labeled 1 has degree five. This is evident since each edge incident to 1
can open up into a triangle in ¢~!(T), shown by the shaded triangles

9

10 CHAPTER 1. POLYGONS

(a) 5 4 5 4 (b) 4
5 3
6 3 6 3
7 2 7 2 6 2
8 7 8 1 7 7
5 4 5 4 5 4
6 3 6 3 6 3
7 2 7 2 7 2
8 7 8 1 8 7

Figure 1.9. The five polygons in (a) all map to the same polygon in (b) under
contraction of edge {1, 8}.

in (a). So we see that

byyr = Z degree of vertex 1 of T.
TeTu1

Because this polygon is convex, this is true for all vertices of T.
Therefore we can sum over all vertices of T, obtaining

n+1
(m+1) by = Z Z degree of vertexi of T
i=1 TeT, 1
n+1
= Z Z degree of vertexi of T
TeT1 i=1

=2(2n—1) tye1.

The last equation follows because the sum of the degrees of all vertices
of T double-counts the number of edges of T and the number of
diagonals of T. Because T is in 7,41, it has # + 1 edges, and by
Theorem 1.8, it has # — 2 diagonals. Solving for #,,,, we get

2021 —1) -1 2n—3 3 1

_— =", . e —
n+1 i n+1 n 372

o 2mt 1 2n
C (m4+ 1) n! _n—f—l(n)‘

bpyr =

1.2 BASIC COMBINATORICS

This is the Catalan number C,, completing the proof. O]

For the octagon in Figure 1.9, the formula shows there are C¢ = 132
distinct triangulations. Is it possible to find a closed formula for the
number of triangulations for nonconvex polygons P with # vertices? The
answer, unfortunately, is NO, because small changes in the position of
vertices can lead to vastly different triangulations of the polygon. What
we do know is that convex polygons achieve the maximum number of
triangulations.

Theorem 1.20. Let P be a polygon with n + 2 vertices. The number of
triangulations of P is between 1 and C,,.

Proof. Exercise 1.17 shows there are polygons with exactly one triangu-
lation, demonstrating that the lower bound is realizable. For the upper
bound, let P be any polygon with 7 labeled, ordered vertices, and let
Q be a convex polygon also with 7 vertices, labeled similarly. Each
diagonal of P corresponds to a diagonal of O, and if two diagonals of
P do not cross, neither do they cross in Q. So every triangulation of
P (having n — 1 diagonals by Theorem 1.8) determines a triangulation
of QO (again with #n — 1 diagonals). Therefore P can have no more
triangulations than Q, which by Theorem 1.19 is C,,. O

Thus we see that convex polygons yield the most triangulations.
Because convex polygons have no reflex vertices (by definition), there
might possibly be a relationship between the number of triangulations
and the number of reflex vertices of a polygon. Sadly, this is not the
case. Let P be a polygon with five vertices. By Theorem 1.19, if P has
no reflex vertices, it must have § triangulations. Figure 1.10(a) shows
P with one reflex vertex and only one triangulation, whereas parts (b)
and (c) show P with two reflex vertices and two triangulations. So the
number of triangulations does not necessarily decrease with the number
of reflex vertices. In fact, the number of triangulations does not depend
on the number of reflex vertices at all. Figure 1.10(d) shows a polygon
with a unique triangulation with three reflex vertices. This example
can be generalized to polygons with unique triangulations that contain
arbitrarily many reflex vertices.

N

(a) (b) (c)

Figure 1.10. Triangulations of special polygons.

1"

12 CHAPTER 1. POLYGONS

Exercise 1.21. For each n > 3, find a polygon with n vertices with exactly
two triangulations.

Exercise 1.22. For any n > 3, show there is no polygon with n + 2
vertices with exactly C, — 1 triangulations.

UNSOLVED PROBLEM 2 Counting Triangulations

Identify features of polygons P that lead to a closed formula for the
number of triangulations of P in terms of those features.

We learned earlier that properties can be lost in the move from 2D
polygons to 3D polyhedra. For example, all polygons can be triangulated
but not all polyhedra can be tetrahedralized. Moreover, by Theorem 1.8
above, we know that every polygon with » vertices must have the same
number of triangles in any of its triangulation. For polyhedra, this is far
from true. In fact, two different tetrahedralizations of the same polyhe-
dron can result in a different number of tetrahedra! Consider Figure 1.11,
which shows a polyhedron partitioned into two tetrahedra (a) and also
into three (b).

(a) %
(b) %

Figure 1.11. A polyhedron partitioned into (a) two and (b) three tetrahedra.

¢ ¢
4

1.3 THE ART GALLERY THEOREM 13

Even for a polyhedron as simple as the cube, the number of tetrahedra
is not the same for all tetrahedralizations. It turns out that up to rotation
and reflection, there are six different tetrahedralizations of the cube, one
of which was shown earlier in Figure 1.6(c). Five of the six partition the
cube into six tetrahedra, but one cuts it into only five tetrahedra.

Exercise 1.23. Is it possible to partition a cube into six congruent
tetrabedra? Defend your answer.

Exercise 1.24. Find the six different tetrahedralizations of the cube up to
rotation and reflection.

X Exercise 1.25. Classify the set of triangulations on the boundary of the
cube that “induce” tetrabedralizations of the cube, where each such
tetrabedralization matches the triangulation on the cube surface.

As is common in geometry, concepts that apply to 2D and to 3D
generalize to arbitrary dimensions. The n-dimensional generalization of
the triangle/tetrahedron is the n-simplex of n + 1 vertices. Counting
n-dimensional “triangulations” is largely unsolved:

UNSOLVED PROBLEM 3 Simplices and Cubes

Find the smallest triangulation of the n-dimensional cube into #-
simplices. It is known, for example, that the 4D cube (the hypercube)
may be partitioned into 16 4-simplices, and this is minimal. But the
minimum number is unknown except for the few small values of #
that have yielded to exhaustive computer searches.

Exercise 1.26. Show that the n-dimensional cube can be triangulated into
exactly n! simplices.

1.3 THE ART GALLERY THEOREM

A beautiful problem posed by Victor Klee in 1973 engages several of the
concepts we have discussed: Imagine an art gallery whose floor plan is
modeled by a polygon. A guard of the gallery corresponds to a point
on our polygonal floor plan. Guards can see in every direction, with
a full 360° range of visibility. Klee asked to find the fewest number
of (stationary) guards needed to protect the gallery. Before tackling
this problem, we need to define what it means to “see something”
mathematically.

14

CHAPTER 1. POLYGONS

Figure 1.12. Examples of the range of visibility available to certain placement of
guards.

A point x in polygon P is visible to point y in P if the line segment xy
lies in P. This definition allows the line of sight to have a grazing contact
with the boundary 9P (unlike the definition for diagonal). A set of guards
covers a polygon if every point in the polygon is visible to some guard.
Figure 1.12 gives three examples of the range of visibility available to
single guards in polygons.

A natural question is to ask for the minimum number of guards
needed to cover polygons. Of course, this minimum number depends on
the “complexity” of the polygon in some way. We choose to measure
complexity in terms of the number of vertices of the polygon. But two
polygons with 7 vertices can require different numbers of guards to cover
them. Thus we look for a bound that is good for any polygon with n
vertices.>

Exercise 1.27. For each polygon in Figure 1.8, find the minimum number
of guards needed to cover it.

Exercise 1.28. Suppose that guards themselves block visibility so that
a line of sight from one guard cannot pass through the position of
another. Are there are polygons for which the minimum of our more
powerful guards needed is strictly less than the minimum needed for
these weaker guards?

Let’s start by looking at some examples for small values of 7.
Figure 1.13 shows examples of covering guard placements for polygons
with a small number of vertices. Clearly, any triangle only needs one
guard to cover it. A little experimentation shows that the first time two
guards are needed is for certain kinds of hexagons.

Exercise 1.29. Prove that any quadrilateral needs only one guard to cover
it. Then prove that any pentagon needs only one guard to cover it.

3 To find the minimum number of guards for a particular polygon turns out to be, in general,
an intractable algorithmic task. This is an instance of another NP-complete problem; see the
Appendix.

1.3 THE ART GALLERY THEOREM

Figure 1.13. Examples of guard placements for different polygons.

Exercise 1.30. Modify Lemma 1.18 to show that one guard placed
anywhere in a convex polygon can cover it.

By the previous exercise, convex polygons need only one guard for
coverage. The converse of this statement is not true, however. There
are polygons that need only one guard but which are not convex. These
polygons are called star polygons. Figure 1.8(c) is an example of a star
polygon.

While correct placement avoids the need for a second guard for
quadrilaterals and pentagons, one can begin to see how reflex vertices
will cause problems in polygons with large numbers of vertices. Because
there can exist only so many reflex angles in a polygon, we can construct a
useful example, based on prongs. Figure 1.14 illustrates the comb-shaped
design made of 5 prongs and 15 vertices. We can see that a comb of
n prongs has 37 vertices, and since each prong needs its own guard,
then at least |7/3] guards are needed. Here the symbols | | indicate
the floor function: the largest integer less than or equal to the enclosed
argument.* Thus we have a lower bound on Klee’s problem: |7/3] guards
are sometimes necessary.

AR A AN

Figure 1.14. A comb-shaped example.

4 Later we will use its cousin, the ceiling function [1, the smallest integer greater than or equal
to the argument.

15

16

CHAPTER 1. POLYGONS

Exercise 1.31. Construct a polygon P and a placement of guards such
that the guards see every point of dP but P is not covered.

UNSOLVED PROBLEM 4 Visibility Graphs

The wvisibility graph of a polygon P is the graph with a node
for each vertex of P and an arc connecting two nodes when the
corresponding vertices of P can see one another. Find necessary and
sufficient conditions that determine when a graph is the visibility
graph of some polygon.

Now that we have a lower bound of |72/3 |, the next question is whether
this number always suffices, that is, is it also an upper bound for all
polygons? Other than proceeding case by case, how can we attack the
problem from a general framework? The answer lies in triangulating
the polygon. Theorem 1.4 implies that every polygon with n vertices
can be covered with #» — 2 guards by placing a guard in each triangle,
providing a crude upper bound. But we have been able to do better than
this already for quadrilaterals and pentagons. By placing guards not in
each triangle but on the vertices, we can possibly cover more triangles by
fewer guards. In 1975, Vasek Chvital found a proof for the minimum
number of guards needed to cover any polygon with 7 vertices. His proof
is based on induction, with some delicate case analysis. A few years later,
Steve Fisk found another, beautiful inductive proof, which follows below.

Theorem 1.32 (Art Gallery). To cover a polygon with n vertices, |n/3)
guards are needed for some polygons, and sufficient for all of them.

Proof. We already saw in Figure 1.14 that |7/3] guards can be necessary.
We now need to show this number also suffices.

Consider a triangulation of a polygon P. We use induction to prove
that each vertex of P can be assigned one of three colors (i.e., the
triangulation can be 3-colored), so that any pair of vertices connected
by an edge of P or a diagonal of the triangulation must have different
colors. This is certainly true for a triangle. For n > 3, Corollary 1.9
guarantees that P has an ear abc, with vertex b as the ear tip. Removing
the ear produces a polygon P’ with n — 1 vertices, where b has
been removed. By the induction hypothesis, the vertices of P’ can be
3-colored. Replacing the ear, coloring b with the color not used by a
or ¢, provides a coloring for P.

1.3 THE ART GALLERY THEOREM

Figure 1.15. Triangulations and colorings of vertices of a polygon with n = 18
vertices. In both figures, red is the least frequently used color, occurring five times.

Since there are n vertices, by the pigeonhole principle, the least
frequently used color appears on at most [7/3] vertices. Place guards
at these vertices. Figure 1.15 shows two examples of triangulations of
a polygon along with colorings of the vertices as described. Because
every triangle has one corner a vertex of this color, and this guard
covers the triangle, the museum is completely covered. O

Exercise 1.33. For each polygon in Figure 1.16, find a minimal set of
guards that cover it.

Exercise 1.34. Construct a polygon with n = 3k vertices such that plac-
ing a guard at every third vertex fails to protect the gallery.

The classical art gallery problem as presented has been generalized in
several directions. Some of these generalizations have elegant solutions,
some have difficult solutions, and several remain unsolved problems. For
instance, the shape of the polygons can be restricted (to polygons with
right-angled corners) or enlarged (to include polygons with holes), or the
mobility of the guards can be altered (permitting guards to walk along
edges, or along diagonals).

Figure 1.16. Find a set of minimal guards that cover the polygons.

17

18 CHAPTER 1. POLYGONS

Exercise 1.35. Why is it not possible to easily extend Fisk’s proof above
to the case of polygons with holes?

Exercise 1.36. Using Exercise 1.14, derive an upper bound on the
number of guards needed to cover a polygon with b holes and n total
vertices. (Obtaining a tight upper bound is extremely difficult, and only
recently settled.)

When all edges of the polygon meet at right angles (an orthogonal
polygon), fewer guards are needed, as established by Jeff Kahn, Maria
Klawe, and Daniel Kleitman in 1980. In contrast, covering the exterior
rather than the interior of a polygon requires (in general) more guards,
established by Joseph O’Rourke and Derick Wood in 1983.

Theorem 1.37 (Orthogonal Gallery). To cover polygons with n vertices
with only right-angled corners, |n/4] guards are needed for some
polygons, and sufficient for all of them.

Theorem 1.38 (Fortress). To cover the exterior of polygons with n

vertices, [n/2] guards are needed for some polygons, and sufficient
for all of them.

Exercise 1.39. Prove the Fortress theorem.

Exercise 1.40. For any n > 3, construct a polygon P with n vertices
such that [n/3 guards, placed anywhere on the plane, are sometimes
necessary to cover the exterior of P.

UNSOLVED PROBLEM 5 Edge Guards

An edge guard along edge e of polygon P sees a point y in P if there
exists x in e such that x is visible to y. Find the number of edge
guards that suffice to cover a polygon with 7 vertices. Equivalently,
how many edges, lit as fluorescent bulbs, suffice to illuminate the
polygon? Godfried Toussaint conjectured that [7/4] edge guards
suffice except for a few small values of 7.

1.3 THE ART GALLERY THEOREM

UNSOLVED PROBLEM 6 Mirror Walls

For any polygon P whose edges are perfect mirrors, prove (or
disprove) that only one guard is needed to cover P. (This problem is
often stated in the language of the theory of billiards.) In one variant
of the problem, any light ray that directly hits a vertex is absorbed.

The art gallery theorem shows that placing a guard at every vertex
of the polygon is three times more than needed to cover it. But what
about for a polyhedron in three dimensions? It seems almost obvious that
guards at every vertex of any polyhedron should cover the interior of the
polyhedron. It is remarkable that this is not so.

The reason the art gallery theorem succeeds in two dimensions is
the fundamental property that all polygons can be triangulated. Indeed,
Theorem 1.4 is not available to us in three dimensions: not all polyhedra
are tetrahedralizable, as demonstrated earlier in Figure 1.7(c). If our
polyhedron indeed was tetrahedralizable, then every tetrahedron would
have guards in the corners, and all the tetrahedra would then cover the
interior.

Exercise 1.41. Let P be a polyhedron with a tetrahedralization where all
edges and diagonals of the tetrabedralization are on the boundary of
P. Make a conjecture about the number of guards needed to cover P.

Exercise 1.42. Show that even though the Schénhardt polyhedron
(Figure 1.7) is not tetrabedralizable, it is still covered by guards at every
vertex.

Because not all polyhedra are tetrahedralizable, the “obviousness” of
coverage by guards at vertices is less clear. In 1992, Raimund Seidel
constructed a polyhedron such that guards placed at every vertex do not
cover the interior. Figure 1.17 illustrates a version of the polyhedron. It
can be constructed as follows. Start with a large cube and let ¢ <« 1 be
a very small positive number. On the front side of the cube, create an
n x n array of 1 x 1 squares, with a separation of 1 + ¢ between their
rows and columns. Create a tunnel into the cube at each square that does
not quite go all the way through to the back face of the cube, but instead
stops ¢ short of that back face. The result is a deep dent at each square of
the front face. Repeat this procedure for the top face and the right face,
staggering the squares so their respective dents do not intersect. Now
imagine standing deep in the interior, surrounded by dent faces above
and below, left and right, fore and aft. From a sufficiently central point,
no vertex can be seen!

19

20 CHAPTER 1. POLYGONS

Figure 1.17. (a) The Seidel polyhedron with (b) three faces removed to reveal the
interior.

Exercise 1.43. Prove the above claim, which implies that guards at every
vertex of the Seidel polyhedron do not cover the entire interior. Notice
that this implies the Seidel polyhedron is not tetrahedralizable.

Exercise 1.44. Let n be the number of vertices of the Seidel polybedron.
What order of magnitude, as a function of n, is the number of
guards needed to cover the entire interior of the polybedron? (See the
Appendix for the Q notation that captures this notion of “order of
magnitude” precisely.)

1.4 SCISSORS CONGRUENCE IN 2D

The crucial tool we have employed so far is the triangulation of a polygon
P by its diagonals. The quantities that have interested us have been
combinatorial: the number of edges of P and the number of triangles
in a triangulation of P. Now we loosen the restriction of only cutting P
along diagonals, permitting arbitrary straight cuts. The focus will move
from combinatorial regularity to simply preserving the area.

A dissection of a polygon P cuts P into a finite number of smaller
polygons. Triangulation can be viewed as an especially constrained form
of dissection. The first three diagrams in Figure 1.18 show dissections of
a square. Part (d) is not a dissection because one of the partition pieces is
not a polygon.

Given a dissection of a polygon P, we can rearrange its smaller
polygonal pieces to create a new polygon Q of the same area. We say two

1.4 SCISSORS CONGRUENCEIN2D 21

(a) (b) (c) (d)

Figure 1.18. Three dissections (a)-(c) of a square, and (d) one that is not a
dissection.

polygons P and Q are scissors congruent if P can be cut into polygons
Pi, ..., P, which then can be reassembled by rotations and translations
to obtain Q. Figure 1.19 shows a sequence of steps that dissect the
Greek cross and rearrange the pieces to form a square, detailed by
Henry Dudeney in 1917. However, the idea behind the dissection appears
much earlier, in the work of the Persian mathematician and astronomer
Mohammad Abu’l-Wafa Al-Buzjani of the tenth century.

The delight of dissections is seeing one familiar shape surprisingly
transformed to another, revealing that the second shape is somehow
hidden within the first. The novelty and beauty of dissections have
attracted puzzle enthusiasts for centuries. Another dissection of the Greek
cross, this time rearranged to form an equilateral triangle, discovered by
Harry Lindgren in 1961, is shown in Figure 1.20.

S0

Figure 1.19. The Greek cross is scissors congruent to a square.

i VAL

Figure 1.20. Lindgren’s dissection of a Greek cross to an equilateral triangle.

22

CHAPTER 1. POLYGONS

Exercise 1.45. Find another dissection of the Greek cross, something
quite different from that of Figure 1.19, that rearranges to form a
square.

Exercise 1.46. Find a dissection of two Greek crosses whose combined
pieces form one square.

Exercise 1.47. Show that any triangle can be dissected using at most three
cuts and reassembled to form its mirror image. As usual, rotation and
translation of the pieces are permitted, but not reflection.

Exercise 1.48. Assume no three vertices of a polygon P are collinear.
Prove that out of all possible dissections of P into triangles, a
triangulation of P will always result in the fewest number of triangles.

If we are given two polygons P and Q, how do we know whether they
are scissors congruent? It is obvious that they must have the same area.
What other properties or characteristics must they share? Let’s look at
some special cases.

Lemma 1.49. Every triangle is scissors congruent with some rectangle.

Figure 1.21 illustrates a proof of this lemma. Given any triangle, choose
its longest side as its base, of length b. Make a horizontal cut halfway
up from the base. From the top vertex, make another cut along the
perpendicular from the apex. The pieces can then be rearranged to form
a rectangle with half the altitude a of the triangle and the same base b.
Note this dissection could serve as a proof that the area of a triangle is

ab/2.
Lemma 1.50. Any two rectangles of the same area are scissors congruent.

Proof. Let Ry be an (I; x hi)-rectangle and let R, be an (I x hy)-
rectangle, where [- by = [- bh,. We may assume that the rectangles
are not identical, so that by # h,. Without loss of generality, assume
h2<1/)1§l1 <12.

We know from [; < [, that rectangle R; is longer than R;. However,
for this construction, we do not want it to be too long. If 2I; < I,

AN
/ v

Figure 1.21. Every triangle is scissors congruent with a rectangle.

1.4 SCISSORS CONGRUENCE IN 2D

Figure 1.22. Two rectangles satisfying b, < by <y <1, < 2I;.

then cut R, in half (with a vertical cut) and stack the two smaller
rectangles on one another. This stacking will reduce the length of R,
by half but will double its height. However, because [1 - b1 = [, - by, the
height of the stacked rectangles 2h, will still be less than h;. Repeat
this process of cutting and stacking until we have two rectangles with
hy < by <1y <l <2y, as shown in Figure 1.22.

After placing R; and R, so that their lower left corners coincide
and they are flush along their left and base sides, draw the diagonal
from x, the top left corner of Ry, to vy, the bottom right corner of R;.
The resulting overlay of lines, as shown in Figure 1.23(a), dissects each
rectangle into a small triangle, a large triangle, and a pentagon. We
claim that these dissections result in congruent pieces, as depicted in
Figure 1.23(b). It is clear the pentagons C are identical. In order to see
that the small triangles A; and A, are congruent, first notice that they
are similar to each other as well as similar to the large triangle xoy, as
labeled in Figure 1.23(a). Using [1 - by = I, - b;, the equation

bi=h b (1.2)
L -1 [
can be seen to hold by cross-multiplying. Because A; is similar to xoy,
whose altitude/base ratio is b1/l5, and the height of Ay is by — by,
equation (1.2) shows that the base of Ay is [— [;. But since the base

23

(a) (b)

Figure 1.23. Any two rectangles of the same area are scissors congruent.

24

CHAPTER 1. POLYGONS

length of A, is I, — [y, it follows that A; and A, are congruent. A
nearly identical argument shows that the large triangles B; and B, are
congruent. The theorem follows immediately. O

Exercise 1.51. Let polygon Py be scissors congruent to polygon P, and
let polygon P, be scissors congruent to polygon Ps. Show that polygon
Py is scissors congruent to polygon P3. In other words, show that
scissors congruence is transitive.

Exercise 1.52. Dissect a 2 x 1 rectangle into three pieces and rearrange
them to form a /4 x N2 rectangle.

It is immediate that scissors congruence implies equal area, but the
converse is by no means obvious. This fundamental result was proved by
Farkas Bolyai in 1832 and independently by Paul Gerwien in 1833.

Theorem 1.53 (Bolyai-Gerwein). Any two polygons of the same area are
scissors congruent.

Proof. Let P and Q be two polygons of the same area «. Using
Theorem 1.4, dissect P into # triangles. By Lemma 1.49, each of these
triangles is scissors congruent to a rectangle, which yields 7 rectangles.
From Lemma 1.50, these n rectangles are scissors congruent to 7 other
rectangles with base length 1. Stacking these 7 rectangles on top of one
another yields a rectangle R with base length 1 and height «. Using
the same method, we see that Q is scissors congruent with R as well.
Since P is scissors congruent with R, and R with O, we know from
Exercise 1.51 that P is scissors congruent with Q. O]

Example 1.54. The Bolyai-Gerwein theorem not only proves the exis-
tence of a dissection, it gives an algorithm for constructing a dissection.
Consider the Greek cross of Figure 1.19, say with total area 5/2.
We give a visual sketch of the dissection implied by the proof of the
theorem to show scissors congruence with a square of the same area.
The first step is a triangulation, as shown in Figure 1.24, converting the
cross into 10 triangles, each of area 1/4 and base length 1. Second, each
triangle is dissected to a rectangle of width 1 and height 1/4. Finally
these are stacked to form a large rectangle of area 5/2.

Now starting from the square of area 5/2, a triangulation yields two
triangles of base length +/5, as shown in Figure 1.25. Each triangle is
then transformed into a v/5/4 x /5 rectangle. Each rectangle needs
to be transformed into another rectangle of base length 1 (and height
5/4). Since this rectangle is too long (as described in the proof of
Lemma 1.50), it needs to be cut into two pieces and stacked. Then,
the (stacked) rectangle is cut and rearranged to form two rectangles of
base length 1.

1.4 SCISSORS CONGRUENCE IN2D 25

AN
AN

> P

RHITHHII

Figure 1.24. Cutting the Greek cross into a rectangle of base length 1 using the

Bolyai-Gerwein proof. The transformations to the colored triangle are tracked
through the stages.

Although the Bolyai-Gerwein proof is constructive, it is far from
optimal in terms of the number of pieces in the dissection. Indeed, we
saw in Figure 1.19 that a 5-piece dissection suffices to transform the
Greek cross to a square.

Exercise 1.55. Following the proof of the Bolyai-Gerwein theorem, what
is the actual number of polygonal pieces that results from transforming
the Greek cross into a square? Assume the total area of the square is
5/2 and use Figures 1.24 and 1.25 for guidance.

KX Exercise 1.56. Show that a square and a circle are not scissors congruent,
even permitting curved cuts.

It is interesting to note that the Bolyai-Gerwien theorem is true for
polygons not only in the Euclidean plane, but in hyperbolic and elliptic
geometry as well.

Figure 1.25. Cutting the square into a rectangle of base length 1 using the Bolyai-
Gerwein proof. The last transformation is color-coded to show the fit of the pieces.

26

CHAPTER 1. POLYGONS

UNSOLVED PROBLEM 7 Fair Partitions

For each positive integer #, is it always possible to partition a given
convex polygon into 7z convex pieces such that each piece has the
same area and the same perimeter? This has been established only
forn =2 and n = 3.

1.5 SCISSORS CONGRUENCE IN 3D

From the discussion above, we see that equal area suffices to guarantee a
dissection of one polygon to another. Is this true in higher dimensions?
That is, if we are given two polyhedra of the same volume, can we
make them scissors congruent? In 1900, in his famous address to the
International Congress of Mathematicians, the renowned mathematician
David Hilbert asked the same question: Are any two polyhedra of
the same volume scissors congruent? This problem was solved in the
negative by Hilbert’s student Max Dehn a few years later. Indeed, Dehn
constructed two tetrahedra with congruent bases and the same height
which are not scissors congruent. In order to understand Dehn’s results,
we need to take a closer look at polyhedra.

Unlike polygons, where angles only appear at the vertices, polyhedra
have angles along edges as well. The angle along each edge of a
polyhedron, formed by its two adjacent faces, is called the dihedral
angle.

Definition. The dibedral angle 6 at the edge e of a polyhedron shared
between two faces f; and f, is the angle between two unit normal
vectors 71 and 7, to f1 and f>, respectively. Thus 7y - 7y = cos6. By
convention, the normal vectors point to the exterior of the polyhedron,
and the dihedral angle at e is the interior angle.

For example, the dihedral angle along each edge of a cube is 7/2. For
further examples of dihedral angles, we will use Figure 1.26, which shows
four tetrahedra embedded inside the cube.

Example 1.57. The tetrahedron on the left in Figure 1.27 repeats
Figure 1.26(a) with labels. The dihedral angle along the edges AD,
BC, and BD is /2, and the edges AB and CD have dihedral angles
of /4. To find the dihedral angle along edge AC, we look back
at the decomposition of the cube in Figure 1.6(c). Here the cube is
tetrahedralized into six polyhedra congruent to the polyhedron on the
left. Thus the dihedral angle along AC is /3.

1.5 SCISSORS CONGRUENCE IN 3D

NS

27

(a) (b) ()
Figure 1.26. Four tetrahedra embedded inside the cube.

Example 1.58. The polyhedron on the right in Figure 1.27 repeats
Figure 1.26(b). The dihedral angle along the edges AD, BD, and CD is
/2, because they are sides of the surrounding cube. Due to symmetry
of the polyhedron, the edges AB, AC, and BC have the same dihedral
angle. We draw the midpoint E of edge BC in order to calculate the
dihedral angle AED along BC. If the cube of Figure 1.26(b) has side
length x, then the length of DE is x/+/2. Because the length of AD is
x, the dihedral angle along BC is arctan v/2.

C

Figure 1.27. Two tetrahedra with congruent bases and the same height.

Exercise 1.59. Find the dibedral angles of the tetrahedra in Figure 1.26(c)
and (d).

Exercise 1.60. Find the dibedral angles of a regular dodecabedron.

The dihedral angles are the key ingredient in understanding the ideas of
Dehn. Instead of looking at these angles themselves, Dehn was interested
in using them up to rational multiples of w. More precisely, let f : R —
Q be a function from the real numbers to the rationals that satisfies

(d)

28

CHAPTER 1. POLYGONS

three properties:

1. f(vi +v2) = f(v1) + f(v2) forall vy, v € R
2. f(qv)=qf(v) forallg e Qand v e R;
3. f(r)=0.

We call any such function a d-function (d for dihedral). For instance,
for any d-function f, we see that

Sw S 5
f<2>=2-f(n)=2~0=0.

Similarly, f maps any rational multiple of 7 to 0. We define a rational
angle as an angle that is a rational multiple of 7, and an irrational angle
as one that is not.

For an edge e of a polyhedron, let /(e) denote the length of e and let
¢(e) denote the dihedral angle of e. For any choice of d-function f, Dehn’s
idea is to associate the value

I(e) - f(o(e))
to each edge e, which he called its mass. Thus the mass of any edge is

0 when its dihedral angle is rational. We define the Debn invariant of a
polyhedron P to be the sum of the masses along the edges of P:

Dy(P) =) lle)- flgle)).
ecP
Notice that the Dehn invariant depends on the choice of a d-function:
For different choices of f, we get different Dehn invariants. The beauty
of the Dehn invariant is that it is truly invariant under dissections. This
is captured in the following theorem, which we prove using techniques
invented by Hugo Hadwiger much later, in 1949.

Theorem 1.61 (Dehn-Hadwiger). Let [be any d-function. If P is a
polybedron dissected into polybedra Py, Pa, ..., P,, then

D¢(P) = D¢(P1) + D¢(P2) + - - + Dg(Py).

Proof. Let f be any d-function. The Dehn invariant of P sums the masses
of the edges of P. After the dissection of P into several polyhedra,
many new edges are introduced. Let e be an edge in the decomposition
of P. There are three possible ways for e to appear in P, only one of
which contributes to the mass sum.

1. Edge e is contained in an edge of P; see Figure 1.28(a). Let ¢(e) be the
dihedral angle of P along e and let {¢1(e), pa(e), ..., Pr(e)} be the set of
dihedral angles of the polyhedral pieces along e in the decomposition.
Then I(e) - f(¢;(e)) is the mass contributed by the polyhedron P; along
edge e. The sum of the masses along e in the decomposition is

I(e) - fgr(e)) +1(e)- f(dale) + - +1(e) - f(Bmle)),

1.5 SCISSORS CONGRUENCE IN 3D

29

’ =

(a) (b)

Figure 1.28. An edge of the dissection contained in (a) an original edge, (b) an
interior of a face, or (c) the interior of the polyhedron.

which becomes

I{e) - f(gr(e) + ¢a(e) + - + dmle))

by Property 1 of a d-function. Since this is equal to I(e) - f(¢(e)), the
masses add up in the required manner.

2. Edge e is contained in the interior of a face of P; see Figure 1.28(b). In
this case, the sum of the masses becomes [(e) - f(¢(e)) = I(e)- () = 0.
So a new edge created from a dissection that appears in the interior of
a face of P has no mass.

3. Edge e is contained in the interior of P; see Figure 1.28(c). By a similar
argument as before, [(e) - f(27) = 0, again contributing no new mass.

Thus the mass sum under the dissection depends only on the edges of
P. As each edge e is covered exactly once by dissection edges, whose
lengths sum to I(e), the mass sum for any dissection is exactly the same
as the mass sum for the original P. O

Corollary 1.62. Let P and Q be polybedra and let f be any d-function. If
D¢(P) does not equal D¢(Q), then P and Q are not scissors congruent.

Proof. We prove this by contradiction. Let P and Q be scissors congru-
ent. Then there is a dissection of P into polyhedra Py, P,, ..., P,. By
the Dehn-Hadwiger theorem,

D¢(P) = D¢(P1) + D¢(P2) +-- -+ Dg(P,) = Df(Q),

the last equality following because the rearrangement of the polyhedral
pieces forms Q. O

Example 1.63. Consider the tetrahedron on the left of Figure 1.27,
calling it T;. Example 1.57 shows that its set of dihedral angles is
{/2, /3, w/4}. Because all the dihedral angles are rational, the mass
for all the edges is 0. Thus D¢(T;) = 0 for any d-function f.

30

CHAPTER 1. POLYGONS

Example 1.64. Consider the tetrahedron on the right of Figure 1.27, call-
ing it T>. If the cube of Figure 1.26(b) has side length 1, Example 1.58
shows three edges of length 1 with dihedral angle 7/2 and three edges
of length +/2 with dihedral angle arctan +/2. Hence,

Dy(T) =3 f (%) +3v2 flarctan v/2).

The first term is zero, but the second term need not be. For example,
f could be the identity function on irrational multiples of 7, in which

case Df(Th) = 3v/2 arctanv/2 # 0.

These two examples show the tetrahedra T; and T; in Figure 1.27, both
having congruent bases and the same height and so the same volume,
have different values for their Dehn invariant. By the Dehn-Hadwiger
theorem, T; and T, are not scissors congruent. Generalizing this example,
any polyhedron with all rational dihedral angles can never be dissected to
a polyhedron with at least one irrational dihedral angle.

Exercise 1.65. Show that a regular tetrahedron cannot be scissors
congruent with a cube.

K Exercise 1.66. Show that no Platonic solid is scissors congruent to any

other Platonic solid.

Although the Dehn-Hadwiger theorem can be used to show that two
polyhedra are not scissors congruent, it does not directly tell us anything
about the converse. In 19635, Jean-Pierre Sydler showed the following to
be true, although its proof is quite involved.

Theorem 1.67 (Sydler). Polybedra P and Q are scissors congruent if
D¢(P) = D¢(Q) for every d-function f.

This, along with the Dehn-Hadwiger theorem, show that Dehn
invariants are a complete set of scissors-congruent invariants for
polyhedra. To understand the power of this result, consider the
tetrahedron in Figure 1.26(a). By Example 1.63, this tetrahedron as
well as any cube have Dy equal to zero for any d-function f. Thus, by
Sydler’s theorem, a dissection of a cube exists whose rearrangement yields
this tetrahedron! Indeed, Sydler demonstrated a beautiful construction
showing how this dissection works. Figure 1.29 shows the tetrahedron
being transformed into a prism whose base is an isosceles right triangle. It
is then not hard to imagine how this prism can be made into a rectangular
block, which then can be made into a cube.

Exercise 1.68. Complete the construction above, dissecting the tetrabe-
dron of Figure 1.29 into a cube.

1.5 SCISSORS CONGRUENCE IN3D 31

$ <
DN DS
WWW§ ’

Figure 1.29. Sydler's dissection of a tetrahedron into a prism.

UNSOLVED PROBLEM 8 Dehn Construction
Given two equal-volume polyhedra with all rational dihedral angles,
construct an efficient algorithm for finding a dissection, as guaran-
teed by Sydler’s theorem.

KX Exercise 1.69. Let P bea2 x 1 x 1 rectangular prism. Cut P into eight
or fewer pieces and rearrange the pieces to form a cube.

UNSOLVED PROBLEM 9 Five-Piece Puzzle

Cana 2 x 1 x 1 rectangular prism be cut into five or fewer pieces,
which can then be rearranged to form a cube?

32

CHAPTER 1. POLYGONS
SUGGESTED READINGS

Joseph O’Rourke. Computational Geometry in C. Cambridge University
Press, 2nd edition, 1998.

Chapter 1 of this text covers the first three sections of this chapter with a more
algorithmic slant.

Richard Stanley. Enumerative Combinatorics, Volume I and II. Cam-
bridge University Press, 1997, 1999.
This monumental two-volume work covers the art of counting combinatorial
objects. The classical text in graduate school. In particular, more than 100 objects
are described that are all counted by the Catalan number.

Joseph O’Rourke. Art Gallery Theorems and Algorithms. Oxford Uni-
versity Press, 1987.
A monograph on art gallery theorems, now more than 20 years old, but still
(we think) the first source to consult. Out of print but available at http://
cs.smith.edu/"orourke//books/ArtGalleryTheorems/art.html. For a more
recent survey, see Jorge Urrutia, “Art gallery and illumination problems™ (in Jorg-
Ridiger Sack and Jorge Urrutia, editors, Handbook of Computational Geometry,
chapter 22, pages 973-1027, Elsevier, 2000).

Greg Frederickson. Dissections: Plane & Fancy. Cambridge University
Press, 1997.
A delightfully readable book on dissections of polygons and polyhedra. Fred-
erickson also wrote two other books on more specialized dissections: Hinged

Dissections: Swinging ¢& Twisting (Cambridge University Press, 2002) and Piano-
Hinged Dissections: Time to Fold! (A K Peters, 2006).

Vladimir Boltyanskii, Hilbert’s Third Problem. V. H. Winston & Sons,
1978.
A gem of a book, covering a broad scope of problems and proofs related to scissors
congruence in 2D and 3D. Includes a reworking of Sylder’s proof of the converse
of the Dehn-Hadwiger theorem.

CONVEX HULLS

The next three chapters focus on finite point sets, discrete structures as
fundamental as polygons for computational geometry. Unlike polygon
vertices, point sets are unordered. Often the first step in organizing a point
set is finding its convex hull, the topic of this chapter. We start with the
foundations of convexity (Section 2.1) and then provide a first algorithm,
the incremental algorithm (Section 2.2). After a brief detour introducing
the art of algorithm analysis (Section 2.3), we present two more algo-
rithms: gift wrapping and the Graham scan (Section 2.4). A lower bound
(Section 2.5) then shows that in some sense the algorithm search is over,
because the Graham scan is “asymptotically optimal.” Nevertheless, we
push to a fourth algorithm, divide-and-conquer (Section 2.6), not only
because it illustrates an important algorithm paradigm, but because it
is the only one of the four that generalizes to an optimal algorithm for
finding the convex hull in three dimensions (Section 2.7).

2.1 CONVEXITY

In the previous chapter we discussed convex polygons. Now we extend
the idea to convex regions: a region is convex if any two points of the
region are visible to one another within the region. In this chapter, given
a set of distinct points S, we are interested in constructing its convex
hull. We can visualize the convex hull intuitively: if each point of S is
a nail pounded into the plane, the convex hull is the region enclosed by
an elastic rubber band stretched around all the nails. Figure 2.1(a) shows
a nonconvex region containing a point set S; part (b) shows a convex
region enclosing S. The convex hull of § is given in Figure 2.1(c). There
are numerous practical applications for finding the convex hull, including
collision detection, Geographic Information Systems (GIS), and pattern
recognition.

Based on the intuition provided by the rubber-band analogy, the
convex hull is the smallest convex region containing the point set S. The
notion of “smallest” can be formally captured as follows.

Definition. The convex hull of S, denoted by conv(S), is the intersection
of all convex regions that contain S.

34

CHAPTER 2. CONVEX HULLS

(a)

(b) (c)

Figure 2.1. A point set S along with (a) a nonconvex region enclosing S, (b) a
convex region enclosing S, and (c) the convex hull of S.

Exercise 2.1. Show that the use of the word “convex” in convex hull is
justified; that is, show that conv(S) is indeed a convex region.

Although this definition of convex hull is natural, it is not computation-
ally useful in that it does not immediately suggest a way actually to find
the convex hull of a point set. Intersecting all the convex sets containing
S is hardly an option. An alternative characterization based on visibility
will eventually lead us to a computational method of finding the convex
hull.

Recall that a region is convex if and only if any two points of the region
are visible to each other. In other words, for any two points x and y in a
convex region R, the line segment xy is also in R. Any point of the line
segment xy can be written as ax+ By, wherea > 0,8 > 0,and e+ = 1.
So as « varies from 1 to 0, B varies in lock-step from 0 to 1, and the point
moves along the segment xy, starting at x and ending at y.

This idea can be generalized to an arbitrary number of points: A convex
combination of points S = {p1, ..., p,} is of the form

)"lp1++)\npns

where A; > 0 and) 4, = 1. In some sense, the set of convex combina-
tions tries to capture visibility from all points in the set S. The following
theorem shows that this is exactly what we seek.

Theorem 2.2. For a point set S = {p1, ..., pn}, the convex hull of S is
the set of all convex combinations of S.

Proof. Let M be the set of convex combinations of S. Formally,

/\izo,ZAi=1}.

In order to prove conv(S) = M, we show conv(S) € M and M C
conv(S).

M={k1p1+---+knpn

2.1 CONVEXITY 35

Part I: conv(S) € M. It is easy to see that M contains S. If A; = 1 and all
others are 0, we get p; in M. Thus, if we can prove that M is a convex
region, then conv(S) € M since conv(S) is the intersection of all convex
regions containing S. Let x and y be any two points in M; we need to
verify the segment xy is in M. Since x is in M, it can be written as

x=Mmp1+-+Aupn, (2.1)
where A; > 0 and > A; = 1. Similarly, y can be written as
y =P+ + A D

where A} > 0 and) 1} = 1. Moreover, any point of the segment xy
can be expressed as

ax+By=ad Mpi+BY Mpi=> (ah+pA)pi
fora > 0, 8 >0, and @ + B = 1. Because (aA; + A}) > 0, and

Yolari+pr)=ady k+BY M=a-1+8-1=1,
it follows that the segment xy is in M. Thus M is a convex region.

Part Il: M C conv(S). We show that any point in M, which may be
expressed as in equation (2.1), is in conv(S) by induction on 7. It is
clear this is true when 7 = 1; then M = conv(S) = p;. Assume it is true
for every point set S’ containing fewer than 7 points, and now consider
the set S with # points, p1, ..., p,. By the induction hypothesis, any
point

Xx=Mpi+-+r,_1Dn1

is in conv(S’) C conv(S) if and only if 2] > 0 and), A; = 1. Now we
choose A} = 1;/(1 — A,) because A1 + --- 4+ 1,1 = 1 — A,,. Note that
we still satisfy the conditions above. And because conv(S’) C conv(S),
we know that x is in conv(S). Because p, and x are both in conv(S),
and since conv(S) is convex, then any point in the segment xp, is in
conv(S). Thus

A An—1
1= (2 p -+ ot |+ Anbn = A1 D14+ Anpn
()(1)\npl 1 }LnP 1) p 11 p

is in conv(S), where " 2; = 1. O
This theorem gives considerable insight into what constitutes the

convex hull, but it is not yet algorithmic. We turn to our first algorithm
in the next section.

Exercise 2.3. Let S be the four points {(0,0), (0, 1), (1,0), (1, 1)} in the
plane. Show using Theorem 2.2 that conv(S) is the square with vertices
at S.

36

CHAPTER 2. CONVEX HULLS

Exercise 2.4. For a point set S in the plane with at least four points,
show that S can be partitioned into two sets A and B such that conv(A)
intersects conv(B).

Exercise 2.5. Show that conv(S) is the convex polygon with the smallest
perimeter that contains S.

Exercise 2.6. Show that conv(S) is the convex polygon with the smallest
area containing S.

X Exercise 2.7. Show that the rectangle of smallest area enclosing a point

set S has at least one of its sides flush with (i.e., containing) an edge of
conv(S).

2.2 THE INCREMENTAL ALGORITHM

Given a point set S in the plane, how do we compute the convex hull?
In fact, what does it even mean to compute the convex hull? A natural
representation is the boundary of the polygon conv(S), called the hull of
the point set S. The vertices on the hull are referred to as hull vertices.
Computing the convex hull means identifying the hull vertices.!

If someone were to give you a piece of paper with a marked set of
points S, it is easy for your eyes to find the hull of S. But what if you
were given a collection of points that were listed using their coordinates
(x, y) in the plane, as in Figure 2.2, which is how data are usually stored?
Naturally, the extreme points are in the hull, the leftmost and rightmost
points (extreme in x) and the highest and lowest points (extreme in 7).
It is more difficult to identify the other hull points. Figure 2.2 shows
a data set and the corresponding points in the plane. Finding the hull
points (colored) in the data set without graphing is not easy, even with
just the 18 points considered. For point sets in the thousands or more,
visualization breaks down.

Given a point set as a list expressed in coordinates, our goal will be
to identify the hull points. The creativity needed to construct a proof of
a theorem is not identical to that needed to construct an algorithm, a
blueprint of instructions on how to construct what the theorem ensures
exists. As our emphasis is on the geometry that underlies both proof and
algorithms, we will proceed through a series of algorithms for the convex
hull, stressing geometric intuition throughout.

! The term convex hull usually means the convex set conv(S) in the mathematics literature, and
the convex polygonal boundary in the computer science literature. Here we opt for the former
meaning of convex hull and (somewhat nonstandardly) use hull for its boundary.

2.2 THE INCREMENTAL ALGORITHM 37

(2,10) (10,17) l
3,3) (10,13)
(4,15) (12,5) ¢
5,7 12,18
(5,7) (12,18) I
(6,11) (13,3)
(7,2) (13,13)
(7,16) (15, 8)
(8,5) (15,15) ps hs
9,9) (17,11)
Figure 2.2. The left side lists 18 points, with the hull points colored red. The right
side shows the plot of these points in the plane, again with the hull points marked.
We begin with an algorithm that is closest to a mathematical proof,
namely proof by induction. At a high level, we assume the hull of & points
has been constructed and use this to build the hull with £+ 1 points. This
is called the incremental algorithm; Figure 2.3 shows this algorithm in
action.
The foundation of this algorithm is based on an ordering of our point
set S. We order the points of S based on their x-coordinates. Note that
if two or more points share the same x-coordinate, we can always rotate
the plane slightly such that all points have distinct x-coordinates. So we
~ . .
. . .
. °
.
. . o
® o
. .

Figure 2.3. The incremental algorithm in action.

38

CHAPTER 2. CONVEX HULLS

assume for simplicity of exposition that the x-ordering is unique, and will
return to this issue later in the next section.

Let Hs be the first three points in S ordered such that they traverse
counterclockwise around the triangle conv(H;). Now assume H is the set
of hull points of the first k points in S, which is ordered counterclockwise
around conv(H). Assuming we have constructed Hj, consider the next
point p on our list S. Since this list is ordered, p belongs to Hp.1 because
it is extreme in the x-direction. But by adding p to our hull, several of the
previous hull points might become interior to the polygon. So we now
need a way to add p to our hull list Hy in the appropriate position while
removing possible extraneous points.

Definition. Let P be a convex polygon and x a point on the boundary of
P. Then a line L containing x supports P at x if all of P lies on one
side of L. Line L is then called a tangent to P at x.

Our task is to find two points in H, which have tangent lines to
conv(H) passing through p. Figure 2.4 shows an example of (a) the
convex hull conv(Hg) with a point p, (b) two points in H, with the desired
tangent lines through p, and (c) the new conv(Hy1). But how can we find
these two special tangency points on Hj?

The key observation is to see things from the perspective not of the
vertices of conv(Hy), but of its edges. As Figure 2.4(b) shows, each edge
of conv(Hy) is either visible to p, invisible to p, or lies on the same line
as p. To keep matters simple, we skirt this last possibility by assuming
that no three points of S lie on a line. So there will be two vertices of the
convex hull where edges switch from being visible to being invisible from
p — these are the tangency vertices. Consider any edge of the polygon
conv(Hy), and let L denote the line on which this edge lies. Then observe
that an edge is visible to p if p and conv(H) lie on opposite sides of
L. Similarly, the edge is invisible if they lie on the same side of L; see
Figure 2.5. So the points we seek are those with tangent lines that group
and separate conv(Hy) and p.

(c)

Figure 2.4. Convex hull of k points and the incremental addition of another point.

2.3 ANALYSIS OF ALGORITHMS 39

Figure 2.5. Tangent line lines transitioning from grouping and separating the
convex hull from the new point p.

Once the two points of tangency are found, we simply insert them
into the appropriate position in conv(H), removing the new interior
points. Thus, if p; and p; are the special vertices of tangency, where p;
appears before p; in the counterclockwise ordering of Hp, then Hp 1 =

{' B pi—17 p17 pa p/7 p]+11 .. ‘}‘
Exercise 2.8. Argue that the incremental algorithm terminates.

Exercise 2.9. Let the diameter of a point set S be the largest distance
between any two poinis of S. Prove that the diameter of S is achieved
by two hull vertices.

X Exercise 2.10. Prove that if S is the set of n points sampled from a
uniform distribution in a unit square, then the expected number of
points on the hull of S is of order O(logn).

2.3 ANALYSIS OF ALGORITHMS

Although the incremental algorithm uses the geometry of visibility to
construct the convex hull, it does not take long to realize that, as
described, it is not very efficient. For instance, as shown in Figure 2.3,
even when the actual hull of the point set has only a handful of
points, intermediate stages of the algorithm repeatedly process points that
ultimately may be discarded. It is natural to seek better algorithms. Before
moving on, however, there are two concerns that need to be addressed.

1. What does it mean for one algorithm to be better than another?
2. Does our algorithm work for all types of point sets in the plane?

40

CHAPTER 2. CONVEX HULLS

(b) (c)

Figure 2.6. A point set along with hull points and extreme points.

Let’s start with the second question first. At first glance, the incremental
algorithm seems to succeed for any point set in the plane. When we look
closer, we realize that not all cases have been covered. Indeed, we have
ignored certain special cases that can occur, such as having points with the
same x-coordinates, or three collinear points. We said the former could be
relieved by slight rotation in the plane, but the latter can only be avoided
either by perturbing the point positions (which may alter the hull) or by
stipulating that our input set S simply should not have such troublesome
triples. A set of points (or more general geometric objects) are said to be
in general position (i.e., generic position) if they avoid the troublesome
configurations, known as degenerate situations.

Consider the point set illustrated in Figure 2.6(a). Here even the notion
of the hull is ambiguous. Should the hull include all the vertices of the
boundary, even flat vertices as in (b), or just the extreme corners, shown
in (c)? What constitutes “general position” depends on the algorithm.
For the incremental algorithm, we saw two degeneracies: two or more
points on a vertical line, and three or more points on any line. For some
algorithms we consider in the next two chapters, four points on a circle
constitute a degeneracy. In general, degenerate cases arise when there is
some algebraic relationship between the points that plays a role in the
algorithm.

We will often assume general position for our algorithm inputs to
permit us to focus on the essential geometric ideas. But the reader should
be aware that any programmed implementation of an algorithm must
deal with degeneracies, either handling them correctly or excluding them
by fiat. We take some comfort in knowing that a point set is in general
position with probability 1 if the # points are chosen randomly. But
the flip side of this coin is that inputs derived from the real world are
rarely random. The Suggested Readings at the end of this chapter point
to resources on this important topic.

Exercise 2.11. Find a way to order points in the plane without moving
them into general position.

Exercise 2.12. Alter the incremental algorithm so that it still works
for point sets which may have two or more points with the same
x-coordinate, without rotating the set into general position.

2.3 ANALYSIS OF ALGORITHMS

Exercise 2.13. Adjust the incremental algorithm so that it still works for
point sets that may include three or more collinear points.

Now let’s address our first question: what does it mean to find a better
algorithm than the incremental one? One measurement of quality is how
fast an algorithm can solve the problem. Here the notion of speed is with
respect not to some particular computer standard, but to the number
of steps needed to finish the algorithm. Of course, the number of steps
needed depends not just on the algorithm but on the given point set.
Moreover, what constitutes a “step” is not evident. Complexity analysis
captures the speed of an algorithm by expressing the growth rate of its
running time with respect to the input size, using the big-Ob notation. The
reader unfamiliar with this concept should consult the Appendix, which
gives a thumbnail sketch of the main ideas. We repeat a few reminders
here.

For an input of size 7 (such as 7 numbers or 7 point coordinates),
a running time of O(f(n)), where f(n) is some function of 7, means
that cf(n) is an upper bound on the running time of the algorithm,
for some constant ¢ > 0 and for sufficiently large n. The phrase “for
sufficiently large #” implies that only the eventual asymptotic behavior is
of interest and allows ignoring all but the dominant terms of the function
f(n). By just seeking an upper bound, a bound that holds even for the
worst-case input, we remove the dependence of the running time on any
characteristics of the input.

