

Mathematics and Visualization

Series Editors
Gerald Farin
Hans-Christian Hege
David Hoffman
Christopher R. Johnson
Konrad Polthier
Martin Rumpf

Editors

ABC

Leila De Floriani
Michela Spagnuolo

Shape Analysis
and Structuring
With 156 Figures, 29 in Color and 7 Tables

Leila De Floriani
Department of Computer

and Information Sciences (DISI)

Via Dodecaneso, 35
16146 Genova, Italy

and

University of Maryland
College Park, MD 20740, USA

deflo@disi.unige.it

Michela Spagnuolo
Istituto per la Matematica Applicata

e le Tecnologie Informatiche
Consiglio Nazionale delle Ricerche
Via De Marini, 6

spagnuolo@ge.imati.cnr.it

ISBN 978-3-540-33264-0 e-ISBN 978-3-540-33265-7

Springer Series in ISSN 1612-3786

Library of Congress Control Number: 2007935447

Mathematics Subject Classification Numbers (2000): 68U05, 68U07, 65D18, 65D17

c© 2008 Springer-Verlag Berlin Heidelberg

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting,
reproduction on microfilm or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9,
1965, in its current version, and permission for use must always be obtained from Springer. Violations are
liable to prosecution under the German Copyright Law.

The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective laws
and regulations and therefore free for general use.

Cover image: Gershon Elber, TECHNION, Israel

Cover design: WMX Design GmbH. Heidelberg

Printed on acid-free paper.

9 8 7 6 5 4 3 2 1

springer.com

University of Genova

16149 Genova, Italy

Department of Computer Science

Mathematics and Visualization

1 Introduction

The idea of composing this book arose from the desire to enrich and systematise
the extensive state-of-the-art studies that were carried out within the framework of
AIM@SHAPE, a Network of Excellence funded by European Commission under
the FP6-IST 1. The main goal of the network is to develop new methodologies for
modelling and processing knowledge embedded in digital shapes.

Current approaches to modelling are focused on the geometry of shapes, while
their semantics, e.g., meaning or functionality in a given context, is still overlooked.
This is partly due to the lack of methods for the automatic extraction of the se-
mantic content from digital shapes, known as the process of semantic annotation in
research areas related to the development of the Semantic Web, and partly to the
evolution of research on shape modelling which in the past years was highly focused
on the geometric aspects of shapes. The shift from a purely geometric to a semantic-
aware level of representation of digital shapes is the ultimate scientific objective of
AIM@SHAPE.

In this scenario, a crucial role is played by geometry processing methods that are
aimed to preserve and enhance shape information as well as to effectively capture
the structure of a shape by identifying relevant shape components and their mutual
relationships. Each chapter of the book provides a detailed state-of-the-art review
on a specific topic, which is crucial for shape analysis and structuring, contains a
classification of the techniques developed in the area, and discusses open problems.

Structural analysis play a fundamental role in the automatic extraction of seman-
tic information. While shapes are fully characterized by a specific geometry, shape
information is treated differently by the human brain with respect to several other
forms of information. At a geometric level, a digital shape is a computational struc-
ture which defines a geometric representation. Different types of geometric models
can be used to describe the same object. Examples are polygons, surface models
(e.g., splines, NURBS surfaces), or solid models (e.g., triangle or tetrahedral meshes,
boundary representations, constructive volumetric representations). The structural
level in the representation is reached by organizing geometric information to reflect,
or make explicit, the association between the various components of the shape. A
structural description is the basis for developing semantic-based shape representa-
tions, since it abstracts from the low-level, detailed, description provided by a geo-
metric model.

Several techniques have been developed in the literature for processing different
aspects of the geometry of shapes, in particular shape interrogation and re-meshing
techniques enhance a shape description with information which can be effectively
used to attach semantics to the shape. Shape interrogation is the process of extract-
ing information from a geometric model. Geometric models need to be analyzed
with respect to different aspects, such as visual pleasantness, technical smoothing,
geometric constraints, or surface intrinsic properties. The various methods devel-

1 AIM@SHAPE, http://www.aimatshape.net

VI Introduction

oped in the literature are used to detect surface imperfections, to analyze shapes, or
to visualize different forms. Such methods are reviewed in Chapter one.

Re-meshing is often used for efficient shape approximation, and it consists of
repartitioning a set of primitives so that they best fit the original shape. Re-meshing
preserves the shape, in the sense that it still approximates the shape after re-meshing,
and it can be designed to enhance the shape. Every shape feature is locally fit with a
primitive that minimally characterizes the shape. In addition, some recent re-meshing
techniques operate through a careful analysis based on multi-scale discrete differen-
tial geometry so as to estimate the main (and detailed) axis of symmetry of the shape.
The shape is, thus, locally classified as spherical, parabolic, elliptic, and hyperbolic
in order to drive the re-meshing process. Such classification may be also used for
shape enhancement. Chapter two presents a survey on re-meshing techniques.

A first way of structuring shape information is provided by those techniques that
organize a geometric shape description defined by a function, by a mesh, or by a set
of points into a representation of the shape at different levels of resolutions, from
which concise and adaptive shape descriptions can be extracted. This topic has re-
ceived considerable attention in recent years in many fields of computer graphics,
geometric modelling and visualization, and numerous research efforts have been de-
voted to it. This book contains two chapters on focused on multi-resolution analysis,
and the other on subdivision surfaces.

Multi-resolution analysis provides a powerful tool for efficiently representing
functions at multiple levels of detail. Herein, a complex function is decomposed into
a coarser low-resolution part, together with a collection of detail coefficients, nec-
essary to recover the original function. Multi-resolution analysis has many inherent
advantages, including compression, progressive transmission, visualization and edit-
ing at different levels of detail. An overview of methods for multi-resolution analysis
is presented in Chapter three.

Subdivision surfaces define the basis for generating a smooth surface from a
coarse mesh, and, thus, they have bees extensively used in geometric modeling for
creating, editing and transmitting a shape. The surface is defined by the initial coarse
mesh plus a subdivision scheme to progressively subdivide the mesh by inserting
new vertices and connecting them to the edges and faces until a smooth surface is
obtained in the limit. Chapter four contains a review of surface subdivision schemes
and their application in geometric modeling.

The third part of the book is devoted to structural shape representations. In the
above framework, many research efforts have been devoted to study concise, struc-
tural representations of a shape based on skeletal structures, such as the medial axis,
or the Reeb graph. Skeletal structures provide an abstract shape representation by
idealized lines that retain the connectivity of the original shape. In advanced fields,
such as virtual human modeling, available modeling tools to represent structured
geometry focus on adding a skeleton to the 3D geometry in order to animate it and
provide different degrees of realism. A survey of different skeletal structures is pre-
sented in Chapter five.

Another class of structural representations is provided by morphology-based de-
scriptions for scalar and vector fields. There has been a considerable amount of work

Introduction VII

in the literature on extracting critical features (point, integral lines, etc.) from two-
dimensional scalar fields describing grey-level images and terrains, and, more re-
cently, some work has been done on volume data on extracting critical features and
for representing the topological structure of the field iso-surfaces. A survey of mor-
phological representations for two-dimensional and three-dimensional scalar fields
is presented in Chapter six.

Topological methods based on features, like critical points or separatrix lines,
have also been applied for the analysis of vector fields. The basic idea is to use such
features for segmenting the flow into areas of different flow behaviour, and use this
as a tool for understanding complex phenomena described by the vector fields. After
introducing topological features for two-dimensional and three-dimensional vector
fields, Chapter seven presents a survey of methods for extracting topological fea-
tures from vector fields and using them as visualization tools for complex flow phe-
nomena, represented both as static and dynamic fields. Applications of topological
methods for compressing, simplifying, comparing, and constructing vector fields are
also discussed.

The last part of the book, namely Chapter eight, provides a review on the use
of structural data for modelling shapes with a high semantic characterization, e.g.,
virtual humans. In this case, the structural model, called the control skeleton, has
by itself a specific role in the evaluation of the many different shapes associated
with all the possible postures that the body model can reach. The first part of the
Chapter discusses the control articulated skeleton structure and different approaches
to build skeletons and bind it to the shape geometry. The second part addresses the
generation of level-of-detail models for virtual humans, in terms of the geometry and
of the articulated skeleton.

We would like to acknowledge the work of all the authors of the various chapters
in this book, that contributed with their expertise and energy to assemble a substantial
part of state-of-the-art reports on a variety of interesting topics. Our special thanks go
to Bianca Falcidieno, the coordinator of the AIM@SHAPE Network of Excellence,
for her enthusiasm and support in this work and for having inspired much of the
motivations of this collection, and to all partners in AIM@SHAPE. Many people
contributed to the preparation of the book, and we would like to thank specifically
Emanuele Danovaro for his invaluable help in editing and preparation.

Finally, we would like to acknowledge the support of the European Network of
Excellence AIM@SHAPE, contract number 506766.

Leila De Floriani Michela Spagnuolo

Contents

1 Introduction . V

Shape Interrogation
Stefanie Hahmann, Alexander Belyaev, Laurent Busé, Gershon Elber,

Bernard Mourrain, Christian Rössl . 1
1 Introduction . 1
2 Differential Geometry of curves and surfaces . 2

2.1 Curves . 2
2.2 Surfaces . 3

3 Interrogation of discrete shapes . 5
3.1 Surface Normal Estimation . 5
3.2 Curvature Tensor Estimation . 6
3.3 Applications to Discrete Shape Analysis . 8

4 First-Order Shape Analysis . 9
4.1 Reflection lines . 9
4.2 Highlight lines . 10
4.3 Isophotes . 11
4.4 Detection of inflections . 12
4.5 Geodesic paths on surfaces and meshes . 13

5 Second-order shape analysis . 13
5.1 Local shape analysis with Gaussian curvature 14
5.2 Focal Surface and Corresponding Surface Features 15
5.3 Hedgehog diagrams and curvature plots . 17
5.4 Generalized focal surfaces . 18
5.5 Color mappings . 19

6 Characteristic lines . 20
6.1 Isolines . 21
6.2 Lines of curvature, umbilics . 22
6.3 Curvature Extrema for Shape Interrogation . 22
6.4 Special Surface Points . 24

7 Robust Symbolic based Shape Interrogation and Analysis 25

X Contents

7.1 Curvature Analysis . 26
7.2 Silhouette, Isoclines/Isophotes and Reflection lines 28
7.3 Surface Recognition . 28

8 Interrogation of algebraic curves and surfaces . 30
8.1 Subdivision methods . 32

Univariate polynomials . 32
Multivariate polynomials . 33
Univariate Root Solver . 34
Multivariate root finding . 34

8.2 Algebraic methods . 35
Resultant-based methods . 35
Normal forms . 39

9 Conclusion . 41
References . 42

Recent Advances in Remeshing of Surfaces
Pierre Alliez, Giuliana Ucelli, Craig Gotsman, Marco Attene 53
1 Introduction . 53

1.1 Remeshing . 54
1.2 Applications . 54
1.3 Main Issues . 54

2 State of the Art . 56
2.1 Structured Remeshing . 57

Semi-Regular . 57
Completely Regular . 61
Highly Regular . 62

2.2 Compatible Remeshing . 63
2.3 High Quality Remeshing . 66
2.4 Feature Remeshing . 71

Feature-preserving . 72
Feature-enhancing . 73

2.5 Error-driven Remeshing . 74
References . 78

Multiresolution Analysis
Georges-Pierre Bonneau, Gershon Elber, Stefanie Hahmann, Basile Sauvage . . 83
1 Introduction . 83
2 Hierarchical Freeform Representations . 84
3 Multiresolution Methods for Freeform Representations 85

3.1 Wavelet Decomposition of B-spline Functions 86
3.2 Direct Freeform Curve and Surface Manipulation 88
3.3 Linear Constraints . 91
3.4 Bi-Linear and Non-Linear Constraints . 92
3.5 Intrinsic Multiresolution Decomposition of Freeform Shapes 96
3.6 Multiresolution Morphing . 98

Contents XI

3.7 Variational Multiresolution Methods for Freeform Surface 100
Variational Shape Design . 101
Variational Multiresolution Modeling . 102

4 Multiresolution Analysis for Irregular Mesh-based Representations 102
4.1 Irregular Triangulations . 103
4.2 Surface Meshes . 108

5 Conclusions and Open Issues . 109
References . 110

Subdivision Surfaces and Applications
Chiara Eva Catalano, Ioannis Ivrissimtzis, Ahmad Nasri 115

1 Introduction . 115
2 Subdivision basics . 116

2.1 Subdivision schemes . 116
2.2 Subdivision analysis . 118

Laurent polynomials . 118
Spectral analysis of the subdivision matrix . 119
The continuity degree of subdivision surfaces 120

3 Artifacts in subdivision surfaces . 120
3.1 First order artifacts . 121
3.2 Second order artifacts . 123
3.3 Higher level artifacts . 126

4 Implementation and usability issues . 128
4.1 Direct evaluation of subdivision surfaces . 128
4.2 Visual quality and shape predictability . 129
4.3 Multi-resolution subdivision surfaces . 131

5 Constraint-based subdivision surfaces . 131
5.1 Point interpolation . 132
5.2 Interpolation with normal constraints . 132
5.3 Interpolation of isolated curves . 132
5.4 Interpolation of isolated curves with cross derivative 135
5.5 Lofted subdivision surfaces . 135
5.6 Interpolation of a net of curves . 137
5.7 Non-uniform subdivision surfaces . 138

6 Conclusions . 138
References . 140

Skeletal Structures
Silvia Biasotti, Dominique Attali, Jean-Daniel Boissonnat, Herbert
Edelsbrunner, Gershon Elber, Michela Mortara, Gabriella Sanniti di Baja,
Michela Spagnuolo, Mirela Tanase, Remco Veltkamp . 145
1 Introduction . 145

1.1 Overview . 146
2 Definitions of geometric medial structures . 148
3 Exact representation of medial structures . 150

XII Contents

3.1 Bisectors for freeform shapes . 150
3.2 Exact computation of the medial axis . 154

4 Approximation of the medial axis . 156
4.1 Skeletons from Voronoi Diagrams . 157

Instability and semi-continuity . 157
Approximation paradigm for the medial axis . 158
Punctured Euclidean spaces . 159
Pruning the Voronoi graph . 160

4.2 Skeleton trough the simulation of the grassfire 161
Straight skeleton . 161
The Linear Axis . 163

4.3 Skeletons based on topological thinning . 164
4.4 Skeletons from distance maps . 166

5 Skeletons from topological structures . 168
5.1 Methods based on wavefront propagation . 169
5.2 Methods based on the Reeb graph . 172

6 Conclusions and future developments . 175
References . 177

Morphological Representations of Scalar Fields
Silvia Biasotti, Leila De Floriani, Bianca Falcidieno, Laura Papaleo 185

1 Introduction . 185
2 Background Notions . 186

2.1 Cell and Simplicial Complexes . 186
2.2 Digital Models of a Scalar Field . 188
2.3 Morse Theory . 188
2.4 Morse Complexes and Morse-Smale Complexes 189
2.5 Contour Trees . 191

3 Extracting Critical Points . 193
3.1 Extracting Critical Points from a Piecewise Linear Field 193
3.2 Extracting Critical Points from a Regular Grid 195
3.3 Extracting Critical points from Contours . 196

4 Extracting Approximations of a Morse-Smale Complex 197
4.1 Boundary-based Algorithms on a Simplicial Model 197
4.2 Boundary-based Algorithms on a Regular Model 198
4.3 Region-based Algorithms for Approximating Morse complexes 199
4.4 Generalization of Morse-Smale Complexes . 200

5 Algorithms for Extracting a Contour Tree . 202
6 Concluding Remarks . 207
References . 208

Contents XIII

Topological Representations of Vector Fields
Holger Theisel, Christian Rössl, Tino Weinkauf . 215
1 Introduction . 215
2 Topological features of 2D vector fields . 216

2.1 Concepts . 216
Classification of critical points . 216
Boundary switch points . 218
Separatrices . 218

2.2 Visualizing 2D topology . 219
3 Topological Features of 3D Vector Fields . 220

3.1 Concepts . 220
Critical points . 220
Boundary switch curves . 222
Separatrices . 223
Saddle- and boundary switch connectors . 224

3.2 Visualizing 3D topology . 224
Example: . 226

4 Topological features of time-dependent vector fields 226
4.1 Stream line oriented topology . 227

Tracking critical points . 228
Saddle connections . 229
Tracking closed stream lines . 230

4.2 Path line oriented topology . 231
4.3 An Example: . 231

5 Further applications of topological features . 231
5.1 Compressing vector fields . 232
5.2 Topological simplification of vector fields . 232
5.3 Topological comparison of vector fields . 234
5.4 Constructing vector fields . 236

6 Conclusions . 237
References . 238

Control Structure and Multi-Resolution Techniques for Virtual Human
Representation
Thomas Di Giacomo, HyungSeok Kim, Laurent Moccozet, Nadia
Magnenat-Thalmann . 241
1 Definitions and Background . 241

1.1 Control skeleton definition . 242
1.2 Historical background . 242

2 Skeleton control methods . 243
2.1 Control Techniques . 244
2.2 Space-time Constraints and Controllers . 246

3 Skeleton skinning and skin mapping . 247
3.1 Skeleton skinning . 247
3.2 Skin mapping . 248

XIV Contents

4 Skeleton-driven deformation . 249
5 Generation of Control Skeleton . 253

5.1 Medial axis-based methods . 253
5.2 Template-based methods . 255
5.3 Mesh decomposition based methods . 258

6 Discussion on skeleton for Virtual Humans . 259
7 Multi-Resolution Techniques . 261

7.1 Simplification of Shape and Control Structure 261
Simplification of textured body surfaces . 261
Preservation of Features in Simplification . 263

7.2 Multi-Resolution Modeling for Key Parameters 265
7.3 Discussion on LoD for Virtual Humans . 268

References . 268

Colour Plates: Shape Interrogation . 275

Colour Plates: Recent Advances in Remeshing of Surfaces 277

Colour Plates of the Chapter: Multiresolution Analysis 279

Colour Plates: Subdivision Surfaces and Applications 281

Colour Plates: Skeletal Structures . 285

Colour Plates: Morphological Representations of Scalar Fields 287

Colour Plates: Topological Representations of Vector Fields 289

Index . 293

List of Contributors

Pierre Alliez
INRIA Sophia-Antipolis, France
pierre.alliez@sophia.inria.fr

Dominique Attali
LIS-CNRS, Saint Martin d’Hères,
France.
dominique.attali@lis.inpg.fr

Marco Attene
IMATI-GE, CNR, Italy
jaiko@ge.imati.cnr.it

Alexander Belyaev
MPII, Max Planck Institut für Infor-
matik, Saarbrücken, Germany
belyaev@mpi-sb.mpg.de

Silvia Biasotti
IMATI-GE, CNR, Italy
silvia@ge.imati.cnr.it

Jean-Daniel Boissonnat
INRIA Sophia-Antipolis, France
jean-daniel.boissonnat@inria.fr

Georges-Pierre Bonneau
Université Joseph Fourier, Grenoble,
France,
georges-pierre.bonneau@imag.fr

Laurent Busé
INRIA Sophia-Antipolis, France
lbuse@sophia.inria.fr

Chiara Eva Catalano
IMATI-GE, CNR, Italy
chiara.catalano@ge.imati.cnr.it

Herbert Edelsbrunner
Duke University, Dept. of Computer
Science and Raindrop Geomagic, USA.
edels@cs.duke.edu

Gershon Elber
Technion - Israel Institute of Technol-
ogy, Haifa, Israel
gershon@cs.technion.ac.il

Bianca Falcidieno
IMATI-GE, CNR, Italy
bianca@ge.imati.cnr.it

Leila De Floriani
University of Genova, Dept. of
Computer Science, Genova, Italy
deflo@disi.unige.it

Thomas Di Giacomo
MIRAlab, University of Geneva,
Switzerland
giacomo@miralab.unige.ch

XVI List of Contributors

Craig Gotsman
Technion - Israel Institute of Technol-
ogy, Haifa, Israel
gotsman@cs.technion.ac.il

Stefanie Hahmann
Laboratoire Jean Kuntzmann, Institut
National Polytechnique de Grenoble,
France
stefanie.hahmann@imag.fr

HyungSeok Kim
MIRAlab, University of Geneva,
hyung.kim@acm.org

Ioannis Ivrissimtzis
Durham University, Dept. of Computer
Science, UK
ioannis.ivrissimtzis@durham.ac.uk

Nadia Magnenat-Thalmann
MIRAlab, University of Geneva,
thalmann@miralab.unige.ch

Laurent Moccozet
MIRAlab, University of Geneva,
moccozet@miralab.unige.ch

Michela Mortara
IMATI-GE, CNR, Italy
michela@ge.imati.cnr.it

Bernard Mourrain
INRIA Sophia-Antipolis, France
bernard.mourrain@sophia.inria.fr

Ahmad Nasri
American University of Beirut, Dept.
of Computer Science, Lebanon
anasri@aub.edu.lb

Laura Papaleo
University of Genova, Dept. of
Computer Science, Genova, Italy
papaleo@disi.unige.it

Christian Rössl
INRIA Sophia-Antipolis, France
christian.roessl@sophia.inria.fr

Gabriella Sanniti di Baja
CNR - Ist. di Cibernetica “E. Caianello”,
Pozzuoli, Napoli, Italy.
gsdb@imagm.cib.na.cnr.it

Basile Sauvage
Laboratoire Jean Kuntzmann, Institut
National Polytechnique de Grenoble,
France
basile.sauvage@imag.fr

Michela Spagnuolo
IMATI-GE, CNR, Italy
michi@ge.imati.cnr.it

Mirela Tanase
Universiteit Utrecht (UU), The
Netherlands.

Holger Theisel
Bielefeld University, Germany
theisel@techfak.uni-bielefeld.de

Giuliana Ucelli
IGD / GraphiTech, Italy
giuliana.ucelli@infotn.it

Remco Veltkamp
Universiteit Utrecht (UU), The
Netherlands.
remco.veltkamp@cs.uu.nl

Tino Weinkauf
Zuse Institute Berlin (ZIB), Germany
weinkauf@zib.de

Shape Interrogation

Stefanie Hahmann1, Alexander Belyaev2, Laurent Busé3, Gershon Elber4, Bernard
Mourrain3, and Christian Rössl3

1 Laboratoire Jean Kuntzmann, Institut National Polytechnique de Grenoble, France
Stefanie.Hahmann@imag.fr

2 MPII, Max Planck Institut für Informatik, Saarbrücken, Germany
belyaev@mpi-sb.mpg.de

3 INRIA Sophia-Antipolis, France
lbuse@sophia.inria.fr, Bernard.Mourrain@sophia.inria.fr,
Christian.Roessl@sophia.inria.fr

4 Technion - Israel Institute of Technology, Haifa 32000, Israel
gershon@cs.technion.ac.il

Summary. Shape interrogation methods are of increasing interest in geometric modeling as
well as in computer graphics. Originating 20 years ago from CAD/CAM applications where
“class A” surfaces are required and no surface imperfections are allowed, shape interrogation
has become recently an important tool for various other types of surface representations such
as triangulated or polygonal surfaces, subdivision surface, and algebraic surfaces. In this paper
we present the state-of-the-art of shape interrogation methods including methods for detect-
ing surface imperfections, surface analysis tools and methods for visualizing intrinsic surface
properties. Furthermore we focus on stable numerical and symbolic solving of algebraic sys-
tems of equations, a problem that arises in most shape interrogation methods.

1 Introduction

Shape interrogation is the process of extraction of information from a geometric
model. Surface interrogation is of central importance in modern Computer Graph-
ics and Computer Aided Design (CAD) systems. Wherever geometrical models are
used, they often need to be analyzed with respect to different aspects like, for ex-
ample, visual pleasantness, technical smoothness, geometric constraints or surface
intrinsic properties. The various methods, which are presented in this survey can
be used to detect surface imperfections, to analyze shapes or to visualize different
forms. We not only restrict the shapes to be investigated to free-form surfaces, but
include polygonal meshes as well as algebraic surfaces. Artefacts of subdivision sur-
faces are subject of Chapter 4 of this book [23]. Particular attention is paid to stable
numerical and symbolic solving of algebraic systems of equations, a problem that
arises in most shape interrogation methods.

In Section 2, fundamental notions of differential geometry are briefly recalled.
Interrogation methods for polygonal meshes are discussed in Section 3. First and

2 S. Hahmann et al.

second order shape interrogation and visualization techniques are discussed in Sec-
tions 4, 5, focusing mainly on free-form curves and surfaces. The computation and
visualization of characteristic curves on surfaces is subject of Section 6. Section 7
discusses the use of robust symbolic computation methods for shape interrogation.
Interrogation of algebraic curves and surfaces is finally discussed in Section 8, in
particular the transversal problem of solving of algebraic systems of equations is
described.

2 Differential Geometry of curves and surfaces

Fundamental notions of differential geometry of curves and surfaces that are needed
in the following of the paper will briefly be reviewed in this section. For a complete
bibliography on differential geometry the reader is referred to standard literature
[39, 102, 79, 176].

2.1 Curves

A parametric curve is a mapping x from I = [a, b] ⊂ IR into IRn of class Cr

(r ≥ 1). x is called regular, if dx
dt (t) �= 0 for all t ∈ I . If L is the length of x([a, b]),

there exists a unique parameter transformation s from I into [0, L] such that for all
t0, t1 ∈ [0, L] the length of the arc x([t0, t1]) is equal to s(t1)−s(t0). For all t ∈ [a, b]
s(t) =

∫ t

a
‖dx

dt ‖dt. s is called the arc length parameterization. It is a geometric
invariant of a curve and is therefore also called natural parameterization.
Let x : [0, L] → IR3, s �→ x(s) be a regular and naturally parameterized curve of
class C3, such that ‖x′′(s)‖ �= 0 for all s ∈]0, L[, then

• v1(s) := x′(s) is called tangent vector of x in s.
• v2(s) := x′′

‖x′′‖ is called unit normal vector of x in s.
• v3(s) := v1(s) × v2(s) is called binormal vector of x in s,

where × denotes the vector product (cross product) in IR3. {v1(s), v2(s), v3(s)} form
an orthonormal basis of IR3 called the Frenet frame of x in s.
The following holds: v1, v2, v3 are mappings of class C1, and

v′
1 = κ1v2

v′
2 = −κ1v1 + κ2v3

v′
3 = −κ2v2

where

κ(s) = ‖x′′‖ , τ(s) =
|x′, x′′, x′′′|

‖x′′‖
are mappings of class C1 and C0 respectively. |·, ·, ·| denotes the determinant of the
matrix formed by the three vector arguments. κ and τ are called curvature and tor-
sion of the curve x. The curvature measures the deviation of a curve from a straight
line, and the torsion measures the deviation of a curve from being planar.

Shape Interrogation 3

v
v

v

1

2

3

Fig. 1. Frenet frame.

2.2 Surfaces

A parametric surface is a mapping X from Ω ⊂ IR2 into IR3 of class Cr (r ≥ 1).
X is called regular if for all u = (u, v) ∈ Ω, dXu is an invertible linear mapping.
The two partial derivatives of X in u are denoted by Xu(u) and Xv(u). The affine
subspace TuX := {X(u) + λXu(u) + µXv(u) | (λ, µ) ∈ IR2} is called tangent
plane to X in u.

The unit normal vector field N is given by

N :=
Xu × Xv

‖Xu × Xv‖ .

The moving frame {Xu, Xv, N} is the Gauss frame. The Gauss frame is in general
not an orthogonal frame.

The bilinear form on TuX induced by the inner product of IR3 is called the first
fundamental form of the surface. The matrix representation of the first fundamental
form Iu with respect to the basis {Xu, Xv} of TuX is given by G = (gij) with
i, j = 1, 2: (

g11 g12

g21 g22

)
=

(〈Xu, Xu〉 〈Xu, Xv〉
〈Xv, Xu〉 〈Xv, Xv〉

)
where <,> denotes the scalar product. The first fundamental form Iu is symmet-
ric, positive definite and geometrically invariant. The first fundamental form allows
measurements on the surface (length of curves, angles of tangent vectors, areas of
regions) without referring back to the space IR3, in which the surface lies.

The linear mapping Lu

Lu : TuX → TuX
x �→ dNu ◦ dX−1

u (x)

is called the Weingarten map.
The bilinear symmetric form IIu defined on TuX by

IIu(x, y) = 〈Lu(x), y〉

4 S. Hahmann et al.

is called the second fundamental form of the surface X .
Its matrix in the basis {Xu, Xu} of TuX is denoted H = (hij) with i, j = 1, 2:(

h11 h12

h21 h22

)
=

(〈N,Xuu〉 〈N,Xuv〉
〈N,Xvu〉 〈N,Xvv〉

)
.

