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Preface

Triangulations appear in many different parts of mathematics and computer science since they are the natural way
to decompose a region of space into smaller, easy-to-handle pieces. From volume computations and meshing to
algebra and topology, there are many natural situations in which one has a fixed set of points that can be used as
vertices for the triangulation. Typically one wants to find an optimal triangulation of those points or to explore the
set of their all triangulations. The given points may represent the “sites” for a Delaunay triangulation computation,
the test points for a surface reconstruction, or a set of monomials, represented as lattice points in Z

d , in an algebraic-
geometric meaning.

A central theme of this book is to use the rich geometric structure of the space of triangulations of a given
set of points to solve computational problems (e.g., counting the number of triangulations or finding optimal
triangulations with respect to various criteria), and for setting up connections to novel applications in algebra,
computer science, combinatorics, and optimization. Thus at the heart of the book is a comprehensive treatment of
the theory of regular subdivisions, secondary polytopes, flips, chambers, and their interactions. Again, we firmly
believe that understanding the fundaments of geometry and combinatorics pays up for algorithms and applications.

The book is designed to serve as a textbook or for self-guided study. It was written with graduate students or
advanced undergraduates as the target audience (in fact, several groups of students were kind enough to let us test
the book with them). Beyond good knowledge of linear algebra, all that is required to use this book is maturity to
read and understand proofs. With many examples and exercises, and with over five hundred illustrations, we aim
to gently introduce beginners to the properties of the spaces of triangulations of “highly-structured” (e.g., cubes,
cyclic polytopes, lattice polytopes, etc.) and “pathological” situations (e.g., disconnected spaces of triangulations,
NP-hardness constructions, etc.). We do this in arbitrary dimension, while using only elementary geometric prin-
ciples. We are excited to present many open questions. Some are new, but many have been open for some time.
Also, the book contains many new results appearing here for the first time, besides corrections and simpler proofs
of well-known theorems.

Chapter 1 describes several instances where triangulations of a point set naturally arise in combinatorics, opti-
mization, and algebra, as motivation for the rest. A reader may select which parts he or she is most interested in
and skip the rest. None of the material is a prerequisite for later chapters, but we hope to communicate some of the
exciting and diverse applications possible and to show that triangulations are worth studying by outsiders.

Chapters 2 and 4 lay out the formal language, notation, and basic constructions. Concerning the language, we
have decided to distinguish between the points (or vectors) of a configuration and the labels used to denote them.
This may look awkward to the beginner at first sight but it has many advantages in the long run.

Chapter 3, is an “interlude” devoted specifically to what happens in two dimensions and a quick glance at
dimension three. This chapter is almost independent from the rest and we hope it will help the reader to build
intuition and to motivate, in a visual way, the challenges to come in arbitrary dimension (e.g., the notion of flip,
enumeration, optimization, etc). Because Chapter 3 lies in between two more technical chapters we included more
examples and applications that helped balance the presentation. It is a fun detour through a very active area of
computational geometry.

Chapter 5 contains what is probably the central theorem of the book: Gelfand, Kapranov, and Zelevinsky’s
ground-breaking construction of a polytope with face lattice equal to the poset of regular subdivisions for any
given configuration. This theorem is the central tool for flipping algorithms such as the incremental randomized
construction of Delaunay triangulations, customary in Computational Geometry.

The next two chapters are devoted to the study of important examples of configurations (Chapter 6) and trian-
gulations (Chapter 7). In the first one, nice combinatorial structures allow for a deeper study of the properties of
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these examples, while in the latter the focus is on ingenious constructions of pathological triangulations (discon-
nected flip-graphs, and triangulations with very few or no flips).

Chapter 8 focuses on computation and algorithms. We start with a discussion of data structures and discuss meth-
ods for enumeration and optimization in triangulations of arbitrary dimension. Here we prove that the structural
understanding helps with the design algorithms, software, and the analysis of computational complexity.

Finally, Chapter 9 explores generalizations or different ways of looking at some of the structures in the rest of
the book. Some of these “further topics” are so rich they could be themselves central topics of books. Interesting
directions discussed include fiber polytopes, Cayley’s construction, Gröbner bases, connections to lattice points
and Ehrhart functions, and the combinatorics of simplicial spheres.

If you are a teacher planning to give a one semester course based on this book, the core of it should be Chap-
ters 2, 4 and 5, ending with Section 5.3. These chapters develop the structure on which most of the rest is based.
Some parts can be omitted if you need to go to the essentials. These include Sections 2.6 and 4.5. The former
relates triangulations with classical topics in polytope theory and the latter is meant as a comprehensive reference
list of different ways in which triangulations can be characterized.

Despite our very best intentions there surely remain some errors or typos in the text. We take full responsability
for that and plan to post a list of errors and typos at our web sites. Please do let us know via email (our web
addresses are listed below) if you find any. (And feel free to write to us with your triangulation stories too!)

This book took too long to write and required the help of many friends and colleagues who taught us and inspired
us with their mathematics and wisdom. We are truly grateful to the following people for their ideas, corrections,
comments, questions, suggestions, or simply because they patiently kept asking about our seemingly never-ending
book project:

Manuel Abellanas, Oswin Aichholzer, Nina Amenta, Christos Athanasiadis, David Avis, Miguel Azaola, Eric
Babson, Imre Bárány, David Barnette, Alexander Barvinok, Margaret Bayer, Matthias Beck, Alexander Below,
Andrew Berget, Marshall Bern, Louis J. Billera, Anders Björner, Jürgen Bokowski, Prosejit Bose, Lewis Bowen,
Javier Bracho, David Bremner, Winfried Bruns, Igor Chaplygin, Robert Connelly, Mike Develin, Herbert Edels-
brunner, Richard Ehrenborg, David Eppstein, Komei Fukuda, Isidoro Gitler, David Gove, Peter Gritzmann, Joseph
Gubeladze, Christian Haase, David Haws, Raymond Hemmecke, Martin Henk, Sven Herrmann, Takayuki Hibi,
Serkan Hoşten, Katherine Jones, Michael Joswig, Gil Kalai, Jean-Michel Kantor, Victor Klee, Steve Klee, Edward
D. Kim, Matthias Köppe, Francisco Larrión, James Lawrence, Carl W. Lee, Fu Liu, Monika Ludwig, Frank Lutz,
Diane Maclagan, Peter Malkin, Jirka Matoušek, Tyrrell McAllister, Luis Montejano, Walter Morris, Oleg Musin,
Victor Neumann-Lara, Eran Nevo, Isabella Novik, Mohamed Omar, Shmuel Onn, David Orden, Joseph O’Rourke,
Edwin O’Shea, Lior Pachter, Igor Pak, Julian Pfeifle, Vincent Pilaud, Richard Pollack, Alexander Postnikov, Pedro
Ramos, Tomás Recio, Victor Reiner, Jürgen Richter-Gebert, Leni Rostock, Günter Rote, Raman Sanyal, Achill
Schürmann, Jozsef Solymosi, Richard P. Stanley, Mike Stillman, Ileana Streinu, Bernd Sturmfels, Francis Su,
Thorsten Theobald, Rekha Thomas, Jorge Urrutia, Frank Vallentin, Michèle Vergne, Rafael Villarreal, Robert
Weismantel, Roger J-B Wets, Emo Welzl, Jörg Wills, Andrei Zelevinsky, Günter M. Ziegler, and Chuanming Zong.
Last, but not least, we thank the anonymous referees who gave us excellent comments and suggestions for the book.

Several institutions supported us during the writing journey and hosted the other visiting co-authors several
times. Of course, our home institutions, University of California, Davis, Universität Bayreuth, and Universidad de
Cantabria, were key hosts of our book activities, but earlier versions of the book were also discussed, taught, or
written during our various stays at the Geometry Center of the University of Minnesota, ZIB-Berlin, ETH-Zürich,
MSRI-Berkeley, and Universität Magdeburg. The Universidad de Cantabria and the Mathematical Sciences Re-
search Institute at UC Berkeley gave us the unique opportunity to deliver Summer courses in 2001 and 2003 on
the topic of the book, which very much shaped its current contents and format. The Mathematisches Forschungin-
stitut Oberwolfach allowed us to meet in their “Research in Pairs” program for two weeks in the Summer of 2005.
This book benefited from the financial support received through grants from the National Science Foundation
(DMS-0914107, DMS-0608785, DMS-0309694, and DMS-0073815), the Alexander von Humboldt Foundation,
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and the Spanish Ministry of Science and Innovation. We are grateful for the support we received.

Above all we are truly grateful to our wives Ingrid, Nicole, and Mónica, and our three pairs of children Antonio
and Andrés, Magdalena and Anna, Jon Ander and Íñigo, for their love, encouragement and support. Whenever
we were meeting for the book, either in Davis, Bayreuth, or Santander, we enjoyed the warm hospitality of the
respective host family, their friendship, and their appreciation for our work on the book. Most of all we thank them
for being with us in the first place. In a way this book belongs to them!

Jesús A. De Loera, Jörg Rambau, and Francisco Santos April 2010
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Triangulations in
Mathematics 1

Figure 1.1: A point configuration.

When solving a difficult problem it is a natural idea to decompose com-
plicated objects into smaller, easy-to-handle pieces. In this book we study
such decompositions: triangulations of point configurations. We will look
at triangulations from many different points of view. We will explore their
combinatorial and geometric properties, as well as some algorithmic issues
arising along the way.

This first chapter is designed to informally introduce the fundamental
notions to come in later chapters. We provide motivating examples to con-
vince the reader that triangulations are useful and that they appear in many
areas of mathematics. The reader can skip most of this chapter safely, or
read the sections in an order different than the one presented. The exam-
ples also provide an entry door for non-discrete-geometers (e.g., algebraic
geometers, computer scientists, linear programming enthusiasts, etc.) that
wish to learn about triangulations for their research, connecting our book to
their topic. Without further delay we begin.

A point configuration1 is a finite collection of points A = {a1, . . . ,an} in
Euclidean space R

d .
The convex hull of A is by definition the intersection of all convex sets

containing the points in A. We denote it by conv(A). Figure 1.2: Its convex hull.

A k-simplex is the convex hull of k +1 affinely independent points in R
d

(clearly d ≥ k). Simplices are the simplest of polyhedra: points, segments,
triangles, tetrahedra, etc. A j-face of a k-simplex is the convex hull of j+1
of its vertices and thus in particular is a j-simplex itself. We say that the
empty set is a (−1)-dimensional face common to all simplices, so that every
k-simplex has exactly

(k+1
j+1

)
j-faces for j = −1,0,1, . . . ,k. A simplex of A

is a simplex whose vertices are taken from A.
Here is the main actor in this play:

Definition 1.0.1. A triangulation of a point configuration A ∈ R
d is a col-

lection T of d-simplices all of whose vertices are points in A that satisfies
the following two properties:

1. The union of all these simplices equals conv(A). (Union Property)

2. Any pair of these simplices intersects in a common face (possibly
empty). (Intersection Property)

1The word configuration is used to distinguish this from a set of points: in a subset of
R

d there can be no multiple points, whereas in a configuration we, in principle, are allowed
to have ai = a j for some i �= j and still consider ai and a j two different elements of A. See
Chapter 2 for explanations and justifications of this.

Jesús A. De Loera et al., Triangulations, Algorithms and Computation in Mathematics,
DOI 10.1007/978-3-642-12971-1_1, c© Springer-Verlag Berlin Heidelberg 2010



2 Triangulations in Mathematics

As a particular case, by a triangulation of a convex polytope P we mean
a triangulation of the point configuration given by the vertices of P.

In Figures 1.3 and 1.4 we show examples of the possible pathologies that
may prevent a triangulation.

Figure 1.3: The union of simplices is not the

whole convex hull (union property fails).

Figure 1.4: The intersection of simplices is not

proper (intersection property fails).

Figure 1.5: This example satisfies both the union

and intersection properties, thus it is a

triangulation.

Let us emphasize two features that distinguish our definition from other
definitions of the word triangulation that the reader may have seen before:

1. With very few exceptions, we will fix in advance the set A of points
that can be used as vertices, and it is a finite set. In particular, the
number of triangulations of a point configuration is always finite.
This does not happen in classic combinatorial topology or in some
applications, where one is free to use arbitrary additional points.

2. We do not insist that all points of A are used as vertices in a triangu-
lation. For example, if our point configuration consists of points in
R, then there is one triangulation with only one simplex (the whole
segment conv(A)) and two vertices (the two convex hull extremes of
the line segment conv(A)), regardless of how many points we may
have in A. This differs from the standard use of triangulations in
Computational Geometry, where one usually requires all the points
to be used. Thus we make the following definition:

Definition 1.0.2. Let A ⊂ R
d be a point configuration. We call a triangula-

tion of A full if all the points of A are vertices of it.

The first of these two features gives our setting a strong combinatorial
flavor. Actually, to describe a particular triangulation we will normally
number the points of A from 1 to n and give the list of vertex sets of the
d-simplices in the triangulation. For example, the five triangulations of a
pentagon would be written as:

{ {1,2,3},{1,3,4},{1,4,5} } , { {1,2,5},{2,3,5},{3,4,5} } ,

{ {1,2,5},{2,4,5},{2,3,4} } , { {1,4,5},{1,2,4},{2,3,4} } ,

and { {1,2,3},{1,3,5},{3,4,5} } .

We will even abbreviate {1,2,3} as 123 and so on, whenever this creates
no confusion.
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Figure 1.6: The five triangulations of a pentagon.

In this case all triangulations are full.

Why should anyone care about studying triangulations of point configu-
rations? It is our intention to illustrate, with some examples, how several of
the fundamental defining properties of triangulations draw themselves into
topics that, at first sight, seem far apart from the geometry of triangulations.

1.1 Combinatorics and triangulations

It is well-known that polyhedra can be quite useful when dealing with com-
binatorial problems. In this section we show two examples of combinato-
rial identities that have interpretations in terms of triangulations. Let us
start with what is possibly the simplest example of the structures studied
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in this book: the set of triangulations of a convex polygon. Let Cn be a
convex polygon with n vertices, numbered from 1 to n in clockwise order.
The first observation is that the number of triangulations does not depend
on the coordinates of the vertices. Indeed, a triangulation will be given by
any n− 3 diagonals not crossing one another, and two diagonals cross if
and only if they involve four vertices in an alternating way. That is to say,
if 1 ≤ i < j < k < l ≤ n, then the only two diagonals involving these four
points and crossing each other are ik and jl.

In particular, the number of triangulations of a convex n-gon is a number
depending only on n and that we will denote by tn. The first instances are
easy to compute: t3 = 1, t4 = 2, t5 = 5 (see Figure 1.6), and t6 = 14 (see
Figure 1.15).

Proposition 1.1.1. Setting t2 = 1 by convention, the sequence of numbers
t2,t3,t4, . . . satisfies the following recurrence relation:

tn = t2tn−1 + t3tn−2 + · · ·+ tn−1t2.

· · ·

1

2

3

4

S1 S2

k

k +2

n

k +1

· · ·

Figure 1.7: Setting up a recursion for R(n).

Proof. In every triangulation of Cn the edge {1,n} is a side of exactly one
of the triangles, say {1,k,n}. The total number of triangulations, then, is
the sum of the triangulations using the triangle {1,k,n} for k ranging from
2 to n−1.

For a fixed k, the complement of the triangle {1,k,n} consists of two
polygons S1 and S2 with k and n− k + 1 vertices, respectively. Since the
polygons S1 and S2 can be triangulated independently, the number of trian-
gulations of Cn using the triangle {1,k,n} equals tktn−k+1. (Of course, we
admit S1 or S2 being a single edge, or a “2-gon”, if k = 2 or k = n−1. We
take t2 = 1 because this makes t2tn−1 be equal to tn−1).

The recurrence formula is obtained by adding this for k = 2, . . . ,n−1.

The recurrence formula in the statement allows us to easily compute fur-
ther terms in the sequence, for example t7 = 1 · 14 + 1 · 5 + 2 · 2 + 5 · 1 +
14 · 1 = 42 and t8 = 1 · 42 + 1 · 14 + 2 · 5 + 5 · 2 + 14 · 1 + 42 · 1 = 132. A
closed formula for ti can be deduced from the recurrence with the method
of generating functions (see Exercise 1.5), but here we use a more direct
approach to find it.

Theorem 1.1.2. The number tn of triangulations of a convex n-gon equals

1
n−1

(
2n−4
n−2

)
.

Proof. As before, we assume the vertices of the n-gon to be labeled from 1
to n in clockwise order. Denote by Δ(Cn) the set of all triangulations of an
n-gon, and their number by tn. We are going to set up a simple surjective
map f from Δ(Cn+1) onto Δ(Cn). A triangulation in Δ(Cn+1) is mapped
to the triangulation in Δ(Cn) obtained by contracting the boundary edge
{1,n + 1} (see Figure 1.8).

2

3

f

n + 1

n

n

1

4

3

2

1

4

Figure 1.8: The contracting map.

Our crucial observation is that the number of triangulations in Δ(Cn+1)
mapped to a certain triangulation T in Δ(Cn) equals the number of edges
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incident to vertex 1 in T (the degree of vertex 1 in T ). This is true be-
cause, to reverse the map f , we must choose one edge incident to 1 and
“double” it to obtain a triangle incident to the edge {1,n+1} (For example,
in Figure 1.8 one has to double the edge {1,4}). This implies that

tn+1 = ∑
T ∈Δ(Cn)

degT (1).

By cyclic symmetry of the n-gon, this same formula must hold for any other
vertex of it. Hence:

ntn+1 =
n

∑
i=1

∑
T ∈Δ(Cn)

degT (i) = ∑
T ∈Δ(Cn)

n

∑
i=1

degT (i).

But it turns out that the sum ∑n
i=1 degT (i) is independent of T ; it equals

twice the number of edges of T , that is, 2(2n−3). Hence:

tn+1 =
2(2n−3)

n
tn, or tn =

2(2n−5)
n−1

tn−1.

From this we conclude that:

tn =
2n−2(2n−5)(2n−7) · · ·3 ·1

(n−1)(n−2) · · ·3 ·2 (1.1)

=
(2n−4)!

(n−1)!(n−2)!
=

1
n−1

(
2n−4
n−2

)
. (1.2)

The sequence of numbers we have just found is known as the Catalan
numbers (see Definition 1.1.4 below) and is one of the most important num-
ber sequences in combinatorics, perhaps comparable to the well-known Fi-
bonacci sequence. We remark that asymptotically these numbers grow (up
to a constant factor) like 4nn−3/2. This may be seen by using Stirling’s
approximation of the factorial. As an example of the ubiquity of the Cata-
lan numbers, the following statement lists four other combinatorial struc-
tures whose cardinality is given by the Catalan sequence, and Exercise 6.19
in [307, p. 219] contains 61 additional such examples.

R

(a (b (c d)))

((a (b c)) d) (a ((b c) d))

R

RR

R

((a b)(c d))

(((a b) c) d)

Figure 1.9: The five binary trees in 3 nodes, with

their associated parenthesizations.

Theorem 1.1.3. There are as many triangulations of a convex polygon with
n + 2 vertices as:

(i) Binary trees with n nodes (and hence n−1 edges).

(ii) Parenthesizations of the product of n + 1 factors, that is to say, ways
of placing n pairs of parentheses in order to perform the product.

(iii) Sequences of length 2n consisting of n plus signs and n minus signs,
with the property that in every initial segment of the sequence there
are at least as many pluses as minuses.
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(iv) Monotone paths in the integer grid, going from (0,0) to (n,n) by steps
of length 1 in the positive directions of the axes, and never going
above the diagonal.

One interesting feature of the equivalence to sign sequences is that it im-
mediately shows that the number of triangulations of an n-gon is bounded
above by 22n−4. Of course, that is also clear from Theorem 1.1.2, but its
proof needed some work. Moreover, the equivalence explicitly tells us how
to write a given triangulation as a binary number of length 2n−4.

Before proving Theorem 1.1.3, let us recall the definition of binary trees.
A tree is a connected simple graph with no cycles [63]. We are interested in
rooted trees, i.e., trees with a special distinguished node, called the root. In
rooted trees, one can direct the edges naturally along the unique paths from
each node to the root node. This establishes a hierarchy among the nodes:
node v1 becomes a child of node v2 if they are adjacent and the edge joining
them is directed from v2 to v1 (v2 is the parent of v1). Rooted trees are
normally drawn with the root on top and with parents above their children.

Reference edge

Figure 1.10: A binary tree dual of a triangulation.

A binary tree is a rooted tree in which each edge is marked as a right
or left edge of its parent and each node has at most one right child and at
most one left child (in particular, each node has either 0,1 or 2 children).
In Figure 1.9 we show the five different binary trees on three nodes. As
it is customary, a left child is drawn toward the left-down direction and a
right child is drawn toward the right-down direction. Binary trees are very
useful combinatorial structures due to applications in data structures and
the design of algorithms (see for example [194]).

Proof of Theorem 1.1.3.
1. From triangulations to binary trees: Let us see how to build up a

binary tree from a given triangulation of the (n + 2)-gon. As usual, we
assume the vertices of the polygon are labeled from 1 to n + 2. We call
the edge {1,n + 2} the reference edge of the polygon. We draw a node of
the binary tree inside each of the n triangles of the triangulation, and join
nodes of adjacent triangles by an edge. We declare the root of the tree to be
the node of the unique triangle that contains the reference edge. The three
sides of each triangle can be clearly identified as a “parent edge” (the one
towards the root), a “right edge” (the next one in the clockwise direction)
and a “left edge” (the third one). In particular, every node in the tree has a
parent (unless it is the root node) and its children are labeled as right or left
depending on whether the corresponding edge in the triangle is the right or
the left one. See Figure 1.10.
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Figure 1.11: A binary tree with its symmetric

order traversal, its associated triangulation, and

its associated sequence of signs.

To show that this construction is indeed a bijection, it suffices to show
that it can be reversed: Starting with a binary tree, draw a triangle for the
root and call its edges “parent”, “right” and “left” appropriately. Then glue
triangles to its right and left edge for the right and left children of the root,
if they exist. Recursively continue with grand children and all the other de-
scendants (great-grand-children, etc.) and, after you have finished, number
the vertices of the (n + 2)-gon starting and ending with the end-points of
the parent edge of the root triangle.
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There is actually a nice correspondence between the n nodes in the binary
tree and the n vertices of the (n+2)-gon out of the reference edge, exhibited
in Figure 1.11. It is given by the symmetric order traversal of the nodes of
a binary tree: Start with the root node. If a node has at least one child,
then process recursively first its left subtree, then insert the node itself into
your order, then process recursively its right subtree, and finally return to
its parent. We give numbers 1 to n to the n nodes as we visit them during
the traversal. If a node has no children, then simply visit it by assigning to
it the next available number from 1 to n, and return to its parent. We will
use the symmetric order traversal a bit later.

2. From binary trees to parenthesizations: The bijection between binary
trees with n nodes and parenthesizations of products of n + 1 factors was
displayed in Figure 1.9. We place a pair of parentheses for each node of the
binary tree, starting with the root parentheses which enclose the whole prod-
uct and inserting inner parentheses for children with the following rule: if
the right/left child of a given parent node has k descendants, the correspond-
ing parentheses will enclose the k + 1 leftmost/rightmost factors within the
ones enclosed by the parent parentheses. Alternatively, one can start draw-
ing parentheses for the leaves of the tree (leaving place holders for the two
variables they contain, which we cannot still identify) and add greater and
greater parentheses for their parents, inserting right or left factors (place-
holders) depending on the type of edge leading to the parent. We leave it to
the reader to convince him or herself that this is indeed a bijection.

3. From binary trees to sign sequences: Clearly, there is going to be a
plus and a minus sign corresponding to each node in the tree, and the plus
sign will appear before the minus to guarantee that every initial segment has
at least as many pluses as minuses. The way to construct the sequence is:
Go along the tree in the symmetric order traversal presented above. When
visiting a node, first process its left subtree, then place the plus sign for this
node, then visit the right subtree, then place the minus sign. Figure 1.11
shows an example where, to make things clear, each plus or minus is labeled
by its corresponding vertex of the tree.

In the exercises you will see how to construct the sequences of signs
directly from the triangulation.
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Figure 1.12: The five monotone paths/sign

sequences of length six.

4. From sign sequences to monotone paths: Figure 1.12 shows the mono-
tone paths under consideration and, at the same time, their bijection to sign
sequences. Essentially, plus signs correspond to steps to the right and mi-
nus signs to steps upwards. The condition that the monotone paths do not
cross the diagonal is exactly equivalent to saying that every initial segment
has at least as many plus signs as minus signs.

Definition 1.1.4. The n-th Catalan number, where n = 0,1,2, . . . , is the
number Cn defined by the following recurrence formula:

C0 = 1, Cn =
n−1

∑
k=0

CkCn−k−1, ∀n > 0. (1.3)

Equivalently, it is the number of triangulations of the convex (n + 2)-gon,
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which equals

Cn =
1

n + 1

(
2n
n

)
. (1.4)

1 2

36

5 44

3

21

6

5

Figure 1.13: A diagonal flip in the quadrilateral

1356.

Theorem 1.1.3 can be read as saying that the five combinatorial struc-
tures described there are just different formulations of one and the same
structure, that we can call the “Catalan structure”. Having the different
formulations, besides its mathematical appeal, has practical consequences:
properties which are obvious in one formulation may be invisible in others,
and the many appearances of the structure provide additional insight and
more tools to attack Catalan-type problems with.

As an example, our proof of Theorem 1.1.2 is heavily based on the cyclic
symmetry of the convex n-gon, while none of the four other structures of
Theorem 1.1.3 have a cyclic symmetry at all.

Once we know the cardinality of the set Δ(Cn) of triangulations of the
convex n-gon, let us see that it is “more than a set”, that there are natural
relations between pairs of triangulations. Every internal edge in a trian-
gulation is a diagonal of a convex quadrilateral formed by two adjacent
triangles. One can change this diagonal to the opposite one and get a tri-
angulation which is as similar as possible to the initial one. This operation
is called a diagonal flip or simply a flip for short. Figure 1.13 shows a flip
between two triangulations of a hexagon.

We can thus consider the set of triangulations of the n-gon as the vertices
of a graph whose edges are diagonal flips. This graph is called the graph of
flips of the triangulations of the n-gon. Some straightforward properties of
the graph are:

1. It is regular of degree n− 3 (that is to say, every triangulation has
exactly n−3 flips). This is so because there is one flip associated to
each internal diagonal.

2. It is connected. To prove this, let us pick any particular vertex, say
the i-th one, and consider the unique triangulation in which all the
triangles are incident to i. We call this the i-th standard triangulation
of the n-gon. An example is in the right part of Figure 1.13. In
any triangulation other than this one there is always at least one flip
which increases the degree of vertex i: just flip the diagonal jk for any
triangle i jk with j and k not consecutive vertices of the n-gon. This
shows that every triangulation can be transformed into the standard
one by a sequence of at most n−3 flips.
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Figure 1.14: Flipping towards the 7th standard

triangulation.

Other not-so-easy properties of the graph of flips of the n-gon are that it is
Hamiltonian [220] and that it is the graph of a convex and simple polytope of
dimension n−3 called the associahedron [205] (see also [339, Chapter 0]).
The associahedron is a particular case of the secondary polytope or “polytope
of triangulations and flips”, which exists for any finite point configuration in
any dimension. Flips and secondary polytopes are introduced in Chapters 2
and 5, and are among the central topics in this book. See Figure 1.15 for a
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picture of the graph of flips on triangulations of a hexagon (well, we have
forgotten to draw one edge; can you find it?). You should try to verify in the
picture all the properties of the graph mentioned so far.

Figure 1.15: The graph of flips for a hexagon, with

one edge missing.

You may be wondering whether the graph of flips is meaningful in the
other formulations of the Catalan structure that we have mentioned. The an-
swer is yes and no. For example, the monotone path formulation possesses
its own natural notion of flip (move the path along a single square of the
grid), but these flips are certainly not equivalent to the flips in triangulations:
In Figure 1.12 you can see paths with one, two, and three flips.

In the context of binary trees, however, diagonal flips can be described
easily: They arise as the so-called “rotation of an edge”. If an edge connects
a node X to its right child Y , let P, A, B, and C denote the parent subtree of X ,
left subtree of X , left subtree of Y , and right subtree of Y , respectively. The
rotation changes this to the binary tree in which X is a left child of Y and P,
A, B, and C are, respectively, the parent subtree of Y , left subtree of X , right
subtree of X , and right subtree of Y . A rotation and its correspondence
to a flip in triangulations are depicted in Figure 1.16. In the context of
parenthesizations a flip is given by a single application of the associative
law A(BC) �→ (AB)C.

X

Y

Y
X

reference edge reference edge

Y
X

X

Y

Figure 1.16: The diagonal flip corresponding to a

rotation.

But how many flips does it take to move from one triangulation to an-
other? Remember that the distance between two nodes in a connected graph
is the minimal number of edges needed to go from one node to the other,
and that the diameter of the graph is the maximum distance between nodes.
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It is interesting to say something about the diameter of the graph of flips:

Proposition 1.1.5. Let D(Cn) be the diameter of the graph of flips between
triangulations of the convex n-gon. Then:

(i) D(Cn) ≤ 2n− 10 + 12/n for every n (in particular, it is bounded by
2n−10 for every n ≥ 12).

(ii) D(Cn)+ 1 ≤ D(Cn+1) ≤ D(Cn)+ 3 for every n.

Proof. Part (i) can be proved by slightly refining the argument that proved
connectedness. Let T and T ′ be two triangulations, and let d j and d′

j
denote the degrees of the vertex j in T and T ′ respectively, for each j =
1, . . . ,n. What we have shown is that for every i = 1, . . . ,n there is a path
from T to T ′ consisting of 2n−2−di−d′

i flips: just start flipping from T
and T ′ in a way that always increases the degree of the i-th vertex. Now we
wonder what is the minimum length of these n paths we constructed. This
is a difficult question so we look instead at the average length, which is:

1
n

n

∑
i=1

(2n−2−di−d′
i) = 2n−2− 1

n

(
n

∑
i=1

di +
n

∑
i=1

d′
i

)

(1.5)

= 2n−2− 8n−12
n

(1.6)

= 2n−10 +
12
n

. (1.7)

In Equation (1.6) we have used that ∑di equals twice the number 2n−3 of
edges, a property already used in the proof of Theorem 1.1.2.

Part (ii) is left as an exercise. For the left inequality, use the contraction
map of Theorem 1.1.2. For the other one, use the arguments of Part (i), but
flip through an “anti-standard” triangulation, that is to say, a triangulation
with no internal edge at the given vertex i.

Part (ii) says that the bound in Part (i) is not too bad, but the following
statement says more; it gives the exact diameter for almost all values of n:

Theorem 1.1.6 (Sleator, Tarjan, Thurston). The diameter of the graph of
flips of an n-gon is 2n−10 for all sufficiently large values of n.

No purely combinatorial proof of the lower bound implicit in this the-
orem is known. The proof contained in [300] is far from elementary and
we will avoid all the details, but we will sketch the main idea. We wish to
give a lower estimate on how many flips are necessary to move from one
triangulation T to another T ′. For this, we associate to every sequence of
flips going from T to T ′ an abstract simplicial complex in the following
fashion:

=+

Figure 1.17: A diagonal flip viewed as glueing a

tetrahedron to a surface.

Start with one of the triangulations, T , and consider it as an abstract
2-dimensional simplicial complex. Then attach to this complex one tetra-
hedron for each flip in the sequence, in the same order. More precisely, if
a flip exchanges the diagonals pq and rs, add the tetrahedron pqrs to the
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already constructed simplicial complex. This tetrahedron has two triangles
in common to the complex we had before the flip, and it creates two new
boundary triangles (see Figure 1.17). This interpretation of flips is also very
popular in the context of Delaunay triangulations [129], as we will see in
Theorem 3.4.2 of Chapter 3.

After we do this for all the flips in the sequence we get a simplicial com-
plex that is topologically a 3-dimensional ball B and whose boundary, a
2-dimensional sphere, is made by glueing T and T ′ along their bound-
aries. (This is unless T and T ′ have interior edges in common; one step in
the proof is to show that there is no loss of generality in assuming this.) Fig-
ure 1.18 shows an example where four flips in a hexagon give a triangulated
ball with the four tetrahedra {1,3,5,6}, {1,2,3,6}, {3,4,5,6}, {2,3,4,6}.
With this we get the following interesting result:

1 2

3

45

6

1

2

4

5

6

3

Figure 1.18: Four flips in a hexagon and the

corresponding triangulated 3-ball.

Lemma 1.1.7. If the triangulated 2-sphere obtained by glueing T to T ′
along their boundaries cannot be extended to a triangulation of the 3-ball
with less than k tetrahedra, then every sequence of flips going from T to
T ′ has length at least k.

In other words, the problem of finding paths in the flip-graph of a poly-
gon is related to the problem of finding combinatorial simplicial 3-poly-
topes that do not admit small triangulations. This gives an easy way to
remember where the number 2n−10 comes from: It follows easily from Eu-
ler’s formula that a triangulated 2-sphere with n vertices has exactly 2n−4
triangles and, if n ≥ 13, a vertex of degree at least six. Using this we can
easily triangulate the 3-ball into at most 2n− 10 tetrahedra: just cone the
highest degree vertex to all the triangles not incident to it.

But to obtain lower bounds for the flip distance we need to find 3-poly-
topes without small triangulations and, what is more difficult, prove that
they do not have small triangulations. How can one do that? The key idea
in [300] is to use hyperbolic polytopes. A useful fact about hyperbolic 3-
space is that the volume of all hyperbolic tetrahedra is bounded by a certain
constant σ , so that a hyperbolic 3-polytope of volume V clearly needs at
least V/σ many tetrahedra to be triangulated. What the paper [300] proves
is that for sufficiently big n, there are n-vertex hyperbolic 3-polyhedra with
volume (2n−10)σ . We must remark, however, that this paper does not say
how big n needs to be for the lower bound to be exact. The conjecture is
that n = 13 is enough, and a related conjecture is the following:

Conjecture 1.1.8. For every n ≥ 13 there is a simplicial 3-polytope with n
vertices whose interior cannot (even combinatorially) be triangulated with
less than 2n−10 tetrahedra.

Let us also mention that the same idea of using hyperbolic volumes,
now in arbitrary dimension, was used by W. Smith to give the best lower
bound known for the size of the smallest triangulations of combinatorial
n-dimensional cubes [301].

Triangulating and computing volumes are intimately related activities.
Since the volume formula of a simplex in Euclidean space is just a deter-
minant, an easy way to compute the Euclidean volume of a polytope is to
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add the volumes of simplices of any triangulation of it. Of course, for this
to be a general algorithm we need the fact that every convex polytope can
be triangulated (if you do not see why, read Proposition 2.2.4 in the next
chapter.)

Volume computations are useful throughout mathematics. For example,
the calculation of volumes of hyperbolic convex polytopes has become of
interest in topology. The reason is that every hyperbolic manifold can be
obtained by identifying the faces of a convex polytope in hyperbolic space,
and its volume is a topological invariant. The volume has been used in
the classification of hyperbolic manifolds (see [269] for references). (It
should be said, however, that the calculation of the volume of a simplex in
hyperbolic space is much more complicated than in Euclidean space.)

The computation of volumes of polytopes in Euclidean space is also used
in algebra [46, 140, 312]. But more important for us are the fascinating
connections to combinatorics [306]. Here we show how the computation
of volume is equivalent to counting linear extensions of posets, and that the
linear extensions are simplices of a triangulation! This was first observed
by R. Stanley in [305]:

8

2 4
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763

8

4
7 6
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Figure 1.19: A poset P with two order ideals and

two bijections P →{1, . . . ,8}. Only one of them

is a linear extension.

Definition 1.1.9. We define:

(i) A partially ordered set (or poset) is a finite set P with an ordering <
that is reflexive, antisymmetric, and transitive.

(ii) A linear extension of a poset on n vertices is a bijection λ from the set
of vertices of P to {1, . . . ,n} such that λ (a) < λ (b) whenever a < b
in P.

(iii) An order ideal of a poset is a subset of the poset P such that if a ∈ I
and b < a, then b ∈ I.

Figure 1.20: Some posets with three elements

and their order polytopes.

Usually, a poset is represented by a graph, its Hasse diagram. We rec-
ommend Chapter 3 of [308] for a thorough discussion of posets. Here we
simply show in Figure 1.19 the Hasse diagram for the poset of subsets of
the set {1,2,3} ordered by containment, as well as two of its order ideals
(black dots) and two linear orderings, only one of them extending the par-
tial ordering. Given a poset P with elements a1, . . . ,an, one can define the
order polytope O(P) in R

n (see [305]) by the following linear constraints:

O(P) =
{

(x1, . . . ,xn) ∈ R
n : 0 ≤ xi ≤ 1, and xi ≥ x j if ai > a j in P

}
.

Theorem 1.1.10. The following properties hold for the order polytope O(P)
of a poset P:

(i) The vertices of the order polytope O(P) are vectors with 0−1 entries.
They are in bijection with the order ideals of the poset P.

(ii) The number of distinct linear extensions of the poset P equals the num-
ber of simplices in a maximal size triangulation of the order polytope
O(P).
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Remark 1.1.11. For a poset with n elements, O(P) is always contained in
the n-cube. If P has no relations at all, then O(P) is the whole n-cube. In
particular, the previous theorem yields a triangulation of the n-cube. See
Figure 1.20 for some order polytopes of posets with three elements. One
more is asked for in Exercise 1.12.

Proof. We prove first that the coordinates of the vertices of O(P) are 0
or 1: Let x = (x1, . . . ,xn) ∈ O(P) have some entry not zero or one. Let
α ∈ {x j : 0 < x j < 1

}
. Then, increasing by a sufficiently small ε all coor-

dinates of x equal to α we get a new point x+ ∈ O(P), and by decreasing
the same coordinates by the same amount we get another one x− ∈ O(P),
with the property that x is in the interior of the segment x−x+. Hence, x is
not a vertex.

The correspondence of vertices and order ideals is the following:Figure 1.21: The volume of this icosahedron . . .

Figure 1.22: . . . can be computed by triangulating

it . . .

Figure 1.23: . . . and adding up the volumes of the

simplices.

p = (p1, . . . , pn) ∈ vert(O(P)) → Sp =
{

a j : p j = 0
}

.

We should verify that Sp is an ideal: Suppose ak < a j in the poset and
a j ∈ Sp, then clearly by definition of O(P) we have 0 ≤ pk ≤ p j = 0, which
says pk = 0 too, thus ak ∈ Sp, the order ideal associated to vertex p. Differ-
ent vertices have different support so they give different order ideals. Now
given an order ideal S, we construct a 0/1 vector by following the conven-
tion p j = 1 if and only if a j /∈ S. The inequalities are satisfied inside O(P),
thus the resulting vector lies inside O(P) and it must be a vertex.

Any of the n! total orderings aλ (1) < aλ (2) < · · ·< aλ (n) defines a simplex{
x ∈ [0,1]n : xλ (1) < xλ (2) < · · · < xλ (n)

}
inside the unit n-cube. Call such

simplices total order simplices. The cube is partitioned into n! total order
simplices. Why? No two intersect in the interior, and the union of all
of those equals the cube. It is important to notice that all these simplices
have the same volume 1/n!. Now, given a poset P, all its linear extensions
correspond to simplices that form a triangulation of O(P). This is because
O(P) contains one such simplex if and only if the ordering where it came
from is a linear extension, and all of O(P) is covered: by construction, if
you pick any point x of O(P) and choose any total ordering of its entries,
this defines a total order simplex that contains x. The number of simplices
in the triangulation equals the number of linear extensions for the poset P.
Because the simplices of a cube cannot have smaller volume, we have a
maximal triangulation of O(P).

Brightwell and Winkler [66] proved that enumerating the linear exten-
sions of a finite poset is a #P-complete problem. Therefore, from the previ-
ous theorem we get the following:

Corollary 1.1.12. It is #P-hard to compute the volume of a d-dimensional
polytope P represented by its facets.

This means that, computationally, the problem is at least as hard as
a number of other computational problems that are already known to be
“extremely hard” in a well-defined way. The class of #P-hard problems



1.2. Optimization and triangulations 13

includes counting problems such as “How many Hamiltonian cycles are
there in a finite graph?”, “How many matchings are there in a bipartite
graph?”, “How many different 3-colorings are possible of a planar graph?”,
and many more (see [134]). More precisely, if it were the case that com-
puting the volume admits a fast solution, all the other members of the same
family of problems would have a fast solution too. This indicates that it is
more than likely that we will never find a fast algorithm.

The enumeration of vertices in face-presented polytopes is also a hard
problem [261], as well as computing the volume of a vertex-presented poly-
tope [109, 186]. We even know that it is hard to compute the volume of
zonotopes [111] (Zonotopes are centrally symmetric polytopes that arise
as projections of cubes or, equivalently, as Minkowski sums of line seg-
ments [339, Chapter 7]). We refer the reader to the paper [70] for a survey
and evaluation of practical methods to compute the volume of a convex
polyhedron.

How about the problem of approximating the volume? It is possible to
have fast randomized approximation [110] although for general convex sets
the situation is much worse: It was proved by Elekes (see [120]) that the
volume of the convex hull of any m points in an n-dimensional ball with vol-
ume V is at most Vm/2n. This implies that no polynomial-time algorithm
can compute the volume of convex sets (specified by a membership oracle)
with less than exponential relative error.

1.2 Optimization and triangulations

Triangulations of polyhedra and point configurations appear in the context
of optimization problems and we wish to present two examples here. First,
in connection to linear optimization and then in the computation of equilib-
rium points.

Linear programming (also called linear optimization) is the process of
minimizing a linear objective function subject to a finite number of linear
equality and inequality constraints. Not only linear programs have many
real world applications, but the theory of linear programming has been used
in solutions of problems in combinatorics and theoretical computer science
(e.g., efficient algorithms for maximum flows on networks, matchings of
graphs, etc). An important class of linear programming problems are para-
metric linear programs. These problems have parameters instead of fixed
input entries. They often arise from the recognition that data has uncer-
tainty or from the wish to analyze the effects of deviations from the initial
values. We wish to outline the beautiful relationship between triangulations
and parametric linear optimization problems.

minc ·x
subject to

Ax = b

x ≥ 0

Figure 1.24: A linear program with A ∈ R
d×n,

b ∈ R
n, and c ∈ R

d .

Let us begin with a review a few facts about linear optimization now in
terms of point configurations. We hope this will suffice for readers unfamil-
iar with linear programming, but a complete introduction to the subject is
available in the wonderful books [226, 291].

It is commonly assumed that a linear program is given in the form pre-
sented in Figure 1.24, where A is d × n integral of rank d and b is an in-
tegral d-vector. For us the columns of the matrix A will be the points of a
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configuration. Denote by cone(A) the cone generated by the nonnegative
linear combinations of the columns of the matrix A. For each subset B⊂ [n]
of columns let AB denote the sub-matrix formed by those columns. A cone
subdivision of cone(A) is a finite collection S of subcones cone(AB), such
that the intersection of any pair of subcones in S is a face of both and the
union of all the subcones is cone(A). By a cone triangulation we mean
a cone subdivision all of whose cones are simplicial cones, that is, all the
submatrices are square matrices. Note that this definition is essentially our
original definition of triangulation but uses vectors (the columns of A) in-
stead of points.Figure 1.25: A triangulation of a pointed cone,

cut off by an affine hyperplane; this section of the

cone looks like a triangulation of a point

configuration.

Fix a matrix A as above, and for each cost vector c ∈ R
n and right-hand-

side vector b ∈ cone(A) ⊂ R
d , consider the linear programming problem

(for short LP) LPA,c(b) := min {c ·x : Ax = b, x ≥ 0}. Here, x≥ 0 means
that all the entries of x are non-negative.

By definition of a cone(A), LPA,c(b) is has a solution x if and only if
the right-hand side b lies in cone(A). In the terminology of linear program-
ming we say the LP is feasible. When a subcone cone(AB) corresponds
to a full-rank matrix (i.e., d linearly independent columns) we say AB is a
basis. The reader must note that for a basis cone(AB) is a simplicial cone.
From a basis with indices B = { j1, j2, . . . , jd} and j1 < j2 < · · · < jd we
can immediately construct a tentative feasible solution of the LP. Set to
zero any variable xl where l /∈ B and for x jk with jk ∈ B set the variable
x jk to the value of the k-th component of (AB)−1b. This is just a tenta-
tive solution because some of the x jk ’s may be negative, but if all of them
are non-negative then the vector x is a basic feasible solution of our LP.
Note that there are only finitely many basic feasible solutions possible be-
cause each of them is determined by d-subset of the columns of A, the
number of basic feasible solutions is at most

(n
d

)
.

It is well-known (see e.g., Theorem 4.2.3 in [226]) that if there is at least
one feasible solution and the objective function c · x is bounded (a reason-
able assumption!), an optimal solution exists and in fact there is a basic
feasible solution to the LP which is optimal. Thus, an optimum of LPA,c(b)
is achieved at a vector x where at least n−d coordinates are zero. If b and
c are sufficiently generic, then exactly n− d coordinates are zero. We can
then consider b as selecting the maximal rank square d × d submatrix of
A, the basis, within the set of columns corresponding to non-zero entries.
Please note that when we select a basic feasible solution for the right-hand-
side vector b we also select a simplex of our triangulation.

From what we just discussed linear programming is a finite problem! We
just need to scan all of the (exponentially many) basic feasible solutions in
order to find an optimal point. We will not discuss it here but the famous
simplex algorithm is nothing more than a clever way to scan them, but not
all of them. The algorithm starts from an arbitrary basic feasible solutino
and ideally finds a sequence of cheaper and cheaper alternatives. If no
alternative cheaper basic feasible solution can be found then it is because
we are at an optimal solution already. Of course this is very simplistic and
we recommend the reader to learn this beautiful algorithm (claimed to be
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one of the top ten algorithms of the 20th century [82]). It is also worth
learning about the ellipsoid method and the interior-point algorithms used
today to solve linear programs see [291]

To conclude our minimalistic review of linear programming we will state
a basic fundamental fact from the theory of linear programming which truly
sets up the connection between linear programs and triangulations and will
be used in our forthcoming proof of the main result (Theorem 1.2.2). See
e.g., [291, Section 7.9] for a proof.

Lemma 1.2.1 (Complementary slackness). Let A be a matrix, b and c the
right-hand-side and cost vectors of LPA,c(b) = min{cx : Ax = b,x ≥ 0}.
There is an associated dual problem, and the following duality equation
holds:

max{yb : yA ≤ c} = min{cx : Ax = b,x ≥ 0} . (1.8)

If both optima are finite and x∗ and y∗ are feasible solutions, then the
following conditions are equivalent:

(i) x∗ and y∗ are optimum solutions of their problems.

(ii) If a component of x∗ is positive, the corresponding inequality in yA≤c
is satisfied by y∗ with equality, i.e., x∗(c−y∗A) = 0.

In other words, the minimum value of LPA,c(b) is attained at a vector x∗
if and only if there exists a y such that yA j ≤ c j for all j = 1, . . . ,n and for
all indices either x∗j = 0 or yA j = c j .

Using the principle of complementary slackness, one can solve a linear
program by considering the primal (original) problem and its dual problem
together and seeking a pair of vectors w,u, the first primal feasible solution
and the second a dual feasible solution. If they satisfy the complementary
slackness then they must be a pair of primal dual optima. Note that in this
way no explicit mention of the objective function is made.

Our focus will be now the study of the parametric family of linear pro-
grams

LPA,c =
{

LPA,c(b) : b ∈ cone(A)
}

,

for fixed c and varying b. The main idea is that cone(A) will be triangulated
by each choice of cost vector c. Let us see how this works.

For simplicity, we will usually assume that ker(A)∩R
n
+ = {0}, where

ker(A) = {x ∈ R
n : Ax = 0} and R

n
+ = {x ∈ R

n : x ≥ 0}. This assump-
tion on A makes LPA,c a family of bounded linear programs (so the mini-
mum exists in all cases, no matter what c and b).

What happens to the linear program as b moves within the cone? What
are the optimal bases for each b? The main intuition is that cone(A) will
be divided into regions consisting of “equivalent” linear programs. And
it turns out that the subdivision is a cone subdivision and, if c is generic,
a triangulation. This was first observed by Walkup and Wets [330]. The
geometric theory of parametric linear programs has recently been extended
to parametric integer programs (see [315]).
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Theorem 1.2.2 (Walkup-Wets). Let LPA,c(b) denote the linear program

min{cx : Ax = b,x ≥ 0},

for each c and A. LPA,c(b) is bounded, then for each generic cost vector
c there exists a triangulation T (c) of cone(A) such that, for each b ∈
cone(A), the extreme rays of any d-dimensional cone of T (c) containing b
are an optimal basis for LPA,c(b).

1

0

−1

00

−2−3

0
0

4

0
0
4

0
4
0

1
2
1

1
1
2

2
1

Figure 1.26: The cone triangulation associated

with the cost vector c. This shows a

two-dimensional slice of the cone.

Here is an example. Consider the parametric linear programming prob-
lems LPA,c(b) with

c = (0,0,0,−2,−3,−1), (cost)

A =

⎡

⎢
⎣

4 0 0 2 1 1
0 4 0 1 2 1

0 0 4 1 1 2

⎤

⎥
⎦ , (coefficients)

b = (b1,b2,b3). (right-hand side)

According to Theorem 1.2.2 we can find a triangulation T (c) of cone(A)
associated with c, and the simplicial cones in T (c) are useful for find-
ing optimal solutions. We can visualize the triangulation of cone(A) for
the above example by taking a 2-dimensional slice of the 3-dimensional
cone(A). The triangulation for the cost vector c = (0,0,0,−2,−3,−1) is
shown in Figure 1.26.

NP

P

Figure 1.27: The normal fan of a polygon.

Figure 1.28: Normally equivalent polygons.

Proof of Theorem 1.2.2 . To simplify the exposition let us assume that the
cost vector c is generic. More precisely, we assume that there is no set of
more than d columns of A with the property that the subsystem of yA = c
indexed by those columns is feasible.

Let Ai denote the ith column of A. Moreover, let {Ai1 , . . . ,Ai j} be a
set of columns such that there exist a vector y with yAik = cik for all
ik ∈ {i1, . . . , i j}. Then the cones cone({Ai1 , . . . ,Ai j}) are all cone-simplices,
and they form a triangulation of cone(A) that we denote by Tc.

Now, take any d-dimensional simplicial cone cone({Ai1 , . . . ,Aid}). By
the complementary slackness theorem (Lemma 1.2.1), the columns of A
which are extreme rays of the cone are indeed a basis that supports an opti-
mal solution.

We emphasize that not all cone triangulations of cone(A) come from
the use of some cost vector. The ones that actually do are called regular.
Regularity of triangulations is probably the most important concept in this
book and will be discussed in full detail in the following chapters.

Let us look at another subdivision of cone(A) related to the family of lin-
ear programs. For each b, we have a polytope Pb := {x : Ax = b,x ≥ 0}.
We say that Pb and Pb′ are normally equivalent if their normal fans coin-
cide. The normal fan of a polytope P ⊂ R

d is the decomposition of R
d

(now regarded as the space of linear functionals on P) into functionals that
are maximized at the same face of P. Being normally equivalent means,
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in particular, that the polytopes look combinatorially the same (same face
lattice) and, more strongly, that corresponding facets are parallel [339].

Now, the notion of normally equivalent polyhedra creates an equivalence
relation on the right-hand-side vectors b. We can say that right-hand-side
vectors b, b′ inside cone(A) are equivalent if Pb and Pb′ are normally equiv-
alent. This provides us now with yet another partition of cone(A) into poly-
hedral cones. This partition is not a cone subdivision in the sense defined
above. Among other things, some new vertices are introduced.

We call the cells in this partition chambers. They are the maximal cells
in the common polyhedral refinement of all triangulations of cone(A). In
other words, a chamber γ is the intersection of a finite collection Γγ of sim-
plicial subcones with the following properties: (a) each B ∈ Γγ is generated
by rank(A) many linearly independent columns of A, (b) the intersection
∩B∈Γγ B has non-empty interior, and (c) Γγ is maximal with respect to prop-
erty (b).

Figure 1.29 shows the polyhedral complex that we obtain by “overlap-

Figure 1.29: The chamber complex of cone(A)

for the example. As before, for the ease of

drawing, we show a 2-dimensional slice.

ping” of all cost-vector-induced triangulations. We show the regular trian-
gulations for our running example in the upper part of Figure 1.30. The
lower part of Fig. 1.30 shows all triangulations.

First, we allowed the right-hand-side vector b to move with c fixed and
discovered a triangulation of cone(A); then, we let c change as well to
discover that the points b that produce the same optimal solution for every
c are contained in a chamber of cone(A) and that chambers are indeed what
results from overlapping all triangulations of cone(A). Now there is a final
surprise: the different triangulations of cone(A) that appear when we let
the cost vector c vary are “connected” to one another in a rather nice way.
They form a graph with the structure of a polytope: the secondary polytope
that we have already seen a couple of times in this chapter. We show in
Figure 1.30 the vertices and edges of the secondary polytope of the point
configuration in Figure 1.26.

Take two generic cost vectors c and c′. Then LPA,c(b) and LPAc′(b)
have the same set of optimal solutions for every value of b if and only if c
and c′ define the same cone triangulation. Define an equivalence relation
among the cost vectors (vectors in R

n): We say c is a equivalent to c′ if they
define the same triangulation. This equivalence relation decomposes R

n

into finitely many equivalence classes, each of them is a convex polyhedral
cone. The collections of all such cones covers R

n and receives the name of
the secondary fan. Gelfand, Kapranov, and Zelevinsky demonstrated that
this fan is actually the normal fan of the secondary polytope of A via cost
variations.

The connection of triangulations of point configurations with linear op-
timization problems does not end here. One can consider a similar study
of parametric integer programming problems. There are several methods to
attack such problems [291], but a new algebraic approach, presented in [84]
and extended in [320], provides a nice connection of the theory of Gröbner
bases of toric ideals to our setting (we will see more on this in Chapter 9).

Let us now turn our attention to fixed points of continuous maps, which is
another topic in optimization where triangulations play an important role. In
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Figure 1.30: The flip graph of all regular

triangulations (top) and all triangulations (bottom) of

the point configuration in Figure 1.26.

game theory and economics the notion of equilibrium is very important [289].
Mathematically, an equilibrium is a fixed point of a continuous mapping.
Finding a fixed point is then an issue of practical importance. A wide variety



1.2. Optimization and triangulations 19

of algorithms have been proposed and there is an extensive literature in the
mathematical programming community. One of the most famous theorems
about fixed points is due to the Dutch mathematician L. E. J. Brouwer:

Theorem 1.2.3 (Brouwer). If C is a topological d-dimensional ball and
f : C �→ C is a continuous function, then f has a fixed point, namely, there
is a point x∗ in C with f (x∗) = x∗.

Recall that a homeomorphism is a one-to-one and onto continuous func-
tion whose inverse is also continuous. A topological d-ball is the image of
the standard unit ball Bd =

{
x ∈ R

d : ∑i x2
i ≤ 1

}
under a homeomorphism.

A simplex is our favorite example of a topological ball. Brouwer’s original
proof says nothing about how to find the fixed point or a good approxima-
tion to a fixed point, not even in the case when C is a simplex. In the case
of a simplex Brouwer’s theorem may be demonstrated via a combinatorial
result about labeling triangulations due to Sperner (see exercises for an ex-
tension). Sperner’s lemma provides an algorithmic way for finding fixed
points of continuous maps:

2
2

2

2121

1

3

1
1 2 1

Figure 1.31: In order to find a fully labeled

simplex, one can start with a fully labeled simplex

of one dimension less in the boundary; then, one

dives into the interior until a fully labeled simplex

is reached; Exercise 1.15 asks you to make this

idea rigorous.

Lemma 1.2.4 (Sperner). Let A be a point configuration whose convex hull
is a d-dimensional simplex D and T a triangulation of A. There are d + 1
facets D1, . . . ,Dd+1 in the simplex D. Label all the vertices of T using the
numbers 1,2, . . . ,d +1 in such a way that no vertex that lies on the facet Di

receives the label i. Equivalently, one labels the vertices of T that belong
to a face F only using the label indices assigned to the vertices of that face.
Then there is a simplex in T whose vertices carry all the different d + 1
labels.

A rather easy proof can be derived by induction on the dimension of the
simplex (see exercises). Curiously, Sperner’s lemma has a simple general-
ization to labelings of triangulations of arbitrary polytopes (see Figure 1.32
for an example and [99, 233] for details concerning the following theorem
and a strengthening).

Theorem 1.2.5 (Polytopal Sperner Lemma). Let P be a d-dimensional poly-
tope with n vertices v1,v2, . . . ,vn. Let T be a triangulation of P, possibly
using additional vertices. Label the vertices of T by 1,2, . . . ,n in such a
way that a vertex of T belonging to a face F of P can only be labeled by j
if v j is a vertex of F. In particular, each vertex vi is labeled i. Using this la-
beling rule, one can guarantee that there are at least n−d full dimensional
simplices of T labeled with d + 1 different labels each.

Now, how can one use Sperner’s lemma, or its generalization, to prove
Brouwer’s fixed-point theorem for simplices? Triangulate the simplex and
apply a labeling related to a particular continuous function f : Associate to a
vertex a of the triangulation the label i if the ith-barycentric coordinate of a
is smaller than or equal to the ith-barycentric coordinate of f (a). (Intuitively,
you label a with i if f moves a more or less towards the i-th vertex.) There
will be at least one such index for each vertex, unless the vertex is a fixed
point, because the barycentric coordinates add up to one. If there are
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several such indices, simply make an arbitrary choice among them. Now,
by Sperner’s lemma, a simplex of T can be found with its vertices labeled
with all the numbers 1 to d +1 and so that the i-th barycentric coordinate of
the vertex labeled i is not increased by f (the reader should check that our
labeling satisfies the hypothesis of Sperner’s lemma).
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Figure 1.32: A Sperner labeling of a triangulated

hexagon, with many extra vertices, and its fully

labeled cells.

Re-triangulate again and again adding more and more points in such a
way that the maximum diameter of the simplices appearing in the triangula-
tion goes to zero. At each step find a fully labeled simplex. The barycenters
of all such simplices will produce an infinite sequence of points and, since it
is a bounded sequence, it contains a convergent subsequence. Let x∗ be the
limit of this subsequence. Since the map f is continuous, the ith-barycentric
coordinate of x∗ is smaller or equal than the ith-barycentric coordinate of
f (x∗) for every i (the difference is smaller than any positive epsilon) and
therefore x∗ is a fixed point of the map.

There are some practical difficulties on using Sperner’s lemma to ex-
plicitly find an approximation to the fixed point. First, finite versions of
this method do not, in general, find a point arbitrarily close to a fixed
point but rather a point that is arbitrarily close to being a fixed point, i.e.,
whose image is arbitrarily close to itself. Second, and most important, the
number of vertices necessary to refine the successive triangulations may
be very large and there is no clear procedure to find the special simplices
that receive all the labelings. Today there is a large set of triangulation-
based techniques to compute fixed points (see [321]). The development of
triangulation-based algorithms is still active and has brought new interest-
ing questions [169, 322] and neat applications [316].

All such algorithms use an essential property of triangulations: If T
is a triangulation of a point set in R

d and τ is a (d − 1)-simplex that is
a facet of a simplex of T , then either (1) τ belongs to the boundary of
conv(A), or (2) τ is a face of precisely two simplices in T . You can easily
verify from Definition 1.0.1 that this is true. This simple property makes
triangulations useful because one can iteratively search for a “fully labeled”
simplex of the triangulation by moving to an adjacent simplex. Even non-
triangulation-based algorithms use a similar pivoting property [288, 289].

Computational experience with various fixed-point algorithms has shown
a considerable sensitivity to the triangulation used. Is there a theoretical
measure that can predict the relative efficiency? When we want to find the
“approximate fixed point” the general principle is to move from a simplex to
an adjacent simplex until we reach a fully labeled simplex. Hence, a rough
measure of efficiency of a triangulation would be the number of simplices
used. This has brought attention to the problem of finding triangulations of
point sets that use the fewest simplices.

For example, take the vertices of a standard 3-dimensional cube. As we
will see in Example 3.6.5, it has six types of triangulations modulo sym-
metry, displayed in Figure 1.33. They are all regular triangulations, which
in this case means they can be obtained from the projection of the lower
convex hull of a polytope (much more details later). Figure 1.33 shows lift-
ing vectors producing the polytopes, which should help to visualize them.
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(Hint: A high cost vector implies that the corresponding vertex is “cut”
from the rest of the cube by one tetrahedron). The one of type (A) has five
tetrahedra (a regular simplex plus one incident to each facet of it), while the
rest have six (they can almost all be constructed by splitting the cube into
two prisms and then triangulating the prisms separately. Can you spot the
only one that does not fit this description?). It is a famous open problem to
determine the size of the smallest triangulation of the regular d-cube. So
far the answer is only known up to d = 7, where it equals 1493 [169]. We
will further discuss this topic in Chapter 8.
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Figure 1.33: The six non-isomorphic triangulations

of a regular cube.

1.3 Algebra and triangulations

Consider the system of polynomial equations

ax + by + c = 0 and dx3y3 + ex3 + f y3 + g = 0.

The coefficients a,b,c,d,e, f ,g are non-zero complex parameters (this par-
ticular system is a counterexample to an important conjecture, see [210]).
The question that we would like to ask is how many roots over C

2 should
one expect for the system as the parameters change? We are looking for
bounds that will be valid for “almost all” values. We certainly know of
these kinds of bounds, for instance, Bézout’s theorem. We now recall two
versions of this theorem. The second version is very specific for discussing
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real solutions and will be used later, the first version is more useful for us
now. The books [87] and [329] have nice expositions about this theorem.

Theorem 1.3.1 (Bézout). There are the following bounds on the roots of a
system of polynomial equations:

• Affine complex version: Let f1(x,y) = 0 and f2(x,y) = 0 be a system
of two polynomial equations in two unknowns. If it has only finitely
many common complex roots (x,y) ∈ C

2, then the number of those
roots is at most deg( f1)deg( f2).

• Projective smooth real curve version: If C f1 ,C f2 are two non-singu-
lar real projective curves, given by the homogeneous polynomials f1

and f2 respectively, and the intersection C f1 ∩C f2 is a finite set of
points, then its cardinality is at most deg( f1)deg( f2). If, in addition,
f1 and f2 intersect transversally, then |C f1 ∩C f2 | ≡ deg( f1)deg( f2)
(modulo 2).

In our particular example the bound is six roots. In most instances, the
Bézout bound will not be too tight (though we will later prove that in this
example it is sharp) because Bézout’s bound counts solutions at infinity as
well. Our example is a sparse system, missing many of the terms of degree
six that can be formed with two variables. We would like to have a bound
that reflects somehow the “shape” of the system and possibly a method
that finds the solution without changing its shape as with Gröbner bases
techniques. We must then define what we mean by the shape of a system:
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Figure 1.34: The Newton polytope for the

polynomial x2 + xy+ x3y+ x4y+ x2y3 + x4y3.

Definition 1.3.2. The support of a polynomial f (x1, . . . ,xn) is the set of
monomials that appear with non-zero coefficient. Each monomial is re-
garded as an exponent vector in N

n, i.e., its coordinates are the exponents
of the n variables. The Newton polytope of f , denoted by N( f ), is the
convex hull of the exponent vectors of the monomials in the support of f .

In this way the Newton polytope of the polynomials presented at the be-
ginning are a triangle and a rectangle. Note that in some situations the
vertices of the Newton polytope may not equal the support of the poly-
nomial. The Minkowski sum of two convex polytopes P and Q, denoted
P + Q, is the convex polytope {p+ q : p ∈ P, q ∈ Q}. The vertices (re-
spectively faces) of P + Q are sums of vertices (faces) of P and Q. Note
that the Minkowski sum of the Newton polytopes of two polynomials f
and g equals the Newton polytope N( f g). We can see an example of a
Minkowski sum in Figure 1.35.
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+ =

Figure 1.35: Minkowski sum of a triangle and a

rectangle.

Definition 1.3.3. Given d polytopes Q1,Q2, . . . ,Qd in R
d , their mixed vol-

ume μ(Q1,Q2, . . . ,Qd) equals the following alternating sum of ordinary
volumes:

∑
I⊂{1,2,...,d}

(−1)|I| vol(∑
j∈I

Q j).

A perhaps more meaningful way to define the mixed volume is:

Lemma 1.3.4. For given polytopes Q1,Q2, . . . ,Qd in R
d consider the fol-

lowing function on d indeterminates x1, . . . ,xd:

V (x1, . . . ,xd) = vol(x1Q1 + · · ·+ xdQd).

Then, V (x1, . . . ,xd) is a homogeneous polynomial of degree d, and the
mixed volume μ(Q1,Q2, . . . ,Qd) equals the coefficient of the monomial
x1x2 · · ·xd in it.

This is a concrete way of defining a certain real number, but how does
one compute its value? This has to do with the following lifting construc-
tion, which is a version of the one we saw in the previous section when
speaking of linear programming. Let A1,A2, . . . ,Ad be a collection of lat-
tice point configurations, Ai ⊂ Z

d (you can think of them as the support
exponent vectors for certain polynomials). Denote by Qi the convex hull of
Ai. Now let us perform the following construction:

1. Choose random values ωi(a) for each of the points a ∈ Ai. Do this
for each set Ai. Consider the polytope

Qi = conv({(a,ωi(a)) : a ∈ Ai }).

Note that Qi is a polytope in R
d+1.

2. Compute the lower convex hull L of the Minkowski sum Q1 + · · ·+
Qd . The facets of L are of the form F1 + F2 + · · ·+ Fd where Fi is a
face of Qi and ∑d

i=1 dim(Fi) = d. We say one such facet is mixed if
dim(Fi) = 1 for all d.
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Theorem 1.3.5. The image of the polyhedral complex L under the projec-
tion that forgets the last coordinate of every point is a polyhedral subdi-
vision of the Minkowski sum ∑d

i=1 Qi. The mixed volume μ(Q1, . . . ,Qd)
equals the sum of the volumes of the mixed cells.

The subdivisions obtained in this way are called regular mixed subdivi-
sions. Observe that the mixed subdivision may depend on the choice of
the values ωi(a), but the mixed volume computed from it does not, as long
as the values are “random” (more technically, “sufficiently generic”; see
the discussion in [166]). Also, adding interior points to Ai will affect the
subdivisions, but not the mixed volume.

In Figure 1.36 we show an example of two mixed subdivisions of the
Minkowski sum of the Newton polytopes of the system of polynomials
ax + by + c = 0 and dx3y3 + ex3 + f y3 + g = 0. Each is obtained as the
Minkowski sum of two polytopes, one is a lifting of a square (in fact, a
tetrahedron), and the other a lifted triangle. To compute the mixed volume
we must simply identify the mixed cells (in this case, we show them high-
lighted in the picture).
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Figure 1.36: Mixed subdivision obtained by

specified height vectors; mixed cells are drawn

grey again.

The mixed volume is equal to six in this particular example. Note that
as we change the heights or the lifting values we use for the points, we
obtain different subdivisions. We can find the equivalence classes of the
height vectors that induced the same mixed subdivisions and we obtain a
collection of polyhedral cones partitioning real space. It follows from the
theory of fiber polytopes, developed by L. Billera and B. Sturmfels [53],
that this is the normal fan of a polytope. We show a diagram of the polytope
for our example in Figure 1.37. Readers that carefully read the previous
sections will feel a sense of dejà-vu, especially comparing this figure to
Figures 1.15 and 1.30. Indeed, the polytope in question is the same as the
secondary polytope of a certain three-dimensional point set. This is not a
coincidence as we will see in Section 9.2.

Now we are ready to state the main result of this section (see [46] and
[166] for proofs of the theorem, as well as the closely related papers [188]
and [197]). The word sparse in the statement has the precise meaning that
we are looking at a family of polynomial systems depending on certain
parameters ci,a, but we are fixing the monomials that are used by all these
systems.

Theorem 1.3.6 (D.N. Bernstein, 1976). Given d subsets A1, . . . ,Ad of Z
d

and Qi = conv(Ai), consider the sparse polynomial system of equations

∑
a∈A1

c1,axa1
1 xa2

2 . . .xad
d = 0, (1.9)

∑
a∈A2

c2,axa1
1 xa2

2 . . .xad
d = 0, (1.10)

...

∑
a∈Ad

cd,axa1
1 xa2

2 . . .xad
d = 0. (1.11)
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For almost all choices of coefficients (ci,a)i∈[d],a∈Ai
, the number of roots

of this system in (C∗)d equals the mixed volume μ(Q1, . . . ,Qd).

As usual, C
∗ denotes C \ {0}. That is, the roots to which the theorem

applies are those with no zero coordinate. In algebraic geometry, (C∗)d is
usually called the complex torus of dimension d.

As an application of Bernstein’s theorem, consider the system of equa-
tions ax3y2 +bx+ cy2 +d = 0 and exy4 + f x3 +gy = 0. The Bézout bound
estimates 25 complex roots. The number of roots in the torus (C∗)2 pre-
dicted by Bernstein’s Theorem is 18. Using Gröbner bases one can see that
18 is in fact the actual number of roots in C

2.
Note that if the polynomials of a certain system are each multiplied

by a certain monomial, the number of roots in the torus (C∗)d does not
change. This is in accordance with the fact that the Newton polytopes of
the new system are just translated copies of the old ones, so their mixed
volume does not change. The total number of affine solutions may, how-
ever, change. There has been work trying to extend Bernstein’s Theorem
to counting affine solutions [166], [274]. For sparse systems there exist ho-
motopy methods for finding all roots. These are algorithms resulting from
the combination of numerical and polyhedral techniques. They have been
explored, for instance, in [166], [325].

Figure 1.37: All mixed subdivisions of a Minkowski

sum. The gray cells are mixed cells. The meaning

of the edges in this picture will be discussed in

Section 9.2.

How many of the complex roots given by Bernstein’s Theorem can be
real? One would like to generalize the case with one variable, where
Descartes’ rule of signs [58] indicates that the number of positive real solu-
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tions of a polynomial is bounded by the number of monomials. Can some-
thing similar be done for multivariate systems? This is still unknown. On
a positive note, Khovanskii [189] made a major breakthrough when he pro-
vided a bound that did not depend on the degrees of the equations. On the
negative side, Kushnirenko had conjectured that, if f1 = f2 = · · · = fk = 0
are k polynomial equations in k variables, and mi is the number of terms of
fi, the number of nondegenerate isolated positive roots of this system is at
most

(m1 −1)(m2 −1) . . .(mk −1).
Bertrand Haas found a counterexample that consists of two polynomials in
two variables with three terms having five roots (instead of the conjectured
four). The example can be easily generalized to more variables [152].

In preparation for our next algebraic topic, it is relevant to mention the
work of Sturmfels, who gave lower bounds on the number of real roots for
sparse systems of equations from studying the signs of the coefficients and
marking with them the mixed cells of the mixed subdivisions [311]. This
is a generalization of O. Viro’s method for complete intersections. In this
way one can construct zero dimensional polynomial systems that have an
“easy to count” number of real roots. The roots are in fact cells of a mixed
subdivision of the type we saw before. It was proposed by Itenberg and
Roy [175] that this construction could provide a combinatorial bound for
the number of real solutions of a polynomial system with fixed Newton
polytopes. Unfortunately, this was disproved by Li and Wang [210]. For a
nice introduction to the topic of solving systems of polynomial equations,
we highly recommend the book [313].

Figure 1.38: David Hilbert around the time he

proposed 23 open problems.

Now we move to another application in algebraic geometry. The study
of the topology of smooth real algebraic curves has a long history (perhaps
the earliest result is the well-known theorem of projective geometry, due to
Poncelet, which says that any pair of smooth conics are equivalent under
projective transformations). Informally, it deals with the following ques-
tion: What are the possible topological types of smooth real curves with
a given degree? Hilbert popularized this question by including a version
of it in his famous collection of problems, proposed in 1900. He asked
about the classification of curves of degree six and surfaces of degree four.
Both cases were solved by 1977, but only the curves of degree seven have
been classified since then, and hardly anything is known for real smooth
hypersurfaces of arbitrary degree.

For the classification, two types of results are needed. On the one hand,
it is necessary to describe “prohibitions” or obstructions that narrow down
the possible topological types. On the other hand, the interested researcher
must construct hypersurfaces for the topological types allowed by the ob-
structions. This part of the book considers in detail the construction of
hypersurfaces with prescribed topology. We focus on the work of Oleg
Viro [326, 327], who developed a very successful combinatorial technique
based on the triangulations of points sets associated with the possible mono-
mials of a polynomial function. For simplicity, the discussion will be done
for the case of plane curves, but the theory works in arbitrary dimension.
See also [334] for an introduction to Hilbert’s Sixteenth problem.

Figure 1.39: A pseudoline. Its complement has

one component, homeomorphic to an open circle.

The picture only shows the “affine part”; you have

to think of the two ends as meeting at infinity.
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Figure 1.40: An oval. Its interior is a (topological)

circle and its exterior is a Möbius band.

Let us carefuly see what the problem actually looks like. Let

f (x,y,z) = ∑
i+ j+k=d

ai, j,kxiykzk

be a smooth homogeneous polynomial of degree d. The solution set of f
is the collection C f =

{
(x,y,z) ∈ R

3 : f (x,y,z) = 0
}

. The solution set is
a closed subvariety of dimension one inside RP2. Since it is smooth, each
component is homeomorphic to a circle. But there are two topologically
different (i.e., non-isotopic) ways to embed a circle in RP2: It can be iso-
topic to a conic, or to a line. The two cases are called, respectively, an oval
and a pseudoline. The main difference is that the complement of a pseudo-
line has only one connected component (for example, the “line at infinity”
is a pseudoline whose complement is the affine plane), while the comple-
ment of an oval has two connected components: one homeomorphic to an
open disk, which we call the interior of the oval, and one homeomorphic to
a Möbius band; see Figures 1.39 and 1.40. The two cases are also distin-
guishable by the double cover of RP2 by the 2-dimensional sphere S2. An
oval is covered by two ovals in the sphere, and a pseudoline by only one,
which wraps around twice.

Ovals can be nested; that is to say, one contained in the interior of the
other, or not. A nest of ovals (of depth k) consists of k ovals each nested
in the previous one. Also relevant to the question we want to study is that
an oval meets any generic line (or pseudoline, for that matter) in an even
number of points, while two generic pseudolines always meet in an odd
number of points. In particular:

Figure 1.41: Two configurations are possible in

degree 3.

Figure 1.42: Six configurations are possible in

degree 4. Only the two maximal ones are shown.

Figure 1.43: Eight configurations are possible in

degree 5. Only the two maximal ones are shown.

Corollary 1.3.7. The following holds for all real planar curves:

(i) A smooth plane curve of degree d has a pseudoline if and only if d
is odd, and in this case it only has one. In particular, a curve of odd
degree is never empty.

(ii) If a curve of degree d has two nests, of depths i and j, then i+ j ≤ d/2.
Here i and j are allowed to be zero.

(iii) If the ovals of a curve of degree d are distributed into at most five
nests, then there are at most d ovals in the curve.

Proof. For the first part, take a line l cutting the whole curve transversally.
The cardinality of l∩C f is congruent to d modulo 2, by Bézout’s Theorem,
so the number of pseudolines has the same parity as the degree. But two
pseudolines cannot appear, because they would produce at least a singular
point, which proves the first part. Similarly for the second part we can
find a line that passes through the center of the innermost ovals in the two
nests. For the last assertion, we consider the conic that passes through
points inside of the innermost ovals in the five (or less) nests.

This is a result of the type we have called “prohibitions”. The first part is
particularly important. It says that the classification of curves of a certain
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degree consists just in telling how many different ovals can appear and what
the possible nesting structures are. In other words, we want to know which
partially ordered sets (posets) can arise in this way from a smooth curve of
given degree. The equivalence class of curves that induce the same poset is
an isotopy class.

A second example of prohibition is Harnack’s Theorem, known well be-
fore Hilbert (there are many more beautiful prohibition type results but this
is not the point of these notes, so we abstain from showing more):

Theorem 1.3.8 (Harnack). The number of connected components of a non-
singular algebraic curve f of degree d is at most (d2−3d +4)/2, or, equiv-
alently, one plus the genus of the Riemann surface associated with f .

This theorem already allows us to easily give the full classification of
real smooth plane curves up to dimension five. Observe that, by Part (ii) of
Corollary 1.3.7, nesting appears only in dimensions four and higher. More-
over, in dimensions four and five only a single nest of two ovals is allowed,
and if the nest appears then no more ovals can be present. This gives only
the following possibilities, displayed in Figures 1.41, 1.42, and 1.43.

1. In degree one and two, we can have only one connected component,
and it is a pseudoline or oval depending on the degree (well, we knew
this already, didn’t we?). In degree one we have a line, and in dimen-
sion two we have a conic, which in the projective plane is indeed an
oval.

2. In degree three, there is a pseudoline together with zero or one ovals.

3. In degree four, there is either a nest of two ovals or a number of
unnested ovals ranging from 0 to 4 (only the maximal case is shown
in Figure 1.42).

4. In degree five, there is a pseudoline together with either a nest of two
ovals or a number of unnested ovals ranging from 0 to 6 (again, only
the maximal case is shown).Figure 1.44: The three curves of degree six with

eleven ovals.

As it turns out, all the degree five non-prohibited configurations can (eas-
ily) be constructed algebraically. But in degree six constructing new curves
starts to be much more complicated. By Corollary 1.3.7, you cannot get
two nests of depth at least two for a curve of degree six, and if there is a
nest of depth three then there is nothing else. Hence, the possibilities are:

• A single nest with three ovals.

• A number of zero to eleven unnested ovals.

• An oval having i ovals inside (unnested to one another) and j ovals
outside, with i+ j ≤ 10.

For instance, there are only three configurations of degree six curves
with 11 ovals, see Figure 1.44. Two of these three curves were already
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constructed in the times of Hilbert. Gudkov’s achievement was an elegant
construction of the third one.

A big boost to the “constructions” part of the problem was given by O.
Viro around 1990. His construction uses triangulations in an essential way.
Consider the point configuration

Ad = {(i, j) : i+ j ≤ d, i, j ∈ Z, i, j ≥ 0} .

We denote the convex hull of Ad by Qd . (How many points do you
have in Ad?) Take a triangulation T of Ad . Later we will need T to
be regular, but for now this is not necessary. Consider also a sign function
σ : Ad →{+,−}. Denote by RP2

++ = {(x : y : z) : x ≥ 0, y ≥ 0, z ≥ 0} the
real projective plane.
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Figure 1.45: The graph GT,σ of degree 4.

Take three more copies of the triangulation T , obtained by reflecting T
over the coordinate axis. Glue these four copies together to build a model
of the real projective plane, so that opposite sides are glued in opposite
directions. We also extend the sign function σ to the other three copies of
T , but modified according to which orthant we are working on. That is
to say, σ(i, j) = σ(i, j)(−1)i for RP2

+−, σ(i, j) = σ(i, j)(−1) j for RP2−+,
σ(i, j) = σ(i, j)(−1)i+ j for RP2−−. We are going to define a graph GT ,σ
whose vertices are the midpoints of those edges of T and whose endpoints
have distinct signs under σ . Two of these nodes will be connected if and
only if they lie in a common triangle of T . The graph is embedded in the
combinatorial model of the projective plane. Figure 1.45 shows an example.
We are now ready to state the main theorem of Viro:



30 Triangulations in Mathematics

Theorem 1.3.9. Assume that the triangulation T is regular, that is, it is
defined by a certain height function ω : Ad → Z. Let

ft (x,y,z) = ∑ci, jx
iy jzd−i− jtω(i, j),

where the ci, j’s are arbitrary constants with sign(ci, j) = σ(i, j).
Then, for t large enough, ft is an affine equation for a smooth plane

algebraic curve, and there exists a homeomorphism between RP2 and its
combinatorial model which maps the curve { ft = 0} into the graph GT ,σ .

Let us recall what it means for a triangulation to be regular. Roughly
speaking, a triangulation is regular when it is isomorphic to the lower hull of
a convex polytope. More precisely, the triangulation is regular if we can lift
each of the vertices a of T to a height ω(a) and obtain a convex polyhedral
surface combinatorially equivalent to T . Therefore a regular triangulation
T is given by a generic height vector ω : Ad → Z. Our running example is
in fact a good piecewise linear picture of a certain smooth curve of degree
four. Perhaps the reader should play with this construction.

The construction is powerful enough to obtain all the maximal curves of
degree six. Figure 1.46 shows one.

Figure 1.46: A curve of degree 6 constructed by

using Viro’s method.

We finish with a very successful application of Viro’s construction. Vir-
ginia Ragsdale conjectured in her 1906 paper [262] that the following in-
equalities would be satisfied by all non-singular curves of degree 2k (the
second equation is in fact a correction by O. Viro to the original statement
of Ragsdale). Denote by e and o the number of even and odd ovals respec-
tively, then

e ≤ 3/2(k2 − k)+ 1, o ≤ 3/2(k2 − k)+ 1.

She obtained this conjecture from her extensive analysis of Hilbert’s and
Harnack’s results. This condition was first proved to be false by Ilia Iten-
berg in 1993 (see [173]). Itenberg used Viro’s construction to show that
there are examples of curves with (3k2−3k+2)/2+h(k) even ovals, where
h(k) is a quadratic function of k. We present in Figure 1.47 the case for
k = 5. Itenberg’s construction gives 13

32 d2 ±O(d) positive ovals. Bertrand
Haas improved the result to 10

24 d2 ±O(d) [150].
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Figure 1.47: Itenberg’s counterexample to

Ragsdale’s conjecture (degree 10).

This shows the power of Viro’s construction. The construction of Viro
in principle is purely combinatorial and depends on a triangulated point set.
The algorithms can be carried out even for non-regular triangulations. It has
to be emphasized, though, that only regular triangulations are guaranteed to
produce algebraic curves. For non-regular triangulations, the construction
provides a curve embedded in the projective plane, but there is no evidence
that these curves are always algebraic. However, up to this point no counter-
example is known. Several properties of algebraic curves seem to be also
valid for curves arising from arbitrary triangulations [102, 151].

Figure 1.48: A portion of a non-regular triangulation

related to Ragsdale’s conjecture.
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For example, using non-regular triangulations it is possible to construct
curves with 17

40 d2 ±O(d) positive ovals, which would be the “best” coun-
terexamples to Ragsdale’s conjecture. Figure 1.48 shows a look at the tri-
angulations needed for this, which is a modification of the construction of
Haas mentioned above [150] (Haas’ construction gives fewer ovals, but it
is a regular triangulation).

Viro’s construction generalizes naturally to the case of real smooth hy-
persurfaces of higher dimension [187, 174], for the construction of singular
curves with prescribed collection of singularities [297], and for the con-
struction of planar polynomial vector fields with large number of limit cy-
cles [176].

Triangulations often arise in representation theory too, in particular in
the representation theory of Lie algebras. Remember that complex simple
finite-dimensional Lie algebras are classified via their crystallographic root
systems (see [170] for details), which are nothing but finite sets of vectors
in R

r. It is well-known that there are the following four infinite series plus
five “Exceptional” root systems:

• Ar = {ei − e j,δ + ei}i�= j, where δ = ∑r
k=1 ek. This system corre-

sponds to the Lie algebra slr+1.

• Br = {±ei ± e j}i< j ∪{ei}. This system corresponds to so2r+1.

• Cr = {±ei ± e j}i< j ∪{2ei}. This system corresponds to sp2r.

• Dr = {±ei ± e j}i< j. This system corresponds to so2r.

• The five exceptional root systems G2,F4,E6,E7,E8.

All these appear, for example, in the classification of finite reflection, or
Coxeter, groups. Indeed, the root vectors are essentially the normals to the
hyperplanes in the arrangement for the Coxeter group.

Given an irreducible crystallographic root system Φ, one can define the
following rich family of polyhedra, the alcoved polytopes, defined as the
intersections of half-spaces bounded by inequalities of the form

bα ≤ (α,x) ≤ cα , α ∈ Φ,

where bα ,cα are some integer parameters. So alcoved polytopes are unions
of cells in affine Coxeter hyperplane arrangements.

Of course, by definition, an alcoved polytope for a certain root system Φ
is simply a polytope whose set of normal vectors is contained in Φ. As we
will see in Section 2.5, this is the same as saying that:

Definition 1.3.10. An alcoved polytope for a root system Φ is a polytope
whose normal fan is a regular triangulation of Φ obtained with an integer
height function ω .

To emphasize how rich alcoved polytopes really are one can note that
hypersimplices, order polytopes, and some special kinds of matroid poly-
topes appear as examples of them. In [199], the authors investigate alcoved
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polytopes for the root system An and uncover some beautiful combinatorics
for their triangulations. They proved that two seemingly unrelated ways
of triangulating a hypersimplex, one given by R. P. Stanley [303] and the
other by B. Sturmfels [312], are in fact the same, and a manifestation of a
more general construction on alcoved polytopes. Using their triangulations
the authors are able to calculate volumes of alcoved polytopes and provide
generalizations of the descent and major index statistics on permutations,
which appear as volumes of hypersimplices (see Subsection 6.3.6), within
this more general context.

Triangulations of root systems already arised in the work of Gelfand,
Graev, and Postnikov on hypergeometric functions. There, they considered
the problem of computing the normalized volume of the convex hull in Rn

of a finite subset A of Zn. This quantity is of course easy to compute from
a triangulation of the convex hull of A. Of particular interest were the clas-

sical root configurations, denoted by A(+)
n , B(+)

n , C(+)
n , and D(+)

n , that arise
as the set of positive roots of the classical root systems. For example, they

showed that the volume of A(+)
n is precisely the Catalan number Cn that

also counts triangulations of an (n+2)-gon by constructing a triangulation
of it with that many simplices. The key idea is that there is an explicit bijec-

tion between the maximal simplices in the constructed triangulation of A(+)
n

and the set of so-called “anti-standard trees” on n elements Since the num-
ber of anti-standard trees is the Catalan number, (and since all simplices in
their triangulation are unimodular) it follows that the normalized volume
of conv(A+

n ) equals the Catalan number. We will show this triangulation in
Section 9.5.3.

In fact, their construction (if properly polarized) gives a construction of
the associahedron as an alcoved polytope! Remember that in Section 1.1
we previewed the associahedron (or Stasheff polytope, as it is more known
in algebraic circles) as the secondary polytope of an (n + 2)-gon Cn+2.

Their ideas where continued by W. Fong in her thesis [127], where she
found the normalized volume in the other root systems. Fong’s formulas
were later revisited by Ohsugi and Hibi in the language of initial ideals
and Gröbner bases that we will see in Section 9.4. As stated in the Sturm-
fels’ correspondence of Theorem 9.4.5, if an initial ideal of a toric ideal IA
is square-free then the generators of the toric ideal give the minimal non-
faces of a unimodular triangulation of the undrlying configuration A. Most
recently, K. Meszaros has continued the study of root polytopes and used
triangulations to prove a conjecture of A. N. Kirillov about the uniqueness
of the reduced form of a Coxeter type element in the bracket algebra of type
Cn (see [232]).

A different construction of the associahedron as an alcoved polytope for
the type An was devised by J.-L. Loday in [217]. In a subsequent paper he
constructed a triangulation of it related to parking functions: A sequence of
(possibly repeated) positive integers (i1, . . . , in) is called a parking function
if the permuted sequence ( j1, . . . , jn) with j1 ≤ . . . ≤ jn satisfies jk ≤ k for
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every k. Put differently, it is a parking function if

#{ik : ik ≤ k} ≥ k, ∀k = 1, . . . ,n.

One can show that for fixed n, there are exactly (n+1)n−1 parking functions
of length n. The set of them is denoted PFn. In [218, Theorem 2.1], a
triangulation of the associahedron Σ-poly(Cn) by oriented n-simplices is
constructed, such that the oriented edges are in accordance with the natural
Tamari order on the triangulations of the n-gon (we will define the Tamari
order in Section 6.1). Moreover, via a new recursive formula involving
PFp,PFn−p−1, and the set of (p,n− p− 1)-shuffles, the author shows that
the top dimensional simplices of this triangulation of the associahedron
Σ-poly(Cn) are in bijection to the parking functions (Theorem 3.2). So,
once more, triangulations have a nice combinatorial meaning.

One cannot mention the incredible associahedron without remembering
cluster algebras (see [125]). These are commutative rings equipped with a
distinguished set of generators (cluster variables) grouped into overlapping
subsets (clusters) of the same finite cardinality (the rank of an algebra in
question). Cluster algebras are constructed by an iterative process of muta-
tions which in some sense generalize flips. In [76] the authors showed the
cluster complex (the simplicial complex whose vertices are cluster variables
and whose maximal simplices are clusters) can be identified with the dual
face complex of a simple convex polytope, the generalized associahedron.
These polytopes include, as a special case, the Stasheff’s associahedron
and others.

1.4 The rest of this book

Now the reader has a minimal familiarity with the objects to be studied and
why triangulations are relevant in mathematics. For a given point set A there
are many questions that one can ask about their triangulations. Here is a
sample of general issues that will be of interest for us in the rest of the book:

1. Count the number of different triangulations.

2. Decide whether there is a triangulation with property X .

3. Find an “optimal” such triangulation.

4. Study the algebraic or topological structure of the set of all triangula-
tions, or special subsets.

Chapter 2 lays out the language and main objects for the rest of the
book. The first point we make is we want to convince the reader of the
convenience of clearly distinguishing between the points (or vectors) of
a configuration and the labels used to denote it. Following the tradition
common in combinatorial topology and geometry (including, by the way,
graph theory) a “simplex” or a “cell” is a set of labels, and a triangulation
or subdivision is a family of them, with certain properties. This may look
awkward at the beginning but it has many advantages in the long run. Among
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other things, it allows you to “play” with your configuration (move its points,
project it, lift it, etc.) and keep the same labels for the elements, which makes
it natural to ask what happens with triangulations (are they the same after the
transformation?). It isalso very handy in thecontextof regular triangulations
where you construct triangulations of a configuration by lifting it to higher
dimension and then projecting its lower envelope. All this is introduced and
worked out in Sections 2.1 to 2.3. The other three sections in this chapter
are devoted to three different topics:

• The notion of flip betwen triangulations, which is central to the book.
We took as a definition that a “flip” is simply a subdivision that is
refined only by two triangulations, and leave more operational char-
tacterizations for Chapter 4.

• Vector configurations and triangulations of them. These generalize
point configurations (which arise as the homogeneous case) and are
useful in several contexts. Among other things, they are essential for
the Gale duality introduced in Chapter 4.

• Simplicial complexes in general, with focus on the face vectors of
simplicial balls and spheres, of which triangulations of vector config-
urations are a special instance.

Triangulations in dimension two have deserved special attention in Com-
putational Geometry, both for their applications and for their simplicity. We
study them in Chapter 3 focusing on special constructions (Section 3.2),
how many can a given point set have (Section 3.3) and how to move from
one to another via flips (Section 3.4). We finish the chapter by showing
that triangulations in dimension three (and higher) fail to have most of the
properties of two-dimensional triangulations:

• Different triangulations of the same configuration may have different
numbers of simplices.

• Monotone flipping does not always work, which leaves open (in di-
mensions three and four) the question of whether graphs of flips are
always connected.

• Triangulations exist with fewer flips than expected.

Chapter 4 continues with the work of Chapter 2, providing the reader
with a tool box of constructions and results to use when needed. Section 4.1
isolates the properties of a given configuration that are relevant to study its
set of triangulations. This is basically the oriented matroid of the configu-
ration (sometimes called its order type) which can be described in several
ways. This opens the door to easily manipulate configurations and get new
ones from old ones. In Section 4.2 we show how triangulations behave with
respect to the matroid operations of contraction and deletion, as well as to
other natural operations such as pyramids and products. Special attention
deserves the one-point suspension operation introduced in Subsection 4.2.5.
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It shows, among other things, that configurations in convex position are not
simpler than arbitrary configurations, unless you are working in fixed di-
mension. Section 4.3 basically repeats the constructions of Section 3.2 in
arbitrary dimension. Section 4.4 retakes the topic of flips, showing two
characterizations of them. The final section in this chapter is a compila-
tion of many different ways in which triangulations and subdivisions can
be characterized, grouped in two basic blocks: “geometric” and “combina-
torial”.

This leads to what may be the central chapter of the book, Chapter 5
devoted to the construction and properties of secondary polytopes. After
motivating the secondary polytope with several examples we introduce in
Section 5.2 the secondary fan of a configuration, as follows: if we are given
a configuration A of n points or vectors, we can stratify the vector space of
all heights ω ∈ R

n that we can use to construct regular triangulations of A,
according to the actual triangulation they produce. This stratification is a
polyhedral fan and it turns out to be (if A is acyclic, that is, if it is equiva-
lent to a point configuration) the normal fan of a polytope: the secondary
polytope of A, whose face lattice is the poset of regular subdivisions of A.

Then we devote Section 5.3 to a closer look at some features of secondary
polytopes. We want to emphasize a result which surprised us and was one
of the latest additions to the book: Contrary to general belief, the graph
of the secondary polytope is not equal to the graph of flips among regular
triangulations, since there can be “non-regular flips” connecting regular tri-
angulations. This has been wrongly stated several times in the literature,
and we devoted some effort to try to prove the wrong statement before find-
ing (surprisingly simple) counter-examples.

In the construction of the secondary fan, the Gale transform of our con-
figuration played a significant role. This is emphasized by the concept of
chamber complex introduced in Section 5.4. Although it can be consid-
ered simply a different name for the secondary fan, its explicit definition
in terms of the Gale transform clarifies its structure a lot and opens the
door to a deeper understanding of triangulations of configurations with few
elements, which is undertaken in Section 5.5.

Chapter 6 takes a closer look at triangulations of certain specially struc-
tured configurations: vertex sets of cyclic polytopes (Section 6.1), products
of simplices 6.2, and cubes or, more generally, configurations with 0/1 co-
ordinates 6.3. Cyclic polytopes play a fundamental role in polytope theory,
as they give examples of the biggest number of facets (and faces of all
dimensions) possible in polytopes with a given dimension and number of
vertices. For us, they are interesting because they are a family of polytopes
very well behaved with respect to the deletion, contraction, projection, and
lifting operations. Understanding this good behavior one can prove, for ex-
ample, that their graphs of triangulations are connected. Also, they give
examples of configurations with (at least asymptotically) the biggest num-
ber of triangulations possible. Products of two simplices are also very well
behaved: the simplices they contain are in bijection with spanning trees in
complete bipartite graphs, which allows to nicely describe and understand
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specific triangulations of them. One can, for example, completely charac-
terize which products of two simplices possess non-regular triangulations.
Finally, cubes and 0/1 polytopes, although a bit less structured in general,
are very important in polyhedral optimization, so it is worth having a look
at their triangulations.

Chapter 7 is devoted to “pathological” triangulations. As a warm-up for
later constructions, it starts with a very close look at the smallest configu-
ration having non-regular triangulations, which we call “the mother of all
examples”. We have already introduced it in Figure 1.30 and it shows up
again and again in the book. Section 7.2 then shows triangulations in dimen-
sions three and four having very few flips. For example, with a construction
based on taking several copies of the vertices of a 24-cell one can build
arbitrarily large triangulations in dimension four with a constant number
of flips. The next two sections show two constructions of point sets with
a disconnected graph of triangulations: the first in dimension five and the
second in dimension six. Each of them has an added special feature: the
second one is in general position, and the first one has unimodular triangu-
lations in the non-regular components of the graph, a property that makes
it very interesting for algebraic geometric applications.

Chapter 8 focuses on computational and algorithmic aspects. The first
three sections describe, respectively, how to implement the oriented ma-
troid of a configuration in a computer, the construction and test of regular
triangulations, and the enumeration of regular and non-regular triangula-
tions. Section 8.4 is an account of the known bounds for the numbers of tri-
angulations that a point set can have. Section 8.5 introduces a very general
framework for optimization in the space of triangulations of a configura-
tion: the universal polytope. Following a standard procedure in polyhedral
optimization, the universal polytope is simply the convex hull of the char-
acteristic vectors of all triangulations of a configuration. This is a very
powerful concept, except it typically (and our case is not an exception) re-
quires you to use integer programming, rather than linear programming, to
solve specific optimization problems. This is not a drawback of the method,
but rather a reflection of the intrinsic difficulty of some optimization prob-
lems in triangulations. We show in Section 8.6 three problems that can be
expressed as linear optimization problems over the universal polytope and
for which there are NP-hardness proofs.

In the final chapter we address five almost independent topics that con-
tinue the theory laid down in the book:

• Section 9.1 shows that secondary polytopes and posets of subdivi-
sions are just a special instance of a more general construction (fiber
polytopes and posets of projection-compatible subdivisions) which
includes as other significant cases that of zonotopal tilings in a zono-
tope and monotone paths in an arbitrary polytope.

• Elaborating further on this, Section 9.2 shows a nice relation between
mixed subdivisions of a Minkowski sum of polytopes (which we have
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already encountered in Section 1.3) and arbitrary subdivisions of cer-
tain special polytopes, the so-called Cayley embeddings.

• In Section 9.3 we look at special properties and questions concerning
triangulations of integer point configurations, which are of special
interest in algebra and combinatorics.

• Section 9.4 shows the relation between the secondary fan of an in-
teger point configuration A and the Gröbner fan of the toric (or bi-
nomial) ideal IA associated to it. The first parametrizes the regular
subdivisions of A and the second parametrizes the initial ideals of IA.

• To finish the book, in Section 9.5 we want to stress an obvious fact
that should, in our opinion, be paid more attention: a simplicial com-
plex is polytopal if and only if it is a regular triangulation of some
“totally cyclic” configuration. Having this in mind, we show the rela-
tion between the g-vector of a polytope and a monotone flip sequence
constructing its face lattice from that of a simplex, and also lay out
a general method for checking whether a simplicial complex is poly-
topal. As an application, we show that (the polar complex of) the
associahedron is a regular triangulation of the root system of type A,
which in particular shows its polytopality.

Exercises

Exercise 1.1. Identify how the five binary trees with 3 nodes (Figure 1.9)
biject to the five triangulations of a pentagon (Figure 1.6, but you should
turn the figure upside-down and check that rotations correspond to diagonal
flips).

Exercise 1.2. Prove that any point set with four elements in the plane, not
all in a line, has exactly two triangulations.

Exercise 1.3. Take a regular tetrahedron. Can you triangulate it, with the
help of extra interior points, in such a way that only regular tetrahedra ap-
pear inside? (Hint: find the dihedral angle between adjacent facets of a
tetrahedron.)

Exercise 1.4. Prove that the graph of flips of a 6-gon is Hamiltonian (this
holds in general for any n-gon; see [220]).

Exercise 1.5. (Catalan numbers via generating functions.) Find for-
mula (1.4) for the Catalan number Cn from the recurrence relation (1.3)
of Definition 1.1.4. In other words, prove Theorem 1.1.2 from Proposi-
tion 1.1.1.

For this, call F(x) the generating function of the sequence Ci; that is to
say the series

F(x) =
∞

∑
i=0

Cix
i.

1. Prove that F2(x) = ∑∞
i=0 Ci+1xi = F(x)−1

x .
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2. Deduce that

F(x) =
1 +

√
1−4x

2x
.

(Hint: solve for F in xF2 = F − 1, and discard the solution which
diverges when x → 0+; our function must have lim

x→0+
F(x) = 1.)

3. Recall Newton’s binomial theorem:

(1 + z)1/2 =
∞

∑
k=0

(
1/2

k

)
zk,

where the fractional binomial is defined as:
(

1/2
k

)
=

1/2(1/2−1)(1/2−2) . . .(1/2− k + 1)
k!

.

Apply it to z = −4x and express the fractional binomial in terms of(2k
k

)
.

Exercise 1.6. For each of the four “Catalan structures” of Theorem 1.1.3
(other than triangulations), show that the recurrence formula (1.3) holds.

Exercise 1.7. (From triangulations to sign sequences) Show that the way
we have constructed sign sequences in Theorem 1.1.3 is equivalent to the
following one: Given a triangulation of the (n + 2)-gon, the sequence con-
sists of n + 1 blocks, one for each vertex of the polygon other than the
first one. The (i − 1)-th block (i = 2, . . . ,n + 2) has length equal to the
number of edges ji, with j < i, except we do not count the reference edge
{1,n + 2} in the last block. Each block consists of zero or more minuses
ending in a single plus, except the last block where we only put minuses.
Figure 1.49 shows the construction and also hints at an alternative descrip-
tion of it, where a sign is assigned to every edge other than the reference
edge.
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+

+

+
+

+

+ −

−
−

−

−
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−

+ −+ + −+ + −−+ + −−−

Figure 1.49: The sign sequence associated to a

triangulation. Compare with Figure 1.11.

Exercise 1.8. Let D(Cn) denote the diameter of the graph of flips of the
convex n-gon. Show that

D(Cn)+ 1 ≤ D(Cn+1) ≤ D(Cn)+ 3

for every n ≥ 3. (This is Part ii of Proposition 1.1.5. See the hints given
there.)

Exercise 1.9. Prove that the diameter of the graph of flips in a convex n-
gon is at least � 3n

2 − 5� for every n. More precisely, prove that for every
even n, at least that number of flips is needed to go from a triangulation
with no internal edges incident to even vertices to a triangulation with no

Figure 1.50: At least thirteen flips are needed to

transform these triangulations to one another.

internal edges incident to odd vertices, such as the ones in the figure.

Figure 1.51: This polyhedron needs at least 13

tetrahedra to be triangulated.

Exercise 1.10. Adapt your solution of the previous exercise (or vice-versa)
to show that the m-antiprism cannot be triangulated with less than 3m− 5
terahedra [100]. Recall that the antiprism is the convex hull of two horizon-
tal copies of an m-gon in R

3, at different heights and rotated to one another
an angle π/m, as in Figure 1.51.
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Exercise 1.11. Suppose you are given a planar polygon, but the subrou-
tine that computes triangulations of polygons is broken. How can you still
calculate the area of the polygon without using a triangulation? (Hint: es-
sentially you only know the boundary of the polygon right?)

Exercise 1.12. Describe as completely as you can (dimension, vertices,
facets, address, age, etc.) the order polytopes of the two posets in the Fig-
ure 1.52.

a b

c d

b

c

a

Figure 1.52: Describe the order polytopes

associated to these two posets.

Exercise 1.13. Provide a proof of Sperner’s lemma for arbitrary dimension.
(Hint: Start with dimension two, then apply induction.)

Exercise 1.14. Prove that Brouwer’s theorem is true for all homeomorphic
balls if it is true for the simplex.

Exercise 1.15. Prove Sperner’s lemma using Brouwer’s theorem.

Exercise 1.16. Take a “deformed” combinatorial 3-cube, say the Cartesian
product of a trapezoid with a segment, and find all possible triangulations.
How many are there?

Exercise 1.17. Consider the family of parametric linear programming prob-
lems LPA,c(b), where A is given by the 3×6 matrix

A =

⎡

⎢
⎢
⎣

2 1 1 0 0 0

0 1 0 2 1 0

0 0 1 0 1 2

⎤

⎥
⎥
⎦ .

1. Describe all the triangulations associated to the columns of A (hint:
there are 14 of them).

2. Prove that all triangulations are regular.

3. Consider the cost vector c = (1,2,1,2,1,2). Find the regular triangu-
lation associated to it. Find an optimal basis for the right-hand-side
vector b = (1,1,1). Is it unique?

4. Draw the graph of flips. A flip in this example is either a change of
diagonals or inserting or deleting one point in the triangulation. This
is the graph of the secondary polytope. Does it look familiar?

Exercise 1.18. Consider the parametric system of equations

a0xy3 + a1x3 + a2 = 0, (1.12)

b0x2y2 + b1x2 + b2y2 + b3 = 0. (1.13)

Determine bounds for the number of complex roots of the system using
mixed subdivisions. If you are familiar with some computer algebra system,
try to verify your answer using, for example, Gröbner bases.
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Exercise 1.19 (See [121]). Consider the problem of finding an eigenvalue λ
of an n× n matrix M with rows Mk, k = 1, . . . ,n, together with a corre-
sponding eigenvector v = (v1, . . . ,vn) of norm one, all considered over the
complex numbers. These objects can be considered as the solution of a
system of polynomial equations:

〈Mk,v〉 = λ vk ∀k = 1, . . . ,n (eigenvalue/eigenvector)
n

∑
k=1

(
vk
)2 = 1 (norm)

1. What is the maximal number of common solutions of this system
according to the Bézout’s bound?

2. What is the maximal number of common solutions of this system
according to the Bernstein’s bound?

3. What is the number of solutions of this system?

Exercise 1.20. Use Viro’s method to construct the three isotopy types of
maximal curves of degree six shown as in Figure 1.44. How many distinct
triangulations did you need?

Exercise 1.21. Check that there are exactly 53 configurations of ovals that
you can get from the three in Figure 1.44 by removing some of the ovals.
(These 53, together with a single nest of three ovals and the two configura-
tions in Figure 1.53, form the 56 possible configurations of real algebraic
curves of degree six.)

Figure 1.53: Two configurations which are

possible in degree six.





Configurations,
Triangulations,
Subdivisions, and Flips

2
The first goal of this chapter is to introduce the necessary mathematical lan-
guage to work with triangulations. This language includes the geometry of
polyhedra and cones [339] and the combinatorics of point and vector con-
figurations, as described by their oriented matroids [55]. These two books
are recommended for more details. The second goal is to provide the reader
with formal definitions and notation that are strong but flexible enough to
cover all kinds of point configurations, and even the more general case of
vector configurations. These definitions should include degeneracies, such
as collinearities and repetition of points. We will do this slowly, intending
to help the reader to see why a naive definition may lead to problems.

2.1 The official languages in the land of triangulations

When one looks at their purely geometric aspects, triangulations are made
of polyhedra and thus they are described by convex geometry concepts like
polytopes, cones, hyperplanes, etc. But when one cares about data struc-
tures, or if one is interested in combinatorial aspects, then combinatorics
comes into play, and one is concerned about such things as labels, sign
vectors, simplicial complexes, posets, etc. In this chapter we develop the
“bilingual” setting that we use throughout the book.

2.1.1 Polyhedra and cones
Figure 2.1: Points forming a set X . . . .

Figure 2.2: . . . and the convex hull of X.

A convex combination of a finite set of points x1, . . . ,xk in R
m is any point

x that can be expressed as
k

∑
i=1

λixi

with the λi ∈ R non-negative and summing to one. If non-negativity is
dropped, then x is an affine combination.

The convex hull of a set X ⊂ R
m, denoted conv(X), is the intersection

of all convex sets containing X. Equivalently, a point x is in conv(X) if
it is a convex combination of some finite subset of points in X. Similarly,
the set of all affine combinations of points in conv(X) is called the affine
hull or affine span of X. Affine spans are always affine subspaces, also
called flats of R

m. That is, every affine span is a translated copy of a linear
subspace (conversely, linear subspaces are affine subspaces passing through
the origin).

The convex hull of finitely many points is called a convex polytope, but
we will usually just call it a polytope since we will very rarely be concerned
with non-convex ones (which we do not even define here). A face of a

Jesús A. De Loera et al., Triangulations, Algorithms and Computation in Mathematics,
DOI 10.1007/978-3-642-12971-1_2, c© Springer-Verlag Berlin Heidelberg 2010
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polytope P is the locus {x ∈ P : ψ(x) ≥ ψ(y), ∀y ∈ P} where a certain
linear form ψ : R

m → R is maximized (or minimized). The whole P is
a face (obtained with ψ = 0) and, for convenience, the empty set is also
accepted as a face. It is easy to prove that faces of a polytope are themselves
polytopes and that faces of a face of P are faces of P as well. The dimension
of a polytope, or of a face, is the dimension of its affine span. Faces of
dimension zero, one, and dim(P)−1 are called vertices, edges, and facets
of P, respectively.

Remark 2.1.1. Of course, if a polytope P ⊆ R
m has dimension d, we can

always find a projection R
m →R

d that “embeds” P in dimension d keeping
all its properties of interest (face lattice, triangulations, etc). But sometimes
it is easier to define, or study, a d-dimensional polytope as lying in a proper
flat of a higher dimensional space. For example, the standard d-dimensional
simplex is better represented in R

d+1 as the intersection of the positive or-
thant with the hyperplane of coordinate sum equal to one. This representa-
tion preserves its symmetries. Also, one of the most important polytopes in
this book, the secondary polytope of a point configuration, comes naturally
embedded in a dimension much higher than its intrinsic dimension.

For this and other reasons (see Section 2.1.2, for example) we will make
a distinction between the intrinsic dimension of P, typically denoted d, and
the ambient dimension, for which we usually reserve the letter m.

We write F ≤ P to mean that F is a face of P and F < P to mean that F is
a proper face. If F is a non-empty proper face and ψ is a functional defining
it, the hyperplane {y ∈ R

m : ψ(x) = ψ(y),∀x ∈ F} is called a supporting
hyperplane. Equivalently, a supporting hyperplane is a hyperplane whose
intersection with P is a non-empty face.

It is a well-known and fundamental theorem (see Chapters one and two
of [339]) that a polytope can be described as either the convex hull of its set
of vertices, or as the intersection of the half-spaces given by its facets. Here,
a half-space is a set of the form {x ∈ R

m : ψ(x) ≥ c}, where ψ is a linear
functional and c ∈ R is a constant. Any finite intersection of half-spaces
is called a polyhedron. By Weyl-Minkowski’s theorem polytopes are the
same as bounded polyhedra.

The boundary of P is the union of its proper faces (equivalently, the union
of its facets). The rest is the relative interior of P. Every polytope is the
disjoint union of the relative interiors of all its faces. Observe that the
relative interior of a vertex is the vertex itself. The carrier in P of a point
x ∈ P or of a subset X ⊆ P is the minimal face of P containing x or X,
respectively. Equivalently, the carrier of a point is the unique face having x
in its relative interior.

y

1

34

5 6

78

2

x

Figure 2.3: This polytope has 27 faces: 1 of

dimension three, 6 of dimension 2 (facets), 12 of

dimension 1 (edges), and 8 of dimension zero

(vertices). Oh, and the empty face, which is

usually said to have dimension −1.

The carrier of x is the square conv(1234). The

carrier of y is the edge conv(78).

A set of points is affinely independent (or independent for short) if
none of them is an affine combination of the rest. It is called dependent
otherwise. Equivalently, k points are independent if their convex hull has
dimension k− 1. An affinely independent set is also called a basis of its
affine span. The convex hull of an affinely independent set of k + 1 points
is a k-simplex. Equivalently, a k-simplex is any polytope of dimension k
with k + 1 vertices. Every face of a k-simplex is a simplex and it has 2k+1
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possible faces. They are spanned by each of the possible subsets of points
(the span of the empty set is the empty face). All k-simplices are affinely
equivalent to one another. That is, if P and Q are simplices of the same
dimension then there is an affine-linear bijection between aff(P) and aff(Q)
sending P to Q.

So far we have been speaking about “affine” objects, but we will often
need to consider the analogous objects in linear algebra. We now consider
the elements of R

m as “vectors” rather than “points”.
The positive hull, or positive span, of a finite set V of vectors in R

m is
the set of vectors that can be obtained as non-negative linear combinations
of our points.

cone(V) :=
{

∑
v∈V

λvv : λv≥0 ∀v∈V
}

.

The sets of the form cone(V) for a finite set of vectors V is a convex poly-
Figure 2.4: The positive hull of a finite set of

vectors.

hedral cone. Again, since we never deal with non-convex non-polyhedral
cones, we simply call them cones. The dimension of a cone is the dimen-
sion of its linear hull, i.e., the linear subspace spanned by it. The lineality
space of a cone is the largest linear subspace contained in it. A polyhedral
cone is pointed if its lineality space is the zero subspace, or equivalently, if
it does not contain any line.

As with polytopes, a face of a cone P is the subset where a linear func-
tional is maximized or minimized. The difference now is that when this
happens the minimum, or maximum, must be zero. A supporting hyper-
plane for a face F is a hyperplane that intersects P exactly on F, and the
relative interior of a cone is the cone minus the union of its proper faces.
We now collect some basic facts about cones. The first one is essentially
Theorem 1.3 in [339].

Proposition 2.1.2. A subset C of R
m is a polyhedral cone if and only if it is

the intersection of finitely many linear halfspaces, i.e., there exists a finite
index set I and ψi ∈ (Rm)∗ for i ∈ I such that

C =
{

x ∈ R
m : ψi(x) ≥ 0 for all i ∈ I

}
.

Corollary 2.1.3. Every linear hyperplane
{

x ∈ R
m : ψ(x) = 0

}
=
{

x ∈ R
m : ψ(x) ≥ 0, −ψ(x) ≥ 0

}

is a polyhedral cone.

Corollary 2.1.4. The intersection of polyhedral cones is again a polyhedral
cone.

Recall that a (convex) polyhedron is any finite intersection of half-spaces.
In particular, both polytopes and cones are polyhedra. Now we define poly-
hedral complexes:

Definition 2.1.5 (Polyhedral Complex). A set K of polyhedra is a polyhe-
dral complex if
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Figure 2.5: Is this a polyhedral complex?

Figure 2.6: Not a polyhedral complex.

(i) P ∈ K and F ≤ P implies that F ∈ K .

(ii) P∩Q ≤ P and P∩Q ≤ Q for all P,Q ∈ K .

The individual polyhedra in K are called cells of the polyhedral complex.
They are also sometimes called faces of the subdivision.

As an example, the set of all faces of a polytope, or of a polyhedron, is
a polyhedral complex. The set of proper faces is another example called
the boundary complex. Polyhedral subdivisions and triangulations of point
sets, the central topic of this book, are also polyhedral complexes.

The dimension of a polyhedral complex is the highest among the dimen-
sions of its cells. All cells of a polyhedral complex can be ordered by
containment. A maximal cell is one that has no other cell containing it. A
polyhedral complex is pure if all its maximal cells are of the same dimen-
sion. A (geometric) simplicial complex is one whose cells are all simplices.
We will see more about (geometric and abstract) simplicial complexes in
Section 2.6.1, but here are some important definitions.
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Figure 2.7: The star of the simplex F = 67

consists of the two triangles 167 and 467; the link

consists of the two vertices 1 and 4.
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Figure 2.8: The star of the simplex F = 7

consists of the five triangles containing it; the link

consists of their edges not containing 7.

Definition 2.1.6. • For any F ∈ K , the star of F in K , stK (F), is the
subcomplex of K made up of all polyhedra of K having F as a face
plus all their faces.

• The link of F in K is the polyhedral complex linkK (F) = {C ∈
stK (F)|F∩C = /0}. Note that the link of a (k−1)-dimensional face
F, link(F,K ), is a complex of dimension d− k−1.

• The anti-star of F in K is the polyhedral complex astK (F) = {C ∈
K |F∩C = /0}. Alternately:

astK (F) := (K \ stK (F))∪ linkK (F)

• The boundary ∂K of a pure d-dimensional polyhedral complex K
is the polyhedral complex whose maximal faces consist of the d −1
faces contained in only one d-face. For example, the boundary of a
simplicial ball is a simplicial sphere, and the boundary of a simplicial
sphere is empty.

• We say that a polyhedral complex L is a subcomplex of K if L ⊂
K . The boundary of K is an example of a subcomplex of K .

Polyhedral complexes all of whose faces are cones are called fans:

Definition 2.1.7 (Fan). A polyhedral fan (or fan for short) in R
m is a poly-

hedral complex consisting of polyhedral cones. A fan is pointed if all of its
cones are pointed. A fan is complete if the union of all its cones is R

m.

Observe that the face consisting of the origin must be the same in all the
cones of a fan, and it coincides with the lineality space of them. So if a
single cone in a fan is pointed, then all of the cones are.
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Definition 2.1.8 (Normal Fan). Let P be a polyhedron in R
m. For a point

x ∈ P we define the outer normal cone of p in P in R
m as

NP(x) :=
{

ψ ∈ (Rm)∗ : 〈ψ ,x〉 ≥ 〈ψ ,y〉∀y ∈ P
}

.

Put differently, NP(x) consists of all the linear functionals whose maximum
on P is achieved at x.

Similarly, for a face of P, F ≤ P we say NP(F) equals the cone NP(x) for
any x in the relative interior of F (this is clearly independent of the point
chosen). NP(F) is a polyhedral cone called the outer normal cone of F in P
in R

m. Figure 2.9: A complete pointed fan in

dimension two.

Figure 2.10: Two normally equivalent 5-gons.

The corresponding inner normal cones are defined as the negatives of the
outer normal cones. The set

NP :=
{

NP(F) : F ≤ P
}
=
{

NP(p) : p ∈ P
}

is the outer normal fan of P in R
m.

Two polytopes P and P′ are normally equivalent if their outer normal
fans are the same:

P ∼ P′ ⇐⇒ NP = NP′ .

Proposition 2.1.9. Let P be a polytope in R
m, not necessarily full-dimen-

sional. Then NP(x) is full-dimensional (i.e., of dimension m), if and only
if x is a vertex of P.

2.1.2 Point configurations

By a point configuration we mean a finite set of labeled points in real affine
space R

m, but we allow our set to have repeated points which receive differ-
ent labels. To see why this may be useful, suppose for a moment that you

a

c ed

i j k

b

f

f (d)

f (i) f (k)

f (a) = f (b)

f (c) f (e)

f ( j)

f (c)
f (a)

Figure 2.11: A situation when repeated points

occur.

project a 3-dimensional cube, as shown in Figure 2.11, in the direction of
the diagonal line joining antipodal vertices a,b. Those two points are pro-
jected on top of each other. If you want to recall the top and bottom views
of the cube (with respect to this direction) you get two similar but different
two-dimensional pictures (see bottom of Figure 2.11). The issue is that the
interior points used in the perspectives are different. It is then a good idea
to remember that the plane of projection has, so to speak, two copies of the
same point.

There are other fundamental operations that can be performed on point
configurations which make repeated points natural and interesting. Among
them are Gale transforms (see Section 4.1.3), the contraction at a point
(see Section 4.2), and the Minkowski sum (see Section 9.2).

The best way to deal with repeated points is via labels. Every element
of a point configuration will have a label, and all labels are assumed to be
different. A repeated point will have several labels attached to it. Typically,
but not necessarily, labels will be the first positive integer numbers. That is:

Definition 2.1.10. A point configuration in R
m is a finite set of (perhaps

repeated) points with (non-repeated) labels.



48 Configurations, Triangulations, Subdivisions, and Flips

More formally, a point configuration in R
m with set of labels J is a map

J → R
m.

We will typically refer to elements of a configuration by their labels, not
by their coordinates, saying, for example, that in Figure 2.12 the points 1, 5
and 4 are collinear. This takes care of ambiguities when we have repeated
points, which are distinguished by their labels.

As a second advantage, we can carry labels from one configuration to an-
other one, if the latter is obtained from the first by a geometric construction.
For example, consider the projection of Figure 2.12 to Figure 2.13). This
gives a different configuration A′, but we can keep the same labels. In this

5

1 2

3 4

Figure 2.12: Five points in the plane.

3 45 21

Figure 2.13: Five points along a line.

way we can say things like: “2, 4, and 5 are independent in A but dependent
in A′”.

It is convenient to represent a configuration as the columns of a matrix.
For example, the point configuration of Figure 2.12, consisting of the five
points (0,0), (3,0), (0,3), (3,3), and (1,1), would be represented as:

(
1 2 3 4 5

0 3 0 3 1
0 0 3 3 1

)

The row above the matrix shows the labels we attach to the points. The
matrix representation, among other things, makes repeated points familiar.
They are just columns that happen to be equal.

Figure 2.14: Homogenization of a five point

planar configuration.

But it is even more convenient to represent a point configuration in R
d as

a (d + 1)× n matrix by adding a constant row. That is, the previous point
configuration could be written instead as:

A =

⎛

⎝

1 2 3 4 5

0 3 0 3 1
0 0 3 3 1
1 1 1 1 1

⎞

⎠

The addition of this extra coordinate is called homogenization. It is
very helpful to use homogeneous coordinates in affine spaces, since it turns
affine geometry into a special case of linear algebra. For example:

1. An affine dependence between the points (0,0), (3,0), (0,3), (3,3),
and (1,1) is any non-zero vector λ = (λ1, . . . ,λ5) with ∑λipi = 0 and
∑λi = 0. Equivalently, it is a vector λ such that A ·λ = 0, if A is the
homogeneous matrix of the point configuration.

2. Similarly, the fact that three points in A are collinear, or the value area
of the triangle they span in case they are not, are seen in the matrix
as the vanishing, or the value, of the corresponding 3×3 determinant
in the homogeneous matrix.

In Section 2.5 we will introduce triangulations of vector, rather than
point, configurations. The use of homogeneous coordinates for point con-
figurations will make this task seamless.
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To represent a point configuration A in homogeneous coordinates we do
not really need to have a constant row. Homogeneous coordinates are based
on the fact that the affine space R

m can be naturally identified with any hy-
perplane of R

m+1 not passing through the origin. Hence, any matrix whose
columns lie in such a hyperplane will do the job. We call such matrices
homogeneous. Put differently, an m× n matrix A is homogeneous if there
is a row vector φ ∈ R

m such that φA is a vector with all entries equal.
This freedom sometimes permits us to produce simpler coordinates, or

coordinates that highlight symmetries. For example, the point configuration
of Figure 2.15, consisting of the vertices of two concentric regular triangles,
can be represented by the following matrix, whose columns all lie in the
hyperplane x1 + x2 + x3 = 4:

⎛

⎝

1 2 3 4 5 6

4 0 0 2 1 1
0 4 0 1 2 1
0 0 4 1 1 2

⎞

⎠

In this example, which we saw already in Section 1.2, each column gives
the barycentric coordinates of the corresponding point with respect to the
outer triangle, except that the barycentric coordinates have been normalized
to add up to four, instead of one, for the convenience of getting integer
numbers. Note that the coordinates can be changed via a rotation to have
the points lying in the plane with coordinate x3 = 1 instead of the plane
x1 + x2 + x3 = 4.

p6

p1

p3

p5
p2

p4

Figure 2.15: An interesting set of six points in the

plane.

Summarizing what we have discussed:

A d-dimensional point configuration with n elements is repre-
sented as an m×n homogeneous matrix of rank d +1. Usually,
but not always, m = d + 1. Columns of the matrix are the el-
ements of the configuration and will usually be identified by
their labels.

Definition 2.1.11. The rank d + 1 of the matrix defining a point configu-
ration is called the rank of the point configuration. The number n− d + 1,
where n is the number of elements, is called the corank of the configuration.
The dimension of a point configuration is the dimension of its convex hull.
The dimension plus one is equal to the rank.

At this point let us make explicit some typesetting and notational con-
ventions that we have been using so far and will keep using throughout the
book:

• Subsets of R
m (that is, polytopes, hyperplanes, cones, etc.) are de-

noted by upright boldface letters. This includes point configurations,
as well as subconfigurations (submatrices made out from a subset of
columns) (A,B, . . . ), even if strictly speaking they are labeled sub-
sets.
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• Sets of labels are denoted by italic letters (J, I,Z). Our preference
will be to use A for the configuration and J for the label set.

• If C is a subset of the label set, then A|C denotes the corresponding
subconfiguration (the submatrix consisting of the columns labeled by
C).

• Similarly, boldface lowercase letters (p,q,z) will denote points or
vectors in R

m (e.g., the individual columns in a configuration) while
italic lowercase letters represent individual labels (i, j,z).

• We will sometimes write matrices in abbreviated form. That is, A =
(p1, . . . ,pn) if {1, . . . ,n} is the set of labels or A = (p j) j∈J for a gen-
eral label set J.

2.1.3 Geometry of point configurations

B
1 2

3 4

5

1 2

3 4

5

A

Figure 2.16: {125,135,325,234} is a

triangulation of A, but not of B.

Let us look more closely at the consequences of our decision of referring to
points by their labels. The left part of Figure 2.16 displays a triangulation
of the point configuration A of the previous section. Triangles can be then
referred to as triplets of labels, such as {1,2,5}, {1,3,5}, etc. To simplify
notation, we sometimes abbreviate them as 125, 135, etc. As with point
configurations, one advantage of this is that then we can also say things
like “T is a triangulation of A, but not of B”, where B is the configuration
on the right of the same figure, obtained from A by a perturbation.

If we accept this, then sentences like “{1,2} is a facet of {1,2,5}” have
to be allowed in our language. In this setup we can speak as if the sets of
labels themselves were geometric objects, which have a convex hull, faces,
etc. Thus when dealing with point configurations the convex set structure
takes second place to the combinatorics.

Let us repeat most of the definitions of 2.1.1 in this new “labeled” setting.

Definition 2.1.12 (Convex hull, relative interior). Let A = (p j) j∈J be a
point configuration in R

m, with set of labels J. For a subset C of J we
define the convex hull of C in A to be the following closed convex set:

convA(C) :=

{

∑
j∈C

λ jp j : λ j ≥ 0 for all j ∈C, and ∑
j∈C

λ j = 1

}

. (2.1)

The dimension and relative interior of C are defined to be the dimension and
relative interior of its convex hull. We recall that the latter is the following
relatively open (i.e., open in its affine hull) convex set:

relintA(C) :=

{

∑
j∈C

λ jp j : λ j > 0 for all j ∈C, and ∑
j∈C

λ j = 1

}

. (2.2)
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Figure 2.17: The relative interior of A is the

rectangle without its border.

Remark 2.1.13. Every (nonempty) point configuration has a non-empty rel-
ative interior. For example, if C has only one element, that point is its
relative interior (more precisely, relintA({b}) = convA({b}) = {pb}).
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Remark 2.1.14. Note that if A is a point configuration with label set J and
R⊂C ⊂ J, then convA|C (C) = convA(C). Thus, whenever the configuration
to which the labels refer is clear, we will simply write conv(R) and relint(R).
This applies to most of the notation introduced in this section.

Definition 2.1.15 (dependent, spanning, general and convex position). Let
A be a point configuration of dimension d with label set J. Let C be a subset
of the label set J.

(i) We say that C is dependent in A if there is a non-zero vector (λ j) j∈C

such that

∑
j∈C

λ jp j = 0 and ∑
j∈C

λ j = 0.

It is called independent otherwise.
Figure 2.18: Three dependent points (top) and

three independent points (bottom).

(ii) We say that C is spanning if conv(C) has the same dimension as
conv(J).

(iii) C is in general position if each subset with at most d + 1 elements is
independent. Equivalently, if every dependent set is spanning in A|C.
If a set is not in general position we say it is in special position.

(iv) An element j ∈ J is extremal in A if the corresponding point p j is not
repeated in A and is a vertex of convA(J). A point configuration is in
convex position if all its elements are extremal.

Remark 2.1.16. Observe that if C has a repeated point (that is, two labels i
and j pointing to the same point pi = p j), then C is necessarily dependent,
since pi −p j = 0 is a dependence.

ψ
1

2
3

4

5

6

Figure 2.19: Face of C in the direction ψ is 1234.

Definition 2.1.17 (Face). Let A = (p1, . . . ,pn) be a point configuration in
R

m, with set of labels J. Let C ⊂ J. For a linear functional ψ ∈ (Rm)∗, the
face of C in direction ψ is the following subset of C:

faceA(C,ψ) :=
{

j ∈C : ψ(p j) = max
b∈C

(ψ(pb))
}

. (2.3)

The affine hyperplane
{

x ∈ R
m : ψ(x) = ψ(p j), j ∈ F

} ⊂ R
m is called

a supporting hyperplane of the face F . The empty subset is considered a
face and C is always a face of C, obtained with the zero functional. If F is
a face of C , we write F ≤A C. If, moreover, F �= C then we write F <A C,
and we say that F is a proper face of C. A facet of C is a face of dimension
one less than the dimension of C, that is, it is a maximal proper face.

Remark 2.1.18. A face of a face of C is also a face of C, as is any intersec-
tion of faces.

Remark 2.1.19. relintA(C) = convA(C)\⋃F<C convA(F). Thus, convA(C)
equals

⋃̇
F≤C relintA(F), where

⋃̇
denotes “disjoint union”.

Remark 2.1.20. We have the following connections to the corresponding
concepts of convex geometry:
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(i) convA(faceA(C,ψ)) equals the face of the polytope convA(C) in the
direction of ψ .

(ii) If F <A C, then convA(F) < convA(C), but in general the reverse
implication is not true.

(iii) If B is in general position, then convA(F) < convA(C) implies F <A C
too. This is because all proper faces are spanned by independent sub-
configurations.

(iv)
⋃

F<C convA(F) = ∂ (convA(C)).

Remark 2.1.21. A single element { j} is a face of C if and only if p j is not
repeated and is a vertex of convA(C) in the usual sense. This is exactly
what we defined as an extremal point of C.

Definition 2.1.22 (Carrier). Let A be a configuration in R
m. Let C be a set

of labels and let X ⊆ convA(C) and R ⊂ C. The carrier of X in C is the
smallest face of C whose convex hull contains X. That is,

carrierA(X,C) :=
⋂

X ⊆ convA(F)
F ≤C

F. (2.4)

The carrier of R in C is carrierA(R,C) :=
⋂

R⊆F≤C F . Clearly, carrierA(R,C)
equals carrierA|C (R,C).

Sometimes the easiest way to prove that something is a face is to check
that it coincides with its own carrier. For this trick, which will be applied
several times in Section 4.5.1, the following lemma is useful.

Lemma 2.1.23. For every pair of subsets R,C of labels of a point configu-
ration A that satisfy R ⊆C we have

relintA(R) ⊆ relintA(carrierA(R,C)). (2.5)

y

1

34

5 6

78

2

x

Figure 2.20: The carrier of x is {1,2,3,4}. The

carrier of y is {7,8}.

Remark 2.1.24. In fact, something more general is true: since different
faces have disjoint relative interiors, the carrier of C is the unique face F
with relintA(C) ⊆ relintA(F). In particular, as in the geometric case, the
carrier of a point x in C is the unique (by Remark 2.1.19) face F of C with
x ∈ relintA(F).

Proof. We have to show that relintA(R)∩∂ convA(carrierA(R,C)) = /0.
Assume, for the sake of contradiction, that there exists a point x in

relintA(R)∩ ∂ convA(carrierA(R,C)). Since x is not in the boundary of
convA(R), each hyperplane H ⊂ R

m through x must either separate the
points in convA(R) (i.e., there are points in convA(R) on both sides of
H) or H must contain all of conv(R). In particular, it must either sepa-
rate the points in A|R or contain all points in AR. Since R ⊆ carrierA(R,C)
by definition of the carrier, each hyperplane through x must either separate
carrierA(R,C), or contain all points of A|R. Since x is in the boundary
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of carrierA(R,C), there is a hyperplane H through x neither separating
carrierA(R,C) nor containing all of carrierA(R,C). Therefore, H must con-
tain A|R completely. This, however, implies that A|R is contained in
carrierA(R,C)∩H �= carrierA(R,C), a contradiction with the minimality of
the carrier.

Lemma 2.1.25. (i) For subsets R ⊆ F ≤C of labels of a point configura-
tion A, we have

carrierA(R,F) = carrierA(R,C). (2.6)

(ii) For subsets F ≤ C of labels of a point configuration A and a point
x ∈ convA(F), we have

carrierA(x,F) = carrierA(x,C). (2.7)

(iii) For subsets F ≤ C of labels of a point configuration A and a subset
X ⊆ convA(F) we have

carrierA(X,F) = carrierA(X,C). (2.8)

Proof. We only prove the first assertion; the remaining items are analogous
and left to the reader. Let R ⊆ F ≤C be subsets of labels of a point config-
uration A. Then:

carrierA(R,F) =
⋂

G≤F
R⊆G

G

= F ∩
⋂

G≤C
R⊆G

G

=
⋂

G≤C
R⊆G

G

= carrierA(R,C).

The second to last equality is true because F ≤C.

In words, this means that the carrier does not change if you (properly)
enlarge the object in which the carrier is taken.

2.2 A closer look at the definition of triangulation

Here will demonstrate that the language developed in Section 2.1.3 is now
adequate for our purposes. Nevertheless, let us first work with the probably
more familiar language of Section 2.1.1 and pinpoint some of its limita-
tions. We will discover that things actually become simpler by the use of a
seemingly more abstract language.

We take as starting point the definition of triangulations given at the be-
ginning of the book.
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Definition 2.2.1. A triangulation of a point configuration A is a collection
T of simplices, with vertices in A, that satisfies the following properties:

1. All faces of simplices of T are in T . (Closure Property)

2. The intersection of any two simplices of T is a (possibly empty) face
of both. (Intersection Property.)

3. The union of all these simplices equals conv(A). (Union Property)

Note that the first two properties are the definition of a (geometric) sim-
plicial complex. In other words: a triangulation of A is a simplicial complex
with vertex set contained in A and which covers conv(A).

In our definition we do not assume conv(A) to be full-dimensional. In
particular, we may speak of triangulations of a single point (there is one!),
or of triangulations of a face of conv(A), as in the following statement,
proved in Lemma 2.3.4 in a more general context.

Lemma 2.2.2. Let T be a triangulation of a point configuration A and let
F be a face of conv(A). Then, the following is a triangulation of A∩F:

TF := {σ ∈ T : σ ⊂ F} .Figure 2.21: The four triangulations of the point

configuration of Figure 2.12.

Observe that we do not require all the points of A to be used as vertices in
a triangulation. For example, the configuration of Figure 2.12 has the four
triangulations shown in Figure 2.21. Two of them use the five points and have
four triangles, and two use only four points and have two triangles. Similarly,
the six points in Figure 2.15 have 18 triangulations, only 8 of which use all
points. Of course, all vertices of convA are used in all triangulations.

2.2.1 There is always a triangulation

Our first goal is to show that every point configuration has at least one
triangulation. The method we are going to use is conceptually the simplest
way to compute triangulations of point configurations. It is surprisingly
general and it is central to the structure of the set of all triangulations of A.
The process, illustrated in Figure 2.22, is as follows:

Figure 2.22: The lifting construction.

Let A = (p1, . . . ,pn) be a point configuration in R
m:
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1. Pick a height function ω : A → R (ω can be thought of as a vector
ω = (ω1, . . . ,ωn) ∈ R

n, with ωi = ω(pi)), and consider the lifted
point configuration in R

n+1

Aω :=
(

p1 . . . pn

ω1 . . . ωn

)
.

2. Compute the face structure of the polytope P = conv(Aω). A lower
face of P is a face “visible from below”, that is, a face that can be
defined by minimizing a linear functional ψ which is positive on the
last coordinate (equivalently, a face that has a non-vertical supporting
hyperplane H and with P above H).

3. Lower faces, since they are not vertical, project bijectively to poly-
topes inside conv(A). Moreover, as we will prove in a more general
context in Lemma 2.3.11, the collection of projected lower faces al-
ways satisfies the three properties in the definition of triangulation.
So, if all lower faces of P are simplices, their projections form a tri-
angulation of A.

Definition 2.2.3 (Regular Triangulation). A triangulation of a point con-
figuration A in R

m is called regular if it can be obtained by projecting the
lower envelope of a lifting of A to R

m+1.

Regular triangulations have appeared in different mathematical contexts
and have actually received different names, such as convex, weighted De-
launay, Gale, or coherent triangulations.

Proposition 2.2.4. Every point configuration has regular triangulations.

While reading the proof, observe that we profit from the use of homoge-
neous coordinates for our point configuration.

Proof. We need to check that for any given A there are height functions ω
for which Aω has the property that “all lower faces of conv(Aω ) are sim-
plices”. A sufficient condition for this to happen can be stated as: Every
affine basis B contained in A is lifted so that the unique hyperplane contain-
ing the lifted point set Bω contains no other point pω of Aω .

For a given basis B = {p1, . . . ,pd+1} ⊆ A and extra point p ∈ A\B this
condition is equivalent to the non-vanishing of the determinant

∣
∣
∣∣

p1 . . . pd+1 p
ω(p1) . . . ω(pd+1) ω(p)

∣
∣
∣∣ .

This determinant is a linear equation on the ω’s with non-zero coefficient
on (at least) ω(p), hence it is non-zero except on a certain hyperplane in the
space R

n of possible heights. As a conclusion, almost any choice satisfies
the condition. More technically, there is an open dense subset of choices
of ω in R

n that satisfies the condition: any ω lying in the complement of a
certain union of finitely many hyperplanes.
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The reader can verify without trouble that all the triangulations of (the
vertex set of) a convex n-gon are regular. The same happens for the tri-
angulations of our five-point example, displayed in Figure 2.21 (we will
check this in detail in Section 2.2.3). But some point configurations have
non-regular triangulations, which resemble Escher’s famous “impossible
pictures”; they look like projections of something from a higher dimension,
but they really are not. Here is a very important example:p6

p1

p3

p5
p2

p4

Figure 2.23: The mother of all examples and its

six labeled points.

0 0

31

0
0

0

0

ω1

ω3

0.5

ω2

Figure 2.24: Two triangulations of the mother of

all examples.

Example 2.2.5 (The mother of all examples). Consider the two concentric
triangles of Figure 2.23, whose coordinates we recall:

M :=

⎛

⎝

1 2 3 4 5 6

4 0 0 2 1 1
0 4 0 1 2 1
0 0 4 1 1 2

⎞

⎠

Figure 2.24 shows two triangulations of this configuration. The triangu-
lation on top is produced by the heights shown in the picture. But the other
one is not produced by any choice of heights, as we prove by contradiction.
To simplify the argument, we first observe that there is no loss of generality
in assuming that the three height values for the interior triangle are zero
(see Exercise 2.1). The other three values must be strictly positive in order
for the three interior points to be lower vertices of the lifted configuration.

Figure 2.25: Fixing the height on the middle

triangle and on the vertex in the background

followed by tweaking the remaining heights (in

order to “fold” along the missing diagonals) leads

to a contradiction at the height of the vertex in

the background.

Moreover, using the labels of Figure 2.23, the exact condition on ω1, ω2,
and ω3 that makes the edge 15 appear in the second triangulation is that
ω1 < ω2. The same happens for the diagonals 26 and 34, giving rise to the
following impossible sequence of inequalities.

ω1 < ω2 < ω3 < ω1.

See Figure 2.25 for an illustration of the lifting discussed.

2.2.2 A famous example: the Delaunay triangulation

Perhaps due to their easy construction, regular triangulations are often the
prime examples of triangulations. Actually, special choices of the height
vector ω produce some of the most studied and nicest triangulations. Here
we study one of them, and more important examples will come in Sec-
tion 4.3.

The Delaunay triangulation is arguably the most important triangulation
of a point set for applications, and there is a vast literature about it (see,
for example, [45, 129]). On the one hand, it is geometrically dual to the
Voronoi diagram of the point set. The Voronoi cell of a point p in a point
configuration A is the locus of points that are at least as close to p as to
any other point of A. The Voronoi diagram of A is the polyhedral complex
whose maximal cells are the Voronoi cells. Clearly, Voronoi diagrams are
important tools for solving proximity questions. This means Delaunay tri-
angulations are useful too, since they carry exactly the same combinatorial
information as Voronoi diagrams. As another example of usefulness, the set
of edges of a Delaunay triangulation of any point set in the plane contains
the minimum Euclidean spanning tree of the point set.
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Figure 2.26: A Voronoi diagram and its dual

Delaunay triangulation.

On the other hand, the Delaunay triangulation of a point set is considered
to be one of the most uniform triangulations of it, meaning that its simplices
are, on average, as close to regular simplices as possible. This makes a De-
launay triangulation a good candidate for meshing problems. For example,
in two dimensions the Delaunay triangulation of A has, for example, the fol-
lowing properties: It is the triangulation that minimizes both the maximum
angle and the maximum circumradius of its triangles (it also maximizes the
minimum circumradius). See Corollary 3.2.7 for the proofs of these and
other properties.

Delaunay triangulations are also important examples of regular triangu-
lations.

Definition 2.2.6. Let A ⊂ R
d be a finite point set of dimension d. If the

lifting procedure applied to the heights

ω(i) = ||pi||2 = a1
2 + a2

2 + · · ·+ ad
2, for each pi = (a1, . . . ,ad) ∈ A,

produces a triangulation, then this triangulation is called the Delaunay tri-
angulation of A.

Figure 2.27: Delaunay triangulation of a

1-dimensional configuration.

Put differently, we are lifting the points onto a paraboloid (as indicated
in Figure 2.27). Let us further analyze this triangulation and see when it
is well-defined. Observe that we are assuming that our configuration is
full-dimensional. This simplifies some of the arguments in the following
results.

Lemma 2.2.7. Let C ⊂ R
d+1 be the paraboloid given by the equation

xd+1 = x1
2 + · · ·+ xd

2,

and let H ⊂ R
d+1 be a non-vertical hyperplane, that is, one whose normal

vector has non-zero last coordinate. Let S be the projection of H∩C into
R

d obtained by dropping the last coordinate. Then S is either empty, a
single point, or a sphere in R

d. See Figure 2.28.

Figure 2.28: A hyperplane intersected with the

paraboloid.

Proof. Since H is not vertical, we can isolate the variable xd+1 in its defin-
ing equation. That is, H is defined by an equation

xd+1 = λ1x1 + · · ·+ λdxd + λ0.

The intersection of H and C then satisfies the equation

x2
1 + · · ·+ x2

d = λ1x1 + · · ·+ λdxd + λ0,

which is equivalent to

(x1 −λ1/2)2 + · · ·+(xd −λd/2)2 = (λ1/2)2 + · · ·+(λd/2)2 + λ0.

Since this equation does not involve the variable xd+1, it is satisfied on the
projection of C∩H. Depending on whether the right-hand side is negative,
zero or positive, it defines the empty set, a single point, or a sphere.
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The following result indicates that the facets (highest dimension cells)
of the Delaunay subdivision can be identified by a simple “empty sphere
criterion”. That this is the case beyond two dimensional space was first
observed in [204].

Corollary 2.2.8. Let A ⊂ R
d be a finite point set and let ω : A → R be the

height function
ω(i) = ||pi||2.

Let B ⊂ A be a subset such that conv(B) is full-dimensional. Then B cor-
responds to the vertex set of a lower facet of the lifted point set if and only
if there is a sphere passing through all points of B and leaving all points of
A\B outside.Figure 2.29: The empty-sphere property for an

edge and a triangle in a Delaunay triangulation.

Proof. Since B is full-dimensional, there is at most one sphere passing
through all points of B. If there is no such sphere, then by Lemma 2.2.7,
B is not lifted to a hyperplane, hence it does not lie on a facet of the lifted
point set. If there is such a sphere S, then there is a hyperplane HB passing
through the lifted point set. Points in the interior, on the surface and in the
exterior of the sphere S are lifted respectively to points below HB, on HB
or above HB (see Figure 2.28). Then B is lifted to the vertex set of a lower
facet if and only if there is no point in the interior of the sphere and the
points on the surface are precisely those of B.

In particular, simplices in the Delaunay triangulation are characterized
by the “empty sphere” property: σ is a simplex in it if and only if there is a
Euclidean sphere circumscribed to σ (i.e., with all vertices of σ on the sur-
face of the sphere) with the rest of the points of A outside; see Figure 2.29.

The corollary also gives a simple sufficient condition to guarantee that
the Delaunay triangulation is uniquely defined: that no d + 2 points lie in
the surface of any sphere. But, what if this is not the case and the lifting to
the paraboloid does not produce a triangulation? In this case there are two
approaches to defining a Delaunay triangulation. You can either

1. Give up uniqueness and call Delaunay triangulations all the triangu-
lations that “refine” the projection of the lower envelope of the lifted
point set, or

Figure 2.30: The empty sphere property of two

Delaunay triangulations for a degenerate point

configuration.

2. Give up simpliciality and call the projection that you get a Delau-
nay subdivision. This is indeed a subdivision of conv(A) into convex
polytopes that intersect face to face (that is, it is a polyhedral com-
plex).

In applications, the first approach is what is usually used. After all, one
of the reasons to construct the Delaunay triangulation is that one wants a
triangulation in the first place! In this setting, a Delaunay triangulation
is any triangulation T whose simplices have the following “weak” empty
sphere property: for any σ ∈ T , there is a Euclidean sphere circumscribed
to σ with no point of A inside (but perhaps with extra points on its surface).

But, conceptually, the second approach is nicer. For example, the De-
launay subdivision is still dual to the corresponding Voronoi diagram; as
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Figure 2.31 shows, its cells are characterized by the same empty sphere
property as in the general position case: a polytope σ ⊂ conv(A) with ver-
tex set contained in A is a cell in the complex if and only if there is a sphere
circumscribed to σ with the rest of the points of A outside.

Figure 2.31: The Delaunay subdivision of a

degenerate point set and its dual Voronoi

diagram.

As a curious historical remark, although the spelling “Delaunay” is the
standard one in Computational Geometry, the spelling “Delone” triangu-
lations is also used in other areas. Both spellings honor the same Russian
geometer Boris Nikolaevich Delone [123], who studied these triangulations
mostly for infinite periodic point configurations (lattices) [103].

2.2.3 Regular subdivisions and their structure

Let a configuration A be given. In Proposition 2.2.4 we have seen that
for any sufficiently generic choice of a height function ω : A → R, the
projection of the lower envelope of Aω is a regular triangulation.

What happens if we take a height vector ω for which the lifted point set
Aω has some non-simplicial lower facets? As has been hinted in Figure 2.31
of the Delaunay subdivision of a degenerate point set, instead of being a
triangulation, the projection of the lower envelope is a collection of more
complicated polytopes, each with vertices in A. This collection is called
the regular (polyhedral) subdivision of A, produced by the height vector
ω . The different polytopes in it are called cells of the subdivision. Clearly,
they still satisfy the three properties of Definition 2.2.1.

Polyhedral subdivisions play a fundamental role in this book; triangula-
tions are nothing but particular cases of them. Even more, sometimes you
need to understand general polyhedral subdivisions even if your ultimate
goal is to work only with triangulations.

To justify the need for a more careful definition, other than just saying
that a polyhedral subdivision is a polyhedral complex that covers conv(A),
let us look carefully at a particular example:

5

1 2

3 4

Figure 2.32: Five points in the plane.

Example 2.2.9. Consider the configuration

A =

⎛

⎝

1 2 3 4 5

0 3 0 3 1
0 0 3 3 1
1 1 1 1 1

⎞

⎠

of five points in the plane that appeared already in Figure 2.12. Figure 2.33
shows the six possible regular polyhedral subdivisions of it. Four of them
are triangulations.

To check that these are indeed regular subdivisions and that the list is
complete, we look at precisely what height vectors produce each of these
six subdivisions. As in the previous section, there is no loss of generality
in restricting attention to height vectors with ω1 = ω2 = ω3 = 0 (see Ex-
ercise 2.1). Hence, we do a case study depending on the values of ω4 and
ω5. The results can be represented in the plane. The exact conditions that
produce the six subdivisions (a) to (f) are, respectively (check this!):

(c)(a) (b)

(f)(e)(d)

Figure 2.33: Subdivisions of the point set

introduced in Figure 2.32.

(a) ω5 ≥ 0, ω4 = 0.
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(b) ω5 < 0, ω4 + 3ω5 = 0.

(c) ω5 ≥ 0, ω4 > 0.

(d) ω4 < 0, ω4 ≤ 3ω5.

(e) ω5 < 0, ω4 + 3ω5 > 0.

(f) ω5 < 0, ω4 + 3ω5 < 0, ω4 > 3ω5.

Figure 2.34 shows these conditions pictorially. Height ω5 is the horizontal
coordinate and ω4 is the vertical one.

One thing we observe is that the regions that produce triangulations are
precisely the ones of full-dimension, in agreement with our assertion that
sufficiently random heights produce triangulations.

Figure 2.34: Stratification in the space of lifts.

But Figure 2.34 also shows that the stratification we obtain in the two-
dimensional space of heights has defects. Some cones are neither open nor
closed, but contain only one of their two boundary rays. This, and other
unsatisfactory features come from the fact that our temporary definition of
regular subdivision does not distinguish between the case where the interior
point p5 is lifted to lie right on the lower envelope of the convex hull of the
rest of the points (which should be considered a degenerate situation), and
the case where it is lifted above the lower envelope of the rest.

To make this distinction, the language of Section 2.1.3 comes to the res-
cue. Instead of defining the regular subdivision by projecting the lower
faces of the polytope conv(Aω ), we project the lower faces of the point
configuration Aω :

Definition 2.2.10. Let A ⊂ R
m be a point configuration with n elements

and let ω : J → R be a “height vector”. We use indistinctly ω( j) and ω j to
refer to the height given to j, although the latter is preferred.

Let Aω be the lifted point configuration, which has the same labels as A
and a point pω

j := (p j,ω j) ∈ R
d+1 for each j ∈ J. A lower face of Aω is

any face F = faceA(J,ψ) of A in the direction of some functional ψ with
last coordinate positive (put simply, a face that is visible from below).

The regular subdivision of A produced by ω is the set of lower faces of
the point configuration Aω . This regular subdivision will be denoted by
S (A,ω).

Observe in this definition the convenience of using the same labels in
Aω and in A. This allows us to say that the lower faces of the former are
cells in a subdivision of the latter. Also, observe that here (and in the rest
of the book) our height function is defined on the labels rather than on the
points. Aside from slightly simplifying notation (we write (pi,ωi) instead
of (pi,ω(pi)) for the lifted points), this takes care of the possibility that A
may have repeated copies of a point and that we may want to lift them to
different heights.

We now look at regular subdivisions of the point set of Example 2.2.9 in
this new language. To give a subdivision we only list the full-dimensional
cells, since the others are simply the faces of them (put differently, lower
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faces of Aω are all the faces of lower facets). Also, as an abbreviation, we
write 123, instead of {1,2,3}.

Example 2.2.11 (Example 2.2.9 continued). The triangulation (c) in the
above list can be represented by the following list of subsets of A:

{123,234}.

But there is another regular subdivision with the same set of geometric cells,
i.e., the same convex hulls. It is not a triangulation, since it contains cells
with dependences. Its list of full-dimensional cells is:

{1235,234}.

This subdivision is produced by heights lying in the positive vertical axis in
the representation of Figure 2.34.

Figure 2.35: Stratification in the space of lifts,

with the modified definition.

Figure 2.36: Poset of the subdivisions.

Let us work out the list of regular subdivisions of the five point ex-
ample again, with this new definition, and with the same convention that
ω1 = ω2 = ω3 = 0. Our point set now has exactly nine regular polyhedral
subdivisions, namely:

(a1) {12345}, obtained whenever ω5 = 0, ω4 = 0.

(a2) {1234}, obtained whenever ω5 > 0, ω4 = 0.

(b) {135,125,2345}, obtained whenever ω5 < 0, ω4 + 3ω5 = 0.

(c1) {1235,234}, obtained whenever ω5 = 0, ω4 > 0.

(c2) {123,234}, obtained whenever ω5 > 0, ω4 > 0.

(d1) {1345,1245}, obtained whenever ω4 < 0, ω4 = 3ω5.

(d2) {134,124}, obtained whenever ω4 < 0, ω4 < 3ω5.

(e) {125,135,235,234}, obtained whenever ω5 < 0, ω4 + 3ω5 > 0.

(f) {125,135,245,345}, obtained whenever ω5 < 0, ω4 +3ω5 < 0, ω4 >
3ω5.

Figure 2.35 illustrates this catalogue. The difference between Figure 2.35
and Figure 2.34 is that each of the subdivisions (a), (c), and (d) of our first
computation splits into two subdivisions, depending on whether the interior
point p5 is lifted to lie in the lower envelope of conv(Aω ) or above it. In
the figures, we distinguish these two cases by drawing the point or not.
Observe that there are two different subdivisions into a single cell, (a1) and
(a2): (a1) is called the trivial subdivision because the cell is the whole of A
(Example 2.3.5).

To finish convincing the reader that this combinatorial framework gives a
nicer set of regular subdivisions, let us look at the refinement poset of regular
subdivisions of a point configuration. Given two regular subdivisions S1

and S2 of A, we say that S1 refines S2 if every element of S1 is contained
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in some element of S2. This relation induces a partial order; hence, the
set of regular subdivisions is a partially ordered set, the regular refinement
poset for short. Intuitively, if ω is a height vector and ω ′ = ω + ε is a
sufficiently small perturbation of it, then the regular subdivision S (A,ω ′)
will be a refinement of S (A,ω). This is proved in Lemma 2.3.15.

With our temporary approach to regular polyhedral subdivisions, the re-
finement poset has three levels. On top, there is the trivial subdivision (a).
Below this are (b), (c), and (d), which are incomparable to one another. Fi-
nally, (f) is the common refinement of (b) and (d), and (e) is the common
refinement of (b) and (c). With the combinatorial definition, the poset has
a different and a nicer structure in which, for example, the four triangula-
tions are exactly the elements in the lower level (the minimal elements in
the poset). Actually, the poset becomes isomorphic to the poset of non-
empty faces of a quadrilateral. Furthermore Figure 2.35 shows the relative
interiors of the normal cones of the quadrilateral of Figure 2.37. That the
same happens for regular subdivisions of any point configuration is one of
the fundamental results in this field.

Figure 2.37: The poset of regular subdivisions,

as the faces of a quadrilateral.

2.3 A bullet-proof definition of polyhedral subdivisions

In this section we elaborate more on the idea of representing cells in trian-
gulations and subdivisions of A as subconfigurations of A, rather than as
convex hulls of subsets, which led to an unsatisfactory structure. We con-
tinue using geometric language to refer to those subsets of indices since we
introduced the combinatorial framework in which, for example, faces of a
configuration are subconfigurations. Faces, carriers, etc. were defined for
configurations already.

2.3.1 Polyhedral subdivisions

We are finally ready to present our master definition that considers polyhedral
subdivisions and triangulations of a point configuration A with label set J
as collections of subsets of J with certain properties, mimicking the ones
in our “intuitive” definition of triangulations provided in Definition 2.2.1.

1 2

3 4

5

Figure 2.38: {1235,234} is not a subdivision

while {1235,2345} is and {123,234} is another.

Definition 2.3.1 (Polyhedral subdivision). Let A be a point configuration
in R

m, with a set of labels J. A collection S of subsets of J is a polyhedral
subdivision of A if it satisfies the following conditions:

(CP) If C ∈ S and F ≤C, then F ∈ S as well. (Closure Property)

(UP)
⋃

C∈S convA(C) ⊇ convA(J). (Union Property)

(IP) If C �= C′ are two cells in S , then relintA(C)∩ relintA(C′) = /0. (In-
tersection Property)

The elements of a polyhedral subdivision S are called cells. Cells of
dimension k are called k-cells. Cells of the same dimension as A are full-
dimensional or maximal. Cells of dimension zero are called vertices of S .
Independent cells are called simplices. A triangulation of A is a polyhedral
subdivision all of whose cells are simplices. The set of polyhedral subdivi-
sions of a point configuration A will be denoted Subdivs(A).
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Sometimes we want to state (IP) for a cell and all of its faces. For this,
we introduce a handy term.

Definition 2.3.2. Two subsets C and C′ of J intersect properly if all their
faces satisfy Property (IP) of Definition 2.3.1; they intersect improperly
otherwise.

Remark 2.3.3. • Property (IP) can be reformulated as: All pairs of
maximal cells intersect properly.

• The union property could have been written with an equality, since
containment in the opposite direction is obvious.

• Similarly, Property (UP) could have been written with “relint” in-
stead of “conv” in one or both sides, because Property (CP) implies
that once a relative interior is covered, the convex hull is covered too.

• In property (UP), the restriction of the union to maximal cells is
equivalent.

We now collect some facts in order to get used to the definition:

Lemma 2.3.4. Let S be a polyhedral subdivision of a point configura-
tion A ⊂ R

m with a label set J. Then:

(i) All maximal cells in S are full-dimensional, i.e., their dimension
equals the dimension of A.

(ii) For all C,C′ ∈ S , if C ⊆C′ then C ≤C′.

(iii) For all C,C′ ∈ S , if C ⊆C′ then either C = C′ or dimC < dimC′.

(iv) For any face F of A, the set S |F ⊆ S of all cells C in S with C ⊆ F
is a polyhedral subdivision of A|F .

(v) If C and C′ are cells of S , then C∩C′ is a face of both (and hence a
cell in S ). Moreover,

convA(C∩C′) = convA(C)∩ convA(C′).

Proof. In order to prove Part (i), assume there is a maximal k-cell F with
k < dimA = d. Pick an arbitrary point x ∈ relint(F), and consider a point
y ∈ conv(A) very close to x in general position, i.e., no point on the half-
open segment (x,y] from y to x is contained in any cell of dimension less
than d. Then, by (UP), y must be contained in the relative interior of a
full-dimensional cell Cy. We claim that F is a face of Cy. First note that,
because of (IP), x cannot be in the relative interior of Cy. However, all
points on (x,y] must be in Cy as well because (x,y] does not intersect any
lower-dimensional face. Therefore, x is in the boundary of Cy. Consider the
carrier of point x in Cy, carrierA(x,Cy). This is a face of Cy, thus it is in S ,
and it contains x in its relative interior. Since F contains x in its relative
interior as well, F must be equal to carrierA(x,Cy) by Property (IP). Thus
F is a face of Cy, and we are done since we have reached a contradiction.
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Figure 2.39: A polyhedral subdivision of A and

AF .

Part (ii) can be proved as follows: Let C,C′ ∈S with C �= C′ and C ⊂C′.
Property (CP) implies that all faces of C′ are in S as well. In particular,
the carrier of C in C′ is in S . Since the relative interior of C is contained
in the relative interior of carrier(C,C′) (in particular, the relative interiors
of these subconfigurations have a non-empty intersection), Property (IP)
implies that C = carrier(C,C′), which means C ≤C′.

Part (iii) is a direct consequence of Part (ii): The only face C of a point
configuration C′ with dim(C) = dim(C′) is C′ itself. All other faces have
strictly smaller dimensions.

In order to see Part (iv) we first note that (IP) is trivially fulfilled for all
subsets of a polyhedral subdivision, in particular for S |F . Moreover, (CP)
is satisfied because Property (CP) holds for S , and whenever C ⊆ F , then
C′ ⊆ F holds also for all faces C′ of C.

It remains to show that convA(F) is covered by all cells contained in
it (without loss of generality, F is a proper face). Since Property (UP)
holds for S , each point x in convA(F) is contained in convA(C′

x) for some
cell C′

x ∈ S . Let carrierA(x,C′
x) ∈ S be the carrier of x in C′

x. Then, by
Lemma 2.1.23, x ∈ relint(carrierA(x,C′

x)).
We claim that carrierA(x,C′

x) is in S |F . For this we simply need to show
that carrierA(x,C′

x) ⊆ F . Since A|F = A∩HF for a supporting hyperplane
HF of F , we know that A|carrierA(x,C′

x) ∩HF ⊆ A∩HF = A|F .
Since A|carrierA(x,C′

x) ∩HF is a face of A|carrierA(x,C′
x) that contains x, we

have, by the minimality of the carrier, that A|carrierA(x,C′
x) ⊆ HF . Thus,

A|carrierA(x,C′
x) ⊆ A|carrierA(x,C′

x) ∩HF ⊆ A∩HF = A|F , (2.9)

and carrierA(x,C′
x) is in S |F , as desired.

Part (v) is trivially true if C ∩C′ is empty. If it is not empty, let R and
R′ be the carriers of C∩C′ in C and C′, respectively. R and R′ are faces of
C and C′, hence they are cells in S , and have C∩C′ �= /0 in their relative
interiors. Hence, by (IP), R = R′.

In the equation about convex hulls, the containment ⊆ is true for the
convex hulls of arbitrary sets. So, let x ∈ conv(C)∩ conv(C′) and let us
see that x is also in conv(C ∩C′). Let R and R′ be the carriers of x in C
and C′, respectively. We again conclude that R = R′, hence R ⊆C∩C′ and
x ∈ conv(R) ⊂ conv(C∩C′).

3 4

5
6

2

1

Figure 2.40: S = {123456} is the trivial

subdivision.

Example 2.3.5 (The trivial subdivision). Every point configuration A has
the trivial subdivision, consisting of all the faces of A (including the non-
proper one, that is, the full set J of labels). That this is indeed a subdivision
according to Definition 2.3.1 is easy to show: (CP) follows from the fact
that “a face of a face is a face”. (UP) is obvious since J is one of our cells,
and (IP) follows from the fact that different faces of A have disjoint relative
interiors.

If A is independent, then the trivial subdivision is the only polyhedral
subdivision, and it is a triangulation.
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Example 2.3.6 (0-dimensional point configurations). A configuration of
dimension zero consists of several copies (say k) of a single point. By
property (IP), a subdivision cannot have more than one (non-empty) cell.
Conversely, any non-empty subconfiguration of A (together with the empty
set, which is its unique proper face) is a polyhedral subdivision. That is,
A has exactly 2k − 1 subdivisions in bijection with the non-empty subcon-
figurations of A, labeled by subsets of A’s label set J. Triangulations are
the ones corresponding to one-element subconfigurations, and there are k
of them.

1

3 32 2

1

Figure 2.41: Two subdivisions of a

zero-dimensional configuration with three copies

of the same point. The one on the left, {1}, is a

triangulation.The one in the right, {13}, is not.

Example 2.3.7 (1-dimensional point configurations, no repeated points).
For a 1-dimensional point configuration, being in general position is equiv-
alent to not having repeated points. The convex hull is a segment, and
any subdivision S is geometrically a chain of sub-segments going from
one end to the other with the endpoints of sub-segments elements of A. A
sub-segment may also contain some points of A in its interior. To get a
polyhedral subdivision in the sense of Definition 2.3.1, we need to specify
whether these interior points are part of the cell or not.
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1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4

1 2 3

Figure 2.42: All subdivisions of four collinear

points.

Put differently, if A = (p1, . . . ,pn) is our point set (and the labels denote
its ordering along the line R), in a polyhedral subdivision S of A each
of the n− 2 points p2 through pn−1 will have one of the following three
statuses: It may be an endpoint of two consecutive sub-segments of S , it
may belong to a cell of S without being one of its endpoints, or it may
not belong to any cell of S . If we represent these three possibilities as the
three signs “−”, “0”, and “+” respectively, we get:

Each polyhedral subdivision of A has an associated string of
length n−2 on the alphabet {+,0,−}.

We leave it to the reader to prove the following:

1. This correspondence is a bijection between the set of subdivisions of
A and the 3n−2 element set {+,0,−}n−2.

2. Triangulations correspond to the strings without zeroes, hence there
are 2n−2 of them.

The most prominent structure on the set Subdivs(A) of all polyhedral
subdivisions of a point configuration A is the refinement poset. It is of-
ten called the Baues poset of A. Refinement of a polyhedral subdivision
means roughly that some pieces of that subdivision are subdivided further.
We have seen in Section 2.2.3 a restricted version using only the regular
triangulations. Now we present a bigger more inclusive definition.

Definition 2.3.8 (Refinement). Let S and S ′ be two polyhedral subdivi-
sions of a point configuration A. Then, S is a refinement of S ′—in brief
notation: S � S ′—if for each C ∈ S , there is a C′ ∈ S ′ with C ⊆C′.

With the refinement relation, Subdivs(A) is a partially ordered set (poset
for short). This means the following (by definition of a poset):



66 Configurations, Triangulations, Subdivisions, and Flips

Lemma 2.3.9. The refinement relation induces a partial order on the set
of all polyhedral subdivisions of A. That is, for every triple S ,S ′,S ′ of
polyhedral subdivisions of A, one has:

(i) S � S

(ii) S � S ′ and S ′ � S imply S = S ′

(iii) S � S ′ and S ′ � S ′ imply S � S ′

Using the refinement we can say a subdivision is coarsest if it refines the
trivial subdivision and no other. Triangulations are the finest subdivisions.