Any computation that has running time O(1) is a constant-time
computation and a “step” of an algorithm is any such computation. For
example, one step of the incremental algorithm is to determine whether
or not an edge ab of conv(Hy) is visible to p. This can be accomplished
by determining whether (a, b, p) forms a clockwise or counterclockwise
triple. Ignoring the details of this computation, it is clear it does not
depend on 7, the number of points in S. Thus it is an O(1) time
computation.

A key complexity result is that sorting 7 numbers can be accomplished
in O(nlogn) time, an upper bound result holding for worst-case input.
Moreover, for this problem, 7log#n has also been established as a lower
bound. (This is an intricate result as it must cover all conceivable algo-
rithms, and even then it only holds in certain “models of computation,”
such as the decision-tree model. See the Appendix for further details.)
The notation used to express this lower bound is Q(nlog#n). Thus,
having identical upper and lower bounds firmly nails the computational
complexity of sorting algorithms.

With this background, let’s compute the running time of the incremen-
tal algorithm described above. Given 7 points in S, we first sort them by

41

42

CHAPTER 2. CONVEX HULLS

their x-coordinate. This can be accomplished in O(7log #) time. For each
point of S (after the first three), we need to test each edge of the current
hull to see whether it is visible to the point. In the worst case, we might
need to consider k£ — 1 edges when adding the kth point. Since this test
needs to be executed for each new point, we could perform as many as
nn—1) n” n

—(142)=> — = —
2 U+2)=7-5-3

constant-time computations. Since the most significant term of this sum is
n?, the time complexity is O(n?). Note that the sorting step with O(log)
time is dominated by and therefore absorbed into this O(7?) time. Thus
the incremental algorithm as described has guadratic time complexity.
We capture the incremental algorithm at a high level as follows:

3444+ (n—1)=

INCREMENTAL Convex Hull Algorithm O(n?)

Sort the points of S according to their x-coordinate. The first three
of these points determine a triangle, our starting hull. Consider the
next point in the ordered set S, add it to the hull, and remove the
enclosed non-hull points. Continue this process of adding one point
of S at a time until all of S has been processed.

Exercise 2.14. Given three points (a, b, ¢), detail a computation that will
decide if they form a clockwise or a counterclockwise triangle.

KX Exercise 2.15. In the incremental algorithm, find a method to search for

the tangent lines that leads, overall, to a time complexity of O(n) rather
than O(n?). Notice that this improves the speed of the algorithm to
O(nlogn).

2.4 GIFT WRAPPING AND GRAHAM SCAN

The incremental algorithm followed the example of a standard mathemat-
ical proof by induction. Although a time complexity of O(n?) might seem
acceptable, if 7 is a million, #? is a trillion, which leads to unacceptable
computation times even with a small time per step. The intermediate
stages of the incremental algorithm potentially process all the points of
S, rather than trying to find the hull points more directly. Is there a way
to find the hull points more quickly? One approach is to wrap a string
around the entire point set, where the string catches and turns at each
of the hull points. This method is appropriately called the gift-wrapping
algorithm, first suggested by Donald Chand and Sham Kapur in 1970
(primarily for hulls in higher dimensions). Figure 2.7 shows this algorithm
in action.

2.4 GIFT WRAPPING AND GRAHAM SCAN

43

Figure 2.7. The gift-wrapping algorithm in action.

Let’s look at the details. Let S be a point set in general position, with
no three points collinear. Consider the bottommost point; if there are
ties, choose the rightmost. This point will be the anchor from which we
wind our string around S. From this point, draw a line segment to all
other points in S. Choose the next anchor point on our wrapping of S to
be the point that makes the largest angle with the horizontal line. Now
that we have started our wrapping, we continue as follows. From the
new anchor, draw a line segment to all other points in S, and choose
the next anchor forming the largest angle with the last constructed hull
edge. This is repeated until the algorithm ends, winding around the entire

hull.

Exercise 2.16. Prove that the point forming the largest angle to the
previous edge must be a hull point.

Exercise 2.17. Show that this algorithm indeed produces the convex hull,
closing up the polygon at the starting point.

Exercise 2.18. We phrased the gift-wrapping algorithm in terms of angle
comparisons, which are notoriously slow and numerically unstable
when implemented naively. Show that angle comparisons can be
replaced by LEFT-OF tests, where LEFT-OF(a, b, ¢) is true exactly when
c is left of the directed line through a and b.

What about the time complexity of the gift-wrapping algorithm? At
each point, the angle to all other points must be calculated, which is 7.
This needs to be done as many times as there are points on the hull.
Thus for S with 7 points and » hull points, the time complexity of the

44

CHAPTER 2. CONVEX HULLS

gift-wrapping algorithm is O(nh). At worst, b could be n, which renders
gift wrapping the same worst-case time complexity as the incremental
algorithm. But this algorithm has the advantage of being outpui-sensitive:
the complexity is proportional to the final hull size ». We summarize as
follows:

GIFTWRAPPING Convex Hull Algorithm O(nh)

Start with a known point on the hull as an anchor, such as the
bottommost point. Comparing angles to all other points from this
anchor, choose the point with the largest angle. Repeat this process,
moving around the hull, analogous to the process of winding a string
around the point set.

Exercise 2.19. Describe a point set with n points that serves as the worst-
case for the gift-wrapping algorithm.

Exercise 2.20. Describe a point set with n points that constitutes the
best-case for the gift-wrapping algorithm. What is its time complexity
in this case?

At Bell Laboratories in the late 1960s, Ron Graham needed an
algorithm to compute the convex hull of about 10,000 points in the
plane. The O(7?)-time algorithm was too slow for this practical use on
the processors of that period, so Graham developed a simple algorithm
to meet this need. His 1972 paper is arguably the first publication in
computational geometry. Instead of calculating the angle at each point on
the hull, Graham’s insight was to initially sort the points based on these
angles. Then, with only a little additional work, he was able to eliminate
any extraneous points and focus on just the hull points. We now describe
this Graham scan algorithm, tracking the example in Figure 2.8.

For a point set S in general position, just as in the gift-wrapping
algorithm, choose the rightmost bottom point. Sort the remaining points
of S by the angle they form with the horizontal line, from the largest angle
to the smallest. From here on, the points are processed in this angularly
sorted order. For each point ¢, a calculation is made to determine whether
the two endpoints of the last constructed hull edge ab and ¢ form a left
turn or a right turn. If abc is a right turn, this means that b is not part
of the hull and so should be removed from consideration (such as points
a =3,b=4,and ¢ = 5 in Figure 2.8). This discarding continues as long
as the last three points form a right turn. We move to the next point in

2.4 GIFT WRAPPING AND GRAHAM SCAN

45

Figure 2.8. The Graham scan algorithm in action. Red points form right turns and
are discarded from the hull.

our list once abc is a left turn. This continues until we eventually return
to the starting point, which completes the hull.

Exercise 2.21. Alter the Grabam scan algorithm so that it still works for
points in degenerate position.

Exercise 2.22. Describe a point set with n points that is the worst-case
for the Grabam scan algorithm.

What is the time complexity of the Graham scan algorithm? As men-
tioned in Section 2.3, sorting the points has time complexity O(7nlogn).
As we walk through the algorithm, we see that each point is considered
at most twice, once when added and once if it forms an illegal right
turn. Since right-turn discarded points are never revisited, the search
for hull points executes O(n) iterations. So the overall complexity is
O(nlogn), dominated not by the hull search but by the initial sorting
of the points.

46

CHAPTER 2. CONVEX HULLS

GRAHAM SCAN Convex Hull Algorithm O(nlog n)

Choosing the bottommost point as an anchor, order all other points
based on the angles they form about this anchor. Construct the hull
by following this ordering, adding points for left hull turns and
deleting for right turns.

Exercise 2.23. Given a point set S, design an algorithm that finds some
polygon (any polygon) whose vertices are precisely S.

Exercise 2.24. Design a Graham-like algorithm that first sorts the points
by their x-coordinate, and then computes the “upper” and “lower”
hulls separately. The upper hull is found by repeatedly removing local
minima, and the lower hull similarly. Detail the steps needed to realize
this high-level description.

K Exercise 2.25. Design an algorithm to find the convex hull of a polygon

in O(n) time.

2.5 LOWER BOUND

So far, we have described three algorithms for constructing the convex
hull, each superior to the previous in terms of time complexity. All three
algorithms are strongly rooted in geometric intuition. The key question
now is whether we can improve on the O(nlog#n) time complexity
achieved by Graham’s algorithm. Is there some other geometric insight
about point sets that we can use to push the envelope? It turns out the
answer is NO, as shown by this beautiful theorem.

Theorem 2.26. Let S be a point set in the plane. An algorithm that finds
the hull points of S in the order of walking around the convex hull
cannot be faster than O(nlogn) time. That is, Q(nlogn) is a lower
bound on the number of comparisons made by a sorting algorithm.

Proof. We already mentioned that it has been established that Q(7log »)
is a lower bound on sorting # numbers in the decision-tree model,
which counts comparisons between the numbers being sorted. We now
show the same lower bound holds for convex hull algorithms, because
if we could construct the hull faster, we could then sort faster.

Suppose we are given an unsorted list of positive numbers
{x1, X2, ..., x,}. Construct the set of points in the plane (x;, x?) as
shown in Figure 2.9. Notice that these points lie on the parabola
y = x*. We use a convex hull algorithm to construct the hull points.

2.5 LOWER BOUND

47

Figure 2.9. Giving height x? to points x; in a list, landing on a parabola y = x?.

Because parabolas are convex, every point (x;, x?) is on the hull. Find
the lowest point on the hull in O(n) time. The order in which the points
occur on the hull counterclockwise from the lowest point is the sorted
order of the input x; numbers. So we have shown how to use a convex
hull algorithm to sort. O

Incidentally, this is the typical approach to establishing a lower bound
on all algorithms that solve a particular problem: reduce the problem
to another whose lower bound had been previously established. How to
establish lower bounds on some base problems (such as sorting) is a topic
for an Algorithms course.

Notice that all the convex hull algorithms we have looked at so far have
kept track of the hull points in the order they occur around the convex
hull. Theorem 2.26 tells us we cannot find the hull points iz order any
faster. But what if we just wanted to find the hull points without having
to worry about their order around the boundary? Can we do things faster
if just the set of hull points is what we want, rather than an ordered
set? This was an open problem for many years until 1985, when Franco
Preparata and Michael Shamos proved the following;:

Theorem 2.27. A lower bound for any algorithm that identifies the hull
points of a point set in the plane is Q(nlogn).

Based on the theorems above, there are no better algorithms (in
terms of asymptotic worst-case complexity) for computing the hull of
a point set in the plane. But what about point sets in three dimensions?
The foundational definitions about convex hulls discussed earlier in this
chapter were couched in a general setting, true in all dimensions. Thus the
convex hull of points in 3D will yield a convex polyhedron. However, all
our algorithms for actually calculating the hull points have been focused
on point sets in the plane.

48

CHAPTER 2. CONVEX HULLS

Consider the fastest of our algorithms, the Graham scan. Would it be
possible to extend this to three dimensions? Remember that the strength
of this algorithm comes from being able to sort and order the points
based on angles. We were then able to wind around the points in a cyclic
manner, ending where we started. No one has found a way to extend
the angular scan naturally to 3D. In the following section, we present yet
another algorithm, called divide and conquer, for computing the hull of
points in the plane. The beauty of this algorithm is not just its speed (it is
just as fast as the Graham scan) but that it naturally generalizes to three
dimensions while achieving the same optimal O(nlog») time complexity.

Exercise 2.28. Let S be a set of n points in the plane. Construct an
algorithm which finds the convex hull of 3 points of S having the
smallest perimeter. What if we want the largest perimeter with 3
points¢

KX Exercise 2.29. Generalize the above approach to finding the convex hull

of k points of S having the smallest perimeter. How efficiently can this
be solved?

X Exercise 2.30. A line is a best fit for a point set S in the plane if it mini-

mizes the sum of the distances between the points in S and the line.
Assuming a convex hull algorithm is available, find the best fit line for
a given point set S in the plane.

2.6 DIVIDE-AND-CONQUER

Whereas the incremental algorithm uses induction, the divide-and-
conquer algorithm uses the technique of recursion, a powerful algorithm
paradigm. At a high level, a recursive method divides a problem into
smaller problems of the same type. So in order to perform a task, the
algorithm calls itself to solve part of the task. We have already used a
recursive algorithm earlier, showing in Theorem 1.4 that every polygon
has a triangulation. Recall that we did this by taking a polygon, cutting
it into two smaller polygons P; and P, using a diagonal, and then recur-
sively using this theorem to find diagonals within P; and P, and so forth,
until the polygon was completely triangulated. Indeed, every algorithm
following an inductive construction on 7 can be viewed as a type of
unbalanced recursive divide-and-conquer algorithm, with problems of
size 1 and n— 1. Similarly, a divide-and-conquer method can be viewed as
induction, although the common practice is to use the term “divide-and-
conquer” when the subproblems are of size more than O(1) each.

The divide-and-conquer paradigm partitions the problem into two
parts, solves each of the parts recursively, and then “merges” the two

2.6 DIVIDE-AND-CONQUER

solutions to obtain the full solution. In 1977, Franco Preparata and Se
June Hong were the first to apply this technique to the convex hull
problem. Their goal was to construct a fast algorithm for 3D point sets;
although we consider the planar case, there is a natural extension to 3D
that is the focus of the next section. Figure 2.10 gives an example of their
algorithm in action.

Let S be a point set in general position, with no three points collinear
and no two points on the same vertical line. The divide-and-conquer
algorithm begins like the incremental algorithm, by sorting the points
according to x-coordinate. Divide the points into two (nearly) equal
groups, A and B, where A contains the left [#/2] points and B the right
|7/2] points. We then compute the convex hull of A and B recursively
(by using the divide-and-conquer algorithm). Finally, we merge conv(A)
and conv(B) to obtain conv(S).

Divide and conquer recursively calls itself, with smaller and smaller
point sets, until three or fewer points are in each subset. The hull is then
immediate. So the recursive step is quite straightforward; the cleverness
and geometry come into play in the merge step. Our problem then is to
find two tangent lines between the polygons conv(A) and conv(B), one
supporting the two convex hulls from below and the other from above.
Figure 2.11(a) shows an example of the two tangent lines, with part (b)
the merged new polygon. This problem is quite similar to the incremental
algorithm, where we needed to find two tangent lines between a point
and a polygon, as given in Figure 2.4(b). Recall that we found the two
tangent lines within O(z) time complexity by walking around conv(Hy).
The current challenge is to find tangent lines between fwo polygons, not
just a polygon and a point. Thus our time complexity increases to O(#?),

49

. .

Figure 2.10. The divide-and-conquer algorithm in action.

50

CHAPTER 2. CONVEX HULLS

(b)

Figure 2.11. (a) Finding two tangents and (b) constructing the convex hull.

where for each point of the first polygon, we need to walk around the
second one checking for tangent lines.

Exercise 2.31. It might seem that the highest and lowest points of A and
B should always be the points of tangency we are looking for. Find
examples where this is not the case.

Exercise 2.32. Can you find conditions under which the highest and
lowest points of Aand B will be always be the tangent points we seek?

With cleverness and geometric intuition, Preparata and Hong were able
to find the tangent lines in linear time. Let’s describe how to find the
lower tangent line, the one supporting the two polygons from below.
The sorting step along with our general position assumption (no two
points lie on the same vertical line) guarantees that A is to the left of
B, separated by a vertical line. Let o be the rightmost point of A and B8
the leftmost point of B. Assuming that « is a fixed point (the role of p in
the incremental algorithm), proceed by walking counterclockwise from 8
along the vertices of B. Continue this until a lower tangent line at a vertex
of B is found passing through «. Let B be this new vertex of B. Fixing
B now, walk clockwise from « around A until a new « is found, which
will be a lower tangent to A passing through 8. As we repeat this process
of walking along A and B, we will eventually reach a lower tangent line
supporting both A and B. Figure 2.12 shows an example of this walk.

Exercise 2.33. Prove that walking along A and B as described above
guarantees the lower tangent line being found.

<

N =

S L

Figure 2.12. Alternately walking between A and B, looking for the lower tangent.

2.7 CONVEX HULL IN 3D

Exercise 2.34. Show that throughout the walk, the line segment aff never
intersects the interior of A or B.

The algorithm for finding the upper tangent line is analogous. The cost
of finding the tangent lines is linear, walking around A and B at the same
time. Let’s now consider the time complexity of the entire divide-and-
conquer algorithm. Since this algorithm is recursive, calculating the speed
is not straightforward. Let T(n) be the time complexity of the divide-
and-conquer hull algorithm for # points. Then T(n) = 2T(n/2) + O(n),
where 2T(n/2) are the recursion halves and O(n) is the merge step. This
is a classical recurrence relation in computer science, whose solution is
T(n) = O(nlogn). (The logn term derives from the fact that # can only
be divided in half log, 7 times before it is reduced to 1 or below.) Thus we
have found another convex hull algorithm with optimal time complexity.
We summarize it as follows:

DIVIDE-AND-CONQUER Convex Hull Algorithm O(nlogn)

Sort the points of S by x-coordinate. Divide the points into two
(nearly) equal groups. Compute the convex hull of each group
(recursively using divide and conquer). Merge the two groups
together with upper and lower supporting tangents to get the hull
of S.

Exercise 2.35. Analyze the time complexity for triangulating a polygon
following the recursive method implied by Theorem 1.4.

Exercise 2.36. If the sorting step of the divide-and-conquer algorithm
is skipped, the two hulls A and B that result will, in general,
intersect. Construct a merge algorithm that can combine two possibly
intersecting convex hulls with n and m vertices in O(n + m) time.

2.7 CONVEX HULL IN 3D

The notion of convexity is fundamentally dimension independent. In
particular, it extends to three dimensions and is the basis of the convex
hull of a set of points in R, This hull is a convex polybedra in 3D, the
analog of a convex polygon in 2D. Although we will not explore convex
polyhedra in detail until Chapter 6, here we will quickly contrast the
computation of the 3D hull with that of the 2D hull.

The convex hull of points in R3 is a fundamentally more complex
object than a convex polygon, composed of vertices, edges, and faces,
where each face is itself a convex polygon. Figure 2.13 shows the convex
hull of 758 random points on the surface of a sphere. Remarkably,

51

52

CHAPTER 2. CONVEX HULLS

Figure 2.13. The convex hull of 758 random points on the surface of a sphere.

this increased conceptual complexity does not translate into increased
computational time complexity.

One might first wonder about the combinatorial complexity of the
surface of the hull of # points. In 2D, the hull is a polygon of at
most 7 vertices and 7 edges, and so it is feasible to hope for an
algorithm that is close to linear-time complexity. Indeed, we saw two
such algorithms, Graham scan and divide-and-conquer, that achieved
O(nlogn) time complexity. In 3D, the hull again has at most 7 vertices,
but it has more edges and faces. The example in Figure 2.13 has 758
vertices but 2268 edges and 1512 faces. For n vertices, it turns out
that the number of edges is always less than 37, and the number of
faces is always less than 27. These bounds follow from Euler’s famous
formula, which we will describe and prove in Section 3.1 and again in
Section 6.2.

Accepting that the total combinatorial complexity of the surface is of
order O(n), independent of which data structure is used to represent the

2.7 CONVEX HULL IN 3D

surface, it is still feasible to hope for an algorithm close to linear-time
complexity. This reasoning, incidentally, fails in higher dimensions: in
4D, the convex hull can have quadratic complexity. In general, the hull
of n points in d dimensions may have Q(nl%?)) complexity. The floor
function in the exponent saves us for d = 3.

We explored four algorithms for constructing the 2D hull. All but one
of them extends to 3D, with complexities given in the table below. There

Algorithm 2D Complexity 3D Complexity
Incremental O(n?) O(n?)

Gift wrapping O(nh) O(nf)
Divide-and-conquer O(nlogn) O(nlogn)
Graham scan O(nlogn) ?

is no counterpart (or at least none has been discovered) for the Graham
scan in 3D, for there appears to be no obvious analog of “clockwise
order.” Gift wrapping again is output-sensitive: 7/ depends on the num-
ber of faces f in a manner similar to the 2D gift-wrapping algorithm’s
dependence on the number of hull edges /. We will concentrate on the two
most important algorithms, the incremental and the divide-and-conquer.

UNSOLVED PROBLEM 10 3D Graham Scan

Find a natural counterpart for the Graham scan algorithm in 3D.

The incremental algorithm is again quadratic, but this time it is often
the algorithm of choice due to its conceptual simplicity. Indeed, the hulls
in the figures in this section were all computed via an implementation of
the incremental algorithm. The overall structure of the 3D incremental
algorithm is identical to that of the 2D version: Let O be the current hull.
At each iteration, add one new point p and compute the hull of QU p.
This becomes the new hull Q’ and the process is repeated.

In 2D, this hull computation amounted to finding two tangents from
p to Q, as shown in Figure 2.4. In 3D, however, we need to find tangent
planes rather than tangent lines. These planes bound a cone of triangle
faces, each of whose apex is p and whose base is an edge e of Q.
Figure 2.14(a) shows the hull O of 100 points in 3D, and part (b) displays
the hull of QU p. Notice the cone of triangular faces incident to p, where
the bases of these triangles are edges of Q.

53

54 CHAPTER 2. CONVEX HULLS

(b)

Figure 2.14. (a) The hull O of 100 points and (b) the hull of QU p along with the
shadow boundary marked.

Imagine standing at p and looking toward Q. Assume for the moment
that no faces are viewed edge-on; in other words, the interior of each
face of Q is either visible or not visible from p. It should be clear that
the visible faces are precisely those that are to be discarded in moving
from Q to Q'. Moreover, the edges on the border of the visible region
are precisely those that become the bases of cone faces apexed at p. For
suppose e is an edge of QO such that the plane determined by e and p is
tangent to Q. Edge e is adjacent to two faces, one of which is visible
from p and one of which is not. Therefore e is on the border of the
visible region. An equivalent way to view this is to think of a light source
placed at p. Then the visible region is that portion of Q illuminated
and the border edges are those between the light and dark regions, a
type of shadow boundary. Again see Figure 2.14(b), which shows the
shadow boundary of the point p, and compare it to the 2D case given in
Figure 2.4.

From this discussion, it is evident that if we can determine which faces
of Qare visible from p and which are not, then we will know enough to
find the border edges. This will allow us to construct the cone and discard
the appropriate faces of Q. Define a face [to be visible from p if some
point x interior to [is visible from p, that is, px does not intersect QO
except at x. Note that under this definition, seeing only an edge of a face
does not render the face visible, and faces seen edge-on are also considered
invisible. Just as in 2D, this visibility calculation is an O(1) constant-time
computation.

Exercise 2.37. Detail a method to determine whether a triangle face
f = (a, b, c) is visible from p.

This then gives us an algorithm: For each face, compute if it is visible or
not. Those edges e adjacent to both a visible and an invisible face lead to a

2.7 CONVEXHULLIN3D 55

cone face apexed at p. Then all the visible faces can be discarded, and we
have the new hull Q’. The addition of each point p can be accomplished
in O(n) time, so the algorithm achieves O(#?) time overall.

Exercise 2.38. Let Q be a regular tetrabedron and p a point outside Q.
What is the greatest number of faces conv(QU p) can have for any p?
What is the fewest? Can conv(QU p) have an odd number of faces?

Exercise 2.39. Prove that the boundary edges of the region of QO which
are visible to p form a simple (nonintersecting) closed curve.

KX Exercise 2.40. Provide a version of the gift-wrapping algorithm to com-
pute the convex hull in 3D.

The divide-and-conquer paradigm is the same as in two dimensions:
sort the points by their x-coordinate, divide into two sets, recursively con-
struct the hull of each half, and merge. The merge must be accomplished
in O(n) time to achieve the desired O(nlogn) bound. All the work is in
the merge, and we concentrate solely on this.

Let A and B be the two hulls to be merged. The hull of AU B adds a
“band” of faces, as shown in Figure 2.15. The number of these faces will
be linear in the size of the two polyhedra: each face uses at least one edge
of either A or B, so the number of faces is no more than the total number
of edges. So it is feasible to perform the merge in linear time, as long as
each face can be added (on average) in constant time.

Let = be a plane that supports A and B from below, touching A at
a vertex p and B at a vertex g. (The 2D version of this is given in
Figure 2.11, where the supporting plane 7 corresponds to a tangent line.)
To make the exposition simpler, assume that p and g are the only points
of contact of 7. Then 7 contains the line I determined by pg. Now
“crease the plane” along L and rotate half of it about L until it bumps
into one of the two polyhedra.

A crucial observation is that if it first bumps into a point 7 on a
polyhedron, say A, then pr must be an edge of A. In other words, the first
point 7 hit by 7 must be a neighbor of either p or g. This limits the vertices
that need to be examined to determine the next to be bumped. Once &
hits 7, one triangular face of the merging band has been found: the triangle
pqr. Now the procedure is repeated, but this time around the line through
gr (since r is on A). The wrapping stops when it closes upon itself.

After wrapping around A and B with a cylinder of faces, it only
remains to discard the faces hidden by the wrapped band to complete
the merge. Unfortunately, the wrapping process does not immediately tell
us which faces of A are visible from some point of B, and vice versa; it is

56

CHAPTER 2. CONVEX HULLS

Figure 2.15. Two hulls Aand B along with the hull of AUB. The shadow boundaries
are marked.

just these faces that should be deleted. But the wrapping does discover all
the “shadow boundary” edges: those edges of A and B touched by one of
the wrapped faces. (If all of B were a light source, the shadow boundary
on A marks the division between light and dark; and symmetrically the
shadow boundary on B separates light from dark when A is luminous.)
Intuitively one could imagine “snipping” along these edges and detaching
the hidden caps of A and B.

Alas, contrary to intuition, the shadow boundary edges on polyhedra
A and B do not necessarily form simple cycles! So even this seemingly
straightforward step is tricky to implement. Nevertheless, a careful
analysis shows that the merge is O(n), which leads to O(nlog#n) time.
Despite the asymptotic advantage of this algorithm over the incremental
algorithm, the delicacy of implementing the wrapping and updating the

2.7 CONVEXHULLIN3D 57

(a) (b) (c)

Figure 2.16. Possible shadow boundary edges of polyhedra.

surface data structure has left this algorithm theoretically important but
not the pragmatic choice.

Exercise 2.41. Prove that the faces deleted from A during the merge step
form a connected set.

Exercise 2.42. For each shape shown in Figure 2.16, construct examples
of convex polyhedra A and B such that the shadow boundary edges
of A in conv(A U B) has that particular shape. This shows the
complexity of 3D divide-and-conquer as compared to 3D incremental,
as contrasted with Exercise 2.39.

Exercise 2.43. Let A and B be congruent nonintersecting cubes, with B
a translated copy of A. What is the most faces conv(AU B) can have?
What is the fewest?

Exercise 2.44. Let A and B be congruent nonintersecting regular icosa-
hedra, with B a translated copy of A. Arrange A in some convenient
position (say with the line through the top and bottom wvertices
vertical), and choose some convenient direction for the translation (say
perpendicular to some edge and to the vertical). Describe conv(AU B).

58

CHAPTER 2. CONVEX HULLS

SUGGESTED READINGS

Alexander Barvinok. A Course in Convexity. American Mathematical
Society, 2002.
This well-written textbook covers the applications of convexity to numerous areas
of mathematics and computer science, such as sphere packing, graph theory, linear
programming, and polyhedra. It is aimed at an advanced undergraduate level.

Joseph O’Rourke. Computational Geometry in C. Cambridge University
Press, 2nd edition, 1998.
Chapters 3 and 4 of this text cover convex hulls in 2D and 3D, respectively, with
an emphasis on implementations.

Franco Preparata and Michael Shamos. Computational Geometry: An
Introduction. Springer-Verlag, 3rd edition, 1990.
The first textbook in computational geometry (initially published in 1985). Based
on Shamos’s seminal Ph.D. thesis from 1978, it contains a detailed description of
the Preparata and Hong 3D hull algorithm.

Stefan Schirra. Robustness and Precision Issues in Geometric Computa-
tion. In Jorg-Ridiger Sack and Jorge Urrutia, editors, Handbook of
Computational Geometry, chapter 14, pages 597-632. Elsevier, 2000.
A survey of work confronting degeneracies and other low-level computational
issues, exploring the two main options of exact geometric computation.

Lutz Kettner and Stefan Naher. Two Computational Geometry Libraries:
LEDA and CGAL. In J. E. Goodman and J. O’Rourke, editors,
Handbook of Discrete and Computational Geometry, chapter 65,
pages 1435-1463. CRC Press LLC, 2nd edition, 2004.

Both the LEDA and CGAL libraries offer options for robust computation.

Raimund Seidel. Convex hull computations. In J. E. Goodman and
J. O’Rourke, editors, Handbook of Discrete and Computational
Geometry, chapter 22, pages 495-512. CRC Press LLC, 2nd edition,
2004.

A survey of convex hull algorithms written by one of the originators of these
algorithms. Especially good coverage of algorithms for higher dimensions.

TRIANGULATIONS

The previous chapter concentrated on finding the boundary of a point set,
represented by its convex hull. In this chapter, we focus on the interior
of a point set, partitioning it into triangles in a manner similar to the
triangulation of a polygon in Chapter 1. But triangulating a structureless
point set differs in many regards from triangulating a polygon.

We start with basic algorithms and combinatorics (Section 3.1). Then
a higher-level view shows that the space of all triangulations of a fixed
point set has a rich and beautiful structure encapsulated in the flip graph
(Section 3.2). Here we take a detour into a non-traditional but fascinating
topic, the associahedron (Section 3.3). This uncovers an even deeper
structure to the triangulations of a set of points in convex position,
showing that the flip graph has the structure of a polyhedron. We then
concentrate on what is arguably the most important triangulation, the
Delaunay triangulation (Section 3.4), which has striking properties and
plays a central role in many application areas. Finally, we touch on
a miscellany of special triangulations, ending with the most recently
discovered, pseudotriangulations (Section 3.5).

3.1 BASIC CONSTRUCTIONS

When discussing polygons, we distinguished between boundary edges and
internal diagonals. For a point set S, the term edge is used to indicate any
segment that includes precisely two points of § at its endpoints.

Definition. A triangulation of a planar point set S is a subdivision of the
plane determined by a maximal set of noncrossing edges whose vertex
setis S.

The word maximal in the definition indicates that any edge not in the
triangulation must intersect the interior of at least one of the edges in
the triangulation. Figure 3.1(a) shows the convex hull of a point set; (b)
shows a subdivision of the hull into triangles, where the three marked
points are collinear. This is not a maximal subdivision, however, because
we can draw another edge that avoids the preexisting edges, as in part (c).
Parts (d) and (e) show two different triangulations.

60

CHAPTER 3. TRIANGULATIONS

(a) (b) (c) (d) (e)

Figure 3.1. A point set S along with (a) its convex hull, (b) a subdivision, and (c)-(e)
three different triangulations of S.

Exercise 3.1. Find all the distinct triangulations of the point set in
Figure 3.1.

Exercise 3.2. Show that the edges of the convex bull of a point set S will
be in every triangulation of S.

Exercise 3.3. The definition of a triangulation of a point set does not
even mention “triangles.” Show that all the regions of the subdivision
inside the convex bull must indeed be triangles.

We now discuss a simple algorithm for constructing triangulations
which we call the triangle-splitting algorithm. Assume for simplicity that
our points are in general position, with no three points collinear. Begin
by finding the convex hull of the point set and triangulate this hull as
a polygon (ignoring the interior points). Note that each interior point is
strictly inside some triangle (and not on a diagonal) due to the general
position assumption. Choose an interior point and draw edges to the
three vertices of the triangle that contains it. Repeating this process until
all interior points are exhausted produces a triangulation.

Figure 3.2 shows three rows of examples of this procedure. The first
column shows the triangulation of the convex hull polygon and the last
column the final triangulation following the algorithm. Notice that both
the initial hull triangulation and the order of processing the interior point
affects the final triangulation obtained.

TRIANGLE-SPLITTING Triangulation Algorithm

Find the convex hull of S and triangulate this hull as a polygon.
Choose an interior point and draw edges to the three vertices of
the triangle that contains it. Continue this process until all interior
points are exhausted.

Exercise 3.4. Extend this algorithm to work for points that may include
three or more collinear points (but not all collinear).

3.1 BASIC CONSTRUCTIONS

61

I !
L] [
[
J J
I i
[
[
J J
I i
L]
[
J

Figure 3.2. The rows show the same algorithm producing three different tri-
angulations.

Exercise 3.5. Amnalyze the time complexity of the triangle-splitting
algorithm.

We have seen that a point set can have many distinct triangulations.
But looking at the last column of Figure 3.2, each triangulation has
exactly ten triangles. Indeed, for triangulations of a point set created from
the triangle-splitting algorithm, a natural count of the number of triangles
immediately follows from the algorithm.

Lemma 3.6. Let S be a point set of k points in the interior and b points
on the hull. If not all points are collinear, any triangulation of S that
results from the triangle-splitting algorithm has exactly 2k + b — 2
triangles.

Proof. By Theorem 1.8, the triangulation of the convex hull of S has h—2
triangles. If an interior point is within a triangle, the algorithm connects
this point to the three vertices of the triangle containing it. Thus, such
an interior point replaces one triangle by three triangles, increasing
the triangle count by +2. But if an interior point lies on an edge, the
algorithm (extended by Exercise 3.4) connects this point to the two

62

CHAPTER 3. TRIANGULATIONS

° ° ° ° °
° ° ° °
° ° ()
°
° ° ° ®
e o (4]
° ° ° °
° °)
()
°)

Figure 3.3. The incremental triangulation algorithm in action.

vertices of the triangles on either side of this edge. So this interior point
splits the triangles on either side into two triangles, again increasing
the triangle count by +2. Since there are k interior points in S, the
number of triangles resulting from the triangle-splitting algorithm must
be 2k +h — 2. O

Exercise 3.7. Prove or disprove: The triangle-splitting algorithm pro-
duces all possible triangulations of a point set.

A second algorithm may be obtained by extending the incremental
algorithm we explored for convex hulls (Section 2.2) to triangulations.
The extension is almost immediate. Figure 3.3 shows this algorithm
in action. At each step, the next point p is connected to the previous
triangulated convex polygon by a “fan” of triangles apexed at p.

INCREMENTAL Triangulation Algorithm

Sort the points of S according to x-coordinates. The first three points
determine a triangle. Consider the next point p in the ordered set
and connect it with all previously considered points {py, ..., pr}
which are visible to p. Continue this process of adding one point
of S at a time until all of S has been processed.

Exercise 3.8. Analyze the time complexity of the incremental algorithm.

3.1 BASIC CONSTRUCTIONS

Exercise 3.9. Prove that the incremental algorithm produces a triangula-
tion of a point set in general position.

Exercise 3.10. Prove or disprove: The incremental algorithm produces all
possible triangulations of a point set S, assuming all possible rotations

of S.

Exercise 3.11. Alter the Graham scan convex hull algorithm (Section 2.4)
to compute triangulations.

The number of triangles in any triangulation of a polygon depends
only on the number of vertices of the polygon. What is the situation for
triangulations of a point set? Lemma 3.6 shows that any triangulation
of a point set deriving from the triangle-splitting algorithm has a fixed
number of triangles, dependent on the number of interior points k
and the number of hull points » of the set. We show below that this
same result holds true for every triangulation of a point set. The proof
uses a beautiful and powerful formula of Leonhard Euler, the brilliant
eighteenth-century Swiss mathematician. This formula will be examined
in detail (and reproved) when we discuss polyhedra in Chapter 6, but
here we offer a concise proof for plane graphs without connecting it to its
original polyhedral context.

Theorem 3.12 (Euler’'s Formula). Let G be a connected planar graph with
V vertices, E edges, and F faces on the plane (where the outer face is
unbounded). Then V— E + F = 2.

Proof. We prove this using induction on the number of edges. If E = 0,
then G is an isolated vertex on the planeand V—E+F =1-0+1 = 2.
Otherwise, choose any edge e of G. If e connects two vertices of G,
contract this edge, reducing V and E by one. If ¢ is incident to only one
vertex (i.e., e is a loop separating two faces), delete this edge, reducing
F and E by one. In either case, the new graph remains connected and
the formula follows by induction. O]

Notice that the Jordan curve theorem of Chapter 1 is used in this proof
when we assume any loop separates two faces of G. Figure 3.4 shows a
progression of examples based on the proof above. Contraction of the red
edge or deletion of the red loop does not change the value V — E + F of
the graph.

We now apply Euler’s formula to triangulations of point sets. The
following theorem not only proves that each triangulation must have the
same number of triangles, but provides an explicit count of the exact

63

64 CHAPTER 3. TRIANGULATIONS

S 1

(811,5)

(7,10,5) (7,9,4) (6,84) 6,7,3)

Figure 3.4. Contraction and deletion of edges of a connected planar graph. The
respective values (V, E, F) are given below each graph.

number of triangles. Euler’s formula is in some sense a generalization of
Theorem 3.13 to arbitrary subdivisions.

Theorem 3.13. Let S be a point set, with b points on the hull and k in
the interior, and so n = k + b total. If not all points are collinear, then
any triangulation of S has exactly 2k + b — 2 triangles and 3k +2h — 3
edges.

Proof. Let T be a triangulation of the point set S, and let ¢ be the number
of triangles of T. We know T subdivides the plane into # + 1 faces, ¢
triangles inside the hull and the face outside the hull. Each triangle has
three edges, and the outside face has b edges. Since each edge touches
exactly two faces, (37 + h) double counts edges; so there are exactly
E = (3t + h)/2 edges. Applying Euler’s formula with V = #n and
F =t + 1 results in

n — %(3t+b) + (t4+1) = 2.

Solving for ¢ yields
t =2n—h—-2 =2k+h-2.

We can then use this value for # to find the number of edges in terms

of k and . O

Exercise 3.14. Show that every triangulation has some vertex of degree
at most five.

Having settled that each triangulation of a fixed point set S has the
same number of triangles, it is now natural to turn to counting the
number of distinct triangulations of S, a problem we investigated for
triangulations of polygons in Section 1.2. This counting question seems
difficult to answer, for it depends on the distribution of the points of S
with respect to one another. For example, we know from Theorem 1.19

3.1 BASIC CONSTRUCTIONS

that if S is a point set in general position with all points on the hull (the
points are in convex position, to use the technical term), then the number
of triangulations of S is the Catalan number. Only such special cases of
point sets are fully understood.

Exercise 3.15. Construct a point set S with n + 2 points such that the
number of triangulations of S is greater than the Catalan number C,,.

Even obtaining a good upper bound seems difficult. The following result
of Micha Sharir, Adam Sheffer, and Emo Welzl from 2009, established in
a 60-page paper, is the best available, but it is not known to be tight.

Theorem 3.16. Let S be a planar point set of n points. Then S has no
more than 30" distinct triangulations.

Exercise 3.17. Compare this value with the Catalan number derived in
Theorem 1.19.

Exercise 3.18. Consider the point set S given in Figure 3.5. It is made
of two “double chains” of points, where every pair of points from
different chains is visible to each other. Show that the edges drawn in
the figure appear in every triangulation of S. Moreover, if there are n
points in each chain, find the number of triangulations of S.

'\.\'\'/././‘

./'/./‘\‘\‘\.

Figure 3.5. A double-chain point set.

UNSOLVED PROBLEM 11 Triangulation Algorithm

Find an algorithm for counting the number of triangulations of an
n-point set in the plane that runs in time polynomial in 7. Because
there are an exponential number of triangles, a solution must count
without effectively listing them all.

65

66

CHAPTER 3. TRIANGULATIONS

3.2 THE FLIP GRAPH

One method of exploring the structure of a point set S is to examine
triangulations of S. We just looked at counting such triangulations, but
this is a crude probe. The set of triangulations has a rich structure if
viewed the right way. Consider the three triangulations shown earlier
in Figure 3.1 (c)—(e). Notice that parts (c) and (d) differ by just one
diagonal; thus they are closely related as triangulations (like siblings).
Similarly, parts (d) and (e) also differ by one diagonal. However, (c)
and (e) differ by two diagonals, making them cousins. This relationship
between triangulations of a point set can be made precise; we first need a
definition.

Consider the triangulation of the convex quadrilateral ABCD shown
in Figure 3.6(a). An edge flip (called a flip for short) removes the diagonal
AC and replaces it with diagonal BD, as illustrated in (b). Flipping
BD again brings us back to (a). Flips are not possible for nonconvex
quadrilaterals as shown in (c). Flips permit defining a relationship
between two triangulations of a point set.

Definition. For a point set S, the flip graph of S is a graph whose nodes
are the set of triangulations of S. Two nodes Ty and T of the flip
graph are connected by an arc if one diagonal of T; can be flipped to
obtain T>.

Figure 3.7 shows the flip graph of a point set of six points. Each red
node corresponds to the triangulation drawn within the node. The flip
graph has nine nodes and eleven arcs.

Exercise 3.19. For every n, construct a point set (not necessarily in
general position) with n points whose flip graph is a single node, that
is, no flip is possible.

(b) (c)

Figure 3.6. An edge flip is possible for convex quadrilaterals, but not for nonconvex
ones.

3.2 THE FLIP GRAPH 67

(]

(S
@)

Figure 3.7. An example of the flip graph of a point set.

Exercise 3.20. For every n, construct a point set (not necessarily in
general position) with n points whose flip graph is two nodes connected
by an arc.

Exercise 3.21. Figure 3.8 shows a triangulation for three different point

sets. For each point set, find its flip graph.

(a) (b) (c)

Figure 3.8. Triangulations of three point sets.

68 CHAPTER 3. TRIANGULATIONS

The flip graph reveals a discrete space of triangulations of a fixed
point set. There are several natural questions about triangulations that
can be interpreted in the language of flip graphs. The most basic of these
is whether one triangulation of S can be transformed into another via
a sequence of flips. In other words, is the flip graph connected? The
following theorem, first proved by Charles Lawson in 1971, answers
YES.

Theorem 3.22. The flip graph of any point set in the plane is connected.

Proof. Let S be a planar point set with 7 points. Order the points of
S according to x-coordinates. If two or more points share the same
x-coordinate, we can always rotate the plane slightly such that all
points have distinct x-coordinates. Label the resulting ordering of S
as {p1,..., pa}. Let T, be the triangulation obtained from S using
the incremental algorithm for triangulations described in Section 3.1
above. Our goal is to show that any triangulation T of S can be
converted into T, using flips. This will prove the connectivity of the
flip graph because any two triangulations will be connected by paths
to the T, node of the flip graph, and thus to each other by reversing the
flips in one of the paths.

We prove this by induction on 7. When #n = 3, the set S has a
unique triangulation, its flip graph is a single node, and we are done.
Assume for any point set S with fewer than # points, any triangulation
of S can be made into the incremental algorithm triangulation of S
by flips. Now consider S with # ordered points {py, ..., p,} and let T
be a triangulation of S. Let the star of a vertex v of a triangulation
be the union of the triangles incident to v. We will show that by a
sequence of flips, the star of p, in our triangulation T (shown at the
left in Figure 3.9) can be converted into the star of p, in T, (shown
at the right of the figure). Once this is accomplished, what remains
is a triangulation of the point set S\ {p,}, which by our induction
hypothesis

C2CZEAC2C S

Figure 3.9. Flipping edges to obtain another triangulation.

3.2 THE FLIP GRAPH

Because the incremental algorithm produces a convex polygon at
each step of the process (see Figure 2.3), the star of p,, in T, has exactly
three convex vertices: p, and the two vertices adjacent to p,, on the
hull, call them 4 and b. In T,, the vertices between a and b in the star
form a reflex chain. Now choose a convex vertex v of the star of p,
in our triangulation T distinct from p,, a, and b. If there is no such
convex vertex, then the star of p, in T is exactly the star of p, in T,
and so we are finished. Because v is convex, the edge between v and p,
is a diagonal of a convex quadrilateral that can be flipped. Thus one
vertex fewer is now visible to p, and the degree of p,, decreases by one.
Repeat this process choosing such convex vertices. This process must
end since the degree of p, is decreasing at each step. O]

Exercise 3.23. Prove that if p,, a, and b are the only convex vertices in
the star of pu, then the star of p, in T is exactly the star of p, in T..

Exercise 3.24. Prove or disprove: no point set can have a triangle as a
subgraph of its flip graph, that is, three nodes connected in a cycle by
three arcs.

Not only is the connectivity of the flip graph an elegant geometric result,
it has practical implications as well. It shows that one triangulation can
be converted to another by local moves, one step at a time. Indeed,
it forms the basis of many algorithms that incrementally “improve” a
triangulation, as we will see in Section 3.4.

Now that we know the flip graph is connected, it is natural to wonder
about its shape. A quantity that give some hint in this direction is the
diameter. The diameter of a graph is the longest path between any two
nodes of the graph, where the length of the path is its number of arcs.
For a complete graph, where there is an edge between any two nodes, the
diameter is one. So the diameter gives a sense of how densely a graph is
connected. The proof of the previous theorem provides us with an upper
bound on the flip graph’s diameter.

Corollary 3.25. For a planar point set S of n points, the diameter of its
flip graph is at most (n — 2)(n — 3).

Proof. We show by induction that any triangulation can be converted
into T, (the incremental triangulation) with at most (”gz) flips.
Consider the proof of Theorem 3.22. To reach the star of p, in T,, at
most 7n—3 flips were needed. By the induction hypothesis, the remaining
number of flips needed will at most be (”53) An explicit calculation

shows (”;3) + (n-3) = (”;2) So any two nodes of the flip graph

69

70 CHAPTER 3. TRIANGULATIONS
can therefore be connected by (";2) arcs to T, and so by twice this
number, which is (7 — 2)(n — 3), to each other. O

Exercise 3.26. Find the diameters of the flip graphs of the point sets given
in Figure 3.8.

X Exercise 3.27. Find the diameter of the flip graph of the point set given
in Figure 3.5.

Given two triangulations T; and T of a point set with 7 points, what
is the least number of flips needed to convert one into the other? In other
words, what is the length of the shortest path from T} to T; in the flip
graph? The diameter yields an upper bound of (# — 2)(n — 3), but a
novel bound was obtained by Sabine Hanke, Thomas Ottmann, and Sven
Schuierer in 1996:

Theorem 3.28. Let S be a point set in general position, and let Ty and
T be two triangulations of S. Let Ty, be the diagram obtained by
overlapping the triangulations Ty and T,. Then the distance between
Ty and T, in the flip graph is at most the number of crossings between
edges in T.

Exercise 3.29. Figure 3.10 shows two triangulations from Figure 3.2
along with their overlapping diagram with 16 edge crossings. Verify
Theorem 3.28 by finding a path in the flip graph between the two
triangulations with no more than 16 flips.

X Exercise 3.30. Let S bea point set with h points on the hull and k points
interior to the bull. Prove that the number of crossings of edges in Tq;
is at most (3k + b — 3)%.

Figure 3.10. Triangulations T; and T, along with the overlapping diagram Ti,.

3.2 THE FLIP GRAPH

UNSOLVED PROBLEM 12 Shortest Path

Find a polynomial-time algorithm that finds a shortest path between
any two nodes of the flip graph of S.

Now that we have considered triangulations of point sets in the plane,
let’s think about how the situation changes in three dimensions. Given a
point set S in R?, we seek tetrahedralizations of S. Our experience with
untetrahedralizable polyhedra in Chapter 1 (see Figures 1.7 and 1.17)
might suggest that not every point set can be tetrahedralized. But in fact
every point set can: a variation on the incremental algorithm for the 3D
convex hull achieves tetrahedralization in a manner similar to the 2D
incremental triangulation algorithm in Section 3.1. Sort the points using
lexicographical ordering: sort by x, and among those points with the
same x-coordinate, sort by y, and among those with the same x- and
y-coordinates, sort by z. As each point p is added one at a time, edges
are drawn from p to the vertices of the convex hull of the previous points
that are visible to p.

Exercise 3.31. Show that this incremental algorithm indeed results in a
partition of the convex hull into tetrabedral pieces.

Whereas Theorem 3.13 provides an exact count of triangles for planar
point sets, the number of tetrahedra in different tetrahedralizations of the
same point set can vary. This should not come as a surprise as we have
already seen that the number of tetrahedra in a polyhedron can differ
(Figure 1.11). However, we can obtain some quantitative information
about tetrahedra for point sets, as the following theorem shows. We
restrict ourselves to points in general position, which in this context
means that no three points are collinear and no four coplanar.

Theorem 3.32. Let S be a point set in R3 in general position, with
k points in the interior and h on the hull. Then there exists a
tetrabedralization of S with at most 3k + 2bh — 7 tetrahedra.

Proof. Consider the hull of S. Let e be the number of edges and ¢
be the number of triangles in the hull. Note that all faces of the
hull are triangles by the general-position assumption. Because each
edge borders two triangles, 2¢ = 3t. Moreover, by Euler’s formula,
h — e+t = 2. Thus the number of edges and triangles of the hull must
bee=3h—6andt=2h—4.

71

72

CHAPTER 3. TRIANGULATIONS

Let v be a vertex of the hull with 7 incident hull triangles. Construct
a tetrahedralization of S by adding an edge from v to every other
vertex of the hull of S. (These edges miss interior points by the general-
position assumption.) This produces (2h — 4) — r tetrahedra, one for
each triangle not incident to v. Choose any interior point and connect
it to the four vertices of its containing tetrahedron, subdividing it into
four tetrahedra. So this interior point replaces one tetrahedron by four
tetrahedra, increasing the tetrahedral count by +3. Repeat this process
for each interior point in any order. The resulting total number of
tetrahedra is

2h—4—7r) + 3k = 3k+2h—4—7r < 3k+2h—7,

where the final inequality follows because » > 3. O

Exercise 3.33. If the point set S were not in general position, how would
this affect the number of tetrabedra?

Exercise 3.34. Based on the proof of the theorem, how can we find
tetrabedralizations with fewer than 3k + 2h — 7 tetrabedra?

Exercise 3.35. For arbitrary n > 4, construct an n-point set in R3 (not
necessarily in general position) with a tetrabedralization having at most
n — 3 tetrabedra.

Just as in two dimensions, it is possible to structure the space of all
tetrahedralizations of a fixed point set with a graph. To move from one
node to another, we do not flip an edge, but rather flip a face. The flip
in this case is illustrated in Figure 1.11 from Chapter 1, where the two
tetrahedra forming a 5-vertex convex polyhedron in part (a) of that figure
become the three tetrahedra forming this polyhedron in part (b), and
vice versa. When points are not in general position (with four or more
coplanar), the flips might take two tetrahedra to two other tetrahedra.
An example of a flip graph for six points in R® (whose convex hull is the
triangular prism) is shown in Figure 3.11.

Similarly, one may define flip graphs for point sets in higher dimen-
sions. As in 2D, the most fundamental question is whether or not these
flip graphs are connected. The answer to this question for points sets in
R? was unknown for almost 30 years after the d = 2 case was settled
(Theorem 3.22). In 2000, Francisco Santos proved that the flip graph
is disconnected for point sets when d > 5. It is still an open question
for dimensions three and four. In fact, it is not even known whether
the flip graph might contain an isolated node in R3. The 3D case is
especially important because it plays a role in improving the “quality”
of the tetrahedra in a meshing of solid objects.

3.3 THE ASSOCIAHEDRON 73

M) M) M)
— — —
) SR GE—
— \ J —

Figure 3.11. An example of the flip graph of six points in R?.

UNSOLVED PROBLEM 13 Flip Graph in 3D

Is the flip graph of every point set in R? connected? If not, is there a
set with an isolated node?

Exercise 3.36. Let T be a point set consisting of the four vertices of a
regular tetrabedra. Is it possible to add points P interior to T such
that the tetrabedralization of the point set T U P results in only regular
tetrabedra?

KX Exercise 3.37. Construct the flip graph of eight points in R3 whose con-
vex bhull forms a cube.