The matrix HG−1 of the Weingarten map Lu is symmetric and real and therefore it
has two real eigenvalues κ1, κ2 with corresponding orthogonal eigenvectors. κ1, κ2

are called principle curvatures of the surface X , also labeled as κmax, κmin. The
product of the principle curvatures K = κ1 · κ2 = det(Lu) = det(H)

det(G) is called the
Gaussian curvature and its mean M = 1

2 (κ1+κ2) = trace(Lu) is called the mean
curvature.

Another approach for the principle curvatures is the following: Let A := ∆u ·
Xu + ∆v ·Xv be a tangent vector with ‖A‖ = 1. If we intersect the surface with the
plane given by N and A, we get an intersection curve y with the following properties:

ẏ(s) = A and e2 = ±N

where e2 is the principal normal vector of the space curve y. The implicit function
theorem implies the existence of this normal section curve. To calculate the extreme
values of the curvature of a normal section curve (the normal section curvature) we
can use the method of Lagrange multipliers because we are looking for the extreme
values of the normal section curvature κN with the condition ‖ẏ(s)‖ = 1.

As a result of these considerations we obtain the following. Unless the normal
section curvature is the same for all directions there are two perpendicular directions
A1 and A2 in which κN attains its absolute maximum and its absolute minimum
values. These directions are the principal directions with the corresponding normal
section curvatures κ1 and κ2.

For A = A1 cos ϕ + A2 sin ϕ we get Euler’s formula:

κN = κ1 cos2 ϕ + κ2 sin2 ϕ,

If the principal directions are taken as coordinate axes, Euler’s formula implies the
so-called Dupin indicatrix:

κ1(u)2 + κ2(u)2 = ±1. (1)

We use the Dupin indicatrices as a tool to visualize curvature situations on surfaces.
The Dupin indicatrices at elliptic points (K > 0) are ellipses, at hyperbolic points
(K < 0) pairs of hyperbolas, and at parabolic points (K = 0) pairs of parallel lines.
Flat points (κ1 = κ2 = 0) are degenerated parabolic cases. Points with κ1 = κ2 are
called umbilical points.

Shape Interrogation 5

3 Interrogation of discrete shapes

Polygonal meshes constitute the primary tool for 3D surface representation and are
frequently used in a wide range of scientific applications, including computer graph-
ics, visualization, and numerical simulations. Two fundamental questions of surface
approximation by polygonal meshes concern approximation quality (accuracy) [60]
and the relation between the accuracy and size of the approximation [61]. Recently
both of these questions were also addressed in [29] where a variational approach for
surface approximation by polygonal meshes was developed. Shape approximation
with polygonal meshes is discussed in more detail in Chapter 2 of this book [1].

Accurate estimation of geometric properties of a surface from its discrete approx-
imation is important for many applications. Nevertheless there is no consensus on
how to achieve accurate estimations of simple surface attributes such as the normal
vector and curvatures [122]. An accurate polygonal approximation of surface geom-
etry in a least-squares sense [60, 29] does not guarantee accurate approximations of
surface normals and curvatures by their discrete counterparts [121, 132, 119, 14].
Thus, deriving accurate, consistent, and numerically robust estimates for the surface
normal vector and curvature tensor remains an area of active and creative research
today.

3.1 Surface Normal Estimation

Given a smooth surface approximated by a dense triangle mesh, an accurate and ro-
bust estimation of vertex normals is important for a number of tasks including smooth
shading [66, 156], curvature estimation (see, e.g., [180]), and feature extraction (see,
e.g., [87]).

Usually the normal vector at a vertex of a triangle mesh is estimated as the nor-
malized weighted sum of normals of the incident facets (triangles). A survey of var-
ious methods to estimate the normal vector can be found in [174]. Uniform (equal)
weights are justified in [63] via finite difference approximations. In [180] the weights
are chosen to be equal to the areas of the incident triangles. Weighting by the in-
verse areas was considered in [174, 87], and weights equal to the facet angles at the
vertex are proposed in [185]. A weighting scheme assuming that the mesh locally
approximates a sphere was developed in [120]. The vertex normal vector can be also
obtained from the mean curvature vector and, therefore, mean curvature vector esti-
mates proposed in [37, 122] lead to approximations of the vertex normals. A standard
approach for testing and comparing various methods to estimate surface normals and
curvatures consists of tessellating known (analytical) surfaces and comparing the es-
timates from the resulting mesh and from the original surface [73, 180, 104, 32, 122].
An interesting statistical approach was recently proposed in [125, 126]. First steps
towards a rigorous mathematical analysis and comprehensive comparison of various
weighting schemes are made in [106].

6 S. Hahmann et al.

3.2 Curvature Tensor Estimation

Estimates of the curvature tensor on polygonal meshes are applied in a variety of
applications ranging from the detection of surface defects to the detection of features.
Many techniques have been proposed (see, e.g., [153] for a recent survey), in this
section we provide an overview of different approaches.

In order to estimate the curvature tensor at a vertex a certain neighborhood of this
vertex is considered, typically its 1-ring. A common approach is to first discretize the
normal curvature along edges. Given is an edge (i, j), vertex positions Xi, Xj , and
the normal Ni, then

κij = 2
〈(Xj − Xi), Ni〉
‖Xj − Xi‖2

(2)

provides an approximation of the normal curvature at Xi in the tangent direction
which results from projecting Xi and Xj into the tangent plane defined by Ni. This
expression can be interpreted geometrically as fitting the osculating circle interpolat-
ing Xi and Xj with normal Ni at Xi (cf. [130]). Alternatively, the equation can be
derived from discretizing the curvature of a smooth planar curve (cf. [180]). With es-
timates κij of the normal curvature for all edges incident to vertex i, Euler’s formula
can be applied to relate the κij to the unknown principal curvatures (and principal
directions). Then approximates to the principal curvatures can be obtained either di-
rectly as functions of the eigenvalues of a symmetric matrix ([180, 147]) or from
solving a least-squares problem ([130, 122]). Alternatively, the trapezoid rule is ap-
plied in [188] to get a discrete approximation of the mean curvature M expressed
as the integral over the normal curvatures κN , the Gaussian curvature K is obtained
from a similar integral over κ2

N , then M and K define the principal curvatures. Exact
quadrature formulas for curvature estimation are provided in [107].

Another class of techniques for curvature tensor estimation locally fits a smooth
parametric surface patch and then derives the differential quantities from that. This
leaves the choice for the surface – typically polynomials of low degree – the geo-
metric quantities to interpolate or approximate – e.g., the vertex positions in a 1-ring
neighborhood – and a projection operator to obtain a parameterization – in general
the projection into the tangent plane. A straightforward choice is to consider the
quadratic height surface

z(x, y) = 1
2a20x

2 + a11xy + 1
2a02y

2 ,

for a local coordinate system spanned by the normal Ni (in z-direction) and two
orthogonal tangent vectors (in x- and y-direction) and with origin Xi = 0 [64]. Then
the parameters a20, a11, and a02 obtained as a least-squares solution are the elements
of the symmetric matrix defining the Weingarten map. This can be interpreted as
estimating the normal curvature from parabolas rather than circles (as with (2)) and
then solving a least-squares system like in [122].

In [189] a quadratic Taylor polynomial of different form is applied, namely

X(u, v) = Xuu + Xvv + 1
2u2Xuu + Xuvuv + 1

2v2Xvv .

Shape Interrogation 7

The coefficients of the local least-squares approximating polynomial are the first
and second order partials and hence define the fundamental forms. For robustness
reasons, an exponential map is used as projection operator rather than a simple pro-
jection to the tangent plane.

The use of a cubic approximation scheme which takes into account vertex nor-
mals in the 1-ring is proposed in [64]. As the normals themselves are local estimates,
this effectively enlarges the neighborhood. Again, a least-squares problem is solved
to find the coefficients of a cubic height surface, where the Weingarten matrix is
obtained entirely from the quadratic terms in the same way as before.

In general, least-squares methods may suffer from degenerate cases – even for
reasonable geometric configurations – which lead to ill-conditioned system matrices.
In [189] the polynomial basis is successively reduced in such cases. An alternative
is to provide more samples e.g. from linear interpolation. In [24] the patch fitting
approach is discussed from an approximation theory point of view including robust-
ness and numerical issues. For high-quality and consistent estimation of curvatures
and their derivatives, [145] applies a (rather expensive) global fitting of an implicit
surface to the surface mesh.

In contrast to the previously mentioned techniques, tensor averaging methods
estimate the curvature tensor as an average over a certain region of a polyhedral
mesh. In [30] the curvature tensor is derived building upon the theory of normal
cycles. This work includes a proof of convergence under certain sampling conditions
based on geometric measure theory. The curvature tensor is defined at each point
along an edge, and all contributions are integrated over a small region, see also [2].
A similar discrete curvature measure is applied in [80].

Alternative approaches locally consider a triangle with given vertex normals. In
[167], the directional derivatives of the normal are expressed as finite differences
for every edge of a triangle. The resulting system of six equations is set up from
the vertex positions (in parameter space) and normals and then solved for the three
unknowns of the Weingarten matrix in least-squares sense. The tensors which are ob-
tained per triangle are transformed to a common coordinate system to get a per-vertex
average over the 1-ring. The algorithm can be applied with only slight modifications
to compute curvature derivatives from the prior result.

In [181] the curvature tensor is estimated as smooth function (rather than a con-
stant value) per triangle. This technique is inspired by Phong shading [156], where
the vertex normals are linearly interpolated over the triangle. These interpolated nor-
mals are used to define the first and second order partials of the unit normal. This
yields a piecewise smooth function defining the curvature tensor and elegant expres-
sions for the Gaussian and mean curvature. Although this function is in general not
continuous over edges of the triangulation, the approximation error is comparable
to other approaches. For the estimation at vertices, the error is reduced by taking
averages from all incident triangles.

8 S. Hahmann et al.

3.3 Applications to Discrete Shape Analysis

The techniques reviewed in the previous section enable the estimation of curvature on
discrete shapes: curvature estimates such as principal curvatures, Gaussian curvature
and mean curvature are available at every vertex. These values can then be linearly
interpolated in triangles. This is illustrated in Figure 2(a) and (b) where M and K
are color coded. For efficient visualization (scaled) curvature values are used as 1D
texture coordinates such that linear interpolation is done by the graphics hardware.
Principal curvature directions define a vector field on the surface. Figure 2(c) and (d)

(a) (b) (c) (d)

Fig. 2. Visualization of mean curvature M (a) and Gaussian curvature K (b) estimated on
the Feline triangle mesh. Here, red, green and blue denote positive, zero and negative values,
respectively, and lighting is enabled. (c) and (d) show the maximum curvature with lines of
curvature on the Mannequin mesh.

shows lines of curvature obtained from stream line integration (see Figure CP-1 in
Appendix A).

In addition to these examples, many surface interrogation methods which were
initially developed for smooth surfaces can be adapted easily to work in the discrete
setting. This applies to first order analysis (Section 4) using estimates of the surface
normal: reflection lines can be simulated by environment mapping techniques, high-
light lines and isophotes can be emulated similarly. With curvature estimates being
available, second order analysis (Section 5) can be applied. For the computation of
discrete characteristic lines (Section 6), curvature derivatives are approximated by
appropriate differences.

The following sections discuss shape analysis of smooth surfaces. Interrogation
of discrete shapes follows the general ideas closely and applies estimates of surface
normals and curvature.

Shape Interrogation 9

4 First-Order Shape Analysis

First-order surface interrogation methods make generally use of the surface normal
vector by simulation of particular light reflecting behavior of the surface. The light
reflection methods all simulate the special reflection behavior of light sources or light
lines on the surface. Due to the intuitive understanding that everybody has when
he observes light reflections, these methods are very effective in detecting surface
irregularities. They are therefore very well suitable for testing the fairness of surfaces.
Because the surface normals are involved in the computation of these lines, they also
can be used to visualize first order discontinuities, like tangent discontinuities.

4.1 Reflection lines

The reflection line method determines unwanted dents by emphasizing irregularities
in the reflection line pattern of parallel light lines. Let X(u, v) be a representation of
the surface to investigate, and let N(u, v) be the unit normal vector of the surface.
Furthermore a light line L is given in parameter form:

L(t) = L0 + t · s

where L0 is a point on L, s is a vector defining the direction of L, t ∈ IR. The
reflection line is the projection of the line L on the surface X , which can be seen
from the fixed eye point A, if the light line L is reflected on the surface, see Figure
3(a). From geometric dependencies the following reflection condition is derived:

reflection line

N

a b

aL 0

(a) Reflectlion line

X

N

L

B

E(s) = X + sN

highlight line

(b) Highlight line

L

N

isophote

a = const

a

(c) Isophote

Fig. 3. First order shape analysis by simulating light reflection.

b + λa = 2
(
N(u, v) · b

)
N(u, v) with λ :=

‖b‖
‖a‖ , (3)

where a = P − A, b = L − P . Equation (3) has to be solved for the unknown
parameters u and v of the reflection point P . These three non-linear equations can
be reduced to two equations by eliminating λ; they can then be solved by numerical
methods, but the existence and uniqueness of solutions has to be ensured by an ap-
propriate choice of the eye point A [94, 98]. To analyze visually the surface one uses

10 S. Hahmann et al.

a set of parallel reflection lines with direction s, a fixed eye point A, and one steps
along each curve of the set. Figure 4(a) shows a reflection line pattern on a part of a
hair dryer and visualizes some surface irregularities.

(a) Reflectlion lines (b) Isophotes

Fig. 4. Pattern of computed reflection lines and isophotes on NURBS surfaces.

4.2 Highlight lines

A highlight line is defined as the loci of all points on the surface where the distance
between the surface normal and the light line is zero. The linear light source idealized
by a straight line with an infinite extension

L(t) = L0 + Bt

(L0 is a point on L, B is a vector defining the direction of L, t ∈ IR), is positioned
above the surface under consideration, see Figure 3(b). The highlight line method
also detects surface irregularities and tangent discontinuities by visualizing special
light reflections on the surface. In comparison with the reflection line method, the
highlight lines are calculated independently from any observers view point. For a
given surface point X(u, v) let N(u, v) be the unit normal vector. The surface point
X(u, v) belongs to the highlight line if both lines, L(t) and the extended surface
normal

E(s) = X(u, v) + s · N(u, v) , s ∈ IR

intersect, i.e. if the perpendicular distance

d =
‖[B × N] · [L0 − X]‖

‖[B × N]‖
between these lines is zero, see Figure 3(b). This method can be extended to high-
light bands, lines where d ≤ r (r fixed) is verified. For details on the algorithms to
compute highlight lines see [7].

Shape Interrogation 11

4.3 Isophotes

Isophotes are lines of equal light intensity. If X(u, v) is a parameterization of the
surface and L the direction of a parallel lighting, then the isophote condition is given
by:

N(u, v) · L = c ,

where c ∈ IR is fixed, see Figure 3(c). Note that silhouettes are special isophotes (c =
0) with respect to the light source. Isoclines are lines of equal normal inclination with
respect to some direction V . If X(u, v) is a parameterization of the surface, then the
isocline condition is given by:

N(u, v) · V = c

where N(u, v) is the unit normal field of X and c ∈ IR is fixed. In other words,
isophotes are isoclines with respect to the light source direction. Similar to reflection
lines and highlight lines, the isophotes provide a powerful tool to visualize small
surface irregularities, which can not be seen with a simple wire-frame or a shaded
surface image. In Figure 4(b) we use 20 different values for c in order to get an
isophote pattern on a NURBS test surface.
Now, as stated out in the introduction of this section, the light reflection methods
can be used to visualize first and second order discontinuities, because the surface
normal vector is always involved in the line definitions. In fact, if the surface is Cr-
continuous, then the isophotes are Cr−1-continuous curves (see [157] for more de-
tails). A curvature discontinuity can be recognized, where the isophotes possess tan-
gent discontinuities (breaks). One should nevertheless be careful by using isophotes
for this purpose, because sometimes the break points of the isophotes at curvature
discontinuities may not be clearly recognized, because of an ill-conditioned light di-
rection. This special case occurs if the orthogonal projection of the light direction
L in the tangent plane at a boundary point X(u, v) is parallel to the tangent of the
isophote at this point.

Isophotes for curvature discontinuity:
There is another isophote method, which on one hand is an automatic method (in-
dependent of a special light direction), but which on the other hand only visualizes
curvature discontinuities across the boundaries of a patch work. It makes use of the
fact that along a common boundary curve y between two surface patches that join
only with tangent plane continuity the Dupin indicatrices i1 and i2 on both sides
are different. In general there are two conjugate diameters of the Dupin indicatrix.
This relation degenerates at parabolic points, because the asymptotic direction (the
direction in which the normal section curvature vanishes) is the conjugate to itself,
but also conjugate to all other directions. At planar points, we have this degeneration
for each (tangent) direction. Since both patches have a common boundary curve, and
the tangent planes along that curve are unique, the Dupin indicatrices i1, i2 have a
common diameter, but differ in the other.
We now consider an isophote c passing through P . The tangent ti of c at P with
respect to Xi is conjugate to the orthogonal projection f of the light ray onto the

12 S. Hahmann et al.

y

y

t

t

1

2

f

i1

i2

Fig. 5. Isophotes for curvature discontinuity.

tangent plane (i = 1, 2), see Figure 5. In general the isophote c shows a tangent
discontinuity at P if the Dupin indicatrices of X1 and X2 are not equal, but we have
to avoid the situations f = ẏ = t and f = t′. More details can be found in [161].

4.4 Detection of inflections

Orthotomics and the polarity method are both interactive interrogation tools capable
to detect only one particular type of surface “imperfection”: the change of the sign in
the Gaussian curvature. For example, surface with only convex iso-parameter lines
are not necessarily convex, i.e. their Gaussian curvature is not required to be positive
at all surface points. Such surface imperfections are difficult to detect visually in
this case and therefore a curvature based surface analysis is needed like color maps
or generalized focal surfaces, see Section 5. The following methods in contrast can
visualize a change of sign in the Gaussian curvature without computing second order
derivatives of the surface.
Orthotomics
In [85] it has been shown that for a regular surface X(u, v) and for a point P that
does not lie on the surface or on any tangential plane of the surface the k-orthotomic
surface Yk(u, v) with respect to P defined by

Yk(u, v) = P + k
(
(X(u, v) − P) · N(u, v)

)
N(u, v) ,

where N(u, v) is the unit normal vector of the surface has a singularity in (u0, w0),
if and only if the Gaussian curvature of X vanishes, or changes its sign at this point.
To illustrate this method we consider a Bézier surface with completely convex para-
meter lines, see in Figure 6(left). But this surface is not convex: as shown in Figure
6(right), the orthotomic analysis emphasizes the change of sign of the Gaussian cur-
vature in the corner region.

Polarity method
The polarity method is a further method able to detect unwanted changes in the sign

Shape Interrogation 13

Fig. 6. Bicubic surface patch with line of vanishing Gaussian curvature (left). Orthotomic
analysis (right).

of the Gaussian curvature without computing second order derivatives of the surface.
It works for curves as well. It uses the polar image of a curve or surface, where the
singularities (cusps, edge of regression) of this image indicate the existence of points
with vanishing Gaussian curvature. The polar surface looks similar to the orthotomic
surface, because the center of polarity is chosen to be equal to the projection point
of the orthotomic analysis. For more information about the polarity method and on
how removing the inflections see [86].

4.5 Geodesic paths on surfaces and meshes

Geodesic paths, or simply geodesics, on a surface are surface curves which connect
two surface points with minimum path length. A thorough study of geodesics and
their role of in surface interrogation requires much more attention than the present
overview can provide. So below we give only a brief literature survey.

Geodesics deliver rich information about surface geometry and, therefore, have
various theoretical and practical applications. In particular, detecting geodesic paths
on surfaces approximated by triangles meshes is a common operation for many
graphics and modeling tasks such as mesh parameterization [103], mesh segmen-
tation [93], skinning [175], mesh watermarking [162], and mesh editing [100].

A rigorous mathematical treatment of geodesics can be found in [102, 42]. Some
numerical aspects are presented in [56]. An algorithm for approximate computation
of geodesic paths on smooth parametric surfaces has been explored in [155, 154].
Various algorithms exit for computing geodesic paths and distances. The so-called
MMP algorithm [124] computes an exact solution for the “single point, all distances”
shortest path problem by partitioning each mesh edge into a set of intervals over
which the exact distance can be computed. In [179] an accelerated implementation of
this algorithm is presented. An algorithm to solve the “single source, single distance”
geodesic problem is given in [91]. See also [123] for a broad survey of algorithms
for computing shortest paths on graphs.

5 Second-order shape analysis

Surface curvature is of central importance for surface design. Often the result is
required to be mathematically smooth (continuous in the 2nd derivative) and aes-
thetically pleasing, i.e. have smooth flowing highlights and shadows. To obtain an

14 S. Hahmann et al.

aesthetically pleasing shape, the designer works with the curvature. A color map
(see Section 5.5) can be used to visualize curvature (Gaussian, principal curvatures)
over the surface. The problem is the good choice of the color scale, which depends
on the curvature function and therefore on the underlying surface.

The surface interrogation methods presented in this section are therefore curvature
analysis tools which are able to detect all surface imperfections related to curvature,
like bumps, curvature discontinuity, convexity, and so on.

5.1 Local shape analysis with Gaussian curvature

Let us look at a smooth surface in a neighborhood of one of its point.
The simplest classification of local surface shapes is given by the the sign of the

Gaussian curvature K = κ1 · κ2.

K > 0. The normal curvatures κN (ϕ) has the same sign in all directions, so the
tangent plane touches the surface at one point. The usual convex or concave
regions corresponding to this, as demonstrated by the left image of Figure,7 and
the left images of Figure 8.

K < 0. The normal curvature becomes zero twice during the half rotation of the
normal plane around the normal. The tangent plane intersects with the surface in
these directions of zero curvature. The surface is locally saddle-shaped, as seen
in middle images of Figure 7 and Figure 8.

K = 0. At least one principal curvature is zero. It produces a parabolic point. See
the right image of Figure 7 and the middle-right image of Figure 8. A set par-
abolic points may form a parabolic region shown in the right image of Figure 8.

su
rf

ac
e

no
rm

al

su
rf

ac
e

su
rf

ac
e

no
rm

al

no
rm

al

k
n

< 0

k n
> 0

= 0k
n

tangent

tangent

tangent plane

plane

plane

Fig. 7. Local shape of normal section curve is defined by curvature.

The Gaussian curvature of a surface can be expressed through the coefficients
of the first fundamental form. Thus we arrive at the following famous result called
Gauss’s Theorema Egregium: the Gaussian curvature of a surface is a bending in-
variant.

Shape Interrogation 15

Fig. 8. Gaussian curvature determines local shape of surface. Left images: convex and concave
regions (K > 0). Middle: saddle-shaped region (K < 0). Middle-right: a parabolic point
(K = 0) Right: a region consisting of parabolic points.

Now let us consider a simple geometrical interpretation of the Gaussian curva-
ture, by means of which Gauss originally introduced it.

Consider a two-sided surface in three-dimensional space. Let us transport the
positive unit normal vector from each point of the surface to the origin. The ends of
these vectors lie on the unit sphere. We obtain the mapping of the surface into the
unit sphere, see Figure 9. It is called the Gauss map.

The Gauss mapping takes areas on surfaces to areas on the unit sphere. Consider
the unit surface normals at the surface points within the area ∆S on the surface. Let
us denote the area on the unit sphere (solid angle) corresponding to ∆S by ∆A. It
turns out that the Gaussian curvature at the point is the limit of the ratio of these
areas:

K = lim
∆S→0

∆A

∆S
.

This remarkable formula resembles the definition of the curvature of the plane
curves: κ = dϕ/ds.

Gaussian SphereSurface
Gauss map

S

A

A
S

K = lim

Fig. 9. Gauss map and geometric meaning of Gaussian curvature.

The Gauss map can be used for detecting spherical, cylindrical, and conical re-
gions on a surface [12].

5.2 Focal Surface and Corresponding Surface Features

For a smooth surface X = X(u, v) its focal surface is given by

16 S. Hahmann et al.

XF (u, v) = X(u, v) +
N(u, v)
κ(u, v)

, κ = κ1, κ2,

where N(u, v) is the oriented normal. The focal surface is formed by the principal
centers of curvature and consists of two sheets corresponding to the maximal and
minimal principal curvatures κ1 and κ2. One can show that the focal surface is the
envelope of the surface normals. In geometrical optics [77], a caustic generated by
a family of rays is defined as the envelope of the family. Thus the focal surface is
the caustic of the family of surface normals. The focal surface can be also defined
as a surface swept by the singularities of the offset surfaces Od(u, v) = X(u, v) +
dN(u, v).

The focal surface is the 3D analogue of the evolute of a planar curve and has
singularities. The singularities of the focal surface consist of space curves called
focal ribs.

Ridges, the surface curves corresponding to the focal ribs are natural generaliza-
tion of the curve vertices for surfaces. The ridges can be defined as sets of surface
points where the principal curvatures have extremes along their associated principal
directions and points where the principal curvatures are equal (umbilics). A thor-
ough study of the ridges and their properties is conducted by Porteous [158]. See
also [72] where a detail classification of the ridges is presented. Below we briefly
discuss the ridges from a singularity theory point of view.

Near a point on a focal rib the focal surface can be locally represented in the
parametric form (c1t

3, c2t
2, s), where c1 �= 0 and c2 �= 0, in well chosen coordi-

nates (s, t). The focal ribs themselves have singularities at points corresponding to
the umbilics and those ridge points where one of the principal curvatures has an in-
flection along its corresponding curvature line. Generic (typical) singularities of the
focal surface are shown in Figure 10.

Fig. 10. Typical singularities of the focal surface. From left to right: cuspidal edge (rib), swal-
lowtail, pyramid, purse. At the swallowtail singularity the rib has a cusp. The pyramid and
purse correspond to the umbilical point on the surface. The vertical lines at the bottom images
are the surface normals at the corresponding umbilics.

The umbilics and ridge points can be also characterized as surface points where
the osculating spheres (spheres of curvature) have high-order contacts with the sur-
face. Therefore the umbilics and ridges are invariant under inversion of the surface
with respect to any sphere.

The focal surface points can be also described in terms of degenerate singular
points of distance functions. Given a surface and a point in 3D, let us consider the

Shape Interrogation 17

distance function from the point and restrict the function onto the surface. This gives
a three-dimensional family of distance functions defined on the surface and parame-
terized by points in 3D. Now the focal surface is generated by those point-parameters
for which the distance function has degenerate critical points. A typical degenerate
critical point has on of the following two forms ±s2 + t3 in proper coordinates s and
t. If the point-parameter is a typical point on a focal rib, the distance function has a
critical point in one of the following four forms: ±s2 ± t4. More degenerate critical
points occur when the point-parameter is located either at a swallowtail singularity
of the focal surface or at an umbilical points. It is interesting that the cut locus of the
surface [190] (skeleton or medial axis of a figure bounded by the surface) consists
of those point-parameters which define the distance functions with two equal global
minima. Thus, as illustrated in Figure 11, the edges of the skeleton are located at
focal ribs.

ridge (ravine)

caustic

degenerate

degenerate
critical point

absolute minimum

absolute minima
two equal

sk
el

et
on

ravine

curvature

line

principal
direction

ridge

norm
al

focal set

skeleton (medial axis)

skeleton

Fig. 11. Left: zoo of distance functions; thin lines are used to sketch typical profiles of the
surface functions defined by the distance from a given point to the surface points. Center: the
skeleton (blue), caustic (yellow), ridge (red) and an osculating sphere (brown) at a ridge point
of the elliptic paraboloid. Right: schematic illustration of relationships between the cut locus,
focal surface and ridges.

The focal surface possesses many interesting properties. For example, for each
line of curvature on a surface there is a corresponding line on the corresponding sheet
of the focal surface. It can be shown that those raised lines of curvature are geodesics
on the focal surface [159, 131].

In [118, 99] umbilics are used for shape interrogation and shape matching pur-
poses. Statistics of various types of umbilics on random surfaces computed and an-
alyzed in [11] may have have many potential applications for for inspecting and
interrogating surface properties.

5.3 Hedgehog diagrams and curvature plots

The hedgehog diagrams and curvature plots are well known interrogation tools for
planar curves [6, 54]. A hedgehog diagram for planar curves visualizes the curve
normals proportional to the curvature value at some curve points. A new curve is ob-
tained by X̃hedgehog(t) = X(t) + κN(t) thus visualizing curvature distribution and

18 S. Hahmann et al.

discontinuity. The inspection of surfaces with these methods can be done by apply-
ing them to planar curves on the surface (intersections of the surface with planes).
[97] shows an example of application. Hedgehog diagrams for entire surfaces are
nevertheless difficult to interpret and are therefore not to be recommended.