Proof. Part (i) is clear by the definition of “�”. To prove Part (ii), let
S � S ′ and S ′ � S . Let C be an arbitrary maximal cell in S . Since
S �S ′, there is an C′ ∈S ′ with C ⊂C′. Since S ′ �S , there is a C′ ∈S
with C′ ⊆ C′ . Thus, C ⊆ C′ , and, by Lemma 2.3.4(iii), either C = C′ or
dim(C) < dim(C′ ). Since C was chosen to be a maximal cell, only C = C′
is possible. This implies that in the chain C ⊆ C′ ⊆ C′ we have equality
everywhere. The remaining Part (iii) is again straightforward by definition
of “�”.

1234

12,24 12,23,34 13,34

124

14

123,34 12,234 134

Figure 2.43: Refinement poset of four colinear

points.
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Figure 2.44: Refinement poset of four colinear

points.

Recall that a maximal or minimal element in a poset is an element which
is not strictly smaller or strictly greater, respectively, than any other one.

Lemma 2.3.10. Let A be a point configuration. Then:

(i) Subdivs(A) has a unique maximal element, the trivial subdivision.

(ii) A subdivision is a minimal element of Subdivs(A) if and only if it is a
triangulation.

Proof. For Part (i), observe simply that every cell of every subdivision is
contained in the full-dimensional cell J of the trivial subdivision. Hence,
every subdivision refines the trivial one.

For Part (ii), here we only prove that triangulations are minimal elements
in the poset. The converse is Corollary 2.3.18 in the next section, and will
be proved using regular triangulations.

Let S be a triangulation and let S ′ be a subdivision that refines S . Ev-
ery cell F ′ of S ′ is contained in a cell F of S and, since F is independent,
F ′ is a face of it. Hence, by property (CP) F ′ is a cell of S . Conversely,
if F is a face of S , let x be a point in relint(F ′). Then x must also be in
the relative interior of some face F ′ of S ′, by property (UP). By the previ-
ous argument, F ′ is a face of S as well. Since F and F ′ intersect in their
relative interiors, F = F ′ by property (IP).

Let us close this section with a reassuring remark. The reader may won-
der what parts of Section 2.2 need to be re-worked to match the combi-
natorial setting introduced in this one. The answer is “almost none”, for
the following reason. In that section we were primarily interested in tri-
angulations. With the new definition, cells in a triangulation are affinely



2.3. A bullet-proof definition of polyhedral subdivisions 67

independent subsets and, hence, they are the vertex set of their convex hull.
In particular, there is a one-to-one correspondence between the triangula-
tions allowed by Definition 2.2.1 and those allowed by Definition 2.3.1,
except in the following case: If the point configuration has repeated points,
there will be several combinatorial representatives of each “geometric” tri-
angulation. Indeed, each combinatorial triangulation will select a particular
copy of each repeated point, since a cell with repeated points is not indepen-
dent and two combinatorial simplices using different copies of a repeated
point violate the intersection property (IP).

2.3.2 Regular subdivisions, again

We now look again at polyhedral subdivisions. The first thing to check
is that they are indeed polyhedral subdivisions, according to our “bullet-
proof” definition.

Lemma 2.3.11. S (A,ω) is a polyhedral subdivision of A, for every ω .

Proof. Observe that every lower face F of Aω , by definition, lies in a non-
vertical hyperplane (the one in which the functional ψ is constant). Hence,
the projection π : Aω → A that forgets the last coordinate is an affine iso-
morphism between AF and Aω

F . In particular, the face structure of F is the
same in A and Aω .

The closure property (CP) then follows from the fact that if F ′ < F ≤ J
are faces of Aω then every functional for the face F can be slightly per-
turbed to a functional of the face F ′ (for people familiar with polyhedral
geometry, what we are saying is that the normal cone of F is a face of the
normal cone of F ′). In particular, if F is a lower face, then any F ′ < F is a
lower face as well. The intersection property for the projected faces follows
from the intersection property of the faces of Aω [339].

For the union property, let x be a point in the relative interior of A. The
intersection of x×R with conv(Aω) is a vertical segment from a bottom
point x1 to a top point x2. Let F be any proper face of Aω with x1 ∈
convAω F , which exists since x1 is in the boundary of conv(Aω). Let ψ be
any linear functional selecting F as a face of Aω . We have that ψ(x2) >
ψ(x1), otherwise ψ would be constant in the whole segment from x1 to
x2, hence constant on conv(Aω ), because this segment crosses its relative
interior, contradicting the fact that F is a proper face.

But ψ(x2) > ψ(x1) implies that ψ is positive on the last coordinate, so
F must be a lower face. Its projection is a cell in S (A,ω) covering the
point x.

Example 2.3.12 (Example 2.3.5 continued). The trivial subdivision is the
regular subdivision obtained with the zero height vector or, more generally,
with any height vector that is the restriction to A of an affine function R

m →
R. In this case, Aω has the same face structure as A, since they are affinely
equivalent configurations, and every face is a lower face.

Example 2.3.13 (Example 2.3.6 continued). Every subdivision of a zero-
dimensional point configuration is regular. Remember that every subdivision
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has a unique (non-empty) cell, say F . A height function that produces this
subdivision is one that gives the same height to all points in F and greater
height to the others.

2

3

3 2

1 1

Figure 2.45: Heights that produce the regular

subdivisions shown in Figure 2.41.

Example 2.3.14 (Example 2.3.7 continued). In this case, all subdivisions
are again regular. The proof is left to the reader as Exercise 5.1.

Lemma 2.3.15. Let A be a point configuration in R
m and let ω : J → R

be a height function. Let S = S (A,ω) be the regular subdivision of A
produced by ω . Then,

1. If ω is sufficiently generic, then S is a triangulation.

2. If F is a face of A, then the restriction of S to F equals the regular
subdivision of AF obtained with ω . Symbolically:

S (A,ω)|F = S (AF ,ω |F).

3. There is an ε > 0 such that, for every height function ω ′ : J → R that
is ε-close to ω , namely |ω( j)−ω ′( j)| < ε for all j, we have that
S (A,ω ′) � S (A,ω).

Proof. (1) Assume, without loss of generality, that A is represented by a
matrix of full rank. That is, that A has dimension m−1.

For every affine basis C ⊂ J and every point j ∈ J \C, there is a linear
equation on the ω’s that expresses the fact that j is lifted to lie in the hyper-
plane containing the lift of C, namely the determinant of the lifted points.
Since C is an affine basis, this equation has non-zero coefficient on, at least,
ω( j) and, in particular it is not identically zero. Hence, it holds only on a
hyperplane in R

m+1. If ω does not lie in any of the hyperplanes obtained
for the different choices of C and j, then ω must produce a triangulation:
no lower facet, hence no lower face, projects to a dependent set.

(2) This follows from the fact that the lower faces of the lifted face
(AF)ω|F = (Aω )F are just the lower faces of Aω contained in F .

(3) Recall that the determinant of m + 2 points in R
m+1 is zero if the

points lie in a hyperplane and non-zero if they are independent. In this case
the sign gives what is the relative position of each point with respect to the
hyperplane determined by the other m+1. Also, recall that the determinant
is continuous with respect to the coordinates of the points.

Let Aω be the lifted point configuration for the original height function
ω . By continuity of the determinant, for each independent subconfiguration
C of m + 2 points in Aω there is an εC > 0 such that the determinant does
not change sign under an εC-close perturbation of C. We take ε to be the
minimum of all the εC’s for the different choices of C.

Let now ω ′ be an ε-close perturbation of ω and let F be a maximal cell
in S (A,ω ′). Maximality means that AF is the projection of a facet Aω ′

F of
Aω ′

, because every lower face is a face of a lower facet. In particular, the hy-
perplane H′ containing Aω ′

F is not vertical and leaves the rest of Aω ′
above

it. Let now C be a maximal independent subset in Aω ′
F , with m + 1 points.
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Consider the corresponding set Cω in A and the hyperplane H spanned by it.
Our choice of ε implies that no point of Aω is below H and that the points
that are above H have their corresponding points in Aω ′

above H′. That is,
H is the supporting hyperplane of a lower facet of Aω and the projection
of this facet contains (as a subconfiguration, as well as geometrically) the
projection of F ′.

Using regular subdivisions we can easily prove that a (regular or not)
subdivision that cannot be refined further must be a triangulation. We need
the following construction:

Lemma 2.3.16. Let S be a polyhedral subdivision of A. Let ω : J → R

be a height vector. Then the following is a polyhedral subdivision of A that
refines S :

Sω := ∪C∈S S (A|C,ω |C).

Moreover, if S is regular, i.e., S (A,ω0) for some ω0, then Sω is also
regular and equals S (A,ω0 + εω) for any sufficiently small positive ε .

Recall that A|C denotes C considered as a subconfiguration of A. That is,
Sω is obtained by refining each cell of S in the regular way given by the
height vector ω .

Proof. Our first goal is to prove that Sω is a subdivision of A. That it
refines S is obvious.

Clearly, Sω satisfies (UP) since the cells in each S (A|C,ω |C) cover the
convex hull of C, by the union property of S (A|C,ω |C). It also satisfies
(CP), since each S (A|C,ω |C) does. So, we only need to prove (IP). To
get a contradiction, let R1 and R2 be two different cells in Sω with x ∈
relint(R1)∩ relint(R2). By the intersection property of each S (A|C,ω |C),
R1 and R2 come from two different regular subdivisions S (A|C1 ,ω |C1) and
S (A|C2 ,ω |C2) of cells of S . Then, x∈ conv(C1)∩conv(C2). Let F1 and F2

be the carriers of x in C1 and C2, so that x ∈ relint(F1)∩ relint(F2). By (CP)
of S , F1 and F2 are cells in S . Then, by (IP), F1 and F2 are the same cell
of S . Let us call it simply F . Now, by Part (iv) of Lemma 2.3.4, the sub-
division of F obtained via S (A|C2 ,ω |C2) and S (A|C1 ,ω |C1) are the same,
namely S (A|C,ω |C). That is, R1 and R2 are both cells of S (A|C,ω |C),
which contradicts the fact that they are different cells with non-empty com-
mon relative interiors.

We now prove regularity. By Lemma 2.3.15, S (A,ω0 + εω) refines S
if ε is sufficiently small. On the other hand, since ω0 is a linear height
vector on each cell C ∈ S , the height vectors ω0 + εω , εω and ω produce
the same regular subdivision of that cell. Hence Sω = S (A,ω0 + εω), as
stated.

Definition 2.3.17. The polyhedral subdivision Sω of the previous lemma
is called the regular refinement of S for the height vector ω .

Observe that the regular refinement of a non-regular subdivision may be
a non-regular subdivision itself. See three examples of regular refinements
in Figure 2.46.
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Figure 2.46: Subdivisions of a point configuration

with heights and their regular refinements.

Corollary 2.3.18. Every polyhedral subdivision of A can be refined to a
triangulation. Moreover, every regular subdivision of A can be refined to a
regular triangulation.

Proof. For the first sentence, observe that if ω is sufficiently generic, then
Sω is a triangulation since each S (A|C,ω) is a triangulation. The second
sentence follows from the last part of Lemma 2.3.16.

We now address the following question: if we are given a polyhedral
subdivision S of A and a height vector ω , what is an easy way to check if
S = S (A,ω)?
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From the definition of regular subdivision we can certainly derive an
algorithm to answer this question. Namely: S = S (A,ω) if and only if
every cell C ∈S is lifted to lie in a hyperplane HC and every j �∈C is lifted
above that hyperplane. The decision question can be then phrased as the
solvability of a system of linear inequalities (more about this later). What
we want to show here is that this second part needs only be checked for
some of the points j �∈ C determined by the cell adjacency (thus, giving a
smaller system of inequalities).

Definition 2.3.19. A wall in a polyhedral subdivision of a point configura-
tion A is a cell C of codimension one that is a face of two maximal cells
(equivalently, that does not lie in a facet of A). We say that C separates
those two cells.

Theorem 2.3.20. Let S be a polyhedral subdivision of a point configu-
ration A ∈ R

m, and let ω : J → R be a height function. Then, one has
S = S (A,ω) if and only if

(i) For every full-dimensional cell C ∈ S , the lifted subconfiguration
Aω |C lies in a hyperplane in R

m+1 (the coplanarity condition).

(ii) For every wall C0 ∈ S , with incident full-dimensional cells C1 and
C2, all points in Aω

C1\C2
lie above the hyperplane containing Aω |C2

and vice versa (the local folding condition).

The coplanarity condition and the folding condition will play a crucial
role in Chapter 5. Before going into the proof, observe that the “vice versa”
in the second part is not an additional condition to be checked, but is equiv-
alent to the stated condition. Also note that to verify the condition it is
enough to check it for a single element of C1 \C2. In fact, checking con-
dition (ii) is equivalent to the computation of a certain (d + 2)× (d + 2)
determinant. Condition (i), in turn, is equivalent to the vector ω |C lying in
the row span of the matrix A|C.

Proof. The “only-if”-direction is clear because we have taken a subset of
the regularity conditions, and our result is implied by the definition of regu-
larity.

Assume now that S is some polyhedral subdivision of A and ω : J → R

is a height function satisfying the assumptions (i) and (ii).
We have to show that the remaining conditions are implied for ω : for

every full-dimensional cell C ∈ S and every element j ∈ J \C, point j is
lifted above the hyperplane containing the lifted cell Cω .

Let p j be an arbitrary point and let C ∈ S be an arbitrary cell not con-
taining j. Choose a point x in general position in conv(C) and consider the
straight line segment � from p j to x. This line segment intersects a sequence
of full-dimensional cells C0,C1, . . . ,Ck = C with Ci ∈ S for i = 0,1, . . . ,k.
Let Hi be the hyperplane spanned by the lifted points in Ci for i = 0,1, . . . ,k.

If k = 0 then j ∈ C, contradicting the choice of C. Therefore, k > 0 and
j ∈C0 \C1. We will now prove that for all i = 1, . . . ,k p j is lifted above Hi.

For i = 1 the claim is literally Assumption (ii) in the Theorem. Let there-
fore i > 1, and let Fi be the wall between Ci and Ci−1. This wall is, by
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wall

Figure 2.47: A wall in a two-dimensional point

configuration.

wall

1 2 3 4

Figure 2.48: A wall in a one-dimensional point

configuration.

construction, pierced by the segment �. Therefore p j lies on the same side
of the vertical hyperplane HFi spanned by Fi as the points in Ci−1 \Ci.

Assumption (ii) for Ci and Ci−1 says that the points in Ci−1 \Ci are lifted
above the hyperplane Hi. In particular, the whole part of the hyperplane
Hi−1 that is on the same side of HF as Ci−1 \Ci is above Hi. Moreover, by
induction, p j is lifted above Hi−1.

Putting everything together yields: p j is lifted above Hi−1 by induction,
which in turn is lifted higher than Hi on the side of p j by Assumption (ii),
which proves that p j is lifted above Hi as well.

Setting i = k completes the proof, since Ck = C.

2.4 Flips and the graph of triangulations

Flips between triangulations are a central topic in this book. Flips are local
changes that transform one triangulation into another. Reasons for intro-
ducing and understanding them come both from applications (they are a
computationally simple way of searching for particular triangulations, or
enumerating them) and theory (they highlight the rich structure to the set
of all triangulations of a configuration). In Chapter 4, we will see how to
technically deal with flips. Here, we simply introduce the concept. The
core objects are configurations of corank one.

2.4.1 Corank-one configurations and circuits

Recall that the corank of a d-dimensional point configuration with n points
is the number n−d−1. Independent configurations are exactly the config-
urations of corank zero. Let A be a configuration of corank one. Clearly, all
non-trivial subdivisions of A are triangulations, because every full-dimen-
sional proper subconfiguration has corank zero and so is independent. Here
we prove that there are exactly two such triangulations, and characterize
them.Figure 2.49: Two corank-one configurations.

A configuration has corank one if and only if it has a unique affine depen-
dence relation ∑ j∈J λ jp j = 0, with ∑ j∈J λ j = 0 (uniqueness is, of course, up
to multiplication of all λ ’s by the same constant). This affine dependence
divides J into three subsets

J+ :=
{

j ∈ J : λ j > 0
}

,J0 :=
{

j ∈ J : λ j = 0
}

,J− :=
{

j ∈ J : λ j < 0
}

.

J+ and J− are the only disjoint subsets of J with the property that their
relative interiors intersect. They intersect at the point

∑
j∈J+

λ jp j = ∑
j∈J−

|λ j|p j,

where the λ ’s are assumed to be normalized so that

∑
j∈J+

λ j = ∑
j∈J−

|λ j| = 1.

The set J+ ∪ J− containing the “relevant” part of the unique affine depen-
dence is called a circuit in J. The pair (J+,J−) is classically called the
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Radon partition of A, or the oriented circuit of A. Here is the formal defi-
nition, but much more will be said about circuits in Chapter 4:

Definition 2.4.1. Let A be a point configuration, with index set J. A subset
of J is called a circuit, Z, if it is a minimal dependent set (that is, it is
dependent but every proper subset is independent).

The partition (Z+,Z−) of Z into two parts such that conv(Z+)∩conv(Z−)
is non-empty (which exists and is unique except for the swap of Z+ and Z−)
is called an oriented circuit, or signed circuit. We say that the circuit is of
type (|J+|, |J−|).

Since oriented circuits play a more prominent role than unoriented ones
in this book, we will typically abuse language and drop the word “oriented”
when referring to them. The underlying unoriented circuit Z will be called
the support of (Z+,Z−). Circuits are studied in a broader context in Sec-
tion 4.1.

Candidates for full-dimensional simplices in a triangulation of A are of
the form J \ { j} with j ∈ J+ ∪ J−, since j ∈ J0 means that J \ { j} still has
corank one.

+

+

−

−

+

+

+

−

−

Figure 2.50: Two circuits represented as Radon

partitions.

Lemma 2.4.2. Let A be a configuration of corank one and let J = J+∪J0∪
J− be its label set, partitioned by the unique Radon partition of A. Then
the following are the only two triangulations of A:

T+ = {C ⊂ J : J+ �⊆C } , and T− = {C ⊂ J : J− �⊆C } .

The two triangulations are regular.

Remark 2.4.3. The formulas given in this statement for T+ and T− are
equivalent to saying that their sets of maximal simplices are, respectively,

{J \ { j} : j ∈ J+ } , and {J \ { j} : j ∈ J− } .

These are actually the formulas we prove.

Proof. Clearly, no triangulation can simultaneously contain J+ and J− since
their relative interiors intersect. That is, every triangulation is either con-
tained in T+ or in T−. It then suffices to show that T+ and T− are indeed
regular triangulations. For this, let ω : J → R be a height function and
consider the quantity

∑
j∈J

λ jω( j), (2.10)

where the λ j are the real coefficients of the unique (because of corank-
one) dependence. If (2.10) equals zero, then the lifted point set lies in a
hyperplane and S (A,ω) is the trivial subdivision. If (2.10) is not zero, then
the lifted configuration is independent, because every affine dependence in
the lifted configuration should be a dependence in A too. Hence, S (A,ω)
is a triangulation. Which triangulation we obtain is governed only by the
sign of ∑ j∈J λ jω( j). More precisely, if it is positive, then each point in J+
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is lifted above the hyperplane spanned by the lift of the other points, which
implies that the set of lower facets of the lifted point set is

{J \ { j} : j ∈ J+ } .

Similarly, if it is negative then the lower facets are

{J \ { j} : j ∈ J− } .

Observe that all we have said is valid for the case where the corank one
configuration J has a repeated point. In this case, A is an independent set
together with a second copy of one of its points, say p j. Then the affine
dependence is p j −p j = 0 and J+ and J− have a single element each, the
labels j and j′ of the two copies of p j. In accordance with Lemma 2.4.2,
A has two triangulations, each with a unique maximal simplex J \ { j} or
J \ { j′}.

2.4.2 Almost-triangulations and flips

The poset of subdivisions gives a way to quantify how close to being a
triangulation a subdivision is: for S ∈ Subdivs(A), let us call height of S
the maximal length of chains of proper refinements of S . Triangulations
are the subdivisions at height zero.

Definition 2.4.4. A subdivision S is almost a triangulation (or an almost-
triangulation) if it is at height one in the poset of subdivisions. That is, it is
not a triangulation but all its proper refinements are triangulations.Figure 2.51: An almost-triangulation only has two

triangulations that refine it.

As a first example, see Figure 2.51. We saw in Section 2.4.1 that the
trivial subdivision of a corank-one configuration is an almost-triangulation:
it has only two proper refinements, which are both triangulations. In what
follows we show that this example is essentially unique. Every almost-
triangulation is a triangulation except for a small part of it, where it is the
almost-triangulation of a corank-one subconfiguration.

For this, observe that if A has corank one and Z is its unique circuit,
then for every j ∈ J \ Z we have that J \ { j} still has corank one, hence
it must have dimension one less than A, hence it is a face of it (the latter
because there is a single point p j out of the hyperplane containing J \ { j}).
In particular, the two triangulations of A are the pyramids, with apex p j,
over the two triangulations of A \ {p j} (a pyramid means that the face is
constructed by the taking the convex hull of each of the triangulation of A\
{p j} and the point p j). This is the only possibility to build full-dimensional
cells. This fact follows also from the description of these triangulations
given in Lemma 2.4.2. Together with the existence and properties of regular
refinements, it is at the heart of the following characterization of almost-
triangulations:

Lemma 2.4.5. Let S be a polyhedral subdivision that is not a triangula-
tion. S is almost a triangulation if and only if:
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(i) All its cells have corank at most one, and

(ii) All its cells of corank one contain the same circuit.

Proof. We start by proving necessity of the conditions: Condition (i) is
easy with the ideas in the proof of Lemma 2.3.16. Suppose a cell C ∈ S
has corank k ≥ 2 and let j ∈C be such that C \ { j} has at least corank one.
Let ω : J → R be the height function that is everywhere zero except at j,
where ω( j) > 0. Then, the refinement Sω of S is proper and is still not a
triangulation, since it contains the cell C \ { j}. This means S is a not an
almost-triangulation.

Similarly, if Condition (ii) fails this means there are two different mini-
mal dependent cells C1 and C2, both of corank one. Let j ∈ C1 \C2. Mini-
mality of C1 implies that C1 \ { j} is independent thus of corank zero, thus
of the same dimension as C1. In particular, it is not a facet of C1, and hence
Sω , with ω exactly as before, again produces a proper refinement. Since
j �∈C2, this finer subdivision still has C2 as a dependent cell, hence, it is not
a triangulation.

Conversely, if Conditions (i) and (ii) hold, then S has a unique minimal
dependent cell Z, which is the circuit contained in all the dependent cells.
Every proper refinement of S will, in particular, refine Z to one of its two
triangulations. Moreover, every proper refinement refines every dependent
cell as a cone over this triangulation. In particular, every proper refinement
is a triangulation, and is completely characterized by which of the two tri-
angulations of Z it contains.

Corollary 2.4.6. Every almost-triangulation has exactly two proper refine-
ments, which are both triangulations.

Proof. This follows from the “sufficiency” part of the proof of the previous
lemma. Every proper refinement refines the unique circuit common to all
dependent cells in one of the two possible ways, and the refinement of this
circuit determines the refinement of every cell.

Corollary 2.4.6 suggests that we call the change from a triangulation T1

to another one T2a flip if they are the two proper refinements of the same
almost-triangulation S . This is exactly what we do:

Definition 2.4.7 (Flip). Two triangulations of the same point configuration
are connected by a flip supported on the almost triangulation S if they are
the only two triangulations refining S .

In the literature, flips are defined in a more constructive way. The equiv-
alence of our definition to that one will be the content of Theorem 4.4.1 in
Chapter 4. For the time being we show some flips in action.

Figure 2.52 illustrates some examples of flips in the plane. The first is
the traditional diagonal-edge flip common in computational geometry. The
second is the insertion or deletion of a point in the interior of a triangle.
There are other flips, not shown in the picture: the insertion or deletion of
a point in the interior of an edge and the exchange between two copies of a
repeated point.

Figure 2.52: Some next-to-minimal subdivisions

in the plane, each together with the two

triangulations refining it.
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The flip relation between triangulations of the same point configuration
can be interpreted as an adjacency relation. The result of this is the graph
of triangulations of a point configuration.

Definition 2.4.8. We call the graph of triangulations of A the graph whose
nodes are all the triangulations of A and whose edges are flips between
them. We denote it Gtri A.

Example 2.4.9 (Example 2.3.6 continued). The poset of subdivisions here
is (isomorphic to) the Boolean lattice of all subsets of the label set J. The
refinement poset is then the face lattice of a simplex with |J| vertices. The
graph of flips is the graph of this simplex, a complete graph.

Example 2.4.10 (Example 2.3.7 continued). By the description in Exam-
ple 2.3.7, the poset of subdivisions is isomorphic to the face lattice of a
cube. The graph of triangulations is the graph of this cube.

Our final result in this section extends Corollary 2.3.18. There we saw
that triangulations are the minimal elements in the refinement poset. Here
we see that almost triangulations are the “next-to-minimal” elements.

Proposition 2.4.11. Every polyhedral subdivision S other than a triangu-
lation can be refined to an almost-triangulation. Moreover, if S is regular,
then it can be refined to a regular almost-triangulation.

Proof. We use the regular refinements of Lemma 2.3.16. For this, let B be a
cell of S that is not a simplex (this exists because S is not a triangulation).
Let C be a circuit contained in B. Consider a height vector ω that is suffi-
ciently generic except at C; for example, let ω be zero on C and random in
the rest of the elements of A.

Then, Sω is an almost-triangulation since each S (A|D,ω) is either a tri-
angulation or an almost-triangulation with C as the unique circuit contained
in some cell.

The sentence about regularity follows from the last part of Lemma 2.3.16.

This result has a nice interpretation in the language of posets. A graph,
as any simplicial complex, can be considered a poset. It has two levels, the
bottom one consisting of the nodes of the graph and the top one consisting
of the edges. Proposition 2.4.11 says that:

Corollary 2.4.12. The graph of triangulations Gtri A, as a poset, consists
of the lowest two levels of the refinement poset Subdivs(A).

Proof. This follows from the fact that edges in Gtri A correspond to flips
between triangulations, and a flip between two triangulations corresponds
to an almost-triangulation.

2.5 Vector configurations and their triangulations

The reader should now be prepared for a final generalization in our frame-
work: the study of vector configurations instead of point configurations as
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well as their triangulations and subdivisions. There are several immediate
justifications for this: on the one hand, it is a harmless generalization; no ex-
tra complications are introduced, except perhaps for a slight need of “men-
tal adjustment”. On the other hand, it is a case that arises naturally in several
contexts: for example, the normal fan of a polytope is a polyhedral subdivi-
sion of the vector configuration consisting of facet normals. Also, we need
vector configurations if we want to apply the contraction operation (to be
introduced in Section 4.2.4) to non-extremal points in a point configuration.

But the most profound justification for the study of vector configurations
is the Gale duality that exists between a point configuration and its Gale
transform, which is a vector configuration. The study of this duality will be
started in Chapter 4, but it will be taken much further in Chapters 5 and 8.
Figure 2.53 shows two examples of vector configurations one of them a
point configuration as well.

Figure 2.53: Miscellaneous vector configurations.2.5.1 Vector configurations

A vector configuration is a finite collection of vectors in R
m. We apply to

vector configurations the same conventions that we used for point config-
urations: Repeated vectors are allowed, and distinguished by their labels,
and we normally refer to vectors by their labels.

In fact, the homogeneous representation of a point configuration that we
have been using so far is an example of a vector configuration. What we
have called rank of a point configuration (its dimension plus one) is actually
the rank of the linear space generated by the vectors. But there is no reason
why we should not allow general, non-homogeneous vector configurations.
One way to do this is to interpret what the concepts for a point configuration
mean in a homogeneous vector configuration, and then apply them to non-
homogeneous ones. For example:

Definition 2.5.1 (Vector configuration). A vector configuration in R
m is a

finite set A = (p j : j ∈ J) of labeled vectors p j ∈ R
m. Its rank is its rank as

a set of vectors. Its corank is n− r, where n is its number of elements and
r is its rank. A subconfiguration is any (labeled) subset of it.

A vector (sub)configuration is independent if it does not have repeated
vectors and its vectors are linearly independent. It is dependent otherwise.
A vector configuration of rank r is in general position if each r-element
subconfiguration is independent. Otherwise, it is in special position.

The positive span, or conical hull, of a subset C ⊆ J of a vector configu-
ration A with label set J is the following closed polyhedral cone.

coneA(C) :=

{

∑
j∈C

λ jp j : λ j ≥ 0 for all j ∈C

}

. (2.11)

Its relative interior is

relintA(C) :=

{

∑
j∈C

λ jp j : λ j > 0 for all j ∈C

}

. (2.12)

For a linear functional ψ ∈ (Rm)∗ with the property that ψ(p j) ≥ 0 for
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every j ∈C, the face of C in direction ψ is the following set of labels:

faceA(C,ψ) :=
{

j ∈C : ψ(p j) = 0
}

(2.13)

If F is a face of C, we write F ≤ C. Moreover, if F �= C then we write
F < C, and we say that F is a proper face of C. Observe that C is always
a face of C, obtained when ψ is the zero functional. However, the empty
set is not always a face in a vector configuration. See Remark 2.5.6 below.
A facet of C is a face of rank one less than the rank of C. That is, it is a
maximal proper face. The linear hyperplane {x ∈ R

m : ψ(x) = 0} ⊂ R
m

is a supporting hyperplane of the face faceA(C,ψ). An element j ∈ C is
extremal if { j} is a face. A configuration is in convex position if all its
elements are extremal.

Remark 2.5.2. coneA = ∪̇F≤J relintF , where ∪̇ denotes “disjoint union”.

Definition 2.5.3 (Carrier). For a subconfiguration S ⊆ A, the carrier of F
in A is the smallest face of A containing S, i.e.,

carrierA(S) :=
⋂

S⊆F≤J

F (2.14)

Remark 2.5.4 (Lineality space). Let L be the maximal linear subspace con-
tained in cone(J), for a configuration A. L is usually called the lineality
space of cone(J). The lineality space of a cone is contained in every face,
and since it is maximal, it equals the intersection of all faces of cone(J).
That is, it is the unique minimal face. For a vector configuration, its unique
minimal face is the set of elements lying in the lineality space of its conical
hull.

Here are two important, but more abstract, definitions:

Definition 2.5.5. A vector configuration A with index set J is acyclic if
there is a linear functional that is positive in all the elements of the config-
uration. It is totally cyclic if coneA(J) is equal to the vector space spanned

Figure 2.54: Three vector configurations: one

acyclic, one totally cyclic, and one uninteresting

(with three, four, and three vectors respectively).

by A.

In Section 2.1 we said we would represent point configurations as ho-
mogeneous matrices. In the same way, vector configurations will be repre-
sented by arbitrary matrices. In particular, a homogeneous matrix can be
read both as a “homogeneous vector configuration” and as a point configu-
ration. This is not a source of ambiguity; is simply that these two things are
the same, for all the purposes of this book.

Furthermore, scaling the vectors of a configuration by positive scalars
does not affect the face structure of the cone they span, or the set of subdivi-
sions and triangulations of it (see next section). If a configuration is acyclic,
by positive scaling we can make it homogeneous and thus equivalent to a
point configuration. The bottom line is that acyclic vector configurations
behave exactly as point configurations. Non-acyclic ones have a couple of
strange new features. The first one is that they do not have an empty face:

Remark 2.5.6 (The empty face). In a point configuration, the empty set
is considered a face because there is an affine functional that is positive
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at all points (for example, the constant functional ψ(x) = 1). In vector
configurations we only consider linear functionals and the existence of an
always positive one is our definition of acyclic. That is, the empty set is
a face of a vector configuration A only if A is acyclic. This agrees with
the fact that the trivial subspace {0} is a face of a cone only if the cone is
pointed (that is, the positive span of an acyclic configuration). Observe that
homogeneous vector configurations (also known as point configurations)
are always acyclic.

Observe also that the zero vector may be an element in a vector config-
uration. In this case, the configuration cannot be independent, nor acyclic,
nor in general position.

2.5.2 Polyhedral subdivisions of vector configurations

The definition of subdivision for a vector configuration is the same as for
point configurations, except the role of the convex hull is now played by
the positive hull (also called the positive span or the conic hull):

Definition 2.5.7 (Subdivision of a vector configuration). A collection S
of subconfigurations of a vector configuration A in R

m is a polyhedral sub-
division of A if it satisfies the following conditions:

(CP) If C ∈ S and F ≤C then F ∈ S as well. (Closure Property)

(UP)
⋃

C∈S coneC ⊇ coneA. (Union Property)

(IP) relintC ∩ relintC′ �= /0 for C,C′ ∈ T implies C = C′. (Intersection
Property)

The elements of a polyhedral subdivision S are called cells. Cells of the
same rank as A are full-dimensional or maximal. Cells of rank 1 are usually
called rays of T , but we will sometimes call them vertices, as if we were
dealing with a point configuration. Independent cells are called simplicial
cells or simplices.

Two subconfigurations intersect properly if they and all of their faces
satisfy (IP); they intersect improperly otherwise.

A triangulation of A is a polyhedral subdivision all of whose cells are
simplices.

A subdivision S refines another one S ′—symbolically: S � S ′—if
for each C ∈ S there is a C′ ∈ S ′ with C ⊆ C′. The poset of polyhedral
subdivisions of a vector configuration A will be denoted Subdivs(A).

Multiplying a vector (or more) of a vector configuration by a positive
constant does not change its combinatorics (faces, positive spans, relative
interiors, etc). In particular, it preserves the collection of subdivisions and
triangulations of it. Since every acyclic vector configuration can be ho-
mogenized by normalizing each vector by the value that a certain positive
functional ψ takes on it, acyclic vector configurations do not introduce ex-
tra complications into our picture. But non-acyclic ones may. Let us see
two examples:
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Example 2.5.8 (Four vectors in general position in rank 2). Consider the
following four vectors in the plane

A =
(

1 2 3 4

1 −2 1 0
0 1 −2 1

)
.

We encourage the reader to check that A has the eight subdivisions pre-
sented in Figure 2.55. We arranged them in a suggestive way to indicate
the structure of the poset (without drawing the edges of a Hasse diagram)
and, as usual, we only include the list of maximal cells in each. The top
picture represents the trivial subdivision.
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{1234}

{13,23,124} {123}{23,24,134}{234}

{23,24,14,13} {23,12,13}{23,24,43}
Figure 2.55: All subdivisions of four vectors in

general (and non-acyclic) position in the plane.

Remark 2.5.9 (The empty set as a cell). We have said that the empty set is a
face of a configuration only if the configuration is acyclic. Another feature
of the empty set is that, by convention, its relative interior and hull form the
zero cone {0} ⊆ R

m (a justification for this convention is that the result of
an empty sum is zero).

In particular, if a subdivision contains a (non-empty, and necessarily not
acyclic) cell with 0 in its relative interior, then the empty set is not a cell,
or the intersection property would be violated. Conversely, if the empty set
is not a cell, then the subdivision must contain a non-acyclic cell, then a
unique minimal such one, in order for (UP) to hold: 0 is not in the relative
interior of any acyclic set.
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Summing up, a non-acyclic vector configuration has two types of subdi-
visions: those whose cells are all acyclic, which contain /0 as a cell, and
those whose cells are all not acyclic, which contain a unique minimal non-
empty cell. In the previous example there are three and five respective
subdivisions of each type.

Example 2.5.10 (Five vectors in general position in the plane). We now
let A ⊂ R

2 consist of five vectors of the same length, spaced equally (that
is, pointing in the directions of the vertices of a regular pentagon). Each
maximal simplex is a set of two vectors {i, j}, and a triangulation will just
be a circular sequence of such pairs covering the circle of directions once.
There are three possibilities, modulo the symmetries of the configuration:

1. The triangulation consisting of five cones {12,23,34,45,15}.

2. Five triangulations consisting of four cones, such as {13,34,45,15}
and the ones obtained from it by symmetry.

3. Five triangulations consisting of three cones, such as {13,35,15} and
the ones obtained from it by symmetry.

There are six types of non-simplicial subdivisions. We encourage the
reader to verify the definition for each, and check that the list is complete:

Figure 2.56: Triangulations of five vectors in

general position in the plane.

1. The trivial subdivision {12345}.

2. The non-trivial subdivisions with only one maximal cell, which come
in two types: {1345} and {135} (observe that {123}, for example, is
not a subdivision because it does not cover the whole positive span
of A, which is the whole plane).

3. The subdivisions whose cells are acyclic but still are not triangula-
tions, which come in three types again: {123,345,15}, {13,345,15}
and {123,34,45,15}.

2.5.3 Regular subdivisions of vector configurations

Again, for vector configurations we can take word for word the definition
of regularity used for point configurations (see Definition 2.2.10). As an
example, Figure 2.57 shows how the nine types of subdivisions of our last
example arise as regular subdivisions. The lifting of vectors happens in R

3.
As expected, the zero height vector (first picture in the figure) produces

the trivial subdivision. Triangulations (bottom row) are produced by suffi-
ciently generic height vectors.

There is, however, one substantial difference with the case of point con-
figurations. What would have happened if we took negative height vectors?
In the case of point configurations this causes no trouble, since changing all
entries of a height vector by a constant does not change the combinatorics.
In particular, it does not change what the lower faces of the lifted point con-
figuration are. The lifted point configuration lies below the hyperplane at
height zero but the lower faces remain unchanged.
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In the case of a non-acyclic vector configuration, however, if the heights
are negative then the lifted vector configuration has no lower faces! Indeed,
a lower face is one for which there is a functional ψ with last coordinate
positive and minimized at that face. In our “downwards lifted” vector con-
figuration, however, such functionals do not achieve a minimum. For the
time being let us be satisfied with just saying that height vectors for vector
configurations should better be taken with non-negative entries, since this
is sufficient (and essentially necessary) to obtain a regular subdivision from
the height.
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Figure 2.57: The subdivisions of Example 2.5.10,

obtained as regular subdivisions. The three

triangulations are in the bottom, the three

subdivisions with a single cell are on top and the

rest are in the middle.

Lemma 2.5.11. Let A be a vector configuration and let ω : J → R. Then
the set S (A,ω) of lower faces of Aω is a subdivision of A if and only if ω
differs from a nonnegative height only by a linear function.

Proof. Let ω be a height function that differs from a nonnegative height
ω ′ ≤ 0 only by a linear function. Then the set of lower faces of Aω and Aω ′

coincide. We prove that the set of lower faces of Aω ′
is a subdivision of P by

proving (CP), (IP), and (UP) for it. Conditions (CP) and (IP) again follow
from elementary polyhedral geometry [339]; there is nothing new here. For
nonnegative height functions, the proof of (UP) is completely analogous
to the proof of (UP) for Theorem 2.3.11: For general heights ω and some
x ∈ cone(A), the intersection of x×R with cone(Aω) (the fiber over x)
might not have a negative last coordinate, and such an x would then not be
contained in any lower face of cone(Aω ). This may happen if A is totally
cyclic, as discussed before. However, if the heights are all nonnegative,
then all fibers have lowest elements, and the proof of (UP) can proceed as
before.
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It remains to show that every regular subdivision is induced by a non-
negative height function. For an arbitrary cell σ in such a regular subdivi-
sion, consider a supporting hyperplane of the corresponding lower face of
cone(Aω ). Moreover, let ωσ be the unique linear height function that lifts
A to lie in that hyperplane. Then, ω −ωσ is a nonnegative height function
with the desired properties.

In Section 4.1.3, Theorem 4.1.39, we will see why the restriction to non-
negative heights is no loss of generality as far as the set of all regular sub-
divisions is concerned. A much more detailed look at the structure of the
space of height vectors can be found in Section 5.4.1.

aω
2

aω
3

aω
3

aω
1

aω
2

aω
1

Figure 2.58: The one-dimensional vector

configuration (−1,−1,1) and two of its liftings.

When ω = (2,−1,2) it has negative entries but it

still defines a regular subdivision because

ω +(1,1,−1) = (3,0,1).

2.6 Triangulations as simplicial complexes

Triangulations of a point or vector configuration are, among other things,
simplicial complexes. In this section, we review several basic notions re-
garding simplicial complexes and how they behave in triangulations of con-
figurations. Most specifically, we are interested in the numbers of faces
of various dimensions. A good reference for the contents of this section
is [339].

2.6.1 Simplicial complexes

An abstract simplicial complex K is a family of finite subsets of a label
set J, such that, for every F ∈ K , all subsets of F are also in K . We will
always assume that J is finite so that K is finite too. In parallel to the
geometric objects we studied earlier, the elements of a simplicial complex
K will be called cells or simplices. The dimension of a simplex is its
cardinality minus one, and simplices of dimensions zero and one are called
vertices and edges respectively. The maximal dimension among all cells
is called the dimension of the complex, and the complex is called pure
if all its maximal cells have the same dimension. In a pure complex of
dimension d, the cells of dimensions d and d − 1 are called, respectively,
facets and ridges. For example, the boundary of a simplicial polytope forms
a simplicial complex whose facets and ridges correspond to those of the
polytope.

There are good topological and combinatorial reasons to study abstract
simplicial complexes on their own. We already defined a geometric sim-
plicial complex as a polyhedral complex, all of whose faces are simplices.
It is worth remarking that any abstract simplicial complex, which is just
a set of sets, can in fact be effectively achieved as a geometric simplicial
complex. For this we need a map J → R

m that sends the set of labels into
vectors of Euclidean space with the following properties: the image of ev-
ery F ∈K is affinely independent (that is, it is the vertex set of a simplex);
and different (geometric) simplices of the complex only intersect in com-
mon faces. Indeed, any map J →R

|J−1| with an affinely independent image
satisfies these. In particular, we can study every simplicial complex as if it
is embedded geometrically. It is not true that every simplicial complex of
a certain dimension d can be embedded in that same R

m. The theory of
embeddability of complexes is quite rich (see [227]).
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Let K be a simplicial complex. For any F ∈ K , the star of F in K ,
stK (F), is the subcomplex of K induced by all simplices of K that con-
tain F as a face, plus all their faces (a word of caution: In the literature
sometimes this is called the closed star). The link of F in K is the simpli-
cial complex linkK (F) = {C ∈ stK (F)|F ∩C = /0}. If K ,L are simpli-
cial complexes, their join is K ∗L = {F ∪G|F ∈ K,G ∈ L}. For a geometric
simplicial complex K we denote by |K | the underlying topological space,
that is, the union of the geometric simplices. If |K | is homeomorphic to
a ball or sphere we say that K is a simplicial ball or simplicial sphere, re-
spectively. Every triangulation of a point configuration is a simplicial ball,
while triangulations of a vector configuration can be simplicial balls or sim-
plicial spheres, the latter if and only if the configuration is totally cyclic.

2.6.2 The f -vector of a simplicial complexes

In what follows the actual geometry is irrelevant. The notion of an f -vector
of a simplicial complex has been central to the development of the combi-
natorial theory of polytopes [339]. The f -vector of an abstract simplicial
complex K of dimension d is the vector

f (K ) =
(

f−1(K ), f0(K ), f1(K ), f2(K ), . . . , fd(K )
)
,

where fi(K ) denotes the number of simplices of dimension i in K . As a
convention, in this definition f−1(K ) = 1 for the empty set. The top entry
in the f -vector, that is, fd(K ), is sometimes called the size of K .

Figure 2.59: The f -vector of the boundary of the

octahedron is (1,6,12,8); the f -vector of the

triangulated regular octahedron is (1,6,13,12,4)

because there are four tetrahedra adding four

interior triangles and one interior edge; the number

of vertices remains unchanged.

Two of the most important questions about f -vectors of simplicial com-
plexes are what constraints different entries of a same f -vector must satisfy
and how big can the individual entries of f -vectors be for a given dimen-
sion and number of vertices. We will be interested in these questions only
for simplicial balls and spheres. We first look at the smallest possible size.

On a simplicial ball or sphere, the adjacency graph or dual graph of K
is the graph whose nodes correspond to the maximal simplices in K and
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whose edges correspond to simplices intersecting in a common ridge, i.e, a
simplex of dimension one less than the maximal simplex. Not much can be
said in general about dual graphs of triangulations (see exercises), but they
are useful to estimate a lower bound for the size of a triangulation:

Figure 2.60: The dual graph of a triangulation

appears in red.

Theorem 2.6.1 (Lower bound theorem for balls). The size of a simplicial
d-ball with n vertices is at least n− d. Moreover, the equality is achieved
precisely if the following (equivalent) conditions occur:

1. The dual graph of the ball is a tree.

2. Every (d −2)-cell of the ball lies in the boundary of conv(K ).

Proof. Observe that the dual graph of our ball K is a connected graph. In
particular, it is possible to order its nodes (the full-dimensional simplices
σ1, σ2, etc. of K ) in such a way that the first i of them form a connected
subgraph, for every i.

We now imagine we are “building” K from scratch by adding the sim-
plices one by one. With the first simplex, σ1, we are inserting d +1 vertices
at the same time, but any subsequent simplex will either use only vertices
that were already there or insert a single new one (because every σi, i > 1
shares at least one facet with one of the previous simplices). In particular,
we need at least n− d − 1 simplices other than σ1 to insert all vertices,
which proves the first sentence:

fd(K ) ≥ 1 +(n−d−1) = n−d.

Moreover, we get equality if and only if every simplex after σ1 indeed in-
serts a new vertex, which is easily seen to be equivalent to not having cycles
in the dual graph (if there is a cycle, the last simplex of the cycle that we in-
sert has two facets in common with previous simplices, hence it introduces
no new vertex).

Figure 2.61: A triangulation of the 3-cube with 5

tetrahedra. Its dual graph is a tree.

We now prove that having a dual graph which is a tree is equivalent to
excluding interior (d − 2)-faces (interior edges in the case of three dimen-
sions, for example). One direction is easy: if F is an interior d−2-cell, its
link is itself a cycle, with nodes being the (d − 1)-cells containing F and
two consecutive nodes belonging to the same d-cell. This cycle is dual to a
cycle in the adjacency graph of K .

For the other direction (although the statement is valid for abstract sim-
plicial complexes too), we will assume that our ball K is a triangulation of
a point configuration. That is, that we have it geometrically realized in R

m

and that |K | is a convex polytope. (If the reader is familiar with topologi-
cal arguments, he or she can probably change the language in the proof to
make it work for an abstract d-ball).

Assume that the dual graph of K contains a cycle. Let σ0, σ1, . . .σk =
σ0 denote the d-simplices forming the cycle, and let p1, . . . ,pk denote the
barycenters of them. We consider the cycle geometrically embedded with
the pi’s as nodes. Let p be a point that “moves” along the cycle, starting
at p1 and ending at pk−1. We look at what happens to the segment p0p
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during this motion. At the first and last moments, the segment crosses two
different (d−1)-faces of σ0. Since at every moment in time p is outside σ0,
there must be some instant when p0p intersects a (d − 2)-face of σ0. The
intersection point must be in the interior of |K | by convexity, since both
p0 and p are in the interior.

Remark 2.6.2. What is the largest size of a triangulation? The answer is
essentially given by the Upper Bound Theorem for spheres, that we state be-
low. This theorem was first proved by Stanley in 1980 [306], and a detailed
proof can be found in [339]. The cyclic d-polytope with n vertices, denoted
by C(n,d), which appears in the statement, is the convex hull of n arbitrary
points taken from the moment curve {(t,t2,t3, . . . ,td) : t ∈ R} ⊂ R

d . The
proper faces of this polytope form a simplicial (d −1)-sphere that we still
denote C(n,d). Cyclic polytopes are among the most important construc-
tions in polytope theory. We will study them again in detail in Section 6.1
(and they make an appearance also in Section 3.6.1).

Theorem 2.6.3 (Upper Bound Theorem). For any simplicial d-sphere K
with n vertices

fi(K ) ≤ fi(C(n,d + 1)), 0 ≤ i ≤ d.

In order to adapt this statement to balls, we need to define the deletion
of a vertex v in a simplicial complex K . We denote it K \ v and by it we
mean the subcomplex of K consisting of the cells that do not contain v. A
formula for it is

K \ v = (K \ stK (v))∪ linkK (v).

Lemma 2.6.4.

f j(K ) = f j(K \ v)+ f j−1(linkK (F)), for −1 ≤ j ≤ d−1.

Proof. Suppose C is a cell of K of dimension j. If v ∈C then C appears as
a ( j−1)-face C\{v} in linkK (F). Otherwise, C is in K \v. In either case
the presence of C is counted in exactly one summand of the formula.

Now we are ready to present the upper bound on the the size of triangu-
lations. This result is known to be tight, and the bound is achieved by the
cyclic polytopes.

Corollary 2.6.5. The size of a simplicial d-ball with n vertices is bounded
above by fd(C(n + 1,d + 1))− (d + 1).

That is, the largest size of a triangulation is asymptotically O(n�(d+1)/2�).
Similar bounds hold for the i-th entry of the f -vector of a triangulation.

Proof. What we do is we embed the triangulation in question inside a sim-
plicial d-sphere. For this, think of your d-ball as embedded in R

d (here we
do not really need it to be geometrically embedded; a topological embed-
ding is enough, and it obviously exists since |K | is a d-ball).
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Now, think of the “point at infinity” in R
d as an extra (n + 1)-th vertex

of your simplicial complex, joined to every boundary cell of K . If you
feel more comfortable being able to visualize this process, project R

d stere-
ographically to a d-sphere, as shown in Figure 2.62 so that the simplices
of K become spherical simplices in the sphere. Then use the center of

Figure 2.62: “Printing” a triangulation in the plane

over the surface of the sphere.

the projection (the “north pole” in the figure) as the new vertex of your
complex, joining it to all the boundary of K .

In this way you get a simplicial d-sphere K ′ which contains K as a
subcomplex, namely the subcomplex K ′ \ {v}, where v is the new vertex.

In this situation, Lemma 2.6.4 reads

f j(K ′) = f j(K )+ f j−1(∂K ), −1 ≤ j ≤ d.

Hence,

fd(K ) = fd(K ′)− fd−1(∂K ) ≤ f j(C(n,d))− (d + 1),

as stated. In the last inequality we are using the upper bound theorem and
the fact that fd−1(∂K ) ≥ d + 1 (since a simplicial (d−1)-sphere needs at
least d + 1 vertices).

2.6.3 Linear constraints on the f -vector

We start this section by stating perhaps the most important formula involv-
ing the f -numbers, Euler’s formula. Proofs of this result can be found in
most sources in algebraic topology (see [237]). We will use Euler’s formula
heavily when we study the space of planar triangulations (in particular how
they are connected). Figure 2.63: Leonard Euler.

Lemma 2.6.6. For every simplicial d-ball K :

d

∑
j=0

(−1) j f j(K ) = 1.

For every simplicial d-sphere K :

d

∑
j=0

(−1) j f j(K ) = 1 +(−1)d.

The two versions of Euler’s formula are easy to derive from one another.
For example, if K ′ is a d-sphere, removing the interior of any particular
d-simplex from it gives a a simplicial d-ball K , with the same f -vector
except for fd(K ) = fd(K ′)−1. For the converse, the reader can use the
same trick (stereographic projection) as in the proof of Corollary 2.6.5.

Can one characterize the f -vectors of triangulations of convex (simpli-
cial) polytopes or point configurations? It turns out one can indeed, but in
doing so it is convenient to first translate the f -vector into a different form,
called the h-vector. Formally speaking, the transformation of f -vectors into
h-vectors is just a linear change of coordinate system in the space R

d+2

where the f -vector ( f−1, f0, . . . , fd) lies. Some benefits of this change are:
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(a) Complicated relations among entries of the f -vector become neat
clean relations in terms of the entries of the h-vector,

(b) The f j are nonnegative linear combination of the hi’s, therefore upper
and lower bounds on the hi imply upper and lower bounds on the f j ,

(c) The h-vector has a useful geometric meaning in terms of shellings
of a simplicial complex [339] (we will come back to this in Sec-
tion 9.5.2), and

(d) The h-vector has also an amazing algebraic meaning in terms of the
Stanley-Reisner rings [306].

Definition 2.6.7. Let K be a (d−1)-dimensional pure simplicial complex
with f -vector

(
f−1(K ), f0(K ), f1(K ), . . . , fd−1(K )

)
. The h-vector of

K is the vector

h(K ) :=
(
h−1(K ),h0(K ),h1(K ), . . . ,hd−1(K )

)
,

where:

hk(K ) :=
k

∑
i=0

(−1)k−i
(

d− i
k− i

)
fi−1, 0 ≤ k ≤ d.

A compact way of representing the f and h vector is as the coefficients of
two univariate polynomials of degree d, written in reverse order. Namely:

FK (t) =
d

∑
i=0

fi−1 td−i, HK (t) =
d

∑
i=0

hi t
d−i,

The reader can verify that in this notation the relation between the two is
simply that:

HK (t) = FK (t −1),

from which
FK (t) = HK (t + 1),

that is,

fk−1(K ) :=
k

∑
i=0

(
d − i
k− i

)
hi, 0 ≤ k ≤ d.

In the example of a triangulated regular octahedron of Figure 2.59 the h-
vectors are h(T )= (1,2,1,0,0) and h(∂T )= (1,3,3,1). Observe also that
h0 = f−1 = 1. Euler’s formula (Lemma 2.6.6) translates to the following
simpler statement:

Corollary 2.6.8. For every simplicial d-ball, hd = 0, while for every sim-
plicial d-sphere, hd = 1.

More generally, one has the following statements:

Lemma 2.6.9. Suppose K is a (d −1)-simplicial complex. Then
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• hd(K )= (−1)d(1−χ(K )) where χ(K ) is the Euler characteristic
of the simplicial complex, i.e., χ(K ) = ∑d−1

j=0 f j(K ).

• h0(K ) = 1.

• h1(K ) = f0(K )−d.

• fd−1(K ) = ∑d
i=0 hi(K ).

It is easy to find other relations among the entries in the f -vector of a
simplicial (d−1)-sphere. For example, since every (d−1)-cell has d facets
and every (d − 2)-cells is a facet of precisely two (d − 1)-cells, one has
that d fd−1 = 2 fd−2. In a sense, this equation can be understood as Euler’s
formula summed over the links of every (d − 2)-cell. Indeed, such links
are 0-spheres, and Euler’s formula for the 0-sphere is “every 0-sphere has
two vertices”. Similarly, the link of every (d − 2− k)-cell is going to be a
k-sphere, so we will get one Euler’s formula for each dimension k. Perhaps
surprisingly, when written in terms of the h-vectors, all these relations are
equivalent to the following beautiful and symmetric formulas:

Lemma 2.6.10 (Dehn-Sommerville equations). The h-vector of any simpli-
cial (d−1)-sphere K is symmetric, that is,

hi(K ) = hd−i(K ) 0 ≤ i ≤ d.

We now show another simple relation between the h-vectors of a ball and
of its boundary. A proof for shellable balls will be sketched in Section 9.5.2.

Theorem 2.6.11 (McMullen and Walkup (1971)). For any simplicial (d−
1)-ball K we have:

hi(∂K ) =
i

∑
k=0

hk(K )−hd−k(K ), 0 ≤ i ≤ d−1.

Proof. We use the Dehn-Sommerville equations with two spheres: the (d−
2)-dimensional sphere ∂K , and the (d−1)-sphere K ′ that we constructed
for the proof of Corollary 2.6.5. The equation we settled there was

f j(K ′) = f j(K )+ f j−1(∂K ), −1 ≤ j ≤ d.

The above linear equation carries over to give

hi(K ′) = hi(K )+ hi−1(∂K ).

Hence, we have hi(K ) = hi(K ′)− hi−1(∂K ), where it is understood
that hk(K ) = 0 for k < 0. Therefore hi(K ) = hd−i(K ′)−hi−1(∂K ) by
the Dehn-Sommerville relations applied to K ′. Thus, hi(K )−hd−i(K )=
hi(∂K )−hi−1(∂K ), applying again the previous equation and the Dehn-
Sommerville equations to ∂K . Adding enough copies of this expression
yields the desired result.
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Intuitively, the above theorem says that the h-vector (equivalently, the
f -vector) of the boundary of a simplicial ball is determined by the f -vector
of the ball. We see two curious applications below.

Corollary 2.6.12. A simplicial (d − 1)-ball K has no interior face of di-
mension d − k−1 if and only if hi(T ) = 0 for all i ≥ k.

Proof. Notice that due to the containments of faces, when K has no in-
terior face of dimension d − k− 1, then K has no interior face of dimen-
sion less than that either. That is, fi(K ) and fi(∂K ) are equal for all
0 ≤ i ≤ d− k and thus the same happens for the corresponding h-vector en-
tries. On the other hand we saw in the proof of the McMullen-Walkup equa-
tions that hi(K )−hd−i(K ) = hi(∂K )−hi−1(∂K ). Hence hd−i(K ) = 0
for 0 ≤ i ≤ d − k. This means hi(K ) = 0 for k ≤ i ≤ d. The converse im-
plication is a reversal of the above arguments.

Exercises

Exercise 2.1. Let A be a point configuration with label set J and consider
two height functions ω ,ω ′ : J → R

n such that ω ′ −ω is the restriction to A
of an affine map R

m → R. Show that ω and ω ′ produce the same regular
subdivision of A. From this conclude that:

1. If S is a regular subdivision and C is an affinely independent subset
of A, then there is a height function that produces S and gives height
zero to all points in C.

2. If ω is itself the restriction to A of an affine map, then it produces the
trivial subdivision.

Exercise 2.2. How many distinct circuits are there in the point configura-
tion of the vertices of a regular hexagon? What happens if the points are
not on a circle?

Exercise 2.3. Show that for a 1-dimensional point configuration without
repeated points all subdivisions are regular.

Exercise 2.4. Let A be a point configuration. Let C1 be an affinely inde-
pendent subset of points of A. Show that there is a regular triangulation of
A in which C1 is used as a simplex.

Exercise 2.5. Let A be a point configuration. Let C1 and C2 be two subsets
of points of A. Suppose they are both affinely independent, and that they
intersect properly. Show that there is a regular triangulation of A in which
both are used as simplices.

Exercise 2.6. Let A be a point configuration. Let C1, C2 and C3 be three
subsets of points of A. Suppose the three are affinely independent, and
that they intersect properly to one another. Show by an example that there
may not be any regular triangulation of A in which the three are used as
simplices.
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Exercise 2.7. Let A be a point configuration. Let C1, C2 and C3 be three
subsets of points of A. Suppose the three are affinely independent, and that
they intersect properly to one another. Show by an example that there may
not be any triangulation, regular or not, of A in which the three are used as
simplices.

(Hint: Now you need to go to dimension three.)

Exercise 2.8. Find all subdivisions of the vector configuration

A =
(

1 2 3 4

0 1 1 0
1 1 −1 −1

)
.

Note that this example is neither totally cyclic nor acyclic.

Exercise 2.9. Let K be a simplicial complex and let F1 and F2 be two of
its faces. Suppose that F1 ∩F2 = /0 and that F1 ∪F2 is a face of K . Prove
that link(F2, link(F1,K )) = link(F1 ∪F2,K ).

Exercise 2.10. Let K be a simplicial d-ball with F a boundary face of K
such that it has dimension k− 1 and link(F,K ) is a simplicial d − k ball.
Then link(F,∂K ) = ∂ (link(F,K )).

Exercise 2.11. Let K be the boundary complex of a simplicial d-polytope
P and v a vertex of P. Prove that ∂ (K −v) equals link(v,K ).

Exercise 2.12. Give a formula for the f and h-vectors and polynomials
associated to a d-simplex. Do the same for the boundary of a d-simplex
(this is a sphere now).

Exercise 2.13. Verify a couple of the properties of Lemma 2.6.9.

Exercise 2.14. Consider a simplicial complex K which is the union or
intersection of two other simplicial complexes. Can you write formulas for
the h-vector of K in terms of the h-vectors of its parts?

Exercise 2.15. What are the conditions that a vector with integer coordi-
nates must satisfy to be the f -vector of a 3-dimensional convex polytope?

Exercise 2.16. Compute the f -vectors of triangulations of a regular 3-cube.
What is the dimension of the convex hull of the f -vectors? Do you notice
anything interesting?

Exercise 2.17. Can you find an example of a positive integral vector that
satisfies the McMullen-Walkup equations but is not the f -vector of a trian-
gulation of a simplicial polytope?

Exercise 2.18. Let A be a point configuration of even dimension d, such
that conv(A) is a simplicial polytope. Prove that, for every pair of triangu-
lations of A, T1 and T2, we have fd(T1) = fd(T2) modulo 2. The parity
of fd(T ) is in fact determined by conv(A) (Hint: you can prove this using
the McMullen-Walkup equations, but there is also a very elementary way
of doing it. Think spheres!).
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Exercise 2.19. If two triangulations T1 and T2 differ by a flip, what can
you say about their f -vectors? In other words, what are the f -vectors asso-
ciated to flips? Investigate especially the case when the points are in general
position.

Exercise 2.20. Prove that the dimension of the linear subspace spanned by
the f -vectors of all full triangulations of a three-dimensional point configu-
ration is one.



Life in Two Dimensions 3
In this chapter, we focus on triangulations of point sets in the plane, with
two goals in mind. On the one hand, dimension two is the first “non-trivial
case” of study (triangulations of 1-dimensional point configurations were
studied in the previous chapter; see Example 2.3.7). Looking at plane trian-
gulations will prepare us for more complicated situations to come. But the
reader must be cautious in thinking that all results about triangulations in di-
mension two remain true in higher dimensions; that this is not the case will
be emphasized in Section 3.6, where we contrast two-dimensional results
with three-dimensional analogues.

On the other hand, two-dimensional triangulations form by themselves
a topic of study of strong presence in the computational geometry and the
mesh generation literature. For this second reason, this chapter contains
some repetition of things said more generally in the previous chapter or in
later ones, which makes it, to a certain extent, self-contained.

In the spirit of this book, we are going to emphasize global problems,
those that are referring to the space of all triangulations of a configuration.
As we go along, we will touch some of the famous constructions in compu-
tational geometry. Much more on this topic can be found in the excellent
books [93, 113], among others.

3.1 Some basic properties

Recall that a point configuration is a labeled set of points and that we say
that a set of labels is independent (or collinear, or a face, etc.) meaning that
the corresponding set of points is independent. The convenience of this
language was emphasized in the previous chapter.

Let us start by recalling Definition 2.3.1, adapted to triangulations:

Definition 3.1.1 (Two dimensional triangulation). Let A be a point config-
uration in dimension two, with set of labels J. A collection T of affinely
independent subsets of J is a triangulation of A if it satisfies the following
conditions:

(CP) If B ∈ T and F ⊂ B, then F ∈ S as well. (Closure Property)

(UP)
⋃

B∈T conv(B) = conv(A). (Union Property)

(IP) If B �= B′ are two cells in T , then relint(B)∩ relint(B′) = /0. (Inter-
section Property)

We want to stress that there are two aspects in which our definition
deviates from the standard definition of triangulation in most of the
2-dimensional literature:

Jesús A. De Loera et al., Triangulations, Algorithms and Computation in Mathematics,
DOI 10.1007/978-3-642-12971-1_3, c© Springer-Verlag Berlin Heidelberg 2010
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1. The standard convention in the literature is that a triangulation of A
uses all the elements of A as vertices, while we allow some interior
points to not be used. Recall Definition 1.0.2: We call a triangulation
T of a point set A full if every element in A appears in some cell of
T . See also Figure 3.1.

Figure 3.1: A full and a non-full triangulation of

the same point set.

2. In higher dimension, we usually specify a triangulation via its list of
maximal cells. In dimension two it is more usual, and sometimes
more convenient, to define and represent triangulations via their sets
of edges, rather than triangles. The following statement justifies why
this works and gives a characterization of full triangulations in terms
of their edges:

Lemma 3.1.2. The edges of a full triangulation of A are maximal sets of
edges with the following properties:

(a) Any two of them intersect properly. That is, their intersection is either
empty or an end-point in both.

(b) No point of the configuration is in the relative interior of one of the
edges.

Conversely, every maximal set of edges with these two properties is the set
of edges of a unique full triangulation of A.

In other words, full triangulations in dimension two are maximal non-
crossing plane graphs, i.e., planar graphs, geometrically embedded in the
plane with edges as straight lines and nodes at A so that no two edges cross
in their relative interiors.

Proof. That full triangulations satisfy Properties (a) and (b) should be obvi-
ous: no two edges in a triangulation can cross each other, since this violates
property (IP) for those two edges; and no edge in a full triangulation can
contain a point of A in its interior, since that edge and that vertex would
again violate property (IP) (here we use that our triangulation is full, so
that every point of A is used). To see that full triangulations are maximal
with these properties, just observe that no edge can be added to a full trian-
gulation without creating a crossing.

For the converse, let G be a maximal set of edges with Properties (a) and
(b), and let us show that G is the set of edges in a full triangulation. First,
it is clear that G contains all the edges between consecutive points in the
boundary of conv(A), since otherwise adding the missing boundary edges
does not violate the properties. This implies that G divides conv(A) into
certain bounded regions. It suffices to show that these regions are triangles,
each containing no point of A other than its vertices. If this is so, then these
triangles, together with the edges in G and all the points in A, form a full
triangulation in the sense of Definition 3.1.1.

Let R be one of these regions. If R is convex but is not a triangle, then
maximality of G fails: the diagonal between two non-consecutive vertices
of R can be added to G . The same happens if R is a triangle but contains
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a point of A other than its three vertices: such point must be in the interior
of R (otherwise (b) is violated) and the edges joining it to the vertices of
R can be inserted. So, we only need to study the case of non-convex R.
In this case, R must have a vertex p that is “locally reflex”, meaning that
the angle that R spans in a neighborhood of p is greater than 180 degrees.
Let q be one of the neighbors of p along the boundary of R and let r be the
second neighbor of q. The edge pr cannot be in G , since p was reflex. Now,
imagine you are standing at p and looking in the direction of q, and start
rotating towards the direction of r until you first see a point s of A contained
in R. This must happen at the latest when you are looking towards r (in
which case you have s = r), because you will actually see r unless you
have hit another point before that. In any case, the edge ps is not in G
(since p was reflex and you have rotated less than 180 degrees) and it can
be inserted, thus violating maximality of G .

Observe that an implication of this proof is that every non-convex poly-
gon can be triangulated. This is one of the points where the two-dimen-
sional case differs from the higher-dimensional one (see Example 3.6.16).
A second important difference is the next statement, which says that all full
triangulations of a point set in the plane have the same number of triangles
and the same number of edges. In contrast, triangulations of the three-
dimensional cube may have five or six tetrahedra, as we saw in Figure 1.33
of Chapter 1 (see also Example 3.6.5 and Section 6.3).

Lemma 3.1.3. Let T be a full triangulation of a point set A ⊂ R
2. Let n

be the number of points in A and let nb be the number of points in A that
lie on the boundary of convA. Then T has exactly:

• 3n−nb−3 edges, and

• 2n−nb−2 triangles.

Proof. Let e and t be the numbers of edges and triangles in T . By Euler’s
formula,

t − e + n = 1.

To eliminate one variable, we use double counting on the edges of T . On
the one hand, counting the edges of all triangles we clearly get 3t, since
each triangle has three edges. On the other hand, when we did this each in-
terior edge was considered twice and each boundary edge only once. Since
the number of boundary edges is precisely nb, this gives

3t = 2e−nb.

From these two equations we can eliminate either t or e and get the state-
ment.

3.2 A few examples of triangulations in the plane

We saw in Chapter 2 several ways of constructing regular triangulations
of a point set for arbitrary dimension. Here we revisit some of them and
explore others inherent to dimension two, typically based on regarding a
triangulation as a maximal set of non-crossing edges.
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3.2.1 Placing and pulling triangulations

The placing triangulation of a point set is probably the easiest to construct
and to understand. We can think of it as a progressive construction that
inserts (or, “places”) points one at a time, in a given order. To simplify
the description we assume here that the points p1,p2, . . . ,pn are going to
be added in the order indicated by their labels and let Ai denote the config-
uration consisting of the first i points. We also assume that the first three
points are not collinear, hence they form a triangle. Let T3 = {123} be the
triangulation of A3 consisting of just that triangle. Then, for each i > 3,
Ti is constructed from Ti−1 by adding the triangles that join pi to the part
of the boundary of Ti−1 that is externally visible from pi. Visible means
that the line segments connecting pi to those points in the boundary do not
intersect conv(Ai−1) except at the end-point.

1

2

7

5 6

43

Figure 3.2: Is this the placing triangulation for the

given ordering? And for some other ordering?

It is important to observe that in our construction we join each new point
pi to the ones that are externally visible from it. In particular, if pi is in
the interior of the convex hull of the previous points, then it is not joined to
anything and will not be used in our triangulation. For example, the answer
to the first question in Figure 3.2 is “No. The placing triangulation for the
given ordering is {123,124,234}”.

There is another iterative construction called pulling points that can be
used to obtain triangulations (as it is the case for placing, the process has a
higher-dimensional version).

Suppose now you have point configuration with n points of dimension d.
Suppose so far you have a subdivision Sk of the point subconfiguration
using the first k points. We want to cleverly add the (k + 1)th point w and
enlarge the subdivision to include now k + 1 points in a new subdivision
Sk+1. First, if S is one of the cells of Sk which does not contain w, then S
remains as part of Sk+1. Otherwise, if w ∈ S then Sk+1 contains all sets of
the form F ∪{w}, where F is a facet of S which does not contain w.

Placing and pulling triangulations in arbitrary dimensions, and variations
thereof, are studied in more detail in Section 4.3. In fact, as we show there
they are a particular case of the regular triangulations studied in the pre-
vious chapter. Remember that regular triangulations of a d-dimensional
configuration are those that can be geometrically obtained as the projec-
tion of the lower envelope of a (d + 1)-dimensional bounded polyhedron
with simplicial faces. If d = 2, these lower envelopes can be visualized as
concave triangular terrains.

Let us mention a special case where placing triangulations make an ap-
pearance in one popular algorithm to compute the convex hull of a point
configuration in the plane, the so-called Graham scan [145]. Given a point
set A, find the point p0 with smallest x-coordinate and sort the remain-
ing points, say from largest to smallest, with respect to the slope of the
line segments connecting p0 to pi, for i > 0. Once the convex hull Ck of
{p0,p1, . . . ,pk} has been found, the convex hull Ck+1 of {p0,p1, . . . ,pk+1}
is obtained by drawing the line segments connecting pk+1 to the visible
points in Ck. In other words, we construct the placing triangulation given
by Graham’s order (see Figure 3.3).

Figure 3.3: Two steps of Graham’s convex hull

algorithm constructing a placing triangulation.
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3.2.2 Delaunay triangulations

Delaunay triangulations are another particular type of regular triangula-
tions, and they were already introduced in arbitrary dimension in
Section 2.2.2. Here we recall the definition, but then focus on special prop-
erties that the Delaunay triangulation has in two dimensions.

Definition 3.2.1. The Delaunay subdivision of a point configuration A is
the regular subdivision obtained by the choice of lifting heights given by
ω(pi) = ||pi||2. A Delaunay triangulation is any triangulation that refines
it.

That is, the Delaunay subdivision is obtained by lifting the points to the
paraboloid of equation z = x2 + y2. It is worth remarking that one does not,
in general, have a unique Delaunay triangulation, but rather a Delaunay
subdivision which sometimes is a triangulation itself and other times can
be refined by several different triangulations. However, there is a simple
sufficient condition that guarantees the Delaunay subdivision to be a trian-
gulation; namely, that the lifted points contain no coplanar quadruple. As
shown in Lemma 2.2.7, four points are lifted coplanarly to the paraboloid if
and only if they are cocircular in the plane. For this reason, in the literature
on Delaunay triangulations (and their duals, Voronoi diagrams) a point set
is called in general position when it contains no four cocircular points, in
addition to no three collinear.

Let us also recall here the “empty-sphere” characterization of the Delau-
nay triangulation (Corollary 2.2.8), directly adapted to the two-dimensional
case:

Proposition 3.2.2. Let A ⊂ R
2 be a finite point set, with label set J. Let

B ⊂ J be a subset of its elements. Then B labels a cell in the Delaunay
subdivision of A if and only if there is a circle with no points of A in its
interior and with exactly the points of A labeled by B on its boundary.

We want to emphasize that the above characterization is valid not only
when B labels a two-dimensional cell, but also for the edges and vertices in
the Delaunay subdivision (actually, the same characterization, with spheres
instead of circles, works for the Delaunay subdivision of arbitrary dimen-
sional point configurations).

Figure 3.4: A Voronoi diagram traced with help of

perpendicular bisectors.

Delaunay triangulations are so popular because they appear naturally in
several applications. Sometimes this happens in a “dual way” as we men-
tioned in the previous chapter and we explain now. A Voronoi cell of a
point p in A is the subset of all points of R

2 for which p is closest. Note
that Voronoi cells are convex polygons due to the definition.

Figure 3.5: And the Delaunay triangulation as its

dual graph.

The Voronoi diagram of A is the collection of all Voronoi cells, one for
each of the points. It is a decomposition of the plane into polygonal regions,
some possibly unbounded, as demonstrated in Figure 3.4. We can define a
dual graph to the Voronoi diagram. The vertices are the input points and two
are connected if their Voronoi cells share a common edge (see Figure 3.5).

Proposition 3.2.3. The dual graph of the Voronoi diagram of a point con-
figuration A consists precisely of the edges of the Delaunay subdivision.
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Proof. Each edge of the Voronoi diagram is the bisector of the line seg-
ments between two points of A. Moreover, a point x in the relative interior
of the Voronoi edge separating the regions of points p and q is closer to p
and q than to any other point in the configuration. That is, the circle with
center at x and passing through p and q has no other point of A on or in-
side it, which proves that pq is an edge in the Delaunay subdivision, by
Proposition 3.2.2. Conversely, if pq is an edge in the Delaunay subdivision,
Proposition 3.2.2 implies there is a point x such that the circle with center x
and passing through p and q leaves every other point of A outside, proving
that there is a Voronoi edge passing through x and separating the Voronoi
regions of p and q.

With similar arguments, one can show that a Voronoi vertex x is the cen-
ter of a circle passing through precisely the points of p whose Voronoi re-
gions are incident to x and leaving the rest of points outside, hence proving
that Voronoi vertices are dual to the 2-dimensional cells in the Delaunay
triangulation. Moreover, this duality of Voronoi diagrams and Delaunay
subdivisions works in arbitrary dimension.

Now we come to the first property of the Delaunay subdivision that is
special to dimension two, namely, that the “sphere test” stated in the above
proposition has a very simple translation in terms of angles:

Proposition 3.2.4. Let A ⊂ R
2 be a finite point set. A triangulation T of

A is a Delaunay triangulation if and only if the opposite angles to every
interior edge add up to at most 180 degrees.

Moreover, the triangulation is the unique Delaunay triangulation of A if
and only if all these angle sums are strictly less than 180 degrees.

p

q

r

s

Figure 3.6: A characterization of Delaunay

triangulations in terms of angles.

Let us clarify what we mean. Let pq be an interior edge of T , and let
r and s be the two vertices that form triangles with it. We call “opposite
angles to pq” the angle of r in the triangle pqr and the angle of s in pqs.
See Figure 3.6.

Proof. Remember the following from Theorem 2.3.20: T is the regular
subdivision of A corresponding to a certain height vector ω : J → R if and
only if every “interior wall” (in the plane, every interior edge) is folded
convex by this lift.

We also use the following elementary property of quadrilaterals in the
plane: let p1p2p3p4 be a (perhaps non-convex) quadrilateral. Moreover,
let ∠pi−1pipi+1 (with indices regarded modulo 4) denote the angle at the
vertex pi. Then:

• The sum of the four angles equals 360 degrees,

• The quadrilateral can be inscribed in a circle if and only if ∠p4p1p2 +
∠p2p3p4 = 180 degrees (and hence ∠p1p2p3 +∠p3p4p1 = 180 de-
grees as well), and

• If ∠pi−1pipi+1 +∠pi+1pi+2pi+3 < 180, then the point pi lies outside
the circle passing through the other three vertices of the quadrilateral.
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We already know that four points being cocircular is equivalent to their
lifting to the paraboloid being coplanar. It follows from this that point pi

being out of the circle through the other three is equivalent to the edge
pi−1pi+1 lifting convex. This directly implies the statement at least in the
generic case: if all the sums of opposite angles of interior edges are strictly
less that 180 degrees, then all the edges are lifted convex to the paraboloid
and, hence they are all walls, our triangulation is the Delaunay subdivision.
The converse also holds trivially.

For the other case, first observe that if a sum of two opposite angles
is bigger than 180 degrees then the corresponding edge is lifted concave,
and the triangulation is not Delaunay. Finally, if all edges have opposite
angles with sum 180 or smaller, those with equality are “lifted flat” and
those with strict inequality are lifted convex. Hence, the triangulation in
question refines the Delaunay subdivision, which is obtained by “erasing”
all the edges that are lifted flat.

Definition 3.2.5. An edge pq in a triangulation T of A is called locally
Delaunay if the sum of its opposite angles is at most 180 degrees, so that a
triangulation is Delaunay if and only if all its edges are locally Delaunay.

Observe that checking whether a given edge is locally Delaunay amounts
to computing the sign of a 4× 4 determinant. Namely, if pq is an interior
edge with opposite vertices r and s and with the triple pqr oriented pos-
itively (i.e., counter-clockwise) in the plane, the condition needed for the
edge to be locally Delaunay is that
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∣
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1 1 1 1

∣∣
∣
∣
∣
∣∣
∣
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where (px,py) denote the coordinates of point p, and so on.

r

p
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s

Figure 3.7: Auxiliary sketch for Lemma 3.2.6.

It is rather curious that Delaunay triangulations turn out to be the optimal
triangulations with respect to several interesting criteria. We present one
here and leave others for the exercises. In what follows, for every three
points p, q and r in the plane, we denote by R(p,q,r) the radius (in absolute
value) of the circumcircle of the three points.

1

p

p’

q

q’

s rt

o

o

2

Figure 3.8: Auxiliary sketch for the proof

Lemma 3.2.6.

Lemma 3.2.6. Given a convex quadrilateral pqrs as in Figure 3.7
with vertex p exterior to (or lying on) the circle C(q,r,s) (i.e., qs is the

locally Delaunay diagonal of the quadrilateral), then

1. max(R(p,r,s),R(p,q,r)) ≥ max(R(q,r,s),R(p,q,s))

2. min(R(p,r,s),R(p,q,r)) ≥ min(R(q,r,s),R(p,q,s)).

3. In particular, R(p,r,s)m + R(p,q,r)m ≥ R(q,r,s)m + R(p,q,s)m.

Proof. Parts 1 and 2 follow from the following assertion: one of R(p,r,s)
or R(p,q,r) is bigger than R(q,r,s); the other one is bigger than R(p,q,s).
To prove this assertion we present a variation of the argument in [92].
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By elementary properties of angles and arcs of circle we know that the
angles can be ordered in magnitude as follows:

∠rps < ∠rqs, ∠qpr < ∠qsr, ∠srp < ∠sqp, ∠prq < ∠psq.

It is sufficient to prove that either R(p,r,s) or R(p,q,r) are bigger than
R(q,r,s) as the other statement follows from identical properties.

In our argument we rely on Figure 3.8. We know that the sum of angles
∠sqr +∠qsr < π , thus either one ∠sqr ≤ π/2 or ∠qsr ≤ π/2.

First consider what happens when ∠sqr ≤ π/2. Let t be the midpoint
of rs, and let o1,o2 be the centers of the circles C(psr) and C(qrs) re-
spectively. It is well-known the points o1,o2 lie on the perpendicular bi-
sector to sr through the midpoint t, therefore o1,o2, and t are collinear.
Denote by p′,q′ the points where this line meets the circles C(psr) and
C(qrs). Note that we have divided two angles namely ∠tp′r = (∠rps)/2
and ∠tq′r = (∠rqs)/2 because two angles inscribed in the same circle that
bound the same arc of circle are equal and the value of the angle is one half
of the arc. Now

tan(∠rqs/2) =
|tr|
|tq′| =

|tr|
|to2|+ |o2q′| =

|tr|
|to2|+ |o2r| .

From the right triangle o2tr we can rewrite the equation as

tan(∠rqs/2) =
|tr|

(|o2r|+(|o2r|)2 − (|tr|)2)1/2
.

Similarly we have

tan(∠rps/2) =
|tr|

(|o1r|+(|o1r|)2 − (|tr|)2)1/2

and since ∠rps ≤ ∠rqs ≤ π/2, then tan(∠rps/2) ≤ tan(∠rqs/2) which is
the same as

|tr|
(|o1r|+(|o1r|)2 − (|tr|)2)1/2

≤ |tr|
(|o2r|+(|o2r|)2 − (|tr|)2)1/2

.

Equivalently,

(|o1r|+(|o1r|)2 − (|tr|)2)1/2 ≥ (|o2r|+(|o2r|)2 − (|tr|)2)1/2.

Finally, because the function x+(x2 −a)1/2 is a monotone increasing func-
tion on x, we can safely conclude that |o2r| ≤ |o1r|. Therefore the radius of
the circumcircle C(p,s,r) is larger than that of C(q,r,s).

When ∠sqr > π/2 we have ∠qsr ≤ π/2. Then, with the same argu-
ment as before, the radius of C(p,q,r) is larger than the radius of C(q,r,s).
Thus we have concluded that either R(p,r,s) or R(p,q,r) are bigger than
R(q,r,s). Finally, the point r is outside the circumcircle C(p,q,s), so we
can repeat the same arguments there and also conclude that either R(p,r,s)
or R(p,q,r) are bigger than R(p,q,s).
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Corollary 3.2.7. Delaunay triangulations in the plane are optimal among
triangulations of a fixed point set in the following senses:

1. They minimize the maximum circumradius of triangles in the triangu-
lation.

2. They maximize the minimum circumradius of triangles in the triangu-
lation.

3. For all real number powers m > 0, they minimize the functional
∑τ∈T R(τ)m, where the sum is over all triangles τ in the triangu-
lation.

4. They maximize the minimum angle in a triangulation.

It has to be mentioned that, in general, the Delaunay triangulation does
not minimize the maximum angle. An algorithm to compute the triangula-
tion that does this is described in [118].

Proof. We use the following important fact, that will be proved in Sec-
tion 3.4.1: If a full triangulation T is not a Delaunay triangulation, there
is a locally non-Delaunay edge that can be flipped, meaning that its two
adjacent triangles form a strictly convex quadrilateral.

The flipping of this edge strictly increases all the functionals in the state-
ment. The ones in Parts (1), (2), and (3) are given by Lemma 3.2.6.

For the proof of Part (4), we refer again to Figure 3.7, where the locally
non-Delaunay edge is pr. What we need to prove is that the minimum
of the six angles formed when the edge pr is inserted is smaller than the
minimum when the edge qs is inserted. Since the minimum of the twelve
angles is clearly not one of the four angles of the quadrilateral pqrs, the
statement follows from the following inequalities, already mentioned in the
proof of Lemma 3.2.6:

∠rps < ∠rqs, ∠qpr < ∠qsr, ∠srp < ∠sqp, ∠prq < ∠psq.

Here is yet another reason to like Delaunay triangulations: A minimum
spanning tree of a planar point configuration is a spanning tree with vertices
on the points whose edges are straight-line segments connecting points with
the property that the sum of the lengths of the edges is minimal. Note that,
in principle, there are many possible trees and that the minimum length can
be attained by many trees. It turns out that

Proposition 3.2.8. Every minimum spanning tree of a point configuration
A is a subgraph of the Delaunay triangulation.

Proof. Let us recall Prim’s algorithm for computing a minimum spanning
tree. Order the points {p1, . . . ,pn}. Begin by setting T = {p1}. Then for
each value i from 2 to n, find the shortest edge line segment among the
segments of the form {su} where s ∈ T and u ∈ A\T. Add such a minimal
edge to what is the evolving spanning tree and add u to T. It is well-known
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that the result is a minimum weight spanning tree and in fact all minimum
spanning trees can be recovered this way for some ordering of the points
and varying choices of equal-length edges.

Now, recall that when we chose {su}, u was the closest of A\T to s and
s was a closest point in T to u. Therefore the interior of the disk centered
at u contains no points of T and the interior of the disk centered at s has
no points of A \T. This means the intersection of these two open disks
contains no point from A. This implies that the edge {su} must actually
belong to a Delaunay triangulation because the circle with center at u+s

2 and
radius half the length of {su} goes through the edge, but all other points of
the configuration lie outside, thus it is locally Delaunay.

3

4
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Figure 3.9: Ten random points in the plane.
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Figure 3.10: Their corresponding minimum and

maximum length triangulations.

How do we compute Delaunay triangulations? Of course, straight from
the definition, and valid in all dimensions, we have the convex-hull-based
algorithms that compute the convex hull of the lifted points to a paraboloid.
The Delaunay triangulation is obtained by simply looking at which faces
of the convex hull are “lower”. This is not the most effective method in
practice for point sets in the plane, but there are alternative algorithms
available. There are incremental insertion algorithms that, starting with
a triangle, insert the points in some order (e.g., random order) updating the
triangulation at each step (to find the triangle(s) to be updated one needs
good data structures such as a Quadtree; see for example [215]). There
are also divide-and-conquer algorithms that subdivide the region into two
partial regions, compute recursively the Delaunay triangulation of the parts,
and finally merges both triangulations (e.g., [149]). Of similar O(n log(n))
complexity as divide-and-conquer, we have the planesweep algorithm that
computes Delaunay edges and Delaunay triangles by moving a sweep-line
over the area (e.g., [128]). Sweeping and divide-and-conquer reach in fact
the best possible complexity. We will not discuss the details of these algo-
rithms here, but we suggest the references [45, 93]. For pointers to software,
consult http://www.geom.uiuc.edu/software/cglist/. The
only algorithm that we will discuss, later in this chapter, for its structural
significance to the space of triangulations, is the flipping algorithm, which
starts with an arbitrary triangulation and converts it into the Delaunay trian-
gulation via flips.

3.2.3 Greedy and minimum weight triangulations

Let A = {p1, . . . ,pn} be a point set in the plane. Suppose that for each pair
of points pi,p j ∈ R

2 we are given a certain “cost” or weight wi, j ∈ (0,∞)
of using the edge pip j . The weights can in principle be arbitrary. But the
natural choice, with several applications, is the Euclidean distance between
points. Then we can call the weight of a triangulation the sum of weights of
the edges used in it. The minimum weight triangulation (MWT for short) is
the full triangulation of A with the smallest possible weight. The problem
of computing the minimum weight triangulation of a point set in the plane
has received considerable attention, especially when the weights are simply
the Euclidean lengths of the edges, which we will call the minimum length
triangulation problem. This problem is often just called the MLT problem.
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The first record we have of the MLT problem goes back to around 1975
[294]. In fact, MLT was, until recently, one of the items in the famous
list, included in the seminal book by Garey and Johnson [134], of prob-
lems whose NP-completeness was not known. The list originally con-
tained eleven problems, and MWT was one that remained open for a long
time. Only in 2006, in a major breakthrough, Wolfgang Mulzer and Günter
Rote [235] finally proved that finding the minimum length triangulation is
NP-hard. In Chapter 8 we make a short sketch of their proof.

But life needs to go on, despite NP-hardness. What would be an effective
method to actually find a minimum length triangulation or an approxima-
tion of it? Listing all triangulations and finding a MLT is beyond question.
In Figures 3.9 and 3.10 we show a concrete example of a point set with 10
points and specific coordinates together with its maximum and minimum
length triangulations. For this simple example there are over 2000 different
triangulations.

A truly naive “algorithm” to try to compute the minimum weight triangu-
lation goes as follows: order the

(n
2

)
possible edges by weight, then insert

them one by one, choosing at every step the edge of smallest weight that
does not cross any of the ones previously inserted. When no other edge can
be inserted we have a full triangulation, by Lemma 3.1.2. Unfortunately,
the triangulation obtained this way, which is called the greedy triangula-
tion, is not always equal to the minimum weight triangulation [224]:

Lemma 3.2.9. The minimum length triangulation (MLT ) has in general
different length than the greedy triangulation (GT) or than the Delaunay
triangulation (DT). Moreover, there is no universal constant c satisfying

length(DT (A))
length(MLT (A))

≤ c, or
length(GT (A))

length(MLT (A))
≤ c

for every point configuration A.

In fact, the Delaunay triangulation may exceed the optimal length by a
linear factor of the number of points [191].

Proof. We only present the proof for the case of the Delaunay triangula-
tion, with a construction originally from [224]. See Figure 3.11. For each

Figure 3.11: The Delaunay triangulation (top)

does not approximate well minimum length

triangulations. The bottom figure shows an

asymptotically much better way of triangulating a

2k -gon.

n = 2k + 1, consider the configuration Ak with n points, consisting of the
vertices of the regular 2k-gon of unit radius together with its center (or to-
gether with a generic point very very close to the center, if you prefer a
configuration in general position).

From the circumcircle description of the Delaunay triangulation it is
clear that the Delaunay triangulation is a “wheel” consisting of the bound-
ary edges of the 2k-gon together with the 2k radii joining the interior point
to the boundary. The length of this triangulation is Θ(n) (more precisely, it
is very close to n + 2π).

A better triangulation is constructed by taking the edges of the polygon,
then a second layer of edges consisting of 2k−1 edges linking points at
distance two, a third layer of edges consisting of edges linking points at
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distance four, etc. In the final step, the interior point will be contained in
a square and we join it to the four vertices of it. In this process, we have
inserted k− 1 layers of edges plus the four final ones, and each layer has
total length bounded by 2π . Hence, we have a triangulation of length less
than 2(k−1)π + 4 = Θ(logn).

In conclusion we have

length(DT (Ak))
length(MLT (Ak))

≥ Ω(2k/k).

Finally observe that neither minimum length triangulations nor greedy
triangulations are unique in general and they do not have to be regular
either!

A very nice computational result, due to Klincsek [193], states that when
triangulating simple polygons, i.e., polygonal regions without holes, one
can find the minimum length triangulation efficiently. Klincsek’s result is
particularly nice and easy to explain, thus we present it here. He used the
idea of dynamic programming in the following way:

Proposition 3.2.10. Let p1,p2, . . . ,pn be the vertices of a (not-necessarily-
convex) simple planar polygon P listed in clockwise order (i.e., the points
pn+i and pi are identical). The boundary edges of P are precisely the edges
of the form pipi+1. Then there is an O(n3) time algorithm to compute a
triangulation of P that minimizes the sum of the Euclidean lengths of the
interior edges.

Proof. Since the polygon P is not necessarily convex we need to define a
modified distance function to ensure that we use segments that are truly
inside of P. Let

d∗(pi,p j) =
{

d(pi,p j) if j = i+ 1 or if pip j is interior to P.
∞ otherwise.

Denote by optcost(i, j) the minimum length of a triangulation for the
sub-polygon whose boundary edges are pi,pi+1, . . . ,p j . The key idea of
the algorithm is that, because we are on a simple polygon, the equality

optcost(i, j) = d∗(pi,p j)+ min
i<m< j

(optcost(i,m)+ optcost(m, j)) (3.1)

necessarily holds. Indeed, the m where the minimum is achieved is the third
vertex of the unique triangle using i and j in the triangulation achieving
optcost(i, j) (see Figure 3.12). The algorithm proceeds as follows:

m

j

i

Figure 3.12: Dynamic programming at work: We

can reduce the calculation of the minimum length

of a triangulation of the polygon with edges

pi,pi+1 , . . . ,p j to m smaller calculations.

Step 1 Set k = 1, where k is the variable that keeps track of the level on
which we operate to do the dynamic programming evaluations of
Equation (3.1). In parallel, compute the values of d∗(i, j).

Step 2 While k < n−1, do the following:
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Increase k = k+1, then using Equation (3.1), compute the values of
optcost(i, j) for i = 1, . . . ,n and j = i + k, using the known values
of optcost(i, j) for | j− i| < k.

Save in the auxiliary array opt(i, j) the index m for which the min-
imum mini<m< j (optcost(i,m)+ optcost(m, j)) is achieved in equa-
tion 3.1.

Step 3 Finally, when n−1 = k, compute optimum length = cost(1,n) using
Equation (3.1). To recover the edges involved in a minimal triangu-
lation we use the array opt(i, j): The edge p1pn is in the minimum
length triangulation. Then, for each pip j currently in the triangula-
tion, find the index l = opt(i, j). By construction the edges pipl and
plp j must also be present in the triangulation.

That the algorithm returns the correct answer follows from the validity of
Equation (3.1). Step 2 of the algorithm above is the most costly. It requires
O(nk) operations for each k = 1,2, . . . ,n− 1, hence the running time is
O(n3). The evaluation of the distance function d∗ can be done beforehand
and requires at most O(n3) steps. Detecting the intersection of the boundary
edges pipi+1 with a segment pip j with j > i + 1 can be done by solving a
simple, constant size, system of equations.

The above algorithm was independently discovered by Gilbert [141].
The algorithm we described needs O(n2) space if applied to a convex poly-
gon. Nobody knows whether the running time or memory space needed
could be improved (see problems section).

For the minimum length triangulation of general point configurations the
most successful practical approach for exact computation is what we call
the large MLT subgraph or skeleton approach. The idea is to find as many
edges as possible that must belong to a minimum length triangulation. If
the resulting graph is connected, one can use Klincsek’s algorithm to fill in
the remaining holes. A similar idea was used in [117] to give a polynomial
time algorithm for the problem of finding a triangulation that minimizes the
length of the longest edge.

Perhaps the first ever attempt to find edges that must be inside a minimal
triangulation was in Gilbert’s 1979 thesis [141]. He proved that the shortest
edges must belong to a minimum length triangulation. Later, the work by
many authors [192, 184, 335, 79] led to the following important definition:

Definition 3.2.11. An edge is called a light edge if it is not crossed by
another edge that is shorter.

Although the set of light edges does not always form a subgraph of a
minimum weight triangulation, we have the following nice situation:

Theorem 3.2.12 (Aichholzer et al. [5]). If the light edges form a triangu-
lation, then the greedy triangulation is a minimum weight triangulation. In
particular, the minimum length triangulation can be computed in polyno-
mial time.
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The proof of this theorem relies on the following lemma, proved in [5].
See Figure 3.13 for an example.

Lemma 3.2.13 (Triangulations intersect nicely). Consider T1 and T2 two
full triangulations of a point configuration A with n points. Let E(T1)
and E(T2) be their sets of edges. Then there exist a perfect matching φ :
E(T1) → E(T2) such that every edge e ∈ E(T1) either coincides with or
crosses its matched edge φ(e).

e’

a b

c

de

f

a’

f’
b’

c’

d’

Figure 3.13: Two triangulations, their intersection

and a matching of their edges (edges that match

each other are marked with a circle).

Proof. To prove that such a perfect matching exists we make use of the
Hall’s marriage theorem that states that a bipartite graph G, with bipartition
X ,Y , has a perfect matching if and only if, for any subset S of X , the number
of neighbors of S in Y is larger or equal to the cardinality of S. The reader
can find a proof in almost any graph theory book (e.g., [63]).

Now we construct an auxiliary bipartite graph G from the two triangula-
tions T1,T2. The nodes of this graph are X = E(T1) and Y = E(T2). Two
nodes are adjacent if the corresponding edges cross or coincide.

Let S ⊂ X be any subset of edges in T1, and let N(S) ⊂ Y be its set
of neighbors in G. We claim that S∪ (Y\N(S)) is a non-crossing set of
edges in A. Indeed, since X ,Y come from two triangulations, the only
crossing could be between an edge e1 ∈ S and an edge e2 ∈ Y\N(S), but
then e2 would be in N(S) by definition, a contradiction. Since every non-
crossing set of edges in the plane can be completed to a full triangulation
(Lemma 3.1.2) and since all full triangulations have the same number of
edges (Lemma 3.1.3) we have

|S∪Y\N(S)| ≤ |X | = |Y |.
The same argument shows that no edge can be in both S and Y\N(S).

Hence,
|S∪Y\N(S)| = |S|+ |Y\N(S)|.

Putting these two equations together we have

|N(S)| = |Y |− |Y\N(S)| ≥ |S|,
as desired.

Proof of Theorem 3.2.12. Call L the triangulation all of whose edges are
light. We want to prove that the length of L is smaller than that of any
other triangulation T . Take the matching φ : L → T of edges from
Lemma 3.2.13. Then we have that length(φ(e)) is bigger than length(e),
because e is light.

A major practical breakthrough for the computation of the planar MLT
came with the introduction of the LMT-skeleton [107, 41].

Definition 3.2.14. A triangulation is locally minimal if there is no way
to decrease the length by a flip. This means in particular that every con-
vex quadrilateral contains the shorter of the its diagonals and that any sub-
polygon is optimally triangulated. We define the edge set of the LMT-
graph as those edges belonging to the intersection of all locally minimal
triangulations.
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Minimum length triangulations are trivially locally minimal and thus the
LMT-graph is a subgraph of all of them. The idea is to build a large sub-
graph of the LMT- graph, which we will call the LMT-skeleton. To achieve
this, collect all edges except those that cannot be in a minimum length tri-
angulation to begin with. For example, Das and Joseph [91] showed that
it is necessary for an edge to belong to an MLT it must have a diamond
point-free region like that shown in Figure 3.14. Even finer regions have
been shown to be enough [108]. Thus to compute the LMT-skeleton, we

8
/π

8/
π

8/π 8/
π

Figure 3.14: the π/8-angular region must have

no points inside.can eliminate many edges using the diamond criterion or any of its relatives.
Next, remove all edges that have a flip that decreases the length. We have
now a list of candidate edges that may belong to the LMT-graph. We use the
following lemma to extract candidate edges that are true LMT-graph edges:

Lemma 3.2.15. Let A be a point configuration and let e ∈ E(A) be an edge
of a locally minimal triangulation. If no other edge e′ intersecting e is in a
locally minimal triangulation, then e is in the LMT-graph.

Proof. Any locally minimal triangulation not containing e must have an
edge crossing it corresponding to triangles that cover a neighborhood of e.

Finally, the LMT-skeleton is constructed using Lemma 3.2.15: if an edge
in our candidate list intersects no other edge in the candidate list, then e is
in the LMT-graph and thus in all minimum length triangulations for sure.
We add this edge to the LMT-skeleton.

Figure 3.15: Diamond configurations obstruct the

success of the LMT-skeleton heuristic.

Unfortunately, we show in Figure 3.15 that there are examples where the
LMT-skeleton may not be large enough and has many connected compo-
nents [41, 65]. The point set consists of points in a circle placed in such
a way that any 60 degree angle sector contains 3 or more points plus a
point in the center of the circle. The point in the center becomes isolated.
Thus by pasting together many copies of the above point configuration we
get a disconnected LMT-skeleton. One can of course try, as a solution, to
add enough edges to connect them, but there are no bounds on how many
components one can expect. In fact, the bad news is that although such
configuration may appear artificial and rare, the paper [65] proved that the
expected number of components on either the LMT-skeleton or the graph
of light edges is linear in the number of vertices. It is also known that there
are examples of point sets for which the LMT-skeleton is a proper subgraph
of the LMT-graph. In [6] Aichholzer et al. showed an improved algorithm
to compute the full LMT-graph for simple polygons and they studied when
the graph is connected.

3.3 The set of all triangulations of a point set

The first global question about triangulations is: How many triangulations
are there? Here we present a few results on the topic.

3.3.1 The exact number of triangulations

In general, it is impossible to have an explicit formula for the number of
triangulations of a point set, but there are several families of point sets where
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this is possible. The first one is when the points are in convex position, that
is, our configuration is the set of vertices of a convex polygon.

We already presented a proof of the following result in Section 1.1, but
the result is important enough to present here another one (this proof was
proposed as Exercise 1.5 in Chapter 1):

Theorem 3.3.1. The number of triangulations of a convex n-gon is

1
n−1

(
2n−4
n−2

)
.

The sequence

Cn :=
1

n + 1

(
2n
n

)
,

is called the Catalan sequence. That is to say, the number of triangulations
of an n-gon is the (n−2)-th Catalan number. From the formula the reader
should see right away that Cn ≤ 4n and, with some more attention, that
Cn ∈ Θ(4nn−3/2).

Proof. Throughout this proof let tn denote the number of triangulations of
the convex n-gon.

Consider the n-gon P with its vertices labeled from 1 to n in cyclic order,
and with a distinguished edge {1,n} that we call the base. In every triangu-
lation of P the base is a side of one of the triangles, say {1,k,n}, and this
triangle divides the rest of P into two disjoint convex polygonal regions,
S1 with k vertices and S2 with n− k + 1. See Figure 3.16. The rest of the
triangulation of P is completed with some triangulation of the polygons S1

and S2. Now, S1 can be triangulated into tk ways and S2 into tn−k+1 ways.
Hence, for a given choice of vertex k containing the edge {1,n}, there are
tk+1tn−k ways of triangulating P and we have

· · ·

1

2

3

4

S1 S2

k

k +2

n

k +1

· · ·

Figure 3.16: Setting up a recursion for tn.

tn = t2tn−1 + t3tn−2 + t4tn−3 + · · ·+ tn−1t2.

Now we “only” need to solve this recurrence relation. It is slightly more
convenient to shift the label n by one unit and call sn−1 = tn so that sn is the
number of triangulations of an (n + 1)-gon. We also set s1 = t2 = 1. The
above recurrence relation becomes

sn−1 = s1sn−2 + s2sn−3 + · · ·+ sn−2s1.

Now we use the method of formal power series: That is, we consider the
expression

F(x) =
∞

∑
n=1

snxn

and try to translate the recurrence on the s’s to an algebraic identity on F .
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For this, we multiply F by itself to get

F2(x) = (s1)2x2 +(s1s2 + s2s1)x3 + . . .

+(s1sn−1 + s2sn−3 + · · ·+ sn−1s1)xn + . . .

= s2x2 + s3x3 + · · ·+ snxn + . . .

= F(x)− s1x

= F(x)− x.

Hence, F is a solution of the quadratic equation F2 −F + x = 0. That is,

F(x) = (1 +
√

1−4x)/2 or F(x) = (1−√
1−4x)/2.

But we know that F(0) = 0 so the correct solution is the second one. We
now use Newton’s binomial theorem which in particular says that

(1 + z)1/2 =
∞

∑
k=0

(
1/2

k

)
zk

where one defines
(1/2

k

)
as

[(1/2)(1/2−1)(1/2−2) . . .(1/2− k + 1)]
k!

=
(−1)k−1

k22k−1

(
2k−2
k−1

)
.

Applying this to z = −4x we get the formal power series expression of
(1 −√

1−4x)/2 and, using that it must equal F(x), we get the desired
formula for tn (don’t forget to shift again by 1, because sn = tn+1).

There are a couple of variations of convex polygons where one can also
determine the exact number of triangulations. We mention two important
examples:

Example 3.3.2 (Double chain). Let A consist of two convex chains of
k = n/2 points each, facing one another and so that every pair of segments
in different chains are visible from one another. See the bottom picture
in Figure 3.17 for the case k = 9. The edges drawn in the figure are “un-
avoidable”, i.e., present in every full triangulation. They divide conv(A)
into two convex k-gons, with Ck−2 triangulations each, and a non-convex
2k-gon which is easily seen to have

(2k−2
k−1

)
triangulations (see [133], and

Example 3.3.2 below). Hence, the number of full triangulations of A is:

(
2k−2
k−1

)
C2

k−2 = Θ(64kk−
7
2 ) = Θ(8nn−

7
2 ).

2 368 607 670

2 031 054

Figure 3.17: Some point sets in the plane whose

numbers of triangulations are easy to compute

exactly. The number of full triangulations of each,

for n = 18, is shown.

Example 3.3.3 (Double circle). Let now A be a convex k-gon (k = n/2) to-
gether with k interior points, one sufficiently close to each boundary edge.
See the top part of Figure 3.17 for the case k = 9. Again, the edges drawn
are unavoidable, and triangulating A is the same as triangulating the central
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non-convex n-gon. An inclusion-exclusion argument (see Proposition 1
in [171]) gives the exact number of triangulations of this polygon, which is

k

∑
i=0

(−1)i
(

k
i

)
Ck+i−2.

Taking into account that Ci is essentially 4i one gets that, neglecting a poly-
nomial factor, this point set has

k

∑
i=0

(−1)i
(

k
i

)
4k+i = 4k

k

∑
i=0

(−1)i
(

k
i

)
4i = 4k3k = 12k = 12n/2

triangulations.

Besides possessing nice combinatorial properties, the double circle and
double chain are among the configurations with the smallest and the largest
numbers of full triangulations. Actually:

• The double circle gives the exact minimum possible number of full
triangulations for n ≤ 10. (If n is even; for n odd the minimum num-
ber is given by a double circle with an extra interior point.) See [10,
9], where the conjecture is made that the same property holds for
n > 10.

• On the other end, the double chain, with almost 8n full triangulations
and 9n triangulations in total, was for some time the point set with
asymptotically the largest number of triangulations known. But re-
cently it was beaten by a simple variation of it, the so-called double
zig-zag chain (see Figure 3.18). The double zig-zag produces aboutFigure 3.18: A double zigzag configuration.

(
√

72)n full triangulations [8]. For fixed and small n, the point sets
which maximize the number of triangulations have been computed
in [10] and they look like the right-side picture of Figure 3.17, which
is self-explanatory. However, an analysis similar to the one we have
done for the double chain shows that the number of triangulations of
this “three-armed whirlpool” is “only” Θ(7.559nn−5/2).

For arbitrary point configurations, counting their triangulations exactly
is a tricky enterprise (at least empirically, although no one has proved it is
hard in the complexity sense). Thus, we wish to at least estimate or bound
the number of triangulations for an arbitrary point set in the plane.

Let Tn and tn denote the maximum and minimum number of full triangu-
lations among all point sets in the plane in general position and of cardinal-
ity n. For tn to avoid trivialities we assume general position since (n− 1)
points on a line, plus a point not on that line, produce a point set with only
one triangulation. For Tn, however, general position is no loss of generality
since “perturbing” a point set in the plane can only increase its number of
triangulations.

The following table, taken from [10], gives Tn and tn for n = 3, . . . ,10,
and compares them to the number of triangulations of the convex n-gon Cn:
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n 3 4 5 6 7 8 9 10

tn 1 1 2 4 11 30 89 250
Cn 1 2 5 14 42 132 429 1430
Tn 1 2 5 14 42 150 780 4550

Concerning the asymptotic behavior of tn and Tn it is known that:

Ω∗(2.33n) ≤ tn ≤ O∗(12
n
2 ) = O(3.46n), (3.2)

Ω∗(8.49n) = Ω∗(72
n
2 ) ≤ Tn ≤ O(43n). (3.3)

The “*” in the notations Ω∗() is there to indicate that in the lower bounds a
polynomial factor has been neglected. Compare these bounds with Cn−2 =
Θ∗(4n) for the convex n-gon.

The upper bound for tn comes from the “double circle” configuration,
studied in Example 3.3.2. There we also studied the double chain, with
about 8n triangulations, which is close to the lower bound for Tn. The
improved lower bound we give comes from [8]. The lower bound for tn and
the upper bound for Tn were established in [9] and [295], respectively. In
what follows we prove the following slightly worse but easier to establish
bounds:

Ω∗(2n) ≤ tn, Tn ≤ O(59n).

The upper bound for Tn, the full triangulations, implies an upper bound
for the number of all triangulations:

Theorem 3.3.4. There is a constant c such that every point set in the plane
with n points has at most cn triangulations.

Proof. Below we prove that Tn ≤ 59n. That is, every configuration with n
points has at most 59n full triangulations. Since every non-full triangulation
of A with label set J is a full triangulation of some sub-configuration of it,
we conclude that A has less than

∑
B⊆J

59|B| =
n

∑
i=0

(
n
i

)
59i = 60n

triangulations.

In Section 7.2.2 we will show that this is not true in higher dimensions.
For instance, we will construct point sets in dimension four with Ω(cn2

)
triangulations (Theorem 7.2.10).

To conclude let us discuss another exact formula, but this time not on tri-
angulations, but instead for topological triangulations in the plane. A plane
graph is a topological triangulation if all its facets are triangles. Such tri-
angulations are considered to be isomorphic modulo mappings which con-
serve all boundary vertices, adjacency, and triangles. If we assume that the
graph is drawn in the plane with a triangular face as its outer boundary, we
can distinguish two of those graphs to be isomorphic if they are isomorphic
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as graphs. In this case we say the graphs are rooted. The number of non-
isomorphic rooted topological triangulations was determined exactly by W.
Tutte [323].

Theorem 3.3.5 (Tutte’s formula). Denote by T Tn the number of rooted
topological triangulations with n vertices, then

TTn = ψn,0 =
2(4n + 1)!

(3n + 2)!(n + 1)!
∼ 1

16

(
3

2π

)1/2

n−5/2
(

256
27

)n+1

.

The study of topological triangulations and how to compute with them
has been the focus of several papers (see [259] and the references therein).

We emphasize that the triangulations in this book have labeled vertices
which makes isomorphic graphs different. Similarly, the coordinates of the
vertices matter, e.g., it is clearly not the same to have seven points with six
of the points collinear as having all seven points in general position! Thus
two topologically identical triangulations, which are equal as graphs, can
still be different in our context. This is something to keep in mind! Be
careful.

3.3.2 The maximum possible number of triangulations

The first proof that the number of triangulations of a point set in the plane is
2Θ(n) is in [12], which actually bounds the number of non-crossing graphs
that can be embedded in A. Currently the best upper bound known for Tn,
as of 2006, is that of M. Sharir and E. Welzl [295] improving on a result
by F. Santos and R. Seidel [287]. Since the former uses the latter proof as
a starting point, here we will present this one, which is also simpler. The
precise statement that we want to prove is:

Theorem 3.3.6. The number of full triangulations of A is bounded above
by

59v ·7b

(v+b+6
6

) ,

where v and b denote the numbers of interior and boundary points of A, re-
spectively, meaning by this points of A lying in the interior and the bound-
ary of conv(A).

We will assume that A is in general position, i.e., that no three of its
points are collinear. There is no loss of generality; if A is not in general
position, perturb it to a point set A′ in general position without making
boundary points go to the interior. In this case every triangulation of A
is a triangulation of A′ as well. In particular, the maximum number of
triangulations among point configurations in the plane of given cardinality
is achieved by points in general position. The same result is not known in
higher dimension.

Lemma 3.3.7. Let T be a full triangulation of A. For each integer i ≥ 3,
let vi denote the number of interior vertices of degree i in T . For each



3.3. The set of all triangulations of a point set 113

integer j ≥ 2, let b j denote the number of boundary vertices of degree j in
T . Then,

∑
i≥3

(6− i)vi + ∑
j≥2

(4− j)b j = 6.

In particular,

3v3 + 2v4 + v5 + 2b2 + b3 ≥ 6 + ∑
i≥7

vi + ∑
j≥5

b j.

Proof. Let v and b be the numbers of interior and boundary points of A, re-
spectively. Let e and t be the numbers of edges and triangles in T . Count-
ing the edges of T according to their incidences to triangles shows that
3t = 2e− b. Euler’s formula says that t − e + b + v = 1. These two equa-
tions give:

6v + 4b = 6 + 2e.

On the other hand, counting the edges of T according to their incidences
to vertices shows that

2e = ∑
i≥3

ivi + ∑
j≥2

jb j.

Substituting this into the previous equality gives the first claimed equation,
and the second one follows trivially.

Let T be a full triangulation of A and p ∈ A be one of its points. We say
that a triangulation T ′ of A\ {p} is obtained by deleting p in T if all the
triangles of T not incident to p appear in T ′. In the same conditions we
also say that T is obtained by inserting p in T ′. Observe that neither the
deletion nor the insertion of a point in a triangulation is a unique process.

Lemma 3.3.8. Let T ′ be a full triangulation of A\{p}. For each i ∈N, let
hi be the number of triangulations of A in which p has degree i and which
can be obtained by inserting p in T ′.

• If p is an interior point of A, then h3 = 1, h4 ≤ 3, h5 ≤ 9, and h6 ≤ 28.

• If p is a boundary point of A, then h2 ≤ 1, h3 ≤ 1, and h4 ≤ 2.

Proof. A bit of terminology first. For a star-shaped polygon its kernel is
the set of points in its interior from which every point is visible. Let us first
assume that p is interior, and call Δ the unique triangle of T ′ that contains p.
Inserting p with degree i in T ′ is done by first removing i−3 edges of T ′
with the requirement that a star-shaped i-gon with p in its kernel is formed,
and then joining p to all the vertices of this polygon (see Figure 3.19 for
an example of this process). If i = 3 no edge has to be removed and the

p

p

p

Figure 3.19: A triangulation and the two possible

4-gons that can be used to insert point p.

insertion consists simply in joining p to the three vertices of Δ. This proves
h3 = 1. If i = 4, then exactly one of the three edges of Δ has to be removed.
Some or all of the three edges of Δ might produce polygons with p not in
the kernel, hence h4 ≤ 3. If i = 5, then we have to remove either two edges
of Δ (three possibilities) or an edge of Δ and a second edge of the another
triangle incident to the first edge removed (six possibilities). This proves
h5 ≤ 9. A similar case study, which we leave to the reader, shows h6 ≤ 28.
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Suppose now that p is a boundary point. After its insertion in T ′, p will
at least be joined to the vertices of conv(A \ {p}) visible from p. Let bp
be the number of such vertices, so that we must have 2 ≤ bp ≤ i in order
to insert p with degree i. The insertion consists of removing i− bp edges
from T ′, each of them making visible from p a new vertex of the remaining
non-convex triangulated polygon, and then joining p to these i−bp vertices
and the bp original ones. In particular, if i = bp no edge has to be removed
and only one insertion is possible. If i = bp + 1 then one of the bp − 1
edges of T ′ visible from p has to be removed. If i = bp + 2 then either
two of these bp − 1 edges or one of them and one of the other two of the
triangle incident to it have to be removed, which gives

(bp−1
2

)
+ 2(bp − 1)

possibilities. With this, whenever 2 ≤ bp ≤ i ≤ 4 we have h2 ≤ 1, h3 ≤ 1,
and h4 ≤ 2, as desired.

Proof of Theorem 3.3.6. Let Tv′,b′ denote, for every pair of integers v′ ≥ 0
and b′ ≥ 3, the maximum number of triangulations among all point config-
urations with v′ + b′ points and with at most v′ of them interior. We will
prove by induction on v′+b′ that Tv′,b′ ≤ 59v′ ·7b′/

(v′+b′+6
6

)
. The induction

starts with b′ = 3 and v′ = 0, which gives 590 ·73/
(0+3+6

6

)
= 49/12.

Now let A be a point configuration. For each i ≥ 3, let Vi denote the
sum over all triangulations of A of the numbers of interior vertices of de-
gree i. For each j ≥ 2, let B j denote the sum over all triangulations of A
of the numbers of boundary vertices of degree j. Let TA be the number of
triangulations of A. Observe that deleting an interior point from A gives a
point configuration with b boundary points and v−1 interior points, while
deleting a boundary point gives a point configuration with v + b−1 points,
at most v of which are interior.

The number of triangulations of A in which a certain vertex p has degree
i is at most equal to the number of ways of inserting p with degree i in
triangulations of A\{p}. The inequality is in general strict since insertions
from different triangulations of A \ {p} can lead to the same triangulation
of A. Then Lemma 3.3.8 implies that

V3 ≤ vTv−1,b, V4 ≤ 3vTv−1,b,

V5 ≤ 9vTv−1,b, V6 ≤ 28vTv−1,b,

B2 ≤ bTv,b−1, B3 ≤ bTv,b−1 and B4 ≤ 2bTv,b−1.

On the other hand, from Lemma 3.3.7 we have that

6TA + ∑
i≥7

Vi + ∑
j≥5

B j ≤

3V3 + 2V4 +V5 + 2B2 + B3 ≤
18vTv−1,b + 3bTv,b−1.

Adding these inequalities together we get

(6 + v + b)TA = 6TA + ∑
i≥3

Vi + ∑
j≥2

B j ≤ 59vTv−1,b + 7bTv,b−1.



3.3. The set of all triangulations of a point set 115

By inductive hypothesis, Tv−1,b ≤ 59v−1·7b

(v+b+5
6 )

and Tv,b−1 ≤ 59v·7b−1

(v+b+5
6 )

. Hence,

(6 + v + b)TA ≤ (v + b)
59v ·7b

(v+b+5
6

) = (6 + v + b)
59v ·7b

(v+b+6
6

) .

This implies the desired result.

3.3.3 The minimum possible number of triangulations

What is the minimum number of triangulations that every n point configu-
ration must have? Aichholzer et al. [9] proved the following result, which
corroborates the suspicion that there are always exponentially many trian-
gulations:

Theorem 3.3.9. Let tn denote the minimum number of full triangulations
that any set of n points in general position exhibits. Then tn ≥ Θ(2.33n).

As before, instead of proving the best-known bound we present instead
a shorter, less-technical proof of a slightly worse lower bound:

Proposition 3.3.10. Every point set in general position in the plane has at
least

Cb−22v−b+2 = Θ(2bb−3/2)Θ(2v) = Ω(2nn−3/2)

full triangulations, where b and v are the numbers of boundary and interior
points, respectively, n = v + b, and Ck is the k-th Catalan number.

Proof. Let us denote by tb,v the minimum number of triangulations among
all point sets in general position with b boundary and v interior points.

We first prove that t3,v ≥ 2v−1, by induction on v. The cases v ≤ 7 can be
dealt via direct arguments, and are covered by the computational results in
[10]. So, we assume v ≥ 8.

For each interior point p one can form triangulations joining p to the
three boundary vertices and then triangulating the three sub-triangles. The
triangulations obtained in this way for each choice of p are at least

t3,v1t3,v2t3,v3 ≥ 2v1−12v2−12v3−1 = 2v−4,

where v1, v2, and v3 are the numbers of interior points in the three sub-
triangles, and the inequality comes from inductive hypothesis. Since dif-
ferent choices of interior points cannot produce repeated triangulations, we
have t3,v ≥ v2v−4 ≥ 2v−1.

If b > 3, just observe that each triangulation T of the boundary points
can be refined (by the previous case) to at least

2v1−12v2−1 · · ·2vb−2−1 = 2v−b+2

triangulations, where v1, . . . ,vb−2 represent the number of interior points in
the different triangles of T .
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3.3.4 The poset of subdivisions

A B C

D

D

A

B
C

Figure 3.20: Four examples of poset of

subdivisions. The biggest poset, poset D, is

associated to all subdivisions refining eight

triangulations of Example 2.2.5. Two of them were

non-coherent triangulations. The full poset of all

subdivisions will be presented in Chapter 5.

We have seen in Chapter 2 the definition of subdivisions, and of the poset
that they induce via refinements. We will provide now some examples that
aim to explain the extra topological structure we mentioned before. We will
briefly introduce the space of all subdivisions and discuss the first example of
the so called Baues poset. Further theory will be discussed in later chapters.

Now we explain a way to associate to each poset a topological space
which is obtained by pasting simplices together, i.e., a simplicial complex
as in Section 2.6.1. It is called the order complex of a poset. All we have
to explain is what are the maximal simplices. Then all subsets of them will
be lower-dimensional simplices. They consists of the maximal chains of the
poset, namely chains of poset elements x0 < x1 < · · · < xk. If the chain has
length k+1, we associate to it a k-dimensional simplex. For example, a chain
of length three will be a triangle, a chain of length four will be a tetrahedron,
etc. After we do this for every chain we recover a collection of simplices.
Some share vertices precisely when their chains share poset elements. (See
Remark 9.1.17 for a famous question about the order complex.)

As a running example we use the famous point configuration from Ex-
ample 2.2.5.

Example 3.3.11 (A poset of subdivisions). In Figure 3.20 we show all
its triangulations (top layer), all flips, and then we show the posets of



3.3. The set of all triangulations of a point set 117

subdivisions refining four chosen subsets among all triangulations. Sub-
posets (A), (B), (C) in Figure 3.20 have three levels (height three) while
poset (D) has four levels.

Now let us apply the operation that associates the order complex to the
poset, to this example. From the two posets of subdivisions shown in Fig-
ure 3.21 one of the simplicial complexes (right top part of the figure) is
a triangulated pentagon. It is a 2-dimensional simplicial complex because
the poset has three levels. On the other hand, the second bigger poset yields
a triangulated solid cube (right bottom part of figure). We have officially
given a topological-geometric structure to all the subdivisions of a point
configuration.

Figure 3.21: The simplicial complexes

corresponding to two of the posets in Figure 3.20.

We would like to investigate properties of the poset of subdivisions and
their geometric consequences. For example, the height of an element x in a
poset is the maximum length k of a chain x0 < x1 < · · · < xk = x, finishing
in x. The height of the poset itself is the maximum height of its elements.
The refinement poset of regular subdivisions of any configuration with n
elements and dimension d has height exactly n−d −1, since it is the face
poset of a certain polytope of that dimension, as we will see in Chapter 5.
But the poset of all subdivisions can have height larger than that, as the
following example shows.

Example 3.3.12. (Several concentric triangles) Let Ak consist of k + 1
concentric triangles, as in Figure 3.22. The case k = 1 is the “mother of all
examples”, Example 2.2.5, and the key observation is that this configuration
has a sequence of four, instead of three, refinements. In the general case
of k > 1 we can make a sequence consisting of k subsequences of length
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Figure 3.22: The configuration that maximizes

the height of the refinement poset in the plane.

Figure 3.23: The maximal sequence of

refinements.

four, triangulating first the region between the two outermost triangles, then
the next one, and so on. Figure 3.23 shows the complete sequence of eight
refinements for k = 2 (the sequence appears to have length seven, because
the trivial subdivision is not shown).

Example 3.3.13. (Cutting a vertex) Let T be a subdivision of a point con-
figuration A in general position in which all the points of A are used as
vertices. The height of this subdivision is clearly the sum of heights of the
individual convex polygons forming it, and the height of a b-gon is b− 3.
Hence, if the subdivision consists of k faces with b1, . . . ,b f faces each, its
height equals

height(T ) =
k

∑
i=1

(bi −3) =
k

∑
i=1

bi −3k = 2e−b−3k,

where e is the number of edges, and b the number of boundary points. The
equality ∑k

i=1 bi = 2e−b is obtained by double counting.
In particular, if a is an interior vertex of degree three and we cut it by

inserting a small triangle in its place, we increase the height by three (we
add three to e and one to k) by adding two to the number of vertices. Obvi-
ously, if this process is iterated, we get a subdivision with, asymptotically,
height equal to 3/2 the number of interior points. More concretely, if we
start with a subdivision having a single interior point, of degree three, the
starting subdivision has height b− 3, where b is the number of boundary
points (check this). Hence, the final subdivision has height

b−3 +
3(v−1)

2
,

where b and v are its number of boundary and interior points.

The following statement shows that the previous example is best possible.

Theorem 3.3.14. Let A be a point configuration in the plane, with b bound-
ary points and v interior points. If v ≤ 1, then all subdivisions are regular,
and the poset of subdivisions has height b + v− 3. If v ≥ 1, then every
non-trivial subdivision has height bounded above by

b−3 +
⌊

3(v−1)
2

⌋
.

In particular, the poset of all subdivisions has height at most

b−2 +
⌊

3(v−1)
2

⌋
.

Moreover, for every b≥ 3 and v ≤ 0 there is a point configuration for which
the bound is exact.

Proof. To prove the upper bound, let T be a non-trivial subdivision of a
point configuration A. Of course, there is no loss of generality in assuming
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that T uses all the elements of A, although some of them may appear in
the interior of cells. Let k > 1 be the number of 2-dimensional cells. Let
b1, . . . ,bk be their numbers of boundary points and v1, . . . ,vk be their num-
bers of interior points. By inductive hypothesis on the number of interior
points, the height of the i-th cell (considered as a trivial subdivision) is at
most bi + 3vi/2−7/2. Hence, the total height of T is at most

height(T ) ≤
k

∑
i=1

(
bi +

3vi

2
− 7

2

)
=

k

∑
i=1

bi +
3
2

k

∑
i=1

vi − 7
2

k.

The first term ∑k
i=1 bi equals 2e− b, by double counting. Also, by Euler’s

formula, k equals e− nT + 1, where nT is the number of vertices of T
(that is, the number of points of A that are used in T ). On the other hand,
∑k

i=1 vi clearly equals v+b−nT , the number of points not used as vertices.
Hence, the previous inequality gives:

height(T ) ≤ 2e−b +
3
2
(v + b−nT )− 7

2
(e−nT + 1)

=
1
2

b +
3
2

v + 2nT − 3
2

e− 7
2
.

Comparing this with what we want to show, namely that height(T ) ≤ b−
9
2 + 3v/2, we conclude it suffices to establish that

2nT − 3
2

e ≤ b−1

or
3e ≥ 4nT −2b + 1.

This holds, since 2e is the sum of all degrees of vertices, which is at least
equal to 3nT −b (interior vertices have degree at most three, while bound-
ary vertices may have degree two). In particular, e ≥ nT . Hence,

3e = 2e + 2e ≥ (3nT −b)+ nT = 4nT −b > 4nT −2b + 1.

3.4 Flips in triangulations

In the previous chapter we introduced the flip operation between triangula-
tions. Our definition was a bit abstract, and our first goal here is to describe
flips more explicitly, in the 2-dimensional case.

Let us recall our definition of flip: two triangulations are related by a flip
if they are the only two refinements of a polyhedral subdivision that can
only be refined by triangulations. We called such a subdivision an almost-
triangulation and we gave, in Lemma 2.4.5, the following characterization
of “almost-triangulations”: a polyhedral subdivision of a configuration A
that is not a triangulation is an almost-triangulation if and only if all its
cells are either simplices or have corank one (that is, they have two more
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elements than their affine dimension), and all the cells which are not sim-
plices share one and the same circuit.

That is to say, every flip “happens” on a circuit, where a circuit is a
minimal affinely dependent subset of points, and splits in a unique way into
a pair (Z+,Z−) with the property that conv(Z+)∩ conv(Z−) �= /0. In the
plane, there are the following three possibilities, depending on the type of
circuit in question. Remember that the type of a circuit (Z+,Z−) is the pair
(|Z+|, |Z−|):

1. If the circuit is of type (2,2), that is, it consists of the four vertices of
a convex quadrilateral, then the almost triangulation S has a unique
non-simplicial cell, consisting of these four points, because a cell
strictly containing this circuit has corank greater than one. Hence, the
two refinements of S are obtained by inserting one or the other diag-
onal of this quadrilateral. The flip is normally called a diagonal edge
flip, and an example of it is depicted at the top part of Figure 3.24.

2. If the circuit is of type (3,1), that is, it consists of a point a in the in-
terior of the triangle with vertices the other three {b,c,d}, then again
the almost triangulation S has a unique non-simplicial cell, consist-
ing of these four points. Its two refinements are obtained by “for-
getting the interior point a” (which produces a non-full triangulation)
and inserting a as a new vertex incident to the three triangles {a,b,c},
{a,c,d}, and {a,b,d}. The flip is called an insertion-deletion flip be-
cause it inserts or deletes a vertex from the triangulation. Find this
situation in Figure 3.24.

3. If the circuit is of type (2,1), that is, it consists of three collinear
points, then one or two cells of S will contain it, depending whether
the collinearity lies in the boundary or the interior of conv(A). In
any case, the two refinements are obtained by forgetting the central
point of the collinearity, or by inserting it (which removes one or
two triangles of the triangulation and inserts two or four new ones).
The bottom of Figure 3.24 shows this flip in the case of an interior
collinearity.

Figure 3.24: Types of flips in the plane.

Strictly speaking there is a fourth type of flip that can happen, but we
do not need to care much about it. If we consider a configuration A with
a repeated point, the two copies of this point form a (1,1)-circuit. The flip
on this circuit consists merely in changing our mind as to what copy of this
point we want to consider a vertex in our triangulation.

3.4.1 All triangulations of a point set in the plane are connected by
flips

The most natural question to ask about flips is whether any pair of trian-
gulations of a configuration A can be connected to one another by a finite
sequence of flips. One may also wonder about the diameter of the graph of
flips, or its maximum or minimum degree. In this section we discuss these
questions.
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Historically, the connectivity and diameter questions were first answered
in the 1970’s by Lawson [202, 203], who answered them with respect to
the graph of (2,2) flips. We give three proofs of this fact because they have
independent interest:

Theorem 3.4.1. Let the points p1, . . . ,pn be given in an order such that
pi �∈ conv(p1, . . . ,pi−1) for every i, so that the pushing triangulation Tpush

for this ordering is a full triangulation.
Then any other triangulation T of A can be transformed to the pushing

triangulation using at most
(n−2

2

)
flips, all of type (2,2).

Proof. We use induction on n, the number of points in the configuration.
We will show that with at most n−3 flips, all of type (2,2), we can arrive
from our original triangulation T = Tn to one consisting of a triangulation
Tn−1 of A \ {pn} together with pn joined to the part of conv(A \ {pn})
visible from it. This is represented in Figure 3.25. By inductive hypothesis,
with at most

(n−3
2

)
additional flips we can go from Tn−1 to the pushing

triangulation of A \ {pn}, which produces the pushing triangulation of A
with a total of at most

(n−3)+
(

n−3
2

)
=
(

n−2
2

)

flips.

n

n

Figure 3.25: The desired transformation for Ti .

Remember that the star of a vertex p in a triangulation is the region ob-
tained as the union of the triangles incident to it. The fact that our triangu-
lation is full implies that, unless our triangulation is already of the desired
form (that is, one that contains a triangulation of A \ {pn}), the star of pn

includes a flippable edge incident to pn. See Figure 3.26. Clearly, flipping
that edge decreases the area covered by the star of pn. Hence, in a finite
number of steps we must arrive to a triangulation in which the star of pn

cannot be decrease further. Since each such flip also decreases the degree
of pn, the number of steps needed is at most the number of interior edges
incident to pn in the initial triangulation, which cannot exceed n−3.

This finishes the proof.

n

a

Figure 3.26: The link of n and some flippable

inner diagonals.

A second proof of connectivity uses properties of the Delaunay triangula-
tion. Indeed, Proposition 3.2.4 suggests that one can compute the Delaunay
triangulation by first computing any triangulation and then flipping the edges
that are not locally Delaunay until we have no such bad edges left. Will we
always succeed with this process or can it get stuck? For triangulations in
the plane one never gets stuck, as follows from the next “simplex filling”
argument. Later we will see that for 3-dimensional point configurations the
same process sometimes gets stuck in local optima that are not even regular!

Theorem 3.4.2. If a triangulation T of a set of points A in the plane is not
the Delaunay triangulation, then it contains a locally non-Delaunay edge
which admits a diagonal-edge flip.

In particular, every triangulation can be transformed into a Delaunay
triangulation in a sequence of at most

(n
2

)
flips of type (2,2) on locally

non-Delaunay edges.
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Proof. The first assertion is actually a direct consequence of the following
two facts:

• Every non-Delaunay triangulation has an edge which is not locally
Delaunay (Proposition 3.2.4).

• Every edge which is not locally Delaunay is flippable. Indeed, if
the quadrilateral consisting of the two triangles incident to the edge
is not convex, then the Delaunay triangulation of those four points
must contain that edge.

The second assertion comes from looking at flips in the configuration
as lifted to the paraboloid. In the 3-dimensional lifting to a paraboloid we
observed that an edge-flip amounts to gluing a tetrahedron underneath (if
the flip is towards the locally Delaunay edge) or above (otherwise) two
triangles that share a dihedral angle. See Figure 3.27. In particular, if we

Figure 3.27: Doing a flip is the same as gluing

the lower surface of a tetrahedron into the

triangulated surface. When we see the upper

surface of the tetrahedron we see the new

diagonal.

flip only on edges that are not locally Delaunay, we get surfaces which are
always lower and lower (point-wise) so that the process must eventually
terminate. It must terminate in at most

(n
2

)
steps, because the monotonicity

implies that an edge that is removed by a flip in the sequence does not
reappear again. When the sequence terminates we must be in the Delaunay
triangulation, by the first part in the statement. Since the total number of
edges removed cannot exceed

(n
2

)
we get the desired bound.

In the two proofs of connectivity we have looked at so far, we only al-
low for (2,2)-flips and, in particular, strictly speaking we have only proved
connectivity of the graph of full triangulations. Connectivity of these two
non-full triangulations is trivial, since every non-full triangulation can be
connected to a full one by a sequence of (at most n) flips that insert points.
However, if we allow for flips other than (2,2) we can get a much better
bound on the total number of flips needed to go from one triangulation to
another:

Theorem 3.4.3. Let the points p1, . . . ,pn be given in any order in which pn

is an extremal point (i.e., a vertex of the convex hull). Then any triangula-
tion T of A can be transformed to the pulling triangulation of A in at most
2n flips.

Proof. We first consider the subgraph of triangulations in which every tri-
angle is incident to pn. Clearly, the pulling triangulation is one of them.

If A is in general position there is only one such triangulation, that joins
pn to every convex hull edge not containing pn; but if A has collinear triples
in its boundary then there can be more: points in the relative interior of
edges of conv(A) may be used or unused in a specific triangulation. How-
ever, (for the same reason as in the 1-dimensional case), the diameter of the
graph of flips between these triangulations is bounded above by the number
nb of points of A in the boundary of conv(A) (more precisely, the diameter
equals the number of them which are not extremal).

Now let T be an arbitrary triangulation. If T has triangles not incident
to pn, then there is at least a flip that decreases the number of them (proof
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left to the reader). Since the number of triangles in a triangulation with vi

interior vertices and vb boundary ones is exactly 2vi +vb−2 (by Euler’s for-
mula) we can flip from any triangulation to one with every triangle incident
to pn in at most 2vi + vb −3 < 2|A|−nb flips.

Corollary 3.4.4. The graph of triangulations of a point configuration in
the plane with n points has diameter at most 4n.

We close this section with an example that shows that in order to get a
graph of flips of linear diameter, you need to allow for insertion/deletion
flips and, in particular, for non-full triangulations.

Example 3.4.5 (Example 3.3.2 continued). We consider again the double
chain configuration of Section 3.3.2, consisting of two convex non-regular
(n/2)-gons, facing one another in such a way that every edge except one
in the first polygon sees every edge except one in the second polygon (see
Figure 3.17 again). As we saw before, in order to obtain a full triangulation
of this configuration we must triangulate both the two convex (n/2)-gons
and the non-convex n-gon formed between them. In particular, the diameter
of the graph of (2,2)-flips of the whole configuration is at least as large as
the diameter of the graph of (2,2)-flips in triangulations of this non-convex
polygon.

Now, it is easy to set up a bijection between triangulations of this non-
convex n-gon and bit sequences of length n− 2: For a given triangulation,
we read its triangles from left to right and use a 0 for triangles with two
vertices in the bottom chain and a 1 for triangles with two vertices in the
top chain. A (2,2)-flip amounts to changing a subsequence 01 to 10 or
vice versa. This bijection proves our previous assertion that the number of
triangulations of this polygon equals

( n−2
n/2−1

)
. But what interests us now is

that it also gives a quadratic lower bound to the diameter of the graph of
flips. Indeed, if to each bit sequence we associate the sum of the positions
where the 1’s lie, we get that the bit sequence 1111 . . .0000 gets weight
about n2/8 while the sequence 0000 . . .1111 gets about 3n2/8. Since each
flip changes the weight by exactly one unit, we need about n2/4 flips to go
from the first triangulation in Figure 3.28 to the second one, or vice versa.

Figure 3.28: The flip distance from one

triangulation to another is quadratic.

3.4.2 Effective enumeration of triangulations

There is also the practical problem of computing exactly the number of
distinct triangulations for concrete instances of point configurations. A way
to list all triangulations is via a depth-first search or breadth-first search
traversal of the graph of flips. By the connectivity results we have just
seen, we are guaranteed to visit all triangulations. The trouble with this
approach is that we may need a large amount of storage during these search
traversals (saving all triangulations that have been visited). But there is a
memory-efficient method of listing all triangulations of a point set in the
plane: the reverse search enumeration of Avis and Fukuda [23, 24].

Reverse-search is in fact a very general method of listing all vertices of
some directed graphs, under certain special assumptions. The amount of
memory used for book-keeping is very small and it is independent of the
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size of the graph. The actual visit to the nodes is done in a depth-first search
order and the running time of the reverse-search enumeration is polynomial
on the number of triangulations. Thus the algorithm has a good output-
sensitive complexity. For brevity we will not present reverse-search in full
generality here, but only outline it for the graph of triangulations of point
configurations in the plane. We assume the reader is familiar with depth-
first search enumeration in graphs as in any introductory computer science
course.

The main point of the algorithm is that, for point configurations in gen-
eral position and with no co-circular points, the graph of flips can be ori-
ented in such a way that it becomes an acyclic graph with a unique sink, the
sink being at the Delaunay triangulation (which is unique under the non-
cocircularity assumption). From any other triangulation we can reverse
back to a parent triangulation by an oriented flip.

For each triangulation we have an adjacency oracle that tells us its flip
neighbors. We can also define a successor oracle that given a triangulation
T assigns a unique successor. This should be another triangulation, closer
to becoming a Delaunay triangulation. We saw that a triangulation is the
Delaunay triangulation if each edge is locally Delaunay. Order all possible
edges of the point configuration in some way, for instance lexicographically.
From a triangulation T its successor is T ′ if T ′ is obtained from T by
flipping the first (in our ordering) flippable edge which is not locally De-
launay (see Figure 3.29). Note that such successor T ′ exists unless T is
already the Delaunay triangulation. In Figure 3.30 all triangulations of a
generic hexagon with their successors are shown.
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Figure 3.29: Finding a successor. First edge is

locally Delaunay, second edge is not and the flip

gives a new triangulation closer to being

Delaunay.

Now to generate all triangulations, start at the Delaunay triangulation,
make it the root of the depth-first search (DFS) tree and the first parent
node. Traverse the graph in the usual depth-first manner. Normally a depth-
first search relies on a memory stack data structure to walk up and down the
tree, but now this is no longer necessary. Walking up toward the root is done
by following the successor function. For the current parent triangulation T
all its candidate children can be generated via flips in the order induced by
the ordering of edges (i.e., we first try to flip edge 1, if it fails try to flip
edge 2, etc). But we only accept T ′ as a legitimate child of the DFS tree if
the successor of T ′ is T .

No data structure is needed to mark or remember visited triangulations
anymore. This can be deduced from the acyclic order defined in the set
of triangulations and from two memory variables, one that marks the cur-
rent parent and its immediate predecessor in the depth-first search transver-
sal. Now we illustrate the algorithm with a simple example. The generic
hexagonal point configuration has coordinates, given in the order we la-
beled the points, (4,2), (5,−1), (0,−3), (4,−2), (5,2), (0,3). The reader
can use these coordinates to compute the circumcircles of triangles and de-
cide whether particular edges are locally Delaunay or not.

On top of Figure 3.30 we show its Delaunay triangulation and a labeling
of the vertices. We use the labeling of the vertices to set a lexicographic
order on the edges (i.e., edge {1,2} comes before {1,3}, etc). In order for
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the reader to find a successor it is necessary to draw the many circumcircles
of triangles and decide which edges are locally Delaunay. In Figure 3.29
we show the sequence of circle checks that find the smallest edge ({1,4})
to be flipped.

(C2)

1
6

3

2

5

4

(C1)

(P)

(*)

Figure 3.30: The DFS tree generated by reverse

search.

Let us follow a few steps of the algorithm using the example of Figure
3.30. Suppose the search arrives at node (∗). The adjacency oracle tells
us all three adjacent triangulations. The successor function applied to these
three neighbors checks that there are two legal children for the DFS tree,
labeled (C1),(C2). The parent (P) of (∗) is found by the successor function.
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How to decide whether to move forward to (C1) or backtrack to (P)? For
this, recall that we keep a variable that marks the immediate predecessor
of (∗). If the predecessor is (P) then the search is on the way down and
moves to (C1). On the other hand if the predecessor is (C1) then it is on
the way up and backtracks to (∗). If the predecessor is (∗) then it has to
visit its next child (C2) and if the predecessor is (C2) we have visited all
children of (∗) so that branch has been completely traversed. Finally, if the
predecessor marker is null we are at the Delaunay triangulation.

A more recent alternative approach for enumeration, that does not use
flips, was proposed by O. Aichholzer [2]. He introduced the so called t-path
(or “triangulation path”) method which yields a fast divide-and-conquer
enumeration scheme to enumerate all triangulations of a point configura-
tion. To explain the algorithm it is necessary to consider triangulations of
non-convex objects, but still related to a point configuration A. Given a
region R of R

2 we say it is A-triangulable if R has a triangulation whose
vertices are a subset of A. More precisely, there is a simplicial complex
with vertices contained in A with a geometric realization equal to R. The
most useful example of A-triangulable sets are A-polygons, namely a non-
convex simple polygon whose vertices are contained in the configuration
A. For example see Figures 3.31 and 3.32. The point configuration A isFigure 3.31: An A-polygon.

marked by black dots, and a triangulation of the polygon is shown. Ob-
serve that any A-polygon is contained inside the convex hull of A. Thus
all triangulations of an A-polygon appear in at least one triangulation of
A since any A-polygon triangulation can be completed to a triangulation
of A.

Definition 3.4.6. Consider a point configuration in the plane A and an A-
polygon R. Let T be a triangulation of R and l a line that intersects T
properly, meaning it cuts through the interior of edges.

We define the path of T along l, and denote it pathl(T ), as the unique
chain of edges from the triangulation T , such that

(a) l properly intersects all edges in the chain,

(b) The chain starts and ends at two boundary edges of R such that the
segment of l between the two intersection points lies in the interior of
R,

(c) alternating vertices on the chain lie in opposite sides of l, and

(d) the area bounded by the chain and l has no other points of the configu-
ration.

See Figure 3.32 for an example.

R

l

Figure 3.32: A path.

The main property of paths is that they allow us to “identify” all trian-
gulations by their paths coming from line l and thus we can apply a divide-
and-conquer enumeration strategy. See Theorems 1 and 3 of [2]:

Lemma 3.4.7. (a) Given a point configuration in the plane A, a triangu-
lation T of an A-polygon R, and a line l that intersects properly T ,
there always exists a path pathl(T ).
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(b) Given a point configuration in the plane A, triangulations T1,T2 of an
A-polygon R, and a line l that intersects properly T1, any two paths
pathl(T1) and pathl(T2) with same start and end edges are either iden-
tical or properly intersect each other.

Proof. We can assume that l is a vertical line, otherwise a rotation can be
applied. To construct a path, we proceed inductively, starting with the top
boundary edge e1 where l first enters the interior of R. Let T1 be the triangle
containing e1 and let e2 be the other edge of T1 crossed by l. Let the vertices
of T1 be called p0, p1 and p2 in such a way that e1 = p0p1 and e2 = p0p2.

In the general inductive step, assume that we have already constructed a
path e1 = p0p1,e2 = p1p2, . . . ,ei = pi−1pi in the desired conditions. If ei is
a bottom boundary edge of R we have finished, otherwise let us show how
to continue the process.

Let p′ be the third vertex of the triangle in T based on ei and below it.
Either p′ lies on the opposite side of l from pi, in which case we can continue
the path with ei+1 = pip′, or p′ is in the same side as pi in which case we
abandon the last edge ei = pi−1pi of our provisional path and make pi−1p′
be the new i-th edge. This does not increase the number of edges of the
path, but it makes the path reach lower along l as before, so that the process
eventually terminates, once we hit the boundary of R again to exit (the edge
by construction has its extremes in opposite sides; See Figure 3.33).
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Figure 3.33: The process of constructing a path.

To prove the second part of the lemma we proceed by contradiction.
Assume we have two different paths pathl(T1) and pathl(T2) which do
not properly intersect. Thus if they do not have common vertices then path
pathl(T1) lies entirely to the left of pathl(T2). But since pathl(T2) is a
path, no edge of pathl(T1) can intersect l. This is a contradiction. Next,
suppose the two paths have indeed a common vertex p, but the successor
of p is different in each of the paths, say p′,p′ , as we show in Figure 3.34.
The main point is that now the point p′ cannot be placed anywhere without

p

l

p’’

q

p’

Figure 3.34: The uniqueness of the path.

violating part (d) of the definition or forcing a proper intersection between
the two paths.

We can use Lemma 3.4.7 to count all triangulations recursively. First,
separate the point set A in two parts by a line l. Compute all possible
paths associated to l, for each such path we recover several A-polygons in
which the triangulations can be counted separately, and the product of the
numbers of triangulations of these subproblems gives the triangulations that
have that concrete path. The total number of triangulations of A is given by
the sum of the numbers obtained for all paths, since different paths of A and
l cannot be present in the same triangulation and since any triangulation of
A contains exactly one path for l.

Experimental evidence shows that the algorithm runs in time sub-linear
in the number of triangulations being counted. Nevertheless a detailed
worst-case complexity analysis has not yet being derived. However, this
highlights the difference between enumerating and counting. The reverse
search method needs to enumerate all the triangulations (that is, to list them
one by one) and hence its running time is at least proportional to the number
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of triangulations. The path method can, in principle, count triangulations
(that is, compute their exact number) without listing them all.

Another counting algorithm has recently been proposed in [270]. Unfor-
tunately, neither of these methods works without first doing major modifi-
cations in dimension three or higher.

3.4.3 Further properties of the graph of flips

We have seen that the graph of triangulations of a point set in the plane is
connected, but how connected is it? What is the diameter of the graph of
flips? In this section we will look at the diameter, number of neighbors and
other properties of the graph of flips.

In the connected graph of flips, given two triangulations, it is natural to
ask what is the smallest number of flips needed to go from one triangula-
tion to the other? We begin with the following theorem due to S. Hanke,
T. Ottmann, and S. Schuierer [155].

Theorem 3.4.8. Let T1 and T2 be two full triangulations (i.e., using all
the vertices) of a point configuration with n points in general position. Let
cr(T1,T2) be the number of crossings between edges of T1 and T2, then

1. cr(T1,T2) ≤ (3n−2nb−3)2,

2. T1 can be transformed into T2 in at most cr(T1,T2) flips of type
(2,2).

Proof. In what follows we call maximal edges of T1 those with the maxi-
mum number of crossings with T2. We claim first that all maximal edges
are flippable. For the justification of this claim we refer to Figure 3.35.

b

e d

c a

ac

f

d

b

Figure 3.35: All maximal edges are flippable.

Suppose ac is a maximal but non-flippable edge of T1. This means that
one of the vertices, say a, is a reflex point of the quadrilateral abcd (see
Figure 3.35). Consider the edge ef of T2 that crosses ac and is closest
possible to vertex a. This edge either crosses cd or cb or both (otherwise
T1 or T2 are not full triangulations). Observe that aef must be a triangle
in T2 because otherwise there would be an edge crossing ac and closer to
a. Say ef crosses cd (the other cases are similar), then note that every edge
crossing ac crosses cd because there are no other vertices inside the region
bounded by acd. In particular, ae crosses cd as well, but this means that
cd has at least one more edge crossing cd than ac, which is a contradiction
to the assumption that ac was maximal. Now we know for sure that every
maximal edge is the diagonal of a convex quadrilateral abcd as in the lower
part of Figure 3.35.

Next we claim there is some maximal edge whose flipping reduces the
number of crossings. More precisely, if T2 has an edge which crosses the
sides of the quadrilateral abcd (present in T1) and of which at least one of
its two vertices is a,b,c, or d, then flipping ac in T1 decreases the number
cr(T1,T2). See Figure 3.36. If the edge in question is actually bd the claim

d

c

b
e

a

Figure 3.36: all maximal edges are flippable.

is obvious. If the edge ce crosses ab, then, once more, all edges that cross
ac must cross ab, but this contradicts the maximality of ac since ce crosses
ab as well. By symmetry, the same happens when the crossing edge is
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ae. The final possibility is that the crossing edge is either be or de Then all
the edges of T2 crossing bd and edge be, cross ad. This means bd crosses
less edges of T2 than ad and, by maximality of ac, less edges of T2 then
ac. This proves the second claim.

The proof of the theorem will now use the two claims above and proceed
by contradiction. If the theorem is not true no maximal edge can satisfy the
conditions of the second claim (i.e., there is an edge intersecting the sides
of abcd with one vertex being a,b,c,d). The four corners of a,b,c,d are
vertices of some triangles of T2, which “cut through” those corners. We

a

c

b

a

d
b

c

d
Figure 3.37: Edges of T2 cutting through abcd

appear in dotted lines.

call north and south the edges cutting db and east and west those edges
cutting ac. Moreover there has to be one or more edges of T2 that connect
the vertices corner cutting edges (see Figure 3.37).

Now let us make a count of the edges of T2 intersecting elements of
abcd. We abbreviate D,N,S,E,W the number of diagonal, north, south, etc.
edges in T2 intersecting the sides of abcd. Thus cr(ac,T2) = W + D+ E ,
cr(ab,T2) = N + D+ E , cr(cd,T2) = W + D+ S, cr(bd,T2) = N + D+ S.
By the maximality of ac we have thatW ≥ N, E ≥ S. Since we are assuming
that flipping ac does not decrease the number of crossings N + S ≥W + E .
These two facts together imply that W = N,E = S. This implies that ab and
bc are also maximal edges. This means that every maximal edge is part of
a “zig-zag” of 3 maximal edges (see Figure 3.38). Since the path cannot

a

b

c

d

Figure 3.38: The darker edges mark a zig-zag

path of maximal edges in T1.

continue forever and cannot end at a boundary edge (no edges of T2 cross a
boundary edge of T1, they are shared) then the only possibility is that a cycle
appears. This leads to a contradiction because for a cycle to exist it has a
reflex vertex. But this reflex vertex is used by two consecutive quadrilaterals
of the path. Thus the “cutting through” edges of T2 for these quadrilaterals
intersect improperly. This is the desired contradiction.

Finally, since 3n−2nb−3 is the number of interior edges of both T1 and
T2, it is clear that the number of intersections cr(T1,T2) is no more than
(3n−2nb−3)2.

Here is another nice property of the graph of triangulations of a point set
in the plane:

Theorem 3.4.9. Every triangulation of an n point configuration in the
plane has at least n−3 geometric bistellar flips. In other words, the graph
of triangulations of a point set in the plane with n points has minimum
degree n−3.

Proof. Let T be a triangulation of an n point configuration A in R
2. If there

is a flip that inserts a point p, then T can be considered as a triangulation
of A \ {p} and induction on n shows that it has at least other n− 4 flips.
Hence we assume that the triangulation uses all the points of A.

We say that an edge of T is flippable if it is interior (not contained in
the boundary of A) and the two triangles incident to it form either a strictly
convex quadrilateral or a quadrilateral with two consecutive edges whose
union is a straight line segment contained in the boundary of the convex hull
of A. In the first case there is a flip of type (2,2) which removes the flippable
edge and inserts the other diagonal of the quadrilateral, and in the second
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case there is a flip of type (2,1) which removes the interior edge and joins
the two consecutive collinear edges into one (corresponding to the lowest
part of Figure 3.24).

Let eb be the number of boundary edges (note that eb also equals the
number of boundary points of A). Denote by ei the number of interior
edges and by f the number of triangles. Euler’s formula for the disk gives
n−ei−eb + f = 1 and a counting argument shows that 3 f = 2ei +eb. With
these two equalities we obtain:

ei = 3n−3−2eb.

For an interior non-flippable edge e, the union of the two triangles shar-
ing e is a quadrangle with a concave or flat vertex which we will call the
vertex associated to e. If a vertex p is associated to four interior edges, then
the four edges form two pairs of collinear edges with p as a common end
and there are two flips of type (2,1) which make p disappear. If p is asso-
ciated to three interior edges, then the star of p looks like either the center
or lower parts of Figure 3.24, and there is one flip (of types (3,1) or (2,1))
which makes the point p disappear.

Hence, the number of interior non-flippable edges is no greater than
twice the number of interior points plus the number of flips which make
a point disappear. In other words, the total number ei of interior edges is
no greater than the total number of flips plus twice the number n− eb of
interior points. Thus the number of flips is at least ei − 2(n− eb) = n− 3,
as desired.

Remark 3.4.10 (Variations on the theme of flips). Planar flips are very nat-
ural operations. As we saw they may have important algorithmic conse-
quences too (e.g., enumeration). It is perhaps not surprising that there
are similar definitions that have been studied in the computational geom-
etry and graph theory literature. Because triangulations are examples of
graphs (linearly embedded planar graphs), one can think of a flip for ab-
stract graphs as an operation that deletes one edge and adds another one,
with the condition that the new graph is still within “the same class” as the
original graph. Some classes for which flips are studied belong to topolog-
ical graph theory, e.g., maximal planar graphs or graphs embeddable in a
certain surface, etc (see e.g., [195, 239, 328]). One can ask for more geomet-
ric examples (i.e., coordinates matter), such as triangulations of polygons,
flips on pseudo-triangulations, etc. The literature on the topic is abundant,
but here we would like to discuss a few results about some variations related
to the flips defined here.

The most popular case, which we have actually already studied, is when
one restricts attention to the graph of (2,2)-flips among full-triangulations
of a point set. But we can also change the setting and study triangulations of,
for example, a simple non-convex n-gon. In this case all we have said so far
remains essentially true: the diameter of the graph of flips has a quadratic
upper bound, and some polygons (see the double chain in Example 3.4.5)
actually have a flip-graph with quadratic diameter. But one can give more
precise statements, such as the following one from Hurtado et al. [172].
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Theorem 3.4.11. The graph of edge-flips among triangulations of a non-
convex n-gon has diameter bounded above by O(n + k2), where k is the
number of reflex vertices.

This is in contrast to the case of convex n-gons where, as we saw in Chap-
ter 1, the hyperbolic geometric arguments of Sleator et al. [300] demon-
strated that the diameter is linear.

An extended flip notion, introduced by Galtier et al. [132], is that of
simultaneous flips. A simultaneous flip (sometimes called parallel flip) is
a set of edges that can be flipped simultaneously without interfering with
each other (see Figure 3.39 for a simultaneous flip with seven edges).

Figure 3.39: A simultaneous flip on the marked

edges.

Galtier et al. proved that Ω(n) flips are sometimes necessary to move
from one triangulation to another and O(n) simultaneous flips suffice. An-
other of their results is that (n− 4)/6 edges can always be simultaneously
flipped but there are triangulations where at most (n−4)/5 can be flipped
simultaneously. One can see that there are at least (n− 4)/2 simple edge-
flips of full triangulations, about a third of those can be argued to be disjoint
from each other and thus can be flipped simultaneously. For a convex n-gon
we have seen the flip distance is linear in n. In contrast, Galtier et al. have
proved that O(log(n)) simultaneous flips suffice to go from one triangula-
tion the other.

3.5 Pseudo-triangulations

Another generalization of triangulations in the plane and their flips comes
from pseudo-triangulations. These objects were first introduced in the con-
text of visibility (see [257, 256]). They also appeared under the name of
geodesic triangulations [78] as a data structure suitable for ray shooting in
non-convex polygons. Later they have found applications as kinetic data
structures for detecting collisions between a set of polygons that are not
only moving but whose shapes can also change continuously with time [1],
and as a tool to solve the Carpenter’s Rule Problem [310], among other
topics. See [276] for more details.

Figure 3.40: One pseudo-triangle.

So, what exactly is a pseudo-triangulation? Let A be a finite point set in
the Euclidean plane, which we assume is in general position. A pseudo-
triangle in the plane is a simple polygon with exactly three convex an-
gles. For the computer graphics applications, a pseudo-triangle is a shape
sufficiently flexible to allow extensive deformation, yet structured enough
to make detection of self-collisions easy! See Figure 3.40. A pseudo-
triangulation of A is a geometric (i.e., with straight edges), non-crossing
graph with vertex set A, containing the convex hull edges of A and in which
every bounded region is a pseudo-triangle. See Figure 3.41 for an example.
A vertex v in a geometric graph G is called pointed if all the edges of G lie

Figure 3.41: Three pseudo-triangulations of a

point configuration with six points.
in a half-plane supported at v or, equivalently, if one of the angles incident
to v is greater than 180◦. A pseudo-triangulation is called pointed if all
its vertices are pointed. Here is one numerical result that is helpful for a
reader to practice some of the definitions above and which is used to prove
properties of pseudo-triangulations:
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Figure 3.42: An example of a pointed

pseudo-triangulation.

Lemma 3.5.1. Let G be a non-crossing straight-line embedding of a con-
nected graph in the plane. Let e, x and y denote the numbers of edges,
non-pointed vertices and pointed vertices in G. Then e ≤ 3x + 2y−3, with
equality if and only if the embedding is a pseudo-triangulation.

Proof. Let f be the number of bounded faces of the embedding. By Euler’s
formula, x + y + f = e + 1. We now double-count the number of “big” and
“small” angles in the embedding (that is, angles bigger and smaller than 180
degrees, respectively). The total number of angles equals 2e. The number
of big angles equals y, and the number of small angles is at least 3 f (every
bounded face has at least three corners) with equality if and only if the
embedding is a pseudo-triangulation. These equations give the statement.

Just as in the case of triangulations, one can define flips between pseudo-
triangulations. In fact, pseudo-triangulations are even nicer than triangula-
tions in this respect: every interior edge in a pseudo-triangulation can be
flipped, if flips are defined appropriately, and there is a polytope whose ver-
tices are all the pseudo-triangulations of a point set and whose edges are
the flips between them [7, 275, 247].

Some of the nice properties of pseudo-triangulations come from their
beautiful relation to rigidity theory. Rigidity theory is the study of when
structures made of linkages and bars are rigid. For example a graph is
generically rigid in the plane, if any “random” embedded bar and joint
framework corresponding to the graph has only trivial motions (e.g., trans-
lations). Generic rigidity is a property of the graph, and not of any particu-
lar embedding. It turns out that edge-minimal generically rigid graphs on a
given number n of vertices are characterized by the so called Laman’s Con-
dition: they have exactly 2n−3 edges and every subset of k vertices spans
a subgraph with at most 2k−3 edges. Generically rigid graphs with 2n−3
edges are also known as Laman graphs. The connection between rigidity
and pseudo-triangulations was first pointed out by I. Streinu [310], who
proved that the graphs of pointed pseudo-triangulations are Laman graphs.
Later D. Orden et al. [248] proved the following very general characteriza-
tion of generically rigid graphs. A plane graph is a graph drawn without
crossings in the plane.

Theorem 3.5.2. For a plane graph G, the following conditions are equiva-
lent:

1. G is generically rigid.

2. G can be stretched to become a pseudo-triangulation of a point set,
with changing its topological embedding.

The same is true if edge-minimal generically rigid is put in part 1 and
pointed pseudo-triangulation is put in part 2.
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3.6 Life in three dimensions

In this section we take a quick look at what happens when we move up just
one dimension. The conclusion is that most of the very simple proofs and
nice results that we have for the plane do not apply anymore.

Many of the differences come from the following: Every non-convex
polygon in the plane can be triangulated without extra vertices (see Ex-
ercise 3.13). In contrast, in dimension three (or higher), there are non-
triangulable non-convex polytopes. The following example is not the first
one in the literature (see [208]), but arguably the nicest one with the largest
impact.

Example 3.6.1 (Schönhardt’s polyhedron (see [290])). Let A consist of the
following six points, where ε is a small positive number (any ε ∈ (0,1/2)
would work for this example):

A =

⎛

⎜
⎜
⎝

p1 p2 p3 q1 q2 q3

1− ε 0 ε 1 0 0
ε 1− ε 0 0 1 0
0 ε 1− ε 0 0 1
0 0 0 1 1 1

⎞

⎟
⎟
⎠,

When ε tends to zero, the six points in A tend to a triangular prism with
facets

{q1,q2,p1,p2}, {q2,q3,p2,p3}, {q3,q1,p3,p1},
{q1,q2,q3}, {p1,p2,p3}.

When ε is positive (and small), the bottom triangular face of the prism
is rotated (and, in our choice of coordinates, slightly rotated) so that the
three former quadrilateral facets of conv(A) break into two triangles each,
via the insertion of the diagonal {qi+1pi} (where i ∈ {1,2,3} and i + 1 is
considered modulo three). The Schönhardt polyhedron is the non-convex
3-polytope formed by inserting the opposite diagonals. That is, the polyhe-
dron’s boundary consists of the following eight triangles. See Figure 3.43:

{q1,p1,p2}, {q1,q2,p2}, {q2,p2,p3}, {q2,q3,p3},
{q3,p3,p1}, {q3,q1,p1}, {q1,q2,q3}, {p1,p2,p3}.

We leave it to the reader (Exercise 3.16) to check that:
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Figure 3.43: Schönhardt’s non-triangulable

polyhedron (bottom), constructed from a

triangular prism (top).

Lemma 3.6.2 ([290]). There is no tetrahedron contained in the Schönhardt
polyhedron with vertices in A. In particular, the polyhedron cannot be
triangulated without extra vertices.

As another consequence, suppose that you want to triangulate the point
configuration and you start throwing in tetrahedra one by one, checking
at every step that the new one intersects properly with the previous ones.
In dimension two this process always terminates in a triangulation, but in
dimension three it does not:

Lemma 3.6.3. The three tetrahedra {q1,q2,p1,p2}, {q1,q3,p1,p3} and
{q2,q3,p3,p3} intersect properly, but no triangulation of A contains the
three of them.
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Proof. The tetrahedra intersect properly because the intersection of two of
them is a common edge (think of these three tetrahedra as lying in the three
facets of the original prism, except these facets are slightly “inflated”. They
do not belong to any triangulation of A because the part of conv(A) not
covered by them is precisely Schönhardt’s polyhedron.

Schönhardt’s polyhedron is a very classical and important example in
polytope theory, that we will encounter several times in this book. It is
crucial, for example, in the results of Section 8.6 (computing minimum size
triangulations is NP-hard, in particular the construction of Theorem 8.6.9)
and also in the following related result (Note: if you are not familiar with
NP-hardness, do not worry, basic complexity notions will be reviewed in
Chapter 8):

Theorem 3.6.4 (Ruppert and Seidel [277]). It is NP-complete to decide
whether a 3-dimensional non-convex polytope can be triangulated without
extra vertices.

A natural generalization of Schönhardt’s polyhedron is the non-convex
twisted prism over an n-gon. It was conjectured by most people in the area
that this polyhedron has no triangulation without new vertices either. In
[266] this was finally proved for the case of sufficiently small twists; for
twists that are too large, all of a sudden triangulations emerge. The main
tool to understand this is the Cayley trick, presented in Section 9.2.

3.6.1 The number of tetrahedra

The other fundamental difference between dimension two and higher di-
mensions is that in dimension two the number of triangles in all the full
triangulations of a point set A is constant. The same is not true in dimen-
sion three, even for a point configuration in convex position! In other words,
full triangulations of three-dimensional configurations have different sizes.
The best known example of this behavior is the 3-cube, which we already
encountered in Chapter 1, in particular, Figure 1.33:

Example 3.6.5 (Triangulations of the 3-cube). Let I3 denote the vertex set
of the 3-cube. That is, the following point configuration:

⎛

⎜
⎜
⎝

0 1 2 3 4 5 6 7

0 0 0 0 1 1 1 1
0 0 1 1 0 0 1 1
0 1 0 1 0 1 0 1
1 1 1 1 1 1 1 1

⎞

⎟
⎟
⎠

One easy way to classify the triangulations of the cube is by looking at
what simplex contains the barycenter in its relative interior. A little thought
will convince the reader that there are only two possibilities:

• An edge joining two opposite vertices of the cube (a “diagonal of the
cube”), or

• A regular tetrahedron, either {0356} or {1247}.
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As we will show in more detail in Section 6.3, these two possibilities pro-
duce, respectively, triangulations of the 3-cube with six or with five tetra-
hedra. In the first case there are five possibilities, modulo the symmetries
of the cube. In the second case there is only one. See a picture of each
symmetry class in Figure 1.33 of Chapter 1.