3.3 THE ASSOCIAHEDRON

For any point set S in the plane, our interests so far have been on the
underlying flip graph structure based on triangulations of S. This section
focuses on a special configuration of points, points in convex position,
where the points of S form the vertices of a convex polygon. Here a
deeper structure exists which elegantly generalizes the flip graph to higher
dimensions. We remark that this section is a digression into advanced

74

CHAPTER 3. TRIANGULATIONS

material where we catch a glimpse of some ideas on the cutting edge
of research. However, we believe the foray is well worth the effort, for
we will see triangulations, convex hulls, and polyhedra magically come
together.

Exercise 3.38. Let S be a point set where no three points are collinear.
Show that S is in convex position if and only if there is a unique
polygon whose vertices are precisely S.

For the remainder of this section, assume S is a point set in convex
position, where no three points are collinear. Now consider the flip graph
of S; the nodes of the flip graph correspond to the triangulations of the
polygon P = conv(S). We have already discussed triangulations of a
convex polygon in Theorem 1.19, leading to the Catalan number. Thus
the flip graph of S will have a Catalan number of nodes.

Let’s begin by looking at some examples. When S has three points,
P is a triangle, and the flip graph of S is just one node. When § has
four points, P is a convex quadrilateral. The flip graph of four points in
convex position is a single arc, whose two endpoints correspond to the
two ways of triangulating a quadrilateral. The first interesting situation
arises for convex polygons with five vertices. Figure 3.12(a) shows the flip
graph of a regular pentagon, whose graph is a cycle with five nodes. Upon
close examination, it turns out that more structure is hidden beneath the
surface than just the flip graph. We first need a definition.

Definition. A diagonalization of a polygon P is a decomposition of P
into smaller polygons by a set of noncrossing diagonals.

w U/ I

Figure 3.12. (a) The flip graph of a convex pentagon and (b) the 2D associahedron.

3.3 THE ASSOCIAHEDRON

Thus a diagonalization can be thought of as a generalization of a
triangulation without the “maximal” criterion. Then the polygon is
decomposed into smaller polygons, which are not necessarily triangles.
Consider the pentagon graph in Figure 3.12(b). We label the nodes with
triangulations (diagonalizations using two diagonals), and we can label
the edges with diagonalizations using just one diagonal. And the interior
of the pentagon graph can be labeled with a diagonalization using no
diagonal.

To get a firmer grasp on this structure, consider the case when P is a
hexagon. Figure 3.13(a) shows the flip graph of the hexagon embedded
in the plane. Part (b) of the figure shows a polyhedron whose 1-skeleton
— its vertices and edges — is exactly this flip graph! Moreover, this
polyhedron has nine polygonal faces, each one corresponding to different
diagonalizations of the hexagon using one diagonal: The six pentagonal
faces are based on the six ways a hexagon is cut into a triangle and a
pentagon using one diagonal, whereas the three square faces are based
on the six ways a hexagon may be cut into two quadrilaterals using one
diagonal. Indeed, there is a rich combinatorial framework embodied by
this polyhedron.

These objects we have been looking at are called associabedra. A
1D associahedron is the line segment (seen as the flip graph of the
quadrilateral). A 2D associahedron is the pentagon in Figure 3.12 and we
just described a 3D associahedron in Figure 3.13. What is truly beautiful
is that associahedron exists not just for these three examples but higher
dimensions as well. The following result was independently proven by
Mark Haiman (unpublished) in 1984 and Carl Lee in 1989:

@ @

O—®
O¢

(DHD)
0
@ ®)

(a) (b)

Figure 3.13. (a) The flip graph of a convex pentagon and (b) the 3D associahedron.

75

76

——— ii\j \ TN . /

CHAPTER 3. TRIANGULATIONS

Theorem 3.39. There exists a convex n-dimensional polytope' called the
associahedron whose vertices and edges form the flip graph of a convex
(n + 3)-sided polygon. The k-dimensional faces of this polytope are in
one-to-one correspondence with the diagonalizations of the polygon
using exactly n — k diagonals.

Notice that the vertices of this polytope (the “faces” of dimension zero)
are exactly the triangulations of the polygon, enumerated by the Catalan
number. Figure 3.14 provides three different viewpoints of a metal
sculpture constructed by Eric Jonash and Sam Kapala that shows the
flip graph of a heptagon. This forms the skeletal structure of the 4D
associahedron.

Almost twenty years before Theorem 3.39 was discovered, the asso-
ciahedron had originally been defined by James Stasheff for use in
the subfield of topology called homotopy theory. Associahedra have
continued to appear in a variety of mathematical fields, currently leading
to numerous generalizations. We will see more of these polytopes in
Chapter 7, where we discover how associabedra are related to associa-
tivity properties.

Exercise 3.40. Let P be a polygon with selected diagonals prescribed, as
illustrated in Figure 3.15. Draw the flip graph of the polygon with the
constraint that these red diagonals are fixed, not flippable.

KX Exercise 3.41. Let P be a convex polygon with n vertices. Find a formula

for the number of diagonalizations of P with exactly k diagonals. Note
that when k = n — 3, we obtain the Catalan numbers.

Figure 3.14. Three perspectives of a metal sculpture of the skeletal structure of the
4D associahedron.

LA polytope is a generalization of the idea of a polygon and a polyhedron to 7 dimensions. We
will see more polytopes in Chapter 6.

3.3 THE ASSOCIAHEDRON

(a) (b)
Figure 3.15. Polygons with fixed, unflippable diagonals.

For an n-point set, Corollary 3.25 provides an upper bound of
(n — 2)(n — 3) for the diameter of the flip graph. For the special case of
a convex polygon, the diameter of its flip graph is much smaller, and
bounded by an impressive result of Daniel Sleator, Robert Tarjan, and
William Thurston from 1986, proved via hyperbolic geometry:

Theorem 3.42. For large enough values of n, the diameter of the flip
graph of a convex polygon with n vertices is 2n — 10.

From the perspective of associahedra, this result shows the maximum
number of steps needed to go from any vertex of the associahedron to
any other vertex by walking along the edges. However, this theorem only
guarantees diameter “for large values of 7#.” How large 7 needs to be for
the theorem claim to hold is unknown, but it is suspected that n > 13
suffices.

UNSOLVED PROBLEM 14 Flip Graph Diameter

Show that the diameter of the flip graph of a convex polygon with 7
vertices is 21 — 10 for all n greater than 12.

UNSOLVED PROBLEM 15

Find a direct combinatorial proof of Theorem 3.42, one not using
hyperbolic geometry.

Flip Graph Diameter Proof

Exercise 3.43. Let P be a polygon with holes. Show that the flip graph
of P is connected.

Exercise 3.44. Construct graphs with n nodes that have diameter 2. In
general, can you construct graphs that have diameter k for an arbitrary
value of k¢

(c)

77

78

CHAPTER 3. TRIANGULATIONS

12

O]

Our adventure into the world of associahedra has thus far been
combinatorial. We have considered these higher-dimensional polytopes as
objects whose faces are labeled with diagonalizations of 2D polygons. In
the early 1990s, a series of articles by Israel Gelfand, Mikhail Kapranov,
and Andrei Zelevinsky placed the associahedron in the more general
context of secondary polytopes. Although this development is beyond
our scope here, we cannot resist sharing a glimpse of the field. The
power of secondary polytopes derives from their providing associahedra
a natural geometric world to inhabit. This takes us to a wonderful blend
of combinatorics, geometry, and the convex hull.

Let P be a planar convex polygon with vertices p1,..., p,. For a
triangulation T of P, let

¢r(p) = Y area(A)

pieAeT

be the sum of the areas of all triangles A incident to the vertex p;.
Figure 3.16 shows an octagon of total area 14, with three different
triangulations. The numerical value within each triangle is the area of the
triangle. The number ¢r(p;) associated to each vertex p; of the polygon
is the sum of the areas of the triangles incident to p;.

Let the area vector of a triangulation T be

O(T) = (p1(p1). ... d1(Pn)).

So the area vector associates a value in R” for each triangulation of
the convex polygon. Of course, the number of potentially different area
vectors associated to a convex polygon with 7 vertices is the Catalan
number. The following result derives from the theory of secondary

polytopes.
1 3 7 1
7 7 ‘ @ 13 1 \ 13
@
1 7 1 9 1
6 4 6 4

Figure 3.16. Area vectors may be read off counterclockwise around the boundary.

10

3.4 DELAUNAY TRIANGULATIONS

Theorem 3.45. If P is a convex polygon with n vertices, the convex
hull of the area vectors of all triangulations of P is combinatorially
equivalent to the associabedron of dimension n — 3.

Notice the difference in dimension. Let’s consider a concrete example:
a convex pentagon. Although the area vectors of the pentagon are sitting
in the SD space R°, the convex hull of these points results in the 2D
associahedron. That is, the pentagon associahedron is lying in a 2D-plane
that is sitting inside 5D space! By a similar argument, the area vectors
of a convex hexagon are in R®, whose convex hull results in the 3D
associahedron. Now that is elegant!

One final remark. The flip graph of a convex polygon does not depend
on the shape of the polygon, but only on its number of vertices, because it
records only the combinatorial structure of triangulations. Area vectors,
however, do depend on the shape of the convex polygon, as well as on the
combinatorial structure of diagonalizations. What is remarkable about
Theorem 3.45 is that, although the convex hulls of the area vectors of
different convex polygons are geometrically distinct, they have the same
combinatorial structure for any convex polygon with 7 vertices.

Exercise 3.46. Consider a regular pentagon having area 3. List the 5 area
vectors for the 5 vertices of its flip graph (Figure 3.12). Argue that these
points lie in a 2D subspace of R®, as per Theorem 3.45.

3.4 DELAUNAY TRIANGULATIONS

We have so far studied relations among all the triangulations of a
point set S as encapsulated in the flip graph: each node of the flip
graph corresponds to a particular triangulation of S. There are many
circumstances in which certain triangulations of S are valued more
highly than others. An extremely important one is called the Delaunay
triangulation, to which we now turn. This particular triangulation
appears in numerous areas; it is most notably vital in the field of terrain
reconstruction.

Most 3D maps of the Earth’s surface are constructed starting from
a finite sample S of points on the surface at which the surface height
(altitude) has somehow been measured. From each of these points, a
surface “terrain” is created that approximates the height of the nearby
(unsampled) points. The method first considers the points S on the plane,
constructs a triangulation of S on the plane, and then [ifts each of the
sample points to its correct height. This process lifts every triangle in the
plane to a (generally tilted) triangle in 3D, providing a piecewise-linear
terrain of the earth, to employ the technical term. Figure 3.17 provides
an example of a terrain reconstruction.

79

80 CHAPTER 3. TRIANGULATIONS

Figure 3.17. A piecewise-linear terrain reconstruction.

The natural question to ask is which of our triangulations is best for
reconstructing a terrain from sampled heights. The true terrain of the
earth is unknown except at the sample points. The choice of triangulation
will have a major impact on the appearance of the terrain. In Figure 3.18,
two identical point sets with heights are given, each with a different
triangulation. Flipping the diagonal changes a deep valley to a steep
mountain, making a big difference in the resulting terrain map.

30

20

Figure 3.18. Mountains and valleys depend on the triangulation.

3.4 DELAUNAY TRIANGULATIONS

81

©
©
®

@@QQ

8

Q)
®
©)

®
®

Q)
®

®

(a) (b)

Figure 3.19. (a) Terrain point set, (b) one possible triangulation, and (c) another
triangulation with two “skinny” triangles.

But how can we choose the appropriate triangulation if we have
no further information? Our experience with natural terrains inculcates
intuition that renders some terrains “more natural” than others to our
eye. Let’s rely on this intuition as we examine the sample terrain point set
shown in Figure 3.19(a). From this information alone, the point set seems
to have been taken from a long mountain ridge spanning north to south.
Figure 3.19(b) shows a triangulation of this point set that captures this
intuition of a mountain ridge. However, one flip (c) creates a deep valley
that cuts the ridge in two. The marked red point in the center has height
around 85 in part (b), but has a much lower height, about 3, in part (c).

What is it about the triangulation in Figure 3.19(b) that captures the
terrain features so much more naturally than in (c)? The reason can be
attributed to the fact the flipped edge in (c) produces skinny triangles
compared to those in (b). In terrain reconstruction, the triangulations
of choice are those which avoid skinny triangles by maximizing the
smallest angle in any triangle over all triangulations. Indeed, the terrain
in Figure 3.17 was constructed to maximize its angles in just this sense.
We now show how to find this special triangulation.

Previously, we interpreted “general position” to mean that no three
points are collinear or no two points share the same x-coordinate. In the
following sections, the more relevant special (degenerate) circumstance is
that when four points lie on the same circle. So general position will mean
that no four points are cocircular.

Let T be a triangulation of our point set S, and suppose that T has
n triangles. The angle sequence

(als a2, .ny a3n)

82

CHAPTER 3. TRIANGULATIONS

of T is the list of all 37 angles of T sorted from smallest o to largest
as3,. Using the angle sequence, we are now in a position to compare
two different triangulations of S. Remember that by Theorem 3.13,
the number of triangles of any triangulation of S is a constant; so all
triangulations have angle sequences of the same length.

For two triangulations T; and T, of S, we say T is fatter than T, (and
write Ty > Tp) if the angle sequence of Tq is lexicographically greater
than T. In other words, if (a1, ..., a3,) is the angle sequence for T; and
(B1, ..., Bsn) for Ty, then there is some 1 < k < 31 where a; = B; for all
i <kand ap > Bp. Thus

(20°, 30°, 45°, 65°, 70°, 130°)
is fatter than
(20°, 30°, 45°, 60°, 75°,130°)

because 65° > 60° at the first position at which they differ, regardless of
subsequent entries. The fattest triangulation is the one we seek, but how
do we go about finding it? It turns out that there exists an elegant way to
reach the fattest triangulation via edge flips. We begin with a definition.

Definition. Let e be an edge of a triangulation Tj, and let QO be the
quadrilateral in Ty formed by the two triangles having e as their
common edge. If Qis convex, let T, be the triangulation after flipping
edge e in T;. We say e is a legal edge if T} > T and e is an illegal edge
if T, < D.

Notice that flipping one edge e alters six angles in the T; angle
sequence, replacing them by six (in general) different angles in the T,
sequence. So the effect of one flip is in general complex. But the definition
just relies on the lexicographic ordering of the two triangulations,
ignoring the details of how this ordering is achieved. It helps to complete
this definition to declare that all the hull edges of a triangulation are legal.
As our goal is to find the fattest triangulation, we are trying to avoid
illegal edges in our triangulations.

Definition. For a point set S, a Delaunay triangulation of S, denoted
Del(S), is a triangulation that only has legal edges.

This triangulation is named after Boris Delaunay, a Russian mathe-
matician who lived from 1890 to 1980. It is not immediate that every
point set has a Delaunay triangulation. Is it possible to remove all illegal
edges in a triangulation without introducing new illegal edges during the
removal process? The following algorithm answers YES and constructs
the Delaunay triangulation in a remarkably simple manner.

3.4 DELAUNAY TRIANGULATIONS 83

EDGE FLIPPING Delaunay Triangulation Algorithm

Let S be a point set in general position, with no four points
cocircular. Start with any triangulation T. If T has an illegal edge,
flip the edge and make it legal. Continue flipping illegal edges,
moving through the flip graph of S in any order, until no more illegal
edges remain.

Because illegal edges are being flipped, the angle sequence of the new
triangulations strictly increases, and so the same triangulation can never
reappear by this process. And since there are only a finite number of nodes
in the flip graph, this algorithm must terminate.

By construction, the resulting Delaunay triangulation will be fatter
than any of its neighbors in its flip graph. In other words, it will be a
local fatness maximum. But this does not necessarily imply that it will
be fattest over all nodes of the flip graph, the global maximum. We
defer to the following chapter a proof that this is indeed the case: the
Delaunay triangulation is the unique global maximum, the fattest among
all triangulations of S.

Exercise 3.47. Prove or disprove: under the algorithm above, it is
possible for an edge to be legal and then later become illegal.

KX Exercise 3.48. Show that for every n, there is a triangulation of n points
that requires Q(n?) flips to transform it into the Delaunay
triangulation.

In the Delaunay algorithm above, flipping one diagonal, as we men-
tioned before, involves twelve angles, all of which need to be compared in
the angle sequences. We now show that there exists a far simpler test using
circles based on an extension of a classical theorem? of planar geometry:

Theorem 3.49 (Thales). For three points P, Q, and B on a circle, and A
within and C outside the circle (see Figure 3.20), angle P AQ is greater
than P BQ which is greater than PCQ.

Sketch of Proof. Let O be the center of the circle. The three segments
OP, OQ, and OB are radii and so equal in length. Thus triangles P OB
and QOB are both isosceles. From this it is not difficult to show that,

2 Thales’ theorem is often stated as the more specific claim that an angle inscribed in a semicircle
is a right angle.

84 CHAPTER 3. TRIANGULATIONS

Qe

Figure 3.20. A diagram for Thales’ theorem.

regardless of the position of B on the circle arc, angle P OQ is twice
angle PBQ. Indeed, this is a theorem of Euclid (Elements, Book III,
Proposition 20): an angle inscribed in a circle is half the central angle
subtending the same arc. This can be used to establish the claims that
angle P AQ s larger, and PCQ smaller, than PBOQO. O

Exercise 3.50. Provide a more formal proof of Thales’ theorem.

Consider the circumcircle of a triangle ABC with an additional point
outside, on, or inside the circumcircle, respectively, as in Figure 3.21.
The following proposition uses Thales’ theorem to relate legal edges to
circumcircles.

Proposition 3.51. Let e be an edge of a triangulation, where e = AC
belongs to the two triangles ABC and ACD. Then e is a legal edge if
D is outside the circumcircle of ABC and an illegal edge if D is inside
the circumcircle.

Recall that we have assumed that no four points are cocircular, so the
case of D on the circumcircle does not arise.

C C C

Figure 3.21. The circumcircle of a triangle ABC with an additional point outside,
on, or inside the circumcircle, respectively.

3.4 DELAUNAY TRIANGULATIONS

Proof. Consider the left side of Figure 3.22, where D lies inside the circle

defined by ABC. We show that AC is an illegal edge. Label the eight
angles of the quadrilateral cut by both diagonals as on the right side of
Figure 3.22. Because C is outside the circumcircle of ABD, by Thales’
theorem, angle by is larger than angle a;. Similarly, because Ais outside
the circumcircle of BCD, by Thales again, angle b, is larger than angle
a,. Continuing in this manner, we see that b; > a; for all 7.

Moreover, since D is inside circle ABC, the angle sequence for edge
AC must have ay, ..., a4 as its smallest angles. Thus for each of the six
angles formed by edge B D, there exists a smaller angle formed by edge
AC, proving that AC is illegal. A nearly identical proof works when D
lies outside the circle. O

Exercise 3.52. Given the triangles defined in Proposition 3.51, show that

D is outside the circumcircle of ABC if and only if B is outside the
circumcircle of ACD. Prove this is true even if ABCD does not form a
convex quadrilateral.

Based on Proposition 3.51, the following theorem classifies Delaunay

triangulations in a novel and powerful manner:

Theorem 3.53 (Empty Circle Property). Let S be a point set in general

position, where no four points are cocircular. A triangulation T is a
Delaunay triangulation if and only if no point from S is in the interior
of any circumcircle of a triangle of T.

Figure 3.22. Legal edges and circumcircles.

85

86 CHAPTER 3. TRIANGULATIONS

Proof. If no point of S is interior to any of the circumcircles, then any flip
will produce an illegal edge (by Thales’ theorem). Thus all edges of the
triangulation are legal.

We prove the converse of the statement using contradiction. Assume
T is Delaunay and suppose there exist triangles whose circumcircles
contain points in their interior. Such a situation would look like
Figure 3.23(a) for a triangle ABC and point D within its circumcircle.
Of all the triangles of T whose circumcircles contain points, choose the
one whose point is closest to the edge of the triangle, that is, choose
the one which minimizes the distance x given in part (b) of the figure.

Because T is Delaunay, all its edges are legal. So by Proposition 3.51,
triangle BCD cannot exist in T. Let BCE be the triangle adjacent to
ABC along edge BC. Again by the proposition, E must be outside the
circumcircle of ABC, as in Figure 3.23(c). Notice that the circumcircle
of BCE contains D, and D cannot be inside the triangle BCE. We
have now reached a contradiction: D is a point inside the circumcircle
of BCE, with the distance from D to EC less than the distance x. [

Exercise 3.54. Prove that the circumcircle of BCE contains D and that
D cannot be inside the triangle BCE.

Exercise 3.55. Prove that the smallest angle of any triangulation of a
convex polygon whose vertices lie on a circle is the same for each
triangulation.

Exercise 3.56. For every n > 3, design a set of n points in the plane, no
four cocircular, such that one vertex of the Delaunay triangulation has
degree n — 1.

(a) (b) (c)

Figure 3.23. Proving the empty circle property.

3.5 SPECIAL TRIANGULATIONS

3.5 SPECIAL TRIANGULATIONS

We close this chapter with a look at some special triangulations and their
properties. So far we have considered one special node in our flip graph,
the Delaunay triangulation. Another special node is the minimum weight
triangulation (MWT), defined as the one using the least amount of ink
to draw it compared to all other triangulations. Each edge is viewed
as having a weight equal to its Euclidean length. The minimum weight
triangulation appears in numerous areas such as network topology, where
it can be important to minimize the wiring cost of building a network
infrastructure.

How can we go about searching for the minimum weight triangu-
lation? Noting that skinny triangles usually have long edges and small
angles, it might seem reasonable to guess that the Delaunay triangulation
might indeed be the minimum weight triangulation. Unfortunately, we
are not that lucky. Consider the point set with 33 points, where 32 of
them are evenly spaced on a circle of radius 1, and the last point is at
the center of the circle. Slightly perturb the points so that no four are
cocircular.

For one triangulation, take the convex hull of the points and connect
each of the hull points to the center point. Using the empty circle
property (Theorem 3.53), it is not difficult to see that this is the Delaunay
triangulation. A quarter of the circle illustrating this triangulation appears
in Figure 3.24(a).

Exercise 3.57. Prove that the triangulation in Figure 3.24(a) is Delaunay.

For the second triangulation, again take the convex hull, connecting
every adjacent point on the boundary. Now connect every second point
on the boundary, making 16 new edges, and then add 8 new edges
connecting every fourth point on the boundary. After connecting every
eighth point with 4 new edges, we finish the triangulation by adding an

(a) (b)

Figure 3.24. The minimum weight triangulation is not Delaunay.

87

88

CHAPTER 3. TRIANGULATIONS

edge from every eighth point to the central point. A quarter of the circle
showing such a triangulation appears in Figure 3.24(b).

We now show that the second triangulation has a smaller total weight
than the Delaunay triangulation. The total weight of the Delaunay
triangulation is close to 2 432, the circumference of the circle plus the 32
radii. The total weight for the second triangulation is far less than 87 +4,
where 87 represents four layers around the circle and 4 is the length of
the four edges to the center. Because 27 + 32 ~ 38 > 29 ~ 87 + 4, we
have an example where the Delaunay triangulation is not the minimum
weight triangulation.

KX Exercise 3.58. Is the second triangulation given in Figure 3.24(b) the

minimum weight triangulation? If not, can you find another triangula-
tion with smaller total weight?

Now that we know the Delaunay triangulation is not always the
minimum weight triangulation, the question arises: how can the minimum
weight triangulation be found? One direct attempt is called the greedy
algorithm: Given n points, consider all possible (Z) distances between
them. Insert the edges one by one into the growing triangulation, choosing
at each step the edge with smallest available length that does not
cross a previously inserted edge. It was proved by Errol Lloyd that
this greedy triangulation yields neither the Delaunay nor the minimum
weight triangulation. In fact, it was a long-standing open problem to
determine the computational complexity of finding the minimum weight
triangulation. It was settled only in 2006 by Wolfgang Mulzer and Giinter
Rote, who showed that, alas, the problem is NP-hard.? Figure 3.25 shows
a point set along with (a) the Delaunay triangulation, (b) the greedy
triangulation, and (c) the minimum weight triangulation. The total weight
of each triangulation is given, assuming the perimeter to be 100 units in
length.

Instead of considering a complete triangulation of a point set, what if
we were interested in just a tree that spans the point set? In other words,
we want to draw edges using the least amount of ink such that all the
points are connected to each other. Such an object is called the mininum
spanning tree (MST) of a point set. The following remarkable theorem
says that this tree is indeed a subset of the Delaunay triangulation,
thus justifying the intuition that the Delaunay triangulation is weight-
minimizing in some sense.

Theorem 3.59. For a point set S, a minimum spanning tree of S is a
subset of the Delaunay triangulation of S.

3 The NP-hard problems are at least as difficult as NP-complete problems, and perhaps worse.
See the Appendix for further explanation.

3.5 SPECIAL TRIANGULATIONS 89

279.6 274.9 274.1

(a) (b) (c)

Figure 3.25. A point set along with its (a) Delaunay triangulation, (b) greedy
algorithm triangulation, and (c) minimum weight triangulation. Figure courtesy of
W. Mulzer and G. Rote.

Proof. Assume that edge AB is in the minimum spanning tree of S but
not in the Delaunay triangulation. Consider the circle with diameter
AB. Because AB is not a legal edge (by our definition of Delaunay
triangulation), then by Proposition 3.51, there must be another point in
this circle; call it C. Since AB is the diameter of the circle, | AC| < | AB|
and |BC| < |AB|.

Deleting AB from the minimum spanning tree will disconnect the
tree into two trees, say T4 and Tg. The minimum spanning tree reaches
(spans) all points of S, so C is in one of the two trees, say T4. Now
removing AB from the minimum spanning tree and adding BC will
create a new spanning tree that is shorter in total length, yielding a
contradiction. O

UNSOLVED PROBLEM 16 Minimum Weight

Assume that the sum of the lengths of all the edges of the minimum
weight triangulation is given. Find the minimum weight triangula-
tion in polynomial time. (Even with the added information of the
edge lengths, this may be difficult.)

So far in this chapter, we have concentrated on triangulations of one
given point set. There are applications that naturally lead to comparisons

90

3

s\t

CHAPTER 3. TRIANGULATIONS

of two triangulations of two different but related points sets X and Y,
both with 7 points. For instance, motion-capture systems are used in
filmmaking, recording the movements of actors dressed in special suits
equipped with dozens of reflective markers. A computer then looks at
the motion of all the markers and uses their movements to animate
the character. (This method was heavily used to animate the Gollum
character in Peter Jackson’s The Lord of the Rings movie trilogy.) Here
sets X and Y represent two time snapshots of the markers on the
actor’s suit with the triangulations providing interpolation guidance for
the intermediate points. This is an instance where it would be useful
to find a compatible triangulation of X and Y, first defined by Oswin
Aichholzer, Franz Aurenhammer, and Hannes Krasser in 2001 in the
following sense:

Definition. Given two planar point sets X and Y with 7 points each, along
with triangulations Tx and Ty, we say Tx and Ty are compatible if there
exists a bijection ¢ between the points of X and Y such that ABC is a
triangle of Ty if and only if ¢(A)¢p(B)p(C) is a triangle of Ty.

Figure 3.26 gives an example of compatible triangulations. The two
triangulations have the same combinatorial structure in terms of the
gluing of their triangles, but they differ geometrically in angles and edge
lengths.

Recall from Theorem 3.13 that the number of triangles in any
triangulation with # points is 27 — 2 — b, where b is the number of
points on the hull. Therefore, it is a necessary condition for a compatible
triangulation that the point sets have the same number of hull points.
But is this condition sufficient? Astoundingly, this remains an open
problem.

0

Figure 3.26. Two 10-point sets compatibly triangulated.

3.5 SPECIAL TRIANGULATIONS

UNSOLVED PROBLEM 17 Compatible Triangulations

Does every pair of planar n-point sets with the same number of
points b on the hull have a compatible triangulation? (This has been
proven only for point sets with at most three interior points.)

Finding compatible triangulations involves finding a bijection between
the points while simultaneously finding a triangulation. One cannot be
done before the other. It was shown by Alan Saalfeld in 1987 that if the
bijection between the points is fixed first, then compatible triangulations
do not always exist.

Exercise 3.60. Construct two n-point sets with the same number of
points b on the hull. Provide a bijection between the point sets for
which no compatible triangulations exist for this bijection.

Exercise 3.61. Given two polygons with n vertices, is it always possible
to compatibly triangulate both polygons?

The problem of finding compatible triangulations can be made easier
if we are permitted to add extra points to the point sets, called Steiner
points, named after the nineteenth-century Swiss mathematician Jakob
Steiner. One might try methods of compatible triangulation using exterior
Steiner points, that is, additional points added outside the convex hull
of the original point set. However, this turns out to be trivial, as the
following theorem shows:

Theorem 3.62. Any two n-point sets S and T may be compatibly
triangulated with the addition of two exterior Steiner points to each
set.

Proof. In the standard xy-coordinate system, order each set in terms of
increasing y-coordinate, and when points have the same y-coordinate,
order them in terms of decreasing x-coordinate. Explicitly,

S = {pl = (X1,y1),---, Dn = (xnv J’n)} s

where if i > j, then either y; > y; or y; = y; and x; < x;. Similarly,

T= {ql - (141, Ul), .. "qn - (unv Un)} ’

where if i > j, then either v; > v; or v; = vj and #; < u;. Add a Steiner
point py slightly below p; and far enough to the left of S so that edges
pibiv1 (between consecutive points of S) and ppp; (between p; and
points of S) do not intersect pairwise. Similarly, add a Steiner point pg
slightly above p,, and to the right of S with the corresponding property.

91

92 CHAPTER 3. TRIANGULATIONS

Pr

P,

dr

qa.

Figure 3.27. Example of sufficiency of two exterior Steiner points.

This ordering induces a vertical “zig-zag” as shown in Figure 3.27.
Note that p; and pr exist because placing them arbitrarily far away
yields edges arbitrarily close to horizontal. Add gy and gg to T in the
same manner.

Let 8" = SU {pr, pr} and T = T U {q1, gr}. By construction, the
edges prp; and p; pr (connecting each Steiner point to every point of
the original set) together with the edges p; piy1 yield a triangulation
of §’; a similar construction gives a triangulation to T'. The bijection
f(p«) = g« shows these triangulations are compatible. O]

The preceding theorem demonstrates the power of adding exterior
Steiner points. But because the new Steiner points can be arbitrarily
far away, the connection to the motivating applications is lost. A better
solution might be to add Steiner points interior to the convex hull. This
turns into a far more difficult problem, however. The best results so far
produce compatible triangulations of two point sets after the introduction
of n — b — 3 interior Steiner points, leaving much room for improvement.

We close this chapter on triangulations with objects that are not
even triangulations! Nevertheless, they appear in numerous areas such as
linkages and rigidity theory, which we discuss in Chapter 7. For example,
they were the key to solving the art gallery problem with guards that
cover 180° rather than 360°.

Definition. A pseudotriangle is a polygon with exactly three convex
vertices.

Figure 3.28 shows examples of several pseudotriangles. Instead of three
straight sides connecting the three vertices, pseudotriangles have reflex

3.5 SPECIAL TRIANGULATIONS 93

AR NPAN

Figure 3.28. Examples of pseudotriangles.

chains (perhaps empty) connecting the three convex vertices. In particu-
lar, any triangle is a pseudotriangle.

Exercise 3.63. Show that any polygon must have at least three convex
vertices.

Exercise 3.64. Show that the convex hull of any pseudotriangle is a
triangle.

Just as a triangulation is a subdivision into triangles, a pseudotrian-
gulation is a subdivision into pseudotriangles. Figure 3.29 shows several
examples of pseudotriangulations of point sets.

Three more pseudotriangulations are given in Figure 3.30. There is a
subtle difference between the first two and the last diagram. For the first
two, notice that all the vertices have at least one surrounding angle greater
than 7. In the last diagram, all angles incident to the marked vertices are
convex. This property is special enough to warrant a name.

Definition. A vertex is pointed if one of the angles it determines is reflex.
A pseudotriangulation is pointed if all its vertices are pointed.

For any pseudotriangulation of a point set, all the hull vertices are clearly
pointed because the exterior angle is reflex. This pointedness property can
be noticed in Figure 3.29 as well. For the first two diagrams, the central
vertex is incident only to convex vertices, whereas the other three pictures
all provide pointed pseudotriangulations.

(a) (b) () (d) (e)

Figure 3.29. Examples of pseudotriangulations, where (a)-(b) are also triangula-
tions, with 5 triangles each, whereas (c)-(e) have 4 pseudotriangles each.

94

CHAPTER 3. TRIANGULATIONS

(b) (c)

Figure 3.30. Examples of pseudotriangulations. All vertices are pointed except for
the two marked ones in (c).

Theorem 3.13 provides a formula for the number of triangles in any
triangulation of a point set S, dependent only on the number of points
on the hull and in the interior of S. But this idea does not extend to
pseudotriangulations, as shown by Figure 3.29: Here, although we are
examining pseudotriangulations of the same point set, some have more
pseudotriangles than others: two examples have 5 and three examples
have 4. The key parameters revealing regularity are not hull versus
interior points as for triangulations, but rather the number of pointed
versus nonpointed vertices:

Theorem 3.65. A pseudotriangulation of a point set S with p pointed
vertices and q nonpointed vertices has p + 2q — 2 pseudotriangles and
2p+ 3q — 3 edges.

Proof. Let t be the number of pseudotriangles and e the number of edges
of the pseudotriangulation. By Euler’s formula (Theorem 3.12), we
obtain (p +¢q) —e + (¢ + 1) = 2, as there are ¢ bounded faces and one
unbounded one. Because each angle incident to a vertex is formed by
two edges, the total number of angles equals 2e. The number of reflex
angles equals p, one at each pointed vertex, and the number of convex
angles equals 3¢, one per pseudotriangle corner. Thus 2e = p + 3.
This, along with the previous equation from Euler’s formula, allows us
to solve for e and ¢, establishing the claims. O]

The following is the analog of Theorem 3.13 for pointed pseudotrian-
gulations.

Corollary 3.66. A pointed pseudotriangulation of a point set S with n
points has n — 2 pseudotriangles and 2n — 3 edges.

Exercise 3.67. Find an algorithm which constructs a pointed pseudotri-
angulations for a given point set.

3.5 SPECIAL TRIANGULATIONS 95

Exercise 3.68. For any point set, show that pointed pseudotriangulations
have the least number of edges over all pseudotriangulations of the
point set.

The previous exercise is one reason pointed pseudotriangulations are
sometimes called minimal pseudotriangulations. For generic pseudotri-
angulations, it is possible to remove some edges and still maintain a
pseudotriangulation; see Figure 3.29(b) and Figure 3.30(c). However,
pointed pseudotriangulations have the condition that removal of any edge
loses the property of its being a pseudotriangulation.

The concept of a flip related two triangulations of a point set. Does this
notion exist for pointed pseudotriangulations? The answer is YES due to
the following result:

Theorem 3.69. For a pointed pseudotriangulation T, there is exactly one
flip for each interior edge e of T, that is, there exists a unique edge ¢’
such that removing e from T and replacing it with €' is again a pointed
pseudotriangulation.

Exercise 3.70. Show that deleting an edge shared by two pseudotriangles
in a pointed pseudotriangulation produces a pseudoquadrilateral, that
is, a (possibly degenerate) polygon with exactly four convex vertices.

KX Exercise 3.71. Prove Theorem 3.69 by showing that flipping an interior
edge corresponds to the two ways of decomposing a pseudoquadrilat-
eral into two pseudotriangles.

In a triangulation, edges can only be flipped if their containing quadri-
lateral is convex. In contrast, all interior edges of a pointed pseudotrian-
gulation can be flipped to form a different pointed pseudotriangulation
on the same point set; see Figure 3.31 for some examples. Just as with

(a) (b) (c) (d)

Figure 3.31. Each red edge of a pseudotriangulation can be flipped into the other.

96 CHAPTER 3. TRIANGULATIONS

triangulations, we can define a pseudotriangulations flip graph. It turns
out that the flip graph of pseudotriangulations is also connected.

Exercise 3.72. Prove that the flip graph of pseudotriangulations of a
planar point set is connected.

Recall from Section 3.3 that the associahedron is a polytope that
captures the combinatorics of the flip graph of triangulations. In 2002,
Giinter Rote, Francisco Santos, and Ileana Streinu constructed a sim-
ilar polytope that does the same for pointed pseudotriangulations.
Figure 3.32(a) shows the flip graph of a point set using pointed pseudotri-
angulations and part (b) shows the three-dimensional polyhedron whose
vertices and edges (its 1-skeleton) constitute the depicted flip graph. For
points in convex position, note that pseudotriangulations coincide with
triangulations. In this case, the pointed pseudotriangulation polytope
constructed is exactly the associahedron.

UNSOLVED PROBLEM 18 Pseudotriangulations

For a planar point set S, is the number of pointed pseudotrian-
gulations always at least the number of triangulations? This is
conjectured to be true, with equality only when the points of S are in
convex position. (This conjecture has been established for all points
sets of 10 or fewer points.)

@

@—N g

Figure 3.32. The (a) flip graph and (b) polyhedron of pointed pseudotriangulations
of a point set.

SUGGESTED READINGS

SUGGESTED READINGS

Marshall Bern. Triangulations. In Jacob E. Goodman and Joseph
O’Rourke, editors, Handbook of Discrete and Computational Geom-
etry, chapter 25, pages 563-582. CRC Press LLC, 2nd edition, 2004.
A succinct and authoritative survey by one of the world’s experts on triangulations,
including what we call “tetrahedralization” of polyhedra, and partitioning into
simplices in higher dimensions.

Herbert Edelsbrunner. Geometry and Topology for Mesh Generation.
Cambridge University Press, 2001.
A gem of a book concentrating on 2D and 3D triangle and tetrahedral meshes, with
Delaunay triangulations a central theme throughout the exposition. The proofs are
concise, almost lapidary.

Charles Lawson. Transforming triangulations. Discrete Mathematics,
Volume 3, pages 365-372, 1972.

A readable paper which first established the notion of a flip and proved that the
flip graph of a planar point set is connected.

Daniel Sleator, Robert Tarjan, and William Thurston. Rotational dis-
tance, triangulations, and hyperbolic geometry. Journal of the Ameri-
can Mathematical Society, Volume 1, pages 647-681, 1988.

A remarkable and influential paper which looks at the diameter of the flip graph
of a polygon (among other things) using combinatorics and the geometry of
hyperbolic tetrahedra.

Jonathan Shewchuck. TRIANGLE: A Two-Dimensional Quality Mesh
Generator and Delaunay Triangulator. http://www.cs.cmu.edu/
“quake/triangle.html
Robust software to compute exact Delaunay triangulations and many variants.

Jon McCammond. Noncrossing partitions in surprising locations. Amer-
ican Mathematical Monthly, Volume 113, pages 598-610, 2006.
A geometric look at Catalan numbers, triangulations, and associahedra in several
mathematics contexts. A nice survey of associahedra is given by Bill Casselman at
http://www.ams.org/featurecolumn/archive/associahedra.html.

97

VORONOI DIAGRAMS

The convex hull captures the outer boundary of a point set. Triangula-
tions partition the interior. In this chapter, the interest is in some sense
on the points of the plane not in the given point set S. In particular, we
study which point of S is closest to an arbitrary point not in S. This
focus on “nearest neighbors” leads to the rich geometry of the Voronoi
diagram (Section 4.1) and to the challenge of algorithmically constructing
this diagram (Section 4.2). We will see there is an intimate connection via
“duality” between Voronoi diagrams and the Delaunay triangulations of
Chapter 3 (Section 4.3). And there is a beautiful and deep connection
between both these structures and convex hulls in 3D (Section 4.4).

4.1 VORONOI GEOMETRY

In the context of Voronoi diagrams, the points of our given finite set S
are often called sites. Imagine that the sites in S represent a local chain
of post offices. If you lived somewhere in the plane, you would naturally
want to go to the office closest to your home. So it is equally natural to
associate with a post office p the region of points that are each closer
to p than to any other site in S. The subdivision of the (infinite) plane
into these regions is called the Voronoi diagram of the point set, with
each region a Voronoi region. Figure 4.1 shows the Voronoi diagram for
10 post offices.

The manner in which Voronoi diagrams capture proximity makes
them extremely useful in many practical applications, including pattern
recognition, facility location, robot motion planning, cartography, and
crystallography, just to name a few. They were first seriously studied
by Georgy Voronoi in 1908, but have been rediscovered in many forms
and so appear under various names, including Thiessen polygons and
Dirichlet tessellations.

Notice that some regions in Figure 4.1 are bounded (e.g., the red
region) and others are unbounded (e.g., the blue region). However, each
region is convex in this example, regardless whether it is bounded or not.
Will this always be true for any Voronoi region for any point set in the
plane? What other properties do Voronoi diagrams possess? We now turn
to answering such questions with a close consideration of their geometry.
Let S be a collection of sites in the plane. The idea is to assign to each site

4.1 VORONOI GEOMETRY 99

Figure 4.1. The Voronoi diagram for 10 sites.
the region that it influences.

Definition. The Voronoi region Vor(p) of a site p in § is
Vor(p) = {x e R? | |lx — p|| < |lx — gl for all sites g in S},

where ||p — g|| denotes the (Euclidean) distance between points p and
q in the plane.

In words, Vor(p) is the set of all the points x that are at least as close to
p as to any other site g in S. The points that lie on the boundary between
regions do not have a unique nearest site. The Voronoi diagram Vor(S)
is the collection of these boundaries: the set of all points in the plane that
have more than one nearest neighbor. In Figure 4.1, the Voronoi diagram
corresponds to the Voronoi edges and Voronoi vertices that partition the
plane into the regions.

Let’s look at the situation from the perspective of a single site p in S. If
there is only one other site g in S, then the Voronoi diagram will simply
be the perpendicular bisector of the segment pg. This bisector cuts the
plane into two regions where the Voronoi region of p is the halfplane of
points that contains p:

H(p,q) = {x e R* | |x — pll < llx—ql}.

If S has numerous sites, then we need to compare the distances of points
between p and all other sites of S. This yields the following result:

Theorem 4.1. The Voronoi region Vor(p) is the intersection of all
halfplanes H(p, q), where q is any other site in S.

One of the fundamental results of discrete geometry is as follows:

100

CHAPTER 4.

(a)

VORONOI DIAGRAMS

Theorem 4.2. The intersection of any (not necessarily finite) set of convex
objects is convex.

Proof. Let {X; | i € I} be an arbitrary collection of convex sets, and let X
denote their intersection. Consider arbitrary points p and g in X. By the
definition of intersection, these points lie in every set X;. Because every
X; is convex, the entire segment pq lies in every set X; and therefore in
their intersection X. Thus X is convex. O

Since all halfplanes are convex regions, the following corollary is
immediate:

Corollary 4.3. All Voronoi regions are convex.

Let’s now turn our focus to the Voronoi vertices. When there are just
three sites p, g, 7 in the point set S, the Voronoi diagram is formed by
three perpendicular bisectors of the segments pg, pr, gr. Is it possible
that these bisectors do not necessarily meet at a point, as in Figure 4.2(a)?
The answer NO follows from a theorem of Euclid (Elements, Book IV,
Proposition 5). Euclid proved that the perpendicular bisectors of the
sides of a triangle—pgr in our case, shown in part (b)—must all pass
through one point. In fact, this point, a Voronoi vertex, is the center of
the (unique) circumcircle that passes through the triangle’s vertices, as
illustrated in (c).

Exercise 4.4. Construct a point set with three sites whose Voronoi vertex
is exterior to the triangle determined by the sites.

Exercise 4.5. Without invoking Euclid, provide a simple proof that
Figure 4.2(a) is impossible.

(b) (c)

Figure 4.2. Bisectors and circumcircles with three sites.

4.1 VORONOI GEOMETRY 101

Figure 4.3. The Voronoi diagrams for four points.

What happens with four or more sites? Consider the two diagrams
in Figure 4.3. The left one shows the case when four sites of the point
set happen to lie on the same circumcircle, when the Voronoi vertex has
degree 4. However, if one of the sites (such as the top left one) is moved
slightly, as in the right figure, then the degree-4 Voronoi vertex splits into
two degree-3 vertices. Thus the picture on the right is, in some sense,
“generic” whereas the one on the left is degenerate. In this chapter, we
consider a point set to be in general position if no four sites are cocircular,
in which case all Voronoi vertices have degree 3.

As we have seen, intersections of bisectors create Voronoi vertices.
However, certainly not all of these intersections become Voronoi vertices.
Is there an easy way to find out which points on the plane will become
Voronoi vertices? The following theorem answers this in the affirmative:

Theorem 4.6. Let S be a point set with Voronoi diagram Vor(S). A point
v is a Voronoi vertex of Vor(S) if and only if there exists a circle
centered at v with three or more sites on its boundary and none in
its interior.

Proof. If v is a Voronoi vertex, then it must be incident to at least three
Voronoi regions, say Vor(p), Vor(g), Vor(r). This implies that v must
be equidistant from the three sites p, g, 7, and hence there exists a
circle centered at v with these sites on its boundary. If another site is
inside this circle, then it would be closer to v, implying that the regions
Vor(p), Vor(q), Vor(r) would not meet at v. This proves one direction
of the claim.

Now assume such a circle centered at v exists, with at least three
sites p, g, r on its boundary. Since the interior of the circle is empty, v
must be on the boundary of each of the regions Vor(p), Vor(g), Vor(r).
Hence, v is a Voronoi vertex. O

Exercise 4.7. Let S contain the sites {(1, 3), (1, 9), (1, 11), (3, 6), (4,9),
(6, 6)}. Draw the Voronoi diagram of S.

102

CHAPTER 4. VORONOI DIAGRAMS

Exercise 4.8. For each n > 3, is it possible to construct an example of a
point set with n sites having no Voronoi vertices? How about having
exactly one Voronoi vertex?

Let’s now turn to understanding Voronoi edges. We know that all the
Voronoi edges are parts of perpendicular bisectors between sites, but not
all these bisectors becomes Voronoi edges. We now present a geometric
feature that characterizes the Voronoi edges, analogous to the theorem
above:

Theorem 4.9. Let S be a point set with Voronoi diagram Vor(S), and
let e be a connected subset of the bisector between sites p and q of S.
Then e is a Voronoi edge of Vor(S) if and only if for each point x in e,
the circle centered at x through p and q contains no other sites of S in
its interior or boundary.

Proof. Suppose x is a point on the Voronoi edge between sites p and q. If
the circle centered at x with p and g on its boundary contains another
site r, then x would be in Vor(r) as well. Since this is a contradiction
to being on a Voronoi edge, this circle is empty of other sites.

Now assume there exists an empty circle through p and g (and
not through any other site) with x as its center. We then know that
lx — pll = llx — gl and ||x — p|| < |lx — r|| for any other site 7 of S.
Therefore, x must lie on the Voronoi diagram Vor(S) as either an edge
or a vertex. By Theorem 4.6, x cannot be a Voronoi vertex, and thus
x lies on a Voronoi edge. O

We see in Figure 4.1 that two types of Voronoi edges are present:
finite line segments (with two endpoints) and halflines or rays (with one
endpoint). The only other type of edge is an infinite line (having no
endpoints), as we saw when the point set S consisted of only two sites.
The following theorem classifies the infinite-line edges.

Theorem 4.10. A Voronoi diagram Vor(S) for a point set S has infinite-
line edges if and only if all sites of S are collinear.

Proof. If all sites of S are collinear, it easily follows that Vor(S) consists
of parallel lines and no vertices. So we can assume that not all sites
of S are collinear. Assume Vor(S) has an entire line called L, defined
as the border of regions Vor(p) and Vor(g). Let r be a site in S not
collinear with p and g, and (without loss of generality) assume that
risin H(p, q). Then the perpendicular bisector of pr must intersect L.
Moreover, the halfline L N H(r, p) is not in Vor(S) because it is closer
to 7 than to p. So the entire line L cannot be in Vor(S). O

4.1 VORONOI GEOMETRY

Corollary 4.11. For a point set S, the Voronoi diagram Vor(S) is
disconnected if and only if all sites of S are collinear.

Proof. If Vor(S) is disconnected, then there must be a Voronoi region
Vor(p) of S that separates the plane into two disjoint regions. Since
Vor(p) must be a convex region by Corollary 4.3, the boundary
of Vor(p) must be two parallel lines. By the theorem above, the points
of S must be collinear. O

We close this section with an enumeration result, bounding the total
number of Voronoi vertices and edges, and showing the combinatorial
complexity of the diagram to be O(n).

Theorem 4.12. Let S be a point set with n > 3 sites. Then Vor(S) has at
most 2n — 5 Voronoi vertices and 3n — 6 Voronoi edges.

Proof. Start by bending all the halflines of Vor(S) to meet an extra
vertex located inside one of the unbounded regions, as illustrated in
Figure 4.4. The result is a planar graph G, where each region of the
graph is in one-to-one correspondence with a site of S; so the number
of nodes of G is 7, the number of sites in S. Also, Vor(S) and G have
the same number of edges (call it e). And if Vor(S) has v vertices, G
has v + 1 vertices.

Because G is planar, we may apply Euler’s formula (Theorem 3.12),
yielding the relationship (v + 1) — e + n = 2. Because summing the
degrees of G counts each edge of G twice, and because each node of
G has degree at least 3 (exactly 3 if S is in general position), we have

Figure 4.4. Adding an extra vertex and connecting to it the unbounded edges
of Figure 4.1.

103

104

CHAPTER 4. VORONOI DIAGRAMS

3(v+1) < 2e. Substituting (v+1) = 2 +¢ —n into this inequality yields
the claimed bound on edges, and substituting e = (v+ 1) + b — 2 yields
the claimed bound on vertices. O

This enumeration result implies that the number of vertices and edges
is linear in the number of sites 7. Naively, because there are (2’) site-
site bisectors, the relationship could have been quadratic. The linear
dependence on # means that many algorithms based on the Voronoi
diagram can run quickly.

Exercise 4.13. Describe the structure of the Voronoi diagram for the
vertices of a regular polygon.

Exercise 4.14. For any point set S, prove that Vor(p) is an unbounded
region in the plane if and only if p is on the bull of S.

Exercise 4.15. For any point set S, prove that the average number of
vertices of a Voronoi region of § is less than 6.

4.2 ALGORITHMS TO CONSTRUCT THE DIAGRAM

Because of its numerous applications, considerable effort has been in-
vested in designing algorithms to construct the Voronoi diagram. The
most direct approach would be to find each Voronoi region separately as
an intersection of #—1 halfplanes, using Theorem 4.1. Such a construction
would yield a computational time of O(7? log#). Michael Shamos and
Dan Hoey in 1975 provided a divide-and-conquer algorithm with time
complexity O(nlogn), which we will see (in Section 4.3) is optimal.
However, this algorithm has proved difficult to implement, requiring
careful attention to data structures.

In 1985, Steve Fortune discovered a clever algorithm with the same
O(nlogn) time complexity, but following a different paradigm known
as plane sweep. The algorithm sweeps a vertical line left-to-right over
the point set S, maintaining at all times the Voronoi diagram of the
already swept points to the left. Although this is the general idea, the
exact Voronoi diagram to the left depends on some sites to the right of
the sweepline. So the algorithm is more subtle, maintaining a “parabolic
front” that lags the sweepline slightly, with the property that the exact
Voronoi diagram is constructed left of the parabolic front.

Of the many possible algorithms, we choose to explore a simple
incremental algorithm for constructing the Voronoi diagram, described
by Peter Green and Robin Sibson in 1977. It is a clean and elegant
algorithm, and perhaps remains the most popular despite its O(z?) time
complexity. The basic idea is similar to the incremental method used for
convex hulls and triangulations. Assume that we have already built the

4.2 ALGORITHMS TO CONSTRUCT THE DIAGRAM

Voronoi diagram for k sites {p1, P2, ..., pr}. We add a new site p to the
plane, and so we need to convert the current Voronoi diagram to include
the region Vor(p). Figure 4.5 shows this algorithm in action, starting with
adding the extra site p into a previously constructed diagram and finishing
with deleting the subdiagram inside Vor(p).

First we find the site, say p1, whose Voronoi region Vor(p;) contains
p. (We relegate to an exercise the possibility that p lands on an edge
or vertex of the diagram.) Such a site must exist because the Voronoi
diagram partitions the plane. Now consider the perpendicular bisector
of the segment p;p. Because Corollary 4.3 guarantees the regions to be
convex, this bisector intersects the boundary of Vor(p;) at exactly two
points. Denote these points as x; and x; in such a way that the triangle
px1x; is counterclockwise. The line segment x1x; cuts the Voronoi region
Vor(p;) into two parts, one of which belongs to the region Vor(p) we are
in the process of constructing; see the left side of Figure 4.6.