5.4 Generalized focal surfaces

Although the idea of generalized focal surfaces is quite similar to hedgehog dia-
grams, their application area is much larger. Instead of drawing surface normals pro-
portional to a function value, only the point on the surface normal proportional to the
function is drawn. The loci of all these points is the generalized focal surface. This
method was introduced by [71], and is based on the concept of focal surfaces which
are known from line geometry, introduced in Section 5.2. The generalization of this
classical concept leads to the generalized focal surfaces:

F (u, v) = X(u, v) + s · f(κ1, κ2) · N(u, v) , with s ∈ IR

where N is the unit normal vector of the surface X . f is a real valued function of the
parameter values (u, v).
The variable offset function f can be any arbitrary scalar function, but in the con-
text of surface interrogation it is quite natural to take f as a function depend-
ing on the principal curvatures κ1, κ2 of X , f.ex. f = κ1κ2 Gaussian curvature,
f = 1

2 (κ1 + κ2) mean curvature, f = (κ2
1 + κ2

2) energy functional, f = |κ1|+ |κ2|
absolute curvature, f = κi principal curvatures, f = 1

κi
focal points, f = const

offset surfaces. This not only enables to visualize a particular curvature behavior, but
it can interrogate and visualize surfaces with respect to various criteria: A convex-
ity test can be performed using the Gaussian curvature offset f = κ1 · κ2 = K.
A surface is locally convex at X(u, v), if the Gaussian curvature is positive at this
point. Often a surface is called non-convex, if there is a change in the sign of the
Gaussian curvature. the two surfaces X(u, v) and F (u, v) intersect at the parabolic
points, see Figure 12(a). The generalized focal surface therefore pin points directly
on the area where the sign of K changes in contrast to orthotomics (Section 4) which
are also used to test the convexity. Flat points which are special umbilic points with
κ1 = κ2 = 0 can be detected using f = |κ1| + |κ2| as well as f = κ2

1 + κ2
2. Flat

points are undesired surface points because they make the surface bumpy. Curva-
ture discontinuity can be visualized through gaps in the surface F with f = κ2

1+κ2
2

since it is a second order surface analysis tool, see Figure 12(b). Visualizing surface
irregularities: Surfaces are aesthetically pleasing if they have “nice” light reflec-
tions. Thus similar to reflection lines the generalized focal surfaces are also a tool
for visualizing such surface imperfections because they are very sensitive to small
irregularities in the shape. In Figure 12(b) part of a hair dryer is shown. It consists of
biquintic C1-continuous patches. The iso-parametric lines do not reflect the bump in
the surface, which is however emphasized by the focal analysis. Another aspect of
surface analysis is the visualization of technical aspects. A surface which should be
treated by a spherical cutter is not allowed to have a curvature radius smaller than the

Shape Interrogation 19

radius of the cutter Rcutter. The generalized focal surfaces are able to detect such
undesired regions by intersection with the surface X . The offset function to choose
in this special case, is f = 1

Rcutter
−κmax. Figure 12(c) shows such a surface which

is not allowed to be cut. Generalized focal surfaces not only visualize surface imper-
fections, they also give the user a 3D impression of the relative amount of the offset
function over the surface, what color maps can’t do.

(d) Convexity test (e) Imperfections and cur-
vature discontinuity

(f) Milling test

Fig. 12. Second order surface analysis with generalized focal surfaces.

5.5 Color mappings

Color is used to emphasize features on the surface. Texturing can emphasize the spa-
tial perception of an 2D image of the surface. A color-coded map is an application,
which associates to a scalar function value a specific color. The color scale presents
an even gradation of color corresponding to the range of function values. Colors
are principally used to visualize either continuously or discontinuously any scalar
function over a surface [38, 5, 4, 59], like pressure, temperature, or curvature, see
Figure 13 (see Figure CP-2 in Appendix A). Colors are used as a fourth dimension
and show the user immediately and quantitatively how the function varies over the
surface.
An even gradation of the linear or cyclic color coding is important to visualize the
rapid curvature variation by the presence of color fringes. Beck et al. [5] propose
to use the HSI (hue, saturation, intensity) model and to perform transformations be-
tween this space and the three primary colors RGB. See [58] for more details on color
spaces and transformations. An example of discrete color-coding of the interval [0,1]
is the following one:

20 S. Hahmann et al.

Fig. 13. Color codings of Gaussian curvature.

Interval Red Green Blue Color

0.0 - 0.2 1 0 0 red
0.2 - 0.4 1 1 0 yellow
0.4 - 0.6 0 1 0 green
0.6 - 0.8 0 1 1 turquoise
0.8 - 1.0 0 0 1 blue

The main difficult of this simple interrogation method is the choice of a convenient
color scale, which obviously depends on the function values to be visualized.

Pseudo texture
The use of colors for displaying a surface helps to emphasize the 3D understanding
of an 2D image by simulating shadows, perspective and depth of the object. An
artificial texturing is an aid for visualizing rendered surfaces. Isoparametric lines
are commonly used, but they are in some situations ambiguous. Schweitzer [170]
projects equally spaced dots of equal size over the surface in order to increase the
visual perception of the form.

6 Characteristic lines

Drawing lines on surfaces is a powerful and widely used tool for analysis and vi-
sualization of surface features. The techniques of isolines, lines of curvature, geo-
desic paths and ridges are presented. Numerous graphical examples are illustrated
in [159, 56]. In the last three cases a set of lines on the surface can be created, and
should be interpreted with the knowledge of differential geometry. They are the most
sophisticated tools from the mathematician’s point of view. The user should interpret
the lines of curvature or the geodesic paths.

Shape Interrogation 21

6.1 Isolines

Isolines are lines of a constant characteristic value on the surface. They provide an
interrogation tool with a wide variety of applications. They help analyzing surface
characteristics, and they are used to visualize the distribution of scalar quantities over
the surface. The visualization of a certain number of isolines, with respect to an even
distribution of the characteristic values allows to study the behavior of these values.
Contour lines are planar lines on the surface which are all parallel to a fixed ref-
erence plane. Closed contour lines indicate maxima and minima of the surface with
respect to the direction given by the plane’s normal vector [76, 5]. Saddle points ap-
pear as “passes”. The contour lines only cross in the exceptional case of a contour at
the precise level of a saddle point. [141] describes systematically the distribution of
other critical points on a surface. A disadvantage of contour lines is the fact that they
are costly to compute. Several surface contouring methods exist, which are some-
times depending of the specific surface formulation [152, 169, 108]. Hartwig and
Nowacki [76] propose to subdivide the surface into sufficient small pieces which are
then approximated by bilinear surfaces. Then the contour lines can easily be com-
puted.
Iso-contouring is the technique of extracting constant valued curves and surfaces
from 2D and 3D scalar fields. Interactive display and quantitative interrogation helps
understanding the overall structure of a scalar field and its evolution over time. Tradi-
tional iso-contouring techniques examine each cell of a mesh to test for intersection
with the iso-contour of interest. For an overview see [168]. Extraction of isosurfaces
from 3D scalar field is generally be done by the Marching Cubes algorithm and its
variants [111, 143, 27]

Fig. 14. Gaussian curvature isoline. Left: parabolic lines. Right: isolines corresponding to
different constant Gaussian curvature values.

Parabolic lines are isolines of zero Gaussian curvature on the surface. They are of
particular interest for intrinsic surface interrogation, since they divide the surface into
elliptic and hyperbolic regions and they reflect therefore the local curvature behavior
of a surface. Parabolic lines are special Gaussian curvature lines, see Figure 14. In
[79] a more complex example with the statue Apollo Belvedere is drawn.

22 S. Hahmann et al.

6.2 Lines of curvature, umbilics

Lines of curvature are curves whose tangent directions coincide with those of the
principal directions, which are orthogonal. They form therefore an orthogonal net on
the surface.

The net of lines of curvature becomes singular at an umbilical point where κ1 and
κ2 are identical and the principal directions are indeterminate. Some numerical inte-
gration method is used to calculate the lines of curvature. But the integration process
becomes unstable near an umbilic. Unfortunately umbilics appear frequently on free-
form surfaces. A recent work about umbilics [117], destined for use in CAGD (Com-
puter Aided Geometric Design), presents a procedure to compute the lines of curva-
ture near an umbilic. And in [116] a computational method to locate all isolated
umbilics on parametric polynomial surfaces is described. The discrete field of prin-
ciple curvature directions computed on a surface mesh has been used for remeshing
[2]. More details about umbilics and lines of curvature figures are found in classical
differential geometry literature [35], or in a more recent book [159].

6.3 Curvature Extrema for Shape Interrogation

Surface features invariant under rotations, translations, and scaling are important for
studying shapes of 3D objects. The ridge curves discussed briefly in Section 5.2 are
among the most important view- and scale-invariant features of a smooth surface.

The ridges are defined as the extremes of the principal curvatures along their
corresponding curvature lines and constitute powerful surface descriptors. They have
been intensively studied in connection with research on the accommodation of the
eye lens [69], structural geology [163] and geomorphology [109], human perception
[83], image analysis [191, 129, 127, 40, 110], quality control of free-form surfaces
[84], reverse engineering [87], analysis and registration of anatomical structures [68,
67, 151], face recognition [72], and non-photorealistic surface rendering [89, 114,
36]. (See also references therein.)

An explanation of why some ridges are good for sketching complex 3D shapes
can be found in [191]: given a grey-scale image of an illuminated 3D object, under
general illumination and reflection conditions, the zero-crossings of the second di-
rectional derivative of the image intensity along the direction of the image intensity
gradient occur near the extremes of the principal curvature along their principal di-
rections. Thus the projections of ridges onto the image plane are usually located near
edges, the most salient image features.

Some subsets of ridges play an important role in perceptual shape organization.
Human perception experiments suggest the so-called minima rule [83] which sets
region boundaries along lines divides shapes into parts at negative minima of the
principal curvatures along their lines of curvature. The minima rule was employed in
[146] for mesh segmentation purposes.

The ridges on a surface have interesting relations with the skeleton (medial axis)
of a figure bounded by the surface and can be described via high-order contacts

Shape Interrogation 23

between the surface and its osculating spheres. See [158, 101, 192, 159, 8], [72,
Chapter 6], and recent reviews in [26, 25] for rigorous mathematical treatments re-
vealing beautiful properties of these curvature features. Surface landmarks associ-
ated with the ridges were considered in [101, 131, 160]. Bifurcations of the ridges
on dynamic shapes were studied in [159, 15, 16, 160, 112].

Recently the so-called crest lines, a subset of the ridges consisting of the ex-
tremes of the principal curvature maximal in absolute value along its correspond-
ing curvature line, draw much attention because of their ability to represent surface
creases [184, 127, 151, 177, 145, 81]. See also references therein. One motivation
for describing surface creases as the crest lines is based upon the following anal-
ogy with edges of grey-scale images [145]. Consider a surface and its Gauss map
which associates with every point p of the surface the oriented normal vector n(p).
The derivative ∇n(p) (Jacobian matrix) of the Gauss map measures the variation of
the normal vector near p, i.e., how the surface bends near p. It is easy to see that
the eigenvalues and eigenvectors of ∇n(p) are the principal curvatures and principal
directions of the surface at p, respectively. Thus the maximal variation the surface
normal is achieved in the principal direction of the principal curvature maximal in
absolute value. So it is natural to define surface creases as loci of points where the
positive (negative) variation of the surface normal in the direction of its maximal
change attains a local maximum (minimum). Figure 16 shows the crest lines de-
tected on various models represented by dense triangle meshes (see Figure CP-3 in
Appendix A).

Practical detection of the ridges and their subsets is a difficult computational
task since it involves estimating of high-order surface derivatives. Various techniques
were proposed for detecting the ridge lines and their subsets on

• surfaces in implicit form and isosurfaces of 3D images [158, 129, 128, 184, 182,
10, 13];

• surfaces approximated by polygonal meshes [113, 9, 188, 82, 177, 26, 25, 145,
81];

• height data [65, 96, 95, 109];
• surface given in parametric form [84, 75].

Fig. 15. Various types of ridges detected on smooth surfaces. The images are taken from [13].

24 S. Hahmann et al.

Fig. 16. The crest lines detected on various surfaces approximated by dense triangle meshes.

For shape interrogation purposes (shape quality control and analysis of aesthetic
free-form surfaces), the ridges were used in [84, 78]. Moreton and Sequin [130] used
the sum of the squared derivatives of the principal curvatures along their correspond-
ing curvature lines as a measure of surface fairness.

Often, instead of the ridges and their subsets defined via extremes of the principal
curvatures, simpler surface features are detected. In geometric modeling, there has
been considerable effort to develop robust methods for detecting surface creases,
curves on a surface where the surface bends sharply. Interesting methods for crease
detection on dense triangle meshes and point-sampled surfaces were proposed in
[87, 166, 88, 70, 178, 148, 150]

Whereas the ridges were first studied one hundred years ago [69] and have rich
history [159], the so-called sub-parabolic lines, the loci of points where one of the
principal curvatures has an extreme value when moving along the curvature line cor-
responding to another principal curvature. The sub-parabolic lines were introduced
in [17] and studied in [159, 131, 160]. They possess many remarkable properties:
the sub-parabolic lines correspond to the parabolic lines on the focal surface, hence
the name, and consist of geodesic inflections of the lines of curvature [131]. The
sub-parabolic lines can be also detected by examining the profiles of surfaces [131].

6.4 Special Surface Points

In this section, following [131] we consider special surface points which lie on the
ridges and sub-parabolic lines. We adapt the color scheme proposed by Porteous
[158, 159]. Let us give the principal curvatures and corresponding principal direc-
tions, parabolic lines, and sheets of the focal surface a color (red or blue) in order
to distinguish between them. The red (blue) sub-parabolic line consists of the ex-
tremes of the red (blue) principal curvature along the blue (red) curvature line. The
following surface landmarks are useful for surface interrogation purposes:

Shape Interrogation 25

• Umbilic points. See [118, 149] for application of umbilics in surface matching
and shape interrogation.

• A ridge and sub-parabolic line of the same color cross. The principal curvature
of the same color takes an extreme value there (maximum, minimum, or saddle).

• A ridge is tangent to the line of curvature of the same color. These surface
landmarks corresponds to the swallowtail singularities of the focal surface.

• A ridge crosses a ridge of other color. In [183] it was suggested to use these
landmarks for 3D image registration.

• A ridge crosses the parabolic line of the same color. The Gauss map has the
the so-called pleat singularity at such a point [101].

Koenderink [101] introduced two curvature-based measures of surface curvature:
the curvedness

C =
2
π

ln
(
κ2

1 + κ2
2

)
and the shape index

S = − 2
π

arctan
κ1 + κ2

κ1 − κ2
.

These measures are often more convenient for practical purposes then the standard
curvature descriptors {κ1, κ2} and {M,K}, where K and M are the Gaussian and
mean curvatures, respectively. In [142] it was suggested to use local maxima of the
curvedness to define surface corner points.

7 Robust Symbolic based Shape Interrogation and Analysis

Interrogation of polynomial and rational surfaces could be made with the aid of
symbolic processing. The advantage of the symbolic approach over sampling of
properties, like curvature, at a discrete set of point stems from the ability to ana-
lyze the properties globally and provide global (error) bounds. Many properties of
free-form geometry are differential and can be derived after executing a few basic
operations over the polynomial or rational representation of the original interrogated
curve C(t) or surface S(u, v), namely: differentiations, summations and products.
We also assume the availability of a zero set finding tool, an operation that is equiv-
alent to intersecting a polynomial or a rational function with a line in R2 (a plane
in R3). As a simple example, consider the curvature field of a planar regular curve
C(t) = (x(t), y(t)) that is equal to:

κ(t) =
x′(t)y′′(t) − y′(t)x′′(t)

(x′2(t) + y′2(t))2/3
.

κ(t) is not rational due to the fractional power in the denominator, in the normal-
ization factor. Nonetheless, if one only seeks the inflection points of C(t), only the
numerator of κ needs to be considered. Then, the solution of the constraint of

x′(t)y′′(t) − y′(t)x′′(t) = 0 (4)

26 S. Hahmann et al.

finds all the inflection points in the regular planar curve C(t), if any. In Equation (4),
the problem of finding all the inflection points of a planar regular curve was reduced
to that of finding a zero set. Differentiation and products were used to compute the
inflection points’ constraints.

Differentiation of piecewise polynomials and rationals is well known [28, 53].
Similarly, the addition of two (piecewise) polynomials that share a function space
(same order and knot sequence) is realized by simply adding the corresponding co-
efficients. Two polynomials could be elevated to the same function space via knot
insertion and degree elevations; see [28, 53] for more details. Products are the last op-
erator we seek, an operation also required because of the quotient rules over addition
and differentiation of rationals. Products are more complex to compute (see [43, 53])
but, clearly, products of piecewise polynomials and/or rationals are piecewise poly-
nomials and/or rationals as well.

In summary, the ability to form a closure and compute a differential property in
the piecewise polynomial and/or rational domains, makes it far simpler and robust
to analyze that property. While κ is not rational, its numerator is and so inflection
points could be detected as a zero set of x′(t)y′′(t)−y′(t)x′′(t). For similar reasons,
the unit normal N(t) of C(t) is not rational but both κ(t)N(t) and N(t)/κ(t) are
rational. Hence, x-extreme points and y-extreme points on C(t) can be identified as

〈κ(t)N(t), (0, 1)〉 = 0, and 〈κ(t)N(t), (1, 0)〉 = 0,

and the local maximum curvature locations in C(t) are detectable [45] as the zeros
of

d 〈κ(t)N(t), κ(t)N(t)〉
dt

,

yet another rational function.
In [45], points of extreme curvature, or alternatively, inflection points are detected

using these schemes. In addition, a scheme to approximate an arc-length reparame-
trizations for piecewise polynomial and/or rational curves is presented.

In the next section, Section 7.1, we will demonstrate the power of symbolic based
interrogation in geometric design, for curvature analysis. In Section 7.2, silhouette
curves, isoclines and isophotes curves, and reflection curves are all shown to be re-
ducible to zero set finding. Then, in Section 7.3, we consider the problem of symbolic
recognition of simple primitive surface shapes.

7.1 Curvature Analysis

Reexamining the second order differential analysis of parametric surfaces (recall
Section 2), it turns out that given a rational surface S(u, v), the Gaussian curvature
K is rational whereas the mean curvature M is not (while M2 is). In [47], a rational
form of (the numerator of) K is symbolically computed and its zeros are used to
robustly extract the parabolic lines of the surface. Figure 17 presents one example
of computing the parabolic curves for a bicubic surface patch as the zeros of K (see
CP-4 in Appendix A).

Shape Interrogation 27

Fig. 17. Left: a free-form B-spline surface is presented, after being subdivided into convex
(red), concave (green), and hyperbolic regions (yellow). The parabolic lines (white) separate
the regions. Right: presents the function of K(u, v) (in yellow) and its zero set (the parabolic
lines).

While M is not rational, one can compute M2 as a rational form. Similarly, the
form of κ2

1 + κ2
2, where κi, i = 1, 2, are the two principle curvatures, is rational

and can capture regions that are highly curved. By subdividing the original surface
into regions that prescribe different values of κ2

1 + κ2
2, one can separate the surface

into regions that could be NC-machined more efficiently with different sizes of ball-
and flat-end cutters [44]. Let K0 = κ2

1 + κ2
2 at S0 = S(u0, v0). Then, the normal

curvature at S0 is bounded from above by
√K or an NC ball end cutter of radius

1/
√K could be locally fitted to S0 without (local) gouging. Figure 18 shows one

such example where a surface is divided into regions of different values of extreme
curvature, K = κ2

1 + κ2
2. See also Equation (1) and CP-5 in Appendix A).

Fig. 18. Left: a free-form B-spline surface is presented, after being subdivided into regions of
different levels of κ2

1 + κ2
2. Right: presents the rational surface κ2

1 + κ2
2 and its contouring (in

white) at the different levels.

28 S. Hahmann et al.

7.2 Silhouette, Isoclines/Isophotes and Reflection lines

The extraction of silhouettes of a free-form surface could be easily reduced to a zero
set finding problem. Looking at a rational surface S(u, v) from direction vector V ,
the silhouettes of S are characterized as the rational constraints of

〈N(u, v), V 〉 = 0,

where N(u, v) = ∂S
∂u × ∂S

∂v . If the view is a perspective view through point P (the
eye), the silhouettes could be derived as the rational form of

〈N(u, v), S(u, v) − P 〉 = 0.

Interestingly enough, highlight lines [7] (see Section 4.2), isoclines and isophotes
(see Section 4.3) could be similarly reduced to a zero set finding, using symbolic
manipulation. Let the unit view direction vector for which isoclines are sought be V .
Then, positions on surface S(u, v) that present a normal with a constant inclination
angle of α degrees could be characterized as〈

N(u, v)
‖N(u, v)‖ , V

〉
= cos(α),

which is not a rational but could be made into one by squaring both sides as,

〈N(u, v), V 〉2 − ‖N(u, v)‖2 cos2(α) = 0, (5)

at the cost of extraction both the +cos(α) and the − cos(α) isoclines, simultane-
ously. Figure 19 shows an example of subdividing a free form surface into regions
of steep slopes (more than 45 degrees) and shallow slopes, using isoclines’ analysis.
Such a dichotomy might be desired, for example, in layered manufacturing process-
ing where support is to be added to the geometry only below a certain slope.

Reflection lines (see Section 4.1) can also be reduced to rational zero set con-
straints as follows. An incoming ray V that hits surface S(u, v) will be reflected in
direction r(u, v),

r(u, v) = 2N(u, v) − V
〈N(u, v), N(u, v)〉

〈N(u, v), V 〉 . (6)

In practice, Equation (6) might be difficult to work with near silhouettes (where
〈N(u, v), V 〉 vanish) and so, in [46], 2N(u, v)〈N(u, v), V 〉−V 〈N(u, v), N(u, v)〉
was proposed as a better alternative. In [46], reflection ovals, or reflections of circular
curves, were similarly reduced to zero set finding problems.

7.3 Surface Recognition

A fundamental question when analyzing free-form geometry is whether the given
curve or surface is of a basic primitive nature. That is, a curve is tested if it is a

Shape Interrogation 29

Fig. 19. Isoclines at 45 degrees from the vertical direction V . Left: the function whose zero set
(see Equation (5)) prescribes the isoclines of the surface shown in the right figure is presented.
Right: Isoclines also serve to split the surface into regions of slopes (normals) with more than
45 degrees (in thin lines) and regions of less than 45 degrees (in thick lines) with respect to
the vertical direction V .

circle, or a surface is tested if it is a cylinder, or alternatively, a surface of revolution.
In [48], these questions are answered using symbolic differential analysis. A rational
curve is a circle if its rational squared curvature field, κ2(t) = 〈κ(t)N(t), κ(t)N(t)〉,
is constant. In other words, given a B-spline curve C(t), all its coefficient of the B-
spline representation of κ2(t) should be the same and in fact equal to the square of
the reciprocal of the radius of the circle. Alternatively, the evolute curve,

E(t) = C(t) + N(t)/κ(t),

which is also rational, should vanish (along with all its control points) at the circle’s
center locations.

A surface called the mean evolute surface,

E(u, v) = S(u, v) +
N(u, v)

2M(u, v)
,

where M is the mean curvature (see Section 2.2) is also defined in [48] and was
shown to be rational for rational surface S(u, v). If S(u, v) is a circular cone, E(u, v)
is reduced to a line, the cone’s center axis. Figure 20 presents two such examples.
In [48], the connection is made between rational surfaces of revolution and rational
pseudo-focal surfaces (see Section 5.4) Fu(u, v) = S(u, v)+ N(u,v)

κu(u,v) , where κu is the
normal curvature of S(u, v) in the u iso-parametric direction. If the u iso-parametric
directions are the latitude lines of the surface of revolution, then Fu reduces to the
center axis line of the surface of revolution.

For more information, see the recent book on shape interrogation in geometric
design and manufacturing [149] that discusses many of the above topics as well
as intersection problems, distance queries, curvature properties, and geodesics and
offsets curves and surfaces.

30 S. Hahmann et al.

(a) (b)

S(u, v)

E(u, v)

S(u, v)

E(u, v)

Fig. 20. The mean evolute surface reduces to the center axis line of a circular cone or cylinder.
In (a), a polynomial approximation of a cylinder surface S(u, v) with unconventional para-
meterization is presented along with its mean evolute E(u, v). (b) presents a similar view of
a portion of a polynomial approximation of a region of a circular cone along with its mean
evolute.

8 Interrogation of algebraic curves and surfaces

In this section we will focus on particular geometric models: the algebraic curves and
surfaces. We will show how to solve in this context some important shape interroga-
tion problems as singularity detection, intersection problems and offset computation.
It turns out that all these problems require at one point to solve an algebraic system
of equations, this step being the crucial one. We thus articulate this section mainly
on methods that can be applied on these algebraic systems.

Most of the curves and surfaces used in CAGD are given by parametric equations,
as defined in Section 2. Planar rational curves in CAGD are typically defined as

x(t) =
a(t)
c(t)

, y(t) =
b(t)
c(t)

where a(t), b(t) and c(t) are polynomials in the Bernstein basis for rational Bézier
curves or in the B-spline basis for NURBS. Note that the algebraic methods most
commonly use polynomials in the power basis and polynomials can be converted
from Bernstein basis to power basis. Parametric rational surfaces in CAGD are de-
fined by

x(u, v) =
a(u, v)
d(u, v)

, y(u, v) =
b(u, v)
d(u, v)

, z(u, v) =
c(u, v)
d(u, v)

where a(u, v), b(u, v), c(u, v) and d(u, v) are polynomials.

Shape Interrogation 31

Most of the shape interrogation problems for algebraic curves and surfaces can
be translated in terms of a system of polynomial equations, as this has been widely
illustrated in the previous sections (see also the extensive work of Thomas Sederberg
on this topic, e.g. [172]). Consequently, methods for solving polynomial systems are
required. The aim of this section is to give a quick overview of such methods. In
order to be as much concrete as possible we mention the following two typical prob-
lems of shape interrogation that can easily be reduced to polynomial system solving:

Singularity detection. An important problem in CAGD is the detection of singular-
ities of a 3D-surface. If an algebraic surface S is given implicitly by P (x, y, z) = 0
(that is S = {(x, y, z) ∈ R

3;P (x, y, z) = 0}), a point (a, b, c) on S is singular if
∂P
∂x (a, b, c) = ∂P

∂y (a, b, c) = ∂P
∂z (a, b, c) = 0. It is then clear that the singular points

of S are the common roots of the polynomials P, ∂P
∂x , ∂P

∂y , ∂P
∂z .

Computation of intersection points. Given two parameteric curves, one would like
to compute their intersection points. By implicitizing one of the two curves this prob-
lem is reduced to finding the real roots of a univariate polynomial which is obtained
by substituting the parameterization of a curve into the implicit equation of the sec-
ond one. Similar approaches can be used to compute curve/surface intersection points
and more generally to compute a parameterization of an intersection surface/surface
curve. Though we are manipulating objects in dimension 3, the polynomial systems
that we consider might involve more that 3 variables. For instance, the intersection
of 2 parametric surfaces involve 4 variables. Therefore, we are not going to restrict
the number of variables in the methods that we are going to describe. Hereafter, the
variables will be denoted x1, . . . , xn. However, since these systems come from real
geometric modeling problems, we will consider only polynomials with real coeffi-
cients.

Since the problem of solving polynomial equations goes back to the ancient
Greeks and Chinese, it is not surprising to see that a large number of methods exists
to handle this task. Several families of solvers can however be identified:

• Analytic solvers exploit the value of a functional f = (f1, . . . , fm) and its deriv-
atives in order to converge to a solution or all the solutions of f = 0. Typical
examples are Newton like methods, minimization methods, etc.

• Subdivision methods use an exclusion criterion to remove a domain if it does not
contain a root of f = 0 or refine the search in sub-domains otherwise. These
solvers are often used to isolate the real roots in a given domain.

• Algebraic solvers exploit the known relations between the unknowns. They are
based on polynomial manipulations and involve effective algebraic geometry
tools.

We are going to focus essentially on the two last families, which yield information
on all the roots (resp. in a fixed domain).

32 S. Hahmann et al.

8.1 Subdivision methods

The methods that we describe in this section, exploit the properties of Bernstein’s
basis for representing univariate and multivariate polynomials. The Bernstein poly-
nomials are ubiquitous in geometric modeling. The representation of a polynomial
in the Bernstein basis is known to be numerically more stable than the monomial
basis representation [57, 55]. It has a direct geometric meaning, in terms of control
points and useful properties such that the convex hull and the variation diminishing
property. These properties in conjunction with the subdivision nature of Bernstein’s
polynomials explain the large variety of algorithms proposed until today for solving
univariate polynomials, starting with Lane and Riesenfeld [105], up to the Bezier
clipping methods initiated by Nishita and al [144]. They combine a global control
on the domain where the roots are searched with local and efficient refinements.
The situation in the multivariate case has not been studied so extensively. Two main
sub-families coexist: a first family which are based on subdivision techniques like
[49, 171]; a second family of solvers which are based on reduction techniques as
[173]. We briefly describe these approaches, starting with univariate polynomials.
For more details, see [136].