If we look at bigger examples, the differences in sizes among various
triangulations is more drastic. Essentially, every point configuration has
triangulations with a linear number of tetrahedra, and some point configu-
rations have even triangulations with quadratically many tetrahedra. Let us
look at these two properties in more detail.

Lemma 3.6.6. Let A be a 3-dimensional point configuration. Then there
is a triangulation of A with no more than 2v−7 tetrahedra, where v is the
number of vertices of conv(A).

If A is in general position, there is a full triangulation with at most 3n−
7− v tetrahedra, where n is the total number of elements in A.

Proof. Consider any triangulation T0 of the boundary of conv(A) using only
its v vertices. By Euler’s formula (2 + e = v + t) plus the double counting
formula (2e = 3t), T0 has exactly e = 3v−6 edges and t = 2v−4 triangles.

Now, let p be any vertex of T0 and let δ ≥ 3 be the degree of p in T0.
Consider the triangulation T of A obtained by joining p to each triangle of
T0 not incident to p. This triangulation has exactly 2v−4− δ ≤ 2v−7 ≤
2n−7 tetrahedra.

Also, if A is in general position we can add one by one the n− v interior
points by subdividing an old tetrahedra into four new ones, thus adding 3
to the total number of tetrahedra. We thus get a full triangulation of A with
2v−4− δ + 3(n− v)≤ 3n−7− v tetrahedra.

Remark 3.6.7. Observe that:

• Some point configurations have triangulations with much less than
2v− 7 tetrahedra. In fact, by Theorem 2.6.1, full triangulations in
three dimensions can have as few as v−3 tetrahedra. Algorithmically,
it is an NP-complete problem to decide where, between v− 3 and
2v−7, the exact minimum number of tetrahedra in triangulations of
an input 3-dimensional polytope with v vertices lies (see Section 8.6).

• Interior points can be inserted in any triangulation, even if the con-
figuration is not in general position. But in non-general position the
insertion can add more than three to the number of tetrahedra. Indeed,
if we add a point lying in the relative interior of an edge surrounded
by k tetrahedra, these k tetrahedra become 2k. This is an example of
a (1,2)-flip. An important consequence is that, in three or more di-
mensions, flips cannot be considered “constant time operations” for
algorithmic purposes, unless we restrict ourselves to point sets in gen-
eral position.

The formula 2v−7 can be straightened a little bit. What the proof actu-
ally gives is 2v− 4− δ , where δ is the degree of the chosen vertex p. To
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lower the number of tetrahedra we should take a vertex of maximum de-
gree. Since every triangulation of the sphere with more than 12 vertices has
a vertex of degree at least six (this follows from the formula e = 3v−6 that
we have used in the previous proof), we conclude that:

Corollary 3.6.8. Every 3-dimensional polytope with n ≥ 13 vertices has a
triangulation with at most 2n−10 tetrahedra.

It is no coincidence that the number 2n−10 in this statement equals the
diameter of the (n−3)-dimensional associahedron. In fact, the proof of the
formula for the diameter of the associahedron would follow easily from the
following conjecture (Exercise 3.15):

Conjecture 3.6.9. For every n ≥ 13 there is a 3-dimensional polytope with
n vertices and the following properties:

1. It has no (combinatorial) triangulation with less than 2n− 10 tetra-
hedra.

2. Its graph has a Hamiltonian cycle.

We now look at triangulations with quadratically many tetrahedra. In a
sense, they have been already mentioned in Section 2.6. Indeed, there we
mentioned cyclic polytopes, and said that the cyclic polytope of dimension
four with n vertices has O(n2) facets. Taking a Schlegel diagram of a cyclic
4-polytope (see [339] for this concept) produces a triangulation in R

3 with
exactly the same number of tetrahedra, minus one. But let us see here a
direct way of constructing them.

Example 3.6.10 (Cyclic 3-polytopes have neighborly triangulations). We
start with the vertices of a convex n-gon in the plane, a configuration that
we denote Cn. Let its vertices be denoted p1,pn, in cyclic order. We are
now going to consider a lift of this configuration, meaning by this the same
as what we meant in the definition of regular triangulations. That is, let
ω : {1, . . . ,n}→ R be a height function and consider, for each point pi, the
lifted point p̃i = (pi,ω(i)) ∈ R

3.
But we pose a condition to ω : that ω(1) > 0 and each ω(i + 1) is suf-

ficiently higher than the previous ones. What we exactly need is that p̃i+1

sees the whole upper envelope of the polytope conv({p̃1, p̃2, . . . , p̃i+1}).
We now consider the placing triangulation of the lifted point set Aω for

the given order. The first four points give us one tetrahedron and each
subsequent point p̃i+1 we place introduces i−2 tetrahedra. Hence, in total
we have

1 + 2 + · · ·+(n−3) =
(

n−2
2

)

tetrahedra in the triangulation.
Another interesting property is that this triangulation is neighborly, that

is, its graph is a complete graph on the n vertices, hence with
(n

2

)
edges.

Let us finish this section with an important, for us, remark: the fact that
triangulations in R

3 do not have a constant number of tetrahedra is closely
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related to the notion of flip. In dimension two, the only flips that do not
make vertices appear or disappear are those of type (2,2) and, as their
name suggests, they leave the number of triangles invariant (two are re-
moved, two are inserted). In dimension three, however, we have flips of
type (2,3), which remove two tetrahedra and insert three, or vice versa, as
in Figure 3.44. These flips increase or decrease the number of tetrahedra.

Figure 3.44: A triangular bi-pyramid can be

triangulated with two or with three tetrahedra

which implies a flip that adds or subtracts one to

the number of tetrahedra.

3.6.2 Monotone flipping does not (always) work

Another difference between the situations in two and three dimensions con-
cerns the graph of flips. In dimension two we have seen several easy proofs
of the fact that the graph of triangulations of every point configuration is
connected. However, in dimension three, there is currently no known proof
of the similar property, which could in fact be false! Our goal in this sec-
tion is to show why the proofs we have in dimension two do not work in
dimension three. For this, let us introduce the concept of monotone flipping.

Let A be a point configuration (in arbitrary dimension) with label set J
and let ω : J → R be a heights function. Let us assume that ω is sufficiently
generic, by which we mean that no d + 1 points are lifted to lie in a non-
vertical hyperplane in Aω ⊂ R

d+1. (Observe that we cannot in general get
rid of vertical hyperplanes unless we ask for A itself to be generic, since co-
hyperplanar elements of A will necessarily be co-hyperplanar in Aω too).

Now, to every triangulation T of A we associate the following hypersur-
face in R

d+1:

Gω,T := ∪B∈T convAω (B) ⊂ R
d+1

That is to say, we lift T to R
d+1 by lifting the elements of A as indicated

by ω and then interpolating linearly on every simplex of T . We call Gω,T

the lifting graph of T with respect to ω .
We now consider ω fixed, and look at what happens for different choices

of T . An example of this situation was already described in Theorem 3.4.2
when we flipped “monotonically” towards the Delaunay triangulation: we
said there that a flip changed the lifting graph by stacking a tetrahedron
above or below the surface obtained by lifting the points to the paraboloid.
At least if we restrict ourselves to the case when A is in general position,
this is the general situation. We omit the proof of the following, which will
be proved in more generality in Chapter 5:

Lemma 3.6.11. In the above situation, suppose that A and ω are both
sufficiently generic, so that Aω is in general position.

Let T and T ′ be two triangulations differing by a flip. Then Gω,T and
Gω,T ′ differ by changing the lower envelope of a certain (d + 1)-simplex
to the upper envelope, or vice versa.

Definition 3.6.12. We say that the flip from T to T ′ is decreasing with
respect to the height function ω if in the above lemma the upper envelope
of a simplex is removed and the lower envelope inserted.

We say that a sequence of flips is monotone towards ω if all the flips are
decreasing with respect to ω .
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Sometimes we will abuse language and say that the flip or the sequence
goes towards S (A,ω), when the height function ω is understood. The
three most important cases are:

• When we say that a sequence of flips is monotone towards the De-
launay triangulation, we mean monotone with respect to the height
function that lifts A to the paraboloid.

• Monotone towards the pushing triangulation means with respect to
any height function that has ω(i+ 1)� ω(i) > 0.

• Monotone towards the pulling triangulation means with respect to
any height function that has ω(i+ 1)� ω(i) < 0.

Monotone flipping towards the pulling and the pushing triangulations
has a very simple interpretation in terms of which vertices get the volumes
of their stars increased or decreased. Recall that the star of a vertex in a
triangulation is the union of the simplices containing it. Then:

Lemma 3.6.13. Let A be a point configuration with its elements labeled by
the numbers {1, . . . ,n}. Let T1 and T2 be two triangulations of A related
by a flip. Let i be the last element whose star increases or decreases in
volume during the flip.

If the volume of the star of i increases, then the flip is towards the pulling
triangulation. If it decreases, it is towards the pushing triangulation.

We leave this proof as an exercise for the reader.
In this language of monotone flipping, Theorems 3.4.1, 3.4.2, and 3.4.3

can be rephrased as:

Corollary 3.6.14. In a 2-dimensional point configuration it is always pos-
sible to monotonically flip from any triangulation to either the pushing (for
any ordering), the Delaunay, or the pulling (for any ordering ending in an
extremal element of A) triangulation.

Moreover, monotone flipping to the pulling triangulation finishes in a lin-
ear number of steps, while flipping to the Delaunay or pushing may require
quadratically many, by Example 3.4.5.

As we will see later in Chapter 5, a fundamental fact exploited in com-
putational geometry is that one can actually flip between regular triangu-
lations monotonically, in a generalization of Lawson’s result for Delaunay
triangulations in the plane. However, the same is not true for non-regular
triangulations, in dimensions three and higher.

Indeed, the interpretation of flipping towards the pushing triangulation in
terms of the star of the last vertex has the following immediate consequence:
Any monotone sequence of flips from a triangulation T to the pushing
triangulation induces a triangulation of the following perhaps-non-convex
polyhedron with vertices in A\ {n}:

stT (n)∩ convA(1, . . . ,n−1).
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Indeed, every flip that decreases the star of n introduces one (or more, if
the points are not in general position) new simplex in this region, until the
region is fully triangulated. This allows to easily construct non-pushing
triangulations that are local optima for the “flipping to the pushing trian-
gulation” criterion. The following example does this, and is also a local
optimum for monotone Delaunay flipping. The first such example was con-
structed by B. Joe [178].

Example 3.6.15 (Example 3.6.1 continued). Consider the configuration
consisting of the six vertices of a Schönhardt polyhedron together with an
exterior point on its symmetry axis. For example, let

A =

⎛

⎜
⎜
⎝

p1 p2 p3 q1 q2 q3 r
1− ε 0 ε 1 0 0 1/3

ε 1− ε 0 0 1 0 1/3
0 ε 1− ε 0 0 1 1/3
0 0 0 1 1 1 α

⎞

⎟
⎟
⎠,

where ε > 0 is small and α > 1 is arbitrary (later we will put constraints on
α). Observe that this point set is in general and convex position.

Let T be the triangulation of A consisting of the following 10 tetrahedra:

{q1,q2,p1,p2}, {q2,q3,p2,p3}, {q3,q1,p3,p1},
{r,q1,p1,p2}, {r,q1,q2,p2}, {r,q2,p2,p3},
{r,q2,q3,p3}, {r,q3,p3,p1}, {r,q3,q1,p1},

{r,p1,p2,p3}.
That is to say, we are triangulating conv(A) by coning r to the boundary

of Schönhardt’s polyhedron, without the triangle {q1,q2,q3}, and adding
the three “almost flat” tetrahedra exterior to it. In particular, the region
stT (r)∩conv(A\{r}) is precisely Schönhardt’s polyhedron and cannot be
triangulated. So, there is no monotone sequence of flips from T to the
pushing triangulation.
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Figure 3.45: A point set where flipping

monotonically towards the pushing or the

Delaunay triangulation does not work.

For the same property in the Delaunay case we observe that the vertices
of the Schönhardt polyhedron, with the coordinates we have given to them,
lie on a sphere. We now assume that r lies outside this sphere, for which
(when ε is small) α > 2 is more than enough. If the reader wishes, the
whole point set can be further perturbed by amounts that are sufficiently
small compared with ε , so that the point configuration is generic in the De-
launay sense. But, if the perturbation is sufficiently small, we will still have
the following property: the point r lies outside the sphere circumscribed to
any four of the other six points.

This implies that our triangulation T is locally Delaunay: Since no
flip in it decreases the star of r, every flip must make one of the three
tetrahedra not in this star, that is, one of the three almost flat tetrahedra,
{qi,qi+1,pi,pi+1}, disappear. The circuit on which the flip is supported
must consist of these four points together with r. But then the flip is against
the local Delaunay criterion, since the Delaunay triangulation of the five
points {qi,qi+1,pi,pi+1,r} contains that almost flat tetrahedron.
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For the pulling triangulation, the argument of Lemma 3.6.13 would say
that it is enough to find a triangulation T for which the complement of the
star of n cannot be triangulated. Of course, this is impossible because the
complement of the star of n is triangulated in T . For this reason we need
some extra work, and one extra point:

Example 3.6.16. Let A consist of the following eight points in dimension
three:

A =

⎛

⎜
⎜
⎝

p1 p2 p3 q1 q2 q3 r1 r2

4− ε 0 ε 2 1 1 4/3 4/3
ε 4− ε 0 1 2 1 4/3 4/3
0 ε 4− ε 1 1 2 4/3 4/3
0 0 0 1 1 1 −10 10

⎞

⎟
⎟
⎠.

The first six points are an oblique version of Schönhardt’s polyhedron (which,
as it turns out, projects to a perturbed version of “the mother of all examples”,
Example 2.2.5, see also Figure 1.26 in Chapter 1). The last two lie on the
symmetry axis of the Schönhardt, on opposite sides and “very far”. r2 sees
every face of the Schönhardt except the big triangle {p1,p2,p3}, while r1

sees only this triangle. Figure 3.46 shows the configuration.
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Figure 3.46: A point set where flipping

monotonically towards the pulling triangulation

does not work.

We triangulate this point configuration as follows: insert three tetrahedra
around the axis r1r2 (first three tetrahedra in the following list); then cone
both r1 and r2 to the six relevant triangles in the boundary of the Schönhardt
polyhedron. That is, our triangulation T consists of the following fifteen
tetrahedra:

{r1,r2,q1,q2}, {r1,r2,q1,q3}, {r1,r2,q2,q3},
{r1,q1,q2,p2}, {r1,q1,p1,p2}, {r2,q1,q2,p2}, {r2,q1,p1,p2},
{r1,q2,q3,p3}, {r1,q2,p2,p3}, {r2,q2,q3,p3}, {r2,q2,p2,p3},
{r1,q3,q1,p1}, {r1,q3,p3,p1}, {r2,q3,q1,p1}, {r2,q3,p3,p1}.

We leave it to the reader (or wait until Section 4.2.4) to check that this
triangulation has exactly four flips, supported on the following circuits. As
we usually do, the first (positive) part of the circuit indicates the simplex
that is inserted, the second part the one that is removed. For example, the
first flip in the lit removes the axis r1r2 (and its three incident tetrahedra)
and inserts the two tetrahedra {ri,q1,q2,q3} instead:

( {q1,q2,q3} , {r1,r2} ), ( {p1,q2} , {r2,q1,p2} ),
( {p2,q3} , {r2,q2,p3} ), ( {p3,q1} , {r2,q3,p1} ).

The important fact, for us, is that all these flips decrease the star of the last
point in the ordering, r2 (this comes from the fact that r2 is in their negative
part). Hence, all flips go in the direction opposite to the pulling triangulation.

Another negative flipping result in dimension three using a variation of
Schönhardt’s polyhedron, is as follows. Instead of considering triangula-
tions of a point set, consider polyhedral surfaces with vertex set on it, and
with a fixed boundary. A flip consists in gluing a tetrahedron to the surface
with two triangles in common, removing those two triangles and inserting
the other two triangles of the same tetrahedron.
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The connectivity of the flip-graph in dimension two can be interpreted
as the fact that if you restrict to surfaces that intersect every vertical line at
most once (these are sometimes called polyhedral terrains) the flip-graph is
connected. If you, however, remove this constraint, there are disconnected
flip-graphs [3].

3.6.3 The number of flips

We saw earlier that any triangulation of a point configuration in the plane
has at least n− 3 distinct flips. In Chapter 5 we develop machinery that,
in particular, implies that regular triangulations of point configurations of
dimension d with n elements always have at least n−d −1 flips. But non-
regular triangulations may have fewer flips than that, and this already oc-
curs in dimension three. The smallest example where this occurs has eight
elements and will be presented in Section 7.1. Here we present an example
that has more points, but also more symmetry:
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Figure 3.47: A regular cube-octahedron.

Example 3.6.17 (The cube-octahedron). The cube-octahedron is the 3-
dimensional polytope whose vertices are the mid-points of the twelve edges
of a regular cube. You get the same polytope if you use the mid-points of
the twelve edges of a regular octahedron instead. The cube-octahedron has
14 facets: 6 of them are squares (coming from facets of the cube) and 8 are
triangles (coming from the octahedron). Every edge is incident to a triangle
and a square. You can see a picture of this polytope in Figure 3.47.
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Figure 3.48: A triangulation of the boundary of

the cube-octahedron.

As you can see in Figure 3.47, we have labeled the twelve vertices of the
cube-octahedron with the twelve possible ordered pairs of different num-
bers from 1 to 4. The vertices of each triangle all have the same first label
or the same second label. The vertices of each square are the four pairs ik,
il, jk, jl, for some permutation (i, j,k, l) of (1,2,3,4). The reader can take
this just as a very symmetric way of labeling vertices, but it actually comes
from the fact that the cube-octahedron can be embedded in R

4 having the
following vertex set, where e1, . . . ,e4 are the standard basis:

{
ei − e j : i, j ∈ {1,2,3,4}, i �= j

} ⊂ R
4.

In the figure, the vertex labeled i j represents the point ei − e j.
Our point configuration consists of the twelve vertices of the cube-octa-

hedron, together with its centroid as a thirteenth point, that we label O. In
coordinates, we have the following thirteen points in R

3:

⎛

⎜⎜
⎜
⎜
⎝

O 12 21 13 31 14 41 23 32 24 42 34 43

1 1 1 1 1 1 1 1 1 1 1 1 1
0 1 −1 1 −1 1 −1 0 0 0 0 0 0
0 −1 1 0 0 0 0 1 −1 1 −1 0 0
0 0 0 −1 1 0 0 −1 1 0 0 1 −1
0 0 0 0 0 −1 1 0 0 −1 1 −1 1

⎞

⎟⎟
⎟
⎟
⎠

Table 3.1: The matrix representing the

cube-octahedron.
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One easy way to triangulate this configuration is: triangulate the bound-
ary by inserting one of the two diagonals of each square facet, then cone the
centroid to the triangulated boundary. There are 64 triangulations that can
be obtained in this way, because we have two choices in each square. We
choose to triangulate the six squares in such a way that each of the twelve
vertices is incident to one of the six diagonals inserted. This means we only
have freedom to choose the diagonal in one of the squares and the rest of
the triangulation is determined by this choice. One of the two possibilities,
is to use the following six diagonals:

{12,34},{31,24},{14,23},{21,43},{13,42},{41,32}.

This is displayed in Figure 3.48, where we have drawn the two halves of
the boundary of the cube-octahedron separately to make the picture clearer.

Proposition 3.6.18. The triangulation so obtained has only six geometric
bistellar flips.

Proof. To check the number of flips, the symmetries of the triangulation
will help. Indeed, in Figure 3.48 one can check that the triangulation is sym-
metric under rotation of order three around the axis of every triangle, and
rotation of order two around the axis of every square. There are also mirror
symmetries on the planes through parallel diagonals of any pair of opposite
squares of the cube-octahedron. These symmetries make the twelve half-
squares equivalent to one another, and the eight triangular facets too. The
24 edges of the cube-octahedron are also equivalent.

There are then only two adjacent pairs of tetrahedra where we have to
check for flips: a pair adjacent along a square diagonal and the centroid,
and a pair adjacent along an edge of the cube-octahedron and the centroid.

The first case produces the six flips claimed in the statement: The two
adjacent tetrahedra form a square pyramid, and there is a flip exchanging
this triangulation to the other triangulation of this square pyramid (that is,
a flip exchanging the diagonal chosen in that square facet to the opposite
diagonal).

For the second case let us pick up a concrete pair. For example, the pair
formed by the tetrahedra {O,14,24,34} and {O,14,24,23}. In the four
dimensional embedding we mentioned above, in which i j represents the
point ei − e j and O is the origin of coordinates, we clearly have 23 + 34 =
O+24. Hence, the circuit contained in that pair is ({23,34},{O,24}), and
the triangulation of it is {O,23,34}, {O,34,24}. This triangulated circuit
does not produce a flip, because the link of the first triangle are points 14
and 21 while the link of the second triangle are points 14 and 31.

As we said before, the fact that this triangulation is flip-deficient implies
its non-regularity (this will be a consequence of results in Chapter 5). But
the reader may want to see an explicit proof that this triangulation is not
regular. Suppose, by way of contradiction, that it is regular and we can
get lifting heights ωO and ωi j for the origin and the twelve vertices of the
cube-octahedron. At every square facet ik, il, jk, jl we have the circuit
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ik+ jl = il+ jk. If the diagonal chosen on that square is, say, the one joining
ik and jl, the condition for a convex lift at the two tetrahedra incident to that
square is

ωik + ω jl < ωil + ω jk.

In our triangulation this gives the following six inequalities, which do
not have a common solution because the sum of left-hand sides equals the
sum of right hand sides:

ω12 + ω34 < ω14 + ω32,
ω23 + ω14 < ω24 + ω13,
ω31 + ω24 < ω34 + ω21,
ω21 + ω43 < ω23 + ω41,
ω32 + ω41 < ω31 + ω42,
ω13 + ω42 < ω12 + ω43.

(3.4)

Still, if the point configuration is in convex position, that is, if no point
is in the interior of the convex hull, flip-deficient triangulations do not exist
in dimension three:

Proposition 3.6.19. When the point configuration with n points in R
3 is in

convex position without collinearities, every triangulation has at least n−4
flips.

Proof. Let T be a triangulation of an n point configuration A in R
3, in

convex position. If T does not use a certain point p ∈ A, then we induc-
tively assume that it has at least n− 5 flips as a triangulation of A \ {p},
plus the flip which inserts the point p. Thus, we can assume without loss of
generality that T is a full triangulation.

Let t denote the number of tetrahedra and let fi and fb (respectively ei and
eb) be the numbers of interior and boundary triangles (respectively edges).

Euler’s formulas for the 3-ball and the 2-sphere imply:

fi + fb + n = t + ei + eb + 1, fb + n = eb + 2.

We also have, by double counting, that

2 fi + fb = 4t, 2eb = 3 fb.

Putting these equations together we obtain

ei = t −n + 3, fi = 2t −n + 2.

As a consequence, we have the following important relation:

fi −2ei = n−4.

We will associate the interior non-flippable triangles of T to certain in-
terior edges of T and then use a counting argument to conclude that the
number of flips is at least n− 4. To formalize this, we consider each non-
flippable interior triangle as having a “unit of charge”, which we will trans-
fer to one of its three edges. Observe that if τ is a non-flippable interior
triangle and σ1 and σ2 are the tetrahedra sharing it, then at least one of the
edges of τ is flat or concave in σ1 ∪σ2. There are two cases:
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1. If one of the edges of τ is concave in σ1 ∪σ2, then it is interior and
is the only concave edge of the pair (σ1,σ2), because if there are two
concave edges their common end point cannot be in the boundary of
conv(A). We give the charge of τ to this concave edge.

2. Otherwise there is a unique non-convex edge of c which is flat for
the pair (σ1,σ2). Two flat edges would imply the existence of three
collinear points. Moreover, the flat edge is interior because otherwise
τ is flippable according to the discussion above. We give the charge
of τ to the unique flat edge.

We claim that the total charge of the interior edges is at most twice the
number of interior edges plus the number of edge-flips. From the claim
it follows that the total number of interior triangles fi is at most the total
number of flips plus twice the number of interior edges ei. Thus, the number
of flips is at least fi −2ei = n−4, as desired.

To prove our claim, we only need to analyze interior edges with charge
greater than two:

1. If an interior edge pq is a non-convex edge for at least four pairs
of consecutive tetrahedra in its star, then the star has precisely four
tetrahedra and the sum of any two consecutive dihedral angles is 180.
Let a, b, c, and d be the four points in the link of pq, in circular order.
The quadrilaterals apcq and bpdq are strictly convex; otherwise one
of the points p or q would either be collinear with two of a, b, c,
and d, or p or q would be contained in the convex hull of the other
5 points (violating the convexity assumption). Thus, the star of pq
forms a convex octahedron. The charge associated to pq is four (the
four triangles containing pq are as in part (2) above) and there are two
edge-flips of type (2,2) which make the edge pq disappear, supported
in the circuits ({p,q},{a,c}) and ({p,q},{b,d}).

2. If an interior edge pq is non-convex for exactly three pairs of consec-
utive tetrahedra in its star, then there can be three or four tetrahedra
in the star of pq.

If there are three, then pq is a concave edge associated to the three
interior triangles incident to it. Let a, b and c be the three vertices in
the link of p,q. Then either ({a,b,c},{p,q}) is a (3,2) circuit or one
of ({a,b,c},{p}) and ({a,b,c},{q}) is a (3,1) circuit with a, b, and
c lying in a facet of A. In either case, there is an edge-flip supported
in the circuit which makes pq disappear.

If there are four, then let a, b, c and d be the four points in the link
of p,q in circular order. Two of them (say a and c) are coplanar with
p,q. p,q is a concave edge associated with one of the triangles p,q,a
or p,q,c and an edge for the triangles p,q,b and p,q,d. Note that
the triangles p,q,b and p,q,d are in the situation of (2) above, with
their charges associated to p,q. Then p,q has a charge of three, but
({a,c},{p,q}) is a (2,2) circuit and there is an edge-flip supported
on it which makes p,q disappear.
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3. If an interior edge p,q is non-convex for at most two pairs of consec-
utive tetrahedra in its star, then the charge of p,q is at most two.

In forthcoming chapters we will show even more interesting patholo-
gies that can occur in higher dimensions. Most strikingly, for some time
it was not known whether flip connectivity held in higher dimensions. This
changed when F. Santos constructed a disconnected 6-dimensional example
in 2000 [278], and a simpler and smaller one in dimension five later [283].
We will describe these constructions in Chapter 7.

3.7 Notes and References

The concept of Voronoi diagram has been rediscovered in many different
applications (each time using a different name) such as geographic stud-
ies (Thiessen polygons), Crystallography (Dirichlet tesellations), Pattern
recognition (Blum’s transforms). See [20] for a really extensive list of ref-
erences and applications.

There are even more surprising properties of Delaunay triangulations,
besides those mentioned before. Examples include the fact that they also
maximize the sum of radii of inscribed circles to each triangle [200], and
minimize certain integral operators that characterize the drastic changes of
surfaces [273].

Because of their optimality Delaunay triangulations are not just useful,
they are extremely useful! In topics such as mesh generation and computer
aided design the “roundedness” of triangles is important for simulations,
e.g. small angles are bad. One important variation is that sometimes to
assure optimal conditions of the triangles, extra points need to be added,
i.e., we find a refinement of the set of points and recalculate the Delau-
nay triangulation. Also sometimes one is demanded to constrain a tri-
angulation; thus, some edges or triangles are fixed in advance, and we
must fill the rest, guaranteeing to be close to the Delaunay quality [45,
296]. The range and depth of applications of Delaunay triangulations is
nothing that one can describe in a few pages, it certainly merits a whole
book on its own. Many more pointers to applications can be found at
http://www.ics.uci.edu/~eppstein/geom.html.

The graph of flips between triangulations of a convex lattice point set in
the plane has some remarkable properties, as we will see in Section 9.3.1.
By a convex lattice point set we mean the intersection of Z

2 with a convex
body. For example, there is a bijection between edges and “half-lattice”
points lying in conv(A). With some care it can be proved that this bijection
induces an embedding of the graph of flips into the graph of a hypercube of
dimension equal to this number of interior edges. Sharir and Welzl use this
property to give a good upper bound for the number of triangulations, as
well as a good enumeration algorithm. Eppstein generalizes this property
to point sets without empty pentagons.
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Exercises

Exercise 3.1. Consider a 1-dimensional configuration with n points. How
many different triangulations are there? What is the poset of subdivisions?
What is the connectivity of the graph? What is the diameter of the graph?

Exercise 3.2. Write proof for the following consequences of Lemma 3.1.3,
that we list below.

1. The three numbers n, e, and t of vertices, edges, and triangles of a
triangulation are always of similar magnitude in a plane triangulation.
More precisely:

2n−3 ≤ e ≤ 3
2

t ≤ 3n.

2. Every triangulation has some vertex of degree at most five (remember
the degree of a vertex is the number of edges incident to it). Moreover,
every triangulation has some boundary vertex of degree at most three
or some interior vertex of degree at most five (or both).

Exercise 3.3. Let A be a point configuration in the plane. Show that if A
has less than three interior points then all its triangulations are regular.

Exercise 3.4. Suppose you have hexagon in the plane. Can you somehow
add enough points to the interior of the hexagon so that the new point set
has a triangulation with an odd number of triangles?

Exercise 3.5. Let abcd form a convex quadrilateral, thus it contains two
triangulations. Prove that the one that has the largest minimum angle is the
Delaunay triangulation of the quadrilateral.

Exercise 3.6. Prove every minimum spanning tree of a point set in the
plane in general position is a subgraph of the Delaunay triangulation.

Exercise 3.7. Given two triangulations T1,T2 of the same point set in the
plane, that touch all the points, both have t many triangles. Thus we have
3t different angles. To each triangulation associate a vector of its angles
ordered increasingly by size. We say T1 < T2 if their two sequences of
angles are equal up to some index j−1 and the j-th angle of T1 is smaller
than the j-angle of T2. Prove that the Delaunay triangulation is the largest
triangulation in the angle ordering (i.e., intuitively, that it avoids small
angles).

Exercise 3.8. Prove that the angle ordering on triangulations we discussed
in the previous exercise is an antisymmetric total ordering.

Exercise 3.9. Every full triangulation of n ≥ 5 points in R
2, no 3 collinear,

contains two adjacent triangles that form a convex quadrilateral.

Exercise 3.10. Let A be a point configuration and p ∈ A. Let T ′ be a
triangulation of A \ p. For each i ∈ N, denote by hi the number of full
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triangulations of A in which p has degree i and which can be obtained by
inserting p in T ′. Prove that

hi ≤Ci−1 −Ci−2

where Cn = 1
n+1

(2n
n

)
is the nth Catalan number.

Exercise 3.11. Find a pair of full triangulations of a point configuration in
the plane where a shortest sequence of flips taking one triangulation into
the other requires that the number of edge intersections increases at some
moment.

Exercise 3.12. Is there a constant c such that for any 2-dimensional point
configuration A with n points, the number T (A) of triangulations of A is
bounded by 2cn ≤ T (A) ≤ 2(c+1)n

Exercise 3.13. Let P be a non-convex polygon, and let v be a vertex of
it. Prove that there is an edge pq of P not incident to v such that the tri-
angle conv(v,p,q) is contained in P. Conclude, inductively, that P can be
triangulated without extra vertices.

Exercise 3.14. You are given a planar polygon (not necessarily convex). To
compute its area you could triangulate it and add the areas of its triangles.
Unfortunately today you cannot triangulate it. Can you think of a way to
calculate the area of the polygon without using a triangulation? Hint: You
only know the boundary of the polygon and the coordinates of its vertices.

Exercise 3.15. Assuming Conjecture 3.6.9, prove that for every n ≥ 13
there are two triangulations of the n-gon which need at least 2n− 10 flips
to be joined to one another. Hint: look at Exercises 1.9 and 1.10.

Exercise 3.16. Prove that Schönhardt’s non-convex polyhedron has no tri-
angulation (this is Lemma 3.6.2).

Exercise 3.17. Prove that a triangulation of n points in convex position
inside R

3 has no more than
(n

2

)
+ n−3 tetrahedra and no less than n−3.

Exercise 3.18. (Open) What is a good algorithm for, given two triangula-
tions, describing how far apart they are in the flip-graph? Is there a poly-
nomial time algorithm that finds a shortest path between any two triangula-
tions?

Exercise 3.19. (Open) Can one find the minimum length triangulation in
polynomial time if one knows beforehand the optimal length value?

Exercise 3.20. (Open) Can you say anything more about the general struc-
ture of the graph of flips of a point set in the plane: Independence number,
Hamiltonicity, etc?

Exercise 3.21. (Open) Can you characterize the graphs of flips of nice fami-
lies of point configurations (e.g. grid points, concentric families of identical
n-gons)?
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Exercise 3.22. (Open) Give a polynomial-time algorithm that computes
the number of triangulations of a given set of points in R

2.

Exercise 3.23. (Open) Prove or disprove: The graph of triangulations of a
point set in the plane is always (n−3)-connected.

Exercise 3.24. (Open) For a point configuration A in general position in
R

3, define μ(A) as the maximum number of tetrahedra of any triangulation
of A. What can be said of the growth of the function f (n) = minA μ(A),
where the minimum is taken among all possible such configurations? See
[22, 115] for more information on the problem and its variations.

Exercise 3.25. (Open) Are there 3-dimensional point configurations with
pairs of triangulations that cannot be connected by finitely many flips?

Exercise 3.26. (Open) Let T be a triangulation of a point configuration in
R

3. A triangle coloring of T is a 4-coloring of its triangles so that each
tetrahedron of T has four different colored triangles. Is it true that every
triangulation T has a triangle coloring?

Exercise 3.27. (Open) We say a triangulation is dually Hamiltonian when
the associated dual graph (edges connect adjacent maxima simplices) has
a hamiltonian cycle. Is it true that every point configuration in R

3 has a
dually Hamiltonian triangulation? This problem was first studied in [17].

Exercise 3.28 (Compatible triangulations [4]). (Open) Let A1 and A2 be
two arbitrary point sets in general position in the plane, with the same num-
bers of boundary and interior points. Is it true that they must have a full
triangulation in common? (That is to say, that there is a T ⊆ ([n]

3

)
that is a

full triangulation for some labeling of the two sets).

Exercise 3.29. Prove that the previous property is true if one of the point
sets consists of:

1. The vertices of a convex (n−1)-gon together with an extra vertex in
the exterior of it, or

2. It has at most three interior points.



A Tool Box 4
The definitions of triangulation and subdivision given in Chapter 2 are nice
for theoretic reasoning, but they present a fundamental problem for compu-
tations. How can one check Definition 2.3.1 on a computer? Let A be a
point configuration in R

m, with set of labels J. Recall that a collection S
of subsets of J is a polyhedral subdivision of A if it satisfies the following
conditions:

(CP) If C ∈ S and F ≤C, then F ∈ S as well. (Closure Property)

(UP)
⋃

C∈S convA(C) ⊇ convA(J). (Union Property)

(IP) If C �= C′ are two cells in S , then relintA(C)∩ relintA(C′) = /0. (In-
tersection Property)

For instance, how can we prove that a given family of convex sets covers
another convex set (Property (UP))? It is a non-trivial computational chal-
lenge, one that we have to solve in practice. A key goal of this chapter is to
develop the computational tools to test conditions (CP), (UP) and (IP).

In this chapter, we give an overview of the most frequently used tools
and concepts for manipulating and investigating triangulations and polyhe-
dral subdivisions. We begin by developing combinatorial tools and con-
cepts that lead to a fully algorithmic definition of a triangulation. The
foundations are the oriented matroid notions of circuits, cocircuits, and
Gale transforms. A more detailed introduction into these concepts can be
found in [339, Chapter 6] and the comprehensive books [55, 61]. After
a thorough look at some natural constructions, like deletion and contrac-
tion, we encounter the need to deal with vector configurations. We describe
special regular triangulations in Section 4.3, such as pulling and placing
triangulations. We discuss what happens to triangulations and polyhedral
subdivisions during those processes. Finally, we present several equivalent
characterizations of flips and of polyhedral subdivisions that may come in
handy in different contexts. Some of them are aimed for use in computer
programs for the enumeration of all triangulations of a point set (see, e. g.,
[265]).

4.1 Combinatorics of configurations

The basic idea in this section is that, in order to compute or characterize
triangulations, the fundamental primitives needed are vectors of signs aris-
ing from affine/linear functionals, dependences, and determinants. To give
a uniform treatment of them we introduce the following notation.

Jesús A. De Loera et al., Triangulations, Algorithms and Computation in Mathematics,
DOI 10.1007/978-3-642-12971-1_4, c© Springer-Verlag Berlin Heidelberg 2010
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Definition 4.1.1. A signature on a finite set J is a partition of J into three
subsets, V−, V0 and V+. A signature is called positive if V− is empty, and
negative if V+ is empty. Given a signature V+,V0,V− on J, the set V =
V−∪V+ is called its support.

If J = {1, . . . ,n}, then we can think of a signature as a vector of length
n with entries in {−1,0,+1}, and call it a sign vector. Reciprocally, every
vector in R

n (or, more formally, every map J → R) induces a signature,
consisting of the preimages of (−∞,0), {0}, and (0,∞). An equivalent,
and sometimes more convenient, way of representing signatures is as the
ordered pair (V+,V−). This will be our preferred representation.

Definition 4.1.2. Let (V+,V−) and (U+,U−) be two signatures on a set J.
We say that (V+,V−) and (U+,U−) are conformal if V+∩U− =V−∩U+ = /0.

Put differently, (V+,V−) and (U+,U−) are conformal if the coordinate-
wise product of their representations as vectors does not have negative ele-
ments.

The conformal sum of two conformal signatures (V+,V−) and (U+,U−)
is the signature (V+ ∪U+,V− ∪U−). Observe this is not a signature if
(V+,V−) and (U+,U−) are not conformal, since then the unions of posi-
tive and negative parts will not be disjoint. This is a reflection of the fact
that the signature associated to a sum ν + ω of two vectors ν,ω ∈ R

n can
only be deduced from the signatures of ν and ω if they are conformal.

(+,+,0,−,0,−,+,−,−)
(+,0,0,−,+,−,+,0,−)

(−,−,+,+,+,0)
(−,+,−,0,−,−)

Figure 4.1: Two pairs of sign vectors. The top

pair is conformal and the second pair is not.

4.1.1 Dependences, circuits, and the intersection property

Definition 4.1.3 (Dependence signatures). Let A = (pi)i∈J be a vector con-
figuration with label set J. Let ∑i∈J λipi = 0 be an (affine or linear) depen-
dence. That is, (λi)i∈J is a vector in the kernel of the matrix representing A.
The signature of this vector is called a dependence signature of A.

Example 4.1.4 (Five points in the plane). We use the five planar point
configuration of Example 2.2.9. Our choices of homogeneous coordinates
and label set are

A =

⎛

⎝

1 2 3 4 5

0 3 0 3 1
0 0 3 3 1
1 1 1 1 1

⎞

⎠.

We also display a picture of the points with a different dependent signatures
that is not a circuit (see Figure 4.2). The full list of circuits for the configu-

+5

+4−3

+1 −2

Figure 4.2: A dependence (affine) on a set of five

points.

ration is given, in short notation, by (23,45),(123,5),(14,5),(14,23).

One interesting property of dependence signatures is that the relative in-
teriors of their positive and negative parts intersect.

Lemma 4.1.5. Let V+ and V− be two disjoint subsets of the label set J of a
vector configuration A. Then the following are equivalent:

(i) (V+,V−) is a dependence signature on A.

(ii) relint(V+)∩ relint(V−) �= /0.
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This lemma is true regardless of whether V+ or V− are empty. If V+ is
empty, then its relative interior is considered to be the zero cone {0}, which
lies in the relative interior of a non-empty V− if and only if there is a strictly
positive linear dependence among its elements. In this case, ( /0,V−) is a
dependence signature, as well as ( /0, /0).

Proof. The statement that (V+,V−) is the dependence signature for the
dependence (λi)i∈J is equivalent to the following with λ := ∑i∈V+ λi =
∑i∈V− −λi:

∑
i∈V+

λipi + ∑
i∈V−

λipi = 0 ⇐⇒ ∑
i∈V+

λipi = ∑
i∈V−

−λipi

⇐⇒ ∑
i∈V+

λi

λ
pi = ∑

i∈V−
−λi

λ
pi.

Since all λi are non-zero, the left hand side and the right hand side are
convex combinations in the relative interiors of both V+ and V−, respec-
tively. Figure 4.3: A dependence of four points which is

not a circuit.

An example of this is the case of a circuit Z, of A, i.e., a minimal depen-
dent subconfiguration. Then, there is a unique dependence with support in
Z, hence there is a unique dependence signature (Z+,Z−) with support Z
(up to exchanging Z+ and Z−). These minimal dependence signatures get a
special treatment.

Definition 4.1.6 (Oriented Circuit). A minimally dependent subconfigura-
tion Z of A is called a circuit in A. A dependence signature with support
on Z is also called a circuit signature or an oriented circuit of A.

Lemma 4.1.7 (Uniqueness of Circuit Signatures). Let Z be a circuit in a
point configuration A with signature (Z+,Z−). Then (Z−,Z+) is the only
other possible circuit signature with support Z.

Proof. There is only one dependence equation among the elements of Z
(modulo a scalar factor) because if there were two, they could be used to
get another one with smaller support, hence Z would not be minimally de-
pendent. If the scalar factor is positive then it does not change the signature;
if it is negative it exchanges the positive and negative parts of it.

Remark 4.1.8. In concrete examples, it is easy to compute the signature
of a circuit in matrix form. Let p1, . . . ,pk be minimally dependent vectors,
so that the matrix Z having them as columns has rank k− 1. The unique
dependence is the unique (modulo a scalar constant) element in the kernel
of this matrix. To compute it, assume without loss of generality that the
number of coordinates of your points is exactly k − 1 (if there are more
coordinates, just choose a subset of k−1 independent rows in your matrix)
so that deleting the i-th column gives a square matrix. Let ωi denote the
determinant of the square matrix obtained by deleting the i-th column. Then
the vector

ω = (ω1,−ω2, . . . ,(−1)kωk)
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is in the kernel, as the following standard argument shows:
Consider the square k × k matrix obtained repeating the j-th row, for

any j. Since it has a repeated row, this matrix is clearly singular. But its
determinant, developed at the repeated row, is simply the scalar product of
that row and the vector ω that we just defined. Hence, ω is orthogonal to
every row of Z.

One interesting property of circuits is that the relative interiors of the
positive and negative parts intersect in a unique point. More interesting is
the fact that this property essentially characterizes circuits.

+

+

−

−

+

+

+

−

−

Figure 4.4: Two circuits represented as Radon

partitions.

Lemma 4.1.9. Let Z+ and Z− be two non-empty subsets of the label set J
of a vector configuration A. Then the following are equivalent:

(i) (Z+,Z−) is a circuit signature.

(ii) Z+ and Z− are independent and relint(Z+)∩ relint(Z−) is a single
point (for a point configuration) or a ray (for a vector configuration).

Remark 4.1.10. Here Z+ and Z− are required to be non-empty because in a
non-acyclic configuration there are positive circuits, with signature (Z+, /0),
to which this lemma does not apply: Z+ is not independent and relint(Z+)∩
relint( /0) is not a ray.

Proof. For (i)⇒(ii), the uniqueness of the dependence, Lemma 4.1.7, im-
plies that the intersection of the relative interiors is a unique point or ray.
The fact that Z+ is not empty implies that Z− is independent, and vice
versa.

For the other implication, let Z+ and Z− be independent and relint(Z+)∩
relint(Z−) be a single point or ray. Lemma 4.1.5 says that (Z+,Z−) is a de-
pendence signature. Let λ be the vector of coefficients in this dependence.
We need to show that there is no proper subset of Z+ ∪Z− supporting an-
other dependence signature. If there was one, let μ be the vector of co-
efficients in this new dependence, and let λ ′ = λ + εμ with ε sufficiently
small. Since the support of μ is strictly contained in that of λ , λ ′ has the
same signature Z as λ . But then we have that the following are points (or
rays) in the relative interior of both Z+ and Z−:

x = ∑
i∈Z+

λipi = − ∑
i∈Z−

λipi, y = ∑
i∈Z+

λ ′
i pi = − ∑

i∈Z−
λ ′

i pi.

By assumption, x and y must be the same point (for a point configuration)
or lie in the same ray (for a vector configuration). But then the fact that
Z+ and Z− are independent implies that λ ′ and λ are proportional, which
contradicts the construction of λ ′.

There is an important consequence of this characterization of interior
intersection: we have an algorithm to tell whether or not a point is in the
convex hull or the relative interior of a subconfiguration.

Lemma 4.1.11 (Circuits and convex hulls). Let i ∈ J and B ⊂ J. Let pi be
the vector labeled by i. Then,



4.1. Combinatorics of configurations 153

• pi ∈ convA(B) if and only if there is a circuit (Z+,{i}) with Z+ ⊆ B.

• pi ∈ relintA(B) if and only if (B,{i}) is a dependence signature.

In order to provide another application of circuits, we continue this sec-
tion with a closer look at the exact relation between circuit signatures and
other dependence signatures.

Lemma 4.1.12. For every dependence signature (V+,V−) with non-empty
support there is a circuit (Z+,Z−) with Z+ ⊆V+ and Z− ⊆V−.

Proof. The proof proceeds by contradiction. Suppose V+∪V− is dependent
but does not contain a circuit as claimed. Assume that the cardinality of
V+∪V− is smallest possible. Since (V+,V−) is not a circuit, there are at least
two independent dependences (λi)i∈J and (μi)i∈J with support contained in
V+ ∪V−. We let (λi)i∈J be one with signature (V+,V−). Then, for every
ε ∈R, (λi +εμi)i∈J is also a dependence. Let ε0 be the biggest (necessarily
negative) value for which there is an i with λi �= 0 and λi + εμi = 0. For
every bigger ε we have that (λi + εμi)i∈J has signature (V+,V−), while for
ε0 it has signature (W+,W−) with W− ⊆ V−, W+ ⊆ V+, and with one of the
containments strict. We reach a contradiction with the assumed minimality
of (V+,V−).

The following corollary implies that the set of circuit signatures and the
set of all dependence signatures can be recovered from one another. Ob-
serve also that the circuits in the statement must necessarily be conformal,
since V+ and V− are disjoint.

Corollary 4.1.13. Every dependence signature can be written as a con-
formal sum of signed circuits. That is, for every dependence signature
(V+,V−) with non-empty support there is a finite collection of signed cir-
cuits (Zi

+,Zi−), i = 1, . . . ,k, with V+ = ∪iZi
+ and V− = ∪iZi−.

Proof. This follows easily from the previous lemma, by induction on the
cardinality of V+∪V−. Indeed, let (λi)i∈J be a dependence giving the signa-
ture (V+,V−) and let (μi)i∈J be one giving a circuit (Z+,Z−) with Z+ ⊆V+
and Z− ⊆V−.

As in the previous proof, for every ε ∈ R, (λi + εμi)i∈J is also a depen-
dence and a ε exists for which this dependence has signature (W+,W−) with
W− ⊆V−, W+ ⊆V+, and with one of the containments strict. We apply the
inductive hypothesis to (W+,W−) and add (Z+,Z−) to the set of circuits
obtained for it.

Finally, we are in a position to present the promised most useful appli-
cation of Lemma 4.1.9: whenever two cells intersect improperly there is a
circuit as a certificate for this intersection:

Theorem 4.1.14. Let S be a family of subsets of the label set J of a con-
figuration A. Assume that S satisfies the closure property (CP). Then, the
following two properties are equivalent:
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b

a

d
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Figure 4.5: A dependence with six points

contains a circuit with four points a,b,c,d.

(IP) If B �= B′ are two cells in S , then relint(B)∩ relint(B′) = /0. (Inter-
section Property)

(CiP) For each circuit (Z+,Z−) such that Z+ ⊆ B ∈ S for some B, either
there is no cell in S containing Z−, or every cell containing Z+
contains Z− too. (Circuit Property)

Proof. For (IP)⇒(CiP), assume that Z+ ⊆ B ∈ S and Z− ⊆ B′ ∈ S . Our
goal is to prove that Z− ⊆ B (and that Z+ ⊆ B′, but this is the same proof).

Let F = carrier(Z+,B) and F ′ = carrier(Z−,B′) be the carrier faces of Z+
and Z− in B and B′ respectively. By Lemmas 4.1.5 and 2.1.23,

/0 �= relint(Z+)∩ relint(Z−) ⊆ relint(F)∩ relint(F ′),

and then by (IP) F = F ′. So Z− ⊆ F ′ ⊆ B.
For the converse, suppose (CiP) and let B,B′ ∈ S be different cells such

that relint(B)∩ relint(B′) �= /0. If B∩B′ = /0, then Lemma 4.1.5 implies that
(B,B′) is a dependence signature. If B∩B′ �= /0, our condition implies that
there is an expression

∑
i∈B

λipi = ∑
j∈B′

μ jp j

with all λ ’s and μ’s positive. Subtracting ∑i∈B∩B′ min{λi,μi}pi on both
sides we conclude that there are V ⊆ B and V ′ ⊆ B′ disjoint and not both
empty such that (V,V ′) is a dependence signature. Lemma 4.1.12 then gives
the circuit we are looking for.

Before continuing, observe that the circuit property admits a simpler
statement if we are interested only in the case where all cells of S are
independent (for example, if we want to check whether S is a triangu-
lation): no independent cell can contain a circuit, and every subset of an
independent cell is a cell (by the closure property), so the circuit property
can be relaxed for triangulations:

Theorem 4.1.15. Let T be a family of independent subsets of the label set
J of a configuration A satisfying (CP). Then the following two properties
are equivalent:

(CiP) For each circuit (Z+,Z−) such that Z+ ⊆ B ∈ T for some
B, either there is no cell in T containing Z− or every cell
containing Z+ contains Z−, too. (Circuit property)

(TriangCiP) There is no circuit (Z+,Z−) with Z+,Z− ∈ T (Circuit prop-
erty for triangulations).

In particular, if we want to check whether or not two cells B,B′ intersect
properly or not, we simply need to look at all circuits of A that are not
completely contained in at least one of B and B′ and check whether one of
them has its positive part completely in B and negative part completely in B′,
or vice versa. This is a substantial progress in checking the intersection
property (IP). Let us briefly think about how many circuits there are in a
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point configuration with n points in dimension d. Each spanning (d + 2)-
element contains a unique circuit and every circuit can be extended to a
spanning (d +2)-element. Hence, if worse comes to worst, then every (d +
2)-element subconfiguration is a circuit, and we have

( n
d+2

)
of them. This

happens if and only if the configuration is in general position.

4.1.2 Evaluations, cocircuits, and the union property

In general it is an extremely difficult task to check whether a collection of
simplices covers a polytope. Since (IP) is now easy to check (as we have
learned in the previous section), we only need to check (UP) for collections
that already satisfy (IP) and (CP). Our starting point is the following result:

Lemma 4.1.16. Let S be a family of subsets of the label set J of a config-
uration A. Assume that S satisfies the closure and intersection properties
(CP) and (IP), and that all maximal elements in S have full dimension.
Then, the following properties are equivalent: Figure 4.6: The pseudomanifold property.

(UP)
⋃

B∈S conv(B) ⊇ conv(A) (Union Property).

(MaxMP) For each facet F of a maximal cell B in S , either F is contained
in a facet of A, or there is another maximal cell B′ in S that con-
tains F as a facet (Pseudo-Manifold Property; see Figure 4.6).

The “Max” in the abbreviation of the Pseudo-Manifold Property is there
to remind us that this property needs to be checked only for maximal cells
in a subdivision.

Proof. Assume (UP) and let F be a facet of a maximal cell B in S that is
not contained in a facet of A. Pick a point x in the relative interior of F and
another point y in general position, very close to x but away from conv(B),
i.e., so that conv(F) separates y from relintB. Since F is not in a facet of
A, it is possible to do so with y still in the interior of conv(A).

Since (UP) holds, there is a B′ in S with y ∈ conv(B′) which must be
different from B. Since y is in general position, y must be in the relative
interior of B′ and B′ must be full-dimensional. Since y is very close to x,
each point on the open segment (x,y) must be also in relint(B′), so that
x ∈ conv(B′). By (IP) and (CP), the carriers of x in B′ and in F must be the
same, and the latter is F itself. So, F < B′, as desired.

x

z
y

B

F

Figure 4.7: Proof of Lemma 4.1.16.

Now assume that (MaxMP) holds. Let x ∈ conv(A) and, for the sake of
contradiction, assume that there is no cell in S with x in its convex hull.
Pick a point y in general position, meaning that no hyperplane contains a
dependent subset of A∪{x,y}. For this it suffices to pick y outside all of
the (finite set of) hyperplanes spanned by points of A∪{x}. Suppose also
that y does lie in the convex hull of some cell of S . Consider the segment
[x,y] and let z ∈ [x,y] be the point closest to x and that is in the convex
hull of some cell of S . This point exists because each conv(B) intersects
[x,y] in either a point or a segment. Let B be a full-dimensional cell with
z ∈ conv(B). The general position assumption on y implies that the carrier
of z in B is a facet F of B. Since x and y lie on opposite sides of it, F is not
contained in a facet of A. Hence, (MaxMP) implies that there is a second
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maximal cell B′ with F < B′ and in particular z∈ conv(B′). The intersection
property (IP) then implies that conv(B) and conv(B′) lie on opposite sides
of conv(F), which contradicts our assumption that no point in [x,z) lies in
the convex hull of a cell of S .

For triangulations, Condition (MaxMP) is already a “combinatorial prop-
erty”, since the facets of a simplicial d-cell are just its d-subsets. Thus, for
triangulations, (MaxMP) is easy to check computationally, so that Lemma
4.1.16 implies that we can check whether a set of cells is a triangulation.
This is great news! Still, for general subdivisions we need to elaborate on
the property. The key idea is to rewrite it in the language of signatures.
Since faces are defined by linear functionals, the following seems the right
tool for it:

Definition 4.1.17 (Evaluation signatures). Let A be a vector configuration
with label set J. An evaluation signature on A is the signature of the vector
(sign(ψ(pi)) : i ∈ J) where ψ : J → R is a linear functional.
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Figure 4.8: An evaluation signature.

To mimic the situation with dependence signatures, we give a special
name to the evaluation signatures with minimal support. The reason for the
name chosen will be apparent in the next section.

Definition 4.1.18 (Cocircuits). A cocircuit signature is an evaluation sig-
nature with minimal support. Its support is a cocircuit.

Equivalently, the above definitions can be given in the sometimes more
intuitive language of oriented hyperplanes:

Definition 4.1.19. For a linear functional ψ ∈ (Rd)∗, let the oriented hy-
perplane Hψ defined by ψ be given by H =

{
x ∈ R

d : ψ(x) = 0
}

.
The positive open halfspace Hψ

+ induced by Hψ is defined as Hψ
+ :={

x ∈ R
d : ψ(x) > 0

}
. Similarly, the negative open halfspace Hψ

− induced
by Hψ is defined as Hψ

− :=
{

x ∈ R
d : ψ(x) < 0

}
.

The closures of the open halfspaces are denoted by Hψ
+ and Hψ

−, respec-
tively.

Example 4.1.20 (Example 4.1.4 continued). We list all covectors of our
running example of five points in the plane (see Example 4.1.4) (245, /0),
(1,34), (125, /0), (2,3), (15,4), (345, /0), (135, /0), (1,24). As always, the
“negative” of each of these cocircuits is also a cocircuit.
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Figure 4.9: On top, an evaluation signature, but

not a cocircuit. Below an honest cocircuit.

Lemma 4.1.21. Let A be a full-dimensional configuration. Let V+ and V−
be disjoint subsets of the label set of A, not both empty. Then:

(i) (V+,V−) is an evaluation signature if and only if there is an oriented
hyperplane H such that

V+ = {i : pi ∈ H+}, V− = {i : pi ∈ H−}.

(ii) (V+,V−) is a cocircuit signature if H is spanned by a subset of ele-
ments of A, or equivalently, if H is unique.
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Proof. Part (i) follows from the fact that every hyperplane is the zero set of
a (non-zero) linear functional ψ , and the two half-spaces defined by H are
ψ−1(0,∞) and ψ−1(−∞,0).

For part (ii), it is clear that uniqueness is equivalent to H being spanned by
J \ (V+∪V−). If H is not spanned we can rotate it slightly without changing
its associated signature, and two different hyperplanes H1 and H2 exist, then
the elements in J \ (V+∪V−) span, at most, their intersection H1 ∩H2.

So, let us prove that these two properties are equivalent to being a cocir-
cuit. If ψ1 and ψ2 define two different hyperplanes producing the signature
(V+,V−), then any linear combination αψ1 + β ψ2 has signature with sup-
port contained in V+ ∪V−. Choosing α and β appropriately we can make
the functional be zero in any particular element, in particular obtaining an
evaluation signature with support strictly contained in V+∪V−.

Conversely, if H is not spanned by elements of A, let L be the sub-linear
space of H spanned by H∩A. As before, we can rotate H around L and get a
hyperplane whose signature is zero on any particular element, in particular
one with support strictly contained in V+∪V−.

Remark 4.1.22 (Oriented hyperplanes for point configurations). As usual,
A is thought of as either a vector configuration or as a point configuration
in homogeneous coordinates. In both cases, by a hyperplane we mean a
linear hyperplane (one containing the origin). If A is a d-dimensional point
configuration and you prefer to think of it as embedded in R

d , then in this
lemma (and elsewhere) you need to consider affine hyperplanes.

Corollary 4.1.23. Let V0 be a subset of the label set of a configuration A.
Then,

(i) V0 is the zero set (that is, the complement of the support) of an eval-
uation signature if and only if it equals the intersection of A with a
subspace.

(ii) V0 is the complement of a cocircuit if and only if it is not spanning and
is maximal with this property.

Proof. For Part (i), the zero set of an evaluation signature is, by definition,
the intersection of A with a hyperplane. For the converse, if V0 equals the
intersection of A with a subspace L, let H be a hyperplane containing L
and “sufficiently generic”. Then L∩A = H∩A.

For Part (ii), Part (i) implies that if V0 is the complement of a cocircuit,
then it is not spanning. By minimality of cocircuits, V0 must span a hyper-
plane. The converse is clear.

Important for us is the following relation between evaluation signatures
and faces of a configuration. Simply put: faces are the same as non-negative
evaluation circuits:

Lemma 4.1.24. Let (V+,V−) be an evaluation signature of A, with zero set
V0 = J \ (V+∪V−). Then the following are equivalent:

(i) Either V+ = /0 or V− = /0.
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(ii) V0 is a face of A.

Proof. This follows directly from the properties of supporting hyperplanes
of faces.

The following characterization of facets of point configurations will di-
rectly go into one of the combinatorial characterizations in Section 4.5.2.

Lemma 4.1.25. Let (Z+,Z−) be a signed cocircuit of A. Then the following
are equivalent:

(i) Z0 is a facet of A.

(ii) Either Z+ = /0 or Z− = /0.

Proof. Minimal evaluation signatures simply correspond to maximal zero-
sets. These correspond to maximal proper faces, i.e., facets.
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Figure 4.10: A positive cocircuit and the face it

determines on the convex hull.

The following three statements say that the relation of cocircuits to evalu-
ation signatures is the same we had for circuits and dependence signatures:

Lemma 4.1.26 (Uniqueness of Cocircuit Signatures). Let Z be a cocircuit
in a point configuration A with signature (Z+,Z−). Then (Z−,Z+) is the
only other possible circuit signature on Z.

Proof. By the previous lemma, there is a unique hyperplane containing Z0,
and any two linear functionals vanishing on that hyperplane have to be mul-
tiples of each other. This implies that any induced signature is either identi-
cal or opposite.

Lemma 4.1.27 (Conformal decomposition of evaluations). For every eval-
uation signature (V+,V−) whose support is non-empty there is a cocircuit
(Z+,Z−) with Z+ ⊆V+ and Z− ⊆V−.

Proof. If the codimension of V0 is more than 1, the orthogonal complement
of V0 in R

m contains at least one two-dimensional subspace that contains ψ .
Now, turn around ψ in this subspace. This will generate a family of hyper-
planes that covers R

m. Now, we perform this process continuously, starting
at ψ , and we stop at the first time when one or more new points are con-
tained in the moving hyperplane. We remove this point from V , and either
the resulting covector is already a cocircuit, or we repeat the process. See
Figure 4.11.
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Figure 4.11: An evaluation and its conformally

contained cocircuit (the dotted line).

As with circuits, this has the following corollary, whose proof we omit.

Corollary 4.1.28 (Conformal decomposition of evaluations). For every
evaluation signature (V+,V−) with non-empty support there is a collection
of signed cocircuits (Zi

+,Zi−), i = 1, . . . ,k, with V+ = ∪iZi
+ and V− = ∪iZi−.

In particular, cocircuits and evaluation signatures carry the same infor-
mation on the configuration A.

The punch line of our study of circuits was that we can use them to check
for improper intersections (Property (IP) of subdivisions). Now similarly,
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in order to check (UP), we can utilize cocircuits, which we show next. Vari-
ations on this are given in Section 4.5.2. In order to check (UP) for S , in
Lemma 4.1.16 we provided Condition (MaxMP). If S is of pure dimension
and satisfies (IP) and (CP) already, then condition (UP) is fulfilled if every
interior facet of a maximal cell is a facet of some other maximal cell in S .
Because of Lemma 4.1.25, we can now check this by looking at cocircuits
of A. Because of the importance of this observation we formulate it as a
theorem.

Theorem 4.1.29. Let S be a set of cells in a point configuration A labeled
by J satisfying (CP) and (IP). Then the following are equivalent:

(UP)
⋃

B∈S conv(B) ⊇ conv(A) (Union Property).

(CoP) For each d-cell B ∈ S and for all cocircuits Z∗ that are positive
cocircuits on B but not positive on J, there is another d-cell B′ ∈ S
with B∩B′ = Z∗

0 ∩B (Cocircuit Property).

Again, the situation is simpler for triangulations since all facets of d-cells
are obtained by deleting one single label from the cell.

Theorem 4.1.30. Let T be a set of independent subsets in a point config-
uration A labeled by J, satisfying (CP) and (IP). Then the following are
equivalent:

(UP)
⋃

B∈T conv(B) ⊇ conv(A) (Union Property).

(TriangCoP) For every d-subset F of a d-cell B ∈ T , if one cocircuit Z∗
spanned by F in A is neither positive nor negative on J, then
there is another d-cell B′ ∈T with B∩B′ = Z∗

0 ∩B (Cocircuit
Property for Triangulations).

And how many cocircuits are there? Well, as many as there are hyper-
planes spanned by subsets of elements of A. If worse comes to worst, each
subconfiguration of d elements spans a different hyperplane, which makes
up for

(n
d

)
different cocircuits (up to sign reversal) in a point configuration

consisting of n elements in dimension d.
Let us summarize the findings of this and the previous section in terms

of a fully combinatorial characterization of polyhedral subdivisions. Here
is a characterization that is crucial for the investigations in Chapter 6. It
follows directly from Theorems 4.1.14 and 4.1.29.

Theorem 4.1.31. A set S of d-dimensional subconfigurations of a point
configuration A in R

d labeled by J is the set of maximal cells of a polyhe-
dral subdivision of A if and only if it satisfies the following two conditions:

(CoP) For each d-cell B ∈ S , and for all cocircuits Z∗ that are positive
cocircuits on B but not positive on J, there is another d-cell B′ ∈ S
with B∩B′ = Z∗

0 ∩B (Cocircuit Property).

(CiP) For each circuit (Z+,Z−) such that Z+ ⊆ B ∈ S for some B, either
there is no cell in S containing Z− or every cell containing Z+
contains Z− too. (Circuit Property)
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If we restrict ourselves to triangulations, then things become easier (see
Theorems 4.1.15 and 4.1.30).

Corollary 4.1.32. A set T of d-dimensional independent subconfigura-
tions of a point configuration A in R

d is the set of maximal cells of a trian-
gulation of A if and only if it satisfies the following two conditions:

(TriangCoP) For every d-subset F of a d-cell B ∈ T , if one cocircuit Z∗
spanned by F in A is neither positive nor negative on J, then
there is another d-cell B′ ∈ T with B∩B′ = Z∗

0 ∩B. (Cocir-
cuit Property for Triangulations).

(TriangCiP) For each pair of cells B,B′ ∈ T , there is no signed circuit
(Z+,Z−) in A with Z+ ⊆ B and Z− ⊆ B′ (Circuit Property for
Triangulations).

4.1.3 Gale transforms and the duality between circuits and cocircuits

In this section we introduce the reader to a rather useful construction and
duality notion used very frequently in discrete geometry, the Gale trans-
form. Let A ∈ R

m×n be a vector configuration of rank k (for example, a
point configuration, in a homogenized version) with n elements.

Definition 4.1.33. We call linear dependences the vectors of coefficients
of dependences on A. A linear evaluation is the restriction to A of a linear
function R

m → R.

In other words, linear dependences and linear evaluations are the vectors
whose signatures define dependence signatures and evaluation signatures.
These two objects are closely related.

Lemma 4.1.34. Linear dependences and linear evaluations of A form two
orthogonal complementary linear subspaces of R

n, of ranks n− k and k
respectively.

Proof. Linear evaluations are the row span of the matrix A (because ev-
ery linear functional is a linear combination of the coordinate functionals
and vice versa) and linear dependences are, by definition, the orthogonal
complement of it.

Definition 4.1.35. A Gale transform of a configuration A is a configuration
B such that the linear dependences of A are the linear evaluations on B and
vice versa. The set of all Gale transforms of A is denoted by Gale(A).
Nevertheless, in the future, we will often abuse notation and denote by
Gale(A) an explicitly or implicitly chosen Gale transform for A.

Lemma 4.1.36. Every configuration A has at least one Gale transform.

Proof. Compute the orthogonal complement of the row span of A (that is,
the kernel of A) and take any basis of it as the rows of a matrix for the con-
figuration B. Moreover, all Gale transforms of A are linearly isomorphic
vector configurations.
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Example 4.1.37. Continuing the running Example 4.1.4, from the given
coordinates we can easily calculate the affine dependences among the five
points as the kernel of the matrix

1

5

4
2,3

Figure 4.12: A Gale transform for the five-point

planar configuration.

A =

⎛

⎝

1 2 3 4 5

0 3 0 3 1
0 0 3 3 1
1 1 1 1 1

⎞

⎠.

This gives, for instance, a Gale transform

( 1 2 3 4 5

1 1 1 0 −3
2 0 0 1 −3

)
.

These five vectors are represented in Figure 4.12. Of course, a basis for the
kernel is not unique and thus the Gale transform is not unique either. An
alternative would be

2,3

1 4

5

Figure 4.13: Another Gale transform for

Example 4.1.4.

(
1 2 3 4 5

− 1
3 − 1

3 − 1
3 0 1

1 −1 −1 1 0

)
.

Precisely this Gale transform was used for drawing Figures 2.34 and 2.35:
the horizontal and vertical unit vectors represent, respectively, the height
vectors ω5 and ω4 Gale dual to the elements 5 and 4 of A, respectively.

Observe that in the definition of a Gale transform, the two configurations
are implicitly assumed to be labeled by the same set, so that we can use
the same symbol to refer to subsets of elements in both. Moreover, there
are the following relations among the properties of the same subset in both
configurations. See also Figures 4.14, 4.15, and 4.16:

Lemma 4.1.38. Let B ∈ Gale(A). Then:

(i) The dependence signatures of A are the evaluation signatures of B,
and vice versa.

(ii) The circuit signatures of A are the cocircuits of any B, and vice versa.

(iii) The faces of A are the complements of positive dependence signa-
tures of any B, and vice versa.

(iv) The independent subconfigurations of A are the complements of the
full-dimensional subconfigurations of any B, and vice versa.

Proof. Part (i) is straightforward from the definition, and the rest of prop-
erties follow easily from what we said in the previous sections: Minimal
dependences are circuits while evaluations with minimal support are co-
circuits; faces are the complements of positive evaluation signatures, and
circuits [cocircuits] are minimal dependent sets [complements of maximal
non-spanning sets].
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Figure 4.14: Circuits in A correspond to

cocircuits in B ∈ Gale(A).

Figure 4.15: Cocircuits in A correspond to

circuits in B ∈ Gale(A).

Figure 4.16: Independent sets in A correspond

to complements of independent sets in

B ∈ Gale(A).

Why are Gale transforms interesting for studying subdivisions and trian-
gulations? The main reason has to do with the fact that two height vectors
ω ,ω ′ : A → R whose difference is an affine [a linear] function on the coor-
dinates of the point [vector] configuration, i.e., a linear evaluation, produce
the same regular subdivision (more precisely, they produce lifted configura-
tions that are linearly equivalent and with the same notion of “lower” face).
This will be discussed in detail in Section 5.4.1. However, there is one fact
we wish to reveal right away: Heights that produce subdivisions for vector
configurations can be characterized very nicely using a Gale transform.

Theorem 4.1.39. Let A be a vector configuration with Gale transform B ∈
Gale(A). Let ω : J → R be a height vector. Then the following conditions
are equivalent:

1. ω produces a regular subdivision of A, that is, the lifted configuration
Aω has lower faces.

2. For every non-negative linear dependence λ of A, we have ω ·λ ≥ 0.

3. ωBT ∈ cone(B).

4. ω is, modulo addition of a linear evaluation to it, non-negative.

Proof. The implication from (1) to (2) is by contradiction. Suppose that
there is a linear dependence λ with ω · λ = c < 0. This implies that the
vector (0, · · · ,0,c) is in cone(Aω ), so the whole ray in the negative direction
of the lifting coordinate is in the cone. This implies that the cone cannot
have a lower face.

For the implication from (2) to (3), contradiction works too: if ωBT �∈
cone(B) then, by Farkas’ lemma, there is a linear functional φ that sepa-
rates ωBT from cone(B). That is, φ(ωBT ) < 0, but φ is non-negative on
every element of B. Let λ be the evaluation vector corresponding to that
functional. By Gale duality, λ is a dependence in A, and by construction it
is non-negative. Its scalar product with ω equals φ(ω). This is a contradic-
tion.

For the implication from (3) to (1), observe first that:

ωBT ∈ cone(B) ⇐⇒ ωBT = μBT for some μ ∈ R
n,μ ≥ 0

⇐⇒ ωBT − μBT = 0 for some μ ∈ R
n,μ ≥ 0

⇐⇒ (ω − μ)BT = 0 for some μ ∈ R
n,μ ≥ 0

⇐⇒ (ω − μ) ∈ ker(BT ) for some μ ∈ R
n,μ ≥ 0.

This means that there is a nonnegative μ : J → R for which (ω − μ) is a
dependence of B. By the definition of a Gale transform, (ω −μ) is a linear
evaluation of A. Thus:

ωBT ∈ cone(B) ⇐⇒ (ω − μ) = cT A for some μ ∈ R
n,μ ≥ 0.

In words: A height vector maps via B into the conical hull of B if and only if
ω plus some linear height function is a nonnegative height function, i.e., ω
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produces the same set of lower faces as some nonnegative height function.
That the nonnegative height functions induce all regular subdivisions was
already proven in Lemma 2.5.11.

Finally (3) is clearly equivalent to (4).

That is:

The space of “allowable” height functions to obtain a regular
subdivision of a vector configuration A with B ∈ Gale(A) is
naturally identified with cone(B).

Now, if B is not totally cyclic, the above identification sends some par-
ticular heights functions to lie in the boundary of cone(B). What is special
about the regular subdivisions defined by them? The following result gives
the answer. Its proof, similar to that of Theorem 4.1.39, is left to the reader.

Theorem 4.1.40. Let A be a vector configuration with Gale transform B ∈
Gale(A). Let ω : J → R be a height vector. Then, the following conditions
are equivalent:

1. ω produces a regular subdivision of A with all its cells acyclic. That
is, the lifted configuration Aω has lower faces and all of them are
acyclic.

2. For every non-negative linear dependence λ of A, we have ω ·λ > 0.

3. ωBT ∈ relint(B).

4. ω is, modulo addition of a linear evaluation to it, strictly positive.
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34

5

Figure 4.17: Five vertices of a regular pentagon

and a Gale transform of it.

Example 4.1.41 (The regular pentagon). Let C5 be the vertex set of a reg-
ular pentagon. We leave it to the reader to check that one of its Gale trans-
form is precisely the configuration of five vectors in the plane that appeared
in Example 2.5.10 (but be careful with the bijection between the points in
one and the vectors in the transform; it is not the one you would expect).
The five rays in the Gale transform correspond to the heights ωi, which pro-
duce a subdivision of a pentagon into a quadrilateral and a triangle. The
cone between the two rays represents the set of heights that produce a spe-
cific triangulation of the pentagon, with the ray between two adjacent cones
corresponding to a flip.

We can also look at this example backwards. The regular subdivisions
of the configuration dual to C5 were all depicted in Figure 2.57. The two
bottom rows in the figure are the “acyclic” subdivisions appearing in Theo-
rem 4.1.40, which somehow correspond to choices of ω lying in the interior
of conv(C5). The three on the top row, reproduced in Figure 4.18 corre-
spond to choices in ∂ conv(C5). More precisely, the first one corresponds
to the zero height vector (observe that C5 has to be understood as a vector
configuration, and conv(C5) as a pointed cone, to take full advantage of
Gale duality), the second one to a choice in one of the vertices of conv(C5),
and the third one to a choice in the relative interior of an edge.
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Figure 4.18: The three regular subdivisions of

the Gale transform of C5 containing some

non-acyclic cells. They correspond to lifting

heights “lying” in the boundary of convC5.

Example 4.1.42. (Four vectors in general position) We now turn our atten-
tion to the configuration of Example 2.5.8:

A =
(

1 2 3 4

1 −2 1 0
0 1 −2 1

)
, Gale(A) � B =

(
1 2 3 4

0 1 2 3
1 1 1 1

)
.

The indicated Gale transform is (a homogenized version of) a point configu-
ration consisting on four points along a line. Its decomposition into the four
points and the three open intervals is in bijection with the seven non-trivial
subdivisions of A.

We have seen that combinatorial structures of a point configuration carry
all the information relevant to their subdivisions, except for regularity. That
means we can consider any two point configurations A and A′ equivalent if
and only if they have identical sets of signed circuits and, thus, cocircuits.
The following is common language in combinatorial geometry. See [55]
for a full exposition of the theory of oriented matroids:

Definition 4.1.43 (Oriented Matroid). Two (point or vector) configurations
are combinatorially equivalent if they have (up to relabeling) identical sets
of circuits (and thus identical sets of cocircuits, identical dependence signa-
tures, and identical evaluation signatures).

1
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Figure 4.19: These two point configurations have

different oriented matroids, since one of them

contains a pair of circuits (5,13) and (5,24) with

identical positive element 5, and the other does

not. Another reason: one contains a positive

cocircuit with three zero-elements, the other

does not. Thus, there is no relabelling that maps

(co-)circuits bijectively to (co-)circuits.

This is an equivalence relation on the set of all (point and vector) con-
figurations. The equivalence class of a configuration with respect to this
equivalence relation is called its oriented matroid.

One can give a more general definition of oriented matroid (or orientable
matroids), one without any reference to a point or a vector configuration.
One can specify various set of axioms that describe how a set of, e.g.,
circuits should look like (see the authoritative reference [55] for details).
Within this more general framework, some oriented matroids may not be
given by point or vector configuration with the same sets of circuits. Such
oriented matroids are called non-realizable oriented matroids. In this book
we are only directly interested in realizable oriented matroids, thus we can
get away with the definition above. See Figure 4.19 for an example of two
distinct realizable oriented matroids.

That oriented matroids are crucial to the study of triangulations and sub-
divisions of point configurations follows from the following corollary of
Theorem 4.1.31.

Corollary 4.1.44. Two combinatorially equivalent configurations have the
same (up to relabeling) poset of polyhedral subdivisions, in particular the
same set and graph of triangulations.

It is important to observe, however, that regularity of triangulations and
subdivisions cannot be deduced from the oriented matroid alone. It is an
exercise for the reader to think of an example!
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4.2 Manipulating vector configurations

We now define various operations on point or vector configurations and
study their behavior with respect to triangulations and subdivisions. We
begin with joins and products, both very easy operations on the level of
point configurations. The easiest examples are, respectively, pyramids and
prisms. For both joins and products there are easy and natural ways to
produce canonical subdivisions of the new configuration from the original
subdivisions of the operands. If we are after triangulations, however, joins
turn out to be much more natural than products because they preserve affine
independence. Later on we discuss deletion and contraction operations,
which provide proof techniques in combinatorics because they maintain
complementary information of an object. We conclude with the operation
of one-point suspension.

4.2.1 Pyramids and joins

Consider a d-dimensional point configuration A embedded into R
m. Put

a point p outside the hyperplane spanned by A. The resulting new point
configuration is the pyramid of A with apex p. Since it really does not
matter (as we will see) where we put the point p, there is a standard model
of the pyramid construction that we will use. More specifically:
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Figure 4.20: Five vertices of a regular pentagon

and a pyramid over it.

Definition 4.2.1 (Pyramid). Let A be a point configuration labeled by J.
Then

pyram(A) :=
(

J ∗
A 0
0 1

)

is the standard pyramid over A.
Each point configuration combinatorially equivalent to the standard pyra-

mid over A is called a pyramid over A. The new point p∗ =
(0

1

)
is called

the apex of the pyramid, the old point configuration, augmented with a row
of zeroes, is called the base of the pyramid. By abuse of notation, we will
denote the base in the pyramid again by A.

What does the set of all subdivisions of a pyramid look like? Let S ∗
be a subdivision of pyram(A). Since A is a face of pyram(A), it certainly
restricts to a subdivision S of A. This subdivision is obtained by removing
all cells in S ∗ that contain ∗.

Now let S be a subdivision of A. No circuit in pyram(A) can contain ∗,
since p∗ is the only point with a one in the last row. Therefore, any set
of cells that intersects properly in the base will intersect properly after the
addition of ∗ to each cell, by the equivalence of (IP) and (CiP). Thus, adding
a cell C∪{∗} for each cell C ∈ S yields a collection of cells in pyram(A)
that satisfies (CiP) and, obviously, (CP).

Moreover, each point x in the convex hull of the pyramid induces a unique
point y in the base by taking the intersection of the line through the apex
and x with the base. Since S satisfies (UP), there is a cell C having y in
its convex hull. Therefore, p∗ and y, and hence by convexity also x, are
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contained in the convex hull of C∪{∗}. Therefore, adding a cell C∪{∗}
for each cell C ∈ S yields a collection of cells that satisfies (UP) as well.

This means that the set of maximal cells that is obtained by adding ∗
to every maximal cell of a subdivision of A is the set of maximal cells
of a subdivision of pyram(A). Conversely, removing ∗ from every cell in
a subdivision of pyram(A) gives a subdivision of A. This motivates the
following definition:

Definition 4.2.2 (Pyramid over a Subdivision). Let S be a subdivision of
a point configuration A labeled by J. Then the collection of cells

pyram(S ) := S ∪{C∪{∗} : C ∈ S }

is the pyramid over S , which is a subdivision of pyram(A).

The considerations above can be summarized now as follows.

Observation 4.2.3. For all subdivisions S of A, the set pyram(S ) is a
subdivision of pyram(A), and it is regular if and only if S is regular. More-
over, all subdivisions of pyram(A) arise in this way.

The pyramid construction has a natural generalization. The underlying
geometric operation is called the join, and it is a binary operation on two
complexes that reside in skew affine subspaces. We again give a standard
model of this operation for point configurations:

Definition 4.2.4 (Join). Let A and B be point configurations labeled by J
and K, respectively. Then

A∗B :=
(

J×{1} K ×{2}
A 0
0 B

)

is the standard join of A and B, where a label ( j,1) or (k,2) is sometimes
written j1 or k2, respectively. If J and K are disjoint, then the join can be
labeled by J∪K in the obvious way.

A point configuration combinatorially equivalent to the standard join of
A and B is called a join of A and B. The natural embeddings of A and B into
A∗B will, by abuse of notation, again be denoted by A and B, respectively.

Example 4.2.5. In Figure 4.21 we represent the join of two subdivided line
segments, {a1,a2} and {b1,b2,b3,b4}, and one of their resulting triangula-
tions.

b1

b2

b4

b3

a1

a2

Figure 4.21: The join of two subdivisions is a

subdivision of the join.

Of course, the pyramid is a special case of a join. The interesting thing
about joins is that, similar to the pyramid, the set of all subdivisions of a
join is completely determined by the sets of subdivisions of the operands.
The construction for triangulations is similar to what is usually called the
simplicial join of simplicial complexes.
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Definition 4.2.6 (Join of Subdivisions). Let S and R be subdivisions of
A and B, respectively. Then, the join of S and R is the collection of cells

S ∗R := {(C×{1})∪ (B×{2}) : C ∈ S ,B ∈ R } .

Again, if A and B are labeled by disjoint label sets J and K, then the
labeling of the cells need not be modified.

The main property of join subdivisions is that they are the only subdivi-
sions of the join.

Theorem 4.2.7. The join of any two subdivisions of point configurations A
and B is a subdivision of A∗B. Moreover, every subdivision of A∗B arises
in this way.

Proof. Since both A and B are not full-dimensional, there can be no circuit
of A∗B containing points of both pieces. Thus, the join of two subdivisions
satisfies condition (CiP) (see Theorem 4.1.14) if and only if both operands
satisfy (CiP). Property (CP) for the join of two subdivisions is also equiva-
lent to (CP) for both operands, by construction.

Each point x in conv(A∗B) has a representation as a convex combination
of a point u in convA∗B(J) and a point v ∈ convA∗B(K). Therefore, if S
and R are subdivisions of A and B, respectively, then u lies in the convex
hull of a cell C of S and v lies in the convex hull of a cell B of R. This
implies that x lies in the convex hull of C ∪B, which is a cell of S ∗R.
Thus, (UP) is satisfied for the join subdivision.

In summary, each join of valid subdivisions is a subdivision of the join.
Now let S be any subdivision of A ∗ B. This subdivision induces, by
Lemma 2.3.4(iv), subdivisions of both A and B because both configura-
tions are faces of A ∗B. Moreover, each cell in S is exactly the union of
the cells in the two restrictions. But that means that it is the join of the two
restrictions, which proves the second claim.

In summary, the composition of join and restriction to the operands as
well as the composition of restriction to the operands and join yields the
identity. Obviously both maps are order preserving.

Corollary 4.2.8. There is a bijection of posets between Subdivs(A∗B) and
Subdivs(A)×Subdivs(B). This bijection is order preserving with respect
to the refinement order.

4.2.2 Prisms and products

Consider a d-dimensional point configuration A embedded into R
d+1 at

“height” zero. If we put a parallel copy at height one, then we obtain what
is called the prism over A. On the level of convex hulls the prism is the
product with an interval. As in the previous section, we want to give a
standard model of a prism.

Definition 4.2.9 (Prism). Let A be a point configuration labeled by J. Then

prism(A) :=
( J×{1} J×{2}

A A
1 0

)
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is the standard prism over A.
A point configuration combinatorially equivalent to the standard prism

over A is called a prism over A.

There are two direct observations: first, every cell in a subdivision S
of A labels a subconfiguration over which we may take the prism. For
a maximal cell in S this prism is a full-dimensional subconfiguration in
the prism. However, a prism over an independent cell does not yield an
independent subconfiguration in the prism. So, the prism over a subdivision
that we define below cannot be expected to give all possible subdivisions
of the prism; it does not even yield a single triangulation.

Definition 4.2.10 (Prism of a Subdivision). Let S be a subdivision of a
point configuration A that is labeled by J. Then the collection of cells

prism(S ) :=
⋃

C∈S

{
C×{1},C×{2},C×{1,2}}

of all prisms over cells in S is the prism over S .

Our considerations can be summarized as follows (see Figure 4.22).

Figure 4.22: The prism over a square (a cube) is

subdivided. The subdivision is obtained from a

triangulation of the square.

Observation 4.2.11. For every subdivision S of A the collection of cells
prism(S ) forms a subdivision of prism(A).

Prisms can be generalized by products in a similar way as pyramids by
joins. The Cartesian product of Euclidean point sets is a standard construc-
tion in geometry. For completeness we now give our standard representa-
tion of a product for labeled point configurations.

Definition 4.2.12 (Product). Let A = (p j) j∈J and B = (qk)k∈K be point
configurations labeled by J and K, respectively. Then

A×B :=
(

( j,k)
p j

qk

)

j∈J,k∈K

is the standard product of A and B.
A point configuration combinatorially equivalent to the standard product

of A and B is called a product of A and B.

As before, we define an operation on subdivisions that yields subdivi-
sions of the product. It is no surprise that this is the product of cells.

Definition 4.2.13 (Product of Subdivisions). Let S and R be subdivisions
of A and B, respectively. Then, the product of S and R is the collection
of cells

S ×R := {C×B : C ∈ S ,B ∈ R } .

The admittedly obvious result reads as follows.
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Remark 4.2.14. The product of any two subdivisions of point configura-
tions A and B is a subdivision of A×B. Not every subdivision of A×B
arises in this way. In particular, whenever both A and B have more than one
point, then the product of two subdivisions is never a triangulation.

Any subdivision of A×B yields a subdivision of A for every extreme
point q of B via the restriction to the face A×q of A×B. Similarly, we get
a subdivision of B for every extreme point of A.

This means that whereas subdivisions of a join of two point configurations
is completely determined by the subdivisions of the two operands, forming
the product may result in a much more interesting set of subdivisions. The
fact that triangulations of cubes (products of segments) are far from being
understood today is partly explained by this pathology. Another example of
how products yield rich structures can be found in Chapter 7.3. This is in
contrast to other situations where products only lead to trivial objects.

4.2.3 Deletion

Definition 4.2.15. Let A be a configuration with label set J and let i ∈
J be one of its elements. The deletion of i in A is the subconfiguration
obtained by removing the corresponding element from the labeled set A
(that is, removing the corresponding column from the matrix of A). Slightly
abusing notation, we denote it A\ i.

Thus, deleting a point means just “forgetting it”. Not every subdivision
or triangulation of A is compatible with one of A\ i, as the following exam-
ple shows.

Example 4.2.16. Consider Example 3.6.15, the configuration consisting
of the six vertices of a Schönhardt polyhedron, the important non-convex
polyhedron of Example 3.6.1, together with an exterior point along its axis
of symmetry. We use again the coordinates

A =

⎛

⎜⎜
⎝

p1 p2 p3 q1 q2 q3 r
1− ε 0 ε 1 0 0 1/3

ε 1− ε 0 0 1 0 1/3
0 ε 1− ε 0 0 1 1/3
0 0 0 1 1 1 10

⎞

⎟⎟
⎠,

where ε > 0 is small. Figure 4.23 shows the profile of this point set. Con-
sider again the triangulation T of A consisting of the ten tetrahedra:

{q1,q2,p1,p2}, {q2,q3,p2,p3}, {q3,q1,p3,p1},
{r,q1,p1,p2}, {r,q1,q2,p2}, {r,q2,p2,p3},
{r,q2,q3,p3}, {r,q3,p3,p1}, {r,q3,q1,p1},

{r,p1,p2,p3}.

q
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Figure 4.23: Triangulation T shown with a

detached tetrahedron p1p2q1q2.
See Figure 4.23 for a view of the triangulation where the tetrahedron

p1p2q1q2 has been detached. If we delete point r and all the simplices of
T using it, we are left with only the tetrahedra p1p2q1q2, p2p3q2q3 and
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p1p3q1q3. The resulting object comes from twisting a prism, thus these
tetrahedra are almost flat as they were rectangles before the twisting. The
non-convex subregion of conv(A) that is not covered by these tetrahedra is
the Schönhardt polyhedron. As we discussed in Chapter 3, it is famous for
not having any triangulation (unless you allow yourself to insert additional
vertices). That is to say:

There is no triangulation of A\ r that extends the subcomplex
of T not using r.

Thus the deletion will, in general, yield only a canonical partial subdi-
vision that may not be a subset of any full subdivision. This is a big dif-
ference to the two-dimensional case where all partial subdivisions can be
completed.

The reader probably has noticed the similarity of Figures 4.23 and 2.24.
This indicates that non-regularity plays a role in Example 4.2.16. This is
indeed the case, as the following lemma shows:

1 2

3 4

5

1 2

3 4

5

Figure 4.24: A regular triangulation of A\5

extends to a regular triangulation of A.

Lemma 4.2.17. If S is a regular subdivision of A and i ∈ A is one of its
points (meaning that there is a cell in S with i in it), then

• there is a subdivision of A\ i that uses all the cells of S that do not
contain i.

• If S is a regular triangulation, the same statement holds with a reg-
ular triangulation of A\ i.

Proof. If ω is a height vector that produces S , forgetting the entry of ω
corresponding to point i gives a height vector that produces the desired
regular subdivision of A. If S is a triangulation, assume ω sufficiently
generic and this gives a triangulation of A\ i. Details are left to the reader.

Observe, however, that, even in the case of regular subdivisions the dele-
tion process is not unique: different choices of ω in the proof of the lemma
may give different subdivisions of A\ i even if they give the same one in A.
For an extreme example, suppose that A is in general position in the plane
and that S is the regular triangulation obtained by “pulling” i in the trivial
subdivision of A. Then, all the subdivisions of A\ i will do the job.

Please observe that, in some special situations, the assumption of regu-
larity in Lemma 4.2.17 is not necessary. For instance, in dimension two,
the extended validity of Lemma 4.2.17 actually plays a crucial role in the
proof of Theorem 3.3.6. Similarly, for cyclic polytopes, in Section 6.1.5 we
will discuss a canonical way to obtain a triangulation of the deletion from
any triangulation of the whole cyclic point configuration.

Example 4.2.18. Looking again at Example 4.1.4, we can compute all cir-
cuits and cocircuits of A\5. The only circuit remaining is (14,23). While
the cocircuits are now (24, /0),(12, /0),(2,3),(1,4),(34, /0),(13, /0).
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4.2.4 Contraction

By contracting A at a point or vector pi ∈A we essentially mean “projecting
towards pi”. We begin with a very general definition.

Definition 4.2.19. Let A ⊂ R
m be a vector configuration (or a point config-

uration, but in homogeneous coordinates). Let i be one of its elements, and
pi be the corresponding column of A, assumed not to be zero.

Let π : R
m → R

m−1 be any linear surjective map that sends pi to zero.
We call the configuration

Figure 4.25: The contraction at point i consists of

3 collinear vectors.A/i := (π(p j)) j∈J\{i} .

the contraction of A at i, and denote it by A/i (see Figure 4.25 for an
example of a contraction). That is, in matrix notation, A/i equals πA, with
the (now zero) column corresponding to i deleted.

The properties of the contraction operation are sort of opposite to those in
the deletion case. (Almost) every subdivision of A produces a subdivision
of A/i by taking the link at i, while only regular subdivisions of A/i are
guaranteed to be links of some subdivision of A in general.

Lemma 4.2.20. Let S be a subdivision of A that uses the element i ∈ J
(meaning that there is a cell B ∈ S with i ∈ B ∈ S ). Then:

1. linkS (i) is a subdivision of A/i.

2. If S is regular, then linkS (i) is regular.

3. If S is a triangulation, then linkS (i) is a triangulation.

Proof. Again, all statements are easy. For the regularity, the same height
function that gives S on A gives linkS (i) in A/i, as long as we take ω(i) =
0 in the former.

Corollary 4.2.21. The operation “take the link at point i” is a well-defined
and order-preserving map from the subposet of Subdivs(A) consisting of
subdivisions that use i to the poset Subdivs(A/i).

Observe that if i is extremal (that is, a vertex of conv(A) and not repeated
as an element of A), then the subposet referred to in the statement is the
whole Subdivs(A).

Corollary 4.2.22. Let i be an element of A, then every flip between two
triangulations T1 and T2 does one and only one of the following things:

1. Makes the element i appear or disappear.

2. Preserves the link at i, or

3. Produces a flip between the triangulations linkT1(i) and linkT2(i) of
A/i.
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Proof. We assume that linkT1(i) �= linkT2(i) and that neither of the two are
empty, or otherwise we are clearly in one (and only one) of the first two
cases. By the previous corollary, linkT1(i) and linkT2(i) are two different
triangulations of A/i. Now, let T be the “flip”, that is, the subdivision of A
that is only refined by T1 and T2. Again by the previous corollary, linkT (i)
is a subdivision of A/i only refined by linkT1(i) and linkT2(i), so it is a flip
between them.

Example 4.2.23 (Example 3.6.16 continued). We wish to illustrate how to
use the contraction to count flips. Let us explicitly compute the flips in the
triangulation of Example 3.6.16. Recall that our point set and triangulation
were:

A =

⎛

⎜
⎜
⎝

p1 p2 p3 q1 q2 q3 r1 r2

4− ε 0 ε 2 1 1 4/3 4/3
ε 4− ε 0 1 2 1 4/3 4/3
0 ε 4− ε 1 1 2 4/3 4/3
0 0 0 1 1 1 −10 10

⎞

⎟
⎟
⎠.

and

T =

⎧
⎪⎪⎨

⎪⎪⎩

{r1,r2,q1,q2}, {r1,r2,q1,q3}, {r1,r2,q2,q3},
{r1,q1,q2,p2}, {r1,q1,p1,p2}, {r2,q1,q2,p2}, {r2,q1,p1,p2}
{r1,q2,q3,p3}, {r1,q2,p2,p3}, {r2,q2,q3,p3}, {r2,q2,p2,p3}
{r1,q3,q1,p1}, {r1,q3,p3,p1}, {r2,q3,q1,p1}, {r2,q3,p3,p1}

⎫
⎪⎪⎬

⎪⎪⎭
.

Now, every flip removes at least one tetrahedron from the list. Since every
tetrahedron uses one (or both) of r1 and r2, every flip will appear as a flip
in one (or both) of the two links linkT (r1), linkT (r2). To draw the links
we recall the observation that the six points pi and qi project vertically to
a perturbation of “the mother of all examples” with one of its two parallel
triangles slightly rotated. Since r1 and r2 are relatively far along the axis
of this projection, the same is true for the contractions at them. That is, the
contractions look like the top and bottom parts of Figures 4.26 respectively.
There we see that each of the links has exactly four flips: one that removes

p1 p2

p3

q1

q2

q3

p1 p2

p3

q3

q1
q2

r1

r2

Figure 4.26: The links of r1 (bottom) and r2 (top).

the central point and three edge flips on the three sides. We only need to
check which of them are contractions of flips in T . For this let us list the
circuits involved in these flips (remark: each circuit C in A/i gives either
C or C ∪ i as an unoriented circuit in A. Moreover, the former can only
happen if A is not in general position). The list contains seven instead of
eight circuits because the first one gives a flip in both links:

( {r1,r2} , {q1,q2,q3} ),
( {q1,p2} , {r2,p1,q2} ), ( {r1,q1,p2} , {p1,q2} ),
( {q2,p3} , {r2,p2,q3} ), ( {r1,q2,p3} , {p2,q3} ),
( {q3,p1} , {r2,p2,q1} ), ( {r1,q3,p1} , {p2,q1} ).

The first and second columns differ only in that r1 appears on the positive
part of the circuit while r2 lies on the negative part. This reflects the fact
that the triangles {qi,qi+1,pi+1} and {qi,pi,pi+1} in their common link
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are folded convex when seen from r2 and concave from r1. This difference
makes the circuits in the right column not support flips in T , since the
almost-flat tetrahedra {qi,qi+1,pi,pi+1} would need to be in T for that. So,
as we claimed in Example 3.6.16, only the four circuits in the left column
support flips.

Lemma 4.2.24. If S is a regular subdivision of A/i, then there is a regular
subdivision of A that has S as its link at i.

Proof. Consider the height function ω that defines the regular subdivision
S of A/i. Lift the configuration A \ i ⊂ R

d to R
d+1 using exactly the

same heights. Finally, lift the point i to a point i0 at height zero. We claim
that the regular subdivision we produced from these values has its link at
i equal to S . Indeed, a face F in the link of i must be supported by a
hyperplane H with normal vector f . Now, for each point b∈ F its lifting bω

is projected, by the projection orthogonal to i, onto its lift π(b)ω , while f is
still projected onto itself because f is perpendicular to i0. Thus the normal
vectors inducing supporting hyperplanes are all still supporting hyperplanes
in the orthogonal projection.

To show that regularity is needed in this result, we use essentially the
same example as in the case of the deletion.

Example 4.2.25. Let A be the point configuration of Example 4.2.23 (the
continuation of Example 3.6.16). We delete the point r1 from the configu-
ration

B = A\ r1 =

⎛

⎜⎜
⎝

p1 p2 p3 q1 q2 q3 r2

4− ε 0 ε 2 1 1 4/3
ε 4− ε 0 1 2 1 4/3
0 ε 4− ε 1 1 2 4/3
0 0 0 1 1 1 10

⎞

⎟⎟
⎠.

The first six points of B define the vertices of the prism obtained by truncat-
ing, at point (2,2,2), the triangle-based pyramid that results as the convex
hull of the first six points above and (2,2,2). Since point r2 is further above
this apex, the contraction of this configuration is exactly “the mother of all
examples”, that is, the vertex set of two concentric triangles in a plane. We
consider the following simplices with vertices among the points of B\ r2:

T = {q1q2q3,p1p2q1,p2q1q2,p2p3q2,p3q2q3,p1p3q3,p1q1q3}.

If this was the correct link of a certain triangulation (or subdivision) S of
B, S would consist of T ∗ r2 plus a certain triangulation (or subdivision)
of the prism conv({B\ r2}) with the property of using the three diagonals
p2q1, p3q2, and p1q3 of the prism. But the prism does not have any trian-
gulation using this cyclic set of diagonals. Hence:

There is no triangulation of B that extends the triangulation T
of the link at r2.
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To better appreciate the concept of contraction it is worth looking at a
related construction.

Definition 4.2.26. Let A = (p j) j∈J be a point configuration in R
d and let i

be one of its extreme elements. That is, assume that {i} is a face of A.
Let H be any hyperplane that separates pi from the rest of the configura-

tion. Let π : J \ {i} → H be the central projection that sends each element
j ∈ J \ {i} to H. That is, geometrically, π( j) = H∩ [pip j], for each j; but
recall that A may have repeated points, which will still be repeated by π .

We call the homogeneous contraction of A at i the resulting point config-
uration

A//i := (π( j)) j∈J\{i} .

Remark 4.2.27. A//i has one less element and rank one less than A. Even if
A does not have multiple points, A//i may have them (for instance, points
of A lying on the same ray from i).

Example 4.2.28. If we do the homogeneous contraction of the point con-
figuration formed by the vertices of a regular cube at any one of its vertices,
say vertex v in Figure 4.27, we will obtain a point configuration bounded
by a triangle, with a point in its center representing the point antipodal to
v and three more vertices along the edges representing vertices of the cube
opposite to v along each of the three facets containing v.

v

a3

a2

a1 a3

a1

c

b1 b3

a2

b2

b1

b2

b3c

Figure 4.27: The homogeneous contraction of

vertex v of a regular cube.
Strictly speaking, the definition of the homogeneous contraction is not

unique, since the point configuration obtained depends on the choice of
the hyperplane H. But different choices produce configurations which are
projectively equivalent and, in particular, have the same subdivisions and
triangulations (See Appendix 2.6 of [339] for a description of projective
transformations and projective equivalence). Also, readers familiar with
polytope theory should keep in mind that the homogeneous contraction is a
generalization of the vertex figures (see Lecture 2 in [339]).

Now we explain what the homogeneous contraction has to do with the
contraction we defined at the beginning.

Remark 4.2.29. Assume that A is configuration of points in R
d , given in

homogeneous coordinates as a (d + 1)×n matrix via the addition of a con-
stant row of 1’s to the coordinates of the points. Let π : R

d+1 → R
d be the

projection with matrix
π =
(
I −pi

)
,

where I is the identity d ×d matrix and pi is the point at which we want to
take the contraction, without its last homogenization coordinate.

The contraction A/i := πA has as columns
{

p j −pi : j ∈ J \ {i}} ,
where p j denotes the j-th point of A. Then, the homogeneous contraction of
A, considered as a homogeneous configuration, is obtained from the linear
contraction A/i by just scaling each column by a positive scalar λi in such
a way that the scaled points λi(p j −pi) are coplanar.
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Finally, there is a rather useful duality relation between the deletion and
contraction operations:

Lemma 4.2.30. Let A ∈ R
m×n be a vector configuration of rank k with n

elements. Suppose p is a vector of the configuration. Then Gale(A/p) is
equal to Gale(A)\p.

Proof. By construction, any Gale transform of A consists of the rows of a
matrix B, such that AB = 0, while the contraction of p is given by a matrix
π projecting A where p is projected to the origin. This means that B minus
the row corresponding to p is still a Gale transform for πA.

Corollary 4.2.31. The circuits (cocircuits) of the contraction A/p are the
cocircuits (circuits) of any element of Gale(A)\p.

4.2.5 One-point suspension

In this section we will meet another operation that behaves quite well with
respect to the space of all subdivisions.

Definition 4.2.32. Let A be a configuration in R
m with label set J. Let i ∈ J

be an element, whose corresponding column is pi.
Then the standard one-point suspension A i

i of A over i is given as

A i
i :=
( J \ i i1 i2

A\pi pi pi

0 1 −1

)
.

Any point configuration combinatorially equivalent to the standard one-
point suspension of A will be called a one-point suspension of A.

The general picture for a one-point suspension is as follows: Suppose
that A lies in a linear hyperplane H. Let q and r be vectors outside H with

pi ∈ relint({q,r}).

The one-point suspension of A over the element i, denoted by A i
i is the

following configuration:

A i
i :=
(

J \ i i1 i2
A\pi q r

)
.

H

i′

i′

i

Figure 4.28: The one-point suspension

construction.
See Figure 4.28 for an example. Observe that in the general definition i

need not be an interior point. The assumption that A lies in a hyperplane is
not relevant, since we can always embed R

d as a hyperplane in R
d+1.

This operation is, in a sense, an inverse of the contraction: contracting
either of the two new points i1 or i2 in A i

i we recover exactly the configura-
tion A (check it!). Even if the operation seems too specific and perhaps less
natural than both deletion and contraction, it has the following very nice
feature:
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Theorem 4.2.33. The posets Subdivs(A) and Subdivs(A i
i ) are isomor-

phic. The isomorphism always maps triangulations to triangulations, lexi-
cographic ones to lexicographic ones, and regular subdivisions to regular
subdivisions.

Proof. The isomorphism sends each subdivision S of A to the subdivision
S i

i consisting of the following cells:

• The cells B∪{i1} and B∪{i2} for every cell B ∈ S with i �∈ B.

• The cell B∪{i1, i2} for each cell B∪{i} ∈ S containing i.

Said differently: S i
i consists of the link of i in S joined to the segment

{i1, i2}, together with the anti-star of i in S joined to the vertices {i1} and
{i2}. See Figure 4.29 for an example. It is easy, and left to the reader,

a

a′

a′

Figure 4.29: The one-point suspension

construction.

to check that S  i
i is a polyhedral subdivision of A i

i . That this process
induces a bijection, preserving order in both directions, follows from the
fact that taking the link at i1 in a subdivision of A i

i can always be done and
is the inverse operation.

That the bijection preserves regularity can be easily proved if we restrict
our attention to height functions on A and A i

i that give height zero to the
three special points i, i1 and i2. In this way the spaces of height functions on
both configurations are identified to one another, and the height functions
producing a regular subdivision S on A will produce the regular subdivi-
sion S i

i on A i
i .

Finally, that triangulations are sent to triangulations is straightforward
from the definition of S i

i .

In fact, there is an easier way to see that the one-point suspension does
not change the refinement poset of regular subdivisions. This, however,
requires tools from Chapter 5 that utilize the Gale transformation (see Sec-
tion 4.1.3). At this point, we prepare this by investigating what a Gale
transform of the one-point suspension A i

i of A at point i ∈ J looks like.
The result will be strikingly simple.

The following considerations provide an excellent example for computing
Gale transforms without calculating: We only use Lemma 4.1.38 in our
reasoning. First of all, the one-point suspension contains two versions i1
and i2 of point i with the following property (you prove this in Exercise 4.11):

• Whenever i is in a dependence vector V of A with i ∈V+, then there
is a dependence vector V i

i in A i
i with i1, i2 ∈

(
V i

i

)
+.

• There are no other dependence vectors containing i1 or i2.

This means that, by Lemma 4.1.38, in any Gale transform of A i
i , any

cocircuit with i1 or i2 in its zero-set has both i1 and i1 in its zero-set. In other
words, every hyperplane that contains one of i1 or i2 contains both. This
means that there is no hyperplane separating i1 and i2. This is only possible
when i1 and i2 are parallel vectors in the Gale transform. Therefore, we can
assume, without loss of generality on oriented matroid level, that i1 and i2
is a repeated element.
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We summarize:

Proposition 4.2.34. A Gale transform of the one-point suspension A i
i is,

up to combinatorial equivalence, obtained by doubling element i in a Gale
transform of A and labeling the repeated element by i1 and i2, respectively.

In Exercise 5.21 you will apply this together with the tools of Chapter 5
to obtain an almost obvious proof of the bijection of Theorem 4.2.33 in the
regular case.

As said at the beginning, although in our examples so far we apply the
one point suspension to an interior point, it can be applied to any point in
the configuration. See Figure 4.30.

a

a′

a′

Figure 4.30: A one-point suspension of an

extreme point.

Moreover, iterating the construction gives rise to the following nice ex-
amples, the details of which will be subject of Exercise 4.12:

• If the one-point suspension is applied three times to the configuration
consisting on three copies of the same point (one time on each of the
original points), the result is the vertex set of an octahedron. More
generally, if it is applied d times to d copies of the same point, it gives
the configuration {±e1, . . . ,±ed} in R

d . This is the vertex set of the
so-called cross-polytope of dimension d. In the exercise you will—
among other things—show that the (regular) cross-polytope has ex-
actly d triangulations, each using a different diameter (edge joining
two opposite vertices) of it.

• If it is applied to the interior point in the configuration of Exam-
ple 4.1.4 it produces a non-regular octahedron. Hence, this non-
regular octahedron has four triangulations (as opposed to the regular
octahedron, which has three). There are octahedra with six triangula-
tions, but no more; see Section 5.5.

• If it is applied to an independent configuration, it produces an inde-
pendent configuration of one more dimension. No surprise, since
both have exactly one triangulation. Similarly, when applied to a
circuit it produces a circuit of one dimension more.

More interestingly, when the one-point suspension is applied to a non-
extreme element of an acyclic configuration, it produces a configuration
with one less non-extreme element (since i1 and i2 are extreme elements of
A i

i ). In particular, the one-point suspension applied to all the non-extreme
points of an arbitrary point configuration A one by one produces a config-
uration in convex position (the vertex set of a polytope) with exactly the
same set of triangulations and subdivisions as A. That is to say:

Theorem 4.2.35. Let A be an arbitrary point configuration, of dimension d
and with n elements. Let v be the number of elements of A that are extremal.

Then there is a point configuration Ã in convex position, of dimension
d + n− v and with 2n− v elements such that Subdivs(A) and Subdivs(Ã)
are isomorphic as posets. The bijection between them preserves regularity.
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Put differently: Unless you are interested in a fixed dimension, the study
of subdivisions of point configurations in convex position cannot be consid-
ered to be simpler than the same for arbitrary point configurations.

Observe that a point configuration in convex position cannot have re-
peated points (see Remark 2.1.21). Also, note that in convex position the
“bullet-proof” definition of subdivision via labeled cells is equivalent to
the more geometric one of Section 2.2. Thus, Theorem 4.2.35 is a new
justification for the conceptual approach used in this book: Without this
approach, sets in non-convex position would give rise to new, more compli-
cated, spaces of subdivisions.

4.3 Generating polyhedral subdivisions

The concept of regular subdivision allows us to easily construct triangula-
tions of any (point or vector) configuration: Given a configuration A with
label set J, choose a random height function ω : J → R and compute the
convex hull of the lifted point set to extract from it the regular subdivision
S (A,ω). Typically, the subdivision will be a triangulation (see Part 1 of
Lemma 2.3.15). If it is not, you can still “perturb” the height vector ω (as
in part 3 of the same Lemma). In this section, we revisit two combinato-
rial ways of constructing triangulations. We saw already particular cases in
Chapter 3, but here we present their general definition valid in all dimen-
sions:

4.3.1 The placing (or pushing) triangulation

Let A be a configuration of dimension d and i ∈ J be one of its elements.
In these conditions, we say that a face F of J \ {i} is visible from i if there
is a linear functional which is zero on F , positive on i and negative on the
rest of J. Put differently, visible faces are those that have a supporting
hyperplane H separating the point pi labeled by i from relint(J \ i). We say
that a set B ⊂ J \ i is visible from i if it is contained in some face visible
from i. Since faces of visible faces are visible, this is equivalent to saying
that the carrier of B is visible from i. Another characterization more related
to our definition of subdivisions is:

Lemma 4.3.1. Let F be a face of J \ i and let point x be in the relative
interior of F. Then F is visible from a point pi if and only if the segment
[x,pi] intersects conv(J \ i) only at x.

Observe in particular that if pi ∈ conv(J \ i) then no face is considered
visible. That is, when we say “visible” we mean “externally visible”.

Proof. For Part (i), when F is visible from i then, for any point x in its
relative interior, the line segment [x,pi] is also separated by a supporting
hyperplane. Thus the one-point intersection condition is necessary. For the
converse, let us proceed by contradiction. Suppose F is not visible from
i, then consider that the intersection M of all supporting half-spaces whose
hyperplane supports F must contain the point pi. But then any line segment
[x,pi] must cross the interior of conv(J \ i), a contradiction.
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Part (ii) follows easily from Part (i) because the intersection

relint(conv(B∪{i}))∩ conv(J \ i) = /0

is non-empty precisely when, for some x, the line segment [x,pi] intersects
conv(J \ i) at a point other than x.

Lemma 4.3.2. Let A \ i denote the configuration obtained by deleting the
element i from A (that is, by deleting the column labeled i, if A is repre-
sented as a matrix). Let T be a subdivision of A\ i.

Then, the following is a subdivision of A and it is the only one that ex-
tends (i.e., contains) T .

T ′ := T ∪{B∪{i} : B ∈ T and is visible from i} .

Observe that another description is that the new subdivision T ′ is equal
to T together with the join of i and the subcomplex of T visible from i.
Observe also that if T is a triangulation then T ′ is a triangulation too.

Proof. If i lies in conv(J \ i), then T is already a subdivision of A and we
cannot add anything to it without violating the proper intersection property
of subdivisions. If J \ i has smaller rank than i then every subdivision of A
is obtained by joining a subdivision of A \ i to i, by Lemma 2.2.2, and the
result is also true.

In the general case, it is intuitively clear that T ′ is indeed a subdivision of
A, but we postpone a formal proof of it until Section 4.3.4 (Lemma 4.3.10),
where this statement is generalized. What is easy to prove is that no other
subdivision satisfies the required properties. Indeed, any such subdivision
must consist of all of T plus some sets of the form B ∪ {i}. The clo-
sure property implies that the set B ⊆ J \ {i} is then a simplex in T , and
for T ′ to satisfy the intersection property, B must be visible from i, by
Lemma 4.3.1.

Definition 4.3.3 (Placing, or pushing, subdivision). The subdivision T ′ of
the previous lemma is said to be obtained by placing i in the subdivision T
of A\ i. The triangulation of A obtained by placing its points one by one in
a certain order is called the placing, or pushing triangulation of A for that
order. (The starting step is the unique “triangulation of the first point”).

The insertion ordering of the points in the placing process can be given
by some geometric property (e.g., a “sweep-hyperplane ordering” is the or-
dering by a linear functional), or it may be completely arbitrary. Figure 4.31
shows an example of the process.

Figure 4.31: A placing triangulation. At each step

we mark the new point being placed.

Lemma 4.3.4. Let A be a configuration, with labels J = {1, . . . ,n}. There is
a constant c0 > 0 such that the pushing triangulation of A (for the ordering
given by the labels) equals the regular triangulation obtained by taking any
height vector ω : J → R with ω(i+ 1) > ω(i)c0 > 0 for all i.
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Loosely speaking, this statement can be rephrased as “the pushing trian-
gulation is the regular triangulation obtained by lifting the points in a cer-
tain order, with each newly lifted point sufficiently higher than the previous
ones”.

Proof. Let T2 be a regular subdivision of A obtained as in the statement,
for a certain constant. We will present a particular c that makes T2 equal to
the placing triangulation. We proceed by induction on the number of ver-
tices. The statement holds for dimension many vertices. By the inductive
hypothesis on the number of vertices, we assume that there is a constant
c0 > 0 such that, if c > c0, then the placing triangulation T of A \ pn

equals the regular triangulation for the heights (ω(1), . . . ,ω(n− 1)) that
satisfy ω(i+ 1) > ω(i)c > 0 for all i.

For each maximal simplex B ∈ T , we claim that there is a constant cB

such that, if c > cB, then B is a simplex in T2. This implies that for any
c bigger than c0 and the maximum of all the cB’s, the triangulation T2

extends T . This indeed proves that T2 is the placing triangulation, by the
uniqueness part in Lemma 4.3.2.

To prove the claim, consider a particular B = {i1, . . . , ik}. Since B is
maximal, it is a basis of the linear span of A (or an affine basis of the affine
span if A is a point configuration). Write pn as a linear combination of B,
that is, write pn = ∑λkpik . The hyperplane containing the lifted simplex
Bω contains the point (pn,∑λkω(k)). It is enough to choose cB > ∑ |λk|.
This suffices, since then

∑λkω(k) ≤ ∑ |λk|ω(n)/cB ≤ ω(n).

Lemma 4.3.5. The placing of i in subdivisions of A\ i is a well-defined and
order-preserving map from Subdivs(A \ i) to Subdivs(A), with the follow-
ing properties:

1. Placing i in a triangulation produces a triangulation.

2. Placing i in a regular subdivision produces a regular subdivision.

3. Placing i in a non-regular triangulation produces a non-regular tri-
angulation.

We recall that a map f : (P,≤)→ (Q,≤) between posets is order preserv-
ing if a ≤ b implies f (a) ≤ f (b).

Proof. All the statements are easy, and left to the reader. For the part about
regular subdivisions see perhaps the proof of Lemma 4.3.4. For the part
about non-regular ones, observe that if heights exist for the triangulation
after placing the point i, then the same heights (restricted to the rest of
points) work before the placing.

However, as strange as it may seem, there is no (natural) map in the other
direction. See again Example 4.2.16.
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4.3.2 The pulling triangulation

We now define the “opposite” triangulation to a placing triangulation. One
way of doing it is to just take the opposite lifting heights. That is, we take
heights with ω(i + 1) < cω(i) < 0, with c positive and large. Remember,
however, that negative lifting heights are only allowed for point configura-
tions (or, equivalently, for acyclic vector configurations). So, we assume in
this subsection that A is acyclic.

Lemma 4.3.6. Let A be an acyclic configuration, labeled by J = {1, . . . ,n}.

1. There is a constant c0 such that every height vector ω : J → R sat-
isfying ω(i + 1) < c0ω(i) < 0 for all i produces a triangulation T ,
and the triangulation is unique.

2. In this triangulation, every maximal simplex contains n.

3. For each facet F of J, let TF denote the triangulation obtained in
this way for the restricted configuration A|F (and with the restricted
lifting). Then, the simplices of T are precisely the ones obtained by
joining n to all the simplices in all the TF ’s such that n �∈ F.

Figure 4.32: A pulling triangulation.

Proof. The proof uses induction on the dimension of the point configura-
tion. In particular, we assume parts (1) and (2) hold for the triangulations
of the facets of J and use this to prove the three statements for A itself.

Actually, the first and third statements follow from the second one. For
statement (3), we proved in Lemma 2.3.15 that the restriction to a face F
of conv(A) of a regular triangulation of A equals the regular triangulation
of AF obtained with the same heights. In particular, if (2) holds, there is
only one possibility for the triangulation T , namely the one stated in part
(3). This also proves part (1).

To prove part (2), we need to prove that for any particular potential full-
dimensional simplex B⊆ J\{n} there is a constant cB such that, for any lift-
ing with c > cB, the point n is lifted below the hyperplane passing through
the lifted vertices of B. This prevents B from being in the regular triangu-
lation produced by the lifting. Taking c0 to be greater than the maximum
of the cB’s (which are a finite set) any triangulation obtained satisfies part
(2). If c0 is also greater than the constant needed for obtaining the desired
triangulation TF on every facet, then the triangulation also satisfies part (3).

It remains to prove the claim for each B, but this is exactly the same
computation we did in Lemma 4.3.4, except now the sign of the lifting
heights is reversed and we get the opposite conclusion.

Definition 4.3.7 (Pulling triangulation). The pulling triangulation of an
acyclic point configuration A, with respect to a given ordering of the labels,
is the regular triangulation obtained by taking heights ω(i+1)< c0ω(i) < 0
for every i and for a positive and sufficiently big positive constant c0.
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The combinatorial description of the pulling triangulation as the join of
the last point to “the pulling triangulations on the faces of A that do not
contain the last point” gives another reason why the triangulation is not
well-defined for non-acyclic configurations. In a non-acyclic configuration,
there may not be any “face that does not contain the last point”. For exam-
ple, if conv(J) = R

d (that is, if A is totally cyclic), then J itself is the only
face of J!

Finally, we can make two simple, but useful, observations about the
pulling triangulation of a point set: (1) It always uses the last point as a
vertex, but no other interior point, and (2) If the point set is in general posi-
tion (more generally, if there is no affinely dependent subset of A contained
in a facet of conv(J)) then the pulling triangulation depends only on which
is the last point and not on the rest of the ordering.

4.3.3 Lexicographic triangulations

Lexicographic triangulations are the combination of pushing and pulling
triangulations. We again assume the point set to be ordered, but additionally
we prescribe a direction (a sign) to lift each point.

Observe that a more explicit way of describing height functions that pro-
duce the pushing and the pulling triangulation is ω(i) = ci for the pushing
and ω(i) = −ci for the pulling, where in both cases c is positive and suffi-
ciently big. As in the case of the pulling triangulation, we here assume that
our configurations are acyclic.

Definition 4.3.8 (Lexicographic triangulation). Let A be an acyclic config-
uration with label set J = {1, . . . ,n}.

The lexicographic triangulation of A for the given ordering and a choice
of signs (ε1, . . . ,εn) ∈ {−1,+1}n is the regular triangulation S (A,ω) ob-
tained by taking ωi = εici for every i, and for a positive and sufficiently big
positive constant c.

The proof that this triangulation is well-defined, in the sense that there is
a c0 such that the regular triangulation S (A,ω) is the same for all c > c0,
as well as a description of this triangulation, can be obtained by combining
the proofs of Lemmas 4.3.4 and 4.3.6. Indeed:

Lemma 4.3.9. Under the conditions of Definition 4.3.8:

• If εn = +1, then the lexicographic triangulation of A equals the tri-
angulation obtained as the union of the lexicographic triangulation
of A\n and the simplices joining n to the (triangulated) faces of A\ i
visible from it.

• If εn = −1, then the lexicographic triangulation of A equals the
unique triangulation in which every maximal simplex contains the
last point n and which, restricted to each proper face F of A, coin-
cides with the lexicographic triangulation of that face.

Proof. We can proceed by induction on n. Clearly the statements are true
for n = 1.
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If εn = +1, the same proof of Lemma 4.3.2 shows that there is a cn

such that, for every c > cn, the regular triangulation S (A,ω) contains a
triangulation of A\n. This triangulation must be the regular triangulation of
A\n for the restricted height function (which we assume to be the same for
all sufficiently big c by inductive hypothesis). By Lemma 4.3.4, S (A,ω)
is as stated.

If εn =−1, then there is a cn such that for every c > cn the regular triangu-
lation in question has all maximal simplices containing n. Since restricted
to each facet of conv(A) the triangulation must coincide with the lexico-
graphic triangulation of that facet, we get the statement by induction.

As before, these descriptions tell us how to recursively construct the lex-
icographic triangulation without knowing exactly how big the height con-
stant c needs to be. In the next section we come back to lexicographic
triangulations and give a different description of them which will explain
the reason for the names “pushing” and “pulling” that we used. The intu-
itive image is that in the lifted point set, in a first approximation all points
can be considered “almost coplanar” except for the last point n which has
been “pushed up” or “pulled down”. See Figure 4.33.

4.3.4 Pushing and pulling refinements

We know that the simplest height vector, the all-zero function, produces
the simplest regular subdivision, the trivial one. What subdivisions are pro-
duced by the next simplest height vectors, which are zero in all but one of
the points?

n

na

a

a

n (+)

(−)

Figure 4.33: Pushing (middle) and pulling

(bottom) a point in a point set (top).

Lemma 4.3.10. Let i∈ J be an element of our configuration and let ω : J →
R be a height vector with ω( j) = 0 for all j ∈ J \ {i}. Let S = S (A,ω)
be the regular subdivision produced by ω:

• If ω(i) > 0, then

S = {F : F ≤ J \ i}∪{F∪{i} : F ≤ J \{i} and F is visible from i}.

• If ω(i) < 0 (and we assume that A is acyclic), then

S = { /0}∪{F ∪{i} : a �∈ F ≤ A}.

Proof. (i) Suppose ω(i) > 0. Then J \{i} is clearly a cell in S (projection
of the horizontal lower face of Aω ).

If i ∈ conv(J \ i) then J \ i together with all its faces is already a subdi-
vision of A. The statement holds because in this case no face of J \ i is
visible.

If i �∈ conv(J)\ i, that is, if i is extremal in A, then let F be a face of J \ i
visible from i, and let H be a supporting hyperplane of F , not containing i.
The hyperplane of R

d+1 containing H×{0} and the lifted point pω
a contains

the lift of F ∪{i} and leaves the rest of Aω above. Hence, F ∪{i} is also a
cell in S . To see that this is the full list of cells in S , it suffices to show
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that the relative interiors of these cells already cover conv(J), and observe
that Property (IP) prevents any other cell to appear, or otherwise some point
would be covered by two relative interiors.

Clearly, conv(J \ i) is already covered by the relative interior of J \ i and
its faces. So, let x ∈ conv(J) and assume x �∈ conv(J \ i), and that x �= pi.

Consider the ray, or half-line, l starting at pi and passing through x. This
ray must intersect the polytope conv(J \ i) because otherwise x cannot be
written as a convex combination of i and a point in conv(J \ i). Let x′ be
the first point where the ray l hits conv(J \ i) and let F be the carrier face of
point x′ in conv(J \ i). By Lemma 4.3.1 F is visible from pi. By construc-
tion x is in the convex hull of F ∪ i.

(ii) If ω(i) < 0, then let F be a face of A not containing i. Since F must
be a proper face, let H be a supporting hyperplane. Again, the hyperplane
of R

d+1 containing H×{0} and iω contains Fω ∪{iω} and leaves the rest
of Aω above. Hence, F ∪{i} is a cell in S . We claim that this (together
with the empty face!) is the full list of cells in S . That is:

T = { /0}∪{F ∪{i} : i �∈ F < A}.

The proof that the list is complete is left to the reader.

The regular subdivisions described in these two paragraphs is called the
pushing (or pulling, respectively) of i in the trivial subdivision of A. The
idea is that we start with (a height vector that produces) the trivial subdivi-
sion and then “push” i up or “pull” it down slightly.

Using the notion of regular refinement introduced in Definition 2.3.17
and studied in Lemma 2.3.16 we can apply the pushing or pulling to sub-
divisions other than the trivial one. Recall that the regular refinement of a
subdivision S with respect to a height function ω : J →R is the polyhedral
subdivision

Sω := ∪B∈S S (A|B,ω).

Definition 4.3.11. Let S be a subdivision of a point configuration A. Let
i ∈ J be an element in the label set. Let ω : J → R be a height function that
is zero on J \ {i} and ±1 at i. We call the subdivision Sω the

1. Pushing refinement of i in S if ωi = +1, or the

2. Pulling refinement of i in S if ωi = −1, and every cell of S that
contains i is acyclic.

Observe that the pulling refinement is not well-defined if i lies in some
non-acyclic cell of S .

Lemma 4.3.12. Let S be a polyhedral subdivision of A and let i ∈ A.
Then, the pushing (respectively, pulling) of i in S is the subdivision of A
obtained by pushing (respectively, pulling) i in each cell B of S .

In particular, the pushing and pulling refinements of a regular subdivi-
sion are regular.
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Proof. The first part is just Lemma 2.3.16.
For the regularity, observe that the pushing or pulling of a single element

in a subdivision S produces, by Lemma 4.3.10, the regular refinement Sω ,
for the height function ω specified there. By Lemma 2.3.16, the regular
refinement of a regular subdivision is regular.

We now relate the pushing-pulling operation to the pushing and pulling
triangulations (more generally, to the lexicographic triangulations) intro-
duced in Sections 4.3.1, 4.3.2, and 4.3.3. We recall that in the more general
form, there is a lexicographic triangulation associated to each ordering of
the points of A and the choice of one sign, + or −, for each point.

Proposition 4.3.13. The lexicographic triangulation of A for a given or-
dering and string of signs is the one obtained by starting with the trivial
subdivision and pushing or pulling the points, as indicated by their signs
(positive for pushing, negative for pulling), in the reverse order.

Proof. We prove this by induction on the number n of points in A. The
base case n = 1 is trivial and for the inductive step we distinguish the cases
where the sign given to the last element n is positive or negative.

• If the sign is positive, the lexicographic triangulation is, by definition,
the only one that extends the lexicographic triangulation of A\n for
the given ordering and signs. By inductive hypothesis, the latter is
obtained from the trivial subdivision of A \ n by the corresponding
reverse sequence of pushings and pullings on A \ n. On the other
hand, the sequence of pullings and pushings applied to A starting
with n, first creates the cell A \ n (among others) and then refines
it in the lexicographic manner. Hence, it extends the lexicographic
triangulation of A\ n.

• If the sign is negative the lexicographic triangulation, by definition,
refines the subdivision S obtained from the trivial one by pulling
n, and agrees with the lexicographic triangulation (for the restricted
ordering and signs) on each facet F not containing n. By inductive
hypothesis, the lexicographic triangulation on F is the one obtained
by pushing and pulling the points in these facets in the restricted (re-
verse) orderings, and by Lemma 4.3.12 it agrees with the subdivision
obtained by pushing and pulling directly in F ∪{n} (observe that F
is also a facet of this). Hence, the two triangulations coincide.

an

(+)

n−2
a

an−1

(−)

(+)

Figure 4.34: A lexicographic triangulation

obtained by first pushing the point n, then pulling

n−1 and finally pushing n−2. You have to

imagine you are looking at the lifted point set

from below.
4.4 Two equivalent characterizations of flips

The definition of a flip we gave in Section 2.4 is conceptually easy. However,
in proofs and in computer calculations it is not very useful: Given a
triangulation T , in order to find a flip, we need to find an almost triangulation
that T refines. We have seen that signed circuits played a fundamental role
in combinatorial characterizations of subdivisions; here they are useful again
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for a characterization of flips. This is no surprise, since circuit signatures
were already used to specify the two possible triangulations of a corank-1
configuration, and this was the starting idea for flips in the first place.

4.4.1 Flips via circuits

The closure Property (CP) of triangulations can be rephrased by saying that
a triangulation is an (abstract) simplicial complex. In particular, we can
apply constructions on simplicial complexes to them, like the link and the
join (see Sections 2.6.1 and 4.2.1).

When we defined flips in Section 2.4, we saw that any corank-1 configu-
ration that is not minimal is a pyramid over a corank-1 configuration with
one less point, the deleted point being the apex of that pyramid. Thus, the
two possible triangulations of any corank-1 configuration are repeated pyra-
mids over the two possible triangulations of the unique circuit contained in
it. A repeated pyramid (pyramid of the pyramid of . . . of the pyramid
over . . . etc.) can be expressed as a join with the simplex formed by all
the apices, i.e., those points inserted when doing a pyramid construction.
Let us call this simplex the link simplex (see Figure 4.35). Since all corank-
one cells in an almost-triangulation contain the same circuit, any of the two
possible triangulations of this almost-triangulation contain the join of a tri-
angulation of the circuit with the simplicial complex of all link-simplices,
one for each corank-one cell. Conversely, each maximal cell in a triangu-
lation of the unique circuit in an almost-triangulation has the same link in
the almost-triangulation. This observation can be used to characterize flips
combinatorially.

Figure 4.35: How a corank-one configuration

with five points in three-space arises from the

one-dimensional circuit Z = 123 by a repeated

pyramid and by joining it to the link-simplex

L = 45.

Theorem 4.4.1. Let T1 and T2 be two triangulations of the same point
configuration A. Then: T1 and T2 differ by a flip if and only if there is
circuit Z of A such that

(i) They contain, respectively, the two triangulations T +
Z and T −

Z of Z.

(ii) All the maximal simplices of T +
Z and T −

Z have the same link, L , in
T1.

(iii) This is the only difference between T1 and T2. That is, removing the
subcomplex T +

Z ∗L from T1 and putting T −
Z ∗L instead produces

T2.

Definition 4.4.2. A flip is supported at the circuit Z if Z is the circuit as in
the statement of Theorem 4.4.1.

Before we prove Theorem 4.4.1, note that if Z is a full-dimensional circuit,
then the link condition is void. The link of a full-dimensional simplex in a
triangulation is the empty complex{ /0}. This happens, for example, for point
configurations in general position, all of whose circuits are full-dimensional.

Proof. Let T1 and T2 be the two triangulations in question. If they are
the two refinements of an almost triangulation T , their description in the
paragraph prior to Theorem 4.4.1 of the proof of part (ii) shows that indeed
they differ by a flip.
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Figure 4.36: The two possible triangulations of a

corank-one configuration: in both of them, all

maximal simplices contain the link simplex; more

specifically, both triangulations arise as joins of

the two possible triangulations of the circuit with

the common link simplex.

Conversely, suppose they differ by a flip on a certain circuit Z. Let T +
Z

and T −
Z be the two triangulations of Z. The second condition in the def-

inition of circuit implies that we can remove T +
Z ∗L from T1 and insert

{Z} ∗L , to get a subdivision that is refined by T1. This subdivision is an
almost triangulation since its unique minimal dependent cell is Z. We can
do the same in T2. The third condition implies that the almost triangulation
obtained is the same one.

Example 4.4.3 (Dimension zero). If A has dimension zero, then it consists
of k copies of a single point. Each triangulations is the selection of one of
the copies and the exchange of one copy to another is a flip. Gtri A is the
complete graph Kn.

Example 4.4.4 (Example 2.2.11 continued). Let A be the point configu-
ration of Examples 4.1.4 and 2.2.11. The whole poset of subdivisions is
isomorphic to a quadrilateral, and shown in Figure 2.37. (There we only
said that this is the poset of regular subdivisions, but all subdivisions are
regular in this example. The reader can check this on his/her own or wait
until Section 5.5).

From the poset structure we conclude that the graph of flips is a square.
The reader is encouraged to verify this via Definition 4.4.2.

Example 4.4.5 (1-dimensional configurations in general position). If A
consists of n distinct points along a line, then to specify a triangulation
we just need to say which among the n− 2 interior points are used as ver-
tices. Flips correspond to insertion or deletion of a single point in the choice.
Gtri A is the graph of the (n−2)-dimensional cube, as in Figure 4.37.

Example 4.4.6 (The octahedron). Let

A =

⎛

⎜
⎜
⎝

1 2 3 4 5 6

1 0 0 −1 0 0
0 1 0 0 −1 0
0 0 1 0 0 −1
1 1 1 1 1 1

⎞

⎟
⎟
⎠.

This is the vertex set of a regular octahedron, with indices given so that i
and i+ 3 are opposite, for i = 1,2,3.

A has three triangulations, and three circuits. Each triangulation Ti con-
sists of the axis {i, i+ 3} joined to the edges of the boundary square passing
through the other four vertices. The circuit Zi consists of these four vertices,
and is actually the only one of the three circuits in which Ti does not have
a flip. The link condition is clearly satisfied. Hence, the graph of triangula-
tions is a triangle.

Another proof of this fact is that the octahedron is obtained by applying
the one-point-suspension (see Section 4.2.5) three times to a zero-dimen-
sional point-configuration A0 = (1,1,1). By 4.2.33, the two configurations
have the same poset of subdivisions. This implies they also have the same
graph of flips.
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Figure 4.37: The graph of triangulations of a 5 point

configuration in the real line.

Example 4.4.7 (Insertion flip). If a triangulation T of A does not use a
certain point i ∈ J, let B be the unique simplex of T with i ∈ relint(B) (the
carrier of i). Clearly, B∪ {i} is a circuit and B alone is one of its two
triangulations (the other one is the stellar subdivision of it). In particular,
the link conditions in the definition of flip are satisfied and there is a flip on
this circuit. This flip inserts i, subdividing B (and its link) in a stellar way.

Moreover, this is the only flip of T that involves the element i. Indeed,
if Z is a circuit containing i and one of its two triangulations is contained in
T , then this triangulation must have Z \{i} as its unique maximal simplex.
This implies pi ∈ conv(Z) and, in particular, there is a face B′ of Z with
i ∈ relint(B′). Since i cannot be contained in two relative interiors of cells
of T , B = B′ and B∪{i} ⊆ Z. Since a circuit cannot be properly contained
in another, Z = B∪{i}.

For yet another nice example of the graph of flips, see Figure 1.15.

4.4.2 Flips via walls

In a typical situation, we will be given a triangulation T of a point configu-
ration and be asked to find all the possible flips in it (or, maybe, to find one
flip that improves some criterion that we want to optimize). In this situation
it may not be a good idea to apply Definition 4.4.2 directly by searching on
all possible circuits. For example, n points in general position in the plane
have

(n
4

)
circuits, while the flips of a particular planar triangulation can

be found much more easily by inspecting which edges can be diagonally
flipped and which vertices can be inserted or removed by a flip.

In this section we generalize this method to arbitrary dimension, intro-
ducing the concept of “witness wall”. Remember that by a wall in a polyhe-
dral subdivision we mean an interior codimension one cell. That is, a cell
of codimension one that is a face of two maximal cells.

Figure 4.38: Two pairs of triangulations with a

common circuit. On top, a planar configuration

and below it a three-dimensional circuits.

Definition 4.4.8. Let Z be a circuit and T a triangulation such that T has
a flip supported at Z. (That is, such that there is a triangulation T ′ that
differs from T by a flip in Z). We say that a wall B witnesses a flip in a
triangulation T if Z is contained in the union of the two maximal simplices
separated by B.
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Observe that the union of the two simplices separated by B is a corank-1
configuration and, in particular, it contains a unique circuit. That is to say,
the same wall cannot witness two different flips.

The insertion flips described in Example 4.4.7 clearly do not have any
insertion walls, simply because one of the points in the circuit is the one to
be inserted. The next result shows that this is the only case.

Lemma 4.4.9. Let T be a triangulation of a point configuration that has
a flip supported at the circuit Z. If all the elements of Z are used in T (that
is, “unless the flip is an insertion flip”) then the flip has some witness wall.

Proof. If the flip is not an insertion flip, the triangulation T +
Z of Z con-

tained in T has at least two maximal simplices. This is so because if T
has a single maximal simplex B, then the unique point i in Z \B would be in
the convex hull of B (because {B} is a triangulation of Z = B∪{i}) which
implies i is not used in T . The flip would then be the insertion flip of i.

So, let B1 and B2 be two maximal simplices in T . Let B′ be any maximal
simplex in the link L of both B1 and B2 (it is the same by the definition
of a flip). Then, B0 := B1 ∩B2 is a wall in T +

Z and B0 ∪B′ is a wall in T ,
separating B1 ∪B′ and B2 ∪B′. Since Z = B1 ∪B2, B0 ∪B′ is a witness wall
for the flip.

What is then a good algorithm for finding all the flips in a triangulation
T ? First, T will have an insertion flip for each point that it does not use (if
any). Second, check each wall in T to see if it witnesses a flip, and on which
circuit (this is important because, in general, a flip has more than one witness
wall). For doing this in practice, recall that the sets of maximal simplices in
the two possible triangulations of a circuit Z are, by Lemma 2.4.2,

T +
Z = {Z \ i : i ∈ Z+ } , and T −

Z = {Z \ i : i ∈ Z− } .

Let us go back to our situation of interest. We have a triangulation T of
a point configuration A and want to check if a certain wall B0 between two
maximal simplices B1 = B0 ∪{i1} and B2 = B0∪{i2} is a witness for a flip.
For this:

1. Compute the signed circuit (Z+,Z−) contained in the label set B1 ∪
B2 = {i1, . . . , id+2}. In concrete examples this is easy to do by inspec-
tion. Computationally, it can be done as shown in Remark 4.1.8 (it
reduces to computing the kernel of a (d + 1)× (d + 2) matrix).

2. Automatically, we get that the two elements i1 and i2 belong to the
circuit Z and are on the same part of it. Indeed, if ψ is the affine func-
tional vanishing on B0, the functional ψ vanishes on all the circuit
except for those two points, and then

ψ(∑
i∈Z

λipi) = ∑λiψ(pi) = λ1ψ(pi1)+ λ2ψ(pi2) = 0

implies that λ1 and λ2 have opposite signs (they cannot be both zero
because then the circuit would be contained in B0, which is indepen-
dent). Without loss of generality, we assume that i1, i2 ∈ Z+. The
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triangulation of Z that is a candidate to be contained in T is T +
Z , be-

cause we already have two of its maximal simplices, namely Z \{i1}
and Z \ {i2}.

3. If the circuit is full-dimensional (that is, if Z = B1 ∪B2), then check-
ing that T +

Z is a subcomplex of T is equivalent to checking that Z \ i
is a simplex, for every i ∈ Z+. If the circuit is lower dimensional, we
need to, in addition, to check that all the links of the maximal sim-
plices in T +

Z are the same (for which a necessary, but not sufficient,
condition is that Z \ i is a simplex, for every i ∈ Z+).

To clarify this process, and to complement our discussion in Chapter 3,
let us analyze the possible cases in dimension two in detail.

pk

pi

p j

pk

pl

pi
pl

p j

pk

pl′

pi

p j

pl

Figure 4.39: Possible ways in which a wall

corresponds to a two-dimensional flip.

Example 4.4.10 (Flips in dimension two). Let E = {k, l} be a wall (that is,
an interior edge) between two triangles of a triangulation T in the plane.
Let i and j be the two points joined to E . Then:

1. If the quadrilateral pipkp jpl is strictly convex, then the circuit has
Z+ = {i, j} and Z− = {k, l}. It is full-dimensional and the two trian-
gles in question are its positive triangulation. {k, l} is a witness (and
the unique witness) for the flip that removes the diagonal {k, l} and
inserts {i, j}.

2. If one of the angles of the quadrilateral (say the one at k) is flat, then the
circuit has Z+ = {i, j} and Z− = {k}. The two triangles in question
are its positive triangulation, but the circuit is not full-dimensional.
The link condition is equivalent to saying that either {i,k} and {k, j}
are boundary edges or they are joined to the same vertex {l′} on the
side opposite to l. The flip merges {i,k} and {k, j} into a single edge
deleting E = {k,d} and (if it exists) {k, l′}. In the first case E is the
only witness and in the second {k, l′} is a second one.

3. If one of the angles of the quadrilateral (say the one at k) is reflex
(greater than 180 degrees), then the circuit has Z+ = {i, j, l} and Z− =
{k}. It is a full-dimensional circuit and produces a flip if and only if
{i, j,k} is also a triangle. In this case the three edges {i, j}, {i, l},
and { j, l} are witnesses for the flip.

The reader can check that the three possibilities arise in Example 4.1.4.

4.5 More characterizations of triangulations and subdivi-
sions

In this section, we present a wealth of different characterizations of trian-
gulations and polyhedral subdivisions that the reader may find useful in
proving that something is a triangulation. Sometimes, using one of the non-
standard characterizations saves substantial work. One example is the use
of the characterization in Theorem 4.5.17 in Chapter 6. The first part on ge-
ometric characterizations aims at giving tools for proofs. The second part
on purely combinatorial characterizations is intended for implementation
into computer programs.
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4.5.1 Geometric characterizations

In this section, polyhedral subdivisions of point configurations will be re-
visited using notions from convex geometry of point configurations. Trian-
gulations are a special case in which all the cells are simplices.
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Figure 4.40: Two cells whose convex hulls

intersect in something that is not a face at all.
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Figure 4.41: Two cells whose convex hulls

intersect in something that is only a face of one

of them but not of the other.
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Figure 4.42: Two cells whose convex hulls

intersect in something that is a face of both

convex hulls; however, if 135 and 246 were

together in a subdivision, (CP) would imply that

both 15 and 26 were in the subdivision, too;

however, they have identical convex hulls,

violating (MF).

The following theorem states that polyhedral subdivisions of A are ge-
ometric polytopal complexes [339, Def. 5.1] that cover conv(A) and that
contain no distinct cells with identical convex hulls. The latter condition is
trivially missing in common polyhedral subdivisions in a purely geometric
context, where cells are uniquely determined as subsets of the Euclidean
space. In Section 2.2 we argued that this is not enough to obtain the nice
structures arising from a more combinatorial view. The need for Condition
(MF) in the following characterization shows that the additional combina-
torial structure requires some care.

Theorem 4.5.1. A set S of subconfigurations of a point configuration A
in R

d labeled by J is a polyhedral subdivision of A if and only if it satisfies
the following conditions:

(CP) If B ∈ S and F ≤ B, then F ∈ S as well.

(UP)
⋃

B∈S conv(B) ⊇ conv(A).

(FP) conv(B)∩ conv(B′) is a face of both conv(B) and conv(B′) for all
B,B′ ∈ S . (Face Property).

(MF) For every two different cells B �= B′ in S , conv(B) �= conv(B′). (Mul-
tiple Face Property)

More specifically, (CP), (FP) and (MF) together are equivalent to (CP)
and (IP).

The consequence of this is that non-incident cells intersect properly if
and only if they intersect in a proper common face, possibly empty. More-
over, no distinct cells with identical convex hulls can coexist in a polyhedral
subdivision.

Proof. We first prove that (FP) and (MF) are necessary for (IP). For (MF)
this is clear because conv(B) = conv(B′) implies, in particular, relint(B) =
relint(B′), and thus (IP) implies B = B′.

For (FP), assume S is a polyhedral subdivision of A. Then, in particular,
(IP) holds for S . Consider two cells B,B′ ∈S . Let F := carrier

(
conv(B)∩

conv(B′),conv(B)
)

and F ′ := carrier
(
conv(B)∩ conv(B′),conv(B′)

)
, both

cells in S because of (CP). Then, by Lemma 2.1.23,

relint(conv(B)∩ conv(B′)) ⊆ relint(F)∩ relint(F ′). (4.1)

By (IP), this implies either relint(conv(B)∩ conv(B′)) = /0, thus conv(B)∩
conv(B′) = /0, or F = F ′. In the first case, (FP) is trivially fulfilled for B,B′.
In the second case, we have

conv(B)∩ conv(B′) ⊆ F ∩F ′ ⊆ conv(B)∩ conv(B′). (4.2)
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Hence, conv(B)∩ conv(B′) = F ∩F ′ = F = F ′, and this is a face of both
conv(B) and conv(B′), by the carrier construction. This proves (FP).

In order to prove that (FP) and (MF) are sufficient for (IP), we consider
a set S of subconfigurations of A satisfying (FP) and (MF).

Let B,B′ ∈ S and assume that there is a point x ∈ relint(B)∩ relint(B′).
We show that this implies B = B′, so that (IP) holds. Clearly, x ∈ conv(B)∩
conv(B′), which is a face of both B and B′ by (FP). But the fact that x is
in the relative interiors of B and B′ implies that this face is the whole of
conv(B) and conv(B′), respectively. Hence, conv(B) = conv(B′) and, by
(MF), B = B′.

For triangulations, Condition (MF) can be relaxed to a new condition
(MP) requiring that the triangulation does not contain distinct versions of a
multiple point as vertices.

Theorem 4.5.2. A set T of independent subconfigurations of a point con-
figuration A in R

d labeled by J is a triangulation of A if and only if it
satisfies the following conditions:

(CP) If B ∈ T and F ≤ B, then F ∈ T as well.

(UP)
⋃

B∈T conv(B) ⊇ conv(A).

(FP) conv(B)∩ conv(B′) is a face of both conv(B) and conv(B′) for all
B,B′ ∈ T (Face Property).

(MP) T does not use two copies of the same point (Multiple Point Prop-
erty).

More specifically, (CP), (FP) and (MP) together are equivalent to (CP)
and (IP).
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Figure 4.43: How to find a violation of (IP) from a

violation of (FP)? The carrier of the segment

e = conv(126)∩ conv(2345) in 126 is 12; the

carrier of e in 2345 is 25. If 126 and 2345 were in

a polyhedral subdivision, then, because of (CP),

so were the two carriers 12 and 25. However, the

relative interiors of 12 and 25 intersect because

both contain the relative interior of e, by

Lemma 2.1.23.
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Figure 4.44: (HP) holds for 1256 and 2345, since

their convex hulls intersect in the convex hull

of 25 = 1256∩2345; however, (LP) is violated,

since 25 is not a face of 1256.

In other words, a triangulation of a point configuration A is an abstract
simplicial complex (CP) properly embedded into R

d (FP & MP) so that the
union of its simplices equals the convex hull of A (UP).

Proof. Clearly (MP) is weaker than (MF). Hence, it suffices to show the
converse: for independent cells (MP) (together with the other properties)
implies (MF).

If (MF) fails, let B and B′ be two cells with the same convex hull. Let
i ∈ B \B′. Since every subset of an independent set is a face of it, {i} is a
cell in T by (CP). But since B and B′ have the same convex hull, conv(i)
is a vertex of conv(B′). Since i itself is not in B′, there is a j ∈ B′ not equal
to i with conv(i) = conv( j). Then i and j are different copies of a repeated
point, in violation of (MP).

We present an alternative characterization that contains another common
characterization of proper intersection in Condition (HP). In that character-
ization, only the general case of polyhedral subdivisions requires the ad-
ditional combinatorial condition (LP). For triangulations things are again
easier: (LP) can be dropped, as we will show below.
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Figure 4.45: (HP) holds for 1256 and 1234, since

their convex hulls intersect in the convex hull

of 12 = 1256∩1234; however, (LP) is violated,

since 12 is not a face of 1256; note that conv(12)

is a face of conv(1256), so that, again, the

combinatorial framework is necessary!
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Figure 4.46: (LP) holds, but (HP) does not: the

cells have empty intersection while their convex

hulls do not.

Theorem 4.5.3. A set S of subconfigurations of a point configuration A
labeled by J in R

d is a polyhedral subdivision of A if and only if it satisfies
the following conditions:

(CP) If B ∈ S and F ≤ B, then F ∈ S as well.

(UP)
⋃

B∈S conv(B) ⊇ conv(A).

(HP) conv(B)∩conv(B′) = conv(B∩B′) for all B,B′ ∈S . (Hull Property)

(LP) B∩B′ is a face of both B and B′ for all B,B′ ∈ S . (Label Property)

More specifically, (CP), (HP), and (LP) together are equivalent to (CP)
and (IP).

Proof. We first show that (HP) and (LP) are implied by (CP) and (IP). To
this end, assume that S is a polyhedral subdivision of A.

We prove now (HP) for two arbitrary cells B,B′ in S . From the definition
of convex hull it is immediate that conv(B)∩ conv(B′) ⊇ conv(B∩B′). It
remains to show that conv(B)∩ conv(B′) ⊆ conv(B∩B′).

If conv(B)∩ conv(B′) = /0, we are fine. In the other case, let x be in
conv(B)∩ conv(B′). Let F := carrier(x,B) and F ′ := carrier(x,B′). By
(CP), these are cells in S . By Lemma 2.1.23, we know that x ∈ relint(x)⊆
relint(F) and x ∈ relint(x) ⊆ relint(F ′). Consequently, x ∈ relint(F) ∩
relint(F ′). Since (IP) holds in particular for F and F ′, we must have F =
F ′ =: G. Moreover, F ≤ B and F ′ ≤ B′, in particular, F ⊆ B and F ′ ⊆
B′. Hence, G ⊆ B ∩ B′. Thus, x ∈ relint(F)∩ relint(F ′) = relint(G) ⊆
conv(G) ⊆ conv(B∩B′).

We next prove (LP) for B,B′. If B∩B′ = /0, we are fine. Let F be the
carrier of B∩B′ in B, and let F ′ be the carrier of B∩B′ in B′. Both F and
F ′ are cells in S because of (CP). Moreover, by Lemma 2.1.23, we have

relint(B∩B′) ⊆ relint(F)∩ relint(F ′). (4.3)

Therefore, F = F ′ by (IP), and thus

B∩B′ ⊆ F = F ′ ⊆ B∩B′. (4.4)

This means that
B∩B′ = F = F ′, (4.5)

which, by construction of F and F ′, is a face of both B and B′.
Now, we prove that (CP), (HP), and (LP) imply (IP).
To this end, let S be a set of subconfigurations of A satisfying (CP),

(HP), and (LP). Let B,B′ ∈S and consider a point x∈ relint(B)∩relint(B′).
We have to show, that then B = B′ must hold. By Condition (LP), we know
B∩B′ ≤ B and B∩B′ ≤ B′. If B∩B′ = B and B∩B′ = B′ then B = B′,
and we are done. Assume, for the sake of contradiction, that equality does
not hold in both cases, that is, without loss of generality, B ∩ B′ < B.
Then conv(B∩B′) < conv(B′) (compare Remark 2.1.20) holds as well. We
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conclude, since x ∈ relint(B)∩ relint(B′) ⊆ conv(B)∩ conv(B′):

x ∈ carrier(x,conv(B)∩ conv(B′))
(HP)
= carrier(x,conv(B∩B′))
≤ conv(B∩B′)
< conv(B).

In words: x lies in a proper face of conv(B), contradicting the fact that
x ∈ relint(B).
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Figure 4.47: How to find a violation of (LP) from

a violation of (IP) in the presence of (HP)? The

point x is in the intersection of the relative

interiors of 125 < 1256 and 12 < 1234,

respectively: a violation of (IP). The carrier of x

in e = conv(1256)∩ conv(1234), which equals

conv(12) by (HP), is by definition a face of e. If

(LP) were satisfied, then 12 = 125∩12 would be

a face of 125—proper, since not equal. (We see

in the picture that this is not the case, but we

want to illustrate the formal argument.) Therefore,

conv(12) would also be a proper face

of conv(125). But since x is in the proper face of

conv(125), and at the same time in relint(125),

we have a contradiction.

Note that, in fact, proper intersection of any set of cells in the sense
of (IP) follows from (HP) and (LP) alone, without the help of (CP). This
contrasts the other characterizations above and will be useful soon.

Again, we have a simpler version for triangulations: (LP) is redundant,
since every subset of an independent set is a face of it. This time we don’t
even need to exclude multiple points.

Theorem 4.5.4. A set T of independent subconfigurations of a point con-
figuration A in R

d labeled by J is a triangulation of A if and only if it
satisfies the following conditions:

(CP) If B ∈ T and F ≤ B then F ∈ T as well.

(UP)
⋃

B∈T conv(B) ⊇ conv(A).

(HP) conv(B)∩ conv(B′) = conv(B∩B′) for all B,B′ ∈ T . (Hull Prop-
erty).

This seems to be the most elegant characterization for triangulations, and
it is used quite frequently in the literature: (HP) says that the combinatorial
intersection (vertex sets) must be compatible with the geometric intersec-
tion (convex hulls of vertex sets).

Proof. We show that (HP) implies (LP) for triangulations. This is the case
because each independent point configuration is uniquely determined by
its convex hull. The independent point configuration is simply the set of
vertices of its convex hull. But then (LP) follows from general polytope
theory by considering vertices of cells.

So far, we have used conditions on cells in all dimensions in polyhedral
subdivisions. However, each polyhedral complex is determined by the set
of its maximal faces (just add all faces of the maximal faces to recover the
complex). In our case—cf. Lemma 2.3.4(i)—, maximal faces are always
full-dimensional: polyhedral subdivisions are of pure dimension d. There-
fore, it makes sense to ask what the set of maximal cells of a polyhedral
subdivision looks like. Essentially, we have to express a union property
and an intersection property in terms of maximal faces so that the original
(UP) and (IP) follow for all faces.

Recall that a trivial reformulation of (CP) and (IP) in terms of maximal
cells is given by the term “proper intersection” (see Definition 2.3.2 and
Remark 2.3.3). We repeat this here as a starting point.
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Theorem 4.5.5. A set S of d-dimensional subconfigurations of a point con-
figuration A in R

d labeled by J is the set of maximal cells of a polyhedral
subdivision of A if and only if it satisfies the following conditions:

(MaxUP)
⋃

B∈S conv(B) ⊇ conv(A) (Union Property for Maximal Cells).

(MaxPI) For all cells B,B′ ∈ S , it holds that B and B′ intersect properly
(Proper Intersection for Maximal Cells).

Of course: this does not save work, because for the check of proper in-
tersection according to the definition we must touch all faces. We will,
however, develop necessary and sufficient conditions for proper intersec-
tion that can be checked on the maximal cells alone.

The first attempt in this direction may be to just copy (UP) and (IP) and
hope for the best. This essentially works whenever the point configuration is
in general position. However, in special position, even two triangles might
have empty interior intersection although two of their edges have non-empty
interior intersection at the same time. Here is the result for general position:
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Figure 4.48: In non-general position, (MaxIP)

cannot guarantee proper intersection of cells, not

even for triangulations: the simplices 123 and

256 do not intersect properly (e.g., because they

do not intersect in a common face of both), but

(MaxIP) is satisfied. We see that

{123,256,156,134,236} satisfies both (MaxIP)

and (MaxUP), but fails to be a triangulation.Theorem 4.5.6. A set S of d-dimensional subconfigurations of a point
configuration A in general position in R

d labeled by J is the set of maximal
cells of a polyhedral subdivision of A if and only if it satisfies the following
conditions:

(MaxUP)
⋃

B∈S conv(B) ⊇ conv(A) (Union Property for Maximal Cells).

(MaxIP) If B �= B′ are two different cells in S , then relint(B)∩ relint(B′)
is empty (Intersection Property for Maximal Cells).

More specifically: In general position, (MaxPI) is equivalent to (MaxIP).

In order to switch between maximal-faces descriptions and all-faces de-
scriptions of polyhedral subdivisions, we introduce the following notation:
For a set S of label subsets of a point configuration A, the set of all max-
imal cells of S is denoted by Ŝ and the set of all faces of cells in S is
denoted by S̄ .

Proof. It is clear that (MaxUP) and (MaxIP) are necessary. We will now
show that they are sufficient as well. We will use the characterization (CP),
(UP), (IP).

Consider a set S of d-cells satisfying (MaxUP) and (MaxIP). Then (UP)
is fulfilled for the closure S̄ of S , since the convex hull of any d-cell
contains the convex hulls of all its faces.

Now, let B and B′ be cells in S̄ of arbitrary dimension so that there is
an x ∈ relint(B)∩ relint(B′). If B �= B′, this means that B∪B′ is a dependent
subconfiguration, and we conclude from the general position assumption
that |B∪B′| ≥ d + 2 and that conv(B∪B′) is full-dimensional.

Let R be a d-cell in S containing B as a face, and let R′ be a d-cell in S
containing B′ as a face. First, no d-cell can have both B and B′ as a face.
Therefore, R �= R′. We claim that relint(R)∩ relint(R′) �= /0. If R = B and
R′ = B′, then this is clear. Thus, we assume, without loss of generality, that
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Figure 4.49: From a point x in the intersection of

the relative interiors of lower dimensional cells B

and B′ we construct a point y in the intersection

of the relative interiors of the incident

full-dimensional cells R and R′, respectively This

is only possible because the general position

assumption guarantees that intersections are

transversal: here, this means that the points 1

and 2 are separated by a hyperplane

containing B.

R �= B, and thus B < R. Let HB be a supporting hyperplane of some facet
of R that contains B. Since x ∈ relint(B), it follows that x ∈ HB.

Not all points in B′ can lie on HB (remember: B∪B′ is full-dimensional),
and since x ∈ relint(B′) there must be points in B′, and thus in F ′ ⊇ B′, on
both sides of HB, i.e., B′ is strictly separated by HB. (Keep this in mind; we
will use conclusions of this type in the next section in a combinatorial lan-
guage.) In particular, relint(B′) intersects both open halfspaces generated
by HB.

Pick a point yB′ on relint(B′) very close to x that lies on the side of HB

containing R. If B′ = R′, then were are done, since yB′ is then in relint(R)∩
relint(R′).

Otherwise, we can analogously pick a point yB on relint(B) very close
to x that lies on the side of HB′ containing R′.

By construction, yB′ lies in the relative interior of R and yB in the relative
interior of R′. (This is similar to the “beneath/beyond”-concept in polytope
theory, cf. [339].) Now, pick another point y on the open segment (yB′ ,yB).
Since all distances are very small, this point y will still be in relint(R), but
also in relint(R′). Thus, (MaxIP) is violated, and we are done.

What we actually used in the proof is the so-called orthogonality between
dependences and linear functions. We will not elaborate on these concepts
here.

Also the restriction of (FP) and (MF) to maximal faces does not suffice
in general to guarantee proper intersection in a polyhedral subdivision (it
does in general position, though; see exercises). Therefore, we resort to the
characterization in Theorem 4.5.3: The reader may have noticed that (HP)
and (LP) yield the only characterization of proper intersection that do not
need (CP) for the proof of their sufficiency.
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Figure 4.50: This example with (IP) violated by

12 and 25 showed the non-sufficiency of (MaxIP)

in non-general position; we see that (MaxLP) is

fulfilled because 123∩256 = 2, which is a vertex

of both 123 and 256. (MaxHP) is, however,

violated, since the intersection of convex hulls

yields the convex hull of 25, whereas the convex

hull of the intersection is 2 alone.

Theorem 4.5.7. A set S of d-dimensional subconfigurations of a point con-
figuration A in R

d labeled by J is the set of maximal cells of a polyhedral
subdivision of A if and only if it satisfies the following conditions:

(MaxUP)
⋃

B∈S conv(B) ⊇ conv(A) (Union Property for Maximal Cells).

(MaxHP) conv(B)∩conv(B′) = conv(B∩B′) for all B,B′ ∈S . (Hull Prop-
erty for Maximal Cells)

(MaxLP) B∩B′ is a face of both B and B′ for all B,B′ ∈ S . (Label Prop-
erty for Maximal Cells).

More specifically, (MaxHP) and (MaxLP) for S together are equivalent
to (CP) and (IP) for S̄ , in particular, they are sufficient for proper intersec-
tion of S .

We remark that this characterization was used as the definition of poly-
hedral subdivisions in [165].

Proof. Since (MaxHP) and (MaxLP) are weaker than (HP) and (LP), we
only have to show sufficiency, i.e., that (MaxHP) and (MaxLP) for S to-
gether imply (IP) for S̄ , where (CP) is trivially fulfilled in S̄ .
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Figure 4.51: This example with (IP) violated by

12 and 125 shows once more the non-sufficiency

of (MaxIP) in non-general position; we see that

this time (MaxHP) is fulfilled because the convex

hulls of 123 and 1526 intersect in the convex hull

of 12, which is the convex hull of the intersection

of 123 and 1256. (MaxLP) is, however, violated,

since the intersection of 123 and 1526 is 12,

which is not a face of 1526.

Let F and F ′ be cells in S̄ , and let x ∈ relint(F)∩ relint(F ′). We have
to show once again that this is only possible when F = F ′. Let B and B′ be
cells in S with F ≤ B and F ′ ≤ B′.

From (MaxLP), we know that B∩B′ is a face of both B and B′. Moreover,
x ∈ relint(F)∩ relint(F ′) ⊆ conv(B)∩ conv(B′) = conv(B∩B′), the latter
equality by (MaxHP). So we can apply Lemma 2.1.25 to obtain:

carrier(x,B) = carrier(x,B∩B′) = carrier(x,B′). (4.6)

Since x ∈ relint(F) and F ≤ B we know that F = carrier(x,B) by Re-
mark 2.1.24. Similarly, F ′ = carrier(x,B′). Putting everything together
we obtain

F = carrier(x,B) = carrier(x,B∩B′) = carrier(x,B′) = F ′, (4.7)

as desired.

Again, Condition (MaxLP) is trivially satisfied for independent cells.
Thus, we state the simplified version for triangulations:

Theorem 4.5.8. A set T of d-dimensional independent subconfigurations
of a point configuration A in R

d labeled by J is the set of maximal cells of
a triangulation of A if and only if it satisfies the following conditions:

(MaxUP)
⋃

B∈T conv(B) ⊇ conv(A) (Union Property for Maximal Cells).

(MaxHP) conv(B)∩conv(B′) = conv(B∩B′) for all B,B′ ∈T . (Hull Prop-
erty for Maximal Cells)

More specifically, (MaxHP) for T is equivalent to (CP) and (IP) for T̄ ,
in particular, it is sufficient for proper intersection of T .

So far, we have replaced the original (IP)-condition by many other con-
straints. We now turn our attention to find something handy to replace (UP).
To this end, let S be a polyhedral subdivision of A. Now, imagine there is
a cell B in S that has a facet F < B that is not contained in any facet of A.
Then, since (IP) and (UP) hold, it is intuitive that there must be another cell
in S sharing that facet with B. This is indeed the right idea, which works
whenever S is non-empty in the first place. Since (MaxHP) and (MaxLP)
work more generally to enforce proper intersection, we combine the new
condition with (MaxHP) and (MaxLP) instead of (MaxIP), which works
only in general position.

Theorem 4.5.9. A non-empty set S of d-dimensional subconfigurations of
a point configuration A in R

d is the set of maximal cells of a polyhedral
subdivision of A if and only if it satisfies the following conditions:

(MaxMP) For each facet F of a d-cell B in S , either F is contained in a
facet of A or there is another d-cell B′ in S that contains F as
a facet (Pseudo-Manifold Property for Maximal Cells).

(MaxHP) conv(B)∩conv(B′)= conv(B∩B′) for all B,B′ ∈S . (Hull Prop-
erty for Maximal Cells)
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(MaxLP) B∩B′ is a face of both B and B′ for all B,B′ ∈ S . (Label Prop-
erty for Maximal Cells)

Moreover, (MaxMP) together with (MaxHP) and (MaxLP) for adjacent
maximal cells already imply (MaxUP).
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Figure 4.52: Given a facet F of a cell B in a

subdivision that is not in a facet of the point

configuration, how can we find a cell B′ in the

subdivision having F as a facet as well? From a

point x ∈ relint(F) in general position we can

step away from B (since x is not in a facet of the

point configuration!), obtaining y. By (MaxUP),

there is a maximal cell B′ containing y—in its

relative interior because y can be chosen in

general position. Then F must be a facet of B′:

since y can be chosen arbitrarily close to x, the

point x in conv(B′). Since by (IP) the carrier of a

point must be the same in every cell of a

subdivision, F must be the carrier of x in B′

because it is the carrier of x in F .

Proof. First of all, let S be the set of maximal cells of a polyhedral sub-
division of A, in particular, (MaxUP), (MaxHP), and (MaxLP) hold for S .
We will show that then (MaxMP) must hold as well.

To this end, let F be a facet of a d-cell B in S that is not contained in
a facet of A. Pick a point x in the relative interior of conv(F) and another
point y in general position very close to x and away from B, i.e., so that
conv(F) separates y from B. This is possible because F is not a facet of A.