We now use the edge xx, to obtain the remainder of the boundary of
Vor(p). The point x, lies on the Voronoi edge between Vor(p;) and its
adjacent Voronoi region, say Vor(p,). Now consider the perpendicular
bisector of the segment p,p, which intersects the boundary of Vor(p,)
at two points, x, and another point, say x3. The line segment x,x3 cuts
the Voronoi region Vor(p,) into two parts, one of which belongs to the
region Vor(p); see the right side of Figure 4.6. We repeat this procedure,
finding a sequence of line segments enclosing p, until we return to x;
again. These segments create a counterclockwise boundary of Vor(p).

105

Figure 4.5. The incremental algorithm for creating Voronoi diagrams.

106 CHAPTER 4. VORONOI DIAGRAMS

Figure 4.6. Labeled diagrams of the incremental algorithm in action.

Finally, we discard the old subdiagram inside Vor(p) to obtain the new
Voronoi diagram. Notice that this procedure is entirely local, restricted
to just one area of the Voronoi diagram. A summary of the procedure
follows.

INCREMENTAL Voronoi Diagram Algorithm O(n?)

Given a constructed Voronoi diagram, find the region, say Vor(p1),
which contains the new site p. Draw the line segment x;x, that is
the perpendicular bisector to p;yp. Continuing from x;,, construct
Vor(p) segment by segment until it closes up back at x;. Remove the
subdiagram inside this polygonal region to obtain the new Voronoi
diagram, now containing p.

Exercise 4.16. We claimed above that the changes to the Voronoi
diagram are “local.” Construct an example (for arbitrary n) in which
every Voronoi region is altered by the addition of a new site, thus
showing that the algorithm might need quadratic time in n.

Exercise 4.17. If the new added site p is outside the convex hull
of {p1, P2, ..., Pr}, then Exercise 4.14 says that Vor(p) will be an
unbounded region. Extend the algorithm to handle this situation.

Exercise 4.18. Extend the algorithm to handle the situation when the
new added site falls not inside a Voronoi region but directly on a
Voronoi edge or Voronoi vertex.

4.3 DUALITY AND THE DELAUNAY TRIANGULATION 107

Exercise 4.19. Detail the geometric properties of a one-dimensional
Voronoi diagram: n sites on a line. Design an algorithm to compute
it and analyze its computational complexity.

K Exercise 4.20. Given n — 1 points on a line, describe conditions on the
points that determine whether they represent the one-dimensional
Voronoi diagram of n sites on that line.

X Exercise 4.21. Sketch a divide-and-conquer algorithm to construct Vor-
onoi diagrams.

Exercise 4.22. The computation of the Voronoi diagram is so useful
and widely needed that it is now included in standard computation
libraries, such as MATHEMATICA or MATLAB. Learn how to compute
the Voronoi diagram in one of these packages.

4.3 DUALITY AND THE DELAUNAY TRIANGULATION

We mentioned that Voronoi diagrams encode proximity of points to sites.
Site-to-site proximity may be captured by Voronoi region adjacency. A
convenient representation of this adjacency relationship is the dual graph
to the Voronoi diagram Vor(S). The nodes of the dual graph are the sites
of S, and two sites are connected by an arc if they share a Voronoi edge.
Figure 4.7 shows the graph dual to the Voronoi diagram of Figure 4.1
above.

In this figure, the arc between two sites is drawn to cross over its
corresponding Voronoi edge. Because the Voronoi diagram is drawn
on the plane, it follows that the dual graph is a planar graph, whose

Figure 4.7. The dual graph of the Voronoi diagram.

108 CHAPTER 4. VORONOI DIAGRAMS

Figure 4.8. The straight-line dual graph of the Voronoi diagram.

arcs intersect only at the sites. The previous chapter focused on such
connections between sites of S, resulting in triangulations. What would
happen if we straightened the arcs of the dual graph, so the arc connecting
sites p and q is replaced by the line segment pq? Figure 4.8 shows such a
straightening for Figure 4.7.

In this figure, the result is a plane graph, where no two dual edges
intersect. Would this be the case in general? In other words, is it always
the case that the straightened arcs avoid crossing one another? The
theorem below proved by Delaunay answers this in the positive. We first
need the following technical lemma to prove the theorem.

Lemma 4.23. Let Aand B be two circles with chords that properly cross.
Then at least one endpoint of one circle’s chord is strictly inside the
other circle.

Proof. If one circle is contained within the other, the claim follows
trivially. Otherwise, place the centers of A and B on a horizontal,
with the leftmost point of A left of the leftmost point of B. Each circle
naturally partitions the other into two parts: B cuts A into Ay (the
part outside B) and A; (the part inside B); similarly, A cuts B into By
(outside A) and By (inside A).

Let aia, be the chord of A with a1 <, a», and b1b, the chord of
B with by <, b,. Let L be the vertical segment determined by the
two intersection points of AN B. If both a; and a; are in Ay, then
ai,a» <, L, and if both b; and b, are in By, then by, b, >, L. So
if both these conditions hold, the chords cannot properly cross, as
shown on the left of Figure 4.9. Therefore we must have either a; or
a, in Aj, or we must have by or b, in By. Any of the four possibilities
results in some chord endpoint inside the other disk, as illustrated on

4.3 DUALITY AND THE DELAUNAY TRIANGULATION 109

Figure 4.9. Crossing chords.

the right of Figure 4.9. Proper crossing forces some endpoint strictly
inside, establishing the claim of the lemma. O]

Theorem 4.24. The straight-line dual graph of Vor(S) is planar.

Proof. We prove this by contradiction. Assume there are two edges p1 p»
and p3ps4 of the straight-line dual graph of Vor(S) that intersect. By
Theorem 4.9, there exists a point x on the Voronoi edge between p
and p, such that the circle C, centered at x and through p; and p; is
empty. A similar empty circle C, centered at y exists for p3 and p4. But
Lemma 4.23 above showed that these conditions imply that either C,
or C, is not empty, a contradiction. O

Corollary 4.25. If S is a point set in general position, with no four

cocircular sites, the straight-line dual graph of Vor(S) is a triangulation
of S.

Proof. Because no four sites are cocircular, each Voronoi vertex has
degree 3 and so corresponds to a triangle in the dual; see Figure 4.2(b)
for a visual aid. O

Following Corollary 4.25, the straight-line dual graph of Vor(S) is called
the dual triangulation (or sometimes just the dual) of the Voronoi
diagram. The duality associates each Voronoi region to a vertex (the
region Vor(p) is associated to p) and each Voronoi vertex to a triangle.

The previous chapter introduced the flip graph of a point set S, a
graph encapsulating all triangulations of S. It is natural to wonder where
the dual triangulation of Vor(S) fits into the flip graph. The following

110

CHAPTER 4. VORONOI DIAGRAMS

theorem, a foundational result in computational geometry, answers this
question.

Theorem 4.26. Let S be a point set in general position, with no four
cocircular sites. The dual triangulation of Vor(S) is the Delaunay
triangulation Del(S) of S.

Proof. Theorem 4.6 shows that the closed circumcircle of each triangle
in the dual of Vor(S) has no sites in its interior. Moreover, because S
is in general position, the circumcircle of any triangle in the dual of
Vor(S) contains only the vertices of that triangle. Theorem 3.53 shows
that such a triangulation of § is the Delaunay triangulation. O

Although we have presented the Delaunay triangulation and the
Voronoi diagram as almost accidentally related, the historical develop-
ment followed a direct line from the Voronoi diagram to the Delaunay tri-
angulation (Delaunay was a Ph.D. student of Voronoi at Kiev University)
to the properties of the Delaunay triangulation (e.g., that it is the fattest
triangulation). The uniqueness of the Voronoi diagram for a point set
leads immediately to the same conclusion for the Delaunay triangulation:

Corollary 4.27. Let S be a point set in general position, with no four
cocircular sites. Then Del(S) is unique.

Here the general position assumption is only needed to ensure that

Del(S) is a triangulation. This theorem also provides a new proof of
Theorem 3.22 from Chapter 3:

Corollary 4.28. The flip graph of a planar point set is connected.

Proof. By the Delaunay triangulation edge flipping algorithm, any trian-
gulation can be converted to a triangulation with all legal edges. In
other words, by the theorem above, any triangulation can be made
into the (unique) Delaunay triangulation. This shows that there exists
a path in the flip graph between any node and the node corresponding
to the Delaunay triangulation. O

Exercise 4.29. A Pitteway triangulation of S is one for which every point
in each triangle of the triangulation has one of its three vertices as the
nearest neighbor among all sites of S. Show that not every Delaunay
triangulation is a Pitteway triangulation.

We close this section by considering another algorithm for the Delau-
nay triangulation. Previously, we constructed Del(S) by flipping illegal

4.3 DUALITY AND THE DELAUNAY TRIANGULATION 111

Figure 4.10. The dual graph to the Voronoi diagram.

edges of the triangulation. Now we use the duality between Voronoi and
Delaunay to provide an incremental algorithm for building the Delaunay
triangulation. Indeed, the one-to-one correspondence provided by duality
implies that an algorithm for the Voronoi diagram must be an algorithm
for the Delaunay triangulation “in disguise.” As usual, we assume that
no four sites of S are cocircular to avoid the distraction of degenerate
cases.

Let S, denote the first k sites of S and assume that we have already
built the Delaunay triangulation Del(S;) of Si. As a new site p is added
to the plane, the current triangulation must be altered to include this site.
We suppose the site p is inside the convex hull of the previous k sites,
as shown in Figure 4.10(a). (We leave it as an exercise to consider the
case when p is outside the convex hull.) By Theorem 3.53, a triangle # of
Del(S;) will be affected if and only if the circumcircle of ¢ contains p. We
denote such triangles as marked triangles, shaded in Figure 4.10(b). Thus
the changes made to Del(S) are restricted to these marked triangles, each
of whose circumcircles contains p.

The union of these marked triangles is a triangulation of a polygon
inside the hull of the sites. Discard the diagonals of this polygon and
add edges from p to each of the vertices of the polygon, as displayed in
Figure 4.10(c). We claim that this is the Delaunay triangulation Del(Sg1)
of the sites, now with p included. It is clear by Theorem 3.53 that all
the marked triangles must be changed. We thus need to show that all
new triangles of the Delaunay triangulation must have p as a common
vertex.

Suppose there is a new triangle ¢ of Del(Sgt1) for which p is not one
of its vertices. Then the circumcircle of # must be empty because it is
a Delaunay triangle; in particular, p is not in the circumcircle. Thus

112 CHAPTER 4. VORONOI DIAGRAMS

t cannot be a new triangle since it is a triangle of the original Delaunay
triangulation Del(Sp), leading to a contradiction.

INCREMENTAL Delaunay Triangulation Algorithm O(n?)

Given a constructed Delaunay triangulation Del(S;) with & sites,
find the set of triangles of Del(S;) whose circumcircles contain the
new site p. The union of these triangles is a triangulated polygon.
Remove the diagonals of this polygon and add edges from p to
each of the vertices of the polygon to obtain the new Delaunay
triangulation, now containing p.

Notice that this algorithm runs in O(#?) time because it is just the dual of
the Green and Sibson incremental Voronoi algorithm discussed earlier.

Exercise 4.30. Extend the algorithm to handle the case when the
additional site p is outside the convex hull of the previous k sites.

Exercise 4.31. Suppose we are given the Delaunay triangulation of a
point set S with n points. Design an algorithm that constructs the
Delaunay triangulation of the remaining n — 1 sites if a site from S
is deleted. How does this algorithm change if the deleted site was on
the hull of S or in the interior of conv(S)¢

Exercise 4.32. What is the fewest number of triangles that will be altered
by the addition of a site inside the hull? What is the maximum number
of affected triangles?

X Exercise 4.33. Fora triangulation T of a point set S, let d(T) be the dia-
meter of largest circumcircle of any triangle in T. Prove that the
Delaunay triangulation has the smallest value for d(T) over all trian-
gulations of S.

UNSOLVED PROBLEM 19 Voronoi Diagram of Lines in 3D

What is the combinatorial complexity of the Voronoi diagram of a
set of lines in 3D? Each Voronoi region includes the set of points
closer to one of the given lines than to any other. There is a
gap between a lower bound of Q(#?) and an upper bound that is
essentially cubic.

4.4 CONVEX HULL REVISITED

4.4 CONVEX HULL REVISITED

We close this chapter with a remarkable connection between Delaunay
triangulations and convex hulls in one higher dimension, discovered by
Kevin Brown in 1979 and further developed by Herbert Edelsbrunner and
Raimund Seidel in the early 1980s. The heart of this relationship involves
the paraboloid

= x>+ 9% (4.1)

Let S be a point set in the xy-plane, with no four points cocircular.
Associate to each site (x,y) a “terrain height” value of x> + y?; this
places the sites exactly onto the paraboloid. Now find the convex hull
of this point set in R3. Discard the “top faces” of this hull, those faces
which are visible looking straight down the z-axis from above. These faces
are sometimes called the upper convex hull, whereas the remaining ones
constitute the lower convex hull. The stunning result connecting convex
hulls and Delaunay triangulations is given by the following theorem:

Theorem 4.34. Given a point set S in the xy-plane, the Delaunay
triangulation Del(S) is exactly the projection to the xy-plane of the
lower convex hull of the points (x, y, x> + y?).

Figure 4.11 shows 10 points on the plane whose triangulation derives
from the projection of the lower convex hull of these points placed on

Figure 4.11. The Delaunay triangulation of a point set in the plane is obtained from
the projection of the lower convex hull of these points on the paraboloid.

113

114

CHAPTER 4. VORONOI DIAGRAMS

the paraboloid. The marked circle on the plane shows the origin in R?,
the point at which the paraboloid touches the plane. By Theorem 4.34, the
triangulation formed by this projection is the Delaunay triangulation of
the point set.

Before proceeding to the proof, we pause to consider the geometry of
the paraboloid. From multivariable calculus, the equation of the tangent
plane at a point (a, b) is given by

2 =2ax+2by —a* — b*. (4.2)

If this plane is shifted upward (in the z direction) by a distance of 72, one
obtains a new plane 7 given by

z=2ax+2by —a* — b* + 1% (4.3)

From conic geometry, this plane 7 intersects the paraboloid along an
ellipse. The projection of this ellipse onto the xy-plane obtained by solving
equations (4.1) and (4.3) yields

(x—a) +(y—b?=r*, (4.4)

the equation of a circle. With this background, we begin the proof of the
theorem.

Proof. Choose a face t of the lower convex hull, and let 7 be the plane
defined by the three points of ¢ on the paraboloid. We can shift
this plane downwards (in the z direction) until it is tangent to the
paraboloid. Let (a, b, a> + b*) be the point of tangency and let 72 be
the amount of downward shift on 7. The equation of the plane 7 is
then given by (4.3).

By the discussion above, the projection in the xy-plane of the three
points defining ¢ lies on a circle of radius 7 given by equation (4.4).
Since t is a lower face of the convex hull, all other sites on the
paraboloid lie above m, implying they project outside this circle
of radius r. Therefore this circle determined by ¢ is empty. By
Theorem 3.53, the projection of ¢ onto the xy-plane is a Delaunay
triangle. Since this is true for all the lower convex hull faces, the full
projection yields the Delaunay triangulation. O]

A beautiful side observation comes from looking closer at Theorem
4.34. Note that this theorem holds independent of where the origin (and
therefore the lowest point of the paraboloid) is with respect to the point
set on the plane. Indeed, rotating and translating S will alter the lower
convex hull but the projection of the triangulation remains the same!
Figure 4.12 shows the same planar point set as Figure 4.11 but with a
translation to the right. Again, the marked circle on the plane indicates

4.4 CONVEX HULLREVISITED 115

Figure 4.12. The point set in identical to that of Figure 4.11 but with a translation
to the right. The lower hull yields a different shape but the planar triangulation is
identical.

the origin in R%. Notice that the lower hull yields a different shape but
the planar triangulation is still Delaunay.

We know from Chapter 2 that the convex hull of points in 3D can be
obtained in O(nlogn) time complexity. This implies that the Delaunay
triangulation (as well as the Voronoi diagram) of points in R? can be
computed in the same time. One can show that this relationship between
Delaunay and convex hulls holds in higher dimensions as well. Thus
Delaunay tetrahedralizations, which are essential for solid meshing of 3D
objects, can be obtained by constructing the 4D hull of the 3D points
projected up to a paraboloid in R*.

We have so far emphasized how the lower hull of the paraboloid points
project to the Delaunay triangulation. A dual view, which we only sketch,
completes the picture. Imagine constructing all the planes tangent to the
paraboloid over each site (a, b), following equation (4.2), and viewing
these intersecting planes from z = +o00. One sees the upper envelope of
the planes — the pieces not obscured by any other plane. This upper
envelope projects precisely to the Voronoi diagram!

The correspondence among these four structures — the Voronoi dia-
gram, the Delaunay triangulation, the convex hull in 3D, and the envelope

116

CHAPTER 4. VORONOI DIAGRAMS

of tangent planes — can be summarized briefly by the table below.
The combinatorial duality between Voronoi diagrams and Delaunay
triangulations is a shadow (literally) of the projective duality between
lower hulls of points and upper envelopes of planes.

Voronoi Delaunay Lower Hull ~ Upper Envelope
site site lifted site tangent plane to
lifted site

Voronoi region site hull vertex envelope face
Voronoi edge Delaunay edge hull edge envelope edge
Voronoi vertex Delaunay triangle hull face envelope vertex

3 coincident empty circumcircle supporting 3 coincident planes

bisectors plane

This correspondence implies that an algorithm for one can be con-
verted into an algorithm for the other. Thus the three incremental
algorithms we described for the 3D hull (Section 2.7), for the Delaunay
triangulation (Section 3.4), and for the Voronoi diagram (Section 4.2)
are all in some sense the same. Similarly, the Preparata-Hong divide-
and-conquer algorithm for the 3D hull “projects” to the Shamos-Hoey
divide-and-conquer algorithm for the Voronoi diagram, with the delicacy
of the former explaining the difficulty of the latter. The somewhat
mysterious parabolic fronts in Fortune’s sweep algorithm are no longer
mysterious from the 3D hull point of view, and an implementation
of the algorithm in terms of Delaunay triangulations is conceptually
cleaner.

Exercise 4.35. Extend the proof of Theorem 4.34 to relate the 3D
Delaunay tetrabedralizations and 4D convex hulls.

KX Exercise 4.36. Consider the upper convex hull, the set of faces we dis-

carded. If the lower convex hull projects to form Del(S), to what object
does the upper convex hull project for S¢

SUGGESTED READINGS
SUGGESTED READINGS

Atsuyuki Okabe, Barry Boots, and Kokichi Sugihara. Spatial Tessella-
tions: Concepts and Applications of Voronoi Diagrams. John Wiley &
Sons, 2nd edition, 2000.

A complete and comprehensive reference on just about every nuance of Voronoi

diagrams in 2D. It is especially valuable for connections to Geographic Information
Systems (GIS).

Steve Fortune. Voronoi diagrams and Delaunay triangulations. In
Jacob E. Goodman and Joseph O’Rourke, editors, Handbook of
Discrete and Computational Geometry, chapter 22, pages 513-528.
CRC Press LLC, 2nd edition, 2004.

A masterfully succinct survey by the inventor of Fortune’s sweepline algorithm,

originally described in “A sweepline algorithm for Voronoi diagrams” (Algorith-
mica, Volume 2, pages 153-174, 1987).

Franz Aurenhammer and Rolf Klein. Voronoi diagrams. In Jorg-Rudiger
Sack and Jorge Urrutia, editors, Handbook of Computational Geome-
try, chapter 5, pages 201-290, Elsevier, 2000.

Another masterful survey by leading researchers, including many applications, and
90 bibliographic references.

Mark de Berg, Marc van Kreveld, Mark Overmars, and Otfried

Schwarzkopf. Computational Geometry: Algorithms and Applications.
Springer-Verlag, 3rd edition, 2008.
A well-written textbook for advanced undergraduates and beginning graduates
with a strong focus on algorithms in computer science. In particular, Chapter 7
contains a clear and detailed presentation of Voronoi diagrams and their general-
izations.

Herbert Edelsbrunner and Raimund Seidel. Voronoi diagrams and
arrangements. Discrete and Computational Geometry, Volume 1,
pages 25-44, 1986.

The seminal paper that clarified the relationships between Voronoi diagrams,
paraboloids, and arrangements. Builds on the connection between Voronoi
diagrams and convex hulls first elucidated by Kevin Brown in his 1979 pa-
per “Voronoi diagrams from convex hulls” (Information Processing Letters,
Volume 9, pages 233-228).

117

CURVES

In this chapter, we extend the Voronoi diagram to apply to curves
rather than to just sites, leading to two generalizations: the medial axis
(Section 5.1) and the straight skeleton (Section 5.2). Both can be viewed
as created by “offsetting” the polygon boundary, which leads to the
Minkowski sum (Section 5.3) and convolution (Section 5.4). This in turn
brings us naturally to curve shortening (Section 5.5), which connects
to several deep theorems of mathematics, most notably the Poincaré
conjecture using the heat equation (Section 5.6). Finally, we look at
curve reconstruction (Section 5.7), an important practical task whose
algorithms employ Voronoi diagrams, Delaunay triangulations, and the
medial axis.

5.1 MEDIAL AXIS

In preparation for generalizing, let’s review several equivalent definitions
of the set of points that constitute the Voronoi diagram Vor(S) of # sites
S in the plane:

1. Vor(S) is the locus' of centers of maximal empty disks: disks whose
interior contain no points of S.

2. Vor(S) is the locus of points to which there are two or more nearest
sites.

3. Vor(S) is the set of “quench points” if the plane is burned uniformly
and simultaneously from every site in S.

Now, rather than a discrete set of sites S as the source of the Voronoi
diagram, consider the boundary dP of a convex polygon P as the source.
Then we seek an object that has the same three properties as Vor(S). That
object is known as the medial axis of P in the computer science literature,
and the cut locus of 3P in the mathematics literature; we will employ both
names. Examples are shown in Figure 5.1.

Definition. The medial axis M(P) of a polygon P (also known as the cut

locus of 9P) is the closure of the set of points in P that have two or
more closest points among the points of 9P.

! In geometry, a locus is a set of points satisfying some constraint or sharing some property.

5.1 MEDIAL AXIS

(a) (b)

Figure 5.1. Convex polygons and their medial axes marked in blue.

Although this definition can be generalized considerably beyond poly-
gons, for now we focus our attention on convex polygons. As might
be guessed from Figure 5.1, the medial axis of a convex polygon is a
geometric tree of straight segments whose leaves are the vertices of P.
The reason for the definition stipulating “the closure” of the set of points
is that, without that qualification, the vertices themselves would not be
part of the medial axis, as each is its own unique closest point. Thus it is
convenient to close the otherwise open set to incorporate the vertices.

The reason for the name “medial axis” is that it runs in some sense
down the middle of the shape. The medial axis was introduced by Harry
Blum in 1967 for studying biological shape and since then has found
a wide variety of applications, several of which we will touch upon. The
reason for the name “cut locus” is that straight paths from 9P cease being
shortest paths at the cut locus — they are “cut” there. The notion of cut
locus was introduced in 1905 by Poincaré (whom we will encounter again
in Section 5.5) and has become a standard object of study in Riemannian
geometry.

Let’s return to the three properties of Voronoi diagrams that we
claimed the medial axis shares. Notice that points on the medial axis
M(P) of a polygon P are centers of maximal disks that touch 9P in two
or more distinct points. This is depicted in Figure 5.2, which reexamines
the polygon of Figure 5.1(b) in detail. The maximal disks are shaded,
having two or more distinct points of tangency with dP. For points on the
interior of a segment of M(P), as in Figure 5.2(a), there are two points
that touch dP. And there are k points touching dP at a degree-k vertex
of M(P), as in Figure 5.2(b). For this reason, the radii from the center
m of the disks to the touching points represent the two or more distinct
shortest paths to 9P.

119

120

CHAPTER 5. CURVES

(a) (b)

Figure 5.2. The maximal disks associated to (a) interior segments of M(P) and
(b) a degree-3 vertex of M(P).

If the polygon encloses dry grass, starting a grassfire along the
boundary marches in parallel from the boundary, with the “quench
points” (where fire meets fire) along angle bisectors. Each quench point
m in M(P) may be associated with the time at which the fire reaches m,
which is just the radius of the maximal disk centered there. Indeed, the
map from P to M(P) is sometimes known as the grassfire transformation.

Exercise 5.1. Show that the medial axis of a convex polygon with n
vertices could have a vertex of degree n.

Exercise 5.2. Compute and describe the medial axis for a rectangle.

Exercise 5.3. What is the maximum and minimum number of edges the
medial axis tree M(P) can have for a convex polygon with n vertices?

There is a natural polyhedron, the medial axis polybedron, sometimes
associated with P. Over each point 7 in M(P), erect a vertical segment
with height equal to the radius of the maximal disk centered on 7. Now
take the convex hull of P and all these vertical heights. The result is
illustrated in Figure 5.3, which shows the medial axis polyhedron for
the polygon given in Figure 5.1(b). Each face slants at 45° with respect
to P because it represents the inward parallel uniform-rate march of the
corresponding edge.

There is an attractive physical model of the medial axis. Imagine
cutting out a polygon P from a thick piece of wood. Now pour dry
sand on top of it, letting excess sand fall off the edges. The sand slopes
in “facets,” with all facets tilted at the same angle with respect to the
polygon. Although this angle depends on the quality of the sand, the
humidity, and other factors, it is not difficult to show that the resulting
shape is that of the medial axis polyhedron. The “ridges” of the sand pile,
viewed from above, form (an approximation to) the medial axis of P.

5.1 MEDIALAXIS 121

Figure 5.3. The medial axis polyhedron corresponding to Figure 5.1(b).

Figure 5.4 shows photographs of two examples of this construction. This
model even works for nonconvex polygons, which we examine later.

Exercise 5.4. Suppose the roof of an L x W rectangular building (assume
L > W) is a medial axis polyhedron. When rain falls on the roof, what
percentage falls off of each edge as a function of L and W?¢ Moreover,
if friction causes raindrops to roll down the sloped roof at constant
velocity v, what is the longest time a drop is on the roof before falling
off, as a function of v, L, and W?

(a) (b)

Figure 5.4. Physical models of the medial axis constructed using sand for (a) a
convex irregular pentagon and (b) a nonconvex pentagon.

122

CHAPTER 5. CURVES

Let’s look at the medial axis construction for convex polygons. Let
v1, ..., Uy be the vertices and e; = v;v;1 the edges of P. It should be clear
that the segment of M(P) incident to v; is the angle bisector at v;, whose
points are centers of disks touching e; 1 and e;. What is perhaps less clear
is what happens as these bisectors meet, that is, how the interior of the
tree M(P) is determined. There is an elegant recursive/inductive algorithm
for constructing the medial axis of a convex polygon, which we now
explain. We will use the convex heptagon (call it P;) from Figure 5.1(b)
to illustrate this construction.

Imagine the bisectors of each vertex angle growing inward during
the grassfire transformation. At some time #, the first pair intersect.
Perhaps not surprisingly, the first pair to intersect always constitute
adjacent vertices (Exercise 5.5). In Figure 5.5(a), the bisectors from
v, and v; of polygon P; are the first to meet, say at point x. This
meeting constitutes (in general) a degree-3 node of M(P), where the
maximal disk touches three edges incident to the two vertices, in this case
e1, e, es.

As the fire continues to burn, it is the bisector of e; and e3 that emerges
from x — edge e, will no longer contribute to the construction of the
diagram, its role having been exhausted. Thus we can extend e; and e;
to meet at a new vertex vy 3 of a polygon of one fewer vertex, Pg, as
shown in Figure 5.5(b). The medial axis we seek, M(P;), is a slightly
altered version of M(Pg), which we do not yet know. The medial axis
M(Ps) can be derived by identifying vs and v; as the next bisectors
to meet, and extending the two edges es and e; to “engulf” e, as in
Figure 5.5(c).

Continuing in this manner, we ultimately arrive at P3, a triangle, whose
medial axis is simply the three angle bisectors, which meet at the center
of the inscribed circle. This is exactly what we saw in Figure 4.2, and we
see it also in Figure 5.5(e). One can view this algorithm as constructing
M(P) in pieces top-down from P = P; as illustrated in Figure 5.5, or as
a recursive algorithm that builds M(P) bottom-up from Ps, as described
below.

MEDIAL AXIS O(n?)

Let P, be an n-vertex convex polygon. Identify the two adjacent
vertices v; and v, 11 whose bisectors meet first, at point x. Extend
edges e¢;_1 and e; ;1 over ¢; to meet at a new vertex v and call the
resulting polygon P,_;. Compute M(P,_;) recursively and delete xv
from M(P, 1) and add xv; and xv; 1 to form M(P,).

V1,5 V1,5

Figure 5.5. Construction sequence for the medial axis in Figure 5.1(b). At each step, two bisectors meet at the center of a maximal disk touching
three consecutive edges, and then the middle edge is discarded to create a polygon with one less vertex.

124

CHAPTER 5. CURVES

Exercise 5.5. Prove that the first two bisectors of a convex polygon P to
meet are adjacent.

Exercise 5.6. Use this algorithm for the polygon in Figure 5.1(a) and
draw the different stages of the construction.

What can we say about the time complexity of this algorithm? As
mentioned, the first two bisectors of P to meet must emanate from
adjacent vertices. So we have O(n) pairs of adjacent bisectors to compare.
How can we determine which is the first pair to meet? Remember the
time associated with a point 72 in M(P) is the radius of the maximal disk
centered at m. And notice that we know which edges are closest to m:
For bisectors from v; and v; 1, the three edges tangent to the maximal
disk centered at their intersection 7 are the three consecutive edges
ei_1,¢€;,ei11. So with each pair of adjacent bisectors, we may compute
the time-to-meet in constant time — as the radius of the circle centered
at m that is tangent to those three edges. This permits us to compute a
new polygon P,_; by intersecting the lines containing e;_1 and e; 1. So
with O(n) time of total work, we can recursively construct M(P,_1) and
from that derive M(P,). This leads to an O(#?) time algorithm. With a bit
more attention to efficiency, the algorithm can be implemented to run in
O(nlogn) time.

Exercise 5.7. Show how to implement the algorithm described for
computing the medial axis of a convex polygon to run in O(nlogn)
time. (This exercise requires familiarity with “priority queue” data
structures.)

With considerably more work and cleverness, it is possible to compute the
medial axis in O(n) time, not only for convex polygons but for arbitrary
polygons. Although we will not pursue the algorithmic aspects of this
problem further, we next examine the geometric properties of the medial
axis for nonconvex polygons.

Nonconvexities in the polygon P introduce a new element to the
medial axis: Although M(P) remains a tree whose leaves are the vertices,
the edges of the tree associated with reflex vertices are parabolic arcs.
Recall that a parabola is the locus of points equidistant from a point
(the focus) and a line (the directrix). Consider the pentagon P on the
left of Figure 5.6. Bisectors emerge from the four convex vertices, meet
at a degree-3 node of M(P) and continue as before, but those bisectors
merge smoothly to an arc of a parabola with focus v and directrix the

5.2 STRAIGHT SKELETON

125

Figure 5.6. The central arc lies on the parabola determined by the vertex v and the
edge e, where the maximal disks centered on that arc touch e and v.

line containing e, drawn on the right side of Figure 5.6. That arc contains
points equidistant from v and e. The sand model previously shown in
Figure 5.4(b) reproduces (approximations of) the parabolic arcs. The
presence of parabolic arcs in the medial axis certainly complicates the
computation for arbitrary polygons, but ultimately the same linear-time
complexity can be achieved.

Exercise 5.8. Is there a nonconvex polygon whose medial axis does not
contain any parabolic arcs, but instead is composed entirely of straight
segments?

Exercise 5.9. What is the minimum number of edges the medial axis tree
M(P) can have for an arbitrary polygon of n vertices?

The medial axis has many applications, including shape recognition
(especially biological shape), character recognition and font design, and
GIS (Geographic Information Systems). The medial axis may be defined
for 3D shapes as well (e.g., as the locus of the centers of maximal inscribed
balls), and has been used for guiding NC (Numerically Controlled)
machining, for partitioning 3D objects into pieces, and for 3D symmetry
detection. The medial axis has also become an important theoretical tool
in surface sampling theory and in the development of meshing software,
a topic we cover in Section 5.7.

5.2 STRAIGHT SKELETON

Although the medial axis is both mathematically elegant and practically
significant, the presence of parabolic arcs makes it problematical for
some applications. A related alternative structure known as the straight
skeleton S(P) for a polygon P was proposed in the mid-1990s and

126

CHAPTER 5. CURVES

has since found many applications. For a convex polygon, the straight
skeleton is identical to the medial axis, but for nonconvex polygons, the
straight skeleton has no parabolic arcs. Compare the straight skeleton of
Figure 5.7(a) with its medial axis in Figure 5.6. It is perhaps best explained
via a variant of the grassfire transformation.

Imagine shrinking 9P via a parallel translation of all edges at the
same speed inward, with each vertex following the angle bisector. Reflex
vertices also travel on angle bisectors, which implies that the incident edge
grows in length at that endpoint. The shrinking continues until one of two
events occurs, illustrated in Figure 5.7(b).

1. An edge shrinks to zero length. This is exactly the event we saw with
the medial axis of convex polygons and, just as in that circumstance,
the process continues with the new vertex tracking the bisector of the
neighboring edges.

2. A reflex vertex collides with an edge. At this point, the original
polygon is “pinched off,” creating two new polygons (triangles in the
figure). The shrinking process then continues on the two polygons
independently.

Shrinking stops on a subpolygon when its area reduces to zero.

Like the medial axis, S(P) is a tree, this time of straight segments whose
leaves are the vertices of P. The segments are straight because they are
always pieces of angle bisectors. Unlike the medial axis, it partitions the
interior of the polygon into # regions, precisely one per edge, a useful
partition property that has been applied to the mathematics of origami.
Figure 5.7 shows S(P) partitioning the pentagon P into five regions,
whereas Figure 5.6 shows that M(P) delimits four regions.

Exercise 5.10. Construct the medial axis and the straight skeleton of
Figure 1.8(a).

A\

(a) (b)

Figure 5.7. (a) The straight skeleton of the nonconvex polygon in Figure 5.6, along
with (b) the shrinking process used for its construction.

5.2 STRAIGHT SKELETON

Figure 5.8. The straight skeleton polyhedron of Figure 5.7.

One of the most interesting applications of the straight skeleton derives
from the straight skeleton polyhedron. Like its medial axis polyhedron
counterpart, this polyhedron has constant-slope facets over each face of
the partition of P induced by S(P). Unlike the curved medial axis surface
obtained for nonconvex P, the straight skeleton polyhedron facets are
all flat. Figure 5.8 depicts the straight skeleton polyhedron corresponding
to Figure 5.7. One can view this polyhedron as the solution of how to
construct a piecewise flat roof over the walls of 9P with all sections
sloped at the same angle. This polyhedron has the attractive property
that rainwater runs off each roof facet to the edge of 9P that “generates”
the facet. Thus one could imagine installing edge gutters with capacity
proportional to the corresponding facet area.

Exercise 5.11. Construct the straight skeleton polybedron of
Figure 1.8(a).

Despite the conceptual simplicity of the straight skeleton (defined via
a simple process), there seems to be no Voronoi-like definition that
is not based on some procedure. Thus finding a fast algorithm for
a polygon of n vertices has proved a challenge. To date, the fastest
algorithm runs in (approximately) O(n!”/1!) time. Although the notion
of the medial axis extends naturally to 3D polyhedra (and in fact into
higher dimensions), it was an unresolved issue for many years as to
whether there was an unambiguous definition of the straight skeleton
for a 3D polyhedron. Finally in 2008 such a definition was proposed
for 3D “orthogonal polyhedra,” all of whose faces meet at right angles,
although extending this definition to arbitrary polyhedra seems delicate.

127

128

CHAPTER 5. CURVES

A surprising application of the 3D straight skeleton is to the problem of
“flattening” a polyhedron — collapsing or crushing it to a plane without
tearing the surface.

Exercise 5.12. Show that the maximum number of edges of the S(P) tree
is 2n — 3 for a polygon with n vertices.

Exercise 5.13. Design an algorithm to construct the straight skeleton in
O(n?) time.

UNSOLVED PROBLEM 20 Straight Skeleton

Find an algorithm that computes the straight skeleton of a polygon
of n vertices in better than O(n!”/11) time. For example, is O(#%/?)
time achievable? Note that the size of S(P) is only linear.

5.3 MINKOWSKI SUMS

Given a smooth curve C, the offset curve (also known as the parallel
curve) is the locus of points offset by a constant distance r along the curve
normal. That is, this new curve is offset orthogonal to the original curve
C at every point. This definition relies on smoothness, which ensures
a derivative at every point and thus a normal vector. An alternative
definition more useful to discrete geometry is to define the offset curve
as the envelope (the outer boundary of the union) of a family of disks of
radius 7 whose centers lie on C.

Offset curves are directly related to the medial axis. An offset curve
for a polygon consists of straight segments parallel to each edge and
circular arcs centered on each reflex vertex, as shown in Figure 5.9(a).
The traces of the joins between pairs of straight segments, and between
straight segments and circular arcs, marked in part (a), form a superset
of the medial axis. The traces incident to reflex vertices are not present
in the medial axis. (The full set of traces is sometimes called the Voronoi
diagram of the polygon.) If the circular arcs are replaced by miter joins,”
we have instead the straight skeleton, as shown in Figure 5.9(b). Indeed,
Figure 5.7(b) was drawn with the offset tool in ADOBE ILLUSTRATOR
using the miter joins option.

Offset curves are of considerable interest in a variety of manufacturing
contexts, the most prominent being pocket machining. A pocket is
(usually) a shallow depression in a piece of metal cut by a cylindrical tool

2 A miter join between two pieces of wood bevels each piece so that the junction surface bisects
the angle between them.

5.3 MINKOWSKI SUMS 129

Figure 5.9. (a) Traces of the joins (in blue) between segments and arcs, which is
a superset of the medial axis, and (b) the straight skeleton. The red dashes show
the offset curves with circular and miter joins, respectively. Figure courtesy of Jeff
Erickson.

bit. The pocket can be cut by the tool path following an offset curve of the
pocket boundary, and then an offset of what remains, continuing inward
until the entire pocket has been “machined” away. Another important
application is defining tolerance regions for a manufactured object.

X Exercise 5.14. By analyzing the offset curve for the parabola y = x?,
show that an offset of a smooth curve may not itself be smooth,
possibly having one or more “cusps” where the derivative is not
uniquely defined.

The definition of an offset curve is a special case of a more general
concept, the Minkowski sum of two sets, to which we now turn. Let A
and B be two sets of points in the plane. If we establish a coordinate
system, then the points of the sets can be viewed as vectors in that
coordinate system.

Definition. The Minkowski sum of sets A and B is
A®B={x+y|xe€ A, ye B},
where x + vy is the vector sum of the two points.
It will be a little easier to grasp the meaning of this abstract idea by

considering the Minkowski sum of a single point x and a set B, defined
asx@® B = {x+ y | y € B}. This is just a copy of B translated by the

130

CHAPTER 5.

CURVES

©

(b)

Figure 5.10. The polygon P and disk R along with their Minkowski sum on the
right.

vector x, for each point y of B is moved by x. Thus A@® B can be seen as
the union of copies of B, one for each x in A.

Now suppose Ais a polygon P and B is a disk R centered at the origin.
Then P @ R can be viewed as many copies of R translated by x for all x
in P. Since R is centered on the origin, x @ R will be centered on x. So
P @ R amounts to placing a copy of R centered on top of every point of P.
Figure 5.10(a) shows an example of this for the polygon P and the disk
R, along with their Minkowski sum in part (b). Here the Minkowski sum
is the entire region on the right; we have shown P in its interior, along
with selected placements of R on the boundary of P in order to clarify the
addition of the objects. Indeed, P & R results in an “expanded” version of
P, call it P*. It should be clear that the boundary 9P* of this expanded
set is the outward offset of 9P, with the normal pointing outside of the

polygon.

Exercise 5.15. What is the Minkowski sum of two squares whose sides
are parallel? Describe the sum when the side lengths of the squares are

a and b.

Exercise 5.16. Describe the Minkowski sum of a regular polygon with
n vertices (of side length a) and a regular polygon with m vertices (of
side length b).

Exercise 5.17. Prove or disprove: Any regular polygon is the Minkowski
sum of a finite number of line segments in the plane.

We now introduce one of the primary applications for the Minkowski
sum in computational geometry: motion planning. Motion planning
is the problem of designing a path for an object to move through
an environment without collision with the stationary objects in that

5.3 MINKOWSKI SUMS

)

(a) (b)

Figure 5.11. (a) Can the robot R fit through the gap between P; and P,? (b) The
Minkowski sums P; @ Rand P, @ R overlap, showing that R cannot thread the gap.

environment. In a typical situation, the object is a robot and the
environment has polygonal obstacles in 2D or polyhedral obstacles in 3D.
Let’s start with the 2D situation, where the robot is modeled as a disk R
and the environment is cluttered with polygonal obstacles that must be
avoided. (These assumptions are not as unrealistic as they might appear,
as office mail-delivering robots are often circular.)

Consider the question whether the robot R can fit between two
polygons P; and P,, as illustrated in Figure 5.11(a). The robot can fit
between if and only if Py @ R and P, @ R do not overlap, that is, if 9P,
and dP," do not intersect. As shown in part (b), the Minkowski sums do
overlap in this example, and the robot cannot pass between the obstacles.
Realize that here we are assuming R to be defined in a coordinate system
whose origin is at the center of R. We will call this the reference point of
the robot.

Having considered the case when the robot R is a disk centered
at the origin, we now generalize to the situation when the robot is
a convex polygon. Although rotations of R now play a significant
role, we specialize to planning a translational motion for R. (Later, in
Section 7.1, we will explore rotational motion and 3D.) Figure 5.12(a)
shows the same example as Figure 5.11, but with robot R as an irregular
quadrilateral. We proceed as before except that this time we need to form
the Minkowski sums with — R rather than R, where —R is the reflection
of R in the origin reference point. But why? We want 9P+ to be the locus
of positions of the reference point when R is touching dP. If the point
x in R touches 9P, then x is the vector from the origin to dP, and so
the reference point is “held away from” 9P by the vector —x. This is
the intuition behind the need to reflect R. The resulting Minkowski sums
P; @ —R and P, & —R are shown in part (b) of the figure, along with
selected placements of — R. The boundaries 9P;" and 9P," do not intersect,
so the robot can indeed thread the gap between the obstacles.

131

132

CHAPTER 5. CURVES

(a) (b)

Figure 5.12. (a) Can polygon R fit through the gap between P; and P,? The
reference point of R is marked. (b) The Minkowski sums do not intersect, showing
that R can pass through the polygons.

We have established that translational motion planning in 2D reduces
to computing the Minkowski sum of each obstacle polygon P with
the moving robot R. Although there are significant further issues to
reach true motion planning by this approach, we set those issues aside
until Section 7.1 and instead concentrate on the actual computation of
P @ R.

Exercise 5.18. Suppose the infinite plane is filled with unit square
obstacles, with corners (i — % j— %) and (i + % j+ %) for all even
integers i and j. (a) If R is a disk of radius r, what is the largest
value of r that permits R to move between any pair of lattice points
whose coordinates are odd integers? (b) What is the largest value of
r that permits R to be placed somewhere in this environment without
overlapping any obstacles?

Exercise 5.19. Answer the questions in Exercise 5.18, now assuming the
obstacles are unit disks.

Exercise 5.20. Show that for two convex polygons P and Q in the plane
with m and n vertices, their Minkowski sum is a convex polygon with
at most m + n vertices.

5.4 CONVOLUTION OF CURVES

Although we defined the Minkowski sum A @ B as a point set, it is the
boundary curve 3(A® B) of this sum that plays the crucial role in motion
planning. Constructing A@® B and then finding its boundary is one route,
but there is a method to compute the boundary more directly, via the

5.4 CONVOLUTION OF CURVES

convolution of the boundaries of A and B. We begin with a general
definition.

Definition. Let @ and B be two closed, smooth planar curves (oriented
counterclockwise) whose points are interpreted as vectors in a common
coordinate system. The convolution of curves @ and B is the curve

axpf = {x+ylxeA yeB, T, =T},

where T}, is the unit tangent vector at point p. We orient the curve o *
so Toyy =T, = T,.

One can view a %8 as constructed by rotating parallel tangents® around
a and B and adding their contact points x + y. Figure 5.13 shows an
example for two smooth curves along with several selected tangents. This
view generalizes naturally to closed polygonal curves @ and B: continuous
rotation of the tangents advances the contact points in “spurts” due
to the discontinuous change in the tangents. Figure 5.14 illustrates the
convolution curve for « = 3Py and B8 = 9(—R) from Figure 5.12. This
figure hints at the precise relationship between the @ and * operators.
To elucidate this relationship, we introduce the notion of the winding
number of a curve, an extremely useful tool in topology.

Definition. Let y be a closed planar curve, oriented counterclockwise and
possibly self-intersecting, and let x be any point of the plane not on y.
The winding number @, (x) of y with respect to x counts the number
of full revolutions of y about x.

133

= &

(a) (b)

Figure 5.13. Two curves « and B and their convolution « * 8. The origin is at the
center of both ellipses.

3 These are sometimes known as rotating calipers because of their similarity to the parallel jaws
of the measuring instrument known as a caliper.

134

CHAPTER 5. CURVES

(b)

Figure 5.14. (a) Polygonal curves obtained from boundaries of P; and —R from
Figure 5.12. (b) The convolution curve 3 P; % d(—R) is given in green.

Let’s look at an intuitive approach to this definition: Imagine that your
friend Alice walks around the curve y (as it is oriented), starting at some
point on y and returning back to this point after a complete traversal
of y. You are standing at x and turn to face Alice at all times of her
walk. The winding number is your total net angular turn during this
tracking, “net” implying that negative (clockwise) turns cancel positive
(counterclockwise) turns.

It should be clear that for a simple (nonintersecting) convex curve y,
the winding number &, (x) = +1 for x inside y and ®,(x) = 0 for x
outside. Here +1 means one full counterclockwise turn, that is, an angle
sum of 27r. Perhaps less immediate is that the same result holds true for
all simple curves, by the Jordan curve theorem (Theorem 1.1). When the
curve self-intersects, the plane is partitioned into regions with integral
winding number. Two examples are given in Figure 5.15, where part (a)
is a smooth curve and part (b) is the polygonal curve from Figure 5.14(b).
One can see that winding number in some sense extends the Jordan curve
theorem. Winding number is a key concept in algebraic topology, and
generalizes to topological quantum numbers in particle physics. It is a
also useful tool in many more mundane circumstances. For instance, it is
used in computer graphics to detect whether a user has clicked inside and
so selected an object on an interactive screen. The relationship between
the Minkowski sum and convolution may now be stated as the following
theorem:

Theorem 5.21. The Minkowski sum of two planar polygons A and B is
the set of points in the plane with positive winding number with respect
to the convolution of d A with 3 B. In other words,

A® B ={peR*| ®yaqm(p) > 0}.

Compare the Minkowski sum of the two polygons P; & (—R) in
Figure 5.12(b), the convolution curve dP; * 3(—R) in Figure 5.14(b),
and the winding number partition of this curve in Figure 5.15(b). The

5.4 CONVOLUTION OF CURVES 135

Figure 5.15. Winding numbers in regions determined by self-intersecting counter-
clockwise curves.

positive winding number values of the convolution curve precisely mark
the Minkowski sum.

Exercise 5.22. What is the minimum number of vertices of a self-
intersecting, closed polygonal curve that determines at least one region
of the plane with winding number k?

Exercise 5.23. Show that if a simple, closed, counterclockwise curve y
is partitioned by a chord c into two simple, closed, counterclockwise
curves yy and y, which share c (directed oppositely), then ®,(x) =
®,, (x) + ®,,(x) for any x not on y or c.

Exercise 5.24. Using the previous exercise, argue that for a counterclock-
wise polygon P, ®p(x) = 0 for x exterior to P and ®p(x) = +1 for x
interior.

Exercise 5.25. Use the winding number to design an O(n) time algorithm
for deciding if a point x is strictly interior to a polygon.

X Exercise 5.26. Argue that if the winding number ®j a.55(D) for a point p
is positive, then p is inside A @ B.

Having laid the foundational relationships between the Minkowski
sum, the convolution curve, and the winding number, we are now in
position to focus on issues of computation. We once again assume A
and B are polygons appearing in motion planning. Remember it is the
boundary curve 3 (A® B) of the Minkowski sum playing the crucial role in
motion planning. Theorem 5.21 provides the machinery needed in order
to compute this boundary. A breakdown of the steps is as follows:

136

CHAPTER 5. CURVES

1. Compute d A 9 B.

2. Identify its “convolution cycles.”

3. Retain cycles that have a positive winding number.
4. Merge these to construct (A ® B).

Despite the formidable intricacy of these steps, a recent implementation
showed that this approach is significantly faster in practice than the best-
known alternative method.

We now sketch the main idea behind just the first step, computing
9A x 9B. For notational simplicity, let « = dA, 8 = 9B, and y = « * S.
Think again of parallel rotating tangents to @ and B (as in Figure 5.13),
touching at vertices a; and b; of polygons A and B, respectively. Then
each rotation “event” occurs when the tangents reach the next edge on
either polygon: a;a; 11 or bjbj 1, whichever is reached first. At the event,
the next generated point of y is a;1b; (if a;a; 41 is hit first) or a;bj4q (if
b/b/.,_l is hit ﬁrst).

One way to implement this is via a star diagram of the edge vectors,
which places all edge vectors of both « and B at a common origin, labeled
by their indices. Figure 5.16(a) displays two curves, « (red) and B (blue),
with part (b) showing their star diagram for the 8 vectors of « and the 22
vectors of B. Fix a ray, its base at the origin of the star diagram, aiming
horizontally leftward at the start. The ray represents the pair of tangents
to a and B, starting at the marked topmost points of both curves. Spin this
ray counterclockwise about the origin, noting when it coincides with a
vector of the star diagram. As each successive edge vector is encountered,
ai11bj or a;bj1q is output as previously described. The spinning continues
until the edges of both @ and B have been circumnavigated in labeled
order. Figure 5.17(a) shows the convolution curve a * 8 of the curves, and
part (b) depicts this curve with edges colored according to their source.
The coloring shows that a has already cycled once by the time the third

(b)

Figure 5.16. (a) Polygonal curves & and B and their (b) star diagram of edge vectors.

5.4 CONVOLUTION OF CURVES 137

0=
&(U

Figure 5.17. (a) The convolution curve a x B of the curves from Figure 5.16, with
(b) edges colored according to their source.

edge of B is encountered, and that o cycles ten times before 8 cycles even
once.

The many convolution cycles in Figure 5.17 indicates that the com-
plexity of the convolution of two curves, and therefore the Minkowski
sum, is potentially quadratic. In fact the complexity can be even worse,
as seen in Figure 5.18. If two polygons A and B each have #n vertices, the
worst-case combinatorial complexity of A@® B can be summarized by the
table below. Although we have listed the complexities using the big-Oh
upper-bound notation, here what is important is that in each case there
are matching € lower bounds, that is, the bounds listed are tight.

A B Sizeof A® B
convex convex O(n)
convex nonconvex O(n?)

nonconvex nonconvex O(n*)

Exercise 5.27. Prove that the Minkowski sum of two convex polygons
with n and m vertices, no pair of whose edges are parallel, has exactly
n + m edges.

Exercise 5.28. Argue that Figure 5.18 establishes that the Minkowski
sum could have Q(n*) combinatorial complexity. Thus the bound of
O(n*) time cannot be improved.

138

CHAPTER 5. CURVES

(a) (b)
Figure 5.18. (a) Two nonconvex polygons and (b) their Minkowski sum. Figure
courtesy of Ron Wein.