Univariate polynomials

Any polynomial f(x)∈IR[x], of degree d, can be represented as f(x)=
∑d

i=0 biB
d
i (x)

where Bd
i (x) =

(
d
i

)
(1 − x)d−ixi, i = 0, . . . , d is the Bernstein basis associated to

the interval [0, 1]. Similarly, we will say that a sequence b represents the polynomial
f on the interval [r, s] if:

f(x) =
d∑

i=0

bi

(
d

i

)
1

(s − r)n
(x − r)i(s − x)d−i.

The polynomials Bi
d(x; r, s) :=

(
d
i

)
1

(s−r)n (x − r)i(s − x)n−i form the Bernstein
basis on [r, s]. Hereafter, we are going to consider the sequence of values b together
with the corresponding interval [r, s], as representing of our polynomial f .

A first property of this representation is that the derivative f ′ of f , is represented
by the control coefficients: d∆b := d(bi+1 − bi)0�i�d−1. Another fundamental
algorithm that we will use on such a representation is the de Casteljau algorithm [53].
It allows us to subdivide the representation of f into the two sub-representations on
the intervals [r, (1 − x)r + xs] and [(1 − x)r + xs, s]. It requires at most 2d(d + 1)
arithmetic operations. For a more detailed list of properties of this representation, we
refer for instance to [53]. A simple but interesting property that we are going to use
is the following:

Theorem 1 (Descartes rule). The number of real roots of the polynomial f(x) =∑
biB

i
d(x; r, s) in]r, s[is bounded by the number V (b) of sign changes of b =

(bi)i=0..n, and is equal modulo 2.

Shape Interrogation 33

As a consequence, if V (b) = 0 there is no root in]r, s[and if V (b) = 1, there is one
root in]r, s[. Another interesting property of this representation is the following (see
e.g. [53], [164]):

Theorem 2 (Convex hull). Let b = (bi)i=0,...,d be the control coefficients of f(x) on
the interval [r, s] and c = (ci)i=0,...,d the corresponding control points. The graph
{(x, f(x)); t ∈ [r, s]} is in the convex hull of the control points c.

Multivariate polynomials

By a direct extension to the multivariate case, any polynomial f(x1, . . . , xn) ∈
IR[x1, . . . , xn] = IR[x] of degree di in the variable xi, can be decomposed as:

f(x1, . . . , xn) =
d1∑

i1=0

· · ·
dn∑

in=0

bi1,...,in
Bi1

d1
(x1; r1, s1) · · ·Bin

dn
x(xn; rn, sn)

where (Bi1
d1

(x1; r1, s1) · · ·Bin

dn
(xn; rn, sn))0≤i1≤d1,...,0≤in≤dn

is the tensor prod-
uct Bernstein basis on the domain D := [a1, b1] × · · · × [rn, sn] ⊂ IRn and
b = (bi1,...,in

)0≤i1≤d1,...,0≤in≤dn
are the control coefficients of f on D. The poly-

nomial f is represented in this basis by the nth order tensor of control coeffi-
cients b = (bi1,...,in

)0≤i≤d1,0≤j≤d2,0≤k≤d3 . The size of D, denoted by |D|, is
|D| = max{|si − ri|; i = 1, . . . , n}.

De Casteljau’s algorithm applies in each of the direction xi, , i = 1, . . . , n so that
we can split this representation in these directions. This algorithm can be used either
to split the domain or to restrict the representation to a sub-domain. For a univariate
polynomial of degree d, this costs 2 (d + 1)d arithmetic operations. For a multi-
variate polynomial of degree di in xi, we check that this restriction operation costs
2
∑n

i=1 di

∏n
i=1(di + 1) = O(dn+1), where d = max{d1, . . . , dn}. Thus, as the di-

mension and the degree increase, a good method to isolate the roots, should consider
carefully when to apply this reduction operation, in order to save the computation
time.

Notice that the univariate Bernstein representation also extends to the so-called
triangular Bernstein basis representation. This representation can also be used in our
approach, but we will concentrate on the tensor product one. For any f ∈ IR[x] and
j = 1, . . . , n, let

mj(f ;xj) =
dj∑

ij=0

min
{0≤ik≤dk,k �=j}

bi1,...,in
B

ij

dj
(xj ; rj , sj)

Mj(f ;xj) =
dj∑

ij=0

max
{0≤ik≤dk,k �=j}

bi1,...,in
B

ij

dj
(xj ; rj , sj).

We have the following property: for any u = (u1, . . . , un) ∈ D, and any j =
1, . . . , n, we have

34 S. Hahmann et al.

m(f ;uj) ≤ f(u) ≤ M(f ;uj).

As a direct consequence, for any root u = (u1, . . . , un) of the equation f(x) = 0 in
the domain D, we have µ

j
≤ uj ≤ µj where

• µ
j

(resp. µj) is either a root of mj(f ;xj) = 0 or Mj(f ;xj) = 0 in [rj , sj] or rj

(resp. sj) if mj(f ;xj) = 0 (resp. Mj(f ;xj) = 0) has no root on [rj , sj],
• mj(f ;u) ≤ 0 ≤ Mj(f ;u) for u ∈ [µ

j
, µj].

This transforms the problem of approximating the real roots of multivariate polyno-
mials into problems on univariate polynomials.

Univariate Root Solver

Descartes rule (see theorem 1) yields a simple subdivision algorithm, which splits
the domain when the number of sign variation of the control coefficients is bigger
than 2. In the presence of a multiple root, the number of sign changes of a represen-
tation on any interval containing a multiple root is bigger than 2, and the algorithm
splits the box until its size is smaller than a given ε. A detailled analysis of the be-
havior of the algorithm, has been carried out, using a partial inverse of Descartes rule
given by the two circles theorem. See [140], [137], [51], [41].

This algorithm yields, in the presence of simple roots, an interval isolating the
roots. But usually in practice, we are interested in approximating this root within a
given precision ε. In order to approximate the isolated roots within ε, further steps of
bisection may be required, either using de Casteljau’s algorithm, Newton-like meth-
ods, or variants such as in [165].

Multivariate root finding

In this section, we consider a system of s equations in n variables

f1(x1, . . . , xn) = 0, . . . , fs(x1, . . . , xn) = 0

with coefficients in IR, that we will also denote by f(x) = 0. We are looking for an
approximation of the real roots of f(x) = 0 in the domain D = [r1, s1] × · · · ×
[rn, sn], within a precision ε. The general framework of the families of algorithms
that we will consider consists in (1) applying a preconditioning step on the equations,
(2) in reducing the domain, and (3) if the reduction ratio is too small, in splitting the
domain, until the size of the domain is smaller than a given epsilon. The solvers that
we will consider are parameterized by the

• Preconditioner, that is, a transformation of the initial system f = 0 into a system
M f = 0 (with an M invertible matrix), which has a better numerical behavior.
We consider
– Global transformation which aims at increasing the distance between the

equations, considered as vectors of coefficients,

Shape Interrogation 35

– Local straightening which multiplies by the inverse of the Jacobian matrix
at the center of the box, if it exists (it applies only for square systems).

• Reduction strategy, that is, the technique used to reduce the initial domain, for
searching the roots of the system. We consider
– Convex hull reduction as described in [173].
– Extreme root reduction, which consists in computing the first (resp. last)

root of the polynomial mj(fk;uj), (resp. Mj(fk;uj)), in the interval [rj , sj].
The improvement compared with the previous approach can be substantial
(see Figure 8.1).

Fig. 21. Convex hull vs. extreme roots

• Subdivision strategy, that is, the technique used to subdivide the domain, in
order to simplify the forthcoming steps, for searching of roots of the system.
Here some simple rules that can be used to subdivide a domain, either in the
parameter domain, or in the image.

This family of algorithms has been implemented in the C++ library SYNAPS5 and
compared on several benchmarks. It appears that the strategy of local precondition-
ning with an emphasis on reduction is significantly better than the other strategies.
The performances of such a solver are very good.

8.2 Algebraic methods

We now turn to algebraic methods for solving polynomial systems. We will mainly
discuss the ones based on resultant matrix constructions, but also mention a method
based on normal form computations which generalizes the well-known concept of
Gröbner basis.

Resultant-based methods

Resultant theory. The theory of resultant is devoted to the study of conditions on the
coefficients of an over-determined system, to have a solution in a fixed variety. The

5 http://www-sop.inria.fr/galaad/software/synaps

36 S. Hahmann et al.

typical situation is the case of a system of n + 1 equations in a space of dimension n
of the form:

fc :=

⎧⎪⎪⎨⎪⎪⎩
f0(x) =

∑k0
j=0 c0,j ψ0,j(x)

...
fn(x) =

∑kn

j=0 cn,j ψn,j(x)

where c = (ci,j) are parameters, x is a point of a variety X of dimension n, and the
vector Li = (ψi,j)j=0,...,ki

is a regular map [74] from X to the projective space P
ki

independent of c. The elimination problem consists, in this case, in finding neces-
sary (and sufficient) conditions on c such that the system fc = 0 has a solution in X .
From a geometric point of view, we look for the values of parameters c = (ci,j) such
that there exists x ∈ X with

∑ki

j=0 ci,jψi,j(x) = 0 for i = 0, . . . , n. It turns out that
these parameters are exactly the zero locus of a unique polynomial equation (defined
up to the multiplication by a non-zero constant) in c which is called the resultant of
f0, . . . , fn and is denoted by ResX(fc). It is a quite attractive object because one
can compute it through some matrix constructions.

Construction of resultant matrices. In order to construct a non-trivial multiple
of ResX(fc), we apply the following strategy. A vector L(c,x) of polynomials in
Z[c][x], where x denotes a coordinate system of a projective space containing X , is
constructed in such a way that

(1) the polynomial entries of L(c,x) are generically independent,
(2) the set v(x) of monomials (or polynomials) in x needed to decompose all the

polynomials of L(c,x) has the same size than L(c,x), and
(3) the polynomials in L(c,x) vanish when the input system has a common root in

the variety X .

The coefficient matrix of the polynomials entries of L(c,x) with respect to the set
v(x) yields a matrix S(c) whose entries are in Z[c]. Its determinant is nonzero,
according to the point (1).

Above and hereafter, we use the term generic, which means that the property
that we are considering is true on an open subset of the coefficient space for c. Our
aim is to construct matrices S(c), which can be used for generic systems of a certain
class of polynomial equations. In practice, the problem is not posed in these terms.
We are given a system of equations and it may happen that the construction we are
considering yields a degenerate matrix S(c). In this case, the system is not generic
for the resultant formulation and we have to chose another class of systems for which
we are in a generic position. This explains why a lot of different types of resultant
formulations have been studied; we will give a list in a moment.

By construction, we have v(x)t S(c) = L(c,x)t. Thus, according to the point
(2), if ζ is a common root of a specialized system fc0

= 0, we have L(c0, ζ) = 0
and v(ζ)t S(c0) = 0. If (generically) v(ζ) is not zero at a common root ζ ∈ X
of fc0

= 0, we deduce that det
(
S(c)

)
vanishes when the system has a common

root in X . Therefore det
(
S(c)

)
is a non-trivial multiple of its equation, that is of the

resultant ResX(fc).

Shape Interrogation 37

A usual way to construct these resultant matrices (which extends Sylvester’s con-
struction for the classical resultant of two univariate polynomial), consists in choos-
ing for L, a list of monomial multiples of the polynomials fi. In this case, the matrix
S(c) is the matrix of a map of the form

S : 〈xE0〉 × · · · × 〈xEn〉 → 〈xF 〉

(q0, . . . , qn) �→ g =
n∑

i=0

qifi

where 〈xEi〉 is the vector subspace generated by a specific set of monomials xEi .
The entries of S(c) are filled as follows: every column of S is indexed by an element
of some {Ei}i=0,...,n and every row by an element of F ; equivalently, the columns
and rows are indexed by the monomials of qi and the monomials of g, respectively.
The coefficient in the row corresponding to β ∈ F and in the column corresponding
to α ∈ Ej is the coefficient of xβ in xαfj . The coefficients of monomials which
do not explicitly appear in xαfj have a zero entry. Thus the matrix S(c) is divided
into blocks (S0, . . . , Sn), where each block Si depends linearly on the coefficients
of fi. Notice that such resultant matrices have a quasi-Toeplitz structure which can
be exploited to accelerate many computations with them, by almost one order of
magnitude in terms of the matrix dimension. This relies on FFT for fast multivariate
polynomial and dense structured matrix arithmetic; a smaller acceleration is achieved
by applying Karatsuba’s divide-and-conquer arithmetic [135, 52].

Different resultant formulations. We recall briefly different resultant formulations
which can be used in geometric problems. A detailed description is beyond the scope
of this book. The formulation will be chosen according to the geometric properties
of the problem to solve.
• multivariate resultants: They correspond to the classical case studied in [115,
187]. Here X is the projective space P

n, Li is the vector of all monomials of a
fixed degree di, and the function fi is a generic homogeneous polynomial of degree
di. The most used resultant matrix in this context is the Macaulay’s construction
[115] which can be seen as an extension of the Sylvester’s method to the multivari-
ate case. However, some other multivariate resultant matrices have been developed
(see e.g. [90, 34]).
• toric (or sparse) resultants: They have been introduced in [92], then developed in
[62]. It takes into account the monomial support of the input polynomials of a sys-
tem, and not only their respective degree. Thus it is possible to work with polynomi-
als having negative exponents, that is Laurent polynomials. Methods for constructing
toric resultant matrices can be found in [22, 50, 33].
• Residual resultants: In many situations coming from practical problems, the equa-
tions have common zeroes which are independent of the parameters of the problems,
and which we are not interested in. The residual resultant constructions has been de-
signed to take into account these degenerate cases. It is described, as well as matrix
construction, in [20, 18, 21]. A more general construction has been developed in [19]

38 S. Hahmann et al.

whose associated matrix construction is the so-called called Bezoutian matrix.

Solving polynomial systems via eigenvalues computations. Let f0(x), f1(x), . . .,
fn(x) be polynomials in n variables x = (x1, . . . , xn). By choosing an adapted re-
sultant formulation one can construct a resultant matrix S associated to this system.

It turns out that this matrix can be divided into four blocs S =
(S00 S01

S10 S11

)
and that

the Schur complement S00 −S01S11
−1S10 is nothing but the matrix of the multipli-

cation map by f0(x) in a canonical basis of the quotient ring R[x]/(f1, . . . , fn). The
point is that the eigenvalues of such a multiplication matrix are particularly interest-
ing, they are the evaluation of f0 at the common root of f1 and f2. If f0 is a linear
form one can thus easily solve the polynomial system f1(x) = f2(x) = 0.
Solving polynomial systems by hiding a variable. Another approach to solve a sys-
tem of polynomial equations consists in hiding a variable (that is, in considering one
of variables as a parameter), and in searching the value of this hidden variable for
which the system has a solution. Typically, if we have n equations f1 = 0, . . . , fn =
0 in n variables, we “hide” a variable, say xn, and apply one of resultant construc-
tions described before to the over-determined system f1 = 0, . . . , fn = 0 in the n−1
variables x1, . . . , xn−1 and a parameter xn. This leads to a resultant matrix S(xn)
with polynomial entries in xn. It can be decomposed as

S(xn) = Sd xd
n + Sd−1x

d−1
n + · · · + S0,

where Si has coefficients in R and the same size as S(xn). We look for the values
ζn of xn for which the system has a solution ζ ′ = (ζ1, . . . , ζn−1) in the correspond-
ing variety X ′ (of dimension n − 1) associated with the resultant formulation. This
implies that

v(ζ ′)t S(ζn) = 0, (7)

where v(ζ ′) is the vector of monomials indexing the rows of S evaluated at ζ ′. Con-
versely, for generic systems of the corresponding resultant formulation there is only
one point ζ ′ above the value ζn. Thus the vectors v satisfying S(ζn)t v = 0 are
scalar multiples of v(ζ ′). From the entries of these vectors, we can deduce the other
coordinates of the point ζ ′. This will be assumed hereafter6.

The relation (7) implies that v(ζ ′) is a genearlized eigenvector of St(xn). Com-
puting such vectors can be transformed into the following linear generalized eigen-
problem ⎛⎜⎜⎜⎜⎝

⎡⎢⎢⎢⎣
0 I · · · 0
...

.
...

0 · · · 0 I

St
0 St

1 . . . St
d−1

⎤⎥⎥⎥⎦− ζn

⎡⎢⎢⎢⎢⎣
I 0 · · · 0

0
.

...
...

. . . I 0
0 · · · 0 −St

d

⎤⎥⎥⎥⎥⎦
⎞⎟⎟⎟⎟⎠ w = 0. (8)

6 Notice however that this genericity condition can be relaxed by using duality, in order
to compute the points ζ′ above ζn (when they form a zero-dimensional fiber) from the
eigenspace of S(ζn).

Shape Interrogation 39

The set of eigenvalues of (8) contains the values of ζn for which (7) has a solution.
The corresponding eigenvectors w are decomposed as w = (w0, . . . , wd−1) so that
the solution vector v(ζ ′) of (7) is

v(ζ ′) = w0 + ζnw1 + · · · + ζd−1
n wd−1.

Normal forms

Gröbner basis is a powerful tool to handle a lot of computations on polynomial sys-
tems. However their construction is not numerically stable, they may introduce artifi-
cial discontinuities due to the choice of a monomial order. A recent generalization of
this notion has been proposed in [134, 138, 139]. It is based on a new criterion which
gives a necessary and sufficient condition for a projection onto a vector subspace of
R to be a normal form modulo the ideal I . More precisely we have:

Theorem 3. Let B be a vector space in R = R[x1, . . . , xn] connected to the constant
polynomial 17. If B+ is the vector subspace generated by B ∪ x1 B ∪ . . . ∪ xn B,
N : B+ → B is a linear map such that N is the identity on B, we define for
i = 1, . . . , n, the maps

Mi : B → B

b �→ Mi(b) := N(xib).

The two following properties are equivalent:

1. For all 1 ≤ i, j ≤ n, Mi ◦ Mj = Mj ◦ Mi.
2. R = B ⊕ I , where I is the ideal generated by the kernel of N

If this holds, the B-reduction along ker(N) is canonical.

This leads to a completion-like algorithm which starts with the linear subspace
K0 generated by the polynomials f1, . . . , fm, that we want to solve and iterates the
construction Ki+1 = K+

i ∩L, where L is a fixed vector space. We stop when Ki+1 =
Ki. See [134, 138, 186, 139] for more details. This approach allows us to fix first the
set of monomials on which we want to do linear operations and thus to treat more
safely polynomials with approximate coefficients. It can be adapted very naturally to
Laurent polynomials, which is not the case for Gröbner basis computation. Moreover
it can be specialized very efficiently to systems of equations for which the basis of
A is known a priori, such as in the case of a complete projective intersection [138].
Let us see how we can deduce the roots from this normal form computation. For this
purpose, we will use the properties of the operators of multiplication by elements of
A = R(f1, .., fm). For any a ∈ A, we define

Ma : A → A
b �→ Ma(b) := a b.

7 Any monomial xα �= 1 ∈ B is of the form xixβ with xβ ∈ B and some i in {1, . . . , n}.

40 S. Hahmann et al.

We also consider its transpose operator

Mt
a : Â → Â

Λ �→ Mt
a(Λ) = Λ ◦ Ma,

where the dual space Â is the set of R-linear forms from A to R. The matrix of
Mt

a in the dual basis of a basis B of A is the transpose of the matrix of Ma in B.
The multiplication operators can be computed using a normal form algorithm, as
described above.

Hereafter, xE = (xα)α∈E denotes a monomial basis of A (for instance obtained
by a Gröbner basis). Then any polynomial can be reduced modulo (f1, . . . , fm) to a
linear combination of monomials of xE .

The matrix approach to solve polynomial systems is based on the following fun-
damental theorem [3], [133]:

Theorem 4. Assume that Z(I) = {ζ1, . . . , ζd}. We have

1. Let a ∈ A. The eigenvalues of the operator Ma (and its transpose Mt
a) are

a(ζ1), . . . , a(ζd).
2. The common eigenvectors of (Mt

a)a∈A are (up to a scalar) the evaluations
1ζ1 , . . . ,1ζd

.

Since xE = (xα)α∈E is a basis of A, the coordinates of 1ζi
in the dual basis of xE

are (ζα
i)α∈E . Thus if xE contains 1, x1, . . . , xn (which is often the case), we can

deduce directly all the coordinates of the roots. We have the following algorithm:

Algorithm 1 Solving in the case of simple roots. Let a ∈ A such that a(ζi) �= a(ζj)
for i �= j (which is generically the case) and Ma be the matrix of multiplication by a
in the basis xE = (1, x1, . . . , xn, . . .) of A.

1. Compute the eigenvectors Λ = (Λ1, Λx1 , . . . , Λxn
, . . .) of Mta.

2. For each eigenvector Λ with Λ1 �= 0, compute and output the point ζ =(
Λx1
Λ1

, . . . ,
Λxn

Λ1

)
.

The set of output points ζ contains the simple roots (i.e. roots with multiplicity 1)
of f = 0, since for such a root the eigenspace associated to the eigenvalue a(ζ) is
one-dimensional and contains 1ζ . But as we will see in the next example, it can also
yield in some cases the multiple roots.

In order to compute exactly the set of roots counted with their multiplicity, we use
the following result. It is based on the fact that commuting matrices share common
eigenspaces. [133, 135, 31].

Theorem 5. There exists a basis of A such that for all a ∈ A, the matrix of Ma in
this basis is of the form

Ma =

⎛⎜⎝N1
a 0

. . .
0 Nd

a

⎞⎟⎠ with Ni
a =

⎛⎜⎝a(ζi) �
. . .

0 a(ζi)

⎞⎟⎠ .

Shape Interrogation 41

We deduce the algorithm:

Algorithm 2 Solving by simultaneous triangulation.
INPUT: Matrices of multiplication Mxi

,i = 1, . . . , n, in a basis of A.

1. Compute a (Schur) decomposition P such that the matrices Ti = PMxi
P−1, i =

1, . . . , n, are upper-triangular.
2. Compute and output the diagonal vectors ti = (t1i,i, . . . , t

n
i,i) of triangular ma-

trices Tk = (tki,j)i,j .

OUTPUT: Z(I) = {ti : i = 1, . . . ,dimR(A)}.

The first step in this algorithm is performed by computing a Schur decomposition of
Ml (where l is a generic linear form) which yields a matrix P of bases change. Then
we compute the triangular matrices Ti = PMxi

P−1, i = 1, . . . , n, since they commute
with Ml. An implementation by Ph. Trébuchet of this algorithm is available in the
SYNAPS library (see solve(L,newmac<C>())).

9 Conclusion

Shape interrogation methods are still of increasing interest in geometric modeling
as well as in computer graphics. Originating 20 years ago from CAD/CAM applica-
tions where “class A” surfaces are required and no surface imperfections are allowed,
shape interrogation has become recently an important tool for various other types of
surface representations such as triangulated or polygonal surfaces, subdivision sur-
faces, and algebraic surfaces. In this chapter, we presented the state-of-the-art of
shape interrogation methods including methods for detecting surface imperfections,
surface analysis tools and methods for visualizing intrinsic surface properties. Fur-
thermore we focused on stable numerical and symbolic solving of algebraic systems
of equations, a problem that arises in most shape interrogation methods. Neverthe-
less, many issues are still open promising intensive research in various areas of shape
interrogation. Let us focus on some of them now.

Discrete geometry representations are frequently used in many applications, es-
pecially for shapes acquired from real-world objects. Typically, surfaces are approx-
imated by polygonal meshes, and we showed how to estimate differential properties
for piecewise linear surfaces. Various methods exist so far, and recent approaches
prove approximation and convergence properties. The design of robust methods com-
ing with certain guarantees is still an area of active research.

In the area of algebraic and numerical polynomial system solvers, that provide
one of the basic tools for shape interrogation methods, improvements are indispens-
able. Many critical problems in Computer Aided Geometric Deisgn, such as shape
interrogation, are reduced to finding the zero set of a system of polynomial equa-
tions. Several root-finding methods for polynomial systems exist, even if we mainly
presented resultant-based methods and subdivision methods. A wide choice of tech-
niques and algorithms to solve polynomial systems are thus now available, but as
a main drawback, all of these methods have difficulties in handling roots with high

42 S. Hahmann et al.

multiplicities (or clusters of roots). They all have performance deterioration, lack of
robustness in numerical computation and round-off errors during floating point arith-
metic in such a situation. It is hence a crucial objective and an active research area to
improve root-finding methods in this case which often occurs in practice.

In the area of symbolic curve and surface interrogation future/open problems can
be addressed. Volumetric data sets are now used in many applications and serves
as a prime candidate representation in medical applications. The extension of curve
and surface interrogation methods to support volumetric representation, either as iso-
surfaces in the volumes or direction analyze differential properties are highly desired.
The degrees of many of these rational fields such as the Gaussian curvature, K, or
the mean curvature square, M2, are high. Methods to robustly handle these fields, in
a more stable way, could further improve the quality of the result.

References

1. P. Alliez, M. Attene, C. Gotsman, and G. Ucelli. Recent advances in remeshing of
surfaces. In L. De Floriani and M. Spagnuolo, editors, Shape Analysis and Structuring.
Springer, 2007.

2. P. Alliez, D. Cohen-Steiner, O. Devillers, B. Lévy, and M. Desbrun. Anisotropic polyg-
onal remeshing. ACM Transactions on Graphics, 22(3):485–493, July 2003.

3. W. Auzinger and H. J. Stetter. An elimination algorithm for the computation of all zeros
of a system of multivariate polynomial equations. In Proc. Intern. Conf. on Numerical
Math., volume 86 of Int. Series of Numerical Math, pages 12–30. Birkhäuser Verlag,
1988.

4. R Barnhill, G Farin, L. Fayard, and H Hagen. Twists, curvature and surface interrogation.
CAD, 20:314–346, 1988.

5. J. Beck, R. Farouki, and J. Hinds. Surface analysis methods. IEEE CG & Appl., 6:19–35,
1986.

6. K.-P. Beier. The porcupine technique: principles, applications, and algorithms. Technical
report, University of Michigan, 1987.

7. K.-P. Beier and Y. Chen. Highlight-line algorithm for realtime surface quality assess-
ment. CAD, 26(4):268–277, 1994.

8. A. G. Belyaev, E. V. Anoshkina, and T. L. Kunii. Ridges, ravines, and singularities. In
A. T. Fomenko, and T. L. Kunii, Topological Modeling for Visualization, pages 375–383.
Springer, 1997. Chapter 18.

9. A. G. Belyaev and Y. Ohtake. An image processing approach to detection of ridges and
ravines on polygonal surfaces. In Eurographics 2000, Short Presentations, pages 19–28,
August 2000.

10. A. G. Belyaev, A. A. Pasko, and T. L. Kunii. Ridges and ravines on implicit surfaces. In
Proc. Computer Graphics International 1998, pages 530–535, 1998.

11. M. V. Berry and J. H. Hannay. Umbilic points on gaussian random surfaces. J. Phys. A,
10:1809–21, 1977.

12. P. J. Besl and R. C. Jain. Invariant surface characteristics for 3D object recognition in
range images. Comput. Vision Graph. Image Process, 33(1):33–80, 1986.

13. I. A. Bogaevski, V. Lang, A. G. Belyaev, and T. L. Kunii. Color ridges on implicit
polynomial surfaces. In GraphiCon 2003 Proceedings, pages 161–164, September 2003.

Shape Interrogation 43

14. V. Borrelli, F. Cazals, and J. M. Morvan. On the angular defect of triangulations and the
pointwise approximation of curvatures. Computer Aided Geometric Design, 20(6):319–
341, 2003.

15. J. W. Bruce, P. J. Giblin, and F. Tari. Ridges, crests and sub-parabolic lines of evolving
surfaces. International Journal of Computer Vision, 18(3):195–210, 1996.

16. J. W. Bruce, P. J. Giblin, and F. Tari. Families of surfaces: focal sets, ridges and umbilics.
Math. Proc. Camb. Phil. Soc., 125:243–268, 1999.

17. J. W. Bruce and T. C. Wilkinson. Folding maps and focal sets. In M. Dæhlen, T. Ly-
che, and L. L. Schumaker, editors, Proceedings of Warwick Symposium on Singularities,
Springer Lecture Notes in Math., vol 1462, pages 63–72, Berlin and New York,, 1991.
Springer-Verlag.

18. L. Busé. Residual resultant over the projective plane and the implicitization problem. In
Proceedings of the 2001 International Symposium on Symbolic and Algebraic Compu-
tation, pages 48–55 (electronic), New York, 2001. ACM.

19. L. Busé, M. Elkadi, and B. Mourrain. Generalized resultants over unirational algebraic
varieties. J. Symbolic Comput., 29(4-5):515–526, 2000. Symbolic computation in alge-
bra, analysis, and geometry (Berkeley, CA, 1998).