Since (MaxUP) holds there is a d-cell B′ in S with y ∈ conv(B′), which
must be different from B, since y is separated from B by convF . Since y
is in general position, y must be in the relative interior of B′. Since y can
be chosen arbitrarily close to x, each point on the open segment (x,y) must
be also in relint(B′). This implies that point x must be in conv(B′). Proper
intersection, i.e., (IP) for all faces of B and B′, implies that the carrier of x
in B′ must be equal to its carrier F in B, which implies that F is also a facet
of B′.

Now assume that (MaxMP), (MaxHP), and (MaxLP) hold for S �= /0.
Pick an arbitrary x ∈ conv(A) and a d-cell B in S . Choose a point y in
relint(B) in general position and consider the segment [x,y]. Either this
segment is completely contained in conv(B) (done: y ∈ conv(B)), or the
segment intersects a facet F of B in a point z. Since [x,y] is not contained in
conv(B), the facet F of B cannot be a facet of A. Thus, by (MaxMP), there
is another d-cell B′ having F as a facet. Because (MaxHP) and (MaxLP)
imply in particular (MaxIP), B and B′ must be separated by F . (Otherwise
relint(B) and relint(B′) have non-empty intersection.) Pick a point y′ in
relint(B′) in general position on the segment [x,y]. Note that the distance
between x and y′ is strictly smaller than the distance from x to y′. Therefore,
if we repeat the process, we finally find a d-cell that contains x in its convex
hull, so that (MaxUP) holds. Because (MaxuP), (MaxHP), and (MaxLP)
are sufficient by Theorem 4.5.7, so are (MaxMP), (MaxHP), and (MaxLP).

Since we have used (MaxHP) and (MaxLP) only for adjacent maximal
cells to derive (MaxUP) from (MaxMP), the final assertion of the theorem
is proved as well.

Only (MaxUP)—and hence (UP)—can be derived from (MaxMP) in
the presence of (MaxHP) and (MaxLP) for adjacent cells; the proof of
proper intersection used Theorem 4.5.7, whose proof required (MaxHP)
and (MaxLP) in full generality.

At first glance, one is tempted to think that, since the new condition
(MaxMP) is equivalent to (MaxUP) in the presence of proper intersection
(which is true), it has nothing to contribute to proper intersection itself
(which is false). In fact, in the presence of (MaxMP) instead of (MaxUP),
the conditions for proper intersection can be further simplified so that the
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Figure 4.53: With the help of a straight line

segment from an arbitrary point x to an interior

point y of a full-dimensional cell we find a cell

covering x provided (MaxMP) holds.

effort to check the conditions is reduced drastically: At the expense of one
additional condition, we can indeed restrict ourselves to adjacent maximal
cells. For the proof, a tool is needed that will be also useful later.
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156,145,456,146,234 contains improper

intersections among cells adjacent in the

segment adjacency graph; . . .

B1

B2 B3

B4

B5

B1

B2B2 B3B3

B4B4B1

Figure 4.55: . . . while its segment adjacency

graph contains a cycle.

Definition 4.5.10 (Segment Adjacency Graph). Let S be a collection of d-
cells of a point configuration A in R

d . The adjacency graph or dual graph
of S is the graph with nodes corresponding to the d-cells in S and edges
corresponding to d-cells sharing a common facet.

For a segment [x,y] ⊆ conv(A) in general position (i.e., it does not in-
tersect any (d − 2)-face of S̄ ) the segment adjacency graph or—more
specifically—the [x,y]-adjacency graph of S is the subgraph of the ad-
jacency graph of S with nodes corresponding to all d-cells in S whose
convex hulls intersect the open segment (x,y) and edges corresponding to
pairs of d-cells that share a common facet intersecting (x,y) as well.

Walls whose convex hulls intersect the open segment are called interior
walls of the segment adjacency graph.

Note that there may be additional edges between nodes if the intersection
of the common facet of two nodes with the segment is not required (exer-
cise). That is, the segment adjacency graph is not necessarily an induced
subgraph of the adjacency graph.

Lemma 4.5.11 (Segment Adjacency Graph Lemma). Let S be a collection
of d-cells of a point configuration A in R

d. Moreover, let [x,y] ⊆ conv(A)
be a segment in general position.

Assume that every pair of d-cells adjacent in the [x,y]-adjacency graph
of S intersects properly. Then the [x,y]-adjacency graph of S consists of
disjoint paths (some of them maybe isolated points) only.

If, moreover, every interior facet of the segment adjacency graph is con-
tained in at least two d-cells of S , then the [x,y]-adjacency graph of S is
a union of disjoint paths, each from a node containing x in its convex hull
to a node containing y in its convex hull.

If moreover, there is a point on [x,y] that is contained in exactly one d-
cell of S then the [x,y]-adjacency graph of S is a single path from a node
containing x in its convex hull to a node containing y in its convex hull.

Proof. In order to show the first assertion, we show that each node in the
segment adjacency graph has degree zero, one, or two, and that there are no
cycles.

We start with the degree. Let B be a node in the segment adjacency graph,
i.e., a d-cell intersecting [x,y]. The segment intersects ∂ conv(B) in at most
two points. Since the segment is in general position, these points lie in
unique facets of conv(B). Only for each such facet there can exist at most
one neighbor, since adjacent cells that are properly intersecting must be on
different sides of their common facet.

If we “drive” on the segment from x to y, we can number all cells in the
segment adjacency graph in the order of appearance. This yields a total or-
der on all nodes in the segment adjacency graph. Assume that there is a cy-
cle. The maximal and the minimal element have both of their neighbors on
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Figure 4.57: . . . cycles are impossible.
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Figure 4.58: If, moreover, every facet pierced by

the segment is in exactly two cells, . . .

the same side of the common facet: a contradiction to the assumed proper
intersection.

If every interior facet is a facet of at least two d-cells in S , then every
node not containing x or y in its convex hull has degree two. Since there
are no cycles, the statement follows.

If, in this union of paths, one point of the segment lies in a unique node,
then all paths must contain this node. This is only possible if there is only
one path in the first place.

We can now state and prove the simplification of the conditions ensur-
ing proper intersection because (MaxMP) helps. One additional condition
(IPP) is required, though. The good thing about (IPP) is that it ensures
non-emptiness for free.

Theorem 4.5.12. A set S of d-dimensional subconfigurations of a point
configuration A in R

d is the set of maximal cells of a polyhedral subdivision
of A if and only if it satisfies the following conditions:

(MaxMP) For each facet F of a d-cell B in S , either F is contained in
a facet of A or there is another d-cell B′ in S that contains F
as a facet (Pseudo-Manifold Property for Maximal Cells).

(MaxAdjPI) Every two adjacent maximal cells intersect properly (Proper
Intersection of Adjacent Maximal Cells).

(IPP) There is a point x ∈ conv(A) in general position that is con-
tained in the convex hull of exactly one d-cell (Interior Point
Property).

More specifically, (MaxAdjPI) and (IPP) for S together are equivalent
to (IP) and (CP) for S̄ .

Proof. Condition (IPP) is necessary for polyhedral subdivisions since any
point in general position lies in the relative interior of some d-cell, which
must be unique because of (IP). Condition (MaxAdjPI) is weaker than
(MaxPI), so it is necessary as well.

It remains to prove sufficiency. Assume that there are cells F and F ′
in S̄ and a point x ∈ relint(F)∩ relint(F ′). Once more, we want to show
that F = F ′ must hold. Since (IPP) holds, there is a point p in general
position that is in the relative interior of a unique cell. Consider the line
segment [p,x]. Because of p is in general position, this segment intersects
no (d−2)-cell.

Now, consider arbitrary d-cells B and B′ in S with F < B and F ′ < B′.
We want to argue with the segment adjacency graph, i.e., we need d-cells
in S that intersect the open segment (p,x) and have F and F ′, respectively,
as faces. However, B and B′ may indeed have empty intersection with (p,x).
Therefore, we must construct the d-cells we need. The key is another appli-
cation of the segment adjacency graph.

To summarize: We want to find d-cells R and R′ intersecting the open
segment (p,x) that have F and F ′, respectively, as faces.
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Pick points y and y′ in relint(B) and relint(B′), respectively, very close
to x. Moreover, pick a point z on the open segment (p,x) very close to x in
general position. This is possible because the segment is in general position.
The [z,y]-adjacency graph and the [z,y′]-adjacency graph contain paths con-
necting d-cells containing the respective end points of the segments in their
convex hulls (this holds by (MaxMP), (MaxAdjPI), and Lemma 4.5.11).
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Figure 4.59: . . . then the segment adjacency

graph is a collection of paths, each from a cell

whose convex hull contains x to a cell whose

convex hull contains y.

1

2

3
4

5
6

7

1

5

7 B1

1

5
6

B2

1
4

6

B3

3
4

6

B4

x
y

Figure 4.60: If, finally, there is a point in the

segment that is in the convex hull of exactly one

cell, . . .
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Figure 4.61: . . . then the segment adjacency

graph must be a unique path from a cell whose

convex hull contains x to a cell whose convex

hull contains y.

Let R and R′ be the cells corresponding to the end nodes of one of the
paths containing z. Each of them contains z in its relative interior, since z
is in general position. Moreover, since z and point y can be chosen to
lie arbitrarily close to x, all points on the segment [z,y] can be forced to
lie arbitrarily close to x. Thus, each d-cell in the [z,y]-adjacency graph
contains x in its convex hull. If this d-cell equals B, then R = B contains F
as a face.

Otherwise, consider the first d-cell B1 in the [z,y]-adjacency graph that
does not contain F as a face. Moreover, let B0 be the previous adjacent d-
cell in the [z,y]-adjacency graph. Since x ∈ conv(B1), we can compute the
carrier F1 of x in B1, which is a face of B1 containing x in its relative interior.
The fact that x ∈ relint(F)∩ relint(F1) with F ≤ B0 and F1 ≤ B1 means that
the adjacent d-cells B0 and B1 do not intersect properly: contradiction to
(MaxAdjPI).

Consequently, such a B1 can not exist, and thus all d-cells on the [z,y]-
adjacency graph contain F as a face, in particular R. Similarly, R′ con-
tains F ′ as a face.

This time, by (MaxMP), (MaxAdjPI), (IPP), and Lemma 4.5.11, the
[p,x]-adjacency graph of S is a unique path. That means, in particular,
there is a unique cell on it containing x in its convex hull. Translated to ge-
ometry, this means that there is only one unique d-cell whose convex hull
intersects the open segment (p,x) and contains x.

Thus, R = R′, and since this d-cell contains both F and F ′ as faces with
non-empty interior intersection x, we conclude that F = F ′, as desired.

We know that a check of (MaxAdjPI) along the definition would require a
check of interior intersections for all pairs of faces of cells. But for this, we
already have provided a solution: proper intersection of maximal cells can
be checked via (MaxHP) and (MaxLP) without any reference to all faces.
Thus, we receive the following characterization that reduces intersection
checks to maximal adjacent cells.

Corollary 4.5.13. A set S of d-dimensional subconfigurations of a point
configuration A in R

d is the set of maximal cells of a polyhedral subdivision
of A if and only if it satisfies the following conditions:

(MaxMP) For each facet F of a d-cell B in S , either F is contained in
a facet of A or there is another d-cell B′ in S that contains
F as a facet (Pseudo-Manifold Property for Maximal Cells).

(MaxAdjHP) conv(B)∩conv(B′)= conv(B∩B′) for all adjacent B,B′ ∈S .
(Hull Property for Adjacent Maximal Cells)
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Segment Adjacency Graph Lemma 4.5.11.
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Figure 4.63: Via the [y,z]-adjacency graph and

the [y′,z]-adjacency graph together with

(MaxMP) and (MaxAdjPI), we can construct cells

that contain F respectively F ′ as faces and

contain z; the [x,p]-adjacency graph together

with (MaxMP), (MaxAdjPI), and (IPP) for p shows

that z is covered by a unique d-cell, all of whose

faces, in particular, F and F ′, must be properly

intersecting: thus, F = F ′ , i.e., the situation in

the picture is impossible provided (MaxMP),

(MaxAdjPI), and (IPP) hold.

(MaxAdjLP) B∩B′ is a face of both B and B′ for all adjacent B,B′ ∈ S .
(Label Property for Adjacent Maximal Cells).

(IPP) There is a point x ∈ conv(A) in general position that is con-
tained in the convex hull of exactly one d-cell (Interior Point
Property).

More specifically, (MaxAdjHP), (MaxAdjLP), and (IPP) for S together
are equivalent to (IP) and (CP) for S̄ .

Remark 4.5.14. The theorem and its corollary is wrong with (MaxMP) re-
placed by (MaxUP): Consider a segment with unique end points 1 and 2 and
a repeated interior point 3 and 4. Then {12,34} is not a valid polyhedral
subdivision but (MaxUP) is satisfied, and (MaxAdjPI) as well as (MaxAd-
jHP) and (MaxAdjLP) are void because there are no adjacent cells. How-
ever, (MaxMP) is violated (see Figure 4.64). Thus, (MaxMP) contributes to
proper intersection in the sense that it enforces adjacencies between d-cells
to feed (MaxAdjPI).

We remark that there are other conditions that can replace (IPP) in the
above characterization (Exercise 4.15).

If A happens to have a facet that is a simplex, it can be shown that the
extra condition can be dropped [96], which leads to the following theorem.

Theorem 4.5.15. A set S of d-dimensional subconfigurations of a point
configuration A in R

d with a simplicial facet is the set of maximal cells
of a polyhedral subdivision of A if and only if it satisfies the following
conditions:

(MaxMP) For each facet F of a d-cell B in S , either F is contained in
a facet of A or there is another d-cell B′ in S that contains
F as a facet (Pseudo-Manifold Property for Maximal Cells).

(MaxAdjPI) Every two adjacent maximal cells intersect properly (Proper
Intersection of Adjacent Maximal Cells).

Proof. Only sufficiency must be proved. Let S satisfy (MaxMP) and
(MaxAdjPI). Consider the simplicial facet F : any two cells having a facet
inside F are in fact adjacent. Thus, they must intersect properly by (MaxAd-
jPI). Since there are only points on one side of a facet, in any S satisfying
(MaxMP), (MaxAdjPI) there can be only one unique cell B having a facet
inside F . Now take a point p very close to conv(F) in the interior of B in
general position. If the convex hull of a d-cell of S contains p, then that
cell inevitably also contains F as a facet as well. Thus, among the cells
in S only B contains p in its convex hull. This proves that (IPP) holds
for S , and thus, by Theorem 4.5.12, that S is the set of maximal cells of
a subdivision.

For completeness, we state the respective corollary:

Corollary 4.5.16. A set S of d-dimensional subconfigurations of a point
configuration A in R

d with a simplicial facet is the set of maximal cells
of a polyhedral subdivision of A if and only if it satisfies the following
conditions:



4.5. More characterizations of triangulations and subdivisions 203

1 2
3 4

1 2
B 3 4

B

Figure 4.64: B and B′ are not a triangulation.

However, (MaxUP) and (IPP) are obvious, and,

since B and B′ are not adjacent, (MaxAdjPI) is

trivially fulfilled as well. Hence, (MaxUP),

(MaxAdjPI), and (IPP) are not sufficient for being

a subdivision, not even in the case of

triangulations in dimension one. (MaxMP) is

violated because the interior facet 2 is contained

only in one cell.

(MaxMP) For each facet F of a d-cell B in S , either F is contained in
a facet of A or there is another d-cell B′ in S that contains
F as a facet (Pseudo-Manifold Property for Maximal Cells).

(MaxAdjHP) conv(B)∩conv(B′)= conv(B∩B′) for all adjacent B,B′ ∈S .
(Hull Property for Adjacent Maximal Cells)

(MaxAdjLP) B∩B′ is a face of both B and B′ for all adjacent B,B′ ∈ S .
(Label Property for Adjacent Maximal Cells)
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If our configuration is in general position, then there is a nice geometric
characterization of polyhedral subdivisions, of a completely different flavor.
Basically, it rewrites (MaxUP) and (MaxIP) in Theorem 4.5.6 in terms of
volumes. This will be of use in Section 6.1.

Theorem 4.5.17. A set S of full-dimensional subconfigurations of a point
configuration A in R

d in general position is the set of maximal cells of a
polyhedral subdivision of A if and only if it satisfies the following condi-
tions:

(MaxUVP) The d-dimensional volume of the set of points x ∈ conv(A) for
which there is no B ∈ S with x ∈ conv(B) is zero (Uncovered
Volume Property).

(MaxMVP) The d-dimensional volume of the set of points x ∈ conv(A) for
which there is more than one B ∈ S with x ∈ conv(B) is zero
(Multiply-Covered Volume Property).

We remark that this characterization was exploited in [112] for the vertex
sets of cyclic polytopes.

Proof. It is clear that both (MaxUVP) and (MaxMVP) are necessary. In
the following we show that (MaxUVP) and (MaxMVP) are sufficient as
well. We will show that “not (MaxUP)” implies “not (MaxUVP)” and “not
(MaxIP)” implies “not (MaxMVP)”.

Assume first that (MaxUP) is violated, i.e., there is a point x ∈ conv(A)
for which there is no B ∈ S with x ∈ conv(B). Then, since the convex
hull is a closed subset of conv(A), the set conv(A) \⋃B∈S conv(B) is an
open, non-empty subset of R

d , and any open subset of R
d has non-zero

d-dimensional volume. Therefore, (MaxUVP) is violated.
Assume now that (MaxIP) is violated, i.e., there are d-cells B,B′ ∈ S

with B �= B′ and relint(B)∩ relint(B′) �= /0. Then relint(B)∩ relintB′ is the
intersection of full-dimensional open subsets of R

d , hence open, and thus
the d-dimensional volume of relint(B)∩ relint(B′) is non-zero. But this is
exactly the volume of all those points in conv(A) that are in both conv(B)
and conv(B′). Therefore, the total d-dimensional volume of the set of points
x∈ convA for which there is more than one B∈S with x∈ conv(B) is non-
zero, i.e., (MaxMVP) does not hold.

4.5.2 Combinatorial characterizations

The key of this section is that the properties of a point configuration A that
are relevant for its polyhedral subdivisions can be encoded completely in
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the combinatorial data introduced in Section 4.1 (circuits and cocircuits,
basically).

Theorem 4.1.31 in Section 4.1 already provided us with a purely combi-
natorial characterization of polyhedral subdivisions.

We want to present further combinatorial characterizations that take into
account that the check of conditions should be as efficient as possible. We
restrict ourselves to characterizations in terms of maximal cells because one
goal of the combinatorial framework is to make the description as compact
as possible.

The following characterization is an improvement in the sense that it
reduces the effort of checking for proper intersection of pairs of adjacent
maximal cells, like in the geometric characterization in Theorem 4.5.13.
And again, this comes at a cost: some combinatorial version of (IPP) has to
be checked.
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by the points, illustrating the so-called

discriminantal hyperplane arrangement. Its cells

are regions of constant cocircuit signature.
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Figure 4.68: First, place Point p6 on top of p5 .

In order to argue why this can be done purely combinatorially, we con-
sider a very special new interior point in general position. This special point
is useful because it has a predictable signature in each cocircuit of the point
configuration extended by it. The special point is called a lexicographic
extension of the point configuration, and its oriented matroid is called a lex-
icographic extension of the original oriented matroid (see [55] for a more
detailed treatment).

Let the n points in A, as usual, be denoted by pi with j ∈ J, and let S be
a set of cells that we want to check for (IPP).

In order to construct a special point for S , we pick a full-dimensional
cell C from S and fix a permutation π = (c1,c2, . . . ,cr, . . . ,ck) on the in-
dices of C. For example, if the labels are totally ordered in a canonical way,
e.g., like natural numbers, one can chose a order so that c1 < c2 < · · · <
cr < · · · < ck, where r denotes the rank of A, as usual.

The new special point pn+1 is now constructed in r steps. First, place
pn+1 directly on top of pc1 . This way, in every cocircuit of the resulting
point configuration, pn+1 will have the same sign as pc1 . We could say
that pn+1 lies in the relative interior of the “cell” {c1}. In the next step, we
move pn+1 directly towards pc2 , just enough to leave pc1 , but so that no new
hyperplane spanned by points in A is reached. This way, the sign of pn+1

in all cocircuits that are zero on pc1 becomes non-zero, namely the same
sign as the sign of pc2 in that cocircuit. Moreover, the new point now lies in
the relative interior of the cell {c1,c2} and in general position. Repeat this
process until we have moved pn+1 slightly towards pcr . At that moment,
pn+1 is in the relative interior of C in general position and has the property,
that in every cocircuit Z∗ of the extended configuration A∪pn+1 it has the
same sign as the minimal index in C that is non-zero in Z∗.

This special point should now lie in at most one cell. First of all, by
construction, it lies in the relative interior of C. Therefore, if S is to be a
valid subdivision, it should have no other cell containing pn+1. This can be
expressed in terms of dependence vectors as in Lemma 4.1.11. Since we
have the full control over the cocircuits of the extended configuration, we
would rather use a characterization in terms of cocircuits. The following
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Figure 4.69: Then, move it towards p2 a little, but

do not cross any hyperplane.
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Figure 4.70: Finally, move it towards p3 a little,

but do not cross any hyperplane. We see that

such a procedure will never define a point in the

central cell in the chamber complex, that means

not every extension is lexicographic!

geometric reasoning leads to this: point pn+1 is not in the convex hull of a
full-dimensional cell C′ if and only if there is a facet defining hyperplane
separating it from the cell, or, expressed in terms of cocircuits, if and only if
in one of the facet defining cocircuits Z of C′ with zero set Z∗

0 the new point
pn+1 has a different sign than the points in the (non-empty) set C′ \Z∗

0.
We can even remove the point pn+1 from the reasoning, since we know

that its sign in all cocircuits is given by the sign of the π-minimal element
in C that is non-zero in that cocircuit. Thus, we end up with the following
more efficient combinatorial characterization, in which (IPP) is implicitly
expressed by the unique covering of a lexicographic extension in one of the
cells.

Theorem 4.5.18. A set S of d-dimensional subconfigurations of a point
configuration A in R

d labeled by J with n points is the set of maximal
cells of a polyhedral subdivision of A if and only if it satisfies the following
conditions:

(CoP) For each d-cell B ∈ S and for all cocircuits Z∗ that are positive
cocircuits on B but not positive on A there is another d-cell B′ ∈
S with B∩B′ = Z∗

0 ∩B (Cocircuit Property).

(AdjCiP) For each circuit (Z+,Z−) such that Z+ ⊆ B∈S for some B, either
there is no cell in S adjacent to B containing Z− or every cell
adjacent to B containing Z+ contains Z− too (Circuit Property).

(ExP) There is a cell C of S and a permutation π of its elements such
that for all other cells C′ ∈ S at least one cocircuit Z∗ spanned
by a facet of C′ has different signs on the π-minimal index in C \
Z∗

0 and on C′ \Z∗
0 (Extension Property).

Proof. From (AdjCiP) we easily conclude (MaxAdjHP) and (MaxAdjLP),
which proves the assertion by Corollay 4.5.13, since (ExP) has the same
geometric meaning as (IPP), as explained before the theorem. We leave the
details as an exercise for the reader.

The combinatorial formulation (CoP) of (MaxMP) again simplifies when
we restrict ourselves to triangulations, since in that case a facet of a cell is
just the cell with one element removed, i.e., (MaxMP) is already a com-
binatorial condition, as in Lemma 4.1.16. Moreover, Condition (AdjCiP)
can be merged with (CoP), since the proper intersection of adjacent cells
meeting in a wall is equivalent to the following: the points in the cells not
in the common wall must be on different sides of the common wall. Thus,
we have proved (see also [96]):

Corollary 4.5.19. A set T of d-dimensional independent subconfigura-
tions of a point configuration A in R

d labeled by J with n points is the
set of maximal cells of a triangulation of A if and only if it satisfies the
following conditions:

(ICoP) For every facet F of a d-cell in T that is not in a facet of A, there
are exactly two simplices F ∪ s and F ∪ s′ in T such that s and
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Figure 4.71: Illustration of (ExP): The

lexicographic extension 6 w.r.t. π = (523) is in

the relative interior of the cell C = 235.

s′ have different signs in the cocircuit spanned by F (Intersection
Cocircuit Property).

(ExP) There is a cell C of S and a permutation π of its elements such
that for all other cells C′ ∈ S at least one cocircuit Z∗ spanned by
a facet of C′ has different signs on the π-minimal index in C \ Z∗

0
and on C′ \Z∗

0 (Extension Property).
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Figure 4.72: Point 6 is not in

conv(C′) = conv(234) because the facet 24

of C′ spans a cocircuit that has opposite signs on

6 and C′ \24. By definition of the lexicographic

extension, this is the case because the

π-minimal index 5 in C \24 (w.r.t. the

permutation (5,2,3)) and C′ \24 have opposite

signs in that cocircuit.

Admittedly, (ExP) is still clumsy, but it is compatible with computer cal-
culations.

The power of (ICoP) is further shown by our final statement. We list
in it several properties any of which, in addition to (ICoP), are enough
to guarantee that T is a triangulation. Some of them assume particular
properties of the point configuration.

Corollary 4.5.20. Let T be a collection of bases of a configuration A in
R

d labeled by J with n points. Assume that T satisfies (ICoP). Then, any
of the following conditions is sufficient for T to be a triangulation of A.

(IPP) There is a point x ∈ conv(A) in general position that is contained
in the convex hull of exactly one d-cell (Interior Point Property).

(SFP) A has a face that is a simplex and is contained in only one cell of
T (Simplicial Facet Property).

(GFP) A has a facet F such that T restricted to F is a triangulation
and no (d − 1)-simplex in this restriction is part of two different
d-simplices of T (General Facet Property).

(LinkP) A has an element i that is a vertex and such that the link linkT (i)
is a triangulation of the contraction (Link Property).

(TVP) The total volume of the simplices spanned by the elements of T
equals the volume of conv(A) (Total volume property).

Proof. (IPP) is equivalent to (ExP), so the fact that it is sufficient follows
from Theorem 4.5.19. For the rest, it is easy to prove that any of them
implies (IPP).

This closes our discussion of various characterizations of polyhedral sub-
divisions. Some versions become much easier if restricted to triangulations
because the face structures of their cells does not depend on the underly-
ing geometry. Although at first glance the combinatorial characterizations
do not allow for a very elegant language, they are very useful when one is
concerned with the development of computer programs to actually compute
subdivisions.

Corollary 4.5.19, e.g., has proved very useful for computer checks al-
ready: it is actually used in the computer program TOPCOM [265] to check
the correctness of triangulations. More about this in Chapter 8.

Interestingly enough, the computational complications that arise when
we are dealing with general polyhedral subdivisions may have prevented
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Figure 4.73: Here, C′ = 125 is checked: the

separating facet is 25, and the π-minimal index in

C \25 is 3, which has a sign opposite to that

of 1 = C′ \25.
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Figure 4.74: This time, for C′ = 145, we see that

no facet of 145 separates 6 from 145 without that

facet. This is clear for the two facets of 145 that

are facets of A; even Facet 14 spans a cocircuit

for which the sign of the π-minimal index 5 of

C \14 equals the sign of C′ \14 = 5.

Consequently, 6 is also in 145, which can be

seen directly from the picture.

the development of a corresponding computer program up to now. The
combinatorial characterizations of this section may be a good starting point.
Finally, there is another reason why the combinatorial characterizations in
this section are important: they show that polyhedral subdivisions only de-
pend on the combinatorial data appearing in the characterizations: Circuits
and cocircuits of the point configuration, known as its oriented matroid.

Exercises

Exercise 4.1. Write a proof for Lemma 4.1.11.

Exercise 4.2. Compute all the circuits and cocircuits of the nine-point con-
figuration given by the vertices of the three-dimensional regular cube plus
its centroid. List all the facets as cocircuits and show, using the circuits, the
centroid lies in the relative interior.

What happens to the circuits and cocircuits if we add as a tenth point the
centroid of one of the facets?

Exercise 4.3. Compute the Gale transform of the nine-point configuration
given by the vertices of the three-dimensional regular cube minus the origin.
Verify the validity of Corollary 4.2.31 in this example.

Exercise 4.4. In this book we use Gale transforms for triangulations, but
they have been used quite a bit to describe faces of polytopes. Let A, labeled
by J, be the set of vertices of a polytope P. A subset C ⊆ J is called a coface
if convA(J \C) is a face. Prove the following useful lemma:

If B is some Gale transform of A, then C ⊆ J is a coface of P ⇔ 0 ∈
relint(coneB(C)).

Exercise 4.5. Provide an example of two combinatorially equivalent point
configurations A1 and A2 in which the same triangulation (given by its sets
of labels) is regular for A1 but nonregular for A2.

Exercise 4.6. Write a proof for Remark 4.2.14 about products of point
configurations and their triangulations.

Exercise 4.7. Write a proof for Lemma 4.2.17.

Exercise 4.8. Show by an example that taking the link at i, of a triangu-
lation constructed by placing i in the last place, may not produce a lexico-
graphic triangulation of A/i (although it produces a regular one).

Exercise 4.9. Using what you learned about deletion and contraction prove
that any triangulation of A \ a (deletion) extends to a triangulation of A.
Similarly, prove that any regular triangulation of A/a where a is a boundary
point can be extended to a regular triangulation of A. Prove that regularity
is necessary (hint: think of the mother of all examples).

Exercise 4.10. Show that the union of a point configuration A and a point
not in the affine span of A is a pyramid over A.

Exercise 4.11. Compute the circuits of the one-point suspension A i
i in

terms of the circuits of A.
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Exercise 4.12. Investigate the triangulations of one-point suspensions. In
particular, show:

(i) The (regular) cross-polytope has exactly d triangulations, each using
a different diameter (edge joining two opposite vertices) of it. More-
over, show that each triangulation of the regular cross-polytope is de-
termined by prescribing a single simplex. In particular, all triangula-
tions of the regular cross-polytope are disjoint.

(ii) If a one-point suspension is applied to the interior point in the configu-
ration of Example 4.1.4 it produces a non-regular octahedron. Hence,
this non-regular octahedron has four triangulations (as opposed to the
regular octahedron, which has three). There are octahedra with six
triangulations, but no more; see Section 5.5.

(iii) If a one-point suspension is applied to an independent configuration, it
produces an independent configuration of one more dimension. Simi-
larly, when applied to a circuit it produces a circuit of one dimension
more.

Exercise 4.13. Write a proof of Lemma 4.3.5 about placing triangulations.

Exercise 4.14. Show all triangulations of an n-gon are lexicographic.

Exercise 4.15. Try to find other conditions that can replace (IPP) in Corol-
lary 4.5.13 so as to characterize polyhedral subdivisions of a point set in
the general case. Try to find simplifications for triangulations and/or for
general position.

Exercise 4.16. Prove the following characterization of polyhedral subdivi-
sions:

(MaxMP) For each facet F of a d-cell B in S , either F is contained in
a facet of A or there is another d-cell B′ in S that contains F
as a facet (Pseudo-Manifold Property for Maximal Cells).

(MaxAdjSP) For every pair of adjacent cells C,C′ ∈ S sharing a common
facet F , the points in C \ F and the points in C′ \ F lie on
different sides of the hyperplane spanned by F (Separation
Property for Adjacent Maximal Cells).

(IPP) There is a point x ∈ conv(A) in general position that is con-
tained in the convex hull of exactly one d-cell (Interior Point
Property).

(This was utilized in[165].)



Regular Triangulations
and
Secondary Polytopes

5
In this chapter we unveil the beautiful structure of the set of all regular
subdivisions and, in particular, of all regular triangulations of a point or
vector configuration. The two main ingredients for this are the definitions
of regular subdivisions and of the refinement poset (see Section 2.2.3 and
Definition 2.3.8, respectively), that we now recall:

1 2 3 4

Figure 5.1: Example L4 ⊂ R
1.

1 2 3 4

Figure 5.2: Alternative heights for T1 in L4.

1 2 3 4

Figure 5.3: Alternative heights for T2 in L4.

1 2 3 4

Figure 5.4: Alternative heights for T3 in L4.

1 2 3 4

Figure 5.5: Alternative heights for T4 in L4.

Let A be a configuration with elements p j labeled by j ∈ J. We have
already seen that a height function ω ∈ R

J on A induces a polyhedral sub-
division consisting of the projection of the lower faces of the set Aω :=

{
(p j

ω j

)
: j ∈ J

}
of lifted points. Whenever ω is in general position, i.e., no

d +2 lifted points are on a common non-vertical hyperplane, then we obtain
a regular triangulation. As usual, let us denote the polyhedral subdivision
induced by such a height ω by S (A,ω).

Recall also from Section 2.3 the notion of refinement: for two polyhedral
subdivisions S ,S ′ of a point configuration A, we say S refines S ′, in
formula S � S ′, if, for every cell C ∈S , there is a cell C′ ∈ S ′ with C ⊆
C′. The refinement poset of all polyhedral subdivisions of A, denoted by
Subdivs(A), is the set of all polyhedral subdivisions of A, partially ordered
by refinement. The subposet of all regular polyhedral subdivisions of A is
denoted by Subdivsreg(A).

We will find out in this chapter that the subposet Subdivsreg(A) is re-
markably better behaved than the poset Subdivs(A). More precisely, if A
is a point configuration (or, equivalently, an acyclic vector configuration),
then Subdivsreg(A) is the same as the poset of faces of a certain polytope
naturally associated to A, called the secondary polytope. The graph of flips
between regular triangulations will be shown to be connected. This will be
a consequence of the fact that it contains, as a spanning subgraph, the graph
of the secondary polytope. In drastic contrast, we will see in Chapter 7 that
the graph of flips between all triangulations is, in general, not connected.

One word about the case of non-acyclic vector configurations: Most of
what we do in this chapter works for them, with the notable exception of
the definition of the secondary polytope itself. A different, slightly more ab-
stract, definition of the secondary polytope was developed in [48], and that
definition does generalize to vector configurations, as shown in [49], and
leads to the result that Subdivsreg(A) is the poset of faces of an unbounded
polyhedron. We do not cover this second definition, but we do study the
normal fan of this secondary polyhedron in Section 5.2.

Jesús A. De Loera et al., Triangulations, Algorithms and Computation in Mathematics,
DOI 10.1007/978-3-642-12971-1_5, c© Springer-Verlag Berlin Heidelberg 2010
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1 2 3 4

Figure 5.6: Heights for T12 in L4.

1 2 3 4

Figure 5.7: Heights for T13 in L4.

1 2 3 4

Figure 5.8: Heights for T24 in L4.

1 2 3 4

Figure 5.9: Heights for T34 in L4.

1 2 3 4

Figure 5.10: Heights for T1234 in L4.

5.1 The secondary polytope

We are about to introduce the important concept of secondary polytope of a
point configuration. Before we do that, we will motivate the “right” defini-
tion with a few examples that will hopefully illustrate the subtleties of the
concept.

5.1.1 Motivating examples

Let us develop a better feeling of how regular triangulations relate to their
defining height vectors by looking at some examples.

Example 5.1.1 (Four points on a line). Consider the point configuration
L4 consisting of four points 1,2,4,6 on the real line, labeled 1,2,3,4 from
left to right. Here is a list of its four triangulations, where the cell {i, j} is
denoted by i j for i, j = 1,2,3,4:

T1 := {14},
T2 := {12,24},
T3 := {13,34},
T4 := {12,23,34}.

Although it is not a complete coincidence that the number of triangulations
equals the number of points (see Section 5.5.1), the way we have numbered
them is arbitrary.

The flip graph of this point configuration is a four-gon, where only T1

and T4 and T2 and T3 are not connected by a flip. All these triangulations
are regular. Corresponding heights ωTi are given in the following list:

ωT1 = (1,2,2,1),
ωT2 = (2,1,2,2),
ωT3 = (2,2,1,2),
ωT4 = (2,1,1,2).

You will actually prove in Exercise 5.1 that all one-dimensional polyhedral
subdivisions are regular.

The list of all proper polyhedral subdivisions that are not triangulations
reads as follows, where the indices indicate which triangulations refine
them:

T12 := {124},
T13 := {134},
T24 := {12,234},
T34 := {123,34},

T1234 := {1234}.

Again, all of these polyhedral subdivisions are regular. Suitable heights



5.1. The secondary polytope 211

include the following (see also Figures 5.6 to 5.10):

ωT12 := (0,0,1,0),
ωT13 := (0,1,0,0),
ωT24 := (1,0,0,0),
ωT34 := (0,0,0,1),

ωT1234 := (0,0,0,0).
1 2

4 3

Figure 5.11: Point configuration C4

1 2

4 3

Figure 5.12: Heights for T1 in C4.

1 2

4 3

Figure 5.13: Heights for T2 in C4.

1 2

4 3

1 2

4 3

Figure 5.14: A “height homotopy” simulating a

flip in C4.

Note that we could have chosen the following alternative heights for the
triangulations T1, T2, T3, and T4: for each triangulation, pick the coarsest
non-trivial polyhedral subdivisions that are strictly refined by it, and sum
up their heights.

ω ′
T1

= ωT12 + ωT13 = (0,1,1,0),

ω ′
T2

= ωT12 + ωT24 = (1,0,1,0),

ω ′
T3

= ωT13 + ωT34 = (0,1,0,1),

ω ′
T4

= ωT24 + ωT34 = (1,0,0,1).

These heights are illustrated in Figures 5.2 to 5.5. That this is a general
principle will be the content of Exercise 5.12.

Example 5.1.2 (A square). Consider the point configuration C4 consist-
ing of the vertices of a square, labeled 1,2,3,4 counter-clockwise (see Fig-
ure 5.11).

We find the following polyhedral subdivisions:

T1 := {123,134},
T2 := {124,234},

S12 := {1234}.
For ε > 0, possible heights are (see Figures 5.12 and 5.13):

ω1 := (1− ε,1,1,1),
ω2 := (1 + ε,1,1,1),

ω12 := (1,1,1,1).

T1 and T2 are connected by a flip. Consider the “height homotopy” (see
Figure 5.14):

ω :

{
J× [0,1] → R,

( j,t) �→ (1− t)ω1 j + tω2 j.

Then, ω( j,0) = ω1 j and ω( j,1) = ω2 j. Moreover, ω( j, 1
2) = ω12 j. That

means, when we are moving the heights as t ranges from 0 to 1, the lower
convex hull moves through a singular configuration where the flip region be-
comes flat. More specifically, in order to obtain T1, the lifted point 1 must
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be strictly below the hyperplane spanned by the other three lifted points; in
order to obtain T2, point 1 must be lifted strictly above that hyperplane. In
between it will be on that hyperplane. This suggests that flips can some-
how be recovered from “sliding” the height vector across a certain border,
at which the height induces a slightly coarser polyhedral subdivision. You
have to wait until Section 5.4.2 for a more specific treatment of this.

Figure 5.15: The Hasse-diagram of Subdivs(C5).

Figure 5.16: The face lattice of a five-gon is

isomorphic to Subdivs(C5).

Example 5.1.3 (A pentagon). Let us be brave and add another point to the
configuration. Let C5 be the point configuration of the vertices of a con-
vex five-gon. If we lift one of the points very high up, then this will get
us a polyhedral subdivision with one triangle and an adjacent four-gon. In
other words, we have inserted an edge in the 5-gon. These subdivisions are
almost-triangulations in the sense of Section 2.4.2. So the whole list of sub-
divisions of C5 is: the trivial subdivision, these five almost-triangulations,
and the five triangulations that refine them. (There are as many triangula-
tions as almost-triangulations because each of the former refines two of the
latter and each of the latter is refined by two of the former.)

If we draw the Hasse-diagram of Subdivs(C5) (see Figure 5.15), then
we see it equals the Hasse-diagram of the face lattice of another five-gon
(see Figure 5.16). Is this a coincidence? Is the reason for this behaviour
convexity, dimension two, or the fact that all the polyhedral subdivisions
are regular? (solve Exercise 5.2 for a generalization of this fact to arbitrary
n-gons.) Stay tuned until Section 5.2, where this question is answered.

Figure 5.17: The mother of all examples M.

5

6

3

4

1 2

Figure 5.18: A non-regular triangulation of M.

Another feature of this example is that every triangulation of the five-gon
contains a triangle that is contained in no other triangulation. It is the one
that has just one edge in the boundary. Once we fix such a triangle, there is
a unique triangulation containing it. This is proved to be a general property
of configurations with no more than d + 3 elements in Section 5.5.

Example 5.1.4 (The Mother of All Examples (again)). Consider now the
point configuration M ⊂ R

2 consisting of two nested congruent triangles
with parallel edges (see Figure 5.17). It has already appeared in Exam-
ple 2.2.5 and in Section 3.3.4, and you can be sure it will show up later in
the book!

In homogeneous coordinates, normalized so that the coordinate sum is
four, we can describe M as follows:

M :=

⎛

⎝

1 2 3 4 5 6

4 0 0 2 1 1
0 4 0 1 2 1
0 0 0 1 1 2

⎞

⎠

The first thing to notice is that M has two non-regular triangulations, as

Figure 5.19: Heights for a coarsening of T1 .

proved in Example 2.2.5 (T1 is shown in Figure 5.18):

T1 := {124,245,235,356,346,146,456},
T2 := {125,145,236,256,134,136,456}.

Moreover, if we look closely at the refinement poset of all polyhedral
subdivisions of M, we observe something peculiar. Different portions of
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the poset were drawn in Chapter 3, Figure 3.20. More precisely, this config-
uration has thirteen coarsests subdivisions, which fall into four types under
the triangular symmetry of the configuration. The posets A, B, C and D of
Figure 3.20 show one refinement of each type. Especially interesting is
the subdivision of type D, consisting of the inner triangle 456, plus three
quadrangles, 1245, 2356, 1346 filling the space between the inner and outer
triangle. Its refinements form a poset isomorphic to that of a 3-cube, since
in each of the three quadrilaterals we can independently decide to insert
one diagonal, or the other, or none. In the 3-cube [0,1]3, to specify a face
we choose to fix each coordinate to be zero, or one, or do not fix it at all.
This subdivision itself is regular (as shown in Figure 5.19), but its poset
of refinements contains the 2 non-regular triangulations of M and 12 non-
regular polyhedral subdivisions that are not triangulations.

With a little patience, you can see how the 13 subposets of refinements of
coarsest subdivisions glue together in the poset of subdivisions of the whole
configuration, or at least count how many subdivisions you get in total. The
result is there are 18 triangulations and 47 polyhedral subdivisions that are
not triangulations (including the trivial one). Moreover, there are 2 non-
regular triangulations and 12 non-regular polyhedral subdivisions that are
not triangulations. All of them are shown with an schematic rendition of
the whole poset in Figure 5.20 (although it is impossible to draw most lines
of the Hasse diagram).

But there is one important fact that can be read right away from Fig-
ure 3.20 (which is a microscope view of the full poset in Figure 5.20). The
poset of subdivisions of M has maximal chains of different lengths. Re-
member that a chain in a poset is a set of elements that are totally ordered.
For example, in the poset of non-empty faces of a d-polytope, maximal
chains have length d (which means that they contain d + 2 elements, with
d +1 cover relations relating them): they consist of one face of each dimen-
sion from 0 to d, each contained in the next one. In the poset of subdivisions
of M, the maximal chains that go through the coarsest subdivisions of types
A, B, or C have length three. Those that go through the subdivision of type
D have length 4. Moreover, all of them contain at least one non-regular
subdivision.

Summing up: in all previous examples the poset of subdivisions was
isomorphic to the face poset of some polytope. But not here, since this con-
tradicts the existence of maximal chains of different lengths (in technical
terms, one says this poset is not graded). What is different here? Are the
interior points the culprits? Or is it the fault of the non-regular polyhedral
subdivisions? The fact that all chains of length four contain non-regular
subdivisions seems to indicate the latter. In fact, if you remove from the
poset D of Figure 3.20 the non-regular subdivisions what remains is the
poset of faces of a hexagon. It is not hard to believe that this hexagon,
glued with three copies of each of the other three sub-posets (which are all
pentagons and quadrangles), makes the refinement poset Subdivsreg(M) of
all regular polyhedral subdivisions of M be isomorphic to the face poset of
a nice three-dimensional polytope.

Figure 5.20: The refinement poset of the mother

of all examples M (rotated by 90 degrees and

without most covering-relations; darker points are

considered members of the enclosing cell); it

contains chains of length three and four.
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Example 5.1.5 (Five vectors in the plane). Let us now study regular sub-
divisions of a vector configuration. We consider five vectors of the same
length, and regularly distributed, as in Example 2.56. As said there, there
are three types (modulo pentagonal symmetry) of triangulations, and six
types of non-simplicial subdivisions, all of them regular. See Figures 2.56
and 2.57.

The whole poset of subdivisions turns out to have a very nice structure (as
usual!): forgetting the trivial subdivision, it is equal to the poset of faces of a
decomposition of the whole plane into some bounded and some unbounded
polyhedral regions. See Figure 5.21. The 11 vertices correspond to the 11
triangulations, shownin thepicture. The20edges(15bounded, 5unbounded)
and ten regions (5 bounded, 5 unbounded) correspond to subdivisions in
which one or more vertices are considered used but not extremal in their
respective cells. Observe that unbounded regions correspond to subdivisions
into a single cell. This cell may consist of three or four elements, the case of
five elements being the trivial subdivision that we are omitting in the picture.

Figure 5.21: The poset of regular subdivisions of

five vectors in the plane.

So, we hope by now you have enough reasons to further study this chapter.

5.1.2 Statement of the main theorem

We now come to a crucial point for understanding the space of triangula-
tions of a point configuration. We introduce secondary polytopes. Most of
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what we present here was first conceived and described by I.M. Gelfand,
M. Kapranov, and A. Zelevinsky around the year 1989. Their fundamental
original work can be found in [138, 139] and Chapter Seven of [140]. Two
other important sources in the history of the subject are the papers [48, 49].

We now introduce a fundamental construction by which, to each trian-
gulation of a point configuration with n elements, we associate a sequence
of n numbers, that is, a vector in R

J ∼= R
n. For now, this may seem like

a mysterious definition, but it will be crucial later on. We denote by e j

the standard basis vector in R
J corresponding to the j-th coordinate. Re-

call also that stT ( j) denotes the star of j in T , that is, the subcomplex of
simplices containing j.

In the following formula, vol(·) represents the usual Euclidean volume
of a body in d-space. If A is represented by a (d + 1)× n homogeneous
matrix of rank d + 1, then the volume of each simplex is (modulo a nor-
malization constant) equal to the absolute value of the determinant of the
corresponding columns.

Definition 5.1.6 (GKZ-Vector). Let A be a point configuration. Let T be
a triangulation of A. Then set

φA(T ) := ∑
j∈J

vol(stT ( j)) e j

= ∑
j∈J

∑
C∈T : j∈C

vol(C) e j ⊂ R
J ∼= R

n.

This is the Gelfand-Kapranov-Zelevinsky vector of T . For brevity, it is
most often referred as the GKZ vector of a triangulation.

This way we have a bunch of vectors in R
J associated to our point con-

figuration A, one for each triangulation. We consider their convex hull.
1 2 3 4

vol(14) = 5

Figure 5.22: The volumes of simplices in T1.

1 2 3 4

vol(12) = 1 vol(24) = 4

Figure 5.23: The volumes of simplices in T2.

1 2 3 4

vol(34) = 2vol(13) = 3

Figure 5.24: The volumes of simplices in T3.

1 2 3 4

vol(34) = 2vol(12) = 1

vol(23) = 2

Figure 5.25: The volumes of simplices in T4.

Definition 5.1.7 (Secondary Polytope). The polytope

Σ-poly(A) := conv
{

φA(T ) : T triangulation of A
}⊂ R

J ∼= R
n

is the secondary polytope of A in R
n.

Why is this polytope interesting? Let us look at our easiest example and
see what happens.

Example 5.1.8 (5.1.1 continued). Let us compute the secondary polytope
Σ-poly(L4) of the point configuration L4 of Example 5.1.1. The volumes
of all possible simplices can be read off of Figures 5.22 through 5.25.
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The GKZ-vectors of the four triangulations are:

φL4(T1) :=

⎛

⎜
⎜
⎝

vol(14)
0
0

vol(14)

⎞

⎟
⎟
⎠ =

⎛

⎜
⎜
⎝

5
0
0
5

⎞

⎟
⎟
⎠ ,

φL4(T2) :=

⎛

⎜
⎜
⎝

vol(12)
vol(12)+ vol(24)

0
vol(24)

⎞

⎟
⎟
⎠=

⎛

⎜
⎜
⎝

1
5
0
4

⎞

⎟
⎟
⎠ ,

φL4(T3) :=

⎛

⎜⎜
⎝

vol(13)
0

vol(13)+ vol(34)
vol(34)

⎞

⎟⎟
⎠=

⎛

⎜⎜
⎝

3
0
5
2

⎞

⎟⎟
⎠ ,

φL4(T4) :=

⎛

⎜
⎜
⎝

vol(12)
vol(12)+ vol(23)
vol(23)+ vol(34)

vol(34)

⎞

⎟
⎟
⎠=

⎛

⎜
⎜
⎝

1
3
4
2

⎞

⎟
⎟
⎠ .

Therefore, Σ-poly(L4) is the following convex hull:

Σ-poly(L4) = conv
{

⎛

⎜
⎜
⎝

5
0
0
5

⎞

⎟
⎟
⎠ ,

⎛

⎜
⎜
⎝

1
5
0
4

⎞

⎟
⎟
⎠ ,

⎛

⎜
⎜
⎝

3
0
5
2

⎞

⎟
⎟
⎠ ,

⎛

⎜
⎜
⎝

1
3
4
2

⎞

⎟
⎟
⎠
}
.

Note that the coordinate sum in every column is ten. This comes as no
surprise, because the volumes of the simplices in any triangulation must
add up to the volume of the point configuration. Every volume of a simplex
is counted in the GKZ-vector as many times as its number of vertices, and
this number is dimension plus one for all simplices in all triangulations. In
the example, every volume is counted twice for each triangulation. Since
the volume of L4 is five, the coordinate sum of every GKZ-vector must be
equal to ten. In Exercise 5.5, you will find d more affine relations among
the coordinates of GKZ-vectors.

Can you guess the dimension and the combinatorics of Σ-poly(L4)? Note
that we can arrange all the polyhedral subdivisions so that they label the
faces of a four-gon and so that refinement of polyhedral subdivisions corre-
sponds to face inclusion (see Figure 5.26). Could it be that the GKZ-vectors
define a four-gon?

Figure 5.26: The refinement poset of L4 is

isomorphic to the face lattice of a four-gon.

Let us elaborate on this a little bit. One can calculate by hand or with the
help of a computer algebra system that the Gauss-Jordan normal form of
the homogeneous coordinates

⎛

⎜⎜
⎜
⎜
⎝

5 1 3 1
0 5 0 3
0 0 5 4
5 4 2 2
1 1 1 1

⎞

⎟⎟
⎟
⎟
⎠
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of Σ-poly(L4) is ⎛

⎜
⎜
⎜
⎜
⎝

1 0 0 − 2
5

0 1 0 3
5

0 0 1 4
5

0 0 0 0
0 0 0 0

⎞

⎟
⎟
⎟
⎟
⎠

.

The rank of this matrix is three. Hence, the affine dimension of Σ-poly(L4)
is two. All transformed column vectors already lie in a common hyperplane:
they all have coordinate sum equal to one. Moreover, the fourth column is
not in the positive hull of the first three, since its first coordinate is neg-
ative. From this it follows that Σ-poly(L4) is indeed a two-dimensional
four-gon embedded in R

4 (see Figure 5.27 for an illustration of the vectors
in the Gauss-Jordan normal form, canonically projected into R

3). In other
words: In this example, the face lattice of Σ-poly(L4) is isomorphic to the
refinement poset Subdivs(L4) = Subdivsreg(L4).

4
5

− 2
5

3
5

Figure 5.27: The Gauss-Jordan normal form of

the non-zero homogeneous coordinates

of Σ-poly(L4) in the affine hyperplane with the

sum of all coordinates equal to one.

We will find another description of Σ-poly(L4) in Section 5.4.1 that makes
answering this question without any linear algebra almost trivial. Stay tuned!

It turns out that what we have seen in Example 5.1.8 is the general situa-
tion: the secondary polytope of A has a face lattice isomorphic to the regu-
lar refinement poset Subdivsreg(A) of A. This is one of the main theorems
in this book, proved by I. M. Gelfand, M. M. Kapranov, and A. V. Zelevin-
sky in 1989 [138]. Remember that we have learned from Example 5.1.4
that such a thing cannot be true for the larger poset Subdivs(A).

Theorem 5.1.9. Let A be a point configuration. Then:

• Vertices of Σ-poly(A) are in one-to-one correspondence with the reg-
ular triangulations of A. That is, the GKZ-coordinates φA(T ) of a
triangulation T are extremal in the set of all GKZ-coordinates of
triangulations of A if and only if T is regular.

• Furthermore, the face lattice of Σ-poly(A) is isomorphic to the re-
finement poset of regular polyhedral subdivisions of A.

The proof of this theorem is indirect. We will first construct a complete
polyhedral fan with its cones in bijection to regular subdivisions of A and
then show that it is actually the normal fan of the secondary polytope. The
whole of Section 5.2 is essentially devoted to these two tasks. But before
doing that, let us at least determine the dimension of the secondary poly-
tope.

5.1.3 Dimension and affine span of the secondary polytope

By definition, Σ-poly(A) lives in R
J , where |J| is the number of elements in

A. But we saw in Example 5.1.8 that Σ-poly(A) cannot be full-dimensional
since, among other things, φA(T ) equals (d + 1) times the volume of the
polytope conv(A), for every T .

For a more drastic example, consider the case of a corank-one configura-
tion, that is, a configuration of dimension d with d +2 points. As we saw in
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Section 2.4, such configurations have only two triangulations, hence their
secondary polytope cannot have dimension higher than one.

The main result in this section is:

Theorem 5.1.10. Let A be a point configuration. The linear subspaces of
R

J parallel and orthogonal to Σ-poly(A) are the spaces of dependences
and evaluations of A.

In particular,
dim(Σ-poly(A)) = n−d−1,

where d is the dimension of A, (that is, d + 1 is its rank).

Remember that if A is represented as an m×n homogeneous matrix, de-
pendences and evaluations form, respectively, the kernel and the row span
of the matrix. See Section 4.1.3. To prove Theorem 5.1.10, it suffices to
show that dependences and evaluations are respectively parallel and orthog-
onal to Σ-poly(A). Since they are, by definition, orthogonal complements
in R

J , this implies automatically that every vector parallel to Σ-poly(A) is
a dependence vector, and every vector orthogonal to it is an evaluation.

We start with linear evaluations. Remember that the linear evaluation
associated to a linear function ψ : R

m → R is the vector ω ∈ R
J obtained

when restricting ψ to the columns of A. Put differently, if we represent ψ
as a row vector, we have

ω = ψ ·A.

Saying that ω is orthogonal to Σ-poly(A) is the same as saying that its
scalar product with the GKZ vector φA(T ) is independent of T . Let us
show that this is indeed the case:

Theorem 5.1.11. If ω ∈ R
J is the linear evaluation associated to a certain

linear function ψ : R
m → R then, for every triangulation T of A, we have:

〈ω ,φA(T )〉 = (d + 1)
∫

convA
ψ(x)dx.

It may come as a surprise that integrals appear in a discrete mathematics
book, but the reader should not forget that one of the principal uses of
triangulations in applied mathematics is to approximately evaluate integrals
or, more generally, solve partial differential equations. The main idea is
that the integral over a complicated domain can be evaluated as a sum of
integrals over simpler domains (simplices). That is exactly what we do to
prove Theorem 5.1.11:

Proof. We prove the equality from right to left. Our first step is to use the
triangulation T to decompose the integral as:

(d + 1)
∫

convA
ψ(x)dx = (d + 1) ∑

C∈T

∫

convC
ψ(x)dx.

Now, we use the fact that the integral of a linear function on a domain X
equals the volume of the domain times the value at the barycenter. The
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barycenter of a simplex is the average of its vertices and, since ψ is linear,
its value at the barycenter is the average of its values at vertices, which are
simply the coefficients of ω . That is:

∫

convC
ψ(x)dx =

vol(C)
d + 1 ∑

j∈C

ω j.

Putting both things together:

(d + 1)
∫

convA
ψ(x)dx = (d + 1) ∑

C∈T

∫

convC
ψ(x)dx

= ∑
C∈T

vol(C) ∑
j∈C

ω j

= ∑
C∈T

∑
j∈C

ω j vol(C)

= ∑
j∈J

∑
C∈T : j∈C

ω j vol(C)

= ∑
j∈J

ω jφA(T ) j = 〈ω ,φA(T )〉.

We now look at the linear space parallel to Σ-poly(A) and show that it
equals the space of dependences in A. Remember that dependences are the
vectors in the kernel of A. More geometrically, if p1, . . . ,pn are the columns
of A, then a dependence is any vector λ = (λ1, . . . ,λn) such that

n

∑
i=1

λipi = 0.

Here we are assuming that the matrix A is homogeneous, so the above
equation contains in particular the equation ∑λi = 0.

Recall also that every circuit (Z+,Z−) has an associated dependence vec-
tor, defined uniquely up to a scalar factor. In what follows we prove that:

1. For every circuit (Z+,Z−) there is (at least) one pair of triangulations
T1 and T2 that differ by a flip supported in that circuit.

2. The GKZ vectors φA(T1) and φA(T2) of those two triangulations
differ by a scalar multiple of the dependence vector associated to the
circuit.

3. The space of dependence vectors of A is generated, as a vector space,
by the dependence vectors of circuits.

Parts 1 and 2 imply that the dependence vectors of circuits are parallel to
Σ-poly(A). Part 3 implies that all dependence vectors are linear combina-
tions of circuits. We prove these three statements in reverse.

Lemma 5.1.12. Dependences produced by circuits span the vector space
of all dependences of A.
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Proof. Let B be a basis of A. That is, a set of d + 1 independent columns,
where d + 1 is the rank of A. For each element i �∈ B, there is one depen-
dence with its support contained in B∪{i}. Since B is independent we can
normalize this dependence to have a coefficient of 1 in the i-th coordinate.
Then these n− d − 1 dependences are independent, because the (n− d −
1)×m matrix formed by them contains the identity (n−d−1)×(n−d−1)
matrix as a minor (in the columns J \B). We see then that the dependences
we constructed span the kernel of A.

To finish the proof, simply observe that A|B∪{i} is a corank-one config-
uration, hence its unique dependence is the dependence of its unique cir-
cuit.

Lemma 5.1.13. Let (Z+,Z−) be a circuit in A and let λ be the dependence
supported on it (which is unique up to a scalar factor). Let T1 and T2 be
two triangulations of A that differ by a flip in this circuit. Then

φA(T1)−φA(T2)

is parallel to λ .

Proof. Assume by now that both A and (Z+,Z−) are full-dimensional. That
is, the matrix A has full rank m = d +1 and |Z|= d +2, where Z = Z+∪Z−
is the support of our circuit.

In these conditions, the unique dependence λ with support in Z has as
coefficients the maximal minors of the matrix A|Z . Put differently, the co-
efficient at an element i ∈ Z is simply the volume of the complementary
simplex Z \{i}, with plus or minus sign depending on whether i is in Z+ or
in Z−. Let T+ and T− be the two triangulations of Z, that is:

T+ = {Z \ { j} : j ∈ Z+ } and T− = {Z \ { j} : j ∈ Z− } .

Look now at φA(T+) and φA(T−). We have that:

• In T+, φA(T+)i equals the volume of conv(Z) if i ∈ Z−, and it equals
that volume minus the volume of conv(Z \ {i}) if i ∈ Z+ (the latter
because the simplex Z \ {i} is not incident to i).

• In T−, the same happens, with the roles of Z+ and Z− interchanged.

Hence:
φA(T1)−φA(T2) = φA(T+)−φA(T−) = −λ .

If A is not full-dimensional, delete from A superfluous rows before com-
puting the secondary polytope. The choice of which rows we decide to
delete is not important, since all the volumes we get with different choices
differ only by a normalization constant. Then we can repeat the above argu-
ment. The case when the circuit Z is not full-dimensional is treated in the
exercises at the end of this chapter.

Lemma 5.1.14. For every circuit Z of A, there is at least a pair of triangu-
lations of A that differ by a flip on that circuit.
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Proof. We use induction on the corank of A. If A has corank one, then it
has a unique circuit, and two triangulations that differ by a flip on it (see
Section 2.4.1).

If A has corank greater than one, then there is (at least) one element i not
in the support of Z. This means that Z is also a circuit in A\ i and, by induc-
tive hypothesis, there are triangulations T1 and T2 of A\ i that differ by a
flip on that circuit. We leave it to the reader to check that, then, the triangu-
lations T ′

1 and T ′
2 obtained by placing i in T1 and T2 (see Lemma 4.3.2)

differ by a flip on Z, too.

Proof of Theorem 5.1.10. Let L be the linear span of the secondary polytope.
The previous results show that L contains the space of dependences of A,
and is orthogonal to the space of linear evaluations in A. Since dependences
and evaluations are orthogonal complements in R

J , the result follows.

5.2 The normal fan of the secondary polytope

How can we actually prove that Σ-poly(A) always has the kind of structure
shown in Example 5.1.8? We will partition the space of all height functions
according to what regular subdivision they produce. Then we show that
this partition is a polyhedral fan, and is the normal fan of the secondary
polyhedron Σ-poly(A). Even if we have defined secondary polytopes only
for point configurations, the fan we define here makes sense and has (al-
most) the same properties without that assumption. So, unless otherwise
specified, here we allow A to be a vector configuration, acyclic or not.

5.2.1 Secondary cones

Recall that T � T ′ if T refines or equals T ′. This means that every cell
of T is contained in some cell of T ′. Refinement will be at the core of our
investigations. The following will be our main objects of study for quite
some time.

Definition 5.2.1 (Secondary Cone). Let A be a vector configuration. Then
for a polyhedral subdivision T of A, let

C(A,T ) :=
{

ω ∈ R
J : T � S (A,ω)

}
,

C◦(A,T ) :=
{

ω ∈ R
J : T = S (A,ω)

}
.

C(A,T ) is called the secondary cone of T in A , and C◦(A,T ) is called
the relatively open secondary cone of T in A.

Although it is not yet justified to call these sets cones, one fact is imme-
diate from the definition:

Lemma 5.2.2. Let A be a vector configuration and let T be a polyhedral
subdivision of A. Then

C(A,T ) =
⋃{

C◦(A,T ′) : T � T ′ } .

Before going on, observe there is a difference between the acyclic and the
non-acyclic case. If A is acyclic (for example, if it is a point configuration),
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then every ω ∈ R
J is in some secondary cone, since it produces some reg-

ular subdivision. If A is not acyclic, then Theorem 4.1.39 tells us, in two
different ways, what condition ω needs to satisfy in order to produce a reg-
ular subdivision. In any case, it is clear that the set of valid height vectors
is simply C(A,{J}), where {J} is the trivial subdivision of A.

We show now that the set C(A,T ) has a very nice description. In the
following, we do not aim at the most economic way to present the main
theorems of this section (Theorems 5.2.11 and 5.1.9). We rather want to
prove various facts about secondary polytopes and fans, together with de-
scriptions of their structures, that are as explicit as possible.

Let us prepare for this by investigating the following question: When is
a given polyhedral subdivision T a refinement of the regular subdivision
S (A,ω)? By definition of refinement, every cell C ∈T must be contained
in a cell C′ ∈S (A,ω). By definition of S (A,ω), this is the case if the cell
C is contained in a cell C′ that is a lower face of the lifted point configuration
Aω . That means that C labels coplanar points in Aω , and all points in Aω

lie weakly above the hyperplane HC spanned by the points labeled by C.
In order to express our geometric considerations in formulas, we need

some algebraic expression for the position of points relative to a hyper-
plane in R

r+1. Here the fact that we are dealing with vectors, rather than
points, comes to our rescue. Since every linear hyperplane passes through
the origin, the vector (0,1) is above any non vertical hyperplane. Hence,
a vector (x0,h0) lies above a non-vertical linear hyperplane H equal to
{(x,h) : φ(x,h) = 0} if and only if φ(x,h)/φ(0,1) ≥ 0. Here, the fact
that φ(0,1) �= 0 is equivalent to H not being vertical. In order to stress the
fact that φ(0,1) is only used to calibrate the orientation, we will use the
equivalent condition sign

(
φ(0,1)

)
φ(x,h) ≥ 0.

By standard linear algebra in homogeneous coordinates, φ can be ex-
pressed in terms of a determinant function. So, for every (affine, for point
configurations, or linear, for vector configurations) basis {s1,s2, . . . ,sd+1}
of a cell C ∈ T , the resulting constraint on ω for C being contained in a
lower facet of Aω reads as follows:

[
signdet

(
ps1 . . . psd+1 0
ωs1 . . . ωsd+1 1

)]

· det

(
ps1 . . . psd+1 p j

ωs1 . . . ωsd+1 ω j

)

{
= 0 if j ∈C

≥ 0 otherwise

Remark 5.2.3. Let us reformulate the idea behind this equation for point
configurations. Here, we cannot rely on a particular point and a particular
height that is guaranteed to always be above a hyperplane. Rather, we should
say that lying above is the same as lying on the same side as an arbitrary point
(for example 0) lifted to infinite height. Now, infinite height seems hard to
express in coordinates at first glance. But it is not that hard: remember that,
for point configurations, we use homogeneous coordinates, so that we can
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assume that all of the original points have their (d + 1)st coordinate equal
to one and (d +2)nd coordinate equal to their heigths. Then the point 0 “at
height +∞” can be easily written as (0,0,1)T (see Figure 5.28). This is the
same as we have done with vector configurations, since the “point” (0,0)
represents here the same as the vector 0 represents there.

a

( a
1

w(a)

)
(

0
0
1

)
R

R
d

(
0
1
∞

)

R
d+1

R
d+2

(a
1

)

Figure 5.28: A point with infinite height like
( 0

1
∞

)

can be equivalently expressed as
( 0

0
1

)
in

homogeneous coordinates.

Let us call the equality condition the coplanarity condition and the in-
equality condition the weak folding condition. If we require that the height
vector reproduces exactly the polyhedral subdivision we started with then it
must satisfy the corresponding strict folding condition, i.e., strict inequality.
Recall that we have used these conditions locally (i.e., for points in adjacent
cells) already in Theorem 2.3.20.

Observe that, if we develop the first determinant on its last column, con-
sisting of zeros on all but the last position, we have that

det

(
ps1 . . . psd+1 0
ωs1 . . . ωsd+1 1

)
= det

(
ps1 . . . psd+1

)
.

This motivates the following definition.

Definition 5.2.4 (Folding Form). Let B = {r1, . . . ,rd+1} be a basis of A.
Then, for a p j ∈ A, the linear form

ψB, j(ω) := ψr1,...,rd+1, j(ω)

:=
[
signdet

(
pr1 . . . prd+1

)]

· det

(
pr1 . . . prd+1 p j

ω(r1) . . . ω(rd+1) ω j

)

is called the folding form of j with respect to B.

The folding form ψB, j has the following interpretation: Whenever this
linear functional evaluates to zero on some ω ∈ R

J , then ω lifts the ele-
ment j onto the hyperplane spanned by the liftings of r1, . . . ,rd+1. In this
case,

( pr1
ω(r1)

)
, . . . ,
( prd+1

ω(rd+1)

)
,
(p j

ω j

)
are coplanar. Whenever this linear func-

tional evaluates to a positive number, then j is lifted above that hyperplane.
Thus, we can use the folding forms to express both the coplanarity and the
folding conditions.

Before we make this explicit, we mention that coplanarity conditions
and folding conditions are independent of the choice of the basis. (See
Figures 5.29 and 5.30 for an illustration.)

Lemma 5.2.5. Let A be a vector configuration. Let C ⊆ J be a
full-dimensional cell of A, and let B,B′ be bases of C. Then the following
hold:

(i) Let ω ∈ R
J . Then

ψB, j(ω) = 0 ∀ j ∈C ⇐⇒ ψB′, j(ω) = 0 ∀ j ∈C.

(ii) Let ω ∈ R
J so that ψB, j(ω) = 0 for all j ∈C. Then

ψB, j(ω) = ψB′, j(ω) ∀ j ∈ J.
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Figure 5.29: If a height vector satifies the

coplanarity conditions for a cell C . . .

Figure 5.30: . . . then the choice of another basis

of C produces the same folding forms for all

points.

Proof. The assertions follow from the fact that ψB, j(ω) = 0 for all j ∈ C
means that all j ∈ C lie on the hyperplane spanned by Aω |B. It then does
not matter which basis we choose to describe that hyperplane.

Proposition 5.2.6. Let A be a vector configuration. Let ω ∈ R
J. Then the

following facts hold:

(i) A cell C is in S (A,ω) if and only if for some (and hence for any) ba-
sis B of C, the coplanarity conditions and the strict folding conditions
hold, i.e.,

ψB, j(ω)

{
= 0 if j ∈C,

> 0 otherwise.

(ii) A cell C is contained in a cell C′ in S (A,ω) if and only if for some
(and hence for any) basis B of C, the coplanarity conditions and the
weak folding conditions hold, i.e.,

ψB, j(ω)

{
= 0 if j ∈C,

≥ 0 otherwise.

(iii) A cell C is strictly contained in a cell C′ in S (A,ω) if and only if for
some (and hence for any) basis B of C,

ψB, j(ω)

⎧
⎪⎨

⎪⎩

= 0 if j ∈C,

= 0 for at least one j ∈ J \C,

≥ 0 otherwise.

Proof. The assertions are true by construction of the folding forms. (They
are illustrated in Figures 5.31 to 5.34.)

Putting everything together yields the following polyhedral description
of secondary cones.

Corollary 5.2.7. Let T be an arbitrary polyhedral subdivision of A. Then

(i) The secondary cone of T has the following description:

C(A,T ) =
{

ω ∈ R
J : ψB, j(ω) = 0 ∀ j ∈C,

ψB, j(ω) ≥ 0 ∀ j ∈ J \C,

for all bases B of C,

∀C ∈ T
}

=
{

ω ∈ R
J : ψB, j(ω) = 0 ∀ j ∈C,

ψB, j(ω) ≥ 0 ∀ j ∈ J \C,

for some basis B of C,

∀C ∈ T
}
.
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Figure 5.31: The heights on a basis of a cell

define a hyperplane in R
d+1.

Figure 5.32: All other members of that cell must

be lifted onto that hyperplane.

Figure 5.33: All non-members of that cell must

be lifted weakly above that hyperplane; additional

points on that hyperplane lead to refinement.

Figure 5.34: If all non-members are lifted strictly

above that hyperplane then the heights induce

exactly the cell we started with.

(ii) The relatively open secondary cone of T has the following descrip-
tion:

C◦(A,T ) =
{

ω ∈ R
J : ψB, j(ω) = 0 ∀ j ∈C,

ψB, j(ω) > 0 ∀ j ∈ J \C,

for all bases B of C,

∀C ∈ T
}

=
{

ω ∈ R
J : ψB, j(ω) = 0 ∀ j ∈C,

ψB, j(ω) > 0 ∀ j ∈ J \C,

for some basis B of C,

∀C ∈ T
}
.

Proof. The assertions follow from Lemma 5.2.5 and Proposition 5.2.6.

The description above is terribly redundant; i.e., a lot of constraints are
implied by sets of other constraints. In Theorem 2.3.20, we have already
shown that the folding conditions on adjacent cells imply all the others. The
redundant description above, however, is sometimes theoretically more con-
venient than the more efficient wall-based formulation in Theorem 2.3.20.
In Chapter 8, we will come back to the wall-based description for the sake
of computational efficiency.

Corollary 5.2.8. For all polyhedral subdivisions T of A the secondary
cone C(A,T ) is a polyhedral convex cone.

5.2.2 The secondary fan

We now look at the set of all secondary cones. Our goal is to show that they
form a polyhedral fan (remember Definition 2.1.7).

First, we compile some basic facts about secondary cones of regular poly-
hedral subdivisions. In Exercise 5.8, you will seek counterexamples to each
assertion when the assumption of regularity is dropped. See Figure 5.35 for
a (slightly misleading) illustration.

Proposition 5.2.9. Let T ,T ′ be regular polyhedral subdivisions of A.
Then:

(i) C(A,T ′) is a proper face of C(A,T ) if and only if T strictly re-
fines T ′.

(ii) C◦(A,T ) equals the relative interior of C(A,T ).

(iii) C◦(A,T ) is non-empty.

(iv) C(A,T ) is full-dimensional if and only if T is a triangulation.

(v) C(A,T ) has codimension one if and only if T is an almost triangu-
lation.
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heights inducing triangulations

even coarser

coarser

trivial

Figure 5.35: Refinement in a closed secondary

cone. In one sense, this picture is misleading:

the secondary cones in general contain

non-trivial lineality spaces.

Proof. In order to prove one direction of (i), assume that T and T ′ are
regular such that T ≺ T ′. We need to show that

C(A,T ′) =
{

ω ′ ∈ R
J : ψB′, j(ω ′) = 0 ∀ j ∈C′

ψB′, j(ω ′) ≥ 0 ∀ j ∈ J \C′

for some basis B′ of C′,
∀C′ ∈ T ′ }

is a proper face of

C(A,T ) =
{

ω ∈ R
J : ψB, j(ω) = 0 ∀ j ∈C

ψB, j(ω) ≥ 0 ∀ j ∈ J \C

for some basis B of C,

∀C ∈ T
}
.

By definition of the secondary cone, C(A,T ′) ⊆ C(A,T ). Thus,

C(A,T ′) =
{

ω ′ ∈ C(A,T ) : ψB′, j(ω ′) = 0 ∀ j ∈C′

ψB′, j(ω ′) ≥ 0 ∀ j ∈ J \C′

for some basis B′ of C′,

∀C′ ∈ T ′ }.

Since T ≺ T ′, we can pick as a basis of C′ a basis B of a cell C ∈ T
with C ⊆C′. But then all inequalities of the form ψB′, j(ω) = ψB, j(ω) ≥ 0
become redundant because all ω ∈ C(A,T ) satisfy them. Therefore, we
can define

HT ′ :=
{

ω ′ ∈ R
J : ψB′, j(ω ′) = 0 ∀ j ∈C′

for some basis B′ of C′,

∀C′ ∈ T ′ },

and C(A,T ′) = C(A,T )∩HT ′ . In words: C(A,T ′) just satisfies the ad-
ditional coplanarity conditions for the cells in T ′ that strictly contain cells
of T (see Figure 5.36). This proves that C(A,T ′) is a face of C(A,T ).

In order to show that it is a proper face, we need to show that it is neither
empty nor equal to C(A,T ).

Since T ′ is regular, there is a ω ′ in R
J with T ′ = S (A,ω ′). This ω ′

lies in C(A,T ′), by definition of the secondary cone, and thus C(A,T ′) is
non-empty.

Since T is regular, there is a height vector ω in C(A,T ) with T =
S (A,ω). Since T ≺ T ′, we have in particular T ′ �� T . Therefore, ω is
not in C(A,T ′), by definition of the secondary cone, and thus C(A,T ′) �=
C(A,T ).

The reverse direction of the equivalence of Part (i) is obtained by reading
the above argument the other way round.
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From Part (i) we immediately get (ii), by definition of the relative interior.
Assertion (iii) follows from the definition of C◦(A,T ).

Assertion (iv) follows from the fact that, for a regular triangulation, there
are no coplanarity conditions, i.e., no non-trivial equations, because every
cell itself is a basis. (Note that ψB,r(ω) ≡ 0 for all r ∈ B, i.e., in the case of
simplicial cells, all ω have coefficient zeros in the folding form, i.e., there
is no coplanarity condition at all.)

Therefore, C◦(A,T ) is an intersection of finitely many open halfspaces.
In particular, C◦(A,T ) is an open subset of R

J . Moreover, it is non-empty
since T is regular. Thus, C◦(A,T ) is an open, non-empty subset in R

J ,
thus full-dimensional, by elementary metric topology. If, in turn, T is not a
triangulation, then its secondary cone is a proper face of the secondary cone
of a refinement of it, by Part (i). Therefore, it cannot be full-dimensional.

The proof of (v) is similar. Recall that an almost triangulation is a sub-
division with the property that there is only one minimal dependent subset
(circuit) contained in its cells. In particular, all the coplanarity conditions
in the description of C◦(A,T ) boil down to one and the same condition:
that ω lifts that dependent subset to be coplanar. In particular, C◦(A,T )
is the intersection of an open set with a single hyperplane. Since it is not
empty (because T is regular), and it is not full-dimensional (by part (iv)), it
must have codimension one. Conversely, if T is neither a triangulation nor
an almost-triangulation, then there are two different circuits contained in
(different or the same) cells of T . Those two circuits provide at least two
different equations in the description of C◦(A,T ), which then has codi-
mension at least two.

additional
coplanarity
conditions

Figure 5.36: The supporting hyperplane for a

face enforces the additional coplanarity

conditions, producing coarser cells.

Example 5.2.10 (5.1.1 continued). We consider again the point configura-
tion L4. We show the set of constraints for heights defining the triangula-
tion T2 = {12,24}. All cells are simplices, so there is no choice for the
bases.

In order to find the simplex 12 in the set of lower facets of a lifting by ω1,
ω2, ω3, and ω4, the following conditions must be fulfilled (see Figures 5.37
and 5.38):

ψ1,2,3(ω1,ω2,ω3,ω4)

=
[
signdet

⎛

⎝
1 2 0
1 1 0

ω1 ω2 1

⎞

⎠
]

det

⎛

⎝
1 2 4
1 1 1

ω1 ω2 ω3

⎞

⎠

= −(−2ω1 + 3ω2 −ω3)
> 0,

ψ1,2,4(ω1,ω2,ω3,ω4)

=
[
signdet

⎛

⎝
1 2 0
1 1 0

ω1 ω2 1

⎞

⎠
]

det

⎛

⎝
1 2 6
1 1 1

ω1 ω2 ω4

⎞

⎠

= −(−4ω1 + 5ω2 −ω4)
> 0.
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The simplex 24 is a lower facet if and only if the following linear constraintsw3 > 3w2 −2w1

1 2 3 4

Figure 5.37: The condition ω3 > 3ω2 −2ω1

ensures that the third point is lifted strictly above

the line spanned by the lifted first two points;

note how the geometric distances among the

points in R play an important role as coefficients

in the line equations.

w4 > 5w2 −4w1

1 2 3 4

Figure 5.38: The condition ω4 > 5ω2 −4ω1

ensures that the fourth point is lifted strictly

above the line spanned by the lifted first two

points.

are satisfied (see Figures 5.39 and 5.40):

ψ2,4,1(ω1,ω2,ω3,ω4)

=
[
signdet

⎛

⎝
2 6 0
1 1 0

ω2 ω4 1

⎞

⎠
]

det

⎛

⎝
2 6 1
1 1 1

ω2 ω4 ω1

⎞

⎠

= −(5ω2 −ω4 −4ω1)
> 0,

ψ2,4,3(ω1,ω2,ω3,ω4)

=
[
signdet

⎛

⎝
2 6 0
1 1 0

ω2 ω4 1

⎞

⎠
]

det

⎛

⎝
2 6 4
1 1 1

ω2 ω4 ω3

⎞

⎠

= −(2ω2 + 2ω4−4ω3)
> 0.

The complete system of linear equations and inequalities specifying the

w1 > (5w2 −w4)/4

1 2 3 4

Figure 5.39: The condition ω1 > (5ω2 −ω4)/4

ensures that the first point is lifted strictly above

the line spanned by the lifted second and fourth

points.

w3 > (w4 +w2)/2

1 2 3 4

Figure 5.40: The condition ω3 > (ω2 +ω4)/2

ensures that the third point is lifted strictly above

the line spanned by the lifted second and fourth

point.

heights that induce T2 reads as follows (note that two of the above condi-
tions are identical):

2ω1 −3ω2 + ω3 > 0,

4ω1 −5ω2 + ω4 > 0,

−2ω2 + 4ω3−2ω4 > 0.

Since this is the system for a regular triangulation, we have no coplanarity
conditions. We see that both the height vectors (2,1,2,2) and (1,0,1,0) in
Example 5.1.1 fulfill all the constraints.

The system of linear equations and equalities specifying the heights that
induce subdivisions that are refined by T2 is the corresponding set of equa-
tions and weak inequalities:

2ω1 −3ω2 + ω3 ≥ 0,

4ω1 −5ω2 + ω4 ≥ 0,

−2ω2 + 4ω3−2ω4 ≥ 0.

For example, the height vector (0,0,0,0) fulfills these non-strict inequal-
ities with equality, meaning that T2 refines the polyhedral subdivision in-
duced by (0,0,0,0), which is the trivial subdivision {1234}. (This is no
surprise because every polyhedral subdivision refines the trivial one.) The
height vector (1,2,2,1), which induces the triangulation T1 = {14}, vio-
lates all inequalities. Therefore, T2 does not refine T1. Mind you, subdi-
visions and triangulations are not uniquely determined by the convex hulls
of their cells; we need the point sets spanning the cells as well to specify a
polyhedral subdivision.

The following theorem states the conclusion of all our work so far: The
collection of secondary cones forms a nice subdivision of the space of all
possible heights (see Figure 5.41 for a generic sketch).
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Theorem 5.2.11. Let A be a vector configuration, and let Σ-fan(A) be
the collection of all secondary cones C(A,T ) over all regular polyhedral
subdivisions T of A. Then Σ-fan(A) is a polyhedral fan in R

d. The fan is
complete if (and only if) A is acyclic.

Moreover, the face lattice of Σ-fan(A) is opposite to the refinement poset
of regular polyhedral subdivisions of A. triangulation

of two triangulations

triangulation

triangulation

triangulation

common coarsening
of all triangulations

common coarsening
of four triangulations

common coarsening

Figure 5.41: The structure of a piece of the

secondary fan (intersected with a ball; lineality

spaces not drawn): A height in a common face of

two or more secondary cones induces a common

coarsening of the respective polyhedral

subdivisions.

Proof. Recall that being a polyhedral fan (Definition 2.1.7) means that

(i) For every regular polyhedral subdivision T of A, every face of the
secondary cone C(A,T ) is a member of Σ-fan(A).

(ii) C(A,T )∩C(A,T ′) is a face of both C(A,T ) and C(A,T ′).
Being complete means that, in addition:

(iii) The union of all C(A,T ) over all regular polyhedral subdivisions
of A covers R

J .

Assertion (i) follows from Proposition 5.2.9(i). In order to prove (ii),
consider the intersection of two cones C(A,T )∩C(A,T ′). By definition
of the secondary cones, this intersection is the set of all heights ω ∈R

J such
that T � S (A,ω) and T ′ � S (A,ω). By Proposition 5.2.9(i) again, this
means that C(A,T )∩C(A,T ′) is a face of both C(A,T ) and C(A,T ′).

For Part (iii), observe that acyclic vector configurations are precisely
those that do not have any non-negative dependence. Theorem 4.1.39 says
that they coincide with those for which every ω ∈ R

J belongs to some sec-
ondary cone.

Proposition 5.2.9(i) implies the order-reversing poset isomorphism.

5.2.3 Proof of the main theorem

A natural question to ask now is the following: Is the secondary fan poly-
topal? That is, does there exist a polytope whose normal fan coincides with
the secondary fan? Of course, this can only happen if the fan is complete,
that is to say, if its cones cover the whole R

J . This happens if and only if
A is acyclic. In this case, we can think of it as a point configuration and,
at last, the secondary polytope from Definition 5.2.1 enters the scene. In
this section we will show that the secondary fan is the normal fan of the
secondary polytope.

To further highlight the geometry behind the constructions, in this section
we think of our point configuration as embedded in the affine space R

d . If
we have a geometric simplicial complex in R

d and know the values that a
certain function g takes on its vertices, it is natural to affinely interpolate
g to the interior of the higher dimensional simplices. This is done, for
example, in mesh generation or terrain modeling. Here, we do the same
for any triangulation T of our point configuration and any lifting heights
ω ∈ R

J . See Figure 5.42 for an illustration.

Definition 5.2.12 (The characteristic section). Let T be a triangulation of
a point configuration A, and let ω ∈ R

J be a height function.
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Then we can define a piecewise-linear function by

gω,T :

{
conv(A) → R

d+1,
p j �→ gω,T (p j) := ω j,

and extended affinely on conv(C) for each cell C ∈ T . This function is
called the characteristic section of T with respect to ω .

Figure 5.42: The graph of the piecewise affine

function defined by a triangulation and a height

vector. In this case, the function is “as convex as

possible.” Thus, the height induces the given

triangulation.

1 2 3 4

Gw1,T4

Gw1 ,T3
Gw1 ,T2

Gw1 ,T1

Figure 5.43: The characteristic sections

corresponding to ω1 = (1,2,2,1): the one

corresponding to T1 is minimal.

Gα2 ,T2

Gw2,T1 Gw2 ,T3

Gw2,T4

1 2 3 4

Figure 5.44: The characteristic sections

corresponding to ω2 = (2,1,2,2): the one

corresponding to T2 is minimal.

We remark that this is well-defined on intersections of simplices, because
of the intersection property of a polyhedral subdivision.

The following observation relates characteristic sections to things we al-
ready know:

Lemma 5.2.13. Let A be a point configuration, and let T be any triangu-
lation refining S (A,ω). The function graph

Gω,T :=
{
(

x
gω,T (x)

)
: x ∈ convA

}⊂ R
d+1

equals the union of lower facets of Aω .
More specifically,

Gω,T (convA(C)) = convAω (C) for all C ∈ S (A,ω).

So, if T = S (A,ω) then we just get a formally different description of
the definition of S (A,ω). Note, however, that in the definition of gω,T we
do not require ω to be the height function that induces T . In fact, we want
to find out what is special about gω,T for T � S (A,ω). The following
lemma describes what gω,S (A,ω) looks like compared to the gω,T induced
by other polyhedral subdivisions T .

Lemma 5.2.14 (Crucial Lifting Lemma). Fix ω ∈ R
J and let T be an

arbitrary triangulation of A. Then the following are equivalent:

(i) T � S (A,ω).

(ii) gω,T ≤ gω,T ′ for all triangulations T ′ of A.

Proof. First, we observe that, by definition of the convex hull, the lifted
cell gω,T ′(conv(C)) lies in the polytope conv(Aω ) for all triangulations
T ′ of A and all C ∈ T ′. Moreover, T � S (A,ω) if and only if the lifted
cell gω,T (C) lies in a lower facet of conv(Aω ) for all C ∈ T ′.

Consider the fiber over x ∈ conv(Aω), which is the set

Fx :=
{

y ∈ conv(Aω ) : yi = xi, i = 1, . . . ,d
}

.

This is a segment, because it is the intersection of the polytope conv(Aω)
with a line, i.e., an affine subspace. Moreover, the line intersects the lower
facets of conv(Aω) in the lowest point of Fx. This point equals gω,T (x) for
all x ∈ convA if and only if, for all C ∈ T ′, the lifted cell gω,T (conv(C))
lies in a lower facet of conv(Aω). This was shown to be equivalent to
T � S (A,ω).
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Gw3,T4
Gw3 ,T3

Gα3 ,T1 Gw3,T2

1 2 3 4

Figure 5.45: The characteristic sections

corresponding to ω3 = (2,2,1,2): the one

corresponding to T3 is minimal.

Gw4 ,T1

Gw4,T2
Gw4,T3

Gw4 ,T4

1 2 3 4

Figure 5.46: The characteristic sections

corresponding to ω4 = (2,1,1,2): the one

corresponding to T4 is minimal.

Example 5.2.15 (5.1.1 continued). We show in Figures 5.43 through 5.46
the characteristic sections on conv(L4) for all pairs of heights and triangula-
tions in Example 5.1.1. Remember that all given triangulations are regular,
and all of them were induced by one of the given heights. In the example it
can be seen right away that the lifting according to the triangulation induced
by a height is never above any other lifting.

We are now in a position to prove the main result in this section:

Theorem 5.2.16 (Gelfand, Kapranov, Zelevinsky 1989). If A is a point
configuration, then Σ-fan(A) is the inner normal fan of the secondary poly-
tope Σ-poly(A).

Proof. Every polytope is determined by its vertices or, equivalently, by its
full-dimensional normal cones. By definition of the convex hull the ver-
tices of the secondary polytope Σ-poly(A) are among the GKZ-vectors of
triangulations, and thus it is sufficient to prove the following: For every
triangulation T , the normal cone NΣ-poly(A)(φA(T )) of the point φA(T )
in Σ-poly(A) equals C(A,T ). This would also imply, by Proposition
5.2.9(iv), that φA(T ) is a vertex if and only if T is regular.

We will first show the following:

C(A,T )
!⊆ NΣ-poly(A)(φA(T ))

for all triangulations T .
To this end, fix an arbitrary triangulation T of A, and let ω ∈ C(A,T ).

By definition of the secondary cone, T � S (A,ω), we need to show the
following:

〈ω ,φA(T )〉 !≤ 〈ω ,x〉 for all x ∈ Σ-poly(A).

Since on any polytope, every linear functional is minimized at one of its
vertices, it is sufficient to check potential vertices of Σ-poly(A) in place of
a general x. Again, the vertices of Σ-poly(A) must be among the points
defining its convex hull. Therefore, it is sufficient to prove

〈ω ,φA(T )〉 !≤ 〈ω ,φA(T ′)〉 for all triangulations T ′ of A.

For every triangulation T ′ of A, we have the following interpretation for
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Gw4 ,T1

1 2 3 4

(d +1)vol = 〈w,φA1
(T1)〉

Figure 5.47: For the height vector ω4 on L4 we

see: for no triangulation of L4 . . .

Gw4 ,T2

1 2 3 4

(d +1)vol = 〈w,φA1
(T2)〉

Figure 5.48: . . . the volume under the graph of

its characteristic section with respect

to ω4—which is the sum of volumes of the

“columns” between cells and their liftings—. . .

the multiplication of ω with the GKZ-coordinate of T ′:

〈ω ,φA(T ′)〉 = ∑
j∈J

ω jφA(T ′) j

= ∑
j∈J

∑
C∈T ′: j∈C

ω j vol(C)

= ∑
C∈T ′

∑
j∈C

ω j vol(C)

= ∑
C∈T ′

vol(C) ∑
j∈C

ω j

= (d + 1) ∑
C∈T ′

vol(C)
1

d + 1

(
∑
j∈C

ω j
)

︸ ︷︷ ︸
avg. height over C = height over barycenter

︸ ︷︷ ︸
volume of the “column” between C and Cω

︸ ︷︷ ︸
volume below the graph of gω ,T ′

= (d + 1)
∫

convA
gω,T ′(x)dx.

By the Crucial Lifting Lemma (Lemma 5.2.14), the last expression is mini-
mal for any T ′ with T ′ �S (A,ω). In particular, it is minimized for T ′ =
T (see also Figures 5.47 through 5.50). Therefore, ω ∈ NΣ-poly(A)(φA(T )),
as desired.

The reverse set inclusion,

C(A,T )
!⊇ NΣ-poly(A)(φA(T )),

is analogous: the Crucial Lifting Lemma luckily works in both directions.

This, in turn, finally gives the proof of Theorem 5.1.9:

Proof of Theorem 5.1.9. This is now an immediate consequence of Theo-
rem 5.2.16 and Theorem 5.2.11, since the face lattice of any polytope is
opposite to the face lattice of its normal fan.

Although there is still a lot to say about the structure of regular triangula-
tions, one interesting consequence can be drawn: Whenever two triangula-
tions share identical GKZ coordinates, then they are both non-regular. This
is proved with the help of the following technical result:

Proposition 5.2.17. Let T be a non-regular polyhedral subdivision of A.
Then:

(i) C◦(A,T ) is empty.

(ii) C(A,T ) is not full-dimensional.

Note that for Part (ii) we cannot use Proposition 5.2.9(ii), since we are
talking about non-regular subdivisions.
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Gw4 ,T3

1 2 3 4

(d +1)vol = 〈w,φA1
(T3)〉

Figure 5.49: . . . is strictly smaller . . .

Gw4 ,T4

1 2 3 4

(d +1)vol = 〈w,φA1
(T4)〉

Figure 5.50: . . . than the volume below the graph

of the characteristic section of T4.

Proof. Assertion (i) is by definition.
In order to prove Part (ii), we use Part (i) together with Lemma 5.2.2,

where the latter gives us the link to regular subdivisions that we need to
apply Proposition 5.2.9:

C(A,T ) =
⋃{

C◦(A,T ′) : T � T ′ }

=
⋃{

C◦(A,T ′) : T ′ regular and T ≺ T ′ } .

No T ′ with T ≺ T ′ can be a triangulation, since a triangulation cannot
be strictly refined. Hence, by Part (i) and by Proposition 5.2.9(iv), no set
in the union is full-dimensional. As a finite union of non-full-dimensional
cones, C(A,T ) cannot be full-dimensional.

Corollary 5.2.18. If two triangulations T �= T ′ of the same point config-
uration A have the same GKZ-vector, then they are both non-regular.

Proof. If one of the triangulations was regular, then both triangulations
would correspond to the same vertex of Σ-poly(A). In other words, their
normal cones coincide and hence, according to Theorem 5.1.9, their sec-
ondary cones must coincide. Moreover, both secondary cones, as normal
cones of vertices of a polytope, are full-dimensional, hence both triangu-
lations must be regular by Proposition 5.2.17(ii). Therefore, we can apply
Proposition 5.2.9(ii), and thus the relatively open secondary cones must co-
incide as well. By definition of the relatively open secondary cone, this
means that T = T ′, a contradiction.

5.3 Structure of the secondary polytope

The structure of the secondary polytope has interesting implications for reg-
ular subdivisions, regular triangulations, and their relations. Edges, paths,
and facets correspond to structures in the space of regular subdivisions that
we have discussed before.

5.3.1 Edges of the secondary polytope

One of the most important applications of Theorem 5.1.9 is to show that
every two regular triangulations can be joined by a finite sequence of flips:

Theorem 5.3.1. The edge graph of the secondary polytope Σ-poly(A) of A
is contained in the flip graph of all regular triangulations of A.

Proof. In any polytope, adjacent full-dimensional normal cones correspond
to adjacent vertices, i.e., vertices that are connected by an edge. Every
edge of the secondary polytope represents an adjacency between two full-
dimensional secondary cones. This corresponds, by Parts (iv) and (v) of
Proposition 5.2.9 and Corollary 2.4.6, to a flip between two regular triangu-
lations.

Corollary 5.3.2. Every regular triangulation has at least n− d − 1 flips,
where d is the dimension of A, and the graph of all regular triangulations
of A is (n−d−1)-connected.
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Proof. As a graph of an (n− d − 1)-dimensional polytope, this graph is
(n−d−1)-connected, by Balinski’s Theorem (see, e.g., [339, 148]).

The converse of Theorem 5.3.1 was generally believed to hold (see [140,
Ch. 7, Theorem 2.10] and [280, Theorem 2.8]). But here we show it is in
fact false: The graph of the secondary polytope is not always equal to the
graph of flips between regular triangulations, because a non-regular almost-
triangulation (a subdivision supporting the flip, see Subsection 2.4.2) can be
refined by two regular triangulations. This situation produces flips between
regular triangulations which do not appear as edges of the secondary poly-
tope. Before showing an explicit example of this, let us see that such nasty
examples cannot occur with points in general position or, more generally,
for flips on circuits in general position (this is the content of Proposition
2.8 in [140]).

Theorem 5.3.3. If two regular triangulations T1 and T2 differ by a flip on
a full-dimensional circuit Z, then the almost-triangulation S refined by T1

and T2 is regular too. That is, it is an edge in the secondary polytope.

Proof. Let as assume that there is no element of A in conv(Z) other than
those forming part of Z itself. This is no loss of generality, because such
elements, if they exist, are not used in any of T1, T2 and S , so they do not
affect their regularity.

If ω1 and ω2 are heights producing T1 and T2 respectively, then every
positive combination of them gives a regular subdivision containing the sub-
complex T1 ∩T2. In particular, there is a path on the secondary polytope
going from T1 and T2 along only regular subdivisions that contain T1∩T2.
(A more precise version of this argument will be given in Theorem 5.3.13).

Now, since Z is full-dimensional, T1 ∩T2 covers all of conv(A) except
for conv(Z). Moreover, the boundary of conv(Z) is simplicial (this holds
for any circuit). So, the only subdivisions containing T1 ∩T2 are T1, T2,
and S , because the only subdivisions of a circuit are its two triangulations
and the trivial one. This implies that the flip is an edge in the secondary
polytope.

Example 5.3.4 (A non-regular flip between regular triangulations). Let A
be the following configuration of 10 points in dimension three (as usual, the
last row is just for homogeneization):

A =

⎛

⎜
⎜
⎝

1 2 3 4 5 6 7 8 9 0

0 0 4 −4 4 −4 0 0 0 0
0 0 4 −4 −4 4 7 −7 1 −1
4 −4 0 0 0 0 1 −1 7 −7
1 1 1 1 1 1 1 1 1 1

⎞

⎟
⎟
⎠.

Figure 5.51 shows the configuration in two parts: the first six points form

7

Z

X

Y

5

4

1

6

2

3

9

2

1

0

8

Figure 5.51: The configuration A . The top

picture shows the inner octahedron. The bottom

picture shows the six points in the YZ-plane.

the vertices of an octahedron, affinely equivalent to a regular one. The last
four vertices form a slanted rectangle with sides parallel to the square ob-
tained by intersecting the octahedron the YZ-plane. Notice that the square
is contained in the rectangle.
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We are going to study the family of regular triangulations and subdivi-
sions induced by the following 1-parameter family of height functions:

ω(t) =
(

1 2 3 4 5 6 7 8 9 0

0 0 2 + t 2 + t 2− t 2− t 13.5 13.5 10 10
)
.

Let Tt be the regular subdivision obtained for a certain value of t. Ob-
serve that ω(t) does not depend on t at the six points of the YZ-plane. This
makes it rather easy to compute the intersection of Tt with that plane. We
only need to take into account the four intersections of the edges 34, 36, 54,
and 56, with that plane, and consider them as if they were four extra points
of the configuration, with the following heights assigned to them:

ω34(t) = ω3+ω4
2 = 2 + t, ω36(t) = ω3+ω6

2 = 2,

ω54(t) = ω5+ω4
2 = 2, ω56(t) = ω5+ω6

2 = 2− t.

This is represented in Figure 5.52. The triangulation shown there is the one
obtained as long as t ∈ (−2,2). It does not use the edges 34 and 56, and
its only extension to the configuration consists of the following eighteen
tetrahedra:

T0 =

⎧
⎪⎪⎨

⎪⎪⎩

1235,1236,1245,1246,
3619,3679,3627,2370,2670,
4520,4590,4518,1489,1589,

3519,3520,4619,4620

⎫
⎪⎪⎬

⎪⎪⎭

The first row triangulates the central octahedron. The second and third
triangulate the right and left regions around it, and the fourth triangulates
the front and back.

2

10

13.5

10

0

0

13.5
2 2± t

Figure 5.52: The heights induced by ω(t) on the

YZ-plane are constant and produce this regular

triangulation, for t ∈ (−2,2).

When t gets out of the interval (−2,2), but not by too much, the only
change is in the way the central octahedron is triangulated. More precisely,
with t ∈ (−11.5,−2) and t ∈ (2,11.5) we get, respectively, the following
triangulations T−5 and T+5:

T−5 = T0 \ {1235,1236,1245,1246}∪{1356,1456,2356,2456},
T+5 = T0 \ {1235,1236,1245,1246}∪{1345,1346,2345,2346}.

The important point so far is simply that these three triangulations, T0,
T−5 and T+5 are all regular, and they form a triangle in the graph of flips
between triangulations of A. (Every two triangulations of the regular octa-
hedron are connected by a flip.)

Now, we are going to show that the almost-triangulation connecting T−5

and T+5 is not regular. This almost-triangulation has the exterior of the oc-
tahedron triangulated as T−5 and T+5, but the octahedron itself subdivided
into two square pyramids separated by the horizontal square 3456. That is
to say:

S := T0 \ {1235,1236,1245,1246}∪{13456,23456}.

In particular, in the YZ-plane we should be able to get the regular subdi-
vision of Figure 5.52 but with the middle edge flipped, as in Figure 5.53.
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This is impossible: Assuming, without loss of generality, height zero for
the triangle below the middle edge and a positive height h for the second
vertex joined to that edge, we get the following contradiction:

ω9 > ω8 + 2h ⇒ ω7 > ω9 − 3
2 h > ω8 + 1

2 h,

⇒ ω8 > ω0 > ω7 > ω8 + 1
2 h.

0

ω0

ω9

ω7

ω8

h

0 0

Figure 5.53: This subdivision is not regular.

Remark 5.3.5. The example above is minimal in terms of rank (see Ex-
ercise 5.24), but not in terms of number of points. In Exercise 5.23 and
Example 5.4.16, we show two constructions, of rank four, but with only
eight elements, one acyclic and one totally cyclic. In Theorem 5.4.15 we
show that eight is indeed the minimum possible number of points, since
examples with corank three cannot exist.

Observe that this example shows, in particular, that:

Corollary 5.3.6. There are refinement-minimal non-regular subdivisions
that are not triangulations.

Most probably, there are even minimal non-regular subdivisions very
high up in the refinement poset. Yet, we do not know the answer to the
following question: Is there a configuration that has non-regular subdivi-
sions, but only regular triangulations?

5.3.2 Monotone paths on the secondary polytope

In Chapter 3, we saw that, for two-dimensional problems one can flip mono-
tonically from any triangulation to arrive, after finitely many steps, to the
Delaunay triangulation. We also saw, in Example 3.6.15, that the same is
false in dimension three. Nevertheless, the rich secondary polytope struc-
ture brings new hope. In this subsection, we show that one can still mono-
tonically flip from any regular triangulation T to any other target regular
triangulation T ′ (e.g., the Delaunay triangulation), guided by a height func-
tion ω that determines T ′. Effectively, the edges of the secondary polytope
are oriented using ω to form an acyclic directed graph with a unique sink
given by the triangulation T ′. (Note that the idea of orienting the edges of a
polyhedron by a linear functional is rather common in linear programming
and used by the simplex method.)

Theorem 5.3.7. Let A be a point configuration and let ω be a height vector
determining its regular triangulation T ′ = S (A,ω). Let T be a different
regular triangulation of A. Then, there exists a finite sequence of regular
triangulations, S0,S1, . . . ,Sk from S0 = T to Sk = T ′ such that

1. The inner product of ω with the GKZ vectors of consecutive triangu-
lations satisfies 〈ω ,φA(Si)〉 > 〈ω ,φA(Si+1)〉.

2. Two consecutive triangulations differ in a flip.

3. No circuit is used for two different flips in the sequence. Furthermore,
no two circuits used can have the same positive part, or the same
negative part.
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In part (3) we take our usual convention that the circuit Z = (Z−,Z+) on
which a flip is supported is always oriented so that Z− disappears and Z+
appears after the flip.

Proof. Consider the linear programming problem of minimizing a linear
function with ω as its cost vector over the points of the secondary polytope
Σ-poly(A). By the proof of Theorem 5.2.16 and the theory of linear program-
ming, the minimum must be attained at the vertex φA(T ′) of Σ-poly(A). By
linear programming optimality from the vertex corresponding to any other
regular triangulation there exists an adjacent vertex, connected by an edge
of the secondary polytope, whose inner product with ω strictly decreases
its value. Hence, performing the corresponding flip, associated to that edge,
a new triangulation with strictly smaller inner product value is obtained.
Starting with T and repeatedly applying this fact, we construct the desired
sequence of triangulations from T to T ′ that satisfies Parts (2) and (1).

For Part 3, let us look at the piecewise linear functions gω,Si for the regular
triangulations S0, . . . ,Sk = T ′ in our sequence. When we flip from Si to
Si+1 the function only changes in the simplices involved in the flip, that is,
those containing the cells Z+ (in Si) and Z− (in Si+1). Since the convex hull
of the lifted points corresponding to the circuit Z form a simplex, where the
upper and lower envelopes are the two possible triangulations of the circuit
inducedbyitsparts, thechangein thepiecewise linear functionsiseverywhere
the same: Either gω,Si(x) ≤ gω,Si+1(x) for all x or gω,Si(x) ≥ gω,Si+1(x)
for all x. The interpretation of 〈ω ,φA(Si)〉 as the integral of gω,Si(x) (see
the proof of Theorem 5.2.16), together with part (1) implies that the latter
happens, so that the piecewise linear functions decrease at every step until
reaching the convex function gω,T ′ . But then the same circuit Z cannot be
flipped twice, for this would imply changing twice from the upper envelope
to the lower envelope of a certain simplex (the lifting of Z). Furthermore, if
a circuit (Z−,Z+) is flipped at a certain step, before that step the functions
gω,Si lie all strictly above the lifting of Z+, and after that step they lie all
strictly below the lifting of Z−. This implies that the same positive or negative
part cannot be used twice for a circuit.

Definition 5.3.8. A sequence of flips in the conditions of Theorem 5.3.7 is
called monotone towards ω .

Remark 5.3.9. What we prove in part (3) of Theorem 5.3.7 is that the se-
quence of functions gω,S0 , . . . ,gω,Sk is point-wise monotonically decreas-
ing. In particular, the associated hypersurfaces Gω,S0 , . . . ,Gω,Sk , defined
as in Lemma 5.2.13, are each below the previous one. Observe that the final
hypersurface Gω,T ′ is, by definition of T ′ := S (A,ω), the lower envelope
of the lifted configuration Aω . That is, monotone flipping with respect to
ω can be rephrased as changing a triangulation by always decreasing the
hypersurface (defined via ω) associated to it until the lower envelope of the
lifted configuration is reached.

In fact, what the monotone-flip sequence from T to T ′ gives is a trian-
gulation of the region between Gω,T and Gω,T ′ . Although this is true in
general, it is especially easy to see in the case where A is in general position.
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In this case, each circuit has d + 2 points and is lifted to an affine basis in
Aω . The region between the hypersurfaces Gω,Si and Gω,Si+1 is just the
simplex of Aω generated by those d + 2 points. This idea, which already
appeared in Theorem 1.1.6, will also be fundamental in our study of the
spaces of triangulations of cyclic polytopes, in Section 6.1.

Example 5.3.10 (Monotone flipping towards Delaunay and lexicographic
triangulations). Let us see that the notion of monotone flipping of Theo-
rem 5.3.7 agrees with the one mentioned for the Delaunay, pushing, and
pulling triangulations in dimension two (Sections 3.4.1 and 3.6.2).

• If ω(a) is positive and much bigger in absolute value for a certain
a ∈ J than for every other element then, in a first approximation,

〈ω ,φA(T )〉 # ω(a)φA(T )(a) = ω(a)vol(stT (a)).

Hence, decreasing the value of 〈ω ,φA(Si)〉 is the same as decreasing
the volume of the star of a. In particular, monotonically flipping
towards a functional with

ω(n) � ω(n−1)� ··· � ω(1) > 0.

leads to the pushing (or placing) triangulation. Observe that these are
the type of functionals described in Lemma 4.3.4, and that flipping
to decrease, one by one, the stars of the elements n, n− 1, etc. was
what we did in Theorem 3.4.1.

• Similarly, flipping towards the pulling triangulation as we did in The-
orem 3.4.3 corresponds to monotonically flipping with respect to a
functional of the following type, which appeared in Lemma 4.3.6
(construction of the pulling triangulation):

ω(n) � ω(n−1)� ··· � ω(1) < 0.

• Finally, remember that the Delaunay triangulation of A is the regular
triangulation obtained when we lift A to a paraboloid. Flipping to the
Delaunay triangulation can be achieved by monotonically flipping
with respect to that functional.

Observe, however, that in Theorems 3.4.1, 3.4.3 and 3.4.2 we prove that
monotonically flipping towards the pushing, pulling, and Delaunay trian-
gulations in dimension two works even if the starting triangulation T is
not regular. That is a special feature of these particular choices of the
functional ω in dimension two. If a functional with that feature could be
found for every three-dimensional configuration then we could conclude
that graphs of triangulations in dimension three are connected by flips, too.

By the above theorem and a simple bound on the possible number of
circuits, one can conclude:
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Corollary 5.3.11. Let A be a configuration of dimension d in general po-
sition with n points. Then the diameter of the graph of Σ-poly(A) cannot
exceed

min

{
(d + 2)

(
n

� d
2 + 1�

)
,

(
n

d + 2

)}
.

Proof. If our configuration is in general position, then its number of cir-
cuits is

( n
d+2

)
. If it is not in general position, then the number of circuits is

smaller. Indeed, every circuit is contained in a spanning set of d + 2 points
(of which there are at most

( n
d+2

)
), and each such set is a corank-one con-

figuration, hence contains a unique circuit. This proves the second bound.
For the first bound we use a similar argument: since the smaller side of

each circuit has at most (d +2)/2 = d
2 +1 elements, the number of different

“smaller parts” of circuits is at most

n +
(

n
1

)
+ · · ·+

(
n

� d
2 + 1�

)
≤
(

d
2

+ 1

)(
n

� d
2 + 1�

)
.

In a monotone path, we can use at most two circuits with the same “smaller
part”, one as its positive part and one as its negative part.

Observe that the first bound is better for small dimension d, but the
second one is better for small number of points or, more precisely, for
small dimension n− d − 1 of the secondary polytope. Indeed, the first
is in O(n�

d
2 +1�) when d is fixed and the second one is in O(nr−1) when

r = n− d − 1 is fixed. Both bounds are (essentially) tight: for the second
one see Corollary 5.5.17, and for the first one, see parts (vi) and (vii) of
Corollary 6.1.20.

Remark 5.3.12. If we agree that a disconnected graph has infinite diame-
ter, then the existence of disconnected flip-graphs (see Chapter 7) implies
that the bound of Corollary 5.3.11 does not hold for the graph of all trian-
gulations of a point set. One can still ask about the diameter of individual
connected components of that graph; there we do not know the answer, but
we would expect them not to satisfy this bound, in general.

In the proof of Theorem 5.3.7, we rely on general properties of polytopes
to show that a monotone flip sequence exists. But, in practice, one wants to
find the sequence. One way to do it is as follows:

Theorem 5.3.13. Let A be a point configuration and let ω be a height vec-
tor determining its regular triangulation T ′ = S (A,ω). Let T0 be a dif-
ferent regular triangulation of A and let ω0 be a height function producing
T0 and “sufficiently generic”. For each t ∈ [0,1], let ωt = (1− t)ω0 + tω .
Then:

1. For every t ∈ [0,1], the regular subdivision Tt := S (A,ωt) is either
a triangulation or an almost-triangulation (i.e., a bistellar flip) be-
tween two of them.

2. The sequence of triangulations and bistellar flips obtained in this way
is monotone in the sense of Theorem 5.3.7.
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3. All the intermediate subdivisions Si contain all simplices common
to both T and T ′.

Proof. Part (1) follows from the genericity assumption on ω : The cone
spanned by ω0 and ω will intersect only full-dimensional or codimension-
1 cones of the secondary fan. Part (2) is also easy: whenever we cross a
codimension-1 cone of the secondary fan we do so from the side of ω0 to
the side of ω . That is the condition for the flip to be monotone towards ω .

For part (3) we introduce the following notation: for each subset B of A
we let C(A,−)B be the set of all weights in such that the regular triangula-
tion induced by them has B as a cell. The reader can verify as an exercise
that this is a convex cone (the notion of chamber fan in the next section
makes this almost self-evident). Since ω0 and ω lie in C(A,−)B for every
common cell B of T and T ′, ωt lies in it too.

Part 3 of this last statement was first observed in [260]. From it, the
authors derived:

Corollary 5.3.14. Let A be a point configuration. The subgraph of the flip
graph induced by all regular triangulations of A that use the same vertices
is connected.

The first monotone flipping algorithm in arbitrary dimension was devised
by Joe in 1993 [179] for the Delaunay triangulation. It uses an incremen-
tal strategy, that is, it constructs the desired triangulation by adding points
one at a time, at each step updating the triangulation computed so far via
monotone flipping. For the points that have not yet been introduced, the
corresponding value of ω is replaced by ∞. When a point is inserted, its
correct value is put in ω and the “insertion-update” step consists of apply-
ing Theorem 5.3.13 for the new ω , taking as ω0 the old ω . Edelsbrunner
and Shah [116], already aware at least partially of the theory of secondary
polytopes, generalized the algorithm to flipping towards any regular trian-
gulation. A key point for analyzing the efficiency in both algorithms was
to show that the sequence of flips can be found and performed, spending
constant time per flip (in fixed dimension).

An exception to this time bound are the insertion steps. In theory, they are
just another case of flip, one of type (1,k) for some k. But in the algorithm
they have a totally different treatment since they involve locating where
the new points needs to be inserted in the old triangulation. To get good
time bounds for the location step, the standard incremental algorithm is
randomized: the ordering in which the points are inserted is considered
random among the n! possible orderings, and it is proved that the total
expected time taken by the n insertion steps is bounded above by O(n logn)
in the plane and O(n�d/2�) in higher dimension, which is close to optimal
since the size of the Delaunay triangulation can be in Ω(n�d/2�).

This incremental-randomized-flipping can be considered the standard al-
gorithm for the Delaunay triangulation in current computational geometry.
For example, it is the only one described in the textbooks [93] and [116]. In
the survey [21], it is the first of four described in the plane, but the only one
detailed in dimension three, as “the most intuitive and easy to implement.”
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5.3.3 Facets of the secondary polytope

From Theorem 5.1.9, we see that the facets of the secondary polytope of
a configuration A correspond to those regular subdivisions of A that can
only be coarsened by the trivial subdivision; these are the coarsest subdivi-
sions. In this subsection, we wish to quickly point out a few recent results
about facets of secondary polytopes. This will include a brief look at the
notion of tight span, which can be useful in studying arbitrary subdivisions.
For more details, we refer the interested reader to the papers [29] ,[158],
[157],[161],[160],[159],[162]. Let us begin with a special, but simple, kind
of coarsest subdivision:

Definition 5.3.15. We call a coarsest subdivision S of A a k-split of S if
it has exactly k maximal faces and an interior face of codimension k−1.

Interestingly, the notion of k-split was first introduced in phylogenetic
analysis [29]. These authors initially only investigated 2-splits for special
families of polytopes. Let us consider a few cases of k-splits. A 1-split
of a point configuration A is a subdivision of A with exactly one maximal
face containing all but one of the points in A. Clearly, 1-splits are coarsest
subdivisions, but they cannot exist for point configurations in convex posi-
tion. If the points of A are in convex position (i.e., they are the vertices of
a polytope), a subdivision A will be a 2-split if it has exactly two maximal
dimensional cells. For general point configurations, it is only slightly more
difficult to describe 2-splits; see Exercise 5.25.

1

1

1

3

2

3 4
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2

4
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3

Figure 5.54: For a five point planar configuration,

a 3-split, a 2-split, and a boring subdivision which

is not the coarsest possible.

Example 5.3.16. Let A be the point configuration from Figure 5.54 (this
configuration was studied in detail in Section 2.2). First of all, a 3-split
of this configuration consists of the cell {1,3,5}, {1,2,5}, and {2,3,4,5}.
Moreover, consider the subdivision S1 with maximal cells {1,2,4,5} and
{1,3,4,5}, and the subdivision S2 whose maximal cells are {1,2,4} and
{1,3,4}. Only S1 is a 2-split of A, since S2 is coarsened by S1.

One important result of S. Hermann says that k-splits are good examples
of facets for the secondary polytope.

Theorem 5.3.17. All k-splits of a point configurations are regular coarsest
subdivisions.

Proof. Here we will only prove the theorem for k = 1,2, and we do this
explicitly by constructing weight functions that define 1-splits and 2-splits.
For the rest of the proof, we refer the reader to [158, 157]. For a 1-split
S p of A, we define a height vector ωp by ωp(p) = 1 and ωp(a) = 0 for
all a �= p ∈ A. This obviously induces the subdivision S p. For a 2-split
subdivision S of A, let S1, S2 be the two maximal faces and let

HS = {x ∈ R
d : 〈α,x〉 = β} be the corresponding 2-split (separating)

hyperplane for normal vector α ∈ R
d , β ∈ R. We define ωS : A → R by

wS(v) :=

{
|〈α,v〉−β | if a ∈ S1 ,

0 if a ∈ S2 .
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Note that this function is well-defined, since for a ∈ HS = aff(S1 ∩S2) we
have 〈α,v〉 = β . It is now obvious that ω induces the 2-split S on A.

From 1-splits and 2-splits, we get two kinds of facets of the secondary
polytope. It is not difficult to write the explicit linear inequality that defines
the facet of the secondary by using the cells of the subdivision (see Exer-
cise 5.11 for a recipe!). We can define the k-split polyhedron Split-poly(A)
of a d-dimensional point configuration A. It is the (|A| − d − 1)-dimen-
sional polyhedron in R

A defined by the inequalities for the k-splits, the in-
equalities for the j-splits for all j ≤ k, and the equations defining the affine
hull of the secondary polytope (see Section 5.1.3 and Exercise 5.5). Al-
though, in general, the k-split polyhedron properly contains the secondary
polytope, one can show the following (see [161] for a proof that makes
generous use of Gale diagrams).

Theorem 5.3.18. Let A be a configuration consisting of the vertices of a
polytope. The secondary polytope of A equals the 2-split polyhedron if and
only if A has the same oriented matroid as a simplex, a cross polytope,
a polygon, a prism over a simplex, or a (possibly multiple) join of these
polytopes.

Of course, not all coarsest subdivisions are k-splits. One nice methodol-
ogy to try to understand general coarsest subdivisions is to look at their tight
span. Roughly speaking, the tight span is the dual polyhedral complex to a
subdivision; for example, the edges correspond to adjacents maximal cells
on the subdivision (we have already seen the graph of the tight span, the
dual graph, which appeared in Lemma 2.6.1). More generally, the tight
span of a subdivision S of dimension d is a polyhedral complex having
a cell of dimension i for each interior cell of dimension d − i of S , with
inclusions in the tight span reversed from those in S . See [157] for more
details.

It is easy to show that a subdivision is a k-split if and only if its tight
span is the complex consisting of a (k − 1)-dimensional simplex and all
its faces. However, the tight spans of general coarsest subdivisions can
be very complicated. See Figure 5.55 for an easy example in dimension
2. Still, tight spans of coarsest subdivisions have special properties thatFigure 5.55: A complicated coarsest subdivision.

general tight spans do, in general, not have:

Theorem 5.3.19. Let A be a point configuration and S a coarsest subdi-
vision of A with k maximal cells.

1. The graph of the tight span of S is 2-connected, that is, it is still
connected if one removes any vertex.

2. The tight span of S is a contractible complex.

3. If S is not a k-split, then k ≥ 4.

4. The tight span of S cannot be a k-gon, with k ≥ 4, or a triangular
prism.
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Proof. We only show a proof for Part 1. The proof for Parts (2) and (4) can
be found in [162, 158]. Part (3) is an easy consequence of the first two.

We will show that if the graph of the tight span of the subdivision S is
not 2-connected, then S could not have been a coarsest subdivision. Let
R be the graph of the tight span of S . Take a vertex v of R such that
R \ {v} is not connected. Let V be the set of vertices of some connected
component of R\{v}. For each vertex w of R, let us denote by cell(w) the
corresponding maximal cell of S . Define a coarser subdivision of A by
deleting all maximal cells, cell(w) with w ∈ V ∪{v}, and replacing them
with a single cell, defined as ∪w∈V∪{v} cell(w) as a new maximal cell of the
new subdivision. Of course, to be sure that this is indeed a subdivision we
need to verify that the new cell we created is still a convex cell and that it
intersects properly with the other cells.

For the first point, we just need to show that C =∪w∈V∪{v} conv(cell(w)).
Assume that there exists x,y ∈ relintC such that the line segment l connect-
ing x and y is not entirely contained in C. Then l has to intersect (at least)
two codimension-one-cells F1 and F2 among those original cells from S .
Note that codimension-one cells are edges of the graph of the tight span. By
our assumption that V is the set of vertices of some connected component
of the graph of the tight span minus v, the edges of the tight span of S
corresponding to those cells can only be connected to v. So F1 and F2 are
facets of the conv(cellv), and this implies that convcellv is not convex, a
contradiction.

Finally, an improper intersection of cells cannot happen in the interior of
convA because all interior faces of C are interior faces of cell(v) by assump-
tion. However, any improper intersection of faces F1,F2 in the boundary of
convA would yield an improper intersection of some interior faces F′

1,F
′
2

with F1 ⊂ F′
1,F2 ⊂ F′

2. Thus, the new subdivision is a subdivision of A that
coarsens the original subdivision S .

5.4 Chambers

We now know that the set of regular polyhedral subdivisions of a point
configuration A has a nice structure: its refinement poset is isomorphic
to the face lattice of the secondary polytope Σ-poly(A). We even know
the vertices of this polytope. However, since our description is not full-
dimensional, it is hard to get a feel for the face lattice of Σ-poly(A). In other
words, each cone in the secondary fan contains a non-trivial lineality space.

A very elegant way to get rid of these lineality spaces in the secondary
fan, and thus to find a full-dimensional description of Σ-poly(A), is de-
scribed in this section.

5.4.1 The chamber fan

The lineality space in the normal fan of a polytope P is the space of linear
functions that are constant on P, and is orthogonal to the affine hull of
P (see Figure 5.56). In the case of the secondary polytope Σ-poly(A) of
a point configuration, this, by Theorem 5.1.10, it is simply the space of
linear evaluations on A, that is, it is the space of lifting heights that are the
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restriction to A of a linear function on R
r. Theorem 5.1.11 can be rephrased

as follows: the lineality space of the secondary fan of a point configuration
A coincides with the space of linear evaluations on A. This is consistent
with the observation that the addition of a linear function to a height vector
does not change the induced regular polyhedral subdivision.

Figure 5.56: The normal fan of a five-gon in

three-space is not pointed; the lineality spaces of

the normal cones coincide and are equal to the

normal cone of the polytope itself.

We start this section by proving this statement directly at the level of the
secondary fan, so that it is also valid for vector configurations:

Proposition 5.4.1. Let A be a point or vector configuration of rank r. For
every regular polyhedral subdivision S of A, the lineality space of the
secondary cone C(A,S ) is the r-dimensional linear subspace of all linear
evaluations of A.

Proof. Remember that, in any polyhedral fan, all the cones have the same
lineality space, equal to the intersection of all the cones or, equivalently,
to the unique minimal cone. By Theorem 5.2.11, the minimal cone is the
secondary cone of the trivial subdivision. That is, ω is in the lineality space
of Σ-fan(A) if and only if S (A,ω) is the trivial subdivision, put differently,
if and only if ω lifts all the elements of A to lie in a hyperplane, which is
exactly what it means to be a linear evaluation.

So, the secondary fan lives in a space of more dimensions than are ac-
tually needed (n versus n− r, where r is the rank of A). It seems like a
good idea to project its lineality space down to zero, so that we get a lower
dimensional, yet complete, description of it. Here the Gale transform of A
plays a central role, as hinted at Theorem 4.1.39.

Recall that a Gale transform of A is a vector configuration B whose
dependence vectors are exactly the evaluation vectors of A and vice versa.
In particular, B is a vector configuration of rank n−r consisting of n vectors,
labeled by the same set J that indexes A. We will denote these vectors (the
columns of the matrix B) by (q j) j∈J . (See Figure 5.57 for an example.)

1 2 3 4

1
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4

3

(
1 2 4 6
1 1 1 1

)

⎛

⎜⎜
⎝

2 4
−3 −5
1 0
0 1

⎞

⎟⎟
⎠

Figure 5.57: A Gale transform of L4 is a

two-dimensional vector configuration.

Fix such a Gale transform B of A. Proposition 5.4.1 now reads:

Lemma 5.4.2. The lineality space of the secondary fan of A equals the
space of all the dependence vectors of B.

That is to say, the lineality space of the secondary fan is the kernel of
the map β : R

|J| → R
n−r given by ω �→ β (ω) := ωBT . When we project

the secondary fan by this map, all evaluation heights are mapped to the
zero height, and the lineality space of the projected fan will be trivial, as
we intended. Since the image of β is spanned by the columns of B, what
we get is a description of the secondary fan living in the ambient space of
the vector configuration B. In the rest of this section, we show how this
new version of the secondary fan can be easily described from the vector
configuration B.

Recall that Gale duality behaves very nicely by complementation of the
set of vectors (see Section 4.1.3). More precisely, if A and B are Gale trans-
forms of each other, hence they share the same index set J, then a subset
C ⊆ J is spanning in A if and only if its complement J \C is independent in
B, and vice-versa. This suggests the following definition (see Figure 5.58).
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Definition 5.4.3 (Dual Simplicial Cone). Let C ⊆ J be a full-dimensional
cell in A. Then

C∗ := J \C

is called the dual simplex of C. The cone generated by C∗ in B is called the
dual simplicial cone of C and is denoted, as usual, by coneBC∗.

1 42 3
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(
1 2 4 6
1 1 1 1

)

⎛

⎜
⎜
⎝

2 4
−3 −5
1 0
0 1

⎞

⎟
⎟
⎠

Figure 5.58: The dual cone of simplex 23 in a

Gale transform of L4.

Note that the name “dual simplex” is justified by the fact that cells that
are full-dimensional in A have complements that are independent in B (see
Lemma 4.1.38). Moreover, observe that in the special case of a cell that is
a full-dimensional simplex in A (that is, a basis), the dual simplex is again
a basis in B.

Lemma 5.4.4. Let B be a Gale transform of A. Let ω ∈ R
J be any height

function, and let C ⊆ J be a full-dimensional subset in A. Then,

C ∈ S (A,ω) ⇔ β (ω) ∈ relintB(C∗).

Proof. Suppose first that C is a cell of S (A,ω). The heights ω , restricted
to any basis of A contained in C, define a unique linear (or affine, for point
configurations) function f (x) := 〈ψ ,x〉 on R

r, where ψ ∈ R
r is chosen

such that 〈ψ ,p j〉= ω j for all j ∈C. This means that there is another height
vector ωC ∈ R

J defined by ωC
j := ω j − f (p j), with S (A,ω) = S (A,ωC),

according to Proposition 5.4.1 (see Figure 5.59), and with

β (ωC) = β (ω − f ) = β (ω)−β ( f ) = β (ω).

Now, C ∈ S (A,ωC) translates to

ωC
j

{
= 0 for all j ∈C

> 0 for all j ∈ J \C,

which is equivalent to

β (ωC) = ωBT ∈ relintB(C∗).

Conversely, if β (ω) ∈ relintB(C∗), let ωC be the vector of coefficients of
any expression giving β (ω) as a positive linear combination of the elements
in C∗. That is, ωC is zero on C, strictly positive on C∗, and

β (ω) = ωCBT = β (ωC).

The sign pattern in ωC implies that ωC ∈ S (A,ωC), and the equality
β (ω) = β (ωC) implies that S (A,ωC) = S (A,ω).

From this we get:

Theorem 5.4.5. Let A be a vector configuration and let B be a Gale trans-
form of A. Let T be a polyhedral subdivision of A. Then:

(i) The projected cone β (C(A,T )) of T equals
⋂

C∈T coneB C∗, the in-
tersection of all dual simplicial cones for all maximal cells C in T .
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f

w(σ)

σ

w

Figure 5.59: Each ω can be transformed to zero

on every cell by subtraction of an affine

function f .

(ii) The relatively open projected cone β (C◦(A,T )) equals the intersec-
tion
⋂

C∈T relintBC∗ of all relatively open, dual simplicial cones for
all maximal cells C in T .

Proof. We prove the second assertion; the first assertion can be proven anal-
ogously. (The technical details of it are left to the reader in Exercise 5.10).

The inclusion β (C◦(A,T )) ⊆ ⋂C∈T relintB C∗ is directly implied by
Lemma 5.4.4: if ω ∈ C◦(A,T ), then T = S (A,ω) and, by the lemma,
β (ω) ∈ relintB C∗ for all C ∈ T .

To prove the reverse inclusion, consider a vector

y ∈
⋂

C∈T

relintB C∗.

In order to show that y is in β (C◦(A,T )), we simply need to show that
y = ωBT for some ω ∈ R

J with T = S (A,ω). Since y is in relintBC∗ for
all C ∈ T , it satisfies for all C ∈ T the equation

y = ∑
j∈J

λC
j q j = β (λC)

for unique non-negative coefficient vectors λC ∈ R
J with λC

j = 0 if j ∈ C

and λC
j > 0 otherwise. In other words, the positive entries of λC form

the barycentric coordinates of y in the relatively open dual simplicial cone
relintBC∗.

Then, in particular, we have

β (λC) = β (λC′
)

for all C,C′ ∈ T , which implies

S (A,λC) = S (A,λC′
).

Since, obviously, we have C ∈S (A,λC) for each C ∈T , we conclude that
T = S (A,λC) for any C ∈ T , which implies

y = β (λC) ∈ β (C◦(A,T )).

This implies that the projection under the map β of the secondary fan
of A is the polyhedral fan obtained by simultaneously “drawing” all the
possible simplicial cones in the Gale transform B. This fan is usually called
the chamber complex or the chamber fan of B:

Definition 5.4.6 (Chambers). Let B be a vector configuration in R
k, with

index set J.

1. Two vectors x and y are said to lie in the same relatively open cham-
ber if, for every C ⊆ J, one has

y ∈ coneB(C) ⇔ x ∈ coneB(C).
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Put differently, relatively open chambers are the minimal non-empty
sets that can be obtained as intersections of relatively open cones
spanned by subconfigurations in B.

2. The closure of a relatively open chamber cone is a closed chamber.

3. The chamber complex, or chamber fan, of B is the polyhedral fan
consisting of the closed chambers of B.

Theorem 5.4.7. Let A and B be vector configurations that are Gale trans-
forms of one another, represented by matrices of sizes r×n and k×n. (Typ-
ically, k + r = n; but not always, since one or both of the configurations
might not be of full rank).

Let β : R
|J| → R

k be the projection given by ω �→ β (ω) := ωBT .
Then, for each regular polyhedral subdivision T of A, one has that:

1. β (C◦(A,T )) is a relatively open chamber of B.

2. β (C(A,T )) is a closed chamber of B.

Hence, the projection β of the secondary fan of A equals the chamber com-
plex of B.

This statement proves the claim, made in the definition of the chamber
complex, that it is a polyhedral fan. An arbitrary projection of a polyhe-
dral fan may not yield a polyhedral fan, since projected cones may overlap
too much. In our case, this does not happen, because the projection β is
along the lineality space of the secondary fan, hence vectors with the same
projection were necessarily in the same secondary cone.

Proof. By definition, every vector in R
k lies in a unique relatively open

chamber of B. Indeed, relatively open chambers are the equivalence classes
of the equivalence relation “being contained in the same set of cones spann-
ed by B”. Also, by Part 2 of Theorem 5.4.5, each relatively open chamber is
contained in β (C◦(A,T ))) for some T . But, in principle, it could happen
that β (C◦(A,T ))) contains more than one relatively open chamber of B.

That this is not the case follows from Lemma 5.4.4: If x and y both lie in
β (C◦(A,T ))), then the simplicial cones containing them in their relative
interiors are the same, namely the cones dual to the full-dimensional cells
in T .

1 432
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1 1 1 1
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⎜
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⎠
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Figure 5.60: The intersection of dual cones over

all simplices in the triangulation T4 of L4 is a

chamber that is not subdivided by any other cone

spanned by vectors in the Gale transform. This is

the chamber cone corresponding to T4 . One can

see that, in this case, the chamber cone of T4

equals the dual cone of one of the simplices

in T4 ; this is a core simplex that already

determines T4 (compare to Theorem 5.5.1).

Remark 5.4.8. In the case of a point configuration, we can explicitly say
how to modify Σ-poly(A) to an affinely equivalent full-dimensional poly-
tope in R

n−r whose normal fan is the chamber fan of B.
Without changing the normal fan, we can transform Σ-poly(A) by a trans-

lation t so that its affine hull is a linear (n− r)-dimensional subspace of R
n,

i.e., aff
(
t(Σ-poly(A))

)
= lin
(
t(Σ-poly(A))

)
=: L. Since the kernel of B

equals L⊥, the projection β is one-to-one on the restriction of Σ-fan(A)
to L. Thus, there is a linear map β̄ from R

n−r into R
n so that β β̄ is the

identity on R
n−r. Define β̄ ∗ to be the dual linear map to β̄ . This is a map



248 Regular Triangulations and Secondary Polytopes

from R
n onto R

n−r which restricts to an isomorphism on L, and thus it maps
t(Σ-poly(A)) to an affinely isomorphic full-dimensional polytope in R

n−r.
The normal fan of this polytope is the chamber fan, because 〈β (ω), β̄ ∗(x)〉
equals 〈β̄ (β (ω)),x〉 = 〈ω ,x〉 for all ω ∈ R

n and all x ∈ R
n, and so the

maximizing properties of normal vectors are maintained.

Let us interpret Theorem 5.4.5 for regular triangulations of A: For ev-
ery regular triangulation of A, we find an open, full-dimensional chamber
cone in its Gale transform B. Such a chamber cone is the intersection of a
set of simplicial cones given by the dual simplices of the given triangula-
tion (see Figure 5.60). In turn, if we “draw” all possible simplicial cones
in B, then this dissects R

k into smaller, perhaps non-simplicial, cones. Each
full-dimensional cone in this dissection of B corresponds to a regular trian-
gulation A. Lower dimensional cones arise as common coarsenings of the
full-dimensional cones they are the intersection of. Therefore, B contains
the complete information about all regular polyhedral subdivisions of A.

Since every simplicial cone in A can be extended to a triangulation of B,
this dissection is exactly the common refinement of all triangulations of B.
Moreover, since A is also a Gale transform of B, its chamber complex, the
common refinement of all its triangulations, contains the complete informa-
tion about the regular polyhedral subdivisions of B.

We finally mention that, since Gale duality is symmetric, the roles of
A and B can be swapped: the chamber fan of A equals (the lineality-free
version of) the secondary fan of B. As a conclusion:

Corollary 5.4.9. Let A and B be configurations that are Gale transforms
of each other.

The face lattice of the chamber complex of B, which is the common re-
finement of all triangulations of B, is reverse-isomorphic to the refinement
poset of all regular polyhedral subdivisions of A, and vice versa.

Sometimes it is much easier to count or to estimate the number of full di-
mensional chamber cones or chambers than to count triangulations. There-
fore, the correspondence in Theorem 5.4.5 can be exploited much more
intuitively than the one in Theorem 5.1.9. This will be done, for example,
in Section 5.5. Here let us only look at an example that will make this clear:
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Figure 5.61: The regular five-vector configuration

and a Gale dual of it, the regular pentagon.
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Figure 5.62: The up to symmetry unique

triangulation of the pentagon, and its chamber in

the Gale transform.

Example 5.4.10 (Examples 5.1.3 and 5.1.5 continued). The regular pen-
tagon is a nice example, because we can draw both the point configuration
and a Gale transform of it in dimension two.

Figure 5.62 shows the chamber of the unique triangulation (up to sym-
metry) of the pentagon.

In Figures 5.63 through 5.65, you see the three types of triangulations of
the Gale transform, together with the corresponding chamber in the cham-
ber complex of the pentagon (emerging as the darkest region).

5.4.2 Flips in the chamber fan

It follows from Theorem 5.3.1 that two adjacent full-dimensional chamber
cones correspond to regular triangulations which differ by a flip. Such ad-
jacencies represent regular subdivisions which can be refined only by two
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Figure 5.63: The unique triangulation using all

vectors.
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Figure 5.64: One of the five triangulations with

one vector unused.
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Figure 5.65: One of the five triangulations with

two vectors unused.

regular triangulations: They correspond to regular almost-triangulations. It
will be instructive, however, to isolate the explicit data of such a flip in
terms of the supporting circuit. This section will, therefore, provide a proof
of this correspondence that can be used with the (more common) definition
of flips via a supporting circuit.

We will use the following handy notation for k-element subsets.

Notation 5.4.11. For a set S and a k ∈N, let
(S

k

)
:=
{

R ⊆ S : |R| = k
}

.

For the following, let B be a Gale transform of A (homogeneous coordi-
nates for affine spaces, as always). Consider two adjacent full-dimensional
chamber cones β (C(A,T )) and β (C(A,T ′)) in B corresponding to two
regular triangulations T and T ′ of A.

We need to find a circuit Z of A, that is, a cocircuit of B with two proper-
ties: First, one of the triangulations of Z, say T+(Z), is a subcomplex of T
and the other, say T−(Z), is a subcomplex of T ′; second, all maximal sim-
plices in T+(Z) have the same link L in T , and all maximal simplices
in T−(Z) have the same link L in T ′. It turns out that the circuit-cocircuit
duality yields the data of the flip—including the link—explicitely, albeit
via some tedious juggling with dual simplicial cones.

One problem in formulating a rigorous proof is that the chamber cones
are, in general, not spanned by vectors in B. Therefore, we cannot describe
facets of full-dimensional chamber cones by subsets of extreme rays. It
is, however, sufficient for our purposes to use the description of chamber
cones as intersections of dual simplicial cones, as we will see.

Let us now state the main theorem of this section (see Figure 5.66 for a
motivating example and remember Theorem 5.3.1):

Theorem 5.4.12. Let T and T ′ be two regular triangulations of A whose
chamber cones share a common facet spanned by (the complement of the
support of) a cocircuit Z in a Gale transform B of A. Then the circuit Z
in A supports a flip between T and T ′.

Let us explain the last sentence in the statement. Recall that cocircuits of
B are the minimal evaluation signatures, i.e., the complement of a cocircuit
has corank one and is the intersection of B with a hyperplane. We say that
a common facet (wall) between two chamber cones is spanned by Z if its
complement is contained (and hence spans) that particular hyperplane.

Proof. Let Z be the cocircuit induced by the common facet of the cham-
ber cones of T and T ′. Let (Z+,Z−) be its signature, with orientation
defined by the requirement that β (C(A,T )) lies on its positive side. By
the definition of a Gale transform, Z is at the same time a circuit in A. We
abbreviate

Z0 := J \Z := J \ (Z+∪Z−).

Since β (C(A,T )) and β (C(A,T ′)) share a common facet F, they are
contained in identical dual simplicial cones, except for those with a facet
containing F. (That is the only way for vectors in the chamber cones very
close to the common facet to be separated.) For a dual simplex C∗, let C∗

0 be
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Figure 5.66: A flip supported at Z = (2,13)

removes 2 from the triangulation T4 . In the Gale

transform, this corresponds to the transition from

the chamber cone cone{1,4} of T4—via the

facet 4, spanned by Z0—to the adjacent chamber

cone cone{2,4}. Indeed, the triangulation

corresponding to the chamber cone

cone{2,4} = cone{2,4}∩ cone{1,2} is the

intersection of simplicial cones dual to the

simplices {1,3} and {3,4}, and these simplices

emerge when point 2 is flipped out of T4 .

that facet. Then, in particular, C∗
0 ⊆ Z0. The dual simplices corresponding

to T \T ′ are then given by the following formula:

{
C∗ ∈
(

A
n− r

)
: C ∈ T \T ′ }

=
{

C∗
0 ∪a+ : C∗

0 ∈
(

Z0

n− r−1

)
, coneB(C∗

0) ⊇ F, a+ ∈ Z+
}

.

Note that coneC∗
0 must automatically be (n− r−1)-dimensional, since C∗

0
contains F. Therefore, C∗

0 ∪a+ and C∗
0 ∪a− span (n−r)-dimensional cones.

So the formula is plausible.
By forming complements of index sets, T \T ′ is therefore given by the

following ugly but explicit description (see Figure 5.67 for an example in
which all ingredients can be traced):

T \T ′ =
{

J \ (C∗
0 ∪ j+) : j+ ∈ Z+,

C∗
0 ∈
(

Z0

n− r−1

)
,

coneB(C∗
0) ⊇ F

}

=
{
(J \ (Z0 ∪ j+))∪ (Z0 \C∗

0) : j+ ∈ Z+,

C∗
0 ∈
(

Z0

n− r−1

)
,

coneB(C∗
0) ⊇ F

}

=
{
(Z \ j+)∪ (Z0 \C∗

0) : j+ ∈ Z+,

C∗
0 ∈
(

Z0

n− r−1

)
,

coneB(C∗
0) ⊇ F

}
.

Recall that
Z := Z+ ∪Z− = J \Z0

denotes the support of the circuit Z.
With the same reasoning, T ′ \T is given by:

T ′ \T =
{
(Z \ j−)∪ (Z0 \C∗

0) : j− ∈ Z−,

C∗
0 ∈
(

Z0

n− r−1

)
,

coneBC∗
0 ⊇ F

}
.

Define

L :=
{

Z0 \C∗
0 : C∗

0 ∈
(

Z0

n− r−1

)
, coneB C∗

0 ⊇ F
}
,

and recall that

T+(Z) =
{

Z \ j+ : j+ ∈ Z+
}
,

T−(Z) =
{

Z \ j− : j− ∈ Z−
}

.
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Figure 5.67: The proof of Theorem 5.4.12

illustrated in an example: The point configuration

A5 contains four points in convex position

together with one interior point 5. The points 1, 3,

5 are colinear. Thus, there is a circuit (13,5)

in A5. A possible Gale transform is depicted

below the point configuration. The triangulation

T indicated in the point configuration

corresponds to the chamber indicated in the

Gale transform. This chamber is the intersection

of the dual simplices 23, 34, 12, and 14.

Consider the facet F of that chamber that

contains 2 and 4. The adjacent chamber in F is

the intersection of 25 and 45 and corresponds to

another triangulation T ′ . The dual simplices in

which T and T ′ can differ must contain F. In

this case, they are all possible dual simplices,

namely 23, 34, 12, and 14, which are all the

union of either 2 or 4 with a vector on the positive

side of the circuit (13,5). Their complements are

therefore all unions of 24\2 respectively 24\4

with elements in T+(Z) = {13,35}. This means

that the maximal simplices 15 and 35 in T+(Z)

have the same link L := {2,4} in T . This

shows that T and T ′ differ by a bistellar flip,

which can be seen right away in this example by

directly looking at T and T ′ .

Therefore, we can simplify the formula for T \T ′ and T ′ \T , respec-
tively, as follows:

T \T ′ = T+(Z)∗L ,

T ′ \T = T−(Z)∗L ,

which says that T and T ′ differ by a bistellar flip in the sense of Theo-
rem 4.4.1.

In Section 5.3.1 we showed that the converse of Theorem 5.4.12 is false
in general, (although true for flips supported on full-dimensional circuits),
since regular triangulations connected by a flip may not have a regular
almost-triangulation between them. The chamber complex gives another
way of seeing what is wrong with this converse, and also allows us to show
that

• The converse holds when the Gale transform has rank at most three.

• It may fail when the Gale transform has rank four.

For the rest of this section, let A be a point or vector configuration labeled
by J, and let B be a Gale transform of it. Moreover, let T and T ′ be
two regular triangulations of A that are connected by a flip supported on a
circuit Z = (Z+,Z−).

By the characterization of flips via circuits (Theorem 4.4.1) that we al-
ready encountered in the previous proof, there is a subcomplex L common
to T and T ′ such that:

T \T ′ = T+(Z)∗L ,

T ′ \T = T−(Z)∗L ,

where T+(Z) and T−(Z) are the two triangulations of the subconfiguration
A|Z defined as

T+(Z) =
{

Z \ j+ : j+ ∈ Z+
}
,

T−(Z) =
{

Z \ j− : j− ∈ Z−
}

.

Remember also that the almost-triangulation S refined by T and T ′ is
obtained by removing from T and T ′ the subcomplexes T+(Z) ∗L and
T−(Z)∗L and putting {Z} ∗L instead. That is,

L = linkS (Z) = linkT (Z \ j+) = linkT ′(Z \ j−),

for any j+ ∈ Z+ and for any j− ∈ Z−. This suggests the following defini-
tions:

Definition 5.4.13. We call L and T ∩T ′ the link and antistar of the flip
between T and T ′.

We call link cell and antistar cell the following two intersections of dual
simplicial cones:

⋂

S∈{Z}∗L
coneB(S∗),

⋂

S∈T ∩T ′
coneB(S∗).
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Observe that L is, by Lemma 4.2.20, a triangulation of A/Z, and it is
guaranteed to be regular as soon as one of T , T ′, or S is regular. Since a
Gale transform of A/Z is B\Z, it makes sense to speak of the link cell as a
chamber in B\Z, that is, in B|Z0 .

We then have:

Proposition 5.4.14. The intersection of the chambers of T and T ′ equals
the chamber of S , and it also equals the intersection of the link cell and
the antistar cell:

β (C(A,S )) = β (C(A,T ))∩β (C(A,T ′))

=
⋂

S∈{Z}∗L
coneB(S∗)∩

⋂

S∈T ∩T ′
coneB(S∗).Figure 5.68: The objects of Proposition 5.4.14 in

an example with six points in rank three, i.e.,

corank three.

Proof. The following containments are immediate:

β (C(A,S )) ⊆ β (C(A,T ))∩β (C(A,T ′)) ⊆
⋂

S∈T ∩T ′
coneB(S∗),

the first by definition of secondary cone and the second by Theorem 5.4.5.
The same theorem, together with the fact that

S = (T ∩T ′)∪ ({Z} ∗L ),

implies the equality of the chamber of S to the intersection of the link and
antistar cells: So, only the following containment needs to be shown:

β (C(A,T ))∩β (C(A,T ′)) ⊆
⋂

S∈{Z}∗L
coneB(S∗).

For this, observe that:

β (C(A,T ))∩β (C(A,T )) (5.1)

⊆
⋂

S∈T \T ′
coneB(S∗)∩

⋂

S∈T ′\T
coneB(S∗) (5.2)

=
⋂

S∈T+(Z)∗L
coneB(S∗)∩

⋂

S∈T−(Z)∗L
coneB(S∗) (5.3)

=
⋂

S=S0∪Z\ j
S0∈L , j∈Z

coneB(S∗) (5.4)

=
⋂

S0∈L , j∈Z

coneB((Z0 \S0)∪ j) (5.5)

=
⋂

S0∈L

coneB((Z0 \S0)) =
⋂

S∈{Z}∗L
coneB(S∗). (5.6)

The next to last equality comes from

coneB((Z0 \S0)∪ j+)∩ coneB((Z0 \S0)∪ j−) = coneB(Z0 \S0),

for any j+ ∈ Z+ and j− ∈ Z−, since j+ and j− lie in opposite sides of the
hyperplane containing coneB(Z0).
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As the proposition suggests, the link cell—although a chamber in B\Z—
is in general not a chamber in B but a union of chambers. With this technical
tool in our hands, we can prove the announced result.

As we will see in Theorem 5.5.1, in corank two or less all the subdivi-
sions are regular.

Theorem 5.4.15. Let A be a point or vector configuration with corank
three. If two regular triangulations T and T ′ are connected by a flip,
supported on a certain circuit Z = (Z+,Z−), then the intermediate almost
triangulation S is regular.

That is, the chambers β (C(A,T )) and β (C(A,T ′)) are adjacent in a
common facet F, supported by the hyperplane spanned by coneB(Z0).

Proof. The regularity assumption on T and T ′ implies that the antistar
cell has full rank equal to three (that is, dimension two), since it contains
the chambers of T and T ′, and the link cell has codimension one, that is,
dimension one, since it is a chamber of B \Z. Observe that, as usual, we
call dimension of a cone or configuration its rank minus one. If you wish,
we can think of the chamber complex of B not as a rank three fan but as a
geodesic cell complex drawn on a 2-sphere.

Let r denote the rank two subspace containing coneB Z0 and, in particular,
the link cell. We think of r as a great circle in this 2-sphere. Since chambers
in a rank two configuration are delimited by two elements of it, we can write
the link cell as coneB(i1i2) for certain elements i1, i2 ∈ Z0. Since the link
cell is a chamber in B \Z, there is no other element of B contained in the
link cell.

In the light of the previous proposition, all we need to prove is that the
link cell and the antistar cell overlap, that is, that their intersection is one
dimensional. We claim that, more strongly, at least one of the following
two things happen:

1. Either every antistar dual triangle coneB(C∗) (with C ∈T ∩T ′) con-
tains the link cell, in which case the antistar cell contains the link cell,
or

2. For every x+ ∈ β (C(A,T )) and every x− ∈ β (C(A,T ′)) we have
that the intersection point x0 of the (spherical) segment x+x− and
the circle r lies in the link cell. This finishes the proof since moving
x+ and x− in their respective chambers, which are two-dimensional,
produces a one-dimensional range of x0’s all lying in the intersection
of the link cell and the antistar cell (observe that the antistar cell is a
convex region containing both chambers).

So, let us assume that 1 does not hold and prove 2. Let C ∈ T ∩T ′ be
an antistar simplex whose antistar dual triangle coneB(C∗) does not contain
the link cell coneB(i1i2).

Since coneB(C∗) contains both chambers, which lie on opposite sides
of r, the antistar triangle C∗ contains at least one element of Z+ and one
of Z−. Without loss of generality we assume that it contains exactly one
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element z of Z+ (if it contains two of Z+, then it contains one of Z− and the
same argument works). We will now exclude a situation like in Figure 5.69.

By definition of the link cell, i1i2z is a dual triangle for a simplex in T+.

rrr

Figure 5.69: The following cannot occur: a dual

antistar triangle C∗ = zc1c2 does not intersect

the link cell coneB(i1i2).

This implies that both coneB(i1i2z) and coneB(C∗), which are triangles with
a common vertex, contain the chamber β (C(A,T )). In particular, they
have a full-dimensional intersection.

Since z is the only vertex of coneB(C∗) in Z+, both edges of coneB(C∗)
containing z intersect r. If none of the intersections is in the relative inte-
rior of the link cell, then either coneB(C∗) contains coneB(i1i2z), and thus
coneB(i1i2), which is Case 1 and therefore excluded, or the intersection of
coneB(C∗) and coneB(i1i2z) is not full-dimensional: contradiction to the
fact that they contain the same full-dimensional chamber. Thus one edge
coneB(zc1) intersects the link cell in its relative interior. Since the link cell
has no elements of B in its relative interior, this edge must intersect the
link cell transversally, i.e., the cones coneB(i1i2) and coneB(zc1) intersect
in their relative interior. Thus, the situation is as in Figure 5.70.

rrr

Figure 5.70: This situation must be like this: one

edge of coneB(zc1) of a dual antistar

triangle C∗ = zc1c2 intersects the interior of the

link cell coneB(i1i2).

This yields: The four elements z+, c1, i1 and i2 form a circuit of type
(2,2) in B and, in particular, Q = coneB(z+c1i1i2) is contained in an open
half-space, and we can think of it as a convex spherical quadrilateral. Be-
cause i1i2z is a dual triangle of a simplex in T and, in the same way, i1i2c1

is a dual triangle of a simplex in T ′, the convex quadrilateral Q contains
the chambers of T and T ′, separated by the link cell, which is one of its
diagonals: this concludes the proof of 2.

Observe that case 2 in the proof implies that the union of the (closed)
chambers of T and T ′ is convex. Already in corank 2 this is not always the
case for two regular triangulations connected by a flip: see, e.g., Figure 2.35
in Chapter 2.

Example 5.4.16. Let A and B be the following configurations, Gale duals
of each other. Their coordinates are

A :=

⎛

⎜
⎜
⎜⎜
⎝

1 2 3 4 5 6 7 8

1 −1 0 0 0 0 1 −1

0 0 1 −1 0 0 1 −1

0 0 0 0 −6 6 6 −6

1 1 1 1 6 6 −8 −8

⎞

⎟
⎟
⎟⎟
⎠

and

B :=

⎛

⎜
⎜
⎜
⎜
⎝

1 2 3 4 5 6 7 8

−2 −2 −2 −2 2 2 1 1

1 1 −1 −1 0 0 0 0

−1 1 −1 1 1 −1 1 −1

1 1 1 1 1 1 1 1

⎞

⎟
⎟
⎟
⎟
⎠

.

A is totally cyclic and B is acyclic (actually, homogeneous). This allows
to easily visualize B and its chamber complex. We claim that the following
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two triangulations of A are regular and connected by a flip, but that their
dual chambers do not share a facet:

T ={{0,1,2,4},{0,1,3,4},{0,1,2,5},{0,1,3,5},
{0,2,4,6},{1,2,5,6},{0,2,5,6},{0,3,5,6},
{1,3,4,7},{0,3,4,7},{1,3,5,7},{1,2,4,7},
{0,4,6,7},{0,3,6,7},{3,5,6,7},{1,5,6,7},{2,4,6,7},{1,2,6,7}}.

T ′ ={{0,2,3,4},{0,2,3,5},{1,2,3,4},{1,2,3,5},
{0,2,4,6},{1,2,5,6},{0,2,5,6},{0,3,5,6},
{1,3,4,7},{0,3,4,7},{1,3,5,7},{1,2,4,7},
{0,4,6,7},{0,3,6,7},{3,5,6,7},{1,5,6,7},{2,4,6,7},{1,2,6,7}}.

A triangulation and regularity check in TOPCOM (for more about this soft-
ware, see Chapter 8.2 and [265]) yields that both triangulations are valid
and regular (in Exercise 5.22, you will prove this without a computer):

rambau$ checkregularity --heights --checktriang \
< chambers_regular-flips_3d_II_dual_reg.dat

Evaluating Commandline Options ...
--heights : output of defining heights activated
--checktriangs : check seed triangulation activated
... done.
(15/4096,1/2048,105/4096,0,59/2048,0,0,0)
Checked 1 triangulations, 0 non-regular so far.
(97/2048,1/2048,15/2048,0,49/1024,0,0,0)
Checked 2 triangulations, 0 non-regular so far.

The output contains possible defining heights as rational numbers, coming
from only exact arithmetic operations. Computing the corresponding points
in the chamber complex yields:

xT =

⎛

⎜
⎜
⎜
⎜
⎜⎜
⎝

1
30

− 11
30

0

1

⎞

⎟
⎟
⎟
⎟
⎟⎟
⎠

, xT ′ =

⎛

⎜
⎜
⎜
⎜
⎜⎜
⎝

− 30
211

83
211

13
211

1

⎞

⎟
⎟
⎟
⎟
⎟⎟
⎠

.

Of course, the configuration is symmetric with respect to reflection in
the XZ-plane, but the LP solver cdd employed by TOPCOM computes the
heights independently of each other. See Figure 5.71 for a sketch of the
positions of these interior points in the chambers of T and T ′, respectively.
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Figure 5.71: The two interior points in the chambers

of T and T ′ induced by TOPCOM’s height vectors;

the four dual link simplices and the two crucial (see

below) antistar simplices are also sketched.

Moreover:

T \T ′ ={{0,1,2,4},{0,1,3,4},{0,1,2,5},{0,1,3,5}},
T ′ \T ={{0,2,3,4},{0,2,3,5},{1,2,3,4},{1,2,3,5}}.

Figure 5.72: Two dual simplices (the two tetrahedra

1357 and 0246) in the common antistar cell of two

triangulations joined by a flip, but their intersection

does not meet the link cell (the darker vertical

triangle).

That is, both triangulations are connected by the flip supported on the
degenerate circuit (01,23) with link simplices 4 and 5. TOPCOM is currently
not able to check regularity of flips. However, non-regularity of the flip can
be seen more easily in a picture. Indeed, what happens is that, as shown
in Figure 5.72, the intersection of the dual antistar simplices {0,2,4,6}
and {1,3,5,7} common to T and T ′ does not intersect the link cell, even
though each of them does individually.
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In Chapter 8 we will encounter chambers again, as they provide equa-
tions for another polytope of triangulations: the universal polytope.

To conclude, let us say that Section 9.1 of Chapter 9 discusses fiber poly-
tope construction by Billera and Sturmfels. This construction gives yet
another way of thinking about the secondary polytope, this time as the av-
erage of fibers of the linear projection of a simplex.

5.5 Configurations with fixed corank

The minimum number of points that a point configuration of dimension d
can have is d + 1. Its space of triangulations is then trivial: d + 1 points in
dimension d are the vertices of a simplex, and that simplex alone is both the
trivial subdivision of the point set and the unique triangulation of it. The
next case, d +2 points in dimension d, is what we have called a corank-one
configuration and there is not much to add to what we said in Section 2.4.1:
The set has exactly two triangulations, which are both regular and differ by
a flip. The secondary polytope is a segment.

Here we study the next two cases, of configurations with d +3 and d +4
points respectively. These cases are at the limit of what can be considered
“good” and “bad” behavior. Summing up:

• For d +3 points, it is still true that all triangulations are regular. Hence,
the graph of triangulations is a cycle (the graph of a polygon) and
every triangulation has exactly two flip-neighbors. The total number of
triangulations is linear in the number of elements of the configuration.

• With d + 4 points, non-regular triangulations arise for the first time
(remember the “mother of all examples”). The number of regular
triangulations grows quartically with the number of elements, but the
number of non-regular ones can grow exponentially. Still, not all is
lost. It is still true that every triangulation has at least three flips
(the dimension of the secondary polytope) and the graph of flips is
connected.

We also look at the numbers of regular and of all triangulations, as well as
other complexity measures, for configurations of fixed corank. It turns out
that the former has polynomial size while the latter can have exponential
size.

5.5.1 Configurations with d + 3 points

The definition of flip (Section 2.4.1) is derived from the complete under-
standing of the triangulations of d + 2 points in dimension d, more pre-
cisely, from the fact that there are exactly two of them. In this section, we
will completely describe the space of triangulations of d + 3 points: The
graph of triangulations is a cycle. The reason for this is that all triangu-
lations of d + 3 points in dimension d are regular, as was first proved by
Lee [206], hence, the flip-graph is the graph of an n− d − 1 (that is, two)
dimensional polytope (that is, a polygon).

With our knowledge up to here, we are in a position to present a very tidy
proof of this fact, based on Gale transforms (as the original source), but with
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an extra twist that makes it easier: the fact that every triangulation of d + 3
points contains a core simplex that is not used in any other triangulation of
them. This was first noticed in [96].

Theorem 5.5.1. All subdivisions of a d-dimensional point configuration A
with at most n = d + 3 points are regular.

Proof. We already know what happens if A has less then d + 3 points: If
n = d + 1 then A is a simplex, and its only subdivision is the trivial one,
which is regular. If n = d + 2 then A is a circuit, and its two triangulations
are regular by Lemma 2.4.2.

So, let us turn our attention to the interesting case n = d + 3. The sub-
divisions that are not triangulations are easy to prove to be regular (see
Exercise 5.31), so we restrict our study to triangulations.

A Gale transform of A is a rank 2 vector configuration B consisting of
n vectors. See in Figures 5.73 and 5.74 the Gale transforms of (the vertex
sets of) an octahedron and a triangular prism. The first one consists of three
pair of repeated vectors, the second one of three pairs of opposite vectors.

2

6

3

3

4

6

15

4

1

5
2

Figure 5.73: A regular octahedron and its Gale

transform.

Every 2-dimensional chamber of B corresponds to a regular triangulation
of A.

Look at the chambers in B: they are the elementary “pieces’ of the cake,
i.e., the sectors that are not cut by any vector from B. This shows a special
property of two-dimensional vector configurations: all chambers are dual
simplicial cones at the same time! Indeed, each chamber is the positive
span of two vectors in B.

As a consequence, each chamber corresponds to a certain dual simplex
and hence to a certain simplex in A. For example in Figure 5.73 cham-
ber {2,3} corresponds to the 3-simples {1,4,5,6} inside the octahedron.
We call the simplices of A corresponding to chambers in B core simplices.
Their defining property is that they are used in a single regular triangulation.

We will prove the following:

1. Every triangulation of A contains at least one core simplex.

2. Every core simplex is contained in at most one triangulation, namely
the regular one corresponding to it.

The second property implies that all triangulations containing some core
simplex are regular. The first property says that this includes all possible
triangulations, which proves the theorem.

Now, why does every triangulation of A contain at least one core sim-
plex? Let T be an arbitrary triangulation of A. It must certainly contain
some simplex S. There are two possibilities: either S is a core simplex, and
we are done, or the dual simplicial cone cone(S∗) of S contains a vector v
of B. Here, we use the fact that B is 2-dimensional.

Pick a simplex S in T that is not a core simplex such that its dual sim-
plicial cone cone(S∗) is inclusion-minimal. Since S is not a core simplex,
coneB S∗ strictly contains a vector v of B, say the one labeled by i ∈ J. This
means that (S∗, i) is a signed circuit in B. By duality of circuits and co-
circuits, (S∗, i) is a signed cocircuit in A spanned by F := S \ v. Because
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Figure 5.74: A triangular prism and its Gale

transform.

of Property (CombMP) in Characterization 4.5.18, there must be another
simplex R containing F and not containing i. Therefore, the correspond-
ing dual simplex contains one element from S∗ and i. Thus, coneB(R∗) is
strictly contained in coneB(S∗), and, by the minimality of coneB(S∗), the
simplex R must be a core simplex contained in T .

Finally, why is a core simplex only contained in the regular triangulation
corresponding as a chamber to its dual simplicial cone? Look at an arbitrary
core simplex S. We claim that any simplex R for which coneB(R∗) does not
contain coneB(S∗) intersects improperly with S. Assume, coneB(R∗) does
not contain coneB(S∗). Then, since S is a core simplex, the open cones
coneB(R∗) and coneB(S∗) can be separated by a linear hyperplane in 2-
space. Rotate this hyperplane until it is parallel to a vector in S∗ ∪R∗ for
the first time. Then the hyperplane still separates the two open cones, but
it also spans a signed cocircuit (Z+,Z−) in B. For this signed cocircuit
we have Z+ ∩ S∗ = /0 and Z− ∩R∗ = /0. That means, Z+ ⊆ A \ S∗ = S and
Z− ⊆ A \R∗ = R. Since (Z+,Z−) is a circuit in A, we have proved that
R and S do not intersect properly. Therefore, the only simplices that can
coexist with a core simplex are the ones that are in the regular triangulation
defined by the chamber of the core simplex.

This completes the proof.

This proof of Lee’s theorem suggests that core simplices are interesting
objects. Curiously enough, we can extend their definition to point configu-
rations with more than d + 3 vertices. The difference is that now not every
triangulation will contain a core simplex.

Definition 5.5.2. Let A be a d-dimensional point configuration. A core
simplex of A is a d-simplex that is contained in exactly one regular triangu-
lation of A.

The following theorem states that the second assertion in the proof of
the previous theorem—“every core simplex is contained in at most one
triangulation”—is true, and with essentially the same proof.

Theorem 5.5.3. A d-simplex S is a core simplex of A if and only if its
dual chamber cone is a chamber. In that case, the regular triangulation
corresponding to that chamber is the only triangulation containing S.

Proof. Let us first assume that S is a core simplex of A. Then it is contained
in exactly one triangulation, in particular, it is contained in at most one
regular triangulation. The number of regular triangulations it is contained
in is the number of chambers in its dual simplicial cone. Therefore, its dual
simplicial cone may only contain one chamber, i.e., it is actually a chamber.

Let us now assume that the dual simplicial cone of a d-simplex S is a
chamber. Then we claim—as in the proof of Lee’s theorem—that a simplex
R intersects properly with S if and only if its dual simplicial cone contains
the dual simplicial cone of S.

The proof is actually analogous: Let R be some other d-simplex in A.
Since cone(S∗) is a chamber, the only way for coneR∗ to have a full-dimen-
sional intersection with cone(S∗) is to contain cone(S∗). Therefore, without
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loss of generality, coneR∗ and coneS∗ have empty interior intersection.
Then there is a hyperplane that weakly separates S∗ and R∗. Rotate this
hyperplane until it hits a vector in S∗ ∪R∗. Then turn it around that vec-
tor again until it hits another vector in S∗ ∪R∗. Proceed this way until the
hyperplane has no more degrees of freedom. At this point, the hyperplane
spans a cocircuit (Z+,Z−) in a Gale transform with zero set Z0 ⊆ S∗ ∪R∗.
Moreover, Z+ ∩ S∗ = /0 and Z− ∩R∗ = /0. This cocircuit is a circuit in A
with Z+ ⊆ A\S∗ = S and Z− ⊆ A\R∗ = R. Therefore, R does not intersect
properly with S, and we are done.