Exercise 5.29. Describe simple polygons A and B, each with n vertices,
whose Minkowski sum A@® B has combinatorial complexity O(1) but
whose boundary convolution dA x 0B has combinatorial complexity
Q(n).

5.5 CURVE SHORTENING

In this section we discuss a beautiful theorem that connects to the previous
sections on curve offsets and morphing, and connects to polyhedra in
the next chapter. The theorem is also an analog of the central technique
employed in the recent resolution of the Poincaré conjecture, and so
connects to the frontier of research in mathematics as well. The result
is known as the “curve-shortening theorem,” although it has as much to
do with smoothing as it does with shortening.

We start first with the smoothing analogy. Suppose one has a jagged
open curve such as that shown in Figure 5.19(a) that needs to be
smoothed. A natural approach is to average nearby vertices to aggregate
data and remove noise. Such smoothing is often needed to clean up
noisy time-series data. A variation on this averaging idea is to perform
a midpoint transformation: replace vertices v; and v;1 of the curve by
their average, which is the midpoint of the segment v;v; 1. The effect of a
few steps of this transformation is shown in parts (b) and (c) of the figure.
Note that the curve loses one vertex per iteration — it combinatorially

5.5 CURVE SHORTENING

139

(a) (b) (c)

Figure 5.19. (a) The midpoint transformation of a 20-point open curve, which
reduces (b) to 19 points after one transformation, and (c) to 18 points after two.

shortens. It also shortens geometrically, because deviations from straight-
ness are diminished by the transformation. Applied to a closed curve, the
midpoint transformation retains the original number of vertices (due to
wraparound), but shortens in that the perimeter reduces, as illustrated in
Figure 5.20.

One potential flaw in this technique, depending on the application,
is that an initially simple polygon could become nonsimple under this
transformation. We will not pursue this midpoint transformation further
except to note that, in the context of curves on a surface, it is known
as Birkhoff shortening, named after the American mathematician George
Birkhoff, which plays a role in Section 6.6.

Exercise 5.30. What is the result of applying the midpoint transforma-
tion to a regular polygon?

Exercise 5.31. Prove that the midpoint transformation applied to a curve
(open or closed) reduces its length.

Exercise 5.32. Find an example where one application of the mid-
point transformation changes a simple polygon to a nonsimple (self-
intersecting) polygon.

(a) (b)

Figure 5.20. A 20-point closed curve retains 20 points after each iteration.

140

CHAPTER 5. CURVES

Exercise 5.33. When the midpoint transformation is iterated, what is the
limit shape? Form a conjecture.

A second approach to smoothing/shortening a curve is to “evolve” the
curve according to the heat equation, which specifies how temperature
variations smooth out over time. We defer a discussion of the heat
equation and start immediately with the curve shortening recipe it
implies.

Let C(s) = (x(s), y(s)) be a smooth closed curve in the plane para-
metrized by arclength s. One can think of this as a unit-speed para-
metrization of a vehicle traveling around C. The first derivative dC/ds
is the velocity of the vehicle and the second derivative d>C/ds? is its
acceleration. The acceleration points along the unit normal 7 to the curve
at s, with magnitude equal to the curvature x there; in other words,
d>’C/ds*> = «kn. The curvature « is the reciprocal of the radius of the
osculating circle at C(s), the most snuggly fitting circle tangent at that
point. So « is small when the curve is nearly flat and large on sharp
turns. This is the proportionality constant we feel while driving around a
highway on-ramp.

Now we add a time variable #, defining a curve C(s,) for each t.
We specify that the curve evolves with ¢ according to the differential
equation

aC 9°C
§=Q=Kﬂ. (5.1)

This stipulates that each point p of the curve moves along the normal 7
at p with speed proportional to the curvature. This equation describes a
geometric flow, an evolution of the geometry of C over time 7.

Example 5.34. To clarify the meaning of equation (5.1), we explicitly
solve it for the simplest possible closed curve, a circle. Circles are easily
parametrized by arc length as C(s) = (coss, sins) for s in [0, 27]. Let’s
guess that C(s, t) can be represented as f(¢)(coss, sins), reasonable
given the symmetry of the circle. Then equation (5.1) becomes

aC

o f'(¢)(coss, sins) = f(¢)(—coss, —sins),

where f'(t) = 9f/dt. Solving f'(¢t) = — f(¢) leads to f(¢) = e~*. So the

evolving family of curves is

C(s,t) = e ! (coss,sins).

5.5 CURVE SHORTENING

At each time ¢ > 0, this is a scaled, concentric version of the original
circle, reduced by the factor e~?, which approaches 0 as ¢ goes to
infinity.

We can now state the curve-shortening theorem.

Theorem 5.35 (Curve Shortening). Every smooth, simple closed curve
C evolves under the flow defined by equation (5.1) so that it remains
simple for all time and converges to a round point.

Here converging to a round point means converging to a circle whose
radius goes to zero as ¢ approaches infinity. Clearly this implies both
smoothing and shortening. Perhaps what is most remarkable about
this theorem is the avoidance of self-intersections over all time. This
means that a spiral like that in Figure 5.21 will evolve without crossing
itself — it somewhat magically uncurls! In fact, the simultaneous evolu-
tions of a pair of nested curves never bump into each other: the inner one
outruns the collapsing outer one!

This remarkable theorem was first proved in the 1980s by Michael
Gage and Richard Hamilton for convex curves, and then extended by
Matthew Grayson to nonconvex curves and curves on surfaces. It is now
known as the Gage-Hamilton-Grayson theorem. We will reencounter
Richard Hamilton when we discuss the Poincaré conjecture at the end
of Section 5.6.

Figure 5.21. Continuous curve shortening convexifies this curve without self-
intersection.

141

142

CHAPTER 5. CURVES

We now consider a discretization of the methods above, looking at
curve shortening of polygons. The curve-shortening flow in equation (5.1)
relies on derivatives and so does not apply to polygons which have no
unique tangent or normal vectors at their vertices. Various discrete flows
analogous to equation (5.1) have been explored. Here we describe an
especially simple one suggested by Bennett Chow and David Glickenstein
in 2007.

In this flow, the continuous morphing a curve becomes a discrete
replacement of an 7-sided polygon P by a new n-sided polygon P’, just
as in the midpoint transformation. Figure 5.22 shows that the term

n = (Vi1 —v;) + (vieg — v;) (5.2)

crudely approximates an inward-pointing normal vector at v;. We now
mimic equation (5.1) by moving each vertex v; of P to a new location
given by

/
v; = v; + 0n;,

where § > 0 is a small step-size scale factor. As § goes to 0, (v] — v;)/é
approaches dv; /dt, and so the discrete flow equation may be written as

i _ (5.3)

i

Figure 5.22. Construction of the vectors 7; and v].

This describes the continuous evolution of each discrete vertex of P.
The resemblance with equation (5.1) will be further elucidated after we
explore the discrete flow. Figure 5.23 illustrates the flow on a 20-vertex
polygon. Note it has the same characteristics claimed for the smooth case.
Indeed, Chow and Glickenstein prove the following:

Theorem 5.36 (Discrete Curve Shortening). Every simple polygon
evolves under the flow defined by equation (5.3) so that it converges

5.5 CURVE SHORTENING

to a point whose shape is asympiotically an affine transformation of a
regular polygon.

Here an affine transformation is a linear distortion that maintains parallel
lines, so an affine regular polygon is a distorted version of a regular
polygon, the analog of the “round point” in Theorem 5.35. Theorem 5.36
is a faithful analog of Theorem 5.35 except that there is no guarantee that
if the initial polygon is simple, all intermediate shapes will also be simple.
Nevertheless, with a dense sampling of vertices, the discrete flow generally
avoids self-intersection, as shown in Figure 5.24.

Figure 5.23. A discrete flow of a simple 20-gon (in black) with 40 iterations using
§ = 1/10.

UNSOLVED PROBLEM 21 Discrete Flow

Define an analogous discrete polygon flow that guarantees simplicity
for all time, for sufficiently small time steps 8. The rules for
movement of each vertex v; should depend only on the local
neighborhood of v; along 8 P. Perhaps it will be necessary to restrict
to a subclass of all polygons.

Curve shortening is used in a variety of circumstances where smoothing
is needed, such as smoothing shapes in images. To obtain smoothing
without shortening, the arclength of the curve is renormalized at each
infinitesimal step (as in the lower sequence of Figure 5.24). A rather
surprising application of discrete curve shortening is the rendezvous
problem for mobile autonomous robots: how each robot should behave in

143

144

CHAPTER 5. CURVES

—

Figure 5.24. The discrete flow is applied to a spiral 64-gon with 100 iterations with
§ = 1/5 between frames. The top row is to scale whereas the bottom row shows
the same sequence rescaled.

order to meet at a common point. The traces of the vertices in Figure 5.23
can be interpreted as paths of twenty robots converging toward a meeting
point. Yet another application is to find closed geodesics on surfaces,
which we will explore in Section 6.6.

Exercise 5.37. What is the result of applying the discrete flow of
equation (5.3) to a regular polygon?

Exercise 5.38. Find an example where the discrete flow on an initially
simple polygon passes through a nonsimple polygon.

Exercise 5.39. In terms of the original shape, what is the point to which
the flow converges? Form a conjecture.

Exercise 5.40. Suppose the discrete flow is applied to a 3D polygon, a
nonplanar closed chain of segments in R3. Formulate a conjecture on

what happens.

5.6 THE HEAT EQUATION

We now indicate how both the smooth flow of equation (5.1) and
the discrete flow of equation (5.3) can be seen as geometric analogs
of a more general flow, described by the heat equation. The heat

5.6 THE HEAT EQUATION

equation is arguably the most important partial differential equation in
mathematics and physics. It describes the distribution of heat in a given
region over time, related to the study of Brownian motion, chemical
diffusion, and several other related processes. Let u(x, t) be a function that
expresses the heat at a point x in a uniform medium at time ¢. The heat
equation

ou *u

at ox? (54
describes the time evolution of the temperature at each point x.

Since heat tends to even out over time, the equation describes a
smoothing and averaging process: The heat u(x) at a particular spot x is
affected by the heat at nearby spots u(x — §) and u(x + §). If, for example,
u(x — 8) is colder than #(x) and u(x + §) hotter by the same amount, then
the tugs cancel out their effects at u(x). But if the average surrounding
temperature %[u(x—&)—i—u(x—{—(S)] differs from u(x), it pulls the temperature
at u(x) with a tug proportional to the difference,

1 1

u(x) = Slu(x = 8) + lx + 8) = 3 (1) — u(x = 8)] = [(x + 8) = u(x)]).

2 2

This expression is easily recognizable as the second derivative with respect
to x: a difference of differences.

We will not attempt precise derivations but content ourselves with
pointing out a formal symbolic similarity between the curve-shortening
equations and the heat equation. Replacing x in equation (5.4) with
s and u(x,t) with C(s,t) yields equation (5.1) directly. Turning to
equation (5.3), we can think of the derivative at the midpoint v} of v;v; ;1
as approximated by

v}
as

Accepting this, we can approximate the second derivative:

N Vip1 — ;.

9%v; v — v,
3s2 ds
As the right-hand side is precisely 7; from equation (5.2), we may view
equation (5.3) as

A~ (Vig1 — vi) — (Vi — vi—q).

81),‘ B 82v,~

FrE
Although we are performing only symbol manipulations here, and em-
ploying approximations, the affinity of the continuous curve-shortening
flow, the discrete flow, and the heat diffusion equation should now be

evident.

145

146

CHAPTER 5. CURVES

Yet one more analogy brings us to the Poincaré conjecture. It would
take us very far afield to explain this complex and advanced topic
adequately. Instead we attempt to sketch enough of the story so that
the relationship to curve shortening can be discerned. Henri Poincaré, a
brilliant French mathematician and physicist, and one of the founders of
the field of topology, formulated the following conjecture around 1900.

Poincaré Conjecture. Every simply connected closed 3-manifold is
homeomorphic to the 3-sphere.

We now describe the terms used in this mysterious statement.

1. A manifold is a space that is locally Euclidean, in that it looks like
Euclidean space in the neighborhood of each point. A 3-manifold is
one that is locally like R3, our familiar 3D space. But globally it might
have a different structure.

2. A 3-sphere is the analog of the standard sphere (a 2-sphere) in one
higher dimension. It can be viewed as the set of all points in R* that are
a fixed distance from the origin, the center of the 3-sphere. A 3-sphere
is a 3-manifold.

3. A closed 3-manifold is finitely bounded, unlike R?, which is un-
bounded. A circle, a sphere, and a 3-sphere are all closed manifolds.
Our universe is some type of 3-manifold, but whether closed or
unbounded is unknown.

4. Two manifolds are homeomorphic if there is a continuous bijection
(called a homeomorphism) from one to the other, whose inverse is also
continuous. Roughly, this means that one manifold can be continu-
ously deformed into the other by stretching and bending.

5. A manifold is simply connected if every closed curve (loop) can be
contracted to a point while staying in the manifold. A torus (the surface
of a donut) is not simply connected, whereas a sphere is.

The two-dimensional version of the conjecture was already established
by 1900: if every loop can be contracted in a particular closed 2-manifold,
then that manifold must be homeomorphic to the 2-sphere. Poincaré
conjectured that the same holds for 3-manifolds: if a 3-manifold is simply
connected, it must be homeomorphic to the 3-sphere. And the same
question may be asked for n-dimensional manifolds. It took 60 years
before any progress was made when, in 1961, Stephen Smale shocked the
mathematics community by proving the conjecture for dimensions 7 > 5.
For this, he earned the Fields Medal, the highest honor a mathematician
can receive for his or her research. Twenty years later, in 1982, Michael
Freedman proved the Poincaré conjecture for dimension n = 4 using

5.6 THE HEAT EQUATION

vastly different techniques. He was also awarded the Fields Medal for
his work.

The last remaining and most interesting case (because we live in a
3-manifold) was finally settled almost exactly a century after Poincaré
formulated it: Grigori Perelman proved in 2003 that the Poincaré
conjecture indeed holds true in 3D. As mathematicians have come to
expect, Perelman was awarded the Fields Medal for his work in 2006.
In a stunning move, however, Perelman refused the honor, saying that
if his proof is correct then no other recognition is needed. In 2010,
Perelman was also awarded the first Clay Millennium Prize award of one
million dollars because settling the Poincaré conjecture is one of the seven
“Millennium problems.” Consistent with his principles, he declined this
prize as well.

A key to Perelman’s resolution of the conjecture is the Ricci flow
introduced by Richard Hamilton in the early 1980s. The Ricci tensor Ric
is a multidimensional generalization of the curvature ¥ we encountered
in equation (5.1). Rather than defining a curve deformation flow as in
that equation, the Ricci flow defines a metric deformation flow, where a
metric tensor g specifies how lengths and angles vary at different points
of the manifold. In a sense, g determines the local shape of the manifold.
Hamilton’s flow equation is written as

g

= —2 Ric(g). (5.5)

Very roughly, this specifies that the manifold should “shrink” around
every point at a rate proportional to the Ricci curvature there (which,
when negative, implies expansion).* If one views variations in the metric
g as describing a “lumpy” manifold, then, just as in curve shortening,
the Ricci flow should tend to lower the mountains, raise the valleys, and
in general smooth out local irregularities in the metric. If this could be
shown to smooth any 3-manifold metric into the homogeneous metric of
a 3-sphere, then the Poincaré conjecture would be settled.

It was in this context that the Gage-Hamilton-Grayson theorem
was discovered. But unlike the elegant non-self-intersection property
established in that theorem, Ricci flow can lead to extreme “neck-pinch
singularities,” which presented a serious stumbling block to completing
Hamilton’s proof plan. Perelman’s breakthrough was to see how to
classify and tame the singularities in the Ricci flow, ultimately leading
to the proof that simply connected 3-manifolds are homeomorphic to the
3-sphere.

4 Although the factor 2 is just a convention, the minus sign fixes directionality, ensuring
solutions for positive time.

147

148

CHAPTER 5. CURVES

Returning to equation (5.5), we continue the symbolic analogy be-
tween the various equations encountered in this chapter. Crudely, the
Ricci tensor measures the volume distortion of a small ball centered at a
point on the manifold in comparison to its volume in flat Euclidean space.
Like its analog «, it is essentially a second derivative. Reducing the Ricci
tensor to a 1D variable x (where, admittedly, it loses much of its sense),
it may be expanded in a Taylor series as

d’g
Ric(g) = — +---,
(g) a2 T
where the omitted terms are of higher order.” Thus the Ricci flow
equation can be viewed as yet another analog of the heat equation. The
four analogous equations are displayed in the table below to emphasize

their structural similarity. Curve shortening smooths out sharp curvature

Smooth Curve Discrete Curve Heat Equation Ricci Flow
Shortening Shortening
aC 3’C dv; % du 3w dg 3’g
_— = — _— = — _— = — —) —27
ot 0s? ar 9x? ar 9x? ot dx?

by moving normal to the curve at a rate proportional to curvature,
whereas discrete curve shortening approximates the same process in a
discrete setting. The heat equation describes the diffusion of heat from
hot spots “downhill” to cool spots, and the Ricci flow smooths manifolds
by contracting regions of positive curvature and expanding regions of
negative curvature. It is a remarkable path from the obvious idea of
averaging to smooth time-series data to the resolution of the Poincaré
conjecture!

5.7 CURVE RECONSTRUCTION

There are many scanning devices today that rapidly and accurately collect
a dense sample of points from the surface of a 3D object, such as laser
range finders, stereoscopic photography, and laser scanners. The raw data
collected by these devices are generally represented by 3D coordinates
of points from the surface. Reconstruction of the surface is the task of
developing a representation of the surface by connecting nearby points
into some type of mesh, a surface of triangles. This difficult and important

. . . 2 2 .
5 In 2D, the differential term takes the more familiar form (83? + 887)g, often written as

Ag or Vzg.

5.7 CURVE RECONSTRUCTION 149

problem is the focus of intense activity today. The examples in Figure 5.25
demonstrate how far the technology has advanced in this area.

A simpler version of the problem is curve reconstruction: Given a set of
point coordinates sampled from some curve C, connect those points ad-
jacent along C to form a polygonal curve P that represents C. After early
heuristics for this “connect-the-dots” problem, a breakthrough paper by
Nina Amenta, Marshall Bern, and David Eppstein in 1998 specified the
problem in a way that permitted provably correct algorithms. We will
present their CRUST algorithm, which relies heavily on the properties of
the medial axis, the Voronoi diagram, and the Delaunay triangulation.

Figure 5.25. Surface reconstructions from point clouds in 3D via the TIGHT
COCONE algorithm. The top row is a mannequin with 16216 vertices and 32308
triangles and the bottom row is an oil pump with 30927 vertices and 61850
triangles. Figures courtesy of Tamal Dey.

150

CHAPTER 5. CURVES

o o © o o
o] o o o) o o o
o
o 00 o o
o o o Oo o o
o o
o o
o o o
o o
(a) (b) (c) (d)

Figure 5.26. Parts (a) and (c) show two samples from the same curve, the first a
subset of the second. The reconstructions (b) and (d) show that (a) was under-
sampled.

This algorithm has served as the inspiration of nearly every subsequent
algorithm developed in the last decade, both for curve and for surface
reconstruction.

It is obvious that accurate reconstruction requires a dense enough
sample. Figure 5.26(a) and (c) show two samples from the same curve,
the first a subset of the second. The reconstructions of the curve from
these samples in parts (b) and (d), respectively, show that (a) is not a
dense enough sample. It is also clear that what is “dense enough” varies
with the “complexity” of portions of the curve. One of the key advances
was to define a precise notion of “dense enough” via the medial axis,
a notion called the local feature size.

Definition. Let C be a smooth closed curve in the plane, and let x be a
point of C. The local feature size p(x) of x is the shortest distance from
x to the medial axis of C.

In Section 5.1 we defined the medial axis M(C) of a closed smooth
curve C as the locus of the centers of disks that touch C at two or
more distinct points. Although we emphasized the portion of the medial
inside C, for a nonconvex curve, M(C) has branches both interior and
exterior to C, and both are relevant for the definition of local feature size.
Figure 5.27(a) shows a closed curve along with its (approximate) medial
axis, located both within and outside the curve. Part (b) of the figure
shows a few of the disks whose centers define the medial axis. Note that
p(x) is small for points on high-curvature sections of C and potentially
larger on low-curvature sections.

Exercise 5.41. Show that the hedge in the preceding sentence —
“potentially larger” — is necessary by constructing a curve C with a
point x in C such that p(x) is arbitrarily small, even if the curvature of
C in a neighborhood of x is zero.

5.7 CURVE RECONSTRUCTION

Figure 5.27. (a) A closed curve C along with its (approximate) medial axis M(C).
(b) A few of the disks whose centers define the medial axis and determine the local
feature size.

Now we can define the proper notion of density for our sampling;:

Definition. Let 0 < ¢ < 1. A set S of points sampled from C is an
g-sample if each point x in C has a point p in the sample S, where

Ix — pl = ep(x).

Note that this definition forces the sample to be dense in sections of C
that are “complicated” in that M(C) is near by. One more definition will
enable us to state the CRUST algorithm.

Definition. A correct polygon reconstruction P of a curve C from a
sample S connects points p and ¢ in P if and only if p and g are
consecutive sample points along C.

The points p and g are consecutive if the curve segment between p and
q is empty of other points of S. Figure 5.28(a) shows a sample set of the
curve in Figure 5.27 and (b) gives a correct polygon reconstruction of
the curve from this sample. The goal of curve reconstruction is to find
an algorithm that guarantees correct polygonal reconstruction from an
g-sample, for some particular ¢ > 0. The CRUST algorithm, to which we
now turn, achieves this provable correctness for ¢ < 1/5.

Recall from Section 3.4 that an edge e is in the Delaunay triangulation
Del(S) of a set of points S if and only if e has a circumscribing disk
empty of other points of S. Consequently, if the sample points are dense
enough, then edge e of the correct polygonal reconstruction is an edge
of Del(S). Thus the Delaunay triangulation contains the edges we seek,
and the remaining challenge is to avoid the incorrect edges of Del(S).
Figure 5.29(a) shows Del(S) of the sample set S from Figure 5.28(a).
Notice that the edges needed for proper reconstruction of S, as given in

151

152

CHAPTER 5. CURVES

o © (b)
(@]
o)
(o]
o)
o o
o
(o]
o)
o © o
(o]
(@]
oO

Figure 5.28. (a) A sample set of the curve in Figure 5.27, along with (b) a correct
polygon reconstruction of the curve from the sample.

Figure 5.28(b), are a subset of Del(S). The CRUST algorithm is designed
for the very purpose of finding the correct edges from the set of Delaunay
edges.

Several key insights lead to the CRUST algorithm. We list them first
on an intuitive level, for sufficiently small &, and illustrate these claims
through Figure 5.29.

1. The Voronoi vertices V of Vor(S) lie near M(C).

2. Any circumscribing disk of an incorrect edge of Del(S) crosses the
medial axis M(C) of C.

3. An incorrect edge e of Del(S) cannot also appear in Del(S U V) because
a circumscribing disk for e contains a vertex in V.

4. Each correct edge of Del(S) also appears in Del(S U V).

Claim 1 can be seen by comparing the black Voronoi vertices V in
Figure 5.29(b) to the medial axis in Figure 5.27. Of course, a Voronoi
vertex has the property that the Voronoi disk centered there touches at
least three points of S, so it is natural that the points of V fall near M(C).
Claim 2 is especially evident with the internal diagonals of Del(S) which
clearly cross the medial axis M(C). It then makes sense (Claim 3) that a
circumscribing disk of such an incorrect edge must include a vertex in V,
because V approximates M(C).

Finally, Claim 4 can be seen by centering a circumscribing disk for
a correct edge e = ab on the point x of C crossed by the perpendicular
bisector of ab. Figure 5.30 provides an illustration. The distance from x to
the medial axis is the local feature size p(x). But because S is an e-sample,
la —x| < & p(x). Thus the radius |a — x| of this circumscribing disk will not
reach M(C) for ¢ < 1, and so will not contain a point of V for sufficiently
smaller ¢. This empty disk guarantees that e is part of Del(S U V). This
intuitive justification leads to the remarkably simple CRUST algorithm.

Figure 5.29. (a) The Delaunay triangulation and (b) the Voronoi diagram of the
sample S from Figure 5.28(a). The Voronoi vertices V are shown in black. (c
Delaunay triangulation of SUV and (d) its edges having both endpoints in §, marke
in red.

Figure 5.30. A circumscribing disk for a correct edge e will not reach M(C).

154

CHAPTER 5. CURVES

CRUST Curve Reconstruction Algorithm

Let S be the set of sample points. Compute the Voronoi diagram
Vor(S) of S and let V be its set of Voronoi vertices. Compute the
Delaunay triangulation Del(S U V). The curve P is composed of the
edges of Del(S U V) with both endpoints in S.

The “provable correctness” of this algorithm may be stated in the fol-
lowing theorem. Proving this theorem formally requires careful analysis
to justify the claims we left intuitive above.

Theorem 5.42. The CRUST algorithm outputs the correct polygonal
reconstruction whenever S is an s-sample with ¢ < 1/5.

One goal of subsequent research has been to increase ¢ while still
maintaining provable correctness. This was achieved for ¢ < 1/3 by
Tamal Dey using the NN-CRUST algorithm (NN stands for “nearest
neighbor”), which has the added advantage of only computing one
Delaunay triangulation rather than the two computations in the CRUST
algorithm. Subsequent improvements have reached ¢ < 1/2. Finally, as
mentioned earlier, the CRUST algorithm and several of its descendants
have been generalized for surface reconstruction, an area of active
research.

UNSOLVED PROBLEM 22 Curve Reconstruction

Find an algorithm that guarantees correct curve reconstruction from
an e-sample for some ¢ > 1/2.

Exercise 5.43. Prove that any disk centered at a point x in C with radius
less than or equal to p(x) intersects C in a connected subcurve of C.

Exercise 5.44. Prove that if a disk is tangent to C at a smooth point x in
C and has radius less than or equal to p(x), then the disk contains no
points of C in its interior.

Exercise 5.45. Prove that if x and vy are points in C, then p(x) <
p(y) + |x — y|. This property is known as Lipschitz continuity.

SUGGESTED READINGS

SUGGESTED READINGS

Francis Chin, Jack Snoeyink, and Cao An Wang. Finding the medial
axis of a simple polygon in linear time. Discrete and Computational
Geometry, Volume 21, pages 405-420, 1999.

The linear-time algorithm for computing the medial axis of a polygon successively
partitions the polygon into three different varieties of “histograms.”

Jeff Erickson and David Eppstein. Raising roofs, crashing cycles, and

playing pool: Applications of a data structure for finding pairwise in-
teractions. Discrete and Computational Geometry, Volume 22, pages
569-592, 1999.
This paper describes the fastest known algorithm for computing the straight
skeleton, as well as a good introduction to the topic. The applications of the
straight skeleton to origami and flattening are described in Geometric Folding Al-
gorithms: Linkages, Origami, Polybedra (Erik D. Demaine and Joseph O’Rourke,
Cambridge University Press, 2007).

Ron Wein. 2D Minkowski sums, Chapter 22 of The CGAL Manual.
http://www.cgal.org/Manual/.

A clear description of computing Minkowski sums via convolutions.

Kai-Seng Chou and Xi-Ping Zhu. The Curve Shortening Problem.
Chapman & Hall, 2001.
A rigorous and technically demanding book-length treatment of the mathematical
aspects of curve shortening.

John Morgan and Gang Tian. Ricci Flow and the Poincaré conjecture,
Clay Mathematics Monographs, Volume 3. American Mathematical
Society, 2007.

Full details of the complete proof of the Poincaré conjecture in 500 pages, at the
advanced graduate level.

Tamal Dey. Curve and Surface Reconstruction: Algorithms with Mathe-
matical Analysis. Cambridge University Press, 2006.
This demanding but clear book by one of the leaders of the field covers curve and
surface reconstruction thoroughly, including the CRUST algorithm.

155

POLYHEDRA

We have already encountered polyhedra several times in this book. In
this chapter, we study them more systematically with the dual goal
of strengthening 3D intuition and presenting several theorem gems.
We start with the Platonic solids (Section 6.1) and then revisit Euler’s
formula (Theorem 3.12) in the polyhedral context (Section 6.2) in
which it originated. We follow that with two beautiful and useful
theorems: The Gauss-Bonnet theorem (Section 6.3) and Cauchy’s rigidity
theorem (Section 6.4). We then study shortest paths on convex polyhedra
(Section 6.5), a topic which brings us back to the ubiquitous Voronoi
diagram. We close the chapter with a deep theorem of Lyusternik and
Schnirelmann on closed geodesics on polyhedra (Section 6.6), which
connects back to our discussion of curve shortening from Section 5.5.

6.1 PLATONIC SOLIDS

A polyhedron is the natural generalization of a two-dimensional polygon
to three dimensions: it is a bounded region of space whose boundary
is composed of a finite number of flat polygonal faces, any pair of
which either are disjoint or meet at edges and vertices. Before making
this definition more precise (a surprisingly delicate task), we begin with
convex polyhedra, and in particular, the most famous polyhedra, the
Platonic solids.

Convex polyhedra are the natural generalizations of convex polygons
to 3D. A convex polyhedron P satisfies the definition of convexity in that
the segment xy connecting any two points x and y of P is contained inside
P. Just as convex polygons can be characterized by the local boundary
condition that each vertex be convex, convex polyhedra can be specified
locally via dibedral angles, as discussed in Section 1.5. An edge whose
dihedral angle is at most 7 is called a convex edge; otherwise, a reflex
edge. Then the local boundary condition for convexity can be stated as
follows:

Lemma 6.1. A polyhedron is convex if and only if all of its edges are
convex.

6.1 PLATONIC SOLIDS

Figure 6.1. (a) A convex polyhedron and (b) a nonconvex polyhedron, a type of
pentagrammic prism.

We do not prove this now, as it is best understood in terms of spherical
polygons introduced later (see ahead to Figure 6.20 and Exercise 6.41).
Figure 6.1(a) shows a typical convex polyhedron, and (b) shows a
particular nonconvex polyhedron with five reflex edges. This latter figure
shows that having all convex faces is not sufficient to ensure that the
polyhedron is convex. However, it is a necessary condition, as claimed by
the following exercise.

Exercise 6.2. Show that each face of a convex polybedron must be a
convex polygon.

Another important source of boundary information is provided by the
face angles of the polyhedron, the angles around each polygonal face of
P, and the sum of these face angles incident to each vertex. We will need
this consequence of convexity at several points in the chapter:

Lemma 6.3. For any convex polyhedron, the sum of the face angles
incident to each vertex is at most 2.

Again a proof is easiest in terms of spherical polygons, and we
again defer (Exercise 6.42). It is natural to assume that this necessary
consequence of convexity is also sufficient, but there are nonconvex
polyhedra with the face angle sum at each vertex at most 27. A somewhat
subtle example is provided by Figure 6.3(b), where 10 face angles each
of %n meet at each vertex. But a simpler example can be attained by
“denting” a convex polyhedron, such as that shown later in Figure 6.16.

Now we turn to the study of regular convex polyhedra. A regular
polygon is one with equal side lengths and equal angles, such as the
equilateral triangle, the square, and so on. Clearly there are an infinite

157

158 CHAPTER 6. POLYHEDRA

Figure 6.2. The Platonic solids: tetrahedron, cube, octahedron, dodecahedron,
icosahedron.

variety of regular polygons with 7 sides, one for each n > 2. It is then
natural to examine regular polybedra, although the appropriate definition
of regularity is no longer so evident.

Definition. A convex polyhedron is regular if all its faces are congruent
regular polygons, and the number of faces incident to each vertex is
the same for all vertices.

Notice that there is no mention of dihedral angles in this definition. It
turns out that these condition imply equal dihedral angles, so that fact
need not be included in the definition. Unlike the situation in 2D, the
surprising implication of these regularity conditions is that there are only
a finite number of distinct regular polyhedra in 3D, the five Platonic
solids. These polyhedra, named the tetrabedron, the cube, the octahedron,
the dodecabedron, and the icosabedron, are shown in Figure 6.2. They are
named the Platonic solids because they are discussed in Plato’s Timaeus.

We now prove that there are exactly five regular polyhedra, under the
strict definition of regularity above. This theorem was given by Euclid
(Elements, Book XIII) as the culminating proposition:

“I say next that no other figure, besides the said five figures, can
be constructed which is contained by equilateral and equiangular
figures equal to one another.”

It was proved without any algebra, which of course had not yet been
invented. The intuition behind the proof we present is that the internal
angles of a regular polygon grow large with the number of vertices of the
polygon, but there is only so much room to pack these angles around each
vertex of a regular polyhedron while still satisfying Lemma 6.3.

Theorem 6.4. The five Platonic solids are the only regular polybedra.

Proof. Assume we are given a regular polyhedron P. Let k be the number
of vertices per face of P. By Exercise 1.11, the sum of the interior angles
of a k-gon is w(k — 2). And since the faces of P are regular, each face
angle must be 7 (1 —2/k).

6.1 PLATONIC SOLIDS

Let’s insist that a vertex be a true corner of the polyhedron, one
that you could feel with your fingers were you to touch it there. Then
the sum of the face angles incident to a vertex is strictly less than 2.
Let 7 be the number of faces incident to each vertex, which is the
same for every vertex by our definition of regularity. Then we have
m face angles, each 7w (1 — 2/k), which must sum to less than 27. A
bit of algebraic manipulation of this constraint leads to a particularly
revealing form:

mm(l —2/k) < 2. (6.1)
1-2/k<2/m.
km < 2m+ 2k.
km —2m—2k+4 < 4.
(k—2)(m—2) < 4. (6.2)

We know that both k and m are integers. Because each face must be
at least a triangle, £ > 3. Moreover, m > 3 since at least three faces
must meet at each vertex; otherwise the polyhedron would collapse to
planarity there. This leaves only the five {k, 7} combinations listed in

the table below, resulting in the five Platonic solids. O]
Name k-gon mpervertex (k—2)m—-2) V E F
Tetrahedron 3 3 1 4 6 4
Cube 4 3 2 § 12 6
Octahedron 3 4 2 6 12 8
Dodecahedron 5 3 3 20 30 12
Icosahedron 3 N 3 12 30 20

Several remarks on the proof are in order. The strict inequality < 27
in equation (6.1) leads to the strict inequality < 4 in equation (6.2).
Just barely violating this latter inequality, with & = m = 4 when
(k — 2)(m — 2) = 4, leads to gluing four squares at every vertex. This
renders the vertex flat and fails to achieve a closed polyhedron. The same
can be said for k = 6 and m = 3, or k = 3 and m = 6, when again
(k = 2)(m — 2) = 4. The former corresponds to gluing three regular
hexagons at each vertex, the latter to gluing six equilateral triangles at
each vertex. In either case, a flat 27 vertex results. The constraint 72 > 3
implicitly rules out a flat, doubly covered regular k-gon as a regular
polyhedron. Indeed, the official definition of a polyhedron below will
exclude this, but there are circumstances where doubly covered convex
polygons are naturally viewed as degenerate polyhedra.

That the listed local information determined by k and m leads to
the polyhedra whose global properties are described in the table is not
immediately obvious, but it is easy to check that the polyhedra indeed

159

160

CHAPTER 6. POLYHEDRA

achieve the {k, m} values. This pair of numbers {k, 71} is called the Schldifli
symbol, in honor of the nineteenth-century Swiss mathematician Ludwig
Schlafli, who developed a notational system to record the structure of
regular and semi-regular polyhedra.

Loosening the definition of regularity to permit several different regular
polygons as faces, but still meeting in the same vertex configurations,
leads to the 13 Archimedean solids, including the truncated icosahedron
(soccer ball) composed of 12 pentagons and 20 hexagons, as shown in
Figure 6.3(a). Loosening further to permit nonconvexity leads to the
75 uniform polybedra, including, for example, the great dodecahedron
shown in Figure 6.3(b), among other beautifully intricate polyhedra.

Exercise 6.5. Find the ten Archimedean solids that are composed of
just two distinct types of regular polygon faces, by generalizing
equation (6.2).

X Exercise 6.6. Prove that the dibedral angles of a regular polybedron are

identical.

Although we have chosen not to delve deeply into higher dimensions
in this book, we cannot resist a brief foray into the world of regular
polytopes. A 3D polyhedron is composed of zero-dimensional vertices,
one-dimensional edges, and two-dimensional faces. The generalization
of a regular convex polyhedron to higher dimensions is a regular
convex polytope. In four dimensions, these are composed of 3D regular
polyhedral facets glued together in 4D space. Perhaps the most familiar
is the hypercube, the 4D cube, composed of eight 3D cubes glued

(b)

Figure 6.3. (a) Truncated icosahedron and (b) great dodecahedron.

6.1 PLATONIC SOLIDS

together, square face to square face. Grasping the structure of any higher-
dimensional object can be challenging. One method of display is to
project a “wire-frame” version into 3D called the Schlegel diagram of the
4D polytope. Figure 6.4(a) provides such a projection of the hypercube,
clearly showing seven of the eight cubes; the eighth surrounds the exterior
of what is displayed. Figure 3.14 showed the Schlegel diagram of the 4D
associahedron.

In contrast to the five Platonic solids, in 4D there are six regular
polytopes. And in contrast to 4D, there are exactly three regular polytopes
in each dimension # > 5: the n-simplex, generalizing the tetrahedron, the
n-cube, generalizing the cube, and the n-orthoplex (or cross polytope),
generalizing the octahedron. The three exceptional 4D regular polytopes
are known as the 24-cell, the 120-cell, and the 600-cell. Figure 6.4(b)
shows a Schlegel diagram of the 120-cell, composed of 120 dodecahedral
facets. It was not until the nineteenth century that the list of regular
polytopes was completed, approximately 2000 years after the three-
dimensional regular polyhedra were constructed. Higher-dimensional
polytopes have a surprising number of real-world applications and are
the focus of active research today.

Exercise 6.7. Draw Schlegel diagrams for the 4D tetrabedron (the
4-simplex) and the 4D octabedron (the 4-orthoplex).

Exercise 6.8. Find the number of 3D faces for the 4D associahedron
whose Schlegel diagram was given in Figure 3.14.

Figure 6.4. (a) The hypercube with Schlafli symbol {4, 3, 3} and (b) the 120-cell with
Schl&fli symbol {5, 3, 3}.

161

162

CHAPTER 6. POLYHEDRA

6.2 EULER’'S POLYHEDRAL FORMULA

It took a surprisingly long time to define unambiguously what constitutes
a single polyhedron. A big step in this clarification was made with Euler’s
formula, which we have encountered before as Theorem 3.12 in our
study of triangulations, and which we revisit below. We now provide
one definition of a polyhedron before turning to Euler’s formula.

A polybedron is composed of vertices, edges, and faces. We restrict
each face to be a convex polygon to make the definition easier. To
accommodate nonconvex polygonal faces, we simply partition these into
(coplanar) convex pieces. These pieces are put together to form the
surface of the polyhedron P subject to three conditions: the polygons
intersect properly, the local topology is correct, and the global topology
is correct. In more detail:

1. Intersection condition. The intersection of any two faces of P is either
empty, a single vertex, or a single edge (and its endpoints).

2. Local topology. Every point p on the surface of P has a neighborhood
(a small region surrounding and containing p) that is homeomorphic
to an open disk.

3. Global topology. We would like the surface of P to be connected: a
path exists on the surface between any two points of P. This excludes,
for instance, a polyhedron with a floating internal cavity, but does
not exclude a polyhedron with a tunnel that connects one part of the
surface to another, as in Figure 6.5(c).

Let’s expand a bit on the notion of a homeomorphism, which we
encountered before and will encounter again. This is a term from
topology intended to capture a notion of “topological equivalence.”
Two surfaces are homeomorphic if there is a continuous bijection (a
homeomorphism) from one to the other whose inverse is also continuous.
Loosely speaking, surfaces S; and S, are homeomorphic if S; can be cut

(b) (c)

Figure 6.5. (a) A cube, (b) a polyhedral sphere, and (c) a polyhedral torus.

6.2 EULER'S POLYHEDRAL FORMULA 163

up into several pieces, each of which can then be continuously bent and
stretched, and then glued back exactly along the seams of the same cuts,
in order to form S;. In terms of global topology, Figures 6.5(a) and (b)
show examples of polyhedra that are homeomorphic to spheres — they
are appropriately called polybedral spheres.

Thus far, all examples of polyhedra we have seen in this book are
homeomorphic to spheres. The object in Figure 6.5(c) is also a polyhe-
dron, satisfying the three conditions above; however, it is homeomorphic
not to a sphere but rather to a torus — the surface of a donut. One way to
express the difference between a topological sphere and a torus is in the
language employed in the Poincaré conjecture (Section 5.6): the sphere
is simply connected in that every loop in the surface is contractible to
a point, but a loop through a hole of the torus is not contractible. Just
as this polyhedron has one hole, we could also have a two-holed, three-
holed, or four-holed polyhedron, as pictured in Figure 6.6. Indeed, we
can keep increasing the number of holes, creating an infinite number of
polyhedra, none of which are homeomorphic to each other! The number
of holes in a polyhedron is called the genus of the polyhedron.

In terms of local topology, we demand that the neighborhood of each
point on the surface be homeomorphic to a disk. Two violations are
shown in Figure 6.7. In part (a), a surface neighborhood of point p is
homeomorphic to two disks touching at p — point p is surrounded by too
much surface. The open box in part (b) is a surface with boundary, and a
surface neighborhood of a point p on the boundary rim is homeomorphic
to a half-disk — point p is not surrounded by enough surface.

Exercise 6.9. Find a completely combinatorial definition of a triangulated
polybedron, that is, one that avoids using homeomorphisms.

X Exercise 6.10. The definition of a homeomorphism is that it is a mapping
between two spaces that (a) is one-to-one, (b) is continuous, and
(c) has a continuous inverse. Construct examples to show that all
three conditions are necessary to capture this notion of topological
equivalence.

Figure 6.6. A polyhedron of genus four.

164

CHAPTER 6. POLYHEDRA

(b)

Figure 6.7. Two examples violating the local topology condition in the definition
of a polyhedron.

One of the seminal events in the history of polyhedra was Leonhard
Euler’s discovery of his famous formula in 1750: the number of vertices
and faces together is always two more than the number of edges, or
V+F = E+2. Although it is difficult to appreciate this advance from our
perspective more than 250 years later, part of his achievement consisted
in viewing a polyhedron as a combinatorial object rather than a purely
geometric one. Once he isolated what a vertex, edge, and face should
be, the regularity encapsulated by his formula became nearly obvious.
However, he did not settle on a precise definition of a polyhedron,
and partly as a consequence, his attempted proof was incomplete. The
first rigorous proof was provided by Adrien-Marie Legendre in 1794.
And even then the exact scope of the formula’s applicability, which
turns on the definition of a polyhedron, followed a long and tangled
history. Indeed, the great dodecahedron in Figure 6.3(b) was initially not
considered a regular polyhedron because treating it as composed of 12
intersecting pentagonal faces (as Johannes Kepler did) violates Euler’s
formula.

Exercise 6.11. Compute V. — E + F for the great dodecabedron in two
ways: (a) when viewed as composed of many congruent triangular
faces, and (b) when viewed as composed of interpenetrating congruent
regular pentagons.

Today, dozens of distinct proofs of Euler’s formula are recognized. We
already detailed one in Chapter 3 in the context of planar graphs. Here
we present one of the prettiest proofs, due to Karl von Staudt from 1847,
which has the dual advantages of being explicitly based on polyhedra and
employing spanning trees, an important concept we will have occasion to
use later.

6.2 EULER'S POLYHEDRAL FORMULA 165

Theorem 6.12 (Euler). For any polyhedron homeomorphic to a sphere
with V vertices, E edges, and F faces, V— E + F = 2.

Proof. The proof is partitioned into five steps.

1. Convert the 1-skeleton of the polyhedron to a plane graph G.
2. Select a spanning tree T of G.

3. Construct the dual graph G* of G.

4. Identify the complementary spanning tree T* of G*.

5. Apply a tree counting lemma to both T and T*.

We now expand and illustrate each step below.

1. Polybedron 1-skeleton to plane graph G: The 1-skeleton of a polyhe-
dron P is the graph G of vertices and edges on its surface. We want
to embed G in the plane with noncrossing arcs. This can be viewed
as flattening G to the plane, which can be accomplished as follows:
Choose an arbitrary face f of P and remove it, leaving a hole in the
surface. Now stretch the hole wider and wider until it becomes much
larger than the original size of P. We can then flatten P, and therefore
G, into the plane in such a way that the (possibly distorted) arcs of G
deriving from edges of P do not cross.!

This process is illustrated for the dodecahedron in Figure 6.8(a).
Note that the outer boundary of G bounds the exterior face of G,
corresponding to the removed f. So G has V vertices, E edges, and
F faces — the same counts as P. The remainder of the proof uses this
plane graph G.

(a) (b) (c)

Figure 6.8. (a) Spanning tree T of the Schlegel diagram G for the dodecahedron.
(b) Complementary spanning tree T* of dual G*. (c) A one-to-one correspondence
between edges and nonroot vertices of a tree; the tree is T* in this case.

I This planar representation of the 1-skeleton is the Schlegel diagram for the 3D polyhedron.

166

CHAPTER 6. POLYHEDRA

2. Spanning tree T of G: A tree is a connected graph without cycles. A

spanning tree of a graph G is a tree formed by a subset of the edges
of G such that every vertex of G is incident to some edge of T. We
say that T spans the vertices of G. There are in general many spanning
trees for a given graph and they are not difficult to find. Let T be any
one, as drawn in red in Figure 6.8(a).

. Dual graph G*: The dual G* to a plane graph G has a node for each

face of G, and connects two nodes by an arc if the corresponding faces
of G share an edge. (We encountered this notion in Section 4.3, where
we showed that the dual of the Voronoi diagram is the Delaunay
triangulation.) It is important in general (and in our context) to
include the exterior face of G. The faces of G become vertices of
G*, and the edges of G and G* are in one-to-one correspondence.
It is also not difficult to see that the faces of G* correspond to
vertices of G.

. Complementary spanning tree T* of G*: Let T* be the subgraph of G*

whose arcs correspond to edges of G that are not part of T, that is, the
edges of G\ T. Figure 6.8(b) shows the tree T* in blue. Because T has
no cycles, T* connects all the faces of G; in other words, all the faces of
G are accessible via paths in G* from the exterior face without crossing
an edge of T. So T* spans the vertices of G*. But now notice that T*
cannot itself contain a cycle, for this would separate some vertex of
G inside the cycle from those outside, which would contradict the fact
that T is spanning and that T and T* do not cross. So T* is a spanning
tree? of G*.

. Apply lemma to both T and T*: The lemma is simply that, if a tree has »

vertices, it must have exactly z — 1 edges. This can easily be established
by induction (Exercise 6.14), but the following proof is perhaps even
more straightforward. Pick any vertex as the root of the tree and direct
each edge away from the root, pointing to its children vertices. Now
each directed edge points to a nonroot vertex, establishing a one-to-
one correspondence between edges and nonroot vertices; Figure 6.8(c)
shows an example. With only the root node without a partner, there
must be # — 1 edges.

Since G has V vertices, and because T spans G, T also has V vertices.
By the lemma, T has V — 1 edges. Since G* has F vertices (one per face
of G), and because T* spans G*, T* also has F vertices. By the lemma,
T* has F — 1 edges.

Thus the number of edges of T and T* totals (V—1)+(F —1). But by
the construction of T*, it contains edges corresponding exactly to all
those edges that are not in T, so together they account for all E edges.
Thus we have established that V— E + F = 2. O]

2 Sometimes T and T* are called interdigitating trees.

6.2 EULER’'S POLYHEDRAL FORMULA

The remarkable consequence of this theorem is that regardless how
a polyhedral sphere is made, Euler’s formula will always result in V —
E + F equaling 2. Let’s consider some examples of polyhedra (which
are homeomorphic to spheres) we have seen. Figure 2.13 displays a
polyhedron with 758 vertices, 2268 edges, and 1512 triangular faces.
Substituting these values into the formula yields 2 as the answer. The
3D associahedron pictured in Figure 3.13(b) has V = 14, E = 21,
and F = 9. Once again we see V — E + F = 2. Indeed, our examples
do not need to be convex polyhedra because the formula holds for any
polyhedron homeomorphic to a sphere. The example of Figure 6.5(b)
shows a nonconvex polyhedron with V. = 16, E = 26, and F = 12,
satisfying V— E + F = 2.

Exercise 6.13. Form a polybedron P by gluing k dodecahedra together in
a string, each one sharing a pentagon face with its neighbors. Remove
all those internal shared pentagons and verify Euler’s formula for P.

Exercise 6.14. Using induction, prove the tree lemma: a tree of n vertices
has n — 1 edges.

We restricted attention in the proof of Euler’s formula to polyhedra
homeomorphic to a sphere, having no holes. This assumption was
essential to the first step of the proof: one cannot flatten the 1-skeleton
of a polyhedron with a hole by the removal of a single face. However,
a generalization of Euler’s formula does hold for polyhedra with holes.
As we stated earlier, the number of holes in a polyhedron is known as
its genus. Finding the genus of a polyhedron is by no mean obvious (see
Figure 6.10), but we will see that this is handled by the Euler formula
generalization.

Although Euler created his formula for polyhedra, it actually measures
a topological invariant of surfaces more generally constructed. It would
be a long diversion into topology to formally define every concept we
need to describe this carefully, so we content ourselves with an intuitive
sketch of the main ideas. We take as a surface S anything homeomorphic
to a polyhedron.? In order to apply Euler’s formula to surface S, we
draw a connected graph G on it, partitioning S into vertices, edges,
and faces — we say G is embedded on S. So the edges of G can be
arbitrary curves that meet each other only at vertices, and the faces are all
homeomorphic to polygons. When all the faces of the graph are triangles,
the surface is said to be triangulated by G — more generally the surface
is meshed by the graph. (For example, quadrilateral meshes, where each

3 All the surfaces we consider are assumed to be orientable (roughly, those with two sides).

167

168

CHAPTER 6. POLYHEDRA

face is a quadrilateral, are commonly employed in architectural design.)
Of course, one could draw an infinite number of different graphs on the
same surface.

Definition. For a surface S partitioned by an embedded graph G into
V vertices, E edges, and F faces, the Euler characteristic x(S) of S is
V—E+F.

From this definition, it seems the Euler characteristic of the surface
is clearly dependent on the embedded graph G which partitions it. The
following theorem makes the remarkable claim that Euler’s formula yields
the exact same result independent of the partition! Moreover, it says the
Euler characteristic depends only on the genus of the surface. So, finally,
here is the generalization of Euler’s formula to arbitrary surfaces, first
achieved by Simon L’Huilier in 1813 (his name translates as “the oiler”).

Theorem 6.15 (Euler). For a surface S of genus g, x(S) =2 — 2g.

Sketch of Proof. We aim to show that for any embedded graph G
partitioning a surface S of genus g, the equation V— E+ F =2 — 2g
holds. The proof is by induction on g. For g = 0, the surface S is
homeomorphic to a sphere, and Theorem 6.12 applies to show that
x(8)=2.

Assume the theorem holds for all values of genus less than g, and
consider a surface S with genus g. Let S be meshed by a graph G.
Choose a loop A on G that does not disconnect the surface. If no
such loop exists, the surface must be a sphere and we are done. Now
separate S along A, capping the two loop copies with two new faces, as
illustrated in Figure 6.9. This creates a new surface S’ of genus g — 1.
Note that the separation doubles the number of edges and vertices
along A, again not altering the value of x(S). However, the addition
of the two new faces implies x(S’) = x(S) + 2. But by the induction
hypothesis, we see

XS +2=x(8)=2-2(g—1)=2-2g+2,
and the result follows. O

Notice that the statement and the proof of the theorem are independent
of the partition by the graph G. Indeed, the work needed to show this
was hidden within the proof of Theorem 6.12, which handled the base
case ¢ = 0. Thus the Euler characteristic x(S) yields exactly the same
result for any connected G, depending only on the genus of S. Moreover,
remarkably, we get a global property — the genus — from a purely
local accounting of V, E, and F. The Euler characteristic has turned
out to be a key invariant in the study of general topological spaces: it
is the alternating sum of the Betti numbers, which record the rank of the

6.2 EULER'S POLYHEDRAL FORMULA 169

Figure 6.9. Slice along a curve A and attach two new faces to decrease the genus
of the surface.

homology groups for the space. We will not have occasion to explore
further in this direction, but the Euler characteristic will play a role in the
proof of the Gauss-Bonnet theorem in Section 6.3 below.