20. L. Busé, M. Elkadi, and B. Mourrain. Resultant over the residual of a complete inter-
section. J. Pure Appl. Algebra, 164(1-2):35–57, 2001. Effective methods in algebraic
geometry (Bath, 2000).

21. L. Busé, M. Elkadi, and B. Mourrain. Using projection operators in computer aided
geometric design. In Topics in algebraic geometry and geometric modeling, volume 334
of Contemp. Math., pages 321–342. Amer. Math. Soc., Providence, RI, 2003.

22. J. Canny and P. Pedersen. An algorithm for the Newton resultant. Technical Report
1394, Comp. Science Dept., Cornell University, 1993.

23. C. Catalano and I. Ivrissimtzis. Subdivision surfaces and applications. In L. L. De Flo-
riani and M. Spagnuolo, editors, Shape Analysis and Structuring. Springer, 2007.

24. F. Cazals and M. Pouget. Estimating differential quantities using polynomial fitting of
osculating jets. In Symposium on Geometry Processing, pages 177–187, 2003.

25. F. Cazals and M. Pouget. Ridges and umbilics of a sampled smooth surface: a complete
picture gearing toward topological coherence. Rapport de Recherche RR-5294, INRIA,
September 2004.

26. F. Cazals and M. Pouget. Smooth surfaces, umbilics, lines of curvatures, foliations,
ridges and the medial axis: a concise overview. Rapport de Recherche RR-5138, INRIA,
March 2004.

27. S. Chan and E. Purisima. A new tetrahedral tesselation scheme for isosurface generation.
Computers & Graphics, 22(1):83–90, 1998.

28. E. Cohen, R. Riesenfeld, and G. Elber. Geometric Modeling with Splines: An Introduc-
tion. AK Peters, 2001.

29. D. Cohen-Steiner, P. Alliez, and M. Desbrun. Variational shape approximation. ACM
Transactions on Graphics, 23(3):905–914, August 2004. Proceedings of SIGGRAPH
2004.

30. D. Cohen-Steiner and J.-M. Morvan. Restricted delaunay triangulations and normal
cycle. In Proceedings of the nineteenth Conference on Computational Geometry (SCG-
03), pages 312–321, June 8–10 2003.

31. R. M. Corless, P. M. Gianni, and B. M. Trager. A reordered Schur factorization method
for zero-dimensional polynomial systems with multiple roots. In W.W. Küchlin, editor,
Porc. ISSAC, pages 133–140, 1997.

44 S. Hahmann et al.

32. P. Csákány and A. M. Wallace. Computation of local differential parameters on irregular
meshes. In R. Cipola and R. Martin, editors, The Mathematics of Surfaces IX, pages 19–
33. Springer, 2000.

33. C. D’Andrea. Macaulay style formulas for sparse resultants. Trans. Amer. Math. Soc.,
354(7):2595–2629 (electronic), 2002.

34. C. D’Andrea and A. Dickenstein. Explicit formulas for the multivariate resultant. J.
Pure Appl. Algebra, 164(1-2):59–86, 2001. Effective methods in algebraic geometry
(Bath, 2000).

35. G. Darboux. Leçons sur la théorie générale des surfaces, Tome 4. Gauthier-Villars,
Paris, 1896.

36. D. DeCarlo, A. Finkelstein, S. Rusinkiewicz, and A. Santella. Suggestive contours for
conveying shape. ACM Trans. on Graphics, 22(3):848–855, 2003. Proc. ACM SIG-
GRAPH 2003.

37. M. Desbrun, M. Meyer, P. Schröder, and A. H. Barr. Implicit fairing of irregular meshes
using diffusion and curvature flow. Computer Graphics (Proceedings of SIGGRAPH
99), pages 317–324, 1999.

38. J. Dill. An application of color graphics to the display of surface curvature. Computer
Graphics, 15(3):153–161, 1981.

39. P. M. Do Carmo. Differential Geometry of curves and surfaces. Prentice-Hall, Engle-
wood Cliffs, 1976.

40. D. Eberly. Ridges in Image and Data Analysis. Kluwer, 1996.
41. A. Eigenwillig, V. Sharma, and C. K. Yap. Almost tight recursion tree bounds for the

descartes method. In ISSAC ’06: Proceedings of the 2006 international symposium on
Symbolic and algebraic computation, pages 71–78, New York, NY, USA, 2006. ACM
Press.

42. L. P. Eisenhart. An introduction to differential geometry. Princeton University Press,
Princeton, N.J., 1976.

43. G. Elber. Free form surface analysis using a hybrid of symbolic and numerical compu-
tation. PhD thesis, Department of Computer Science, The University of Utah, 1992.

44. G. Elber. Freeform surface region optimization for three- and five-axis milling. Com-
puter Aided Design, 27(6):465–470, June 1995.

45. G. Elber. Symbolic and numeric computation in curve interrogation. Computer Graphics
forum, 14(1):25–34, March 1995.

46. G. Elber. Curve evaluation and interrogation on surfaces. The Journal of Graphical
Models, 63(3):197–210, May 2001.

47. G. Elber and E. Cohen. Second-order surface analysis using hybrid symbolic and nu-
meric operators. ACM Trans. on Graphics, 12(2):160–178, 1993.

48. G. Elber and M.-Soo Kim. Geometric shape recognition of freeform curves and surfaces.
Graphics Models and Image Processing, 59(6):417–433, November 1997.

49. G. Elber and M.-Soo Kim. Geometric constraint solver using multivariate rational spline
functions. In Proceedings of the sixth ACM Symposium on Solid Modelling and Applicat
ions, pages 1–10. ACM Press, 2001.

50. I. Emiris and J. Canny. A practical method for the sparse resultant. In M. Bronstein,
editor, Proc. Intern. Symp. on Symbolic and Algebraic Computation, pages 183–192,
Kiev, July 1993.

51. I. Z. Emiris, B. Mourrain, and E. P. Tsigaridas. Real algebraic numbers: Complexity
analysis and experimentations. Research Report 5897, INRIA, Avril 2006.

52. I. Z. Emiris and V. Y. Pan. Symbolic and numeric methods for exploiting structure in
constructing resultant matrices. J. Symbolic Comput., 33(4):393–413, 2002.

Shape Interrogation 45

53. G. Farin. Curves and Surfaces for Computer Aided Geometric Design. Academic Press,
New York, 4th edition, 1996.

54. G. Farin and N. Sapidis. Curvature and the fairness of curves and surfaces. IEEE CG &
Appl., 9:52–57, 1989.

55. R. Farouki and V. Rajan. On the numerical condition of polynomials in bernstein form.
Computer Aided Geometric Design, 4(3):191–216, 1987.

56. R. T. Farouki. Graphical methods for surface differential geometry. In R. Martin, editor,
in Mathematics of surfaces, pages 363–385. IMA Series, 1987.

57. R. T. Farouki and T. N. T. Goodman. On the optimal stability of the bernstein basis.
Mathematics of computation, 65(216):1553–1566, October 1996.

58. J. D. Foley, A. van Damm, S. K. Feiner, and J. F. Hughes. Computer Graphics. Principles
and Practice. Adison-Wesley, 1990. 2nd edition.

59. A. Forrest. On the rendering of surfaces. Computer Graphics, pages 253–259, 1979.
60. P. J. Frey and H. Boroucraki. Surface mesh quality evaluation. International Journal for

Numerical Methods in Engineering, 45:101–118, 1999.
61. I. Friedel, P. Schröder, and A. Khodakovsky. Variational normal meshes. ACM Trans-

actions on Graphics, 23(4):1061–1073, 2004.
62. I. M. Gelfand, M. M. Kapranov, and A. V. Zelevinsky. Discriminants, resultants,

and multidimensional determinants. Mathematics: Theory & Applications. Birkhäuser
Boston Inc., Boston, MA, 1994.

63. A. S. Glassner. Computing surface normals for 3D models. In A. S. Glassner, editor,
Graphics Gems, pages 562–566. Academic Press, 1990.

64. J. Goldfeather and V. Interrante. A novel cubic-order algorithm for approximating prin-
cipal directions vectors. ACM Transactions on Graphics, 23(1):45–63, 2004.

65. G. G. Gordon. Face recognition from depth maps and surface curvature. In Geometric
Methods in Computer Vision, Proc. SPIE 1570, pages 234–247, 1991.

66. H. Gouraud. Continuous shading of curved surfaces. IEEE Transactions on Computers,
C-20(6):623–629, 1971.

67. U. Grenader and M. I. Miller. Computational anatomy: An emerging discipline. Quar-
terly of Applied Mathematics, 56(4):617–694, 1998.

68. A. Guéziec, X. Pennec, and N. Ayache. Medical image registration using geometric
hashing. IEEE Comput. Sci. Eng., 4(4):29–41, 1997.

69. A. Gullstrand. Zur Kenntnis der Kreispunkte. Acta Mathematica, 29:59–100, 1904.
70. S. Gumhold, X. Wang, and R. McLeod. Feature extraction from point clouds. In Proc.

10th International Meshing Roundtable, pages 293–305, Sandia National Laboratories,
Newport Beach, CA, 2001.

71. H. Hagen and S. Hahmann. Generalized focal surfaces : A new method for surface
interrogation. In Proceedings Visualization’92, pages 70–76. IEEE, 1992.

72. P. L. Hallinan, G. G. Gordon, A. L. Yuille, P. Giblin, and D. Mumford. Two- and Tree-
Dimensional Patterns of the Face. A K Peters, 1999.

73. B. Hamann. Curvature approximation for triangulated surfaces. Computing Suppl.,
8:139–153, 1993.

74. J. Harris. Algebraic geometry, volume 133 of Graduate Texts in Mathematics. Springer-
Verlag, New York, 1992. A first course.

75. E. Hartmann. On the curvature of curves and surfaces defined by normalforms. Com-
puter Aided Geometric Design, 16(5):355–376, 1999.

76. R. Hartwig and H. Nowacki. Isolinien und schnitte in coonschen flächen. Geometrisches
Modellieren 65, Informatik Fachberichte der GI, 1982.

77. R. A. Herman. A Treatise on Geometrical Optics. Cambridge University Press, 1900.

46 S. Hahmann et al.

78. M. Higashi, T. Saitoh, and Y.. Watanabe. Analysis of aesthetic free-form surfaces by
surface edges. In Pacific Graphics ’95, pages 294–305, 1995.

79. D. Hilbert and S. Cohn-Vossen. Geometry and the imagination. Chelsea Publishing
Company, New York, 1952.

80. K. Hildebrandt and K. Polthier. Anisotropic filtering of non-linear surface features. In
Proc. Eurographics, pages 391–400, 2004.

81. K. Hildebrandt, K. Polthier, and M. Wardetzky. Smooth feature lines on surface meshes.
In Third Eurographics Symposium on Geometry Processing, pages 85–90, July 2005.

82. M. Hisada, A. G. Belyaev, and T. L. Kunii. A skeleton-based approach for detection
of perceptually salient features on polygonal surfaces. Computer Graphics Forum,
21(4):689–700, 2002.

83. D. D. Hoffman and W. A. Richards. Parts of recognition. Cognition, 18:65–96, 1985.
84. M. Hosaka. Modeling of Curves and Surfaces in CAD/CAM. Springer, Berlin, 1992.
85. J. Hoschek. Detecting regions with undesirable curvature. CAGD, 1:183–192, 1984.
86. J. Hoschek. Smoothing of curves and surfaces. CAGD, 2:97–105, 1985.
87. J. Hoschek, U. Dietz, and W. Wilke. A geometric concept of reverse engineering of

shape: Approximation and feature lines. In M. Dæhlen, T. Lyche, and L. L. Schumaker,
editors, Mathematical Methods for Curves and Surfaces II, pages 253–262. Vanderbilt
Univ. Press, 1998.

88. A. Hubeli and M. Gross. Multiresolution feature extraction from unstructured meshes.
In Proc. IEEE Visualization 2001, pages 287–294, 2001.

89. V. Interrante, H. Fuchs, and S. Pizer. Enhancing transparent skin surfaces with ridge and
valley lines. In Proc. IEEE Visualization 1995, pages 52–59, 1995.

90. J. P. Jouanolou. Formes d’inertie et résultant: un formulaire. Adv. Math., 126(2):119–
250, 1997.

91. S. Kapoor. Efficient computation of geodesic shortest paths. In STOC ’99: Proceedings
of the thirty-first annual ACM symposium on Theory of computing, pages 770–779, New
York, NY, USA, 1999. ACM Press.

92. M. M. Kapranov, B. Sturmfels, and A. V. Zelevinsky. Chow polytopes and general
resultants. Duke Math. J., 67(1):189–218, 1992.

93. S. Katz and A. Tal. Hierarchical mesh decomposition using fuzzy clustering and cuts.
ACM Trans. Graph., 22(3):954–961, 2003.

94. E. Kaufmann and R. Klass. Smoothing surfaces using reflection lines for families of
splines. CAD, 20:312–316, 1988.

95. J. T. Kent, D. Lee, Mardia K. V., and A. D. Linney. Using curvature information in shape
analysis. In K. V. Mardia, G. A. Gill, and I. L. Dryden, editors, Proc. Image Fusion and
Shape Variability Techniques, pages 88–99. Leeds University Press, 1996.

96. J. T. Kent, K. V. Mardia, and J. West. Ridge curves and shape analysis. In The British
Machine Vision Conference 1996, pages 43–52, 1996.

97. J. Kjellander. Smoothing of bicubic parametric surfaces. CAD, 15:288–293, 1983.
98. R. Klass. Correction of local irregularities using reflection lines. CAD, 12:73–77, 1980.
99. K. H. Ko, T. Maekawa, N. M. Patrikalakis, H. Masuda, and F.-E. Wolter. Shape intrinsic

fingerprints for free-form object matching. In Proc. of 8th ACM Symposium on Solid
Modeling and Applications, pages 196 – 207, 2003.

100. L. Kobbelt, S. Campagna, J. Vorsatz, and H.-P. Seidel. Interactive multi-resolution mod-
eling on arbitrary meshes. In Proceedings of SIGGRAPH 98, pages 105–114, 1998.

101. J. J. Koenderink. Solid Shape. MIT Press, 1990.
102. I. Kreyszig. Differential Geometry. Univ. of Toronto Press, Toronto, 1959.

Shape Interrogation 47

103. V. Krishnamurthy and M. Levoy. Fitting smooth surfaces to dense polygon meshes. In
SIGGRAPH 96 Conference Proceedings, pages 313–324, New York, NY, USA, 1996.
ACM Press.

104. P. Krsek, G. Lukacs, and R. R. Martin. Algorithms for computing curvatures from range
data. In R. Cripps, editor, The Mathematics of Surfaces VIII, pages 1–16. IMA, 1998.

105. J. Lane and R. Riesenfeld. Bounds on a polynomial. BIT, 21:112–117, 1981.
106. T. Langer, A. Belyaev, and H.-P. Seidel. Asymptotic analysis of discrete normals and

curvatures of polylines. In SCCG ’05: Proceedings of the 21st spring conference on
Computer graphics, pages 229–232, 2005.

107. T. Langer, A. Belyaev, and H.-P. Seidel. Exact and approximate quadratures for curva-
ture tensor estimation. In Vision, Modeling, and Visualization 2005 (VMV’05), pages
421–428, 2005.

108. R. B. Lee and D. A. Fredericks. Intersection of parametric surfaces and a plane. IEEE
CG & Appl., 4(8):48–51, 1984.

109. J. J. Little and P. Shi. Structural lines, TINs and DEMs. Algorithmica, 30(2):243–263,
2001.

110. A. M. López, F. F. Lumbreras, and J. Serrat. Creaseness from level set extrinsic curva-
ture. In Proc. ECCV’98, pages 156–169. Springer, 1998.

111. W. E. Lorensen and H. E. Cline. Marching cubes: A high resolution 3d surface construc-
tion algorithm. In SIGGRAPH 87 Conference Proceedings, pages 163–169, New York,
NY, USA, 1987. ACM Press.

112. C. Lu, Y. Cao, , and D. Mumford. Surface evolution under curvature flows. Journal of
Visual Communication and Image Representation, 13(1/2):65–81, March/June 2002.

113. G. Lukács and L. Andor. Computing natural division lines on free-form surfaces based
on measured data. In M. Dæhlen, T. Lyche, and L. L. Schumaker, editors, Mathematical
Methods for Curves and Surfaces II, pages 319–326. Vanderbilt Univ. Press, 1998.

114. K.-L. Ma and V. Interrante. Extracting feature lines from 3D unstructured grids. In Proc.
IEEE Visualization 1997, pages 285–292, 1997.

115. F. S. Macaulay. Some formulae in elimination. Proc. London Math. Soc., 1(33):3–27,
1902.

116. T. Maekawa and Patrikalakis M. Interrogation of differential geometry properties for
design and manufacture. Visual Computer, 10:216–237, 1994.

117. T. Maekawa, F.-E. Wolter, and N. Patrikalakis. Umbilics and lines of curvature for shape
interrogation. CAGD, 13:133–161, 1996.

118. T. Maekawa, F.-E. Wolter, and N. M. Patrikalakis. Umbilics and lines of curvature for
shape interrogation. Computer Aided Geometric Design, 13(2):133–161, 1996.

119. J.-L. Maltret and M. Daniel. Discrete curvatures and applications: a survey. Rapport de
recherche 004.2002, Laboratoire des Sciences de l’Information et des Systèmes, 2002.

120. N. Max. Weights for computing vertex normals from facet normals. Journal of Graphics
Tools, 4(2):1–6, 1999.

121. D. S. Meek and D. J. Walton. On surface normal and gaussian curvature approximations
given data sampled from a smooth surface. Computer Aided Geometric Design, 17:521–
543, 2000.

122. M. Meyer, M. Desbrun, P. Schröder, and A. H. Barr. Discrete differential-geometry
operators for triangulated 2-manifolds. In International Workshop on Visualization and
Mathematics, Berlin-Dahlem, Germany, May 2002.

123. J. Mitchell. Geometric shortest paths and network optimization. In J.-R. Sack and
J. Urrutia, editors, Handbook of Computational Geometry, volume 334, pages 633–702.
Elsevier Science, 2000.

48 S. Hahmann et al.

124. J. S. B. Mitchell, D. M. Mount, and C. H. Papadimitrou. The discrete geodesic problem.
SIAM J. of Computing, 16(4):647–668, 1987.

125. N. J. Mitra and A. Nguyen. Estimating surface normals in noisy point cloud data. In
Symposium on Computational geometry, pages 322–328. ACM Press, 2003.

126. N. J. Mitra, A. Nguyen, and L. Guibas. Estimating surface normals in noisy point cloud
data. International Journal of Computational Geometry and Applications, 2004.

127. O. Monga, N. Armande, and P. Montesinos. Thin nets and crest lines: Application to
satellite data and medical images. Computer Vision and Image Understanding: CVIU,
67(3):285–295, 1997.

128. O. Monga and S. Benayoun. Using partial derivatives of 3D images to extract typical
surface features. Computer Vision and Image Understanding: CVIU, 61:171–195, 1995.

129. O. Monga, S. Benayoun, and O.D. Faugeras. From partial derivatives of 3-D density
images to ridge lines. In Proc. CVPR’92, pages 354–359. IEEE, 1992.

130. H. P. Moreton and C. H. Sequin. Functional optimization for fair surface design. In
SIGGRAPH’92 Proceedings, pages 167–176, August 1992.

131. R. Morris. The sub-parabolic lines of a surface. In G. Mullineux, editor, Mathematics
of Surfaces VI, IMA new series 58, pages 253–262. Clarendon Press, 1996.

132. J. M. Morvan and B. Thibert. On the approximation of a smooth surface with a tri-
angulated mesh. Computational Geometry: Theory and Applications, 33(3):337–352,
2002.

133. B. Mourrain. Computing isolated polynomial roots by matrix methods. J. of Symbolic
Computation, Special Issue on Symbolic-Numeric Algebra for Polynomials, 26(6):715–
738, Dec. 1998.

134. B. Mourrain. A new criterion for normal form algorithms. In M. Fossorier, H. Imai,
Shu Lin, and A. Poli, editors, Proc. AAECC, volume 1719 of LNCS, pages 430–443.
Springer, Berlin, 1999.

135. B. Mourrain and V. Y. Pan. Asymptotic acceleration of solving multivariate polynomial
systems of equations. In STOC ’98 (Dallas, TX), pages 488–496. ACM, New York,
1999.

136. B. Mourrain and J.-P. Pavone. Subdivision methods for solving polynomial equations.
Technical Report 5658, INRIA Sophia-Antipolis, 2005.

137. B. Mourrain, F. Rouillier, and M.-F. Roy. Bernstein’s basis and real root isolation, pages
459–478. Mathematical Sciences Research Institute Publications. Cambridge University
Press, 2005.

138. B. Mourrain and P. Trébuchet. Solving projective complete intersection faster. In C. Tra-
verso, editor, Proc. Intern. Symp. on Symbolic and Algebraic Computation, pages 231–
238. New-York, ACM Press., 2000.

139. B. Mourrain and Ph. Trébuchet. Generalised normal forms and polynomial system solv-
ing. In M. Kauers, editor, Proc. Intern. Symp. on Symbolic and Algebraic Computation,
pages 253–260. New-York, ACM Press., 2005.

140. B. Mourrain, M. Vrahatis, and J. C. Yakoubsohn. On the complexity of isolating real
roots and computing with certainty the topological degree. J. of Complexity, 18(2):612–
640, 2002.

141. L. R. Nackman. Two-dimensional critical point configuration grpahs. IEEE Trans.
Pattren Analysis and machine Intelligence, 6(4):442–450, 1984.

142. M. Nielsen, O. F. Olsen, M. Sig, and M. Sigurd. Koenderink corner points. In Proceed-
ings of the 4th International Workshop on Visual Form, pages 420–430. Springer-Verlag,
2001.

Shape Interrogation 49

143. G. M. Nielson and B. Hamann. The asymptotic decider: resolving the ambiguity in
marching cubes. In VIS ’91: Proceedings of the 2nd conference on Visualization ’91,
pages 83–91, Los Alamitos, CA, USA, 1991. IEEE Computer Society Press.

144. T. Nishita, T. W. Sederberg, and M. Kakimoto. Ray tracing trimmed rational surface
patches. Computer Graphics, 24(4 (Proc. ACM Siggraph 90)):337–345, August 1990.

145. Y. Ohtake, A. Belyaev, and H.-P. Seidel. Ridge-valley lines on meshes via implicit
surface fitting. ACM Transactions on Graphics, 23(3):609–612, August 2004. Proc.
ACM SIGGRAPH 2004.

146. D. L. Page, A. Koschan, and M. Abidi. Perception-based 3D triangle mesh segmentation
using fast marching watersheds. In Proc. Intl. Conf. on Computer Vision and Pattern
Recognition, Vol. II, pages 27–32, 2003.

147. D. L. Page, A. Koschan, Y. Sun, J. Paik, and A. Abidi. Robust crease detection and
curvature estimation of piecewise smooth surfaces from triangle mesh approximations
using normal voting. In Proceedings on Computer Vision and Pattern Recongition, 2001.

148. D. L. Page, Y. Sun, A. Koschan, J. Paik, and M. Abidi. Normal vector voting: Crease
detection and curvature estimation on large, noisy meshes. Journal of Graphical Models,
64:1–31, 2002.

149. N. M. Patrikalakis and T. Maekawa. Shape Interrogation for Computer Aided Design
and Manufacturing. Springer-Verlag, Berlin and Heidelberg, 2002.

150. M. Pauly, R. Keiser, and M. Gross. Multi-scale feature extraction on point-sampled
models. Computer Graphics Forum, 22(3):281–289, 2003. Eurographics 2003 issue.

151. X. Pennec, N. Ayache, and J. P. Thirion. Landmark-based registration using features
identified through differential geometry. In I. N. Bankman, editor, Handbook of Medical
Imaging, pages 499–513. Academic Press, 2000.

152. C. Petersen. Adaptive contouring of three-dimensional surfaces. CAGD, 1:61–74, 1984.
153. S. Petitjean. A survey of methods for recovering quadrics in triangle meshes. ACM

Computing Surveys, 34(2), 2001.
154. G. Peyré and L. Cohen. Heuristically driven front propagation for geodesic paths ex-

traction. In Proceedings of VLSM’05, pages 173–184. Springer LNCS, 2005.
155. V. Pham-Tron, N. Szafran, and L. Biard. Pseudo-geodesics on three-dimensional sur-

faces and pseudo-geodesic meshes. Numerical Algorithms, 26:305–315, 2001.
156. B. T. Phong. Illumination for computer generated pictures. Communications of ACM,

18(6):311–317, 1975.
157. T. Poeschl. Detecting surface irregularities using isophotes. CAGD, 1:163–168, 1984.
158. I. R. Porteous. Ridges and umbilics of surfaces. In R. R. Martin, editor, The Mathematics

of Surfaces II, pages 447–458, Oxford, 1987. Clarendon Press.
159. I. R. Porteous. Geometric Differentiation for the Intelligence of Curves and Surfaces.

Cambridge University Press, Cambridge, 1994.
160. I. R. Porteous and M. J. Puddephat. Landmarks of a surface. In R. Cipolla and R. R.

Martin, editors, Mathematics of Surfaces IX, IMA new series, pages 114–125. Clarendon
Press, 2000.

161. H. Pottmann. Visualizing curvature discontinuities of free-form surfaces. In Proc. Eu-
rographics’89, pages 529–536, 1989.

162. E. Praun, H. Hoppe, and A. Finkelstein. Robust mesh watermarking. In SIGGRAPH 99
Conference Proceedings, pages 49–56, New York, NY, USA, 1999. ACM Press/
Addison-Wesley Publishing Co.

163. J. G. Ramsay. Folding and Fracturing of Rocks. McGraw Hill, 1967.
164. J. J. Risler. Méthodes mathématiques pour la CAO. Masson, 1991.
165. A. Rockwood. Accurate display of tensor product isosurfaces. In IEEE Visualization

’90 Conf., 1990.

50 S. Hahmann et al.

166. C. Rössl, L. Kobbelt, and H.-P. Seidel. Extraction of feature lines on triangulated sur-
faces using morphological operators. In Proceedings of the 2000 AAAI Symposium,
pages 71–75. AAAI Press, 2000.

167. S. Rusinkiewicz. Estimating curvatures and their derivatives on triangle meshes. In
Proc. of Second International Symposium on 3D Data Processing, Visualization, and
Transmission (3DPVT), Thessaloniki, Greece, 2004.

168. M. A. Sabin. Contouring - the state of the art. In Earnshaw R.A., editor, Fundamental
Algorithms for Computer Graphics, pages 411–482. Springer Verlag, 1985.

169. S. G. Scatterfield and D. F. Rogers. Contour lines from a b-spline surface. IEEE CG &
Appl., 5(4), 1985.

170. D. Schweitzer. Artificial texturing: an aid to surface visualization. Computer Graphics,
17(3):23–29, 1983.

171. T. W. Sederberg and R. J. Meyers. Loop detection in surface patch intersections. Com-
puter Aided Geometric Design, 5(2):161–171, 1988.

172. T. W. Sederberg and J. Zheng. Algebraic methods for computer aided geometric de-
sign. In Handbook of computer aided geometric design, pages 363–387. North-Holland,
Amsterdam, 2002.

173. E. C. Sherbrooke and N. M. Patrikalakis. Computation of the solutions of nonlinear
polynomial systems. Comput. Aided Geom. Design, 10(5):379–405, 1993.

174. K. Sloan. Surface normal (summary). In Usenet comp.graphics article, September 1991.
175. P.-P. J. Sloan, C. F. Rose, and M. F. Cohen. Shape by example. In SI3D ’01: Proceedings

of the 2001 symposium on Interactive 3D graphics, pages 135–143, New York, NY,
USA, 2001. ACM Press.

176. D. J. Struik. Lectures on Classical Differential Geometry. Dover Science, 1986.
177. G. Stylianou and G. Farin. Crest lines extraction from 3D triangulated meshes. In

G. Farin, B. Hamann, and H. Hagen, editors, Hierarchical and Geometrical Methods in
Scientific Visualization, pages 269–281. Springer, 2003.

178. Y. Sun, D. L. Page, J. K. Paik, A. Koschan, and M. A. Abidi. Triangle mesh-based edge
detection and its application to surface segmentation and adaptive surface smoothing. In
Proc. Int. Conf. Image Processing, Vol. 3, pages 825–828, 2002.

179. V. Surazhsky, T. Surazhsky, D. Kirsanov, S. J. Gortler, and H. Hoppe. Fast exact and
approximate geodesics on meshes. ACM Trans. Graph., 24(3):553–560, 2005. Proceed-
ings of SIGGRAPH’05.