Finally, let us derive a bound for the number of triangulations of a set of
d + 3 points. This is much more explicit (and, actually, generically tight)
than the general bound proved in Section 5.5.3.

Proposition 5.5.4. A point configuration A of dimension d and with n =
d + 3 elements has at most n triangulations. If the points are in general
position equality occurs.

Proof. All triangulations are regular, hence they arechambers in the chamber
complex of B. Since the chambers form a cycle, with every two separated
by an element of B, the number of them is at most the same as the number n
of elements of B. Moreover, equality occurs unless an element of B is zero
or two elements of B happen to be positive multiples of one another. Clearly,
this can only happen if B (and thus A) is not in general position.

It is instructive to better understand Gale duality to analyze more closely
the cases of point sets with d + 3 points not in general position and their
Gale transforms. There are three ways in which the rank 2 vector configu-
ration B may not be in general position: it can contain the zero vector, or
two vectors that are positive multiples of one another, or two that are nega-
tive multiples of one another. We can distinguish these cases looking at the
circuits in B: they correspond, respectively, to circuits of the form ({i}, /0),
({i},{ j}), or ({i, j}, /0).

In the above proof, the first two cases imply that the number of triangula-
tions is strictly less than n, while the third case does not affect the number
of triangulations. Using that circuits of B are cocircuits in A, this can be
seen directly on A, since these three cases correspond respectively to:

• All but the element i of A lie in a hyperplane. That is, A is a pyramid
over the configuration A \ i = A/i. Hence, A has as many triangu-
lations as A \ i, by observation 4.2.3 in Section 4.2.1. The latter is
still a configuration of corank two, so Proposition 5.5.4 shows that
the number of triangulations is less than n.

• All but the elements i and j of A lie in a hyperplane, and these two
elements lie on different sides of it. Then, the two contractions A/i
and A/ j coincide (modulo exchanging the roles of i and j), and A has
as many triangulations as any of them, by Theorem 4.2.33. Again,
this implies that A has less than n triangulations. This happens, for
example, in the configuration of Example 2.2.9.
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• All but the elements i and j of A lie in a hyperplane, and these two
elements lie on the same side of it. This does not a priori affect the
number of triangulations.

5.5.2 Configurations with d + 4 points

We now turn our attention to configurations with n = d + 4 points. We al-
ready know that they can have non-regular triangulations, since the “mother
of all examples” is an instance (see Example 2.2.5).

We show in Theorem 5.5.19 that the number of regular triangulations
grows polynomially with n, if n− d = 4 is fixed (in fact, it grows quarti-
cally). Here we show that, in contrast, the number of non-regular triangula-
tions grows exponentially.

Again, we want to argue on the Gale transform B of A, which is a totally
cyclic configuration of vectors in three dimensions. We could picture its
elements on the surface of a sphere (since lengths of vectors are irrelevant
for our purposes), but it is even better to use a trick, known as affine Gale
diagrams (see [339, Chapter 6] for an introduction into that topic), that
saves us one dimension while it allows using to represent vectors as points,
for which usually our intuition is more reliable.
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Figure 5.75: How an affine Gale diagram of the

five-gon arises.

How does this trick work? For an acyclic vector configuration it is simply
the inverse of a homogenization: we intersect the vector configuration with
an affine hyperplane not containing the origin, but intersecting the positive
span (ray) of every vector transversaly. Such a hyperplane exists by the
definition of acyclic. The points obtained as the intersections of the rays
with that hyperplane represent the same dependence signatures and value
signatures as the original vector configuration.

For not necessarily acyclic vector configurations (e.g., totally cyclic con-
figurations), we again take a hyperplane not through the origin and not par-
allel to any of the vectors. This time, there may be vectors whose positive
span does not intersect the hyperplane.

Still, whenever the positive span of a vector does not intersect our affine
hyperplane, its negative span will, since the hyperplane is not parallel to
the vector. So we still get a point in our hyperplane for each vector in
the configuration. Of course, we have to encode somehow in the picture
the fact that some of our points come from positive spans and some form
negative spans. One common way to do it is to give the intersection points
different colors: black if the positive span intersects the hyperplane, white
if the negative span intersects the hyperplane.

The point configuration of all intersection points (ignoring the color) ob-
viously has the same dependence and value signatures as the modified vec-
tor configuration in which each original vector corresponding to a white
point is replaced by its negative. That means taking into account that
color means reversing the sign of every white element in every sign vec-
tor derived from the modified point configuration. For an example of how
an affine diagram of a two-dimensional vector configuration gives a one-
dimensional colored point configuration, see Figure 5.75. Observe it is not
completely straightforward to decide “by inspection” if two affine Gale di-
agrams come from the same vector configuration. Different choices of the
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cutting hyperplane may give seemingly different configurations. But here
we are only going to use Gale diagrams as a tool to understand the triangu-
lations of a single corank 3 configuration that we now introduce.

Let C(d +4,d) be the point configuration of dimension d with d +4 ele-
ments whose Gale transform (totally cyclic of rank three) has the following
affine Gale diagram: n points placed on a circle, with colors alternating
(e.g., black in the odd indexed ones, white in the even indexed ones. If n
is odd, this will give the same color to two cyclically consecutive points,
but only to those). C(d + 4,d) will reappear in more generality and with a
different description in Section 6.1: it is the vertex set of a cyclic polytope.

Figure 5.76: An affine Gale diagram of C(12,8).

Figure 5.77: A perturbation of the points that

translates one of the line segments lets a central

full-dimensional chamber appear that was not

present before. The triangulation corresponding

to that chamber must also exist in the

unperturbed configuration, albeit without a

chamber; thus, in the unperturbed configuration,

this triangulation is non-regular.

Observe that these affine Gale diagrams are in general position: no three
points in the diagram are collinear. That means if you move them only
a little this will not affect the oriented matroid of the original vector con-
figuration, hence it will not affect the set of triangulations of the polytope
C(d + 4,d).

It will affect, however, the regularity of the triangulations. To see this,
look at the case d = 8 and n = 12. In Figure 5.76, we see twelve points on
the circle, six of them black, six of them white. In our completely symmet-
ric distribution of points on the circle, we find that the three lines spanned
by opposite black points meet at the center. Since all points have the same
color, we can interpret this intersection point as a zero-dimensional cham-
ber in the chamber complex. By Theorem 5.4.9, this central chamber cor-
responds to a certain regular polyhedral subdivision of C(12,8). Let us
call it the central subdivision. Now, if you move two of opposite points
slightly into one direction, you find that a new full-dimensional chamber
appears. This new chamber corresponds to a triangulation of the “modified
C(12,8)”. The perturbation does not change the oriented matroid, thus this
was already a triangulation in the original, symmetric, C(12,8) (see Sec-
tion 4.5.2 for all the characterizations of subdivisions that only depend on
the oriented matroid). But it was not regular.

This shows two things: first, C(12,8) has a non-regular triangulation,
and second, regularity of triangulations of C(12,8) depends on the specific
coordinates, not only on the oriented matroid.

In Exercises 5.16 and 5.17 you will actually prove by this method that
asymptotically there are, in fact, many more non-regular triangulations than
regular triangulations of C(n,d) for n = d + 4:

Theorem 5.5.5. Every configuration of d + 4 points in dimension d has at
most O(d4) regular triangulations. In contrast, the configuration C(4k +
4,4k) has at least 2k non-regular triangulations.

Using a more sophisticated version of this technique, Azaola and San-
tos [26] have proved that:

Theorem 5.5.6. The number of triangulations of C(n,n − 4), the cyclic
polytope of dimension n−4 and with n vertices, is

• (n + 4)2
n−4

2 −n if n is even, and

• ( 3n+11
2 )2

n−5
2 −n, if n is odd.
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Figure 5.78: The central height vector

corresponds to a zero-dimensional chamber of a

Gale diagram of C(12,8); therefore, it induces a

regular subdivision of C(12,8) but not a

triangulation.

• If the coordinatization is sufficiently generic, then the number of reg-
ular triangulations is n4

64 ±Θ(n3).

Thus the polytope C(n,n−4) has Θ(n2n/2) triangulations.

With the same ideas, Exercise 5.18 asks you to show that the number of
flips in a triangulation, and the lengths of chains in the refinement poset,
can be n and n/2 respectively, for a configuration with d + 4 points. This
contrasts with the case n = d + 3, where these two parameters are at most
2.

Now, our proof that C(12,8) has non-regular triangulations, via the fact
that its Gale transform can produce different chamber complexes with the
same oriented matroid, raises the following question: Have all non-regular
triangulations the property that they become regular in a different coordina-
tization of the same oriented matroid?

Affine Gale transforms also allow us to answer that question negatively.

Example 5.5.7 (A lift of the mother of all examples). Let M be the famil-
iar point configuration consisting of the vertices of two concentric triangles.
Again, this is what we called the mother of all examples. The configura-
tion and its Gale transform are pictured in Figure 5.80. We now lift M to
the configuration M′ whose Gale transform is obtained by placing a “white
point” in the intersection of the three black meeting edges of the Gale trans-
form of M. We leave it to the reader to check that the configuration in
question can be described as adding a point “slightly beyond” one of the
triangular facets of a triangular prism, as in Figure 5.79.
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Figure 5.79: A lift M′ of the mother of all

examples, and its affine Gale transform

The extra point added to the Gale transform makes the oriented matroid
very “rigid”. In every coordinatization of the oriented matroid of M′, the
Gale transform will, for example, have a positive circuit (147, /0) and a co-
circuit (26,35). Hence, the point configuration will have the quadrilateral
2365 as a facet. With the same argument, we get the other three quadri-
lateral facets so that M′ \ 7 must be, in every coordinatization, a triangular
prism.

Let T be the following triangulation of M′, obtained, coning the new
element 7 to a certain triangulation of the boundary of M′ (see Figure 5.81):

T := {1247,2457,2357,3567,1367,1467,4567}.
We have that:

Proposition 5.5.8. T is a non-regular triangulation of every point config-
uration with the oriented matroid of M′.

Proof. If T was regular, Lemma 4.2.17 would imply that M′ \ 7 would
have a (regular) subdivision containing

{124,245,235,356,136,146,456}.
That is impossible, since M′ \ 7 is a triangular prism and the cyclic trian-
gulation of its boundary cannot be extended to a triangulation of the whole
prism.
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Figure 5.80: The mother of all examples, and its

affine Gale transform.
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Figure 5.81: A non-regular triangulation of M′

Still, in this example we topologically perturb the Gale transform of M′ to
make a small triangular “pseudo-chamber” appear in the center, opposite to
the white dot in the back. Defining what “topologically perturb” means and,
more importantly, checking that all the “topological chambers” obtained
in the process have a meaning as triangulations of the Gale transform is
delicate and we will not do it here. But, at least in rank three, it can be
done. In [25], Azaola and Santos introduce the concept of a pseudo-chamber
complex of a vector configuration and show that all the triangulations of a
corank three configuration can be represented as pseudo-chambers in a rank
three pseudo-chamber complex. As a consequence, they obtain that:

Theorem 5.5.9. Let A be a point configuration of corank three. Then, the
graph of flips between all triangulations of A is 3-connected. In particular,
every triangulation has at least three flips.

Proof (sketch). There are triangulations that appear as chambers in every
pseudo-chamber complex, namely, the placing triangulations, which corre-
spond to chambers incident to an element of the Gale transform. Consider
three of them T1, T2, T3, fixed for all pseudo-chambers of the Gale trans-
form.

Now, each pseudo-chamber complex forms a cell decomposition of the 2-
sphere. By Balinski’s theorem, whose proof is topological, its (adjacency)
graph is 3-connected. Hence, from every triangulation T , since it can be
represented as a pseudo-chamber, you can go to the three triangulations
T1, T2, T3 by three vertex-disjoint paths. By a standard graph-theoretic
argument, this implies that the whole graph is 3-connected.

This theorem does not generalize to arbitrary corank. On the one hand,
there are point configurations with non-connected graphs of triangulations
(the smallest one known has corank 10, and is described in Chapter 7, Sec-
tion 7.4). On the other hand, even in corank 4 there are triangulations with
only three flips (see again Chapter 7, Corollary 7.1.2). Those cannot pos-
sibly be represented as pseudo-chambers, unless one includes in the defini-
tion of pseudo-chamber complex some quite pathological objects.

5.5.3 Lawrence polytopes and the complexity of secondary polytopes

In Section 5.3.2, we saw the following upper bounds on the diameter of the
secondary polytope: Let A be a configuration of n points in dimension d.
Then, the diameter of Σ-poly(A) cannot exceed

min

{
(d + 2)

(
n

� d
2 + 1�

)
,

(
n

d + 2

)}
.

Here we show, among other things, that the second bound is optimal in
fixed corank. (The first bound is close to optimal, by Corollary 6.1.20, in
fixed dimension).

The key to the proof is the following class of polytopes.

Definition 5.5.10. We say that a configuration L is a Lawrence polytope if
its Gale transform Gale(L) is centrally symmetric, that is to say, if, as a set
of vectors, Gale(L) = −Gale(L).
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Figure 5.82: The non-regular triangulation T

can be represented as a “pseudo-chamber” in a

“pseudo-chamber complex”

The Lawrence polytope Λ(A) associated to a configuration A is the Gale
transform of the configuration Gale(A)∪(−Gale(A)).

See [37] or the books [55, 339] for extra information on these polytopes.
Implicit in the definition of a Lawrence configuration L is the fact that its
elements come in pairs, where a pair {a,a} consists of two opposite vec-
tors in the Gale transform. Observe also that when we say “the” Lawrence
polytope we are abusing language, since “the” Gale transform of a configu-
ration is not unique. However, all the Lawrence polytopes associated to the
same configuration A are affinely equivalent.

Remarks 5.5.11. 1. It is easy to see that a Lawrence configuration L is
indeed “a polytope” in the sense that it is homogeneous (i.e., a point
configuration) and in convex position (i.e., every element is a vertex).

Indeed, since Gale(L) is centrally symmetric, the constant vector
(1, . . . ,1) is a linear dependence in it, hence it is a linear evaluation
in L, which is the definition of L being homogeneous. Also, for each
element a in L let a denote its companion element. Since ({a,a}, /0)
is a positive circuit in Gale(L), there is a hyperplane in L passing
through every element other than a and a and leaving these two on the
same side. This implies that at least one of them is a vertex but, by the
symmetry of Gale(L), if one is a vertex then the other is a vertex too.

(There is a slight abuse in the last sentence: a and a may turn to
coincide as points, so that they are not “two vertices” of L but a
repeated one. In this case, L is a cone over a one-dimension-less
Lawrence configuration, with a double point at the apex).

2. The Lawrence construction is related to the one-point suspension.
Remember that if i is an element of a point configuration A, the
one-point suspension A i

i is the configuration whose Gale transform
Gale(A i

i ) is the same as Gale(A), except with the element a re-
peated. Similarly, we can define the Lawrence lift of A, and denote
it A↑i

i as the configuration whose Gale transform Gale(A↑i
i ) is the

same as Gale(A) except with the vector opposite to the element a
added to it. We would have that Λ(A) is obtained from A as an iter-
ated Lawrence lift over all the elements.

From the perspective of A, if pi is the point or vector of A labelled
by i, the one-point suspension A i

i is obtained by embedding A in
a hyperplane H of one dimension more and substituting pi by two
points or vectors q and r, one on each side of H, with

pi ∈ relint({q,r}).
Similarly, the Lawrence lift A↑i

i is obtained by embedding A in a hy-
perplane H in one dimension more and substituting pi by two points
or vectors q and r, on the same side of H, with

r ∈ relint({pi,q}).
See Figure 5.83.
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Figure 5.83: The Lawrence lift A↑i
i (bottom)

versus the one-point suspension A i
i (middle)

constructions. Both lift A to lie in one dimension

more, with all elements except pi lying in a

hyperplane H and with pi replaced by two points

q and r away from that hyperplane. In the

one-point suspension A i
i , q and r lie in opposite

sides of the hyperplane and play the same role.

In A↑i
i , q and r lie in opposite sides of the

hyperplane and have different roles.

The following is an easy matrix formula for the Lawrence polytope of a
configuration A. Its proof is left as an exercise:

Proposition 5.5.12. A matrix representation of Λ(A) is

Λ(A) =
(

0 A
1 1

)
,

Here, 1 and 0 denote the unit and the zero matrices of the appropriate
dimensions (n× n and r × n, respectively, if A is represented by an r × n
matrix).

The crucial property that we need from Lawrence polytopes is that their
secondary fans come from hyperplane arrangements:

Definition 5.5.13. A (real, linear) hyperplane arrangement is a finite set
of linear hyperplanes in the vector space R

D. An arrangement is simple if
the intersection of any D of the hyperplanes is the zero vector (that is, if the
hyperplanes are in general position).

Every real linear hyperplane arrangement induces a complete polyhedral
fan, whose (open) cells consist of vectors with the same relative position
with respect to every hyperplane. Here, the relative position of a vector to
a hyperplane is based on whether it lies on the hyperplane, on one side of
it, or on the other side. We have the following result:

Theorem 5.5.14. Let A be a configuration with Gale transform B. For
each cocircuit Z of B (i.e., circuit of A), let HZ be the corresponding linear
hyperplane (the hyperplane passing through all the elements of B where Z
vanishes). Let HB be the arrangement consisting of those hyperplanes for
all cocircuits of B. Then:

1. The fan induced by HB refines the chamber fan of B (i.e., the sec-
ondary fan of A).

2. If A is a Lawrence configuration, then those two fans coincide.

3. In general, the fan of the hyperplane arrangement HB coincides with
the secondary fan of Λ(A).

Proof. Part (1) can be proved in the language of the secondary fan A or in
that of the chamber fan of B. We choose the latter. What we need to prove is
that if two vectors v and w lie in the same cone of the fan of HB, then they
lie in the same (perhaps not full-dimensional) chamber. Suppose the latter
is not the case, that is, there is a chamber containing v but not containing w.
In particular, since every chamber is a certain intersection of dual simpli-
cial cones, there is a dual simplicial cone relintBC∗ containing v, but not
containing w. But every dual simplicial cone can easily be rewritten as an
intersection of hyperplanes and halfspaces of the hyperplane arrangement
HB. So, there is a cone in the fan of HB containing v but not containing w,
which finishes the proof.
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For part (2), it is enough to prove the following: if A is a Lawrence
configuration, then every cocircuit hyperplane HZ of HB is a union of codi-
mension one dual simplicial cones. If this is true, then the chamber fan of
B clearly refines the fan of HB. To prove the claim, let Z = (Z+,Z−) be a
cocircuit of B and let Z0 be its complement. Let C ⊆ Z0 be a maximal inde-
pendent subset of Z0, so that C = {i1, . . . , ir−1} is a basis of the hyperplane
HZ (here r = n−d−1 is the rank of B). Let v ∈ HZ be an arbitrary vector
in the hyperplane, which can be written uniquely as a linear combination of
the elements of C. That is to say, if ba denotes the a-th column of B:

v = λ1b1 + · · ·+ λr−1br−1.

Since B is centrally symmetric, we can “reorient” C as follows:

C′ := {a ∈C : λa > 0}∪{a : a ∈C,λa < 0} .

Here, a denotes (the index of) the element of B opposite to a. Then,

v ∈ convB(C′) ⊆ HZ,

which proves the claim.
Part (3) follows from part (ii) if we prove that the hyperplane arrange-

ments HB and HB∪(−B) coincide, which is left as an exercise for the reader.

Remark 5.5.15. The hyperplane arrangement HB can be constructed from
any point or vector configuration, and it has an interpretation in oriented
matroid theory, where it is called the adjoint of B [55]. Its cells represent
different oriented matroid extensions of B: two vectors are in the same cell
if adding one as a new element of B produces the same oriented matroid
(that is, the same chirotope) as adding the other. Of course, not all exten-
sions of the oriented matroid of B arise in this way, for much the same
reason why not all triangulations of its Gale transform A arise as chambers;
only the regular ones do.

Under the interpretation of vectors in (the ambient space of) B as heights
to lift the elements of A, cells of HB correspond to lifts producing the
same oriented matroid. (Except for one thing: the Gale transform of B∪ω
is the lift of A with an extra element “at infinity”, representing the lifting
direction. For example, changing ω to its opposite −ω produces the same
lift of A except in the opposite direction: what was the “lower envelope” is
now the “upper envelope” and vice-versa. This is in agreement with part
(1) of Theorem 5.5.14: Heights lifting A with the same chirotope (and the
same direction to compute convex hulls) certainly produce the same regular
subdivision.

To better understand these relations, observe that a height ω ∈ R
J lies

in a particular hyperplane HC of HB if it lifts the points in the circuit C of
A to a dependent position. (Remember that we have a hyperplane HC for
each cocircuit of B, i.e., for each circuit of B).

Lawrence polytopes are interesting for several reasons. Several of their
combinatorial properties are in the Exercises 5.28 and 5.30. They will
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appear again in Chapter 9. Our interest in them right now is that they
show that the diameter bound for the secondary polytope proved in Corol-
lary 5.3.11 is essentially tight.

Theorem 5.5.16. Let L be a Lawrence configuration with n elements and
dimension d. Then:

1. The diameter of the graph of Σ-poly(L) is exactly the number of cir-
cuits of L.

2. If L is the Lawrence polytope of a configuration A, then that number
is the same as the number of circuits of A.

Proof. For the first part, one direction follows from Part (3) of Theorem
5.3.7, and the other from the fact that the secondary fan is the fan of a
hyperplane arrangement: in order to go from one maximal chamber to the
opposite one, we need to cross (at least once, and exactly once if the path
is monotone) every hyperplane of the arrangement. The number of these is
the number of cocircuits of Gale(L), which is the number of circuits of L.

The second part follows from Exercise 5.28.

Corollary 5.5.17. For each pair of natural numbers r < n, let δ (n,r) de-
note the maximum diameter of the graphs of all secondary polytopes of
configurations of n points in dimension n− r−1 (so that r is the dimension
of the secondary polytopes themselves). Then the following inequalities
hold: (�n/2�

r−1

)
≤ δ (n,r) ≤

(
n

r−1

)
.

In particular, if r is considered fixed, then δ (n,r) ∈ Θ(nr−1).

Proof. The upper bound follows from Corollary 5.3.11, since
( n

r−1

)
equals( n

n−r+1

)
. For the lower bound, assume without loss of generality that n

is even. Let A be a configuration of n/2 points in general position in di-
mension n/2− r− 1, so that A has exactly

( n/2
n/2−r+1

)
=
(n/2

r−1

)
circuits. Its

Lawrence polytope Λ(A) has then n points and dimension n−r−1. By Ex-
ercise 5.28, it has the same number of circuits as A, and by Theorem 5.5.16,
that number equals the diameter of the graph of Σ-poly(Λ(A)).

After diameters, we now move to studying the number of regular trian-
gulations that a point configuration can have when the corank is considered
fixed, that to say, the maximum number of vertices of secondary polytopes
of fixed dimension. Again, Lawrence polytopes will both give the ideas
leading to a general upper bound and show that this bound is not far from
optimal.

By Theorem 5.5.14 above, if L is a Lawrence configuration then its sec-
ondary fan is the fan of the hyperplane arrangement HGale(L). Thus, the
following classical lemma of R. Buck (see, for example, [337]) is relevant:
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Lemma 5.5.18. The number of full-dimensional regions defined by a linear
arrangement of N hyperplanes in dimension D (N ≥ D) is bounded above
by

2
D−1

∑
i=0

(
N −1

i

)
.

Equality is achieved if the arrangement is simple.

Proof. Suppose first that we are dealing with a simple hyperplane arrange-
ment H . Recall that simple means that no D+ 1 hyperplanes have a com-
mon non-zero vector. We will prove by double induction on D and N −D
that the number of regions is exactly as predicted. Induction starts in the
cases D = 1 (where the number of regions is always two) and N = D (where
the number of regions is 2D).

For the inductive step, we use the following notation. If H ∈ H is any
particular hyperplane in the arrangement, then H \H denotes the arrange-
ment obtained by forgetting the hyperplane H and H /H denotes the ar-
rangement restricted to H (H is considered as a vector space itself, and each
hyperplane of H other than H restricts to a hyperplane in it). Observe that
both are simple if H is.

It turns out that the number of full-dimensional regions in H equals the
sum of the numbers in H \H and in H /H. This is so because when H
is introduced in H \H, each full-dimensional region of H /H divides a
region of H \H in two. Then, using the notation R(H ) for the number of
full-dimensional regions of an arrangement, we have:

R(H ) = R(H /H)+ R(H \H)

= 2
D−1

∑
i=0

(
N −2

i

)
+ 2

D−2

∑
i=0

(
N −2

i

)
= 2

D−1

∑
i=0

(
N −1

i

)
.

In the case where H is not simple, observe that H can be perturbed into
being simple. The perturbation process cannot make any region disappear,
but it may make some appear.

Taking into account that when D is fixed, the number in this statement is
in Θ(ND−1) we get:

Theorem 5.5.19 ([48]). Let r be fixed.

1. The number of regular triangulations of any configuration of n points
in dimension n− r−1 is in O(n(r−1)2

).

2. The number of regular triangulations of a generic Lawrence polytope
with n vertices in dimension n− r−1 is in Θ(n(r−1)2

).

Proof. Let A be an arbitrary configuration of dimension n−r−1, with Gale
transform B. Since the chamber fan of B is refined by the fan of the hy-
perplane arrangement HB, the number of regular triangulations of A is at
most the number of full-dimensional cells in that arrangement (refinement
divides each full-dimensional cell into one or more cells). The arrangement
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HB has dimension r, and its number of hyperplanes is the number of cocir-
cuits in B, which is at most

( n
r−1

)
. Hence, the number of regular triangula-

tions of A is in

O

((
n

r−1

)r−1
)

= O
(

n(r−1)2
)

.

We omit the proof of the second part. See [48, Lemma 5.5].

Exercises

Exercise 5.1. Prove that all polyhedral subdivisions of one-dimensional
point configurations are regular.

Exercise 5.2. Prove that all polyhedral subdivisions of n-gons are regular.

Exercise 5.3. Make a large copy of Figure 5.20, and add all the remain-
ing covering relations corresponding to refinement. (The picture will get
cluttered, but never mind; doing this is important, not the resulting image.)

Exercise 5.4. State the relation among the coordinates of GKZ-vectors dis-
cussed in Example 5.1.8 for the GKZ-vector of a general point
configuration.

Exercise 5.5. Consider a d-dimensional point configuration A. Show that
the affine hull of Σ-poly(A) is given by the d + 1 equations

∑
a∈A

xa = d(d + 1)vol(convA). and

∑
a∈A

xaa = ((d + 1)vol(convA))cA ,
(5.7)

where cA denotes the centroid of convA.

Exercise 5.6. Compute the systems of equations and inequalities constrain-
ing the heights for all polyhedral subdivisions of L4 in Example 5.1.1.

Exercise 5.7. Let C(A,−)P be the set of all weights in R
n such that the

regular triangulation induced by them contains P as a polyhedral cell with
vertices in A. Show that C(A,−)P is a convex cone.

Exercise 5.8. Find examples of non-regular polyhedral subdivisions, for
which the assertions of Proposition 5.2.9 do not hold.

Exercise 5.9. Prove that HA is a refinement of Σ-fan(A). Find an example
where HA is a strict refinement of Σ-fan(A).

Exercise 5.10. Work out the details of the proof of the first assertion in
Theorem 5.4.5.

Exercise 5.11. For a height function ω : A → R, prove that the linear in-
equality defining the facet of Σ-poly(A) corresponding to the coarsest sub-
division S (A,ω) is given by

∑
a∈A

ω(a)xa ≥ (d + 1)∑
Q∈

volQ ·gω,T (cQ) (5.8)
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where gω,T : convA → R denotes the characteristic section of T (be-
cause T is regular, then gω,T is a piecewise-linear convex function)

Exercise 5.12. Prove or disprove the following: Let T be an arbitrary
polyhedral subdivision of A. Then there is a unique finest regular polyhe-
dral subdivision T ′ with T � T ′.

Exercise 5.13. Are there point configurations with more than d + 3 points
whose triangulations all contain a core simplex?

Exercise 5.14. Complete the proof of Lemma 5.1.13. For the missing case
when the circuit Z is not full-dimensional, consider the following steps:

• Let B1 and B2 be simplices of the same dimension and spanning the
same flat. Let C be a simplex spanning a complementary affine space.
Prove that: vol(B1 ∗C)/vol(B1) = vol(B2 ∗C)/vol(B2).

• The flip based on Z now does not merely exchange two triangulations
T+ for T−. It exchanges their joins with their (common) link L , as
explained in Section 4.4 (see Theorem 4.4.1). Prove that the fact that
all the maximal simplices in T+ and T− have exactly the same link
implies that there is a proportionality constant μ for which

φA(T1)−φA(T2) = μ(φA(T+)−φA(T−)).

(Hint: μ is the sum over all maximal simplices in the link of the
proportionality constants implicit in the previous step).

Exercise 5.15. Explicitly list the set of maximal simplices of a non-regular
triangulation of C(10,6) in Section 5.5.2.

Exercise 5.16. Show that every configuration A of d + 4 points in dimen-
sion d has at most O(d4) regular triangulations. For this:

1. Think of their chamber complexes as cell decompositions of a 2-
sphere.

2. Bound the number of vertices in these chamber complexes by O(d4),
showing that every vertex corresponds (not uniquely, but that is not
really a problem) to a pair of circuits of A.

3. Using Euler’s formula, show that any (polyhedral) cell decomposi-
tion of a 2-sphere has about as many vertices as it has 2-cells. More
precisely, these two numbers are within a factor of two of each other.

Exercise 5.17. Use the ideas in Section 5.5.2 to show that the cyclic point

configuration C(4k + 4,4k) has at least 2k

4 many non-regular triangulations
[96].

In order to do the count right, use the following hints:

1. Consider first the coordinatization that has a cyclically symmetric
affine Gale diagram, in which k lines meet in a zero-dimensional
chamber at the center.
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2. Show that by perturbing the coordinates, each of these n lines can
be moved towards one or the other side of it. Since the cyclic con-
figuration is in general position, these perturbations produce different
coordinatizations of the same oriented matroid, hence given the same
set of triangulations.

3. Show that for all these perturbations the center of the Gale diagram
corresponds to distinct triangulations. For this, use the description
of a chamber as an intersection of the “dual simplicial cones” of the
corresponding triangulation.

Exercise 5.18. With a variation of the same example, show that a triangu-
lation of n points in dimension d = n−4 can have n−1 flips. Also, show
that the poset of subdivisions can have chains of length n/2.

Exercise 5.19. Show that C(11,7) (easy) and C(9,5) (a bit more tricky)
have non-regular triangulations. Is there a non-regular triangulation of
C(8,4)?

Exercise 5.20. (Open) Let T be a triangulation with k flips. Moreover, let
T1, . . . ,Tk be the triangulations obtained by these flips. Let V1, . . . ,Vk be
the GKZ-vectors of these flips. That is,

Vi := φA(Ti)−φA(T ).

Can it happen that the cone spanned by these vectors is the whole linear
span of the secondary polytope?

Observe that, for a regular triangulation, the cone spanned by these vec-
tors is the inner tangent cone at the vertex corresponding to T , of the sec-
ondary polytope. Observe also that, in the non-regular triangulation of the
mother of all examples, these vectors positively span a linear space rather
than a pointed cone, but it is a proper linear subspace (of dimension two,
instead of three) of the linear span of the secondary polytope.

Exercise 5.21. Show that the secondary polytopes of A and a one-point sus-
pension A i

i have identical face lattices. (Hint: Define a bijection between
the sets of regular triangulations by relating the chamber complexes.)

Exercise 5.22. Show that both triangulations of the counterexample 5.4.16
are regular. (Hint: Look at the facets of all dual simplices and use on which
side of them the missing point resides on.)

Exercise 5.23. Show that the following configuration has two regular trian-
gulations connected by a non-regular flip, as in the case of Example 5.3.4:

A :=

⎛

⎜
⎜
⎝

1 2+ 2− 3 4 5 6+ 6−

4 0 0 0 2 1 1 1
0 4 4 0 1 2 1 1
0 0 0 4 1 1 2 2
0 +4 −4 0 0 0 +1 −1

⎞

⎟
⎟
⎠.
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Hint: Observe that the mid-points of edges 2+2− and 6+6− lie in the plane
containing points 1, 3, 4 and 5, and the six points together form the familiar
“mother of all examples”. Make one of its non-regular triangulations arise
as the slice of the intermediate subdivision between two regular triangula-
tions, with arguments similar to those used in Example 5.3.4.

Exercise 5.24 (Non-regular flips between regular triangulations need rank
four). Let T1 and T2 be two regular triangulations of A, joined by a flip on
Z = (Z+,Z−). Suppose that the intermediate almost-triangulation S is not
regular. Show that:

1. |Z+| ≥ 2 and |Z−| ≥ 2. Hint: use Theorem 5.3.3.

2. Conclude that A needs to have at least rank four.

Exercise 5.25. Let S be a subdivision of the configuration A with exactly
two maximal faces, S1 and S2. Prove that the following statements are
equivalent.

1. S is a 2-split of A,

2. S is a coarsest subdivision of A,

3. S1 = conv(S1)∩A and S2 = conv(S2)∩A.

Exercise 5.26. Let An denote the zero dimensional point configuration con-
sisting of n copies of the same point. Show that its Lawrence polytope is
the prism over an (n−1)-simplex (that is, the product of an (n−1)-simplex
and a segment).

Exercise 5.27 (Matrix description of Lawrence polytopes). Prove Proposi-
tion 5.5.12.

Exercise 5.28 (Oriented matroid of Lawrence polytopes). Let A be a point
configuration of rank d +1 with n elements and let B be its Gale transform.
Let Λ(A) be its Lawrence polytope, with Gale transform (B,−B). For each
index a of an element of A and B let a and a denote the pair of elements
of Λ(A) and (B,−B) corresponding to it, so that the a-th column of B
and (B,−B) coincide, and the a-th column of (B,−B) is the opposite of it.
Prove the following facts about the oriented matroid of Λ(A):

• For each basis C of A, Λ(A) has 2n−d−1 bases, each containing the
two elements of every pair {a,a} for the elements a of C and exactly
one element of each pair {a,a} for the elements a �∈C. These are all
the bases of Λ(A).

• A and Λ(A) have the same number of circuits. More precisely, for
each circuit (Z+,Z−) of A with k elements, Λ(A) has the circuit
(Z+ ∪Z−,Z− ∪Z+), and these are all the circuits of it.

• There are only the following two types of cocircuits in Λ(A):

– The cocircuit ({a},{a}) for each element a of A.
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– The 2k cocircuits obtained by “reorienting in all possible ways”
each cocircuit Z = (Z+,Z−) of A, where k := |Z+ ∪ Z−| and
reorienting means choosing a certain subset C ⊆ Z+ ∪Z−. The
reoriented circuit for a specific choice is

((Z+ ∩C)∪ (Z− \C),(Z−∩C)∪ (Z+ \C)).

Exercise 5.29. Finish the proof of part (3) of Theorem 5.5.14. That is, show
that the hyperplane arrangement fans of the Gale transforms of A and Λ(A)
coincide. Hint: this is closely related to part (2) of the previous exercise.

Exercise 5.30 (Lawrence polytopes are equidecomposable). Prove that all
triangulations of Λ(A) have the same number of full-dimensional simplices.
More precisely, every triangulation uses exactly one basis of the 2n−d−1

associated to each basis of A.

Exercise 5.31. Prove that if a subdivision T with d +3 points in dimension
d is not trivial and is not a triangulation, then it equals the pushing refine-
ment of the trivial subdivision at a certain element i (see Lemma 4.3.2 in
Chapter 4). In particular, T is regular and it is an almost-triangulation.



Some Interesting
Configurations 6
We have seen in Section 3.4.1 that there is a friendly structure on the set
of all triangulations of a planar point configuration: It is a connected graph
with triangulations as nodes and flips between triangulations as edges. We
also saw in Chapter 5 that, for arbitrary dimension, the regular triangula-
tions are all connected by flips. In fact, we saw that all regular subdivisions
correspond to faces of the secondary polytope. Nevertheless, as we will see
in Chapter 7, for general triangulations in arbitrary point configurations of
high dimension this needs not be true.

There is a way to partially extend the above “friendly structure” results
to arbitrary dimensions, namely by restricting our attention to particular
concrete nice classes of point configurations. This chapter has a collection
of special configurations that, either because of their properties or because
of their practical importance, play a very significant role in the theory of
subdivisions.

6.1 Cyclic polytopes

Cyclic polytopes are a very interesting example of polytope. They have the
maximum possible number of faces among polytopes of a given dimension
and number of vertices. Their oriented matroids (that is, circuits, cocircuits,
etc) admit a very nice combinatorial characterization. In even dimension
they are (combinatorially) symmetric under cyclic permutation of vertices.
In a sense, they are the best generalization of convex polygons to higher
dimensions. For a detailed introduction to cyclic polytopes we recommend
[148, 339].

The key to the main results in this chapter is to reveal a “friendly” poset
structure on the set of all triangulations of cyclic polytopes. As we will see
the Hasse diagram of this poset will be the graph of all triangulations, and
we will show, among other things, that this graph is connected.

As we did in previous chapters, we start with a two-dimensional example
to get a feeling for the additional structure of the space of triangulations of
a cyclic polytope. Of course, in dimension two connectivity of the graph
of all triangulations is nothing new, but while the known proofs in dimen-
sion two for general planar point configurations cannot be generalized to
higher dimensions (see Section 3.6.2 if you have forgotten why), the ad-
ditional structure developed for polygons in the following section can be
generalized to arbitrary cyclic polytopes.

Before we go on, however, let us remind the reader that the space of tri-
angulations of a cyclic polytope is not considered friendly because trivially
all of its triangulations are regular. In fact, the opposite is true: Cyclic

Jesús A. De Loera et al., Triangulations, Algorithms and Computation in Mathematics,
DOI 10.1007/978-3-642-12971-1_6, c© Springer-Verlag Berlin Heidelberg 2010
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polytopes, in general, have many more non-regular than regular triangula-
tions, as we saw in Theorem 5.5.6.

6.1.1 Warm-up example: two dimensions

Let us have a closer look at flips in a convex polygon in dimension two.
Every flip can be given a natural direction and, as we will see, the resulting
directed graph of triangulations is acyclic. In other words, the space of
triangulations of an n-gon is in fact a partially ordered set (a poset for short).

A flip in a triangulation T of a convex n-gon (with vertices numbered
counter-clock-wise) is given by two triangles forming a convex quadrilat-
eral Q with vertices labeled by i < j < k < � ∈ [n]. The boundary edges
of Q are {i, j}, { j,k}, {k, �}, and {�, i}. Exactly one of the diagonals {i,k}
and { j, �} is also an edge in T . A flip supported on Q replaces the diagonal
of Q present in T by the other possible one.

3

2

1 5

4

Figure 6.1: The (oriented) graph of triangulations of

the 5-gon (with up and down flips) is the

Hasse-diagram of a bounded poset.

Here is the definition that yields a direction on flips.

Definition 6.1.1 (Upflip/Downflip). A flip supported on i < j < k < � in a
triangulation of an n-gon is upward or an upflip if it replaces {i,k} by { j, �}.
It is downward or a downflip otherwise.
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For triangulations T ,T ′ of an n-gon we say that T ≤1 T ′ when T ′
can be produced from T by a (possibly empty) sequence of upflips.

The notation “≤1” will be explained in Section 6.1.4 in a more general
framework.

We will now be even more concrete and restrict ourselves to the example
of the 5-gon. We know already that the graph of triangulations of the 5-
gon is connected. Now, what does the directed graph of triangulations look
like? Figure 6.1 shows the result. From it we can read off the following:

• Neither upflips nor downflips produce directed cycles.

• There is a unique minimal triangulation 0̂ and a unique maximal tri-
angulation 1̂.

• Every two triangulations T ,T ′ are connected via a sequence of up-
flips from T to 1̂ and a sequence of downflips from 1̂ to T ′; alter-
natively, they are connected by a sequence of downflips from T to 0̂
and a sequence of upflips from 0̂ to T ′.

In summary: the graph of triangulations of a convex pentagon C(5,2) is
a bounded poset. This additional structure implies that the graph of trian-
gulations is connected—a fact that we already knew. The punch line is that
the additional poset structure enables us to prove the stronger statement (tri-
angulations form a bounded poset) for the general case of triangulations of
the more general configurations C(n,d) that we are going to study, receiv-
ing connectedness of the graph for free—and in general dimension, this is
new.

6.1.2 Combinatorial properties of cyclic polytopes

Cyclic polytopes form the (combinatorially) best understood class of poly-
topes with no bound on the number of vertices nor the dimension. In this
section, we provide a definition and basic properties that we need in order to

• define a orientation on each flip of the cyclic polytope,

• construct new triangulations from old ones, and

• prove that the triangulations of the cyclic polytope form a bounded
poset.

For a more detailed reference on properties of cyclic polytopes see [148,
339].

Definition 6.1.2 (Moment Curve). For d ≥ 0, the curve

νd :

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

R → R
d

t �→

⎛

⎜
⎜
⎜
⎜⎜
⎝

1
t
t2

...
td

⎞

⎟
⎟
⎟
⎟⎟
⎠

(6.1)
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is the d-dimensional moment curve (homogeneous coordinates, as it is our
custom).

Cyclic point configurations are sometimes defined as a set of distinct
points on the moment curve. This is neither the most general definition pos-
sible nor completely unambiguous. We prefer to introduce a well-defined,
concrete standard cyclic point configuration, from which we derive general
cyclic point configurations via their sets of circuits.

Definition 6.1.3 (Standard Cyclic Point Configuration). For n > d ≥ 0, the
d-dimensional standard cyclic point configuration with n points is the fol-
lowing point configuration:

C(n,d) :=
( 1 2 . . . n

νd(1) νd(2) . . . νd(n)
)
=

⎛

⎜
⎜
⎝

1 2 . . . n

1 1 . . . 1
1 2 . . . n
...

...
...

1 2d . . . nd

⎞

⎟
⎟
⎠ (6.2)

For a subset A ⊆ J = {1, . . . ,n}, the standard cyclic subconfiguration
w.r.t. A is the subconfiguration C(n,d)|A. We denote it C(A,d). Of course,
a cyclic polytope is the convex hull of the points of C(n,d).

Any d-dimensional point configuration with n points that is combinatori-
ally equivalent to the standard cyclic point configuration is a d-dimensional
cyclic point configuration with n points.Figure 6.2: The cyclic polytope conv(C(6,1)) in

dimension one, . . .

Figure 6.3: . . . conv(C(6,2)) in dimension two

. . .

Figure 6.4: . . . and conv(C(6,3)) in dimension

three.

Here by combinatorially equivalent, we mean that the sets of signed cir-
cuits and cocircuits coincide in both configurations, i.e., they have the same
oriented matroid (see Chapter 4 Definition 4.1.43).

Before we have a closer look at the circuits of C(n,d), we present some
cyclic polytopes in small dimensions and codimensions.

The case d = 0: C(n,0) is a multiset of n copies of the only point in R
0.

Therefore, all zero-dimensional point configurations are cyclic.

The case d = 1: C(n,1) consists of n points 1,2, . . . ,n in R without rep-
etitions. All one-dimensional point configurations without repeated
points are cyclic.

The case d = 2: C(n,2) consists of n points in strictly convex position, i.e.,
the vertices of an n-gon. All such point configurations are combina-
torially equivalent, hence they are all cyclic.

The case n−d = 1: C(d + 1,d) is a d-simplex.

The case n−d = 2: C(d + 2,d) is a d-dimensional circuit.

The following lemma about the sign of the determinant of points on the
moment curve is important for the combinatorial structure of cyclic point
configurations.
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Lemma 6.1.4. For any d + 1 points, νd(t1), . . . ,νd(td+1), with t1 < t2 <
· · · < td+1 on the moment curve, we have

signdet(νd(t1), . . . ,νd(td+1)) = 1.

Moreover, νd(td+1) lies above (with respect to the last coordinate) every
hyperplane spanned by the other points.

Proof. The determinant under consideration is the famous Vandermonde
determinant, that can be explicitly computed as follows. Subtracting from
each row, except the first, the previous row multiplied by t1 gives a matrix
in which the first column has a repeated non-zero entry, and the j-th column
is a multiple of t j − t1. Taking those factors out of the determinant yields:

∣
∣
∣
∣∣
∣
∣
∣
∣

1 1 . . . 1
t1 t2 . . . td+1
...

...
...

td
1 td

2 . . . td
d+1

∣
∣
∣
∣∣
∣
∣
∣
∣

= ∏
2≤ j≤d+1

(t j − t1)

∣
∣
∣∣
∣
∣
∣

1 . . . 1
...

...
td−1
2 . . . td−1

d+1

∣
∣
∣∣
∣
∣
∣
.

Since the determinant on the right is also a Vandermonde determinant,
induction on d gives:

det(νd(t1), . . . ,νd(td+1)) = ∏
1≤i< j≤d+1

(t j − ti) > 0.

From this, the first claim follows.
In order to prove the second claim, consider a point with “infinite height”

w.r.t. to the last coordinate, represented as

p∞ :=

⎛

⎜
⎜
⎜⎜
⎜
⎝

0
0
...
0
1

⎞

⎟
⎟
⎟⎟
⎟
⎠

(Compare with Remark 5.2.3, where we did the same.)
The claim that the last point lies above all hyperplanes is therefore equiv-

alent to saying that

signdet(νd(t1), . . . ,νd(td+1)) = signdet(νd(t1), . . . ,νd(td),p∞)

But the last determinant, developed in the last column, equals

det(νd−1(t1), . . . ,νd−1(td)),

which is positive by part one.

From this we immediately conclude that C(n,d) is in general position:

Lemma 6.1.5. No d + 1 points in C(n,d) lie on a common hyperplane
in R

d, i.e., C(n,d) is in general position.
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Proof. Being in general position is equivalent to the non-vanishing of the
determinants in the previous lemma.

Moreover, we conclude that:

Corollary 6.1.6. Every subconfiguration of a cyclic configuration of dimen-
sion d is itself a cyclic configuration of dimension d.

Let us explain what we mean here more precisely. When we say that a
configuration A of dimension d on a label set J with k elements is cyclic, we
mean that there is a bijection between J and the set {1, . . . ,k} under which
the oriented matroids of A and the standard cyclic configuration C(n,k)
coincide. In the statement above, where J = {z1, . . . ,zk} is a subset of
{1, . . . ,n} we, moreover, have that the bijection is given by the ordering
of the elements of J.

Proof. One of the ways of characterizing the oriented matroid of a configu-
ration of rank d +1 is via its chirotope, that is, the map that assigns to each
ordered (d +1)-tuple of elements the sign of the determinant they form. In
the case of cyclic configurations, Lemma 6.1.4 says that the chirotope of
a cyclic configuration is “the determinant of any (d + 1)-tuple of elements
is positive, when the elements are given in their canonical order”. This is
inherited in all subconfigurations.

We will show that chirotopes are very useful later on in Section 8.1.1, but
let us use them now for cyclic polytopes: As said in this proof, Lemma 6.1.4
gives us the chirotope of a cyclic configuration in a concise form, from
which the signed circuits and cocircuits of it (or any other oriented matroid
information) can be recovered. Let us show how to do this. For the cocir-
cuits, the following concept is important:

Definition 6.1.7 (Gaps). For a cyclic configuration C(n,d) and a set F ⊆
J = [n], a gap of F is an index i ∈ J\F . A gap i of F is an even gap if the
number of elements in F larger than i is even, and i is an odd gap otherwise.

Since cyclic configurations are in general position, each subset A of d
elements defines a signed cocircuit: the partition of J \A into the elements
on and the other side of the hyperplane spanned by A. The following state-
ment, the Gale’s evenness criterion, says that points are on one side or the
other depending simply on whether they are even or odd gaps:

Theorem 6.1.8 (Cocircuits of cyclic configurations). Let A ⊆ J = [n] be a
set of d elements in the cyclic point configuration C(n,d). Let H be the
hyperplane spanned by the points labeled by A and let i ∈ J \A. Then, the
point labeled by i lies above (with respect to the last coordinate) H if i is an
even gap in A and it lies below if i is an odd gap.

Proof. The linear equation defining H is given by det(C(A,d),x) = 0. A
point x lies above H w.r.t. the last coordinate if and only if it lies on the same
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side of H as the point νd(n+1), by Lemma 6.1.4. This means that the point
labeled by i is above H if and only if

signdet(C(A,d),νd(i)) = signdet(C(A,d),νd(n + 1)).

The determinant on the left is positive, by Lemma 6.1.4. The one on the
right would become positive if the columns are reordered according to their
labels, so its sign equals the parity of the permutation of A∪{i} that inserts
i in its appropriate place. That permutation is even or odd depending on
whether i is an even or an odd gap in A.

In particular, we can describe the facets of a cyclic configuration in terms
of gaps, and even say what facets are lower and upper, with respect to the
last coordinate. This statement is usually called Gale’s evenness criterion
(see, e.g., [339]).

Corollary 6.1.9 (Oriented Gale’s Evenness Criterion). A subset F ⊆ [n] of
a cyclic point configuration is a facet of it if and only if the gaps of F are
either all even or all odd.

If all gaps of F are odd then F is an upper facet of C(n,d) with respect
to the last coordinate; it is a lower facet of C(n,d) with respect to the last
coordinate, otherwise.

Proof. A set of d points defines a lower facet if the hyperplane spanned by
them has the rest of the points above it, and an upper facet if it has all the
points below.

From this we get exact numbers of upper and lower facets of C(n,d); this
will be useful later. We leave the proof of this as an exercise to the reader.

Corollary 6.1.10. For even d, the number of upper facets of C(n,d) is(n−(d/2+1)
d/2−1

)
; the number of lower facets of C(n,d) is

(n−d/2
d/2

)
.

For odd d, the numbers of upper and lower facets of C(n,d) coincide.

They are both equal to
(n−(d+1)/2

(d−1)/2

)
.

As a side remark, it will be essential later that in Figure 6.1 we observe:

• The minimal triangulation 0̂ of C(5,2) is (labeled by) the set of lower
facets of C(5,3).

• The maximal triangulation 1̂ of C(5,2) is the set of upper facets of
C(5,3).

Now we turn our attention to the circuits of cyclic point configurations.

Theorem 6.1.11 (Circuits of Cyclic Point Configurations). The circuits Z
of C(n,d) are exactly the sets {z1,z2, . . . ,zd+2} with z1 < z2 < · · · < zd+2.

Their positive part Z+ = {z1,z3, . . .} consists of all elements with odd
indices, and their negative part is given by the set Z− = {z2,z4, . . .} of
elements with even indices, or vice versa.
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Because of the structure of its circuits, the oriented matroid of a cyclic
configuration is called the alternating oriented matroid: the (ordered) ele-
ments of a circuit Z are alternatingly in Z+ and Z−.

Proof. Since C(n,d) is in general position, every set of d + 2 points in
C(n,d) forms a circuit. The circuit signature of a set Z = {z1,z2, . . . ,zd+2}
is given by the signs of the coefficients in the unique (modulo a scalar fac-
tor) dependence supported on it, that is, the generator of the kernel of Z
when written as a matrix is:

C(Z,d) =

⎛

⎜⎜
⎜
⎝

1 2 . . . d + 2

1 1 . . . 1
z1 z2 . . . zd+2
...

...
...

zd
1 zd

2 . . . zd
d+2

⎞

⎟⎟
⎟
⎠

.

As explained in Remark 4.1.8, one choice for the generator is to take as
the i-th entry in it the determinant of the matrix obtained by deleting the
i-th column in C(Z,d), multiplied by the sign (−1)i. The determinants
themselves are all positive, by Lemma 6.1.4, so multiplying the entries by
(−1)i causes them to alternate in sign.

Example 6.1.12 (The affine Gale transform of C(d,d + 4)). Let us show
that the cyclic affine Gale transform introduced in Section 5.5.2 is, as claim-
ed there, a Gale transform of C(d,d + 4). The alternating circuit property
is a property on the cocircuits of the Gale transform, that is, on the way
that lines spanned by pairs of points split the other ones. Having in mind
that white points represent antipodal vectors to black points, the exact trans-
lation is as follows: For every line spanned by two arbitrary points in the
affine diagram, the remaining points, taken in order of increasing labels,
must in every step either change color or change to the other side of the
line, but not both.

This is easily verified by looking at Figure 5.78: If the points chosen for
the line are consecutive, at every increase in the label, we change colors
and stay on the same side of the line. If they are not consecutive, the same
happens, except when we pass over one of the chosen two points, at which
step we change to the other side of the line but keep the same color.

Observe that we are not claiming that points in a circle form a geometric
Gale transform of the cyclic polytope in its standard realization on the mo-
ment curve, only that they are a Gale transform of a polytope with the same
oriented matroid, hence the same set of triangulations.

To finish the description of the oriented matroid of a cyclic configuration
let us make a final remark. In arbitrary point configurations, the signatures
of circuits and cocircuits are unique modulo an exchange of the positive and
negative parts, and there is not, a priori, a canonical way of saying which
is positive and which is negative, simultaneously for all of them. In cyclic
configurations, however, we have a canonical way of orienting cocircuits
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(call the upper part of them positive) and one of orienting circuits (postulate
that the last element in them be in the positive part of the circuit). Since
this convention will be crucial in what comes next, let us make it formal
and explicit:

Definition 6.1.13 (Upward/Downward Circuit). Let Z = {z1,z2, . . . ,zd+2}
be a circuit in C(n,d).

As in Theorem 6.1.11, we assume that the zi’s are given in increasing
order and define Z+ := {. . . ,zd ,zd+2} and the Z− := {. . . ,zd−1,zd+1}.

Then, the upward signature on Z is the partition (Z+,Z−). The circuit
(Z+,Z−) is then an upward (signed) circuit of C(n,d).

Likewise, the downward signature on Z is given by the opposite signature
(Z−,Z+) on Z: (Z−,Z+) is then a downward (signed) circuit of C(n,d).

The set of all upward circuits of C(n,d) is denoted by Z+(n,d), and the
set of all downward circuits is denoted by Z−(n,d).

The existence of this canonical orientation is related to the fact that
C(n,d) has C(n,d + 1) as its natural lift. Indeed, a circuit Z of C(n,d) be-
comes a basis, when regarded as a subset of C(n,d + 1), that is, its convex
hull is a (d + 1) simplex. The two subsets Z− and Z+, being a Radon par-
tition, have the property that their convex hulls intersect in a unique point
when regarded in C(n,d). But in C(n,d + 1), Z+ lies above Z−. Moreover,
we have

Z+ =
⋂

F+∈F+(Z,d+1)

F+, (6.3)

Z− =
⋂

F−∈F−(Z,d+1)

F− (6.4)

where F+(Z,d +1) and F−(Z,d +1) are the sets of upper and lower facets
of C(Z,d + 1), respectively.

6.1.3 Triangulations as sections of the canonical projection

A very useful connection between cyclic point configurations in different
dimensions is provided by the canonical projection: we take the points in
C(n,d) and forget their last coordinates, obtaining C(n,d − 1). We will
soon see that we can interpret a triangulation T of C(n,d−1) as a geomet-
ric object sitting in C(n,d) that is mapped back onto T by the canonical
projection. The description of triangulations as characteristic sections of
the canonical projection will allow for an enhanced geometric understand-
ing of directed flips (see Figures 6.5 and 6.6 for an illustration).

Definition 6.1.14 (Canonical Projection). The canonical projection from
conv(C(n,d)) to conv(C(n,d−1)) is the map induced by forgetting the last
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coordinate, i.e.,

pn,d :

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

conv(C(n,d)) → conv(C(n,d −1)),⎛

⎜
⎜
⎜
⎝

x0

x1
...

xd

⎞

⎟
⎟
⎟
⎠

�→

⎛

⎜
⎜
⎜
⎝

x0

x1
...

xd−1

⎞

⎟
⎟
⎟
⎠

(6.5)

C(n,d +1)

C(n,d)

p

Figure 6.5: The canonical projection. In Chapter 5, we made extensive use of the characteristic sections asso-
ciated to a triangulation from a lifting of its vertices (see Definition 5.2.12).
We recall now the definition for the case of a cyclic polytope.

Definition 6.1.15 (Characteristic Section). Let T be a triangulation of
C(n,d). Then the characteristic section of T is the unique piecewise affine
map that is affine on each simplex of T and that lifts the points in C(n,d)
to the (d + 1)-dimensional moment curve, i.e.,

sT :

⎧
⎨

⎩

conv(C(n,d)) → conv(C(n,d + 1)),
νd(i) �→ νd+1(i),

affinely extended inside simplices of T .

(6.6)T

T

T

Figure 6.6: The characteristic section.
To illustrate the use of characteristic sections, we first look at cyclic point

configurations in dimension one. Recall that cyclic point configurations
with n points in dimension one consist of n distinct points on the real line,
labeled in the order of increasing coordinates.

Intuitively, a valid triangulation of C(n,1) is a set of non-overlapping
intervals covering the interval from 1 to n. Such a triangulation can be en-
coded by specifying the boundary points of the subdividing intervals. Since
both 1 and n as faces of C(n,1) need to be covered by an interval, it is
enough to give the points among 2 through n− 1 that bound an interval
in the triangulation. This way, any subset of [2,n− 1] := {2,3, . . . ,n− 1}
induces a unique valid triangulation of C(n,1). Therefore, the set of trian-
gulations of C(n,1) is in bijection to the set of subsets of [2,n−1].

What do the characteristic sections look like? When we take a triangula-
tion of C(n,1) and lift the points to the two-dimensional moment curve, the
segments between the points on the moment curve fold in a convex fashion.
Moreover, when two triangulations T ,T ′ are such that the set of points
used in T contains the set of points used in T ′, then the characteristic
section sT of T lies weakly below the characteristic section sT ′ of T ′.

This means, that the last coordinate of the characteristic section of T
is nowhere higher than in the characteristic section of T ′. In formulas:
sT (x)2 ≤ sT ′(x)2 for all x ∈ C(n,2). In Figure 6.7, all the triangulations
of C(6,1) are drawn as characteristic sections.

The relation “characteristic section is weakly lower” defines a partial
order on the set of triangulations of C(n,1), via T ≤2 T ′ if and only if
sT is weakly below sT ′ . The notation “≤2” will be explained in the next
section, when we will introduce the general case.
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Figure 6.7: The height of a section defines a

poset on all triangulations of C(6,1).

S̃

T2
T1

Figure 6.8: A flip can be interpreted as stacking a

triangle on top of the characteristic section and

taking the new upper envelope; this defines a

covering relation among triangulations of C(6,1).

Let us look at a flip in a triangulation T of C(n,1), resulting in a new
triangulation T ′. Flipping is equivalent to the insertion or the removal of
exactly one point. A natural direction on flips can be given as follows:
an upflip removes a subdivision point, a downflip inserts one. We get the
poset structure T ≤1 T ′ if and only if T can be changed into T ′ by
removing subdivision points. As this cannot produce any cycles, we get
a poset structure like in the two-dimensional case. It is easy to see that
the poset of triangulations of C(n,1) is equivalent to the reversed Boolean
lattice on n−2 elements.

How are the two poset structures related? If we insert a point in T , then
sT ′ lies below sT , and exactly one triangle fits in between. This triangle is
the convex hull of the points supporting the flip (see Figure 6.8).

This shows at the same time that T ≤1 T ′ implies T ≤2 T ′. We say,
“the poset ≤1” is coarser than “≤2” and “≤2” is finer than “≤1”.

There is another thing to observe in the one-dimensional case: Assume,
we start with the minimal triangulation of C(n,1) and flip upwards. On
the level of characteristic sections, this corresponds to stacking a triangle
t1 somewhere on top of the lower facets and taking the upper envelope.
We can interpret this as a continuous action of sliding up the characteristic
section, thereby wiping exactly over t1. If we perform another upflip, the
corresponding wiped triangle t2 will intersect properly with t1. Eventually,
we arrive at the maximal triangulation.

In the continuous process of sliding the lower facets all the way up to the
upper facets we have wiped over the whole two-dimensional cyclic poly-
tope C(n,2). This means that the triangles corresponding to the upflips
cover C(n,2). Since they are intersecting properly and cover, they form a
triangulation of C(n,2). In other words: the sets of flips in maximal chains
of the first poset structure correspond to triangulations.

Conversely, every triangulation of C(n,2) gives rise to a sequence of flips
in C(n,1) from 0̂ to 1̂ (exercise).

6.1.4 Higher Stasheff-Tamari posets

In this section, we will define two poset structures on the set of triangula-
tions of a cyclic point configuration. In our two-dimensional example, the
first poset structure yields exactly the structure in Figure 6.1. It is a poset
structure that is defined by means of its covering relations via a direction on
flips. The second poset structure is defined for every pair of triangulations
via the height of their characteristic sections, and yields the poset structure
that we have seen in the previous section in dimension one.

Let us start with the second poset structure because it will help us to
understand why the directed flips defined below do not produce directed
cycles.

C (n,d +1)

Figure 6.9: The brighter section is weakly higher

than the darker section; therefore, the

corresponding triangulations are ordered

accordingly in HST2(n,d).
Definition 6.1.16 (Second Stasheff-Tamari Poset). For triangulations T
and T ′ of C(n,d) define

T ≤2 T ′ : ⇐⇒ sT (x)d+1 ≤ sT ′(x)d+1 ∀x ∈ conv(C(n,d)). (6.7)

The poset induced by “≤2” is the Second Stasheff-Tamari Poset and is
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Figure 6.10: A maximal chain of triangulations of

C(6,1) induces via its set of flips a triangulation

of C(6,2).

denoted by HST2(n,d).

Next we want to make Definition 6.1.1 of upflips and downflips com-
patible with the general definition of flips in Section 2.4, as applied to the
n-gon. In Section 2.4, we defined flips in general dimensions via flippable
circuits. So what are the flippable circuits corresponding to the flips in a
triangulation of an n-gon?

Every four-point set in C(n,2) is a circuit, and every circuit contains four
points. For Z = {i, j,k, �}, the canonical signature is as follows: The upper
facets of {i, j,k, �} (interpreted as a tetrahedron in C(n,3)) are {i, j, �} and
{ j,k, �}; the lower facets are {i, j,k} and {i,k, �}. Therefore, according
to 6.1.13, Z+ = { j, �} and Z− = {i,k}. The two possible triangulations
of C(Z,d) according to Section 2.4 are T+(Z) =

{{i, j, �},{ j,k, �}} and
T+(Z) =

{{i, j,k},{i,k, �}}. In other words:

T+(Z) = F+(Z,d + 1), (6.8)

T−(Z) = F−(Z,d + 1). (6.9)

Note that T+(Z) contains the diagonal Z+ = { j, �}, and T−(Z) contains
the diagonal Z− = {i,k}. If a triangulation contains, e.g., T−(Z) as a sub-
complex then the two triangles {i, j,k} and {i,k, �} form a convex quadrilat-
eral triangulated by the diagonal {i,k}. Replacing T−(Z) by T+(Z) leaves
the boundary of the quadrilateral alone, and the diagonal {i,k} is replaced
by { j, �}: we have an upflip as in Definition 6.1.1. Likewise, we obtain
a downflip whenever T+(Z) is replaced by T−(Z) in some triangulation
containing T+(Z) as a subcomplex.

The description of flips via T+ and T− no longer relies on dimension
two: we can use them to define a direction on flips in triangulations of
C(n,d).

Definition 6.1.17. Let T be a triangulation of C (n,d).
An upflip in T is a flip that replaces the lower facets of a (d +1)-simplex

in C(n,d + 1) by its upper facets.
A downflip in T is a flip that replaces the upper facets of a (d + 1)-

simplex in C(n,d + 1) by its lower facets.
More specifically, let Z be a circuit of C(n,d).
If T−(Z) is a subcomplex of T , we say that Z supports an upward flip

or an upflip.
If T+(Z) is a subcomplex of T , we say that Z supports a downward flip

or downflip.

With this direction or orientation on flips, the flip graph of triangulations
of a cyclic polytope is a directed graph. Let us collect what we have found
in dimensions one and two (at least in the examples):

• In dimensions one and two, neither upflips nor downflips produce
directed cycles.

• In dimension one and two, there is a unique minimal triangulation 0̂
and a unique maximal element 1̂.
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• In dimension one and two, 0̂ equals the set of lower facets of C(n,d +
1), and 1̂ equals the set of upper facets of C(n,d + 1).

• In dimensions one and two, every two triangulations T ,T ′ are con-
nected via a sequence of upflips from T to 1̂ and a sequence of down-
flips from 1̂ to T ′; alternatively, they are connected by a sequence of
downflips from T to 0̂ and a sequence of upflips from 0̂ to T ′.

• In dimension one, any sequence of flips from 0̂ to 1̂ induces a trian-
gulation of C(n,2).

The goal is now to show that the limitation “in dimensions one and two”
can be dropped.

Why are there no directed cycles? From the definition via the exchange
of lower and upper facets of a (d + 1)-simplex in C(n,d + 1), we see that
an upflip weakly lifts the characteristic section. In other words: If T ′ is
obtained from T by an upflip, then T <2 T ′. Since “≤2” defines a poset,
there can be no directed cycle of upflips. In other words: the directed graph
of all triangulations of a cyclic point configuration is the Hasse diagram of
a poset.

Definition 6.1.18. For triangulations T and T ′ of C(n,d) define

T ≤1 T ′ : ⇐⇒ T ′ is obtained from T by a sequence of upflips. (6.10)

The poset induced by ≤1 is the First Stasheff-Tamari Poset and is denoted
by HST1(n,d).

It takes a little more work to show boundedness of the poset and the
correspondence between maximal chains and triangulations one dimension
up. Therefore, we devote the entire next section to the statement and the
proof of the structure theorem for triangulations of cyclic polytopes.

6.1.5 The structure theorem for the first Stasheff-Tamari poset

We have already announced that the results about one- and two-dimensional
examples are true in the general case. Therefore, let us state the theorem
and its implications first.

Theorem 6.1.19. The first Stasheff-Tamari Poset HST1(n,d) is bounded.
The unique minimal triangulation is the set of lower facets of C(n,d + 1)
and the unique maximal triangulation is the set of upper facets of C(n,d + 1).

Moreover, there is a one-to-one correspondence between maximal chains
in HST1(n,d) and triangulations of C(n,d + 1). This correspondence is
induced by mapping each flip in a maximal chain in HST1(n,d) to the cor-
responding (d + 1)-simplex in C(n,d + 1).

This theorem has many remarkable consequences:

Corollary 6.1.20. For all n > d ≥ 0, we have that:

(i) The flip graph of C(n,d) is connected.
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(ii) The number of simplices in a triangulation of C(n,d) is bounded be-
tween the number of upper facets and the number lower facets of
C(n,d + 1).

(iii) The length of a maximal chain in HST1(n,d) is bounded between the
number of upper facets and the number of lower facets of C(n,d +2).

(iv) For even d, all triangulations of C(n,d) have the same number of
simplices.

(v) For odd d, all maximal chains in HST1(n,d) have the same lengths.

(vi) For even d, the diameter of the flip graph of C(n,d) is bounded be-
tween

(n−d/2−2
d/2

)
and 2

(n−d/2−2
d/2

)
.

(vii) For odd d, the diameter of the flip graph of C(n,d) is
(n−(d+1)/2−1

(d+1)/2

)
.

Proof. Assertion (i) is clear since all triangulations can be connected to the
top element or the bottom element. Assertion (ii) follows from the fact that
upflips cannot increase the number of simplices in a triangulation. Once
we know this, Assertion (iii) follows from the one-to-one correspondence
between flips in dimension d and simplices in dimension d + 1.

The remaining assertions follow from the formulas for the numbers of
upper and lower facets of C(n,d) in Corollary 6.1.10, applied to the correct
dimensions.

Remark 6.1.21. We can be more precise with respect to the number of
simplices in triangulations of C(n,d). In even dimension, they all have(n−(d+2)/2

d/2

)
maximal simplices. For odd d, the number goes from a mini-

mum of
(n−(d+3)/2)

(d−1)/2

)
to a maximum of

(n−(d+1)/2
(d+1)/2

)
. The minimum is achiev-

ed by the maximum triangulation 1̂ and the maximum is achieved by the
minimum one 0̂ in the Higher Stasheff-Tamari posets.

Also observe that, in the odd-dimensional case, all the intermediate num-
bers between the maximum and minimum are also achieved by some trian-
gulation. One easy proof is that the graph of flips is connected and every
flip changes the number of flips by exactly one, since all the circuits are of
type ((d −1)/2,(d + 1)/2).

We now prove Theorem 6.1.19. Sure enough, the interpretation of trian-
gulations as characteristic sections one dimension up plays a crucial role.
To avoid unnecessary notational overhead, we will make no distinction
between a triangulation T , its characteristic section sT , and the image
sT

(
C(n,d)

)
of conv(C(n,d)) in conv(C(n,d + 1)) under sT .

The proof will contain arguments of various types, some of them quite
technical but others also appealingly simple. In order not to get lost in the
environment of the proof, we start with a roadmap.

Let us start with the proof of the boundedness of HST1(n,d). We claim
that the following assertions imply that HST1(n,d) has a unique minimal
and a unique maximal element:
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(i) It suffices to show that in each triangulation T �= 1̂ [T �= 0̂] we can
find an upflip [a downflip].

(ii) For each triangulation T of C(n,d), there is a triangulation δ (T ) of
C(n,d + 1) containing T .

(iii) Every triangulation T of C(n,d) is stackable: the stacking relation

S ≺ S′ : ⇐⇒ S∩S′ is an upper facet of S (6.11)

does not produce any cycles.

Proof of Theorem 6.1.19 (boundedness) given the claims above.
By Claim (i), it suffices to show that there is an upflip in every triangulation
T of C(n,d) not equal to 1̂, and a downflip in every triangulation T of
C(n,d) not equal to 0̂. We prove the first case; the second case is analogous.

Let T be a triangulation of C(n,d) not equal to 1̂. Consider the triangu-
lation δ (T ) of C(n,d + 1) containing T as a subcomplex (such a triangu-
lation exists by Claim (ii)).

δ T

T

C(n,d +1)

Figure 6.11: Finding an upflip by starting at a

(d +1) above T and searching “downwards”.

Since T �= 1̂, there are simplices in T that are not upper facets of
C(n,d + 1). Therefore, since δ (T ) covers C(n,d + 1), it contains (d + 1)-
simplices above T , i.e., all points in their convex hull have last coordinate
no smaller than those points in T with the same image under the canonical
projection. Since the stacking relation “≺” on the (d + 1)-simplices in δT
is cycle-free, we can pick the minimal simplex S in δ (T ) above T . If all
lower facets of S are in T , then S supports an upflip in T , and we are done.
If not, then there is a lower facet of S not in T . This facet gives rise to an
adjacent simplex S′ ≺ S which is still above T , which is a contradiction to
the minimality of S.

It remains to show that Claims (i)–(iii) are correct.

(i) Let T be an arbitrary triangulation of C(n,d). Since there are only a
finite number of different triangulations, and flipping upwards [down-
wards] does not create any cycles, we will find a sequence of upflips
[downflips] to the top [bottom] element.

(ii) In order to prove this part, we present two operations on triangula-
tions: the extension and the deletion.

The extension T̂ and the deletion T \ n of T are defined as follows
in terms of maximal simplices:

T̂ := T ∗ n

∪{S \ {n}∪{ j, j + 1} : S = {s1, . . . sn} ∈ T ,

sn−1 < j < n + 1
}
,

T \n := {S : S ∈ T , n /∈ S}
∪{S \ {n}∪{n−1} : S ∈ T ,

n−1 /∈ S,

n ∈ S
}
.
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We claim that the extension of T is a triangulation of C(n+1,d +1),
and the deletion of T is a triangulation of C(n−1,d).

Let us have a look at T̂ first. The part T ∗n triangulates the complete
area of conv((C(n + 1,d + 1)) above the hypersurface sT : (MaxIP)
holds because it holds for T and coning does no harm; (MaxMP)
modulo facets in sT also follows immediately from (MaxMP) for T .
That the other, more complicated part triangulates the rest, is a tedious
check of (CombAdjIP) and (CombMP) that we actually do not need.
We refer to [264] for a proof.

The deletion T \ n is a triangulation of C(n,d) because of the fol-
lowing sliding argument: Assume that we slide point n continuously
along the moment curve towards point n−1 in the time interval [0,1].
Then, because the oriented matroid of the point configuration stays
the same for all t ∈ [0,1), the simplices in T will form a triangulation
throughout. Therefore, (MaxUVP) and (MaxMVP) hold (see Theo-
rem 4.5.17), i.e., the total uncovered volume and the total multiply
covered volume are zero throughout t ∈ [0,1).

Since the volume is a continuous function of the coordinates of the
points, the uncovered volume and the multiply-covered volume must
also be zero for t = 1. Thus, the resulting d-simplices of this slid-
ing procedure form a triangulation. The simplices that are still d-
dimensional after this slide are exactly the ones in the formula of
T \ n.

(iii) This can be proven by giving a linear extension of the relation. This
is another nice application of the notion of the gap parity. Map each
simplex S ∈T to an n-letter string Γ(S) on the alphabet {o,∗,e}. The
i-th letter Γi(S) is defined as:

Γi(S) :=

⎧
⎪⎨

⎪⎩

e if i is an even gap of S,

o if i is an odd gap of S, or

∗ if i ∈ S.

This is a bijection. Now, the following is easy to see: If we switch
from a simplex S ∈ T to a simplex S′ ∈ T stacked on top of S then,
because of (CombAdjIP), in the corresponding strings either an e
switches to the left or an o switches to the right. That means, the lex-
icographic order w.r.t. o < ∗ < e is a linear extension of the stacking
relation “≺”, and thus the stacking relation does not produce cycles.

6.1.6 Cyclic polytopes have many triangulations

Cyclic polytopes are known to maximize the number of faces a polytope
of given dimension and number of vertices can have. Not surprisingly,
they also have many triangulations. The lower bound on the number of
triangulations we show here follows the ideas from a paper of Kalai [181]
where he uses the number of triangulations of a cyclic polytope as a lower
bound for the number of combinatorial simplicial balls. From that bound he
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derives the same for spheres. Put differently, the number of triangulations
of C(n,d) is not significantly different from the total number of combina-
torially different triangulations that exist, when we consider arbitrary point
sets with n elements and dimension d. More precise information on this
will be given in Sections 7.2.2 and 8.4.

The main result is:

Theorem 6.1.22 (Kalai [181]). If d is considered fixed, the cyclic polytope
C(n,d) has at least Ω(2n�d/2�

) triangulations.

Remark 6.1.23. The number of triangulations (respectively, regular triangu-
lations) of a given point set cannot be larger than the number of simplicial
spheres (respectively polytopal simplicial spheres) with one more vertex
and the same dimension, modulo an n! factor that accounts for possible
combinatorially equal but geometrically different triangulations in a point
configuration.

In arbitrary, but fixed, dimension d ≥ 3, Dey and Shah [106] (see the
proof in Theorem 8.4.2) showed that the number of combinatorial spheres

is in 2Ω(ncd/2�) for odd dimension (and a logn extra factor appears in the
exponent of the proven bound for even dimension). Theorem 6.1.22 show
that those bounds are not far from optimal.

In contrast, the number of polytopal spheres (that is, the number of regu-
lar triangulations) is in 2Ω(n logn) by a classical result of Goodman and Pol-
lack [143, 142]. In Theorem 7.2.10, we show point configurations which
achieve this number of regular triangulations for every d ≥ 4.

To simplify notation, let k = �d/2�. The key to the proof is, as usual with
triangulations of cyclic polytopes, to consider triangulations of C(n,d) as
sections in C(n,d +1). We are only going to look at the sections that appear
as a subcomplex in the minimum triangulation T0 := 0̂ of C(n,d + 1). Re-
member that this triangulation equals the set of lower facets of C(n,d + 2),
which we can write as follows:

1. If d = 2k is even, then

T0 :=
{{a0,a0 + 1,a1,a1 + 1, . . . ,ak,ak + 1} :
1 ≤ a0 < a0 + 1 < a1 < a1 + 1 < · · · < ak < ak + 1 ≤ n

}
.

(6.12)

2. If d = 2k + 1 is odd, then

T0 :=
{{1,a0,a0 + 1,a1,a1 + 1, . . . ,ak,ak + 1} :
2 ≤ a0 < a0 + 1 < a1 < a1 + 1 < · · · < ak < ak + 1 ≤ n

}
.

(6.13)

We will consider the simplices of T0 partially ordered by the following
relation. As usual, we assume that the labels zi (respectively yi) of our
elements are listed in increasing order:

{z1,z2, . . . ,zd+2} ≺ {y1,y2, . . . ,yd+2}⇔ zi ≤ yi ∀i.
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Lemma 6.1.24. The order ≺ in T0 is the transitive closure of the relation
B1 ≺ B2 if B1 and B2 share an upper facet of B1 and a lower facet of B2.

Proof. Let us first show that, if B1 and B2 share an upper facet of B1 and a
lower facet of B2 then B1 ≺ B2.

If B1 and B2 share a facet, then B1 ∪B2 = {z1,z2, . . . ,zd+3}. Since B1

and B2 are both lower facets of the cyclic polytope C(d + 3,d + 2) defined
by these indices, we have that the elements zi ∈ B1 \B2 and z j ∈ B2 \B1 are
both even gaps in B1 ∪B2. Now, the fact that the common facet B1 ∩B2 is
upper in B1 and lower in B2 implies that zi is an odd gap in B1 and z j is an
even gap in B2, which implies j > i. Thus, B1 ≺ B2 as desired.

To finish the proof, let B1 = {z1,z2, . . . ,zd+2} and B2 = {y1,y2, . . . ,yd+2}
in T0 be such that B1 ≺ B2. Let i be the greatest index such that zi < yi. For
B1 and B2 to be both in T0 we then need zi−1 = zi − 1 (otherwise zi − 1 is
an odd gap in B1, because zi + 1 is an even gap in it) and yi−1 = yi − 1 (if
yi −1 was not in B2, then it would be an odd gap, because yi is an even gap
in B1). This means that we can get B1 “closer” to B2 by removing from it
the pair {zi − 1,zi} and inserting the pair {zi,zi + 1}, which changes B1 to
a B1

′ in T0 that shares a lower facet with B1, as in the first part of the proof.
Repeating this process, we eventually move from B1 to B2.

Remark 6.1.25. Let A be an arbitrary configuration and let T0 be an arbi-
trary triangulation. Can we generalize the above construction and define a
partial order on the set of full-dimensional simplices of T0 via the covering
property “B1 ≺ B2 if B1 and B2 share an upper facet of B1 and a lower facet
of B2”, with respect to a certain projection direction? The answer is, in
general, no: the transitive closure of that relation may produce cycles.

A sufficient condition for the relation to be acyclic is that the triangu-
lation T0 be regular. (This is related to the fact that polytopal simplicial
complexes are shellable.) But it was proved in [267, Corollary 2.16] that,
for the canonical projections of cyclic polytopes, the relation is acyclic,
even if the triangulation is not assumed to be regular.

Corollary 6.1.26. The triangulations of C(n,d) that appear as sections in
T0 are in bijection to the lower ideals of the order ≺ in T0.

Let us look a bit at this poset. As a first remark, it follows right away
from formulas 6.12 and 6.13 that the poset is the same in the even and odd
cases. Moreover,

Lemma 6.1.27. (T0,≺) is isomorphic, as a poset, as the following subset
of N

k+1 with the coordinate-wise partial order:

S := {(p0, . . . , pk) : 0 ≤ p0 ≤ p1 ≤ ·· · ≤ pk ≤ n−2k−1} .

Proof. Assume, without loss of generality that k is even. Then the follow-
ing transformations give poset isomorphisms:
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T0 → S

{a0,a0 + 1,a1,a1 + 1, . . . ,ak,ak + 1} �→ (a0 −1,a1 −3, . . . ,ak −2k−1},

and

S → T0

(p0, . . . , pk) �→ (p0 + 1, p0 + 2, . . . , pk + 2k + 1, pk + 2k + 2).

So, we only need to find a lower bound on the number of poset ideals
in the number set S. One easy way to do this is to find a big subset of
incomparable elements. If R is a set of N incomparable elements in S then
S has at least 2N different ideals, one for each subset of R: the ideal I(R)
associated to each subset R ⊂ S is defined by the set R together with all the
elements that are below some element of R. These ideals are all different
because I(R)∩ S = R for each of them. Hence, the following finishes the
proof of Theorem 6.1.22:

Theorem 6.1.28. For fixed k, S has at least Ω(nk) incomparable elements.

Proof. Consider the subset

R :=
{

(p0, . . . , pk) ∈ S : ∑ pi = n−2k−1
}⊂ S.

The condition that the sum of coordinates is constant in all vectors of R
guarantees that its elements are incomparable. To develop a lower bound on
the size of R, think of each vector in it as the exponent vector of a monomial
of degree n−2k−1 in k+1 variables. The total number of such monomials
is well known to be

((n−2k−1)+k
k

)
=
(n−k−1

k

)
.

Not every monomial gives an element in R; only those in which the ex-
ponent vector satisfies p0 ≤ p1 ≤ ·· · ≤ pk. But from every such monomial,
we can get one in R by permuting its entries. This implies that R has at least
as many elements as the total number of monomials divided by the number
of permutations of k + 1 coordinates. That is to say:

|R| ≥ 1
(k + 1)!

(
n− k−1

k

)
≥ n−2kk

k!(k + 1)!
∈ Ω(nk).

Remark 6.1.29. The constant inside the Ω(nk) in our proof is basically 1
k!k! .

One of the k! can be removed with some work: It can be shown that if
instead of putting ∑ pi = n− 2k − 1 in the definition of R we put ∑ pi =
(n − 2k − 1)(k + 1)/2 (that is, half of the maximum it can be) then the
bound gets multiplied by (essentially) the normalized volume of the middle
hypersimplex D(k + 1,(k + 1)/2). This volume is (essentially)k!.
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6.2 Products of two simplices

The product of two simplices is a particularly important point configuration.
The study of its triangulations has connections to algebraic geometry (Segre
varieties, tropical polytopes, flag varieties), optimization and game theory
(transportation problems and n-person games), etc. See [282, 27, 104, 312,
15, 16, 97, 292]. Also, the product of two simplices is the natural building
block for constructing triangulations of products of two polytopes. This is
done, for example, in [154, 246] for triangulations of cubes, and in [278] to
construct configurations with disconnected graphs of flips (see Chapter 7).
Note also that the ubiquitous examples of Schönhardt’s non-triangulable
polyhedron (Example 3.6.1) and the planar mother of all examples (Exam-
ple 2.2.5) are derived from the product of a triangle and a segment. We
start by looking at the simplest case, the product of a simplex and a seg-
ment. Then we will look at the general case.

6.2.1 The prism over a simplex

In this section we are concerned with triangulations of prisms over a sim-
plex. In dimension three, this is the ordinary triangular prism. In dimension
two, it is a square.

Although we do not really use an explicit coordinatization, favoring a
more combinatorial approach, the natural coordinatization to highlight the
symmetry of this configuration (at the expense of using one more coordi-
nate than needed) is the following one.

Definition 6.2.1. We call n-th standard simplex the configuration whose
elements are the vertices of the standard simplex of dimension n− 1; that
is, the following point configuration:

Dn :=

⎛

⎜
⎜
⎝

1 2 . . . n

1 0 . . . 0
0 1 . . . 0
...

...
. . .

...
0 0 . . . 1

⎞

⎟
⎟
⎠.

In Definition 4.2.9 the prism over a point configuration was defined. In
our concrete case, the prism over Dn is an n-dimensional point configura-
tion, which we represent by the following labeled

(
(n + 2)×2n

)
-matrix:

prism(Dn) = Dn ×D2 =

⎛

⎜
⎜
⎜⎜
⎜
⎜
⎝

a1 a2 . . . an b1 b2 . . . bn

1 0 . . . 0 1 0 . . . 0
0 1 . . . 0 0 1 . . . 0
...

...
. . .

...
...

...
. . .

...
0 0 . . . 1 0 0 . . . 1
1 1 . . . 1 0 0 . . . 0
0 0 . . . 0 1 1 . . . 1

⎞

⎟
⎟
⎟⎟
⎟
⎟
⎠

.

This polytope has 2n vertices, dimension n and it has n + 2 facets: the
two embedded copies of Dn, which we call the top base (labeled by the a’s)
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and bottom base (labeled by the b’s), and n products of the form Dn−1×D2,
which we call vertical facets.

The investigation of triangulations of these point configurations will be
extended in Section 6.2, where we study products of two arbitrary simplices.
This point configuration is actually also an instance of a Cayley embedding
(as are all products of simplices), studied in Section 9.2. Triangulations of
prisms over simplices have also been studied in [140, Section 7.3.C].

Figure 6.12 shows the familiar triangular prism, which is D3 ×D2.

b 2

b 3

a 3

a 2

a 1

b 1

Figure 6.12: The triangular prism

prism(D3) = D3 ×D2 .

Lemma 6.2.2. A set of n + 1 points of prism(Dn) is an affine basis if and
only if it contains at least one from each pair {ai,bi}. Equivalently, if it
contains only one such pair.

Proof. The “only if” comes from the fact that every two pairs ai, bi, a j and
b j form a quadrilateral face of prism(Dn). The “if” direction is easy by
induction on n.

This statement tells us a lot about the structure of every triangulation of
prism(Dn). Indeed, every basis B that we can use as a maximal simplex has
n “vertical” facets (contained in the vertical facets of prism(Dn)), which
are not incident to any other maximal simplex of the triangulation. We can
call the other two facets of B, opposite to the points ai and bi in the state-
ment of Lemma 6.2.2, the top and bottom facets of B. As a consequence,
every triangulation of prism(Dn) is a linearly ordered “sequence of bases”.
Starting with a basis containing the top base of prism(Dn) and ending with
one containing the bottom base of prism(Dn), where the bottom facet of
each simplex coincides with the top of the next one. Moreover, at each step
in the sequence the new affine basis contains one more element from the
bottom base, so that the triangulation in total consists of n such bases.

As an example, consider the following triangulation of the triangular
prism, depicted in Figure 6.13:

{a1,b1,b2,b3},{a1,a2,b2,b3},{a1,a2,a3,b3},
a 2

b 2

a 3

b 3

b 1

a 1

Figure 6.13: A triangulation of prism(D3).

This gives the following bijection between triangulations of prism(Dn)
and reorderings (that is, permutations) of the set {1, . . . ,n}:

Proposition 6.2.3. (i) Let σ = (i1, . . . , in) be a permutation of the num-
bers 1, . . . ,n. Then, the following n simplices form a triangulation of
prism(Dn):

Tσ =
{{ai1 , . . . ,aik ,bik , . . . ,bin} : k = 1, . . . ,n}} .

(ii) All the triangulations of prism(Dn) have this form. In particular, they
are all equivalent to one another by affine symmetries.

(iii) Two triangulations of prism(Dn) differ by a flip if and only if the cor-
responding permutations differ by the exchange (i.e., a transposition)
of a pair of consecutive elements.

In particular, prism(Dn) has exactly n! triangulations.
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2

(1,2,3)

2

(2,1,3)

2

(2,3,1)

2

(3,2,1) 2

(3,1,2)2

1 3

1 3

1 3 1 3

1 3

1 3

(1,3,2)

Figure 6.14: The six triangulations of prism(D4).

The secondary polytope is a hexagon.

Proof. We start with Part (ii) of the statement. Let T be a triangulation of
prism(Dn). Let B1 ∈ T be the only maximal simplex incident to the top
base, and let ai1 ∈ B1 be the vertex opposite to the top base in B1.

The only facet of B1 which is interior to the polytope is the bottom one.
It must, by (MaxIFP), be the top facet of a second simplex B2, obtained by
deleting b1 from B1 and inserting a second bottom vertex ai2 .

Again, the bottom face of B2 must be contained in another simplex B3

containing a third bottom vertex ai3 , and so on and so forth. The vertex set
of the k-th simplex Bk in this process will be {ai1 , . . . ,aik ,bik , . . . ,bin}. This
proves Part (ii). Part (i) is proved with essentially the same arguments.

We now prove Part (iii). Any pair of adjacent simplices in a triangula-
tion T have the form

Bk = {ai1 , . . . ,aik ,bik , . . . ,bin}
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and
Bk+1 = {ai1 , . . . ,aik+1 ,bik+1 , . . . ,bin}.

The positive triangulation of the circuit involved is

{aik ,bik ,bik+1},{aik ,aik+1 ,bik+1}.
No other simplex in T contains any of these two triangles, which implies
that a flip on this circuit exists. Hence, T has n flips, as claimed. Since the
circuit affects only the k-th and (k + 1)-th simplices, it can affect only the
k-th and (k+1)-th elements in the permutation corresponding to T . Hence,
it produces a transposition of those two elements.

Remark 6.2.4. Since all the triangulations of prism(Dn) are affinely equiva-
lent, they all have to be “pushing” and “pulling” triangulations, at the same
time. The procedure in the previous proof actually associates to the per-
mutation (i1, . . . , in) the triangulation obtained by starting with the simplex
{bi1 , . . . ,bin ,ai1} and then “placing” the points {ai2 , . . . ,ain} in this order
(i.e., the one obtained pushing these n−1 points in the reversed order). But
it is also the triangulation obtained pushing {bi1 , . . . ,ain−1} in this order, or
pulling {ai1 , . . . ,ain−1}, or pulling {bin , . . . ,ai2}, etc.

We now wonder what the secondary polytope of prism(Dn) looks like.
Of course, we know it will have n! vertices and dimension n−1. For n = 3
it is a hexagon, as Figure 6.14 shows. For the sake of simplicity, in this fig-
ure we have labeled the vertical edges of the prisms (as 1, 2, and 3) instead
of the vertices. Above each triangulation, the figure shows the permutation
corresponding to it. An easy way to get the triangulation from the permuta-
tion (or vice versa) is observing that the diagonal in the rectangle delimited
by the vertical edges i and j will go from the bottom end of i to the top end
of j if and only if i comes before j in the permutation.

The following observation will allow us to explicitly give coordinates for
the vertices of the secondary polytope of prism(Dn):

Lemma 6.2.5. All the bases of prism(Dn) span simplices with the same
volume.

Polytopes with this property (all the bases have the same volume) are
called unimodular (see Definition 6.2.10). They play a very fundamental
role within lattice polytopes (i.e., polytopes with integer vertices), which
are studied in Section 9.3, and in the relations to algebraic geometry (Sec-
tions 1.3 and 9.4).

Proof. We will use induction on n. In the case n = 1, our configuration is
the two end-points of a segment, and the statement is true.

Let F be a vertical facet of prism(Dn), which is affinely isomorphic to
prism(Dn−1). By inductive hypothesis, all the bases of F have the same
(n−1)-dimensional volume. Moreover, the two elements ai and bi opposite
to F have the same distance to the hyperplane containing F . Hence, any two
bases having a facet in the same vertical facet of prism(Dn) have the same
volume.
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But it turns out that every two bases have this property, because n > 1
and every full-dimensional simplex has vertical facets in all but one of the
n vertical facets of prism(Dn).

The permutahedron appearing in the following theorem is a classical
polytope, described, for example, in the very first pages of [339, Chapter 0]
(see also [27]). Figure 6.15 shows examples of dimension 1, 2 and 3. Ob-
serve that the faces of a permutahedron are products of lower dimensional
permutahedra. For example, the central hexagon in the 3-dimensional per-
mutahedron of Figure 6.15 is the product of a 2-dimensional permutahedron
on the label set {1,2,3} and a 0-dimensional permutahedron on the label
set {4}.

12

21

123

321
231

132

312
213

2314

3124

1324

3214

2134

2431

2341
3241

3421

1342

1432
1423

2143

1243

1234

3412

3142

2413

Figure 6.15: The permutahedra of dimensions 1,

2 and 3.

Theorem 6.2.6. The secondary polytope of prism(Dn) is affinely isomor-
phic to the (n−1)-dimensional permutahedron, i.e., the convex hull of the
n! points (i1, . . . , in) whose coordinates are a permutation of {1,2, . . . ,n}.

Proof. Let T be one of the triangulations of prism(Dn), corresponding to a
permutation σ = (i1, . . . , in) of {1, . . . ,n}. Let φprism(Dn)(T ) be the GKZ-
vector of T , i.e., the vertex of the secondary polytope corresponding to T .
Let φprism(Dn)(T )p denote the coordinate of φprism(Dn)(T ) corresponding
to a certain vertex labeled by p of prism(Dn).

Proposition 6.2.3 implies that

φprism(Dn)(T )ai = n + 1−φprism(Dn)(T )bi , ∀i = 1, . . . ,n.

Since this is valid for all the triangulations, the projection of the secondary
polytope to the n coordinates corresponding to the elements b1, . . . ,bn does
not decrease the dimension of the polytope, hence it gives an affinely equiv-
alent polytope.

Now, from Proposition 6.2.3 we also conclude that the vertex bik lies
exactly in k simplices of T . Hence, the restriction of φprism(Dn)(T ) to the
coordinates b1, . . . ,bn is the permutation of {1, . . . ,n} inverse to σ .

We finish this section with a reinterpretation of Proposition 6.2.3 which
will be extremely useful in Chapter 7. It is based in the observation that
the permutations of the n symbols {1, . . . ,n} can be represented as acyclic
orientations of the complete graph Kn. Indeed, any permutation specifies an
order on the vertices of Kn and hence a direction for its edges. Conversely,
any orientation of the edges without cycles corresponds (uniquely, because
the graph is complete) to an ordering.

In this sense, Figure 6.16 can be thought of as a more compact version
of Figure 6.14. To visualize the triangulation of the prism corresponding
to one of the six triangles of Figure 6.16, the reader just needs to imagine
a prism sitting on the triangle, and think of the arrows as diagonals on the
square faces of the prism, always pointing upwards. Flips appear in the
figure as edges whose reversal does not produce a cycle, of which each
triangulation has two.

3

(1,2,3)

3

(1,3,2)

3

(2,3,1)

3

(3,2,1)

3

(2,1,3)

3

1 2 1 2

1 2 1 2

1 2 1 2

(3,1,2)

Figure 6.16: The six acyclic orientations of the

complete graph K3 represent the six

triangulations of the triangular prism prism(D3).

Compare with Figure 6.14.

Summing up:
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Corollary 6.2.7. Triangulations of prism(Dn) are in bijection with acyclic
orientations of the complete graph Kn. Flips in a triangulation correspond
to the reversal of a single edge.

6.2.2 The product of simplices

We come now to the general case of a product of two arbitrary simplices.
This is the polytope Dn ×Dm. It has nm vertices and dimension n + m−2.

The following list summarizes the main results that we are going to en-
counter. The list may also give the reader a clue of how close or how far
this case is from the one we have just left:

D4

D6

1
1 2 3 4 65

4
3
2

Figure 6.17: A grid representing D6 ×D4.

1
a
b b

a a
b

2 3 1 2 3 1 2 3

Figure 6.18: The same triangulation as in

Figure 6.13, shown in a grid representation of

D3 ×D2.

4

D6 D4

6

5

4

3

2

1

1

2

3

Figure 6.19: The bipartite graph K6,4

representing the vertex set of D6 ×D4.

a

b

1

2

3

a

b

1

2

3

a

b

1

2

3

Figure 6.20: The same triangulation as in

Figures 6.13 and 6.18, in a bipartite graph

representation of D3 ×D2.

• Dn ×Dm is still a unimodular polytope. In particular, all its triangu-
lations have the same number of simplices, namely

(n+m−2
n−1

)
.

• In contrast to Dn×D2, for any values n,m > 2, the polytope Dn ×Dm

has more than one symmetry class of triangulations.

• There is a particular symmetry class of triangulations of Dn ×Dm

whose representatives are associated with pairs of permutations of
the elements of Dn and of Dm. This class contains n!m!

2 triangula-
tions, because reversing both permutations leaves the triangulation
unchanged.

• The only values of n,m > 2 for which all the triangulations of Dn ×
Dm are regular are (3,3), (3,4), (3,5), (4,3) and (5,3).

If p1, . . . ,pn and q1, . . . ,qm are the vertices of Dm and Dn respectively,
then Dn ×Dm has the nm vertices (pi,q j), i = 1, . . . ,n, j = 1, . . . ,m. There
are two nice ways of graphically representing this configuration:

The grid representation. The elements are represented as a grid with n
columns, corresponding to the vertices of Dn and m rows, corresponding to
those of Dm. See Figure 6.17 for the case n = 6, m = 4.

Each vertex of the product appears as the checker box in the intersection
of the corresponding row and column. More generally, faces of the product
correspond to the different minors, or sub-grids, that one can obtain by
deleting some rows and/or columns. In particular, there are m “horizontal”
facets obtained deleting a single row and n “vertical” facets obtained by
deleting a single column.

To represent a subset of Dn ×Dm we will mark with dots the correspond-
ing boxes in the grid. For example, Figure 6.13 represents the three tetrahe-
dra of the triangulation of D3 ×D2 displayed in Figure 6.13.

We will normally label the elements of Dn and Dm as {1, . . . ,n} and
{1, . . . ,m} respectively. But sometimes we will use letters instead of num-
bers for one of the two sets. This is done for example in Figures 6.18
and 6.20, in order to keep the notation closer to the one used for prism(Dn)
in the previous section.

The bipartite graph representation. Now, the elements of Dn×Dm appear
as the edges in the complete bipartite graph Kn,m. The two parts of nodes
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represent Dn and Dm, respectively. Faces of Dn ×Dm are in bijection with
induced subgraphs. In particular, the facets are the n + m subgraphs ob-
tained by deleting a single vertex in Kn,m. Figures 6.19 and 6.20 represent
exactly the same graph as Figures 6.17 and 6.18.

Lemma 6.2.8. In the bipartite graph representation:

(1) A subset of Dn ×Dm is affinely independent if and only if the corre-
sponding subgraph has no cycles (i.e., it is a forest). In particular,
affine bases correspond to spanning trees.

(2) A subset of Dn×Dm is affinely spanning if and only if the correspond-
ing subgraph is connected and spanning.

(3) A subset of Dn × Dm is a circuit if and only if the corresponding
subgraph is a cycle. The positive and negative elements of the circuit
alternate along the cycle. In other words, two edges of the cycle have
the same sign as elements in the circuit if and only if they are an even
number of steps away from each other.

Proof. Let G be a subgraph of Kn,m, and let C be the corresponding subset
of elements of Dn ×Dm.

That a subgraph without cycles corresponds to an independent set of ver-
tices is easy to establish by induction on the size (number of edges) of G:
a graph without cycles must have some node of degree one. The induced
subgraph of Kn,m obtained by deleting this node corresponds to a facet of
Dn×Dm which contains all but one of the points of C. By inductive hypoth-
esis, C intersected with this facet is an independent set, which implies that
C itself is independent. This proves one direction of Part (1).

5

6

1

2

3

4

1

2

3

4 5

6

1

2

3

4

1

2

3

4

5

6

1

2

3

4

1

2

3

4

Figure 6.21: Two spanning trees in K6,4,

representing two bases ( full-dimensional

simplices) in D6 ×D4 (above). The simplices

differ only in one vertex and, hence, their union

contains a unique circuit, with positive and

negative sides (6,2),(5,4),(3,1) and

(5,2),(3,4),(6,1) (below). Since the edges

missing from the circuit in one and the other are

at distance three (odd) in the circuit, the two

simplices lie in opposite sides of their common

face.

The converse can be rephrased as: Any cycle in Kn,m corresponds to
an affinely dependent set. This is true because if we take the vertices of
Dn × Dm corresponding to the cycle and give alternately coefficients +1
and -1 we get an affine dependence: for each node pi involved in the cycle
we will have a summand +(pi,∗) and another −(pi,∗), and for each q j we
will have a +(∗,q j) and a −(∗,q j), so that everything cancels out. This
finishes the proof of part (1).

Parts (2) and (3) are easy consequences of Part (1). For Part (2), observe
that a subset is affinely spanning if and only if it contains an affine basis (i.e.,
a full-dimensional simplex), and that a subgraph is connected and spanning
if and only if it contains a spanning tree.

For Part (3), remember that circuits are the minimal dependent sets. That
is, a circuit corresponds to a graph containing a cycle in which the removal
of any edge gives a graph without cycles. This is only possible for a graph
which is itself a cycle.

Lemma 6.2.9. A subset of the grid corresponds to a spanning subset of
Dn ×Dm if and only if it meets all rows and columns of the grid.

In particular, bases are the subsets of cardinality n+m−1 meeting every
row and column.
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Figure 6.22: The same simplices and circuit of

Figure 6.21, now in a grid representation. In the

bottom grid, big dots represent the vertices

involved in the circuit.
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Proof. By Lemma 6.2.8, a subset is spanning if and only if, in the bipar-
tite graph representation, it gives a connected and spanning subgraph, i.e.,
a subgraph meeting every vertex of the graph. Vertices of the graph corre-
spond to rows and columns of the grid.

One can also try to express the properties of being a circuit or an inde-
pendent set in the grid representation, but it is difficult to find a description
easier to state than the following: A circuit (respectively, an independent
set) in the grid representation is a subset of boxes whose corresponding
graph in the bipartite graph representation is a cycle (respectively, has no
cycles).

We now explain a very important and useful property enjoyed by the
product of two simplices.

Definition 6.2.10. We say that a point or vector configuration is a unimod-
ular configuration if all full-dimensional simplices spanned by it have the
same volume.

For an example of a configuration that is not unimodular consider the
regular 3-dimensional cube, which has at least two simplices of volume
2/6 while the rest have volume 1/6. One example of unimodular config-
uration is the product of two simplices. This property is similar to that of
Lemma 6.2.5 for the prism over a simplex.

Proposition 6.2.11. The product of two simplices is unimodular.

Proof. The product structure of Dn ×Dm has as a consequence that for any
facet of it, all the vertices not contained in that facet are at the same distance
from the hyperplane containing the facet. As in Lemma 6.2.5 this together
with inductive hypothesis implies that any two bases with facets contained
in a common facet of Dn ×Dm have the same volume. Unfortunately, it is
not true that every pair of simplices have this property.

But we will prove the following weaker property, which is enough for our
purposes: If n,m > 2 (the case n = 2 or m = 2 was proved in Lemma 6.2.5)
then for any pair of bases B1 and B2 we can find a third basis B3 which has
a facet contained in the same facet of Dn ×Dm as some facet of B1, and a
facet contained in the same facet of Dn ×Dm as some facet of B2.

Indeed, let us represent B1 and B2 as spanning trees of Kn,m, and consider
a leaf (node of degree one) in each of the spanning trees. Our claim boils
down to saying that there is a third spanning subgraph of Kn,m which has de-
gree one on both nodes. This is trivial: After removing these two nodes we
still have two non-empty parts, and we can consider a spanning subgraph
of their complete bipartite graph. Adding two edges, one incident to each
of the nodes in question, we have the spanning subgraph we are looking
for.

6.2.3 Staircase triangulations

Proposition 6.2.11 implies that all triangulations of Dn ×Dm have the same
number of simplices. To compute this number, we are going to explic-
itly construct one triangulation. The grid representation comes, especially
handy for this.
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Definition 6.2.12. A monotone staircase in the grid of size n×m is a subset
of n + m−1 boxes, beginning with (1,1) and ending with (n,m), such that
each one is immediately above or to the right of the previous one.

It is easy to prove that there are exactly
(n+m−2

n−1

)
monotone staircases in

the grid; for example, by induction on n+m: each monotone staircase either
extends a staircase in the grid of size n× (m−1), ending with (n,m−1) or
one in the grid of size (n− 1)×m, and not both. By inductive hypothesis
the numbers of such staircases are

(n+m−3
n−2

)
and
(n+m−3

n−2

)
, whose sum equals

(n+m−2
n−1

)
.

Figure 6.23: The ten staircases in the grid of size

4×3. They form a triangulation of D4 ×D3.

Adjacent grids in the picture represent adjacent

simplices in the triangulation.

Theorem 6.2.13. All the monotone staircases correspond to full-dimen-
sional simplices in Dn ×Dm. The set of all monotone staircases is a trian-
gulation of the polytope.

In particular, all triangulations of Dn ×Dm have size
(n+m−2

n−1

)
.

Proof. A monotone staircase has exactly n + m− 1 elements, and it goes
through every row and column. Hence, it is indeed a full-dimensional sim-
plex, by Lemma 6.2.9. It is a good exercise for the reader to explicitly check
that staircases correspond to independent sets.

To prove that staircases form a triangulation, we will use one of the
characterizations of triangulations from Corollary 4.5.20, via the Properties
(ICoP) and (GFP). Translated to our language, these properties say:

(ICoP) For any staircase, and for any box of it, the removal of that box
either gives a subset lying in a facet of Dn ×Dm, or there is another
box that can be added in order to obtain another staircase. If the lat-
ter happens, the two staircases represent full-dimensional simplices
in opposite sides of their common facet.

(GFP) There is a row or column of the grid (i.e., a facet of Dn ×Dm) such
that the staircases containing a single element in it form a trian-
gulation of the corresponding facet of Dn ×Dm without repetition
(that is, there are no two staircases in this list that differ only on the
element of that row or column).

Property (GFP) is easy, by induction on n + m. Removing one row or
column from the grid, every staircase can be restricted to a staircase and,
conversely, every staircase of the restricted grid can be extended to one in
the original grid. By inductive hypothesis, the set of all the staircases on
this subgrid form a triangulation of the facet.

For (ICoP), we consider the several cases that removal of an element in a
staircase can produce. Let B be a subset of Dn×Dm that is a staircase in the
grid, and let (i, j) be an element that we remove from it. If (i, j) is the only
element of B in the row or column we remove, then B \ (i, j) is contained
in a facet of Dn ×Dm. If neither of the two cases happens, that is, if there
are two elements (i, j′) and (i′, j) in B with i �= i′ and j �= j′, then assume
without loss of generality that i′ > i. In order for B to be a staircase, it is then
necessary that j′ < j, and that all the elements (i, j), (i + 1, j), . . . , (i′, j)
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are in B, as well as the elements (i, j′), (i, j′ + 1), . . . , (i, j). In particular,
replacing (i, j) by (i+ 1, j−1) in B is still a staircase.

It only remains to be proved that the two staircases represent simplices
lying in opposite sides of their common facets. The way to prove this is to
identify the unique circuit contained in the union of the two simplices, and
check that the two elements in which the simplices differ have the same
sign in this circuit.

The circuit in question is ({(i, j),(i + 1, j − 1)},{(i, j − 1),( j, i + 1)}),
and, indeed, the two elements lying in only one of the two simplices are
(i, j) and (i+ 1, j−1), which have the same sign in the circuit.

Definition 6.2.14. The triangulation obtained in this way is called the stair-
case triangulation of the product of two simplices.

That the staircase triangulation is a triangulation admits a shorter proof,
by induction. We now show that proof, which also shows that this triangu-
lation is lexicographic:

Proposition 6.2.15. The staircase triangulation of Dn ×Dm is the pulling
triangulation with respect to any ordering of the boxes in the grid that ex-
tends the partial order

(i, j) < (i′, j′) ⇔ i < i′ and j < j′.

Proof. By the description in Lemma 4.3.6, the pulling triangulation is char-
acterized as being the unique triangulation that is pulling when restricted
to every facet of the configuration that does not contain the last point in
the ordering. That this holds for the staircase triangulation is obvious. If
we remove the last element (n,m) from each staircase, we obtain either a
staircase in the (n− 1)×m subgrid or a staircase in the n× (m− 1) sub-
grid. These subgrids represent the two facets of Dn ×Dm not containing
that element.

It has to be noted that the staircase triangulation depends on the order
chosen to represent the elements of Dn as columns and the elements of
Dm as rows in the grid. In other words, there is a staircase triangulation
associated to each pair of permutations, one of the numbers (1, . . . ,n) and
one of the numbers (1, . . . ,m).

Proposition 6.2.16. Two pairs of permutations produce the same staircase
triangulation if and only if one is obtained from the other by reversing both
permutations. In particular, Dn ×Dm has exactly n!m!/2 staircase triangu-
lations.

In this statement, when we say reversing a permutation we mean that the
permutation is read backwards. This is not the same as the inverse of the
permutation, considered as a map. (For example, the identity permutation
(1,2, . . . ,n) is its own inverse; but its reversal is (n, . . . ,2,1).)

Proof. Reversing both permutations just rotates staircases 180 degrees, giv-
ing new staircases. Hence the old and the new staircase triangulation are
the same.



304 Some Interesting Configurations

Suppose now that we have two different pairs (σ1,τ1) and (σ2,τ2) of
permutations. The σ ’s are permutations of (1, . . . ,n) and the τ’s are permu-
tations of (1, . . . ,m). We assume that the pairs are different and not obtained
one from the other by reversing both permutations.

Two permutations are the same if and only if they produce the same
relative order in every pair of indices, and they are opposite if they produce
opposite relative orders in every pair of indices. Then our hypothesis is that
there is a pair of indices i, j ∈ {1, . . . ,n} which appear in the same relative
order in σ1 and σ2 and a pair of indices k, l ∈ {1, . . . ,m} which appear in
the opposite relative order in τ1 and τ2, or vice versa. We assume the first,
without loss of generality. We further assume that i comes before j in σ1

and k comes before l in τ1.
In the triangulation corresponding to (σ1,τ1), the triangles given by the

edges {(i,k),( j,k),( j, l)} and {(i,k),(i, l),( j, l)} appear, while the “oppo-
site” pair of triangles of the same 2×2 subgrid appear in the triangulation
of (σ2,τ2).

Remark 6.2.17 (Staircase triangulations of products of more than two sim-
plices). The product of three or more simplices (often called a simplotope)
is slightly less well-behaved than the product of two. To start with, it is not
unimodular anymore as the three dimensional cube (the product of three
segments) shows. See Section 6.3.4. However, staircase triangulations still
exist and have most of the same properties as in the case of two factors. Let
us comment on the case of three factors, the general case being similar.

The nml vertices of the product Dn × Dm ×Dl of three simplices can
be represented as the boxes in the n× m × l three-dimensional grid. A
monotone staircase in this grid is any set of n+m+ l−2 boxes, starting with
the box (1,1,1) and ending with the box (n,m, l), with the property that
each box has one, and only one, coordinate increased by one with respect to
the previous box. Clearly, there are (n+m+ l−3)!/(n−1)!(m−1)!(l−1)!
such staircases in the grid. With much the same ideas as in the case of two
factors, one can prove that:

Theorem 6.2.18. The following statements hold:

1. Monotone staircases form an affine basis in Dn ×Dm ×Dl .

2. The simplices spanned by monotone staircases are all unimodular.

3. The family of all monotone staircases is a triangulation of Dn×Dm×
Dl .

4. In fact, the monotone staircases form the pulling triangulation with
respect to any linear ordering of the boxes that extends the partial
ordering given by coordinate-wise comparison of labels of boxes.

6.2.4 Non-regular triangulations of products of simplices

Observe that in the case n = 2, Proposition 6.2.16 gives m! staircase trian-
gulations. This agrees with the results of the previous section, where we
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Figure 6.24: Representatives for all the

triangulations of D3 ×D3, modulo the symmetries

of the polytope. Next to each representative, the

number of triangulations equivalent to this one is

shown.
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saw that D2 ×Dm has m! triangulations, all affinely equivalent (hence they
all staircase). For n,m > 2 the same is not true. To prove it, we only need
to consider the case n = m = 3. If we find non-staircase triangulations for
these parameters, then we can build triangulations for any other parameters
starting with a non-staircase triangulation of a face isomorphic to D3 ×D3

and then placing the rest of points. The resulting triangulations will be
non-staircase because, as shown in the proof of Lemma 6.2.8, restricting
staircase triangulations to faces gives staircase triangulations.

We can actually give a complete list of triangulations of D3 ×D3. They
are shown in Figure 6.24, in the bipartite graph representation. We only
show a representative of each symmetry class, and there are 5 symmetry
classes. The one on top is the staircase triangulation, and has 18 represen-
tatives, as stated in Proposition 6.2.16.

The symmetry classes do not all have the same number of elements. They
have respectively, 18, 36, 6, 12, and 36, giving a total of 108 triangulations.
The same figure, in a grid representation, appears in [140, page 250]. The
reader can check that the five pictures indeed represent triangulations, but
a direct proof that these are all the triangulations is not easy. We postpone
this until much later in the book, in Section 9.2.4.

But triangulations of D3 ×D3 are all still regular. One has to check this
by explicitly finding heights vectors, which we will not do here. The same
is true for D3 ×D4 and for D3 ×D5, as was first shown by Jesús De Loera
in [95].

In the rest of this section, we are going to prove that both D4 ×D4 and
D3 ×D6 have non-regular triangulations. These results were first shown
in [95] and [312], respectively. Together with the above statements, this
gives:

Theorem 6.2.19. The product of two simplices Dn ×Dm has non-regular
triangulations if and only if (n−2)(m−2)≥ 4.

A non-regular triangulation of D4 ×D4

Let T be the collection of 20 spanning subgraphs of K4,4 displayed, in
Figure 6.25. We are going to show that they are a non-regular triangulation
of D4 ×D4.

It is worth noting that the family is symmetric under the exchange of the
left and right vertices of the graph, and also by even permutations of the
set of indices {1,2,3,4}, when each permutation acts simultaneously over
the two sides of the bipartite graph. These operations correspond to affine
symmetries of D4×D4 which leave our triangulation invariant. (Remember
that a permutation is even if it can be decomposed into an even number
of pair exchanges. In the case of four elements, the even permutations
are the cyclic permutations of three of the elements and the simultaneous
exchanges of two pairs.)
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Figure 6.25: A non-regular triangulation of

D4 ×D4, in its bipartite graph representation.

Actually, there are only two symmetry classes of simplices under the
action of these symmetries, the first two and last three rows in Figure 6.25.

Lemma 6.2.20. T is a triangulation of D4 ×D4.
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Proof. Having symmetries in mind in order to reduce the number of cases
to deal with, it is easy to check property (ICoP), which amounts to the
following: the removal of any edge from any of the trees in T gives either
something on a facet of D4 ×D4 (that happens when one of the end-points
is a leaf of the tree) or something contained in exactly one of the other
19 trees. If the latter happens, it has to also be checked that the two trees
represent simplices lying in opposite sides of their common facet.

We leave it as an exercise to actually do this check, but Figure 6.26
should help in this task. It shows the three neighbor simplices of one rep-
resentative simplex from each symmetry class. The two representatives are
the top two simplices and they are adjacent to one another and to two other
simplices. The reader has to check that in each of the five adjacencies of
the figure, the two edges which lie in only one of the two trees are at even
distance along the unique cycle present in the union of the two trees. For
example, the top two graphs of Figure 6.26 produce the cycle 12,42,44,14,
and the edges which appear in only one of the two graphs are 42 and 14.
Here and in what follows, we write i j as an abbreviation of (i, j) to index
the elements of D4 ×D4.
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Figure 6.26: Some adjacencies between

simplices in the triangulation of Figure 6.25.

Once (ICoP) has been proved, any of the properties listed in Corol-
lary 4.5.20 guarantees that T is a triangulation. In our case, the simplest
one is (TVP): the total volume of the simplices used in T equals the vol-
ume of the convex hull of D4 ×D4. Indeed, this follows from the fact
that D4 ×D4 that T has the same number of simplices 20− (63

)
as the

staircase triangulation of D4 ×D4, since the product of two simplices is
unimodular (all the full-dimensional simplices spanned by it have the same
volume).

Lemma 6.2.21. T has only six flips. Hence, it is not regular.

Proof. Let us check that only adjacency E of Figure 6.26 produces a flip:

• The circuit involved in adjacency A is ({42,14},{12,44}), triangu-
lated into the two triangles {42,12,44} and {14,12,44}. The first
is joined to {11,22,33,32} (second graph in the second row of Fig-
ure 6.25), and the second is joined to {11,22,33,34} instead. Hence,
we do not have a flip.

• The adjacencies B and C are obtained from A by a cyclic permutation
of the indices 2, 3 and 4. Hence, by symmetry, they do not produce
flips.

• The adjacency D is obtained from A by switching left and right in
the graphs, and then swapping indices 1 and 2, and 3 and 4. Hence,
by symmetry, it does not produce a flip.

• The circuit involved in adjacency E is ({43,12},{13,42}). It forms a
square 2-face of D4×D4, which is triangulated into the two triangles
{43,13,42}) and {12,13,42}). None of them is joined to any other
simplex than the two in the adjacency. Hence, there is a flip which
exchanges the diagonal of that square face.
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The symmetries of the triangulation reproduce adjacency E six times (di-
viding the twelve bottom graphs of Figure 6.25 into six pairs of adjacent
ones). Hence T has only six flips, as claimed.

Remark 6.2.22 (D4 ×D4 and the cube-octahedron). Observe that the 20
full-dimensional simplices in this triangulation share the vertices 11, 22,
33, and 44 (the horizontal matching in the tree representation). The link
linkT ({11,22,33,44}) of the tetrahedron spanned by these four points is
a triangulation of the iterated contraction D4 ×D4/11/22/33/44. In prin-
ciple, this triangulation could be regular. But, in our case, we can rely on
Lemma 4.2.24 to conclude that it is not regular: if the link were regular,
there should be a regular triangulation of D4 ×D4 extending it. But this
cannot happen because the link uses all the full dimensional simplices of
T , which is non-regular.

What does D4 ×D4/11/22/33/44 look like? It must be a configuration
of rank 3, since D4 ×D4 has rank equal to seven and {11,22,33,44} is
independent. But since {11,22,33,44} intersects the interior of conv(D4 ×
D4) (it is not contained in any facet), the contracted configuration is totally
cyclic. We leave it to the reader to check that D4×D4/11/22/33/44 equals,
modulo linear equivalence, the configuration of twelve vectors of the form
±ei ± e j, with i �= j in {1,2,3}.

In fact, the link linkT ({11,22,33,44}) coincides with the link at the
origin of the non-regular triangulation of the cube-octahedron studied in
Section 3.47.

In particular, the same explicit proof of non-regularity that we carry out
in Proposition 3.6.18 works here. If we give heights ωi, j, i, j ∈ {1,2,3,4},
to the 16 vertices of D4 × D4, the six triangulated squares that produce
bistellar flips of T produce, exactly, the same unfeasible system of six
equations that we got there (3.4).

A non-regular triangulation of D6 ×D3

We are now going to exhibit a non-regular triangulation of D6 ×D3. We
are going to slightly change our conventions to make the pictures and the
notation more clear. The vertices of D6 are going to be labeled 1, 2, 3, 4,
5 and 6 and those of D3 are going to be labeled a, b and c. Put differently,
our configuration D6 ×D3 is given by the following 8×18 labeled matrix:

⎛

⎜
⎜
⎜
⎜
⎜
⎜⎜
⎜
⎜
⎜
⎜
⎜
⎝

1a 2a 3a 4a 5a 6a 1b 2b 3b 4b 5b 6b 1c 2c 3c 4c 5c 6c

1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0
0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0
0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0
0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0
0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0
0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1

1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1

⎞

⎟
⎟
⎟
⎟
⎟
⎟⎟
⎟
⎟
⎟
⎟
⎟
⎠

Table 6.1: The matrix representing D6 ×D3
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Moreover, when using the bipartite graph representation, we will put
123, abc, and 456 in three columns (in this order). The full bipartite graph
representing D6 ×D3 under these conventions is shown in Figure 6.27.

1
2
3

a
b
c 6

5
4

Figure 6.27: A modified bipartite graph

representation of D6 ×D3.

We will build our triangulation in two steps. First we consider a polyhe-
dral subdivision S of D6 ×D3 into seven cells, and then we will refine the
cells into simplices to give a triangulation. The seven cells are shown as
bipartite graphs in Figure 6.28. Some edges are drawn thicker than others
to help in following later explanations.

Lemma 6.2.23. S is the regular subdivision of D6 ×D3 produced by the
following heights:

ω1a = 1, ω2a = 0, ω3a = 0, ω4a = 0, ω5a = 1, ω6a = 1,
ω1b = 0, ω2b = 1, ω3b = 0, ω4b = 1, ω5b = 0, ω6b = 1,
ω1c = 0, ω2c = 0, ω3c = 1, ω4c = 1, ω5c = 1, ω6c = 0.

(6.14)
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Figure 6.28: A polyhedral subdivision of D6 ×D3

into seven cells.

Proof. Let S be the lifted configuration in R
7 obtained from S with the

heights ω . The following list of seven functionals, applied to the lifted
configuration, vanish each on one of the cells of S , and are positive in the
rest of elements. Since the coefficient of the lifting coordinate xω is positive
in them, these seven cells are indeed lower facets in the lifted configuration.
The functionals are displayed in a triangle-like manner, corresponding to
the distribution of cells in Figure 6.28.

xω + x1 + x3 + x5 − xb,

xω + xc − x6, xω + xa − x4,
0

xω + x2 + x3 + x4 − xa, xω + xb − x5, xω + x1 + x2 + x6 − xc.
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Before showing how to refine S into a triangulation, let us concentrate
in some of its properties.

First observe that any permutation of the three rows 1a4, 2b5 and 3c6
leaves our set of seven cells invariant, and hence provides an affine sym-
metry of S . The triangular disposition of the seven cells in Figure 6.28
has been devised to highlight these symmetries. Each of the three mirror
symmetries of the triangle correspond to exchanging two of the rows 1a4,
2b5 and 3c6 of the figure. The rotations of the triangle correspond to cyclic
permutations of the rows.

A second observation is that if an edge in one of the graphs representing
a cell C of S has the property that the removal of that edge leaves the
graph non-connected or non-spanning, then the corresponding element i
of D6 ×D3 has the property that C \ i is lower dimensional. In order to
refine the cell C to a triangulation, those elements are irrelevant. These
are the elements that appear as thin lines in Figure 6.28. The rest of the
vertices, that is, those which lie in circuits contained in the cell, have been
emphasized with thick lines in Figure 6.28.

As we see from the correspondence between circuits in the configuration
and cycles in the graph (Lemma 6.2.8, part 3), in four of the cells there is a
unique circuit, which implies that these cells have only two triangulations.
Indeed, each of these cells is a corank one configuration, whose triangula-
tions are repeated cones over the two triangulations of their unique circuit
(cf. Section 2.4.1). The three cells in the corners of the figure are slightly
more complicated.

The third, and most important, observation is that no cycle lies in more
than one graph. That is, the intersection of any two cells is independent.
This implies that in order to refine S , we can triangulate each cell indepen-
dently, and the different triangulations will automatically glue correctly to
give a triangulation of D6 ×D3.

Lemma 6.2.24. There are triangulations refining S and containing the
following six (not full-dimensional) cells:

{1c,5b,6a},{2a,6c,4b},{3b,4a,5c},{1b,4c},{2c,5a},{3a,6b}.

Proof. The six cells are the negative parts of six circuits contained in six
different cells of S , as Figure 6.29 shows. Hence, we only need to trian-
gulate each of these six cells in a way that makes that simplex occur, for
example, by the placing procedure.
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Figure 6.29: A choice of simplex in six of the

cells of Figure 6.28.

Lemma 6.2.25. No regular triangulation of D6 ×D3 can contain the six
cells listed in Lemma 6.2.24.

Proof. Let T be such a triangulation. If T were regular, the heights
producing it should satisfy the following six equations, one for each circuit
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of Figure 6.29:

ω6a + ω5b + ω1c < ω5a + ω1b + ω6c,
ω2a + ω4b + ω6c < ω4a + ω6b + ω2c,
ω4a + ω3b + ω5c < ω3a + ω5b + ω4c,

ω1b + ω4c < ω4b + ω1c

ω5a + ω2c < ω2a + ω5c,
ω3a + ω6b < ω6a + ω3b.

The sum of left-hand sides equals the sum of right-hand sides. Hence, the
equations cannot be satisfied simultaneously.

In Section 9.2.4 we will see a way of visualizing triangulations of Dn ×
D3 which will make the construction we have just finished, and its non-
regularity, much more apparent.

Incidentally, before we move on, note that one can take the product of
many simplices, not just two or three. The general term used by the people
in economics and game theory for the product of simplices, with arbitrary
number of factors, is simplotope; see [292].

6.3 Cubes and their subpolytopes

The cube of dimension d is the product of d copies of a segment, that is, the
polytope

Id := {(x1, . . . ,xd) ∈ R
d : 0 ≤ xi ≤ 1 ∀i = 1, . . . ,d}.

Some people call this a hypercube. The cube is a fascinating polyhedron
which is familiar to everyone since childhood (who has not played with
building blocks?), and which appears in many theoretical and practical con-
texts, to the point that a whole book has recently been devoted to its ex-
ploration [342] (see also [341]). It is then surprising that its space of tri-
angulations is not well understood. Heuristically, we can say the reason is
that triangulations do not behave well under products (as we have seen in
the previous sections). In this section we present what we know about the
triangulations of the cube and of its subpolytopes.

Subpolytopes with 0/1 vertices are very important in combinatorial op-
timization and they come in rather different types and sizes (see [340]). In
this section, we do a little tour of what is known about triangulations of 0/1
polytopes. We start with construction of non-regular triangulations of small
size and dimension. Besides their pure beauty, cube triangulations have
been studied for their applications, including calcutions of fixed-points of
continuous maps ([57, 322, 321] and references therein), and also through
connections to the algebraic properties of the hyperdeterminant (see [140]
and [167]), so we collect a few key results about them. In the rest of the
section, we look at slices of cubes, known as hypersimplices. We conclude
with a look at triangulations of the Birkhoff polytope.

6.3.1 Small 0/1 non-regular triangulations

Cubes, and products of simplices, are examples of 0/1 polytopes: polytopes
whose vertices have entries all equal to zero or one. This class of polytopes



312 Some Interesting Configurations

is extremely important in combinatorial optimization where, quite often,
the best (biggest, smallest, nicest) subset of a finite set S needs to be found.
One way to approach this is to consider the family of subsets of S as the set
of 0/1 points in R

S, and rephrase the optimization question as a geometric
problem in its convex hull. This gives raise to a myriad of 0/1 polytopes that
one can associate to, for example, a graph: the convex hull of its spanning
tress, of its Hamiltonian cycles, of its matchings, etc.

In some respects, 0/1 polytopes are nicer than arbitrary polytopes. For
example, there is only a finite number of combinatorially different 0/1 poly-
topes in each dimension, for obvious reasons. As another example, the
graphs of 0/1 polytopes are known to have diameter bounded above by their
number of facets minus their dimension [238]. Whether arbitrary polytopes
have the same property is the famous Hirsch conjecture [339], recently dis-
proved by Santos [286].

We already know that 0/1 polytopes can have non-regular triangulations,
since products of simplices are examples of them. But products of simplices
have non-regular triangulations only starting in dimension six. Here, we are
going to show that 0/1 polytopes of dimension four can have non-regular
triangulations. Those of dimension three cannot, since all triangulations of
the 3-cube are regular, as we will see in Section 6.3.4.

Example 6.3.1 (The one point suspension of the barycenter in a 3-cube).
The 3-cube has only regular triangulations if no interior points are used
as vertices. But if we insert a single interior point, e.g., its barycenter,
then non-regular triangulations arise. To make things precise, consider the
following point configuration:

I3 =

⎛

⎜
⎜
⎝

0 1 2 3 4 5 6 7 8

1 1 1 1 1 1 1 1 1
1/2 0 1 1 0 0 1 1 0
1/2 0 0 1 1 0 0 1 1
1/2 0 0 0 0 1 1 1 1

⎞

⎟
⎟
⎠.

Consider any triangulation of the boundary of the 3-cube that uses four
cyclically chosen diagonals, such as 16, 27, 38 and 45. See Figure 6.30.
Now triangulate I3 extending the triangulation of the boundary to the in-

8

1

3

2

4

5 6

7

Figure 6.30: A cyclic way to triangulate the

boundary of a 3-cube.

terior by coning at the centroid 0. That triangulation cannot be regular.
Indeed, if ω is a height function producing that triangulation, then the four
diagonals we have chosen to use in the square faces 1256, 2367, 3478 and
1458 have the following implications for its values:

ω1 + ω6 < ω5 + ω2,

ω2 + ω7 < ω6 + ω3,

ω3 + ω8 < ω7 + ω4,

ω4 + ω5 < ω8 + ω1.

What does this have to do with 0/1 polytopes? Our configuration has a
point with half-integer coordinates. Well, let us do a one-point suspension
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at that point. Remember that the one point suspension (see Chapter 4, Sec-
tion 4.2.5) consists of embedding our configuration in a hyperplane in one
more dimension and substituting our point 0 by two points 0+ and 0− on
both sides of that hyperplane. The actual coordinates chosen for these new
points are irrelevant, as long as the segment joining them intersects the hy-
perplane containing all the other points precisely at the point where the old
element 0 was. In particular, what follows is a one point suspension of I3:

I3 0
0 =

⎛

⎜⎜
⎜
⎜
⎝

0+ 0− 1 2 3 4 5 6 7 8

1 1 1 1 1 1 1 1 1 1
1 0 0 1 1 0 0 1 1 0
1 0 0 0 1 1 0 0 1 1
0 1 0 0 0 0 1 1 1 1
0 1 1 1 1 1 0 0 0 0

⎞

⎟⎟
⎟
⎟
⎠

.

Indeed, all points except 0+ and 0− lie in the hyperplane where the sum
of the last two coordinates equals one. 0+ and 0− lie on opposite sides of
that hyperplane, and intersect it at Point (1,1/2,1/2,1/2,1/2). We label
this point 0. Deleting the last coordinate in the configuration consisting of
this new point and the points 1 through 8 gives the configuration I3.

Now, by Theorem 4.2.33, I3 0
0 and I3 have isomorphic sets of trian-

gulations and the isomorphism preserves, among other things, regularity.
Hence:

Proposition 6.3.2. There are non-regular triangulations of the 4-dimen-
sional 0/1-configuration I3 0

0 .

This example is not the smallest possible, but the next one is. As said
above, a 0/1 configuration with non-regular triangulations needs to have at
least dimension 4. By the results in Section 5.5.1, it then needs to have
at least eight elements. The following configuration satisfies both require-
ments.

Example 6.3.3 (The smallest 0/1 non-regular triangulation). Consider the
following configuration:

A =

⎛

⎜
⎜
⎜
⎜
⎝

1 2 3 4 5 6 7+ 7−

1 1 1 1 1 1 1 1
0 0 0 1 1 1 0 1
1 0 0 1 0 0 0 1
0 1 0 0 1 0 0 1
0 0 1 0 0 1 0 1

⎞

⎟
⎟
⎟
⎟
⎠

.

The first six elements lie in the hyperplane “sum of last three coordinates
equal to 1”. The last two points lie on opposite sides of that hyperplane,
and the segment through them intersects that hyperplane at the point with
coordinates (1,1/3,1/3,1/3,1/3). Hence, A is a one point suspension of
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the following configuration:

A0 =

⎛

⎜
⎜
⎜
⎜
⎝

1 2 3 4 5 6 7

1 1 1 1 1 1 1
0 0 0 1 1 1 1/3
1 0 0 1 0 0 1/3
0 1 0 0 1 0 1/3
0 0 1 0 0 1 1/3

⎞

⎟
⎟
⎟
⎟
⎠

.

Here, either the first or one of the last three coordinates is superfluous (the
configuration has rank four, and dimension three). The first six points form
a triangular prism, and the last point lies in the interior of it, along its sym-
metry axis. Triangulating the boundary of the prism in the cyclic way and
joining that to the interior point we get a non-regular triangulation of A0.
By Theorem 4.2.33, this implies that the original configuration A has a
non-regular triangulation.

6.3.2 Two simple ways to triangulate any cube

Let us start with a widely canonical triangulation of the cube, which comes
from orderings of variables (and is closely related to the order polytopes of
Theorem 1.1.10). For each permutation σ = (σ1, . . . ,σd) of the numbers
1, . . . ,d, consider the polytope defined by the following chain of inequali-
ties:

Pσ :=
{

(x1, . . . ,xd) : 0 ≤ xσ(1) ≤ xσ(2) ≤ ·· · ≤ xσ(d) ≤ 1
}

.

Pσ is contained in the cube, since each coordinate is bounded between 0
and 1. Moreover, it is a full-dimensional polytope in R

d since (for example)
the point with σi-th coordinate equal to i/(d + 1) is in its interior (none of
the inequalities defining Pσ are tight at this point). Since Pσ is defined by
d + 1 constraints and it has dimension d, it must necessarily be a simplex.
In fact, its vertices are the following d + 1 vertices of the cube: for each
i ∈ {0, . . . ,d}, consider the point whose coordinates σ1, . . . ,σi are 0 with
the rest 1. Indeed, since these d + 1 points are in Pσ and are vertices of the
cube containing it, they must be vertices of Pσ as well.

We leave it to the reader to prove that the d! simplices defined with dif-
ferent choices of σ form a triangulation of the cube (see Exercise 6.15). As
a corollary we have:

Proposition 6.3.4. The cube of dimension d has a triangulation with d!
simplices.

This particular triangulation has the following interpretations:

1. It is the staircase triangulation of the cube, if we consider the cube as
a product of d copies of the 1-simplex D2.

2. As such, it is the pulling triangulation obtained with any order of the
vertices that extends the coordinate-wise poset (the Boolean poset)
formed by the vertices of the cube.
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3. It is an example of the triangulations of order polytopes introduced in
Chapter 1 (see Theorem 1.1.10). The poset in question is the trivial
one, in which none of the d-elements in the poset are comparable to
one another. So any of the d! orderings of them is a linear extension.

4. It is the subdivision of the cube, obtained by cutting it via the
(d

2

)

hyperplanes xi = x j. In this sense, this triangulation is important in
the context of reflection groups and Coxeter groups.

Is this a good triangulation of the cube? In terms of its symmetries and
ease of construction, yes. But if we are looking for a triangulation with as
few simplices as possible then this triangulation is as bad as can be:

Proposition 6.3.5. No triangulation of Id can have more than d! simplices.
Equality arises if all simplices are unimodular.

In this statement we are using the word unimodular in a slightly stronger
sense than before. We do not only mean that all simplices have the same
volume, but also that their volume is 1/d!, that is, the determinant formed
by its vertices is ±1.

Proof. Of course, here it is important that we speak of triangulations of
the point configuration Id , and do not allow extra points in the cube to be
used as vertices. This makes every full-dimensional simplex have integer
vertices, hence its Euclidean volume is a multiple of 1/d!, with equality if
and only if the simplex is unimodular. Since the total Euclidean volume of
the cube is 1, the statement follows.

Figure 6.31: A cornered simplex.

Figure 6.32: The coloring of vertices of I3. H3 is

a regular tetrahedron.

This proposition and the practical applications of small triangulations of
the cube (e.g., see [321, 292]) motivate the problem of finding the smallest
number of simplices needed to triangulate a d-cube. In Section 6.3.3 we
say what is known about that. Here we show one way to construct smaller
triangulations of arbitrary cubes.

Theorem 6.3.6. There are triangulations of the regular d-cube with at most
(d! + 2d−1)/2 full-dimensional simplices.

When d grows, the exponential 2d−1 is much smaller than the factorial d!.
So, the triangulations that we construct in this proof, called the corner-
cut triangulations, have about half the size of the completely unimodular
triangulation of Proposition 6.3.4.

Proof. The triangulations in this proof are called corner-cut because the key
idea is to “cut” as many corners of the cube as possible. Cutting a corner
means picking up any particular vertex of the d-cube and chopping off the
simplex formed by it and its d-neighbors in the graph of the cube. Those
simplices are called cornered simplices. Two or more cornered simplices
can be used in the same triangulation of Id if and only if no two of the
vertices they cut are adjacent in the graph of the cube. Then, what is the
maximal number of vertices that can be cut simultaneously?
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Observe that the graph of the d-cube is 2-colorable. One color consists
of vertices with an even sum of coordinates, the other of the vertices with
odd sum of coordinates. Hence, it is possible to cut simultaneously (that is,
use in the same triangulation) 2d−1 cornered simplices of Id . Our claim is
that any triangulation constructed by cutting those 2d−1 simplices and then
triangulating what is left arbitrarily has (at most) the claimed number of
full-dimensional simplices.

To see this, assume without loss of generality that we cut the vertices
with an even sum of coordinates. Let Hd be the configuration consisting
of vertices with odd sum. The first remark is that the cornered simplices
are unimodular, that is, they have volume 1/d!. Hence, the volume of Hd

is 1− 2d−1/d! = (d!− 2d−1)/d!. We now claim that the volume of any
simplex with vertices in Hd is a multiple not only of 1/d! (which follows
from the fact that the vertices have integer coordinates), but also of 2/d!.
This follows from the fact that the (d −1)× (d−1) matrix B representing
the vertices of such a simplex has the property that the sum of entries in
each column is even (the sum of coordinates is odd in each vertex, but we
have to add 1 to it for the homogenization row). In particular, the following
product is still an integer matrix:

⎛

⎜
⎜
⎜
⎝

1/2 1/2 · · · 1/2
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1

⎞

⎟
⎟
⎟
⎠

·B.

Since the determinant of the first factor is 1/2, and the determinant of the
product is integer, the determinant of the second factor is even.

Hence, any triangulation of Hd has at most

(d!−2d−1)/d!
2/d!

=
d!−2d−1

2

simplices. Adding the 2d−1 cornered simplices to this gives the result.

6.3.3 Triangulating high-dimensional cubes. State of the art

For d = 3 and d = 4, the corner cut triangulations that we have constructed
have respectively 5 and 16 full-dimensional simplices. It turns out that, in
both cases, this is the minimum possible size of a triangulation of the cube.
In the case d = 5, corner cut triangulations are guaranteed to have at most
(120 + 16)/2 = 68 full-dimensional simplices, but some other triangula-
tions have fewer simplices. Indeed, it is easy to check that H5 has simplices
of volume four (instead of two); for example, the one whose vertices are the
standard basis vectors plus the point (1, . . . ,1). Using any simplex like that,
we can get triangulations of H5 with 51, instead of 52, full-dimensional
simplices. That provides triangulations of I5 with 67 simplices, which is
the minimal size of a triangulation of I5.

But starting with I6, the minimum size triangulations are not that easy to
describe. In fact, the actual minimum possible size is only known up to I7,
and is shown in the following table:
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Dimension 1 2 3 4 5 6 7 8

Smallest size 1 2 5 16 67 308 1493 ≤ 11944
Table 6.2: Smallest size and efficiency of

triangulations of Id .

The last two entries were computed by Hughes and Anderson [169], with
a method similar to that of the universal polytope that we will study in
Section 8.5.1, but simplifying the system of equations via the symmetries
of the cube. Still, this calculation was a computational tour-de-force, which
involved an integer program with 1 456 318 variables and ad hoc ways of
decomposing the system into smaller subsystems. Perhaps surprisingly, the
minimum triangulations of I6 are not corner-cut. The minimum size of a
corner-cut triangulation of I6 is 324 [168].

From the table, we see that the minimum size of a triangulation of I7

(1493) is much smaller than what can be guaranteed for corner-cut triangu-
lations of the same cube (2552). How big is this discrepancy, asymptoti-
cally? The answer is: Huge! The following result of Haiman [154] shows
that there is a constant ρ < 1 such that the cubes of sufficiently large dimen-
sion d can be triangulated with less than ρd ·d! full-dimensional simplices.
Finding the best value for this constant ρ is an open question. The best one
that has been proved so far is ρ = 0.8159 [246].

Theorem 6.3.7 (Haiman). If T1 and T2 are triangulations of Id1 and Id2

using N1 and N2 full-dimensional simplices respectively, then there is a
triangulation of Id1+d2 using

(d1+d2
d1

)
N1N2 full-dimensional simplices.

As a consequence, if there is a triangulation of Id with ρdd! simplices for
a certain ρ < 1, then the same is true, with the same ρ for all dimensions
that are a multiple of d.

Proof. Consider the product S of the two triangulations T1 and T2, which
is a polyhedral subdivision of Id1+d2 into N1 ×N2 full-dimensional cells,
each a product Dd1+1 ×Dd2+1 of two simplices of dimensions d1 and d2.
Then refine S to a triangulation arbitrarily (for example, via the regular
refinements of Definition 2.3.17. By Theorem 6.2.13, in the refinement
each cell is triangulated with

(d1+d2
d1

)
simplices.

For the conclusion, consider a dimension kd and apply induction on k. If
you assume that the cube of dimension (k − 1)d can be triangulated with
ρ (k−1)d((k−1)d)! simplices, and apply the first part of the statement, you
obtain triangulations of Ikd with

(
kd
d

)
ρ (k−1)d((k−1)d)!ρdd! = ρkd(kd)!

simplices.

This result suggests that in order to compare the sizes of triangulations
of cubes in different dimensions, the following normalization is natural.
Observe, however, that its definition was proposed by Todd much before
the previous theorem was proved:
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Definition 6.3.8 (Todd [321]). The efficiency of a triangulation T of the

d-cube is the number (|T |/d!)
1
d .

This number is at most 1, and equal to one if and only if T is unimodular.
On the other extreme, Hadamard’s inequality for determinants of matrices
with coefficients in [−1,1] implies that the volume of every d-simplex in-
scribed in the regular d-cube Id = [0,1]d is at most (d + 1)(d+1)/2/2dd!.
Hence, every triangulation has size at least 2dd!/(d + 1)(d+1)/2 and effi-

ciency at least 2/(d + 1)
d+1
2d ≈ 2/

√
d + 1.

Let P be an n-dimensional polytope. Dissections are important variation
of triangulations. A dissection is a finite set D of n-simplices inside P that
satisfies

⋃
T∈D T = P and dim(T1 ∩T2) < n for any T1,T2 ∈ D . Thus dis-

sections are not necessarily simplicial complexes, but when they are, they
become triangulations. Both objects are equally useful to compute volumes,
but they can be quite different too. For example, it is known that any two
dissections of a polytope are connected by finitely many elementary moves,
which are local modifications that are similar to flips (see [221], or the
forthcoming book [249], for details).

Denote by φd and ρd the smallest size and efficiency, respectively, of
all dissections of the cube of dimension d. The number φd is known as
simplexity of the d-cube. Obviously, ρd = (φd/d!)1/d . Haiman’s result and
the lower bound obtained from Hadamard’s inequality have the following
consequences:

Theorem 6.3.9. 1. The sequence (ρi)i∈N converges and

lim
i→∞

ρi ≤ ρd ∀d ∈ N.

2. limi→∞ ρi
√

i ≥ 2.

Proof. Let us fix d ∈ N and k ∈ {1, . . . ,d}. Haiman’s theorem implies that,
for every i ∈ N,

ρk+id ≤ ρk
k/(k+id)ρd

id/(k+id).

Since the right-hand side converges to ρd when i grows, the d subsequences
of indices modulo d, and hence the whole sequence (ρi)i∈N, have an upper
limit bounded by ρd . An upper limit bounded by every term in the sequence
must coincide with the lower limit. This proves part one. Part two follows
from the Hadamard bound.

Both parts of this theorem have been improved with more sophisticated
arguments, but the improvement is (asymptotically) only by a constant.
Much work is left to be done!

• For the upper bound, D. Orden and F. Santos [246] have generalized
the ideas of Haiman to efficient triangulations of a product polytope
P×Q, starting from a triangulation of Q and another of P×Dm+1,
where Dm+1 denotes a simplex of relatively small dimension m. They
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apply this to P a small-dimensional cube and Q a high-dimensional
one iteratively. This allows to obtain asymptotically efficient trian-
gulations of arbitrarily high-dimensional cubes from any (efficient)
triangulation of Il ×Dm+1. Of course, the asymptotic efficiency of
the triangulations obtained depends on how good the triangulation
of Il ×Dm+1 is. Finding the triangulation of Il ×Dm+1 which is op-
timal for this purpose reduces to an integer programming problem,
similar to finding the smallest triangulation of that polytope (actually,
it is the same system of linear equations, with a different objective
function) and it can then be solved using once more the universal
polytope. Using this method, Orden and Santos found that

lim
i→∞

ρi ≤ 3

√
44/3

27
≈ 0.8159.

In other words, they proved that (asymptotically) the d-cube can
be triangulated with 0.8159dd! simplices, instead of the 0.840dd!
achievable before via the value of ρ7.

• For the lower bound, Smith [301] had the idea that using hyperbolic
volumes instead of Euclidean ones could give better bounds. An in-
tuition for why this is reasonable comes from the fact that in the
hyperbolic setting the corner simplices are regular, hence they have
the same volume as the Hadamard simplex. But actually computing
the ratio between the hyperbolic volumes of the regular ideal cube
and the regular ideal simplex is not an easy task. Smith did it, and
improved the inequality in the lower bound to be

lim
i→∞

ρi

√
i ≥

√
6.

More recently, Bliss and Su [57] set up a simple (i.e., smaller than [169])
linear programming problem based on analysis of the number of exterior
faces that a simplex in the cube can have of a specified dimension and
volume, and a characterization of corner simplices in terms of their exterior
faces. The lower bounds obtained are better than Smith’s up to d = 12, but
no asymptotic formula can be obtained from their method.

6.3.4 Cubes of three dimensions

slanted

staircasecorner

core
Figure 6.33: The four types of tetrahedra in the

3-cube.

There is not much to say about triangulations of the 2-cube, or, put differ-
ently, we have already said all there is. The configuration I2 has corank one,
hence it has two triangulations, both regular and differing by a single flip.

To understand triangulations of the 3-cube, let us first look at the possible
tetrahedra that can be made with vertices of it. Modulo the symmetries of
the cube, there are the following four types:

1. The tetrahedron obtained with any 0/1 point, together with its three
neighbors. This is usually called a corner tetrahedron.

2. The tetrahedron whose vertices form a monotone path between oppo-
site vertices of the cube. This is the type of tetrahedron used in the
staircase triangulation of Proposition 6.3.4.
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3. The slanted tetrahedron, obtained with two opposite vertices of the
cube and two neighbors of one of them.

4. The regular, or core, tetrahedron, obtained with all vertices with an
odd sum of coordinates (or the one with an even sum of coordinates).
Its vertices form the configuration H3, obtained by cutting half of the
corners in the cube.

We leave it as an exercise to the reader to check that the list is complete
and irredundant. For the latter, it is enough to count how many faces each
type of tetrahedron has in facets of the cube. One consequence of this
classification is the following classification of triangulations of the 3-cube.
As far as we know, the classification of triangulations of the 3-cube was
first explicitly done by F. Bigdeli in her dissertation [47], although it is also
implicit in the results of J. Böhm [59]. The classification is in terms of the
number of corner tetrahedra used.

Theorem 6.3.10 (Classification of triangulations of the 3-cube).

1. Every triangulation of the 3-cube contains either a regular tetrahe-
dron or a diameter; that is, an edge joining two opposite vertices.

2. There are two triangulations of the first type, symmetric to one an-
other. The triangulations of the second type are completely classified,
modulo symmetries, by their link at the diameter.

3. That link can be one of the five shown in Figure 6.34. There are 4, 24,
24, 12, and 8 triangulations in each class.

Hence, the 3-cube has 74 triangulations, all of them lexicographic (hence
regular).

Proof. Let T be a triangulation of the 3-cube. Let B ∈ T be the carrier of
the barycenter O = (1/2,1/2,1/2) in T . Remember that the carrier is the
unique cell containing that point in its relative interior or, equivalently, the
minimal cell containing that point.

By the classification of the tetrahedra in the 3-cube, the carrier of O is
either the regular tetrahedron or one of the four diameters. This proves part
1.

Now observe that the only type of tetrahedra in the list not containing
O are the corner tetrahedra. That is, once we know the list of tetrahedra
in T that contain O (which is the core tetrahedra alone in the first case,
and a diameter joined to its link in the second case), we can recover the
rest of T by adding the necessary corner tetrahedra. There is no choice
in which corner tetrahedra are to be used: we need to use those, and only
those, cornered at vertices of I3 that are not present in any other tetrahedron.
This proves part two.

To prove part three, we need to first understand the contraction of I3 at the
two end points of a diameter, say the points (0,0,0) and (1,1,1). We leave
it to the reader to check that this is indeed the rank 2 vector configuration
consisting of three pairs of opposite vectors (which particular vectors to use
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Figure 6.34: The five possible links at an interior

edge, in triangulations of the 3-cube.

is irrelevant for this discussion, and is actually dependent on the particular
choices made when constructing a contraction). That the five possibilities
of Figure 6.34 are the only triangulations of this configuration is easy to
check, and that they can all be “lifted” to triangulations of the cube follows
from the fact that they are all regular and Lemma 4.2.24, or by looking at
the pictures of triangulations of the 3-cube in Figure 1.33.

So, only the conclusion (the number of triangulations and the fact that
they are all lexicographic) needs to be proved. For the number, each sym-
metry class in Figure 6.34 produces four times the number of symmetric
ways of triangulating the rank 2 vector configuration, the four coming from
the choice of which diagonal is used.

For the fact that they are all lexicographic, observe first that the same tri-
angulation may, in principle, be obtained by more than one pushing/pulling
procedure. In our case, all the triangulations of the 3-cube except the one
whose link is the first one in Figure 6.34 can be obtained with only pushings
(that is, they are all placing triangulations). The one that is not placing is the
staircase triangulation of Proposition 6.3.4. As said after that proposition,
it can be obtained as a pulling triangulation.

As another way of visualizing the six different types of triangulations
of the 3-cube, we can draw their dual complexes (or tight spans). In the
dual complex, we put a vertex for each tetrahedron, and two vertices are
connected by an edge if the corresponding tetrahedra share a triangle. A 2-
cell of the dual complex corresponds to an interior edge of the triangulation
(which, as we know, is unique and exists only in the triangulations that use
a diameter). The six dual complexes are shown in Figure 6.35.

2 triangs

4 triangs 24 triangs

12 triangs 24 triangs

8 triangs

Figure 6.35: The dual complexes to the six types

of triangulations of the 3-cube.

The secondary polytope of the regular unit 3-cube is still small enough
to be computed entirely. It is 4-dimensional, so that a Schlegel diagram
(projection to a facet) can be visualized in three dimensions. With a convex
hull computation, e.g., PORTA [81], cdd [130], or polymake [135], we
can use the GKZ-vectors and recover the f -vector (74,152,100,22) of the
secondary polytope. The interested reader can find this and other nice inter-
active pictures of Schlegel diagrams of secondary polytopes constructed by
Julian Pfeifle [252]. One finds that the secondary polytope of the 3-cube has
the following irredundant presentation by linear equations and inequalities
(note the variables are indexed by the 8 vertices of the 3-cube, as mandated
by using GKZ coordinates):

Σ-poly(I3) =
{
(x000,x001, . . . ,x111) ∈ R

8 : (6.15)

x000 + x001 + x010 + x011 = x000 + x001 + x100 + x101 = 12,

x000 + x010 + x100 + x110 = x001 + x011 + x101 + x111 = 12,

1 ≤ x000, x001, x010, x011, x100, x101, x110, x111 ≤ 6,

x000 + x001 ≥ 4, x000 + x010 ≥ 4, x000 + x100 ≥ 4,

x001 + x011 ≥ 4, x010 + x011 ≥ 4, x001 + x101 ≥ 4
}
.

The 22 facets of the secondary polytope correspond to proper subdi-
visions of the 3-cube which are as coarse as possible. The eight facet
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inequalities like x000 ≥ 1 correspond to slicing off one vertex. The eight
inequalities like x000 ≤ 6 correspond to subdividing the 3-cube into three
pyramids whose bases are the square facets disjoint from one vertex. The
six inequalities like x000 + x001 ≥ 4 correspond to subdividing the 3-cube
into two triangular prisms.

6.3.5 Cubes of four dimensions

It is certainly not true in higher dimensions that all triangulations of cubes
are lexicographic. In fact, they may not even be regular.

Theorem 6.3.11. The d-cube Id has non-regular triangulations if and only
if d ≥ 4.

Non-regular triangulations of the 4-cube were first found by De Loera [95].
Here we present a very explicit construction using what we saw in Sec-
tion 6.3.1.

Proof. That cubes of dimension three have only regular triangulations was
established in the previous section. Non-regular triangulations of the 4-
cube can be obtained by extending any of the two non-regular triangula-
tions of 0/1 configurations of dimension four constructed in Section 6.3.1.
Indeed, if a subconfiguration of a configuration A has a non-regular trian-
gulation T , then any triangulation of A obtained by starting with T and
then placing the rest of points one by one (cf. Section 4.3.1) is non-regular
as well (Lemma 4.3.5).

Although much more computational effort than was needed for the 4-
cube, the complete classification of regular triangulations of the 4-cube
was done in 2006 by Huggins et al. [167]. Their geometric results, which
currently can be verified in about 20 minutes with the software TOPCOM
[265], can be summarized as follows:

Theorem 6.3.12. The 4-cube has 87959448 regular triangulations, parti-
tioned in 235277 symmetry classes. The secondary polytope of the 4-cube
has 80876 facets, distributed in 334 symmetry classes.

The reader may be surprised that we do not give the results for the set of
all triangulations. The fact is that they are not known. The only method for
enumerating triangulations that is efficient enough to finish for the 4-cube is
based on exploring the graph of triangulations. But this method only gives
the triangulations that can be flipped to the regular ones. This includes
some non-regular ones but, in principle, may not contain all of them. There
are point sets with a disconnected graph of triangulations, and we do not
know if I4 is one of them.

The following table lists how many orbits of regular triangulations of
each possible size are there. The size of an orbit (or symmetry class) must
always be a divisor of 4! ·24 = 384, since this is the order of the symmetry
group of the 4-cube. But not all the divisors appear in the list. For example,
there is no orbit of size 1, which means that no triangulation has the full
symmetry group of the cube.
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orbit size 8 16 24 32 48 64 96 192 384

no. of orbits 3 7 2 13 48 102 516 11 357 223 229

Figure 6.36: One of the most symmetric

triangulations of the 4-cube; its tight span or dual

complex is a permutahedron.

As seen in the table, most of the triangulations have no symmetry at all,
since their orbits have the full size of the symmetry group of the cube. This
may come as a surprise after we classified the triangulations of the 4-cube,
in which no orbit has the size of the whole symmetry group (which is 48).
Especially interesting are the most symmetric ones, which are the three
whose orbit has size eight. Figures 6.36 and 6.37 show the dual complexes
of two of them, which have the symmetries of a 3-cube. These two pictures
are taken from [167], where triangulations of the 4-cube are analyzed with
a method reminiscent of what we did for the 3-cube (classifying according
to the carrier of the barycenter). The data they obtained can be accessed
publicly at bio.math.berkeley.edu/4cube/.

Example 6.3.13 (The staircase triangulation of the 4-cube). One of the
triangulations with orbit size 8 is the staircase triangulation. The descrip-
tion of it as having one full-dimensional simplex corresponding to each
permutation makes it no surprise that its dual complex (by this we mean
its tight span, as introduced in Section 5.3.3) is the permutahedron that we
already encountered in Section 6.2.1. Its GKZ vector is (4,6,6,24,6,4,4,
6,6,4,4,6,24,6,6,4). The orbit has size eight because the triangulation is
characterized by which of the eight diameters of the 4-cube it uses (choos-
ing a particular diameter corresponds to fixing the ordering in each factor
modulo a reversal of all of them, as in Proposition 6.2.16).

Example 6.3.14 (The minimal triangulation of the 4-cube). Another trian-
gulation is the corner-cut triangulation of Theorem 6.3.6. In the case of the
4-cube, the configuration H4 obtained by cutting half of the vertices of I4

turns out to be the set of vertices of a cross-polytope. The d-dimensional
cross-polytope (d-fold one-point suspension of the configuration consist-
ing of d repeated points) has d triangulations, all equivalent, and with 2d

full-dimensional simplices. In particular, the corner-cut triangulation of the
4-cube is unique, modulo symmetries. The size of its orbit is eight since
there are two choices of how to cut half the corners (the even ones or the
odd ones), and for each choice there are four triangulations of the resulting
cross-polytope.

The dual complex of the triangulation of the d-cross-polytope is the face
complex of a d − 1 cube. In the corner-cut triangulation, each of the eight
vertices of that 3-cube is joined to a tentacle representing each of the eight
cornered tetrahedra. This is what Figure 6.37 shows. It is known that the

Figure 6.37: Symmetric triangulation of the

4-cube is the minimal one. Its tight span is a

“cube with spikes”.

corner-cut triangulation of the 4-cube has the minimum possible size and
that it is the unique one with this property (cf. [86]). Its GKZ vector is
(1,12,12,1,12,1,1,20,20,1,1, 12,1,12,12,1).



324 Some Interesting Configurations

# maximal # simplices of # I4-orbits of
simplices volume 1 volume 2 volume 3 triangulations

16 8 8 0 1
17 10 7 0 1
18 12 6 0 6
18 13 4 1 11
19 14 5 0 25
19 15 3 1 48
20 16 4 0 628
20 17 2 1 344
21 18 3 0 5 847
21 19 1 1 1 263
22 20 2 0 24 499
22 21 0 1 1 967
23 22 1 0 48 648
24 24 0 0 151 989

Table 6.3: Classification of regular triangulations of

the 4-cube according to the number and volumes of

maximal simplices.

We finish with some more data about Σ-poly(I4), extracted from [167]. The
reader can observe and extract patterns. For example, Table 6.3 shows the
distributions of volumes of simplices in triangulations of the 4-cube. When
we say that a simplex has volume i we mean i/4! (put differently, we have
normalized our volumes so that unimodular simplices have volume one).

The maximum volume of a simplex contained in the 4-cube is three. But,
as seen in the table, no triangulation uses more than one such simplex. The
reason is simply that all simplices of volume three in I4 contain the centroid
in their interior!

In Table 6.4, we classify the f -vectors of (the dual complexes of) triangu-
lations of I4. The last entry in each f -vector, which is always zero or one,
corresponds to the existence (or not) of a 3-dimensional cell in the dual
complex, that is, to the appearance of an interior edge in the triangulation.
If such an edge appears, it must be a diameter and, hence, unique.

As we have seen in Chapter 5, the facets of the secondary polytope cor-
respond to the coarsest regular polyhedral subdivisions. Remember that a
subdivision S is coarsest if S does not refine other proper subdivisions.
Huggins et al. computed all such subdivisions for the 4-cube, finding that
there are exactly 80876 of them. The distribution of the types of coarsest
regular subdivisions according to orbit size is

orbit size 8 12 16 24 32 48 64 96 192 384

no. of orbits 2 1 4 2 4 14 16 26 132 133

A coarsest subdivision of the 4-cube can have up to 13 maximal cells.
See Table 6.5.
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f -vector {3} {3,2} {3,1} {3,2,1} {2} {2,1} total

(16, 20, 6, 1) 1 1
(17, 22, 7, 1) 1 1
(18, 24, 8, 1) 4 2 6
(18, 23, 6, 0) 11 11
(19, 26, 9, 1) 6 19 25
(19, 25, 7, 0) 48 48
(20, 28, 10, 1) 1 23 209 233
(20, 27, 8, 0) 24 715 739
(21, 30, 11, 1) 5 34 1 372 1 411
(21, 29, 9, 0) 392 5 307 5 699
(22, 32, 12, 1) 112 84 9 342 9 538
(22, 31, 10, 0) 2 156 14 772 16 928
(23, 34, 13, 1) 2116 100 46 432 48 648
(24, 36, 14, 1) 125 27 054 124 810 151 989

total 125 29 288 253 182 186 2 572 20 853 235 277

Table 6.4: Distribution of the 235277 types of

triangulations of I4. Rows correspond to the

f -vectors and columns correspond to the

dimensions of maximal faces of the dual complex.

# cells {3} {3,2} {2} {1} total

2 4 4
3 5 5
4 3 7 10
5 4 3 17 24
6 5 14 12 31
7 13 21 39 73
8 7 31 51 89
9 7 26 24 57

10 2 14 21 37
11 1 1 2
12 1 1
13 1 1

total 44 176 110 4 334

Table 6.5: Distribution of the 334 types of coarsest

regular subdivisions of the 4-cube. Rows

correspond to the number of maximal cells, and

columns correspond to the dimensions of maximal

faces of the dual complex.

6.3.6 Slices of cubes: triangulations of hypersimplices

The k-th hypersimplex of order n (or, of dimension n− 1) is the configura-
tion D(n,k), consisting of the vertices of the n-cube In in the hyperplane
of all points whose sum of coordinates is equal to k. It is understood that
k ∈ {1, . . . ,n}. Clearly, the hypersimplex D(n,k) has

(n
k

)
vertices and the

hypersimplex D(n,1) is just the n− 1 simplex Dn. As an example, the
second hypersimplex of order 6, D(6,2), is:
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⎛

⎜
⎜
⎜
⎜⎜
⎜
⎝

12 13 14 15 16 23 24 25 26 34 35 36 45 46 56

1 1 1 1 1 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 1 1 1 1 0 0 0 0 0 0
0 1 0 0 0 1 0 0 0 1 1 1 0 0 0
0 0 1 0 0 0 1 0 0 1 0 0 1 1 0
0 0 0 1 0 0 0 1 0 0 1 0 1 0 1
0 0 0 0 1 0 0 0 1 0 0 1 0 1 1

⎞

⎟
⎟
⎟
⎟⎟
⎟
⎠

.

Observe that we do not write the customary homogenization row of ones.
The reason is that the hypersimplex is already homogeneous, since the sum
of coordinates is constant.

Hypersimplices appear very frequently in mathematical questions and
have a long history, going back more than a hundred years (see [225] and
the many references therein for a survey of results and various properties
of D(n,k)). For example, they appear in algebraic combinatorics in con-
nection to enumeration and toric varieties [303], [137]. The matrix of the
second hypersimplex D(n,2) is the same as the vertex-edge incidence ma-
trix of the complete graph Kn. Thus, one can investigate the second hy-
persimplex with the purpose of studying random graphs on n nodes, and
more general hypersimplices to do the same for uniform multigraphs; this
problem has been studied in [299]. In turn, the set of all multigraphs on n
nodes with fixed vertex degrees is the set of feasible solutions of an impor-
tant problem of combinatorial optimization, namely, the perfect f-matching
problem. See [219] and [101]. But the list of applications continues, as
hypersimplices are also studied in analysis and number theory, especially
using bounds of their volumes (see [64] and the references therein). Yet an-
other application of hypersimplices is their connection to tropical geometry
and phylogenetics (see [29, 159]).

One curious property of hypersimplices is that D(n,k) is an identical
copy of D(n,n− k) via the map that changes zeros for ones and vice versa.
This is justified by the interpretation of D(n,k) as a slice of the cube. The
slicing hyperplanes are orthogonal to the line segment joining the point
(0,0, . . . ,0) with the point (1,1, . . . ,1). In this way, D(n,k) is at the same
distance from (0,0, . . . ,0) as D(n,n− k) is from (1,1, . . . ,1); thus by the
symmetry of the cube they must be identical isometric slices.

But other relations between hypersimplices arise:

Proposition 6.3.15. The hypersimplex D(n,k), for 1 < k < n− 1, has ex-
actly 2n facets, which are all hypersimplices: n of them are isomorphic to
D(n− 1,k− 1), and the other n to D(n− 1,k). In fact, the complement of
each facet of one type is a facet of the other type.

Proof. By definition, facets of the hypersimplex are defined by setting one
coordinate equal to zero or to one. The former produces a hypersimplex
D(n− 1,k) and the latter produces D(n− 1,k − 1). Every vertex of the
original hypersimplex lies in exactly one of the facets obtained when fixing
a particular coordinate.