Exercise 6.16. Verify Euler’s formula for the polybedron in Figure 6.6.

Exercise 6.17. Compute the Euler characteristic and genus of the two
polybedra shown in Figure 6.10.

Exercise 6.18. Although we insisted that the surface of a polybedron be
connected, Euler’s formula applies to more general surfaces. Compute
the Euler characteristic of a cube with a cubical cavity. Would you
conjecture that this characteristic holds for any topological sphere with
a spherical cavity?

From these examples, one might wonder whether Theorem 6.15
implies that the Euler characteristic must always be an even integer. The
answer is YES for all closed (orientable) surfaces, but it can be odd for
surfaces with boundary.

Exercise 6.19. What is the Euler characteristic of a topological disk?

Exercise 6.20. Compute the Euler characteristic for the open box in
Figure 6.7(b).

170 CHAPTER 6. POLYHEDRA

(a) (b)

Figure 6.10. Find the genus of each polyhedron.
Exercise 6.21. Compute the Euler characteristic of a cylindrical band.

Exercise 6.22. Conjecture and prove a generalization of Theorem 6.15
which extends to surfaces with boundary.

6.3 THE GAUSS-BONNET THEOREM

We have emphasized that Euler’s combinatorial formula is a topological
invariant of surfaces, including polyhedral surfaces. In some sense, there
is no geometry in Euler’s formula. Perhaps the most far-reaching theorem
concerning the geometry of surfaces is the Gauss-Bonnet theorem, one of
the jewels of differential geometry. In that field, it is often phrased in the
following terms:

Theorem 6.23 (Gauss-Bonnet). Let S be a smooth surface without
boundary. Then

/KdA:ZnX(S). (6.3)
S

It will take some time to explain this formula and specialize it to
polyhedral surfaces, but the time is well spent. We start by identifying the
symbols in equation (6.3). Here K is the Gaussian curvature, an intrinsic
(within the surface) measure of how sharply S is curved at each point,
the analog of x from Section 5.5 but for surfaces rather than curves. This
is a signed measure, with positive curvatures indicating protrusions and
dents, negative curvatures indicating saddle points, and zero curvatures
implying flatness. Figure 6.11 shows a point on different surfaces having

6.3 THE GAUSS-BONNET THEOREM 171

Figure 6.11. Surfaces of positive, zero, and negative curvatures.

positive, zero, and negative curvatures, respectively. Given that dA is
the area differential, the first integral sums the curvature over the whole
surface S.

So why is this a remarkable theorem? The left side of the equation
deals with curvature, a purely geometric concept. The right side deals
with the Euler characteristic, a purely topological concept. Gauss-Bonnet
says that these two ideas are fundamentally linked. From the left side of
the equation, it claims that if you know the (local) curvature at every point
on the surface, the global shape of the surface (its genus) is determined.
From the right side of the equation, it says that if the genus of the surface
is given, the curvatures must add up to a constant. In other words, if
we dent the surface, saddles must emerge so that the amount of negative
and positive curvatures cancel out perfectly! For instance, in Figure 6.12,
even with all the twists and turns creating patches of negative curvature,
the total curvature of the surface is exactly 47, as with any surface
homeomorphic to a sphere.

Figure 6.12. A deformation of the sphere whose total Gaussian curvature is 4.
Figure courtesy of Matthew Harvey.

172

CHAPTER 6. POLYHEDRA

Carl Friedrich Gauss, arguably the greatest mathematician since antiq-
uity, knew the Gauss-Bonnet theorem (in one of its differential geometry
versions) by 1825, but did not publish a proof, which was supplied by
Pierre Bonnet in 1848 and subsequently generalized in several directions
by many others. The descendants of this seminal theorem include the
Riemann-Roch theorem and the Atiyah-Singer index theorem, the latter
of which plays a central role today in theoretical physics.

To consider the polyhedral version of Gauss-Bonnet requires an
understanding of discrete curvature.

Definition. The Gaussian curvature K(p) at a point p of a polyhedral
surface is 277 minus the sum of the face angles incident to p.

This is sometimes called the angle deficit at a vertex. If the surface is cut
open and flattened in the neighborhood of v, there will be an angle gap of
precisely K(v). Thus a point p in the interior of a face of P has curvature
zero since the sum of angles around p sum to 27. Less obvious is that
a point on a polyhedral edge e also has curvature zero, for it has 7 face
angle incident from either side of e. Thus all the curvature of a polyhedron
is concentrated at its vertices. Figure 6.13 shows examples of polyhedral
curvatures.

Figure 6.13. Polyhedral curvatures 0, 0, 7/2, —7/2, and —x at the marked points,
respectively.

6.3 THE GAUSS-BONNET THEOREM

Exercise 6.24. What is the curvature at each vertex of a dodecahedron?
What is the sum of those curvatures over all vertices?

With the notion of discrete curvature defined, we may now phrase the
polyhedral version of the Gauss-Bonnet theorem:

Theorem 6.25 (Polyhedral Gauss-Bonnet). For a polyhedron P,
ZK(U) =27 x(P). (6.4)

veP

Proof. By the definition of K(v), we have

ZK(v):Z 2r — Z f angle at v

veP veP (f incident v)
= Z 2r — Z z fangleatv | . (6.5)
veP veP \ (f incident v)

The first sum of equation (6.5) is just >, _p 27 = 27V. The second
sum adds up all the face angles incident to v, over all vertices v in P.
So this is just the sum of all face angles over the surface, each counted
exactly once. Let 77 be the number of sides of the polygonal face f.
Then the sum of the face angles of f is (77 —2)7. So we have

Z Z f angle at v =Z(nf—2)71

veP \ (f incident v) feP

=7 <an - Zz). (6.6)

feP feP

In equation (6.6), ZfeP 2=2F and ZfeP ns = 2E, the latter because
each edge is shared by two faces, so summing 7 over all f double-
counts the edges of P. Returning to equation (6.5), we have

S K(v) =27V —m(2E - 2F) = 2w x(P),

veP

which establishes the Gauss-Bonnet theorem in the form of equa-
tion (6.4). O

The first polyhedral version of the Gauss-Bonnet theorem was dis-
covered by René Descartes in 1630, predating Euler’s formula by two
decades, and predating the full Gauss-Bonnet theorem by two centuries.
Descartes only considered polyhedral spheres, and phrased the result in
his Treatise on Polyhedra saying that

173

174

CHAPTER 6. POLYHEDRA

“...in a solid body all the exterior angles, taken together, equal
eight solid right angles.”

Here the “eight solid right angles” constitute 4, the value of the
right side of equation (6.4) when x(S) = 2 is a polyhedral sphere.

Exercise 6.26. Verify the Gauss-Bonnet formula for the three polybedra
shown in Figure 6.5.

Exercise 6.27. Verify the Gauss-Bonnet formula for the polybedron
shown in Figure 6.10(a).

The Gauss-Bonnet theorem has an important generalization to surfaces
S with boundary 85, such as that in Figure 6.7(b). We will use this
generalization in Section 6.6. First we state the theorem for smooth
surfaces and then present a discrete version.

Theorem 6.28 (Gauss-Bonnet). Let S be a surface and 98 its boundary.
Then

/KdA+/ ke ds = 27 x(S) . (6.7)
S S

The symbol k, is the geodesic curvature at a point on the curve C.
This curvature k, measures the deviation of a curve from straightness
within the surface tangent plane at a point of C. The second integral
sums the geodesic curvature over the boundary curve 9S; here ds is
the arc-length differential. So Theorem 6.23 is the special case of this
theorem for surfaces without boundary, where the second integral term
in equation (6.7) is zero.

In the discrete polyhedral setting, the notion of Gaussian curvature
needs to be extended to polyhedra with boundary:

Definition. Let P be a polyhedron with boundary. The geodesic curvature
K(p) at a boundary point p of P is 7 minus the sum of the face angles
incident to p.

This discrete analog of the geodesic curvature kq(p) is the turn angle at
each p on a boundary curve of P: the signed angle turn experienced by
a person walking along the boundary while vertically aligned with the
surface normal. This turn is zero at every point interior to a straight
segment of the boundary since the sum of the face angles is exactly 7.
Thus the geodesic curvature is solely concentrated at the corners of the
boundary curves. The discrete version of Theorem 6.28 now follows:

6.3 THE GAUSS-BONNET THEOREM 175

Theorem 6.29 (Polyhedral Gauss-Bonnet). Let P be a polybedron, oP
be its boundary, and P\ oP be its interior. If w = Z K(v) and
ve P\oP

T = Z K(v), then

vedP

o+ 1 =21 x(P). (6.8)

In words: the sum of the curvature in the interior of the surface P plus
the sum of the curvature along its boundary is a constant dependent only
on the Euler characteristic of P.

Exercise 6.30. Provide a proof of Theorem 6.29, tracking the proof of
Theorem 6.25.

There is another way of understanding this equation for polyhedra
without boundary. Let C be a counterclockwise-oriented simple closed
curve on the polyhedron P. The sum of the curvature of the region
bounded by C—the portion of P to the left of C—is the first summation
term w, whereas the sum of the geodesic curvature along the curve C is
the second summation term t. Here the curve C on the polyhedron P
without boundary plays the role of 9P.

Example 6.31. Figure 6.14 shows three examples of curves C on a cube.
The curve in part (a) is obtained by slicing the cube horizontally with a
plane. There are four corners on this curve, where the curve crosses an
edge of the cube. The geodesic curvature at each of these corners is zero
since the sum of the face angles to the left side of C is . Alternatively,
the person walking along the curve does not turn with respect to the
normal.

The curve in part (b) has four corners as well, obtained by slicing
the cube with a diagonally slanting plane. Here the geodesic curvature

(a) (b) (c)

Figure 6.14. The three curves tumn leftward 0, 7, and 37/2, respectively, and so
enclose 2, 7, and /2 by equation (6.8).

176

CHAPTER 6. POLYHEDRA

at each of the corners is now 7 /4: there is /2 + 7 /4 to the left of the
walker at each corner, so they must deviate leftward from straightness
by 7 — (7/2 + n/4) = 7 /4. In part (c), there are three corners of C,
each with turn angle equal to /2.

Equation (6.8) expresses a tradeoff between geodesic curvature (turn
angle) and enclosed curvature. If C surrounds a vertex-free region of a
polyhedral sphere P, then @ = 0 and so t = 27, which is the familiar
result that total turn around a planar curve is 2x. We saw this both in
Exercise 1.12 and in our discussion of the winding number in Section 5.4,
and we return to this topic in Section 6.6.

Example 6.32. Continuing the discussion from Example 6.31, we see that
the curve C in Figure 6.14(a) does not turn at all. So 7 = 0 and there
must be @ = 27 curvature to each side of C, which makes sense: The
total curvature of 4x (for the cube) is equally distributed to each side
of the curve having four vertices (each vertex carrying /2 Gaussian
curvature). Notice the more C turns leftward, the less curvature it
encloses: part (b) has t = 4(n/4), implying w = m, capturing two
vertices. Finally, Figure 6.14(c) shows a curve where T = 3(x/2) and
® = /2, surrounding one vertex.

Exercise 6.33. Verify equation (6.8) when the polybedron is a regular
tetrabedron T and C is the curve of intersection of a plane parallel to
the base of T, midway between the base and the apex of T.

Exercise 6.34. Verify equation (6.8) for the two curves shown in
Figure 6.15.

(b)

Figure 6.15. Closed oriented curves on the surface of a nonconvex polyhedron.

6.4 CAUCHY RIGIDITY

6.4 CAUCHY RIGIDITY

Both Euler’s formula and the Gauss-Bonnet theorem hold for all varieties
of polyhedra, whether they be convex or nonconvex, with or without
holes, with or without boundary. For the remainder of the chapter we
concentrate on convex polyhedra, for which several beautiful theorems
hold which may fail for nonconvex polyhedra. In this section we describe
and prove a rigidity theorem for polyhedra, which relies at a crucial
juncture on Euler’s formula. In fact, Augustin Cauchy, the profound
French mathematician, presented the 1813 proof of his rigidity theorem
in the same paper in which he offered a proof of Euler’s formula.

The problem solved by Cauchy goes back to Euclid, who defined
equality between polyhedra (Elements, Book XI) as follows:

“Equal and similar solid figures are those contained by similar
planes equal in multitude and magnitude.”

In modern terminology, it states that two polyhedra are congruent if
they have congruent faces similarly arranged about each vertex. This is
certainly false for nonconvex polyhedra, as the example in Figure 6.16
demonstrates. Here the roof over the cube can dent inward as well as
protrude outward while retaining the congruency of the faces and their
arrangements about each vertex. But Euclid was probably thinking only
of convex polyhedra. Still, it was realized in the nineteenth century that
Euclid’s definition of equivalent polyhedra was actually a theorem in need
of a proof, a proof Cauchy supplied. One phrasing of his theorem is as
follows:

Theorem 6.35 (Cauchy Rigidity). If two closed, convex polybedra are
combinatorially equivalent, with corresponding faces congruent, then

Figure 6.16. Two different polyhedra with congruent faces similarly arranged about
each vertex.

177

178

CHAPTER 6. POLYHEDRA

the polyhedra are congruent; in particular, the dibedral angles at
corresponding edges are the same.

The reason it is called Cauchy’s rigidity theorem is that it implies that
a convex polyhedron is rigid in the sense that, if it were built with face
plates hinged along edges, it could not flex. Cauchy’s theorem is, however,
strictly stronger than claiming that convex polyhedra are rigid, for it is
conceivable that they are rigid but there are several different, isolated,
incongruent realizations. Cauchy’s theorem says that even this is not the
case: There must be a unique realization. The proof of this theorem is
by contradiction consisting of three main steps, each highly original and
much used subsequently:

1. A geometric lemma now known as Cauchy’s arm lemma.
2. A combinatorial lemma on sign changes on planar graphs.
3. A proof by contradiction employing these two lemmas.

Cauchy’s arm lemma is a surprisingly delicate result that has proved
useful in many contexts aside from the role it plays in his rigidity theorem.
In one sense it is obvious: it claims that straightening a convex chain
increases the distance between its endpoints. But its subtlety is indicated
by the fact that Cauchy’s own proof of this lemma was flawed, and the
flaw was not noticed for over a century, when Ernst Steinitz repaired it.
For this reason it is sometimes known as the Cauchy-Steinitz lemma.

Although the arm lemma needed for Cauchy’s rigidity theorem con-
cerns convex chains composed of geodesic segments on a sphere, the
proof in the plane differs from that on the sphere in only minor ways,
and we choose here to avoid the (minimal) spherical trigonometry needed
and only present the planar version of the lemma.

Let C = (vo, v1, ..., v,) be a planar convex polygon. We will view C
as an open chain, missing the last edge v,vo, and call it a planar convex
chain. The other edges of C are considered rigid bars connected by joints
at the interior vertices vy, ..., v,_1. The internal angles aq, ..., o, at the
joints all lie in the range (0, 7]. Although the joints are free to rotate, the
bars always retain their original length. With this notation, here is one
phrasing of Cauchy’s lemma:

Lemma 6.36 (Cauchy’s Arm). If a planar convex chain C is opened by
increasing some or all of its internal angles, but not beyond w, then the
distance between vy and v, is strictly increased.

In other words, if the internal angles «; are replaced by o/, with o <
a; < 7, then |vj — v,| > |vg — v,l|. It is important to realize that an open
polygonal chain, all of whose internal angles 1, ..., a,_1 are convex, is

6.4 CAUCHY RIGIDITY

(a) (b)

Figure 6.17. (a) A chain that fails to be convex (b) results in a contradiction to
Cauchy’s arm lemma.

not necessarily a convex chain as defined above: it must be that connecting
vy to v, produces a convex polygon (in particular, ap and @, must be
convex as well). Indeed, the lemma could be false otherwise, as illustrated
in Figure 6.17. Part (a) shows a chain whose internal angles are convex.
As an internal angle increases, the distance between the endpoints actually
decreases, pictured in (b). In fact, the situation shown in this figure could
arise at a substep in Cauchy’s original induction proof, which was the
flaw repaired by Steinitz. Here we will present the beautiful non-inductive
proof found by Stanislaw Zaremba in 1967.

Proof. Let C = (vg, v1,...,v,) be a planar convex chain. Establish a
coordinate system in the plane of the chain as follows. The x-axis
contains vy and v,, with v, right of vy. The y-axis passes through the
vertex v furthest from the x-axis. (If there are two vertices tied for
furthest, let vy be the right one.) Chain C is opened to a new chain
C = (v, v}, ..., v,), and placed so that:

1. Vertex v does not move: vj, = vg.
2. The new angle vj,_,v,v;,,; contains the old angle vi_1vevei1.
3. Neither vj,_,; nor v, is placed above vy.

Because o < «), < 7, it is possible to satisfy these three conditions, as
demonstrated in Figure 6.18. If we define x; to be the x-coordinate of
v;, then |v, — vg| = x,, — xp because of the choice of coordinate system.
The plan is to compute x], — x,, which is a lower bound on |v], — v|.

For the right portion of the chain, from vy to v,, define 6; to be the
angle between the ray v;v;11 and the positive x-axis. This angle lies
in [—m,0), for all these rays point downward. The opening motion
increases (or leaves unchanged) each 6; for each ray v;v;1 is turned
counterclockwise about v; by opening angles. The new angles never
exceed 0 because vy, ; is below v, so we have §; < 6] < 0.

Let ¢; be the length of the edge v;v;11. Then the x-coordinate x;,
of v, can be computed as the sum of the horizontal contributions of

179

180 CHAPTER 6. POLYHEDRA

y-axis

Vi1

/ V’n_] .
\ M > ORGIN oxeaxis
vy vy,

Figure 6.18. Opening C while keeping vy, fixed and highest.

each edge:
X, = £y cosOp + L1 coSOpi1 + -+ £,_1COs0,_q. (6.9)

Each 6] > 6; and because the cosine is an increasing function of its
argument in the range [—, 0], it must be that x/, > x,,; in other words,
v, moves rightward. By symmetry, a similar argument establishes that
vo moves leftward: x, < xo. By assumption, at least some angles open,
which means that at least one of the two inequalities is strict. Thus we
have

v, —vol > X, — x5 > X, — X0 = |v, — vol,

which proves our claim. O

Exercise 6.37. Suppose vy = v, initially. Is Cauchy’s arm lemma still
valid?

Exercise 6.38. The condition o; < &/ < m in Lemma 6.36 may be
rewritten w —o; > w — o, > 0. The angle m — «; is the turn angle at the
joint. Suppose the condition is generalized to m — a; > |7 —)| > 0,
that is, the new turn angle in absolute value is no larger than the old.
Is the conclusion |vy — v,| > |vo — v,| still valid? Explore enough to
make a conjecture.

6.4 CAUCHY RIGIDITY

Exercise 6.39. Continuing the previous exercise, consider reconfiguring
the planar convex chain C into a new chain C' in R3. Define the turn
angle 1t/ at v} to be arccos of the dot product of unit vectors along
Vi+1 — Vi and v; —vi_1, so that m > t] > 0. Suppose the angle condition
in Cauchy’s lemma is generalized to w1 — o; > 1. Is the conclusion
[vy — vy,| > |vo — vyl still valid? Explore enough to make a conjecture.

The second piece of the puzzle we need to prove the rigidity theorem
is a condition on sign alternations of planar graphs. It is this lemma that
employs Euler’s formula at its core, applied to any connected plane graph
as proved in Theorem 3.12. The lemma concerns a plane graph G whose
edges have been 2-colored, that is, colored (arbitrarily) with two distinct
colors, say red and blue. As we (cyclically) walk around the edges of a
vertex v, the lemma counts the color changes of the edges incident to v.
For example, {red, red, blue, red} represents two color changes.

Lemma 6.40. Let G be a plane graph with edges that are 2-colored. Then
there is a vertex v of G with at most two color changes in cyclic order
around v.

Proof. Suppose to the contrary that at every vertex v of G, there are more
than two color changes around v. The number of color changes about a
vertex must be even because each blue to red transition must eventually
be followed by a red to blue transition. So if there are more than two,
there must be four or more.

We can associate each color change about v with a unique face
angle incident to v, the face bounded by the two edges with different
colors. Let’s call a face angle representing a color change a cc-corner.
Figure 6.19 shows a 2-colored plane graph illustrating cc-corners.

Let G have V vertices, E edges, and F faces, and let ¢ be the total
number of cc-corners in G. Then, because each vertex has at least four
color changes by hypothesis, we know ¢ > 4V.

Having counted ¢ based on vertices, let’s now count it in terms of
faces. Let a face f have k edges. If k is even, it could be that all k face
angles are cc-corners. If k is odd, at most k — 1 cc-corners can occur.
Let f be the number of faces in G bound by k edges. Then, toward the
value of ¢, f3 contributes at most 2 f3, f4 contributes at most 4 f4, and
so on. So we get an upper bound on ¢, where

4V<c=2fsi+4fat4fs+6fe+6f+--
<2f3+4f4s+6fs+8f+10f+---
=20fs+4fa+5fs+t6fr+) —Hb+fatfs+f+)
=2(2E) — 4(F) = 4E — 4F,

181

182

CHAPTER 6. POLYHEDRA

Figure 6.19. A 2-colored plane graph with the face angles representing cc-corners
marked in orange, and the number of cc-corners incident to those vertices
indicated.

since Y kf double counts each edge and) f counts each face once.
Thus 4V < 4E — 4F, implying V — E + F < 0 for a planar graph G.
This contradicts Euler’s formula (Theorem 3.12) and so establishes the
lemma. O

We now complete the proof of Cauchy’s rigidity theorem using

contradiction.

Proof of Cauchy’s Rigidity Theorem. Let P and P’ be two incongruent

convex polyhedra that are combinatorially equivalent, with corre-
sponding faces congruent. Because their combinatorial structure is the
same, their vertices, edges, and faces can be matched one-to-one.
Color each edge e of P with blue or red if the dihedral angle at e
is larger or smaller, respectively, than its corresponding edge of P’. If
the angle is the same, then apply no color to the edge. Let G be the
subgraph of the 1-skeleton of P containing the colored edges. Because
the two polyhedra are incongruent, some edges must be colored, and
so G is nonempty. However, it may consist of several disconnected
components. Let H be one such component. Apply Lemma 6.40 to the
plane graph H to conclude that there is at least one vertex v with at

6.4 CAUCHYRIGIDITY 183

most two color changes in the cyclic order of the edges of H incident
to v. Our goal is now to show that the geometry in a neighborhood of
v in P violates Cauchy’s arm lemma.

Let v' in P’ be the vertex corresponding to v in P. Intersect P with a
small sphere S, centered on v. Each face [incident to v intersects S, in
an arc of a great circle: the plane containing / passes through the center
of S, and so intersects S, in a great circle, and restricting to selects
an arc of this circle whose length is proportional to the face angle of
f at v. Therefore, the collection of faces of P incident to v intersects
S, in a convex spherical polygon Q = P N §,. Figure 6.20 shows two
views of a spherical polygon produced by intersecting a polyhedron in
the neighborhood of a vertex v with a sphere S, centered on v. What
is crucial to realize is that the angle at a vertex p of polygon Qs equal
to the dihedral angle of the edge e in P that penetrates S, at p. In other
words, the dihedral angle of a 3D polyhedron is converted to a vertex
angle of a 2D polygon!

Now we compare O with its corresponding spherical polygon Q" =
P’ N S,. Because the faces of P and P’ are congruent, the arcs of Q
and O have the same length. But the selection of v from H ensures that
some dihedral angles are colored and so unequal. Now we consider the
two possibilities resulting from Lemma 6.40: There are either no or two
color changes about v.

1. There are no sign changes. Without loss of generality, say that all edges
of H incident to v are labeled blue. The other edges of P incident
to v must then be uncolored. So the spherical polygon O must have
blue vertices, and possibly some vertices with no color, as pictured in
Figure 6.21(a). (Although we are dealing with spherical polygons as

Figure 6.20. Two views of a spherical polygon produced by intersecting a poly-
hedron in the neighborhood of a vertex v with a sphere S, centered on v.

184

(a)

CHAPTER 6. POLYHEDRA

Figure 6.21. (a) The spherical polygon O having no sign changes, with vertices
colored blue or with no color. (b) The chain C opens up due to the blue vertices,
showing an increase in the length of an edge, resulting in a contradiction.

depicted in Figure 6.20, we represent them as Euclidean polygons as
the arguments apply naturally to both types.) Recall that a blue vertex
of Q represents a dihedral angle of an edge of P that is larger than its
corresponding edge of P’.

Now we apply Cauchy’s arm lemma (Lemma 6.36) extended to
spherical polygons. Let chain C be the polygon O with any edge e
deleted. The lemma then applies to C and shows |¢'| > |e|, where ¢’
is the edge of Q' corresponding to e; see Figure 6.21(b). But we saw
earlier that these lengths are fixed by the equal face angles incident to v
from which they derive. Thus we arrive at a contradiction if there are
no sign changes about v.

. There are exactly two sign changes. In this situation, we can draw

a chord s across the polygon Q separating the blue and red colors,
as given in Figure 6.22(a). This cuts the polygon into two chains C?
and CR, having blue and red colors, respectively. Applying Cauchy’s
arm lemma to C® delimited by s shows that s must increase in length
to become s’ in Q’: |s’| > |s|. Figure 6.22(b) shows the situation.
Switching viewpoint to the red chain CR shows that s must decrease in
length to become s’: |s| > |s’|. We again have reached a contradiction.

This completes the proof of Cauchy’s rigidity theorem. O]

Exercise 6.41. Prove Lemma 6.1: a polyhedron is convex if and only

if all of its edges are convex. Use the spherical polygon viewpoint as
depicted in Figure 6.20.

6.4 CAUCHYRIGIDITY 185

(a) (b)

Figure 6.22. (a) The spherical polygon O having exactly two sign changes. The
chord s divides the polygon into sides having vertices of one kind of color. (b) The
chains C? and CR show differing edge lengths of s’, resulting in a contradiction.

Exercise 6.42. Prove Lemma 6.3: for any convex polyhedron, the sum of
the face angles incident to each vertex is at most 2mw. Use the spherical
polygon viewpoint.

As is typical with a deep result like Cauchy’s rigidity theorem, there
have been many subsequent generalizations and developments. Alexander
Alexandrov, a Ph.D. student of Delaunay, extended the uniqueness claim
in 1948 in a surprising way. We may rephrase Cauchy’s theorem as
follows: If you glue together a collection of flat, rigid, polygonal faces
so that every vertex has non-negative Gaussian curvature (i.e., such that
the total angle at each vertex is < 27), then the result is a unique convex
polyhedron. In other words, the polygonal faces and their gluing uniquely
determines the resulting convex polyhedron.

Alexandrov proved that if you glue together a collection of flexible flat
polygons, again so that every vertex of the resulting closed surface has
non-negative curvature, the result is still a uniquely determined convex
polyhedron! The key aspect of this theorem is that, unlike in Cauchy’s
theorem, the edges of the polyhedron have no a priori relation to the edges
of the polygons that are glued together. One remarkable consequence
is that if one simply glues one half of the perimeter of a single convex
polygon (perhaps made from paper) to the other half, the result is a
unique convex polyhedron.

186

CHAPTER 6. POLYHEDRA

Figure 6.23. Gluing one half of the perimeter to the other half, creasing along the
lines shown, results in an octahedron.

Exercise 6.43. On a 4 x 4 square piece of paper, mark points x and vy
as shown in Figure 6.23. Their symmetric placement ensures that they
partition the perimeter into two equal-length portions. Now glue the
perimeter halves to one another, pinching at x and vy, using tape to hold
the identified segments to one another. With some coaxing, you should
find that the paper wants to crease along the red lines shown, resulting
in the unique octabedron which Alexandrov’s theorem guarantees
exists.

We have thus far been discussing rigidity, but what about flexibility?
How much freedom do we have on the periphery of Cauchy’s theorem? If
we remove the closed condition of the theorem, that is, if the polyhedron
is permitted to have a boundary, the theorem fails. Cutting out a single
polygonal hole that includes a (true, nonflat) vertex from the surface of a
convex polyhedron necessarily renders it flexible. Figure 6.24 shows the
flexing possible when an octahedron is cut through the middle. Note that
such a hole leads to V+ E + F = 1, so the reliance of Cauchy’s proof on
Euler characteristic 2 means that it no longer necessarily holds. A precise
characterization of the conditions on the resulting polyhedral surface with
boundary that distinguish rigidity from flexibility was worked out in 1958
by Alexandrov and L. A. Shor.

What happens if we remove the convex condition of the theorem? As
we saw in Figure 6.16, if the polyhedron is not convex, the theorem
fails. But this failure is demonstrated by two polyhedra which cannot
be made into each other by a continuous motion. In other words,

6.4 CAUCHY RIGIDITY 187

©99 94

Figure 6.24. The flexing of half of an octahedron.

both of these polyhedra are infinitesimally rigid since they cannot be
continuously deformed into any other configuration without tearing or
bending. Cauchy’s theorem guarantees that if a polyhedron is convex,
it is infinitesimally rigid. But the question remained, if a polyhedron is
nonconvex, can it flex? In a remarkable result, Herman Gluck proved
in 1975 that almost all triangulated polyhedra are infinitesimally rigid,
where “almost all” means that the rigid polyhedra form an open dense
set in the space of all polyhedra. At this point in time, it was tantalizingly
feasible that all triangulated polyhedra (homeomorphic to spheres),
convex or nonconvex, are rigid.

In 1978, a few years after Gluck’s result, Robert Connelly stunned
the community by constructing a flexible polyhedron. Modifying a self-
intersecting flexible octahedron which Raoul Bricard (a French engineer)
had constructed in 1897, Connelly found the first example of a true
flexible polyhedron, consisting of 18 triangular faces. Subsequent sim-
plifications led to a 14-triangle, 9-vertex flexible nonconvex polyhedron
constructed by Klaus Steffen. Figure 6.25 shows a construction by Rohan
Mehra and Norman Nicolson of the Steffen polyhedron using plexiglass
and piano hinges.

The existence of flexible polyhedra leads to a natural question: as the
polyhedron flexes, does its volume change? For the 2D version, if we flex
the vertices of a square, deforming it into a rhombus, clearly the areas of
the polygons change, and it is natural to suppose the same holds in 3D.
The surprise answer was proved by Idzhad Sabitov in 1997:

Theorem 6.44. The volume of a flexible polyhedron does not change as
it flexes.

Thus a flexible polyhedron cannot serve as a bellows! Sabitov constructed
a polynomial formula for the volume of any polyhedron, a formula that
is based only on the combinatorial structure of the surface and the edge
lengths. Because neither this structure nor the edge lengths change during
a flex (only dihedral angles change), the volume must be constant. We
close this section with a conjecture by Connelly.

188

CHAPTER 6. POLYHEDRA

Figure 6.25. A construction of the Steffen flexible polyhedron using plexiglass.

UNSOLVED PROBLEM 23 Flexible Polyhedra

Show that the Dehn invariant (Section 1.5) of a flexible polyhedron
does not change under flexing.

6.5 SHORTEST PATHS

A natural method to build a model of a polyhedron is to start with a
connected planar layout of its faces which is then creased and folded to
the polyhedron. Such a planar layout is called a net for the polyhedron.
For example, one of the many possible nets for the truncated icosahedron
of Figure 6.3(a) is shown in Figure 6.26.

The boundary of a net forms a polygon, and each face of the
polyhedron appears whole inside the net. Reversing the viewpoint,
imagine starting with a paper polyhedron, cutting the surface and
unfolding to the plane. The unfolding produces a net if the cuts are along
edges of the polyhedron, and the surface unfolds to a single piece without
overlap.

Not every polyhedron has a net. Figure 6.27 demonstrates two
examples, although proving that these nonconvex polyhedra have no nets
is by no means straightforward. The polyhedron in (a) has six faces that
are congruent nonconvex polygons; the extra edges needed to partition

6.5 SHORTEST PATHS 189

Figure 6.26. A net of the truncated icosahedron given in Figure 6.3(a).

these faces into convex pieces lead to a net. The nonconvex polyhedron in
(b) also has no net, but here all of its 36 faces are just triangles. Both of our
“netless” examples are nonconvex, and indeed every polyhedron proved
to date to have no net is nonconvex. And yet this attractive problem
remains open:

Figure 6.27. Nonconvex polyhedra without nets.

190

CHAPTER 6. POLYHEDRA

UNSOLVED PROBLEM 24 Durer’'s Problem

Does every convex polyhedron have a net?

The problem is called “Diirer’s problem” because Albrecht Durer drew
many nets for convex polyhedra as a way of presenting those polyhedra
in his 1525 masterwork on geometry.

In the absence of a resolution of Diirer’s problem, it is of interest to
unfold convex polyhedra under different rules: allow the surface cuts to
be arbitrary (rather than only along polyhedron edges), but still insist that
the unfolding result in one non-overlapping piece, so that it could be cut
out and refolded to the polyhedron. In such a general net, a polyhedron
face may not appear whole; rather, it could be partitioned by cuts and
distributed in the net, but in such as way that folding brings the pieces
back together.

There are several methods known to produce a general net for any
convex polyhedron: this freedom to cut anywhere is enough to resolve
Diirer’s problem. We will present two of these methods in this section.
Both methods rely on shortest paths on the surface, a topic of considerable
interest and many applications in its own right, aside from its relevance
to unfolding. Shortest paths lead to beautiful connections to Voronoi
diagrams and the medial axis. Shortest paths are also a subclass of
geodesics, which we explore in Section 6.6 to close the chapter.

Exercise 6.45. Find a net for each polybedron in Figure 6.5.
Exercise 6.46. Prove that the polybedron in Figure 6.27(a) has no net.

Exercise 6.47. Is there any edge unfolding of a cube that results in
overlap?

Exercise 6.48. Construct a tetrahedron and an unfolding of it that self-
overlaps.

Even though all the material we present holds for more general
surfaces, we restrict attention to a convex polyhedron P, and we insist
that all of its vertices be “true” corners with positive curvature.

Definition. A shortest path on P between two points x and y on P is
a curve connecting x and y whose length, measured on the surface, is
shortest among all curves connecting those points on P.

6.5 SHORTEST PATHS

There is always a shortest path between any two points, but it may not
be unique: several distinct but equally shortest curves may connect the
points. These equally short paths will play an important role below. Three
fundamental properties of shortest paths we will need in the sequel are:

1. Shortest paths are simple in that they never self-cross.

2. A shortest path never passes through a vertex, although it may begin
or end at a vertex.

3. If a shortest path o passes through an interior point of an edge e, the
planar unfolding of the two faces sharing e unfolds the two segments
of o on the faces to a single straight segment.

We leave proofs to the reader.
Exercise 6.49. Prove that a shortest path never self-crosses.
Exercise 6.50. Prove that a shortest path never passes through a vertex.

Exercise 6.51. Prove that the planar unfolding of a shortest path is a
straight line segment.

A central goal of the earliest works on shortest paths in the compu-
tational geometry literature was to compute the shortest path on P from
some fixed point x in P to any other point y in P. A more specific problem
— computing the shortest path from x to all vertices of P — turns out to
be just as difficult but easier to understand, so we start with this.

Example 6.52. Let P be the 2 x 1 x 1 box with x the midpoint of
the bottom face. The eight shortest paths to the vertices are shown
in Figure 6.28(a). Property 3 above was used to compute the shortest
paths to the vertices on the top face: unfolding the back and front faces
of the box, as shown in part (b), allows the paths to become straight
segments of length /12 + (3/2)> = +/13/2 ~ 1.8. Indeed, a path that
first goes to a bottom vertex and then travels along a vertical edge
of the box is considerably longer, with length /12 + (1/2)? + 1 =
V5/24+1~2.1.

The symmetry and simplicity of this example makes it seem that
the task might be easy, but the goal appears more challenging when
considering a more substantive example like that in Figure 6.29. When
paths from x to all points are considered, the potential complications are
more evident.

Recall that the cut locus (introduced by Poincaré and discussed in
Section 5.1) marks where shortest paths are “cut” or terminated. For

191

192 CHAPTER 6. POLYHEDRA

Figure 6.28. (a) Shortest paths from x to the eight vertices of a 2 x 1 x 1 box. (b)
Unfolding the back and front faces shows the shortest path is indeed a straight line.

our purposes, this is exactly the construct we need to identify the shortest
path from x to an arbitrary point y.

Definition. The cut locus C(x) of x is the closure of the set of all points y
to which there is more than one shortest path from x.

This definition should feel familiar because it is almost the same as the
definition of the medial axis in Chapter 5. For the medial axis, the
shortest paths are measured to the boundary of the polygon; here they

Figure 6.29. Two views of the shortest paths from a source point to all 100 vertices
of a convex polyhedron. The shortest paths are lifted slightly from the surface to
enhance visibility.

6.5 SHORTEST PATHS 193

(b)
Figure 6.30. (a) The cut locus C(x) along with (b) a close-up of the top of the box.

are measured to a source point x. Many of the properties of the medial
axis carry over in this new context.

Example 6.53. The cut locus of x for the 2x1x1 box example is shown in
Figure 6.30(a). It includes the central portion of the midline of the top
of the box, evidently having two distinct shortest paths from x: up the
front face, or symmetrically up the back face. However, near the left
and right ends of the top, its structure becomes more complex. Part (b)
shows a close-up of the top face. Here, for instance, the shortest path
from x to any point in the shaded region follows the bottom-front-
right-top faces. The resemblance of the cut locus to a Voronoi diagram
will be explained later.

Exercise 6.54. Sketch the cut locus C(x) for each of the five Platonic
solids, where the source x is a vertex of the polybedron.

Assuming we knew C(x), then finding the shortest path to a point y in
P would be easy. Identify the face f containing y and then locate y within
a region of f determined by the partition induced by C(x). Finally, unfold
the sequence of faces that reach that region, and connect x to y by a
straight segment in the unfolding (due to Property 3). Similarly, knowing
C(x) would suffice to find the shortest path to all vertices, and indeed there
is essentially no easier way to find the paths to all vertices. So the focus of
algorithms is to construct C(x). The following is a key property of C(x):

Theorem 6.55. For any point x of a convex polybedron P, the cut locus
C(x) is a tree whose edges are straight segments on each face and whose
leaves are the vertices of P.

We will not attempt to prove this, but just point out again the similarity
to the medial axis, which is also a tree terminating at vertices. Recall that

194

CHAPTER 6. POLYHEDRA

a vertex v of P may or may not have two or more distinct shortest paths
from x. In the box example, the paths to all vertices are unique. This is
the reason for defining C(x) as the closure: in a neighborhood of a vertex
v, there are points with two distinct shortest paths from x. The closure
incorporates v into C(x) and therefore makes C(x) a tree spanning the
vertices.

Exercise 6.56. Argue that C(x) can have a cycle when P has genus greater
than zero.

Let’s now consider algorithms for shortest paths, where we begin
with an algorithm for computing C(x). We restrict ourselves to a high-
level exposition because the details are formidable. The algorithm is a
continuous version of a discrete algorithm for finding shortest paths in a
graph, which we sketch first.

One of the earliest (1959) and still among the prettiest algorithms
is Edsger Dijkstra’s graph algorithm for finding shortest paths from a
fixed source node x to every other node y in graph G, where distance is
measured by non-negative weights assigned to each edge. Although the
algorithm is general, for the purposes of illustration, we will specialize
it to a plane graph G with the edge weight for each edge e given by its
Euclidean length |e|. The algorithm can be viewed as a discrete simulation
of the following continuous process. Imagine pouring paint on the source
node x, and suppose the edges of G are thin pipes of the same diameter,
so that the paint spreads evenly along all edges at a uniform rate, one
unit of length per unit of time. Figure 6.31 shows how the paint spreads
methodically until all vertices are reached.

Dijkstra’s algorithm avoids a continuous simulation of the paint
creeping down each edge, recognizing that discrete steps suffice. At all
times ¢, the algorithm maintains a tree T rooted at x that spans all those
vertices reached by the paint: the discrete frontier. At each step, the edges
incident to every node of T are examined and an edge e is added to T
that (a) reaches a node z outside T such that (b) the distance to x from z
is shortest among all such nodes, breaking ties arbitrarily. Condition (a)
ensures that the addition of e avoids a cycle, and condition (b) ensures
that z is the next node to be reached by paint.

When the algorithm terminates, T is a spanning tree of all vertices in
G, with the property that the shortest path from x to y in G is the unique
path from x to y in T. The algorithm can easily be implemented to run
in O(n?) time for a graph of n vertices, and with more care in O(nlogn)
time for graphs with O(n) edges, such as planar graphs. Once completed,
each query for a shortest path to y can be answered in O(#) time.

6.5 SHORTEST PATHS 195

Figure 6.31. Dijkstra’s algorithm on a plane graph G all of whose edges have unit
length. The frontier nodes (shaded red) are labeled with the time at which they are
reached. The tree T is shown at each step (excluding dashed edges).

The frontier at any stage of Dijkstra’s algorithm is a discrete collection
of graph nodes that have been reached from x up to some time .
Generalizing Dijkstra’s algorithm to find shortest paths on the surface of
a convex polyhedron P requires a continuous frontier, in fact, a collection
of curves on the surface of P composed of circular arcs. Figure 6.32
illustrates a snapshot of such a frontier for the 2 x 1 x 1 box from
Example 6.53 at ¢+ = 3/2: the locus of points at distance 3/2 from x.
The two “wavefronts” just touching the top face at t = 3/2 will meet at
the midpoint of that face at # = 2, and then proceed to intersect along
the midline for £ > 2. Note that the junction between two wavefront arcs
lies either on an edge of P or on the cut locus C(x). Tracking this frontier
then implicitly computes C(x).

This approach to computing shortest paths on a polyhedron was first
explored in an influential 1987 paper by Joseph Mitchell, David Mount,
and Christos Papadimitriou. The frontier curves are maintained implicitly
and the algorithm still advances in discrete spurts. Rather than the event
being the frontier reaching a new node, the key event is now the frontier
reaching an edge from one side. But because several distinct wavefronts
can reach one edge, from either side, edges must be partitioned into
intervals “owned” by particular bundles of shortest paths, distinguished

196

CHAPTER 6. POLYHEDRA

Figure 6.32. A continuous frontier on the 2 x 1 x 1 box.

by the combinatorial sequence of edges they cross. The final result is
an O(n? logn)-time algorithm which, remarkably, works for nonconvex
polyhedra as well.

The two decades since 1987 saw a long pursuit by the community
for an algorithm for convex polyhedra that matched the time complexity
of Dijkstra’s algorithm. An advance to O(7?) time was achieved after
a decade, which, despite the small improvement, was an eminently
implementable algorithm. In fact, this algorithm was used to produce
Figure 6.29. Another decade finally saw in 2008 an O(nlogn)-time
algorithm, still following the continuous Dijkstra approach but with
intricate and delicate data structures, detailed in an 80-page paper by
Yevgeny Schreiber and Micha Sharir.

Now that we have described how to compute C(x), we return to the
topic of unfolding to general nets, where the cuts are not restricted to
be along edges. The two methods we mentioned at the beginning of this
section for producing a general net for any convex polyhedron are known
as the source unfolding and the star unfolding. The latter is easiest to
describe, so we start with this method.

Definition. The star unfolding of a convex polyhedron P fixes a generic*

point x on P, finds the shortest paths from x to every vertex of P, and
simply cuts along these shortest paths.

4 The source point x is generic when there is a unique shortest path to each vertex, as in
Figure 6.28.

6.5 SHORTEST PATHS 197

If P has # vertices, then the star unfolding U*(P) is a polygon of 2n
vertices: 7 vertices from the polyhedron and #n vertices from 7 copies
of x. The reason these cuts suffice to flatten is that all the points of
curvature are “resolved” by these cuts. Indeed, it is a necessary condition
for flattening to a general net that the cuts form a spanning tree of the
vertices — spanning in order to reach all points of positive curvature,
and a tree so that the unfolding is one piece. (A cut cycle would isolate a
separate piece of the surface.)

Example 6.57. Figure 6.33 shows the star unfolding produced by cutting
the eight paths in Figure 6.28(a). Underneath are shown the box faces
from which pieces of the star unfolding derive, arrayed about the top
face affixed to the plane. Consider the vertices of U*(P): The eight
copies of the source point x are interleaved with the eight copies of the
vertices of P. Notice that the two polygon edges incident to a copy v’
of a vertex v of P have the same length — they are the two “sides”
of the cut along the shortest path from x to v on P. Moreover, the
exterior angle of U*(P) at v’ is the curvature of v on P.

That U*(P) does not self-overlap, and so is in fact a simple planar
polygon, is by no means obvious. The notion of a star unfolding goes

Figure 6.33. The star unfolding of the box in Figure 6.28(a). The red lines form the
Voronoi diagram of the eight copies of the source point x. Notice the cut locus C(x)
appears as a subset of this Voronoi diagram.

198

CHAPTER 6. POLYHEDRA

back to Alexadrov in 1948 but it was only shown to avoid overlap in
1992. This and the relationship to Voronoi diagrams are gathered in the
following theorem:

Theorem 6.58 (Star Unfolding). The star unfolding from a generic
point x on a convex polybedron P with n vertices is a simple
(nonoverlapping) polygon U*(P) with 2n vertices. Furthermore, the
Voronoi diagram of the n copies of the source x, restricted to the
interior of U*(P), is the unfolding of the cut locus C(x) on P.

Thus the cut locus is a Voronoi diagram. The single source point x has as
many unfolded images of x as there are vertices of P, and the cut locus
C(x) is the Voronoi diagram of these images. In general, this Voronoi
diagram is not a tree, but when clipped to the interior of U*(P), it leaves
exactly C(x). Note that C(x) is indeed incident to each vertex v' of U*(P)
because it spans the vertices of P.

Although one might think this theorem gives a new route to computing
the cut locus, in fact the algorithms that find the shortest paths to all
vertices effectively compute the cut locus along the way, as we saw with
the continuous Dijkstra approach. Nevertheless, the insight the theorem
gives into the structure of the cut locus is useful, and the relationship has
found several algorithmic applications.

Exercise 6.59. Sketch the star unfolding of each of the Platonic solids
with the source x at a vertex, breaking shortest-path ties arbitrarily,
so that there are n — 1 paths from x for a polyhedron of n vertices.
(A vertex is definitely not generic, but the star unfolding still avoids
overlap.) The dodecabedron and the icosabedron are the most

difficult.

Now we turn to another unfolding of a convex polyhedron to a general
net.

Definition. The source unfolding of a convex polyhedron P is simply
obtained by cutting the cut locus C(x) of a generic source point x.

Recall that the cut locus is a spanning tree of the vertices of P,
which we know is a necessary condition for flattening. Let US(P) be
the flattened source unfolding for polyhedron P. Why is U(P) a simple
nonoverlapping polygon? In contrast to the star unfolding nonoverlap
proof, this is easy: Consider Figure 6.34 which shows the unfolding
produced by cutting C(x) in Figure 6.30(a). The source x is at the center
of the polygon U*(P), with C(x) forming its boundary. The shortest paths

6.5 SHORTEST PATHS 199

\
!
'
!
!
!
!
!
'
g
3

Figure 6.34. The source unfolding of the box in Figure 6.30(a), with the cut locus
(in red) forming its boundary. The shortest paths from x to the eight vertices of the
box are drawn.

(sprayed the full 360° around x) fill the surface of P and so fill U*(P).
None of these shortest paths cross, and so the source unfolding is a simple
polygon, visible from x.

Because the source and the star unfoldings represent the same surface
P, they are scissors congruent, in the terminology of Section 1.4. Indeed,
comparing Figures 6.33 and 6.34, one can see that the cut locus partitions
the star unfolding into convex polygons that may be reassembled to form
the source unfolding.

Exercise 6.60. Show that cutting C(x) from a nongeneric point x of P
might not lead to a spanning tree on P, and so would not permit
flattening to a plane.

X Exercise 6.61. Find a polybedron P and a point x so that U*(x) is con-
gruent to U*(x): the source and the star unfoldings are congruent

polygons.

Now that we have seen every convex polyhedron having a general net,
it is natural to wonder whether every polyhedron, convex or nonconvex,
has a general net. This question remains temptingly open:

200 CHAPTER 6. POLYHEDRA

UNSOLVED PROBLEM 25 General Nets

Does every polyhedron have a general net?

6.6 GEODESICS

We close this chapter with an old and deep theorem of Lyusternik and
Schnirelmann: every closed surface has at least three distinct, simple
closed geodesics. Even though the theorem applies to surfaces home-
omorphic to a sphere, we will specialize to convex polyhedra, where,
fortunately, the theorem loses none of its force or charm. We first begin
with a definition.

Definition. A geodesic on a surface is a curve y with the property that
for any two sufficiently close points x and y on y, the portion of y
between x and y is the shortest path on the surface connecting x and y.

Thus geodesics are locally shortest paths, that is, locally length
minimizing. Every shortest path is a geodesic, but geodesics are often
not shortest paths. Although shortest paths terminate at the cut locus,
geodesics continue beyond. And as they continue, they can self-cross, a
phenomenon not possible for a shortest path. Figure 6.35(a) shows part
of a geodesic on a cube that self-crosses.

A geodesic that does not cross itself is called a simple geodesic. If in
addition the geodesic forms a closed loop on the polyhedron, joining
smoothly to itself, it is called a simple closed geodesic. Figure 6.35(b)
provides such an example on the cube. It was conjectured after investiga-
tions by Poincaré that there must be at least three simple closed geodesics

Figure 6.35. (a) Part of a self-crossing geodesic on a cube. (b) A simple closed
geodesic. (c) A quasigeodesic can take many paths through a vertex.

6.6 GEODESICS

on any surface homeomorphic to a sphere, and a proof was offered by
Lazar Lyusternik and Lev Schnirelmann in 1929 in a two-page paper.
Their technique used Birkhoff shortening, but it is generally agreed that
this plan was not firmly established until recently. So it may be that
Matthew Grayson’s employment of curve shortening from 1989 was the
first technically correct proof of the Lyusternik-Schnirelmann theorem.
It is this approach we highlight here, but in the context of polyhedral
surfaces.

In general, a convex polyhedron does not admit any simple closed
geodesic. This is easily seen: because a geodesic does not turn on the
surface, its total turn T = 0 and the Gauss-Bonnet theorem, in the form
of equation (6.8), says that the total curvature on each side of the
geodesic must be 27.° But, because shortest paths do not pass through
vertices (Property 2) and geodesics are locally shortest, geodesics do not
pass through vertices either. Thus, with curvature being concentrated
at vertices, there must be a partition of the vertices into exactly 27
curvature in each half. But this would occur with probability zero for
a generic polyhedron! Note the closed geodesic in Figure 6.35(b) indeed
does partition the total curvature equally, as it has four vertices to either
side.

There is a natural extension that retrieves the Lyusternik-Schnirelmann
theorem for convex polyhedra through the notion of quasigeodesics, as
introduced by Alexandrov and further developed by his student Aleksei
Pogorelov:

Definition. There are two angles defined at each point x on a directed
curve on a polyhedron: R(x) is the total incident face angle at x to the
right at x, and L(x) the angle to the left. A quasigeodesic is a curve
y on a surface such that both R(x) < 7 and L(x) < 7 at every point
xiny.

A geodesic is a quasigeodesic at every point x not coincident with a
polyhedron vertex because R(x) = L(x) = &. This is true even on interior
points of edges. When a geodesic passes through a polyhedron vertex,
however, there are many continuations that could be unfolded straight.
For example, in Figure 6.35(c), the geodesic that hits the cube corner
could emerge anywhere within the indicated /2 range of angles and have
at most 7 angle to either side. So Alexandrov’s definition is indeed the
natural definition from the point of view of unfolding to a straight line:
quasigeodesics are exactly those curves that can unfold to straight lines,
as per Property 3 of shortest paths.

5 In fact, Poincaré planned to prove that the shortest closed curve dividing the 47 curvature
equally must be a simple closed geodesic, a plan that waited until 1982 to be completed by
Christopher Croke.