180. G. Taubin. Estimating the tensor of curvature of a surface from a polyhedral approxima-
tion. In Proc. ICCV’95, pages 902–907, 1995.

181. H. Theisel, C. Rössl, R. Zayer, and H.-P. Seidel. Normal based estimation of the cur-
vature tensor for triangular meshes. In Proc. Pacific Graphics, pages 288–297, Seoul,
South Korea, 2004.

182. J.-P. Thirion. The extremal mesh and the understanding of 3D surfaces. International
Journal of Computer Vision, 19(2):115–128, 1996.

183. J.-P. Thirion. New feature points based on geometric invariants for 3D image registra-
tion. International Journal of Computer Vision, 18(2):121–137, May 1996.

184. J.-P. Thirion and A. Gourdon. The 3D marching lines algorithm and its application to
crest lines extraction. Graphical Models and Image Processing, 58(6):503–509, 1996.

185. G. Thürmer and C. A. Wüthrich. Computing vertex normals from polygonal facets.
Journal of Graphics Tools, 3(1):42–46, 1998.

186. P. Trébuchet. Vers une résolution stable et rapide des équations algébriques. PhD thesis,
Université Pierre et Marie Curie, 2002.

187. B. L. van der Waerden. Modern Algebra. F. Ungar Publishing Co., New York, 3rd
edition, 1950.

Shape Interrogation 51

188. K. Watanabe and A. G. Belyaev. Detection of salient curvature features on polygonal
surfaces. Computer Graphics Forum, 20(3):385–392, 2001. Eurographics 2001.

189. W. Welch and A. Witkin. Free–Form shape design using triangulated surfaces. In An-
drew Glassner, editor, Proceedings of SIGGRAPH ’94, pages 247–256, 1994.

190. F.-E. Wolter. Cut locus and medial axis in global shape interrogation and representation.
Technical Report memorandum 92-2, MIT, Department of Ocean Engineering, January
1992.

191. A. L. Yuille. Zero crossings on lines of curvature. Graphical Models and Image Process-
ing, 45(1):68–87, 1989.

192. A. L. Yuille and M. Leyton. 3D symmetry-curvature duality theorems. Graphical Mod-
els and Image Processing, 52(1):124–140, 1990.

Recent Advances in Remeshing of Surfaces

Pierre Alliez1, Giuliana Ucelli2, Craig Gotsman3, and Marco Attene4

1 INRIA, France pierre.alliez@sophia.inria.fr
2 IGD / GraphiTech, Italy giuliana.ucelli@graphitech.it
3 Technion, Israel gotsman@cs.technion.ac.il
4 CNR, Italy attene@ge.imati.cnr.it

Summary. Remeshing is a key component of many geometric algorithms, including mod-
eling, editing, animation and simulation. As such, the rapidly developing field of geometry
processing has produced a profusion of new remeshing techniques over the past few years.
In this paper we survey recent developments in remeshing of surfaces, focusing mainly on
graphics applications. We classify the techniques into five categories based on their end goal:
structured, compatible, high quality, feature and error-driven remeshing. We limit our descrip-
tion to the main ideas and intuition behind each technique, and a brief comparison between
some of the techniques. We also list some open questions and directions for future research.

1 Introduction

Surface meshes are commonly used in many computer graphics applications to
represent shapes. Many of these meshes are generated by scanning devices or by
isosurfacing implicit representations. Unfortunately, such processes - especially if
automated - are error-prone, and the resulting “raw” meshes are rarely satisfactory.
Often they are oversampled and contain many redundant vertices. Besides needing to
reduce the complexity of these meshes, which has stimulated a considerable amount
of work in automatic mesh simplification [53], frequently the mesh quality, in terms
of vertex sampling, regularity and triangle quality, must be improved. This improve-
ment process is called remeshing (see, for example, Figure 1). The focus has been
on ways to ease not only the display process, but also editing, animation, processing,
storing and transmission. The following reviews several results of the past few years.

We invite the reader interested in related topics to read several comprehensive
courses and tutorials on subdivision surfaces [72, 92], geometric modeling [41],
digital geometry processing [81, 79] morphing [2], simplification and compres-
sion [53, 28, 3] and parameterization [22].

54 P. Alliez et al.

Fig. 1. Uniform remeshing of the Digital Michelangelo David model. Figure reproduced
from [78].

1.1 Remeshing

The literature does not offer a precise universally accepted definition of remeshing.
It often varies according to the targeted goal or application. Nonetheless, one possi-
ble definition could be: “Given a 3D mesh, compute another mesh, whose elements
satisfy some quality requirements, while approximating the input acceptably”. Qual-
ity herein has several meanings. It can refer to the sampling, grading, regularity, size
or shape of elements. Often a combination of these criteria is desired in real applica-
tions. Some remeshing techniques proceed by altering the input, and some generate
a new mesh from scratch.

1.2 Applications

Remeshing of surfaces is beneficial to a wealth of applications that take as input a
meshed surface. These range from modeling to visualization through reverse engi-
neering and simulation. All these applications execute some of the following, which
require surface remeshing: creation and editing, animation, metamorphosis, approx-
imation, simulation, denoising, smoothing and fairing, efficient rendering, compres-
sion, feature recovery and levels of detail.

1.3 Main Issues

We begin by listing briefly some general issues that arise during the remeshing
process:

• Validity. The mesh has to be a valid mesh . This usually means that it should
be a simple manifold. Typically it will also be closed; namely, it will not contain
boundaries.

Recent Advances in Remeshing of Surfaces 55

• Quality. The quality of mesh elements is crucial for robustness and numerical
stability, required for numerical simulation as well as for geometry processing.
Numerical computations, such as finite element analysis , require fairly regular
meshes, both in terms of geometry and connectivity. These meshes are used to
compute mechanical stress or solve heat and other differential equations. A high-
quality mesh is required to minimize numerical errors and singularities that might
otherwise arise (see [74]).

• Fidelity. The newly generated mesh should approximate the original shape
geometry as closely as possible, while keeping the mesh complexity below a
given budget. Ideally, “just enough” resolution for the problem being solved is
sought. This involves choosing an error metric, as well as deciding between in-
terpolation and approximation.

• Discrete input. The input is given as a discrete mesh, which is usually only an
approximation of some (unknown) continuous shape. Having just this discrete
approximation, and not the ideal shape, hampers most shape interrogation op-
erations (e.g., normal, tangent plane, curvature estimations). Moreover, meshes
generated from sampled point clouds by reconstruction algorithms may be con-
taminated by aliasing artifacts and lack important features present in the original.

• Large data sets. Modern 3D scanners generate very large datasets when the
sampling rate is increased to ensure that no details are missed. As a result, the
sampling and tessellation are insensitive to the shape, and the data is replete with
redundancies.

• Uncertainty. Data obtained by an acquisition process such as laser scanning is
often contaminated by electronic, mechanical or even optical noise present in the
scanning pipeline.

• Correspondence. A central issue common to all remeshing techniques is to find
the corresponding location of a new vertex on the input mesh surface. Such corre-
spondence is typically found by parameterizing the input mesh. This is a complex
problem, which can be computationally expensive, suffer from accuracy issues,
and/or impose restrictions on the mesh. It is particularly problematic when per-
forming the remeshing operations on a 2D parametric domain: the mapping of a
nontrivial 3D structure (possibly a 3D mesh with arbitrary genus and holes) to
a 2D parametric domain inevitably introduces some metric distortion, and may
lead to the loss of important information. Furthermore, if the parameterization is
combined with mesh segmentation, it is likely to encounter difficulties near the
patch boundaries. Other parameter-free approaches work directly on the surface,
and perform local modifications on the mesh (such as adding, removing, or relo-
cating vertices). During these adaptations, the mesh vertices are forced to remain
on the input mesh. This type of approach can be found in several different tech-
niques [24, 23, 34, 33, 66, 83, 77]. The optimizations are either performed in 3D
(which is computationally expensive), or in a tangent plane (which is faster, but
less accurate). By using local operations, the approach may avoid the pitfalls of
techniques based on global operations; and by performing the remeshing opera-
tions on a 2D plane, it is considerably faster than 3D optimizations. The distortion
caused by mapping a 3D mesh to a 2D parametric domain can be considerably

56 P. Alliez et al.

reduced by using optimizations such as overlapping patches [77], and error ac-
cumulation (often caused by local operations) can be minimized by constantly
comparing to a reference smooth approximation of the original geometry (e.g.,
by using triangular cubic Bzier patches such as PN triangles [85] or continuous
patches [88]).

We now list some general desirable algorithmic functionalities of a remeshing algo-
rithm:

• Levels of detail. Support for continuous Levels-of-Detail (i.e., continuous-
resolution representations) is often desirable for rendering and transmission ap-
plications. This poses a major challenge to remeshing algorithms.

• Complexity. With the increasing precision and resolution of modern acquisition
devices, having to deal with meshes made of millions, or even billions, of faces is
commonplace; thus, the speed of a remeshing algorithm is important. Often the
main focus is on the trade-off between the quality of the result and the speed of
the remeshing operation. Typically, close-to-linear runtime complexity is sought.

• Theoretical guarantees. Algorithms that guarantee the topology, matching of
constraints, bounds on the distortion of geometry and normals, or bounds on the
shape of elements are highly desirable for applications where certified results are
required.

2 State of the Art

For each class of methods, this survey provides a definition of the characteristics that
an algorithm must have, the motivations leading to the development of algorithms
of each class, and a discussion of critical and open issues. To present state-of-the-art
techniques as clearly as possible, we classify the remeshing techniques by their end
goal rather than by the technique they employ. We identified five main categories of
remeshing techniques:

• Structured remeshing (Section 2.1) - the connectivity graph of resulting meshes
consists of regular patterns.

• Compatible remeshing (Section 2.2) - several meshes are modified to share a
common connectivity structure.

• High quality remeshing (Section 2.3) - the shape of the elements as well as the
vertex distribution are the main goals.

• Feature remeshing (Section 2.4) - preservation or even restoration of sharp fea-
tures is the main focus when producing the resulting meshes.

• Error-driven remeshing (Section 2.5) - well-defined distances between the orig-
inal and resulting surfaces are minimized (or bounded) while performing the
remeshing.

Clearly, several of the characteristics mentioned above may be desirable simulta-
neously. In fact, some remeshing algorithms have been designed to produce a satis-

Recent Advances in Remeshing of Surfaces 57

factory compromise within a particular application context. A neat separation, how-
ever, is necessary to produce a generic classification and a useful taxonomy, while
trade-offs would need to be evaluated on a case-by-case basis.

2.1 Structured Remeshing

Definition

Structured remeshing replaces an unstructured input mesh with a structured one. In
a structured mesh, sometimes called a regular mesh , all internal vertices are sur-
rounded by a constant number of elements. A semi-regular mesh is obtained by reg-
ular subdivision of an irregular mesh (see [79]). All the vertices are regular except
for a small number of extraordinary vertices (see Figure 2) . A highly regular mesh
is one in which the vast majority of vertices are regular, yet the mesh has not neces-
sarily been generated by subdivision.

Fig. 2. Meshes: Irregular, semi-regular and regular.

Motivation

Structured meshes offer certain advantages over unstructured ones. Their connectiv-
ity graph is significantly simpler, hence allowing for efficient traversal and localiza-
tion in the algorithms. Semi-regular meshes, which are essentially piecewise-regular,
offer a trade-off between the simplicity of structured meshes and the flexibility of
unstructured meshes.

Semi-Regular

Semi-regular meshes are obtained by recursive subdivision of an initial base mesh
(Figure 3). Their hierarchical structure makes them ideal for multiresolution analy-
sis (coarsification by downsampling and smoothing) and synthesis (subdivision and

58 P. Alliez et al.

adding of details). They have shown useful for modeling smooth or piecewise smooth
surfaces, reverse engineering, multiresolution analysis and modeling, and morphing,
editing and visualization with levels-of-detail applications.

Fig. 3. Semi-regular mesh obtained by recursive subdivision of an initial base mesh.

The emerging field of geometry processing [79] has made significant use of semi-
regular meshes. A fundamental question of geometry processing is the following:
is it possible to extend the methods of classical digital signal processing (e.g., the
discrete Fourier transform and wavelets), usually applied on regular uniform struc-
tures, to the irregular non-uniform setting? This question has only been partially
solved, and the solution of choice consists of semi-regular remeshing of the original
shape so that the geometric “signal” is resampled onto regular and uniformly sam-
pled patches. One example of geometry processing is the set of discrete operators
used for smoothing and fairing, applicable only in the regular and uniform setting.

The main techniques for semi-regular remeshing can be classified into two cate-
gories according to the way they find correspondences between the input and output
meshes. The first class uses a parameterization to find a bijective correspondence.
The techniques within this class differ mainly by the type of parameterization:

• Techniques that parameterize the input mesh on a global planar domain [35]. The
parameter domain is then resampled, and the new mesh connectivity is projected
back into 3D space, resulting in an improved version of the input (Figure 4). The
main drawbacks of the global parameterization methods are the sensitivity to the
specific parameterization used, and the metric distortion that may arise (due to
the fact that the 3D structure is forced onto a foreign parameter plane). Further-
more, many of these techniques involve the solution of a large set of (sometimes
nonlinear) equations, resulting in substantial computation. Sander et al. [69] used
a hierarchical approach based on multigrid methods, which can accelerate the
process to almost linear time even for large meshes. Nevertheless, numerical pre-
cision issues may arise for meshes with severe isoperimetric distortion.

• Techniques that parameterize the original model onto a set of base triangular do-
mains, the latter obtained either by simplification, or by partitioning the original
mesh into regions using a discrete analogue of the notion of a Voronoi tiling.
This technique, used by [20, 47, 30], yields excellent results while being sensi-
tive to the patch structure (see example Figure 5 and its colour version CP-1 in
Appendix B). The vertex sampling is also sensitive to control.

Recent Advances in Remeshing of Surfaces 59

Fig. 4. Quadrilateral remeshing: The main idea of the algorithm is to circumvent the three-
dimensional remeshing problem by flattening the 3D mesh T3 to a 2D version T2, and solving
the two-dimensional problem instead. The deflation function f is then defined by linearly
mapping each triangle of T3 to the corresponding triangle in T2 while the inverse inflation
function F enables to get back from 2D to 3D. Figure reproduced from [35].

Fig. 5. Multiresolution adaptive parameterization of surfaces. Overview of the algorithm. Top
left: a scanned input mesh (courtesy Cyberware). Next the parameter or base domain, obtained
through mesh simplification. Top right: regions of the original mesh colored according to their
assigned base domain triangle. Bottom left: adaptive remeshing with subdivision connectivity.
Bottom middle: multiresolution edit. Figure reproduced from [47].

60 P. Alliez et al.

The second class of techniques does not rely on any parameterization but instead
uses ray shooting [43] to find correspondences. These are then used to shrink wrap
the new mesh onto the input mesh (Figure 6).

Fig. 6. Remeshing by shrink wrapping. The original bust model has 61K triangles. The base
mesh with 72 triangles is subdivided three times to generate the center mesh and 5 times to
generate the right image. Figure reproduced from [43].

Shape compression techniques employing semi-regular remeshing are among the
best reported to date. The main idea behind these techniques [40, 30, 38, 60] is the
observation that a mesh representation has three components: geometry, connectivity
and parameterization, of which the latter two (i.e. connectivity and parameterization)
are not important for the representation of the geometry. The goal is, therefore, to re-
duce the “volume” of these two components as much as possible by semi-regular
remeshing (see [3] for a more detailed description of this shape compression tech-
nique).

Discussion

In all mapping-based methods, parameterization plays a critical role, and any defi-
ciencies in it will be amplified in the output. In particular, building globally smooth
parameterization is notoriously difficult [39]). Having subdivision connectivity is
still necessary for multiresolution analysis, which has proved to be a powerful tool
for many geometric modeling and processing applications. The challenge remains in
how to handle irregular meshes directly. Moreover, this stumbling block will remain
as long as current geometry processing approaches are designed in analogy to their
continuous counterparts.

Recent Advances in Remeshing of Surfaces 61

Completely Regular

In a regular mesh (a grid, triangle or hexagonal tessellation) the connectivity is im-
plicit, the compactness and regularity of the data structure improve the efficiency
and facilitate the implementation of many algorithms. Regular remeshing has been
shown to be useful for efficient rendering (no cache indirection), texture and other
modulation mapping (e.g., normal, transparency maps).

Gu et al. [29] remeshed irregular triangle meshes using a regular rectangular grid.
The input mesh of arbitrary genus is initially cut to reduce it to a single topological
disc. It is then parameterized on the unit 2D square while minimizing a geometric-
stretch measure. This is then represented as a so-called geometry image that stores
the geometry as well as any modulation map required for visualization purposes
(see Figure 7 and its colour version CP-2 in the in Appendix B). Such a compact
grid structure drastically simplifies the rendering pipeline since all cache indirec-
tions usually found in irregular mesh rendering are eliminated. Despite its obvious
importance for efficient rendering, this technique has a few drawbacks due to the
inevitable surface cutting: each geometry image has to be homeomorphic to a disk,
therefore, closed or genus> 0 models have to be cut along a cut graph. In particular,
it introduces unacceptably high parameterization distortion for high genus models or
shapes with high isoperimetric ratios (e.g., long extremities). To alleviate these draw-
backs, Sander et al. [70] used an atlas construction to map the input mesh onto charts
of arbitrary shape. Those charts are then packed in a geometry image in parameter
space, and a zippering algorithm is used to remove the discontinuities across chart
boundaries and create a watertight surface. Another way to minimize seams due to
cutting is to first parameterize the mesh to a sphere [27], which is then mapped in a
highly structured way to the square.

Fig. 7. Construction of a Geometry Image: Original mesh (70k faces, genus 0), original mesh
with cut, parameterization and Geometry Image (257 × 257). Figure reproduced from [29].

Discussion

The concept of geometry images follows the recent trend in computer graphics to
represent all surface modulation signals as “texture images” (normal maps, bump
maps, transparency maps, color maps, light maps, reflection maps), instead of using

62 P. Alliez et al.

a fine mesh with attributes at each vertex. The key idea is to represent the shape
geometry itself using regular grids, assuming the cost of 3D transformations to be
negligible with respect to the cost of “decorating” the mesh using a complex multi-
texturing process. Research on geometry images, mainly driven by Hoppe and co-
workers, anticipates the unification of vertex and image buffers.

Highly Regular

Szymczak et al.[80] described a remeshing method for the creation of piecewise
regular meshes . Based on their orientation, this algorithm partitions the triangles
into six sets. The set of triangles whose normal is closest to the positive x-direction
is sampled using a regular grid in the y-z plane. The other five sets are sampled
similarly using the appropriate grids. Finally, these re-sampled pieces are connected
into one valid mesh. The result typically contains a large fraction of regular vertices;
specifically, all the internal vertices of each piece are regular by construction, while
some irregular vertices may appear along the seams.

Surazhsky and Gotsman [77] performed local modifications directly on the
mesh surface in order to obtain a highly regular mesh. One key feature of their
method is the use of overlapping patches to locally parameterize the surface (which
overcomes the problems of global parameterization and of remeshing that usually
arise near the patch boundaries when parameterizing based on mesh segmentation).
Another key feature is a series of edge-collapse and edge-flip operations combined
with area-based mesh optimization to improve regularity and to produce well-shaped
triangles (without the problem of long and skinny triangles typically created if mesh
generation is based on triangle areas). As the overlapping parameterization allows
2D mesh optimization methods to be applied to 3D meshes (while minimizing the
distortion problem, typical of mapping a 3D mesh to a 2D parametric domain), this
algorithm is fast as well as robust (see an example in Figure 8).

Fig. 8. Highly regular remeshing. Figure reproduced from [77].

Recent Advances in Remeshing of Surfaces 63

Discussion

Highly regular meshes are frequently obtained by tessellating on a regular grid.
Surazhsky and Gotsman [77] demonstrated that highly regular meshes cannot be gen-
erated simply by local mesh adaptation, unless some semi-global operations, such as
drifting edges, are performed. One challenge is to obtain semi-regular meshes with a
prescribed number of irregular vertices (up to that required by the Euler formula) by
semi-global adaptation instead of subdivision.

2.2 Compatible Remeshing

Definitions

Given a set of 3D meshes with a partial correspondence between them, compatible
remeshing amounts to generating a new set of meshes that are remeshes of the input
set, such that they have a common connectivity structure, well-shaped polygons,
approximate the input well, and respect the correspondence.

Motivation

Motivating applications are morphing between shapes and attributes, multi-model
shape blending, synchronized model editing, fitting template models to multiple data
sets and principal component analysis. In these applications the common connectiv-
ity is usually more important than the mesh element quality.

Joint Parameterization

Much of the work done on compatible meshing focuses on morphing as the target
application. This first requires the computation of a joint parameterization (some-
times called cross parameterization) , namely, a bijective mapping between the two
meshes, possibly subject to some constraints. Alexa [2] provided a good review of
joint parameterization and compatible remeshing techniques developed for morph-
ing. Joint parameterization is typically computed by parameterizing the models on
a common base domain. One popular choice is the sphere. A number of algorithms
for spherical parameterization exist, e.g., [1, 27, 64]. Of these, only Alexa’s method
addresses feature correspondence (see Figure 9). However, it does not guarantee a
bijective mapping and is not always capable of matching the features. An inherent
limitation of a spherical parameterization is that it can only be applied to closed,
genus zero surfaces.

A more general approach is to parameterize the models over a common base
mesh [46, 48, 55, 65]. This approach splits the meshes into matching patches with
an identical inter-patch connectivity. After the split, each set of matching patches is
parameterized on a common convex planar domain. An advantage of this approach
is that it naturally supports feature correspondence by using feature vertices as cor-
ners of the matching patches. The main challenge in mapping the models to a single
base mesh is to construct identical inter-patch connectivities. The vast majority of the

64 P. Alliez et al.

Fig. 9. Joint spherical parameterization: First, an initial sphere embedding is computed for
each mesh. Second, the initial subdivision is deformed such that the common features coincide
on the spheres. The two connectivities are then merged. Figure reproduced from [1].

methods use heuristic techniques that work only when the models have nearly iden-
tical shape. Praun et al. [65] provided a robust method for partitioning both meshes
into patches given user-supplied base mesh connectivity. A common disadvantage of
existing techniques for constructing base meshes is that the patch structure severely
restricts the freedom of the parameterization. As a result, the shape of the patches
has a huge influence on the amount of mapping distortion.

Given joint parameterization, many techniques [1, 37] generate the common con-
nectivity for the models by overlaying the meshes in this parameter domain and
computing a common intersection mesh. The new mesh captures the geometry of the
models. However, the new mesh is typically much larger than the input meshes and
has very badly shaped triangles. The overlaying algorithm is also extremely tricky to
implement, as it requires multiple intersection and projection operations. An alter-
native is to remesh the models using a regular subdivision connectivity derived from
the base mesh [46, 55, 65]. Due to the rigid connectivity structure, the shape of the
mesh triangles reflects the shape of the base mesh. Thus, if the shape of the triangles
is poor (because, for example, the user picked unevenly spaced feature vertices), the
shape of the mesh triangles will reflect this. More importantly, a model that contains
features interior to the base mesh triangles will require a very dense subdivision mesh
over the entire model.

Inter-Surface Mapping

Kraevoy and Sheffer [45] developed a technique for joint parameterization and com-
patible remeshing of two genus-0 meshes with partial correspondence (Figure 10).
The input of the algorithm is a pair of triangle meshes and a set of corresponding

Recent Advances in Remeshing of Surfaces 65

feature vertices. The first stage of the algorithm constructs a common base domain
by incrementally adding pairs of matching shortest edge paths. Care is taken to avoid
intersections and blocking, as well as to preserve cyclic orders so as to obtain match-
ing patch layouts. Face paths are then added until all patches are triangulated, and
an additional path flip procedure improves the connectivity of the patch layout. The
second stage computes a shape preserving parameterization with smooth transitions
between patches using the mean-value parameterization followed by an adjacency
preserving smoothing procedure. The last stage constructs compatible meshes by al-
ternating vertex relocation to attract vertices toward areas of higher error, and error-
driven mesh refinement. The approximation of normals is improved by an additional
pseudo edge-flip refinement procedure. The meshes generated by this procedure con-
tain significantly fewer elements than those generated by simple overlaying methods,
while approximating well the geometry and normals of the input model.

Fig. 10. Base domains construction for joint parameterization and compatible remeshing of
two genus-0 meshes (feature vertices are dark green): (a),(b) edge paths; (c),(d) face paths,
new vertices are highlighted (turquoise); (e),(f) base meshes. Figure reproduced from [45].

Schreiner et at. [71] used a procedure similar to that of Kraevoy and Sheffer
for base mesh construction, handling models of arbitrary genus more robustly. To
generate a smooth joint parameterization, they used a symmetric, stretch based re-
laxation procedure, which trades off high computational complexity for quality of
the mapping. The common mesh is generated using an overlay of the input meshes,

66 P. Alliez et al.

as described above. To avoid artifacts, the method has to relax the feature vertex
correspondence in some cases.

Discussion

While compatible remeshing is becoming increasingly important in computer graph-
ics animation applications, where a sequence of meshes is available, it is still plagued
by a number of problems. The selection of pairs of corresponding feature points is
still manual. Very few methods extend easily to arbitrary genus surfaces and long
animation sequences. Lastly, the results are still highly dependent on the parameter-
ization method used to perform the joint parameterization.

2.3 High Quality Remeshing

Definitions

In our taxonomy high quality remeshing means to generate a new discretization of
the original geometry with a mesh that exhibits the following three properties: well-
shaped elements, uniform or isotropic sampling and smooth gradation sampling. A
well-shaped triangle has an aspect ratio as close to 1 as possible, and a well-shaped
quadrilateral contains angles between two consecutive edges as close to π/2 as pos-
sible. Isotropic sampling means that the sampling is locally uniform in all directions.
Requiring uniform sampling is even more restrictive since it mandates the sampling
to be uniform over the entire mesh. Smooth gradation means that if the sampling
density is not uniform - it should vary in a smooth manner [13].

Motivation

High quality remeshing is motivated by numerical stability and reliability of com-
putations for simulation. Efficient rendering, interactive free-form shape modeling,
as well as a few geometry processing algorithms such as compression, fairing or
smoothing also benefit from high quality meshes. The shape of mesh elements [61]
has a direct impact on the numerical stability of numerical computations for finite
element analysis, as well as for efficient rendering. For popular triangle meshes, it is
desirable to have no small angles and/or no large angles, depending on the targeted
computations (see [74]).

We restrict our description to point-based sampling techniques, although other
primitives can be evenly distributed on surfaces for meshing (e.g. bubble pack-
ing [90], square cell packing [75], placement of streamlines [6]). Uniform (resp.
isotropic) point sampling for remeshing amounts to globally (resp. locally) distrib-
uting a set of points on the input model in as even a manner as possible. We may
distinguish between greedy sample placement methods that insert one point at a time
to refine the newly generated model, and relaxation-based methods that improve an
initial placement either locally or globally through point relocation.

Recent Advances in Remeshing of Surfaces 67

Farthest point sampling.

The farthest point paradigm [49] advocates inserting one sample point at a time, as
far as possible from previously placed samples, i.e., at the center of the biggest void.
Its main advantage is in retaining the uniformity while increasing the density. In con-
trast to stochastic approaches, it can guarantee some uniformity by bounding the dis-
tance between samples [12]. This paradigm, called Delaunay refinement [15, 68, 56]
or sink insertion [21] as a variant, has shown effective in producing uniform as well
as isotropic sample placements. Recently it has been extended using the geodesic
distance estimated on the input mesh to find the center of the biggest voids [63, 57].
From an initial point set sampled on the input mesh, a Delaunay-like triangulation
is created by taking the dual of a geodesic-based Voronoi diagram constructed using
the Fast Marching method of Sethian and Kimmel [73].

Advancing front.

A popular method for evenly-spaced placement is the advancing front paradigm com-
monly used for meshing [11, 31, 82]. This method has recently been extended using
an approximation of the geodesic distance for remeshing by Sifri et al. [76]. A more
general approach was introduced by Dong et al. [18], who computed a harmonic
Morse function on the mesh surface. Drawing isocontours of this function, and plac-
ing a set of orthogonal streamlines results in a good quad remesh (Figure 11). An-
other quasi-uniform remeshing approach based on an advancing front is implicit in
the SwingWrapper compression scheme [10]. To reduce the number of bits needed
to encode the vertex locations, SwingWrapper partitions the surface into geodesic
triangles that, when flattened, constitute a new, strongly compressible mesh. The
remeshing is performed so that for each vertex of the new mesh there is at least one
incident isosceles triangle having a prescribed height. Though not optimally uniform,
the remeshing performed by SwingWrapper might effectively be used as an initial
guess for iterative processes that try to optimize uniformity.

Attraction-repulsion.