Related to this last statement is an alternative way of thinking of D(n,k):
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As the slice of the cube In−1 lying between the consecutive hypersimplices
D(n − 1,k − 1) and D(n − 1,k). For this, consider the matrix defining
D(n,k) and add to a particular row (say, the first one) all the other ones.
The combinatorics of the configuration does not change, but that particular
row becomes constant, which means you can think of it as the homoge-
nization coordinate. Forgetting that coordinate, the columns of the matrix
defining D(n,k) are the union of the columns of D(n−1,k−1) and those of
D(n−1,k). This has the interesting consequence that you can build a cube,
In−1, by gluing the different hypersimplices D(n−1,k), for k = 1, . . . ,n−1.
For example, the 3-cube is the union of a tetrahedron D(4,1), an octahedron
D(4,2), and another tetrahedron D(4,3). See Figure 6.38.

Figure 6.38: A 3-cube as the union of the

hypersimplices D(4,1), D(4,2), and D(4,3).

This has the consequence that the sum of the normalized volumes of the
different hypersimplices must equal the volume of the cube In−1. More
precisely:

Proposition 6.3.16. The normalized volumes of hypersimplices satisfy the
following recurrence relation:

vol(D(n,k)) = k vol(D(n−1,k))+ (n− k)vol(D(n−1,k−1)).

Proof. To compute the volume we arbitrarily choose a vertex of D(n,k)
and decompose D(n,k) as the unions of cones with apex at this vertex and
with base at all the facets not using that vertex. Since our vertex has k
coordinates equal to 1 and n− k of them equal to zero, it lies on n facets of
D(n,k): k of the form D(n− 1,k) and n− k of the form D(n− 1,k). The
height of all cones is 1, hence the formula follows.

The numbers obtained by this recursion are called the Eulerian numbers
and have several different combinatorial interpretations. Most famously the
numbers E(n,k) record the number of permutations of the numbers 1, . . . ,n
having exactly k ascents, so π(i) < π(i + 1) for precisely k indices. (see
[146, 303, 308]). It is instructive to compute the first few of these numbers.
They can be nicely arranged in a fashion similar to Pascal’s triangle, called
Eulerian numbers triangle:

1
1 1

1 4 1
1 11 11 1

1 26 66 26 1
1 57 302 302 57 1

The first and last diagonals are 1 because that is the normalized volume
of the simplex D(n,1). The second diagonal admits the following simple
formula:

vol(D(n,2)) = 2n−1 −n.

For example, the normalized volume of the octahedron D(4,2) is 23−4 = 4.
For the volume of hypersimplices, Vaaler [324] established a sharp lower

bound on the volume of a central slice (passing through the origin) of at
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least one. Later K. Ball [28] proved that if H is a k-dimensional subspace,
1 ≤ k < n, intersects the cube In, then vol(H ∩ In) ≤ (

√
2)(n−k), where vol

is k-dimensional volume. This bound is the best possible and, in partic-
ular, gives a bound for the volume of hypersimplices. Let us study now
triangulations of hypersimplices. First, we look at the pulling triangula-
tions which corroborates that volume considerations and triangulations are
indeed closely related:

Proposition 6.3.17. Every pulling triangulation of D(n,k) is unimodular;
hence it has vol(D(n,k)) maximal simplices.

Proof. This follows from the same arguments as in the previous proof. The
pulling triangulation is obtained by coning the last vertex v (of the given
order) to all the pulling triangulations of the facets that do not contain it.
Since the facets are themselves hypersimplices, their pulling triangulations
are unimodular. Since the vertex v is at distance one from each facet, the
final triangulation is unimodular as well.

Proposition 6.3.18. The hypersimplex D(6,3) has non-regular triangula-
tions.

Proof. For D(6,3), consider the following subconfiguration of it:

A =

⎛

⎜
⎜
⎜⎜
⎜
⎜
⎝

0+ 0− 1 2 3 4 5 6 7 8

0 1 1 1 1 1 0 0 0 0
1 0 0 0 0 0 1 1 1 1
1 0 0 0 1 1 0 0 1 1
0 1 0 1 0 1 0 1 0 1
0 1 1 0 1 0 1 0 1 0
1 0 1 1 0 0 1 1 0 0

⎞

⎟
⎟
⎟⎟
⎟
⎟
⎠

.

We claim that this subconfiguration has non-regular triangulations, from
which non-regular triangulations of D(6,3) can be constructed by placing
the rest of points in an arbitrary order. To prove the claim, we show that A
is nothing but the configuration I3 of Example 6.3.1 in disguise.

First, observe that A has rank (at most) five, that is, dimension four. In-
deed, the sum of the first two coordinates equals 1, and the sum of the
last four equals two. In particular, we can erase the last row and have an
affinely isomorphic configuration. If, after this is done, the second row of
the matrix is added to the first one, our matrix becomes exactly the one in
Example 6.3.1.

4 5

21

3

6

Figure 6.39: The complete graph K6, as a

representation of D(6,2).
In the rest of this section, we want to show that D(6,2) also has non-

regular triangulations. As we have done several times, we start by studying
a certain regular subdivision, which we then show how to define. We are
going to represent the elements of D(6,2) as the edges in the complete
graph K6. We draw the nodes of K6 lying in two parallel triangles to high-
light certain symmetries.

Let ω be the height vector that is zero on the elements 14, 25, and 36,
and one on the other twelve elements of D(6,2).
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Proposition 6.3.19. The regular subdivision S (D(6,2),ω) has the four-
teen maximal cells drawn as subgraphs of K6 in Figure 6.39. Eight of them
are bases and the other six have corank one. Moreover, the intersection of
any two of them is independent.

Proof. This is left for the reader as an exercise (see a hint in Exercise 6.14).

Since no intersection of two cells contains a dependent subset, in order
to refine S (D(6,2),ω) we can independently triangulate each of the six
corank-one cells. Doing so is the same as choosing one of the two parts
of their unique circuits to be simplices. We choose to use the six that are
drawn in solid lines in Figure 6.41.

Proposition 6.3.20. The triangulation of D(6,2) obtained in this way is
not regular.

Proof. Suppose that ω ′ was a height vector producing this triangulation as
a regular triangulation. Then, the appearance of the six triangles we have
selected in the six (3,3) circuits of Figure 6.41 implies the following six
conditions on ω ′:

ω ′
14 + ω ′

23 + ω ′
35 < ω ′

25 + ω ′
13 + ω ′

34,

ω ′
36 + ω ′

15 + ω ′
45 < ω ′

14 + ω ′
35 + ω ′

56,

ω ′
25 + ω ′

34 + ω ′
46 < ω ′

36 + ω ′
24 + ω ′

45,

ω ′
25 + ω ′

13 + ω ′
16 < ω ′

36 + ω ′
12 + ω ′

15,

ω ′
36 + ω ′

12 + ω ′
24 < ω ′

14 + ω ′
23 + ω ′

26,

ω ′
14 + ω ′

26 + ω ′
56 < ω ′

25 + ω ′
16 + ω ′

46.

Since the sum of left-hand sides equals that of right-hand sides, this system
of inequalities is infeasible.

Theorem 6.3.21. The hypersimplex D(n,k) has a non-regular triangula-
tion if and only if k ≥ 2, n− k ≥ 2 and n ≥ 6.

Proof. Every hypersimplex with k ≥ 2 and n−k≥ 4 contains either D(6,2)
or D(6,3) as a face. We have seen that those two hypersimplices have
non-regular triangulations, hence those containing them have non-regular
triangulations too. So, we only need to argue that the hypersimplices not
satisfying those constraints do not have non-regular triangulations.

If k or n− k equals 1, then our hypersimplex is a simplex. Among those
with k ≥ 2 and n− k ≥ 2, the ones we need to discuss are D(4,2), D(5,2)
and D(5,3). The first one is a regular octahedron, whose three triangula-
tions are equivalent, hence regular.

The other two are isomorphic. The polytope D(5,2) has dimension four,
10 vertices and 10 facets (five tetrahedra and five octahedra). It is small
enough that TOPCOM can compute all its triangulations, not just the regular
ones. The result is that they are all regular.
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Figure 6.40: The regular subdivision S (D(6,2),ω).

Figure 6.41: Specifying one side of each circuit,

in S (D(6,2),ω).

As additional information, the secondary polytope of D(5,2) is five di-
mensional and has 102 vertices, 255 edges, 240 two-faces, 105 three-faces,
and 20 facets. Under the natural S5-action on the vertices of D(5,2), there
are only three regular triangulations of it. See [101] and [242] for more on
the second hypersimplex and its subpolytopes.

6.3.7 Birkhoff’s polytope

A very important polytope in many applications is the polytope Bn of all
n× n doubly stochastic matrices; that is, the set of real nonnegative matri-
ces with all row and column sums equal to one. This polytope is some-
times known as the Birkhoff polytope, the Birkhoff-von Neumann polytope
or simply the assignment polytope. We will describe a few results about the
triangulations of Bn.

One interest in computing a triangulation of Bn is to compute its volume
which goes back to the problem of generating a doubly stochastic matrix
uniformly at random. The search for a close formula for the volume (and
thus of the size of a triangulation) of Bn continues. Nevertheless, we still
do not know a close (efficient) formula for the volume or for the size of
a unimodular triangulation for all values of n. As of today the record for
values computed is by Beck and Pixton [38] who computed the exact value
of the volume and the Ehrhart polynomials for up to n = 10 and n = 9
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respectively. The computations in [38] took several years of computer CPU
(running in a parallel machine setup). A combinatorial formula appeared
in [98] (although it is exponentially long and thus hard to evaluate). On
the other hand, Canfield and McKay [71] provided simple fairly-accurate
asymptotic approximation formulas for the volume of Bn as well as for the
number of lattice points of the dilated polytope tBn.

In what follows, we will make use of some well known properties of
the face structure of Bn ( see [52] and [74] for further properties and refer-
ences). A famous result of Birkhoff says that the vertices of Bn are precisely
the n×n permutation matrices. Permutation matrices are in bijection with
matchings on the complete bipartite graph Kn,n, and this helps establish a
graph theoretic interpretation of the faces of Bn. The polytope Bn lies in the
n2-dimensional real space R

n2
= {n×n real matrices}, and we use M(i, j)

to denote the (i, j)-entry of a matrix M in the space. The edges of Bn cor-
respond to the cycles in Kn,n. On the other hand, for each pair (i, j) with
1 ≤ i, j ≤ n, the set of doubly-stochastic matrices with the (i, j) entry equal
to 0 is a facet (a maximal proper face) of Bn, and all facets arise in this way.
It is also easy to see that the dimension of Bn is (n− 1)2 (i.e., the volume
of Bn is the (n−1)2-volume of Bn regarded as a subset of n2-dimensional
Euclidean space).

Example 6.3.22. B2 consists of the line segment joining the matrices
(

1 0
0 1

)
and

(
0 1
1 0

)
,

and hence its volume is two.

In general, it is convenient to identify the faces of Bn with certain n×n
matrices of 0’s and 1’s, as follows: First, we identify a 0-1 matrix with the
set of entries in the matrix that are 1’s. Thus, for two 0-1 matrices M and N
of the same size, we can define their union M∪N as the 0-1 matrix whose
set of 1’s is the union of the sets of 1’s of M and N, e.g.,

⎛

⎝
1 0 0
0 1 0
0 0 1

⎞

⎠ ∪
⎛

⎝
0 1 0
1 0 0
0 0 1

⎞

⎠ =

⎛

⎝
1 1 0
1 1 0
0 0 1

⎞

⎠ .

Similarly we can speak of one 0-1 matrix containing another and so forth.
Now to each face F of Bn, we associate the matrix M which is the union

of the vertices (permutation matrices) in F. The facets of Bn containing F
are precisely those associated with the zero entries of M. Since any face
is the intersection of the facets containing it, any permutation matrix con-
tained in M must be a vertex of F. Thus, the vertices of F are precisely
the permutation matrices contained in M, so we can recover F from M. In
this way we identify the faces of Bn with the set of 0-1 matrices which are
unions of permutation matrices. This characterization is very useful for in-
vestigating the polytope. Note that not every 0-1 matrix corresponds to a
face of Bn. For example (

0 1
1 1

)
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is not a union of permutation matrices, hence it is not a face of B2.
The matrix representations of the faces of Bn is useful for all sort of

calculations and to prove properties, but one can also think of these matrices
as specifying a bipartite graph, i.e., the bipartite graph on 2n nodes in which
i is joined to j when the (i, j) entry of the matrix of F is 1. This is used, for
example, to calculate the dimension of a face of Bn, since the dimension is
equal to e + k− 2n, where e is the number of 1’s in the matrix of F and k
the number of components in the graph corresponding to F.

Example 6.3.23. Using this characterization of faces and their dimension,
Billera and Sarangarajan (see Theorem 2.2 in [51] and more details in [52])
proved that:

Lemma 6.3.24. Every pair of vertices of Bn is contained in a cubical face
of dimension at most �n/2�.

Proof. Think of each vertex of Bn as a perfect matching in the complete bi-
partite graph on 2n vertices. Then the minimal face F containing two given
vertices has as an associated graph the union of two perfect matchings. The
connected components of this graph are either isolated edges or cycles of
even length. In each of the cycles, there are two choices of perfect match-
ing, so that the vertices contained in F are 2p, where p is the number of such
cycles. The face F itself is a Minkowski sum of the segments corresponding
to changing one matching to the other in a single component.

An n× n doubly stochastic matrix is determined by its upper left (n−
1)× (n−1) submatrix. The set of (n−1)× (n−1) matrices obtained this
way is the set An of all nonnegative (n−1)× (n−1) matrices with row and
column sums ≤ 1 such that the sum of all the entries is at least n−2. This
is affinely isomorphic to Bn.

There is a more natural unit for the volume of Bn and its faces or sim-
plices. This is based on the fact that the vertices of Bn are integer matri-
ces. Suppose that F is a d-dimensional face of Bn. Since its vertices have
integer coordinates, the integer points in the affine span of F comprise a
d-dimensional affine lattice L. Given such a lattice, there is a minimum
volume of any d-simplex with vertices in L. Lattice points w0, . . . ,wd are
the vertices of one of these minimum volume simplices if and only if every
point of L is uniquely expressible in the form ∑d

i=0 kiwi, where the ki’s are
integers whose sum is 1. The relative volume of a face F is the volume of
F expressed in units equal to the volume of a minimal simplex in L.

The relative volume of a face is the same, whether regarded as a face of
Bn or as a face of An, since the mapping from Bn to An (by taking the upper
left (n− 1)× (n − 1) minor) preserves integrality of points. To convert
relative volumes to true volumes, we need to know the volume of a minimal
simplex of An, but the affine span of An is all of (n−1)2-dimensional space.
Hence, the volume of a minimal simplex in An is 1

((n−1)2)! , and the volume

of a minimal simplex in Bn is nn−1

((n−1)2)! .
For Bn, we use a standard pulling triangulation of Bn into simplices (recall

Section 4.3.2) The triangulation is constructed recursively (and at the same
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time compute the volume). To get started we use the fact that the relative
volume of any zero-dimensional face of Bn is 1 and it is already triangu-
lated. We produce a list of all faces of each dimension. Then, for each face
F of dimension d we select a vertex v, determine the facets of F opposite
v. Assuming recursively that their triangulations and relative volumes have
already been computed, we now find the new triangulation of F by pulling
from the vertex to the opposite faces. Summing the relative volumes of the
facets gives the relative volume of F. The process continues until the trian-
gulation of Bn is then formed by joining a chosen vertex to each simplex
in the triangulation of each of the facets. Of course, in practice it is naive
to think that one can compute and store all faces of Bn. Since many of the
2n2

possible 0-1 matrices are actually faces of Bn. One can nevertheless ap-
peal to several tricks and symmetry to carry out the computation (see [74]
for practical implementation details) The pulling triangulation of Bn and its
faces have an unusual property, given by R. P. Stanley in [304]:

Proposition 6.3.25. In any lexicographic pulling triangulation of a face F
of Bn, every simplex has minimal volume in the affine lattice determined by
F.

Proof. Let F be a d-dimensional face of Bn, v0 any vertex in F, and G a
facet of F opposite v0. Suppose that a simplex in a pulling triangulation of
G has vertices v1,v2, . . . ,vd . We need to prove that the set of integer points
of the affine space determined by F is the same as the set of points ∑d

i=0 kivi,
where the ki are integers whose sum is 1.

Of course, all the integer combinations are in the affine span. The ques-
tion is whether there are any other points. Any integral point of the affine
span can be uniquely expressed in the form ∑d

i=0 rivi, where the ri’s are real
numbers with sum 1.

Since v0 is not in the face G, there is a facet of Bn containing G but not v0.
Thus, v0 must have at least one entry equal to 1 in the same position where
all vi, i ≥ 1 have zeroes. Thus, in the hypothetical combination above,
r0 must be an integer. If we add r0(v1 − v0) to the combination above,
we obtain another integral point in the affine span of G. It follows, using
induction, that r1 + r0, and r2, . . . ,rd are integers and therefore all the r’s
are integers, as desired.

Corollary 6.3.26. In any pulling triangulation of a face of the Bn, the num-
ber of simplices in the triangulation is equal to the relative volume and
thus the triangulation is made of unimodular simplices. Moreover, given a
face F of Bn and a vertex v of F, the relative volume of F is the sum of the
relative volumes of facets of F opposite v.

It is worth noting that Bn is then officially a member of the family of com-
pressed polytopes that are characterized by having all its pulling triangula-
tions to be unimodular, but this implies that they are “thin” in all facet direc-
tions. We will give details about this in Chapter 9, Definition 9.3.18. The
same procedure works for computing a pulling triangulation of any face.
This was done by Chan, Robbins, and Yuen [75] for the set of matrices for
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which the set of zeroes of the matrix form a Young tableau in a corner of
the matrix. More precisely, suppose that n ≥ 2 and that Fn is the n× n
matrix whose (i, j) entry is 1 when j ≤ i+ 1, and 0 otherwise. Then Fn is
a union of permutation matrices, corresponding to a face of Bn of dimen-
sion
(n

2

)
with 2n−1 vertices, and we have the following result, proved by D.

Zeilberger in [338]

Proposition 6.3.27. The relative volume of Fn is the product

n−2

∏
i=0

1
i+ 1

(
2i
i

)

of the first n−1 Catalan numbers.

To conclude, we investigate the existence of non-regular triangulations
for Bn.

Theorem 6.3.28. For all n ≥ 4, the Birkhoff polytope Bn contains non-
regular triangulations.

Proof. The idea of the proof is that once one finds a subpolytope of B4

that has a non-regular triangulation, this can be extended to a non-regular
triangulation of B4 via placings, in the sense of Section 4.3.1. In addition,
since Bn is isomorphic to a face of Bn+1, the same argument guarantees that
there exists a non-regular triangulation for all Bn, n ≥ 4.

In [190], E. Kim, found a non-regular triangulation of a subpolytope of
B4. We skip this more complicated triangulation, but let us show a simple
argument implying that B6 has, indeed, a non-regular triangulation. Ob-
serve that Bn+m contains as a face the product Bn ×Bm, given by the block
diagonal matrix with an n×n and an m×m block of 1’s. Now, any product
of two polytopes of dimensions three or more has non-regular triangula-
tions, because the product of two tetrahedra does (Section 6.2.4). We con-
clude that every Bn, n ≥ 6, has a face with non-regular triangulations.

To conclude this section, we leave it as an exercise to the reader to see
that B3 has only regular triangulations.

Exercises

Exercise 6.1. Prove Lemma 6.1.10.

Exercise 6.2. Show that any consecutively labeled configuration of n points
on the n− d − 2-dimensional moment curve that is alternatingly colored
black and white represents a Gale diagram of C(n,d). (Hint: use the signs
of the Vandermonde-determinant to draw conclusions about circuits and
cocircuits.)

Exercise 6.3. Find coordinates of a cyclic point configuration so that the
cyclic group action on the points that preserves circuits up to reversing signs
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can be represented by an isometric affine map. In other words, in these co-
ordinates the point configuration is cyclically symmetric in the usual geo-
metric sense. (Hint: try to use trigonometric monomials instead of ordinary
monomials; if you are desperate, google for “Carathéodory’s curve.”)

Exercise 6.4. Show that for one-dimensional cyclic polytopes, the first and
the second Higher Stasheff-Tamari posets coincide.

Exercise 6.5. Show that every triangulation of C(n,2) gives rise to a se-
quence of flips in C(n,1) from 0̂ to 1̂.

Exercise 6.6 (Open). Prove or disprove that the first and the second higher
Stasheff-Tamari posets coincide in general.

Exercise 6.7. Show that the permutahedron of dimension d−1 has 2d −2
facets and (d − 1)d!/2 edges. (If you want more, show also that it has
3d −3 ·2d + 3 ridges, 4d −4 ·3d + 6 ·2d −4 faces of codim 3, and so on).

Exercise 6.8. Prove the following extension of Corollary 6.2.7: Subdivi-
sions of prism(Dn) are in bijection with partial orientations of the complete
graph Kn with the following property: In every triangle either zero, two, or
all three edges are directed. If three, the orientation is acyclic. If two, they
either have the same origin or the same destination.

Exercise 6.9. Characterize staircases of Dn×Dm in the bipartite graph rep-
resentation.

Exercise 6.10. For the five symmetry classes of triangulations of D3 ×D3

(see Figure 6.24):

1. Say which ones are pushing and which ones are pulling. (Hint: three
classes are pushing and pulling simultaneously. One is only pushing
and another is only pulling)

2. Count how many flips there are (Hint: one of the symmetry classes
has six. The rest all have four).

Exercise 6.11. Check property (ICoP) for the triangulation of Section 6.2.4
(that is, finish the proof of Lemma 6.2.20).

Exercise 6.12. Prove that the list of symmetry types of tetrahedra in I3

given at the beginning of Section 6.3.4 is complete.

Exercise 6.13. Using the interpretation of the points of D(n,2) as the edges
of the complete graph Kn prove the following properties

A subpolytope σ of D(n,2) is an (n−1)-dimensional simplex if and only
if the corresponding subgraph H satisfies the following properties.
(i) H is a spanning subgraph with n edges.
(ii) Each component contains at most one cycle.
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(iii) All cycles in H have odd length
Furthermore the normalized volume of σ is 2q(H)−1 where q(H) is the num-
ber of disjoint cycles in H.

Exercise 6.14. Prove Proposition 6.3.19.
Hint: You will save a lot of work if you observe that the subdivision

S (D(6,2),ω) must inherit all the symmetries of D(6,2) that are preserved
by ω . These form a group of order 48 consisting of all the permutations that
send each of the pairs {1,4}, {2,5} and {3,6} to another, not necessarily
in the same order. Modulo these symmetries, there are only two types of
graphs in Figure 6.39.

Exercise 6.15. Consider the d-dimensional 0/1-cube and for each permuta-
tion σ = (σ1, . . . ,σd) of the numbers 1, . . . ,d, consider the polytope defined
by the following chain of inequalities:

Pσ :=
{

(x1, . . . ,xd) : 0 ≤ xσ(1) ≤ xσ(2) ≤ ·· · ≤ xσ(d) ≤ 1
}

Prove that the d! simplices defined by the different choices of σ form a
triangulation of the cube. This will finish the proof of Proposition 6.3.4.

Exercise 6.16. Show that the list of four kinds of tetrahedra of a 3-cube
presented in Subsection 6.3.4 contains all possible tetrahedra of a cube and
it is irredundant.

Exercise 6.17. As a refinement of Theorem 6.3.10, prove that there are
only two types of triangulations of the 3-cube that use the same number of
corner tetrahedra

Exercise 6.18. • Show that the Birkhoff polytope B3 has only regular
triangulations.



Some Interesting
Triangulations 7
In previous chapters, we have seen examples of non-regular triangulations
which had fewer flips than the number of flips that a regular triangulation
must always have (e.g., the triangulation of the cube-octahedron in Propo-
sition 3.6.18). This motivates a definition:

Definition 7.0.29. We say a triangulation of a point configuration with n
points in dimension d is flip-deficient if it has less than n−d−1 flips.

The term is a fair choice, because any regular triangulation with the same
n and d must have at least n− d − 1 flips, the dimension of the secondary
polytope. Balinski’s theorem (see [148, 339]) states that the graph of a k-
dimensional polytope must be k-connected. This means that the removal of
any k−1 or fewer points does not disconnect the graph and, moreover that
the number of edges entering a vertex is at least k. Applied to the secondary
polytope, this guarantees dimension many flips. In this chapter, we will see
constructions of extremely deficient triangulations:

• Highly flip-deficient triangulations in dimensions 3 and 4. More pre-
cisely, triangulations with n vertices, for arbitrarily large n, and only
O(

√
n) (in dimension 3) and O(1) (in dimension 4) flips.

• Disconnected graphs of triangulations, in dimensions 5 and 6. The
smallest example known has 17 points. Moreover, we will show that
the number of connected components of the graph of triangulations
can grow exponentially with the number of points.

All these examples were discovered by F. Santos [279, 283, 284], who
also constructed a triangulation in dimension 6 without any flips at all [278].

The reader should not be frightened by the fact that some of these ex-
amples lie in dimensions higher than three. They can be understood by
3-dimensional geometric building blocks, after all, we have already stud-
ied 6-dimensional and 7-dimensional triangulations in Section 6.2, when
studying products of simplices. In fact, the constructions in dimension four
and higher that appear in this chapter will be formed by taking the products
of lower dimensional objects. The basic idea is the understanding of trian-
gulations of a triangular prism; or, rather, of many triangular prisms glued
together.

Before going to these examples, we take a closer look at the most impor-
tant example of a point configuration with non-regular triangulations, the
one we have called the mother of all examples. Even if it is the smallest
possible configuration in which non-regular triangulations arise, it is rich

Jesús A. De Loera et al., Triangulations, Algorithms and Computation in Mathematics,
DOI 10.1007/978-3-642-12971-1_7, c© Springer-Verlag Berlin Heidelberg 2010
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enough to exhibit many of the features that non-regular triangulations have
(or do not have) in general.

7.1 The mother of all examples, and some relatives

In this section, we are going to analyze in detail several variations of the
mother of all examples (see Example 2.2.5 and its many subsequent sight-
ings). This configuration appeared in print for the first time in the paper [83]
by Connelly and Henderson, but it is closely related to Schönhardt’s non-
triangulable 3-polytope from 1928 [290] (see also Example 3.6.16), and
Barnette’s non-polytopal 3-sphere from 1970 [32].

2

1

4

3

6

5

2

6

3

4

5

1

Figure 7.1: Two non-regular triangulations.

The mother of all examples has appeared several times in the book, either
in its original form (see Examples 2.2.5, 3.3.11, 5.1.4) or in several varia-
tions (Examples 4.2.23, 4.2.25 and 5.5.7). Our goal here is to understand
the relations between the several variations of the same example. Gale
transforms will be very useful for this purpose.

7.1.1 A theme with many variations

The mother of all examples is the following point configuration:

M :=

⎛

⎝

1 2 3 4 5 6

4 0 0 2 1 1
0 4 0 1 2 1
0 0 4 1 1 2

⎞

⎠

The first variation of it is that we can slightly perturb its coordinates in
the following symmetric way:

Mε :=

⎛

⎝

1 2 3 4 5 6

4− ε 0 ε 2 1 1
ε 4− ε 0 1 2 1
0 ε 4− ε 1 1 2

⎞

⎠

1

4

3

6

3

1

2

5

4

5

2

6

Figure 7.2: One regular and one non-regular

triangulation.

This perturbation should not have a major impact on the set of triangu-
lations of the configuration. Observe that the original configuration M is
in general position (no three points are collinear), which implies that if ε
is sufficiently small then M and Mε have the same oriented matroid, that
is, the same sets of affine bases, circuits, cocircuits, etc. In particular, they
have the same poset of subdivisions and the same graph of triangulations
(Corollary 4.1.44).

However, the perturbation affects the regularity of a particular subdivi-
sion, or triangulation. Consider the two non-regular triangulations of M,
displayed in Figure 7.1.

T1 = {125,145,236,256,134,346}, T2 = {124,245,235,356,136,146}.

After the perturbation, T2 is still non-regular, but T1 is the regular triangu-
lation obtained with (for example) the height vector ω = (1,1,1,0,0,0).
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Let us try to understand this phenomenon by considering Gale trans-
forms. The following are Gale transforms of M and Mε :

Gale(M) :=

⎛

⎝

1 2 3 4 5 6

2 1 1 −4 0 0
1 2 1 0 −4 0
1 1 2 0 0 −4

⎞

⎠,

Gale(Mε ) :=

⎛

⎝

1 2 3 4 5 6

2 1 1 −4 + ε −ε 0
1 2 1 0 −4 + ε −ε
1 1 2 −ε 0 −4 + ε

⎞

⎠.

4

6
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1

1 2

3

5

6

3

Figure 7.3: Affine Gale diagrams of the

unperturbed and perturbed “mother of all

examples”.

It is a coincidence that these configurations have the same coordinates
as their Gale transforms, modulo relabeling and changing the sign of some
columns. Figure 7.3 shows the affine diagrams corresponding to these Gale
transforms (see Section 5.5.2 if you do not remember what an affine Gale
diagram is).

What we see in the picture is that, even if the oriented matroid of the
configuration (hence that of the Gale transform) does not change when we
pass from M to Mε , the chamber complexes do change. In Gale(M) there
are three segments that meet at a point, while in Gale(Mε ) those three edges
meet only pairwise, creating a new full-dimensional chamber. That new
chamber is (dual to) the triangulation T1, which was non-regular in M and
is now regular in Mε .

Figure 7.4 shows the same effect in the secondary polytope. In the un-
perturbed configuration M, the secondary polytope has a hexagonal facet
whose vertices are the GKZ vectors of six regular triangulations. The
GKZ vectors of the two non-regular triangulations coincide, and lie at the
barycenter of the hexagon. After the perturbation, all the GKZ vectors
change slightly. Those of the two formerly non-regular triangulations move
in opposite directions, inflating the former hexagon to become a 3-cube
with three quadrilaterals still in the boundary of the secondary polytope and
three in the interior. The former intersect in a new vertex of the secondary
polytope, corresponding to the triangulation that has become regular. The
other triangulation, which remains non-regular, lies in the interior of the
secondary polytope.

Figure 7.4: Secondary polytopes of the

unperturbed and perturbed “mother of all

examples”.

We now look at several three-dimensional variations of the mother of all
examples. The first one happens when we simply embed M and Mε to lie in
an affine hyperplane, and add a seventh point out of that hyperplane. That
is to say:

M :=

⎛

⎜
⎜
⎝

1 2 3 4 5 6 7

4 0 0 2 1 1 4/3
0 4 0 1 2 1 4/3
0 0 4 1 1 2 4/3
0 0 0 0 0 0 8

⎞

⎟
⎟
⎠,
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Figure 7.5: A pyramid over the twisted “mother of

all examples”: no new revelations here.

Figure 7.6: The twisted “mother of all examples”

with the inner triangle lifted.

Figure 7.7: A pyramid on top of the “mother of all

examples” with the inner triangle lifted: joining 7

to T2 cannot be completed to a triangulation

of M
+
ε , since the uncovered space equals the

interior of the non-convex Schönhardt

polyhedron.

Figure 7.8: A pyramid below the twisted “mother

of all examples” with the inner triangle lifted: this

time, joining 7 to T2 can be completed to a

triangulation of M
−
ε , . . .

Mε :=

⎛

⎜
⎜
⎝

1 2 3 4 5 6 7

4− ε 0 ε 2 1 1 4/3
ε 4− ε 0 1 2 1 4/3
0 ε 4− ε 1 1 2 4/3
0 0 0 0 0 0 8

⎞

⎟
⎟
⎠.

This change does not affect the triangulations or their regularity. Indeed,
M is a pyramid over M and Mε is one over Mε . See Observation 4.2.3. In
the Gale transform, what happens is that the new element 7 appears as the
zero vector, which has no effect in the chamber complex:

Gale(M) :=

⎛

⎝

1 2 3 4 5 6 7

2 1 1 −4 0 0 0
1 2 1 0 −4 0 0
1 1 2 0 0 −4 0

⎞

⎠,

Gale(Mε) :=

⎛

⎝

1 2 3 4 5 6 7

2 1 1 −4 + ε −ε 0 0
1 2 1 0 −4 + ε −ε 0
1 1 2 −ε 0 −4 + ε 0

⎞

⎠.

More interesting is what happens when we lift the two triangles of M
and Mε to lie in parallel planes. Let us only do this in the perturbed case of
Mε , the unperturbed case being similar (and slightly less interesting). We
consider the following two configurations:

M
+
ε :=

⎛

⎜⎜
⎝

1 2 3 4 5 6 7

4− ε 0 ε 2 1 1 4/3
ε 4− ε 0 1 2 1 4/3
0 ε 4− ε 1 1 2 4/3
0 0 0 1 1 1 8

⎞

⎟⎟
⎠,

M
−
ε :=

⎛

⎜
⎜
⎝

1 2 3 4 5 6 7

4− ε 0 ε 2 1 1 4/3
ε 4− ε 0 1 2 1 4/3
0 ε 4− ε 1 1 2 4/3
0 0 0 1 1 1 −8

⎞

⎟
⎟
⎠.

The difference between them is that in M
+
ε the small triangle {456} lies

between the big triangle {123} and the new element 7, while in M
−
ε the big

triangle {123} is the one in between. The following are Gale transforms of
these two point configurations:

Gale(M+
ε ) :=

⎛

⎜⎜
⎜
⎜
⎝

1 2 3 4 5 6 7
11
6

5
6

5
6 −4 + ε −ε 0 1

2

5
6

11
6

5
6 0 −4 + ε −ε 1

2

5
6

5
6

11
6 −ε 0 −4 + ε 1

2

⎞

⎟⎟
⎟
⎟
⎠

,



7.1. The mother of all examples, and some relatives 341

Figure 7.9: . . . since the uncovered space can

be filled with three tetrahedra touching each

other at their vertical edges only.

Gale(M−
ε ) :=

⎛

⎜
⎜
⎜
⎜
⎝

1 2 3 4 5 6 7
13
6

7
6

7
6 −4 + ε −ε 0 − 1

2

7
6

13
6

7
6 0 −4 + ε −ε − 1

2

7
6

7
6

13
6 −ε 0 −4 + ε − 1

2

⎞

⎟
⎟
⎟
⎟
⎠

.

Except for a dilation on the small triangle (whose coordinates change by
±1/6), the change in these Gale transforms with respect to that of Mε is
the inclusion of a seventh element on one side of the Gale transform. See
the pictures in Figure 7.10. Deleting this element in the Gale transform

4

1 2

3

7

7

21

3

6

4 5

5

6

Figure 7.10: Affine Gale diagrams of the lifted

versions of the “mother of all examples”.

gives us back the Gale transform of Mε . This is not surprising, since dele-
tion and contraction are dual operations, and the way that M

+
ε and M

−
ε are

constructed shows that their contraction at the element 7 is essentially Mε .
How many non-regular triangulations do M

+
ε and M

−
ε have? It turns

out that the latter has one, but the former has none. The triangulation
T2, which is the only non-regular triangulation of the contraction Mε =
M

+
ε /7 = M

−
ε /7, can be “lifted” to be a link in a (necessarily) non-regular

triangulation of M
−
ε , by Lemma 4.2.24. Unfortunately, it cannot be lifted to

M
+
ε . This was shown in Example 4.2.25. A Gale transform explanation can

be done in terms of the pseudo-chambers briefly introduced as a tool for the
proof of Theorem 5.5.9 in Section 5.5.2. In M

+
ε , as in Mε , the three edges

of the chamber complex that prevent T1 to appear as a chamber can be
topologically perturbed to create a pseudo-chamber corresponding to that
triangulation. In M

−
ε , the same is not possible, because the element 7 blocks

those edges from flipping to their alternate configuration (one or more of
them would need to pass through the new element, drastically changing the
chamber complex in forbidden ways).

6

2

3

1

54

7

Figure 7.11: A pseudo-chamber complex for one

of the lifted versions of the “mother of all

examples”.

Other relatives of the mother of all examples are interesting. In Exam-
ples 3.6.16 and 4.2.23, we considered one with eight elements, obtained as
the union of M

+
ε and M

−
ε . We finish this discussion by showing the small-

est example of a triangulation with fewer than n−d−1 flips, where n is its
number of vertices and d its dimension.

Example 7.1.1 (The double tetrahedron). The point set consists of six
points on a plane, forming the “mother of all examples”, plus two points on
a half-line perpendicular to this configuration and originating at its barycen-
ter. Coordinates for it may be as follows. See Figure 7.12.

A :=

⎛

⎜
⎜
⎝

1 2 3 4 5 6 7 8

4 0 0 2 1 1 4/3 4/3
0 4 0 1 2 1 4/3 4/3
0 0 4 1 1 2 4/3 4/3
0 0 0 0 0 0 4 8

⎞

⎟
⎟
⎠.

We consider the following triangulation:

T = {1247,2457,2357,3567,1367,1467,1278,2378,1378}.
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The first six tetrahedra cone the non-regular triangulation T1 of the
mother of all examples to the element 7. The last three tetrahedra place
(in the sense of Section 4.3.1) the final element 8 in the triangulation of
A\ 8 so obtained.

8

6

3

2

4 5

7

1

Figure 7.12: The smallest configuration with

flip-deficient triangulations.

We count flips in T as follows. Each flip is either a flip in the cone
triangulation of A\8, or it uses the last element 8. Flips of the first type are
only the three flips already present in the planar triangulation T1, supported
in the circuits (15,24), (16,34), and (26,35). The crucial point (proof left
to the reader) is that the placing of point 8 does not add any new flips.
Hence:

Corollary 7.1.2. T is a triangulation of dimension three with eight ver-
tices and only three flips.

This is again a flip-deficient triangulation, since n− d− 1 = 4 flips (the
dimension of the secondary polytope). These values of n and d are the
smallest possible for a flip-deficient triangulation, since triangulations in
the plane and triangulations with n ≤ d + 4 are never flip-deficient (Theo-
rems 3.4.9 and 5.5.9).

This construction can be iterated by putting k concentric triangles in a
plane and k collinear points along a transversal line through its barycenter.
This way, one gets triangulations with 4k vertices and only 3k − 3 flips.
Triangulations with 5k points and 3k − 2 flips can also be obtained. See
Exercise 7.1.

7.1.2 Twelve proofs of non-regularity

We now list several different ways to show the existence of non-regularity
in subdivisions of the mother of all examples, M.

(1) Escher-like figure. The first proof is to show by contradiction that no
lifting heights exist that produce the triangulations of Figure 7.1. We
did exactly that in Example 2.2.5 in Chapter 2. Suppose that there
is a height vector giving the triangulation. Assume, without loss of
generality, that the height vector ω ∈ R

{1,2,3,4,5,6} gives height zero
to the three interior points. Then the conditions needed to obtain the
diagonals 16, 24 and 35 present in T1 are, respectively, ω1 < ω3,
ω3 < ω2, and ω2 < ω1. This is impossible.

(2) Algebraic infeasibility. A slight variation of the previous proof pro-
ceeds by looking at the circuits with supports in the 4-tuples 1245,
2356, and 1346. More precisely, if we denote by pi the i-th column
of the matrix M, we have that:

p1 + 4p5 = p2 + 4p4,

p2 + 4p6 = p3 + 4p5,

p3 + 4p4 = p1 + 4p6.

Each of these affine dependences implies a condition that ω needs to
satisfy in order to force one of the diagonals to be lifted below the
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other one. The three precise inequalities that force 24, 35, and 16 to
be lifted below 15, 26, and 34 are, respectively:

ω1 + 4ω5 > ω2 + 4ω4,

ω2 + 4ω6 > ω3 + 4ω5,

ω3 + 4ω4 > ω1 + 4ω6.

These three inequalities cannot be satisfied simultaneously, since the
three left-hand sides have the same sum as the three right-hand sides.

(3) Repeated GKZ vectors. A third proof uses Corollary 5.2.18: no reg-
ular triangulation of a point configuration can have the same GKZ
vector as any other triangulation. In our case, symmetry implies that
the two triangulations T1 and T2 of M have

φA(T1) = φA(T2).

Hence, they are both non-regular.

(4) Monotone flipping. We now use the idea of monotone flipping first
presented in Section 5.3.2. Consider the height vector ω equal to
(0,0,0,1,1,1) that lifts the inner triangle to height zero and the outer
triangle to height one. Remember that we can think of ω as a linear
functional on Σ-poly(M) and, as such, it is minimized at the regular
triangulation S (M,ω) (or at all the triangulations that refine it, if
S (M,ω) was not a triangulation).

In our case, the functional adds together the last three coordinates in
the GKZ vector of a triangulation. Since none of the three flips in the
triangulation T1 changes that sum, T1 cannot be regular: none of the
flips in T is monotone towards the opposite height’s functional −ω .

(5) Non-triangulable lift. Our next proof also uses flips. As before,
consider the height function ω = (0,0,0,1,1,1). A monotone se-
quence of flips from our triangulation T1 to the regular triangulation
S (M,ω) = {123} would lift to produce a triangulation of the region
between the lifting of T1 and the lifting of S (M,ω), that is, it would
produce a triangulation of an oblique triangular prism with its bound-
ary triangulated in the cyclic manner. This is impossible, by the same
reasons why Schönhardt’s polyhedron is not triangulable.

(6) Long chains in poset. Consider S0 = {1245,2356,1346,456} (see
Figure 7.13). The three quadrilaterals in it can be independently re-
fined into a triangulation. Refining them one by one gives rise to
a chain of four non-trivial subdivisions, S0 ≺ S1 ≺ S2 ≺ S3, in
Subdivs(M). If all of them were regular, they would correspond
to proper non-empty faces of different dimensions in the secondary
polytope of M. This is impossible, since Σ-poly(M) has dimension
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three by the Theorem 5.1.10. So, at least one of the subdivisions in
that chain has to be non-regular. Observe that which triangulation is
non-regular may change, if we change the coordinates of M while
keeping its oriented matroid intact, but the fact that at least one of
them is non-regular must hold in any point configuration with that
oriented matroid.

5

6

3

4

1 2

Figure 7.13: A subdivision of M

(7) Common coarsening of flip-neighbors. We can use a similar argu-
ment involving flips. All the flips in the triangulation T1 (or in T2)
produce triangulations that refine the subdivision S0 (of Figure 7.13).
This implies that either S0, T1, or one of its three flip-neighbors
must be non-regular. Indeed, otherwise φM(T1) would be a vertex in
Σ-poly(M) with the (impossible) property that all its neighbors are
contained in the same proper face of the polytope.

(8) Flip-deficiency. This proof is based on the flip-deficient triangulation
constructed in Example 7.1.1. A flip-deficient triangulation can cer-
tainly not be regular. But, in our case, if the original triangulation
T1 were regular, the final one would need to be regular too: it is
obtained by first coning to a new point and then placing yet another
point. Both operations preserve regularity.

(9) Non-extendable link. Here we prove that T2 is not regular in the
perturbed mother of all examples, Mε . The proof uses a lift to the
configuration M

+
ε .

If T2 were regular in Mε = M
+
ε /7, it would appear as the link at 7 in

some (regular) triangulation of M
+
ε , by Lemma 4.2.24. But that can-

not be the case, because what is left in conv(M+
ε ) after inserting the

tetrahedra that join T2 to the new element 7 is precisely (an oblique
version of) the untriangulable Schönhardt’s polyhedron.

(10) Non-extendable deletion. We now use a somewhat similar proof for
the point configuration M

−
ε . There is a triangulation of M

−
ε that ex-

tends the join of T2 to 7. Indeed, after the join is inserted, the volume
left is precisely the one that can be occupied by the tetrahedra 1245,
2356, and 1346.

The problem is that, according to Lemma 4.2.24, the (unique) trian-
gulation obtained in this way should be regular. Then, according to
Lemma 4.2.17, there should be a (regular) triangulation of the con-
figuration M

−
ε \ 7 using those three tetrahedra. That is impossible

because, again, the part of conv(M−
ε \ 7) not covered by those three

tetrahedra is a Schönhardt’s polyhedron.

(11) Chamber complex. Here we verify that the triangulation T1 does
not correspond to a chamber in the Gale transform of Figure 7.3.
Indeed, the intersection of the cells {346,145,256}, dual to the tri-
angles {125,236,134} ⊂ T1, is not full-dimensional, in the unper-
turbed version, and empty in the perturbed one.



7.2. Highly flip-deficient triangulations 345

(12) Your turn!

We want to emphasize that proofs (6) and (7) are combinatorial; they rely
only on the oriented matroid of M and not on the specific coordinates of its
elements. As a consequence, they cannot tell us that a specific triangulation
or subdivision is non-regular, because that is not a property of the oriented
matroid. They only tell us that the configuration has some non-regular sub-
division.

It is also worth remarking that proofs (7) to (10) happen in three dimen-
sions. They involve a lifting of our configuration to 3D, and then studying
the triangulations of the new configuration. In fact, the flip-deficiency and
non-extendability that play a role in those proofs are properties that cannot
happen in dimension two.

7.2 Highly flip-deficient triangulations

We know that regular triangulations and triangulations in dimension at most
two (Section 3.4.3) or corank at most three (Section 5.5) always have at
least n− d − 1 flips, where n is the number of elements and d is the di-
mension. We have also seen (Examples 3.6.17 and 7.1.1) that the same is
not true for non-regular triangulations outside those parameters. Here we
construct examples in dimensions three and four that are drastically flip-
deficient. These examples seem to indicate that there are point configura-
tions in these dimensions for which the graphs of flips are not connected,
but this is still an open problem.

7.2.1 Dimension 3: A zig-zag grid

We start with a very simple (and not flip-deficient) triangulation that il-
lustrates the crucial point in the flip-deficient triangulation we build later.
Let k be a positive integer, and consider the point configuration with the
(k +1)2 points (i, j,0) ∈ R

3, with i, j = 0, . . . ,k. Triangulate these points in
a triangular-grid manner, using the 2k2 triangles with vertex sets

{(i, j,0),(i+ 1, j,0),(i+ 1, j + 1,0)}
and

{(i, j,0),(i, j + 1,0),(i+ 1, j + 1,0)}.
See Figure 7.14, where k = 6.

All the interior edges in this triangulation are flippable, so we get a trian-
gulation with about 3k2 flips, that is, about 3n flips, where n is the number
of points. But there is a simple way to “kill” some of these flips using

Figure 7.14: A triangular grid in the plane has

about 3n flips, but. . .

the third dimension: We add k more points with coordinates (k/2, j,1), for
j = 0, . . . ,k−1. We extend the triangulation of the grid to the third dimen-
sion by joining the point (k/2, j − 1,1) to the i-th horizontal strip of the
grid, and filling the intermediate space with tetrahedra of the form

{(i, j,0),(i+ 1, j,0),(k/2, j,1),(k/2, j + 1,1)}.
(Remark: for the pictures in this section we will take as vertical direction
the second coordinate of the plane containing the grid. The first and third
coordinates are, hence, horizontal.)
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This trick makes the former flips on horizontal edges of the grid disap-
pear. (When we say “flips on horizontal edges”, we now mean “flips on the
circuits of the grid whose negative part is a horizontal edge”). Another k
points can be added behind the grid, now on a horizontal line, and joined
to vertical strips to kill the flips on vertical edges (see Figure 7.15). Now

Figure 7.15: . . . about 2n of them can be killed by

the third dimension.

Figure 7.16: A zig-zag triangulation of the square

grid in the plane has about 2n flips.

only the about n flips on the diagonal edges have survived. In particular,
our triangulation is not flip deficient, or at least not highly so.

But, of course, we started with a very bad triangulation of the square grid.
We should start with one that has fewer flips! For example, in the zig-zag
triangulation of Figure 7.16, only the diagonal and horizontal edges can be
flipped, and we get about 2n flips to start with, instead of 3n. From now on
we assume that k is even, to avoid annoying case studies.

Our task is to kill about 2n flips by joining the grid to auxiliary points
lying in front and behind the hyperplane of the grid. The simplest thing to
do would be to kill the flips of horizontal edges using horizontal strips as
we did before, but then the diagonal edges would be difficult to deal with.
What we will do, instead, is use zig-zag strips both for the front and the
back, allowing each side to kill about n/2 horizontal and n/2 diagonal flips.

The two families of zig-zag strips to be used are shown in Figure 7.17.
One part of the figure shows the strips to be joined to the points in front, and
the other part (symmetric to the first one) shows the strips to be used for the
back. Strips have alternately been colored grey and white, and thicker lines
show their boundaries. Now, no pair of adjacent triangles of the grid are
joined to the same point in the front and in the back half-spaces, except the
ones separated by vertical edges, which cannot be flipped in the grid. What
this gives is:

Figure 7.17: Strips to be joined to points in front

of and behind the planar grid.

Lemma 7.2.1. A triangulation constructed by joining these strips to differ-
ent points will not have any flip supported on a circuit fully contained in
the grid.

Of course, we need to check for other flips that may appear. Before doing
this in detail, let us point out three difficulties that we did not have in the
warm-up construction, but that do exist here:

• The points on the back cannot be placed horizontally as before, or
there will be bad intersections between the joins of consecutive strips
to those points. We will place them in a vertical line parallel to the
one containing the points in the front.

• We have more than k strips in each direction, precisely �3k/2� of
them. Hence, we need to add that number of points on each side of
the grid. Also, we need to put them at a smaller distance to one an-
other, so that the segment from any point in the front to any point in
the back crosses the planar grid. In this way, a triangulation of the
front half-space and a triangulation of the back can be done indepen-
dently and will fill in the convex hull of our point set. For reasons
that will become apparent later, we choose to put them very close to
each other, all of them with a second coordinate strictly between 0
and 1. See Figure 7.18.



7.2. Highly flip-deficient triangulations 347

Figure 7.19: The true meaning of “strips” in the

zig-zag construction.

• In order to entirely fill in the convex hull of our point set, the strips
to be joined to our points need to go all the way from the left side
to the right side of the square grid. So the strips of Figure 7.17 are
not enough. Figure 7.18 shows what we actually need to join to the
�3 · 6/2�= 9 points in the front for the case k = 6. The parts which
degenerate to segments in the j-th strip do not produce tetrahedra
when joined to the corresponding point in the front, but they have to
be joined to the edges between two consecutive front points, just as
with the other edges in the bottom and top boundaries of a strip.

Figure 7.18: A point set with a triangulation with

O(
√

n) flips.

Theorem 7.2.2. The triangulation so obtained has less than 7k = O(
√

n)
flips.

Proof. As usual, the best strategy for an exhaustive search of flips is to
look at all the adjacent pairs of tetrahedra or, equivalently, at all interior
triangles (walls, in the sense of Section 4.4.2) of our triangulation. There
are the following three types of such triangles:

1) A triangle C contained in the planar grid. Such a triangle is joined
to one element a in the front and one element b in the back. Since these
two elements are not connected by an edge, in order to have a flip they have
to be the only two positive elements in the circuit supporting that flip. In
particular, the segment conv({a,b}) and the triangle conv(C) must intersect.

This gives only one possibility for a and b: they are the front and back
elements joined to the unique strips containing the lowest segment in the
middle vertical line of the grid (the segment (k/2,0,0)(k/2,1,0)). The
only candidate circuit is the one having that segment in one part and the
segment {a,b} in the other.

All in all, walls of this type produce at most one flip.
2) A triangle C with an edge in the planar grid and the third vertex out-

side it. Without loss of generality, let us assume that the third vertex is in
the front and denote it a. Let a− and a+ denote the front elements of the
point configuration immediately below and above a.

There are three possibilities for the two vertices joined to this

a) C is joined to both a− and a+. Then the circuit contained in these two
adjacent tetrahedra is ({a−,a+},{a}). This circuit produces no flip
because the segments {a−,a} and {a,a+} have different links (the
lower and upper envelopes of a certain strip).

b) C is joined to two points in the grid. Then the candidate circuit is
contained in the grid. By construction, circuits contained in the grid
do not produce flips.

c) C is joined to one of a− and a+ and to a point in the grid. Assume
it is joined to a+ (the other case is similar). Then the five points
contained in the two tetrahedra are one triangle from the grid and two
consecutive points from the front. Since every triangle in the grid has
a vertical edge, the circuit involves only four points: the vertical edge
of the grid triangle plus the two points in the front. To fix notation,
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let b and b+ denote the elements of that vertical edge and let c be the
third vertex in the grid triangle. So, our circuit is

{(a,b+),(b,a+)}.

If b and b+ are either on the right or left ends of the grid (that is, if
their first coordinate equals 0 or k), then there is clearly going to be a
flip on that circuit. The triangulated circuit lies in the boundary of the
triangulation, and by construction the two triangles in it are joined to
the same vertex c. This gives us 2k flips, k of them on each side of
the grid. We have to multiply by two because we have counted only
flips in the front part of the triangulation. Hence we get 4k flips.

If the vertical edge {b,b+} is interior to the grid, then the condition to
have a flip is that the two triangles in the grid that are incident to it be
incident to the top boundary of the strip they lie in (if the second front
vertex was a− instead of a+ we would say the lower boundary of the
strip). The reader can check in Figure 7.19 that there are exactly k−1
such vertical edges in the square grid; k/2−1 incident to the top and
k/2 incident to the bottom. With another k− 1 flips to account for
what happens in the back, this gives 2k−2 possible flips.

3) A triangle C with only one vertex b in the planar grid. The other two
vertices are consecutive vertices in the front or the back. Denote them a
and a+. The two adjacent tetrahedra appear in Figure 7.19 as consecutive
segments in the common boundary of the consecutive strips joined to a
and a+. Let c be the common end of these two segments, and denote the
other two as c− and c+. By construction of our strips, the first coordinates
of c−, c, and c+ are consecutive integers. In particular, c− and c+ are
not joined by an edge and, in order to have a flip, the two of them must
form the positive part of the circuit involved. That is to say, the segment
conv({c−,c+}) must intersect the triangle conv({c,a,a+}). But since a
and a+ both lie in the front, the only possible intersection is the point c
itself, meaning that c−, c, and c+ are collinear.

The only collinear segments in the boundary of a strip are the ones in the
top or bottom boundary of the grid, and this condition alone gives a number
of possible flips that are linear in k (exactly 2k− 2). But something more
can be said. In order to have a flip, we need {c−,c} and {c,c+} to have the
same link. This eliminates about half of the candidates, leaving only the
following k−1 circuits to support flips:
({(i−1,0,0),(i+ 1,0,0)},{(i,0,0)}), i = 1,3, . . . ,k−1 and
({(i−1,k,0),(i+ 1,k,0)},{(i,k,0)}), i = 2,4, . . . ,k−2.

Summing up, our triangulation has at most 1 + 4k + 2k − 2 + k − 1 =
7k−2 flips, as claimed.

Remark 7.2.3. In Exercise 7.12, we will see how to reduce the number of
flips from about 7n to 4

√
2n without much effort. The paper [279] achieves
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4n by choosing a different shape for the boundary of the starting planar grid:
the shape shown in Figure 7.20.

Observe that in this construction all the flips appear close to the boundary
of the triangulation, which contains O(

√
n) of the points. The shape of the

boundary can only modify the constant (as long as the perimeter is kept
proportional to

√
n).

X

Y

Figure 7.20: A shape giving triangulations with

4
√

n+O(1) flips in dimension 3.

7.2.2 Locally acyclic orientations and triangulations of products

Let A be a point configuration in dimension d and let S be any subdivision
of it. Consider the product A× I of A with the vertices of a segment I = D2.

Taking as a cell in A× I the product of a cell of S with (the vertices
of) the segment I yields a polyhedral subdivision of A× I that we denote,
prism(S ). We have encountered these objects when we studied triangula-
tions of the cube in Section 6.3.7.

Lemma 7.2.4. S × I is regular if and only if S is regular.

Proof. If prism(S ) is regular, then S is regular because it is the restriction
of prism(S ) to a facet (see Lemma 2.3.15).

Conversely, suppose ω : J → R is a height function that defines S as
a regular subdivision. Then prism(S ) is the regular subdivision obtained
with the height function ω̃ : J×{0,1}→ R defined as ω̃(i, j) = ω(i).

Suppose now that S is a triangulation of A. Of course, prism(S ) cannot
be a triangulation, its cells are prisms over the simplices of S . In order to
refine prism(S ) to a triangulation, we need to specify a triangulation of
each prism. As explained in Corollary 6.2.7, triangulating a prism over a
simplex is equivalent to specifying an acyclic orientation of the graph of
the simplex. So we need to specify an acyclic orientation for each simplex
of S . Now, each edge of S will typically appear in several simplices. In
order for the triangulations of adjacent prisms to agree in common faces,
a necessary condition is that the orientation given to the edge is the same
in all the simplices containing it. Indeed, the orientation given to the edge
e specifies which of the two diagonals is inserted in the quadrilateral e× I
(with the convention made before Corollary 6.2.7, that the orientation i → j
for an edge inserts the diagonal {(i,0),( j,1)}.

Since all the faces of a prism are either simplices or prisms, this necessary
condition is also sufficient. Hence, we have the following natural definition:

Definition 7.2.5. Let K be a simplicial complex. A locally acyclic ori-
entation on K (or l.a.o., for short) is an orientation of all the edges of its
1-skeleton which does not produce a cycle in any of the simplices.

A reversible edge in a locally acyclic orientation of K is an edge whose
reversal produces another locally acyclic orientation.

The graph of l.a.o.’s of K is the graph whose vertices are all the locally
acyclic orientations of K and whose edges correspond to single-edge re-
versals in them. We denote it Gl.a.o.(K ).

As an example, Figure 7.21 shows a locally acyclic orientation of a 2-
dimensional complex consisting of 3 triangles. It has three reversible edges.
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Observe that it has a cycle, but this cycle is not contained in a simplex.

Figure 7.21: Top: a l.a.o. with a non-local cycle

and three reversible edges. Below: the

triangulation of eight points in dimension three

induced by it.

Example 7.2.6. A special case of locally acyclic orientations are globally
acyclic ones, that is, orientations compatible with a total ordering of the
vertices of A.

Transposition of two consecutive elements in the total order of A produces
either no change in the locally acyclic orientation (if the elements were not
joined by an edge in K ), or a single-edge reversal. Hence, all globally
acyclic orientations lie in the same connected component of Gl.a.o.(K ).

Example 7.2.7. Let us study in some detail the possible locally acyclic
orientations of the boundary of an octahedron. Because of the previous
remark, we can concentrate on orientations having at least one cycle. The
only cycles which are not faces of the octahedron are the three cycles of
length four which separate two opposite vertices. It can be easily checked
that, once such a cycle is chosen, the other two vertices need to be either
sinks or sources in order to get a locally acyclic orientation.

In other words, there are exactly 24 locally acyclic orientations of this
complex which are not globally acyclic: we have 3 cycles to choose from
with two orientations each, and for each cycle we have 4 possibilities; either
sink/source for the two vertices that are not in the cycle. Figure 7.22 shows
one of these orientations. In all of these orientations, the reversible edges
are the four edges of the cycle, and any single reversal produces a globally
acyclic orientation. In particular, the graph of locally acyclic orientations is

Figure 7.22: A locally acyclic orientation of the

boundary of an octahedron.

connected.
Exercise 7.10 generalizes this example to show the following: if A is

3-dimensional, any choice of simplicial subcomplex K of the boundary of
A will have a connected graph Gl.a.o. K and at least n−2 reversible edges
(where n is the number of vertices in K , which may be smaller than that
of A).

Remark 7.2.8. Only the 2-dimensional skeleton of K is relevant when
speaking of locally acyclic orientations: If K has dimension greater than 2
and K 2 denotes its 2-skeleton, then Gl.a.o.(K )= Gl.a.o.(K 2) (Exercise 7.3).

Lemma 7.2.9. Let T be a triangulation of A. The triangulations of A× I
that refine the subdivision prism(T ) are in bijection to the locally acyclic
orientations of the graph of T . The graph of flips between them equals
Gl.a.o.(T ).

Moreover, the refinement produced by a certain locally acyclic orienta-
tion is regular if and only if T is regular and the orientation is globally
acyclic (the graph contains no directed cycle).

Proof. We have already shown the bijection, let us look at flips of a trian-
gulations that refine prism(T ). First, a flip in prism(T ) must restrict to
either the identity or a flip in the triangulated prism over each simplex of
T . Flips in triangulations of prisms correspond to reversals of a single edge
in the orientation (see Corollary 6.2.7 again), and the circuit involved is the
quadrilateral over that edge. Hence, every flip in prism(T ) will be of that
form.
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Now let us look at regularity. Suppose first that a triangulation refining
prism(T ) is regular. Then T is regular, since it equals the restriction of
prism(T ) to a facet. Also, the locally acyclic orientation is globally acyclic.
Otherwise, let i1, i2, . . . , ik be a set of elements of A that form a cycle (in
the order given). Then, the lifting heights producing prism(T ) as a regular
triangulation satisfy:

ω(i1,0) + ω(i2,1) < ω(i1,0) + ω(i2,1),

ω(i2,0) + ω(i3,1) < ω(i2,0) + ω(i3,1),

...

ω(ik,0) + ω(i1,1) < ω(ik,0) + ω(i1,1).

These inequalities give a contradiction, since the left hand sides and right
hand sides have the same sum.

Conversely, suppose that T is regular and that its skeleton is given by
an acyclic orientation. Such an orientation is then compatible with a global
order in the elements of A. Without loss of generality, assume that the
elements are labelled 1,2, . . . ,n with respect to that total order. Then, the
refinement of prism(T ) produced is the lexicographic refinement in which
we pull the vertices (1,0), (2,0), . . . , (n,0), in this order. Lexicographic
refinements of a regular subdivision are always regular (Lemma 4.3.12).

Application: Construction of point sets with many triangulations

Our main application of locally acyclic orientations will be the construc-
tion of point sets with arbitrarily many vertices and a constant number of
flips in dimension four (Section 7.2.4) and of disconnected graphs of trian-
gulations in dimension five (Section 7.3). But before doing that, let us use
them to construct point configurations in dimension four with many trian-
gulations. In the plane, there is a constant c such that every point config-
uration n points has at most cn triangulations (Theorem 3.3.4). For higher
dimensions, we saw in Theorem 6.1.22 that the cyclic polytope C(n,d) has

Ω(2n�d/2�
) triangulations, if d is considered fixed. Here we construct other

examples of 4-dimensional configurations with 2Ω(n2) triangulations; they
are again based on cyclic polytopes, since the use of locally acyclic orien-
tations makes the proof cleaner.

Theorem 7.2.10. Let n be even and let A be the vertex set of a cyclic
polytope in dimension three with n/2 vertices. Let B be the prism over A
(that is, its product with {0,1}). We claim that:

1. B has at least (n/2)! = 2Ω(n logn) regular triangulations.

2. B has at least 2Ω(n2) non-regular triangulations.

3. The poset of subdivisions of B has chains of length at least Ω(n2).

Proof. Parts one and two of Theorem 7.2.10 follow from Lemma 7.2.9 and
the example presented in the following Lemma. Part three is left as an
exercise (Exercise 1).
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Lemma 7.2.11. Consider the regular neighborly triangulation T of A,
consisting of the

((n/2)−2
2

)
simplices {i−1, i, j, j + 1} over all 2 ≤ i < j ≤

(n/2)−1, described in Section 6.1. Then

1. T has exactly (n/2)! globally acyclic orientations.

2. T has at least 2(n−1/2)2
locally acyclic orientations.

Proof. Part one is trivial. Every ordering of the vertices provides an acyclic
orientation of G , and two orderings cannot provide the same orientation
because the graph is complete.

For part (2), we consider the following family of orientations. For each
edge i j:

1. If only one of i and j is even, we orient the edge from the odd vertex
to the even vertex.

2. If both edges are even or odd, we give the edge an arbitrary orienta-
tion.

All orientations like this are locally acyclic, because each full-dimen-
sional simplex {i− 1, i, j, j + 1} of T has two even and two odd vertices.
It is clear that the number of such orientations is in 2Ω(n2). More precisely,
it equals

2� n
4 ( n

4−1)�.

Remark 7.2.12. B is in convex position, and if it is perturbed to general
position, the lower bounds for regular triangulations and triangulations re-
main valid. For regular triangulations this is a general fact: perturbing into
general position can only increase the number of regular triangulations, be-
cause every regular triangulation of the unperturbed point set can be ex-
tended to a regular triangulation of the perturbed point set. For non-regular
triangulations, it is not a general fact, but, in our case, all the non-simplicial
facets of B are prisms over a triangle and all the triangulations we have con-
structed triangulate these prisms in a regular way. This regularity implies
that the triangulation, after perturbation, can be extended to the uncovered
space.

7.2.3 Locally acyclic orientations without reversible edges

Here we show two examples of locally acyclic orientations without re-
versible edges. In the light of Lemma 7.2.9, these constructions will be
a good initial step to construct triangulations with very few flips or discon-
nected spaces of triangulations. Indeed, if T is a triangulation that has
a l.a.o. without reversible edges, then the refinement of prism(T ) given
by this l.a.o. will not be connected by flips to any other refinement of
prism(T ). Of course, it can in principle be connected to triangulations
that do not refine prism(T ). We will address this issue later.
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A locally acyclic orientation in the 2-skeleton of the 24-cell

The 24-cell is one of the six regular polytopes existing in dimension four.
Recall that a polytope is called regular if its symmetry group acts transi-
tively over its flags, in more common language, if all its facets are regular
polytopes equal to one another and equivalent to one another by symme-
tries of the polytope. The regular polytopes in dimension three are the
well-known platonic solids.

Figure 7.23: Schlegel diagram of the

4-dimensional cube.

The polytope we are interested in is called the 24-cell because it has 24
facets. All its facets are regular octahedra, and the polytope turns out to
have 24 vertices, whose coordinates are as follows. The first line gives 16
vertices and the second one gives eight:

P := conv{(±1,±1,±1,±1),
(±2,0,0,0),(0,±2,0,0),(0,0,±2,0),(0,0,0,±2)}. (7.1)

It is not clear at first sight why the polytope having these 24 vertices is
regular. The vertex set rather looks like (and actually, is) the union of
the vertex set of the 4-dimensional cube I4 and the scaled crosspolytope
2conv({±e1,±e2,±e3,±e4}). But the reader can check that the following
list of 24 vectors, whose symmetry is more apparent, are the normals to
the facets of P. More precisely, for each of the vectors v in formula (7.2)
there are six vertices p in (7.1) where the scalar product (v,p) is maximal
and equal to 2. Conversely, each vertex p maximizes exactly six of the
functionals.

(±1,±1,0,0), (±1,0,±1,0), (±1,0,0,±1),
(0,±1,±1,0), (0,±1,0,±1), (0,0,±1,±1). (7.2)

Actually, the 24-cell is a self-dual polytope. This means that by taking
(7.2) as 24 vertices, we get combinatorially the same polytope, whose facet-
normal vectors are given by (7.1).

Our goal is to show that the 2-skeleton of the 24-cell, which is simpli-
cial, has a disconnected graph of locally acyclic orientations (observe that
we defined locally acyclic orientations for arbitrary simplicial complexes,
not necessarily triangulations). More precisely, we get a graph of locally
acyclic orientations with at least 13 connected components, 12 of which
are isolated vertices. In other words, there are (at least) 12 ways of locally
acyclically orienting the 2-skeleton of the 24-cell without reversible edges.

Remark 7.2.13. The 24-cell has the same number of triangles and edges,
96 of each (check this!). Since each triangle in a complex prevents at most
one edge from being reversed, it is especially surprising that it has l.a.o.’s
without reversible edges. Any of them will provide a perfect matching
between triangles and edges incident to them.

To describe these 12 locally acyclic orientations, let us first get a deeper
understanding of the 24-cell.

According to (7.1) we can construct a 24-cell starting with the 16 vertices
of the 4-dimensional cube, which has 8 facets, all of them 3-dimensional
cubes. See a Schlegel diagram of it in Figure 7.23. The other 8 vertices
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of the 24-cell are placed one “beyond” each of these 3-dimensional cubes.
Individually, each new vertex would replace a 3-cube from the boundary by
six square pyramids (in a Schlegel diagram, we would see the cube get cen-
trally subdivided). But they are at exactly the right distance around the cube
so that every two square pyramids adjacent to the base form the same facet,
which indeed is an octahedron. The 8× 6 = 48 sqared pyramids grouped
into 24 pairs form the eight octahedral facets of the 24-cell. Although this
is a slight abuse of notation, we will say that the eight new vertices are each
“inside” each of the 8 facets of the 4-cube, and that the square pyramids
“subdivide” the eight 3-cubes.

Figure 7.24: 3-dimensional analogy of the

construction of a 24-cell from a 4-dimensional

cube.

To clarify this, Figure 7.24 shows the analogue starting with a 3-cube.
In this case the outcome is not a regular polytope (one reason being that√

1 + 1 + 1 �= 2). Instead, it is the so-called rhombic dodecahedron. In-
cidentally, this polytope is the polar of the cube-octahedron we found in
Section 7.1.

One more feature of the 4-dimensional cube that we will benefit from
is that the its 8 facets can be divided into 2 cycles of 4 facets each, as
Figure 7.25 shows in a Schlegel diagram of the 4-cube. Each cube belongs
to one of the cycles and the other one goes around it (for the vertical cycle,
“around” means “through infinity”, in Figure 7.25).

Figure 7.25: Two solid tori in the boundary of the

4-dimensional cube.

Once we have chosen a specific decomposition of the boundary of the
4-cube into two cycles and a specific orientation for those two cycles, there
is an orientation of the whole 4-skeleton of the 24-cell which is “most com-
patible” with those choices: For the 32 edges that belong to the 4-cube,
take the direction parallel to the two cycles (the edges get divided into eight
cycles of length four). For the other 64 edges (eight inside each 3-cube)
choose the direction closer to the cycle containing that 4-cube. See Fig-
ure 7.26, where we show the orientation in each of the eight 3-cubes of
Figure 7.23 separately. We have that:

Proposition 7.2.14. The orientation of edges shown in Figure 7.26 is lo-
cally acyclic and it has no reversible edges.

Proof. Where are the 96 triangles of the 24-cell? Let us see. The decom-
position of each 3-cube into six square pyramids creates 12 triangles (one
joining each of the 12 edges of the 3-cube to the interior point). Since the
only cycles in the orientation of each 3-cube are the cycles of length four
coming from the 4-cube, no triangle gets a cycle.

To check edge reversals, first observe that the eight 3-cubes are equiva-
lent. Hence, we only need to check one of them; for example, the “smaller”
3-cube on the top right corner of Figure 7.23. The twelve triangles interior
to that 3-cube prevent the eight interior edges plus the four vertical edges
from being reversed. Since all the original edges of the 4-cube are also
equivalent under the symmetries of our construction, the eight horizontal
edges cannot be reversed either.

Remark 7.2.15. As usual, we are taking advantage of symmetries to reduce
the number of cases to be studied. As we have presented it, the construction
of our l.a.o. has 32 symmetries (the product of the four rotations along each
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Figure 7.26: A locally acyclic orientation of the

graph of a 24-cell.

cycle of 3-cubes multiplied by two, because there is a symmetry exchanging
the two cycles). But there are more symmetries in the final l.a.o. than in the
original 4-cube. In fact, the symmetry group of our l.a.o. has 96 elements,
and makes all the 96 triangles and 96 edges of the 24-cell equivalent to one
another.

The reader can check that the 24 octahedra of the 24-cell get exactly
the l.a.o. displayed in Figure 7.22. For the eight octahedra along the two
cycles of Figure 7.23, this is no surprise, but for the other 16 it is perhaps
unexpected. The four symmetries of any single octahedron times the 24
octahedra present (which are also equivalent by the orientation) give the 96
symmetries of the orientation.

Corollary 7.2.16. The graph of all locally acyclic orientations of the 2-
skeleton of a 24-cell has (at least) 12 isolated vertices and 13 components.

Proof. There are 12 different, but equivalent under symmetries of the 24-
cell, ways of constructing the l.a.o. of Proposition 7.2.14: On any partic-
ular octahedron the orientation we have chosen has 4 symmetries and the
octahedron itself has 48 symmetries, all of which are symmetries of the
24-cell.

L.a.o.’s of triangulations without reversible edges

For our application in the next section, we need a locally acyclic orienta-
tion of a triangulation of a point set. We can get one from the previous
example by triangulating the 24-cell and extending the orientation of the
previous example. Observe that in the l. a. o. of the 2-skeleton of the 24-
cell, the boundary of each of the 24 octahedra has received precisely the
non-globally acyclic orientation with one sink and one source that we de-
picted in Figure 7.22. This l.a.o. of the boundary of the octahedron can be
extended to a l.a.o. of a triangulation of the whole octahedron as shown in
Figure 7.28. Doing this in the 24 octahedra of the 24-cell, we get a l.a.o. of
a triangulation of the boundary of it.

Let us now remark that this orientation does not have any global sinks
or sources. Indeed, each individual octahedron has a source and a sink, but
each vertex of the 24-cell is incident to six octahedra and it is a sink in one,
a source in another one, and neither of the two in the other four. This is
interesting for the following reason:

Lemma 7.2.17. Let K be a simplicial complex, and consider a locally
acyclic orientation of it without reversible edges and without sinks (respec-
tively, without sources). Consider a cone K ∗ v over K and orient every
edge incident to v towards v (respectively, away from v). This gives a locally
acyclic orientation of K ∗ v without reversible edges.

Proof. Assume, without loss of generality, that the orientation of K has
no sinks. We need to show that no edge of the form vw, with w in K , can
be reversed. Since w is not a sink, there is an edge ww′ in K oriented
towards w′. Additionally, we have the edges wv and w′v oriented towards
v by construction. Then, the triangle ww′w in K ∗ v forces vw to be non-
reversible.
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Corollary 7.2.18. Extending the previous triangulation of the boundary of
the 24-cell to the interior by joining it to the centroid gives a triangulation
of 25 points in dimension four with a locally acyclic orientation that has no
reversible edges.

Can we do better? Yes. In particular, we can get a construction in dimen-
sion three as follows: consider the Schlegel diagram of the 24-cell. This
gives a polyhedral complex in R

3 with 24 vertices and 23 maximal cells,
all of them octahedra, and with the same 2-skeleton as the 24-cell. Ap-
ply to it the previous construction (including the step of triangulating the
octahedra). This way we get:

Corollary 7.2.19. There is a triangulation of 24 points in R
3 with a locally

acyclic orientation that has no reversible edges, sinks, or sources.

This construction will be instrumental in the next section.

7.2.4 Dimension 4: Layers of prisms

Let T be a triangulation of a d-dimensional point configuration B with n el-
ements. We are going to show how, from a locally acyclic orientation of T
without sources, sinks, or reversible edges, we can build triangulations in
dimension d +1 with an arbitrarily large number of vertices and a constant
number of flips.

We start with three copies of B embedded in R
d+1, parallel to one another.

This is the point configuration B×{−1,0,1}. For reasons to be explained
later, the points in B×{0} need to be slightly moved up or down along the
vertical lines passing through them, until the following genericity property
holds for B×{0}: when we embed in it the triangulation T of B, no two
adjacent maximal simplices lie in the same hyperplane. See Figure 7.27.

B0

B−1

B1

Figure 7.27: The starting point set A0.

The union of the three copies will be denoted A0 and from it we con-
struct, for any given k ∈N, a point configuration Ak with (k+2)n elements,
as follows: Let B−1 := B×{−1} and let B0 be the perturbed version of
B×{0} contained in A0. Let ε be a positive real number (we will later as-
sume it to be small) and let Bi, for each i = 1, . . . ,k be obtained by vertical
translation of positive length εi of the middle point configuration B0. Let
Bk+1 := B×{1 + εk}. Finally, let

Ak := B−1 ∪B0 ∪·· ·∪Bk ∪Bk+1.

In other words, Ak is obtained by separating the upper and lower halves
of A0 and inserting another k− 1 (perturbed) copies of B in between. See
a picture in Figure 7.29. For each element a or subset C of B, a(i), and C(i),
i = 0, . . . ,k will denote their counterparts in Bi.

In these conditions, the following is a polyhedral subdivision of Ak, that
we call Sk: We embed the original triangulation T in all the copies (per-
turbed or not) of B and fill in the spaces between consecutive copies with
prisms over the simplices of T . Some of the prisms will not have parallel
bases, but they are projectively equivalent to prisms with parallel bases and,
in particular, they have exactly the same triangulations.
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Figure 7.28: A locally acyclic orientation of a

triangulation of an octahedron.

B5

B4

B0

B−1

Figure 7.29: Insertion of 4 layers of prisms in a

triangulation.

We call i-th layer of Sk, for i = 0, . . . ,k + 1, the union of the prisms
between Bi−1 and Bi. There is a bottom or 0-th layer between B−1 and B0

and a top or k + 1-th layer between Bk and Bk+1.

If we want to refine Sk into a triangulation, we just need to triangulate
each of the prisms in the layers. For each such prism, triangulations are in
bijection with acyclic orientations of the 1-skeleton of its bottom base. As
in Lemma 7.2.9, the necessary and sufficient condition for triangulations
of adjacent prisms in the same layer to intersect properly is that acyclic
orientations coincide on their common edges. That is, triangulations that
refine Sk are in bijection to (k +2)-tuples of locally acyclic orientations of
T . Figure 7.30 shows how to triangulate the third layer in the example of
Figure 7.29.

B0

B−1

B0

B−1

B4

B5

B4

B5

Figure 7.30: Orienting the edges in B2 we

triangulate the third layer of Figure 7.29.

Theorem 7.2.20. Let G0 denote a locally acyclic orientation of T without
sinks, sources, or reversible edges. Take Gi equal to G0 for even i and
opposite to G0 for odd i. Let Tk be the triangulation of Ak obtained with
this process. Then,

1. For every flip of Tk, all the maximal simplices involved in the flip are
either in the top or bottom layers.

2. Tk has exactly the same number of flips as T0, for every even k.

Proof. As usual, we count flips by looking at which walls (codimension 1
simplices) of Tk support them. Let C be one such wall. If some maximal
simplex of which C is a facet is not in the top or bottom layers, then C is
contained in B0 ∪·· ·∪Bk.

The following three cases cover all possibilities for C. The cases are
illustrated in parts (a) through (c) of Figure 7.31, where the walls (edges, in
the figure) under study are drawn thicker.

(a) If C is contained in some Bi, i ∈ {0, . . . ,k}, then it cannot be flipped.
Indeed, by our choice that the orientations given to consecutive layers
are opposite, C is joined to the same point of the (i−1)-th and (i+1)-
th layer, this point being the sink of the orientation given to C. The cir-
cuit involved is 1-dimensional, namely ({a(i+1),a(i−1)},{a(i)}),
where a(i) is the sink of C. But the two edges of this circuit cannot
have the same link, because this common link should be contained in
Bi, which would imply that a(i) is a sink of the orientation given to
the i-th layer. That orientation has no sinks, because G0 has no sinks
or sources.

(b) If C is interior to a prism in some layer, then a flip in C corresponds
to a single-edge reversal in the orientation of the bottom base of this
prism. But this would also be a flip in the prisms over all other sim-
plices containing that edge, which would imply that the edge should
be reversible in Gi. This cannot happen since G0, hence Gi, has no
reversible edges.
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(c) Finally, suppose that C has vertices in two consecutive layers, Bi and
Bi−1, for some i ∈ {1, . . . ,n}, but it is not interior to a prism. That is
to say, the two maximal simplices C∪ a and C∪ b sharing C belong
to different prisms of the same layer. For the circuit contained in
C∪{a,b} to be flippable, we need (among other things) Tk to contain
a triangulation of C∪{a,b}.

But the assumption that the points in the intermediate copies of B
have generic heights implies that, if ε is sufficiently small, then the
convex hull of C ∪{a,b} is not contained in the layer containing C.
We assume ε to fit these requirements. Then some maximal simplex

B0

B−1

B0

B−1

(c)

(b)

(a)

B4

B5

B0

B−1

B4

B5

B4

B5

Figure 7.31: The four cases in the proof of

Theorem 7.2.20.

involved in the flip is contained in one of the layers neighbor to i,
which implies that one of the flippable walls is fully contained in the
copy of B between these two layers, a case we have already seen is
impossible.

The above case study implies Part 1 of the Theorem. Part 2 is straight-
forward from it: if all the simplices involved in the flip lie in the first or
last layer, then the flip was already present in T0, because the first and last
layers are just translations of the two layers in T0.

Corollary 7.2.21. There are triangulations in dimension 4 with arbitrarily
many vertices and a constant number of flips.

Proof. Consider the 3-dimensional triangulation of Corollary 7.2.19, with
the locally acyclic orientation that we constructed there, which has neither
reversible edges, sinks, nor sources. Apply to it Theorem 7.2.20.

Remark 7.2.22. The ideas in this section come from [279]. There, the origi-
nal 3-dimensional triangulation used has 15 vertices, and the 4-dimensional
arbitrarily large triangulations obtained are shown to have at most nine flips.

7.3 Dimension 5: A disconnected graph of triangulations
with unimodular triangulations

The construction we present here is also based on layers of prisms, except:

• There will only be one layer.

• The key point is that we are not interested in the whole layer, but only
in some faces of its convex hull. Put differently, we do not look at
locally acyclic orientations of a whole triangulation, but just those of
a certain subcomplex of it.

7.3.1 Locally acyclic orientations of boundary subcomplexes

Let A be a point configuration and let F be a simplicial face of it. Remember
that, as introduced in Chapter 2, by this we mean that convA(F) is a simplex
and, moreover, no element of A except those in F are contained in convA(F).

Then, prism(F) is a face of prism(A) and it is a prism over a simplex. Ev-
ery triangulation of prism(A) can be restricted to a triangulation of
prism(F), which in turn can be represented as an acyclic orientation of
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the complete graph on F . Any flip in a triangulation of prism(A) will
either leave the triangulation of prism(F) unchanged or will produce a flip.
Summing up: There is a map from the graph of triangulations of prism(A)
to the graph of acyclic orientations of B. When we say we have a map
between two graphs f : G → G ′, we mean that f maps vertices of G to ver-
tices of G ′, and the image of every edge of G is either an edge or a single
vertex in G ′.

Let us now consider a simplicial subcomplex K of the boundary com-
plex of A; that is, a collection of simplicial faces F1, . . . ,Fk of A, closed
under taking faces. As before, every triangulation T of prism(A) induces
a triangulation in each of the products prism(Fi), and hence an acyclic ori-
entation of the edges of each F . If an edge e is common to two of the
simplices Fi and Fj, then the orientation recieved by e from the two trian-
gulated prisms is the same, because this orientation indicates only which of
the two diagonals of prism(e) appears in T .

That is to say:

Lemma 7.3.1. The above procedure induces a map from the graph Gtri

prism(A) of triangulations of prism(A) to the graph Gl.a.o.(K ) of locally
acyclic orientations of K .

Observe a difference between this lemma and Lemma 7.2.9: The state-
ment of Lemma 7.2.9 can be thought of as giving a map in the opposite
direction: if T is a triangulation of A, there is an injective map (an immer-
sion) of the graph Gl.a.o.(T ) into Gtri prism(A).

Proof. We know how to associate a locally acyclic orientation of K to
each triangulation. And we know that each bistellar flip in triangulations of
K corresponds to at most a single-edge reversal in each triangle of K . Is
it obvious that two edges of different simplices cannot be reversed by the
same flip in triangulations of A? It is, because the flip which reverses a
certain edge e is precisely the one supported on the circuit prism(e).

Remark 7.3.2. The map of Lemma 7.3.1 need not be surjective. For exam-
ple, Rambau [266] has shown that if P is the vertex set of a convex (not
necessarily regular) polygon and K is its boundary complex, the cyclic
orientation of K is not in the image of the map of Lemma 7.3.1. Put differ-
ently, the helix-like triangulation of the vertical boundary prism(K ) of a
prism cannot be extended to a triangulation of the prism (see Figure 7.32).

Figure 7.32: The cyclic orientation of a polygon

(top) represents a triangulation of the vertical

faces of a prism (bottom) that cannot be

extended to a triangulation of the whole prism.

In particular, knowing that Gl.a.o.(K ) is disconnected does not automati-
cally imply that Gtri(A) is disconnected. It needs to be checked that locally
acyclic orientations from at least two connected components of Gl.a.o.(K )
are in the image of this map. Lemma 7.2.9 is useful for this purpose. It
guarantees that orientations which can be extended to locally acyclic orien-
tations of a triangulation of A are in the image.

With this, we are ready to construct our first point set with a disconnected
graph of triangulations. Remember that the 24-cell is a 4-dimensional poly-
tope whose 2-skeleton is simplicial and which has locally acyclic orienta-
tions without reversible edges (Corollary 7.2.18).
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Theorem 7.3.3. Let B be the vertex set of a 24-cell and let o be its centroid.
Let A = B∪{o}. Then:

1. There are (at least 12) locally acyclic orientations of the 2-skeleton
of A that have no reversible edges and that can be extended to locally
acyclic orientations of triangulations of A.

2. Hence, the graph of triangulations of the 5-dimensional configura-
tion A× I has at least 13 connected components.

Proof. Part 1 is Corollary 7.2.18 and Part 2 follows from it by Lemma 7.3.1.
The twelve locally acyclic orientations without reversible edges are in the
image of the map of that lemma because they can be extended to triangu-
lations. They are images of twelve different connected components of the
graph of triangulations of prism(A). The thirteenth component is the one
containing regular triangulations. Observe that the component of Gl.a.o.(K )
containing the image of the regular triangulations contains all the globally
acyclic orientations of K , hence it is different from the previous 12.

7.3.2 Unimodular triangulations in different components of the graph
of triangulations

Recall that a triangulation of an integer point configuration is called unimod-
ular if all its simplices have determinant equal to ±1. Unimodular triangu-
lations have even stronger connections with algebraic geometry than non-
unimodular ones. Hence, after the first example of a disconnected graph
of triangulations was found [278], there was still interest in the following
question: is there an integer point set that has unimodular triangulations in
different components of the graph of flips? The locally acyclic orientation
of the 24-cell that we have just shown was constructed in [283] to answer
this question positively. This provided, in particular, an example of a non-
connected toric Hilbert scheme, in the sense of [251], by a result of [223].

To show that the disconnected graph of triangulations of Theorem 7.3.3
has unimodular triangulations in different components, we use the coordi-
natization in which the vertices of the 24-cell are

(±1,±1,0,0), (±1,0,±1,0), (±1,0,0,±1),
(0,±1,±1,0), (0,±1,0,±1), (0,0,±1,±1). (7.3)

We first compute the determinants of the simplices in the triangulation of
Corollary 7.2.18. Each such simplex has as vertices the centroid (0,0,0,0)
plus four of the six vertices of a facet of the 24-cell (regular octahedron).
Being a regular polytope, which octahedron we look at is irrelevant, and it
is easy to check that all the tetrahedra with vertices in a regular octahedron
have the same volume, so we choose an arbitrary one. For example, we
look at the octahedron whose facet-defining equation first coordinate equal
to one and at the simplex {(1,−1,0,0),(1,1,0,0),(1,0,1,0),(1,0,0,1)}.
Adding the centroid and an extra coordinate equal to 1 to every point for
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homogenization, the determinant we want to look at is:
∣
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∣
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∣
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1 1 1 1 1
0 1 1 1 1
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0 0 0 1 0
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−1 1 0 0
0 0 1 0
0 0 0 1

∣
∣
∣
∣∣
∣
∣
∣

=
∣
∣∣
∣

1 1
−1 1

∣
∣∣
∣= 2.

But wait, that is not unimodular! What happens is that all the points in
our configuration (the hcentroid and the vertices of the octahedron) lie in a
proper sublattice of Z

4; namely, the sublattice consisting of all points with
an even sum of coordinates. This means that there is an affine mapping that
reduces volume and sends our point set to another one that still has integer
coordinates. In our case, one such projection is

f (x1,x2,x3,x4) = (x1,x2,x3,(x1 + x2 + x3 + x4)/2).

Since the determinant of this map is 1/2, it reduces all volumes by one half.
See an analogue of this in Figure 7.33. So:

Figure 7.33: A triangulation of a point set in a

proper sublattice of Z
d may become unimodular

when the sublattice is sent to Z
d .

Lemma 7.3.4. In the coordinatization obtained by the map f above, the tri-
angulation T of Corollary 7.2.18 is unimodular. Hence, all the refinements
of prism(T ) are unimodular also.

Proof. We have also shown that T is unimodular. The second statement
comes from the fact that all simplices in refinements of prism(T ) have
vertices contained in the prism over a (unimodular) simplex. Since the
prism over a simplex is totally unimodular (Lemma 6.2.5), our simplices
are unimodular.

Corollary 7.3.5. Let prism(A) be as in Theorem 7.3.3.
The thirteen connected components of the graph of triangulations of it

contain unimodular triangulations.

Proof. For the twelve non-regular components, the previous lemma proves
this. These components contain refinements of prism(T ), for the T in the
lemma.

For the regular component, we can proceed similarly. Triangulate A
by first pulling the interior point (which gives a subdivision consisting of
the 24 cones over the octahedral facets) and then refining this subdivision
to a triangulation T ′ in an arbitrary, but regular, way; for example, in a
lexicographic way. All the simplices in this triangulation of A consist of
the centroid joined to a tetrahedron inscribed in an octahedral facet, hence
they are unimodular, as we have seen above. With the same argument of
Lemma 7.3.4, all the refinements of prism(T ′) are unimodular as well. The
ones obtained with globally acyclic orientations of the graph of T ′ are reg-
ular, by Lemma 7.2.9.

7.3.3 Exponential number of components in the graph of flips

Combining the construction we have just done with the idea of stacking
layers of prisms that we used in Section 7.2.4, we can get examples of point



362 Some Interesting Triangulations

configurations in dimension 5 in which the number of connected components
in the graph of triangulations grows exponentially with the number of points.

We start with the 24-cell, and let B be the configuration consisting of
its 24-vertices plus its centroid, as in Theorem 7.3.3. We construct the
following “fattened product” of it with a path: let f (x) be a concave and
positive function on the interval [0,n], and let

An := ∪k
i=0 f (i)B×{i},

where f (i)B denotes the dilation of B by a factor of f (i).

B

Figure 7.34: The “fattened product” construction.

Figure 7.34 sketches the construction. The key idea is that the vertical
part of the face complex of prism(B) is repeated k times in A and we know
that the triangulations of that part provide (at least) 13 connected compo-
nents in the graph. What we would like to do is say that these k copies of
the relevant face complex can be triangulated independently, which would
provide us with 13k connected components. Unfortunately, that may not
be true. The common boundary of every two layers is a triangulated 24-
cell, and we cannot guarantee in principle that the two triangulations of it
coming from the two adjacent layers match to one another. . .

. . . Unless we take the same triangulation for all the copies of the 24-cell.
Observe that the 12 ways of constructing a special locally acyclic orien-
tation mentioned in Corollary 7.2.18 come in 6 pairs of opposites. The
triangulation used for one orientation and the opposite one is the same (re-
member that the triangulation of Figure 7.22 is based on how to triangulate
the octahedron in a way compatible with the orientations given). Hence,
even if we consider only triangulations that refine the product prism(T ) of
a particular triangulation T we can get three connected components in the
graph of triangulations of the vertical boundary of prism(B), which implies:

Theorem 7.3.6. The fattened product Ak, of dimension 5 and with 25(k +
1) elements, has a disconnected graph of triangulations with at least 3k

connected components, for every k ∈ N.

7.4 Dimension 6: A disconnected graph of triangulations
in general position

In this section we describe a point set in general position with a discon-
nected graph of triangulations. The example has seventeen points and lies
in R

6.
There are several reasons why having an example of a disconnected

graph of triangulations in general position is interesting. In engineering ap-
plications, the coordinates of points are sometimes approximate and there is
no loss in perturbing them into general position, that is, the general position
case is sometimes the only case. Even in a purely theoretical framework,
point sets in general position have simpler properties than those in special
position. For example, showing a disconnected graph of flips in general
position served to disprove the so-called Generalized Baues Conjecture for
subdivisions of point configurations (see Remark 9.1.17).

Moreover, only in general position are flips truly local operations: a flip
in general position in dimension d involves d + 2 points, while a flip in
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non-general position may involve arbitrarily many points (those in the tri-
angulated circuit plus those in the link of it). Probably for this reason, some
computational geometry authors define flips only in general position. See,
for example, [114].

7.4.1 The building block: Gale octagons

All throughout Section 7.4, A0 denotes the configuration consisting of the
columns a j of the following matrix, labeled by J0 = {1,2, . . . ,8}:

⎛

⎜
⎜
⎜⎜
⎜
⎜
⎝

1 2 3 4 5 6 7 8

x1 1 0 0 0 1 0 0 0
x2 0 1 0 0 0 1 0 0
x3 0 0 1 0 0 0 1 0
x4 0 0 0 1 0 0 0 1
x5

√
2 1 0 −1 −√

2 −1 0 1
x6 0 1

√
2 1 0 −1 −√

2 −1

⎞

⎟
⎟
⎟⎟
⎟
⎟
⎠

.

This is a rank 6 homogeneous vector configuration or, equivalently, a point
configuration in the 5-dimensional real affine space embedded in the hyper-
plane with equation x1 + x2 + x3 + x4 = 1 in R

6. The projection to the last
two coordinates sends the eight points to the vertices of a regular octagon,
keeping their order. In particular, the eight points of A0 are extremal (that
is, vertices of conv(A0)). The projection to the first four coordinates sends
each pair of opposite points {i, i+ 4} to a different vertex of a tetrahedron.
The affine symmetry group of the configuration is the dihedral group D16

of symmetries of the octagon.
To better understand the structure of A0—and its triangulations—we con-

struct a Gale transform of it:

A∗
0 :=

(
1 2 3 4 5 6 7 8√
2 −1 0 1 −√

2 1 0 −1
0 −1

√
2 −1 0 1 −√

2 1

)
.

The elements a∗j of A∗
0 are again (in the directions of) the vertices of a

regular octagon, except they are not in the same order (see Figure 7.35).
Also, and more importantly, we now have to think of them as vectors, rather
than points.

a∗3

a∗6

a∗1

a∗4

a∗7
a∗2

a∗5

a∗8

Figure 7.35: The Gale transform of A0, with one

chamber marked.

From this Gale transform we can read the face structure of the polytope
conv(A0). The set of vertices of each facet of A0 is the complement of a
positive circuit in A∗

0, and there are twelve of them:

• Eight with dependence a∗i−1 +
√

2a∗i +a∗i+1 = 0 (indices are regarded
modulo 8). The corresponding facets in A0 are 4-dimensional sim-
plices.

• Four of the form a∗i + a∗i+4 = 0. The corresponding facet of A0, that
we denote Fi,i+4, has six vertices and dimension four. Hence, it is
not a simplex. In fact, its six vertices form a circuit, whose affine
dependence is

ai+1 +
√

2ai+6 + ai+3 = ai+5 +
√

2ai+2 + ai+7.
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A0 has corank two, so all its triangulations are regular (Theorem 5.5.9).
From the Gale transform we also read, via Theorem 5.4.7, that A0 has ex-
actly eight regular triangulations, with the graph of bistellar flips being a cy-
cle. More precisely, for each i ∈ {1, . . . ,8}, there is a unique triangulation
of A0 that contains the simplex J0 \ {i, i+ 3}. We denote this triangulation
Ti,i+3. For example, the chamber marked in Figure 7.35 corresponds to the
triangulation T3,6 consisting of the following six 5-dimensional simplices
and eight adjacencies among them:

{1,2,5,6,7,8} — {2,4,5,6,7,8}
\ / \
{1,2,4,5,7,8} {2,3,4,5,6,7}
/ \ /

{1,2,3,4,7,8} — {1,2,3,4,5,7}

(7.4)

That A0 has only eight triangulations contrasts the fact that the boundary
of conv(A0) can be triangulated in sixteen ways. Indeed, since all ridges
(codimension 2 faces) of conv(A0) are simplices, to triangulate ∂ conv(A0)
we can independently triangulate the four facets which are not simplices.
Each of them is a circuit, hence it has two triangulations. It can be checked
that different triangulations of A0 have distinct restrictions to ∂ (conv(A0)),
so that:

Lemma 7.4.1. Exactly eight triangulations of the boundary ∂ (conv(A0))
can be extended to triangulations of A0, each in a unique way.

Example 7.4.2. That triangulations of the boundary of a polytope may
sometimes not be extendable to the whole polytope (without using addi-
tional interior points as vertices) is a well-known fact that occurs also in
three-dimensional examples such as the cube or the triangular prism, as we
have seen already in Chapter 6. Let us analyze the latter again. Matrices
for the triangular prism and its Gale transform are, for example,

⎛

⎜
⎜
⎝

1 2 3 4 5 6

1 − 1
2 − 1

2 1 − 1
2 − 1

2

0
√

3
2 −

√
3

2 0
√

3
2 −

√
3

2
0 0 0 1 1 1
1 1 1 1 1 1

⎞

⎟
⎟
⎠

and

( 1 2 3 4 5 6

1 − 1
2 − 1

2 −1 1
2

1
2

0
√

3
2 −

√
3

2 0 −
√

3
2

√
3

2

)

.

a∗5

a∗6

a1
a2

a3

a4

a5

a6

a∗1

a∗2

a∗3

a∗4

Figure 7.36: A “Gale hexagon” is the vertex set

of a triangular prism. Here we see its Gale

transform with the chamber 35 marked (above).

This chamber corresponds to the triangulation

{1236,1246,2456} (below).

There are several properties in this example similar to those of the config-
uration A0: The Gale transform consists of three pairs of opposite vectors;
the prism has three special facets which are not simplices but instead sup-
port unique circuits; the boundary can be triangulated in 23 = 8 ways, of
which only six can be extended to the interior, etc.

A crucial point in order to understand what follows is how to read, in the
Gale transform, which triangulation of the boundary is induced by a certain



7.4. Dimension 6: A disconnected graph of triangulations in general position 365

triangulation of A0. Let us explain this with the facet F1,5 := conv(J0 \
{1,5}). Since the circuit formed by its six vertices is ({2,4,7},{3,6,8}),
the two triangulations of F1,5 are

T+ := {{3,4,6,7,8},{2,3,6,7,8},{2,3,4,6,8}},
T− := {{2,4,6,7,8},{2,3,4,7,8},{2,3,4,6,7}}.

Let Ti,i+3 be one of the triangulations of A0, corresponding to the cham-
ber between the rays i and i+3. Then, at least one of i and j, say i, is not in
{1,5}. Also, exactly one of cone({1, i}) and cone({5, i}), say cone({1, i}),
contains the sector cone({i, i+ 3}). Then, J0 \ {1, i} is a simplex in Ti,i+3.
Hence, the triangulation of F1,5 is (in this case) the one that contains the
simplex J0 \ {1,5, i}. In other words:

Lemma 7.4.3. The triangulation of F1,5 induced by a triangulation Ti,i+3

of A0 is T+ if and only if the chamber corresponding to Ti,i+3 lies on the
side of the line through {1,5} that contains 2, 4 and 7.1

The following corollary is crucial for our construction.

Corollary 7.4.4. The flip between the triangulations Ti−3,i and Ti,i+3 of
A0 preserves the triangulations induced in the facets Fi+1,i+5 and Fi+2,i+6

and switches the triangulations induced in the facets Fi,i+4 and Fi+3,i+7.

7.4.2 Seventeen points in special position

Let A be the point set defined by the columns ak of the matrix displayed in
Figure 7.1, labeled by K = {0,1+, . . . ,8+,1−, . . . ,8−}. The matrix is writ-
ten in two pieces for typographic reasons. A is a configuration of 17 points
in R

6 (the first row in the matrix is, as usual, a homogenization coordinate)
and consists of the origin and two copies of the configuration A0 of the pre-
vious section, placed centrally symmetrically around the origin. Observe
that the point opposite to i+ is (i + 4)−, rather than i−. Our indexing is
chosen so that i+ and i− go to the same vertex of a regular octagon via the
projection onto the last two coordinates.

The affine symmetry group of A is Z2 ×Z2 ×Z2 ×Z2 ×D16, the last fac-
tor acting as the octagon symmetries on the last two coordinates (with the
corresponding permutations of the first four coordinates) and the Z2 factors
by sign reversal, one on each of the first four coordinates. In particular, A
contains 16 facets affinely equivalent to A0, that we denote Fδ1,δ2,δ3,δ4

, with
δi ∈ {+,−}. More precisely,

Fδ1,δ2,δ3,δ4
:= {1δ1 ,2δ2 ,3δ3 ,4δ4 ,5δ1 ,6δ2 ,7δ3 ,8δ4}

is the label set of the facet defined by the equation

δ1x1 + δ2x2 + δ3x3 + δ4x4 = 1.

1In oriented matroid language: a triangulation restricts to the positive triangulation of the
circuit ({2,4,7},{3,6,8}) if and only if the dual chamber lies in the positive side of the corre-
sponding cocircuit ({2,4,7},{3,6,8}).
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A :=

⎛

⎜
⎜
⎜
⎜
⎜
⎜⎜
⎜
⎜
⎜
⎜
⎝

0 1+ 2+ 3+ 4+ 5+ 6+ 7+ 8+

1 1 1 1 1 1 1 1 1 . . .

x1 0 1 0 0 0 1 0 0 0 . . .

x2 0 0 1 0 0 0 1 0 0 . . .

x3 0 0 0 1 0 0 0 1 0 . . .

x4 0 0 0 0 1 0 0 0 1 . . .

x5 0
√

2 1 0 −1 −√
2 −1 0 1 . . .

x6 0 0 1
√

2 1 0 −1 −√
2 −1 . . .

. . . 1− 2− 3− 4− 5− 6− 7− 8−

. . . 1 1 1 1 1 1 1 1

. . . −1 0 0 0 −1 0 0 0

. . . 0 −1 0 0 0 −1 0 0

. . . 0 0 −1 0 0 0 −1 0

. . . 0 0 0 −1 0 0 0 −1

. . .
√

2 1 0 −1 −√
2 −1 0 1

. . . 0 1
√

2 1 0 −1 −√
2 −1

⎞

⎟⎟
⎟
⎟
⎟
⎟
⎟⎟
⎟
⎟
⎟
⎠

Table 7.1: A point configuration with a disconnected

space of triangulations.

Each Fδ1,δ2,δ3,δ4
is adjacent to the other four, namely the ones whose la-

bels differ from (δ1,δ2,δ3,δ4) on a single δi. Their common face, a ridge of
A, is one of the non-simplicial ones denoted Fi,i+4 in the previous section.
In other words, the adjacency graph among the sixteen Fδ1,δ2,δ3,δ4

’s is that of
a four-dimensional cube, and each adjacency happens on a 4-dimensional
face with six vertices, hence containing a unique circuit. The full list of
facets of the polytope conv(A) consists of the 16 non-simplicial facets iso-
morphic to A0, together with 96 five-dimensional simplices which fall into
two orbits via the symmetry group. There are 64 simplices in one orbit and
32 in the second. The f -vector of conv(A) is (16,112,352,528,384,112).

We now wish to fix a certain triangulation of the boundary of conv(A).
To this end, we only need to say which of the eight possible triangulations
we use in each of the sixteen non-simplicial facets Fδ1,δ2,δ3,δ4

. Since each
such facet contains one member of every pair {i+, i−}, there is a canonical
isomorphism from it to the configuration A0, so we specify a triangulation
of Fδ1,δ2,δ3,δ4

via a triangulation of A0, that is, a chamber in the Gale trans-
form A∗

0. Our choice is to triangulate Fδ1,δ2,δ3,δ4
with:

• the chamber cone(3,6), if δ1 = δ2 and δ3 = δ4;

• the chamber cone(1,4), if δ1 = δ2 and δ3 �= δ4;

• the chamber cone(5,8), if δ1 �= δ2 and δ3 = δ4;

• the chamber cone(7,2), if δ1 �= δ2 and δ3 �= δ4.
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Figure 7.37 shows this choice pictorially. Arrows represent adjacencies
between different F∗,∗,∗,∗’s. The arrow directions are convenient to follow
the following proof.

+ + + −
+ − − +
+ − + −

− + + −
− + − +

+ + − +
− − + −
− − − +

+ − + +

+ − − −

− + + +

− + − −

+ + + +

+ + − −

− − + +

− − − −

x4

a∗2
a∗5

a∗8
a∗3

a∗6

a∗1

a∗4 x1

x2

a∗2
a∗7

a∗5

a∗8
a∗3

a∗6

a∗1

a∗4

x3x4

a∗7
a∗2

a∗5

a∗8
a∗3

a∗6

a∗1

a∗4x2

x1

a∗1

a∗4
a∗7

a∗2
a∗5

a∗8
a∗3

a∗6

x3

a∗7

Figure 7.37: A schematic view of a certain

triangulation of ∂ conv(A).

Lemma 7.4.5. 1. The triangulations in adjacent F∗,∗,∗,∗’s are compati-
ble, that is, this choice defines a triangulation K of ∂ conv(A).

2. There are triangulations of A inducing K on the boundary.

3. If T is a triangulation of A inducing K on the boundary, and T ′ is
obtained from T by a flip, then T ′ still induces K on the boundary;
that is, the subcomplex K of a triangulation cannot be destroyed by
flips.

Proof. 1. The compatibility condition for the triangulations chosen in dif-
ferent F∗,∗,∗,∗’s is that if Fδ1,δ2,δ3,δ4

and Fε1,ε2,ε3,ε4 are adjacent (that is, if
δi = −εi for some i ∈ {1,2,3,4} and δ j = ε j for all j �= i), then their trian-
gulations induce the same triangulation on their common facet Fi,i+4. By
Lemma 7.4.3, this is equivalent to saying that the chambers chosen to tri-
angulate Fδ1,δ2,δ3,δ4

and Fε1,ε2,ε3,ε4 lie on the same side of the line through
i and i + 4. That this holds can be readily checked in Figure 7.37, where
each adjacency (arrow) is labeled by the coordinate in which the neighbor-
ing F∗,∗,∗,∗’s differ.

2. This part is trivial. It suffices to cone K to the origin 0, as we did in
the 24-cell (Corollary 7.2.18).

3. If a flip changes K , then the flip must happen on a circuit contained
in a non-simplicial facet Aδ1,δ2,δ3,δ4

, hence in the circuit common to two of
them.
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What is special about our triangulation K of ∂ conv(A) is that, in ev-
ery adjacency between two F∗,∗,∗,∗’s, the triangulation on one side has the
property that none of its two flips changes the triangulation induced in the
common facet. In the picture, this is indicated by the arrows. Arrows are
labeled x1, x2, x3, or x4 indicating which of the first four coordinates is zero
in the common facet of the corresponding F∗,∗,∗,∗’s. The arrow labeled xi

points to the side where no chamber adjacent to the shaded one lies on the
opposite side of the line through i and i+4, that is, no flip changes the trian-
gulation in any of the 32 ridges between the F∗,∗,∗,∗’s, and the triangulation
of the ridges uniquely defines the triangulation of the F∗,∗,∗,∗’s too.

As a consequence, the triangulations of A that induce this boundary tri-
angulation are not connected by flips to other triangulations of A. We
conclude that the graph of triangulations of A is not connected. More
precisely:

Theorem 7.4.6. The graph of triangulations of A has at least 9 connected
components.

Proof. There are eight triangulations of the boundary of conv(A) affinely
equivalent to the one we have described: first, there are two choices of how
to pair the four coordinates x1, x2, x3 and x4: we have chosen the pairing
x1–x2, x3–x4, but the pairing x1–x4, x2–x3 is equivalent to it since a cyclic
permutation of the four coordinates, together with a 90-degree rotation on
the plane x5–x6, leaves A invariant.

Second, once the pairing x1–x2, x3–x4 is chosen, we can switch our
choice of triangulations for the F∗,∗,∗,∗’s in two ways, giving a total of
four choices. Indeed, we can switch the triangulations chosen for the cases
where δ1 and δ2 are equal or different and, independently, those chosen for
the cases where δ3 and δ4 are equal or different.

The previous lemma implies that triangulations of A exist, inducing these
8 boundary triangulations, and that they lie in 8 different components of the
graph of flips (or possibly more, the graph of triangulations of A inducing
a certain boundary triangulation could as well be not connected). To these
8, we have to add the component containing all the regular triangulations
of A.

Two final remarks concerning this construction are:

1. A different way of proving that “there are 8 boundary triangulations
affinely equivalent to ours” is to observe that the symmetry group
of A has order 256, while the symmetry group of our triangulation
has order 32. Table 7.2 in the next section describes four symme-
tries, which generate 16 of them, but there is a fifth generator, namely
“change sign of first coordinate and rotate the plane x5–x6 = 0 by 90
degrees”.

2. Each of the 9 connected components mentioned above can be easily
proved to contain at least 216 triangulations, by an analysis of what
flips are possible in the triangulation that cones the central point 0
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to everything in the boundary. This triangulation has 32 flips, each
involving 0 coned to six of the simplicial facets of conv(A). Among
them one can find 16 non-overlapping sets, which can be flipped in-
dependently.

7.4.3 A disconnected space of triangulations in general position

We now consider the following perturbation A(t) of A, where t denotes a
sufficiently small and positive real constant.

⎛

⎜⎜
⎜
⎜
⎜
⎜
⎜⎜
⎜
⎜
⎜
⎝

0 1+ 2+ 3+ 4+ 5+ 6+ 7+ 8+ . . .

1 1 1 1 1 1 1 1 1 . . .

x1 0 1 −t 0 0 1 t 0 0 . . .

x2 0 t 1 0 0 −t 1 0 0 . . .

x3 0 0 0 1 −t 0 0 1 t . . .

x4 0 0 0 t 1 0 0 −t 1 . . .

x5 0
√

2 1 0 −1 −√
2 −1 0 1 . . .

x6 0 0 1
√

2 1 0 −1 −√
2 −1 . . .

. . . 1− 2− 3− 4− 5− 6− 7− 8−

. . . 1 1 1 1 1 1 1 1

. . . −1 t 0 0 −1 −t 0 0

. . . −t −1 0 0 t −1 0 0

. . . 0 0 −1 t 0 0 −1 −t

. . . 0 0 −t −1 0 0 t −1

. . .
√

2 1 0 −1 −√
2 −1 0 1

. . . 0 1
√

2 1 0 −1 −√
2 −1

⎞

⎟
⎟⎟
⎟
⎟
⎟
⎟
⎟⎟
⎟
⎟
⎠

.

By saying that A(t) is a perturbation of A, we mean that every determi-
nant which is non-zero in the oriented matroid of A keeps its sign in the
oriented matroid of A(t). This occurs when t is sufficiently small (and it
can be taken as a definition of “sufficiently small”).

Observe that A(t) is not in general position. For example, for every
i = 1,2,3,4, we have the affine dependence

ai+(t)+ a(i+4)+(t)+ ai−(t)+ a(i+4)−(t) = 4a0.

However, A(t) is in “sufficiently” general position for our purposes, in the
sense that all properties needed in our proof will be preserved in any suffi-
ciently small perturbation of A(t) into general position.

Our main new result, proved in the rest of this section, is:

Theorem 7.4.7. Let t be a sufficiently small and positive constant.

1. There are triangulations of A(t) containing the simplicial complex
K introduced in the previous section.
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2. If T is a triangulation of A(t) containing the simplicial complex
K , then every triangulation obtained from T by a flip contains the
simplicial complex K . In particular, the graph of triangulations of
A(t) is not connected.

3. The previous two statements remain true if A(t) is perturbed into
general position in an arbitrary way.

We start by describing the affine symmetry group of A(t). It has order 16,
and is generated by the four isometries displayed in Table 7.2. The action
of each on the first four coordinates is indicated as a 4×4 matrix, while the
action on the last two coordinates is described in words.

Action on Action on (x5,x6)
(x1,x2,x3,x4) [octagon symmetry]

⎛

⎜
⎜
⎝

−1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 1

⎞

⎟
⎟
⎠ Identity

⎛

⎜⎜
⎝

1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

⎞

⎟⎟
⎠ Identity

⎛

⎜
⎜
⎝

−1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 1

⎞

⎟
⎟
⎠

Rotation 180o

1 ↔ 5, 2 ↔ 6

3 ↔ 7, 4 ↔ 8

⎛

⎜
⎜
⎝

0 1 0 0
−1 0 0 0
0 0 0 1
0 0 1 0

⎞

⎟
⎟
⎠

Reflection
1 ↔ 2, 8 ↔ 3

7 ↔ 4, 6 ↔ 5Table 7.2: Symmetries in the perturbed

configuration A(t).

From this list it follows that:

Lemma 7.4.8. The affine symmetry group of A(t) acts transitively over
the sixteen subconfigurations B(t)|Fδ1,δ2,δ3,δ4

and preserves the simplicial
complex K .

Proof. The first two symmetries transitively permute the four F∗,∗,∗,∗’s on
which we have chosen the same triangulation, while the third exchanges
the groups of F∗,∗,∗,∗’s diagonally opposite in Figure 7.37, and the fourth
exchanges those in the same row of the figure. In both cases, the Gale
octagon is transformed in a precise way as to preserve K .

The lemma implies that we can focus on studying what the transforma-
tion does to one of the sixteen subconfigurations F∗,∗,∗,∗, namely F+,+,+,+.
For this, we show a Gale transform of the nine points {0}∪F+,+,+,+. It is
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as follows, where c equals the constant
√

2−1; Figure 7.38 shows a picture
of the transform.

(
0 1+ 2+ 3+ 4+ 5+ 6+ 7+ 8+

4t 1−t −1−t c(1+t) c(1−t) −(1+t) 1−t −c(1−t) −c(1+t)
−4t c(1+t) c(1−t) −(1−t) 1+t −c(1−t) −c(1+t) 1+t −(1−t)

)
.

a∗3a∗8

a∗5

a∗2

o∗

a∗1

a∗4
a∗7

a∗6

Figure 7.38: Gale transform of {0}∪F+,+,+,+

after perturbation.

From this Gale transform we can determine the following properties:

Lemma 7.4.9. 1. {0}∪F+,+,+,+ is in general position. In particular,
both convA(t)(F+,+,+,+) and conv(A(t)) are simplicial polytopes.

2. F+,+,+,+ is a circuit in A(t). The signed circuit is:

({1+,4+,6+,7+},{2+,3+,5+,8+}).

3. F+,+,+,+ intersects any other Fδ1,δ2,δ3,δ4
in a common simplicial face,

of dimension 2s− 1, where s is the number of positive signs among
the four δ ’s.

4. The part of the boundary of F+,+,+,+ visible from 0 contains precisely
the triangulation T3,6 that we chose for F+,+,+,+ in the previous sec-
tion.

Proof. 1. {0}∪F+,+,+,+ is in general position, since its Gale transform
is in general position. In particular, convA(t)(F+,+,+,+) is clearly simpli-
cial, since it is in general position. For conv(A(t)), observe that all its
non-simplicial faces should be contained in non-simplicial faces of the un-
perturbed polytope conv(A). Since the latter has the sixteen F∗,∗,∗,∗’s as its
only non-simplicial facets, and since these facets have been perturbed into
general position, conv(A(t)) is simplicial.

2. The two rows in the Gale transform of {0}∪ F+,+,+,+ are the co-
efficient vectors of two affine dependences. Their sum, which is posi-
tive on {1+,4+,6+,7+} and negative on {2+,3+,5+,8+}, is the unique
affine dependence in F+,+,+,+. Another way of proving this part is by
looking at Figure 7.38: The hyperplane (line) passing through 0 leaves
{1+,4+,6+,7+} and {2+,3+,5+,8+} on different sides. This is a cocir-
cuit in Gale({0}∪F+,+,+,+), hence a circuit in {0}∪F+,+,+,+.

3. The intersection of F+,+,+,+ and Fδ1,δ2,δ3,δ4
has 2s elements, so we

only need to show that these elements form a simplicial face. Now, since
F+,+,+,+ is a circuit, all proper subsets of it are independent, and the only
ones that are not faces are those containing either the positive or the neg-
ative part of the circuit. In our case, both the positive and the negative
parts contain one element of each pair i+,(i + 4)+,}, so none of them is
contained in the intersection of F+,+,+,+ and Fδ1,δ2,δ3,δ4

.
4. A facet F of F+,+,+,+ visible from 0 corresponds to a cocircuit of

the form (F,0) in {0} ∪ F+,+,+,+, that is to say, to a circuit (F,{0}) in
the Gale transform. Hence, the statement follows from the fact that, after
the perturbation, 0 lies in precisely the (perturbed) chamber of the Gale
transform corresponding to T3,6.
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Property 3 implies that the following is a triangulation of A(t): Consider
an arbitrary triangulation of each perturbed F∗,∗,∗,∗, and cone to 0 the parts
of the boundaries of the F∗,∗,∗,∗ visible from 0 and not common to any other
F∗,∗,∗,∗. Property 4 says that, in this triangulation, the link of 0 is precisely
the simplicial complex K . This proves Part 1 of Theorem 7.4.7. Since the
proof is based solely in the properties of the subconfigurations {0}∪F∗,∗,∗,∗,
which are already in general position, this also proves that Part 1 holds if
A(t) is perturbed, arbitrarily, into general position.

For the proof of Part 2 of Theorem 7.4.7, we need to know certain signed
circuits in A(t). That the following are indeed circuits can be easily checked
with a computer, but we offer a computer-free (although not computation-
free!) proof for the interested reader.

Lemma 7.4.10. If t is positive and sufficiently small, then the following are
signed circuits in A(t), for every k ∈ K \F+,+,+,+ = {0}∪F−,−,−,−:

( {1+,4+,6+,7+,k} , {2+,5+,8+} ), (7.5)

( {2+,3+,5+,8+,k} , {1+,4+,7+} ). (7.6)

Proof. We concentrate first on the first circuit. Observe that, before the
perturbation, {1+,2+,4+,5+,6+,7+,8+} spans the hyperplane x1 + x2 +
x3 + x4 = 1, which does not contain any k ∈ {0}∪F−,−,−,−. Hence, the
configuration {1+,2+,4+,5+,6+,7+,8+,k} is, both before and after the
perturbation, full-dimensional and contains a unique circuit. Before the
perturbation, this circuit is

( {1+,4+,6+} , {2+,5+,8+} ),

as you can read from Figure 7.35 or from the following equality:
√

2a1+ + a4+ + a6+ =
√

2a5+ + a8+ + a2+ = (1,
√

2,1,0,1,0,0).

By continuity of the unique affine dependence among these eight points, the
perturbed circuit still contains {1+,4+,6+} on one side and {2+,5+,8+}
on the other. The only question is which side 7+ and k lie on. The statement
is that, no matter which k we choose in {0}∪F−,−,−,−, both 7+ and k lie
on the side of {1+,4+,6+}. We prove this in two steps:

(a) ( {1+,4+,6+,7+,0} , {2+,5+,8+} ) is a circuit for the choice k =
0. This can be read in the Gale transform of A|{0}∪F−,−,−,− (see Fig-
ure 7.38): The line containing 3+ leaves the points {1+,4+,6+,7+,0}
and {2+,5+,8+} on different sides.

(b) 7+ and k lie on the same side of the circuit, for any choice of k. For this,
we compute the linear functional that vanishes on the other six points
{1+,2+,4+,5+,6+,8+}. That functional is:

φ(0) = −1

φ(1+) = 0

φ(2+) = 0

φ(3+) =
√

2+ o(t)

φ(4+) = 0

φ(5+) = 0

φ(6+) = 0

φ(7+) =
√

2+ o(t)

φ(8+) = 0

φ(1−) = −2 + o(t)

φ(2−) = −2 + o(t)

φ(3−) = −2−
√

2+ o(t)

φ(4−) = −2 + o(t)

φ(5−) = −2 + o(t)

φ(6−) = −2 + o(t)

φ(7−) = −2−
√

2+ o(t)

φ(8−) = −2 + o(t)

Figure 7.39: A functional for proving the first

circuit of Lemma 7.4.10.

φ(x1, . . . ,x6;t) := x1 + x2 +(1+
√

2)x3 + x4 − t√
2

x5 +
√

2+ 1√
2

tx6 −1.
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The values of φ on the 17 points of A(t) are those displayed in Fig-
ure 7.39 where, as usual, o(t) denotes terms that tend to zero when t
tends to zero. What is important here is that the sign at k is negative
for every k ∈ {0}∪F−,−,−,−, while the sign at 7+ is positive. By the
orthogonality of linear dependences and linear evaluations (compare
Lemma 4.1.34), if two elements of a circuit Z are separated by a hy-
perplane passing through the rest of the elements of Z, then those two
elements must be on the same side of Z. This implies that 7+ and k lie
on the same side of the first circuit and finishes the proof of the lemma
for that circuit.

The proof for the second circuit is the same, except using the linear func-
tional:

φ(x1, . . . ,x6;t) := x1 +(1 +
√

2)x2 + x3 + x4 −
√

2+ 1√
2

tx5 − t√
2

x6 −1,

The values it takes are shown in Figure 7.40.

φ(0) = −1

φ(1+) = 0

φ(2+) =
√

2+ o(t)

φ(3+) = 0

φ(4+) = 0

φ(5+) = 0

φ(6+) =
√

2+ o(t)

φ(7+) = 0

φ(8+) = 0

φ(1−) = −2 + o(t)

φ(2−) = −2−
√

2+ o(t)

φ(3−) = −2 + o(t)

φ(4−) = −2 + o(t)

φ(5−) = −2 + o(t)

φ(6−) = −2−
√

2+ o(t)

φ(7−) = −2 + o(t)

φ(8−) = −2 + o(t)

Figure 7.40: A functional for proving the second

circuit of Lemma 7.4.10.

Remark 7.4.11. For the case k = 0, the two circuits in question can directly
be read from the Gale transform of {0}∪F+,+,+,+.

Proof of Part 2 of Theorem 7.4.7. Let T be a triangulation of A(t) contain-
ing the pure five-dimensional simplicial complex K . Certainly, no flip re-
moves any of the 5-simplices of K that were simplicial facets in conv(A),
since they are still simplicial facets in conv(A(t)). So, we only need to
look at the simplices contained in one of the F∗,∗,∗,∗’s and, by symmetry,
only at those contained in F+,+,+,+. By Part 1 of Lemma 7.4.9, these six
5-simplices are in general position in the sense that the hyperplane spanned
by each of them does not contain any other point of A(t).

Let B be one of these six simplices. The general position of B implies
that a flip removes B from T only if it is supported in the unique circuit
Z = (Z+,Z−) contained in the two full-dimensional simplices incident to B.
So, let k and k′ be the two vertices joined to B in T . The sets of points on
one and the other side of the hyperplane through B are {0}∪F−,−,−,− and
F+,+,+,+\B, by Property 4 in Lemma 7.4.9, and we assume without loss of
generality that k is in the former and k′ in the latter. As usual, we orient Z
so that k,k′ ∈ Z+.

Observe that B∪{k} is already full-dimensional before the perturbation,
since B spans the facet F+,+,+,+ and k does not lie in it. In particular, the
circuit Z of A(t) conforms to2 the circuit Z′ = (Z′

+,Z′−) contained in B∪
{k′} ⊂ F+,+,+,+ before the perturbation.

Moreover, in order for Z to produce a flip, for each k′ ∈ Z′
+ ⊆ Z+ the

6-dimensional simplex consisting of k joined to B∪{k′} \{k′ } needs to be
a simplex in T . In particular, Z′ must be one of the two flippable circuits
of the triangulation T3,6 of F+,+,+,+, and B∪{k′} must equal the support
of this circuit together with the vertex joined to a triangulation of it in T3,6.

2By this we mean that Z′
+ ⊆ Z+ and Z′− ⊆ Z−.
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That is to say, Z is one of the two circuits

( {1+,4+,6+,7+,k} , {2+,5+,8+} ),

( {2+,3+,5+,8+,k} , {1+,4+,7+} ).

studied in Lemma 7.4.10.
Suppose that Z equals the first circuit (the case of the second is similar).

Then the following must be a simplex in T in order for Z to be flippable:

C := {1+,5+,2+,6+,4+,8+,k}.
Since {1+,5+,2+,6+,4+,8+} is the set of points in the common facet be-
tween F+,+,+,+ and F+,+,−,+, k must be one of 3− and 7−. Depending on
which of them equals k, consider the following simplex, which must also
be in T :

C′ := {1+,5+,2+,6+,3−,8+,3+},
or

C′ := {1+,5+,2+,7−,4+,8+,3+},
This simplex is 3+ joined to a 5-simplex B′ := C′ \ {3+} or B′ := C′ \
{3+} contained in F+,+,−,+. This implies that one of B′ or B′ is in the
triangulation T1,4 that we chose for F+,+,−,+. But neither of them is.

Proof of Part 3 of Theorem 7.4.7. The proofs of Parts 1 and 2 are based
solely in the structure of the subconfigurations A|F∗,∗,∗,∗ and the circuits
stated in Lemma 7.4.10. Since both are already in general position, ev-
erything stated for them is preserved by a sufficiently small perturbation of
A(t).

Exercises

Exercise 7.1. Show that the point configuration of Figure 7.41, with 4k
vertices, has triangulations with only 3k−3 flips. Show that adding another
k collinear points in the same transversal line but in the opposite direction
produces triangulations with 5k vertices and 3k−2 flips (one flip arises in
the innermost bipyramid).Figure 7.41: More flip-deficient triangulations.

Exercise 7.2. Find your own proof that the “mother of all examples” has
non-regular triangulations.

Exercise 7.3. Prove that for every simplicial complex K :

1. Gl.a.o.(K ) = Gl.a.o.(K 2), where K 2 is the 2-skeleton of K and
Gl.a.o.(K ) denotes the graph of locally acyclic orientations of K .

2. If K has more edges than triangles, every l.a.o. has at least as many
reversible edges as the difference between these two numbers.

Exercise 7.4. Let T be a regular triangulation of a point configuration A.
Derive from Lemma 7.2.9 that there is a polytope of dimension |A| − 1
whose vertices are the acyclic orientations of the graph of T and whose
edges correspond to the reversal of a single edge in the graph.
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Exercise 7.5. 1. Show the following extension of Lemma 7.2.9 (Hint:
use Exercise 6.8):

Let T be a triangulation of a point configuration. The polyhedral
subdivisions that refine prism(T ) are in bijection to the partial orien-
tations of the graph of T which satisfy, in every triangle of T , the
conditions of Exercise 6.8.

2. Derive from this part three of Theorem 7.2.10.

Exercise 7.6. (Open) Are there disconnected graphs of triangulations for
3-dimensional point sets? How about 4-dimensional?

Exercise 7.7. Let A be a 3-dimensional point set in general, convex posi-
tion. Let tmin(A) be the minimum number of tetrahedra in a triangulation
of A and tmax(A) the maximum such number. Suppose that the graph of
triangulations of A is connected. Show that every integer value between
tmin(A) and tmax(A) is the number of tetrahedra in some triangulation of A.

Remark: Observe that the same is not always true in higher dimensions.
Actually, it can never be true in even dimensions (unless tmin(A = tmax(A)).
Why?

Exercise 7.8. (Open) Prove the previous exercise without the assumption
that the graph of triangulations of A is connected.

Exercise 7.9. Let G be an arbitrary graph. Prove that the set of orientations
of G which have neither sinks nor sources is connected under single edge
reversals.

Hint: Given two orientations of G without sinks or sources, prove that
either (1) there is an edge differently oriented in the two of them, that can
be reversed in one of them, thus decreasing their distance from each other,
or (2) the edges which are differently oriented in the two orientations are
distributed in vertex-disjoint cycles. In this case, moreover, the edges inci-
dent to one of these cycles (and not belonging to the cycle) are oriented all
towards or all away from the cycle. Use these properties to find a sequence
of valid edge reversals whose final outcome is the reversal of one of these
cycles, hence decreasing the distance too.

Exercise 7.10. Let K be the boundary complex of a 3-dimensional simpli-
cial polytope with n vertices. Prove that:

1. Every locally acyclic orientation of K has at least n− 2 reversible
edges (hint: Use Euler relation and the fact that each triangle prevents
at most one edge from being reversible).

2. Gl.a.o.(K ) is connected. Hint: Define the dual graph K ∗ of this
complex and identify orientations of the graph of K and of K ∗ by
rotating all arrows in the same sense. Then apply Exercise 7.9!

3. Prove that the same holds when K is a triangulation of a point config-
uration in dimension two, except the bound in part one is now n−1.
(hint: For part two, complete K to be the boundary complex of a
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3-polytope by adding a point at infinity joined to every edge of K .

Exercise 7.11. Everything in the previous exercise is equally valid when
K is any pseudo-surface (a 2-dimensional simplicial complex in which
every edge belongs to exactly 2-triangles), except:

1. The number n − 2 has to be replaced by something else (what?),
which will always be greater or equal than n−2 (why?).

2. The proof of connectivity only works as is if K is orientable (why?).
If you are familiar with the topological theory of covering spaces,
you can easily extend the result to non-orientable pseudo-surfaces.

Exercise 7.12. Go through the proof of Theorem 7.2.2 to show that:

1. If the upper and lower boundary of the starting grid are modified as
shown in Figure 7.42, then the number of flips is reduced by k− 1,
giving a total of 6

√
n+ O(1) flips.

2. If, moreover, a rectangular grid is chosen instead of the square one,
the ratio between the number of flips and the square root of the num-
ber of points can be further decreased to 4

√
2 = 5.6.Figure 7.42: Modified version of Figure 7.42,

which reduces the number of flips.

.



Algorithmic Issues 8
In previous chapters, we have not been directly concerned with how to ac-
tually carry on calculations required to investigate triangulations. For ex-
ample, how can we efficiently verify whether a set of simplices forms a
triangulation? How can we verify whether a triangulation is regular? We
have already counted triangulations via formulas for a few well-structured
instances, but we have not discussed how one could actually list or enumer-
ate all triangulations of arbitrary dimensional configurations (though we
did some of that in dimension two). Similarly, we have not addressed the
issue of finding optimal or special triangulations explicitly. For instance,
given a d-dimensional point configuration (e.g., the vertices of a d-cube),
how can we find a triangulation with the smallest number of d-simplices?
In this chapter, we deal with the computation and complexity of carrying
through some natural computations on the space of triangulations.

8.1 Tools for computation

In the following, we denote by n the number of points in A, by r the rank
of A, which equals the dimension (denoted by d) plus one, and by c := n−r
the corank of A. In all practically solvable cases, you may think of n and r
as small numbers compared to the total number of triangulations of A. Of-
ten in our discussion we may refer to special, but standard, data structures
that would allow efficient access or storage of data (e.g., heaps, hash tables,
etc). For this, we refer unfamiliar readers to any good undergraduate level
book, such as [85].

8.1.1 Chirotopes

A key question in analyzing algorithms concerning triangulations of point
configurations is: How do you represent your point configuration during
the calculations? We have learned in Section 4.5.2 that there are many
purely combinatorial characterizations of polyhedral subdivisions and, in
particular, triangulations. Although this is a big step towards efficient com-
putations compared to geometric characterizations or even Definition 2.3.1,
we still have to take into account that searching in the set of circuits or the
like may be very inefficient. Let us therefore propose a unified interface
from point configurations to their oriented matroids: the chirotope.

Definition 8.1.1. The chirotope χ of a point or vector configuration A la-
beled by J is a function assigning a sign in {0,+,−} to each r-element

Jesús A. De Loera et al., Triangulations, Algorithms and Computation in Mathematics,
DOI 10.1007/978-3-642-12971-1_8, c© Springer-Verlag Berlin Heidelberg 2010
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sequence in J in the following way:

χA :

{
Jr → {+,−,0}

(i1, i2, . . . , ir) �→ sign
(
det(ai1 ,ai2 , . . . ,air)

) (8.1)

The word “chirotope” is derived from the word “chirality”, used to de-
scribe orientation and the relation to mirror images of molecules in chem-
istry, and was proposed by A. Dress.

The determinant is alternating. Thus, if (i1, i2, . . . , ir) has a repeated el-
ement, then its chirotope vanishes. Also, that the chirotope of any permu-
tation of a given sequence equals the chirotope of the original sequence
multiplied by +1 or −1, depending on the parity of the permutation. For
this reason, if a canonical ordering is implicit in the label set J, as is usually
the case, we can call or denote the chirotope function with a subset of J as
argument, rather than a sequence; this simply means calling the chirotope
with the sequence corresponding to the sorted set.

Example 8.1.2. Consider the two-dimensional configuration with five ele-
ments shown in Figure 8.1. Four of the points form the corners of a square
centered at the origin. The list of all chirotope values is as follows:

χA(1,2,3) = −, χA(1,2,4) = −, χA(1,2,5) = −, χA(1,3,4) = −,

χA(1,3,5) = +, χA(1,4,5) = +, χA(2,3,4) = −, χA(2,3,5) = −,

χA(2,4,5) = −, χA(3,4,5) = −.

Figure 8.2 shows one of the values of the chirotope in the mother of all
examples; we encourage the reader to compute all other missing values
(see exercises).

1

2 3

4

5

Figure 8.1: The chirotope of a five-point

configuration in the plane is determined by
(5

2

)
= 10 different values.

1 2

3

4
5

6

Figure 8.2: The chirotope value of (2,3,4) in the

mother of all examples is +: the chirotope value

of a r-sequence can be interpreted as the

orientation of the corresponding simplex; in

dimension two, this can be indicated by rotation

directions.

All algorithms presented in the sequel will consider the input point con-
figuration as given by the chirotope oracle: if we call the oracle with an r-
subset, then the oracle returns the chirotope value of the ordered sequence
corresponding to that subset. We will measure the asymptotic run-time
complexity of algorithms in the number of elementary operations and ora-
cle calls.

However, first we present how the chirotope oracle itself can be imple-
mented cleverly in the case where all chirotope values can be stored in
advance.

8.1.2 Computing the chirotope

Naïvely, to compute the chirotope of a point configuration, we would have
to compute

(n
r

)
determinants of size r, each requiring O(r3) steps if we

proceed by an elimination algorithm, which is quite reasonable since r will
be typically a small number. We assume unit cost per arithmetic operation
(see [182] for a related survey about what happens if more realistic compu-
tational models are investigated).

Instead of repeating unnecessary column reduction, we will organize the
computation in a certain computation tree where we can reuse some col-
umn reduction operations to reduce the effort of computation substantially,
especially when r is small and n is large compared to it. The leaves of the
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computation tree will be all the possible r×r submatrices of A in triangular
form, thus their determinants and their signs can easily be computed.

In this tree, a child node in level k + 1 is obtained from a node Ak in
level k by adding a column to the right of Ak and then performing column
reduction operations until the resulting matrix is in column reduced form.
Finally, the leaves of the tree will be all the possible r× r submatrices of A
set in triangular form. Thus their determinants, and especially their signs,
can be computed in linear time.

Theorem 8.1.3. The chirotope values of all the r-subsets of J ordered by
labels can be computed in time O

(
r+c
1+c r2

)
per value.

Proof. We now construct a rooted computation tree whose nodes are subsets
of columns of the matrix containing A as follows: The root node corresponds
to the empty submatrix A0. The nodes at level k of the rooted tree are
matrices in column reduced form corresponding to a subset of k columns
of A. Now, let Ak be one such node. We now show how a child node of Ak

is constructed: first, add to the right of Ak a column of A, then perform
column elimination steps until a matrix Ak+1 in reduced column normal
form is obtained. At the end, the leaves of the tree are all possible (r× r)-
submatrices of A in equivalent triangular form, and their determinants and
thus their chirotope values can be computed easily in time O(r) per value.

Note then that the bulk of the work lies in the generation of the computa-
tion tree. We need to count the total number of nodes and the time required
to generate their children.

We first count the nodes in the levels of the computation tree as follows:
Let g(k, j) =

( j−1
k−1

)
be the number of submatrices of A with k columns and

right-most column at index j. Then the number of nodes in level k of the
tree is equal to ∑n−r+k

j=k g(k, j).
We claim that the number of operations in each node at level k is bounded

by rk. In order to prove the claim, consider the matrix right after adding
the kth column of A. In order to obtain a matrix in column normal form,
we have to get rid of at most k−1 non-zeroes in the kth column. We start
the elimination in row 1 and proceed from top to bottom. Assume the first
m− 1 values in column k are already transformed to zero, 1 ≤ m < k. If
the mth row in the (just added) kth column is already zero as well, then
there is nothing to do. If the mth row of the mth column is non-zero, then
we can eliminate (i.e., transform to zero) the non-zero in the mth row of
the newly added kth column by computing r−m ≤ r−1 new numbers. If
m is the smallest index such that the mth row of column k is non-zero but
the mth row of column m is zero, we swap column k and column m, which
can be done in constant time using appropriate matrix structures. The first
k−1 columns of the resulting matrix are again in column normal form, and
row m of column k is zero now. In any case, we obtain a matrix where the
mth row in the kth column is now zero, computing at most (r − 1)(k− 1)
numbers, which is no more than rk.

The total number of nodes in the tree is given by ∑r
k=1 ∑c+k

j=k g(k, j). Thus,

the number of operations is at most G(n,r) := ∑r
k=1 ∑c+k

j=k g(k, j)kr. The
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amortized number of operations per determinant is then G(n,r)/
(n

r

)
.

The following calculation shows the assertion; in it we use the following
well-known formula for sums of binomial coefficients:

r

∑
k=0

(
a + k

k

)
=
(

a + k + 1
k

)
. (8.2)

Using this we obtain (recall that n = r + c):

G(n,r) =
r

∑
k=1

c+k

∑
j=k

(
j−1
k−1

)
kr

= r
r−1

∑
k=0

(k + 1)
c+k

∑
j=k

(
j
k

)

= r
r−1

∑
k=0

(k + 1)
(

k + c + 1
c

)

= r
r−1

∑
k=0

(k + 1)
(k + c + 1)!
c!(k + 1)!

= r
r−1

∑
k=0

(k + c + 1)!
c!k!

= r
r−1

∑
k=0

(c + 1)
(k + c + 1)!
(c + 1)!k!

= r(c + 1)
r−1

∑
k=0

(
k + c + 1

k

)

= r(c + 1)
(

r + c + 1
r−1

)

= r(c + 1)
(r + c + 1)!

(r−1)!(c + 2)!

= r2 (r + c + 1)
c + 2

(r + c)!
r!c!

= r2 (r + c + 1)
c + 2

(
n
r

)
.

This expression divided by
(n

r

)
asymptotically has the claimed growth.

This proves that the computation tree yields savings of order r per deter-
minant whenever the corank n− r is not much smaller than the rank of the
point configuration.
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Sub-
set

Level 1:
4 nodes

Level 2:
10 nodes

Level 3:
15 nodes

χ

{1,2,3} +

∣
∣
∣
∣
∣
∣

4 ∗ ∗
0 ∗ ∗
0 ∗ ∗

∣
∣
∣
∣
∣
∣

+

∣
∣
∣
∣
∣
∣

4 0 ∗
0 4 ∗
0 0 ∗

∣
∣
∣
∣
∣
∣
�→ +

∣
∣
∣
∣
∣
∣

4 0 ∗
0 4 ∗
0 0 ∗

∣
∣
∣
∣
∣
∣

+

∣
∣
∣
∣
∣
∣

4 0 0
0 4 0
0 0 4

∣
∣
∣
∣
∣
∣
�→ +

∣
∣
∣
∣
∣
∣

4 0 0
0 4 0
0 0 4

∣
∣
∣
∣
∣
∣
�→ +64 +

{1,2,4} +

∣
∣
∣
∣
∣
∣

4 0 2
0 4 1
0 0 1

∣
∣
∣
∣
∣
∣
�→ +

∣
∣
∣
∣
∣
∣

4 0 0
0 4 0
0 0 1

∣
∣
∣
∣
∣
∣
�→ +16 +

{1,2,5} +

∣
∣
∣
∣
∣
∣

4 0 1
0 4 2
0 0 1

∣
∣
∣
∣
∣
∣
�→ +

∣
∣
∣
∣
∣
∣

4 0 0
0 4 0
0 0 1

∣
∣
∣
∣
∣
∣
�→ +16 +

{1,2,6} +

∣
∣
∣
∣
∣
∣

4 0 1
0 4 1
0 0 2

∣
∣
∣
∣
∣
∣
�→ +

∣
∣
∣
∣
∣
∣

4 0 0
0 4 0
0 0 2

∣
∣
∣
∣
∣
∣
�→ +32 +

{1,3,4} +

∣
∣
∣
∣
∣
∣

4 0 ∗
0 0 ∗
0 4 ∗

∣
∣
∣
∣
∣
∣
�→ +

∣
∣
∣
∣
∣
∣

4 0 ∗
0 0 ∗
0 4 ∗

∣
∣
∣
∣
∣
∣

+

∣
∣
∣
∣
∣
∣

4 0 2
0 0 1
0 4 1

∣
∣
∣
∣
∣
∣
�→ −
∣
∣
∣
∣
∣
∣

4 0 0
0 1 0
0 1 4

∣
∣
∣
∣
∣
∣
�→ −16 −

{1,3,5} +

∣
∣
∣
∣
∣
∣

4 0 1
0 0 2
0 4 1

∣
∣
∣
∣
∣
∣
�→ −
∣
∣
∣
∣
∣
∣

4 0 0
0 2 0
0 1 4

∣
∣
∣
∣
∣
∣
�→ −32 −

{1,3,6} +

∣
∣
∣
∣
∣∣

4 0 1
0 0 1
0 4 2

∣
∣
∣
∣
∣∣
�→ −
∣
∣
∣
∣
∣∣

4 0 0
0 1 0
0 2 4

∣
∣
∣
∣
∣∣
�→ −16 −

{1,4,5} +

∣
∣
∣
∣
∣∣

4 2 ∗
0 1 ∗
0 1 ∗

∣
∣
∣
∣
∣∣
�→ +

∣
∣
∣
∣
∣∣

4 0 ∗
0 1 ∗
0 1 ∗

∣
∣
∣
∣
∣∣

+

∣
∣
∣
∣
∣∣

4 0 1
0 1 2
0 1 1

∣
∣
∣
∣
∣∣
�→ +

∣
∣
∣
∣
∣∣

4 0 0
0 1 0
0 1 −1

∣
∣
∣
∣
∣∣
�→ −4 −

{1,4,6} +

∣
∣
∣
∣
∣∣

4 0 1
0 1 1
0 1 2

∣
∣
∣
∣
∣∣
�→ +

∣
∣
∣
∣
∣∣

4 0 0
0 1 0
0 1 1

∣
∣
∣
∣
∣∣
�→ +4 +

{1,5,6} +

∣
∣
∣
∣
∣∣

4 1 ∗
0 2 ∗
0 1 ∗

∣
∣
∣
∣
∣∣
�→ +

∣
∣
∣
∣
∣∣

4 0 ∗
0 2 ∗
0 1 ∗

∣
∣
∣
∣
∣∣

+

∣
∣
∣
∣
∣∣

4 0 1
0 2 1
0 1 2

∣
∣
∣
∣
∣∣
�→ +

∣
∣
∣
∣
∣∣

4 0 0
0 2 0
0 1 3

2

∣
∣
∣
∣
∣∣
�→ +12 +

{2,3,4} +

∣
∣
∣
∣
∣∣

0 ∗ ∗
4 ∗ ∗
0 ∗ ∗

∣
∣
∣
∣
∣∣

+

∣
∣
∣
∣
∣∣

0 0 ∗
4 0 ∗
0 4 ∗

∣
∣
∣
∣
∣∣
�→ +

∣
∣
∣
∣
∣∣

0 0 ∗
4 0 ∗
0 4 ∗

∣
∣
∣
∣
∣∣

+

∣
∣
∣
∣
∣∣

0 0 2
4 0 1
0 4 1

∣
∣
∣
∣
∣∣
�→ +

∣
∣
∣
∣
∣∣

2 0 0
1 4 0
1 0 4

∣
∣
∣
∣
∣∣
�→ +32 +

{2,3,5} +

∣
∣
∣
∣
∣∣

0 0 1
4 0 2
0 4 1

∣
∣
∣
∣
∣∣
�→ +

∣
∣
∣
∣
∣∣

1 0 0
2 4 0
1 0 4

∣
∣
∣
∣
∣∣
�→ +16 +

{2,3,6} +

∣
∣
∣
∣
∣∣

0 0 1
4 0 1
0 4 2

∣
∣
∣
∣
∣∣
�→ +

∣
∣
∣
∣
∣∣

1 0 0
1 4 0
2 0 4

∣
∣
∣
∣
∣∣
�→ +16 +

{2,4,5} +

∣
∣
∣
∣
∣∣

0 2 ∗
4 1 ∗
0 1 ∗

∣
∣
∣
∣
∣∣
�→ −
∣
∣
∣
∣
∣∣

2 0 ∗
1 4 ∗
1 0 ∗

∣
∣
∣
∣
∣∣

+

∣
∣
∣
∣
∣∣

2 0 1
1 4 2
1 0 1

∣
∣
∣
∣
∣∣
�→ −
∣
∣
∣
∣
∣∣

2 0 0
1 4 0
1 0 1

2

∣
∣
∣
∣
∣∣
�→ −4 −

{2,4,6} −
∣
∣
∣
∣
∣∣

2 0 1
1 4 1
1 0 2

∣
∣
∣
∣
∣∣
�→ −
∣
∣
∣
∣
∣∣

2 0 0
1 4 0
1 0 3

2

∣
∣
∣
∣
∣∣
�→ −12 −

{2,5,6} +

∣
∣
∣
∣
∣∣

0 1 ∗
4 2 ∗
0 1 ∗

∣
∣
∣
∣
∣∣
�→ −
∣
∣
∣
∣
∣∣

1 0 ∗
2 4 ∗
1 0 ∗

∣
∣
∣
∣
∣∣

−
∣
∣
∣
∣
∣∣

1 0 1
2 4 1
1 0 2

∣
∣
∣
∣
∣∣
�→ −
∣
∣
∣
∣
∣∣

1 0 0
2 4 0
1 0 1

∣
∣
∣
∣
∣∣
�→ −4 −

{3,4,5} +

∣
∣
∣
∣
∣∣

0 ∗ ∗
0 ∗ ∗
4 ∗ ∗

∣
∣
∣
∣
∣∣

+

∣
∣
∣
∣
∣∣

0 2 ∗
0 1 ∗
4 1 ∗

∣
∣
∣
∣
∣∣
�→ −
∣
∣
∣
∣
∣∣

2 0 ∗
1 0 ∗
1 4 ∗

∣
∣
∣
∣
∣∣

−
∣
∣
∣
∣
∣∣

2 0 1
1 0 2
1 4 1

∣
∣
∣
∣
∣∣
�→ +

∣
∣
∣
∣
∣∣

2 0 0
1 3

2 0
1 1

2 4

∣
∣
∣
∣
∣∣
�→ +12 +

{3,4,6} −
∣
∣
∣
∣∣
∣

2 0 1
1 0 1
1 4 2

∣
∣
∣
∣∣
∣
�→ +

∣
∣
∣
∣∣
∣

2 0 0
1 1

2 0
1 3

2 4

∣
∣
∣
∣∣
∣
�→ +4 +

{3,5,6} +

∣
∣
∣
∣∣
∣

0 1 ∗
0 2 ∗
4 1 ∗

∣
∣
∣
∣∣
∣
�→ −
∣
∣
∣
∣∣
∣

1 0 ∗
2 0 ∗
1 4 ∗

∣
∣
∣
∣∣
∣

−
∣
∣
∣
∣∣
∣

1 0 1
2 0 1
1 4 2

∣
∣
∣
∣∣
∣
�→ +

∣
∣
∣
∣∣
∣

1 0 0
2 −1 0
1 1 4

∣
∣
∣
∣∣
∣
�→ −4 −

{4,5,6} +

∣
∣
∣
∣∣
∣

2 ∗ ∗
1 ∗ ∗
1 ∗ ∗

∣
∣
∣
∣∣
∣

+

∣
∣
∣
∣∣
∣

2 1 ∗
1 2 ∗
1 1 ∗

∣
∣
∣
∣∣
∣
�→ +

∣
∣
∣
∣∣
∣

2 0 ∗
1 3

2 ∗
1 1

2 ∗

∣
∣
∣
∣∣
∣

+

∣
∣
∣
∣∣
∣

2 0 1
1 3

2 1
1 1

2 2

∣
∣
∣
∣∣
∣
�→ +

∣
∣
∣
∣∣
∣

2 0 0
1 3

2 0
1 1

2
4
3

∣
∣
∣
∣∣
∣
�→ +4 +

Table 8.1: The computation tree for the chirotope of

the mother of all examples: Every row corresponds

to a chirotope value. In each cell of a row, the next

column corresponding to the next element in the

subset is added to the matrix on the left; the result

is transformed into column normal form

immediately. The empty cells in the table show the

savings when column eliminations are reused. The

method of computing all chirotope values as

individual r× r determinant calculations (using the

same elimination algorithm) corresponds to column

additions and eliminations in every column of the

table.
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Example 8.1.4. Table 8.1 shows the computation tree for the chirotope of
the mother of all examples (Example 2.2.5). Remember that the matrix of
coordinates of it is:

M :=

⎛

⎝

1 2 3 4 5 6

4 0 0 2 1 1
0 4 0 1 2 1
0 0 4 1 1 2

⎞

⎠.

The computation proceeds from left to right and from top to bottom. This
way we have four nodes on level 1, 10 nodes on level 2, and 15 nodes on
level 3. In a node at level k we need at most (r − 1)(k − 1) elementary
operations, so that there are at most 4 ·0 + 10 ·2 + 15 ·4 = 80 eliminations
to build the tree (data handling neglected). If we naively use 15 Gaussian
elimination steps on the (r× r)-submatrices, then we need more. We can
view one determinant calculation as computing the chirotope in rank r and
corank 0, which leads to a total of (2 + 4) ·15 = 90 elementary operations
for the 15 determinants (bit complexity again not counted for simplicity).
This shows that even in the case of tiny examples, the computation tree
already pays off.

Thus, in the example, the chirotope output, listed as a string of signs
corresponding to the chirotope values on the lexicographically sorted 3-
subsets, would read as ++++−−−−+++++−−−++−+.

We saw in Chapter 4 that there is an important dual construction of point
configurations, the Gale diagram construction. Remember that the Gale
transform of a matrix of rank r will have rank n− r, thus one can ask about
the relation between the chirotopes of a matrix and that of its Gale diagram.
Similarly, one can wonder about the behavior of chirotopes with respect
to the other manipulations that we saw in Chapter 4, such as deletion and
contraction. Since we will not use it, we only state without proof a theorem
that answers these questions (one can find a proof of this in [55, 61]):

Theorem 8.1.5. Let A be a point configuration with n points and rank r.

1. Let B ∈ Gale(A) be a Gale transform of A, and let λ denote an or-
dered sequence λ1,λ2, . . . ,λn−r and λ c the complementary ordered
sequence {1,2, . . . ,n} \λ , then the chirotope of B is given by

χB(λ ) = χA(λ c)(−1)sign(λ ,λ c).

2. For the operation of deleting point i,

χA\i = χA.

3. For computing the chirotope after the contraction operation A/i, let
C ∈ Gale(B\ i), then

χA/i = χC.
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8.1.3 Computing circuit and cocircuit signatures from the chirotope

We claim (and those familiar with oriented matroids know already) that this
curious vector of signs, the chirotope, is enough to extract all the combina-
torial data of a point configuration such as the circuits or cocircuits that
were so useful in Section 4.5.2. In the following section we will present
how to efficiently compute circuit and cocircuit signatures from chirotope
values directly, without using the coordinates of the points. It is worth
stressing that chirotopes have a distinguished history in computational ge-
ometry and convexity. We recommend the wonderful textbook [61] and
the monograph [62] for a more in-depth discussion of applications of chiro-
topes and oriented matroids.

1 2

3

4 5

6

Figure 8.3: The hyperplane spanned by {1,6}
induces the signed cocircuit ({3},{2,4,5}); in

concordance with the formula in Theorem 8.1.6,

the chirotope values of (1,6,2), (1,6,4), and

(1,6,5) are negative, and the chirotope value of

(1,6,3) is positive.

Theorem 8.1.6. Let A be a point or vector configuration of rank r labeled
by J and let χA : Jr → {+,−,0} be its chirotope. Let F be an independent
(r−1)-subset of J.

Then, F induces a unique (up to sign-reversal) cocircuit, whose signature
(Z+,Z0,Z−) in A is given by the following formulas:

Z+ = {z ∈ J : χA(F,z) = +} , (8.3)

Z− = {z ∈ J : χA(F,z) = −} , (8.4)

Z0 = {z ∈ J : χA(F,z) = 0} . (8.5)

Moreover, all the cocircuits can be obtained this way.

The good thing about the formulas above is that the signs of individual
elements can be extracted individually; whenever we only need part of the
signature, we need fewer calls to the chirotope oracle. For example, if we
only want to know whether a wall is interior, we can stop as soon as we have
found one positive and one negative element of the corresponding cocircuit.
The straightforward proof is included here, since it is difficult to find a good
reference for it.

21

3

4 5

6

M

3

44

3

1

6

1

6

3

4

Z+

1

6

Z−

Figure 8.4: The circuit ({3,4},{1,6}) in the

mother of all examples; the signature matches

with the assertion of Theorem 8.1.8, since . . .
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4

1

3

4

1

3

4

6

Figure 8.5: . . . Basis 134 has clock-wise

orientation, 6 is missing in an even position in

1346; the signature of 6 without loss of generality

is fixed as − . . .

Proof. Since every point lying on the hyperplane HF spanned by F forms
an affinely dependent family with F , the function z �→ χA(F,z), which is
a determinant, vanishes on all points on HF , and this is exactly what is
required by the definition of a cocircuit spanned by F .

Two points x and y lie on the same side of HF if and only if the segment
spanned by them does not intersect HF . Since p �→ det(A|F ,p) is linear and
continuous in p, this is the case if and only if det(A|F ,px) and det(A|F ,py)
have identical signs, as claimed.

In particular, this means that given a subset of the given point configura-
tion that spans a hyperplane, the corresponding signature of any point in the
configuration can be computed by calling the chirotope oracle once. When-
ever we need the complete signature, we have to call the chirotope oracle c
many times.

Example 8.1.7. We continue with Example 8.1.2. In this case, if we wish
to list all cocircuits spanned by two of these five points, we have to look
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21
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6

4

Figure 8.6: . . . Basis 136 has clock-wise

orientation as well, but 4 is missing in an odd

position in 1346; thus, the signatures of 4 and 6

must differ, i.e., the signature of 4 is + as well . . .

at ten possible pairs. Each pair will provide a cocircuit. For instance, for
the independent set F = {2,5} we can recover the cocircuit by computing
χA(F,z) for z ∈ {3,4,1}. Thus Z− equals {1}, while Z+ equals {3,4}.

What about circuits? The formulas turn out to be a bit more complicated,
but the proof is just a clever application of Cramer’s rule.

Theorem 8.1.8. Let A be a point or vector configuration of rank r labeled
by J, and let χA : Jr →{+,−,0} be its chirotope. Let F = {z0, . . . ,zr} with
zi < z j for all i < j be any full-dimensional (r + 1)-subset of J.

Then, the unique (up to sign-reversal) circuit signature (Z+,Z−) in A
with Z+∪Z− ⊆ F is given by the following formulas:

Z+ =
{

zi ∈ F : (−1)iχA(F \ zi) > 0
}

, (8.6)

Z− =
{

zi ∈ F : (−1)iχA(F \ zi) < 0
}

, (8.7)

Z0 = {z ∈ F : χA(F \ z) = 0}∪ J \F. (8.8)

Moreover, all circuits can be obtained this way.

Proof. To simplify notation, we assume without loss of generality that zi = i
for i = 0,1, . . . ,r. In order to find a circuit signature on a dependent set, we
need to sort out what the signs in a minimal affine dependence are. More
specifically, we must find out when i and j must have identical signs. To
this end, we first find a normalizing element. Since F is a full-dimensional
(r + 1)-subset, the complement of at least one point in it is an affine basis.
Therefore, this point cannot have a zero coefficient in any non-trivial affine
dependence. Let us also assume without loss of generality that this point
is a0 that its coefficient in the affine dependence is λ0. We now compute
the signs of all the other points in F with respect to the reference point a0.
This can be done as follows: The coefficients λi, i = 0, . . . ,r of an affine
dependence on F have to fulfill the following equation:

−λ0a0 = λ1a1 + · · ·+ λrar (8.9)

⇐⇒ −a0 =
λ1

λ0
a1 + · · ·+ λr

λ0
ar. (8.10)

When we now inspect the signs of λi
λ0

in a solution, we know whether or
not λi has the same sign as λ0.

Now, how can we discover the sign of such a solution on the basis of
chirotope information? Chirotope information is essentially based on deter-
minants, and determinants determine the unique solution of a square system
of linear equations by Cramer’s Rule.

λi

λ0
=

det(a1, . . . ,ai−1,−a0,ai+1, . . . ,ar)
det(a1, . . . ,ai−1,ai,ai+1, . . . ,ar)

. (8.11)
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Figure 8.7: . . . Basis 146 has counter-clock-wise

orientation, 3 is missing in an even position in

1346; thus, the signatures of 3 and 6 must differ,

i.e., the signature of 3 is +; . . .
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Figure 8.8: . . . Basis 346 has counter-clock-wise

orientation, 1 is missing in an odd position in

1346; thus, the signatures of 1 and 6 must

coincide, i.e., the signature of 1 is −.

This means for signs:

sign

(
λi

λ0

)
=

−χA(1, . . . , i−1,0, i+ 1, . . .,r)
χA(1, . . . , i−1, i, i+ 1, . . . ,r)

(8.12)

=
−(−1)i−1χA(0,1, . . . , i−1, i+ 1, . . .,r)

χA(1, . . . , i−1, i, i+ 1, . . . ,r)
(8.13)

=
(−1)iχA(0,1, . . . , i−1, i+ 1, . . .,r)
(−1)0χA(1, . . . , i−1, i, i+ 1, . . . ,r)

(8.14)

=
(−1)iχA(Z \ zi)
(−1)0χA(Z \ z0)

. (8.15)

The only signatures with this property are those in the assertion and their
sign-opposites; thus, we are done.

Example 8.1.9. Using the point configuration of Example 8.1.2 again, we
can search circuits by looking at subsets of four points in the configuration
that contain at least three non-collinear points and, applying formula 8.6,
recover the signature vector. For instance, for the set F = {1,2,3,5}, we
would compute (−1)iχA(F \ z) for z ∈ F . In this case, we obtain Z+ =
{1,2,3} and Z− = {5}.

8.2 Verification and realizability

As said before, we assume that the chirotope of A is given by an oracle.
For example, it has been preprocessed and stored in a hash table, so that
the sign of a r-subset can be accessed in amortized constant time.

From the combinatorial characterizations of triangulations, checking that
something is a triangulation is, in principle, straightforward. The only issue
is efficiency. To analyze this we use here the characterization of triangula-
tions provided by Corollary 4.5.19. Recall that two properties need to be
verified: (ICoP) and (ExP). The following result shows how many steps
this may take. By the way, Figure 8.9 shows that Condition (ExP), the most
abstract of the two, cannot be dropped:

Figure 8.9: The thicker lines and the filled areas

indicate two triangulations of the mother of all

examples whose union satisfies property (ICoP),

but not property (ExP).

Theorem 8.2.1. Deciding whether a subset T of r-simplices in A is a
triangulation of A can be verified in time O(max{c,r}r |T |).
Proof. The check of Characterization 4.5.19 has two parts: (ICoP) and
(ExP).

• (ICoP) can be checked as follows: first, compute the link of all d-
walls in T . The computation of all links can be accomplished in
O(r |T |) operations by traversing all the simplices in T and collect-
ing their contributions to the links of their facets in a hash map (this
a well-known data structure that allows search and insertion in amor-
tized constant time). Next, check whether the link of some facet F
contains only one point. In this case, we need to check whether F
is in the boundary of A; if no, we return ‘invalid’. This can be done
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by retrieving at most c chirotope values. In case the link has more
than two elements, we output ‘invalid’ immediately. In the case that
there are two elements in the link of a facet, the orientations of the
two points in the corresponding cocircuit can be checked by retriev-
ing two chirotope values. Summarizing, the number of operations
needed to check (ICoP) is O(cr |T |).

• Property (ExP) can be checked by utilizing a lexicographic exten-
sion p in the interior of a some simplex in T . The formula for the
chirotope values involving p requires the retrieval of at most r other
chirotope values (only one if A is in general position) [55]. For each
simplex in T we need to check if p is in its interior. This can be done
by retrieving r chirotope values involving p. Thus, for the whole pro-
cedure we need at most O(r2 |T |) steps.

Thus, in at most O(max{c,r}r |T |), we can check the validity of a trian-
gulation.

8.2.1 Constructing regular triangulations in practice

An important computational problem is to generate all regular triangula-
tions of a point configuration. For this, one relies on finding an initial
“seed” triangulation from which one uses flips to generate the rest of the
triangulations.

We begin by addressing the problem of constructing the first regular tri-
angulation. As we saw in Section 4.3.1, the construction of a placing trian-
gulation is an incremental process. During the process, we maintain in the
k-th step:

• the set of points Ak that is currently triangulated,

• a placing triangulation Tk of Ak, and

• a set Fk of all boundary facets of Tk that are interior in A, i.e., those
facets

– that are facets of exactly one simplex in Tk

– that are not in the boundary of A, i.e., the corresponding cocir-
cuits are neither positive nor negative in A.

The first r points to be added have to form a valid (i.e., full-dimensional)
simplex. Finding such a simplex can be integrated in the computation of
the chirotope at the cost of storing a simplex B with non-zero chirotope.
Consequently, Ar equals B, the triangulation Tr consists of the simplex B,
and Fr contains those facets of B that are not in the boundary of A.

Adding a new point ak+1 to Ak, yielding Ak+1, for some k ≥ r will add
all simplices F ∪ak+1 to Tk for which F ∈Fk is visible from ak+1, i.e., the
sign of ak+1 in the cocircuit defined by F is opposite to those signs of the
points in Ak that are non-zero: this yields Tk+1 (there are points in A with
non-zero sign, since Ak is full-dimensional for all k ≥ r). The visible facets
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in Fk are removed and the new non-boundary facets of the new simplices
are added to Fk; this yields Fk+1.

The process stops as soon as Fk is empty for some k ≥ r. This happens
at the latest when k = n, but can occur earlier, in which case not all points
are used for the placing triangulation. If one wants a triangulation that uses
all the points, the missing points are added one by one by performing stellar
subdivisions inside existing simplices; the points are “flipped-in”.

The number of operations on the sets Fk is bounded by the number
of all (d − 1)-faces of the resulting placing triangulation T , which is at
most O(r |T |). The use of universal hashing facilitates unique insertion
and deletion in amortized constant time. For one visibility check, we need
to retrieve at most c chirotope values (if A is in general position, two val-
ues suffice). Each facet occurring in some Fk may have to be checked for
visibility in each but one step of the construction.

Thus, we need at most O(rc2 |T |) operations (respectively O(rc |T |) op-
erations if A is in general position) for all visibility checks. This dominates
the computation of a placing triangulation. In conclusion, we have:

Lemma 8.2.2. An initial placing triangulation T for a point configuration
of n points of rank r can be computed in no more than O(rc2 |T |) opera-
tions.

8.2.2 Checking regularity of a triangulation

As we saw in Chapter 5, regularity of a subdivision is equivalent to the
feasibility of a certain linear program (see Section 5.2). Here we will deal
with triangulations only, so there are no non-trivial coplanarity conditions
in the system.

However, the set of strict folding conditions presented in Theorem 5.2.6(i)
is too redundant to be useful in a computer program. Thus, we make use
of Theorem 2.3.20 instead. We need to impose a strict folding condition
only for each interior facet, or wall, F in our triangulation T . Recall that
the constraint induced by an F adjacent to the simplices B and B′ in T
expresses that B and B′ can be folded at F , such that the resulting signed
volume spanned by B and B′ is positive.