201

202 CHAPTER 6. POLYHEDRA

< | 3 v3

Vi Vi

Figure 6.36. (a) A simple closed quasigeodesic marked on a convex polyhedron;
(b) another closed curve that is not a quasigeodesic.

Theorem 6.62 (Lyusternik-Schnirelmann-Pogorelov). Every convex
polybedron has at least three distinct simple closed quasigeodesics.

Example 6.63. Figure 6.36(a) shows a simple closed quasigeodesic y on a
truncated cube passing through four vertices (v1, v, v3, v4). The angles
to either side at the vertices v; of y are, respectively,

R(v;) : (jn, T, %n, 71) ,

31 3 1
L(Ul‘) : (47T, E]T, Z?T, 27T)

So y is indeed a quasigeodesic. In contrast, the curve shown in
Figure 6.36(b) is not a quasigeodesic because
1

3
L(vs) = L(vy) = Zn + gn > .

Although simple closed quasigeodesics are known to exist, there is
effectively no way to find them!

UNSOLVED PROBLEM 26 Finding Quasigeodesics

Find a polynomial-time algorithm for constructing even one of the
three quasigeodesics.

Exercise 6.64. Argue that the boundary of a face of a regular tetrabedron
is a simple closed quasigeodesic.

6.6 GEODESICS 203

Exercise 6.65. Find two more simple closed quasigeodesics for P in
Figure 6.36. In this example, each vertex deriving from a truncation
is a midpoint of the cube edge on which it lies. Thus the front face is
an equilateral triangle and the back faces are rectangles.

KX Exercise 6.66. Find all the simple closed geodesics on the regular tetra-
hedron.

X Exercise 6.67. Find all the tetrabedra that admit simple quasigeodesic
infinite lines of unbounded length.

We close this chapter by returning to the case of a smooth convex
surface. By Lyusternik-Schnirelmann, the surface contains at least three
simple closed geodesics. Although no efficient method is known for
finding the three geodesics, it is possible by using a simulation of the
curve-shortening proof of Gage, Grayson, and Hamilton, which we now
sketch. Let S be a smooth convex surface and imagine slicing it with
parallel planes, producing an infinite stack of closed curves, and two
points where the planes are just tangent to S; see Figure 6.37 for the idea.

Figure 6.37. Parallel slices through a convex body.

The 1-parameter family of curves constitutes a cover V of S. Applying
curve shortening to each curve in V continuously deforms the cover, but
retains it as a cover for S. Let y be a particular curve in V. Grayson

204 CHAPTER 6. POLYHEDRA

Figure 6.38. Two views of a polyhedron showing simulations of curve shortening
to a simple closed quasigeodesic.

proved that either y evolves under the curve-shortening flow to a round
point, effectively slipping off S, or y “exists for all time,” in which case
its curvature converges to zero, that is, it becomes a geodesic.

Now we know the Gauss-Bonnet theorem holds for § and so S has
a total of 47w of curvature. Moreover, some curve yy in the initial
slicing must split the curvature into 27 + 2. A property of the curve-
shortening flow is that the evolution of yy must preserve this curvature-
partitioning property. Thus y cannot converge to a round point (because
a round point cannot contain 27 of curvature), and so it must converge
to a geodesic. This establishes that there is at least one simple closed
geodesic on S. That there are three distinct such geodesics follows from
a topological argument involving homology classes of curves that we will
not attempt to detail.

Although we have only sketched the argument for smooth convex
surfaces, the result holds for any smooth surface homeomorphic to a
sphere. Furthermore, the above proof can be mimicked to numerically
find a simple closed quasigeodesic on convex polyhedra, as illustrated in
Figure 6.38. Whether this approach can be proved to always converge,
and in polynomial time, and thus resolve the unsolved problem posed
above, is unknown.

SUGGESTED READINGS
SUGGESTED READINGS

Peter Cromwell. Polyhedra. Cambridge University Press, 1997.

A delightfully readable source on the history of polyhedra, including clear proofs
of Euler’s theorem and Cauchy’s rigidity theorem.

H. S. M. Coxeter. Regular Polytopes. Dover, 2nd edition, 1973.

Detailed analysis of regular polytopes in four and higher dimensions by one of the
originators of the field. The source of Coxeter groups, Coxeter graphs, and other
concepts now named after him.

Branko Griinbaum. Convex Polytopes. Springer-Verlag, 2nd edition,

2003.

A comprehensive and highly influential work on polytopes. It was originally
published in 1967 and inspired a generation of researchers. The recently updated
and expanded edition serves as a wonderful reference today.

Martin Aigner and Gunter Ziegler. Proofs from THE BOOK. Springer-

Verlag, 4th edition, 2009.

Paul Erdds imagined that God has a book containing the best proof of every
theorem. So when someone discovers a particularly pretty proof, the joke is that
it is from THE BOOK. We drew on their clear exposition of Cauchy’s rigidity
theorem.

Alexander Alexandrov. Convex Polybedra. Springer-Verlag, 2005.

This seminal work from 1950 was not translated into English until 2005. It
contains a full proof of Alexandrov’s powerful extension of Cauchy’s theorem,
material on the flexibility of polyhedra, unbounded polyhedra, and many other
topics.

Erik Demaine and Joseph O’Rourke. Geometric Folding Algorithms:

Linkages, Origami, Polybedra. Cambridge University Press, 2007.
Many of the topics in the chapter are covered in greater depth in this monograph,
especially the material on rigidity, unfolding, and quasigeodesics.

205

CONFIGURATION SPACES

We begin this chapter by revisiting translational motion planning using
the Minkowski sum from Section 5.3, but then turn to more complex
spaces for rigid objects (Section 7.1). Next we explore configuration
spaces for the simplest articulated objects, the open polygonal chains
(Section 7.2), which brings us to several famous problems on locked
chains (Section 7.3). This in turn leads to an investigation of closed
polygonal chains, concentrating on the topology of the space of polygons
(Section 7.4). We close the chapter and the book with an advanced
topic (Section 7.5), the structure of the configuration space of moving
and colliding particles, leading back to the intricate combinatorics of the
associahedron from Section 3.3.

7.1 MOTION PLANNING

The motion of objects through a perhaps cluttered environment can be
understood by studying the space of all positions, or placements, or
configurations of these objects. A configuration space C is a set whose
elements consist of all possible configurations or arrangements of a set
of objects. An example of a configuration space is the set of possible
placements of chess pieces on a board that are realizable by legitimate
moves in a chess game. The elements (or points) in the configuration space
are the individual formations. Each chess move in any game corresponds
to a simple connection between two points in the configuration space —
the formation before the move and the formation after the move. In this
particular example, the chess formations provide a discrete configuration
space. Another classical example deals with robot motion planning,
where the space of possible motions of robots inside a factory layout
provides a continuous configuration space. Here each point in this space
corresponds to a particular, distinct configuration of the robots.

The progression of the chapter is from more algorithmic concerns
— whether a movement in configuration space between given positions
is possible, and if so, how to realize the motion — to focus more on
the topology and combinatorial structure of particular configuration
spaces. A word on terminology. Although it is a crude simplification,
physicists use state space, computer scientists use configuration space,
and mathematicians use moduli space for the same concept. “State”

7.1 MOTION PLANNING

emphasizes the status of a system determined by many perhaps disparate
variables (such as temperature, pressure, and spin). “Configuration”
suggests that geometric variables determine the object placement (such
as translation coordinates and rotation angles). “Moduli” derives from
“modulus,” which in this context means some abstract mathematical
parameter. We will use configuration space throughout, as our examples
are geometric, but the alternative terms are prevalent in the literature.

We start our study of configuration spaces with a particularly simple
motion planning problem: Find a path (if one exists) to move a single
polygonal object R, without rotation, through the plane R? littered with
polygonal obstacles Py, P, ..., P,,. One can think of R as a wheeled
robot moving through a floor plan with chairs, tables, and walls to
avoid. (Later, we will incorporate rotation after analyzing translational
motion.) This is one instance of a vast array of problems which we
will only sample. Although we increase the complexity of our examples
throughout this chapter, we will by no means exhaust the full range of
possibilities. !

We already indicated how to solve this translational motion planning
problem in Section 5.3 on Minkowski sums, and in particular, in the
example of Figure 5.12. We review and summarize the method here: Let
s be the initial reference point of robot R and ¢ the desired location of R,
again specified by its reference point. At a high level, the algorithm is as
follows:

MOTION PLANNING Voronoi Diagram Algorithm O(knlog?n)

Begin by growing all obstacles P; via the Minkowski sum Pt =

P; @ —R. Let P* be the union of the sums P and consider its

complement R? \ P in the plane. Find a path, if one exists, between
s and ¢ in this complement.

The left side of Figure 7.1 illustrates this algorithm for a quadri-
lateral robot R and eight polygonal obstacles. The complement of the
Minkowski sum R?\ P is shown on the right (in white). This complement
is the configuration space C of translations of robot R in the plane, where
each point in this configuration space corresponds to a possible position
of R. Notice that this space consists of three connected components
A, B, C. Thus, from the initial position s (labeled in the figure), deciding
whether a goal position ¢ is reachable from s is reduced to determining
whether s are ¢ are in the same connected component of the configuration
space. And planning a path for the robot reduces to finding a path for the
reference point within this component.

LA recent 800-page book on motion planning contains more than 1000 references!

207

208 CHAPTER 7. CONFIGURATION SPACES

Figure 7.1. The left side shows robot R with reference point s along with polygonal
obstacles. The right side shows the configuration space partitioned into three
connected components A, B, C, deriving from complements of Minkowski sums
with —R.

We have described the first step of this algorithm, computing the
Minkowski sum, in some detail in Section 5.3. The other steps (forming
unions, finding connected components, finding paths) present interesting
algorithmic issues, none of which we will explore here. We choose instead
to concentrate on the configuration space aspects. Suffice it to say that if
R has k vertices and all the obstacles together have 7 vertices, then a path
can be found in time slightly more than O(knlog” n), which is remarkably
efficient.

Let’s now consider issues with translation and rotation of objects. For
translational motion of a rigid object in the plane, the configuration
space C is a 2D space, where each point of C represents a placement
or configuration of R determined by its reference point. Now when we
allow R to rotate as well as to translate (still in the plane), C becomes
a 3D space given by three degrees of freedom for its motion: translation
by x, translation by y, and rotation by an angle # (about the reference
point of R). So each point (x, y, 0) of C represents an oriented placement
of R within the 2D plane. The motion planning algorithm is identical
in overall structure but matters are more complicated because C is more
complicated.

7.1 MOTION PLANNING

209

|

(c) (d)

Figure 7.2. (a) The ladder R can reach the final position by rotating. The grown
obstacles for (b) 6 = 0°, (c) & = 30°, and (d) 8 = 60°.

One way to understand what happens is to fix 6 at successive values,
and for each value, grow the obstacles by the Minkowski sum in 2D.
Figure 7.2 illustrates this idea for the simplest possible extended object R,
a line segment. Often this is called a ladder in the literature, reminding
us of the challenge of carrying a ladder through a cluttered environment.
As shown in part (a), the ladder can pass between the two horizontal
polygons and then move up to the final position by rotating. If the
reference point of R is the left endpoint, the grown obstacles are shown
for (b) & = 0°, (¢) ® = 30°, and (d) & = 60° by taking the Minkowski sum
with —R. Now we imagine stacking the grown Minkowski sum obstacles
along a third 6-axis. Considering the complement of these stacked
obstacles in R? yields the configuration space C, the space of all possible
ways the ladder can translate and rotate through the obstacles in the
plane. Figure 7.3 shows two different views of part of the configuration
space, as 0 varies from 0° to 75°. The stacking illustrated in this figure is
discrete, but of course the configuration space varies continuously with 6.

As might be imagined, each step of this motion planning problem
is more complicated than it was for translation-only. In particular, the
grown obstacles are not polyhedral, as can be discerned in Figure 7.3:
in each 6-plane they are polygonal, but they twist along the 6 direction,
producing shapes with curved edges bounding curved surface patches.
Although it may have been justified above to leave to intuition that the

210

CHAPTER 7. CONFIGURATION SPACES

Figure 7.3. (a) The front view of the configuration space with 6 varying from 0° to
75°, and (b) a view from underneath the same stacks.

steps of the algorithm can be carried out when C is 2D and the grown
obstacles are polygonal, in the situation considered here, where C is 3D,
it is not clear how to implement any step of the algorithm: from the
Minkowski sum, to the union, to finding a path.

Exercise 7.1. How many dimensions does the configuration space have
for moving a polybedron in 3D, permitting both translation and
rotations

We now sketch one general method, cell decomposition, which has the
advantage of working for essentially all motion planning problems, even
those much more complicated than we consider here. Cell decomposition
is not only a completely general method, it was also the first developed.
We describe it as applied to moving a ladder and only at the end discuss
the generalizations. The essence of the cell decomposition approach is
to partition the unruly configuration space into a finite number of well-
behaved cells, and to determine a path in the space by finding a path
between cells.

Consider the polygonal environment shown in Figure 7.4, consisting
of two triangle obstacles and an open polygonal wall. The ladder R
is allowed to translate and rotate in this region, where, as before, the
reference point of the ladder is its left endpoint. To get a precise definition
of a cell, we assign labels to every obstacle edge,” as is done in the figure;
we use the label co to represent a “surrounding” edge infinitely far to the
right (just to reduce the number of labels in this example).

2 Labels also should be assigned to the vertices, but we will ignore this minor complication here.

7.1 MOTION PLANNING

10

Figure 7.4. A polygonal environment for a ladder R, with obstacle edges labeled.

We begin by temporarily fixing the rotation of R to be § = 0.
As always, the configuration space is what remains after growing the
obstacles by the Minkowski sum with —R. Now suppose we place the
ladder’s reference point at a point x not on the same horizontal as
any vertex of the polygonal environment. Then moving R horizontally
leftward will cause it to eventually bump into an obstacle edge ey, as
will moving it horizontally rightward into edge e,. Label the point x
with this pair (eq, e2) of obstacle edges. A cell is a connected collection
of points in the configuration space, all with the same label pairs.
Figure 7.5(a) depicts the configuration space (the white regions) for
a horizontal ladder along with its partition into eight labeled cells.
Here no cell has a (3, 6) label because such points do not exist in the
configuration space; in other words, the ladder cannot fit between those
two edges.

In the cell decomposition approach, the cell structure is represented by
a graph, the connectivity graph Ggy. The subscript indicates that this graph
captures the structure for a particular rotation of the ladder 6. The nodes
of Gy are the cells; two nodes are connected by an arc if the cells touch,
or more precisely, if their boundaries share a nonzero-length segment.
Indeed, Gy is a type of dual graph to the partition of the configuration
space by the cells.

The importance of this graph is that motion planning within a cell is
trivial, so that a path in the graph can be easily converted into a path for
the ladder. Moreover, the ladder can only move from one cell to another
if there exists a path in the graph between these cells. Figure 7.5(b) shows
the graph Gy associated to part (a). Note that Gy is disconnected: there is
no path in Gy between cells (1, 8) and (1, 9). Practically this means that

211

212

CHAPTER 7. CONFIGURATION SPACES

(3,2)
(1,00)
(3,8)
(1,8
? (1,9
g 10/ (10,)
(3,8 (1,00)
7 /
(10,00)
6 5
(5,00)
3 (5,0)
—_— . (3,00) (3,00)
(a) (b)

Figure 7.5. (a) The configuration space (white regions) for a horizontal ladder along
with its labeled cell decomposition. (b) The connectivity graph G, corresponding
to part (a).

one of the ladder positions shown in Figure 7.4 cannot be moved to the
other position using horizontal movements only.

Now we incorporate rotation in a manner similar to the plane-stacking
idea used previously. If we rotate the ladder slightly, the connectivity
graph for the obstacles normally will not change: All the cells will change
shape, but they will remain, and will maintain their cell adjacencies. But
when the rotation exceeds some critical rotation 9*, the combinatorial
structure of Gy- will be different from that of Gy.

The horizontal = 0 rotation shown in Figure 7.5(a) is critical because
there are obstacle edges parallel to R (edges 4 and 7). Thus a slight
rotation of R counterclockwise about its reference point will create a
(7, 8) cell, and a (4, co) cell. Further rotation to & = 13° (the angle of
obstacle edge 9) causes cell (1, 9) to disappear. The configuration space
for & = 13° along with its cell decomposition is shown in Figure 7.6(a);
its corresponding connectivity graph is given in part (b) of the figure.

Exercise 7.2. Create a ladder-moving example in which the cell decom-
positions of the configuration space labeled with some particular pair
(i, j) are not all connected together.

X Exercise 7.3. Suppose in the plane R?* there is a point obstacle at each

integer lattice point. (We can think of the points as the base of poles
sticking into R3.) What is the maximum length L of a ladder that can
move from any one configuration to any another in this environment
via planar translations and rotations? In other words, if the ladder
endpoint at (x1, y1) and tilted at 0y is a valid position (it passes through

7.1 MOTION PLANNING 213

(3,2) (1,8
38)
(7,8)
(1,00)
(10,00)
(5,%)
(3,00)
(4,0)
(a) (b)

Figure 7.6. (a) The configuration space (white region) for a ladder rotated 6 = 13°,
along with its labeled cell decomposition. (b) The connectivity graph G, corre-
sponding to (a).

no obstacle points), and (xy, y2) and 0, is another valid position, then
there should be a movement between these configurations.

As should be clear now, critical rotation angles all involve the align-
ment of the ladder with either edges of obstacles, or two obstacle vertices.
Thus there are at most an order of O(#?) critical angles. Now the idea is
to form one grand connectivity graph G that incorporates the information
in all the Gy graphs. We extend the definition of a cell to represent
regions of the 3D configuration space, all of whose points have the same
forward/backward label pairs. This amounts to stacking the cells for fixed
rotations on top of one another in the 6 direction. Thus the points in cell
(3, 2) of Figure 7.5(a) are in the same 3D cell as the points in cell (3, 2) of
Figure 7.6(a). Each distinct 3D cell is a node of G, and again two nodes
are connected by an arc if their cells touch, which now means that they
share a nonzero-area boundary section. Figure 7.7 shows the graph G for
all rotations of 9 in [0°, 90°] in our example. Note that the two positions
illustrated in Figure 7.4 are indeed connected in G: cell (3, 2) is connected
to (5, o0).

The key to the construction of G is realizing that not all rotations
of 0 are needed — only the critical ones! The infinitely many layers of
rotations are reduced to a finite number, and a continuous space (such
as Figure 7.3) is converted to a discrete graph (such as Figure 7.7). The
graph G then may be constructed by building Gy and moving through
all critical rotations in sorted order, modifying Gy along the way, and

214 CHAPTER 7. CONFIGURATION SPACES

(32) (1,8)

(38

7,8 QO o (7,1
(7,8) 7) (7,1)

) (9,%0)

(58) Q(91)

(4,8)

O (4,1)

Figure 7.7. The graph G encompassing all rotations of the ladder from Figure 7.4
within the range [0°, 90°].

incorporating the changes into G. We will not present any details, but
at least now the construction of G should seem feasible. Again motion
planning within a single cell represented by a node of G is not difficult,
and moving between touching cells is also not difficult. For example,
one could move from the interior of a cell to its boundary, and then
move along the boundary to the portion shared with an adjacent cell.
So the problem of motion planning is reduced to a graph problem:
finding a path between the node corresponding to the cell containing
s, to the node corresponding to the cell containing #. If there is no
such path in G, then there is no path for the ladder, and if there is
a path in G, it can be used as a guide for planning the motion of the
ladder.

Careful implementation of the cell decomposition algorithm for trans-
lation and rotation achieves O(7?) time for moving a ladder, and slightly
more than O(k?#?) time for moving a polygon with k vertices, where
again n is the total number of obstacle vertices. As mentioned, the
technique works in general, achieving a complexity doubly exponential,
roughly O(*') time, where d is the dimension of the configuration space.
This complexity was subsequently reduced by John Canny in 1987 with a
different algorithm, called the roadmap algorithm, to singly exponential
O(n?*1) time (ignoring certain details). The roadmap algorithm reduces
the multidimensional cells of the configuration space to a network of
connections (the “roadmap”) that suffice to move between any two
points within the same component of C. The reduction to the network
employs a tool called “Whitney stratification,” which would take us too
far afield even to sketch. Suffice it to say that the roadmap algorithm,
as subsequently developed, is the best general-purpose motion-planning

7.2 POLYGONAL CHAINS 215

algorithm. Although its exponential complexity is formidable, often the
dimension d (the number of degrees of freedom) is a small constant. And
with effort, the most important cases, such as those we have considered,
have improved on the general algorithms.

Exercise 7.4. Find a planar environment for moving a ladder such that C
has Q(n?) connected components.

Exercise 7.5. What is the smallest doorway through which a convex
polygon may pass? The doorway is a gap in an infinite line in the plane.
The polygon may translate and rotate.

X Exercise 7.6. Find a planar environment for moving a ladder such that
the connected component that contains s and t requires the ladder to
make Q(n*) moves, under any reasonable definition of what constitutes
a distinct “move.”

7.2 POLYGONAL CHAINS

In the previous section, we considered motion planning for a rigid object.
In this section, we explore aspects of motion planning for a simple
articulated object: a robot arm, which is simply an open polygonal
chain. Aside from planning a specific path through an environment,
we also discuss reachability, a motion-related question that is not path
planning per se but which can be viewed from a configuration space
perspective.

A typical robot arm is shown in Figure 7.8. This arm has a fixed
base (the shoulder), to which are attached three rigid links, connected by
motorized joints. This is known as a 6-DOF arm, because it has 6 degrees
of freedom—independently controllable parameters that determine its
movement. We will ignore all the (interesting) physical details and model
a robot arm as a chain C = (vg, v1,...,v,) of n links, each a rigid
straight segment, connected at vertices v;, each of which is a universal
joint permitting a full range of motion. So, for us, a robot arm is an open
polygonal chain. The shoulder vy we consider is pinned to the origin and
the vertex v, represents the hand.

Motion planning for an articulated object is conceptually similar to
motion planning for a rigid object. Again the theme is to reduce the object
to a point moving in a perhaps high-dimensional configuration space. The
general idea is illustrated in the example shown in Figure 7.9(a). Here
we have a 2-link arm in the plane, with its shoulder vy pinned (fixed in
the plane). When dealing with rigid objects, our main concern dealt with
collision avoidance of the object with obstacles. For articulated objects,
we can also have a collision between the two links of the same object,
where the articulated object is an obstacle to its own motion! However,

216 CHAPTER 7. CONFIGURATION SPACES

Figure 7.8. A robot arm.

) 360

Vo \\

v2

Seo

(a) (b)

Figure 7.9. (a) A 2-link arm and (b) its configuration space.

360

7.2 POLYGONAL CHAINS

for our initial model, we permit the links of a robot arm to pass freely
through each other. We choose this to simplify the problem, but we
should note that 2D arms can achieve this by staggering the links in
separate layers parallel to a base plane.

We can represent the configuration of the arm in several ways, for
example, by the coordinates of v; and v, in R?. But those four numbers
are clearly not independent. A better representation of the configuration
space is to consider angles rather than coordinates. It is clear that two
angles suffice to determine the position of the arm, say 6 for the angle
of vovy with respect to the x-axis, and 6; for the angle v,vivy (as
labeled in the figure). Then the point (6y, #1) determines the arm in a 2D
configuration space C. Figure 7.9(b) shows this configuration space as a
square, where the horizontal axis is 6y and the vertical axis is 0, both
ranging from 0° to 360°. The particular configuration of the 2-link arm
given in part (a) is associated to the marked point s = (250°,290°) in the
space.

But this square does not tell us the whole story about C. We know
that a full 360° rotation of a link in the arm returns us back to the
initial position. So the right and left edges (shaded red) of the square
in Figure 7.9(b) (where 6p = 0° and 6y = 360°) both represent the same
configuration, and thus must be identified. Similarly, the top and bottom
edges (shaded blue) of the square (where 6; = 0° and 6; = 360°) must be
identified. The resulting object is the actual configuration space of a 2-link
arm. But what does this space look like after identifications of the edges?
Figure 7.10 topologically shows that the actual space C is a torus, the
surface of a donut! So each point on the torus corresponds to a particular
configuration of a 2-link arm in the plane.

Let’s consider now the case of the 2-link arm with obstacles.
Figure 7.11(a) shows the arm above, again with its shoulder vy pinned,
but now in an environment containing three polygonal obstacles. The
configuration space is still based on a torus (corresponding to the two
angles), but since there are obstacles on the plane, not all pairs (6, 01) are
present in the configuration space. Indeed, we must remove the points
that cause the arm to intersect an obstacle. Figure 7.11(b) shows the

Figure 7.10. A square with identifications of its edges is a torus.

217

218

Vo
Se

CHAPTER 7. CONFIGURATION SPACES

360

<

Vi

0 0, 360°
(a) (b)

Figure 7.11. (a) A 2-link arm with obstacles and (b) its configuration space.

configuration space for the 2-link arm, where the shaded regions must
be removed from the torus. So now we have reduced planning the motion
of the arm to finding a path between initial and final points in this toroidal
configuration space. The general motion-planning algorithms previously
described apply to this situation as well.

What happens when we assume the two links of the arm cannot pass
freely through one another, where the articulated object is an obstacle to
its own motion? For a 2-link arm, the restriction is simply that the second
link cannot cross through the first link, which excludes the 8, = 0° =
360° in our parametrization. For an n-link arm, there are (Z) possible
link-link collisions to be avoided, and applying the general roadmap
algorithm leads to a complexity of 207", Although this is formidable,
real robot arms have only a small number of degrees of freedom, usually
n < 10. And path planning in the resulting 7#-dimensional configuration
spaces is in fact used in implementations.

However, there are robot arm-like structures for which # is signif-
icantly larger. One example is snake or serpentine robots, used for
search and rescue missions or for surgery, which might have » = 30.
A rather different and quite important example is the backbone of a
protein molecule, where values of 7 = 10, 000 are reached. Exponential
algorithms are useless in these cases, and approximation techniques have
been developed, one of which we discuss later.

Exercise 7.7. How many connected components does the configuration
space of Figure 7.11(b) have? How about if we do not allow the two
links to pass freely through one another?

7.2 POLYGONAL CHAINS

In our discussion below, we consider robot arms in the plane without
obstacles, where we again permit the links of a robot arm to pass freely
through each other. Among the simplest questions one can ask about such
arms concerns reachability: Given a point p in the plane and an arm A
specified by its link lengths [¢1, ..., £,], with its shoulder joint vy pinned
at the origin, can A reach p? In other words, can arm A be configured
so that v, = p? Note that this is not a motion-planning question in two
senses. First, we are asking for a YES/NO answer rather than for a path,
and second, the final configuration is only weakly specified in that we
only care about the location of the hand v, and not the other joints of A.

It may seem the answer is obvious, where p is reachable if and
only if the distance from p to the origin is not greater than the sum
£y +4£y+---+4£,. But this is not in general true: it may be that points near
the shoulder are inaccessible due to the particular lengths of the links in
the arm. Let the reachability region for an arm be the set of all points that
v,, can reach.

Theorem 7.8. The reachability region R for an arm A of link lengths
[€1,....4,] is an annulus® centered at v, the region between two
concentric circles in R?. The outer radius of the annulus is

ro=4L1+b+--+ 1,

and the inner radius is
L-M if L>M,
0 if L<M,

ri =

where L is the length of the longest link in the arm and M the sum of
the lengths of all the other links.

Proof. We first prove that R is an annulus and then compute the radii.
The annulus proof is by induction. An arm of #» = 1 link can reach the
points on a circle of radius ¢; centered on vy, which is an annulus by
our definition. Suppose now that the lemma holds for all arms of up to
n— 1 links. Let A = [£1, 45, ..., £,_1] be the arm A with the last link
removed. By the induction hypothesis, the A’ reachability region R’ is
an annulus centered on vg. Let S(r) be the circle of radius » centered
at the origin. Then the reachability region for A is the Minkowski sum
R & S(¢,), the union of circles of radius ¢, centered on every point of
R’. This is again an annulus: with outer radius larger by ¢,, and inner
radius reduced either by ¢, or to zero (if the origin can be reached by
v,). See Figure 7.12 for a diagram of (a) the annulus R’ and (b) the
newly formed annulus R.

3 We include under the term “annulus” two degenerate situations: when the annulus is a circle
(r; = r,) and when the annulus is a disk (r; = 0).

219

220

CHAPTER 7. CONFIGURATION SPACES

Figure 7.12. (a) The annulus R’ centered at vy and (b) the annulus R formed by the
Minkowski sum of R’ and the circle of radius ¢,,.

We now turn to computing the radii. The outer radius is easy:
the furthest reach of the arm is achieved by straightening each joint,
stretching the arm out straight. So r, is the sum of the link lengths in A
as claimed. To compute 7;, first note that the region of reachability R
of an arm A is independent of the order of the links in the arm. This is
because v, can be reached by summing successive vectors,

v, =00 + (V1 —vo) + (V2 —v3) + -+ + (v — Vu1),

and vector addition is commutative. So shuffling the links leaves R
unchanged.

Let L = £, be a longest link in arm A. Reorder the links of A by
moving link & to the front, incident to the shoulder. This does not alter
the reachability region, but helps intuition. Let M be the sum of the
lengths beyond this new first link. The reshuffling makes it clear that
if M < L, then the hand cannot reach the shoulder. The closest v, can
get to vg is L— M, and this is 7;. Figure 7.13 shows this situation where
the longest link (in red) is of length L, and the lengths of the other links
(in blue) sum up to M. When M > L, then v, can reach vy, and then
the annulus becomes a disk, and »; = 0. O

So the decision question we posed at the beginning of this section is
answered easily, in O(#n) time: compute 7; and 7, and check if ; < |p| < 7,.
Note that knowing the answer is YES does not immediately tell us how
to configure the arm to reach p. It turns out this can also be achieved in
O(n) time.

The above argument works not just for linkages in the plane, but for
linkages in any dimension: The natural generalization of an annulus in
the plane — the region trapped between two circles — is extended to
the region trapped between two higher-dimensional spheres. One might

7.3 RULERS AND LOCKED CHAINS

Figure 7.13. When L > M, the inner radiusisr; = L — M.

be tempted to conclude that the reason these reachability questions are
so easy in comparison to motion planning is that we excluded obstacles.
The next section shows that even some configuration questions for arms
in the absence of obstacles are very difficult.

Exercise 7.9. The last sentence of the proof of Theorem 7.8 claims that
if M > L, then v, can reach vy. Prove this intuitively plausible claim.

Exercise 7.10. Design an algorithm to find at least one configuration for
an n-link arm to reach a given point p within its reachability region.
Try for O(n) time complexity.

Exercise 7.11. Argue that if an arm can reach a point p, it can reach p
with at most two joints kinked, where a joint is kinked if its joint angle
is different from m, i.e., it is not straightened.

Exercise 7.12. Describe the shape of the reachability region of a 2-link
arm with joint angle constrainis 0y € [ag, Bo] and 01 € [a1, B1]. Here
0o and 0, are defined as in Figure 7.9(a).

7.3 RULERS AND LOCKED CHAINS

Suppose one wants to stow an n-link robot arm in a small space,
for example, in the Space Shuttle storage bay. The natural method
is to fold it flat, perhaps alternating the joint angles between fully
turned clockwise and fully turned counterclockwise. However, this only

221

222

CHAPTER 7. CONFIGURATION SPACES

produces a compact configuration if the links are all about the same
length. For an arbitrary n-link arm, it is less clear how to fold it flat
compactly.

An alternative formulation of the problem is obtained by viewing the
arm as a strange carpenter’s ruler, with measuring segments of differing
lengths. One wants to fold the ruler flat so that, end-to-end, it has the
smallest total length possible for its link lengths. Note that this goal is
neither a motion-planning question nor a reachability question. More
formally, we have the following;:

Ruler Folding Problem. Given an integer L and a polygonal chain with
links of integer lengths [¢4,...,¢,], can the chain be folded flat—
reconfigured so that each joint angle is either 0 or m—so that its total
folded length is less than or equal to L¢

In 1985, John Hopcroft, Deborah Joseph, and Sue Whitesides
established that this problem is NP-complete, an intractable algorithmic
problem, as explained in the Appendix. Although we have mentioned
NP-completeness several times, we have yet to show how one establishes
a particular problem to be in this intractable class. The usual method of
proving NP-completeness is to reduce our problem to a known intractable
problem. Here we choose the SET PARTITION problem as the target:

Set Partition Problem. Given a set of n positive integers S = {x1, ..., X},
does there exist a partition of S into sets AC S and B C S so that

Y=Y x,

x; €A x;eB

This problem has been proved NP-complete and so no polynomial-
time algorithm is known for it. Now the task is to show that if one
could solve the RULER FOLDING problem quickly (i.e., in polynomial
time), then one could solve any instance of SET PARTITION quickly.
And that contradiction establishes that the ruler-folding problem is itself
NP-complete.

Theorem 7.13. The RULER FOLDING problem is NP-complete.

Proof. We start from an arbitrary instance of SET PARTITION. Let S =
{x1,...,x,} be a set of positive integers and let s be the sum of all
the elements in S. Now we construct an instance of the ruler-folding
problem that will “solve” the SET PARTITION instance. Construct a
ruler R consisting of links of lengths

[2s,s, %1, ..., %, 8, 2s]

7.3 RULERS AND LOCKED CHAINS 223

0 S 2s
‘ 2 .
Vo - S
- X1
< P
X 3 >
- M
X5
S

L 2s
o :

Figure 7.14. A ruler folding reduction, where § = {23,15,16,17,9} and x; + x4 =
X + x3 + xs.

connected at vertices (v, V1, ..., Unsra). The claim is that R can be
folded into a length of at most 2s if and only if the instance of SET
PARTITION has the answer YES.

Consider the links directed from v; to v;;1, and fold the ruler along
the real line, with vy = 0 and vy = 2s. The two vertices v, and v,
must both lie at s if all is to fit within the interval [0, 2s]. This forces the
links between to consume zero total displacement. So the sum of the
leftward-pointing links must equal the sum of the rightward-pointing
links. Figure 7.14 shows an example with 9 links; the endpoints at each
of the rods have been separated for clarity.

Therefore R folds into 2s if and only if {xy, ..., x,} can be partitioned
into two equal-length halves; in the figure, we have x; + x4 = x; + x5 +
xs. It is clear that it cannot fold to less than 2s because there are links
of that length. So we have established the claim for L = 2s. O

The import of this theorem is that no one knows a method for solving
the ruler-folding problem better than trying all 2” foldings (there are two
choices of folding direction at each of 7 joints) and seeing whether any
result in a length less than L. For 7 = 100, trying 2'% ~ 103° foldings is
infeasible even on the fastest computer.

The RULER FOLDING problem asks for finding a point in the con-
figuration space with particular properties, but the configuration-space
viewpoint does not play a significant role in this problem. Now we
turn to a question for which it does play a central role. Recall that
whether a path exists between configurations s and ¢ depends on whether
s and ¢ lie in the same connected component of the configuration
space. A fundamental question asks whether all of the configuration

224

CHAPTER 7. CONFIGURATION SPACES

Vo(,,

space C is connected, that is, is it a single connected component or
does it have several disconnected components? If C is connected, then
any configuration can move to any other configuration, whereas if C
is disconnected, then some configurations are inaccessible from some
others.

Thus far we have been assuming that the links of our robot arm
can pass freely through each other. In the subsequent discussion, let
C=1¢y,...,%,] beapolygonal chain that is not permitted to self-intersect
in an otherwise obstacle-free environment. If the configuration space C is
disconnected, we say that the chain can lock, because it can get stuck
in a configuration component from which it cannot escape. Do there
exist locked chains? This natural question was posed in the 1970s and
independently re-posed several times in succeeding decades until it was
finally resolved in the late 1990s. The answer actually depends on the
ambient dimension in which the chains exist. For chains in the plane R?,
there are no configurations that lock. In other words, the configuration
space of motions of the chain is connected. (Indeed, this turns out to
be true in R? for all d > 4.) There are locked chains in 3D, however.
We will prove the R? result, but can only hint at the more difficult R?
theorem.

Let’s start with three dimensions. It is of course easy to lock a closed
chain in 3D by tying it into a knot. But it is less immediate for open
chains, our concern here. There is a relatively easy example of a 5-link
locked open chain, dubbed the knitting needles, shown in Figure 7.15.
Even though there is a sense in which it is obvious that this chain is locked,
finding a clean proof has proved more delicate. Several proofs appeared
after 1998 and we present one of them now, which invokes basic knot
theory as its final step.

Theorem 7.14. The knitting needles chain K = (vo, ..., vs) in Figure 7.15

cannot be made straight when the end links are longer than the lengths
of the middle links combined.

V3 V2

V5

Figure 7.15. The knitting needles locked chain.

7.3 RULERS AND LOCKED CHAINS

Figure 7.16. (a) Ball B is centered on the midpoint m along (vi, v2, v3, v4). (b) A
reconfiguration of the chain illustrates that v; and v4 remain interior to B (by at
least €) and vy and vs stay exterior (by at least 2¢).

Proof. The proof starts at the configuration shown in the figure and
argues that the chain cannot be made straight. This then establishes
that C has at least two disconnected components. Let £, = |vp_1vp| be
the length of the kth link, and let L = ¢, + €3 + ¢4 be the total length
of the short central links. We set £; and €5 below. Let r = L/2 + &,
for small ¢ > 0, and center a ball B of radius 7 on the midpoint m
of the three central links, that is, m is L/2 from both v; and from
vy along the chain. Figure 7.16(a) provides a picture. By construction,
we have {v1, v2, v3, v4} C B during any reconfiguration of the chain.
Now choose ¢; and £5 to be at least 2r + ¢ = L + 3&. Because this
length is greater than the diameter of B, the vertices vy and vs are both
necessarily exterior to B during any reconfiguration, such as the one in
Figure 7.16(b).

Assume now that the chain K can be straightened by some motion.
We will reach a contradiction. Because of the separation maintained
between {vg, vs} and {vi, v2, v3, v4} by the boundary of B, we could
have attached a sufficiently long unknotted string s from vy to vs
exterior to B that would not have hindered the unfolding of P. But this
would imply that the trefoil knot K U s can be straightened (without
self-crossings) into the trivial knot. We have reached a contradiction
and therefore, K cannot be straightened. O

If all three central links ¢, £3, £4 have the same unit length, then the
long first and last “needle” links must have length more than 3. This
length ratio is critical in that the configuration space C has just a single
component if the needles are not long enough. It is also known that all
chains of fewer than five links are unlocked, regardless of link lengths.
However, this basic question remains open:

225

226 CHAPTER 7. CONFIGURATION SPACES

UNSOLVED PROBLEM 27 3D Unit Chains

Can a chain in R3 lock if its link lengths are all the same?

We mentioned that motion planning for an #-link arm can be accom-
plished by a general algorithm that runs in 2°) time. A modification of
this algorithm permits counting the components and so deciding whether
any given n-link chain in R? is locked.

UNSOLVED PROBLEM 28 3D Locked Chains

Find a polynomial-time algorithm to decide whether or not a 3D
chain is locked.

Exercise 7.15. Show that any chain of four links is unlocked.

Exercise 7.16. Argue that any simple open chain lying in a plane is not
locked in 3D, in the sense that it can be reconfigured to a straight
configuration of one link after another lying on a line in R>.

X Exercise 7.17. Show that any collection of chains in 3D, each of which
consists of just two links, can be separated arbitrarily far from one
another (without any link crossing another).

Let’s now consider the situation of chains in the plane, which is a far
more difficult question. After a long pursuit, it was finally established in
2003 by Robert Connelly, Erik Demaine, and Giinter Rote that chains
cannot lock in 2D. More precisely, the result is as follows:

Theorem 7.18 (Carpenter’s Rule). Every collection of chains in the plane
has a motion to a configuration in which every outermost open chain
is straightened and every outermost closed chain is convex.

This result includes as a special case that every single open chain C can
be straightened. Let s and ¢ be any two simple configurations of C, and
let ¢ be the straightened configuration of C. Because we can move from
s to ¢ and from ¢ to ¢, we can move from s to ¢ via ¢ by reversing the
motion from ¢ to ¢. The straightened configuration c is called a canonical
configuration, a standard form that can serve as a universal stopping
point between any two configurations. In a similar way, Theorem 3.22

7.3 RULERS AND LOCKED CHAINS

(a) (b)

227

Figure 7.17. Four frames in the unlocking of one open chain and three closed
(polygonal) chains. Figure courtesy of Erik Demaine.

showed the flip graph — our discrete configuration space of triangulations
— is connected by proving that any triangulation can be made into a
“canonical triangulation” (which, in this case, came from the incremental
algorithm).

Notice that the theorem includes convexifying closed chains, that is,
polygons. The reason for the “outermost” qualifications in the statement
is that it is not always possible to straighten or convexify a chain if it is
curled up inside a small enclosing polygon. Figure 7.17 illustrates four
frames toward the unlocking of three closed chains (colored) entangled
with one open chain. This example is one that superficially might seem
to be locked, but clearly it is not, as shown by part (d). Indeed many
researchers proposed potentially locked chains (or collections of chains)
before the issue was finally resolved.

A full proof of Theorem 7.18 is quite complicated, so we content
ourselves with mentioning a few aspects. One key insight is that there
always exists an expansive motion, one in which the distance between
every pair of vertices either increases or stays the same. An expansive
motion guarantees simplicity throughout because two segments can only
cross by one or more vertices decreasing their distance. A differential

228

CHAPTER 7. CONFIGURATION SPACES

equation for expansive vector motions for each vertex can be formulated
and tracking its solution leads to an unlocking motion. A numerical
solution of the differential equation has been implemented, which was
used to generate the motion in Figure 7.17. Since the original proof, two
more unlocking algorithms have been developed, one using pseudotri-
angulations (Section 3.5) and the other minimizing an energy function.
The latter has led to a novel graphics morphing algorithm, yet another
instance of a practical application affected by the pursuit of a purely
theoretical question.

Exercise 7.19. Prove that if two non-adjacent links of a simple open
chain move to intersect each other, then some pair of vertices of the
chain must strictly decrease their separation.

We close this section by exploring an algorithm developed for protein
folding. The protein folding problem is one of the most important
unsolved problems in all of science. A protein molecule is composed
of a chain of amino acids residues joined by peptide bonds. Its central
backbone consists of three atom vertices per residue, with adjacent atoms
connected by bond links. We can crudely model the backbone by a
polygonal chain. A typical protein has between » = 100 and » = 1000
atoms along its backbone, but some such as the muscle protein titin have
n = 30, 000 atoms.

Natural proteins have two remarkable folding properties. First, they
appear to have a unique minimum-energy folded state, determined solely
by their “primary structure,” that is, the sequence of specific amino acids
along the backbone. Second, they curl up unerringly to this state in about
one second, as illustrated in Figure 7.18. The protein folding problem is
to predict the unique 3D folded configuration (the “tertiary structure”
in biochemical terminology) from the primary structure. Because the
functionality of a protein is largely determined by its shape, the ability
to predict the folding from the sequence of acids would enable quick,
targeted drug design. If we ignore the biochemistry and biophysics of
protein folding, then protein folding can be viewed as reconfiguring
a polygonal chain, perhaps with the “side chains” attached to the
backbone. In this view, it is a motion planning problem, but one with 7 so
large that the general exponential motion planning algorithms are useless.

The unfeasibility of using the roadmap algorithm (recall from
Section 7.1 that this is the fastest known) for objects with a large number
of degrees of freedom led, in the early 1990s, to two groups independently
inventing a new structure called the probabilistic roadmap (PRM),
which was immediately successful in increasing the range of accessible
degrees-of-freedom values. This has developed into an approach called

7.4 POLYGON SPACES

Figure 7.18. Folding snapshots of a protein molecules consisting of 10 amino
acids. Here the side chains are attached to the backbone. Figure courtesy of Nancy
Amato and Guang Song.

sampling-based motion planning, which circumvents exact construction
of the configuration space. Here we sketch the original PRM technique.

Let C be the configuration space of a robot arm (or other movable
object) with k degrees of freedom. The PRM motion planning algorithm
consists of two phases: the roadmap construction and the query phase.
The roadmap is constructed by generating random points and checking
to see if they are in the configuration space C, and if so, connecting
nearby points into a graph structure G with a “local planner.” The
query phase takes start and goal configurations s and #, connects each
to G, and uses G to construct a path from s to ¢. The folding shown in
Figure 7.18 was computed using this algorithm. One of the challenges
of the PRM technique is generating sufficiently many random points
to accurately capture the connectivity of C, which may have narrow,
convoluted tunnels. Usually some heuristic (but theoretically guided)
method is used to increase the density of sample points in these difficult
regions. This is an active area of current research.

7.4 POLYGON SPACES

The previous section focused on various aspects of configuration spaces
for open polygonal chains. Now we turn to closed polygonal chains,
specifically, polygons in 2D. All edges are considered rigid links whose
lengths are fixed, and all vertices are universal joints. We ignore intersec-
tions, as in our study of robot arm reachability and in contrast to the
investigation of locked chains. Finally, we focus on the topological
structure of the configuration space, in contrast to the various other
properties we have examined previously. As a word of caution, the
material in these remaining few sections of the book are advanced,
forcing us to provide sketches and general overviews of many ideas.
But even though these topics require a certain amount of mathematical
sophistication, we believe it is worth the effort to gain glimpses of these
worlds.

229

230

CHAPTER 7. CONFIGURATION SPACES

We first review the notion of “topological structure,” first touched on
in Section 5.6 and Section 6.2. Two spaces are topologically equivalent
(under homeomorphism) if one can be distorted to the other without
tearing or gluing. So the sphere and the torus are topologically distinct;
the symbols $? and T? are used to describe the topological type of a
sphere and a torus, respectively. Both of these spaces are surfaces, which
means that they look like R? in the neighborhood of every point. The
exponent on S? and T? reflects the intrinsic dimension of the manifold
rather than the dimension of the space in which the manifold might be
embedded. Thus S’ is the topological type of a circle, since locally it looks
like a 1D line.

Let’s review the topology of some of the configuration spaces so far
considered. The space for a polygon translating in 2D is R?, and that
for a polyhedron translating in 3D is R3. A polygon translating and
rotating in R? leads to the manifold R? x S!, the Cartesian product of
the translation-only space R? with S' for the one rotation angle. Each
point in this space keeps tracks of three pieces of data: two entries for
the amount of translation (a plane’s worth of choices) and one entry for
the amount of rotation (a circle’s worth of choices). Thus R? x S! is a
3-manifold. A polyhedron translating and rotating in 3D has six degrees
of freedom, and its configuration space is R> x SO(3), where S O(3) is the
“special orthogonal group” that captures the three degrees of rotational
freedom.

The space for a 1-link planar robot arm is the circle S'. For a
planar 2-link arm, the space is the torus T2, as previously illustrated in
Figure 7.9(b) and Figure 7.10. From these images, we see that T> can be
identified as the product S' x S'. By a similar argument, one can show
that the space for an n-link planar arm is the n-dimensional torus T%,
the product of # circles. Our (limited) goal in this section is to show that
the topology of the configuration space of an equilateral pentagon in the
plane is a genus-4 surface.

Exercise 7.20. Show that the configuration space for a 3-link arm in the
plane is T3.

Exercise 7.21. What is the topology of the configuration space of a 2-link
arm if the point vy is not pinned to the plane?

Exercise 7.22. What is the topology of the configuration space of a
triangle that is nowhere pinned to the plane?

Our polygonal system P is given by = link lengths [¢1,...,¢,]. A
realization P of P is specified by actual coordinates of the polygon

7.4 POLYGON SPACES

vertices vy, ..., v,_1. (We continue to use the term “polygon” to include
nonsimple closed polygonal chains.) Stringing together these coordinates
makes a point in R?", since each vertex requires two pieces of data. We
seek to understand the topology of the subset of R?” consisting of all
realizations P of P, that is, the configuration space C. One step in this
direction is to find the dimension of C as a function of #. In other words,
how many degrees of freedom of motion does an polygon with # vertices
have?

In Section 7.2, we considered open chains. For all such chains, we
always pinned the shoulder vy onto the plane, fixing its motion. The other
joints were allowed to flex and turn. For closed chains, in the case of
polygons, we fix not just a vertex vy but an entire edge £; onto the plane.
Thus the first vertex vy and second vertex vy of the polygon (with the edge
£1 between them) are pinned; in particular, we can place vertex vy at the
origin (0, 0) and vertex vy at (£1, 0) on the x-axis.

The simplest examples of polygonal linkages are triangles. Our polygo-
nal system P is then given by three link lengths [¢4, €5, £3]. If the first edge
is pinned, fixing two vertices, the third vertex is immediately determined
up to reflection (because a triangle is rigid). Thus the configuration space
for a triangle is simply two points, corresponding to v, above or below
vovy. In this case, the dimension of C is zero, even though C is a subset of
R? (if the base is fixed).

What about quadrilaterals? Consider the planar quadrilateral depicted
in Figure 7.19(a). Again fix vy at the origin and v; at (¢1, 0) on the x-axis.
Now the motions of v, are restricted to rotations about a circle of radius
¢, centered on vq. Similarly, v; is forced to rotate about a circle of radius
{4 centered at vg. There is one more restriction needed. The link between
v, and v forces v; to be on a circle of radius 3 centered at v,. Figure 7.19
depicts two configurations of this quadrilateral linkage, where v, and v;
lie on the boundaries of the blue and red disks respectively. The dashed
circle is of radius ¢3 centered at vs.

(a) (b)

Figure 7.19. Reconfiguration of a quadrilateral.

231

232

CHAPTER 7. CONFIGURATION SPACES

Therefore, vs must lie at the intersection of the two circles centered on
vo and on v,. Because two circles (generically) intersect at two points, each
position of v, (generically) results in two possible positions for v3. As vy
moves through its range of motion, v is determined by this intersection
point, until the circles become tangent and the two circle intersection
points become one, as in Figure 7.19(b). From here, v3 can track the other
intersection point. This example makes clear that C is one-dimensional, as
only v, has freedom of motion—the position of v; varies continuously as
a function of the position of v,. Indeed, the topology of this configuration
space C turns out to be just a circle! Figure 7.20 depicts this space (in red),
where the configurations of the linkage corresponding to eight points of
C are drawn. In particular, note the symmetry of antipodal points on the
circle. As we travel around the circle C, the motion of the linkage looks
somewhat like locomotive wheels. For a quadrilateral system different
from the linkage lengths given by Figure 7.19(a), the configuration space
C might not necessarily be a circle.

Figure 7.20. The configuration space of this quadrilateral polygon is a circle.

7.4 POLYGON SPACES 233

Exercise 7.23. Let P = [5,4,4,1] be the lengths of a quadrilateral
system. Show that its configuration space consists of two disconnected
circles.

Exercise 7.24. Argue that the configuration space for a parallelogram
with unequal side lengths is a circle.

Exercise 7.25. Argue that the configuration space for a rhombus, that is,
an equilateral quadrilateral P = [1,1, 1, 1], consists of three circles,
each pair of which intersect in a single point!

The configuration space of a pentagon is much more complicated than
that of a quadrilateral. Just by analogy with the configuration space of
triangles (0D) and quadrilaterals (1D), you can guess the dimension here
is 2. This is supported by a similar construction, where we fix vy and vy
and rotate vy and v4 on arcs of circles centered on vy and vy, respectively.
This determines v; just as for a quadrilateral. So we have two degrees
of freedom: rotation of v, about vy and of vs about vy. In general, the
dimension of the configuration space C for a polygon with #n vertices is
n — 3. Because pentagon configuration spaces are 2D surfaces, they can
be visualized, although we should remember they are surfaces embedded
in R®—fixing the first edge leaves three vertices to vary. However, the
intersecting-circles viewpoint used for the quadrilateral case yields little
insight into the topological structure for the pentagonal linkages.

To proceed further, we will employ a powerful tool known as Morse
theory, developed by the differential geometer Marston Morse in the
1930s. Morse theory is a large topic, and we will only hint at enough
of it to sketch out how it can be used to determine the topology of
the configuration space of pentagonal linkages. We start with a Morse
function f : § — R which maps every point on a surface S to a real
number. It is convenient (and conventional) to imagine a 2D surface
S embedded in R?, with f(p) the z-coordinate of a point p of S. For
example, S might be a torus, a donut stood on its end, as illustrated in
Figure 7.21(a). Now we slice S by a plane I, at each z-value, imagining z
continuously decreasing from above S to below S. The intersection I1,NS
changes its topology only at certain critical points. In this example, the
critical points occur when I1, first touches the top of the torus, next when
the intersection first becomes two components at the top of the hole, next
when those components merge at the bottom of the hole, and finally when
I, last touches the bottom of the torus. Part (b) shows certain slices by
the plane IT,.