One of the first remeshing techniques to surface in the graphics community was
described by Turk [83]. It places a (user defined) number of new vertices on the input
mesh, and arranges the new vertices with the help of an attraction-repulsion particle
relaxation procedure, followed by an intermediate mutual tessellation that contains
both the vertices of the original mesh and the new vertices. This simple approach
produced quite remarkable results, although it had several limitations. Most notably,
it is not suitable for models that have sharp edges and corners, as it does not precisely
approximate such surfaces.

Umbrella operator.

Another popular method commonly used for even placement of samples consists of
repeatedly moving each sample point to the barycenter of its neighbors, and updating

68 P. Alliez et al.

Fig. 11. Quadrilateral remeshing of arbitrary manifolds: (a) A harmonic function is com-
puted over the manifold. (b) A set of crossings along each flow line is constructed. (c) A
non-conforming mesh is extracted from this net of flow crossings. (d) A post-process pro-
duces a conforming mesh composed solely of triangles and quadrilaterals. Figure reproduced
from [18].

the mesh connectivity. This procedure tends to generate globally uniform edges in
the simple case, and locally uniform edges (i.e. isotropic sampling) if weights are
assigned to edges [87].

The interactive remeshing technique introduced by Alliez et al. [5] is based on
global parameterization. It represents the original mesh by a series of 2D maps in
parameter space, and allows the user to control the sampling density over the surface
patch using a so-called control map, the latter created from the 2D maps. First, an
initial isotropic resampling is performed using an error-diffusion sampling technique
originally designed for image half-toning [58], followed by relaxation using the um-
brella operator. This method is a hybrid between a greedy method and a variational
method since the coefficients used for error diffusion are optimized during an off-
line procedure that seeks a placement with a so-called blue-noise profile, related to
the notion of isotropic sampling. The initial sample placement is then performed in
a single pass at run time; see Figure 12.

Recent Advances in Remeshing of Surfaces 69

Fig. 12. Interactive geometry remeshing: Remeshing of the MaxPlanck model with various
distribution of the sampling with respect to the curvature. The original model (left) is remeshed
uniformly and with an increasing importance placed on highly curved areas (left to right) as
the magnified area shows. Figure reproduced from [5].

Local area equalization.

Precise uniform sampling can be achieved through local area equalization. Assuming
that the neighbors of the vertex to be relocated is fixed, the new position is computed
by solving a linear system in order to minimize the area dispersion among all incident
triangles [77]. This technique has recently been extended to local equalization of the
Voronoi areas of the vertices in order to symmetrize a linear system used for mul-
tiresolution modeling [14]. The system is solved efficiently using a Cholesky-based
solver that takes advantage of symmetric band-limited matrices. Although efficient
and robust, these area equalization techniques do not provide an easy way to globally
distribute a set of samples in accordance to a density function.

Lloyd relaxation.

Isotropic sample placement can be achieved by applying the Lloyd clustering al-
gorithm [50], which consists of alternating Voronoi partitioning with relocation of
the generators to the centroid of their respective Voronoi cell (Figure 13). Such a
relaxation procedure generates centroidal Voronoi diagrams [19], where the genera-
tors coincide with the centroid of their respective cells. Lloyd relaxation minimizes
energy related to the compactness of the Voronoi cells (and hence to isotropic sam-
pling) while equi-distributing the energy within each cluster, as shown by Gersho in
the late seventies [26]. Contrary to other methods, this method allows the definition

70 P. Alliez et al.

of a density function related to the desired size of each Voronoi cell. It will then gen-
erate a distribution of energy which globally matches the local size while achieving
isotropic sampling.

Fig. 13. Lloyd relaxation: A set of generators (black dots) are randomly generated (the centroid
of each Voronoi cell is depicted as a red circle). Each iteration of the Lloyd algorithm moves
each generator to its associated centroid, and updates the Voronoi diagram.

Alliez et al. [7], and Surazhsky et al. [78] proposed two remeshing techniques
based on Lloyd relaxation. The first uses a global conformal planar parameterization
and then applies relaxation in the parameter space using a density function designed
to compensate for the area distortion due to flattening (Figure 14). To alleviate the
numerical issues for high isoperimetric distortion, as well as the artificial cuts re-
quired for closed or genus models, the second approach applies the Lloyd relaxation
procedure on a set of local overlapping parameterizations (Figure 15). More recently,
the Lloyd-based isotropic remeshing approach has been extended in two directions:
one uses the geodesic distance on triangle meshes to generate a centroidal geodesic-
based Voronoi diagram [62], while the other is an efficient discrete analog of the
Lloyd relaxation applied on the input mesh triangles [84].

Discussion

As expected, relaxation-based sample placement methods achieve better results than
greedy methods, at the price of lengthier computations. Nevertheless, the only meth-
ods that provide certified bounds on the shape of elements are the greedy approaches
based on Delaunay refinement. The Lloyd-based isotropic sampling method com-
bined with local overlapping parameterization has been successful at isotropically
distributing a point set in accordance with a density function [78]. Two remain-
ing challenges related to the Lloyd relaxation method are to prove or to give
sufficient conditions for achieving convergence to a global optimum, and to accel-
erate convergence. Another promising direction for efficient isotropic sampling is
the hierarchical Penrose-based importance sampling technique developed by Ostro-
moukhov [59], which is deterministic and several orders of magnitude faster than
relaxation methods.

Recent Advances in Remeshing of Surfaces 71

Fig. 14. Uniform remeshing of the David head: a planar conformal parameterization is com-
puted (bottom left). Then Lloyd relaxation is applied in parameter space in order to obtain a
weighted centroidal Voronoi tessellation, with which the mesh is uniformly resampled. Figure
reproduced from [7].

2.4 Feature Remeshing

Definitions

Assume that a triangle mesh is an approximation of a curved shape, possibly with
sharp edges and corners. We call the process that takes such a triangle mesh and gen-
erates a new tessellation in which the original sharp features are preserved, feature
remeshing. In this context, the quality of the approximation may be measured either
using a purely geometric metric (the L∞ norm, for example, is strongly affected by

72 P. Alliez et al.

Fig. 15. Uniform remeshing of the Beetle: Lloyd relaxation is applied over local overlapping
parameterizations as described in [78].

badly-approximated sharp corners), or by a metric that reflects visual-quality (e.g.,
normal deviation), or a combination of both.

Motivation

Most acquisition techniques, as well as several recently developed remeshing algo-
rithms [67, 80, 29, 10], restrict each sample to lie on a specific line or curve whose
position is completely defined by a pre-established pattern. In most cases, such a
pattern cannot be adjusted to coincide with a model’s sharp edges and corners, and
almost none of the samples will lie on such sharp features. Thus, the sharp edges and
corners of the original shape are removed by the sampling process and replaced by
irregularly triangulated chamfers, which often result in a poor-quality visualization
and high L∞ distortion.

Feature-preserving

When the original shape is available, the error between such a shape and the approx-
imating triangle mesh may be reduced by dense sampling. Over-sampling, however,
will significantly increase the number of vertices, and thus the associated complexity,
transmission and processing costs. Furthermore, as observed by Kobbelt et al. [44],
the associated aliasing problem will not be solved by over-sampling, since the sur-
face normals in the reconstructed model will not converge to the normal field of the
original object. To cope with this problem, an extended marching cubes algorithm
was proposed in [44]. The input shape is first converted into a signed distance field.
This representation is then polygonized using a variant of the marching-cubes [51]
algorithm in which vertex normals are derived from the distance field and used to
decide whether a voxel contains a sharp feature or not. If they do appear, additional
vertices are created within the voxel and placed at intersections between the planes
defined by the vertices and their associated normals. Another feature-preserving ap-
proach was proposed in [36]. It is able to accurately polygonize models with sharp

Recent Advances in Remeshing of Surfaces 73

features using adaptive space subdivision (an octree), resulting in polygonal models
with fewer faces. In a different setting, an original triangulation may be remeshed
without converting it into a scalar distance field, and the aliasing problem may be
avoided by snapping some of the evenly distributed vertices onto sharp creases, as
proposed in [86].

Feature-enhancing

When the original shape is not available, the EdgeSharpener method [9] provides an
automatic procedure for identifying and sharpening the chamfered edges and cor-
ners. In a first step, the mesh is analyzed and the average dihedral angle at the edges
is computed. Based on this value, “smooth” regions are grown on the mesh, and
the strips of triangles separating neighboring smooth regions are considered “alias-
ing artifacts” made of chamfer triangles . The growing process results in a number
of smooth regions in which all the internal edges have a nearly flat dihedral angle.
EdgeSharpener infers the original sharp edges and corners by intersecting planar ex-
trapolations of the smooth regions. Then, each chamfer triangle is subdivided, and
the newly inserted vertices are moved to the intersections, which are assumed to
better approximate the original sharp features (see Figure 16). Unless the input con-
tains significant amounts of noise, EdgeSharpener does not introduce undesirable
side-effects, and limits the modifications to the portions of the mesh that are actually
chamfer artifacts. EdgeSharpener has been tested on the results of several feature-
insensitive remeshing algorithms [10, 80, 67], and has been shown to significantly
reduce the L∞ distortion introduced by the remeshing process.

Fig. 16. EdgeSharpener: A triangle mesh reconstructed from a point cloud (left) is improved
by EdgeSharpener [9]. Smooth regions are identified (red) and chamfer triangles (gray and
green with blue edges) are sharpened (right).

To give designers more flexibility, an interactive remeshing approach has been
proposed [42] for restoring corrupted sharp edges. The user is required to construct
a number of fish bone structures (spine and orthogonal ribs) that will be automati-
cally tessellated to replace the original chamfers. Though not automatic, this method
is particularly suitable for simple models with few sharp edges, and allows the de-
signer to sharpen the chamfers as well as to modify the swept profiles to produce
blends or decorated edges.

74 P. Alliez et al.

One may argue that an application of the extended marching cubes [44] to a
polygonal mesh may be used to infer, and hence reconstruct, the sharp features.
In [44], this application to remeshing is discussed and, in fact, it is useful in improv-
ing the quality of meshes having degenerate elements or other bad characteristics. In
some cases, the information at the edge-intersections makes it possible to reconstruct
sharp features in an EdgeSharpener-like manner. For example, if a cell contains an
aliased part that does not intersect the cell’s edges, the normal information at the
intersections is used to extrapolate planes, and additional points are created on the
inferred sharp feature. If, on the other hand, the cell’s edges do intersect the aliased
part, the normal information is contaminated, and nothing can be predicted about any
possible feature reconstruction. Moreover, remeshing the whole model through the
extended marching cubes approach can introduce an additional error on the regions
without sharp features, while the local remeshing produced by EdgeSharpener only
affects the aliased zones by subdividing the triangles that cut through the original
solid (or through its complement) near sharp edges.

Discussion

The ability to preserve or reconstruct sharp features is undoubtedly important. Meth-
ods that do not assume the availability of the original surface, however, must nec-
essarily rely on heuristics to infer and restore sharp edges and corners in an aliased
model. Thus one of the main challenges in this context is the definition of a formal
framework for sampling non-smooth surfaces. Although such a framework has been
defined for smooth models [8, 12], the problem of dealing with tangential disconti-
nuities remains open, even for the 2D case [17].

2.5 Error-driven Remeshing

Definitions

Error-driven remeshing amounts to generating a mesh that maximizes the trade-off
between complexity and accuracy. The complexity is expressed in terms of the num-
ber of mesh elements, while the geometric accuracy is measured relative to the input
mesh and according to a predefined distortion error measure. The efficiency of a
mesh is qualified by the error per element ratio (the smaller, the better). One usu-
ally wants to minimize the approximation error for a given budget of elements, or
conversely, minimize the number of elements for a given error tolerance. Another
challenging task consists of optimizing the efficiency trade-off at multiple levels-of-
detail.

Motivation

Efficient representation of complex shapes is of fundamental importance, in particu-
lar for applications dealing with digital models generated by laser scanning or isosur-
facing of volume data. This is mainly due to the fact that the complexity of numerous

Recent Advances in Remeshing of Surfaces 75

algorithms is proportional to the number of mesh primitives. Examples of related ap-
plications are modeling, processing, simulation, storage or transmission. Even for
most rendering algorithms, polygon count is still the main bottleneck. Being able to
automatically adapt the newly generated mesh to the local shape complexity is of
crucial importance in this context.

Mesh simplification or refinement methods are obvious ways of generating
efficient meshes. In this survey we will not pretend to survey the plethora of
polygonal simplification techniques published in the last decade, and instead refer
the interested reader to the a multitude of comprehensive course notes and sur-
veys [32, 25, 52, 53, 28]. We complement these documents by focusing on tech-
niques that proceed by optimization or by recovering a continuous model from the
input mesh. These include techniques specifically designed to exploit a shape’s local
planarity, symmetry and features in order to optimize its geometric representation.
We focus in more detail on techniques that construct efficient meshes by extracting,
up to a certain degree, the “semantical content” of the input shape.

Hoppe et al. [34] formulated the problem of efficient triangle remeshing as an
optimization problem with an energy functional that directly measures the L2 error
deviation from the final mesh to the original one. They showed that optimizing the
number of vertices, as well as their geometry and connectivity, captures the curvature
variations and features of the original geometry. Despite a spring force restricting the
anisotropy of the results and an approximate point-to-surface Euclidean L2 distance
measure, this technique results in particularly efficient meshes. Alliez et al. [4] de-
scribed another optimization method that minimizes the volume between the simpli-
fied mesh and the input mesh using a gradient-based optimization algorithm and a
finite-element interpolation model implicitly defined on meshes. The volume-based
error metric is shown to accurately fit the geometric singularities on 3D meshes by
aligning edges appropriately, without any distinction required between smooth and
sharp areas.

Following previous work on feature remeshing (see Section 2.4), the remeshing
technique introduced by Alliez et al. [6] pushes the idea of aligning edges on fea-
tures further by generalizing it to the entire surface. They generated a quad-dominant
mesh that reflects the symmetries of the input shape by sampling the input shape
with curves instead of the usual points. The algorithm has three main stages. The
first stage recovers a continuous model from the input triangle mesh by estimating
one 3D curvature tensor per vertex. The normal component of each tensor is then
discarded and a 2D piecewise linear curvature tensor field is built after computing
a discrete conformal parameterization. This field is then altered to obtain smoother
principal curvature directions. The singularities of the tensor field (the umbilics) are
also extracted. The second stage consists of resampling the original mesh in parame-
ter space by building a network of lines of curvatures (a set of “streamlines” approx-
imated by polylines) following the principal curvature directions. A user-prescribed
approximation precision in conjunction with the estimated curvatures is used to de-
fine the local density of lines of curvatures at each point in parameter space during
the integration of streamlines. The third stage deduces the vertices of the new mesh

76 P. Alliez et al.

by intersecting the lines of curvatures on anisotropic areas and by selecting a subset
of the umbilics on isotropic areas (estimated to be spherical). The edges are obtained
by straightening the lines of curvatures in-between the newly extracted vertices on
anisotropic areas, and simply deduced from the Delaunay triangulation on isotropic
areas. The final output is a polygon mesh with mostly elongated quadrilateral ele-
ments on anisotropic areas, and triangles on isotropic areas. Quads are placed mostly
on regions with two (estimated) axis of symmetry, while triangles are used to either
tile isotropic areas or to generate conforming convex polygonal elements. On flat ar-
eas the infinite spacing of streamlines will not produce any polygons, except for the
sake of convex decomposition (see example Figure 17). This approach has recently
been extended to reduce its dependence on any parameterization [54].

Fig. 17. Anisotropic remeshing: From an input triangulated geometry, the curvature tensor
field is estimated, then smoothed, and its umbilics are deduced (colored dots). Lines of curva-
tures (following the principal directions) are then traced on the surface, with a local density
guided by the principal curvatures, while usual point-sampling is used near umbilic points
(spherical regions). The final mesh is extracted by subsampling, and conforming-edge inser-
tion. The result is an anisotropic mesh, with elongated quads aligned to the original principal
directions, and triangles in isotropic regions. Figure reproduced from [6].

Although the edge sampling strategy described above increases the mesh effi-
ciency by matching the conditions of optimality for the L2 metric in the limit, there
is no guarantee of its efficiency at coarse scales. Moreover, this technique involves
local estimation of curvatures, known to be difficult on discrete meshes. The esti-
mator itself requires the definition of a scale that remains elusive (intuitively, the
scale itself should depend on the approximation tolerance). These observations mo-
tivate an efficient remeshing approach based exclusively on the approximation error.
Thus Cohen-Steiner et al. [16] proposed an error-driven clustering approach that does
not resort to any estimation of differential quantities or any parameterization. Error-
driven remeshing is now cast as a variational partitioning problem where a set of
planes (so-called proxies) are iteratively optimized using Lloyd’s heuristic to mini-
mize a predefined approximation error (see Figure 2.5 and its colour version CP-3 in

Recent Advances in Remeshing of Surfaces 77

Appendix B). As in the original Lloyd algorithm, the key idea hinges on alternating
partitioning and moving each representative to the centroid of its region. The parti-
tioning is generated triangle by triangle using a region growing procedure driven by
a global priority queue. The queue is sorted by the error between each new triangle
candidate for expansion and the proxy (representative) of the corresponding region.
The analog of the centroid in the metric space is now simply the best fit proxy for
each region. Closed forms for the errors between one triangle and one proxy, as well
as for the best fit proxy are given for regions consisting of a set of triangles, both
for the L2 and L2,1 (L2 deviation of normals) error metric. A polygonal remeshing
technique is proposed based on a discrete analog of a Voronoi diagram implemented
with a two-pass partitioning algorithm over the input triangle mesh. The elements of
the resulting polygonal meshes will then exhibit orientation and elongation guided
by the minimization of the approximation error instead of being the result of a cur-
vature estimation process as in [6]. This technique has been extended by Wu and
Kobbelt to handle non planar proxies such as spheres, cylinders, and rolling ball
blend patches [89], and by Yan et al. to handle quadric proxies [91].

Fig. 18. Error-driven remeshing: Through repeated error-driven partitioning (left), a set of
geometric proxies (represented as ellipses, center) is optimized. These proxies are then used
to construct an approximating polygonal mesh (right). Figure reproduced from [16].

Discussion

In this section we narrowed our scope to the study of methods that best preserve
the shape geometry during the remeshing stage of the geometry processing pipeline.
Despite the considerable amount of work done on mesh approximation through error-
driven simplification or refinement, there is much less work on approximating shapes
by using geometric analysis to guide the remeshing process.

Observations have shown that for sketching, artists implicitly exploit the sym-
metry of a shape as they sketch images that best convey the desired model. Simple
symmetric primitives such as planes, spheres, ellipses, saddles, cylinders and cones
are also exploited by artists as basic components for modeling a shape. For reverse

78 P. Alliez et al.

engineering, remeshers such as [89, 91] help, to a certain degree, to automatically
capture the “semantical” structure of a measured shape by inferring a smooth model
and extracting its main traits. The local symmetries and main traits of the shape
should ideally be deduced from the elements of the mesh, facilitating structuring and
analysis.

References

1. M. Alexa. Merging polyhedral shapes with scattered features. In Proceedings of the
International Conference on Shape Modeling and Applications (SMI-99), pages 202–210,
1999.

2. M. Alexa. Recent advances in mesh morphing. Computer Graphics Forum, 21(2):173–
196, 2002.

3. P. Alliez and C. Gotsman. Recent advances in compression of 3d meshes. In Proceedings
of the Symposium on Multiresolution in Geometric Modeling, 2003.

4. P. Alliez, N. Laurent, H.Sanson, and F. Schmitt. Mesh approximation using a volume-
based metric. In Proceedings of the 7th Pacific Conference on Computer Graphics and
Applications 1999, pages 292–301, Los Alamitos, 1999. IEEE Computer Society.

5. P. Alliez, M. Meyer, and M. Desbrun. Interactive geometry remeshing. Acm Transactions
on Graphics, 21(3):347–354, 2002.

6. Pierre Alliez, David Cohen-Steiner, Olivier Devillers, Bruno Levy, and Mathieu Desbrun.
Anisotropic polygonal remeshing. ACM.Transactions on Graphics, 22:485–493, 2003.

7. Pierre Alliez, Eric Colin de Verdiere, Olivier Devillers, and Martin Isenburg. Isotropic
surface remeshing. In M.S. Kim, editor, SMI ’03: Proceedings of Shape Modeling Inter-
national 2003, pages 49–58, Los Alamitos, 2003. IEEE Computer Society.

8. N. Amenta, M. Bern, and M. Kamvysselis. A new voronoi-based surface reconstruc-
tion algorithm. Computer graphics proceedings, annual conference series: SIGGRAPH
conference proceedings, pages 415–422, Jul 1998.

9. M. Attene, B. Falcidieno, J. Rossignac, and M. Spagnuolo. Edge-sharpener: recovering
sharp features in triangulations of non-adaptively re-meshed surfaces. In Proceedings
of the Eurographics/ACM SIGGRAPH Symposium on Geometry Processing 2003, pages
62–69. ACM Press, 2003.

10. M. Attene, B. Falcidieno, M. Spagnuolo, and J. Rossignac. Swingwrapper: Retiling
triangle meshes for better edgebreaker compression. Acm Transactions on Graphics,
22(4):982–996, 2003.

11. M. Attene, B. Falcidieno, M. Spagnuolo, and G. Wyvill. A mapping-independent primi-
tive for the triangulation of parametric surfaces. Graphical Models, 65(5):260–273, 2003.

12. J. D. Boissonnat and S. Oudot. Provably good surface sampling and approximation. In
Proc. of Symp. on Geo. Processing, pages 9–18, 2003.

13. Houman Borouchaki, Frederic Hecht, and J.Frey Pascal. Mesh gradation control. In
Proceedings of 6th International Meshing Roundtable, pages 131–141. Sandia National
Laboratories, 1997.

14. Mario Botsch and Leif Kobbelt. A remeshing approach to multiresolution modeling.
In R. Scopigno and D. Zorin, editors, Proceedings of 2nd Eurographics Symposium on
Geometry Processing, pages 189–196. Eurographics, 2004.

15. L. Paul Chew. Guaranteed-quality mesh generation for curved surfaces. In Proceedings
of the ninth annual symposium on Computational geometry, pages 274–280. ACM Press,
1993.

Recent Advances in Remeshing of Surfaces 79

16. D. Cohen-Steiner, P. Alliez, and M. Desbrun. Variational shape approximation. Com-
puter graphics proceedings, annual conference series: SIGGRAPH conference proceed-
ings, 2004.

17. T.K. Dey and R. Wenger. Reconstructing curves with sharp corners. Computational
Geometry Theory and Applications, 19:89–99, 2001.

18. S. Dong, S. Kircher, and M. Garland. Harmonic functions for quadrilateral remeshing of
arbitrary manifolds. Computer Aided Geometric Design, 2005. To appear.

19. Q. Du, V. Faber, and M. Gunzburger. Centroidal Voronoi Tesselations: Applications and
Algorithms. SIAM review, 41(4):637–676, 1999.

20. M. Eck, T. De Rose, T. Duchamp, H. Hoppe, M.Lounsbery, and W. Stuetzle. Multireso-
lution analysis of arbitrary meshes. Computer graphics proceedings, annual conference
series: SIGGRAPH conference proceedings, pages 173–182, 1995.

21. H. Edelsbrunner and D. Guoy. Sink-insertion for mesh improvement. In Proceedings
of the seventeenth annual symposium on Computational geometry, pages 115–123. ACM
Press, 2001.

22. M.S. Floater and K. Hormann. Surface Parameterization: a Tutorial and Survey. Springer,
2004.

23. P. J. Frey and H. Borouchaki. Geometric surface mesh optimization. Computing and
Visualization in Science, 1:113–121, 1998.

24. Pascal J. Frey. About surface remeshing. In Proceedings of the 9th International Meshing
Roundtable, pages 123–136. Sandia National Laboratories, 2000.

25. M. Garland. Multiresolution modeling: Survey & future opportunities. In Eurographics
’99, State of the Art Report (STAR), pages 111–131. Eurographics, 2000.

26. A. Gersho. Asymptotically optimal block quantization. IEEE Transactions on Informa-
tion Theory, IT-25(4):373–380, July 1979.

27. C. Gotsman, X.F. Gu, and A. Sheffer. Fundamentals of spherical parameterization for 3d
meshes. Acm Transactions on Graphics, 22(3):358–363, 2003.

28. C. Gotsman, S. Gumhold, and L. Kobbelt. Simplification and compression of 3D-meshes.
2002.

29. X. Gu, S.J. Gortler, and H. Hoppe. Geometry images. Computer graphics proceedings,
annual conference series: SIGGRAPH conference proceedings, pages 355–361, 2002.

30. I. Guskov, K. Vidimce, W. Sweldens, and P. Schroeder. Normal meshes. Computer graph-
ics proceedings, annual conference series: SIGGRAPH conference proceedings, pages
95–102, 2000.

31. E. Hartmann. A marching method for the triangulation of surfaces. the Visual Computer,
14(3):95–108, 1998.

32. P. Heckbert and M. Garland. Survey of polygonal surface simplification algorithms, 1997.
33. H. Hoppe. Progressive meshes. Computer graphics proceedings, annual conference se-

ries: SIGGRAPH conference proceedings, pages 99–108, 1996.
34. Hugues Hoppe, Tony De Rose, Tom Duchamp, John McDonald, and Werner Stuetzle.

Mesh optimization. Computer graphics proceedings, annual conference series: SIG-
GRAPH conference proceedings, pages 19–26, 1993.

35. K. Hormann and G. Greiner. Quadrilateral remeshing. In Proceedings of Vision, Model-
ing, and Visualization 2000, pages 153–162, 2000.

36. T. Ju, F. Losasso, S. Schaefer, and J. Warren. Dual contouring of hermite data. Com-
puter graphics proceedings, annual conference series: SIGGRAPH conference proceed-
ings, pages 339–346, 2002.

37. T. Kanai, H. Suzuki, and F. Kimura. Metamorphosis of arbitrary triangular meshes. Ieee
Computer Graphics and Applications, 20:62–75, 2000.

80 P. Alliez et al.

38. A. Khodakovsky and I. Guskov. Compression of Normal Meshes. Springer-Verlag, 2003.
39. A. Khodakovsky, N. Litke, and P. Schröder. Globally smooth parameterizations with low

distortion. ACM.Transactions on Graphics, 22:350–357, 2003.
40. A. Khodakovsky, P. Schroeder, and W. Sweldens. Progressive geometry compression.

Computer graphics proceedings, annual conference series: SIGGRAPH conference pro-
ceedings, pages 271–278, 2000.

41. L. Kobbelt, S. Bischoff, M. Botsch, K. Kahler, C. Rössl, R. Schneider, and J. Vorsatz.
Geometric modeling based on polygonal meshes. In Euroraphics 2000 Tutorial, 2000.

42. L. Kobbelt and M. Botsch. Feature sensitive mesh processing. In SCCG ’03: Proceedings
of the 19th Spring Conference on Computer Graphics, pages 17–22. ACM Press, 2003.

43. L. Kobbelt, J. Vorsatz, U. Labsik, and H.-P. Seidel. A shrink wrapping approach to
remeshing polygonal surfaces. Computer Graphics Forum, 18:119–130, 1999.

44. L.P. Kobbelt, M. Botsch, U. Schwanecke, and H.P. Seidel. Feature sensitive surface ex-
traction from volume data. Computer graphics proceedings, annual conference series:
SIGGRAPH conference proceedings, pages 57–66, Aug 2001.

45. V. Kraevoy and A. Sheffer. Cross-parameterization and compatible remeshing of 3d mod-
els. Computer graphics proceedings, annual conference series: SIGGRAPH conference
proceedings, 2004.

46. A. Lee, D. Dobkin, W. Sweldens, and P. Schröder. Multiresolution mesh morphing. In
Siggraph 1999, Computer Graphics Proceedings, pages 343–350, 1999.

47. A.W.F. Lee, W. Sweldens, P. Schroeder, L. Cowsar, and D. Dobkin. Maps: Multiresolution
adaptive parameterization of surfaces. Computer Graphics, 32:95–104, 1998.

48. J. L. Lin, J. H. Chuang, C. C. Lin, and C. C. Chen. Consistent parametrization by quinary
subdivision for remeshing and mesh metamorphosis. In GRAPHITE ’03: Proceedings of
the 1th International Conference on Computer Graphics and Interactive Techniques in
Austalasia and South East Asia 2003, pages 151–158. ACM Press, 2003.

49. M.l Lindenbaum, M. Porat, Y. Y. Zeevi, and Y. Eldar. The farthest point strategy for
progressive image sampling, 1996.

50. S. Lloyd. Least square quantization in PCM. IEEE Trans. Inform. Theory, 28:129–137,
1982.

51. W.E. Lorensen and H.E. Cline. Marching cubes: a high resolution 3d surface reconstruc-
tion algorithm. Computer Graphics, 21:163–169, 1987.

52. D. Luebke. A developer’s survey of polygonal simplification algorithms. Ieee Computer
Graphics and Applications, 2001.