Recall that this strict folding condition can be expressed as a condition on
the determinant of the homogeneous coordinate vectors of the points in B∪
B′. This determinant develops into a linear constraint in the height variables
for each point. The coefficients turn out to be the same determinants that
specify the signs for the chirotope values on all subsets of B∪B′. If we
therefore save the determinants rather than the signs in the chirotope, then
we can form each constraint in time O(r), resulting in a time complexity of
O(r2 |T |) for setting up the complete linear program. Summarized:

Lemma 8.2.3. The regularity of a triangulation can be checked in time
O(r2 |T |) times the time to solve a linear program with at most r |T | con-
straints and |A| variables.
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Figure 8.10: Two coordinates for the same

triangulation: one is regular (bottom), the other is

not (top).

Example 8.2.4. We end with an example that shows again that regular-
ity is totally dependent on the actual coordinates of the vertices in the



388 Algorithmic Issues

triangulation, and not just on the combinatorics of the simplices involved.
Is the reader surprised to see yet again the mother of all examples? (See
Section 7.1 and all the prehistoric material going all the way to Exam-
ple 3.6.16.) Our coordinates now are just a minor variation of those pre-
sented there; our proof is computational.

Consider the point configuration A with coordinates: a1 = (0,8),a2 =
(0,0), a3 = (8,0),a4 = (2,2),a5 = (2,3),a6 = (3,2) (The reader may no-
tice this is a “cousin” of the mother of all examples, so this can be called the
aunt of all examples). At the same time, we have an alternative configura-
tion A′ obtained by moving a5 be (1,3). Now we will see that the triangula-
tion consisting of triangles {1,2,5}, {4,5,6}, {2,3,4} , {2,4,5}, {3,4,6},
{1,5,6}, and {1,3,6} is regular or non-regular, depending on whether we
use A or A′.

For the configuration A (top side of Figure 8.10) the system of inequal-
ities defined by the triangulation has nine inequality constraints. By using
a linear programming solver, we can check that three of them form an in-
feasible subsystem. The inequality −16λ4 − 2λ1 + 16λ5 + 2λ2 < 0 is de-
fined by the simplex {1,2,5} and the point a4 along the wall {2,5}. The
point a6 and the simplex {2,3,4} along the wall {3,4} give the inequality
−2λ2 + 2λ3 − 16λ6 + 16λ4 < 0. Finally, −3λ3 + 24λ6 + 3λ1 − 24λ5 < 0,
comes from simplex {1,5,6} and the point a3 along the wall {1,6}. To see
that the whole system of inequalities has no solution, it suffices to show
that these three inequalities are inconsistent. Multiply these inequalities by
3/8,3/8 and 1/4 respectively. Adding these multiples of the constraints to
the linear combination gives 0 < 0, a contradiction.

On the other hand, the reader is invited to verify (see exercises and bot-
tom of Figure 8.10) that if we set new coordinates for A′, now with a value
(1,3) for a5, then the triangulation is regular. Concrete heights that induce
the triangulation shown are λ6 = 0,λ5 = 1/2,λ4 = 0,λ3 = 0,λ2 = 1/2,λ1 =
4, but of course there are many others.

8.3 Listing and enumerating triangulations

In this section, we turn our attention to the computer-aided enumeration of
triangulations. Essentially two ideas come to mind:

• We can enumerate all regular triangulations of a point configura-
tion A by exploring the graph of flips via, e.g., a breadth-first-search
algorithm, flipping away from a seed triangulation. This is justified
by the results of Chapter 5: the graph of flips among regular trian-
gulations of A is connected. Since flips in a regular triangulation
may produce non-regular triangulations (in some situations with an-
noying frequency), we need to check whether an output triangulation
is regular or not, unless we want to enumerate the whole connected
component of the graph of flips.

• If we really want to enumerate all triangulations, an approach would
be to try to build them from scratch by inserting maximal simplices
one-by-one in all possible ways, in each step checking proper inter-
section, until we arrive to a triangulation or to a dead-end complex
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that cannot be extended further. (This process is reminiscent of build-
ing a puzzle.)

8.3.1 Exploring a flip-graph component

In this section, we analyze a standard Breadth-First-Search (BFS) proce-
dure to explore a connected component of the flip graph [85]. Since the
graph is not given explicitly, we need to construct edges dynamically dur-
ing the exploration. To this end, we maintain for each triangulation a node
containing its set of flips, i.e., a set of edges leading out of this node. A
flip in a triangulation can be seen as a pair of two sets of simplices, namely,
those simplices to be removed, the flip-out set, and simplices to be added,
the flip-in set. We can compute the resulting triangulation in amortized time
O(r) by using some data structure that allows for unique insertion and dele-
tion in amortized constant time (e.g., hash tables with universal hashing, or
something derived thereof; this is well-known and explained in [85]).

All flips can be found quickly using the chirotope as follows: Assume
F is the set of flips in T , and we have used one of those flips, f ∈ F , to
discover a new triangulation T ′. We now want to compute the family F ′
of flips of T ′. Let |T | and |T ′| be the number of maximal simplices in T
and T ′, respectively. Similarly, let | f | be the number of maximal simplices
in f . Then, the set F ′ of flips of T ′ consists of the remaining old flips
already in F , not destroyed by f , and flips newly generated by f .

The undestroyed old flips in F ′ are those flips in F whose flip-out sets
are disjoint from f ’s flip-out set. Computing the undestroyed flips from F
takes time O(| f | |F |) by testing membership of each simplex in the flip-out
set of f in the flip-out sets of the flips in F , where each membership test
can be carried out in amortized constant time by hashing techniques.

Now we compute the new flips. Their flip-out sets always have a non-
empty intersection with the flip-in set of f . Thus, to find new flips we can
restrict ourselves to potential flips containing simplices of f ’s flip-in set. To
this end, we first build all potential supports (sets of involved vertices) of
flips by collecting all (r + 1)-supersets of simplices in the flip-in set that
might support a flip.

Note that the number of unused points in T is at most the corank c. One
can find all possible new flip supports in O

(| f | (c +T ′)
)

by first testing
all non-used points for containment in all possible simplices in the flip-in
set of f and, second, checking all simplices in T ′ for adjacency to the
simplices in f . This results in at most O(r | f |+ c) many distinct supports
of potential new flips, because no more than r | f | distinct simplices in T ′
can be adjacent to a simplex in the flip-in set of f .

Lemma 8.3.1. Let T ′ be generated by flipping f in (T ,F ). Then the
number of new potential supports of flips in T ′, i.e., those not supporting a
flip in F , is in O(r | f |+ c), and all these supports can be computed in time
O
(| f |(c +T ′)

)
.

To check the flippability of an (r+1)-set, we first compute its circuit sig-
nature Z = (Z+,Z−) by retrieving r + 1 chirotope values. The two possible
triangulations T+(Z) and T−(Z) can be computed from this data in time
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O(r). Then we need to check whether one, say T+(Z), of the two possible
circuit triangulations is a sub-complex of T ′.

If Z is in general position (no chirotope value is zero), then we need to
check containment in T ′ for all the at most O(r) simplices in T+(Z). This
can be done in amortized time O(r) by using a special data structure for
triangulations that allows for membership test in amortized constant time.

If Z is not in general position, then we need to compute the links of all the
(maximal) simplices in T+(Z) in T ′. This takes at most time O(r |T ′|) by
collecting the contributions of all facets of simplices to this link. If all sim-
plices in T+(Z) have the same non-empty link, then Z is indeed flippable,
and the flip-out and flip-in sets are the unions of the O(r) maximal simplices
in T+(Z), respectively T−(Z), with the O(| f |) maximal simplices in the
common link; they can therefore be deduced in time O(r | f |) ⊆ O(r |T ′|),
i.e., the whole computation is dominated by computing the link.

Lemma 8.3.2. Let T ′ be generated by flipping f in (T ,F ), and let Z be
a potential support of a new flip in T ′; then, we can check the flippability
of Z in time O(r |T ′|).

Since there are at most O(r |T |) many walls in T and, thus, at most that
many flips in F , we obtain a total effort to compute new flips of

O
( | f | · r |T |
︸ ︷︷ ︸

check old flips

+ | f | (c +T ′)
︸ ︷︷ ︸

compute candidate supports

+ (r | f |+ c)r
∣
∣T ′∣∣

︸ ︷︷ ︸
check flippability of all candidates

)

= O
(
r(r | f |+ c) ·max{|T | , ∣∣T ′∣∣}). (8.16)

Summarized, we obtain:

Theorem 8.3.3. Generating a new node (T ′,F ′) from flipping f ∈ F in
the node (T ,F ) in the flip exploration graph of A can be implemented in
time O

(
r(r | f |+ c) ·max{|T | , |T ′|}).

Remark 8.3.4. Note that computing flips from scratch for each node would
yield a time complexity of Ω((r |T ′|+c)r |T ′|)—assuming the same algo-
rithm is used for checking flippability of a potential support of a flip, which
is substantially more whenever the triangulation T ′ contains substantially
more maximal simplices than the flip f .

Using a data structure for triangulations that allows to retrieve an adja-
cent simplex in constant time (the adjacency graph [319]) can reduce the
time complexity in the non-general-position case. This, however, would
result in a higher complexity when computing an adjacent node, a higher
complexity for equality checks for triangulations, and—most importantly—
in a substantially higher memory consumption.

8.3.2 Enumeration of all triangulations

Since we know that not all triangulations are connected by flips and can
even have no flips at all (see Chapter 7), we need to offer a method to list
all triangulations. We build up triangulations by adding one simplex at a
time. Slowly a partial triangulation grows until we either reach a dead-end
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or we have completed a triangulation. The process can be seen as a standard
Depth-First-Search (DFS) in the Hasse-diagram of all partial triangulations,
partially ordered by inclusion. We call partial triangulation any set of full-
dimensional simplices that intersect properly. Every node in the DFS-tree
contains a partial triangulation T , a set of simplices A (T ) (admissibles)
that can be added to T without violating (IP), and the set F (T ) of facets
of simplices in the boundary of T that are in the interior of A. The leaves
in the DFS-tree are the non-extendable partial triangulations, and some of
them are in fact triangulations, namely those T with F (T ) = /0.

In our generation, new simplices are explored in lexicographic order.
Consider a node (T ,A (T )) and add a simplex B ∈ A (T ) to T in order
to discover node (T ′,A (T ′)). Then A (T ) is updated to A (T ) \B, so
that none of the other branches above (T ,A (T )) can ever reach a partial
triangulation with subcomplex T ′ = T ∪{B}.

This way, we only need the memory to store one complete path to the leaf
in the DFS-tree. If M is the maximal number of simplices in a triangulation
of A, then storing O(M) simplices on a stack for the partial triangulations
plus O(M

(n
r

)
) simplices in the admissibles fields suffice. It is important

to observe that the memory requirements do not depend on the number of
triangulations of A.

One can use a preprocessed hash table with all possible
(n

r

)
simplices as

keys. The value A (B) of a simplex B is the set of all simplices B′ such that

B and B′ intersect properly. This preprocessing takes time O(
(n

r

)2). The
table allows for the following fast update algorithm: if T ′ is discovered by
adding simplex B to T , then A(T ′) = A (T )∩A (S). This step can be ac-
complished in time O(|A (T )|), which is—crudely estimated—in O(

(n
r

)
).

The set of all interior facets of A is also preprocessed by checking for
each (r−1)-subset the facet property. This needs time O(r

( n
r−1

)
). The set

F (T ) can be updated by adding the interior boundary facets of B to F (T )
modulo 2. This can be done in time O(r |F (T )|), which is in O(r2M).

In total, we need time O(
(n

r

)2) preprocessing time and time O(r
(n

r

)
) per

output node. The time needed per triangulation is much higher, because
there are a lot more proper partial triangulations than triangulations.

Theorem 8.3.5. All triangulations of a rank-r point configuration with
n points and N maximal partial triangulations can be computed in time
O(
(n

r

)2 + Nr
(n

r

)
).

We can explain the above notions using graph theory. The intersection
graph of a d-dimensional configuration A, OBS(A), is the graph whose
vertices are all the full dimensional simplices in A, and two simplices B1,B2

are adjacent if there exists a circuit (Z+,Z−) such that Z+ is a face of B1 and
Z− is a face of B2. In this way, a triangulation of A corresponds to a unique
maximal stable set of OBS(A) (i.e., a set of vertices with no two adjacent
by an edge). This setup was used in [319] to enumerate all triangulations.
Here we have presented an improved version: first, we do not proceed
via adjacent simplices only, and, second, we use the chirotope for checking
proper intersections of simplices. The basic method goes back to 1980 [201].
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Not all the maximal stable set of OBS(A) correspond to triangulations as
we can see from the next example. Nevertheless, if we associate with every
node of OBS(A) the volume of the corresponding simplex, the triangula-
tions of A are in bijection with the maximum weight stable sets of OBS(A).
Unfortunately, the problem of enumerating all the maximal stable sets of a
graph is a #P-hard problem [147].
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Figure 8.11: The bottom part of the figure shows

the intersection graph of all simplices in a

pentagon (on the top). Triangulations are

maximal stable sets.

Example 8.3.6. Consider the point configuration of Example 3.6.15, with
exactly those coordinates. Consider also the following simplicial complex:
{r,p1,p2,p3}, {q1,q2,p1,p2}, {q2,q3,p2,p3}, and {q3,q1,p3,p1}. This
simplicial complex leaves a hole to be covered; namely, the boundary of
this simplicial complex is missing the face {p1,p2,p3}. Every other tetra-
hedron with vertices on {q1,q2,q3} intersects improperly one of the four
listed above, hence the simplicial complex is maximal, but still not a trian-
gulation.

8.3.3 Enumeration with symmetry

Often we are interested in triangulations for point sets with large numbers of
symmetries (e.g., the vertices of a regular d-cube). The good news that we
can do a breadth-first-search (BFS) generation of combinatorial symmetry
classes of triangulations connected by flips.

Let us assume that we are given not only the chirotope of the configu-
ration, but also a set of symmetry permutations of the points that gener-
ate all symmetries. In the BFS procedure there are always three kinds of
nodes [85]: unknown nodes (white nodes), nodes that have been discovered
but may have unknown neighbors (gray nodes), and discovered nodes, all
of whose neighbors have also been discovered (black nodes). Black nodes
can be removed from memory.

The BFS procedure behaves well with respect to symmetries. It is possi-
ble (by an equivalent-edge marking procedure) to store only one representa-
tive per symmetry class and to remove the black nodes from memory. This
works without ever discovering a white node equivalent to a black one [253].
We also do not want to store the complete orbit of a triangulation. For ev-
ery new triangulation, we check whether one of the stored representatives
is in the orbit of the new triangulation. Using the symmetries that leave a
triangulation unchanged, one can reduce the effort of finding flips.

Of course, it is not clear whether we re-enter an orbit symmetry class
whose representative triangulation we have forgotten already when we
marked it black. The solution to this problem is to also carefully moni-
tor the symmetry of flips: whenever we find, via the flip f , a triangulation
T with π(T ) = T ′ for some already stored representative T ′ and some
combinatorial symmetry π , we mark π( f−1) in T ′. One can prove that,
this way, we can mark black all nodes whose edges have been processed
completely, since we will not enter their symmetry class again. Finally,
symmetries can also be taken into account when checking (CombIFP) in a
potential triangulation. In contrast to this, (ExP) has to be checked for all
simplices—not only for all symmetry classes of simplices.
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8.3.4 Implementation issues

The ideas discussed earlier have been implemented in the software package
TOPCOM [265].TOPCOMwas inspired by the Maple package PUNTOS [94],
which was probably the first triangulation program based on oriented ma-
troid machinery. By now, TOPCOM can be used from inside polymake
[135], which is—among other useful things—a command center for poly-
hedral transformations and computations.

In this section, we informally explain a selection of low level, but useful,
details in the current implementation of TOPCOM. Our intention is to give
some guidance to people who may need to implement their own programs.

We make some remarks now about the different data structures that need
to be implemented.

• Simplicial complexes: Simplicial complexes are regarded as the sets
of their maximal simplices. TOPCOM aims at using set data structures
that perform fast on the following tasks: equality check, membership
test, unique insertion, deletion, intersection, and union. For this rea-
son, simplices are implemented as dynamic bitsets. The largest num-
ber of points ever handled in TOPCOM was 324 in dimension six (the
Santos triangulation). This still requires only 41 bytes per simplex,
as opposed to 7 ·4 = 28 bytes for an array representation. For all po-
tentially accessible enumeration problems the number of points must
be much smaller: in most applications 32 bits suffice, in which case
the memory consumption is larger for arrays.

Note that in this structure equality check needs �n/32� integer equal-
ity checks. Membership test, unique insertion, and deletion just need
a single (very fast) bit operation each. Intersections and unions are
linear in n; however, on a normal PC, 32 bits can be processed at a
time, thus this is practically very fast for reasonable values of n.

Simplicial complexes are based on dynamic bitsets, where each bit
represents a simplex. The assignment of bit positions to simplices
remains fixed during one complete run of the program. When a sim-
plex occurs for the first time, it gets the next free bit assigned; this
assignment is stored in a dictionary. Retrieving the simplex corre-
sponding to a bit is implemented via an array indexed by integers;
getting the bit position of a simplex is accomplished by a hash table
look-up. Both can be done (theoretically and practically) in amor-
tized constant time.

This way, operations on simplicial complexes can work fast via bitset
operations. Another advantage is the excellent behavior in terms of
memory cache misses (a main bottleneck on nowadays computers):
retrieving even a long bitstring from memory is very fast whenever
the bits are stored consecutively. If we enumerate a flip graph compo-
nent, then for each possible simplex there is at least one triangulation
(usually many) that contains that simplex. Thus, we need to store
each possible simplex at least once, from which the use of the sim-
plex dictionary does not harm memory-wise.
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The main draw-back of this structure is that equality checks take time
O(
(n

r

)
), although with small constants. The plausible observation

is that for dense simplicial complexes (the number of simplices is
of order

(n
r

)
), the structure is performing very well; for very sparse

complexes, one should use an ordinary representation.

When the sizes of accessible problems grow, TOPCOM will proba-
bly switch to an asymptotically faster data structure. For (most)
instances solvable on nowadays computers, the bitstring technique
works fastest.

• Chirotopes: The chirotope values are stored in a hash table so that
they can be retrieved in amortized constant time. Alternatively, one
could compute the lexicographic index of each simplex and store its
value in an array, yielding access to each chirotope value in constant
time by computing the lexicographic index. The chirotope values for
simplices are stored in a hash map, allowing for amortized constant
time retrieval. If the problem is very large, the table can be assigned
a fixed size and works as a cache with random eviction.

• Nodes in the flip-graph: TOPCOM stores the triangulation T as a sim-
plicial complex and the flips of T as a hash-map, assigning marked
or unmarked to the representation of the flip. In this way, a flip’s
internal representation is simply a dependent set with r + 1 points,
which is stored as a simplex. By deleting r + 1 bits and retrieving
r + 1 chirotope values, one can obtain from this a flip represented
by a pair of simplicial complexes: the flip-in and the flip-out sim-
plices. Thus, deleting the flip-out set from and adding the flip-in set
to a triangulation works on bitset level. Marking of a particular flip
would work in amortized constant time in hash maps. Because the
set of flips assigned to one triangulation is not that large, TOPCOM
now rather uses sorted maps for flips (logarithmic time for marking,
but less overhead).

• Node in the tree of partial triangulations: The triangulation T , the
set A (T ) of admissible simplices, and the set of uncovered interior
facets F (T ) are all stored as simplicial complexes. This way, com-
puting the intersection of admissible sets is a bitset operation. More-
over, adding interior facets modulo two means an xor-operation on
bitset level, which is also very fast in practice.

• Symmetries: Symmetries are stored as arrays σ of integers, where
σ [i] is the image of vertex i under the symmetry σ . The images of
simplices and simplicial complexes are computed vertex by vertex.
Here, there is certainly potential for improvement by using more so-
phisticated structures.

To conclude, we present some performance results of TOPCOM-0.16.3.
In Table 8.2, we compare CPU times required for certain operations with
different data structures. Note that equality checks in STL sets are fast when
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the cardinalities of the operands differ, as was the case in the equality-false
test instances in the table; the genuine equality checks for TOPCOM’s simpli-
cial complexes are much faster, but cannot take advantage of the cardinality
function.

Relative CPU-times for different data structures for simplicial complexes

operation STL set(vec(int)) STL set(bitstr.) TOPCOM

insert 99 simplices 100% 58% 50%
assignment 100% 49% 0.3%
delete 89 simplices 100% 57% 40%
intersect (∼ 50 simpl.) 100% 56% 4.7%
lex. compare (∼ 50 simpl.) 100% 53% 64%
equality false (∼ 50 simpl.) 100% 100% 600%
equality true (w.r.t. above) 72 100% 39 250% 750%

Table 8.2: Operations in simplicial complexes (2.8

GHz Quad Core Intel Xeon 64bit, 22 GB RAM,

Darwin 10.3.0, MacOSX 10.6.3, simplices chosen

randomly) using three different data structures for

simplicial complexes: STL (= C++ Standard

Template Library) set(vec(int)) = STL set, based on

red-black trees, of arrays of integers; STL

set(bitstr.) = STL set of TOPCOM’s dynamic

bitstrings; TOPCOM = TOPCOM’s bitstrings

specifying simplex indices with respect to a table of

essentially all possible simplices; parameters

comparable to triangulations of the 4-cube.

configuration what result CPU-time/s

C(12,5) # triangulations 5049932 1073
C(13,3) # triangulations 16384508 3711
C(13,4) # triangulations 116447760 8478
C(13,6) # triangulations 132943239 15265
C(13,7) # triangulations 6429428 1855
(4×5)-grid # full triangulations 2822648 263
D4 ×D4 # flip graph component 4533408 266
I4 # flip graph component 92487256 4801
Santos triang. check (ICoP) & (ExP) okay 30
Santos triang. # flips 0 10

Table 8.3: Some actual computations done with

TOPCOM for the first time (MacBook 2.8 GHz Intel

Core 2 Duo 64bit, 8 GB RAM, Darwin 10.3.0,

MacOSX 10.6.3).

In Table 8.3, we update a table from [253] containing the output and com-
putation times of some large enumeration problems solved for the first time
(to the best of our knowledge) by TOPCOM. The first six configurations (five
cyclic polytopes and a two-dimensional point set) are known to have con-
nected flip-graphs (Corollary 6.1.20 and, e.g., Theorem 3.4.3), so the enu-
meration via flips gives all triangulations. In the case of the (4×5)-grid we
only enumerated full triangulations, meaning those that use all vertices. In
the next two examples (product of two tetrahedra and 4-dimensional cube)
only the component containing regular triangulations is enumerated. The
last two rows are computations checking that the triangulation constructed
in [278] (with 324 points in dimension six) is indeed a triangulation and
has no flips.
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8.4 Bounding the number of triangulations

When we are listing or enumerating triangulations, it is desirable to have
an upper bound on their total number in order to estimate the running time
of a computer program. We have seen in Chapter 3 that in the plane there
are constants c1,c2 such that every point configuration in the plane with n
points has at least 2c1n triangulations and at most 2c2n triangulations. It is
natural to ask whether the same is true in higher dimensions. Unfortunately,
Theorem 7.2.10 showed that the answer is no for dimension four. So what
is the correct bound for arbitrary dimension? Before we state the main
theorem, we need some preparation.

Lemma 8.4.1 (T. Dey [105]).

1. For k1 + k2 ≥ d, let B1 be a k1-dimensional simplex that intersects
improperly a k2-simplex B2. Then there must be an l1-face of B1 that
intersects improperly an l2-face of B2 with l1 + l2 ≤ d.

2. All simplices of a triangulation of a point configuration in d-dimen-
sional space are completely determined from its �d/2�-skeleton, i.e.,
the collection of all faces of dimension less than or equal to �d/2�.

Proof. For Part 1, simply note that when two simplices intersect improperly
there is a circuit (C+,C−) such that C+ ⊂ B1 and C− ⊂ B2. Of course,
C+ and C− form faces of B1,B2 respectively, and we let m1,m2 be their
dimension. Now, any circuit in R

d has no more than d + 2 elements, thus
(m1 + 1)+ (m2 + 1)≤ d + 2.

For Part 2, let us show that if we are given the �d/2�-skeleton K of a
triangulation T then we have that a simplex B is in T if and only if it
meets the following two properties: (a) its �d/2�-skeleton is contained in
K , and (b) it intersects properly every C ∈ K .

The “only if” direction is trivial. For the “if” direction, let C be a simplex
not in T . Then, it intersects improperly some simplex C′ in T and, by Part
1, we have faces F ⊂C and F ′ ⊂C′ that intersect improperly and with sum
of dimensions at most d. Hence, one of them has dimension at most �d/2�.
If F ′ has dimension at most �d/2�, then C fails to satisfy Condition (b). If
F has dimension at most �d/2�, then it fails to satisfy Condition (a).

Theorem 8.4.2. Let d be a given positive integer dimension and let A be
a point configuration of n points inside R

d.

1. There is an upper bound of 2O(n�d/2� log(n)) for the number of triangu-
lations of A.

2. The number of regular triangulations of A has a tight upper bound of
2Θ(n log(n)). More strongly, the same asymptotic bound holds for the
number of regular subdivisions of A.

3. When d is an odd number, one can improve the bound on the number

of triangulations of A to 2O(n�d/2�).



8.4. Bounding the number of triangulations 397

Proof. For Part 1: From the upper bound theorem (see Theorem 2.6.3 and
its Corollary 2.6.5) we know that the size of a triangulation of the config-
uration is no more than O(n�d/2�). Thus, since a triangulation is a set of
no more than O(n�d/2�) d-simplices selected from a set of

( n
d+1

)
possibili-

ties, the total number of triangulations is no more than O(nd+1)O(n�d/2�) or

O(nO((d+1)n�d/2�
). This is the same as 2O(n�d/2� log(n)) for fixed d.

For Part 2: The number of regular triangulations of a given point set
cannot be larger than the number of polytopal simplicial spheres with one
more vertex and the same dimension, modulo an n! factor that accounts
for possible combinatorially symmetric but geometrically different trian-
gulations of a point configuration. To see this we refer the reader again
to the construction of stereographic or central projection as used in Sec-
tion 2.6.2 to obtain Corollary 2.6.5 for balls from the upper bound theorem
for spheres. Recall that a polytopal simplicial sphere is a simplicial com-
plex, homeomorphic to the d-sphere that admits coordinatizations realizing
it as a simplicial polytope (see [62] for a nice discussion about polytopality
of simplicial spheres).

The number of combinatorially different polytopal spheres is in 2Ω(n log(n))

by a classical result of Goodman and Pollack [143, 142]. The bound is
achieved, for example, by the construction in Theorem 7.2.10.

For Part 3: From Lemma 8.4.1 any triangulation of n points in R
d can

be completely determined by the set of its �d/2�-faces. A �d/2�-face has
�d/2�+ 1 = �d/2� elements (note we are using that d is odd in the last
equality). Thus one can construct up to

( n
�d/2�
)

such cells; which means

that there are 2( n
�d/2�) possible triangulations.

Note that for even d, the argument for Part 3 unfortunately does not
provide a better bound than the one we obtained in Part 1 already. Still,
T. Dey observed that with a reasonable assumption one can achieve more
(see [105]): We say that a set F of crossing-free u-dimensional simplices
with n vertices in the sphere Sd is cf-small if the cardinality of F is no
more than O(nu). Dey proved that, with the assumption that F is cf-small,
Part 3 of Theorem 8.4.2 can also be attained for dimension d even. For
instance, in dimension four, the number of triangulations is known to be
between 2Ω(n2) and 2O(n2 logn), but the construction in Theorem 7.2.10 may
be the “best possible” if the condition of cf-smallness is alway true. So far,
we only know it always hold true for dimension d = 2.

As for lower bounds, we recall here the construction of many triangula-
tions of cyclic polytopes that we did in Chapter 6 (Theorem 6.1.22):

Theorem 8.4.3 (Kalai [181]). If d is considered fixed, the cyclic polytope
C(n,d) has at least Ω(2n�d/2�

) triangulations.

So, the difference between the upper bound and the lower bound given by
cyclic polytopes is “only” a factor of n or logn in the exponent, depending
on whether d is odd or even. In particular, for d = 3, the cyclic polytope
construction gives only cn triangulations while the upper bound is cn2

. This
raises the following question:
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Is there a constant c such that every three-dimensional point
configuration has at most cn triangulations?

It is interesting to observe that if we ask for three-dimensional simplicial
balls without any geometric constraint, the answer is a big “no”. Pfeifle

and Ziegler [254] have shown that there are at least 2Ω(n5/4) combinatorially
different 3-balls with n vertices. However, their construction is extremely
“twisted” in the geometric sense (it uses as a starting point triangulations of
surfaces with large geni and few vertices), which probably implies that they
cannot be realized in a straight manner, as geometric triangulations.

8.5 Optimization

We have seen already in Chapter 3 that for two-dimensional point configu-
rations there is a huge zoo of “optimal” triangulations (Delaunay triangula-
tions, minimum-weight triangulations, etc). But, how about other optimiza-
tion problems in higher dimensions? Suppose there is a way of assigning a
weight or a price μB to each of the possible d-simplices of a d-dimensional
point configuration. The weight of a simplex could be its volume, area, di-
ameter, etc. In what follows, we present a powerful method to study two
kinds of optimization problems.

1. Linear optimization problems: We intend to minimize the sum of the
weights of the d-simplices present in the triangulation.

2. MinMax optimization problems: We intend to minimize the maxi-
mum weight among d-simplices present in the triangulation.

One of the main goals of this section is to present a very general frame-
work that contains these two optimization problems on the space of trian-
gulations of a point configuration. The power of the method stems from
being able to use popular techniques in discrete optimization and integer
programming [291] to solve and classify these problems.

Let us look at some examples in dimension two. Take, for instance, that
the weight of each triangle is equal to a constant, say 1. Then, from Euler’s
formula, the linear minimization problem is easily solved by a triangula-
tion that only uses boundary vertices and the corresponding maximization
problem is solved by any triangulation that uses all points. Both are solved
trivially in polynomial time! But what is the behavior of the problem as
we change the weights? Say, for example, that all

(n
2

)
edges possible for

a planar point set have weight either with a 0 or a 1. You can think of
the edges that have weight 0 as the most desirable (perhaps because they
are very cheap). Define then the weight of a triangle to be the sum of the
weights of its edges, thus the weights of triangles range from 0 to 3. As we
will see later, it is NP-complete to decide whether whether a triangulation
of cost 0 is possible [216].

Another more famous example, which we encountered already in Chap-
ter 3, is when one takes as weights of a triangle the sum of the Euclidean
lengths of its edges. The corresponding linear minimization problem is that
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of finding minimum length triangulation (MLT for short). Now we know
this problem is NP-hard. The moral is that, as the weights assigned to sim-
plices change, the complexity of finding an optimal triangulation can be
rather variable. We will more carefully discuss the complexity of triangula-
tions later in this chapter.

Similar optimization problems can be stated for higher dimensions, for
example, in 3-dimensional space, computer graphics applications make it
interesting to find a triangulation that minimizes the total surface area of
the tetrahedra used. Why? Suppose you have ray of light and polyhedral
3-dimensional obstacles. Two essential queries of many computer graphic
algorithms are ray-shooting, which means to report the first obstacle hit by a
ray of light, and line-stabbing, which is to report which objects are hit by an
x-ray that stabs through some objects. The idea to respond to such queries
is to construct a triangulation of the environment space compatible with the
obstacles and “walk” along the ray reporting the triangles encountered. The
walk takes time proportional to the number of triangles crossed, therefore the
walk can be very long when we have a triangulation that has lots of tetrahedra
along the ray direction. But we do not know in advance which ray direction
will be necessary for analysis. Thus, the following question arises: given a
triangulation, what is the average-case cost of ray-shooting or line-stabbing?
It turns out that the average walk length for line-stabbing or ray-shooting
is proportional to the area of the triangles used in the triangulation. This
means it is best for us to use a triangulation that minimizes the sum of
tetrahedral areas. See [18] for details and algorithms for approximating the
minimum total area triangulation in three dimensions.

Another important high-dimensional optimization question refers to min-
imizing or maximizing the number of simplices present in the triangulation.
For instance, given a convex polytope P inside Euclidean d-space repre-
sented by its vertices or facets, or both, we want to find a triangulation of
P that uses the smallest (largest) possible number of d-simplices. Each
d-simplex receives weight one, and we are solving a linear optimization
problem. For lattice polytopes and their relation to algebraic geometry,
finding unimodular triangulations (which certainly maximize the number of
simplices present) is an important step necessary for obtaining de-singulariz-
ations of toric varieties [89]. Finding triangulations that minimize the
number of simplices appear in the context of hyperbolic geometry and its
applications, most notably, we saw in the proof of Theorem 1.1.6 that this
is useful for bounding the diameter of the secondary polytope of an n-gon,
the associahedron. Finally, in Sections 1.2 and 6.3, we encountered the
very famous problem of minimally triangulating d-cubes in connection to
algorithms that find fixed points of continuous maps. We will learn about
solving such optimization problems in this chapter.

In the next section, we explain how to use the techniques of linear integer
programming and combinatorial optimization to attack linear optimization
or minmax optimization over triangulations (we recommend [240, 291] as
references). These techniques will provide us with a single unifying frame-
work that works for arbitrary dimension and arbitrary weights chosen for
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the simplices.

8.5.1 A linear optimization approach: the universal polytope

From now on we think of triangulations as long vectors of zeros and ones.
For a point configuration A, let B(A) denote the set of all its bases. If
A is in general position then B(A) will have

( n
d+1

)
elements, one for each

subset of d +1 points in A. But sometimes there will be far fewer bases (i.e.,
possible d-simplices) if the points of the configuration have collinearities,
coplanarities, etc. (as happens, for example, in a regular cube).

Definition 8.5.1. For a triangulation T of A the incidence vector vT ∈
{0,1}B(A) has coordinates (vT )B = 1 if B ∈ T and (vT )B = 0 if B �∈ T .

For example, a pentagon has ten possible 2-simplices, hence, the vectors
encoding triangulations will have length ten. Each triangulation of a pen-
tagon has exactly three triangles, thus, there are only three non-zero entries
on display in each of these vectors. In this example, we have five different
vectors, one for each triangulation. See Figure 8.12.
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34
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(   0  ,  1  ,  0  ,   0  ,  0  ,  1 ,  1 ,  0  ,  0 ,   0 ) 

123 124 125 135 145 234 235 245 345

Figure 8.12: For each triangulation, one has a

0/1 vector whether each of the
( n

d+1

)
d-simplices

is used or not. The picture gives a triangulation

of the pentagon and its corresponding incidence

vector.

Definition 8.5.2. We define the universal polytope of a configuration A of
dimension d with n elements to be

U-poly(A) := conv{x ∈ {0,1}B(A) : x = vT for a triangulation T o f A}.

We begin by showing that the minmax optimization problems can, in
fact, be reduced to optimization of linear functionals over the simplices.

Lemma 8.5.3. 1. The linear optimization problem of triangulations re-
duces to optimizing the linear functional ∑d-simplexB∈A μBxB over the
polytope U-poly(A).

2. The minmax optimization problem for triangulations reduces to min-
imizing the value of an auxiliary variable y over the polyhedron with
linear constraints those of U-poly(A) together with the inequalities
y ≥ μBxB for all d-simplices B of the point configuration A.

Proof. For the first statement, simply observe that all the incidence vectors
of triangulations appear as vertices of the universal polytope, because the
vectors are vertices of the cube. A linear functional achieves optimal values
(either maximum or minimum) at a vertex of the polytope [291]. For the
second statement, the optimal integral solution of the minimization prob-
lem, restricted to the xB’s, is an incidence vector of a triangulation. The
optimal value is indeed the largest weight possible.
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Figure 8.13: In a triangulation, each interior edge

e lies in no simplex or exactly two simplices, one

on each side; in particular, it lies in an identical

number of simplices on each of its sides; thus, it

defines a homogeneous linear equation among

the incidence vectors of triangulations of the

pentagon; for example, for the edge 13 we get

the equation x123 − x134 − x135 = 0.

Remark 8.5.4. Observe that in the definition of the universal polytope we
only have coordinates to represent the full-dimensional simplices. But is that
enough? Among our motivating examples we included the minimum total
length of edges in the plane and the minimum tetrahedral area in dimension
three. In those problems we want to minimize a sum of weights given to
lower dimensional simplices. The following result shows that we can also
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treat this type of problems with the universal polytope. For example, we
can use the universal polytope not only to maximize/minimize the number
of d-simplices in a triangulation, but also any other entry in the f -vector.

Lemma 8.5.5. Let I (A) be the set of all independent subsets of a point
configuration A. Let ν : I (A) → R be an assignment of weights to all the
elements of I (A). Then, there is an assignment μ : B(A) → R of weights
to the bases of A that perfectly mimicks ν in the following sense: For every
triangulation T of A, one has

∑
B a d-simplex of T

μB = ∑
C a simplex of T

νC.
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Figure 8.14: Each of the eleven chambers of the

pentagon defines a non-homogeneous equation;

the equation for the shaded central chamber is

x245 + x134 + x135 + x124 + x235 = 1, meaning that

a triangulation must contain exactly one of the

simplices containing the central chamber.

Proof. Let F ∈ I (A) be a certain independent subset of A and consider
the ν that gives weight one to F and weight zero to every other element of
I (A). Knowing how to mimic weights of this form is enough, since any
other weight is a linear combination of them.

To mimic this particular ν , let x0 ∈ relintA(F) and let x be a point that is

• In the interior of conv(A),

• In general position with respect to A (that is, not in the convex hull
of any non-full-dimensional subset of A), and

• Sufficiently close to x0 so that for every subset B of A one has

x ∈ conv(B) ⇒ x0 ∈ conv(B).

Such points clearly always exist. We now define for each basis B ∈ B(A):

μB =

{
1 if x ∈ conv(B) and F is a face of B

0 otherwise.

We claim that μ satisfies what we want. Indeed:

• Since x is in general position and in the interior of A, for every trian-
gulation T there is a unique d-simplex B ∈T with x ∈ conv(B): the
carrier of x in T .

• By the third assumption on x, we have x0 ∈ conv(B) for that B.

• B either contains F as a face or it intersects F improperly, since both
have x0 in their convex hulls and since x0 ∈ relint(F) is not in a
proper face of F .

In particular: if F is a face of some simplex of T then both μ and ν give
weight 1 to T . If not, then both give it weight zero.

Observe that the μ in the above result is not unique. For example, differ-
ent choices of the points x close to each independent set C produce different
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weights μ . The reason behind this lack of uniqueness is that the universal
polytope is not full dimensional (as we will soon show).

We typically do not know explicitly the 0/1 vectors of triangulations,
i.e., the vertices of U-poly(A). Among other things, there are sometimes
too many, as seen in Section 8.4. But we still want to tackle the linear and
minmax optimization problems. Following a classical method in combina-
torial optimization (see, e.g., [240, 291]), we will instead try to find a linear
inequality description of U-poly(A). Once we have a full description of the
facet inequalities and equations defining U-poly(A), we could use linear
programming [291] to find an optimal solution for our problems. Although,
in general, we only have a partial description, we will see that this suffices
to do useful calculations.

The idea of using polyhedral optimization to study triangulations had
an origin with the 1985 work of Dantzig, Hoffman and Hu [90]. They
studied the case of convex polygons deriving essentially a particular case
of what we presented. In the 1990’s Billera, Filliman, and Sturmfels [48]
introduced a general definition valid in arbitrary dimension and explained
algebraic properties using the language of multilinear algebra. They also
proved that the secondary polytope is a linear projection of the universal
polytope. Finally, it was developed explicitly and for general point sets in
[96].

Recall that the dimension of a convex polytope is the dimension of the
smallest affine linear space that contains it. This is the affine hull of P.
Clearly, we need to find out which equations, if any, are satisfied by all
triangulations when we think of triangulations in terms of their 0/1 inci-
dence vectors. In Figures 8.13 and 8.14 we show a pair of equations that
work for convex polygons (illustrated there in the case of a pentagon). The
reader should notice that the equations seem to be related to cocircuits of
the pentagon. This will give us a general answer.

We first present the linear equations of the affine hull aff(U-poly(A)) of
U-poly(A). As in the example, the linear equations involve the cocircuits
of the point configuration. For any F which is a (d −1)-simplex of A, let
HF be the hyperplane that contains F and let H+

F and H−
F denote the two

open halfspaces defined by HF . We recall that the cocircuits of A are the
resulting partitions (A∩H+

F ,A∩H0
F ,A∩H−

F ) of A. If conv(F) meets the
interior of conv(A), we say that F is an interior (d−1)-simplex. Observe
that this is equivalent to A∩H−

F and A∩H+
F both being non-empty. For

each interior simplex, we can consider the following homogeneous linear
equation,

0 = ∑
B=F∪{a}, a∈A∩H+

F

xB − ∑
B=F∪{a}, a∈A∩H−

F

xB. (8.17)

We call this the interior cocircuit equation associated with the (d − 1)-
simplex F . Note that in this case neither of the two sums in the interior
cocircuit equation is void. Moreover, every triangulation T of A contains
either no d-simplex containing F or exactly two, one in the first sum and
one in the second. Thus the equation is satisfied by the incidence vector
vT of every triangulation of A (even those triangulations not having F as
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a face!), and hence, all points in aff(U-poly(A)) satisfy the equation as
well. In fact, this equation is essentially a form of condition (ICoP) from
Corollary 4.5.19. See an example in Figure 8.15.
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Figure 8.15: the interior cocircuit equation for the

regular cube associated with {2,4,6} is

x1246 + x2456 − x2346 − x2467, which is different

from the interior cocircuit equation associated

with {4,6,8} or any of the other triangles in the

plane {2,4,6,8}.

Theorem 8.5.6. Let A be a point configuration.

1. The affine span of U-poly(A) is defined by all interior cocircuit equa-
tions, one for each interior (d − 1)-simplex F, plus a single non-
homogeneous linear equation valid on U-poly(A).

2. The affine span of U-poly(A) is spanned by the incidence vectors of
regular triangulations.

Example 8.5.7. Let us consider an example to illustrate Theorem 8.5.6. We
can again consider “the mother of all examples”, the point configuration of
Example 2.2.5 consisting of two nested equilateral triangles with parallel
sides. We saw in Figure 1.30 that there are 18 triangulations, of which all
but two are regular. The reader can easily compute all the 0/1 incidence
vectors of triangulations. Now in this case, Figure 8.16 shows all edges.
From them, we can recover the homogeneous cocircuit equations.

1 2

3

4 5

6

Figure 8.16: From the list of edges of A we can

recover the cocircuit equations and any chamber.

We have shaded one chamber.

x[2,3,6]+ x[3,5,6]− x[1,3,6]− x[3,4,6]= 0,

x[1,2,5]+ x[2,4,5]− x[2,3,5]− x[2,5,6]= 0,

x[1,4,5]+ x[2,4,5]− x[3,4,5]− x[4,5,6]= 0,

x[2,5,6]+ x[3,5,6]− x[1,5,6]− x[4,5,6]= 0,

x[2,3,6]− x[1,2,6]− x[2,5,6]− x[2,5,6]= 0,

x[1,3,5]+ x[1,4,5]+ x[1,5,6]− x[1,2,5]= 0,

x[1,2,4]− x[2,3,4]− x[2,4,5]− x[2,5,6]= 0,

x[1,3,4]− x[2,3,4]− x[3,4,5]− x[3,4,6]= 0,

x[2,5,6]+ x[4,5,6]− x[1,4,6]− x[3,4,6]= 0,

x[1,3,5]+ x[3,4,5]+ x[3,5,6]− x[2,3,5]= 0,

x[1,2,6]+ x[1,4,6]+ x[1,5,6]− x[1,3,6]= 0,

x[1,2,4]+ x[1,4,5]− x[1,3,4]− x[1,4,6]= 0.

The reader can verify that the eighteen 0/1 vectors he or she found sat-
isfy the above equations and, as the theorem predicted, the affine hull of the
18 points is already defined by the 16 vectors associated to regular triangu-
lations (i.e., the two associated to the non-regular triangulations are affine
combinations of the other 16 incidence vectors).

The proof of Theorem 8.5.6 follows easily from the next lemma.

Lemma 8.5.8. Let 0 = ∑B a d-simplex of A cBxB (cB ∈ R) be a homogeneous
linear equation on |B(A)| variables labeled by bases of A. The following
properties are equivalent:
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1. The equation is a linear combination of the interior cocircuit equa-
tions.

2. The equation vanishes on (the incidence vector of) every triangula-
tion of A.

3. The equation vanishes on (the incidence vector of) every regular tri-
angulation of A.
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Figure 8.17: Any triangulation of A\1 (the

deletion of point 1) extends to a triangulation of A.

Proof of Theorem 8.5.6. From (1)⇒(2) in Lemma 8.5.8 we have that all
homogeneous equations are linear combinations of the cocircuit equations.
If we have two non-homogeneous equations q1 and q2, multiplying q1 by
a suitable non-zero number and subtracting it from q2 produces a homo-
geneous equation. This shows that the cocircuits equations plus q1 can be
used to write any other non-homogeneous q2. Thus, Part 1 of the theorem
follows. Part 2 follows from the implication (2)⇒(3) in Lemma 8.5.8.

Proof of Lemma 8.5.8. The implications (1)⇒(2)⇒(3) are obvious. We
prove (3)⇒(1): Let U-polyreg(A) denote the convex hull of all incidence
0/1-vectors vT where T is a regular triangulation of A. Thus U-polyreg(A)
⊂U-poly(A). Let h = ∑cBxB be any linear form vanishing on U-polyreg(A).
We shall prove that h is a linear combination of the interior cocircuit equa-
tions and the equations xF = 0 for degenerate sets of d + 1 points. We
use a double induction on n = |A| and d = dim(A). When n = d + 1, the
smallest case, there is only one variable xB associated to the only d-simplex.
Linear forms are just multiples of this variable and would be equal to zero
if xB = 0. This happens when the simplex is degenerated. Assume that
the statement is true for any configuration of cardinality smaller than n or
dimension smaller than d.

Let a1 be a vertex of conv(A). Let us suppose that A\a1 still spans R
d .

Otherwise A is a cone over A\a1, so that U-polyreg(A) and U-polyreg(A\
a1) are affinely isomorphic (see Chapter 4, in particular Remark 4.2.3) and
the theorem follows by induction. Recall that the interior cocircuit equa-
tions vanish on U-polyreg(A). Denote by CoF the interior cocircuit equa-
tion associated with the (d − 1)-simplex F . If a1 �∈ F , then CoF involves
at most one d-simplex of the form B = {a1}∪F . Subtracting appropriate
multiples of those CoF from h, we get another linear form h1 in which the
variables xB corresponding to these simplices do not appear. That is,

h1 = ∑
B:a1∈B

conv(B\a1)⊂∂ (conv(A))

cBxB + ∑
B:a1 �∈B

c′BxB.

We claim the second part of the sum, h2 = ∑B:a1 �∈B c′BxB, is a linear form
vanishing on U-polyreg(A\a1). Indeed, let T ′ be any regular triangulation
of A\a1. We can now pick a regular triangulation T of A that extends T ′
(see Lemma 4.2.17 and Figure 8.17). Since a1 is a vertex of conv(A), the
triangulation T cannot contain a simplex B of the form {a1}∪F where
conv(F) is in the boundary of conv(A). This fact together with h1(vT ) = 0
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Figure 8.18: While not all triangulations of A/1

(the contraction by point 1) extend to a

triangulation of A, a regular triangulation of A/1

always extend to a regular triangulation of A.

See Lemma 4.2.24 for details. In the top part of

the figure we show a triangulation of the

contraction of a cube by point 1 (points 3,7 are

not used in the triangulation). For more

information on deletion contraction properties

see Chapter 4.

implies h2(vT ) = 0 (as well as the other summand too), and consequently
h2(vT ′) = 0, because the simplices that touch a1 are not present in the
formula.

Every cocircuit equation CoF of A\a1 is either a cocircuit equation of
A as well or can be extended to a cocircuit of A by adding a single vari-
able x{a1}∪F with the appropriate sign. By induction hypothesis, h2 is a
linear combination of the cocircuit forms of A\a1. We extend this presen-
tation to a linear combination of cocircuit forms of A, which vanishes on
U-polyreg(A). We subtract it from h1 to get a new form h3 which vanishes
on U-polyreg(A) and involves only d-simplices B of the form a1 ∪F:

h3 = ∑
B:a1∈B

c′BxB.

The assignment F → {a1}∪F defines a bijection between the simplices
of the contraction A/a1 and the simplices of A containing a1. Therefore
we can interpret h3 as a linear form on U-polyreg(A/a1). The main fact
we need is that any regular triangulation T ′ of A/a1 can be extended to a
regular triangulation T of A (Lemma 4.2.24). The hypothesis of coherence
is really necessary (see Example 4.2.25 and Figure 8.18). This guarantees
that h3 vanishes on U-polyreg(A/a1). By the induction hypothesis, h3 is
a linear combination of cocircuit forms CoF of A/a1. We replace each
variable xF in this linear combination by the corresponding variable x{a1}∪F .
This transforms cocircuit forms of A/a1 into cocircuit forms Co{a1}∪F of A.
Therefore, h3 is a linear combination of cocircuit forms of A. This proves
Lemma 8.5.8.

Corollary 8.5.9. The linear subspace of R
B(A) parallel to aff(U-poly(A))

is spanned by all vectors vT − vT ′ where T and T ′ are regular triangula-
tions of A differing by a bistellar flip.

Proof. It follows from Lemma 8.5.8 that the linear subspace in question is
spanned by all vectors vT −vT ′ where T and T ′ are regular triangulations.
Since every pair of regular triangulations is connected by a sequence of
bistellar flips, the corollary follows.

In general, the dimension of the universal polytope of A does not depend
on the number of elements and the dimension of A alone; but if A is in
general position, then it does:

Corollary 8.5.10. When the point configuration is in general position the
universal polytope has dimension

(n−1
d+1

)
.

Thus, coming back to our example of a pentagon, the dimension of its
universal polytope is equal to

(4
3

)
, thus it is 4-dimensional and it has 5

points. The only polytope with this property is a simplex!

Proof. dim(U-poly(A)) =
( n

d+1

)−R−1, where R is the rank of the interior
cocircuit forms. The cocircuit forms CoF for the (d − 1)-simplices F not
containing a1 are linearly independent, because each simplex B containing
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a1 appears in exactly one of them. Thus, R + 1 ≥ (n−1
d

)
. Note also that the

vector vT − vT ′ , where T and T ′ are regular triangulations of A differing
by a bistellar flip, equals the vector vT+ − vT− , where T+ and T− are the
two unique triangulations of the circuit Z on which the bistellar flip is sup-
ported. Likewise the vectors vT+ − vT− for the circuit Z containing a1 are
linearly independent, because each simplex B not containing a1 appears in
exactly one of them. Thus dim(U-poly(A)) ≥ (n−1

d+1

)
. This together with

the formula dim(U-poly(A)) =
( n

d+1

)−R−1 finishes the proof.

Here are two possible choices of non-homogeneous equations that may
be used to complete the description of aff(U-poly(A)) given in Theorem
8.5.6: Let p∈ conv(A) be a point not lying in the convex hull of any (d−1)-
simplex of A, then every triangulation of A satisfies a chamber equation:

∑
B full-dimensional simplex in A,

with p∈conv(B)

xB = 1. (8.18)

The name of the equation comes from the fact that the simplices being
considered, when intersected, define a chamber in the sense of Section 5.4.
Note that two such points define the same chamber equation if and only if
they lie in the same chamber.

Continuing Example 8.5.7 of two nested equilateral triangles with labels
as in Figure 8.16; we shaded one such chamber, out of 13 possible. Its
associated equation is x[1,2,3]+ x[1,2,4]+ x[1,2,5]+ x[1,2,6]= 1.

Figure 8.19: The chamber complex of 8 points.

How many chambers are there?

Recall that we studied in Chapter 5, the chamber complex of A is the
common refinement of all triangulations of A (see Figure 8.19). We call
the equations of type (3) chamber equations, because the simplices in the
sum only depend on the chamber in which p lies. Finally, if we denote by
vol(·) the standard volume form in R

d , the following volume equation is
satisfied by every triangulation of A:

∑
B∈Δ(A)

vol(conv(B))xB = vol(conv(A)). (8.19)

8.5.2 Relaxations of the universal polytope and its edges

With the knowledge we acquired in the previous section, we can construct a
polyhedron that approximates the universal polytope fairly well. Although
this is unfortunately not always an equality, it has some rather pleasant
properties as the graphs of the universal polytope is an induced-subgraph
of this larger polyhedron, which has some tantalizing consequences.

Definition 8.5.11. Given a point configuration A with n points and dimen-
sion d, denote by Q-poly(A) the intersection of the linear affine space of the
universal polytope with the cube [0,1]B(A). We call the support of an inci-
dence vector v, whose entries are labeled by the set of all full-dimensional
d-simplices, the collection of all d-simplices B for which vB �= 0. We will
denote it supp(v). Thus supp(v) records the non-zero entries of v.
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Clearly, since every vertex of U-poly(A) is also a vertex of Q-poly(A),
we have U-poly(A) ⊂ Q-poly(A). Here is the crucial result for practical
computations.

Lemma 8.5.12. 1. Let v be a vertex of Q-poly(A). Then v is a vertex of
U-poly(A) if and only if its support contains a triangulation.

2. If v is any vertex in Q-poly(A), then the simplices indexed by supp(v)
cover conv(A), i.e.,

⋃

B:B∈supp(v)

conv(B) = conv(A).

3. Every lattice point of Q-poly(A) is the incidence vector of a triangu-
lation of A; i.e., the universal polytope U-poly(A) is the integer hull
of Q-poly(A), i.e., the convex hull of the lattice points of Q-poly(A),
is precisely U-poly(A). See Figure 8.20.

Figure 8.20: For most polytopes, the vertices of

the integer hull are quite separate from the

vertices of the polytope. The polytope Q-poly(A)

is very special!

Remark 8.5.13. Part 3 of Lemma 8.5.12 contains implicit a new charac-
terization of triangulations, that can be added to those in Section 4.5: a
triangulation is simply a set of full-dimensional simplices whose incidence
vector satisfies the equations defining the affine span of U-poly(A): the in-
terior cocircuit equations plus any non-homogeneous linear equation valid
on U-poly(A), such as a chamber equation.

Proof. Part 1: The only-if-direction of (1) is obvious. For the if-direction;
We assume supp(v) contains a triangulations. If any of the entries of the vec-
tor v is equal to one, e.g., v j = 1, Because v satisfies all the chambers equal-
ities all non-zero entries of v must also be one. Thus, we can assume the
entries of v are all less than one, and thus it strictly contains a triangulation
T (i.e., the support has more simplices than those of a triangulation T ).
With this, we reach a contradiction with the fact v is vertex of Q-poly(A)
because vε := v−εvT

1−ε is still a point in Q-poly(A), for a sufficiently small
positive ε (essentially, take ε small enough to make vi + ε ≤ 1). But then
v = (1− ε)vε + εvT is not a vertex of Q-poly(A) (vertices cannot be con-
vex combinations of other points). In conclusion, the support of a vertex, if
it contains a triangulation, equals the support of a triangulation. Finally if
supp(v) is the support of a triangulation T , then again the chamber equa-
tions imply that v is exactly the incidence vector of T because it must be
filled with zeros and ones. Hence it is a vertex of U-poly(A).

Part 2: The chamber equations are satisfied by any point, not necessarily
a vertex, of Q-poly(A). This implies that any point is covered as stated.

Part 3: Let v be an integral point of Q-poly(A). By Part 2 we only need
to prove that any two simplices in supp(v) intersect properly. Suppose this
is not the case for two simplices B1 and B2 in supp(v), i.e.:

conv(B1 ∩B2) �= conv(B1)∩ conv(B2).

Take a point a in (conv(B1)∩ conv(B2))\conv(B1 ∩B2). Then the min-
imal face (subset) F of B1 with a ∈ conv(F) is not a face of B2. For each
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simplex B of supp(v) having F as a face, consider the convex polyhedral
cone

c(B) := a+pos(conv(B)−a) = {λ p+(1−λ )a : p ∈ conv(B), λ ≥ 0}.

Note that the facets of c(B) are in 1-to-1 correspondence with the facets
of B which contain F . We claim that conv(A) is contained in the union of
such cones. Suppose a point b of conv(A) lies outside their union. Then
b “sees” a facet of some cone c(B), where B ∈ supp(v). Let F be the
corresponding facet of B, which contains F . By the choice of F , there
is no d-simplex in supp(v) having F as a facet and lying in the halfspace
containing b. This violates the interior cocircuit equation CoF(v) = 0, since
v ≥ 0. Therefore an open neighborhood of a in conv(A) is covered by those
simplices in supp(v) which have F as a face. The interior of one of these
simplices intersects the interior of conv(B2). This violates the chamber
equations for v.

Corollary 8.5.14. Let A ⊂ R
2 be a planar configuration of n points in con-

vex position, then the equality U-poly(A) = Q-poly(A) holds. In general,
U-poly(A) is strictly contained in Q-poly(A).

Proof. Let v be a vertex of Q-poly(A). Let S be a subset of supp(v) where
all triangles in S intersect properly and cover a convex subpolygon of
conv(A). Suppose that S is maximal with these two properties. Let e be
an edge of the subpolygon covered by S. Then S is contained in one of the
two half-planes defined by e. By maximality of S and the interior cocircuit
equations, e must be a segment on the boundary of conv(A). This proves
that S covers conv(A) and hence is a triangulation. Lemma 8.5.12 Part 1
implies that v is a vertex of U-poly(A). In Figure 8.21, we illustrate a planar
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Figure 8.21: A covering that is a vertex of

Q-poly(A), but not of U-poly(A).

point set with six points (a pentagon and its centroid). This configuration
is in general position and has 20 triangles and 16 possible triangulations.
Consider the vector v ∈ R

20 with coordinates v{123} = v{234} = v{345} =
v{145} = v{125} = v{013} = v{024} = v{035} = v{014} = v{025} = 1/2 and all
other coordinates zero. It satisfies the interior and boundary cocircuit equa-
tions. Therefore v lies in Q-poly(A). Since supp(v) does not contain any
triangulation, U-poly(A) �= Q-poly(A). This fractional point is the only
vertex of Q-poly(A) which is not in U-poly(A).

We close this section by observing that there is a nice connection between
the edges of U-poly(A) and those of Q-poly(A). It is in fact a consequence
of more general results about 0/1 polytopes and packing polytopes due to
Matsui and Tamura [228]. See also [96] for an ad hoc proof using triangu-
lations.

Theorem 8.5.15. Let T1 and T2 be two distinct triangulations of A. The
following statements are equivalent:

1. vT1 and vT2 are not neighbors in Q-poly(A).

2. vT1 and vT2 are not neighbors in U-poly(A).
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3. There exist two triangulations T3 and T4 of A (different from T1 and
T2) such that vT1 + vT2 = vT3 + vT4 .

4. There exist partitions T1 = R1 ∪L1 and T2 = R2 ∪L2 such that L1 ∪
R2 and R1 ∪L2 are two other triangulations of A, different from T1

and T2.

We close the section with several comments about how to use the uni-
versal polytope as the integer programming formulation in other not direct
cases. In computational geometry authors often refer to triangulations of a
point configuration A as those that touch all the points of the configuration
(in this book called full triangulations). Our theory allows more triangu-
lations to have more structure (e.g., secondary polytopes are only possible
in that case), but to optimize only over full triangulations we need to add
some more constraints. In the case of the planar point set, a single condition
equation suffices, namely ∑xB = 3n−3−b, which says exactly how many
triangles must be present in terms of the vertices and those on the boundary.
In d-dimension space the following equations suffice, one for each point ai

in the configuration: Figure 8.22: Adjacencies in the universal of a

hexagon.

∑
B d-simplex: ai∈B

xB ≥ 1.

Note also that we can force any simplex, of any dimension, that we wish
to be present in an optimization problem by adding a similar equation that
forces at least one of the top-dimensional simplices that contain it to be
included. Therefore, given a planar point configuration and an specific sim-
ple polygon supported on this point set we only need to add n many such
inequalities and we can optimize over the space of all triangulations of the
simple non-convex polygon.

There are other authors who have considered the optimization of triangu-
lations as linear or integer programs. For example, following [198], if we
denote by ci the length of edge ei, then one can easily set up a linear pro-
gram (what in optimization would be called a set packing formulation) to
solve the planar minimum length triangulation where there is one variable
xi for the edge ei (no more than

(n
2

)
variables altogether). So the objective is

minimize ∑
ei edge

cixi,subject to

0 ≤ xi ≤ 1,

xi + x j ≤ 1 if the edges ei,e j intersect, and

∑
ei edge

xi = 3n−3−b,

where 3n−3−b is the number of edges of a triangulation that uses all the
points of a configuration by Euler’s formula (see Lemma 3.1.3). The inte-
ger optimal solution of such constrained problem would give us a minimum
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length triangulation. Abstractly, planar triangulations are maximal indepen-
dent set of vertices of a combinatorial graph whose vertices are edge seg-
ments in A and two vertices are adjacent when the corresponding edges
cross. Thus we want a maximal size stable set, a set of vertices that are not
pairwise adjacent in the auxiliary graph 8.23. The maximal stable set prob-
lem is one of the most studied problems in combinatorial optimization and
known linear inequalities can be added to the present description for elim-
inating non-integral vertices. For example, the cliques of the graph, which
geometrically represent set of edges pairwise crossing each other, define
clique inequalities:

Figure 8.23: One gray stable set of a graph. ∑
clique of edges

xe ≤ 1.

For some abstract graphs, e.g., perfect graphs, there is a full characteri-
zation of facets for describing the convex hull of the 0/1 incidence vectors.
Odd-cycle inequalities are also popular inequalities that help to remove frac-
tional solutions and speed up the solution of integer programs. Intersection
graphs of crossing edges and their independent sets have been studied in
[196]. The above polyhedral formulation of optimization for triangulations
is specific to dimension two. Even there, it does not give a complete de-
scription of the polyhedron of triangulations because several of its vertices
are not integral.

The experimental comparison made by A. Tajima [317] indicates that
the universal polytope is the most effective formulation. It is also clear
of course that the inequalities xi + x j ≤ 1 are weaker than and implied by
the chamber equations. The universal polytope approach gives of course
provably exact solutions to the MLT problem too. It has the advantage
of being the only method available for optimization problems of arbitrary
dimension. For the planar case the polyhedral approach is not as powerful
as ad hoc methods, it works practically for up to a few hundred points.
Other authors have reported the current limit is between 300 [318] and 500
points [73]. But the fact that we have a planar problem affords many other
heuristics and simplifications.

8.5.3 Equidecomposable and weakly neighborly polytopes

Here we show that the universal polytope, somewhat surprisingly, sheds
new light on an almost twenty year old question. We want to answer the
following: what point configurations have the property that all their trian-
gulations have the same number of simplices?

Definition 8.5.16. We say that a configuration A is equidecomposable if
all its triangulations have the same number of full-dimensional simplices.

Remark 8.5.17. The standard definition of equidecomposable (cf. [36], or
Section 17.4.2 in the survey paper [207]) is stronger than ours: it requires
all triangulations of A to have the same f -vector. That is, all triangulations
need to share not only the number of d-simplices, but also the number of
(d − 1)-simplices, (d − 2)-simplices, etc. For example, the vertices of a
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convex n-gon form an equidecomposable configuration in this strong sense,
since every triangulation of them has f -vector (n,2n−3,n−2).

We show here (Theorem 8.5.19) that the weak definition, based only on
d-simplices, is equivalent to the strong one. We prefer to use the weak one
as a starting point because it readily shows that the following configura-
tions that we have already encountered are equidecomposable: Lawrence
polytopes (Exercise 5.30), unimodular configurations such as the product of
two simplices (Proposition 6.2.11), and cyclic polytopes in even dimension
(Theorem 6.1.20, part (iv)).

What do all these configurations have in common? The theory of regu-
lar triangulations gives us the following simple, necessary condition for a
configuration to be equidecomposable:

Lemma 8.5.18. If A is equidecomposable, then all its signed circuits are
balanced; that is, for every circuit (Z+,Z−) one has |Z+| = |Z−|.
Proof. For every circuit Z of A, there exists a pair of regular triangulations
T1 and T2 that differ by a flip on that circuit (Lemma 5.1.14). The char-
acterization of flips via circuits implies that, for a flip not to change the
number of simplices in a triangulation, it is necessary and sufficient that
|Z+| = |Z−|.

In particular, an equidecomposable configuration must be acyclic (that is,
we can think of it as a point configuration) and in convex position: if an ele-
ment a of A is not a vertex, then there is a circuit of the form ({a},C) (take
as C any minimal subset of A\a having a in its convex hull), which cannot
be a balanced circuit (unless we allow A to have repeated points). For this
reason one can speak of equidecomposable polytopes, rather than configu-
rations. The main result in this section is the following strong converse of
Lemma 8.5.18.

Theorem 8.5.19. The following properties are equivalent for a configura-
tion A.

(i) All triangulations of A have the same f -vector.

(ii) All triangulations of A have the same number of d-simplices (A is
equidecomposable).

(iii) All regular triangulations of A have the same number of d-simplices.

(iv) For every signed circuit (Z+,Z−) of A one has |Z+| = |Z−|.
Proof. The implications (i)⇒(ii)⇒ (iii) are obvious. Lemma 8.5.18 states
(ii)⇒(iv) but, in fact, its proof shows (iii)⇒(iv) since the triangulations used
in it can be chosen to be regular.

For the final implication (iv)⇒(i), the universal polytope comes to our
rescue. It is a consequence of Lemma 8.5.5 that each entry of the f -vector
can be computed as the value of a linear functional over the universal poly-
tope: the i-th entry of the f -vector is obtained by the choice of weight
νC = 1 for evey i-simplex and νC = 0 for every other independent set. Since
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the affine span of the whole universal polytope is spanned by the regular
triangulations alone (Theorem 8.5.6), to prove that an f -vector entry is
constant on all triangulations, it suffices to show it is constant on regular
triangulations. This can be done via flips.

That is, all we need to show is that a flip supported on a balanced circuit
does not change the f -vector. This is true by the characterization of flips via
circuits (Theorem 4.4.1): a flip consists in removing a subcomplex T +

Z ∗
L from a triangulation and putting T −

Z ∗L instead, where T +
Z and T −

Z
are the two triangulations of the circuit and L is a certain complex. If
the circuit is balanced then T +

Z and T −
Z have the same f -vector (they are

combinatorially equivalent), hence T +
Z ∗L and T −

Z ∗L have the same
f -vector, hence the two triangulations joined by the flip have the same f -
vector.

Equidecomposable polytopes were studied by M. Bayer in [36]. (See
also Section 17.4.2 in the survey paper [207] by Lee). There, among other
things, the implications (i)⇒(ii)⇒(iii)⇔(iv) of Theorem 8.5.19 were
proved, but the other direction was left as an open question. Bayer also
noticed the relation of equidecomposability to the following concepts:

Definition 8.5.20. • We say that a configuration A is weakly neigh-
borly if every subset C of i + 1 elements is contained in a face of
convA of dimension at most 2i, for all i.

• We say that a triangulation T of A is shallow if every i-simplex of T
is contained in a face of convA of dimension at most 2i, for every i.

Remarks 8.5.21. If the convex hull of A is simplicial, then being weakly
neighborly is equivalent to every set of �(d + 1)/2� elements being the
vertex set of a face. That is, to the �(d + 1)/2�-skeleton of A being the
complete simplicial complex of dimension �(d + 1)/2�. This is the usual
definition of a neighborly polytope [339].

It is easy to show that:

Lemma 8.5.22. A configuration A is weakly neighborly if and only of all
its triangulations are shallow.

Proof. This follows from the fact that in the definition of weakly neighborly
there is no loss of generality in assuming that the subset C of size i + 1 is
independent, and that every independent subset of i + 1 elements appears
as an i-simplex in some triangulation of A.

Bayer proved the following by showing that the f -vector of any shallow
triangulation of a given polytope can be recovered from the f -vector of the
polytope itself. (In particular, all shallow triangulations of a polytope have
the same f -vector). Here we use Theorem 8.5.19 to give a shorter proof:

Theorem 8.5.23 (Bayer [36]). Weakly neighborly configurations are equid-
ecomposable.



8.6. Computational complexity of triangulation problems 413

Proof. Assume that A is not equidecomposable. In particular, it has an
unbalanced circuit Z. Suppose for example that |Z−| < |Z+| and let i =
|Z−|− 1. Then, Z− is a set of i + 1 elements whose carrier face in convA
contains the whole circuit because

relintA(Z−)∩ relintA(Z+) �= /0.

But the dimension spanned by Z−∪Z+ equals |Z−|+ |Z+|−2 > 2|Z−|−2 =
2i. This finishes the proof.

The converse of Theorem 8.5.23 is not true. For example, the vertex set
of a regular octahedron is equidecomposable but not weakly neighborly.

8.6 Computational complexity of triangulation problems

It is a central concern to investigate the amount of time, number of itera-
tions, or memory requirements for algorithms of specific triangulation prob-
lems. We have been doing that in this chapter, but another important aspect
of the theory of computation is to classify computational problems and al-
gorithms into complexity classes. Such a classification provides a useful
differentiation between those problems that can be approached efficiently
and those that will unfortunately require heuristics, approximations, or ad
hoc methods. In what follows we will discuss this classification for com-
putational triangulation problems with regard to the time complexity of a
problem.

8.6.1 A very quick review of complexity classes

Our review will be necessarily short. We hope it will suffice for people that
do not know about complexity, although we definitely rely on informal intu-
itive notions for ease of presentation. We highly recommend that you read a
proper formal account of complexity theory such as the classic book [134]).

A problem is a generic computational question with unspecified data
such as what is the determinant of a matrix? Or given a graph and an
integer k, does the graph have a clique of size k? An instance of a problem
is a particular specification of the data defining the problem. An algorithm
is a finite set of instructions for performing basic operations on an input to
produce an output. An algorithm solves a problem P if given a represen-
tation of each instance I of P as input it supplies as output the solution of
instance I. Note that an instance can have more than one representation,
for example, polytopes can be described by either their facets or their ver-
tices (to define this rigorously one uses Turing machines, formal languages,
and other constructions). We also note that when an algorithm involves
a random choice (e.g., picking a point at random), then the algorithm is
randomized or probabilistic. Otherwise, we say it is deterministic.

How do we measure the efficiency of an algorithm A? We do this based
on running time, a count of the number of elementary operations needed
to run the algorithm. The number of operations depends on the size of the
input instance. For example, the size of a graph can be measure by the num-
ber of vertices and edges. On a polytope things are a bit more complicated



414 Algorithmic Issues

because they are defined, say, by a system of inequalities Ax ≤ b or by its
vertices. The numeric data helps determine the size of the input. Thus the
size of the polytope is given by the number of variables, the number of rows
involved, and the size of the numbers involved. An integer n is encoded in
binary, thus its size is simply the number of bits necessary, log2 n bits. What
is the size of a rational number? size

( p
q

)
= max(size(p),size(q)). All these

have been taken into account in our prior analysis.
When we study how difficult a problem is we will discuss the worst case

analysis, i.e., the worst possible instance one can have. Of course, another
type of conclusion can be reached from the average-case analysis but we
will not discuss this here. We say that an algorithm is polynomial time if
the number of operations needed in its running time is bounded above by a
polynomial function in the size of the input. As a simple example, suppose
you are given a list L of n numbers. A silly algorithm requires around

(n
2

)

comparisons to re-order the whole list. This is not the best algorithm, but it
shows that this is a polynomial-time solvable problem.

We discuss decision problems, namely problems where the answer is
always yes or no (e.g., is the graph G 3-colorable?). Of course, most prob-
lems can be formulated in this way, thus it is not a very serious restriction.
The complexity class P is the set of decision problems that can be solved
by a deterministic algorithm in polynomial time in the input size. A de-
cision problem is in the class NP if there exists an algorithm to verify a
solution of the problem in time O(nk) for some constant k. Note that if the
problem L belongs to the class P, it automatically belongs to the class NP,
thus P ⊂ NP. A problem L is NP-hard if every instance of any problem
L̃ ∈ NP is polynomial-time reducible to an instance L that when solved pro-
duces a solution of the original problem. We will see a detailed example of
such polynomial reductions in the next subsection. We say a problem is NP-
complete if it is NP-hard and is also a member of NP. The question whether
P = NP remains open, but since it is widely believed that the classes P and
NP are different, NP-complete problems are the ones most likely not to be
in P, i.e., finding an NP-complete problem that can be solved in polynomial
time would mean that P = NP.

The “first” NP-Complete problem is the logic satisfiability problem or
SAT: Input: A Boolean expression f in conjunctive normal form.
Output: YES or NO depending on whether there is an assignment of TRUE
or FALSE values to the variables such that all clauses in f are simultane-
ously satisfied. That is, a truth assignment that makes the formula TRUE.
Let us explain what conjunctive normal form means. A literal in a Boolean
formula is an occurrence of a variable, or of its negation. A clause is a sub-
set of literals joined by OR connectors. A formula in conjunctive normal
form is a formula that is a conjunction of finitely many clauses. Observe
that any Boolean formula can be rewritten in conjunctive normal form, but
to study the complexity of SAT, we restrict ourselves to conjunctive normal
formulas of a certain size.

Example 8.6.1. One simple conjunctive form Boolean expression with
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three clauses and four variables is

f = (X1 ∨¬X2 ∨X3)∧ (¬X1 ∨X4)∧ (¬X1 ∨¬X2 ∨¬X3 ∨¬X4).

which has a satisfying truth assignment X1 = X2 = X4 = TRUE, X3 = FALSE.
On the other hand, the following two logical formulas are not in con-

junctive normal form: ¬(X1 ∨X3), X2 ∧ (X1 ∨ (X4 ∧X2)). But they can be
easily rewritten into conjunctive normal form, respectively, as ¬X1 ∧¬X3

and X2 ∧ (X1 ∨X4)∧ (X1 ∧X2).

Although there are many other NP-complete problems available we fo-
cus our attention on SAT and some of its variations. A Boolean formula
is in 3-conjuctive normal form (3-CNF) if each clause has exactly three
distinct literals.

Example 8.6.2. Here is one example of a 3-CNF formula (x1 ∨ ¬x1 ∨
¬x2)∧ (x3 ∨ x2 ∨ x4)∧ (¬x1 ∨¬x3 ∨¬x4).

The 3-SAT problem is the same as SAT but restricted to 3-CNF formulas.
That is, decide if a 3-CNF formula has an assignment of variables such that
the Boolean statement evaluates to true. Even this special case of SAT is
known to be an NP-complete problem (see [134]).

x2

C3

x1 x3 x5x4

C1

C2

Figure 8.24: Planar embedding of the Boolean

formula

(x1 ∨¬x3 ∨x5)∧ (¬x1 ∨x2 ∨x3)∧ (x2 ∨x4 ∨¬x5).

Definition 8.6.3. Let Φ be a Boolean formula in 3-CNF. The associated
graph of Φ, G(Φ), has one vertex for each variable x in Φ and one vertex
for each clause C in Φ. There is an edge between a variable-vertex x and
a clause-vertex C if and only if x or ¬x appears in C. A formula Φ is
called planar if and only if its associated graph G(Φ) is a planar graph. See
Figure 8.24 for an example.

Lichtenstein showed in [211] that the 3-SAT remains NP-complete even
if the input is restricted to planar formulas. This is called the PLANAR-
3-SAT problem. More strongly, Mulzer and Rote [235, 236] proved that
the PLANAR-1-IN-3-SAT is NP-complete. In the PLANAR-1-IN-3-SAT
problem, we are given a collection Φ of clauses containing exactly three
variables together with a planar embedding of the associated graph G(Φ).
The problem is to decide whether there exists an assignment of values to
the variables of Φ such that exactly one literal in each clause is true.

In what follows, we discuss the reduction of SAT and 3-SAT to three dif-
ferent problems about triangulations in dimensions two and three. To help
the reader getting acquainted with the essential steps of an NP-hardness
proof we will discuss most of the details of the proof of the first problem
(the easiest to describe) and from then on just highlight the essential geo-
metric building blocks in the other two hardness proofs.

8.6.2 The hardness of the planar constrained triangulation problem

The planar constrained triangulation problem is as follows: Given a planar
point configuration A and a set H of edges connecting pairs of points in A,
we would like to know whether there is a subset E ⊂H such that E defines
a triangulation. We will prove now that this problem is NP-complete. We
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first show that this problem is NP-hard and then show that it is in NP. Our
presentation will follow closely the elegant proof of E. Lloyd [216], which
provides a reduction of SAT into the constrained triangulation problem.

The proof is an excellent example of how NP-completeness proofs are
normally constructed. Since we are modeling logical formulas we need ge-
ometric devices that can be “switched” between states that represent TRUE
vs. FALSE assignments.

E 2E1

E3E

D2 A1

C 2

A2 D1

B2 C1
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D2 A1
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A2 D1

B2 C1
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(0,100) (37,100) (63,100) (100,100)
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(0,37) (37,37) (63,37) (100,37)

(0,0) (37,0) (63,0) (100,0)

(43,53)

(47,57) (53,57)

(47,43) (53,43)

(57,53)

(57,47)(43,47)

Figure 8.25: A view of the point configuration of a

switch.

The switch: The key building block in our construction will be a set of
vertices and edges that we call a switch. Each switch consists of 24 ver-
tices with very specific integer coordinates and a large set of edges. First,
Figure 8.25 describes the coordinates and labeling of the points and should
be kept in mind for later reference. Note that opposite points in the central
octagon appear with the same letter.
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Figure 8.26: A view of the relevant edges of a

switch.

Next, Figure 8.26 shows a picture of a switch with all its edges drawn.
All switches will be translated copies of each other. The vertices of each
switch will be in two important groups (please refer to Figure 8.25):

• Frame vertices (points E1, E2, E3, E4, F , G, H, I, J, L, M, N, P, Q,
R, S), and

• Terminals (points A1, A2, B1, B2, C1, C2, D1, D2).

The pairs of points (A1,A2), (B1,B2), (C1,C2), (D1,D2) will be called
matched pairs of terminals.

The edges present will also be divided into two kinds (now see Fig-
ure 8.26 where all the edges are shown together).

• The frame edges: E1F , E1N, FP, FN, NP, E2G, E2H, GH, GQ, HQ,
E3I, E3J, IJ, IR, JR, E4L, E4M, LM, LS, MS) and

• The non-frame edges: FR, GS, HM, HS, IN, IP, JP, LQ, MQ, NR,
A1G, A1Q, A1H, A1I, A1C1, A1A2, A1C2, A1D2, A1P, A1F , B1G, B1Q,
B1H, B1I, B1R, B1L, B1D1, B1A2, B1M, B1C2, B1N, B1D2, B1P,
B1F , C1Q, C1H, C1I, C1R, C1J, C1L, C1S, C1A2, C1M, C1B2, C1N,
C1D2, C1F , D1H, D1I, D1R, D1J, D1L, D1S, D1A2, D1B2, D1C2,
D1P, D1D2, A2Q, A2R, A2J, A2L, A2S, A2M, A2N, A2C2, B2H, B2I,
B2R, B2J, B2L, B2S, B2M, B2N, B2P, B2G, B2D2, C2Q, C2H, C2I,
C2J, C2S, C2M, C2N, C2P, C2F , C2G, D2G, D2Q, D2R, D2M, D2N,
D2P, D2F .
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From a Boolean formula in conjunctive normal form C1,C2, . . . ,Ck in the
variables x1, . . . ,xn we will construct a set of points in the plane and a set
of edges (many of them crossing each other). The construction resembles
the experience of building an electric circuit of some kind, where wires are
attached to electric outlets. We are laying out many switches in a circuit
board, and the final structure will be called a network. The reader should
keep track and check that the point configuration V and the edge set E will
be constructed in O(n · k) steps.

We will now need to copy the switch we described above many times
with identical translation copies. For this reason, we will use superscripts
on the labeling of the points to denote points from different switches but that
are translations from the original switch. For example, Ai j

2 is the translation
of point A2 inside the switch Si j. It is worth remarking that the switches are
symmetric along the middle vertical and horizontal lines. See Figure 8.26.

Figure 8.27: A triangulation contained in the

switch transmitting information horizontally.

Figure 8.28: A triangulation contained in the

switch transmitting information horizontally.

Now, consider a finite collection of logical formulas C1,C2, . . . ,Ck, each
of which is disjunction of logical variables. We are going to set up a rect-
angular array of switches, with one switch for each clause-variable pair.
Denote as Si j the switch for variable xi and clause Cj. Each switch Si j will
be of one of three types depending on whether (a) xi is in Cj , (b) ¬xi is in
Cj, or (c) neither is in Cj. In our construction, adjacent switches will share
appropriate frame vertices and point Ei j

1 , the lower left corner of Si j, will
have coordinates (100 · (i− 1)),100 · ( j− 1)). At this moment, the set of
vertices consists of all vertices in each of the switches and the set of edges
E . The arrangement of switches resembles a grid.

In what follows, we add edges to E , in addition to those edges coming
already associated with each switch. First, we need to add edges that go
in between adjacent switches. They will be called interswitch edges. Only
terminal points will be endpoints of interswitch edges and these nodes will
be assigned meanings. The notation Q×R will denote the set of all edges
of the form [q,r] with q ∈ Q and r ∈ R.

The idea for the vertical interswitch edges is that they carry the infor-
mation about the truth values of variables in the vertical direction. Vertical
switch edges are as follows: For each pair i, j the following edges are placed
in E :

(Ai j
2 ,Ci j

1 )× (Ai, j+1
1 ,Ci, j+1

2 ) and (Bi j
2 ,Di j

1 )× (Bi, j+1
1 ,Di, j+1

2 ).

The A −C edges will carry the “FALSE” value, while the B −D edges
transport “TRUE” in the variable xi.

The horizontal interswitch edges between Si j and Si+1, j are more com-
plicated, they will depend on the type of switch Si j. First, we say Si j is a
neutral switch if xi is not Cj and ¬xi is not in Cj either. The switch Si j is a
positive switch if xi is in clause Cj. Finally, Si j is a negative switch if ¬xi

is in clause Cj. The interswitch edges will transmit information about the
clauses horizontally, and this information will be read from some terminal
endpoints. The end points of interswitch edges will be labeled as clause-
FALSE or clause-TRUE depending on whether the message they transmit
to us is “clause not satisfied” or “clause satisfied”.
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When Si j is neutral, one needs to add the following edges to the set E :

(Ai j
1 ,Bi j

1 )× (Ai+1, j
2 ,Bi+1, j

2 ) and (Ci j
1 ,Di j

1 )× (Ci+1, j
2 ,Di+1, j

2 ).

In this case we define terminal points A1,B1 to be clause-FALSE and ter-
minals C1,D1 to be clause-TRUE. For a positive switch we add to E the
edges

(Ai j
1 )× (Ai+1, j

2 ,Bi+1, j
2 ) and (Bi j

1 ,Ci j
1 ,Di j

1 )× (Ci+1, j
2 ,Di+1, j

2 ).

In this case we define terminal A1 to be clause-FALSE and the terminals
B1,C1,D1 to be clause-TRUE in a positive switch. Then, in the case that
we have a negative switch we add to E the edges

(Bi j
1 )× (Ai+1, j

2 ,Bi+1, j
2 ) and (Ai j

1 ,Ci j
1 ,Di j

1 )× (Ci+1, j
2 ,Di+1, j

2 ).

We say that terminal B1 is a clause-FALSE point and terminals A1,C1,D1

are clause-TRUE in the negative switch.
Figure 8.29: A triangulation contained in the

switch transmitting information vertically.

Figure 8.30: A triangulation contained in the

switch transmitting information vertically.

Finally, we have to be careful about what happens with the switches on
the boundary, namely those switches of the form S1 j, Si1, Sn j, Sik. To insure
that the edges of the convex hull of the point configuration V are included in
E , we modify the switches of these boundary rows and columns of switches.
They will have additional special boundary vertices and edges following
the rules: Each switch S1 j, contains a special vertex, T 1 j with coordinates
(0,100 · ( j−1)+ 50) and the set of edges (T 1 j)× (Mi j,Ni j,Ai j

2 ,Bi j
2 ). Each

switch Si1 has an special point Ui1 with coordinates (100 · (i− 1)+ 50,0)
and the edges (Ui1)× (Fi1,Gi1,Ai1

1 ,Bi1
1 ,Ci1

2 ,Di1
2 ). A switch of the form Sn j

contains a special vertex V n j of coordinates (100n,100( j− 1) + 50) and
the following edges are added to E : (V n j)× (Hn j, In j,Cn j

1 ,Dn j
1 ). Finally,

for switches of the form Sik we have a special point W ik = (100(i− 1)+
50,100k) as well as new edges (W ik)× (Jik,Lik,Aik

2 ,Bik
2 ,Cik

1 ,Dik
1 ) Addition-

ally, based on the type of the switch Sn j (neutral, positive, or negative), we
include the following edges: For positive Sn j, we add edge V n j,Bn j

1 , and if
the switch is negative, we add Vn j,A

n j
1 .

The frame consists of the frame edges of each switch in the network as
well as edges, which have a frame vertex as one endpoint and a special
boundary vertex as the other end point. Note that this way, no edge with a
terminal as an endpoint is included in the frame.

From a triangulation recover a Boolean assignment and vice versa: Sup-
pose T is a triangulation of the point configuration V that uses only edges
of E . We need to prove that from T we can recover a TRUE-FALSE value
assignment to the variables x1, . . . ,xn that makes the logical formula TRUE.
First of all, note that the frame is included in E , but no edge intersects
any of its edges. Thus, any triangulation T of V using edges in E must
use all edges in the frame. The non-frame edges in T must complete the
triangulation of each switch in the network, and connect adjacent switches
together too.

In any triangulation of the array of switches we note there will be two
“streams” of information passing through it. To fully understand this we
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recommend the reader takes a look at the pair of Figures 8.27 and 8.28 as
well as the symmetric Figures 8.29 and 8.30. Through each switch one
stream flows vertically and another horizontally. The vertical stream flows
through Si j carrying a truth assignment for variable xi. For each variable xi

its truth assignment must be spread north through each switch Si, j, with 1 ≤
j ≤ k. The horizontal stream of information leaving switch Si j on the right
indicates whether or not clause Cj is satisfied by the assignment of truth
values to the variables x1,x2, . . . ,xn. One key point is that the construction
forces the stream of information flowing into the left side of a switch Si j

to be “not satisfied” and the information flowing out of the right side to be
“satisfied”.

Inside each switch Si j, a terminal A is east-connected in triangulation T
if there exists an edge AB that properly intersects the edge Ii j,Hi j. Since
the edge Ii j,Hi j is not in E , and thus not in T , there must be an edge
of T which properly intersects it. By construction, each such edge has a
terminal of Si j as an endpoint. This means that there must be at least one
east-connected terminal per switch. We have the same situation for west-
connected, north-connected, and south-connected terminals. A connected
terminal will be one that is connected in either direction. From the con-
struction, the reader can verify the following lemma

Lemma 8.6.4. Given any triangulation T of the point configuration V that
uses only edges from the set E there are exactly two connected terminals
in each switch and furthermore for each switch those two terminals are a
matched pair of terminals.

The following corollary follows from Lemma 8.6.4 and the construction:

Corollary 8.6.5. If S1 and S2 are adjacent switches in the network and
T is a triangulation of V using only edges from the set E , then there is
exactly one interswitch edge in T whose endpoints are a terminal in S1

and a terminal in S2.

Now we are ready to make an assignment of TRUE or FALSE to each
variable from the edges in the triangulation.

Theorem 8.6.6. Given the triangulation T of V, set variable xi to be TRUE
if the south connected terminal in Si1 is B1 or D2, else set xi to FALSE if
the south-connected terminal in Si1 is A1 or C2. With this assignment each
clause Cj is satisfied

Proof. It follows from the construction, Lemma 8.6.4, Corollary 8.6.5 that
in any given triangulation of V for each j there is exists an i between 1 and
n such that the east-connected terminal of Si j is either A1 or B1 and it is
clause-TRUE. Similarly we also have that in any triangulation V, for each
i, either the connected terminals are B′s and D′s for all Si j , or the connected
terminals are A′s and C′s for all Si j.

In the case that the connected terminal in switch Si j is B1, since it is
clause-TRUE, this must be a positive switch, thus xi is in Cj. But then B1 is
the south-connected terminal. This mean that the south-connected termina
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of Si1 is B1 or D2. Then by our assignment xi is TRUE and thus Cj is a
satisfied clause. Similarly, in the case that the connected terminal in Si j

is A1, since it is clause-TRUE this must be a negative switch. Thus ¬xi

is in Cj. But then A1 is the south connected terminal. Hence the south-
connected terminal of Si1 is A1 or C2. Then, by our assignment xi is false
and Cj is satisfied.

Now we describe what is needed to go from a Boolean assignment to
a proper triangulation (i.e., which edges will be selected from those in E .
Assume now that we have a truth assignment to x1, . . . ,xn such that each of
the clauses C1, . . . ,Ck is satisfied. We will show that there is a subset of the
edges T , of E that defines a triangulation.

To begin we include in T all edges that form the frame. No edge of
E intersects the edges of T so far. For each clause, Cj, we define μ j to
be the smallest index i such that either xi or ¬xi are in Cj and the truth
assignment Hi to xi causes Cj to be satisfied. From this we triangulate the
switch Si j as follows: For i≤ μ j, if Hi is true, then Si j is a triangulated using
the triangulation depicted in Figure 8.29. Otherwise use the triangulation
in Figure 8.27. For i > μ j, if Hi is true, then Si j is triangulated using the
triangulation depicted in Figure 8.28, otherwise, use the triangulation in
Figure 8.30.

Some of the terminal points will be exposed or reachable from outside the
switch Si j after this construction and they will be used to connect adjacent
switches. From the construction so far, for each pair i, j with 1 ≤ i ≤ n and
1 ≤ j ≤ k−1, there is an edge in E whose endpoints are the north-exposed
of terminal point of Si j and the south-exposed terminal of Si, j+1. Similarly
one can prove (left as exercise), that, for each pair i, j with 1 ≤ i ≤ n and
1 ≤ j ≤ k−1, there is an edge in E whose endpoints are the east-exposed
terminal point of Si j and the west-exposed terminal point of Si+1, j.

Thus, for each pair of adjacent switches there is an edge of E whose
endpoints are the appropiate exposed points of these switches. We add
those edges to the current E . We can also verify what happens to switches
on the boundary, and their connection to the special boundary vertices Ui1,
W ik, T 1 j, and V n j, but it is easy to see those available edges in E suffice to
form a triangulation. T will contain the edges in the frame and the edges
in a triangulation of each switch in the network.

Verifying the problem belongs to NP: Consider an instance of the con-
strained triangulation problem, which is specified by the sets of vertices V
and edges E . We know that a set of edges T ⊂ E is a triangulation if and
only if no two edges cross and the set of edges is maximal with this prop-
erty (see Lemma 3.1.2). Hence, we have to check that these two conditions
hold. The first one can be verified pair by pair, in O(|T |2) and testing for
the second property can be done in no more than O(|V|2|T |). Therefore
the problem is in NP. This final step completes a proof of the next theorem.

Theorem 8.6.7. The following decision problem is NP-complete:
Input: A point configuration V in the plane and a set E of edges connecting
certain pairs
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Problem: Is there a triangulation of V using only edges from E ?

Finally, it is worth mentioning that, based on Lloyd’s result, Heath and
Pemmaraju [156] proved that the constrained problem of computing a min-
imum weight triangulation, from a pre-specified set of edges (that forms a
triangulation) is NP-hard.

8.6.3 Hardness of minimum length triangulations in the plane

After almost 30 years in the famous (and short) list of open problems
of undetermined complexity in Garey and Johnson’s book on computa-
tional complexity [134], the question what is the complexity of finding
a minimum length triangulation was only recently settled by Mulzer and
Rote [235, 236]. They have proved the problem is NP-hard. We will sketch
now a few key geometric ideas of this major breakthrough.Figure 8.31: The points of a wire block.

Figure 8.32: The LMT-skeleton of a wire piece.

The solid edges are skeleton edges, dashed

edges are candidate edges.

In their solution, Mulzer and Rote used the LMT skeleton, which we
introduced in Chapter 3 (see Definition 3.2.14). The NP-complete problem
PLANAR-1-IN-3-SAT is then reduced to the minimum length triangulation
problem using some “wire gadgets” to simulate Boolean formulas. We
focus now on the wires, the main geometric gadgets of the proof.

The wires were first constructed by Beirouti and Snoeyink from their
work on the LMT algorithm [40]. They are extended arbitrarily by mir-
roring along the dashed lines of the basic point set shown in Figure 8.31
One can find, via direct calculation, the LMT-skeleton of a wire piece, as
is shown in Figure 8.32. Because of their properties, wires can be used as

(a)

(b)

Figure 8.33: The two states of a wire piece.

building blocks. First of all, they provide a mean to transport information
across the plane because there are only two possible MLT triangulations of
a wire piece (e.g., TRUE or FALSE values). See Figure 8.33. The wires can
be elongated and bended with great flexibility, for example, in Figure 8.34,
we see a wire can be curved to make turns of ninety degrees. The wires can
then be used to create variables, clauses and connections between them so
they can represent a PLANAR-1-IN-3-SAT instance.

Let us look at variables. The main block stores a TRUE or FALSE state.
This is shown in Figure 8.35, this storage loop has exactly two optimal
triangulations. This kind of gadgets can then be glued together to create
variables and clauses.

Glueing together the gadgets made of bent wires one can represent a
Boolean Formula: First Mulzer and Rote showed that an embedding of
a PLANAR-1-IN-3-SAT instance Φ can be constructed on a grid of size
O(n)×O(n), where n is the size of the input. They showed that no nega-
tions of variables are necessary. Edges, variables, and clauses of Φ are
replaced by the appropriate geometric gadgets yielding a point set S. The
boundaries of all wire pieces belong to the MLT of S. The faces outside
the wires are simple polygons and can be triangulated using Klincsek’s dy-
namic programming ([193], see also Proposition 3.2.10 in Chapter 3). Via
computation, for each gadget we know the “ideal triangulation”. Adding
this to the face calculations we have a target weight W. Φ is 1-IN-3 satisfi-
able if and only if the MWT of S is W.

To conclude, let us comment that their proof only shows that the problem
is NP-hard, but it is not known whether it is in NP. This is due to the
difficulty of checking an identity between sums of radicals (this is, after all,
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Figure 8.34: A wire can be curved to make 90o

turns.

Figure 8.35: A gadget which has two uniform

minimum triangulations, hence two states.

the Euclidean distance). The other interesting point is that, to verify that
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some of the gadgets have indeed the desired properties, it was necessary to
use computers. See [236] for details and more history of the MLT problem.

As of today there are a few known polynomial-time instances of the MLT
problem, besides Klincsek’s algorithm for simple polygons. It was proved
in [13] that when the points are arranged in a constant number of nested
convex polygons one can also provide an efficient algorithm. More recently
Hoffmann and Okamoto [163] have generalized Klincsek’s result by show-
ing that when the number of points in the interior of the convex hull is
assumed to be constant, there is a polynomial time solution. More strongly
they can prove this is also the case when only a logarithm of the total points
lies inside. Another curiousity is that finding a maximal length triangula-
tion does not seem to be any easier than the minimal length triangulation,
but not much work exist about this topic, see [331].

In this chapter, we concentrated mostly on how to find exact solutions
to the MLT problem but one can instead try to approximate the optimal so-
lution or to look at its average behavior. Some authors have tried to look
at average or probabilistic behavior of the problem. We can mention Yu-
kich’s work [336], who has studied the asymptotic behavior, as the number
of points increases, of the total edge length of the minimal triangulation
for points which are independently and identically distributed on the unit
square. He showed that, asymptotically, the length of the MWT is equal
to a constant times the length of the optimal traveling salesman tour. On
the other hand, Lingas [213] proved that for uniformly distributed points
both the Delaunay and the greedy triangulations yield satisfactory approxi-
mations. Some of the first approximation algorithms were those by Lingas
[214], Plaisted and Hong [255]. The idea to find a good approximation is
again to partition the convex hull of the points as the union of polygons, not
necessarily convex, and then apply Klincsek’s algorithm to fill in the empty
holes. To construct such a partition, one can use edges coming from the
Greedy triangulation (or similarly from the Delaunay triangulation).

A “dynamic” variation of the minimum length triangulation problem hap-
pens when one allows the freedom of introducing new points at will in the
calculations, the so called Steiner points. Can these extra “free” points
reduce the length of the minimum length of a triangulation? Eppstein
has showed that the weight of the minimum length Steiner triangulation
(MLST) for an original point configuration with n points may be Ω(n) times
smaller than the true length of the MLT (adding points actually decreases
the length!). See the example in Figure 8.36. Although the MLST can be

Figure 8.36: The effect of Steiner points, length

of minimal triangulation decreases. The points

are symmetrically placed on the sides of a

square. The top triangulation is shorter event

though it has one more point in the center than

the bottom triangulation. This cute example is

due to Cindy Traub.

approximated to a constant factor in polynomial time [122], we still do not
know whether a MLST can be computed exactly in polynomial time. For
a long time, it was not known whether a polynomial time algorithm that
always produces a triangulation whose length is within a constant factor
from the minimum length was possible. This problem was solved by Lev-
copoulos and Krznaric [209] using a slight modification of an O(n logn)
algorithm for the greedy triangulation.
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8.6.4 Hardness of minimal size triangulations of convex polytopes

In this section, we focus on the problem of finding triangulations that min-
imize or maximize the size (i.e., the number of top-dimensional simplices)
while assuming the points are the vertices of a convex polytope. What
makes this problem so challenging is that even though the points are in con-
vex position, it is not a combinatorial problem as it was for polygons (e.g.,
Klincsek’s algorithm from Chapter 3, Proposition 3.2.10, also mentioned in
the previous section). It is highly dependent on the coordinates of the points.
We first show that the size of minimal or maximal triangulations does not
depend on the face lattice of the polytope alone, but that the coordinates
influence the outcome too. This is even the case when the polyhedron is
simplicial.

The simplest example is given by the combinatorial 3-polytope with 10
vertices shown in Figure 8.37. If the points A, B, C, D are coplanar then
the edges AB or CD cannot be in a triangulation at the same time. Any
triangulation has at least 10 simplices. The reader can check that, on the
other hand, one can arrange the z-coordinates of A, B, C and D in such
a way that the edge AB is above the edge CD. This way it has a unique
minimal triangulation with 9 simplices.
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View from the bottom (-z )

View from the top (+z) Figure 8.37: A view of the polyhedron with variable

minimal triangulation.

We saw in Chapter 2, Theorem 2.6.1, that the size of a triangulation of a
convex d-polytope P with n vertices, lies between n−d and an upper bound
of O(n�(d+1)/2�). Since the size of 2-dimensional triangulations is settled
easily by Euler’s formula, the next frontier is to say something about the
size of triangulations in 3-dimensions. Again, remember that in this section
we assume the points are in convex position.

Proposition 8.6.8. Any convex 3-polytope P with n vertices can be trian-
gulated in O(nlog(n)) time with a triangulation that has at most 2n− 7
tetrahedra. Hence, for 3-polytopes, the size of minimal triangulation is
between n−3 and 2n−7. The upper bound can be improved when n ≥ 12
to be 2n−10.
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Proof. We have seen in Chapter 2 that all triangulations must have at least
n−3 tetrahedra. For the upper bound, we claim this is achieved by a pulling
triangulation. Find a vertex v on the boundary of P with highest degree.
This will be the last vertex pulled in the polytope. Pull all others in an
arbitrary order; this induces a triangulation of the facets of P that do not
touch v. By Euler’s relation, there are 2n− 4− deg(v) triangles on the
boundary which will be turned into tetrahedra once we pull v to cover P.
Finally note that 2n−4−deg(v)≤ 2n−7. If n ≥ 12, the maximum degree
of a vertex is at least 6, thus we have the improvement.

As a consequence, we know that minimum size triangulations of convex
3-polytopes with n vertices have size between n− 3 and 2n− 7. But pre-
sented with a particular 3-polytope, how could we find a small triangulation,
e.g., one of size less than 2n− 7? And what is is the computational com-
plexity of finding a small triangulation? These questions were presented in
1992 in the survey [45]. The answer was found in [43, 44]:

skylight

pillar

visibilityCone

Figure 8.38: The visibility cone of Schönhardt

polytope with the skylight and their bounding

planes marked.

Theorem 8.6.9. The following problem is NP-complete and it has a poly-
nomial transformation to the SAT problem:
Input: Vertices of a convex 3-polytope P, and a number k.
Problem: Is there a triangulation of P of size ≤ k?

The transformation we present will map any Boolean formula f into a
certain convex 3-polytope P f and an integer k f such that f is satisfiable
precisely when P f can be triangulated with no more than k f tetrahedra.
The proof is long (see [44] for all details), but we will at least sketch the
proof trying to emphasize the main geometric and combinatorial ideas.

Figure 8.39: Schönhardt’s polytope as a

deformation of a prism.

As we did in the previous subsection, we need to build gadgets that
encode Boolean formulas. Perhaps the most important object our old friend
from Chapter 3, Example 3.6.1, the Schönhardt’s polytope [290]. Recall
this is a non-convex polytope which, roughly speaking, is obtained by twist-
ing the top of a normal triangular prism to create three non-convexities
along the former three diagonals of the prism. See Figure 8.39 for another
view of the object. Its fundamental property is that its interior cannot be
triangulated without first adding at least one extra point. This extra auxil-
iary point is what we will use to create Boolean switches. Of course, the
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Figure 8.40: A point (tiny circle) which is not

inside the visibility cone cannot be used to

triangulate since it cannot see the all points of

the skylight.

seventh point p needed for triangulation cannot really be placed at random;
if one traces segments from p to the top or bottom triangle of Schönhardt’s
polytope, which we call the skylight, its points must be visible from p. This
is determined by three of the diagonals of the Schönhardt polytope and the
choosen skylight. See Figure 8.38.

Our plan is to glue Schönhardt polytopes along the bottom face of a big-
ger frame polytope. This will momentarily give us a non-convex polytope
simply because the Schönhardt’s are non-convex. Recall that each Schön-
hardt polytope has a skylight. Triangulating this non-convex polytope is
only possible if there are vertices that are visible to each of the skylights;
they must be in the visibility cones. So two main issues are (1) how to
patch the non-convexities of the glued Schönhardt’s, and (2) how to design
the frame to satisfy the visibility conditions. We tackle problem (1) with
the following lemma [42]:

Lemma 8.6.10. Let P be a convex 3-polytope with n vertices. Assume P
satisfies the following two conditions depicted in Figure 8.41:

q0

q1q2

qm

qmp1

a

b
Figure 8.41: A chain of edges connected to two

points (a suspension) give a chain structure.

1. The facets of P contain the triangles [a,qi,qi+1] and [b,qi,qi+1] (for
i = 0, . . . ,m); and

2. The interior segment [a,b] does not intersect conv({q0, . . . ,qm+1}).
Then for each triangulation T of P that does not use the interior edge [a,b],
the number of simplices of T is greater than or equal to n + m−3.

Proof. Since conv{q0,qm+1} is in the interior of P, we obtain the following
simple fact: For all |i− j| ≥ 2, if qiq j is an edge of a triangulation, it will
be also an interior edge. The proof of the lemma proceeds by induction
on m. The lemma is clearly true for m = 1. Call (*) the assumption that
all vertices qi, with 1 ≤ i ≤ m, are incident to at least one interior edge
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of the triangulation T . We now show how to invoke induction in case
(*) does not hold: A vertex qi untouched by an interior edge belongs to
the tetrahedra σi,a = (a,qi−1,qi,qi+1) and σi,b = (b,qi−1,qi,qi+1). This is
because the triangle (a,qi,qi+1) is in some simplex, and if the fourth point
is some other vertex besides qi−1 or b we have an interior edge touching qi.
Furthermore, the fourth point cannot be b since in this case the edge ab
would be present. By chopping off these two tetrahedra together with the
vertex qi (i.e., considering the convex hull of all of P’s vertices except qi)
we can apply induction to guarantee that the remaining triangulation T \
σi,a,σi,b has at least m−1 interior edges. Together with the edge qi−1qi+1

they amount for m interior edges in T .
If (*) holds, we will show the claim directly; we set up a one-to-one map

from the set {q1, . . . ,qm} to a subset of the interior edges that touch them:
The vertices qi come along a polygonal curve in a canonical order which is
reflected by their indices. We mark or orient the interior edges qiv that touch
a vertex qi as follows: If v �∈ {q0, . . . ,qm+1}, we call the edge qiv special,
otherwise we orient it from smaller to larger index. For the vertices qi with
special edges incident to them, we map qi to one of those special edges. If a
vertex qi has no special edges, but has outgoing interior edges, we map it to
the outgoing edge qiqk with the smallest index k. We are left with the case
of those vertices qi that have only incoming interior edges incident to qi.
Consider the triangle (a,qi,qi+1). It has to be in some tetrahedron of T
whose fourth point is bound to be a q ja with ja < i. Likewise (b,qi,qi+1) is
in a tetrahedron with fourth point q jb with jb < i. If both ja = jb = i− 1,
there can be no interior edges incident to qi (see above), a contradiction to
(*). Let j be any of ja, jb such that j < i−1. Map qi to q jqi+1.

We claim that the given map is one-to-one. If some vertex qi maps to the
special edge q jv, then necessarily i = j. There are potentially two vertices
that can be mapped to an interior edge q jqk with j < k: q j when q jqk is the
chosen outgoing edge of q j and qk−1, in case qk−1 has only incoming edges.
In the latter case, one of the tetrahedra (a,q j,qk−1,qk) and (b,q j,qk−1,qk)
has to be in the triangulation, and q j will be mapped to the smaller indexed
edge q jqk−1. This is an interior edge since j < k−2, so q j cannot also be
mapped to q jqk. The injectivity of the map is proven.

The moral of this lemma is that, if this special chain structure is present
on the polytope, all the small triangulations must necessarily use the edge
[a,b]. Otherwise the size of the triangulations not using [a,b] grows with
the length of the chain. We next patch the non-convex parts of the Schön-
hardt polytopes we have glued to the frame polytope. We call these new
subpolytopes cupolas. See Figure 8.42. More precisely, a cupola is what
you obtain when you attach the vertex-edge chains of Lemma 8.6.10 to a
Schönhardt polytope in opposite direction to the pillars, with the vertices of
the chain low right above the bottom face, m of vertices are in each chain,
for m sufficiently large. Thus the pillars of the Schönhardt polytopes willFigure 8.42: A cupola.

work as the edges [a,b] in Lemma 8.6.10. Hence:

Corollary 8.6.11. Let P be a frame polytope and C a cupola. In a triangu-
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lation T of P∪C, let v be the auxiliary vertex needed for triangulating the
skylight of C. If v is not in C’s visibility cone, then |T | ≥ #vert(P)+3m+m.

If v is in the visibility cone, it is conceivable that order of 3m+ constant
many tetrahedra will suffice.

Now let us say a few words about the frame polytope where we are glu-
ing the cupolas (starting by gluing the Schönhardt polytopes and patching
the vertex-chain structure to make them convex). The shape will be of a
wedge, as an orange wedge, where there will be special facets for each
Boolean variable and each Boolean clause. Without more detail, we look at
an example. See Figure 8.43.

f = (X1 ∨¬X2 ∨X3)∧ (¬X1 ∨X4)

∧ (¬X1 ∨X2 ∨¬X3 ∨¬X4)
(8.20)

variables

clauses

Figure 8.43: an example of frame polytope

corresponding to Boolean formula 8.20.

We conclude this section with two remarks: as a corollary of Theo-
rem 8.6.9, the problem of finding minimum size triangulations of convex
d-polytopes is NP-hard. To see this, simply build pyramids over the con-
structed polytope. The same hardness property extends to the minimal size
triangulations of the boundary of a convex polytope. In work by Chin et al.
[80], there is a discussion on how to give an approximation to the mini-
mum size triangulation of a convex 3-polytope of ratio 2−Ω(1/

√
n). In

fact, given only the face lattice of the polytope, one cannot do better. It
follows easily from the theory of universal polytopes that when the point
set has d +2 or d +3 points, finding the minimal triangulation can be done
in polynomial time.

Exercises

Exercise 8.1. Determine all the values of the chirotope for the mother-of-
all-examples, as presented in Example 8.1.2. Then, apply Theorem 8.1.6
and Theorem 8.1.8 to recover all cocircuits and circuits.
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Exercise 8.2. Consider the following rank 3 chirotope on four points: +−
+− (where the bases are listed lexicographically). Find all the circuits and
all cocircuits. Can you find a point configuration with precisely that chiro-
tope?

Once you finish the above challenge, solve the same challenges for the
following rank 3 chirotope on seven points:

++++++0++−−−+++0−−−−−−++−−−−++00++−
Here again the list of signs refers to bases in lexicographic order, e.g.,

χ(123) = +, χ(124) = +, . . . , χ(456) = 0, χ(457) = +, χ(467) = +, and
χ(567) = −.

Exercise 8.3. Prove Formula 8.2 for sums of binomial coefficients.

Exercise 8.4. Finish the calculations of Example 8.2.4 and show that regu-
larity depends on the actual coordinates and not on the combinatorial type
of the triangulation.

Exercise 8.5. Familiarize yourself with TOPCOM, software for computing
triangulations and secondary polytopes.

Exercise 8.6. Find a complete description of the universal polytopes of a
planar point set with 5 points in the boundary and a sixth the barycenter of
the others.

Exercise 8.7. Can a simplex of the 3-cube ever have exterior faces in par-
allel facets of the cube? How about the 4-cube?

Exercise 8.8. Find the graph of the universal polytope of the point con-
figuration whose points are the vertices of the product of a segment and a
simplex.

Exercise 8.9. Show that the universal polytope of a point configuration in
R

d with up to d + 3 points is a simplex.

Exercise 8.10. Find an algorithm to compute the triangulation of a set of
points in the plane that minimizes the maximum edge length.

Exercise 8.11. Find your own planar point configuration for which there is
a Steiner point that decreases the length of a minimal triangulation.

Exercise 8.12. Given a point configuration A in the plane, consider the
problem of finding a non-trivial subdivision of A, with each point of A
appearing as a vertex, which is minimal under inclusion of edge sets. In
other words, these correspond to coarsest subdivisions of A. Can you give
a lower bound on the number of pieces you will need if there are i interior
points?

Exercise 8.13. Using the fact that it is NP-hard to minimally partition a
polygon with holes (see [212] for the proof), prove that it is an NP-hard
problem to find a minimal partition of simple non-convex 3-d polyhedra
into convex pieces.
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Exercise 8.14. (Open) It is easy to see that the largest size of a triangulation
of the regular 3-cube is 6, on the other hand, one can find a combinatorial
3-cube where the largest number of tetrahedra is seven. See Figure 8.44.
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Figure 8.44: The maximal triangulation depends on

the coordinates of cube, not just its face lattice.

What is the largest possible number of simplices in a triangulation of
some combinatorial d-dimensional cube? This is a very “generic” cube!

Exercise 8.15. (Open) Suppose the input polytopes are given in terms of
their vertices. How hard is it to compute the size of the largest triangulation
in that case? (Hint: The construction in [109] will not help you).

Exercise 8.16. (Open) What is the computational complexity of counting
all triangulations of a point configuration? It has been conjectured that even
for fixed dimension two the problem is #P-hard.

Exercise 8.17. (Open) Recall that for a Let P be an n-dimensional polytope
A dissection is a finite set D of n-simplices inside P that satisfies

⋃
T∈D T =

P and dim(T1 ∩T2) < n for any T1,T2 ∈ D .
It is known that dissections can be smaller than the smallest of triangula-

tions (see [42]). Do high dimensional cubes admit dissections with fewer
simplices than are needed in a triangulation? The minimal size dissections
of dimensions three and four are the same as minimal triangulations. Be-
yond dimension four, not much is known.

Exercise 8.18. (Open) A simplicial cover of a n-dimensional polytope is
a finite set D of n-simplices inside P that satisfies

⋃
T∈D T = P This is an

even weaker notion than dissection.
Is there a cover of the 5-cube strictly smaller than its minimal triangu-

lation? Is there a d-cube for which using a point in the interior in the tri-
angulation produces a smaller triangulation? (See [57] for more informa-
tion.)
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Exercise 8.19. (Open) Find a full inequality description of the universal
polytope of an interesting family of point sets (e.g., cyclic polytopes, prod-
uct of simplices).

Exercise 8.20. (Open) We saw that Klincsek’s dynamic programming al-
gorithm finds the minimum length triangulation of a convex n-gon in O(n3)
time. Can one improve this complexity?

Exercise 8.21. (Open) Related to the possible sizes of triangulations of
point sets in R

3. Let smin and smax be the sizes of minimal and maximal
triangulations of a convex 3-polytope, is it true that for any number K,
smin < K < smax there is a triangulation with K tetrahedra?

Exercise 8.22. (Open) Let P be a polytope in R
3. Let σ(P) be the mini-

mum number of tetrahedra required to decompose P and τ(P) be the min-
imum number of tetrahedra used in a triangulation of P. Clearly σ(P) ≤
τ(P) and we have seen the inequality can be strict. Is there are constant c
such that τ(P) ≤ c ·σ(P)?
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In this chapter, we present a selection of topics that further show the beauty,
potential, and richness of this field:

To begin, in Section 9.1, we will see how the fiber polytope construction
by Billera and Sturmfels provides a unified view on seemingly different
phenomena and generalizes the notion of secondary polytope. Next, in Sec-
tion 9.2, we discuss what the Cayley trick—originally a method in sparse
elimination theory of equations—means in the context of polyhedral subdi-
visions, and we illustrate its power with one nice application. Section 9.3
introduces the active field of lattice triangulations, which is related to lat-
tice points in polytopes. These are important objects, as they correspond
to solutions of integer linear programs and have fascinating connections to
algebraic geometry and number theory. Section 9.4 discusses further the
fascinating connections of triangulations and algebra. We show how to en-
code triangulations through Gröbner bases and connections to toric ideals.
To conclude the chapter, in Section 9.5, we show how triangulations, as the
duals of polyhedral complexes, can be used to answer topological questions
such as polytopality of spheres or to offer a new look at face numbers of
polytopes.

9.1 Fiber polytopes

Here we start by discussing three interesting phenomena in polytope theory
that do not seem to be related at first glance. Then we will learn about a
beautiful construction which show that they are all incarnations of the very
same principle: fiber polytopes, which generalize secondary polytopes.

9.1.1 Monotone paths

Let P be a d-polytope in R
d , and consider some linear functional ψ : R

d →
R. Assume ψ is generic on each edge of P, i.e., ψ(v) �= ψ(w) for each edge
vw of P. This situation is exactly what we encounter in linear programming,
where we want to find a maximal or a minimal vertex w.r.t. ψ . Since ψ is
generic on edges, there is a unique optimal vertex, of course (see Figure 9.1
for the setup).

vM

ψ

vm

Figure 9.1: A polytope and a linear functional.

One famous method to find, say, the maximal vertex in P, is the sim-
plex algorithm for solving linear programs (recall Section 1.2 in Chapter 1).
Starting from an arbitrary vertex, this method finds a path along edges of P
to the maximal vertex, and while we are walking along this path we never
see ψ decreasing. In our case, ψ is generic on edges, so ψ will be actually
increasing all the time.

Assume we are starting from the unique minimal vertex vm. We are now

Jesús A. De Loera et al., Triangulations, Algorithms and Computation in Mathematics,
DOI 10.1007/978-3-642-12971-1_9, c© Springer-Verlag Berlin Heidelberg 2010
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interested in the set of all ψ-monotone paths on P (see Figure 9.2) that
might occur when we are going to the maximal vertex vM along edges of P.

vMvm

ψ
Figure 9.2: Two monotone paths w.r.t. ψ .

In other words, we ask: what are the possible paths the simplex algorithm
may generate on P while walking from the minimal to the maximal vertex?

Monotone paths always exist (that is what makes the simplex method
work), and there are typically a lot of them. For example, if P is a d-
simplex with its d + 1 vertices labeled 1,2, . . . ,d + 1 according to values
of ψ , each ordered subset of the intermediate vertices 2,3, . . . ,d yields a
monotone path (since every pair of vertices forms an edge in the simplex).
Therefore, we have 2d−1 many distinct monotone paths on the d-simplex:
exponentially many. (Note that 2d−1 happens to be the number of vertices
of the (d−1)-cube, is this a coincidence?)

So we have a large set of objects, and, as we have been doing throughout
this book, we are looking for a nice structure on this complicated set. We
are not claiming that the following really helps you in linear programming
(it does not), but we are talking about important objects here. For example,
one of the most famous open problems in polytope theory is the following
monotone Hirsch conjecture, cf. [339]: for any d-polytope with n facets and
any generic linear functional, there is always a short monotone path from
the minimal to the maximal vertex, where short means that it uses at most
n− d edges. Although the conjecture was disproved by Santos recently, a
nice structure on the set of monotone paths will come in handy to investi-
gate the principle situation. Moreover, monotone paths can be viewed as a
kind of a extremal path from the minimal to the maximal vertex in a certain
topological space of paths. Some of the concepts we are presenting also
have applications in algebraic topology [34, 50, 263].

As a first way method of giving structure to the set of monotone paths
we can look at what are the natural “elementary moves” that change one
monotone path into another, very much as we defined flips for triangula-
tions. There is such a notion, and it is called a face flip. Remember that the
starting point for flips in triangulations of general dimensions was the fact
that a minimally dependent point configuration always has exactly two tri-
angulations. Let us look at the case when P is a two-dimensional polytope,
i.e., a polygon. Then there are exactly two paths from vm to vM . Now, every
polytope of larger dimension has two-dimensional faces. So, the intuitive
idea is that a face flip changes a monotone path only on a two-dimensional
face of P (see Figure 9.3).

vm

ψ

vM

Figure 9.3: A face flip between two monotone

paths w.r.t. ψ .

To summarize:

Definition 9.1.1. Let P be a polytope and let ψ be a generic linear func-
tional (that is, one that is not constant along any edge of P). Let vm and vM

be the minimal and maximal vertices of P with respect to ψ .

• A ψ-monotone path is a path of edges of P going from vm to vM and
along which ψ is always increasing.

• Two ψ-monotone paths differ by a face flip if their symmetric differ-
ence is the boundary of a two-dimensional face of P.
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• The graph of ψ-monotone paths on P is the graph whose vertices are
all the ψ-monotone paths and whose edges are the face flips between
them.

Remark 9.1.2. The assumption that ψ is generic on edges is not substantial
for the following. Most of it is still true for general functionals ψ , but
a more sophisticated notion of face flip may be needed; see [271] for a
thorough discussion of the subtleties.

vM

ψ

vm

Figure 9.4: This monotone path is coherent.

Let us go back to the polygon again and look for a special property of the
two possible monotone paths. If the polygon P is drawn in the plane with
ψ increasing horizontally to the right, then vm is the left most and vM is the
right most vertex of P. This suggests a nice way of finding many monotone
paths in an arbitrary polytope:

Lemma 9.1.3. Let ψ be a generic linear functional on a polytope P ⊂ R
d,

and let π : R
d → R

2 be a linear projection such that:

1. ψ is constant along the projection direction (that is, ψ , as a projec-
tion R

d → R, factors by π , i.e., ψ(x) = pr(π(x)), where pr : R
2 → R

is a coordinate projection), and

2. π is generic enough for every edge of π(P) to be the projection of an
edge of P, and not of a higher dimensional face.

Then, the two monotone paths of π(P) are the projections of two ψ-monotone
paths of P. Figure 9.5: The indicated monotone path, visiting

all the vertices of the bipyramid over a triangle, is

not coherent.
But can all ψ-monotone paths be obtained this way? No: consider a 3-

polytope that looks like the convex hull of a DNA helix, so that there is a
monotone path along the helix, i.e., one that wraps around P several times.
No matter which side you look at it, the path will always switch from top
to bottom as the winding of a screw does. (It is easy to explicitly build
such a polytope (see Exercise 9.2).) If you take a photo of such “screw-
like” polytope from a generic direction, then you discover that the resulting
polygon contains, of course, the two monotone paths in its boundary that we
have been talking about already. Since the photo was taken from a generic
direction, the preimage any of these two paths is also a monotone path in P:
a path that does not wrap around P.

We are going to call coherent monotone paths in P the ones that can be
obtained as in Lemma 9.1.3: those that are part of the boundary of a two-
dimensional projection of P (see Figure 9.4). In an analogous way, coherent
face flips are defined. A concrete example of a non-coherent monotone path
appears in Figure 9.5.

Figure 9.6: Monotone path polytope of the cube.

Now there is the following amazing theorem about the graph of all co-
herent monotone paths on a polytope. Note that it is reminiscent of Theo-
rem 5.1.9:

Theorem 9.1.4 ([53]). The graph of all coherent ψ-monotone paths and
coherent face flips on a d-polytope P with n vertices is the edge graph of
a (d − 1)-polytope, the monotone path polytope of P and ψ , denoted by
Σ(P,ψ).
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In other words: coherent ψ-monotone paths on P are in one-to-one cor-
respondence with vertices of the monotone path polytope of P and ψ . Two
ψ-monotone paths are connected by a coherent face flip if and only if the
corresponding vertices share an edge in the monotone path polytope.

We will not prove this here; since it will turn out to be a special case of
a much more general theorem, stay tuned! As an example, the monotone
path polytope of the cube is shown in 9.6.

9.1.2 Zonotopal tilings

1

3

4

2

Figure 9.7: A zonotope in dimension two is just a

centrally symmetric n-gon; the segments 1, 2, 3,

4 sum up to this zonotope.

We now look at zonotopes, a special, very important class of polytopes with
close connections to the theory of hyperplane arrangements and oriented
matroids. So what is a zonotope? In dimension two, zonotopes are the
centrally symmetric n-gons. In general dimension, a d-zonotope Z ⊂ R

d

with n zones is the Minkowski sum of n line segments. The set of line
segments out of which the zonotope was produced is considered part of the
data of Z. More precisely, a zone consist of all faces of the zonotope whose
supporting hyperplanes have normals perpendicular to one of the defining
line segments. The edges of faces in the zone are parallel to the other line
segments. When the zonotope is not defined using parallel line segments,
then its faces will be divided into n-zones.

There is another way of looking at zonotopes. For example, imagine you
take a photo of a regular three-cube from a generic point of view. Then
the boundary of what you see on the photograph is a centrally symmetric
six-gon. So the six-gon is the projection of a three-cube. In general, d-
zonotopes with n zones are projections of the regular n-cube [−1,1]n in R

n

to R
d . (We use the cube [−1,1]n as opposed to [0,1]n in order to stress the

fact that all zonotopes are centrally symmetric.)

Figure 9.8: A non-tight zonotopal tiling of a

two-dimensional zonotope; note that there are

vertices in the tiling that are not vertices of the

tiled zonotope.

A zonotopal tiling of Z is a dissection of Z into a set of non-overlapping
zonotopes made from the same set of line segments. A zonotopal tiling is
tight if no cell in the tiling has a non-trivial zonotopal tiling itself.

You can find a wealth of information about zonotopes and zonotopal
tilings in the books [339, 55] and also in the recent work by Chavanon and
Rémila [77]. For example (to mention just a few connections), the combina-
torics of the faces of a zonotope are equivalent to those of an arrangement
of hyperplanes. Readers with background in the theory of oriented ma-
troids will probably know the celebrated Bohne-Dress Theorem: the set of
all one-element lifts of a realizable oriented matroid is in bijection to the
set of all zonotopal tilings of the oriented matroid’s zonotope, and the lift
is realizable if and only if the corresponding zonotopal tiling is coherent—
see definition of coherent below. Crystallographers also use zonotopes in
their work. Moreover, several seemingly distant combinatorial objects are
related to zonotopal tilings in a surprising way. For example, the number
of spanning trees in a graph is the same as the number of tiles in some
zonotopal tiling (we will also elaborate on this in Section 9.2).

3

4

2

1

Figure 9.9: A zonotope in dimension three, a

Minkowski sum of four segments in three-space.

Clearly, zonotopal tilings are a special class of polyhedral subdivisions,
that contains only zonotopes as cells, but it is not clear exactly what point
configuration we are subdividing. We will make that exact a little later.
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Figure 9.10: A tight zonotopal tiling of a

two-dimensional zonotope . . .

Figure 9.11: . . . and flipped to another tight

zonotopal tiling.

(The vertices of the zonotope are not enough, obviously.)

Again, we would like to understand the set of all zonotopal tilings of a
zonotope. For this, let us use the same trick and look at small zonotopes that
have only two distinct tight zonotopal tilings. One example is a centrally
symmetric six-gon. There are two tight zonotopal tilings of it, namely the
two that have edges incident with every other vertex on the boundary—see
Figures 9.10 and 9.11, where these two tilings of a hexagon appear as sub-
structures in tilings of a larger zonotope. This picture illustrates the notion
of flip we want to arrive at.

How does this look in general? We consider a d-zonotope with d + 1
zones. Look again at the photo of the three-cube: we see the boundary,
which is a hexagon, but we also see a tight zonotopal tiling consisting of the
projection of the three facets of that cube that were visible from the camera.
Now, if we had taken the photograph from the opposite side, we would have
seen a second tight zonotopal tiling. This principle holds in general, but at
this point we do not elaborate on this any further. The important thing is
that we can again define an adjacency structure using this fact by changing
a tight zonotopal tiling on just a d-subzonotope with d + 1 zones.

Definition 9.1.5. We say that two tight zonotopal tilings of Z differ by a
(cubical) flip, if they are equal except on a d sub-zonotope of Z with d + 1
zones.

The graph of zonotopal tilings of Z has as vertices all the tight zonotopal
tilings and as edges the cubical flips between them.

Are there coherent zonotopal tilings, just like there were special coherent
monotone paths? Yes, although we have not yet explained exactly in which
sense zonotopal tilings are polyhedral subdivisions, we can use the lifting
principle to define them: A zonotopal tiling T of Z is coherent if, in one
dimension higher, there are slopes for all the segments of Z such that T is
the set of projections of all lower facets of the Minkowski sum of the sloped
segments down to Z. Analogously, a cubical flip is coherent if such slopes
exist except that they have to be “flat” on the respective sub-zonotope. In
particular, a coherent zonotopal tiling is regular when regarded as a subdi-
vision. This allows us to easily construct non-coherent zonotopal tilings,
such as the ones in Figures 9.12 and 9.13.

w3

> 2w1

> 2w1
w1

= w1
0

0

0

0 w4w2 > w1

Figure 9.12: A non-coherent tight zonotopal tiling

of a zonotope with six zones of four different

directions; the data indicated in the figure yields

a contradiction like in the mother of all examples,

since every height function inducing this tiling

must obey w1 < w2 < w3 < w4 < w1, which is

impossible.

Interestingly enough, we have a very similar theorem here to that for
monotone paths:

Theorem 9.1.6. The graph of all coherent zonotopal tilings and coherent
cubical flips of a d-zonotope Z with n zones is the edge graph of an (n−d)-
polytope Σ(Z).

In other words: coherent zonotopal tilings of Z are in one-to-one corre-
spondence with vertices of a polytope and two coherent zonotopal tilings
are connected by a coherent cubical flip if the corresponding vertices share
an edge in Σ(Z).

Again, we do not prove the theorem here, and something more general is
about to come.
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Figure 9.13: A non-coherent tight zonotopal tiling,

this time with nine zones but only of three

different directions.

9.1.3 Polyhedral subdivisions

This is what the book is about, and this is Chapter 9. So by now you know
a lot, and it may have occurred to you that the concepts in the previous two
sections are very much reminiscent of the graph of all regular triangulations
of a point configuration that was constructed by flips (cf. Chapter 1). Recall
that not all triangulations are regular. We restate the main theorem one can
extract from our work in Chapter 5 (presented here by emphasizing the
analogy with our previous examples):

Theorem 9.1.7 ([139]). The graph of all regular triangulations and reg-
ular flips of a d-dimensional point configuration A with n points is the
edge graph of an (n−d−1)-dimensional polytope, the secondary polytope
Σ-poly(A).

In other words: regular triangulations of A are in one-to-one correspon-
dence with vertices of Σ-poly(A), and two regular triangulations differ by
a regular flip if the corresponding vertices share an edge in Σ-poly(A).

Note: Because of Examples 5.3.4 and 5.4.16, we need to restrict our-
selves to regular flips.

As Figure 9.15 suggests, the secondary polytope of the prism over a tri-
angle is a six-gon. Incidentally the same polytope is the monotone path
polytope of a cube (see Figure 9.6). In Section 9.2, we will discuss this in
somewhat more detail.

Now, we have three theorems that are saying almost exactly the same
about seemingly different objects. There must be some general concept
behind this. The following section gives the answer.

9.1.4 Compatible subdivisions and the fiber polytope

We have already described zonotopes as projections of cubes. More specif-
ically, let Ii = [−ai,+ai] be the line segments of Z in R

d for i = 1,2, . . . ,n.
(We are enforcing here central symmetry around the origin again.) Then
consider the following affine map:

π :

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

R
n → R

d
⎛

⎜
⎜
⎜
⎝

t1
t2
...
tn

⎞

⎟
⎟
⎟
⎠

�→ ∑d
i=1 tiai

Since the point tiai lies in [−ai,+ai] for all ti ∈ [−1,1] (i = 1,2, . . . ,n), the
zonotope ∑n

i=1[−ai,+ai] is the image of [−1,1]n under π .

Figure 9.14: A zonotopal point configuration in

dimension two; note that it automatically contains

all the points that might occur as vertices of a

zonotopal tiling.

Now comes the catch: We do not consider π as a projection of polytopes,
but as a projection of point configurations. We consider the zonotopal point
configuration of all possible sums of segment boundary points; in formula:

Z := {π(v) : v is a vertex of [−1,1]n }

=

{
n

∑
i=1

ε(i)ai : ε(i) ∈ {−1,+1}, i = 1,2, . . . ,n

}
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Figure 9.15: The graph of all triangulations of the

prism over a triangle; we show the corresponding

triangulations on the boundary, that can be seen

if one removes the upper triangular face of the

prism and looks inside the prism from above (this

yields actually a Schlegel-diagram of the

triangulated boundary of the prism).

Obviously, the zonotope Z is the convex hull of the point configuration Z.
But Z is not in convex position, and it may contain repeated points. Al-
ready when Z is the regular six-gon, the point configuration Z contains the
barycenter of it twice, and the six-gon also shows that it may happen that
no zonotopal tiling (we know the two possible by now) uses all points in
the configuration. We have not actually introduced formally what a zono-
topal subdivision is, but now that we have polyhedral subdivisions at hand,
we can easily define them as special polyhedral subdivisions that have cells
that are themselves zonotopal subconfigurations.

Observe that the cubes that project into the cells of a zonotopal subdi-
vision are faces of the big cube [−1,1]n. Thus, another way to phrase the
definition of a zonotopal tiling is the following:

Lemma 9.1.8. Let In be the point configuration of vertices of the n-dimen-
sional regular cube [−1,1]n. The zonotopal tilings of a zonotope Z =
π([−1,1]n) are exactly those polyhedral subdivision of the corresponding
zonotopal point configuration Z = π(In), all of whose cells are faces of In.

A tight zonotopal tiling is a zonotopal tiling, all of whose k-cells (k =
0, . . . ,d) are k-dimensional faces of In. In particular, all cells of a tight
zonotopal tiling are combinatorially cubes.

Figure 9.16: A zonotopal point configuration in

dimension three; it has two interior points (those

not on any edge).

Analogous things can be done for the case of monotone paths and even
for the general polyhedral subdivisions. Any linear functional on a poly-
tope P can be reinterpreted as a projection π of P into R. The projections
of the vertices of P induce a point configuration A in R. It is easy to see
that the strict monotonicity of paths translates into the following: the set
of faces in a monotone path induces a triangulation of A. However, not
every triangulation corresponds to a monotone path in P. For example, all
monotone paths on the cube have three edges, whereas there are triangula-
tions of the projection A with one, two, and three cells. So, monotone paths
correspond to those triangulations all of whose cells are labeled projections
of faces of P. Keeping track of the labels is important, since several ver-
tices may project to the same geometric point, and we need to distinguish
between them.

Using this, we can actually define monotone paths via triangulations. Be-
cause we allow for multiple points, ψ need not even be generic.

Lemma 9.1.9. The ψ-monotone paths in a polytope P with vertices V are
exactly those triangulations of the point configuration A := π(V), all of
whose cells are edges of P.

This can now easily be generalized to higher dimensional objects:

Definition 9.1.10. An ψ-monotone cellular string in P is a polyhedral sub-
division of A, all of whose cells are faces of P (see Figure 9.17).

Figure 9.17: An ψ-monotone cellular string.

Can we fit the general polyhedral subdivisions of previous chapters in
this context? Where is the projection in the theory of unrestricted polyhe-
dral subdivisions? Well, not imposing any restriction on what is accepted
as a cell means that each subset of the vertices is allowed, and this can be
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artificially expressed by a projection of a simplex with the same number of
points as the configuration. For completeness we state:

Lemma 9.1.11. Let Dn be the point configuration of vertices of the (n−1)-
dimensional standard simplex Dn−1. Then all the cells of any polyhedral
subdivision of a point configuration A = π(Dn) are projections of faces
of Dn.

The triangulations of A are exactly those polyhedral subdivisions whose
maximal cells are projections of d-faces of Dn.

So, in all cases we have a projection π of the vertices V of a polytope P
that yields a point configuration A = π(V) in lower dimension. Then we
are after polyhedral subdivisions of A that contain only cells that label
faces of V. (See Figure 9.18 for a sketch of the projections corresponding
to monotone paths, zonotopal tilings, and polyhedral subdivision, respec-
tively.)

Figure 9.18: A monotone path in a 3-cube (left); a

zonotopal tiling in an octagon(center); and a

triangulation of six points in the plane (right). All

three phenomena can be described via projections

of polytopes: projections of monotone paths are

special triangulations of a segment; a zonotopal

tiling of a zonotope with n summands is a special

polyhedral subdivision where all cells are

projections of faces of the n-cube; polyhedral

subdivisions fit into this framework because every

cell in a subdivision of n points is the projection of a

face of the (n−1)-simplex with n vertices.

The general concepts behind all three examples above, deserve their own
name:

Definition 9.1.12. Let P be a D-polytope in R
D with vertex set V = vertP.

Moreover, let π : R
D → R

d with d < D be an affine map, and let A := π(V)
(labeling inherited).

• A π-compatible subdivision of A is a polyhedral subdivision of A all
of whose cells label faces of V.

• A π-compatible subdivision is tight if all its cells label d-faces of V.
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• A π-compatible subdivision T is coherent if there is a lifting for the
points in A that is an affine image of V such that T labels the set of
lower faces of the lifted point configuration.

• The set of faces of V that induces a π-compatible subdivision is
called a locally coherent string in P.

• If a locally coherent string induces a tight subdivision, it is called
tight, if it induces a regular subdivision, it is called globally coherent.

• Two tight π-compatible subdivisions T ,T ′ of A differ by a flip if
and only if there is a π-compatible subdivision that is refined by only
T and T ′.

• The graph of all tight π-compatible subdivisions of A is the graph,
where the nodes are the π-compatible subdivisions of A and where
two π-compatible subdivisions are connected by an edge if and only
if they differ by a flip.

The original name in [53] for π-compatible subdivision is π-induced
subdivision. We chose to use compatible rather than induced since a π-
compatible subdivision is not uniquely determined by π , it is just satisfying
an additional restriction. Note, that distinct locally coherent strings can
project to the same geometric cells, so that in a purely geometric notion
of polyhedral subdivision the strings cannot be recovered from the subdi-
visions. In our combinatorial setting, distinct strings yield distinct subdivi-
sions, and working with either object will give the same results.

The exciting fact about this concept is that everything that has been
claimed in the theorems of this section (and some more) can be proved
for arbitrary compatible subdivisions.

Theorem 9.1.13 ([53]). The refinement poset of all coherent π-compatible
subdivisions of A is isomorphic to the face lattice of a (D−d)-dimensional
polytope, the fiber polytope Σ(P,π) of P and π .

In particular: the graph of all tight coherent π-compatible subdivisions
of A and all coherent flips is the edge graph of Σ(P,π).

The notation for the fiber polytope varies in the literature. Sometimes,
people start from a projection of polytopes π : P → Q and call the fiber
polytope Σ(P,Q). Others include the information about the projection map
π into the notation and call the fiber polytope Σ(P π→ Q). Another possibil-
ity is to regard π as implicitly denoting not only the projection but also its
domain and its image, so that Σ(π) is enough to uniquely specify the fiber
polytope. Our notation Σ(P,π) is kind of a compromise that we propose
because the image as a polytope is not really the important object: it is the
point configuration emerging as the projection of vertices of the polytope P
that counts.

But how can the fiber polytope be constructed? We will sketch one con-
struction. There is no loss of generality if we assume that the projection π
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forgets the last D− d coordinates. That is, π(p) = π(x,q) = q ∈ R
d with

x ∈ R
D−d .

In order to construct a π-compatible subdivision of A, we must specify a
set of faces of P that yields a valid subdivision of A. This can be syntheti-
cally done as follows.

For each q ∈ conv(A), consider the set Pq :=
{

x ∈ R
D−d : (x,q) ∈ P

}
,

i.e., the set of all p ∈ P that project to q, embedded into R
D−d . This set

is called the fiber of π over q, and it is a polytope in R
D−d , which is guar-

anteed to be of full dimension D− d whenever q is in relint(A), i.e., for
almost all q ∈ conv(A).

The crucial observation now is that every face F of the fiber Pq lies in
a unique minimal face FP of P containing F. Why? Just take for FP the
carrier of F in the face lattice of P. So, by picking a face in Pq for all
q ∈ conv(A), we can pick a set of faces in P.

Figure 9.19: Some fibers in the projection of the

cube to a segment.

When does such a set of faces label a valid subdivision of A? First of all,
the choice should be locally coherent on the projection of a face of P. If
we chose the face F in Pq, then for all points q′ ∈ relint

(
π(FP)

)
we should

choose an F′ in Pq′ such that F′
P = FP, because otherwise we would violate

(IP) in Definition 2.3.1.
How can this be done? Well, the unique choice of F′ with that prop-

erty is F′ = FP ∩Pq′ . Furthermore, the choice should be locally coherent
on the boundary of a projected face of P. That means that for all points
q′ ∈ ∂

(
π(FP)

)
, we should choose G in Pq′ such that π

(
vert(GP)

)
is a face

of π(FP), because otherwise we would either violate (CP) or (IP) in Defi-
nition 2.3.1. Again, the unique choice is G = FP ∩Pq′ . A choice of a face
in Pq for all q ∈ conv(A) would give us trivially (UP). The local coherence
immediately gives us (CP), (FP), and (MF) in Characterization 4.5.1.

Why does there exist a locally coherent choice of faces in the fibers?
Here the coherent compatible subdivisions come into play. Choose a vector
ψ in the space (RD−d)∗ of linear functionals on R

D−d . Then we simply
choose the face Pψ

q in Pq for all q ∈ conv(A). This can be checked to be
locally coherent using the following observation: if q′ is in the boundary
of π(FP), then the normal fan of Pq in (RD−d)∗ is a refinement of the
normal fan of Pq′ in (RD−d)∗ for all q in the interior of π(FP). It can
also be seen that this construction yields a coherent compatible subdivision
according to the definition with heights ω(a) := ψ(xa) for some xa ∈ Pψ

a ,
for all a ∈ A.

Imagine now that we are moving around ψ in (RD−d)∗. When does the
compatible subdivision specified by the choice of ψ change? It changes
whenever ψ changes the normal cone in the normal fan of at least one
fiber Pq. In other words: if it moves to another cone in the common re-
finement of all normal fans of fibers. Therefore, every coherent compatible
subdivision corresponds to a cone in the common refinement of all normal
fans of the fibers. It is known from basic polytope theory that the common
refinement of normal fans of polytopes is the normal fan of the Minkowski
sum of the polytopes (see, e.g., [339]). Thus, every coherent compatible
subdivision corresponds to a face of the Minkowski sum of all fibers. But
what is the Minkowski sum of a continuous number of fibers, one for each
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x∈ conv(A)? It is tempting to write an integral over all x∈ conv(A) instead
of a Minkowski sum. This can indeed be done, and it yields a potential def-
inition of the fiber polytope:

Σ(P,π) :=
∫

conv(π(P))
Pq dq (9.1)

However, because the inventors of the fiber polytope wanted Σ(P,π) to
be a subset of P, they introduced a normalizing factor 1

vol(π(P)) . So, here is
the original definition by Billera and Sturmfels[53]:

Definition 9.1.14. The fiber polytope Σ(P,π) is defined as the following
Minkowski integral:

Σ(P,π) :=
1

vol(π(P))

∫

π(P)
Pq dq. (9.2)

We can describe the fiber polytope in terms of a finite Minkowski sum.
The following observations lead to the right formula.

Let the chamber σq of q ∈ π(P) be the intersection of all π(FP) that con-
tain q, where FP is a face of P. Chambers in Chapter 5 can be regarded as
coming from a projection of a simplex. It is easy to see that the collection
of chambers of q for all q ∈ π(P) forms a polyhedral complex, the chamber
complex Γ(P,π). The normal fans of the fibers over an open chamber co-
incide, because, by the very definition of a chamber, identical sets of faces
of P live above all points in an open chamber.

Figure 9.20: On an open chamber, the function

that assigns to each x the fiber of π over x is

linear.

That means that all fibers Pq above the relative interior of a chamber σq are
normally equivalent. Furthermore, for q in an open chamber, the set-valued
fiber function q → Pq is linear, since the union of all fiber faces in a certain
direction over an open chamber is contained in a face of P. Therefore, we
simply pick for every chamber σ its barycenter qσ and sum up the fibers
over these points. Note that, since values over lower dimensional subsets
of π(P) are unimportant anyway in the Minkowski integral (they are sets
of measure zero), we can restrict ourselves to full-dimensional chambers.
This way, we end up with a formula for the fiber polytope as a scaled finite
Minkowski sum of fibers over full-dimensional chambers (see Figure 9.21).

Theorem 9.1.15. The fiber polytope Σ(P,π) is given by the following for-
mula:

Σ(P,π) = ∑
σ∈Γ(P,π)
dim(σ)=d

vol(σ)
vol(π(P))

Pqσ (9.3)

Our arguments from above can in fact be turned into a rigorous proof of
Theorem 9.1.13. This is left as an exercise to the reader. Consult [53] if
you get stuck. It pays off to study the examples in [339, Chapter 9].

Of course, from the above description as the Minkowski sum of finitely
many fibers of the projection, the fiber polytope Σ(P,π) can be computed
explicitly. Nevertheless, there is another way to do it which in some way
might be more convenient if you already have good software to compute
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triangulations (e.g., TOPCOM [265]). In [53] they also showed that the fiber
polytope can be very conveniently computed from the knowledge of the
vertices of the secondary polytope of P. We need the following lemma

Lemma 9.1.16. Let θ : P −→ P and π : P −→ R surjective linear maps.
Then the fiber polytope Σ(P,π) is equal to θ (Σ(P,θ (π))).

Thus, if we take P to be a simplex we know that Σ(P,θ (π)) is the sec-
ondary polytope of R. Thus, one can simply use TOPCOM to find the GKZ
coordinates of the vertices of the secondary and then project them to find
the potential vertices of the fiber polytope (we are then required to do a
convex hull computation). See Lemma 2.3 and Corollary 2.6 in [53].

++ =1/31/31/3

Figure 9.21: How the monotone path polytope of

the cube emerges as a fiber polytope: To the left,

we see the fibers over the barycenters of the

full-dimensional chambers; to the right and above,

the cube and the fibers are shown from an

orthogonal perspective; below, the scaled

Minkowski sum of the fibers and a normal vector

that chooses exactly the indicated monotone path.

Remark 9.1.17 (The Generalized Baues Problem). For any given poset
P one can define the order complex of P to be the following simplicial
complex (compare Section 3.3.4, where this construction already popped
up):

O(P) := {S ⊂ P : S is linearly ordered} .

Put differently, O(P) has a vertex for each element of P and a simplex for
each chain in P. For example, if P is the complex of proper faces of a
polytope P then O(P) is isomorphic to the barycentric subdivision of the
boundary of P. Order complexes are a natural way of thinking of a poset as
a topological space and their homotopy type is of special interest [54].

In 1994, Billera et al. [50] posed the problem whether or not the poset
of proper π-compatible subdivisions for a d-dimensional projection of a D-
dimensional polytope P was homotopy equivalent to a (D−d −1)-sphere.
Put differently, they asked whether the non-coherent subdivisions changed
the topological type but not the homotopy type of the face poset of the
fiber polytope. They gave an affirmative answer for d = 1 (the case of
monotone paths), which had previously been conjectured by Baues in his
study of loop spaces [34]. For this reason, their question became known as
the Generalized Baues Problem, or GBP [271].
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Subsequently, the GBP was answered in the affirmative for D−d ≤ 2 but
in the negative in general by Rambau and Ziegler [268, 263] with a counter-
example having the minimal possible D = 5 and d = 2. Still, the problem
remained of interest for the special cases where P is a simplex or a cube
and for special classes of projections π : P → π(P).

For example, for all projections between cyclic polytopes, the answer
is affirmative [267, 19]. The simplex case, however, was disproved, when
F. Santos constructed a disconnected graph of triangulations in general posi-
tion (see Exercise 9.3). The cube case is still open. By the Cayley trick (see
the next section, in particular Corollary 9.2.19) this cube case is equivalent
to the projection from a simplex to a Lawrence polytope. It is also equiva-
lent to the extension space conjecture of oriented matroid theory [55].

9.2 Mixed subdivisions and the Cayley trick

We have seen in Section 1.3, Theorem 1.3.6 that mixed subdivisions play a
fundamental role in counting the number of common roots of a system of
polynomial equations via Bernstein’s Theorem. In this section, we will see
that the set of all mixed subdivisions of the Minkowski sum of point config-
urations is in one-to-one correspondence to the set of all subdivisions of an-
other object: the Cayley embedding of the point configurations. Of course,
this makes things easier, since now we may use everything that we already
know about subdivisions. In particular, in order to find and/or enumerate
fine mixed subdivisions, we can use methods that find and/or enumerate tri-
angulations, e.g., TOPCOM (see Chapter 8, especially Sections 8.2 and 8.3).
But also the other direction of this correspondence is useful, as we will see.
The name of this magic correspondence is the Cayley trick.

9.2.1 An example

Let us start with an example. Let A(1) and A(2) be the following two 2-
dimensional point configurations (in homogeneous coordinates), labeled by
J(1) = {1,2,3,4} and J(2) = {1,2,3}, respectively: Figure 9.22: Example configuration A(1).

Figure 9.23: Example configuration A(2).A(1) =

⎛

⎜
⎝

1 2 3 4

0 1 0 1

0 0 1 1

1 1 1 1

⎞

⎟
⎠ (9.4)

A(2) =

⎛

⎜
⎝

1 2 3

0 1 2

0 0 1

1 1 1

⎞

⎟
⎠ (9.5)

The (affine) Minkowski sum of A(1) and A(2) is the 2-dimensional point
configuration A(1) + A(2) consisting of all points that are affine sums of
a point in A(1) and a point in A(2), naturally labeled by J(1) × J(2). The
homogeneous coordinates of the resulting points are as follows:
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A(1) + A(2) :=

⎛

⎜
⎝

(1,1) (1,2) (1,3) (2,1) (2,2) (2,3) . . .

0 1 2 1 2 3 . . .

0 0 1 0 0 1 . . .

1 1 1 1 1 1 . . .

. . . (3,1) (3,2) (3,3) (4,1) (4,2) (4,3)

. . . 0 1 2 1 2 3

. . . 1 1 2 1 1 2

. . . 1 1 1 1 1 1

⎞

⎟
⎠ (9.6)

(2,2)(1,2)

(2,1)

(3,2) (1,3) (2,3)

(4,2)(4,1)(3,1)

(3,3) (4,3)

(1,1)

Figure 9.24: The configuration A(1) +A(2) .

11

22

32

12

21

4131

Figure 9.25: The configuration

Cayley
(
A(1),A(2)

)
.

The resulting point configuration has 4 · 3 = 12 points with repeated
points at (1,0,1)T , (1,1,1)T , and (2,1,1)T .

The (affine) Cayley embedding of A(1) and A(2) is the following 3-dimen-
sional point configuration Cayley

(
A(1),A(2)

)
that contains A(1) and A(2) in

parallel affine spaces:

Cayley
(
A(1),A(2)) :=

⎛

⎜
⎜
⎜⎜
⎜
⎜
⎝

11 21 31 41 12 22 32

0 1 0 1 0 1 2

0 0 1 1 0 0 1

1 1 1 1 1 1 1

1 1 1 1 0 0 0

0 0 0 0 1 1 1

⎞

⎟
⎟
⎟⎟
⎟
⎟
⎠

(9.7)

The resulting point configuration is 3-dimensional and has 4 + 3 = 7
points with no multiple points. The description is not full-dimensional, but
that does no harm here.

11

22

32

12

31 41

21

Figure 9.26: A cell in Cayley
(
A(1),A(2)

)
.

(4,3)

(1,2) (2,2)

(2,1)

(1,3) (2,3)(3,2)

(4,1) (4,2)(3,1)

(3,3)

(1,1)

Figure 9.27: The corresponding cell in

Cayley
(
A(1),A(2)

)
.

Let us discover what connects these seemingly unrelated constructions:
Consider a 3-dimensional cell in Cayley

(
A(1),A(2)). Let us call this a full-

dimensional Cayley cell. Since both A(1) and A(2) are 2-dimensional, this
cell must contain points from both A(1) and A(2). One Cayley cell is, e.g.,
given by the label set

S := {11,21,12,22,32}. (9.8)

Now, produce all pairs of labels ( j(1)
1 , j(2)

2 ), with j(1) ∈ J(1) and j(2) ∈ J(2).
This yields for our Cayley cell:

Ŝ := {(1,1),(1,2),(1,3),(2,1),(2,2),(2,3)}= {1,2}×{1,2,3}. (9.9)

This obviously labels a 2-dimensional cell in the Minkowski sum that is
labeled by a product. We call such a cell a full-dimensional Minkowski cell.
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Even better, we can see from the product description from which Cayley
cell we started: Just put subscript 1 to the elements of the first factor and
subscript 2 to the elements of the second factor. This means that for our
example:

Observation 9.2.1. Cayley cells are in one-to-one correspondence with
Minkowski cells.

Now, look at the following polyhedral subdivision of Cayley
(
A(1),A(2))

(that this is actually a polyhedral subdivision can be seen by drawing a
picture):

S :=
{{11,21,12,22,32}, (9.10)

{11,31,12,32}, (9.11)

{11,21,31,41,32}
}
. (9.12)

31

32
2111

12 22

41

Figure 9.28: A subdivision S of the Cayley

embedding.
According to our observation, this collection of cells corresponds to the

following collection of cells:

Ŝ :=
{ {1,2}×{1,2,3}, (9.13)

{1,3}×{1,3}, (9.14)

{1,2,3,4}×{3}}. (9.15)

11

22

32

12

21

4131

Figure 9.29: The second cell in S .

Consulting Figures 9.26 through 9.32, we see that this is a valid polyhe-
dral subdivision of A(1) + A(2)!

We could play the same game in the other direction and we could check
all possible subdivisions with the same result. Therefore, in our example
we have:

Observation 9.2.2. Polyhedral subdivisions of the Cayley embedding are
in one-to-one correspondence with polyhedral subdivisions of the
Minkowski sum by cells that are labeled by products.

The goal of the following sections is to sketch a prove of this correspon-
dence in general. And this is surprisingly easy with the tools that we have
already.

9.2.2 Mixed subdivisions and the Minkowski projection

For the ease of exposition, we will in the following restrict ourselves to
the case of two summands. The case of an arbitrary number of summands
produces no extra difficulties. So, let A(1) and A(2) be arbitrary point con-
figurations in the same ambient space R

d .

Definition 9.2.3 (Minkowski Sum). The Minkowski sum A(1)+A(2) of A(1)

and A(2) in R
d labeled by J(1) and J(2), respectively, is the following point

configuration:

A(1) + A(2) :=
( ( j(1), j(2))

a(1)
j(1) + a(2)

j(2)

)

j(1)∈J(1) , j(2)∈J(2)
, (9.16)
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(3,3)

(1,2) (2,2)

(2,1)

(3,1)

(3,2)

(4,1) (4,2)

(1,3) (2,3)

(4,3)

(1,1)

Figure 9.30: The corresponding cell in Ŝ .

31

22

32

12

41

2111

Figure 9.31: The last cell in S .

(4,3)

(1,2) (2,2)

(2,1)

(3,2) (1,3) (2,3)

(4,2)(4,1)(3,1)

(3,3)

(1,1)

Figure 9.32: The corresponding cell in Ŝ .

(4,3)

(1,2) (2,2)

(2,1)

(1,3) (2,3)

(4,2)(4,1)

(3,2)

(3,1)

(3,3)

(1,1)

Figure 9.33: We obtain a subdivision S of the

Minkowski sum.

where a(1)
j(1) + a(2)

j(2) denotes the affine sum of a(1)
j(1) and a(2)

j(2) , i.e., addition

inside the common affine space. The Minkowski sum is labeled by J(1) ×
J(2).

The Minkowski sum of more than two point configurations can be de-
fined analogously.

It is not essential to prefer the affine sum over the homogeneous sum, but
it is in concordance with the literature.

Definition 9.2.4 (Mixed Cells). A subset B of labels in J(1)×J(2) is a mixed
cell if it is the product of a label set B(1) ⊆ J(1) and a label set B(2) ⊆ J(2).
A subconfiguration of A(1) + A(2) is mixed if it is labeled by a mixed cell.

Let us look at our example:

• {1}×{1}= {(1,1)} is a mixed cell; the corresponding point config-
uration is

⎛

⎝

(1,1)
0
0
1

⎞

⎠. (9.17)

• {1,2,3,4}×{1,2,3} is a mixed cell; the corresponding point config-
uration is A(1) + A(2).

• {1,2}× {1,2} = {(1,1),(1,2),(2,1),(2,2)} is a mixed cell that is
one-dimensional, since the summands are parallel segments; the re-
sulting point configuration has a double point:

⎛

⎝

(1,1) (1,2) (2,1) (2,2)
0 1 1 2
0 0 0 0
1 1 1 1

⎞

⎠. (9.18)

• {1,2}×{1,3}= {(1,1),(1,3),(2,1),(2,3)} is a mixed cell that is a
parallelogram. The resulting point configuration is:

⎛

⎝

(1,1) (1,3) (2,1) (2,3)
0 2 1 3
0 1 0 1
1 1 1 1

⎞

⎠ (9.19)

• The set of labels {(1,1),(2,2)}, leading to the configuration

⎛

⎝

(1,1) (2,2)
0 2
0 0
1 1

⎞

⎠ (9.20)
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(1,1)

(3,2)

(4,1) (4,2)(3,1)

(3,3) (4,3)

(1,3) (2,3)

(2,1)

(1,2) (2,2)

Figure 9.34: A cell with a single point.

(2,2)

(3,3) (4,3)

(4,2)(4,1)

(3,2) (1,3) (2,3)

(2,1)

(1,2)(1,1)

(3,1)

Figure 9.35: A cell with all points.

(4,2)(3,1)

(3,3) (4,3)

(1,3) (2,3)

(1,2)

(2,1)

(2,2)(1,1)

(3,2)

(4,1)

Figure 9.36: A cell with a multiple point.

(2,2)

(2,1)

(1,3) (2,3)(3,2)

(4,1) (4,2)(3,1)

(3,3) (4,3)

(1,2)(1,1)

Figure 9.37: A cell with the “right” copy of a

multiple point.

does not form a mixed cell because it is not a product. Note that
its convex hull is a facet of the convex hull of A(1) + A(2). The cell
itself, however, is not, according to our Definition 2.1.17. This shows
again that our combinatorial model for a point configuration is more
powerful than plain geometry.

• The configuration

⎛

⎝

(1,1) (1,3) (1,2) (2,3)
0 2 1 3
0 1 0 1
1 1 1 1

⎞

⎠ (9.21)

has the same coordinates as the one in Equation (9.19). It is, however,
not a mixed cell, since it contains the “wrong” copy of (1,0,1)T ,
namely the one labeled by (1,2) as opposed to (2,1). This way,
the label set is not a product and thus the cell is not mixed. If we
had defined mixed cells only as Minkowski sums of subsets (with no
reference to labels), then we could not distinguish the cell in Equa-
tion (9.21) from the one in Equation (9.19), and then the Cayley trick
would simply not be true. Sometimes you have got to be picky with
the definitions in order to obtain the most beautiful results!

Definition 9.2.5 (Mixed Subdivision). A polyhedral subdivision of A(1) +
A(2) is mixed if all its cells are mixed cells.

Now we can simply check whether a collection S of subsets of J(1) ×
J(2) forms a mixed subdivision: if all cells are products, then the subdivi-
sion is mixed. Here are examples for our special configuration:

• The subdivision

S0 :=
{{(1,1),(1,2),(1,3),(2,1),(2,2),(2,3), (9.22)

(3,1),(3,2),(3,3),(4,1),(4,2),(4,3)}} (9.23)

is the trivial subdivision. Its only cell is J(1)× J(2).

• The subdivision

S1 :=
{{(1,1),(1,3),(2,1),(2,3)}, (9.24)

{(2,1),(2,2),(2,3)}, (9.25)

{(1,3),(2,3),(3,3),(4,3)}, (9.26)

{(1,1),(3,1),(1,3),(3,3)}}. (9.27)

is mixed because it can be written as

S1 =
{ {1,2}×{1,3}, (9.28)

{2}×{1,2,3}, (9.29)

{1,2,3,4}×{3}, (9.30)

{1,3}×{1,3}}. (9.31)
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(3,2)

(4,1) (4,2)(3,1)

(3,3) (4,3)

(1,3) (2,3)

(2,2)

(2,1)

(1,2)(1,1)

Figure 9.38: Not a cell.

(2,1)

(1,3) (2,3)(3,2)

(4,1) (4,2)(3,1)

(3,3) (4,3)

(2,2)(1,2)(1,1)

Figure 9.39: A non-cell with the “wrong” copy of a

multiple point.

(1,2) (2,2)

(2,1)

(1,3) (2,3)

(4,2)(4,1)

(3,2)

(3,1)

(3,3) (4,3)

(1,1)

Figure 9.40: A mixed subdivision.

(1,2) (2,2)

(1,3) (2,3)

(4,2)(4,1)

(3,2)

(3,1)

(3,3) (4,3)

(2,1)

(1,1)

Figure 9.41: A non-mixed subdivision with the

same geometric cells.

• The subdivision

S2 :=
{{(1,1),(1,3),(1,2),(2,3)}, (9.32)

{(1,2),(2,2),(2,3)}, (9.33)

{(1,3),(2,3),(3,3),(4,3)}, (9.34)

{(1,1),(3,1),(1,3),(3,3)}} (9.35)

is not mixed because it contains the non-mixed cell from Equa-
tion 9.21. It is a valid subdivision of A(1) + A(2) though, because
the only difference to the mixed subdivision in Equation 9.32 is the
replacement of (2,1) by (1,2) in every cell, which does not affect any
of our characterizations of polyhedral subdivisions in Section 4.5.

We want to look at this from a different point of view. Let n(i) be the
number of points in A(i). Consider the standard simplices with n(1) and n(2)

vertices, respectively. In our example, these simplices are given as follows:

D4 =

⎛

⎜
⎜⎜
⎜
⎝

1 2 3 4

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

⎞

⎟
⎟⎟
⎟
⎠

, (9.36)

D3 =

⎛

⎜
⎝

1 2 3

1 0 0

0 1 0

0 0 1

⎞

⎟
⎠. (9.37)

Dn(1) projects to A(1) in a natural way: each vertex of the simplex projects
to the point in A(1) with the same label, similarly for Dn(2) and A(2). Let us
call these projections π (1) and π (2), respectively.

Now let us look at the product of the two simplices. In our example,
it is the following point configuration (it does not matter that the product
configuration is not full-dimensional in the following coordinatization):
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D4
3 4

2

1 2
A(1)

3 4

π(1)
1

Figure 9.42: The projection π (1) of the vertices of

the standard 3-simplex (with 4 points) onto A(1).

2

1 2

3

3
D3

1

π(2)

A(2)

Figure 9.43: The projection π (2) of the vertices of

the standard 2-simplex (with 3 points) onto A(2).

D4 ×D3 :=

⎛

⎜
⎜⎜
⎜
⎜
⎜
⎜⎜
⎜
⎜
⎜
⎝

(1,1) (1,2) (1,3) (2,1) (2,2) (2,3) . . .

1 1 1 0 0 0 . . .

0 0 0 1 1 1 . . .

0 0 0 0 0 0 . . .

0 0 0 0 0 0 . . .

1 0 0 1 0 0 . . .

0 1 0 0 1 0 . . .

0 0 1 0 0 1 . . .

. . . (3,1) (3,2) (3,3) (4,1) (4,2) (4,3)

. . . 0 0 0 0 0 0

. . . 0 0 0 0 0 0

. . . 1 1 1 0 0 0

. . . 0 0 0 1 1 1

. . . 1 0 0 1 0 0

. . . 0 1 0 0 1 0

. . . 0 0 1 0 0 1

⎞

⎟
⎟
⎟⎟
⎟
⎟
⎟
⎟⎟
⎟
⎟
⎠

(9.38)

Consider the following Minkowski projection, given by mapping points
in the product of the two simplices to points in the Minkowski sum with the
same labels:

ΠM :

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Dn(1) ×Dn(2) → A(1) + A(2)

( j(1), j(2))⎛

⎝
d(1)

j(1)

d(2)
j(2)

⎞

⎠ �→
( j(1), j(2))(

π (1)(d(1)
j(1) )+ π (2)(d(2)

j(2) )
) (9.39)

We claim that Mixed subdivisions can be characterized as follows:

Observation 9.2.6 (Mixed = ΠM-compatible). A subdivision of A(1) +A(2)

is a mixed subdivision if and only if it is ΠM-compatible.

Proof. To prove this let us discuss what a cell B ⊆ J(1) × J(2) in a mixed
ΠM-compatible subdivision must look like. B must, by the definition of
ΠM-compatible, label a face of the product of simplices Dn(1) ×Dn(2) . That
means, it must label a product of non-empty faces S(1) ×S(2) with S(1) ≤
Dn(1) and S(2) ≤ Dn(2) . Therefore, B is the label set B(1)×B(2) of S(1)×S(2).
Since all non-empty subconfiguration of simplices are non-empty faces,
each R(1)×R(2) ⊂ J(1)× J(2) with R(1),R(2) non-empty is a mixed cell. In
a nutshell: a subset of J(1)×J(2) is a mixed cell ΠM-compatible if and only
if it is a product, i.e., mixed.
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2

3

1

3 4

1

A(1) +A(2)

D3

2

×D4

×

ΠM = π(1) +π(2)

(1,1)

(4,3)(3,3)

(3,1) (4,1) (4,2)

(2,3)(1,3)(3,2)

(2,1)

(1,2) (2,2)

Figure 9.44: The Minkowski projection ΠM .

4

2 1

× D3D4

×

ΠM = π(1) +π(2)

A(1) +A(2)

2

3

1

3

(2,1)

(4,3)

(1,3)

(3,1) (4,1)

(3,2)

(4,2)

(3,3)

(2,3)

(2,2)(1,2)(1,1)

Figure 9.45: A cell is ΠM -compatible if and only if

it is mixed.

By the virtue of this characterization, we get some additional concepts
for free:

Definition 9.2.7. A mixed subdivision is fine if it is ΠM-tight. It is coherent
if it is ΠM-coherent.