The critical points can be identified as having degenerate first deriv-
atives (partial derivatives with respect to vertex coordinate variables),

234 CHAPTER 7. CONFIGURATION SPACES

Figure 7.21. (a) Slicing a torus at different heights. (b) Certain slices by the plane
I1,, where every other height depicted here is a critical point.

and each critical point can be assigned an index based on the second
derivatives there. It is this index that determines the type of topological
change occurring at the critical point. We will explain none of this but
only claim that, for the torus example, index 2 indicates that a circle
appears, index 1 indicates that a split or merge of components occurs,
and index 0 marks the disappearance of a circle. And IT, passes through
four critical points (of index 2, 1, 1, and 0) as it sweeps over the torus.

With this background, let’s apply Morse theory to the case of pentag-
onal linkages. Let P be the polygonal system [£1, ..., £5]. The first thing
we will need is a Morse function. This can be accomplished by pinning
vo to the origin and v; to (z, 0) along the x-axis, but leaving the first link
length z variable. The Morse function f : P — R is simply f(P) = z.
For a large value of z, the configuration space C will be empty: the sum
of lengths ¢, + --- + £5 will be less than z, not allowing the polygon to
close up. As z decreases in value, we will track the topological changes
along the way using Morse theory. By the time z = ¢;, we will know the
topological structure of C.

It turns out that the critical points of f all occur when the links all
lie on the x-axis. We will not justify this claim but it does make intuitive
sense that the derivatives are degenerate precisely here. In contrast to the
simple situations with quadrilaterals, the topological structure of C for
a pentagon varies dramatically depending on the lengths [¢4, ..., ¢5]. To

7.4 POLYGON SPACES

Vi
vi
VO VO
0 2 0 2
Vi
vi
0 2 0 2

Figure 7.22. The four critical configurations of a unit pentagon at z = 2. Three links
are pointing leftward, and one rightward.

avoid this complication, we only examine the equilateral pentagon, with
¢; = 1 for all five links, calling it the unit pentagon.

This leaves us with five critical points, the five distinct ways to lay down
the first four links of P on the positive x-axis: One critical point is when
all four links stretched out straight, reaching z = 4. Four other critical
points appear when three links are pointing leftward and one rightward,
reaching z = 2; Figure 7.22 shows these configurations. Note that there
are four possibilities here, depending on which link points rightward. The
only other possible way in which the linkage folds flat is when the first
four links reach z = 0; in this case, the last link must be £5 = 0, which
contradicts our assumption that ¢; = 1.

Although we know the configuration space of a pentagonal linkage is
a surface, we obtain a 3-manifold when €5 is considered as a variable z,
having one more degree of freedom. The indices of the critical points of a
manifold have a different topological interpretation than in our 2D torus
example above. For example, the index-2 event when the 2D plane IT,
first intersects the surface in a circle now corresponds to an index-3 event
when the 3D hyperplane I, first intersects the 3-manifold in a sphere.
In particular, we have this index-event correspondence, given in the table
below, which we ask the reader to accept on faith.

Index Number Event
3 Sphere appears
2 Attach a handle
1 Detach a handle
0 Sphere disappears

235

236

CHAPTER 7. CONFIGURATION SPACES

As explained above, we start at a large value for z. For our unit
pentagon, recall that for all z > 4, the configuration space is empty. At
z = 4, the surface becomes a sphere, an index-3 event. (This corresponds
to the case when all four links are stretched out straight, reaching z = 4.)
No further topological changes occur until z = 2, when we hit four
critical values, each of index 2; these values are the ones shown in
Figure 7.22. According to the table above, each of these causes a handle
to be attached to the sphere, a loop similar to a coffee cup handle. A
sphere with one handle attached is topologically a torus, and a sphere
with four attached handles is a genus-four surface. Finally, z moves to z =
1 = ¢5 without further topological changes.* So the configuration space
C for a unit pentagon linkage is a genus-four surface, homeomorphic to
Figure 6.6, as originally claimed.

One can get some sense of “walking around a handle” in the con-
figuration space through a sequence of reconfigurations similar to what
is shown in Figure 7.20. Indeed, if the pentagon is not equilateral, its
configuration space might be a genus-two or genus-three surface, or even
two disconnected tori. And these are just the nondegenerate situations. If
spaces with singularities are included (such as those with “pinchpoints”
resulting in nonmanifolds), there are 19 distinct topological types of
pentagon configuration spaces!

Exercise 7.26. Find lengths for a pentagonal system whose configuration
space is disconnected.

KX Exercise 7.27. Prove that the configuration space of the unit pentagon

has genus 4 by constructing a combinatorial “cell decomposition” of
the space and applying Euler’s formula.

X Exercise 7.28. Call a pentagon degenerate if it can be flattened to lie

in a line. Select a particular degenerate pentagon, and argue that its
configuration space has a singularity, a point at which it fails to be a
manifold.

K Exercise 7.29. Find a condition on the lengths of the edges of a polygon

of n vertices that implies that the configuration space is disconnected.
Start by generalizing Exercises 7.23 and 7.26 for a condition for
quadrilaterals and pentagons.

4 There are no critical points of index 1 for unit pentagons before z = £5 = 0.

7.5 PARTICLE COLLISIONS

7.5 PARTICLE COLLISIONS

Throughout this chapter we have looked at configuration spaces of rigid
objects, of linkages, and of polygons. We close by looking at one of the
most important kinds of configuration spaces in mathematics, the space of
particles. Here our robot equivalents are simply points in space, having
no width or height. In what ways can these point robots (henceforth,
particles) interact with one another? As with the other topics in this
chapter, there is a huge field of study related to this topic. We will be
content to focus our attention on the configuration space of particles on
the unit interval.

First some notation. Let I = [0, 1] be the unit interval in R with fixed
particles at the two endpoints. The configuration space of n particles
on this interval is denoted as C,(I). These n particles are allowed to
move along this interval and are allowed to touch particles adjacent to
them. Since each particle’s position corresponds to a value on the real
number line, the configuration space for » particles is the set of points
(x1, %2, ..., X,) in R” that satisfy the inequality

O<xj<x<---x <1 (7.1)

But this equation does not help us understand the structure of this
configuration space.

In order to visualize this, let’s start with just one particle x, the case
C1(I). Since the position of x can be anywhere inside I, the configuration
space is the interval itself, as shown in Figure 7.23. This figure also

@EC—e o0 o029

0 1

Figure 7.23. The configuration space C;(I) along with a labeling of the chambers.

provides a labeling of the three “chambers” of this space: the interior
(0 < x < 1) and the two vertices (x = 0 and x = 1) where
the particle has touched the fixed end-particles of I. Notice the use
of a “tube” notation to display this visually. In general, we denote
particles on I as nodes on a path, with the two fixed particles shaded
black. When the inequalities of equation (7.1) become equalities (when
particles touch), draw tubes around the respective particles. For example,

—00—0—0-00=9 corresponds to the configuration
O0<x<x=x3=x4 <x5 <x¢=1.

What about the configuration space C,(I) of two particles on a line?
Since each particle has one degree of freedom (moving along the interval),
the space must be 2D. If both particles have no restriction placed on
them, the configuration space would be the square I x I, where each

237

238 CHAPTER 7. CONFIGURATION SPACES

(a)

(CES =)

X2 (b) X3 009
eooc=™ | eocoe
0 G9 o)) = } { }
oooe | >
- ==
= oo A
o=
X2
. f
! ==

Figure 7.24. Labeling of vertices and edges of C,(I) and C;(I).

point (x1, x;) in the square keeps track of the position of the two particles
on I. However, we know from equation (7.1) that x; can never be
greater than x;, resulting in only half of the square, the triangle shown
in Figure 7.24(a).

Six chambers of this space (3 edges and 3 vertices) are labeled with the
tube notation accordingly. The vertices are points in the configuration
space corresponding to places where both particles have collided with
fixed particles, leaving no degrees of freedom. The edges, on the other
hand, still have one degree of freedom. For the left edge @=0-0—e_ particle
x, is free to move, and for the top edge —0+0—=9), particle x is free to
move. The third edge €0—=0>-, where both particles have collided with
each other, represents positions on I at which this collision could occur.
Indeed, all three edges of the triangle can be regarded as copies of the
configuration space C;(I) of Figure 7.23 appearing within Cy(I).

Similarly, C5(I) is a three-dimensional space, and one can show it to
be the tetrahedron pictured in Figure 7.24(b). (In fact, this tetrahedron is
one of the six that appear in Figure 1.6(c) in the tetrahedralization of the
unit cube.) Once again, the vertices and edges are labeled in this diagram.
For higher values of 7, the configuration space C,(I) is a generalization
of the tetrahedron called the n-simplex. We have encountered this object
in Section 1.2 and Section 6.1. We summarize with the following;:

Theorem 7.30. The configuration space C,(1) of n particles on an interval
is the n-simplex.

Exercise 7.31. Label the four triangular faces of Cs(I) using the tube
notation.

Exercise 7.32. Prove that C5(I) is a tetrabedron.

Exercise 7.33. Label the five vertices of the 4-simplex Ca(I).

7.5 PARTICLE COLLISIONS 239

Exercise 7.34. For arbitrary n, how many edges does an n-simplex have?
How can we interpret these edges in terms of particle collisions?

In our study of configuration spaces so far, we have been motivated by
motion planning, where our objects have been modeled by moving robots.
We now switch our viewpoints slightly, leading to an alternate way of
understanding these spaces. From a theoretical physics perspective, we
care not just about particle motions but the space of simultaneous particle
collisions. But what does this mean? In order to explain this abstract
concept, we start with a concrete example.

Consider the top-right-most vertex +€0=0=9 of Figure 7.24(a) corre-
sponding to the configuration x; = x, = 1. The key question to ask is,
in what ways could this collision have occurred? Figure 7.25(a) shows
a highly zoomed-in view of this vertex in C(I). There are several paths
drawn here, where the different paths in C,(I) taken to approach this
vertex corresponds to different classes of particle collisions: The approach
along the first path shows the three particles colliding, where the latter
two particles (x; and the fixed particle) have already collided. The third
path shows all three particles colliding at the same time, whereas the
fifth path shows x; = x,, which together collide with the fixed particle.
The configuration space C,(I) displays this collision as a vertex €0=0=9)_
giving us a zero-dimensional “point’s worth” of information. But as
we see from the discussion, there is more information to extract here;
indeed, there is a one-dimensional “interval’s worth” of possible ways
these three particles could have collided. The method by which we reveal
this structure is by truncating this vertex.’ Figure 7.25(b) shows the result

——o O~

Figure 7.25. A piece of GCy(I), showing (a) paths toward collision and (b) a
truncation extracting more information.

5 The actual process is a geometric operation called a blow-up.

240

CHAPTER 7. CONFIGURATION SPACES

after truncation. The vertex has now been replaced with an interval, and
similarly, the tube labeling of the chambers is now replaced with nested
tubes.

Figure 7.26(a) shows the triangle C,(I) with two vertices (marked in
red) that contain more information within. Part (b) shows the truncation
of these vertices, now replaced by two intervals. This has converted our
configuration space of particle motions into a space of particle motions
and collisions, transforming the triangle into a pentagon. Technically,
this pentagon is called the Fulton-MacPherson compactification of the
configuration space of two particles on an interval. Note that we are not
manipulating the environment in which the particles move and interact
— this still remains an interval—we are manipulating the configuration
space itself!

In a similar manner, we can perform this compactification on the
configuration space of three particles on a interval. Here, however, there
are several cells whose information needs to be unpacked. Figure 7.27(a)
shows two vertices and three edges (marked in red) where three or more
collisions have occurred. Although there are other places of collisions,
such as the vertex marked by @0€0=0=9) our interests are in cells with
collisions represented by only one tube. To obtain our compactified
configuration space, we first truncate the two vertices, and then truncate
the three edges of the tetrahedron. The resulting space is given by the
polyhedron in Figure 7.27(b). The faces of this polyhedron are labeled
accordingly.

Notice what used to be a vertex in C3(I) has now become a pentagon,
and what used to be an edge has now become a quadrilateral. This
polytope can be seen to have six pentagons and three quadrilaterals for
its faces. Indeed, we have seen this before in Figure 3.13(b) as the 3D
associahedron! Moreover, the pentagon of Figure 7.26(b) can be viewed

X2 X2
oo™ | eoe oo Y= hma) o9
—— eo®
=
@—Oro—e
00— e e
=9
o=
v = “
=>
(a) (b)

Figure 7.26. (a) Marked cells of Cy(I) and (b) the resulting polygon after their
truncation.

7.5 PARTICLE COLLISIONS 241

X1

Vi

Figure 7.27. (a) Marked cells of Cs(I) and (b) the resulting polyhedron after their
truncation.

as the 2D associahedron of Figure 3.12(b). For the general space C,(I),
we have the following beautiful result:

Theorem 7.35. The Fulton-MacPherson compactification of the config-
uration space of n particles on an interval C,(I) is the n-dimensional
associahedron. In particular, the associahedron can be constructed by
truncating certain cells of the simplex in increasing order of dimension.

Figure 7.28 shows a 3D projection of the 4D version of this theorem.
Part (a) shows the Schlegel diagram of the 4-simplex. Two vertices

Figure 7.28. (a) The 4-simplex and the truncation of (b) two vertices, (c) three
edges, and (d) four faces, resulting in the 4D associahedron.

242

CHAPTER 7. CONFIGURATION SPACES

are then truncated in part (b), similar to the two marked vertices of
Figures 7.26(a) and 7.27(a). Three edges are truncated in part (c), and
finally four 2D faces are truncated in (d). The resulting object is the 4D
associahedron, whose 1-skeleton (the flip graph of a heptagon) is the
metal sculpture in Figure 3.14.

Exercise 7.36. Label the fourteen 3D faces of the 4D associabedron using
the tubing notation.

But how is it that the associahedron appearing in the context of flip
graphs should arise in the world of particle collisions? The best way
to understand this connection is through Figure 7.29. Here we see a
triangulated octagon and its dual tree structure. Notice that the tree is
rooted at one of the edges of the polygon. This tree has been redrawn on
the right side of the figure, where we see a one-to-one correspondence
with nested tubings of 7 particles on an interval. The vertices of the
associahedron can thus be seen as triangulations of convex polygons
(from the flip graph perspective), or from nested tubings on intervals
(from the particle collision perspective). So the triangulated octagon in
Figure 7.29 corresponds to the nested parentheses ((1-2)-3)-((4-5)-(6-7)).
This is indeed the reason for calling this polytope the associabedron, for
it captures all the ways of associating particles.

Exercise 7.37. Prove that triangulations of a polygon with n vertices are
in one-to-one correspondence with nested tubings of n — 1 particles
on the interval. This implies that the Catalan number counts nested
tubings as well.

4
= o —o©—9)
1 2 3 4 5 6 7

3

root root

Figure 7.29. A duality between triangulations of polygons, rooted trees, and
nested tubings on the interval.

7.5 PARTICLE COLLISIONS

The appearance of the associahedron in the realm of particle collisions
on intervals is but a glimpse of one of the worlds in which this wonderful
polytope appears. There are numerous generalizations and manifestations
of this polytope throughout mathematics, and we close with a glimpse of
one. The real moduli space My ,,13(R) of punctured spheres, which we do
not attempt to define here, is an #-dimensional manifold that appears in
works ranging from phylogenetic trees in computational biology to string
theory in theoretical physics. This moduli space is tiled by (7 + 2)!/2
copies of the n-dimensional associahedron. Figure 7.30 shows the 3D
moduli space My ¢(R) tessellated by 60 copies of the 3D associahedron of
Figure 7.27(b). This space can be constructed from the 3D torus (which
itself can be obtained by identifying opposites faces of a cube) along with
additional truncations and gluings.

L

\

Figure 7.30. The real moduli space M, ¢(R) tiled by 60 associahedra.

243

244

CHAPTER 7. CONFIGURATION SPACES

SUGGESTED READINGS

Erik Demaine and Joseph O’Rourke. Geometric Folding Algorithms:
Linkages, Origami, Polybedra. Cambridge University Press, 2007.
Chapter 6 of this book is the source for the locked chains material, including the
mentioned graphics morphing result and many open problems.

Joseph O’Rourke. Computational Geometry in C. Cambridge University
Press, 2nd edition, 1998.

Chapter 8 of this text covers motion planning and robot arm reachability

Colin Adams. The Knot Book. American Mathematical Society, 2004.
A wonderfully written and easily accessible book on mathematical knots and their
applications, covering the relationship of knots to the topology of surfaces and
3-manifolds.

Don Shimamoto and Catherine Vanderwaart. Spaces of polygons in the
plane and Morse theory. American Mathematical Monthly, Volume
112, pages 289-310, 2005.

This beautiful paper is our source for polygon configuration spaces. For a
classification of singular configurations, see Robyn Curtis and Marcel Steiner,

“Configuration spaces of planar polygons” (American Mathematical Monthly,
Volume 114, pages 183-201, 2007).

Steven LaValle. Planning Algorithms. Cambridge University Press, 2006.
This is the 800-page book on motion planning mentioned in Section 7.1. It has an
extensive description of probabilistic roadmaps and other sampling-based planning
algorithms. For a definitive survey of motion planning complexity results, see
Micha Sharir, “Algorithmic motion planning” (in J. E. Goodman and J. O’Rourke,
editors, Handbook of Discrete and Computational Geometry, chapter 47, pages
1037-1064. CRC Press LLC, 2nd edition, 2004).

Satyan Devadoss. Combinatorial equivalence of moduli spaces. Notices
of the American Mathematical Society, Volume 51, pages 620-628,
2004.

An introductory, research-level article on particle collisions in the language of
algebraic geometry. It shows a larger context in which associahedra appear, such
as hyperplane arrangements and the moduli space M ,(R).

Appendix

Computational Complexity

Big-Oh Notation. The Big-Oh notation is used to express upper
bounds on the growth rate of arbitrary functions, and in particular, upper
bounds on the running time of an algorithm. In general, the variable »
is used to represent the size of the input to the algorithm, for example,
the number of points. The notation ignores constant multipliers and
concentrates on the dominate term for large 7. Thus an algorithm has
running time (or time complexity) of O(n*) if the time as a function of
n is less than cr* for some constant ¢ > 0 and for sufficiently large 7.
For example, suppose that the running time T(#n) of an algorithm on a
particular processor in particular time units (say seconds) is precisely

T(n) = 30.2nlog, n + 0.0047* + 167.

Then this algorithm is O(7?). The constants are irrelevant as they change
from processor to processor. The base of the logarithm is also irrelevant
because change of base is absorbed into the constant. And even though
the constant on the #? term is much smaller than the constant on the
nlogn term, for sufficiently large 7, the #> term will dominate.

Exercise. For what value of n will 0.004 n* exceed 30.2 nlog, n?

Any algorithm that is O(zf) for some constant k (“constant” means
independent of 7) is said to have polynomial time complexity because it
is upper-bounded by some polynomial in 7. In some sense, all polynomial-
time algorithms are easy because even though the growth rate of, say, 7'
is fast, it is much slower than, say, 10”. The latter growth rate is called
exponential. The functions 27, 207") n! and »” are all exponential. The
table below lists some of the most commonly occurring big-Oh upper
bounds and problems with algorithms that achieve those bounds.

Because running time is usually the primary concern, “computational
complexity” often means “time complexity.” There are circumstances
where space complexity (the growth rate of the memory required by an al-
gorithm) is quite important, but we do not address this issue in this book.

Big-Omega Notation. The Big-Omega notation is the lower-bound
equivalent of the big-Oh upper-bound notation. It is especially useful to

246

APPENDIX

Order Name Example

O(1) Constant Adding or multiplying two numbers
(of constant size)

O(logn) Logarithmic Finding an item in a sorted list by
binary search

O(n) Linear Finding an item in an unordered list

O(nlogn) “nlogn” Sorting a list

O(n?) Quadratic Incremental convex hull algorithm

O(n*) Polynomial Motion planning for a (k—1)-DOF
robot arm

O(c") Exponential SET PARTITION via the brute-force
algorithm

capture examples that are difficult for an algorithm. An algorithm has
running time Q(z*) if the time as a function of # is greater than c#* for
some constant ¢ > 0 and for sufficiently large n. Typically one calculates
that an algorithm has an upper bound of, say, O(#?), and then searches
for a class of examples that forces the algorithm to consume Q(#?) time.
When this is achieved, the running time of the algorithm is called #igh:.
Often a gap remains between the upper and lower bounds we can prove,
indicating that complete understanding of the algorithm has not been
achieved.

Obtaining a lower bound on a problem requires establishing a lower
bound for all conceivable algorithms within a certain model of computa-
tion. For example, the decision-tree model counts comparisons, each of
which represents a branch in the tree of decisions, treated as an O(1) com-
putation. Obtaining such a lower bound is considerably more difficult.
When a particular algorithm’s upper bound matches the problem lower
bound, we say the algorithm is asymptotically optimal: asymptotically
because the relationships only hold for sufficiently large 7, and optimal
because the matching bounds imply the upper bound cannot be lowered.

NP-Completeness. The NP-complete and NP-hard problems are
a class of problems for which there is no known polynomial-time
algorithm. Here P is the class of problems that can be solved in
polynomial time; these are the “tractable” ones. And NP is an acronym
for “nondeterministically polynomial,” which can be understood as those
problems whose solutions can be verified quickly (in polynomial time).
For example, if you are presented with a purported solution to the RULER
FOLDING problem of Section 7.3 — a flat configuration whose length is
claimed to be at most L — then it is a simple matter to sum the lengths
with the appropriate sign (as in Figure 7.14) to verify that this sum is less
than or equal to L. However, verifying a given solution quickly is rather
different from finding a solution in the first place.

COMPUTATIONAL COMPLEXITY 247

Although none of the NP-complete problems are known to require
exponential time, no one has found a polynomial-time algorithm for
any of them. Moreover, all NP-complete problems are equivalent to one
another in the sense that if a polynomial algorithm is found for one, then
all can be solved in polynomial time. (NP-hard problems are at least as
difficult as NP-complete problems, and may be worse.) As there are more
than a thousand known NP-complete problems, none with a polynomial
algorithm, the preponderance of evidence is that all are beyond the
polynomial-time class P. However, to date this has not been proved. This
is the famous P = NP problem, among the six unsolved Millennium Prize
Problems.! In the absence of a resolution of this question, establishing
that a problem is NP-complete or NP-hard is taken as strong evidence
that it is intractable.

A few basic problems were proven NP-complete in the 1970s by
the pioneers Stephen Cook, Leonid Levin, and Richard Karp. Since
then, the general method of proving NP-completeness or NP-hardness
is by reducing a problem to another problem that is known to be NP-
complete. If the reduction can be accomplished in polynomial time, and
the problem is in NP, then that suffices to prove the original problem
is also NP-complete. (If the problem cannot be shown to be in NP,
the reduction establishes it as NP-hard.) The SET PARTITION problem,
discussed in Section 7.3, is one example of a known NP-complete
problem.

Another is GRAPH COLORING. We used 3-coloring of triangulations
to prove the Art Gallery Theorem in Section 1.3, and it is known that
every planar graph can be 4-colored, the famous Four-Color Theorem.
But given an arbitrary n#-node graph G, the problem of determining its
chromatic number — the fewest colors needed to color its nodes so that
no two adjacent nodes have the same color — is an NP-complete problem.
As with most NP-complete problems, there is an obvious exponential
algorithm: try all possible 2-colorings, then all possible 3-colorings, and
so forth. Because n colors suffice, this tedious brute-force enumeration
will eventually find the chromatic number. But for this problem, and for
all NP-complete problems, no one has either found a polynomial-time
algorithm, nor proved that exponential time is truly needed.

UNSOLVED PROBLEM 29 P = NP

Either prove that P # NP by showing that some NP-complete
problem needs exponential time, or prove that P = NP by finding
a polynomial-time algorithm for some NP-complete problem.

! http://www.claymath.org/millennium/. The seventh prize problem was the Poincaré
conjecture, now settled as described in Section 5.6.

248 APPENDIX
SUGGESTED READINGS

Thomas Cormen, Charles Leiserson, Ron Rivest, and Cliff Stein. Intro-
duction to Algorithms. MIT Press, 3rd edition, 2009.
Now in its third edition, this massive (1300-page) textbook is both readable and
comprehensive.

Robert Sedgewick. Algorithms in C++. Addison-Wesley, 1992.
A popular textbook that emphasizes implementations. Available in several lan-
guage editions: C, C++, Java.

Jon Kleinberg and Eva Tardos. Algorithm Design. Pearson Education,
2006.
A text that emphasizes design as much as analysis, and connects to real-world
applications at every turn.

Permissions

Figure 3.25. From “Minimum-weight triangulation is NP-hard,” Journal
of the ACM (JACM), 55:2 (2008) 1-29. Used with permission of the
authors,Wolfgang Multzer and Giinter Rote.

Figures 3.26 and 3.27. From J. Danciger, S. Devadoss, D. Sheehy,
“Compatible triangulations and point partitions by series-triangular
graphs,” Computational Geometry: Theory and Applications, 34 (2006)
195-202. Used with permission from Elsevier.

Figure 5.6. From]. Erickson and D. Eppstein, “Raising roofs, crashing
cycles, and playing pool: Applications of a data structure for finding
pairwise interactions,” Discrete and Computational Geometry, 22 (1999)
569-92. Used with permission from Springer Science+Business Media.

Figures 5.18. From “2D Minkowskisums,” Chapter 22 of The CGAL
Manual. http://www.cgal.org/Manual/. Used with permission of the
author, Ron Wein.

Figures 6.24, 6.27, 6.29. From E. Demaine and J. O’Rourke, Geometric
Folding Algorithms: Linkages, Origami, Polyhedra. Cambridge Univ.
Press, 2007. (Figures 23.6, 22.4, 22.17, 24.1). Used with permission
from Cambridge University Press.

Figure 7.8. Used by permission from OwiRobots, Omnico Group.
http://www.owirobots.com/.

Figure 7.18. From “Using motion planning to study protein folding
pathways,” Journal of Computational Biology 9:2(2002) 149-68. Used
with permission from Mary Ann Liebert, Inc.

Figures 7.24, 7.26, 7.27, 7.28, 7.30. From S. Devadoss, “Combinatorial
equivalence of real moduli spaces,” Notices of the American Mathemat-
ical Society 51 (2004) 620-28. Used with permission from the American
Mathematical Society.

This page intentionally left blank

2-coloring, 181, 182
24-, 120-, 600-cell, 161
3-coloring, 16, 247
4-color theorem, 247

Adams, Colin, 244

affine transformation, 143

Aichholzer, Oswin, 90

Aigner, Martin, 205

Al-Buzjani, Mohammad
Abu’l-Wafa, 21

Alexandrov, Alexander, 185, 186,
201, 205

Alexandrov’s theorem, 185,
186, 205

algorithm, 36

— analysis, 39, 41

— time complexity, 245, 246

Amato, Nancy, 229

Amenta, Nina, 149

angle

— bisector, 120, 122, 126

— deficit, 172

— dihedral, 26-31, 156, 158, 160,
178

— face, 157, 159, 172, 185, 201

— interior, 7, 26, 158

— rational vs. irrational, 27,
28, 30

— turn, 7, 174, 176, 180, 181

annulus, 219, 220

Archimedean solid, 160

area

— differential, 171

— minimum, 36

— of polygon, 8, 20, 22, 187

— of triangle, 22, 78

— vector, 78, 79

art gallery problem, 13, 32, 92

art gallery theorem, 1, 13, 16, 19,
32,247

associahedron, 73-78, 96, 97, 161,
167, 240-244

— and associativity, 242

asymptotically optimal, 33,
47,246

Atiyah-Singer index theorem, 172

Aurenhammer, Franz, 90, 117

ball, maximal, 125

Barvinok, Alexander, 58

bellows conjecture, 187

Bern, Marshall, 97, 149

Betti numbers, 168

big-Oh notation, ix, 41, 245

big-Omega notation, 20,

41,245

Birkhoff shortening, 139, 201

Birkhoff, George, 139

blow-up operation, 239

Blum, Harry, 119

Boltyanskii, Vladimir, 32

Bolyai-Gerwein theorem, 24, 25

Bonnet, Pierre, 172

Boots, Barry, 117

boundary

— of cell, 214

— curve, 132, 135

— hull, 36

— of polygon, 2, 7, 14, 118,
188,192

— of polyhedron, 156

— shadow, 54-57

— surface with, 163, 169, 170,
174,175, 186

— surface without, 174, 175

— of Voronoi region, 99, 102

Brown, Kevin, 113, 117

Brownian motion, 145

Canny, John, 214

carpenter’s ruler, 222, 226, 246

Catalan number, 9, 11, 32, 65, 74,
76,78,97,242

Catalan, Eugene, 9

Cauchy, Augustin, 177

Cauchy’s arm lemma, 178-181,
184

Cauchy’s rigidity theorem, 177,
178, 182, 184, 185, 205

Cauchy-Steinitz lemma, 178

cavity, topological, 162, 169

ceiling function, 15

CGAL, 58

chain

— locked, 221, 224, 244

— planar convex, 178, 179, 181

Index

— polygonal, open, 215, 224, 228

— reflex, 65, 69

Chand, Donald, 42

Chand-Kapur algorithm, see
convex hull algorithm,
gift-wrapping

Chin, Francis, 155

Chou, Kai-Seng, 155

Chow, Bennett, 142

chromatic number, 247

Chvital’s theorem, see art gallery
theorem

Chvatal, Vasek, 16

circle

— osculating, 140

— tangent, 140, 154

circumcircle

— empty, 84-86, 116

— of triangle, 84-86, 100, 101,

110-112

COCONE algorithm, 149

combinatorial complexity, 52

combinatorial structure, 90

configuration

— canonical, 226

— flat, 246

configuration space, 206-216, 229

— angles, 217, 218

— cell, 210, 211

— chamber, 237, 238

— connected, 224

— definition, 206

— of particles and collisions, 240

— of particles, 237, 238

— of pentagon, 233, 235, 236

— of polygon, 229, 236, 244

— of quadrilateral, 232, 233

— topology, 230

— of triangle, 231

— of triangulations, 227

Connelly, Robert, 187, 226

convex combination, 34

convex edge, see edge, convex

convex hull, 33-36, 38

— 3D, 51, 52

— 4D, 53,115, 116

— d-dimensions, 53

— lower, 46, 113-116

252 INDEX

— of polygon, 46

— upper, 46, 113, 116

convex hull algorithm

— 2D; gift-wrapping, 44

— 2D; divide-and-conquer, 48, 49,
51; gift-wrapping, 42-44;
Graham scan, 44-46, 53;
incremental, 36, 37, 39-42,
48,49

— 3D; gift-wrapping, 44

— 3D; divide-and-conquer, 56-58;
gift-wrapping, 55; incremental,
53,55,71

— higher dimensions, 58

convex position, 59, 65, 73, 74, 96

convex vertex, see vertex, convex

convex, strictly, 8

convexity, 33, 51, 58, 156, 157

convolution, 132-134, 138, 155

— algorithm, 136

— cycles, 136, 137

— and Minkowski sum, 134, 135

Cook, Stephen, 247

Cormen, Thomas, 248

cover by guards, see guard, cover

cover of surface by curves, 203

Coxeter, H. S. M., 205

critical rotation, 212, 213

Croke, Christopher, 201

Cromwell, Peter, 205

crossing chords, 108, 109

CRUST algorithm, 149, 151, 152,
154,155

— NN-, 154

Curtis, Robyn, 244

curvature, 172

— discrete, 172, 173

— Gaussian, 170, 171, 174, 185

— geodesic, 174-176

curve

— offset, 128, 129; of parabola,
129

— parallel, 128

— reconstruction, 148, 149,
151, 154

curve shortening

— and closed geodesics, 138, 201,
203, 204

— continuous, 140, 141, 143,
148, 155

— discrete, 142, 143, 148

cut locus, 118, 119, 191-193,
198-200

decision-tree model, 41, 46, 246
degenerate, 58

— pentagon, 236

— polygon, 95

— polyhedron, 159

— position, 40, 45, 81, 101

degrees of freedom, 208, 2135,
218,231

Dehn invariant, 28, 30, 188

Dehn, Max, 26, 28

Dehn-Hadwiger theorem,
28-30, 32

Delaunay, Boris, 82, 110, 185

Delaunay triangulation, 79, 82, 83,
86, 88, 97,107, 110-113, 115,
117,151, 153, 154, 166

— empty circle property, 85

— legal edge, 82-86, 110

— as projection, 115

Delaunay triangulation algorithm

— edge flipping, 83, 110

— hull projection, 113, 115

— incremental, 111, 112

Demaine, Erik, 155, 205, 226,
227,244

Descartes, René, 173

Devadoss, Satyan, 244

Dey, Tamal, 149, 154, 155

de Berg, Mark, 117

diagonal

— existence, 4

— external, 8

— noncrossing, 3, 59, 74, 75

— of polygon, 3-5, 7, 9, 14, 20,
48,59,74,77

— of triangulation, 66

diagonalization, 74-76, 78, 79

diameter

— of flip graph, 69, 70, 77, 97

— of graph, 69, 77

— of largest circumcircle, 112

— of point set, 39

dihedral angle, see angle, dihedral

Dijkstra, Edsger, 194

Dijkstra’s algorithm, 194, 195

— continuous, 195, 198

disk, maximal empty, 118-120,
122,124,125

dissection

— existence, 24

— of Greek cross, 21, 22

— number of pieces, 25

— of polygon, 20-22, 26, 32,
199

— of polyhedron, 28, 29, 31

— of prism, 31

— of rectangle, 23, 24

— Sydler’s, 30

divide-and-conquer merge, 48, 49,
51, 55-57

dodecahedron, 27, 158, 159, 173

— great, 160, 164

Dudeny, Henry, 21

Diirer, Albrecht, 190

Diirer’s problem, 190

ear, see polygon, ear

Edelsbrunner, Herbert, 97,
113,117

edge

— contraction, 10

— convex, 156, 184

— flip, 66, 82

— mass, 28, 29

— of polygon, 1

— reflex, 156, 157

— of triangulation, 59

elliptic geometry, 25

Eppstein, David, 149, 155

e-sample, 151, 154

Erickson, Jeff, 155

Euclid, 84, 100, 158, 177

Euler characteristic x, 168-171,
175, 186

Euler’s formula, 52, 63, 64, 71, 94,
103, 162, 164, 165,167-170,
177,205, 236

— proof, 63, 165

Euler, Leonhard, 63, 164

exercises, starred, x

face angle sum, 158

Fields Medal, 146, 147

Fisk, Steve, 16, 18

flat vertex, see vertex, flat

flip graph, 66, 67, 69, 79, 109, 110,
227,242

—3D, 72,73

— connected, 68, 69, 73, 96, 97,
110

— of convex polygon, 74-77, 79

— and Delaunay triangulation,
83, 87

— diameter, 69

— higher dimensions, 72

— of pseudotriangulation, 96

— shortest path in, 70, 71

floor function, 15, 53

flow

— curve-shortening, 140-142,
145,204

— discrete, 142-145

— geometric, 140

— Ricdi, 147, 148, 155

fortress theorem, 18

Fortune, Steve, 104, 117

Frederickson, Greg, 32

Freedman, Michael, 146

Fulton-MacPherson
compactification, 240, 241

Gage, Michael, 141, 203

Gage-Hamilton-Grayson theorem,
141, 147

Gauss, Carl Friedrich, 172

Gauss-Bonnet theorem, 170-172,
174,177

— polyhedral, 173-175, 201

Gelfand, Israel, 78

general position, 40

— no 2 points on vertical, 49, 50

— no 3 points collinear, 43, 60, 63

— no 4 points cocircular, 81, 83,
85, 87,101, 103, 109, 110

— no 4 points coplanar, 71, 72

genus, 163, 167171, 194, 230,
236

geodesic, 200

— quasigeodesic, 200-205

Geographic Information Systems
(GIS), 33,117, 125

Glickenstein, David, 142

Gluck, Herman, 187

graph

— coloring problem, 247

— connectivity, 211-213

— diameter, 69

— dual, 166

— loop, 63

grassfire transformation, 120,
122,126

Grayson, Matthew, 141, 201,
203

greedy algorithm, 88

Green, Peter, 104

Green-Sibson algorithm, see
Voronoi diagram algorithm,
incremental

Griinbaum, Branko, 205

guard, 13-20, 92

— cover, 14-20

— edge, 18

Hadwiger, Hugo, 28

Haiman, Mark, 75

Hamilton, Richard, 141,
147,203

handle, topological, 236

Hanke, Sabine, 70

heat equation, 140, 144, 145,
148

Hilbert, David, 26, 32

Hoey, Dan, 104

homeomorphism, 146, 147,
162-164, 236

homology, 169, 204

Hong, Se Jun, 49

Hopcroft, John, 222

hyperbolic geometry, 25, 77, 97

hypercube, 13, 160, 161

icosahedron, 158, 159
— truncated, 160, 188, 189
illumination, see guard, cover

joint, kinked, 221

Jonash, Eric, 76

Jordan curve theorem, 2, 134
Jordan, Camille, 2

Joseph, Deborah, 222

Kahn, Jeff, 18

Kapala, Sam, 76
Kapranov, Mikhail, 78
Kapur, Sham, 42
Karp, Richard, 247
Kepler, Johannes, 164
Kettner, Lutz, 58
Klawe, Maria, 18
Klee, see art gallery problem
Klee, Victor, 13

Klein, Rolf, 117
Kleinberg, Jon, 248
Kleitman, Daniel, 18
knitting needles, 224
knot, 225, 244
Krasser, Hannes, 90

L’Huilier, Simon, 168

LaValle, Steven, 244

Lawson, Charles, 68, 97

LEDA, 58

Lee, Carl, 75

LEFT-OF test, 43

Legendre, Adrien-Marie, 164

Leiserson, Charles, 248

Levin, Leonid, 247

lexicographical ordering, 71, 82

Lindgren, Harry, 21

line of support, 38

line segment, 1

Lipschitz continuity, 154

Lloyd, Errol, 88

local feature size, 150-152

locus, 118

loop, contractible, 146, 163

lower bounds, 33, 41, 46, 47, 246

Lyusternik, Lazar, 201

Lyusternik-Schnirelmann theorem,
200, 201, 203

machining

— numerically controlled, 125
— pocket, 128

manifold

—2-, 146

— 3-, 146, 147, 230, 235, 244
— Cartesian product, 230

— closed, 146

— n-, 146-148, 243

— simply connected, 146

— singularity, 147, 236
McCammond, Jon, 97

INDEX 253

medial axis, 118-121, 125, 126,
129, 150, 155, 192, 193

— algorithm, 122, 124

— of convex polygon, 122-124,
126

— parabolic arcs, 124, 125

— polyhedron, 120, 121

— of polyhedron, 127

— and Voronoi diagram, 119

Mehra, Rohan, 187

midpoint transformation, 138-140

Millennium Prize, 147, 247

Minkowski sum, 128-132, 134,
135, 137, 138, 155, 206-211,
219,220

— algorithm, 135

— complexity, 137

Mitchell, Joseph, 195

miter join, 128, 129

moduli space, 206, 243, 244

Morgan, John, 155

Morse function, 233, 234

Morse, Marston, 233

Morse theory, 233, 244

motion capture, 90

motion planning, 98, 130, 132,
206, 207, 229, 244, 246

— algorithm, 207, 208

— cell decomposition, 210-214

— complexity, 244

— for ladder, 209-215

— probabilistic roadmap, 228,
229

— for robot arm, 215, 226

— rotational, 209, 210

— sampling-based, 229

— translational, 132, 207

motion, expansive, 227

Mount, David, 195

mouth, see polygon, mouth

Mulzer, Wolfgang, 88, 89

Niher, Stefan, 58

nearest neighbor CRUST
algorithm, 154

net for polyhedron, 188-190, 198

— general, 190, 196, 198-200

Nicolson, Norman, 187

NP, 246

NP-complete, 6, 14, 88, 222,
246, 247

NP-hard, 88, 246, 247

O’Rourke, Joseph, 18, 32, 58, 155,
2085, 244
O(), see big-Oh notation
octahedron, 158, 159, 161,
186, 187
Okabe, Atsuyuki, 117

254 INDEX

Q(), see big-Omega notation

open problem, see unsolved
problem

Ottmann, Thomas, 70

output-sensitive algorithm, 44, 53

Overmars, Mark, 117

P, 246

Papadimitriou, Christos, 195

parabola

— convex hull lower bound, 46

— directrix, 124

— focus, 124

— in medial axis, 124, 125

— offset curve, 129

paraboloid, 113-117

particle collisions, 239, 242-244

— simultaneous, 239

Perelman, Grigori, 147

perimeter

— equi-partition, 26

— gluing, 185, 186

— minimum, 36, 48

phylogenetic trees, 243

piecewise linear, 79, 80, 127

pigeonhole principle, 7, 17

plane sweep algorithm, 104

Plato, 158

Platonic solids, 30, 156, 158, 159,
161, 193, 198

Pogorelov, Aleksei, 201

Poincaré, Henri, 119, 146, 191,
200, 201

Poincaré conjecture, 138, 146, 147,

155, 163, 247

point

— critical, 233-235

— round, 141, 143, 204

polygon, 1

— comb, 15

— ear, 7

— exterior, 18

— with holes, 4, 8, 17, 18, 77

— mirror, 19

— mouth, 8

— orthogonal, 17, 18

— reconstruction, 151, 152

— regular, 157

— simple, 1, 139, 142, 144, 199

— spherical, 157, 183-185

— star, 15

polyhedron

— 1-skeleton, 75, 96, 165

— convex, 156,157,178, 185,
190, 202; source unfolding,
196-199; star unfolding,
196, 198

— definition, 5, 162, 163

— flattening, 128, 155

— flexible, 187, 188

— medial axis, 120

— net, see net for polyhedron

— nonconvex, 157, 167, 176,
177,187

— orthogonal, 127

— regular, 158, 160

— Schonhardt, 6, 19

— Seidel, 20

— Steffen, 188

— straight skeleton, 127

— uniform, 160

polytope

— 4D, 161

— associahedron, 76, 96, 242

— cross, 161

— regular convex, 76, 160, 161,
205

— secondary, 78

Preparata, Franco, 47, 49, 58

Preparata-Hong algorithm, see
convex hull algorithm,
divide-and-conquer, 3D

priority queue, 124

proof sketch, x

protein

— folding problem, 228

— structure, 218, 228, 229

pseudotriangle, 92, 93

pseudotriangulation, 93, 94, 228

— minimal, 95

— pointed, 93-96

quantum number, 134

quasigeodesic, see geodesic,
quasigeodesic

quench point, 118, 120

reachability region, 219, 221
recursion vs. induction, 48
reflex, 9
reflex chain, see chain, reflex,
reflex edge, see edge, reflex
reflex vertex, see vertex, reflex
rendezvous problem, 143
Ricci flow, see flow, Ricci
Ricci tensor, see tensor, Ricci
Riemann-Roch theorem, 172
rigid, infinitesimally, 187
Rivest, Ron, 248
roadmap algorithm, 214, 228
robot arm, 215-219, 221, 229,
246
— reachability, 215, 219, 244
robot, serpentine, 218
robust computation, 58
rotating calipers, 133
Rote, Gunter, 88, 89, 96, 226
Ruppert, Jim, 6

Saalfeld, Alan, 91
Sabitov, Idzhad, 187
Santos, Francisco, 72, 96
Schirra, Stefan, 58
Schlifli, Ludwig, 160
Schlifli symbol, 160, 161
Schlegel diagram, 161, 165, 241
Schnirelmann, Lev, 201
Schonhardst, Erich, see polyhedron,
Schonhardt
Schreiber, Yevgeny, 196
Schuierer, Sven, 70
Schwarzkopf, Otfried, 117
scissors congruent
— 2D, 20-25, 199
— 3D, 26, 29, 30, 32
Sedgewick, Robert, 248
segment, line, 1
Seidel, Raimund, 6, 19, 58, 113,
117
set partition problem, 222,
246, 247
Shamos, Michael, 47, 58, 104
Sharir, Micha, 65, 196, 244
Sheffer, Adam, 65
Shewchuck, Jonathan, 97
Shimamoto, Don, 244
Shor, L. A., 186
shortest path
— in flip graph, 70, 71
— in graph, 194
— in polygon, 9, 119, 192
— on polyhedron, 188, 190-193,
196, 199, 200; algorithm, 194,
195
Sibson, Robin, 104
sign alternation, 181, 184
simple polygon, see polygon, simple
simplex
—4-,161, 238, 241
— n-, 13, 161, 238, 239, 241
simply connected, 1, 146, 147, 163
Sleator, Daniel, 77, 97
Smale, Stephen, 146
Snoeyink, Jack, 155
Song, Guang, 229
source unfolding, see polyhedron,
convex, source unfolding
space complexity, 245
spanning tree, 88, 165, 166, 194,
197-199
— minimum (MST), 88, 89
special orthogonal group SO(3),
230
sphere
— 3-, 146, 147
— polyhedral, 162, 163, 167,
173,174
Stanley, Richard, 32

star

— diagram, 136

— unfolding, see polyhedron,
convex, star unfolding

— of vertex, 68, 69

Stasheff, James, 76

state space, 206

Steffen, Klaus, 187

Stein, Cliff, 248

Steiner, Jakob, 91

Steiner, Marcel, 244

Steiner point, 91, 92

Steinitz, Ernst, 178, 179

straight skeleton, 125-128, 155

— of polyhedron, 127, 128

Streinu, Ileana, 96

string theory, 243

Sugihara, Kokichi, 117

supporting line, 38

surface

— connected, 162

— orientable, 167, 169

— reconstruction, 149, 154,
155

Sydler, Jean-Pierre, 30

Sydler’s theorem, 30, 31

tangent

— circle, 140, 154

— line, 38, 39, 42, 49-51, 55

— plane, 55, 114-116, 174

— vector, 133

Tardos, Eva, 248

Tarjan, Robert, 77, 97

tensor

— metric, 147

— Ricci, 147, 148

terrain, 79-81, 113

— reconstruction, 79, 81

tetrahedralization, 1, 5, 12, 13, 19,
71,73, 97

— of cube, 5,13

— Delaunay, 115, 116

— impossible, 19, 20

— number of tetrahedra, 71, 72

— space of, 72

Thales’ theorem, 83, 84, 86

Thurston, William, 77, 97

Tian, Gang, 155

torus, 146, 162, 163, 190, 217,
218,230, 234

— 3D, 243

— n-dimensional, 230

Toussaint, Godfried, 18

tree, interdigitating, 166

triangle circumcircle, see
circumcircle of triangle

— skinny, 81, 87

triangulation

— 3-coloring, 16

— canonical, 227

— compatible, 90-92

— of convex polygon, 9, 11, 242

— dual, 109, 110, 116, 242

— existence, 3—5

— fatness, 82, 83, 110

— greedy, 88, 89

— inducing, 13

— minimum weight (MWT), 87-89

— n-dimensional, 13

— number of, 8, 11, 12, 65

— number of triangles, 7, 8, 63, 65

— Pitteway, 110

— of point set, 59

— of polygon, 1, 3, 242

— of polygon with holes, 4

— space of, 68,227

— unique, 8, 11, 110

triangulation algorithm

— incremental, 62, 63, 68, 69, 227

— triangle-splitting, 60-63

triangulation, Delaunay, see
Delaunay triangulation

tube notation, 238

turn angle, see angle, turn

uniform distribution, 39

unsolved problem, x, 41, 245

— 1: Tetrahedralizable
Polyhedra, 6

— 2: Counting Triangulations, 12

— 3: Simplices and Cubes, 13

— 4: Visibility Graphs, 16

— 5: Edge Guards, 18

— 6: Mirror Walls, 19

— 7: Fair Partitions, 26

— 8: Dehn Construction, 31

— 9: Five-Piece Puzzle, 31

— 10: 3D Graham scan, 53

— 11: Triangulation Algorithm, 65

— 12: Shortest Paths, 71

— 13: Flip Graph in 3D, 73

— 14: Flip Graph Diameter, 77

— 15: Flip Graph Diameter Proof,
77

— 16: Minimum Weight
Triangulation, 89

— 17: Compatible Triangulations,
91

— 18: Pseudotriangulations, 96

— 19: Voronoi Diagram of lines in
3D, 112

— 20: Straight Skeleton, 128

— 21: Discrete Flow, 143

— 22: Curve Reconstruction, 154

— 23: Flexible Polyhedra, 188

INDEX 255

— 24: Diirer’s Problem, 190

— 25: General Nets, 200

— 26: Finding Quasigeodesics, 202
— 27: 3D Unit Chains, 226

— 28: 3D Locked Chains, 226
—29: P = NP, 247

upper bounds, 40, 246

Vanderwaart, Catherine, 244

van Kreveld, Marc, 117

vertex

— convex, 8

— flat, 2, 8, 40, 159, 186

— of polygon, 1

—reflex, 8, 9, 11, 15, 124, 126,
128

visibility, 14, 18, 33, 38, 41, 54,
55,62,199

— of face, 54

— graph, 16

von Staudt, Karl, 164

Voronoi, Georgy, 98, 110

Voronoi diagram, 98, 99, 115,
117, 118

— and arrangements, 117

— combinatorial complexity, 103,
104, 112

— and cut locus, 197, 198

— disconnected, 103

— dual, 107-111, 116, 166

— edge, 99, 102, 116

— farthest-point, 116

— geometry, 98

— of lines in 3D, 112

— and medial axis, 119

— one-dimensional, 107

— of polygon, 128

— region, 98-100, 104, 106, 116

— uniqueness, 110

— from upper envelope, 115

— vertex, 99-102, 116, 152

Voronoi diagram algorithm,
104, 111

— divide-and-conquer, 107, 116

— Fortune’s plane sweep, 104, 117

— incremental, 104-106, 112

Wang, Co An, 155

Wein, Ron, 138, 155

Welzl, Emo, 65

Whitesides, Sue, 222

Whitney stratification, 214
winding number, 133-136, 176
Wood, Derick, 18

Zaremba, Stanislaw, 179
Zelevinsky, Andrei, 78
Zhu, Xi-Ping, 155

	Cover
	Title
	Copyright
	Contents
	Preface
	1 POLYGONS
	1.1 Diagonals and Triangulations
	1.2 Basic Combinatorics
	1.3 The Art Gallery Theorem
	1.4 Scissors Congruence in 2D
	1.5 Scissors Congruence in 3D

	2 CONVEX HULLS
	2.1 Convexity
	2.2 The Incremental Algorithm
	2.3 Analysis of Algorithms
	2.4 Gift Wrapping and Graham Scan
	2.5 Lower Bound
	2.6 Divide-and-Conquer
	2.7 Convex Hull in 3D

	3 TRIANGULATIONS
	3.1 Basic Constructions
	3.2 The Flip Graph
	3.3 The Associahedron
	3.4 Delaunay Triangulations
	3.5 Special Triangulations

	4 VORONOI DIAGRAMS
	4.1 Voronoi Geometry
	4.2 Algorithms to Construct the Diagram
	4.3 Duality and the Delaunay Triangulation
	4.4 Convex Hull Revisited

	5 CURVES
	5.1 Medial Axis
	5.2 Straight Skeleton
	5.3 Minkowski Sums
	5.4 Convolution of Curves
	5.5 Curve Shortening
	5.6 The Heat Equation
	5.7 Curve Reconstruction

	6 POLYHEDRA
	6.1 Platonic Solids
	6.2 Euler’s Polyhedral Formula
	6.3 The Gauss-Bonnet Theorem
	6.4 Cauchy Rigidity
	6.5 Shortest Paths
	6.6 Geodesics

	7 CONFIGURATION SPACES
	7.1 Motion Planning
	7.2 Polygonal Chains
	7.3 Rulers and Locked Chains
	7.4 Polygon Spaces
	7.5 Particle Collisions

	Appendix: Computational Complexity
	Permissions
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	Z