Remark 9.2.8. Here is what happens geometrically: The cell S = ΠM(S(1)×
S(2)) as a point configuration is just a Minkowski sum B(1) +B(2) of a non-
empty subconfiguration B(1) = π (1)(S(1)) of A(1) and a non-empty subcon-
figuration B(2) = π (2)(S(2)) of A(2). Note that in the case of multiple points
the copy with the right label must be chosen so that the label set of the
mixed cell is a product.

Remark 9.2.9 (Zonotopes). Recall that a zonotope Z is any Minkowski sum
of line segments, and that its zonotopal tilings are, by Lemma 9.1.8, the
subdivisions compatible with the natural projection π : In → Z. Since In is
simply the product of n copies of the “simplex” D2, we have that:

Lemma 9.2.10. Let the zonotope Z be the Minkowski sum A(1) + · · ·+A(n)

of n segments. Then, the zonotopal tilings of Z are the same as the mixed
subdivisions of the Minkowski sum A(1) + · · ·+ A(n). Subdivisions that are
coherent in one sense are also coherent in the other, and tight zonotopal
tilings correspond to fine mixed subdivisions.

9.2.3 Subdivisions in the Cayley embedding and the Cayley projec-
tion

This time, we describe the general construction of the Cayley embedding of
two point configurations A(1) and A(2). The easiest way to think about Cay-
ley embeddings would be to put A(1) and A(2) into parallel affine spaces
by using an extra coordinate 0 for the points in A(1) and 1 for the points
in A(2). But this would break the symmetry between A(1) and A(2): there is
no natural way of deciding who should receive the extra 0 and who should
receive the extra 1. Essentially, we would like to see that an exchange of
A(1) and A(2) in Cayley

(
A(1),A(2)

)
will result in at most a reordering of co-

ordinates. This can be achieved by the following definition that in addition
has the most intuitive generalization to more than two starting configura-
tions.

Definition 9.2.11 (Cayley Embedding). The Cayley embedding of A(1)

and A(2), denoted by Cayley
(
A(1),A(2)), is the following d+1-dimensional

point configuration:

Cayley
(
A(1),A(2)) :=

⎛

⎜
⎝

( j(1),1) ( j(2),2)

a(1)
j(1) a(2)

j(2)

1 0
0 1

⎞

⎟
⎠

j(1)∈J(1) , j(2)∈J(2)

(9.40)

It is labeled by J(1) ×{1}∪ J(2)×{2}, where we occasionally use the sub-

script notation j(i)i for each ( j(i), i). The Cayley embedding of more than
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two summands can be defined analogously. Each summand adds one to the
dimension.

The cumbersome generic label notation comes from the fact that very fre-
quently we want to label the starting point configurations A(i) with the num-
bers from 1 to n(i). That means, there are identical labels in J(1) and J(2).
In the Cayley embedding we need to distinguish them, so they receive an
extra marker. You can see this in the example in Section 9.2.1.

3

21

3 4

Cayley
(
A(1),A(2))

ΠC

∗

D3D4 ∗

2 1

11

41

21

31

32

2212

Figure 9.46: The Cayley projection ΠC.

2

Cayley
(
A(1),A(2))

ΠC

∗

D4 D3∗

2 1

43

1

3

21

31 41

11

12 22

32

Figure 9.47: Any cell is ΠC -compatible, and any

full-dimensional cell contains non-empty subsets

of both operands of the Cayley embedding.

In the same example all subdivisions of the Cayley embedding corre-
spond to mixed subdivisions in the Minkowski sum. So, there is nothing
special about the subdivisions we are looking at in the Cayley embedding.
Nevertheless, we will take the projection view from above again.

In Section 9.1.3, we have seen that every polyhedral subdivision of a
point configuration is compatible to a projection of a simplex to the point
configuration. We are now doing exactly the same thing here. As above, let
π (1) and π (2) be projections from Dn(1) to A(2) and Dn(2) to A(2), respectively.

Now let us look at the simplicial join of the two simplices. In our ex-
ample, it is the following point configuration (it again does not matter that
the join configuration is not full-dimensional in the following coordinatiza-
tion):

D4 ∗D3 :=

⎛

⎜
⎜⎜
⎜
⎜
⎜
⎜
⎜
⎝

11 21 31 41 12 22 32

1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1

⎞

⎟
⎟⎟
⎟
⎟
⎟
⎟
⎟
⎠

(9.41)

Essentially, the matrix of the join is the block-diagonal formed by the ma-
trices of the operands. That means, in particular, that joins of standard
simplices are standard simplices again.

Consider the following Cayley projection, where—similarly to the Min-
kowski projection—a point in the join of the two simplices is mapped to
the point in the Cayley embedding with the same labels:

ΠC :

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Dn(1)+n(2) = Dn(1) ∗Dn(2) → Cayley
(
A(1),A(2))

( j(1),1)⎛

⎝ d(1)
j(1)

0

⎞

⎠ �→

( j(1),1)
⎛

⎜
⎝

π (1)(d(1)
j(1) )

1
0

⎞

⎟
⎠

( j(2),2)⎛

⎝
0

d(2)
j(2)

⎞

⎠ �→

( j(2),2)
⎛

⎜
⎝

π (2)(d(2)
j(2) )

0
1

⎞

⎟
⎠

(9.42)
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Then, it is clear by the considerations in Section 9.1.3 that the following
holds.

Observation 9.2.12 (Cayley subdivision = ΠC-compatible). Any subdivi-
sion of Cayley

(
A(1),A(2)) is ΠC-compatible.

Remark 9.2.13 (Lawrence polytopes). We recall here the Lawrence poly-
topes introduced in Section 5.5.3. Remember that the Lawrence polytope
Λ(A) of a configuration A is defined as the configuration having as its Gale
transform the union of Gale(A) and its opposite. That is:

Gale(Λ(A)) = Gale(A)∪(−Gale(A))

But a more direct definition in matrix form was found in Proposition 5.5.12

Λ(A) =
(

0 A
1 1

)
, (9.43)

where 1 and 0 denote the unit and the zero matrices of the appropriate
dimensions (n× n and r × n, respectively, if A is represented by an r × n
matrix).

Let a1, . . . ,an denote the elements of A; that is to say, the columns of
A as a matrix. Reordering the columns of the right hand side of equation
(9.43) we see that Λ(A) is also represented by the matrix

⎛

⎜
⎜
⎜
⎜
⎜
⎝

0 a1 0 a2 . . . 0 an

1 1 0 0 · · · 0 0
0 0 1 1 · · · 0 0
...

...
...

...
. . .

...
...

0 0 0 0 · · · 1 1

⎞

⎟
⎟
⎟
⎟
⎟
⎠

,

where 0 ∈ R
r is the zero vector. But this is simply the Cayley embedding

of the n segments [0ai], i = 1, . . . ,n. Thus:

Lemma 9.2.14. The Lawrence polytope of a configuration A with points
(a1,a2, . . . ,an) equals the Cayley embedding of the segments {[0ai]}i=1,...,n.

9.2.4 The Cayley trick

With our explicit labeling of points in the Minkowski sum and the Cayley
embedding, respectively, we are in a position to state the Cayley trick very
easily. Consider the following map from cells in the Cayley embedding to
cells in the Minkowski sum.

Definition 9.2.15 (Cayley Map). The Cayley map is the following map that
associates to every cell in Cayley

(
A(1),A(2)) a mixed cell in A(1) +A(2) via

ΦC :

{
2J(1)×{1}∪J(2)×{2} → 2J(1)×J(2)

(B(1),1)∪ (B(2),2) �→ B(1)×B(2) (9.44)

where, by convention, any product with the empty set is the empty set.
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(2,3)

12 22

32
11

31 41

21

(1,1)(1,2)(2,2)
(2,1)

(1,3)

Figure 9.48: The image of the first cell in our

example subdivision S under the Cayley

map ΦC , viewed as a subset of the Cayley

embedding: Its convex hull is obtained by

intersecting the cell in the Cayley embedding

with the affine subspace W ; other weightings are

obtained by sliding W back and forth between

the copies of A(1) and A(2).

32
11 21

4131

(3,1)

(3,3)

(1,1)

(1,3)

12 22

Figure 9.49: The image of the second cell in S

under the Cayley map ΦC .

(4,3)

(1,3)
32

12 22

31 41

2111

(2,3)

(3,3)

Figure 9.50: The image of the third cell in S

under the Cayley map ΦC .

Since any collection of cells in the Cayley embedding is mapped by ΦC

to a collection of mixed cells in the Minkowski embedding, it is interesting
to ask whether subdivisions of the Cayley embedding map to mixed sub-
divisions in the Minkowski sum. This is indeed the case, and this is the
content of the Cayley trick without restrictions.

Theorem 9.2.16 (Cayley Trick without Restrictions). The Cayley map
induces a poset isomorphism from the refinement poset of all ΠC-compat-
ible subdivisions of Cayley

(
A(1),A(2)) to the refinement poset of all ΠM-

compatible subdivisions of A(1) + A(2).

We do not prove this here because something even more general is true.
So far, we started out from projections of simplices. This led to arbitrary
polyhedral subdivisions in the Cayley embedding. We can equally well just
fix more general projections of vertices of polytopes π (1) : vert(P) → A(1)

and π (2) : vert(P) → A(2) and look at ΠC-compatible and ΠM-compatible
subdivisions, respectively. The crucial thing: although now the set of possi-
ble cells is restricted, the restrictions in both the Cayley embedding and the
Minkowski sum are identical!

For the largest generality of the Cayley trick, we need the notion of a
weighted Minkowski sum.

Definition 9.2.17 (Weighted Minkowski Sum). Let λ = (λ1, . . . ,λk) be a
vector with λ1, . . . ,λk > 0 and ∑k

i=1 λi = 1.
The Minkowski sum of A(1), . . . ,A(k) scaled by λ is the following point

configuration:

k

∑
i=1

λiA(i) :=
( ( j(1), . . . , j(k))

∑k
i=1 λia

(i)
j(i)

)

j(1)∈J(1),..., j(k)∈J(k)
, (9.45)

This time, the sum may be taken directly from the homogeneous coordi-
nates, since the condition ∑k

i=1 λi = 1 ensures that the affine space of the
operands is not left out.

We now are proud to state the following beautiful discovery in full gen-
erality; it was first proved in [165].

Theorem 9.2.18 (Cayley Trick with Restrictions). Let P(i), i = 1, . . . ,k, be

polytopes with vertex sets V(i) labeled by J(i), each v(i)
j(i)

having p(i) homo-

geneous coordinates. Moreover, let

π (i) :

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

V(i) → A(i)

j(i)(
v(i)

j(i)

) �→
j(i)(

π (i)(v(i)
j(i)

) =: a(i)
j(i)

) (9.46)

be arbitrary projections to R
d, image points labeled with the labels of their
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preimages. Let

ΠM := λ1π (1) + · · ·+ λkπ (k) :
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

V(1)×·· ·×V(k) → λ1A(1) + · · ·+ λkA(k)

( j(1), . . . , j(k))⎛

⎜
⎜
⎜
⎝

v(1)
j(1)

...

v(k)
j(k)

⎞

⎟
⎟
⎟
⎠

�→

( j(1), . . . , j(k))
⎛

⎜
⎜
⎝λ1π (1)(v(1)

j(1))+ · · ·+ λkπ (k)(v(k)
j(k)

)

⎞

⎟
⎟
⎠

(9.47)

be the associated Minkowski projection and

ΠC := Cayley
(
π (1), . . . ,π (k)) :
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

V(1) ∗ · · · ∗V(k) → Cayley
(
A(1), . . . ,A(k))

( j(i), i)

⎛

⎜
⎜
⎜
⎜
⎜⎜
⎜
⎜
⎜
⎜
⎜⎜
⎝

0p(1)

...

0p(i−1)

v(i)
j(i)

0p(i+1)

...

0p(k)

⎞

⎟
⎟
⎟
⎟
⎟⎟
⎟
⎟
⎟
⎟
⎟⎟
⎠

�→

( j(i), i)
⎛

⎜⎜
⎜
⎜
⎜
⎜⎜
⎜
⎜
⎜
⎜
⎜⎜
⎜
⎝

π (i)(v(i)
j(i)

)
0
...
0
1
0
...
0

⎞

⎟⎟
⎟
⎟
⎟
⎟⎟
⎟
⎟
⎟
⎟
⎟⎟
⎟
⎠

(9.48)

be the associated Cayley projection.
Then the Cayley map ΦC that maps cells in the Cayley embedding to cells

in the weighted Minkowski sum via

ΦC
(
(B(1),1)∪·· ·∪ (B(k),k)

)
:= B(1)×·· ·×B(k) (9.49)

induces a poset isomorphism from the refinement poset of all ΠC-compatible
subdivisions of the Cayley embedding Cayley

(
A(i)
)

i=1,...,k to the refinement

poset of ΠM-compatible subdivisions of the scaled Minkowski sum ∑k
i=1 λi

A(i) for all λ = (λi)i=1,...,k with λi > 0 and ∑k
i=1 λi = 1.

In this poset isomorphism, tight subdivisions correspond to tight subdi-
visions, and ΠC-coherent subdivisions correspond to ΠM-coherent subdivi-
sions.
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P(2)

Cayley
(
A(1),A(2)) ⊂ R

2 ×R
d1

2 A(1) + 1
2 A(2) ⊂ R

d

A(2)

W

1
2 A(2)

1
2 A(1)

A(1)

ΠM ΠC

W ′

P(1)

1
2 P(1) × 1

2 P(2) ⊂ R
(p(1)+p(2)) P(1) ∗P(2) ⊂ R

2 ×R
(p(1)+p(2))

P(1)

P(2)

Figure 9.51: A sketch in which all relevant objects

in the Cayley trick with restrictions can be seen; the

product has scaled factors because that way the

visualized projection is an orthogonal projection.

Figure 9.51 is an attempt to sketch the general situation in the smallest
non-trivial example.

We just present a set of plausible observations and claims as a proof
sketch. A formal check does not reveal more; it is, however, recommended
as an exercise, since many concepts of this book can be revisited.

Proof Sketch. First note that it is sufficient to consider full-dimensional
cells. On these cells, the Cayley map is bijective with an obvious inverse
map. The key observation is that the Cayley map on cells has a geometric
meaning: The image of any cell (including the trivial one) labels the in-
tersection of the point configuration of the cell with an affine subspace of
dimension d, namely

W :=
{

x ∈ R
d+k : xd+i = λi, i = 1, . . . ,k

}
. (9.50)

We list a couple of observations that together prove the theorem:

1. If we intersect the convex hull of the Cayley embedding with W , then
we obtain the convex hull of the weighted Minkowski sum.
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2. If we intersect the convex hull of any of the cells with W , then we
obtain the convex hull of the corresponding mixed cell.

3. If two cells in the Cayley embedding are intersecting properly, then
the corresponding cells in the weighted Minkowski sum are.

4. If two adjacent cells in the Cayley embedding are intersecting improp-
erly, then the corresponding cells in the weighted Minkowski sum are
adjacent and intersect improperly as well. (This statement is not true
for general non-adjacent pairs of cells, though (see Figure 9.52).)

A(1)

A(2)

1
2 A(1) + 1

2 A(2)

Figure 9.52: Two properly intersecting Minkowski

cells whose corresponding Cayley cells intersect

improperly; this cannot happen when the cells

are full-dimensional and adjacent because, then

the unique hyperplane separating the Minkowski

cells, spanned by the common facet, induces a

unique separating hyperplane separating the

Cayley cells, spanned by the Cayley cell

corresponding to that facet.

5. If in a subdivision of the weighted Minkowski sum there is a point in
general position that is contained in the interior of exactly one full-
dimensional cell then this very same point is contained in the relative
interior of exactly one cell of the corresponding subdivision of the
Cayley embedding.

Because of the first observation, the union of the convex hulls of a collec-
tion of cells in the Cayley embedding equals the convex hull of the Cayley
embedding if and only if the corresponding union of convex hulls of the
corresponding cells equals the convex hull of the weighted Minkowski sum.
This shows that (UP) from Definition 2.3.1 holds in the Cayley embedding
if and only if it holds in the weighted Minkowski sum.

Looking at our definition of polyhedral subdivisions via (CP), (UP), and
(IP) in Definition 2.3.1 and the second observation, we see that every ΠC-
compatible subdivision of the Cayley embedding maps to a valid mixed sub-
division of the weighted Minkowski sum, since intersection with an affine
subspace cannot

• destroy closedness under taking faces; therefore, (CP) must hold

• create uncovered points; therefore, (UP) must hold)

• create interior intersections; therefore, (IP) must hold

This valid subdivision is ΠM-compatible because the corresponding restric-
tions are literally equivalent to the ones posed by ΠC-compatible.

For the other direction, we need the characterization by (MaxMP), (Max-
AdjHP), (MaxAdj(LP), and (IPP) in Theorem 4.5.13. The last two ob-
servations from above show that every ΠM-compatible subdivision of the
weighted Minkowski sum corresponds to a valid subdivision of the Cayley
embedding, since (MaxAdjHP) and (MaxAdjLP), because of the second-to-
last observation, as well as (IPP), because of the last observation, are pre-
served. ΠC-compatibility is again literally equivalent to ΠM-compatibility.

The correspondence is order preserving because the intersection with an
affine subspace preserves set inclusion. The correspondence preserves co-
herence because the fibers of ΠC and ΠM are isomorphic individually, and
so are the fiber polytopes.

The Cayley trick as above is now a fairly general theorem. What can you
do with it? One nice application of it relates zonotopal tilings of a zonotopal
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to subdivisions of a Lawrence polytope. Remember that a zonotope is a
Minkowski sum of segments and, by Lemma 9.2.10, zonotopal tilings of
Z = [0a1]+ · · ·+[0an] are the same as the ΠM-compatible subdivisions for
the natural projection

ΠM : I×·· ·× I → Z,

where I×·· ·× I = In is the n-cube.
On the other hand, if we consider the vectors a1, . . . ,an as the elements of

a (point or vector) configuration A, by Lemma 9.2.14 the Lawrence poly-
tope Λ(A) equals the Cayley embedding of the same segments [0a1], . . . ,
[0an]. So, the Cayley trick implies the following nice result that, together
with a result of Santos in [281], yields a new proof [165] of the famous
Bohne-Dress Theorem [60].

Corollary 9.2.19. The refinement poset of all zonotopal tilings of a zono-
tope is isomorphic to the refinement poset of all polyhedral subdivision of
the corresponding Lawrence polytope. The correspondence preserves co-
herence (a.k.a. regularity), flips, etc.

Example 9.2.20 (The permutahedron). Probably the simplest, yet one of
the nicest examples where the Cayley trick applies is the permutahedron.
Remember that the product I×Dn of a segment and an (n−1)-simplex has
n! triangulations, all of them regular, and the associated secondary polytope
is the permutahedron (cf. Section 6.2.1, in particular Theorem 6.2.6). But
I×Dn is the Cayley embedding of n parallel copies of the segment I. By the
Cayley trick, its secondary polytope must coincide with the fiber polytope
of the natural projection

ΠM : In → I+ · · ·+ I.

Since this is a projection into dimension one (all copies of the segment are
parallel), the ΠM-compatible subdivisions are the monotone paths on the
cube In, with respect to the functional (1, . . . ,1). Hence:

Corollary 9.2.21. The monotone path polytope of a regular cube with re-
spect to the functional (1, . . . ,1) is a regular permutahedron.

In fact, the same is true for any functional on the cube, as long as it is
generic in the sense of Section 9.1.1

9.2.5 Product of a triangle and k-simplex

Counting triangulations is in general very complicated, but one nice appli-
cation of the above ideas can be used to detect non-regular triangulations
and to count triangulations of the product of simplices.

In Section 6.2, we investigated products of simplices. It turns out that if
one of the simplices involved is of much smaller dimension than the other
one, the Cayley trick can help us.

According to the Cayley trick, the refinement poset of all polyhedral
subdivisions of Dm × Dn = Cayley

(
Dm, . . . ,Dm

)
(n operands) is isomor-

phic to the refinement poset of all mixed subdivision of Dm + · · ·+ Dm
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(n summands). This is especially useful if one of the factors has small
dimension. Moreover, non-coherent mixed subdivisions correspond to non-
regular triangulations, as was proved in [166].

For example, if m = 3, instead of investigating the product D3 × Dn,
which is n + 1-dimensional, one can investigate the n-fold Minkowski sum
of the triangle, which is a 2-dimensional configuration. In general, we have
the following:

Corollary 9.2.22. The refinement poset of all polyhedral subdivisions Dp×
Dq is isomorphic to the refinement poset of all mixed subdivisions of
∑q

i=1 Dp.

Applied to our small example D3 ×Dn, we recover the fact that D3 ×D6

has non-regular subdivisions. The triangulation of the following corollary
is actually the same as the one we constructed in Section 6.25 for Theo-
rem 6.2.19. There we constructed it as a refinement of a regular subdivi-
sion with seven cells. Figure 9.54 shows that subdivision in a Cayley trick
picture.

Figure 9.53: A non-coherent mixed subdivision of

6 ·D3.

Corollary 9.2.23. D3 ×D6 has a non-regular triangulation.

Remark 9.2.24. The triangulation of the previous corollary is actually the
same one we constructed in Section 6.25. There we constructed it as a
refinement of a regular subdivision with seven cells. Figure 9.54 shows
that subdivision in a Cayley trick picture.

Sketch of a Proof. Look at Figure 9.53: it shows a non-coherent (Exer-
cise 9.4) mixed subdivision of the Minkowski sum. The corresponding
triangulation of D3 ×D6 is non-regular because of the Cayley trick.

Figure 9.54: A coherent, but not fine, mixed

subdivision of 6 ·D3.

We can also try to picture the non-regular triangulation of D4 ×D4 via
the Cayley trick. We now need to study mixed subdivisions of the four-
fold sum of a tetrahedron D4. Figure 9.56 shows one of them, obtained by
cutting 4 ·D4 via the four planes parallel to its facets and meeting at the
barycenter. We leave it to the reader to check that this is the regular mixed
subdivision obtained using the heights ωii = 0, i = 1, . . . ,4 and ωi j = 1
if i �= j. This mixed subdivision is not fine, that is, it corresponds to a
regular subdivision of D4 ×D4 that is not a triangulation. But its only non-
simplicial cells have corank 1 and can be triangulated independently. They
correspond to the six cells that go “along the edges” of the tetrahedron in
Figure 9.56. The figure also shows with dashed lines how to split each of
them into two pieces, so that we get 20 pieces in total. That is the normal-
ized volume of D4 ×D4, so that this refinement represents now a triangu-
lations. We leave it to the reader to check that this triangulation is actually
the non-regular triangulation of D4 ×D4 described in Section 6.2.4.

a b

c

Figure 9.55: triangles Tk (shown for k = 4 here)

will be subdivided by three types of “tiles”.

We begin looking at the case of D2 ×Dk, i.e., the product of a triangle
with a k-dimensional simplex. The main idea from [282] is that the trian-
gulations of polytope D2 ×Dk can be pictured as 2-dimensional pictures of
subdivisions of a rather symmetric planar point set whose cells are of very
special kind. From that a simple and effective recursion formula will be
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Figure 9.56: A non-coherent mixed subdivision of

4 ·D4.

Figure 9.57: All combinatorial types of

triangulations of D2 ×D2 shown here in their

tiling representation.

derived. More precisely consider the equilateral triangle Tk of side k; in ho-
mogeneous coordinates its underlying point configuration consists of points
(r,s,t) with r + s+ t = k. See Figure 9.55. The polyhedral subdivisions we
need use exactly k unit-one regular triangles and (k2 −k)/2 “lozenge” cells
that come in three orientations (up, left, right). Following common usage,
we call these subdivisions lozenge tilings. See Figure 9.57 for an example.
We will use the following lemma:

Lemma 9.2.25. The number of triangulations of D2×Dk−1 equals k! times
the number of lozenge tilings of Tk.

We do not present the formal proof the lemma here. As a “proof by
example” consider the case of D2×D1. Figure 9.58 shows all triangulations
of this polytope. Observe that when you slice each of them through the
middle by a horizontal plane, the resulting intersections will give exactly six
different triangles which are subdivided by two triangles and a lozenge, as
in Figure 9.58. The triangles are the “traces” of the intersection of the plane
with the tetrahedra covering thee top and bottom triangles of the prism,
while the lozenge tile is a trace of the intersection with a mixed tetrahedron,
namely two points on the top, two on the bottom.

In the figure, the letters T , B are used to denote such triangles. As pre-
dicted by Lemma 9.2.25 you can see that each tiling appears twice, with
interchanged labeling.

The number of lozenge tilings of Tk can be computed in the following
way. Let k be fixed, and let S be a subset of {1,2, . . . ,k}. We classify the
lozenge tilings of Tk according to what triangles they have in the bottom
line. More precisely, let fk(S) denote the number of lozenge tilings of Tk

which have triangles exactly in the positions of the bottom line given by S.
Similarly, let gk(S) denote the number of lozenge tilings of Tk which have
triangles at least in the positions of the bottom line given by S. Clearly,

gk(S) = ∑
S⊆S′

fk(S′). (9.51)

But, moreover:

Proposition 9.2.26. Let S = {s1, . . . ,s j} �= /0, where 1 ≤ s1 < · · · < s j ≤ k.
If j = 1, then fk(S) = gk−1( /0). If j > 1, then:

fk(S) = ∑
s1 ≤ s′1 < s2

...
s j−1 ≤ s′j−1 < s j

gk−1({s′1, . . . ,s
′
j−1}). (9.52)

Proof. Between every two triangles of the bottom row there must be one
and only one vertical lozenge. Once we fixed the positions s′1, . . . ,s

′
j−1 of

these vertical lozenges, the ways to complete the lozenge tiling are exactly
the same as the lozenge tilings of Tk−1 containing triangles in (at least) the
positions s′1, . . . ,s

′
j−1 of the bottom row.
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Figure 9.58: All triangulations of D2 ×D1 shown

here together with their “slices”. Intuitively, this

gives the correspondence between tilings and

triangulations.

Example 9.2.27. Table 9.1 shows all the values of fk(S) and gk(S) with
k = 1,2,3, as well as the values of f4(S), computed using the recursive
equations (9.51) and (9.52). Adding all the entries of f4(S) we get the
number of lozenge tilings of T4, which is g4( /0) = 187. Hence, the number
of triangulations of D2 ×D3 is 187×4! = 4488.

S /0 1 2 1,2 3 1,3 2,3 1,2,3

f1(S) 0 1
g1(S) 1 1
f2(S) 0 1 1 1
g2(S) 3 2 2 1

f3(S) 0 3 3 2 3 +
2
2
4

2 1

g3(S) 18 10 8 3 10 5 3 1

f4(S) 0 18 18 10 18 +
10
8

18
8 3

f4(S∪{4}) 18 +

10
8

10
28

+
8

10
18

+
3
5
8

10 +
5
3
8

3 1Table 9.1: The number of triangulations of D2 ×D3

computed by hand. It is 4! times the sum of entries

in the last two rows
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The numbers of lozenge tilings shown in Table 9.2 below were computed
with an implementation of the recursive formulas in Maple. The computa-
tion is clearly exponential in time, since we need to compute 2k values of
fk(S) and gk(S) for each k. The number of triangulations of D2 ×Dk−1, for
k = 1, . . . ,16, is k! times the number shown in the table.

k lozenge tilings of kD2

1 1
2 3
3 18
4 187
5 3135
6 81 462
7 3 198 404
8 186 498 819

k lozenge tilings of kD2

9 15 952 438 877
10 1 983 341 709 785
11 355 891 356 876 534
12 91 655 826 195 854 811
13 33 726 014 269 095 727 260
14 17 665 249 123 640 876 125 464
15 13 130 399 067 698 641 838 496 272
16 13 813 411 778 618 644 581 617 635 925

Table 9.2: Number of tilings of kD2 into k triangles

and
(k

2

)
lozenges. Multiplied by k!, these numbers

give the number of triangulations of D2 ×Dk−1

A closed formula seems to be tricky to obtain, but if we denote by lk the
number of lozenge tilings of Tk, it is easy to show that lk is of order eΘ(k2).
First, since a lozenge tiling can be specified by which of the three upward
neighbors of each of the (k2 − k)/2 downward triangles forms a lozenge

with it, lk ≤ 3(k2−k)/2 < 3
k2
2 . Second, assume k is a multiple of 3. Tk can

be tiled into 3
(k/3

2

)
= k2−3k

6 hexagons plus k boundary trapezoids (see Fig-
ure 9.59), each of which can independently be refined in two different ways.
Hence, lk ≥ 2(k2+3k)/6.
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+

+

−

0 0

0

0

0
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0
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1

1

1

1

1

1

1

1

0

0

0 1 0 1

Figure 9.59: Proof of a quadratic lower bound for

log(lk) (left) and a lozenge tile-able region of

nearly constant boundary height (right).

9.3 Lattice polytopes and unimodular triangulations

Definition 9.3.1. Let v0, . . . ,vm be affinely independent points in R
d . The

set of integer affine combinations of them is called an affine lattice. That is,
the lattice generated by v0, . . . ,vm is

Λ =

{

∑
i

λivi : λi ∈ Z, ∑λi = 1

}

.

The set of points v0, . . . ,vm is called a basis for the lattice Λ.

If Λ contains the origin then it is a finitely generated free abelian group,
isomorphic to Z

k, and we call it a linear lattice. Every affine lattice is a
translation of a linear lattice, in the same way as an affine subspace is a
translation of a linear subspace.

The basis of a lattice is of course not unique. If A is the (d +1)×(m+1)
matrix whose columns are the basis {vi}i (in homogeneous coordinates, as
usual) and B is any (m+1)×(m+1) integer matrix with determinant equal
to 1 or −1, then the columns of A′ := A ·B are again integer, independent,
and span the same lattice; for the latter observe that the determinant of B
being ±1 implies that B−1 is an integer matrix, so that A := A′ ·B−1. The
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affine transformation B is called a unimodular transformation. Put differ-
ently: a unimodular transformation of a lattice is an affine transformation
that sends the lattice to itself and preserves volumes. It also sends lattice
bases to lattice bases.

Not every point configuration is contained in a lattice. For example, if
you consider the three numbers 0, 1 and

√
2 as points on the real line, their

integer affine combinations form a dense subset of the line, which can never
be contained in an affine lattice (in our definition, all lattices are discrete).
This suggests the following definition:

Definition 9.3.2. A lattice polytope P or lattice point configuration A is
one all of whose vertices or elements belong to a certain lattice Λ.

Figure 9.60: A lattice polygon.

Lattice polytopes appear in several areas, from algebraic geometry (e.g.,
toric varieties) to integer programming (e.g., notion of total unimodularity
and submodularity). The purpose of this section is to outline some interest-
ing properties of the triangulations of lattice polytopes or, more generally,
of point configurations with integer coordinates. We will also touch upon
some of its applications. From now on we will state most results just for
lattices of the form Λ = W∩Z

d where W is an affine subspace of R
d , since

the generalization to arbitrary lattices is mostly a matter of notation.
In this section, a special kind of “maximal” triangulations, the unimod-

ular triangulations, will play a key role. For an affine subspace W, there
is a well-defined notion of volume, but we would like to normalize it with
respect to the lattice W∩Z

d in such a way that the volumes of lattice poly-
topes become integer numbers. For instance, the normalized volume of the
m-dimensional unit cube will be m!.

Definition 9.3.3. A lattice simplex S with vertices v0, . . . ,vm is unimodu-
lar if the vectors vm −v0,vm−1 −v0, . . . ,v1 −v0 form a basis for the lattice
aff(S)∩Z

d . A triangulation of a lattice polytope is a unimodular triangula-
tion if all its maximal dimensional simplices are unimodular. Consider the
example displayed in Figure 9.61.Figure 9.61: A unimodular planar triangulation.

When triangulating a lattice polytope, one is usually allowed to use all
the lattice points in it. Put differently, if we have a lattice polytope P, we
are interested in triangulations of the point configuration A := P∩Z

d . The
concept of unimodular triangulations is interesting in this context:

Lemma 9.3.4. Let P be a lattice polytope of volume k (normalized to the lat-
tice). Then, every lattice triangulation of P has at most k full-dimensional
simplices, with equality if and only if the triangulation is unimodular.

Proof. Unimodular simplices are the smallest possible lattice simplices,
and k of them will suffice to triangulate P.

We have encountered unimodular triangulations already, when we stud-
ied triangulations of cubes, products of simplices, and Birkhoff polytopes in
Sections 6.2 and 6.3. Observe, however, that not all lattice polytopes have
unimodular triangulations. For example, the regular tetrahedron inscribed
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in a three dimensional unit cube (Figure 9.62) is not unimodular, and it
does not contain any lattice point other than its vertices. Hence, it has no
unimodular triangulation. In Section 9.3.2 we will look more closely at the
question of whether a given polytope has unimodular triangulations.

Figure 9.62: The fat central tetrahedron of a cube

has no unimodular triangulations.

9.3.1 Triangulations of lattice polygons

In what follows, a lattice polygon P is a (perhaps non-convex) simple poly-
gon with vertices in Z

2. A lattice triangulation of it is a simplicial complex
covering it and using only points of P∩Z

2 as vertices.
The first nice property of lattice polygons is that they can all be unimodu-

larly triangulated, even non-convex ones. This follows from the fact that all
non-unimodular triangles have extra lattice points apart from their vertices,
by the following famous result (see [39] for a proof):

Theorem 9.3.5 (Pick’s Theorem). The (normalized) area of a lattice poly-
gon P equals 2i+ b−2, where b and i are the numbers of lattice points in
the boundary and the interior of P, respectively.

Figure 9.63: This triangulation must be

unimodular, since it uses all the lattice points.

As a consequence, if a two-dimensional lattice triangulation is not uni-
modular, then there are necessarily lattice points that have not been used.
Inserting them we reduce the area of some triangles, and the process can
continue until all triangles are unimodular. Thus:

Corollary 9.3.6. A lattice triangulation of P is unimodular if and only if it
uses all the lattice points on P.

An interesting question about two-dimensional lattice configurations is:
How many triangulations can they have? For general point configurations
in the plane, we saw in Section 3.3.2 a bound of O(43n), where n is the
number of points. But, what happens if the coordinates of the points are
all integer? Here we present a result of E. Anclin [14] which significantly
improves the bound:

Theorem 9.3.7. The number of unimodular triangulations of a (perhaps
non-convex) lattice polygon P is bounded by 23i+b−3, where i and b are the
numbers of interior and boundary lattice points in P.

Before going into details, let us show where the number k = 3i + b− 3
comes from:

Lemma 9.3.8. Let P be a lattice polygon, and let i and b be the numbers
of interior and boundary lattice points in it. Let k = 3i+ b−3. Then:

1. k equals the number of interior edges in any unimodular triangula-
tion of P.

2. k equals the number of half-integer lattice points in the interior of k.
That is:

k =
∣
∣
∣
∣

(
1
2

Z
2\Z

2
)
∩ int(P)

∣
∣
∣
∣
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Proof. By Pick’s Theorem, our lattice polygon has area 2i + b− 2. That
is also the number of triangles in every unimodular triangulation of it. By
double counting, the number of interior edges is 3/2 the number of triangles
minus 1/2 the number of boundary edges, which is the same as the number
of boundary points. That finishes the proof of the first assertion.

For the second, observe that taking the lattice 1
2Z

2 instead of Z
2 is the

same as considering the lattice polygon 2P in the original lattice. This
operation clearly multiplies the volume by four and the number of boundary
lattice points by two (we get exactly one boundary point in between two old
ones). Hence, Pick’s Theorem gives the following equality, where i′ is the
number of interior lattice points in 2P:

4(2i+ b−2)= 2i′ + 2b−2.

From this, 2i′ = 8i+2b−6 = 2k +2i, which gives k = i′ − i, as stated.

This lemma has the following consequence: every unimodular triangu-
lation of P has an edge centered at each interior half-integer point in the
interior of P. Indeed, an edge in a unimodular lattice triangulation cannot
contain any lattice points other than its vertices, so its center is always a
half-integer point. There are no other half-integer points since we have the
same number of interior edges as half-integer interior points.

So, one way of reading Anclin’s result is that, when building our trian-
gulation, there are (on average) two choices of which edge to use to cover
each half-integer point. That is basically how the result is proved. For the
proof, we introduce the following concepts:

Definition 9.3.9. Let M := ( 1
2Z

2\Z2) ∩ int(P) be the set of half-integer
interior points in P. We consider it ordered with the lexicographic order
(x1,y1) ≺ (x2,y2) ⇐⇒ [y1 < y2] or [y1 = y2 and x1 < x2].

An edge-stack S with respect to some r ∈ I is a subcomplex of a trian-
gulation of P, with an edge through r′ ∈ M if and only if r′ ≺ r.

Proof of Theorem 9.3.7. A triangulation S in the plane is uniquely deter-
mined by its interior edges. By Lemma 9.3.8, there is one interior edge
centered at each point r of M. We denote this edge eS (r), and extend this
notation to the case where S is a subcomplex of a triangulation instead of
a full triangulation.

We are now going to build a triangulation T by inserting the edges eT (r)
one by one, with the points r ordered lexicographically, so at each step what
we have is a stack S . The crucial claim is that in each step there are at most
two possibilities to insert the edge through the next r, i.e., the number of
edge-stacks with respect to some r ∈ M is ≤ 2er where er is the number of
predecessors of r in M. Thus, after the final step (that is, after processing
the largest r in (M,≺)), we have the desired result: there are at most 2|M|
unimodular triangulations of P.

You can see in Figure 9.64 an example of a partial subcomplex S .
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r

Figure 9.64: An example of edge-stack with respect

to r. Note that we use two different symbols:

normal dot for a point in M, squared dot for an

integer point.

Consider now the current edge-stack S with respect to r ∈ M. We want
to add an edge to our edge-stack so that the resulting subcomplex will again
be an edge-stack. Since each edge through r has exactly one endpoint v
with v ≺ r, counting possible edges is the same as counting those possible
endpoints. Thus, we let:

Ar :=
{

v ∈ Z
2
∣
∣ v ≺ r and S ∪{[v,v + 2	vr]} is an edge-stack

}
.

Our task is to prove that |Ar| ≤ 2.
We say that v is visible from r if the half-edge [v,r] crosses no other edge

or integral point already in the stack. Consider also

Ar :=
{

v ∈ conv({r}∪Ar)∩Z
2
∣
∣ v is visible from r

}
.

As any v ∈ Ar is visible from r, we have Ar ⊇ Ar. Furthermore v ≺ r holds
for all v ∈ Ar. (See Figure 9.65).

v1 v2
v

v3

r

v′

Figure 9.65: An example showing Ar = {v1,v3},

Ar = {v1,v2,v3}. In the example the points

v,v′ �∈ Ar and the angles satisfy α1 < α2 < α3.

Order Ar by the angles α(v) of 	rv with the x-axis turning counter-
clockwise and starting by π , so that we have αi = α(vi), α1 < α2 < · · ·< αk.
Indeed, we never have αi = α j , otherwise r,vi,v j would lie on a line, but
then one of the two points vi,v j would not be visible from r, because both
are ≺ r. At this point all points of Ar are labeled in such a way that
α(vi) = αi.

Observe that we must have v1 ∈ Ar. The reason is v ≺ r for all v ∈ Ar,
so a point v with a smaller angle to the x-axis than the first one in Ar cannot
belong to conv(Ar ∪{r}). This is a contradiction because Ar is contained
in conv(Ar ∪{r}) by definition.
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We say that a triangle [vi,vi+1,r] is empty if there is no edge through
it and no 1

2 Z
2-points in its interior. The triangle [vi,vi+1,r] is empty as

A contains all points in conv(Ar ∪{r}) ⊃ [vi,vi+1,r] visible from r. The
midpoint si := 1

2(vi + vi+1) is half-integer, si ∈ M, as [vi,vi+1,r] is empty.
We also have si ≺ r, and so eS (si) = [vi,vi+1], since the triangle [vi,vi+1,r]
is empty. Additionally it has area 1

4 , otherwise the triangle wouldn’t be
empty.

Define wi := r + 	vir and r′ := 1
2 (v1 + w2), r′ := 1

2(v2 + w1). Then
v1,w2,v2,w1 form a parallelogram with center r, and r,r′,r′ are on a line
(parallel to (v1v2)). So either r′ ≺ r or r′ ≺ r.

Case 1: Suppose first that r′ ≺ r.
The triangle Δ = [v1,v2,w2] is unimodular as area(Δ) = 2area[v1,v2,r] =
1
2 ; so there are no integer points between the line (w1w2) and the line
(v1v2). The edge eS (r′) has nonempty intersection with these two lines
(but doesn’t cross [v1,w1], since v1 ∈ Ar). See Figure 9.66.

v2v1

w1w2

r1
v?

r r′r′

Figure 9.66: Case 1, line set up.

We will look at the possible positions of third point v ∈ Ar (other than
v1,v2). We will conclude it is impossible to have such point. The line (r′r)
is parallel to (v1v2), we have α(r′) < α1 ≤ αi; and r′ ≺ r, v ≺ r for all
v ∈ Ar. So all points of A are on the same side of (r′r) as v1 and v2. So v
is on or beyond the line (v1v2) and hence the edge through r starting at v
would necessarily cross the edge eS (r′). So there can be no other point v
in Ar, that is, |Ar| ≤ 2.

Case 2: The situation for r′ ≺ r is similar:
The edge through r′ must be e(r′ )= [v2,w1], otherwise it would cut [v1,w1]
or [v1,v2]; in the first case we would have v1 /∈ Ar and in the second case v2

wouldn’t be visible from r. And [v1,v2,w1] is again unimodular, so there is
no possibility for a third v ∈ Ar.

Example 9.3.10. Consider the concrete problem of counting the triangula-
tion of a finite n×m grid Pn,m = conv({0,1, . . . ,n}×{0,1, . . . ,m}). Note
that all triangulations will have 2nm triangles. From Theorem 9.3.7 we get:

Corollary 9.3.11. The number of unimodular triangulations of the grid
Pm,n is bounded by

f (m,n) ≤ 23mn−m−n < 23mn.
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How good is this bound? For m = 1, one can easily compute that

f (1,n) =
(

2n
n

)
∼ 22n/

√
n.

Similarly, since f (m+ 1,n)≥ f (m,n) f (1,n) one has

f (m,n) ≥
(

2n
n

)m

∼ 22mn/nm/2.

Kaibel and Ziegler [180] derived finer recursion formulas for (n× 2) and
(n×3) grids and were able to show a lower bound f (m,n)≥ 22.055mn. Many
other interesting aspects were thoroughly developed in that article including
a fast dynamic programming algorithm to generate all triangulations of a
grid faster than the general methods we saw in Chapter 3.

9.3.2 Existence of unimodular triangulations

Remember that not all lattice polytopes in dimension three or higher have
unimodular triangulations. The simplest example is the regular “fat” cen-
tral tetrahedron inside the regular 3-cube that we saw in Figure 9.62. Since
this tetrahedron does not contain any lattice point other than its vertices, it
has only one triangulation, the tetrahedron itself, which is not unimodular.
We call a simplex with this same property (that its only lattice points are its
vertices) lattice-free. The first surprising result is that in dimension three
lattice-free tetrahedra can have arbitrarily large volume. In fact, the classi-
fication of lattice-free tetrahedra modulo unimodular equivalence is known
and relatively simple. It was proven in 1964 by G. K. White [332].

y

x

z

Figure 9.67: The lattice-free tetrahedron Δ4,3.

The vertical coordinate has been dilated for

better view.

Theorem 9.3.12. Every lattice-free lattice tetrahedron in dimension three
is unimodularly equivalent to the lattice-free simplex Δp,q whose vertices
are the columns of the following matrix, Here, 0 ≤ p ≤ q are arbitrary
coprime positive integers.

⎛

⎜
⎜
⎝

0 1 0 p
0 0 0 q
0 0 1 1
1 1 1 1

⎞

⎟
⎟
⎠

Moreover, two such tetrahedra Δp,q and Δp′,q′ are unimodularly equivalent
if and only if q = q′ and p′ ∈ {±p,±p−1} (mod q).

The parameter q in Δp,q is its (normalized) volume, which is clearly
invariant under unimodular transformations. The parameter p is a bit more
subtle and carries arithmetic information. For example, Exercise 9.10 asks
you to show that the lattice-free simplices with p = ±1 (mod q) have more
unimodular automorphisms than arbitrary lattice-free simplices, namely
eight. For this reason we will call them symmetric lattice-free simplices. (Of
course, unimodular tetrahedra have even more automorphisms: any of the
24 permutations of their vertices induce unimodular transformations; less
trivially, the same happens for the lattice-free tetrahedra of volume two).

One way to visualize Δp,q is to consider the dilated tetrahedron 2Δp,q.
Apart from its vertices and the mid-points of edges, 2Δp,q contains other
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p = 1 p = 2 p = 3

p = 4 p = 5

p = 6

Figure 9.68: The lattice-free tetrahedra of volume

7, Δp,7. For each of them, the intersection of

2Δp,7 with the middle horizontal hyperplane is

shown.

lattice points, all in its intersection with the horizontal plane at height one.
Figure 9.68 shows this intersection for all the empty simplices with q = 7.
From the pictures it is clear that those with p ∈ {1,6} are not equivalent
to those with p ∈ {2,3,4,5}, since the first group has all its interior lattice
points collinear, while the others do not. Less obvious but still true is the
fact that those in the same group are equivalent to one another.

Observe that Theorem 9.3.12 implies that every empty 3-simplex has
width equal to 1 with respect to a certain integer functional; that is, there
is an integer functional for which the difference between the maximum and
minimum value is one. Compare with Definition 9.3.18. In dimension four
an almost complete classification has recently been announced in [31], and
it implies that all but a finite number of unimodular equivalence classes of
empty 4-simplices have width 1 or 2. But in dimension higher not much
is known. Clearly, there have to be a finite number of empty simplices for
each fixed volume and dimension. Bárány and Kantor [30] have shown that
the number of them of dimension d and volume bounded by v is about vd−1.
So, there are also many polytopes without unimodular triangulations. How-
ever, Kempf et al. [185] have proved the following nice result:

Theorem 9.3.13. For any lattice polytope P there is a nonnegative integer
k = k(P) such that kP (the kth dilation of P) has a unimodular triangulation.

A tantalizing question arises: If we fix a certain dimension d, is there a
dilation factor k that works for all lattice d-polytopes? Clearly, in the plane
k = 1 works; every lattice polygon has a unimodular triangulation. In di-
mension 4 and higher we do not know the answer, but at least in dimension
three we know that the answer is yes, as was first proved by Kantor and
Sarkaria. Their proof is based in the following fact:

Lemma 9.3.14 (Kantor-Sarkaria [183]). Let Δp,q be an empty lattice tetra-
hedron. Then:

1. 2Δp,q has a unimodular triangulation if and only if p = ±1 (mod q)
(that is, if Δp,q is a symmetric empty tetrahedron).

2. 2Δp,q always has a triangulation into symmetric empty tetrahedra
(those of the types p′ = ±1 (mod q)′).

Moreover, in both cases the stated triangulations can be chosen to restrict,
in each boundary facet, to the standard triangulation of a dilated unimodu-
lar triangle.

Let us explain the boundary condition: Each facet of a lattice-free tetra-
hedron Δ is a lattice-free triangle, hence a unimodular triangle in the lattice
obtained as the integer points in the facet-defining hyperplane. The stan-
dard triangulation of kΔ is the unimodular triangulation whose edges are
all the translated copies of the edges of Δ into kΔ. The fact our triangula-
tions of dilated tetrahedra are standard on the boundary guarantees that they
glue together nicely, if we dilate not a tetrahedron but a triangulation con-
sisting of lattice-free tetrahedra. Hence, the above lemma has the following
consequence:

Figure 9.69: The standard boundary

triangulation of the third dilation of a tetrahedron.
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Theorem 9.3.15 (Kantor-Sarkaria [183]). Let P be any lattice polytope in
R

3. Then, 4P has a unimodular triangulation.

Observe that it is not trivial, and probably not true (although explicit
counter-examples are not known) that once a certain dilation kP of a lattice
polytope has a unimodular triangulation then the same happens for all k′P,
k′ > k. In particular, the following strengthening of the previous result is
not automatic:

Theorem 9.3.16 (Santos [285]). Let P be any lattice polytope in R
3. then,

kP has a unimodular triangulation for all k > 1 except perhaps for k ∈
{2,3,5,7,11}.

Concerning k = 2, it follows from Lemma 9.3.14 that 2P does not always
have a unimodular triangulation. But for k = 3 and 5 the question is open.

In arbitrary dimension the only general positive result that seems to be
known about unimodular triangulability is the following:

Theorem 9.3.17. If a lattice polytope P has a unimodular triangulation T ,
then every integer dilation kP of it has a unimodular triangulation too. Is,
moreover, T is regular, then kP has a regular unimodular triangulation.

For the proof we need the following concept:

Definition 9.3.18. Let P be a lattice polytope and let F be a facet of it. The
width of P with respect to F is the maximum lattice distance from points of
P to F, where the lattice distance from a point x to a lattice hyperplane H
is one plus the number of lattice hyperplanes parallel to H that separate x
from H. See Figure 9.70.

A lattice polytope is called compressed if its width with respect to every
facet equals one. Compressed polytopes are sometimes called facet-width
one polytopes.

We have seen in Section 6.3.7 that the Birkhoff polytope is compressed.
In fact compressed polytopes seem to play a key role in combinatorial
optimization (especially in connection to semidefinite programming relax-
ations) and stable set polytopes of perfect graphs yield other examples of
compressed polytopes (see [144] and references therein).

Figure 9.70: The lattice width of this polygon with

respect to the highlighted size is 7. Show that the

widths with respect to the other sides are 3, 3, 6,

and 4.

Lemma 9.3.19. 1. All faces of a compressed lattice polytope are com-
pressed.

2. All pulling triangulations of a facet-width one lattice polytope are
unimodular.

Observe that faces of a lattice polytopes are lattice polytopes. One we
say that a face F of P is compressed, we mean with respect to the lattice
obtained by intersecting Z

d with the affine span of F.

Proof. By induction on the codimension of faces, part one only needs to
be shown for facets. Let F be a facet of P, and let C be a facet of F. Then,
there is a second facet F′ of P such that C = F∩F′. Now, the assertion
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follows from the fact that the width of F with respect to C cannot exceed
that of F with respect to F′: every lattice hyperplane parallel to F intersects
the affine span of F′ in a lattice hyperplane parallel to C.

For part two the crucial observation is the following: if Δ is a lattice
simplex (empty or not) and F is a facet of it, then the normalized volume of
Δ equals that of F times the facet width of Δ with respect to F. For a proof
of this, assume without loss of generality that the hyperplane spanned by
F is xd = 0 and relate the determinants that compute the volumes of Δ and
F. Once we have this, the result about pulling triangulations is trivial by
induction on the dimension: Any pulling triangulation of P is obtained by
coning to a lattice point v certain pulling triangulations of facets of P. By
inductive hypothesis those facet-triangulations are unimodular, and since
all the facet widths are 1 the whole pulling triangulation is itself unimodular.

Proof of Theorem 9.3.17. We triangulate kP in three steps. First, dilating
a unimodular triangulation T of P we construct a triangulation of kP into
k-th dilations of unimodular simplices. Second, we refine each dilated uni-
modular simplex by cutting it with all the lattice translations of its facets.
Doing this in dimension two produces what we called the standard triangu-
lation of a dilated unimodular triangle (see Figure 9.69). In higher dimen-
sion this procedure does not produce simplices, but it certainly produces
a subdivision into compressed polytopes. There is, however, a non-trivial
statement here: we are claiming that all d-tuples of lattice-translated copies
of the facets of a unimodular simplex are lattice points. The same would
not be true if our simplices were not unimodular. In the third step, we refine
the subdivision of step two by pulling all the lattice points one by one, in
any arbitrary order. This produces a triangulation that restrict to a pulling
triangulation of each of the cells obtained in step two. By the previous
lemma all these triangulations are unimodular.

We now show that if the initial triangulation T was regular, then the
three steps above preserve regularity. For step one this is trivial: after di-
lation, the same height function that produced T still produces the new
triangulation. For step three we rely on Lemma 4.3.12: every pulling re-
finement of a regular triangulation is regular. So, only step two remains to
be shown.

For this we first look at the dilation kΔ of a unimodular simplex Δ. We
consider the lattice regular triangulation obtained by assigning to each lat-
tice point p the height:

ωp = ∑
F a facet of Δ

−dist(F,p)2.

We claim (Exercise 9.11) that this regular subdivision coincides with the
one obtained by cutting kΔ via all the lattice translations of the facets. In
particular, step two preserves regularity “within each simplex”. It also pre-
serves regularity globally, since whenever a point p lies in the intersection
of two adjacent dilated unimodular simplices Δ1 and Δ2, the lattice dis-
tances of p to the facets of kΔ1 and kΔ2 are the same: Zero for the common
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facet, and equal to k times the barycentric coordinates of p in that facet for
the other facets.

So, in step two, we start with the height function for the regular triangula-
tion kT of step one, and we add to it a small multiple of the height function
(ωp)p defined above. By Lemma 2.3.16 this refines kT so that, restricted
to each cell of it, it produces the regular triangulation given by the height
function (ωp)p.

We have seen that unimodular triangulations are useful but hard to come
by. We would like to offer a hierarchy of properties that provide possible
weakenings or strenghtenings of the condition of having unimodular trian-
gulation. At the bottom of this hierarchy we have the notion of normality.
A lattice polytope P ⊂R

d is normal if nP∩Z
d = n(P∩Z

d) for every n ∈N.
Normal polytopes arise naturally in algebraic geometry and in combina-
torial optimization [69, 312]. Starting with [293, 124, 243], it has been
repeatedly observed that normality of a polytope is closely related to being
covered by unimodular simplices. More precisely, from [293, 124] one can
extract the following sequence of properties, each of which implies the next
one. In all of them, A = P∩Z

d . In what follows we say a triangulation or
simplicial cover is unimodular if all its simplices are.

Proposition 9.3.20. In the following list of statements, the i-th property
implies the (i+ 1)-th property:

(1) All simplices with vertices in A are unimodular. (P is totally unimod-
ular).

(2) P is compressed, this means that all its pulling triangulations are
unimodular.

(3) P has a unimodular regular triangulation.

(4) P has a unimodular triangulation.

(5) P has a unimodular binary cover. This is a property introduced by
Firla and Ziegler [124], whose significance comes from the fact that
it is much easier to check algorithmically than any of the other prop-
erties (3) through (8).

(6) P has a unimodular cover. (Every x ∈ P lies in some unimodular
simplex.)

(7) For every n, every integer point in nP is an integer positive combina-
tion of an affinely independent subset of points of A. (This is called
the Free Hilbert Cover Property in [67].)

(8) For every n, every integer point in nP is an integer positive combina-
tion of at most d +1 points of A. (The Integral Carathéodory Property
of [124].)

(9) For every n, every integer point in nP is an integer positive combina-
tion of an affinely independent subset of points of A. (P is normal.)
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It is very easy to find examples that prove 3 �⇒ 2 and 2 �⇒ 1, but not so
easy for any of the other implications. Ohsugi and Hibi [243] found the first
normal polytope without regular unimodular triangulations, which turned
out to give 4 �⇒ 3. Later Ohsugi [241] even found an infinite family of such
polytopes. Then Bruns and Gubeladze [67] proved 8 ⇔ 7 and found an
example for 9 �⇒ 8 [68]. The implications from 7 to 4 remain open. (There
is an example of a cone, not a polytope, disproving 5 ⇒ 4 in [124]).

We have a few more remarks on the above hierarchy of properties. Santos
proved that a polytope P is compressed if and only if P has a facet width
one. One says that a polytope has facet width one if when P = {x : Ax ≤ b}
then Ax ≥ b− 1 for all points x ∈ P. It is worthwhile to note that there
is an equivalent algebraic characterization for compressed polytopes. the
toric ideal IP ⊂ K[y1, . . . ,yq], generated by the binomials that encode the
affine dependencies between the vertices δ1, . . . ,δq, satisfies the condition:
the initial ideal of IP with respect to any reverse lexicographic monomial
order on K[y1, . . . ,yq] is generated by squarefree monomials. (Here K is a
field and the y are variables.) We will see more of this later in this chapter.
Let us conclude with a historical reference to R. P. Stanley’s paper [304]
where this family of polytopes was introduced and he first showed that the
convex polytope of all n×n doubly stochastic matrices is compressed (see
Subsection 6.3.7.

The best examples of polytopes that are more than just normal are those
polytopes that have regular unimodular triangulations. Let us mention some
families of such polytopes:

• All polytopes with totally unimodular collection of facet normals
(e.g., transportation/flow polytopes). This follows easily from the
algebraic techniques of Gröbner bases applied to triangulations intro-
duced by Sturmfels in the 1990’s (more on this in the next section).

• Order polytopes, hypersimplices, and stable polytopes of perfect gra-
phs are in fact compressed. This was showed by Hibi and Ohsugi in
[244].

• Let Φ be a root system with corresponding positive system Φ+, where
Φ is one of the types An, Bn, Cn, Dn, and BCn. Let Φ̃+ = Φ+ ∪
(0,0, . . . ,0), where (0,0, . . . ,0) is the origin of R

n. In [245], Hibi and
Ohsugi showed the existence of a regular unimodular triangulation
of the configuration Φ̃+ in R

n.

One of the exceptional cases for which we can easily characterize normal-
ity is that of the edge polytope PG of a connected graph G with d vertices
and n edges. This is the convex hull of the n points {ei + e j : i j ∈ G} ⊂ R

d .
Note that edge polytopes are subpolytopes of the second hypersimplex
D(n,2) (see Subsection 6.3.6). They lie in an affine hyperplane and in a
lattice of index 2. It has dimension d − 1, unless G is bipartite, in which
case it has dimension d −2 and is totally unimodular (this was found inde-
pendently by Hibi-Ohsugi [242] and Simis-Vasconcelos-Villarreal [298]).
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Theorem 9.3.21 ([242]). The following properties are equivalent for a
graph G:

(a) Every two vertex-disjoint cycles in G are joined by an edge.

(b) PG is normal.

(c) PG has a unimodular binary cover.

For a more complete account of the topics of this section see [153].

9.3.3 Ehrhart polynomials and unimodular triangulations

Given a convex polytope P and for a positive integer t, let

iP(t) = #
(

tP∩Z
d
)

and i◦P(t) = #
(

tP◦ ∩Z
d
)

denote the number of integer points (“lattice points”) in the dilated polytope
tP = {tx : x ∈ P} and its interior, respectively. In Figure 9.72 we present an
example of what we mean by a dilation. Figure 9.71: Eugéne Ehrhart circa 1940.

P 2P 3P

Figure 9.72: The first three dilations of a triangle.

The main structure theorem about these counting functions for lattice
convex polytopes is due to Eugène Ehrhart [119] (see also [222, 229, 302]
and the book [39] for extensions and details).

Theorem 9.3.22 (Ehrhart). If P is a convex lattice polytope, then:

• The functions iP(t) and i◦P(t) are polynomials in t whose degree is the
dimension of P. Let us denote it δ .

• The leading term of iP(t) (and i◦P(t)) equals δ ! times the volume of P,
normalized with respect to the sublattice Z

d ∩ aff(P). The constant
term is equal to one.

• The reciprocity formula iP(−t) = (−1)δ i◦P(t) holds.

Example 9.3.23. Here are two easy examples. What is the Ehrhart poly-
nomial of a d-dimensional cube, say the cube with 0/1 vertices? Lattice
points essentially are given by the length of sides; the reader can easily ver-
ify that iId = (n + 1)d . For the interior lattice points of the dilations of the
cube we obtain i◦Id = (n−1)d. This agrees with the reciprocity formula.

Consider next the pentagon in Figure 9.73, with coordinates (−1,−1),
(2,0), (0,2), (3,2), and (2,3). From Theorem 9.3.22 it is expected that
the Ehrhart polynomial of a two dimensional lattice polygon is a quadratic
polynomial whose leading term is the area (in our case 17/2), and constant
equal one. The linear term coefficient turns out to be half the perimeter
measured in terms of the number of lattice points in the boundary of the
pentagon. Thus the final Ehrhart polynomial for this pentagon is 17t2

2 + 5t
2 +

1. A general formula for all lattice polygons, here only in the special case
of a pentagon, is given by the celebrated Pick’s theorem [39]. Figure 9.73: A lattice pentagon.

Triangulations enter the proof of Theorem 9.3.22 because they help to
reduce the proof to the case of simplices.
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Proof. We will only prove the first two claims here. For a proof of the
reciprocity theory see [39].

First we prove that the Ehrhart function iP is a polynomial. Triangulate
the polytope P ⊂ R

d using all integral points (including some possibly not
vertices of P). Then, every lattice point of P or its dilations clearly belongs
to the relative interior of one, and only one, of the simplices (of all possible
dimensions of this triangulation T (see Figure 9.74).

+= +

Figure 9.74: Decompose a polytope as the union of

interiors of lattice simplices.

Thus we have the following formula

iP(n) = ∑
F face of T

i◦F(n)

and thus it is enough to prove the statement for the interior of simplices.
What we will do is to write an explicit formula for simplices. Here is

the outline of the proof, with the reader invited to fill in the missing de-
tails (see Exercise 9.9). Let a0, . . . ,ak be the vertices of a lattice simplex S
of dimension k which, without loss of generality, we assume to lie in R

k.
We consider the cone CS ⊂ R

k+1 of nonnegative integer combinations of
(a1,0), . . . ,(ak,1), so that iS(n) and i◦S(n) are the numbers of lattice points
in CS and in the interior of CS “at level n”. Here, and in what follows, the
level of a lattice point in CS is the value of its last coordinate.

We consider also the half-open parallelepiped (see Figure 9.75)

ΠS = {x : λ0(a0,1)+ λ2(a2,1)+ · · ·+ λk(ak,1), with 0 < λi ≤ 1}.
Tiling CS by translated copies of ΠS you will notice that each integer lattice
point v in the interior of CS can be written uniquely as

v =
k

∑
i=0

ci(ai,1)+ u,

for some nonnegative integer coefficients (c0, . . . ,ck) and some lattice point
u ∈ ΠS.

Now, each u ∈ ΠS of a certain level i produces exactly
(n−i+k

k

)
interior

points ΠS in this form at level n. Thus,

i◦S(n) = ∑
u∈ΠS

(
n− level(u)+ k

k

)
=

k+1

∑
i=1

δi

(
n− i+ k

k

)
,

where δi is the number of lattice points in Π at level i. This formula is
a polynomial of degree d in n, describing the Ehrhart counting function
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for the interior lattice points of a simplex. Going back to our triangulated
lattice polytope P, we get that iP(n) is a sum of one such polynomial for
each simplex in its triangulation T , with k ∈ {0, . . . ,dim(P)} being the
dimension of each such simplex.

Figure 9.75: The parallelepiped for the

associated cone over a simplex (one dimensional

[0,2]).

For a proof of the second claim simply observe that for the coefficient of
degree dim(P) in this polynomial

• Only full-dimensional simplices contribute to it, and

• The contribution of a simplex S of full dimension equals the number
of lattice points in the half-open parallelepiped ΠS. Again by the
fact that translated copies of ΠS tile the space covering every point
exactly once we have that the number of lattice points in ΠS equals
its (Euclidean, non-normalized) volume.

Example 9.3.24. Suppose S is the 1-dimensional simplex [0,2] (just as
in our Figure 9.75). We can see that there are two lattice points in the
parallelepiped Π (in this case this is a parallelogram in the plane), (1,1)
and (2,2). Thus i◦σ is

(n
1

)
+
(n−1

1

)
= 2n−1, as expected.

The importance of Ehrhart polynomials in commutative algebra and al-
gebraic geometry is demonstrated by the fact that these polynomials are
essentially the Hilbert functions of semi-group rings (see the chapter on
toric varieties of [312]). It turns out that from a unimodular triangulation
one can actually recover the Ehrhart polynomial.

Theorem 9.3.25. If a convex d-dimensional lattice polytope P has a uni-
modular triangulation T with f -vector ( f0, . . . , fd), then

iP(n) =
d

∑
k=0

(
n−1

k

)
fk.

In particular, one can get the coefficients of iP(n) from the f -vector of T
and vice-versa.

Proof. For a unimodular simplex S of dimension k, the parallelepiped Πk

of the previous proof has only one lattice point, at level k+1, so the Ehrhart
polynomial of its interior is

i◦S(n) =
k+1

∑
i=1

δi

(
n− i+ k

k

)
=
(

n−1
k

)
.

Now, if T is a unimodular triangulation then we have that

iP(n) = ∑
S a face in T

i◦S(n) =
d

∑
k=0

(
n−1

k

)
fk.

To get the f -vector of T from the coefficients of iP(n), think of iP as a
vector of length d +1 (its coefficients) and of the above equation as a matrix
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equation of the form iP = M f relating the vectors iP and f -vector. Since
the k-th coefficient of the Ehrhart polynomial is expressed as a combination
of only the entries ( fk, . . . , fd) of the f -vector, the linear system relating the
two vectors is triangular, and can be inverted.

Example 9.3.26. For example, if T is a unimodular triangulation of a
convex 3-polytope P, and ( f0, f1, f2, f3) is the f -vector, then we have that
the Ehrhart polynomial is equal to

iP(n) =
1
6

f3n3 +(
1
2

f2 − f3)n2 +( f1 − 3
2

f2 +
11
6

f3)n+( f0 − f1 + f2 − f3).

The bad news is that not all lattice polytopes have unimodular triangu-
lations. We already addressed this issue in Section 9.3.2. Still, for the
purpose of computing the Ehrhart polynomial from a triangulation, there is
a generalization of Theorem 9.3.25 for any triangulation due to S. Payne
[250]. It expresses the multivariate generating function for lattice points in
a rational polyhedral cone using the f -vector of an arbitrary triangulation
but, this time, in terms of multivariate analogues of the h-polynomials of
the triangulation and extra “local contributions” of the links of its nonuni-
modular faces. This has many applications. For example, Payne computes
examples of nonunimodal Ehrhart h-vectors (the numerator of the generat-
ing function of an Ehrhart polynomial, which counts lattice points in integer
dilates of a lattice polytope) for reflexive polytopes.

TherelationshipbetweenEhrhart’slatticepointcountingandtriangulations
of the lattice polytope is indeed close and there are also examples where the
information of how many points are at each dilation of P can help extract
information about the triangulations of P. For example in [33] the authors
provided a complete classification of lattice polytopes P such that kP has
no interior points for 1 ≤ k < n. This corresponds to the h∗ polynomial (the
numerator of the Ehrhart series) having degree at most one. They prove that
the degree of h∗(P) is less than 1 if and only if P is either an exceptional
simplex or a Lawrence prism. The triangulations, secondary polytopes and
principal A-determinants are computed for these polytopes. The authors also
prove that the corresponding secondary polytope is always simple.

9.4 Triangulations and Gröbner bases

We have seen already in Chapter 1 that triangulations and subdivisions ap-
pear naturally in algebraic geometry. The interaction between triangula-
tions, toric geometry, and Gröbner bases is one of the richest examples of
this, and it shows that the relation is mutually beneficial: triangulations not
only help in attacking algebra problems, but also the algebraic encoding can
be used to prove deep results about triangulations and polytopes. Among
other things, the ideas in this section provide a method to construct triangu-
lations of a given configuration. The method revolves around the concepts
of Gröbner bases of toric ideals and their relation to minimal non-faces of
triangulations. We will illustrate it with examples.

We do not assume that the reader is an expert in algebraic geometry, but
we do assume that the reader is not afraid of algebra! Several excellent
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references for the concepts we use are the books [87], [88], [312]. We
encourage you to look for more details there; here we only show the tip of
a big iceberg!

9.4.1 Gröbner bases and toric ideals

Let C[x1, . . . ,xn] be the ring of polynomials with complex coefficients. (Most
of what we say works with respect to any field, not necessarily C, but we
use C to make things more concrete and because it is the most common
case). An ideal of C[x1, . . . ,xn] is a subset I that is closed under addition
and has the property that if f ∈ I, then the product g f is in I too, for all
g ∈ C[x1, . . . ,xn]. In short, I + I ⊆ I and IC[x1, . . . ,xn] ⊆ I.

One way to get an ideal is to consider all possible linear combinations
f1g1 + f2g2 + · · ·+ fkgk of a fixed finite set of polynomials g1,g2, . . . ,gk,
where the fi’s are arbitrary polynomials. This set is the ideal generated
by g1, . . . ,gk, denoted 〈g1,g2, . . . ,gk〉. A fundamental theorem in algebraic
geometry (Hilbert’s basis theorem) says that every ideal I in the ring of
polynomials is finitely generated in this sense.

Given a real vector ω = (ω1, . . . ,ωd) in R
n we can define a total order >ω

in the set of all monomials as follows: we declare xu >ω xv if 〈u,ω〉> 〈v,ω〉,
with ties broken via the lexicographic order. (This means that, in the case of
equality, we declare xu >ω xv if u1 > v1, or if u1 = v1 but u2 > v2, or if u1 = v1

and u2 = v2 but u3 > v3, etc.) Here, as usual, if u = (u1,u2, . . . ,ud) ∈ Z
n is

an integer point, xu denotes the monomial xu1
1 xu2

2 · · ·xun
d .

This total order is called the monomial order or term order associated to
ω . With it we define the initial monomial or initial term of each polynomial
f , which will be denoted by in>ω ( f ), as the maximum of the monomials
of f .

Definition 9.4.1. • The initial ideal of an ideal I in C[x1, . . . ,xn] with
respect to a certain term order >ω is the ideal in>ω (I) generated by
the initial monomials of all its polynomials.

• A finite subset of polynomials G = {g1, . . . ,gk} of I is a Gröbner basis
with respect to>ω if in>ω (I) is generated by{in>ω(g1), . . . , in>ω (gk)}.

• We say the monomials m �∈ in>ω (I) are called standard.

In other words, G is a Gröbner basis for I if the initial monomial of any f
in I is divisible by one of the monomials in>ω (gi). Through Gröbner bases
many questions about general ideals in polynomial rings can be reduced to
questions about ideals generated by monomials, which are far easier. For
example, one can prove that any Gröbner basis is a generating set of I (see
Exercise 9.13). In fact the problem of deciding whether a polynomial be-
longs to the ideal can be solved using Gröbner bases.

Given an ideal I and any monomial order >ω , it is known that the set
of standard monomials forms a C-vector space basis for the residue ring
C[x1, . . . ,xn]/I. Gröbner bases theory provides a division algorithm for
computing the residue or normal form of a polynomial f modulo the ideal I.
First compute a Gröbner basis G for I with respect to >ω . Iterate the
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following process: Check whether all monomials in f are standard. If
so, we have a residue for f . Otherwise consider the highest non-standard
monomial m in f . Find g ∈ G such that in>ω (g) divides m, thus for some
monomial q we have m = in>ω (g)q. Replace f by f −gq. Repeat this pro-
cess until all monomials in f are standard (this will happen eventually but
it is not obvious). We remark that the normal form obtained by the division
algorithm using the Gröbner basis is unique. One can prove that f belongs
to I if and only if the normal form of f is zero.

When I is a linear ideal (generated by polynomials of degree one) com-
puting a Gröbner basis with respect to a lexicographic term order is the
same as doing Gaussian elimination in the linear system of equations. Ac-
tually, the whole idea behind Gröbner bases is that they generalize Gaussian
elimination to arbitrary systems of polynomial equations. See [314] for a
short, informal introduction to them, or [87] for a more in-deep treatment.
Gröbner bases can be computed via Buchberger’s algorithm which is im-
plemented by several computer algebra systems. Its details are beyond the
interest of this book, so we will use it as a black box.

What relates Gröbner bases to the world of triangulations of point con-
figurations is what happens when we vary the term order >ω . If we fix a
polynomial f , the space R

n of possible weights ω is divided into a finite
number of regions in each of which we get the same initial term for f . You
can easily convince yourself that this decomposition is simply the normal
fan of the Newton polytope of f (Definition 1.3.2): the polytope whose ver-
tices are the exponents of the monomials of f , considered as integer points
in Z

n as in the definition of term orders.)
So, Gröbner bases and initial ideals should decompose R

n into some
polyhedral fan too, by intersecting the fans of the individual polynomials.
One problem with this is that there are infinitely many Newton polytopes
of polynomials in I so, in principle, we might get an infinite number of
possible initial ideals. But Hilbert’s basis theorem comes to the rescue:
since the initial ideals are finitely generated, to compute them we will only
need to compare monomials up to a certain degree, and the number of those
is finite. The regions where the initial ideal stays the same are then clearly
convex polyhedral cones, and they form a polyhedral fan called the Gröbner
fan of I. The Gröbner fan is, just like the secondary polytope fan, the
normal fan of a polytope, the state polytope (these notions were investigated
by algebraists in the 1980’s [35, 234], and recently there has been an effort
for fast computation [131]). Note that the existence of this polyhedral fan
has the implication that if we take the union of one Gröbner basis for each
possible initial ideal we get a finite set of polynomials in I that is a Gröbner
basis for all the possible term orders at the same time. This is called a
universal Gröbner basis.

We now introduce toric ideals, in which the relation to point configu-
rations is more apparent. Given an integer matrix A of size d × n with
columns a1, . . . ,an, for any vector u = (u1,u2, . . . ,un)∈Z

n, we let, as usual

Au := u1a1 + u2a2 + · · ·+ unan.



9.4. Triangulations and Gröbner bases 481

For any u ∈Z
n, we denote by supp(u) := {i : ui �= 0} the support of u. Note

that every u can be written uniquely as u = u+ −u−, where u+ and u− are
nonnegative and have disjoint support.

Definition 9.4.2. The toric ideal of A is the ideal generated by the binomi-
als

IA := 〈xu+ − xu− : Au = 0〉.
That is to say, if we think of A as representing a point or vector configu-

ration, the binomials xu+ − xu− in IA are those for which u = u+ −u− is a
dependence in A.

Usually, homogeneous, or at least acyclic, configurations are used.
Acyclic implies that IA contains no monomials, and homogeneous that IA
is a homogeneous ideal in the standard algebraic geometry sense, i.e., it is
generated by homogeneous polynomials.

To make the analogy more apparent, a circuit of IA is a binomial xu+ −
xu− for which u is (the linear dependence associated to) a circuit of A. That
is to say, xu+ − xu− is a circuit if it cannot be written as combination of
other binomials in IA and it has minimal support under inclusion.

Gröbner bases of toric ideals have beautiful geometric interpretations in
terms of the lattice points of the polyhedra of the form Au = b,u ≥ 0. For
example, it is known, and important for us, that the standard monomials
with respect to the monomial order >ω coincide with the possible optimal
solutions of the integer linear programs of the form

minimize u ·ω subject to u1a1 + u2a2 + · · ·+ unan = b, ui ≥ 0 ui ∈ Z.

where b ranges over an arbitrary integer lattice point inside the cone
generated by the columns of A. Another important geometric result is the
following. Remember that a totally unimodular matrix is one in which
every minor is 0, +1, or −1. As an example, we saw in Section 6.2 that the
(vertices of) a product of two simplices are totally unimodular.

Lemma 9.4.3. Circuits form a system of generators of the toric ideal IA.
If A is a totally unimodular matrix, then circuits form a universal Gröbner
basis.

9.4.2 Sturmfels’ correspondence

Here we show that each Gröbner basis of a toric ideal IA yields a regu-
lar triangulation of A. In order to precisely state this, a representation of
triangulations, different from the one we are accostumed to, will be intro-
duced now. We usually represent a simplicial complex by its simplices, and
most commonly by the maximal-dimensional ones. Nevertheless, there is a
complementary representation of simplicial complexes in terms of minimal
non-faces. A non-face of a simplicial complex K is any subset of vertices
that is not a face. See Figure 9.76 for an example. Non-faces, the just as
faces, are partially ordered by inclusion. Clearly, if we know the minimal
non-faces we can list all the non-faces, and from them all the faces. But the
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following characterization allows to go from facets to minimal non-faces
and vice-versa in a shorter way. Let MNF(K ) = {C1,C2, . . . ,Ct} be the
non-faces of a simplicial complex K . A transversal for MNF(K ) is any
minimal set of vertices S such that S∩Ci �= /0, for every i.

d

e

f

a

g

b

c

Figure 9.76: In the complex

{abg,bcg,cdg,deg,e f g,a f g}, the triangle ace is

a non-face of the triangulated hexagon, but it is

not a minimal non-face, while the edges ac, ae

and ce are. In fact, in this example the minimal

non-faces are precisely the six missing edges.

Lemma 9.4.4. The complement of every transversal S for the set of minimal
non-faces of K is a maximal face of K . Conversely, the complement of
every maximal face is a transversal of MNF(K ).

Proof. Denote by J the set of vertices of K .
Let us prove by contradiction that J\S is a face, for every transversal S

of MNF(K ). If not, J\S contains one of the minimal non-faces Ci. This
means S∩Ci = /0, contradicting the definition of transversal. To see that
J\S is a maximal face, assume the contrary and let F be a facet properly
containing it. Then, J\F is also properly contained in S and, since S is
minimal with respect to transversality, there is at least one minimal non-
face (Ci) such that Ci ∩ (J\F) =, which is the same as saying Ci ⊂ F , a
contradiction.

The argument for the converse (the complement of any facet is a transver-
sal for MNF(K )) is similar and left to the reader.

One more algebraic definition: By the radical of a monomial ideal I we
mean the ideal resulting from deleting all powers of monomials in I. For
example, for the ideal 〈x2y3,xy2,z2,x100〉 its radical is 〈xy,z,x〉. That is,
a monomial ideal is its own radical if it can be generated by square-free
monomials.

We are now ready to state the main result of this subsection that relates
regular triangulations and Gröbner bases.

Theorem 9.4.5 (Sturmfels’ correspondence). Let A be a d×n matrix with
integer entries.

Let IA be the toric ideal defined by A. Then:

• The regular triangulations of A are in one-to-one correspondence
with the radicals of the monomial initial ideals of IA. More precisely,
for the monomial order >ω , the generators of the radical of in>ω (IA)
have as exponent vectors the minimal non-faces of the regular trian-
gulation S (A,ω).

• An initial ideal in>ω (IA) is square-free (that is, it equals its own rad-
ical) if and only if the regular triangulation S (A,ω) is unimodular
(all simplices have normalized volume equal to one).

Proof. We will prove the first claim of Sturmfels’ correspondence follow-
ing the presentation in [312]. The steps tie rather well with what we saw
in Chapter 1 about linear programming and the complementary slackness
principle (see in particular Lemma 1.2.1 and Theorem 1.2.1).

First of all, by definition of regular triangulation, a subset J is a face
of S (A,ω) if there exist a vector c, the normal vector to the supporting
hyperplane of the face, such that a j · c = ω j for j ∈ J and yet , at the same
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time, a j · c < ω j when j /∈ J. Because of this condition it make sense to
consider, for an arbitrary b ∈ R

n, the following type of linear programs

minimize u ·ω subject to u1a1 +u2a2 + · · ·+unan = b, and ui ≥ 0, (9.53)

and its dual linear program, is given by

maximize c ·b subject to a1 · c ≤ ω1, . . . ,an · c ≤ ωn. (9.54)

The reader can see the face conditions of regular subdivisions appear as
equations in the inequalities within the dual linear programs. Now consider
an indexing set J. We claim the following statements are equivalent:

1. J labels a face of the regular subdivision S (A,ω) of A induced by
ω .

2. There exist a feasible solution c of the dual LP (9.54) that satisfies
J = { j : a j · c = ω j}.

3. There exist b∈Z
d such that an optimal solution for the dual LP (9.54)

satisfies J = { j : a j · c = ω j}.

4. There exist b ∈ Z
d such that an optimal solution u for the primal LP

(9.53) satisfies its support is precisely the set of indices J.

5. There exist b ∈ Z
d such that an optimal solution u for the primal

LP 9.53 satisfies its support supp(u) equals the set of indices J and
is integral.

6. There exist a monomial xu such that J = supp(u) and every power of
xu is a standard monomial.

7. J is a face of the simplicial complex whose non-faces are the genera-
tors of the radical of in>ω (IA).

The equivalence of Parts 1 and 2 is a direct consequence of the notion
of regular subdivision. The equivalence of Parts 2 and 3 holds because ev-
ery point c in the dual polyhedron will lie in the relative interior of some
face. The equivalence of Parts 3 and 4 holds by complementary slackness
(see Lemma 1.2.1). The equivalence of Parts 4 and 5 holds because we can
replace b with an integer multiple of b if necessary. The equivalence of
Parts 5 and 6 holds because, as we stated at the end of the past subsection,
standard monomials are precisely the optimal solutions of the integer pro-
grams of type (9.53) with varying b. Thus, all powers of xu are standard if
and only if all integer multiples of u are optima of the corresponding linear
program. Finally, Parts 6 and 7 are equivalent because standard monomials
with respect to K, the radical of in>ω (IA), are index sets that are supports
of faces of the simplicial complex whose non-faces are in the monomial
ideal K.

The chain of equivalences proves the first statement in the theorem. For
a proof of the second part we refer the reader to Corollary 8.9 in [312].
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Sturmfels’ correspondence has the following consequence:

Corollary 9.4.6. The Gröbner fan of IA refines the secondary fan of A. The
two fans coincide if and only if A is totally unimodular.

Figure 9.77: The eight initial ideals do

correspond to the vertices of an eight-gon.

We will now work through some examples to illustrate it in three well-
structured families of point configurations. It is really a very useful tech-
nique to prove that a set of simplices is a triangulation.

Example 9.4.7. Let A be the 2×4 matrix

(
a b c d

1 1 1 1
0 1 2 3

)
.

It can be calculated, using your favorite computer algebra package (e.g.,
COCOA, Macaulay2, Singular, MAPLE, etc.) of a special software for
it (Jensen’s Gfan [177]), that there are all together eight initial ideals as
we vary the weight vector for the toric IA. Indeed, if two weight vectors
give the same initial ideal, then they are found inside the same of the eight
polyhedral cones represented in Fig 9.77. In the table below we show the
eight initial ideals with a sample weight vector that determines each.

Term order ω initial ideal

(0,0, 1, 3) 〈ad,bd,ac〉
(0,0,−4,−3) 〈ad,b2,bd〉
(0,0,−4,−5) 〈ad2,b2,bc,bd〉
(0,0,−4,−7) 〈b2,bc,bd,c3〉
(0,0,−4,−9) 〈b2,bc,c2〉
(0,0, 1,−1) 〈ac,b3,bc,c2〉
(0,0, 2, 1) 〈a2d,ac,bc,c2〉
(0,0, 2, 3) 〈ac,ad,c2〉Table 9.3: The eight initial ideals, with a term order

producing each.

Now: the point configuration for the matrix A consists of four collinear
points. The triangulations are subdivisions of the length four segment into
smaller segments that use the four given points. It is clear that all such trian-
gulations are regular and only four are possible (by choosing or not choos-
ing a combination of the two interior points on the segment). The reason
why there are eight initial ideals and only four triangulations is that some
ideals have the same radical. The radicals of the eight initial monomial ide-
als are 〈ac,ad,bd〉, 〈b,ad〉, 〈b,c〉, 〈c,ad〉. They are, precisely, labelings for
the minimal non-faces of the four triangulations of four points on a line.

For example, 〈b,c〉 being non-faces means that b and c do not appear in
the triangulation, so the segment is triangulated with a single cell, ad. In
the other extreme, if the minimal non-faces are 〈ac,ad,bd〉, all the elements
are used as vertices (none is a non-face) and the edges are the pairs that are
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not non-faces, namely ab, bc and bd.We let the reader apply Lemma 9.4.4
to the four sets of minimal non-faces.

Example 9.4.8. Now let A to be the vertex-edge incidence matrix of the
complete graph K4. This is a 4× 6 matrix with two ones in each column.
In Figure 9.78 we show how this configuration consists of the vertices of a
regular octahedron (embedded in four-dimensional space), and we label its
elements by the variables of the ideal (columns are labeled by the edge of
the graph K4, thus we use a bi-index). The three binomials

y[1,2]y[3,4]− y[1,3]y[2,4],

y[1,2]y[3,4]− y[1,4]y[2,3],

y[1,3]y[2,4]− y[1,4]y[2,3],

correspond to cycles of length four in K4, form a universal Gröbner basis
for the toric ideal IA; this means it is a Gröbner basis with respect to any
possible monomial order.

There are three distinct initial ideals, depicted in Figure 9.78, where we
have also listed the three initial ideals. Observe that the generators in each
are precisely the minimal non-faces of a triangulation of the octahedron
(the vertices of the octahedron are labeled by the six edges of the complete
graph K4).

x2;3

x3;4

x1;3

x2;4

〈x1;3x2;4; x1;2x3;4〉

〈x1;4x2;3;x1;2x3;4〉

〈x1;2x3;4;x1;3x2,4〉

x1;2

x1;4

Figure 9.78: Initial ideals for the toric ideal of K4.

An example related to arborescences

To conclude we do a more sophisticated application of the Gröbner bases
technology. This time we wish to find, for each n, a triangulation of the
point configuration Mn = {mi, j}1≤i, j≤n,i�= j, where mi, j is the (n− 1) by
(n−1) matrix such that

(i) If i �= n �= j, then mi, j has a single non-zero entry, in position (i, j).

(ii) In mi,n, the entries on the ith row are all −1 and all other entries equal
zero.

(iii) In mn, j, the entries on the jth column are all −1 and all other entries
equal zero.

For example, the following is the list of the six elements of M3, where
each 2 by 2 matrix mi, j appears as a row vector:

m1,3 =
(−1 −1

0 0

)
, m2,3 =

(
0 0
−1 −1

)
, m3,1 =

(−1 0
−1 0

)
,

m3,2 =
(

0 −1
0 −1

)
, m1,2 =

(
0 1
0 0

)
, m2,1 =

(
0 0
1 0

)
.

We consider Mn as a big (n−1)2×n(n−1) matrix, representing a certain
configuration labeled by the set Jn := {(i, j) : i, j ∈ [n], i �= j}. A nice way
of representing Jn is as the set of all edges in the doubly directed complete
graph with n nodes. See Figure 9.79.
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3

(3,1)

(2,3)

(2,1)

(3,2)

(1,2)

(1,3)

1

2

Figure 9.79: The doubly directed complete graph

on 3 nodes.

We wish to study its triangulations via Sturmfels’ correspondence. For
this, we consider the toric ideal

IMn := 〈xu+ − xu− : Mnu = 0〉

of Mn in the polynomial ring C[xi, j : 1 ≤ i, j ≤ n, i �= j]. The key property
is that the configuration is totally unimodular.

Lemma 9.4.9. The matrix Mn is homogeneous and totally unimodular.
Hence, all triangulations of the point set Mn have the same number of full-
dimensional simplices.

Proof. To check the configuration is homogeneous, observe that some of
the matrices have trace zero and sum of entries equal to 1 and the rest have
trace −1 and sum of entries equal to 1−n. Hence, the functional “sum of
entries minus n times the trace” evaluates to 1 at every element of Mn.

For the unimodularity, observe that up to a rearrangement of rows and
columns, Mn will look as follows: The first few rows are the negatives of
the vertex-edge incidence matrix of the complete bipartite graph Kn−1,n−1,
then under that we have n−1 cyclically arranged copies of an (n−2)×(n−
2) identity matrix. It is well-known that the vertex-edge incidence matrix
of any bipartite graph is totally unimodular. It is also known, see e.g., The-
orem 19.3 in [291], that a matrix A is totally unimodular if each collection
of columns of A can be split into two parts so that the sum of the columns
in one part minus the sum of the columns in the other part is a vector with
entries only 0,+1, and −1. This characterization of totally unimodular
matrices is easy to verify in our matrix Mn: whatever partition works for
the columns of the vertex-edge incidence matrix of the complete bipartite
Kn−1,n−1 also works for the corresponding columns of Mn, because of the
diagonal structure of the rows below it.

Thus we conclude:

Corollary 9.4.10. The set CMn of circuits of the homogeneous toric ideal
IMn is a universal Gröbner basis for IMn .

Moreover, we can read the minimal non-faces of each triangulation from
the generators of the universal Gröbner basis. So, we now look at who
the circuits of IMn are. The answer will be pleasing for people who like
combinatorics: Essentially they consist of bi-partitions or cuts of [n] =
1,2, . . . ,n.

For any partition of [n] = S∪T, we denote by uS,T ∈Z
n(n−1) the n(n−1)

dimensional vector, where

uS,T (i, j) =

⎧
⎪⎨

⎪⎩

1, if i ∈ S, j ∈ T ,

−1, if i ∈ T, j ∈ S,

0, otherwise.

That is to say, uS,T (i, j) is a 0/1 vector with 1’s on the edges corresponding
to the complete bipartite graph with all edges directed from S to T and
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−1’s on the complete bipartite graph with edges from T to S. With this
description it easily follows that

uS,T (i, j)+ uS,T ( j, i) = 0 for any i �= j. (9.55)

uS,T (i, j)+ uS,T ( j,k)+ uS,T (k, i) = 0 for any distinct i, j and k. (9.56)

We define

PS,T := xu+
S,T − xu−S,T = ∏

s∈S,t∈T

xs,t − ∏
s∈S,t∈T

xt,s.

Proposition 9.4.11. The set of circuits of IMn consists of all the binomials
PS,T :

CMn = {PS,T : S∪T is a partition of [n]}.
Here is the example for n = 3.

CMn = {P{1},{2,3} = x1,2x1,3 − x2,1x3,1,

P{2,3},{1} = x2,1x3,1 − x1,2x1,3,

P{2},{1,3} = x2,1x2,3 − x1,2x3,2,

P{1,3},{2} = x1,2x3,2 − x2,1x2,3,

P{3},{1,2} = x3,1x3,2 − x1,3x2,3,

P{1,2},{3} = x1,3x2,3 − x3,1x3,2}.
Corollary 9.4.12. For any � ∈ [n],

G� := {PS,T : S∪T is a partition of [n] s.t. � ∈ S}
is a Gröbner basis of IMn with respect to any term order >� satisfying
x�, j >� xi,k, for any i �= �. Thus, the set of initial monomials of the elements
in G� are

in>�
(IMn) := { ∏

s∈S,t∈T

xs,t : S∪T is a partition of [n] s.t. � ∈ S}.

We call the supports of the monomials appearing in this corollary �-cuts,
since they correspond to complete directed bipartite graphs with edges di-
rected away from the part S containing �.

For example, for n = 3, � = 3 we have:

G� = {P{2,3},{1} = x2,1x3,1 − x1,2x1,3,

P{1,3},{2} = x1,2x3,2 − x2,1x2,3,

P{3},{1,2} = x3,1x3,2 − x1,3x2,3}
and

in>�
(IMn) = {x2,1x3,1,x1,2x3,2,x3,1x3,2}.

A directed spanning tree with all arcs pointing away from the root is an
arborescence. We denote arb� the set of all arborescences with a certain
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root � ∈ [n], which we call �-arborescences. Since every tree can be rooted
at any of its vertices, the number of �-arborescences for a fixed � equals the
number of labeled rooted trees on n nodes, which equals nn−2. This result
is available in most combinatorics textbooks or, for example, in [11].

Of course, we think of each arborescence as its set of edges, that is, as a
subset of the label set Jn of Mn.

3

(1,2)

(1,3)

1

2 3

(2,3)

(1,2)

1

2 3

(3,2)

(1,3)

1

2

Figure 9.80: The three arborescences on three

nodes and rooted at 1.

Proposition 9.4.13. For each �∈ [n], any term order as described in Corol-
lary 9.4.12, gives as Gröbner basis a triangulation T� of Mn whose maxi-
mal simplices are labeled by the (complements of) the �-arborescences,

T� := {Jn \B : B ∈ arb�}.

Proof. We have discussed how to recover maximal faces from the minimal
non-faces via transversals. Since the initial monomials are in bijection to
the �-cuts, we need to show that the transversals of this set are precisely all
possible �-arborescences.

One direction is easy: given any �-arborescence B on [n] with root �,
each �-cut PS,T with � ∈ S clearly contains at least one edge of B: any one
joining S to T in B. Moreover, the arborescence B is minimal with that
property because removing any single edge from it we get a graph with two
components and letting S and T denote the vertices of those components,
with � ∈ S, we have an �-cut using no edge of B.

We show the other direction: Let B be a transversal of the set of all �-
cuts and consider B as a directed graph. We let S be the set of vertices that
can be reached from � by a directed path on B. S must be the whole [n]
since otherwise (S, [n]\S) is an �-cut with no edge of B. Therefore, for any
vertex i, there exists a directed path from � to i which implies B contains
an arborescence. By minimality of B as a transversal to all �-cuts, B equals
this arborescence.

9.5 Polytopal complexes and regular triangulations

Most of the structural results of Chapters 2, 4, 5, and 8 are valid for both
point and for vector configurations, but when we speak about concrete ex-
amples in the rest of the chapters they are typically point configurations.
The reader may get the impression that vector configurations are here only
to make the theory more “consistent”, namely:

• It is convenient to be able to apply without any restriction the con-
traction operation to a configuration, because it is the natural way of
studying links in triangulations. When we do so we sometimes get
vector configurations from point configurations.

• Gale duality, which is fundamental for understanding secondary poly-
topes, transforms point configurations to totally cyclic vector config-
urations. If we want Gale duality to work both ways (and it does)
we need to consider triangulations of those vector configurations as
natural objects in the theory.
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This section is devoted to show that, even if those two arguments are al-
ready powerful reasons to study triangulations and subdivisions of vector
configurations, there is an even more important one: triangulations and sub-
divisions of vector configurations arise naturally in polytope theory and are
actually ubiquitous in it; except they do not appear not under that explicit
name! Consider the following situations:

1. The normal fan of a polytope P (recall Definition 2.1.8 is a regular
subdivision of the vector configuration consisting of the facet nor-
mals of P. If P is simple then this subdivision is a triangulation.

2. If P contains the origin in its interior, then the complex of proper
faces of P is a regular subdivision of the totally cyclic vector con-
figuration A/o, where A consists of the vertices of P together with
the origin o. If P is simplicial polytope then its face complex is a
triangulation.

3. Line shellings, the natural way to shell the boundary of a polytope,
is an instance of monotone flipping sequences. Noticing this is the
key to adapting the concept to arbitrary triangulations, and show that
regular triangulations of point or vector configurations are always
shellable.

4. The g-vector of a polytope, is an extremely important way of rewrit-
ing its f -vector. Basically, it counts how many bistellar flips in dif-
ferent types of circuits are needed to get the boundary complex of P
from the boundary complex of a simplex.

This final section will discuss these four situations, viewed as problems
on subdivisions of vector configurations, and show a few interesting results.

9.5.1 Central and normal fans as regular triangulations

Let P be a polytope in R
m with the origin o in its interior. Let A be the

point configuration consisting of the vertices of P, and let A∪{o} denote
the configuration obtained adding the origin as an extra element of A. Let
V = A∪{o}/o be the contraction of A∪{o} at the origin. By construction,
V is a totally cyclic configuration labeled by the same set of labels J as A.
Remember that totally cyclic means that the cone hull ofV, that we denote
by convV(J), is the whole of R

m.
Let now S denote the complex of proper faces of P. As an abstract cell

complex, S has its cells labeled by subsets of J. It makes sense, then, to
ask whether S is a polyhedral subdivision of the configuration V. You can
see an example in Figure 9.81:

Lemma 9.5.1. With the notations above, the proper face complex S of P
equals the regular polyhedral subdivision of V obtained with the constant
height function ω = (1,1, . . . ,1).

2 o

3

4

51

2

S = {12,23,34,45,15}

P

V

3

4

51

Figure 9.81: The central fan of a polytope.

Proof. The proof basically consists in tracking down the construction V in
matrix form.
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Suppose that A is, as usual, represented as a homogeneous matrix with
its last row constantly 1 for homogenization. A∪{o} is represented as the
same matrix, with an extra column equal to the vector (0, . . . ,0,1). Con-
tracting at this element o can simply be done by deleting the last row of the
matrix. So: V is obtained from A by deleting its homogenization row.

Now, let us look at the construction of the regular subdivision S (A,ω)
for the height function ω = (1,1, . . . ,1). We have to lift our vectors to a
configuration

Vω := ((vi,ωi))i∈J ,

and then consider as cells of S (V,ω) the lower facets of conv(Vω). Two
things happen:

1. When lifting our vectors we are simply reinserting the homogeniza-
tion row that we previously inserted. That is: Vω = A, even if we
tend to think of the former as a vector configuration and the latter as
a point configuration!

2. If V is a totally cyclic configuration and ω is a valid height function,
then all proper faces of Vω are lower faces.

Thus, we have that the lower faces of Vω coincide with the faces of the
original point configuration A, as desired.

Definition 9.5.2. The subdivision S (V,ω) of V is the central subdivision
of the polytope P.

3

4

51

2

V

S (V,ω) = {12,23,34,45,15}

Vω
3

2

1 5

4

3

1 5

42

Figure 9.82: The central fan, as a regular

subdivision.

Thecentralsubdivisionis(inthelanguageofsubdivisionsofconfigurations)
the same as the central fan of a polytope (in the language of polyhedral
fans): the central fan of a polytope P containing the origin is the complete
polyhedral fan whose cells are the linear cones over the faces of P.

Of course, the central subdivision S is a triangulation of V if and only
if the original polytope P is simplicial.

Let us generalize Lemma 9.5.1 a bit: for a totally cyclic vector configura-
tion V with index set J, there are two ways in which an arbitrary assignment
of positive scalars to the elements of V (i.e., a function J → [0,∞)) gives
rise to a subdivision of V:

1. The usual notion of regular triangulation. Use a function ω : J →
(0,∞) to lift V to a configuration

Vω := {(vi,ωi) ∈ R
m+1 : i ∈ J},

where vi is the i-the vector in V for each i ∈ J. Then consider the
subdivision S (V,ω) whose cells are the lower facets of conv(Vω ).

2. The following generalization of the central subdivision: use a func-
tion ρ : J → (0,∞) to scale the vectors of V, and then add a homog-
enization coordinate to consider the elements as points rather than
vectors. That is, if the i-th element of V is the vector vi, let A
be the configuration having as i-th element the point (ρivi,1). Let
P := convA(J) and consider the face lattice of P as a subdivision of
V, as in Lemma 9.5.1.
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2
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5

4

S (V,ω) = {13,34,45,15}

3

4

5

V

1

1

Figure 9.83: Moving vertices away from or

towards the origin (top, where

ρ = (3,1/3,1,1,1)) has the same effect on the

central subdivision as changing in the opposite

way the lift for the regular subdivision of V

(bottom, where ω = (1/3,3,1,1,1)).

After seeing the proof of Lemma 9.5.1 it should be easy for you to derive
that:

Corollary 9.5.3. These two procedures give the same family of subdivisions
of V. More precisely, the subdivision of V obtained by the second procedure
for a certain ρ equals the regular subdivision S (S,ω) with

ωi = 1/ρi, ∀i ∈ J.

Remark 9.5.4. Readers may be puzzled by the fact that in this construction
only the regular subdivisions of V obtained with strictly positive choices of
ω arise. This has to do with Theorems 4.1.39 and 4.1.40. The first theorem
says that to construct all regular subdivisions of a vector configuration V,
non-negative choices of height vectors are enough. The second one says
that the strictly positive ones suffice if we are only interested in subdivisions
having only acyclic cells. That is, if we allowed for zero choices of some
of the ωi we might get regular subdivisions whose cones have a non-trivial
linearity space. Those can certainly not be interpreted as central fans of
polytopes.

We now look at polarity, in its usual polytope theory sense [339]. Re-
member that the polar of a certain polytope P ⊂R

m with vertices (in homo-
geneous coordinates)

A =
(

1 2 . . . n

p1 p2 . . . pn

1 1 . . . 1

)

is the polytope P∨ with the following inequality description:

P∨ := {x ∈ R
m : 〈pi,x〉 ≤ 1,∀i}.

We state without proof the following basic results from polytope theory:

Theorem 9.5.5. 1. Polarity is an involution: (P∨)∨ = P.

2. The central fan of P equals the outer normal fan of P∨, and vice-
versa.

As usual, the (outer) normal fan of a polytope P is defined as having, for
each face F ≤ P, the following cone, called the normal cone of F:

NP(F) := {x ∈ R
m : 〈x,y〉 ≥ 〈x,z〉,∀y ∈ F,z ∈ P}.

Let us see what Corollary 9.5.3 gives under polar duality:

Theorem 9.5.6. Let P be a polytope with facets indexed by a set J. Let V
be the vector configuration of facet outer normal vectors of P. For each
possible (positive) right-hand side vector ω : J → (0,∞) define

Pω := {x ∈ R
m : 〈pi,x〉 ≤ ωi,∀i},

so that P = P(1,...,1).
Then: for every choice of ω , the normal fan of Pω equals the regular

subdivision S (V,ω).
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P∨

x ≤ 1−x− y ≤ 1

(1,0)

(0,1)

(−1,−1)

y ≤ 1

P

Figure 9.84: A polytope P, with its three vertices,

and its polar P∨, with its three defining

inequalities. Moving away from or towards the

origin the vertices of P will have the effect of

translating the facets of P∨ in the opposite

direction.

Proof. Fix a choice of ω and let ρ be defined by

ρi = 1/ω , ∀i.

Clearly, we have that

Pω := {x ∈ R
m : 〈ρipi,x〉 ≤ 1,∀i}.

That is, Pω is the polar to the polytope whose central fan is given by the
configuration V with its elements weighted by ρ . By Corollary 9.5.3, that
polytope has as central fan the regular subdivision S (V,ω).

The above result is at the heart of the relation between parametric linear
programming and chambers, that we discussed in Section 1.2. Let us see
the precise connection.

Suppose we want to study the family of polytopes Pω of Theorem 9.5.6,
for a certain m×n matrix V. Let us first do a change of variables. Instead
of the m variables x we use n variables y = (y1, . . . ,yn) defined as:

yi = ωi −〈pi,x〉.

Under this change of variables we have that x ∈ Pω is equivalent to y ≥ 0.
In a sense, the n entries of y measure how far is x from each of the n facets
of Pω , with a negative yi indicating that it is “beyond” the i-th facet. Now,
since y has more entries than x, its entries are not independent. In fact, for
each linear dependence λ of V we have that:

〈λ ,y〉 = ∑
i

λiωi −∑
i

λi〈pi,x〉 = ∑
i

λiωi −〈∑
i

λipi,x〉 = ∑
i

λiωi = 〈λ ,ω〉.

Let now B be a Gale transform of V. Since the rows of B are a basis for the
space of dependences of V, the set of valid vectors y are those satisfying
the matrix equation B ·y = Bω . That is to say:

Corollary 9.5.7. Let d = n−m, let B be a Gale transform of V and, for
each ω ∈ R

n let b := Bω ∈ R
d. Then, the polytope Pω is linearly isomor-

phic to the polytope

Pb := {y : B ·y = b, y ≥ 0}.

This is the standard LP-tableaux formulation of parametric linear pro-
gramming (refer to [291]). In it, the right hand side b ∈ R

d plays the same
role of our usual ω , but with the advantage that b is not “redundant”. (Re-
member that choices of ω differing by an evaluation of V represent essen-
tially the same polytope). In fact, the passage from ω to b is nothing but
the projection that gave the chamber complex from the secondary fan in
Section 5.4.1 of Chapter 5.

In particular, as we change the right-hand side defining our feasibility
region Pb we get the same effect as changing ω in Theorem 9.5.6, polar
to the effect of changing the height function for a regular subdivision of
V: the normal fan stays constant for some time until a “flip” occurs. The
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stratification of the space of right hand sides into what we called “chambers”
in Section 1.2 is simply the chamber complex, in the sense of Section 5.4,
of B.

Recall that in the LP setting, basic feasible solutions are the vertices of
Pb (assuming b is generic, so that Pb is simple. If not, each vertex represents
several basic solutions). At each vertex (again, assuming genericity) exactly
d coordinates of y vanish, and their labels from a basis of V. Put differently,
the non-vanishing coordinates form a basis of B. The collection of all basic
solutions for a given b form a regular triangulation of V so that, for example,
two adjacent simplices correspond to basic solutions that differ by a single
element (this is a pivot in the simplex method).

For any two vectors b1 and b2 in the same chamber of B the corresponding
triangulations of V are the same, which means that Pb1 and Pb2 are normally
equivalent (same normal fan), hence of the same combinatorial type, the
same graph, etc. This point of view might be of interest to study properties
of the graph of Pb, for example, the diameter of Pb as the vector b changes.

More importantly for the simplex method, in this case Pb1 and Pb2 pro-
duce the same optimal basic solution for every cost vector. “The same”
means that its zeroes are at the same positions; the non-zero values vary but
each can be computed by simply evaluating a certain d×d determinant.

9.5.2 Shellings, flips, and face vectors

Although shellings can be defined for more general cell complexes (see,
e.g., [339]), we concentrate here on shellings of simplicial complexes. Re-
member that facets of a simplicial complex are its maximal simplices, and
that a simplicial complex is pure if all facets have the same dimension d;
that is, if they all have the same number of vertices d +1. A pure simplicial
complex is shellable if there is a nice ordering of its facets.

Let us be more precise: Let K be a pure simplicial complex of dimen-
sion d and let s be its number of facets. An ordering F1, . . . , Fs of its facets
induces an incremental way of constructing K : for each i = 1, . . . ,m we
call Ki the pure d-dimensional simplicial complex whose facets are F1, . . . ,
Fi:

Definition 9.5.8. An ordering F1, . . . , Fs of the facets of K is a shelling
order or a shelling of K if, for every k = 1, . . . ,s− 1, the intersection of
each new facet ∂Fi+1 with the previously constructed complex Ki is a pure
simplicial complex of dimension d−1.

Here, ∂Fi+1 denotes the simplicial complex of all proper faces of the
simplex Fi+1.

Example 9.5.9. Let us see this concept in action in the small examples of
Figure 9.85.

1. Let K be the simplicial complex on four vertices with maximal sim-
plices 123, 134 and 124. Each of the six possible orderings of these
three triangles is a shelling order, since the first will always intersect
the second in an edge, and the third will intersect the union of the
first two in two edges.

5

3 4

1

4

2

3

2
43

1

5

2

1

Figure 9.85: Three pure simplicial complexes of

dimension two. In the top one, every order is a

shelling. In the middle one some orderings are

shellings and some are not. The bottom complex

is unshellable.
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2. Let now K be the simplicial complex on five vertices with maximal
simplices 123, 134 and 145. Only four of the six possible orderings
are shelling orders; the two ending with 134 are not, because in them
the first and second triangles intersect in a vertex, which is not a “pure
simplicial complex of dimension 1".

3. Finally, let K be the simplicial complex on five vertices with max-
imal simplices 123, 234, 245 and 145. Now no ordering of the tri-
angles is a shelling order; this is an example of an unshellable com-
plex. To convince yourself, assume without loss of generality that
123 comes before 145 in the ordering. Then, when 145 enters in the
complex, its intersection with the previously inserted simplices will
necessarily contain the isolated vertex 1 (plus, perhaps, some other
things). In particular, this intersection will not be pure 1-dimensional.

The main result we want to prove is that regular triangulations (of point
or vector configurations) are always shellable. For triangulations of totally
cyclic configurations (which are the same, according to Corollary 9.5.3, as
boundary complexes of simplicial polytopes) this is a classical result of
Brugesser and Mani [339]. For the general case the proof follows the same
ideas:

F3

F1

F4

F2

q

p

pt

Figure 9.86: The line-shelling idea.

Theorem 9.5.10 (Line shellings of a regular triangulations). Let A be a
(point or vector) configuration, and let T be a regular triangulation of it.
Then, as a simplicial complex, T is shellable.

Proof. We follow the classical proof of Bruggesser and Mani, based on the
concept of line shelling, except we adapt the language of it to the frame-
work of regular triangulations of vector configurations, which have point
configurations as a special case. In our pictures, however, we draw A as a
point configuration.

Let ω : J → R be a height function. Here J, as usual, is the set of labels
of A. Let Aω denote the lifted configuration.

We now introduce two new vectors in the space R
m+1 where Aω lives:

Let q denote the vector (0, . . . ,0,−1). In a “point configuration picture”, q
denotes the negative direction of the lift. And let p denote any vector in the
interior of conv(Aω ), different from q (which is in the interior of conv(Aω)
when A is totally cyclic) and sufficiently generic. Finally, let l denote the
subspace spanned by q and p. It is a 2-dimensional linear subspace but, in a
“point configuration picture” it appears as the vertical line passing through
p. See Figure 9.87.

Aω

A

l

q

p

Figure 9.87: The setting for the proof of

Theorem 9.5.10 (line shellings).

The key of the proof is to move monotonically along l from p to q. That
is, let pt = p+ tq, for each t ∈ [0,∞). In the “point configuration picture”,
we are moving a point along a half-line, in the vector configuration picture
we are rotating a vector in a linear plane (and changing its length at the
same time, but that is not relevant for the process; in fact we can think of
limt→∞ pt as being just q ). See Figure 9.86.

Since p is interior to conv(Aω ) no facet of conv(Aω) is “seen from p”.
As usual, we say a facet is “seen from a point or vector” if its exterior side
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is seen. Also, by definition of regular triangulation, the full-dimensional
simplices in T are the facets of conv(Aω ) “seen from q”. So, when mov-
ing from p to q we cross exactly once the hyperplane spanned by each
full-dimensional simplex of T . We claim that the order in which those
hyperplanes are crossed is a shelling order on T . To see this observe that:

• The genericity assumption in the choice of p implies that no two of
those hyperplanes will be crossed at the same time: the intersection
of two of those hyperplanes has codimension two and does not con-
tain q (the hyperplanes we are interested in are never vertical with
respect to the lift), so a generic choice of p prevents l (the subspace
spanned by p and q) from meeting any of those intersections.

• The first facet F1 in the shelling is the carrier of the intersection of
the ray [pq) and the boundary of conv(Aω ). Right after we cross
this boundary, F1 is the only facet of conv(Aω ) seen from pt . See
Figure 9.86 again.

• When the hyperplane spanned by a new facet Fi+1 is crossed by pt ,
the part of ∂ conv(Fi+1) already in the complex Ti = {F1, . . . ,Fi} is
precisely the part seen from pt which implies it is indeed a pure (d−
1)-dimensional complex.

F1

Fs

q

F1

−q

pt

p

q

pt

−q

p

Figure 9.88: When A is acyclic (top), conv(Aω)

lies to one side of the vector q, so that only part

of its boundary is visible from it. When A is

totally cyclic (bottom), −q lies in the interior of

conv(Aω), so that the whole boundary of

conv(Aω) is visible from q. The thick ray (top)

and segment (bottom) indicate the interval when

the shelling takes place.

What is the difference between the cases where A was totally cyclic or
acyclic (or anything in between) in this line shelling procedure? The answer
is in Figure 9.88. This is a “vector configuration picture” where l appears
as a truly two-dimensional linear space. Observe that in the totally cyclic
case the shelling finishes when −pt enters again the interior of conv(Aω)
through a certain facet Fs. This is the last facet in the shelling, with index
d + 1, and it “closes” the triangulation T , which is topologically a sphere.
In the acyclic case T is a ball.

Line shellings and monotone flipping

Shellings play a role in polytope theory and geometric combinatorics simi-
lar to that of flips in the theory of triangulations: They give a way of chang-
ing a simplicial complex in a controlled and step-by-step manner. In fact,
our next goal is to use the central fan construction of the previous section to
show that a line shelling as the one in the proof of Theorem 9.5.10 can be
regarded as a monotone sequence of flips in the space of triangulations of a
certain vector configuration. We briefly recall all the notation in that proof:

• A is a configuration in R
m with label set J, lifted to a configuration

Aω via a height function ω .

• p and q are two extra points/vectors in the space R
m+1 where Aω

lives: p is generic and in the interior of conv(Aω ), and q = (0, . . . ,
0,−1) represents the lifting direction.
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Vt

Aω

V

A
q

pt

p

q

o

Figure 9.89: The configurations used in the proof

of Theorem 9.5.10 (top) and some contractions

of them (bottom). In both parts we have a base

configuration (A and V and a lift of it (Aω and Vt )

which induces a regular subdivision (the

triangulation T and the subdivision St ). The

figure depends on the parameter t, which in the

top part moves the point pt from p towards q and

in the bottom figure changes the whole

subdivision.

• For each t ∈ [0,∞) we denote pt = p+ tq.

We now introduce a couple more elements into the picture. See Fig-
ure 9.89:

• Let o be the projection of p to R
m. More formally, o is the element

corresponding to p in the contraction Aω ∪{p,q}/q.

• Let V be the vector configuration obtained by the central projection
of A from o. Equivalently,

V := Aω ∪{p,q}/pq.

• For each t, let Vt denote the vector configuration

Vt := Aω ∪{pt}/pt .

This notation is consistent with the fact that if V is projected along the
direction of q we recover the configuration V: since pt lies in the linear
span of p and q and it is different from q. We have:

Vt ∪{q}/q = Aω ∪{pt ,q}/ptq = Aω ∪{p,q}/pq = V.

In particular, whenever Vt has any lower facets, so that it is a valid lift of
V in the conditions of Theorem 4.1.39, the lower hull of Vt is the regular
subdivision of the vector configuration V given by the height function

ωt := ω +(t, . . . ,t)− (c, . . . ,c),

where the constant c denotes the height of the initial point p. We denote
this subdivision by S t .

There is always an interval of values of t for which Vt has lower facets.
It starts when pt gets out of conv(Aω ) through the first facet F1 in the
shelling and it finishes differently in the acyclic and totally cyclic cases:
in the acyclic case it goes all the way up to t = ∞, but in the totally cyclic
case it finishes when −pt enters again in conv(Aω) through the last facet
Fs of the shelling. See Figure 9.88 again.

This description shows that the different subdivisions St obtained in this
process from a monotone flip sequence in the space of triangulations of V:

Theorem 9.5.11. The subdivision St is always a triangulation except when
pt crosses a facet defining hyperplane of conv(Aω). In this case it is a non-
degenerate (that is, supported in a full-dimensional circuit) bistellar flip.
Moreover:

1. The sequence of triangulations is monotone in the sense of Theo-
rems 5.3.7 and, more specifically, 5.3.13.

2. If we call tk (k = 1, . . . ,s) the value of t at which the k-th facet is
introduced in the shelling, and Tk the partial complex given by the
shelling at that stage, we have the following equality of simplicial
complexes:

St = ∂Tk, ∀t ∈ (tk,tk+1).
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3. When t → ∞, St is the central subdivision of conv(A) in the sense of
Definition 9.5.2.

In Part 2 we say that the equality is only of simplicial complexes in the
same sense as we said the “the central subdivision of a polytope P equals
the boundary complex of it”. The central subdivision is made out of cones
but, as an abstract cell complex, it equals the face complex of P.

Proof. Lower facets of Vt = Aω ∪{pt}/pt are the same as lower facets of
Aω ∪ {pt} containing pt . They are all simplicial except at the moments
when pt crosses the hyperplane defined by a certain facet Fk in the shelling.
In this case Fk ∪ {pt} is the only non-simplicial facet, and it is a non-
degenerate circuit. This proves the first sentence, and part (1) follows from
the specific form of ωt (compare it with the statement of Theorem5.3.13).

To prove Part 2 observe that, actually, all the facets of Aω ∪{pt} contain-
ing pt are lower. So, Vt = Aω ∪{pt}/pt is the link of pt in the boundary
complex of Aω ∪{pt}. This equals the boundary of the complex of faces of
Aω visible from pt , which is precisely the definition of Tk via the shelling
order.

When t goes to infinity pt tends to q so that Vt tends to Aω ∪{q}/q = A
and ωt , suitably normalized, tends to (1, ,̇1). Thus, we are exactly in the
situation of Lemma 9.5.1.

Summing up: as we build a regular triangulation simplex by simplex via
a line shelling, all the intermediate simplicial complexes that we get are star-
shaped with respect to the origin (where we call “origin” o in the ambient
space of A the projection of the line l used for the shelling). The central
fans, with respect to the origin, of the boundaries of these intermediate
complexes, form a monotone sequence of flips. Figure 9.90 illustrates this.

h-vectors, g-vectors, and flips

In Section 2.6 we encountered f -vectors and h-vectors. The following def-
inition and lemma state in a precise way how the f -vector of a shellable
complex changes when the complex is built up step by step via a shelling.

Definition 9.5.12. Let K be a shellable simplicial complex of dimension d
and let F1, . . . , Fs denote the facets of K , labeled according to the shelling
order.

1. We say that a certain facet Fi+1 has index k in the shelling if exactly
k facets of Fi+1 were already present in Ki. By convention, F1 has
index 0.

2. We define the h-vector (h0, . . . ,hd+1) of the shelling as the vector
counting the number of facets introduced with each index k ∈ {0, . . . ,
d + 1}. That is to say:

hk = |{Fi : Fi has index k }| .

Remember that the f -vector ( f−1, f0, . . . , fd) of a d-dimensional complex
has each fk equal to the number of cells of dimension k. By convention,
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F2

F3

T3

F1

T2

T1

F1 F1

F2

pt
pt pt

Figure 9.90: The shelling (top) and bistellar flip

sequence (bottom). The shelling process goes from

left to right

f−1 = 1 for every complex, since the “empty cell” is in every complex, and
it is considered to have dimension −1.

The following lemma proves that what we saw in Chapter 2 in Section 2.6
is indeed the same h-vector obtained from a shelling!

Lemma 9.5.13. For every shelling of a shellable complex K of dimension
d, its h-vector and f -vector are related by the following linear relation:

⎛

⎜
⎜
⎜
⎜
⎜⎜
⎜
⎝

f−1

f0

f1
...

fd−1

fd

⎞

⎟
⎟
⎟
⎟
⎟⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎜
⎜⎜
⎜
⎜
⎝

(d+1
0

)
0 0 . . . 0 0(d+1

1

) (d
0

)
0 . . . 0 0(d+1

2

) (d
1

) (d−1
0

)
. . . 0 0

...
...

...
. . .

...
...(d+1

d

) ( d
d−1

) (d−1
d−2

)
. . .
(1

0

)
0(d+1

d+1

) (d
d

) (d−1
0

)
. . .
(1

1

) (0
0

)

⎞

⎟
⎟
⎟
⎟
⎟⎟
⎟
⎟
⎠

·

⎛

⎜
⎜
⎜
⎜
⎜⎜
⎜
⎝

h0

h1

h2
...

hd

hd+1

⎞

⎟
⎟
⎟
⎟
⎟⎟
⎟
⎠
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Proof. Check that when a d-simplex is inserted in the shelling process with
index k the change in the f -vector is exactly as given in the (k + 1)-th
column of the matrix. For example, a simplex with index 0 introduces its
whole face complex, adding

(d+1
k+1

)
to each fk, and a simplex with index

d + 1 adds 1 to fd and nothing to the rest, since its boundary complex was
already in the complex.

We leave details to the reader, but let us discuss the value of f−1. The
statement says that h0 equals f−1; that is to say, that h0 is 1. This is true
because:

1. The first simplex in the shelling is always added with index zero.

2. No other simplex can be added with index zero. That would mean
it is added without gluing it to anything already present, which is
against the definition of shelling; the intersection would be the com-
plex whose only cell is the empty simplex, which is not “pure (d−1)-
dimensional”.

The matrix in the statement is clearly invertible: It has 1’s in the diagonal
and 0’s above it. Thus, the formula can be inverted to give an expression
for the h-vector in terms of the f -vector. We leave it to the reader (Ex-
ercise 9.14) to prove that the formula is as follows. Observe it is the same
matrix of Lemma 9.5.13 except with alternating signs. See also Section 2.6.
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Figure 9.91: Two shelling orders in the boundary

complex of an octahedron. The index of each

triangle is its number of shaded sides. The

h-vector is (1,3,3,1) in both.

Lemma 9.5.14. For every shellable complex K of dimension d, its f -
vector and h-vector are related by the following linear relation. In particu-
lar, the h-vector does not depend on the particular shelling of K chosen.

⎛

⎜
⎜
⎜
⎜
⎜
⎜⎜
⎝

h0
h1
h2
...

hd
hd+1

⎞

⎟
⎟
⎟
⎟
⎟
⎟⎟
⎠

=

⎛

⎜
⎜
⎜⎜
⎜
⎜
⎜
⎜
⎝

+
(d+1

0

)
0 . . . 0 0

−(d+1
1

)
+
(d

0

)
. . . 0 0

+
(d+1

2

) −(d1
)

. . . 0 0
...

...
. . .

...
...

(−1)d
(d+1

d

)
(−1)d−1

( d
d−1

)
. . . +

(1
0

)
0

(−1)d+1
(d+1

d+1

)
(−1)d

(d
d

)
. . . −(11

)
+
(0

0

)

⎞

⎟
⎟
⎟⎟
⎟
⎟
⎟
⎟
⎠

·

⎛

⎜
⎜
⎜
⎜
⎜
⎜⎜
⎝

f−1
f0
f1
...

fd−1
fd

⎞

⎟
⎟
⎟
⎟
⎟
⎟⎟
⎠

This suggests the following definition. Check that it is consistent with
Definition 2.6.7 in Chapter 2.

Definition 9.5.15. The h-vector h(K ) of a pure simplicial complex K
of dimension d is defined via the formula in Lemma 9.5.14 applied to its
f -vector.

Remark 9.5.16. Apart from its relation to shellability, the h-vector has very
nice properties which make it a useful way of looking at the f -vector of an
arbitrary pure complex. For example:

1. According to Lemma 9.5.14, hd+1 is the alternating sum of the num-
bers of simplices of each dimension. This is the same as the Euler
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characteristic χ(K ) of the complex, except for the fact that the h-
vector includes the empty face in the count and that there is a global
change of sign for odd-dimensional complexes. That is, we always
have:

hd+1(K ) = (−1)d (χ (K )−1) .

2. If K is a shellable d-manifold, then the opposite of any shelling
order is also a shelling order (prove it!). A simplex of index k in the
first shelling has index d + 1− k in the second shelling (as should
follow from your proof). Hence, the h-vector of any shellable d-
manifold is palindromic:

hk = hd+1−k, ∀k ∈ {0, . . . ,d + 1}.

These formulae are called the Dehn-Sommerville relations. They are
valid (with a different proof, based on applying Euler’s relation to
all the links of simplices of all dimensions) for arbitrary simplicial
manifolds. We already stated them in Chapter 2 (Definition 2.6.10).

3. The h-vector of a simplex is (1, . . . ,1) and the h-vector of the bound-
ary of the cyclic polytope C(n,d) is

hk(∂ conv(C(n,d))) =
(

n−d−1 + k
k

)
, ∀k ≤ d/2.

The h-vector of any simplicial sphere lies coordinate-wise between
these two extreme cases. (This is a generalization of the Upper and
Lower Bound Theorems of Section 2.6.2.)

Let us now look at how the h-vector of a triangulation T changes when
a flip is applied to it.

Lemma 9.5.17. Let T be a triangulation of a d-dimensional configuration,
and let T ′ be obtained from T by a flip on a circuit of type (i, j) with
i+ j = d + 2 (that is to say, a non-degenerate flip). Then:

hk(T ′)−hk(T ) =

⎧
⎪⎨

⎪⎩

+1 if i ≤ k < j,

−1 if j ≤ k < i,

0 otherwise.

Proof. Let T +
Z and T −

Z be the positive and negative triangulations of the
circuit. Since T and T ′ differ only in those subcomplexes, we have

f (T )− f (T +
Z ) = f (T ′)− f (T −

Z ).

Since all the complexes in the formula are pure of the same dimension,
we can apply to all of them the linear transformation sending f -vectors to
h-vectors, and get:

h(T )−h(T +
Z ) = h(T ′)−h(T −

Z ).
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(1,1,0)

(1,1,1,0) (1,1,0,0)

(1,0,0) (1,1,1)

Figure 9.92: h-vectors of triangulations of circuits

are always of the form (1, . . . ,1,0, . . . ,0), with a

1 for each facet.

We leave it to the reader to check that

hk(T +
Z ) =

{
1 if k < i,

0 otherwise,
and hk(T −

Z ) =

{
1 if k < j,

0 otherwise.

From this the statement follows.

This suggests the following definition and corollary:

Definition 9.5.18. The g-vector g(K ) = (g0, . . . ,dd+2) of a pure simplicial
complex K of dimension d is defined as:

gi := hi −hi−1, ∀i ∈ {0, . . . ,d + 2}
where (h0, . . . ,hd+1) is the h-vector of K and with the convention that
h−1 = hd+2 = 0.

Corollary 9.5.19. Let T be a triangulation of a d-dimensional configu-
ration, and let T ′ be obtained from T by a flip on a circuit of type (i, j)
with i+ j = d + 2. Then, T and T ′ have the same g-vector except for the
entries

gi(T ′) = gi(T )+ 1, g j(T ′) = g j(T )−1.

The g-vector is especially interesting for simplicial spheres, so we as-
sume from now on that A is totally cyclic. Some properties of the g-vectors
of spheres are:

• The g-vector of any manifold is anti-palindromic: gi = −gd+2−i

(Dehn-Sommerville relations).

• The first half of the g-vector of a polytope is non-negative. This is
equivalent to saying that the h-vector is unimodal: it increases up to
the middle and then it decreases. It is important to notice that no
purely combinatorial proof of this fact is known, the existing proofs
being algebraic (they interpret the entries of the g-vector as the di-
mensions of the cohomology groups of certain varieties). The same
result for spheres is open.

• The g-vector of the boundary of a (d +1)-simplex has g0 = 1, gd+2 =
−1 and no other non-zero entry.

Because of the first two properties most authors define the g-vector of
a simplicial sphere as having only the first half of the entries; that is, g =
(g0, . . . ,g�(d+2)/2�) (see, e.g., [339]): the second half is just the negative of
the first half, in reverse order, and the first half is more interesting since it
is non-negative. But we follow Peter McMullen’s convention (the inventor
of the g-theorem) of writing it in full. See, e.g., [230, 231].

The third property, together with Corollary 9.5.19, has the following in-
teresting consequence: the g-vector basically counts the number of flips
needed to get a given triangulation of the sphere from one that is combina-
torially the boundary of a simplex:
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Corollary 9.5.20. Let T be a triangulation of a totally cyclic vector con-
figuration V of dimension d. Let T0, T1,. . . ,Ts be a sequence of triangula-
tions of V, such that:

1. T0 is isomorphic to the boundary of a (d + 1)-simplex and Ts = T .

2. Each Tk obtained from the previous one by a flip in a non-degenerate
circuit Zk.

Then, g0(T ) = −gd+2(T ) = 1 and for every i ∈ {1, . . . , d + 1}, gi(T )
equals the number of circuits of type (i,d + 2 − i) minus the number of
circuits of type (d + 2− i, i) that have been used in the sequence.

A sequence of triangulations such as the one in the statement may look
as an unusual thing, but actually the monotone sequences obtained via line
shellings in Theorem 9.5.11 are of this type. After the very first facet F1

in the shelling is introduced, the central subdivision of it that we get is
combinatorially the boundary of the simplex conv(F1)!

9

10

4

11

5

6
7

1

12
3

2

8

Figure 9.93: A 2-dimensional ball with h-vector

(1,7,4,0) (a shelling of it is indicated). Its

boundary is a hexagon, with h-vector (1,4,1)

and g-vector (1,3,−3,−1). As predicted by

Theorem 9.5.21 we have:

(1,3,−3,−1) = (1,7,4,0)− (0,4,7,1).

Another use of g-vectors is that they allow for a more compact statement
of the McMullen-Walkup Theorem that we mentioned in Section 2.6.2. The
reader can verify that the following is equivalent to Theorem 2.6.11:

Theorem 9.5.21 (McMullen and Walkup (1971)). For any simplicial (d +
1)-ball K we have:

g(∂K ) = h(K )−h(K ),

where h(K ) = (hd+1, . . . ,h1,h0) denotes the h-vector read backwards.

Observe that the sphere ∂K has one dimension less than the ball K .
This is compensated by the fact that g-vectors get an extra coordinate with
respect to h-vectors. Let us show that shellings provide a nice proof of this
theorem, at least for regular triangulations of polytopes:

Proof. We prove the theorem only for the case where K is shellable. As
we know, every time we add a facet to K with index i, the i-th entry of
the h-vector increases by one and the others remain the same. We also
know what adding a simplex with index i to K does to the boundary
∂K : it amounts to a flip of type (i,d + 2− i), which increases gi(∂K )
and decreases gd+2−i(∂K ) by one and leaves the rest of the g-vector un-
changed.

9.5.3 Polytopality via regular triangulations

In this last section we show that the theory of regular subdivisions is a useful
tool to prove and study politopality of a given abstract simplicial or polyhe-
dral complex. For ease of exposition, we restrict our treatment to simplicial
complexes although the main ideas work also for non-simplicial ones. We
illustrate the method showing an explicit realization of the associahedron
as an alcoved polytope for the root system of type A. That is to say, we
show that the polar complex of the associahedron is a regular triangulation
of the root system of type A.
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Let K be a pure simplicial complex of a certain dimension d. If K is
topologically a sphere you may have reasons to believe that it is the face
complex of a simplicial polytope of dimension d + 1. Of course, it is not
necessarily so, since there exist non-polytopal spheres (see [62, 272] for
a discussion of polytopality of spheres and possible realizations of poly-
topes). But if your complex was obtained by some “natural” combinatorial
procedure chances are that it will be polytopal and, more importantly, real-
izing it as a polytope may help you get insight into the problem from which
you got your complex in the first place.

Remark 9.5.22. Non-polytopal spheres do not only exist; they are much
more abundant than polytopal ones. For a fixed given dimension d ≥ 3
and varying number of vertices n, the number of combinatorially different
polytopal d-spheres with n-vertices is bounded above by 2Ω(n log(n)) while

the number of non-polytopal ones is bounded below by Ω(2n�d/2�
). These

bounds were found respectively in [142] and [181] and are closely related
to Theorems 8.4.2 and 8.4.3 of Section 8.4, on the number of regular and
non-regular triangulations that a given configuration may have.

Example 9.5.23 (Barnette’s sphere). The smallest possible non-polytopal
spheres happen in dimension 3 (Steinitz’s Theorem implies that every sim-
plicial 2-sphere is polytopal) and with 8 vertices. An example is Barnette’s
sphere, closely related to Schönhardt’s polyhedron and the mother of all
examples. Its set of maximal facets is:

1245,2356,1346,
1237,4567,1247,2457,2357,3567,3167,1647,
1238,4568,1258,1458,2368,2568,3148,3648.

See some hints on proving non-polytopality of this configuration in Exer-
cise 9.15.

Saying that a pure simplicial complex K of dimension d is polytopal
is equivalent to saying that it is a regular triangulation of a certain to-
tally cyclic configuration V of rank d + 1. This simple reformulation of
Lemma 9.5.1 allows to break polytopality proofs into two steps:

1. Find a vector configuration V on which K is a triangulation, and:

2. Prove that the triangulation K of V is regular.

In the first step the most difficult part is to guess the right configuration
V to embed your complex. In principle there is nothing we can say about
it except that you should try vector configurations that seem natural, taking
into account where your complex came from. Of course, one can consider
the n×(d +1) entries in a matrix representing V as unknowns; if we already
know that K is a d-sphere then being a triangulation of V is equivalent to
saying that the chirotope of V has the same sign on every facet of K . But
this is not our point here. What we want to stress is that once you have
the right configuration V the rest of the politopality proof gets simplified
by breaking it into these two steps: one more combinatorial and one more
geometric.
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The associahedron as a regular triangulation of a root system

We started this book speaking about the associahedron (Section 1.1) and we
are going to finish it in the same way. In its usual setting, the associahedron
is a simple polytope. In order to profit from what we know about triangu-
lations, what we construct is its polar; put differently, we realize its normal
fan as a triangulation of a vector configuration. The vector configuration
in question is a root system of type A and the construction shows that the
associahedron is an alcoved polytope in the sense Lam and Postnikov [199]
(see Section 1.48).

Let us start by precisely introducing the key elements:

Definition 9.5.24. For each pair of numbers i �= j in {1, . . . ,n} we denote
ai j the vector ei − e j, where {e1, . . . ,en} is the standard basis in R

n.
The root system of type A and rank n−1 is the vector configuration An−1

of these n(n−1) vectors. The positive roots are the subconfiguration A+
n−1

consisting of the
(n

2

)
vectors ai j with i < j.

Both the whole root system and the positive root system are configura-
tions of rank n− 1, since they span the linear hyperplane ∑xi = 0 in R

n.
An−1 is totally cyclic (and centrally symmetric) while A+

n−1 is acyclic: it
consists of the elements where the functional φ(x1, . . . ,xn) = −∑ ixi is pos-
itive. A+

n−1 is not homogeneous but, being acyclic, we can think of it as if
it was a point configuration of dimension n−2.

We use the following notation for their natural sets of labels:

Jn−1 := { i j : 1 ≤ i, j ≤ n, i �= j } , J+
n−1 := { i j : 1 ≤ i < j ≤ n} .

A2
13

A3

14

12

13
23

24

32

31

21

34

32

21

12

23

31

Figure 9.94: The root systems A2 and A3. In the

latter the vectors labeled 41, 42 and 43 are not

visible. Observe that ai j = −a ji and that

ai j +a jk = aik .
It is obvious that each root system is a subconfiguration of the next one:

· · · ⊂ An−1 ⊂ An ⊂ ·· · , · · · ⊂ A+
n−1 ⊂ A+

n ⊂ ·· · .

But we are here more interested in the following natural projection:

Lemma 9.5.25. The following map of labels induces a vector isomorphism
of A+

n−1/{1n} to a subconfiguration of An−2:

J+
n−1 → Jn−2

i j �→
{

i j, if j �= n

i1, if j = n

Proof. The following matrix sends a1n �→ 0, ain �→ ai1, and ai j �→ ai j if
i, j < n: ⎛

⎜
⎜⎜
⎝

1
2 − 1

2 . . . − 1
2

1
2

0 1 . . . 0 0
...

...
. . .

...
...

0 0 . . . 1 0

⎞

⎟
⎟⎟
⎠

.
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How can we relate the associahedron to the root system of type A? One
way is to describe each triangulation of a polygon by its edges rather than
its triangles. Each edge joins two vertices of the polygon, say, the ones
labeled i and j, so we can associate a positive ai j root to it. This allows us
to think of each triangulation of the polygon as a subset of positive roots.
But to save one dimension in the root system we label the possible interior
edges not by the vertices they join but by the first and last boundary edges
they cover. More precisely:

• Let Cn+1 denote a convex (n + 1)-gon. Mark one of its boundary
edges as a reference edge, and label the other n edges with the num-
bers 1 to n, in their boundary order.

• We label the interior diagonals with J+
n−1 using i j to label the diago-

nal covering the boundary edges i to j. Observe that we even get a
label 1n for the reference edge. We do not need labels for the other
boundary edges.

See Figure 9.95 for the case n = 5, where the reference edge appears as
the only upper envelope edge. The “reference edge” idea appeared already
in Section 1.1, to prove the bijection between triangulations of the polygon
and binary trees (Theorem 1.1.3). The particular way of drawing polygons
with a unique upper edge was also used in Section 6.1.

14

3

5

42

1

3

1 5

42

3

1 5

42

34

4512

23

13
24

35

25 14

Figure 9.95: Labelling of the nine interior

diagonals of a hexagon.

Try not to get confused by our use of the index n + 1, n−1, etc. For the
root system, we use the canonical convention that An−1 denotes a system of
rank n−1 (which, for us, means dimension n−2). The labels i and j of its
elements go from 1 to n, so they correspond to labelling the diagonals of an
(n+1)-gon. That is why the diagonals of an (n+1)-gon label the elements
of the configuration A+

n−1.
We now introduce the simplicial complex we want to realize.

Definition 9.5.26. To each triangulation T of the (n+1)-gon we associate
the susbet of J+

n−1 consisting of the diagonals used by it. We call associahe-
dral complex, and denote it Kn−1, the simplicial complex whose facets are
the subsets of Jn−1 so obtained. We call extended associahedral complex
the complex Kn−1 := Kn−1 ∗ {1n}.

Example 9.5.27 (The associahedral complex of a pentagon). As seen in
Figure 9.96, the five triangulations of a pentagon make K3 consist of five
edges {12,13},{12,34},{13,23},{23,24},{24,34} so it is a cycle of
length five. The extended complex consists of five triangles, obtained join-
ing the cycle to a sixth vertex labeled 14.

13

1234

24

23

14

13

1234

24

23

K3

K 3

Figure 9.96: The non-extended (top) and

extended (bottom) associahedral complexes K3

and K3 ∗{14}.

We are now ready to state the main result we want to prove in this section:

Theorem 9.5.28. 1. The extended associahedral complex Kn−1 is a
regular triangulation of the positive root system A+

n−1.

2. The associahedral complex Kn−1 is, under the inclusion An−2 ⊂
A+

n−1/1n mentioned in Lemma 9.5.25, a regular triangulation of the
root system An−2.
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23

31

13

12

32

21

Figure 9.97: The extended associahedral

complex K3 as a triangulation of the positive root

system A2.

Observe that in Part 2 the triangulation in question does not use all the
elements of An−2, since the inclusion is not surjective. See Figure 9.97 for
an example.

The second statement follows from the first one and Lemma 9.5.25, since
linkT (i) is a regular triangulation of A/i for every regular triangulation T
of A. So, we only need to prove Part 1. For this we first prove that Kn−1 is
a triangulation and then that it is regular.

Lemma 9.5.29. Kn−1 is a triangulation of the positive root system A+
n−1.

Proof. According to Corollary 4.5.20, to prove that Kn−1 is a triangulation
of A+

n−1 it suffices to check the following two properties (ICoP) and (SFP).

(ICoP) There are exactly two full-dimensional simplices F ∪ s and F ∪
s′ in Kn−1 containing every codimension-one simplex (ridge) F
in Kn−1 not contained in a facet of convA+

n−1. Moreover, they lie
on opposite sides of the hyperplane spanned by F (Intersection Co-
circuit Property).

(SFP) There is a codimension-one simplex F in Kn−1 that is a facet of
A+

n−1 and contained in a unique full-dimensional simplex of Kn−1

(Simplicial Facet Property).

We start with (ICoP), for which we show that:

• If a ridge F does not contain the element 1n then it lies in a facet
of convA+

n−1. In this case, F “is” a triangulation of Cn+1 in which
we have removed the reference edge 1n. We look at the third vertex
v of the triangle containing the reference edge, which separates two
boundary edges j and j + 1, for some j ∈ {1, . . . ,n−1}. Then, F is
contained in the facet of convA+

n−1 defined by the inequality

j

∑
i=1

xi −
n

∑
i= j+1

xi ≥ 0.

Indeed, this functional vanishes on all diagonals not covering v
(which is the case for those in F) and it equals 2 on the diagonals
covering v. See Figure 9.98.

i+1

1 n

i

Figure 9.98: A ridge F in Kn−1 not containing 1n

is a triangulation of Cn+1 considered without its

reference edge. It is divided in two by a vertex v,

which we use to show that F lies in a facet of

convA+
n−1.

• If a ridge F contains 1n then it is contained in two full-dimensional
simplices of Kn−1, and these two lie in opposite sides of F .

Now F is obtained by removing an interior edge from a triangulation.
The first part of (ICoP) is then obvious: there are exactly two ways
in which a diagonal can be inserted back: the diagonal we removed,
and the one obtained by a flip. The rest of (ICoP) is stating that

The two simplices T1 and T2 of Kn−1 corresponding to
two triangulations that differ by a flip lie, when realized
on A+

n−1, on opposite sides of their common facet F .
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Figure 9.99: A ridge F in Kn−1 containing 1n is a

triangulation of Cn+1 without an edge. It is

contained in exactly two full-dimensional

simplices T1 and T2, corresponding to

triangulations joined by diagonal flip.

j

l

j +1 k
k +1

i+1

Figure 9.100: The six diagonals involved in a flip

between triangulations of Cn+1.

Proving this can be done via the unique circuit contained in the union
of T1 and T2. The simplices lie on opposite sides of F if and only if
the elements s and s′ not in the F are on the same side of the circuit.
Figure 9.100 shows the six diagonals of the n-gon involved in the flip.
Four of them alone give us the desired circuit. Namely:

ai+1,k + a j+1,l = ai+1,l + a j+1,k.

Observe that the bottom edge a j+1,k might not be a diagonal but a
boundary edge of the polygon, if k = j + 1. In this case the circuit
becomes ai+1,k + ak,l = ai+1,l.

For (SFP), we consider the facet of A+
n−1 defined by the inequality

x1 −
n

∑
i=2

xi ≤ 2.

This inequality is tight exactly on the elements a1i. Since the diagonals {1i :
i = 1, . . . ,n− 1} form a triangulation of Cn+1 and are clearly independent
as elements of A+

n−1, the property is fulfilled.

Lemma 9.5.30. Kn−1 is the regular triangulation of A+
n−1 induced by the

height vector (ωi j)1≤i< j≤n defined as

ωi j = −(i− j)2.

Proof. Once we know that Kn−1 is a triangulation, to prove regularity we
simply need to check that every pair of adjacent full-dimensional simplices
are lifted “convex” by ω . As before, such a pair of simplices corresponds
to two triangulations that differ by a flip, for which we recall that the circuit
contained in them is

ai+1,k + a j+1,l = ai+1,l + a j+1,k,

where, if i < j < k < l, {ai+1,k,a j+1,l} are the “positive part” of the circuit,
that is, the one not contained in the common facet. Saying that ω lifts this
particular ridge convex is the same as saying that

ωi+1,k + ω j+1,l > ωi+1,l + ω j+1,k, ∀i < j < k < l, (9.57)

ωi+1,k + ωk,l > ωi+1,l ∀i < k < l. (9.58)

(The second equation is there for the degenerate case when j + 1 = k). If
we let a = j − i, b = k− j− 1, and c = l − k, so that l − i− 1 = a + b + c,
l− j−1 = c + b and k− i−1 = b + c, we have:

ωi+1,k + ω j+1,l = −(b + c)2− (a + b)2

> −(a + b + c)2−b2 = ωi+1,l + ω j+1,k.

Observe that since A+
n−1 is acyclic, we are allowed to use negative heights

for our lifts. If you, however, prefer positive ones, change the definition of
ω to ωi j = n2 − (i− j)2, for example.
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Remark 9.5.31. From the proof of Lemma 9.5.30 it follows that in fact we
can choose different values of the heights ωi j. The only conditions we need
them to satisfy are equations (9.57) and (9.58).

We finish with the explicit statement of how the associahedron is an al-
coved polytope. For this we need to take Theorem 9.5.6 into account. Re-
member that in that theorem the heights ωi chosen for a regular triangula-
tion of a vector configuration were the same as the right hand sides for the
facet-defining inequalities of the polar polytope. We need to translate equa-
tions (9.57) and (9.58) that produce heights giving Kn−1 as a regular trian-
gulation of A+

n−1 into conditions for heights giving Kn−1 = linkKn−1
(1n)

as a regular triangulation of An−2. Lemmas 4.2.20 and 4.2.24 solve the
problem: the same heights work, as long as we take ω1n = 0. Hence:

Corollary 9.5.32. Let (ωi j)1≤i< j≤n be real numbers satisfying equations
(9.57) and (9.58) and with ω1n = 0. Then, the following system of inequali-
ties defines a (n−2)-dimensional simple polytope in R

n−2 combinatorially
isomorphic to the associahedron:

〈ai j,x〉 ≤ ωi j, ∀1 < i < j < n,

−ωin ≤ 〈a1i,x〉 ≤ ω1i, ∀1 < i < n,

Example 9.5.33. If we let n = 4, the system of inequalities we need for our
heights (already taking ω14 = 0) is

ω12 + ω24 > 0,

ω13 + ω34 > 0,

ω12 + ω23 > ω23,

ω23 + ω34 > ω24,

ω13 + ω24 > ω23.

A simple solution is to take the five heights equal to 1. This gives as our
associahedron precisely the polar of the shaded region of Figure 9.97.

The associahedral complex was first constructed by Stasheff in 1963 [309]
in the context of homotopy theory. The associahedron as a polytope was
first realized by Haiman (unpublished, 1984), then by Lee in 1989 [205].
The first construction of it related to the root system of type A is probably
in [136], where Gelfand et al. prove Part 1 of Theorem 9.5.28 and derive
from it that the volume of the convex hull of the positive root system A+

n is
the Catalan number Cn = 1

n+1

(2n
n

)
. Fomin and Zelevinsky [126] have later

introduced an “associahedral complex” for every root system of any type
and, together with Chapoton, [76] they proved it to be polytopal. Another
generalization was introduced by Carr and Devadoss in 2006 [72]. They
construct a graph associahedron by considering connected subgraphs of
any given graph G, and retrieve the standard associahedron for the case of
a path. A different, simple construction of the associahedron was given by
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Loday [217] and generalized by Hohlweg and Lange [164]. Ultimately, all
these associahedra and their genralizations fit into the theory of generalized
permutahedra introduced by Postnikov [258].

Exercises

Exercise 9.1. Compute explicitly the fiber polytope of an octahedron pro-
jected to a hexagon. Use either the Minkowski sum of finitely many fibers
or use the method outline from Lemma 9.1.16 where one first computes the
secondary polytope of a hexagon and then projects.

Figure 9.101: A non-coherent mixed subdivision

of 6 ·D3.

Exercise 9.2. Construct a 3-dimensional “screw-like” polytope, i.e., a 3-
dimensional polytope such that some of its ψ-monotone paths are not co-
herent (see Lemma 9.1.3).

Exercise 9.3. For a point configuration A we call Baues complex of A the
order complex of the poset of proper subdivisions of A (by proper we mean
that the trivial subdivision is excluded). Prove:

1. If the graph of triangulations of A is connected, then the Baues com-
plex of A is connected.

2. If A is in general position and its graph of triangulations is not con-
nected, then the Baues complex of either A or a subconfiguration of
it is not connected.

Exercise 9.4. Show That Figure 9.101 represents nonregular subdivision
of D3 ×D6. Figure 9.102: A coarsest non-regular subdivision

of D3 ×D7.

Exercise 9.5. Show how Figure 9.102 represents a coarsest nonregular sub-
division of D3 ×D7.

Exercise 9.6. Consider the Cayley embedding P of a rectangle abcd and
a 90-degree-rotated copy a′b′c′d′ of it. Show by using the Cayley trick
that there is a triangulation of P without new vertices using the cyclic set
of diagonals {aa′,bb′,cc′,dd′} if and only if the rectangle is not a square
(compare [266]).

Exercise 9.7. List all the combinatorially different fine mixed subdivisions
of the Minkowski sum of two equal squares. There are nine of them. Taking
into account that the Cayley trick makes these objects correspond to trian-
gulations of the 3-cube, why are there only six combinatorially different
triangulations of the latter?

Exercise 9.8. Find a formula for the number of all the unimodular triangu-
lations of a 2×n grid.

Exercise 9.9. For a simplex S with vertices a0, . . . ,ad , consider the cone
of all nonnegative integer combinations of (a0,1), . . . ,(ad ,1) and the paral-
lelepiped Π = {x : λ1(a1,1)+ λ2(a2,1)+ · · ·+ λd(ad ,1) with 0 ≤ λi < 1}
(half-open). Prove that the Ehrhart function of the σ is equal to iσ (n) =
∑d

i=0 δi
(n−i+d

d

)
, where δi is the number of lattice points in Π at level i.
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Exercise 9.10. Consider the lattice-free simplices Δp,q in dimension three,
classified in Theorem 9.3.12.

1. Find explicitly an unimodular transformation that sends Δp,q to Δp′,q,
assuming that p′ = ±p±1 (mod q).

2. Show that the group of unimodular symmetries (lattice transforma-
tions) that send Δp,q to itself has the following order. (Hint, look at
Figure 9.68):

• Twenty four, if q ≤ 2.

• Eight, if p = ±1 (mod q) and q ≥ 3.

• Either four or two, otherwise. You can even try to show that the
case of order four arises if and only if p2 = ±1 (mod q).

Exercise 9.11. Let Δ be a lattice unimodular simplex. Consider the lat-
tice regular subdivision of kΔ obtained assigning to each lattice point p the
height:

ωp = ∑
F a facet of Δ

−dist(F,p)2.

Prove that this subdivision coincides with the subdivision obtained cutting
kΔ with all the lattice translations of the facets.

Exercise 9.12. (Open) Prove that all matroid polytopes have a unimodular
regular triangulation. This would be implied by a proof of N. White’s open
conjecture that the toric ideal of a matroid polytope has a quadratic square-
free Gröbner bases [333]. See also [56] and references therein.

Exercise 9.13. Prove that a Gröbner basis of an ideal I is always a generat-
ing set for I.

Exercise 9.14. 1. Finish the proof of Lemma 9.5.13.

2. Prove that the inverse relation, giving the h-vector from the f -vector,
is the one in Lemma 9.5.14.

Exercise 9.15. Show that Barnette’s sphere, described in Remark 9.5.22, is
indeed a 4-sphere and that it is not polytopal. Use the following ideas:

1. To show that it is sphere, start with the boundary complex L of a
triangular prism with facets 123,456,1245,2356,1346, and consider
the suspension of it on two new elements 7 and 8. This suspension is
the join with the complex consisting of two isolated vertices {7,8},
so it has two facets F ∗7 and F ∗8 for each facet F of L , so it consists
of four tetrahedra and six square pyramids, namely:

• The tetrahedra 1237, 4567, 1238, 4568, and

• The square pyramids with apices at 7 and 8 and bases at the
quadrilaterals 1254, 1364 and 2365 (vertices of each quadrilat-
eral are given on order).



9.5. Polytopal complexes and regular triangulations 511

Each pair of pyramids with the same base, if glued together, form a
solid octahedron. Show that Barnette’s sphere is obtained by a simple
topological re-triangulation of each of these three octahedra into five
tetrahedra.

2. If the Barnette sphere was polytopal, then it would be a regular trian-
gulationT of a certain (totally cyclic) rank 4 vector configuration V.
By Lemma 4.2.17, we could delete elements 7 and 8 and have the rest
of the complex T \{7,8} be extendable to a regular triangulation of
the deleted configuration V \ {7,8}. That is: there would be a rank
4 configuration V\ {7,8} and a regular triangulation of it containing
the tetrahedra 1245,1346,2356 and the triangles 123,456. Note that
V\ {7,8} may or may not be acyclic.

3. Show that such a configuration and regular triangulation cannot exist.
You can do show with arguments similar to those proving that Schön-
hardt’s polyhedron is not triangulable (cf. Example 3.6.1) or using
Gale transforms: observe that Gale(V\ {7,8}) should have rank 2.
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in special position, 51, 77
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fan, 490
subdivision, 262, 490
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complex, 246, 248, 344, 443, 493
equation, 406
fan, 246

chirotope, 280, 377
circuit, 72, 73, 151

balanced, 411
flip supported at, 186
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circuit property, 154, 159
for triangulations, 154, 159, 160

clause, 414
closure property, 54, 149
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cocircuit, 156
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cocircuit property, 159
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compatible subdivision, 441
cubical flip, 437
face flip, 435
monotone path, 435
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combinatorially equivalent, 164, 278
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extended, 505

chamber —, 246, 248, 344, 493
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complex torus, 25
cone
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normal, 491
outer normal —, 47
pointed, 45, 79
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triangulation, 14

conical hull, 77
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homogeneous, 174
convex
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hull, 1, 43
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position, 108, 143
triangulation, 55

coplanarity condition, 71, 223
corank, 49, 72, 77
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cover
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cubical flip, 437

coherent, 437
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canonical projection, 283
characteristic section, 283, 284
downflip, 276, 286

support, 286
downward

circuit, 283
flip, 276
flip support, 286
signature, 283

lower facets, 281
stackable triangulation, 289
Stasheff-Tamari
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second poset, 285

upflip, 276, 286
support, 286

upper facets, 281
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circuit, 283
flip, 276
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signature, 283

D
Dehn-Sommerville relations, 500
Delaunay

subdivision, 58
triangulation, 56–58, 97

algorithms for, 102
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deletion, 86, 113, 289

non-extendable, 344
dependent, 44
diagonal flip, 7, 120
dimension, 45, 49, 50
dissection, 318, 431
division algorithm, 479
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E
edge, 44

light —, 105
locally Delaunay, 99
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Euler’s formula, 87

Eulerian numbers, 327
triangle, 327

evaluation signature, 156
exponent vector, 22
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lexicographic, 204
extremal, 51, 52

F
face

flip, 434
coherent, 435

lower, 55, 60
of a cone, 45
of a configuration, 51, 78
of a subdivision, 46
proper, 51, 78

face property, 191, 192
for maximal cells, 195

facet, 44
mixed, 23
of a configuration, 51, 78
of a simplicial complex, 493
width, 474

fan
central —, 490
chamber —, 246
complete, 46
normal, 16
normally equivalent, 47
outer normal —, 47
pointed, 46
polyhedral, 46
secondary —, 17

feasible, 14
fiber

over a point, 82, 442
polytope, 433, 441

finitely generated, 479
flip, 7, 75

direction, 285
adjacency oracle, 124
cubical —

coherent, 437
face —, 434

coherent, 435
insertion-deletion, 120
monotone, 137, 236, 237, 343
of compatible subdivisions, 441
parallel flip, 131
simultaneous flips, 131
successor oracle, 124

folding condition
strict, 223
strict local, 71

weak, 223
folding form, 223
frame polytope, 427
free Hilbert cover property, 473
full-dimensional, 62, 79

G
Gale

affine diagram, 261
evenness, 280

gaps, 280
transform, 77, 160, 244

of the mother of all examples,
339

triangulation, 55
general position, 97, 362
generalized associahedron, 34
Generalized Baues Problem, 444
generically rigid, 132
GKZ vector, 215

repeated, 343
globally coherent string, 441
Gröbner

basis, 479
universal, 480, 485

fan, 480
graph

embedded in the plane, 94
of compatible subdivisions, 441
of monotone paths, 435
of triangulations, 7, 76

diameter, 239
disconnected, 359

of triangulations in general position
disconnected, 362

of zonotopal tilings, 437
planar, 94
plane, 94

rooted, 112

H
half-space, 44
height

function, 55
in a poset, 74

homogenization
of a configuration, 48

hull property, 193, 194
for adjacent maximal cells,

201
for maximal cells, 196, 197

hyperdeterminant, 311
hyperplane arrangement, 266
hypersimplex, 311
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I
ideal, 479
incremental, 240
independent, 44
initial

ideal, 479
monomial, 479
term, 479

insertion, 113
integral Carathéodory property, 473
interior cocircuit equation, 402
interior point property, 200, 202
intersection

improper, 63, 79
proper, 63, 79

intersection property, 1, 54, 149, 154
for maximal cells, 195

J
join, 166

of subdivisions, 167

L
l.a.o., 349
label property, 193

for adjacent maximal cells, 202
for maximal cells, 196, 198
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condition, 132
graph, 132

lattice
configuration, 464
linear, 463
polygon, 465
polytope, 464

compressed, 471, 473
facet-width one, 471
normal, 473
width, 471

triangulation, 465
lattice-free

simplex, 469
symmetric, 469

Lawrence
lifting, 265
polytope, 264, 454

lexicographic
extension, 204
triangulation, 182

lifted point configuration, 60
lifting principle, 437
line-stabbing, 399
lineality space, 45, 78
linear

dependence, 160

evaluation, 160
hull, 45
lattice, 463

link
in a triangulation, 488
non-extendable, 344
simplex, 186

literal, 414
LMT-graph, 106
LMT-skeleton, 107
locally acyclic orientation, 349

graph of, 349
locally coherent string, 441

M
map between two graphs, 359
matrix

homogeneous, 49
totally unimodular, 481

maximal cell, 46, 62, 79
Minkowski

cell, 446
projection, 451
sum, 22, 436, 445, 447

mixed
cell, 448
facet, 23
subconfiguration, 448
subdivision, 449
volume, 23

moment curve, 278
monomial order, 479
monotone

cellular string, 439
flip, 137, 236

sequence, 237
flipping, 343
Hirsch conjecture, 434
path, 434

coherent, 435
short, 434

path polytope, 435
of the cube, 459

staircase, 302
mother of all examples, 263, 337, 338

Gale transform, 339
lift, 340
perturbation, 338
secondary polytope, 339

multiple face property, 191
multiple point property, 192

N
neighborly, 412

weakly —, 412

Newton polytope, 22, 480
non-face, 478

minimal, 481
normal

cone, 491
inner, 47
outer, 47

fan, 16, 489
normally equivalent, 47
outer —, 47

normal form
3-CNF, 415
3-conjunctive, 415
conjunctive —, 414
Gauss-Jordan, 216
modulo an ideal, 479
reduced column —, 379

normality, 473

O
octahedron, 350
one-point suspension, 175
order

complex, 116, 444
polytope, 11

oriented
hyperplane, 156
matroid, 149, 164, 278, 338

non-realizable, 164

P
parking function, 33
partial triangulation, 391
permutahedron, 298, 323, 459
pivot, 493
placing triangulation, 96, 179, 221
plane graph

non-crossing, 94
rooted, 112

point configuration, 1, 47, 488
convex hull, 50
cyclic, 278
dependent, 51
double chain, 123
face, 51

proper, 51
facet, 51
in convex position, 51
in general position, 51
in special position, 51
independent, 51
lattice —, 464
lifted, 55
relative interior, 50
spanning, 51
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standard cyclic, 278
unimodular, 301
with many triangulations, 290, 351
zonotopal, 438

polar, 491
polyhedral

complex, 45, 58
anti-star, 46
boundary, 46
link, 46
pure, 46
star, 46
subcomplex, 46

subdivision, 62, 79, 149
polyhedron, 44
polytope, 43, 44

dimension, 44
edge — of a graph, 474
face, 43
fiber —, 441
lattice —, 464
monotone path —, 459
Newton —, 480
normally equivalent, 16, 493
order —, 11
relative interior, 44
secondary —, 7, 17, 44, 215

of the mother of all examples,
339

unimodular, 297
poset, 11, 65, 276

bounded, 277
height, 117
refinement, 65
refinement —, 61, 343

positive
circuits, 152
hull, 45
roots, 33, 504
span, 45, 77

Prim’s algorithm, 101
prism, 167, 168

over a configuration, 168
over a subdivision, 168
top and bottom facets, 295

product
of configurations, 168
of simplices, 294

non-regular triangulations, 306
simplotope, 311
staircase triangulation, 302, 303

of subdivisions, 168
standard — of configurations, 168

proper intersection property
for adjacent maximal cells, 200

for maximal cells, 195
property

circuit —, 154, 159
for triangulations, 154, 160

closure —, 54, 149
cocircuit —, 159

for triangulations, 159, 160
face —, 191, 192
free Hilbert cover —, 473
hull —, 193, 194

for adjacent maximal cells, 201
for maximal cells, 196, 197

integral Carathéodory —, 473
interior point —, 200, 202
intersection —, 1, 54, 149, 154

for maximal cells, 195
label —, 193

for adjacent maximal cells, 202
for maximal cells, 196, 198

multiple face —, 191
multiple point —, 192
proper intersection —

for adjacent maximal cells, 200
for maximal cells, 195

pseudo-manifold —, 155
for maximal cells, 197, 200, 201

union —, 1, 54, 149, 155, 159
for maximal cells, 195–197

pseudo-chamber, 341
complex, 264

pseudo-manifold property, 155
for maximal cells, 197, 200, 201

pseudo-triangle, 131
pseudo-triangulation, 131

pointed, 131
pulling triangulation, 96, 181, 184
pushing triangulation, 179, 184
pyramid, 165

apex, 165
base, 165
over a configuration, 165
over a subdivision, 166

R
radical of a monomial ideal, 482
Radon partition, 73
randomized, 240
rank, 49, 77
ray, 79
ray-shooting, 399
refinement, 65

of subdivisions, 61, 79
poset, 61

long chains, 343
pulling —, 184

pushing —, 184
regular, 69

regular
polytopes, 353
refinement, 69
subdivision, 59, 60
triangulation, 55

relative
interior

of a cone, 45
of a configuration, 50, 77
of a polyopte, 44

volume of a face, 332
residue

modulo an ideal, 479
ring, 479

reverse search enumeration, 123
reversible edge, 349
root system

crystallographic, 32
type A, 504

S
Schönhardt polyhedron, 133, 170

cupolas, 428
skylight, 427

secondary
cone, 221
fan, 17
polytope, 7, 17, 44, 215

diameter, 268
of a prism, 297
of the mother of all examples,
339

shellable, 493
shelling, 88, 493

line —, 489, 494
sign vector, 150
signature, 150

conformal, 150
conformal sum, 150
from dependence, 150

simplex, 1, 44, 62, 79, 83
algorithm, 14, 433

simplexity, 318
simplicial

ball, 84
cell, 79
complex, 54

abstract, 83
cell, 83
edge, 83
facet, 493
geometric, 46, 83
join of two —s, 84



Index 535

link, 84
non-face, 481
pure, 83, 493
size of, 84
star, 84
vertex, 83

join, 166, 453
sphere, 46, 84, 291, 500

boundary, 46
polytopal, 291, 397

sparse system, 24
stable set of a graph, 410
standard triangulation, 7
state polytope, 480
subdivision, 62, 79, 149

cell, 62, 79
cells, 59
central, 262, 490
characteristic section of, 230, 284,

285
coarser, 285
coarsest, 66, 241
compatible, 440

coherent, 441
tight, 440

Delaunay, 97
face, 46
finest, 66
induced, 441
mixed, 449

coherent, 452
fine, 452

mixed regular, 24
path of, 126
trivial, 64

support, 73, 150
of a point, 481
of a vector, 406

supporting hyperplane, 44, 45, 51, 78

T
term order, 479
tight

compatible subdivision, 440
locally coherent string, 441
span, 242, 321, 323
zonotopal tiling, 439

toric

Hilbert scheme, 360
ideal, 480, 481

transversal, 482
tree, 5

binary, 5
minimum spanning, 101

triangulation, 1, 54, 62, 79, 93
coherent, 55
convex, 55
counting all —s, 123
Delaunay —, 97
edge, 94
flip-deficient, 142, 337, 344
full, 2, 94, 409
Gale, 55
greedy —, 103
highly flip-deficient, 347, 358
lattice —, 465
lexicographic, 182
locally minimal, 106
minimum length —, 102, 105
minimum weight —, 102
neighborly, 136
non-regular, 56
number of —s, 107, 268, 291, 351,

396
placing —, 96, 179, 221
pulling —, 96, 181, 184
pushing —, 179, 184
regular, 16, 55, 96
shallow, 412
staircase —, 302, 303
standard — of a unimodular trian-

gle, 472
t-path, 126
topological, 111
triangle, 94
unimodular, 360, 464
weight, 102
weighted Delauney, 55

Tutte’s formula, 112
type (of a circuit), 73

U
unimodular

configuration, 301
cover, 473
lattice simplex, 464

polytope, 297
totally —, 473
transformation, 464
triangulation, 360, 464

union property, 1, 54, 155, 159
for maximal cells, 195–197

universal polytope, 317, 400
unshellable, 494
Upper Bound Theorem, 86

V
vector configuration, 48, 76, 77, 488

acyclic, 78
conical hull, 77
corank, 77
dependent, 77
face, 78

proper, 78
in convex position, 78
in general position, 77
in special position, 77
independent, 77
positive span, 77
rank, 77
relative interior, 77
subconfiguration, 77
totally cyclic, 78
unimodular, 301

vertex, 44, 62, 79
visibility, 96

external, 96
visible, 178
Voronoi

cell, 97
diagram, 56, 97

W
wall, 71, 188

interior, 199
witness —, 188

width, 470

Z
zonotopal tiling, 436, 439, 452

coherent, 437
tight, 436

zonotope, 436, 452
zone, 436
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