53. D. Luebke, M. Reddy, J. Cohen, A. Varshney, B. Watson, and R. Huebner. Level of Detail
for 3D Graphics. Morgan-Kaufmann, San Francisco, 2002.

54. M. Marinov and L. Kobbelt. Direct anisotropic quad-dominant remeshing. In Proceedings
of the 12th Pacific Conference on Computer Graphics and Applications, pages 207–216,
2004.

55. T. Michikawa, T. Kanai, M. Fujita, and H. Chiyokura. Multiresolution interpolation
meshes. In Proceedings of the 9th Pacific Conference on Computer Graphics and Ap-
plications 2001, pages 60–69, Los Alamitos, 2001. IEEE Computer Society.

56. G. L. Miller. A time efficient delaunay refinement algorithm. In Proceedings of the
fifteenth annual ACM-SIAM symposium on Discrete algorithms, pages 400–409. Society
for Industrial and Applied Mathematics, 2004.

57. C. Moenning and N. A. Dodgson. Fast marching farthest point sampling. Technical
Report UCAM-CL-TR-562, University of Cambridge, Computer Laboratory, 2003.

58. V. Ostromoukhov. A Simple and Efficient Error-Diffusion Algorithm. In Proceedings of
SIGGRAPH, pages 567–572, 2001.

Recent Advances in Remeshing of Surfaces 81

59. V. Ostromoukhov, C. Donohue, and P. M. Jodoin. Fast hierarchical importance sampling
with blue noise properties new york, ny, usa. ACM.Transactions on Graphics, 23, Aug
2004.

60. F. Payan and M. Antonini. 3d mesh wavelet coding using efficient model-based bit al-
location. In Proceedings of the 1st International Symposium on 3D Data Processing
Visualization and Transmission 2002, pages 391–394, 2002.

61. P. P. Pebay and T. J. Baker. A comparison of triangle quality measures. In Proceedings,
10th International Meshing Roundtable, pages 327–340, 2001.

62. G. Peyré and L. Cohen. Surface Segmentation Using Geodesic Centroidal Tesselation. In
Proceedings of 2nd International Symposium on 3D Data Processing, Visualization, and
Transmission, pages 995–1002, 2004.

63. Gabriel Peyre and Laurent Cohen. Geodesic remeshing using front propagation. In Pro-
ceedings of 2nd IEEE Workshop on Variational, Geometric and Level Set Methods in
Computer Vision 2003, pages 33–40, Los Alamitos, 2003. IEEE Computer Society.

64. E. Praun and H. Hoppe. Spherical parametrization and remeshing. Computer graphics
proceedings, annual conference series: SIGGRAPH conference proceedings, pages 340–
349, 2003.

65. E. Praun, W. Sweldens, and P. Schröder. Consistent mesh parameterizations. Computer
graphics proceedings, annual conference series: SIGGRAPH conference proceedings,
pages 179–184, 2001.

66. A. Rassineux, P. Villon, J.M. Savignat, and O. Stab. Surface remeshing by local her-
mite diffuse interpolation. International Journal for Numerical Methods in Engineering,
49:31–49, 2000.

67. C. Rocchini, P. Cignoni, F. Ganovelli, C. Montani, P. Pingi, and R. Scopigno. Marching
intersections: an efficient resampling algorithm for surface management. In Proceedings
of the International Conference on Shape Modeling and Applications, pages 296–305,
2001.

68. J. Ruppert. A delaunay refinement algorithm for quality 2-dimensional mesh generation.
Journal of Algorithms, 18(3):548–585, 1995.

69. P. Sander, S. Gortler, J. Snyder, and H. Hoppe. Signal-specialized parametrization. In
EGWR ’02: 13th Eurographics Workshop on Rendering 2002. Eurographics, 2002.

70. P. Sander, Z. Wood, S. Gortler, J. Snyder, and H. Hoppe. Multi-chart geometry images. In
Proceedings of the Eurographics/ACM SIGGRAPH Symposium on Geometry Processing
2003, pages 246–255. ACM Press, 2003.

71. J. Schreiner, A. Asirvatham, E. Praun, and H. Hoppe. Inter-surface mapping. Com-
puter graphics proceedings, annual conference series: SIGGRAPH conference proceed-
ings, 2004.

72. P. Schröder. Subdivision for modeling and animation, 1998.
73. J. Sethian. Level Sets Methods and Fast Marching Methods. Cambridge University Press,

2nd edition, 1999.
74. J. R. Shewchuk. What is a good linear element? interpolation, conditioning, and quality

measures. In Proceedings of 11th International Meshing Roundtable, 2002.
75. K. Shimada and J. Liao. Quadrilateral Meshing with Directionality Control through the

Packing of Square Cells. In 7th Intl. Meshing Roundtable, pages 61–76, oct 1998.
76. Oren Sifri, Alla Sheffer, and Craig Gotsman. Geodesic-based surface remeshing. In

Proceedings of 12th International Meshing Roundtable, pages 189–199. Sandia National
Laboratories, 2003.

77. V. Surazhsky and C. Gotsman. Explicit surface remeshing. In Proceedings of the Eu-
rographics/ACM SIGGRAPH Symposium on Geometry Processing 2003, pages 20–30.
ACM Press, 2003.

82 P. Alliez et al.

78. Vitaly Surazhsky, Pierre Alliez, and Craig Gotsman. Isotropic remeshing of surfaces: a
local parameterization approach. In Proceedings of 12th International Meshing Round-
table, pages 215–224. Sandia National Laboratories, 2003.

79. W. Sweldens and P. Schröder, editors. Digital Geometry Processing. SIGGRAPH Con-
ference course notes, 2001.

80. A. Szymczak, J. Rossignac, and D. King. Piecewise regular meshes: Construction and
compression. Graphical.models., 2003.

81. G. Taubin. Geometric signal processing on polygonal meshes. In Euroraphics 2000: State
of the Art Report (STAR). Eurographics, 2000.

82. J.R. Tristano, S.J. Owen, and S.A. Canann. Advancing Front Surface Mesh Generation in
Parametric Space Using a Riemannian Surface Definition. In Proceedings of the 7th Int.
Meshing Roundtable, 1998.

83. Greg Turk. Re-tiling polygonal surfaces. Computer graphics proceedings, annual con-
ference series: SIGGRAPH conference proceedings, pages 55–64, 1992.

84. Sebastien Valette and Jean Marc Chassery. Approximated centroidal voronoi diagrams
for uniform polygonal mesh coarsening. Computer Graphics Forum, 2004.

85. A. Vlachos, J. Peters, C. Boyd, and J. L. Mitchell. Curved PN triangles. In Symposium
on Interactive 3D Graphics, pages 159–166, 2001.

86. J. Vorsatz, C. Rössl, L. Kobbelt, and H.-P. Seidel. Feature sensitive remeshing. Computer
Graphics Forum, pages 393–401, 2001.

87. J. Vorsatz, C. Rössl, and H.-P. Seidel. Dynamic remeshing and applications. In SMA ’03:
Proceedings of the 3th ACM Symposium on Solid Modeling and Applications 2003, pages
167–175. ACM Press, 2003.

88. D.J. Walton and D.S. Meek. A triangular G1 patch from boundary curves. Computer
Aided Design, 28(2):113–123, 1996.

89. Jianhua Wu and Leif Kobbelt. Structure recovery via hybrid variational surface approxi-
mation. Computer Graphics Forum, 24(3):277–284, 2005.

90. Soji Yamakawa and Kenji Shimada. Triangular/quadrilateral remeshing of an arbitrary
polygonal surface via packing bubbles. In Proceedings of Geometric Modeling and
Processing 2004, Los Alamitos, 2004. IEEE Computer Society.

91. Dong-Ming Yan, Yang Liu, and Wenping Wang. Quadric surface extraction by variational
shape approximation. In Proceedings of Geometric Modeling and Processing 2006, 2006.

92. D. Zorin and P. Schröder. Subdivision for modeling and animation. Computer graphics
proceedings, annual conference series: SIGGRAPH conference proceedings, 2000.

Multiresolution Analysis

Georges-Pierre Bonneau1, Gershon Elber2, Stefanie Hahmann3, and Basile
Sauvage3

1 Université Joseph Fourier, Grenoble, France,
Georges-Pierre.Bonneau@imag.fr

2 Technion, Israel Institute of Technology, Israel,
gershon@cs.technion.ac.il

3 Institut National Polytechnique de Grenoble, France,
Stefanie.Hahmann@imag.fr, basile.sauvage@imag.fr

Summary. Multiresolution analysis has received considerable attention in recent years by
researchers in the fields of computer graphics, geometric modeling and visualization. They
are now considered a powerful tool for efficiently representing functions at multiple levels-of-
detail with many inherent advantages, including compression, Level-Of-Details (LOD) dis-
play, progressive transmission and LOD editing.

This survey chapter attempts to provide an overview of the recent results on the topic of
multiresolution, with special focus on the work of researchers who are participating in the
AIM@SHAPE European Networks of Excellence 4.

1 Introduction

Multiresolution analysis has received considerable attention in recent years by re-
searchers in the fields of computer graphics, geometric modeling and visualization
[83]. Its attraction is its utility as a powerful tool for efficiently representing func-
tions at multiple levels-of-detail with many inherent advantages, including compres-
sion, Level-Of-Details (LOD) display, progressive transmission and LOD editing. A
plethora of publications can be easily found on these topics.

This survey chapter attempts to provide an overview of the recent results on the
topic of multiresolution, with special focus on the work of researchers who are par-
ticipating in the AIM@SHAPE European Networks of Excellence.

In Section 2, hierarchical freeform representations are introduced and discussed.
Multiresolution methods for freeform spline spaces are discussed in Section 3, in-
cluding linear and non-linear constraints, and intrinsic multiresolution decompo-
sition. Multiresolution representation of piecewise linear and triangular irregular
meshes are considered in Section 4. Finally, we conclude this chapter, in Section 5.

4 AIM@SHAPE Project, http://www.aimatshape.net

84 G.-P. Bonneau et al.

2 Hierarchical Freeform Representations

Forsey and Bartels pioneered the idea of hierarchical B-splines [25]. B-splines can
be locally refined using overlays. Based on this model, these researchers created a
complex surface such as a dragon’s head from a rectangular domain with a hierarchi-
cal edition. However, since this model was established over tensor product splines, it
is restricted to tensor product mesh and topology.

Localized-hierarchical surface splines [32] extended the hierarchical spline
paradigm to surfaces of arbitrary topology. These are defined locally on a hierar-
chy of meshes using the “reference plus offset” model of Forsey and Bartels for
encoding the details. Since they are based on C1-surface-splines [72], the surface is
defined explicitly by low-degree triangular and quadrangular Bézier patches, while
requiring the structure to satisfy a particular regularity property through all levels of
the hierarchy.

Hierarchical triangular splines [90] are the most recent method for hierarchical
modeling of smooth surfaces of arbitrary topology. Based on the previously devel-
oped triangular interpolating scheme [45], this method enables LOD construction
and surface editing by interpolating the vertices of a hierarchy of locally refined
meshes. The initial mesh, referred to as the base mesh, can be any triangular two-
manifold mesh. Given a base mesh, a polynomial interpolating surface is computed.
It is smooth in the sense that it is overall tangent-plane continuous. LOD is then
added by iterative local refinement and editing of the surface. Each local surface
refinement replaces a set of coarse surface patches by a set of finer surface ones,
while maintaining both the overall tangent-plane continuity and the shape. The user
can add detail by editing the refined surface patches. A hierarchical editing tool is
also provided thanks to a “reference plus offset” representation. The main features
include:

◦ Any triangular mesh can be handled, which means there are no restrictions on
topology, geometry, genus or boundaries. It only has to be a two-manifold mesh.

◦ The surface interpolates a hierarchy of meshes, thus offering direct control for
surface modifications, in different resolutions.

◦ Uniform surface model: The same interpolant is applied to both the initial surface
and its different refinement steps, in order to locally recompute the new surface
part. Thus, only a few geometric quantities are stored for each surface patch in
order to completely evaluate the surface.

Further properties that the hierarchical surface inherits from the underlying sur-
face model include:

· Overall tangent-plane continuity.
· Each surface patch is represented as a parametric, polynomial triangular Bézier

patch of degree five.
· The surface has local control, i.e., the modification of a mesh vertex modifies

only the surrounding surface patches, leaving the surface unchanged outside this
region.

Multiresolution Analysis 85

Figure 1 presents a hierarchical editing process for a surface composed of tri-
angular patches. The different colors, from white through yellow to red, denote the
different levels of detail (see Figure CP-1 in Appendix C).

Fig. 1. Hierarchical surface representation and editing: From left to right, a hierarchical editing
of an object is shown. Colors correspond to different levels of detail. Starting with an initial
surface at the coarsest level, local refinements and local editings are gradually introduced.
Finally, the surface is edited at a vertex of the coarsest level, thus naturally deforming all finer
details depending hierarchically on this vertex.

3 Multiresolution Methods for Freeform Representations

In the literature, the term multiresolution (MR) is employed in different contexts,
including MR-based wavelets, subdivision and hierarchies or multigrids. Multireso-
lution representations based on wavelets have been developed for parametric curves
[14, 22, 62], and can be generalized to tensor-product surfaces [22, 52], to surfaces
of arbitrary topological type [61], to spherical data [80], and to volume data [15].
Wavelets provide a rigorous unified framework. Herein, a complex function is de-
composed into “coarser” low-resolution parts, together with a collection of detail co-
efficients and different resolution levels, necessary to recover the original function.
Other multiresolution representations exist for data defined for tensor-product sur-
faces, known as hierarchical B-splines [25], and for volumetric data sets represented
using tri-variate functions [75].

In the context of geometric modeling, LOD editing is an attractive MR appli-
cation because it allows modification of the overall shape of a geometric model
at any scale while automatically preserving all fine details. In contrast to classical
control-point-based editing methods where complex detail-preserving deformations
need to manipulate a lot of control points, MR methods can achieve the same effect
by manipulating only a few control points of some low-resolution representation; see
[22, 83]. However, there are application areas, including Computer Aided Geomet-
ric Design (CAGD) and computer animation, where deformations under constraints

86 G.-P. Bonneau et al.

are required. It is obvious that constraints offer additional and finer controls over the
deformations applied to curves and surfaces.

The remainder of this section surveys recent results on MR methods in the con-
text of freeform spline geometry, with and without constraints. In Section 3.1 we
briefly describe B-wavelets, or wavelets of B-spline functions. In Section 3.2, direct
manipulation of freeform curves and surfaces are presented whereas in Sections 3.3
and 3.4 linear and non-linear constraints are discussed, respectively. In Section 3.5,
intrinsic MR decomposition of freeform geometry is considered, employing curva-
ture signatures of the shapes. The application of MR to metamorphosis is considered
in Section 3.6 and finally, variational design that aims at optimizing and/or fairing
the shape is discussed in the context of MR representations, in Section 3.7.

3.1 Wavelet Decomposition of B-spline Functions

Multiresolution manipulation of geometry draws from the ability to project geometry
Gi in space Si onto another subspace Si+1 ⊂ Si. Spline spaces are solely defined
by the knot sequences τi (and the orders oi). In [14, 62], wavelet decomposition of
spline spaces, both uniform and non-uniform, were presented. Subspaces are typi-
cally selected by removing every second knot, preserving the uniformity of the knot
sequence or possibly by weighing the importance of the knots, as is done, for exam-
ple, in knot removal algorithms [63].

Consider a curve C(t) ∈ Si with a uniform knot sequence τj = j. The re-
moval of a single knot, τk, creates a sub space Si+1 in which no discontinuity can be
present at parameter value τk. The B-spline wavelet (also known as B-wavelet) Ψk

that corresponds to knot τk spans the complementary subspace of Si − Si+1. While
many ways exist to define the function that spans the complementary space, seeking
a unique orthogonal representation to Ψk, we constrain Ψk to be orthogonal to all the
B-spline basis functions in Si+1. Since Ψk ∈ Si, Ψk has one additional degree of
freedom, which is typically used to normalize Ψk, for example with the constraint
of 〈Ψk, Ψk〉 = 1. By using only uniform knot sequences, all B-wavelets are just
translations (and scales) of each other. Yet, nothing in the above prevents one from
using non-uniform knot sequences with the cost of no possible precomputations.
All B-wavelets must now be reevaluated for every new knot sequence. Figures 2
and 3 show several B-wavelet functions for the quadratic and cubic cases, respec-
tively. Both uniform (computed once up to translation and scale!) and non-uniform
B-wavelets are shown.

A B-spline curve C(t) is typically decomposed into a low-resolution curve C0(t)
and a sequence of detail curves Di(t) at different resolutions so that

C(t) = C0(t) +
n∑

i=1

Di(t). (1)

C0(t) is the lowest or coarsest resolution and typically contains no interior knots in
its subspace. Every additional detail curve Di(t) contains additional knots all the
way to Dn(t). These knots are all shared by the original space of C(t). The vector

Multiresolution Analysis 87

Fig. 2. Quadratic B-wavelets for the uniform case (left) and multiple knots (middle and right).
Note a triple knot renders the quadratic B-wavelet discontinuous.

Fig. 3. Cubic B-wavelets for the uniform case (left) and multiple knots (middle and right).
Note a triple knot renders the cubic B-wavelet C0 continuous.

function addition in Equation (1) is always possible since both C0(t) and Di(t) re-
main in the subspace of the original space. In other words, by refinement, one can
always elevate C0(t) and Di(t) to the original space, where the sum presented in
Equation (1) reduces to adding the respective control points of the curves. Figure 4
presents one example of a multiresolution decomposition of a freeform curve.

Fig. 4. A decomposition of a B-spline curve into various resolutions. The original quadratic
curve is shown at the bottom right and contains over a hundred control points.

By modifying a single control point in C0(t), the entire shape of C(t) is affected.
By modifying the Di(t) vector functions, one is able to create modifications in dif-
ferent resolutions, from a coarse resolution for D1(t) all the way to fine details in
Dn(t). Figure 5 presents an example of manipulating a freeform curve at different
MR levels.

One typical application for MR analysis of spline geometry could be found in
the direct manipulation of a freeform shape (see also Section 3.2 below). The local
support of the B-spline representation is also the weakest point of the representa-
tion. Global modifications are no longer possible in a highly refined B-spline curve.
Recognizing this deficiency, in [36, 22], wavelet decomposition was proposed for

88 G.-P. Bonneau et al.

Fig. 5. Modification of a B-spline curve at various resolutions. A vertical select-and-drag
operation at the top of the ’s’ character at four different resolutions. The original curve is
presented in gray.

uniform B-spline curves toward MR editing control of the shape. When the user
wishes to add small details to the shape, a fine subspace is used during the manipu-
lation whereas when global changes are necessary, a coarse resolution is employed.

One clear advantage of using uniform knot sequences is that it allows wavelet
decomposition to be performed a-priori, as the decomposition depends solely on the
subspaces of the splines and is completely independent of the control points of the
shapes. Yet, in reality, many curves and surfaces that are created using contemporary
geometric modeling tools possess non-uniform knot sequences. Further, in order to
preserve the uniformity of the knots, in a given curve with a uniform knot sequence,
every subspace must present half the number of knots of its immediate containing
space. That is, τi+1 of Si+1 will consist of half the knots in τi, with every second
knot in τi being removed, preserving the uniformity in the knot spacing.

The work of [36, 22] was extended to non-uniform knot sequences for curves and
surfaces, in [52]. Direct manipulation of non-uniform B-spline curves and surfaces
is presented in [52] with the aid of a B-wavelet decomposition [62]. Figure 6 shows
an example of MR interactive editing, in different resolutions, of a freeform tensor-
product B-spline surface in the shape of a chess knight (see also Figure CP-2 in
Appendix C).

3.2 Direct Freeform Curve and Surface Manipulation

As already stated, direct manipulation of freeform shapes is a crucial and vital tool
in any modern geometric modeling environment. Being able to sculpt the geometry
allows novice users to intuitively and interactively manipulate the shape.

Direct manipulation of freeform surfaces is not new and, for example, in [25], a
hierarchical representation of B-spline surfaces is presented that allows local and fo-
cused manipulation of freeform geometry. Adding degrees of freedom to a freeform
surface is usually translated into the insertion of new knots into the shape—an ac-
tion that affects a whole row or column in the mesh of the surface, and hence is not

Multiresolution Analysis 89

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 6. An example of multiresolution editing of a tensor-product B-spline surface in the shape
of a chess knight. A forehead location is selected and dragged upwards in several different
resolutions. (a) shows the original surface, while (b) to (h) present the results of the select-
and-drag operations in the different resolutions from the highest (b) to to lowest (h).

90 G.-P. Bonneau et al.

really local. In contrast, in [25], a hierarchy of partially independent surfaces is im-
posed that allows the end user to locally affect only a small region in a given surface,
by applying a small patch with the new detail at the desired location. This occurs
while fixing the outermost rows and columns of the new small patch to preserve the
proper continuity. A related scheme for volumetric representations was offered in
[75]. Here, a hierarchy of tri-variate functions of different resolution is used to de-
fine the sculpted surface. The (iso) surface itself is defined as the zero set of the sum
of these tri-variates.

Rather than manipulating control points, Bartels and Beatty showed, in [2], how
to select any point on a B-spline curve and change its location, i.e., the curve is con-
strained to pass through a user-specified location. The new curve shape is computed
by minimizing the control points’ offset. In [28] Fowler and Bartels controlled the
shape of a B-spline curve by enforcing prescribed geometric constraints, such as
the position of a curve point, tangent direction and magnitude, or curvature magni-
tude. An extension to tensor-product B-spline surfaces is given in [26]. This satisfies
the user-defined position of surface points, normal direction, tangent-plane rotation
(twisting effect), and the first partial derivative’s magnitude (tension effect). Borel
and Rappoport [9] deformed B-spline surfaces by determining the displacement and
radius of influence for each constrained surface point. Hsu et al. [50] proposed points
selection for freeform deformations. Curve constraints, i.e., enforcing the surface to
contain a given curve or to model a character line, were considered in [12, 38, 71].
Direct shape manipulation techniques are closely related to variational design, where
the objective of obtaining fair and graceful shapes is achieved by minimizing some
energy; see Section 3.7. In general, a freeform shape has many more degrees of
freedom than constraints to satisfy. In order to compute a new shape, the remaining
degrees of freedom are stipulated by minimizing some energy functional, such as
bending. For example, Welch et al. [89] maintained the imposed constraints while
calculating a surface that is as smooth as possible. Celniker and Welch [12] derived
interactive sculpting techniques for B-spline surfaces based on energy minimization,
keeping some linear geometric surface-constrained features unchanged. Celniker and
Gossard [11] enforced linear geometric constraints for shape design of finite ele-
ments governed by some surface energy. While energy minimization affects the sur-
face globally, finite element methods allow for local control. Forsey and Bartels [25]
later used the technique of hierarchical B-splines in an attempt to overcome this
drawback for B-spline surfaces.

In the context of MR, [36, 22] offered direct multiresolution manipulation of uni-
form B-spline curves and surfaces. While no constraint support was offered in these
publications, they demonstrated, for the first time, the hidden power in MR editing
and direct manipulation of freeform curves and surfaces. Exact B-spline wavelet (B-
wavelets) decomposition was used to perform the MR analysis. In [52] and using
the results of [62], the approach of using precise B-wavelet decomposition in direct
curve and surface manipulation was extended to non-uniform B-spline space. Also
demonstrated in [36, 22] were abilities to add details of different shapes to an existing
curve—another modeling feature of high interest.

Multiresolution Analysis 91

The work of [22, 36, 52] computed the exact orthogonal projections of the
freeform geometry into lower dimensional spaces, employing the B-wavelet de-
composition of uniform and non-uniform B-spline representations. While fairly
simple to compute in the case of uniform knot sequences, this decomposition, in
the non-uniform case, must be recomputed for each newly defined space and is
computationally intensive. Fortunately, one can recognize that the explicit orthog-
onal decomposition is not really necessary [35], alleviating these computational
difficulties. In [20], an MR curve editor that is based on a non-orthogonal decomposi-
tion was also presented. The major deficiency of this non-orthogonal decomposition
lies in its ambiguous representation, by offering the user, for example, the option of
conducting many fine high-resolution operations, which can, in fact, be represented
as a few low-resolution operations. The (approximated) projection of a curve to a
low-dimensional space is simple, and for direct manipulation purposes, it might be
sufficient.

3.3 Linear Constraints

In [27, 29, 89], surface editing schemes that satisfy zero-dimensional constraints
such as positions, tangents and normals, were presented. The constraints, being lin-
ear, are efficiently solved, allowing for the interactive manipulation of the freeform
geometry. [89] also considered transfinite constraints where the constraints might
have a non zero dimensionality. While some cases might be of a finite dimension,
such as the containment of a polynomial curve in a polynomial surface when posed
as a composition, other cases might necessitate an approximation. The composition
of the polynomial curve γ(t) = (u(t), v(t)) and polynomial surface S(u, v) yields
S(t) = S(u(t), v(t)), a curve over S, which is a polynomial as well. The degree of
S(t) equals the product of the sum of the degrees of S and the degree of γ(t). Hence,
m linear constraints, where m is the order of S(t), fully prescribe a polynomial curve
over a polynomial surface. This result also extends to rationals.

Other finite linear constraints are treated with ease. A positional constraint,
following [27, 29, 89, 28, 19], could be prescribed as, for curves,

P = C(tp) =
∑

j

QjBi,n(tp),

and for surfaces,

P = S(up, vp) =
∑
jk

QjkBj,n(up)Bk,m(vp).

Similarly, a normal constraint could be written as

0 = 〈N,C ′(tn)〉 =
∑

j

〈N,Qj〉B′
i,n(tn),

for curves and the normal or tangent-plane constraint yields

92 G.-P. Bonneau et al.

0 =
〈

N,
∂S(un, vn)

∂u

〉
=

∑
jk

〈N,Qjk〉B′
j,n(un)Bk,m(vn),

0 =
〈

N,
∂S(un, vn)

∂v

〉
=

∑
jk

〈N,Qjk〉Bj,n(un)B′
k,m(vn).

For surfaces, the normal constraint is related to tangency constraints. The two par-
tials of S, which span the tangent-plane if S is regular, also uniquely determine the
orthogonal, normal space, of S. That is, ∂S(un,vn)

∂u × ∂S(un,vn)
∂v �= 0. Hence, the

normal constraints as listed above could be similarly written as C ′(tn) = T with
one important difference. By coercing C ′(tn) = T , the length of the tangent field
is exactly fixed, achieving C1 continuity at this point. By posing the constraint as
〈N,C ′(tn)〉, G1 continuity is gained, necessitating fewer degrees of freedom.

3.4 Bi-Linear and Non-Linear Constraints

The advantage of having linear constraints is obvious. The solution is much simpli-
fied and is typically more robust to compute. Several types of non-linear constraints
could also be expanded and solved with little effort. The preservation of the area
enclosed by a closed planar curve is important, for example, when one designs a
cross-section of an airplane’s fuselage that is assumed to hold a fixed volume. This
area (and volume in R3) constraint could be represented as a bi- (tri-) linear con-
straint [19, 47].

Consider again C(t) = (x(t), y(t)) being a regular, closed planar parametric
curve. Employing Green’s theorem, the (signed) area, A, enclosed by C(t), equals
(see, for example [16, 31]),

A =
1
2

∮
−x′(t)y(t) + x(t)y′(t)dt =

1
2

∮
|C(t) × C ′(t)|dt. (2)

Equation (2) is clearly quadratic in t. Yet, in [19, 47], it is recognized that Equa-
tion (2) could be decomposed into a bi-linear form in t as A = x(t)My(t). This
decomposition eases the incorporation of an area constraint into an MR framework.
In [19], x(t) and y(t) are interleavingly fixed while solving the remainder of the lin-
ear constraint in y(t) and x(t), respectively. In Figure 7, a nose in an outline of a face
is pulled without constraints, and then with positional, and positional and area con-
straints. This comparison shows how positional constraints could anchor the shape
at certain points, and how the fixed area constraints have a global effect on the shape
even for local changes. A local nose expansion automatically reacts by shrinking the
entire shape, in order to keep the area constant.

In [47] another area preserving MR editing method for uniform B-splines was
introduced. Herein, a wavelet-based MR analysis similar to [22] has been used. It
enables in particular the derivation of a multiresolution representation of the area
functional for the curve at any level of resolution. Let us briefly introduce this MR
framework here, since it is different from the non-uniform multiresolution setting of
Section 3.1. In this setting we are given some functional space E and some nested

Multiresolution Analysis 93

(a) (b) (c)

Fig. 7. Multiresolution editing with linear and bi-linear area constraints, before (wide gray)
and after (thin black) the editing operation. In (a), the nose is interactively pulled to the left
with no additional constraints. In (b), two positional constraints are placed at the base of the
nose, while in (c), the area is fixed.

linear approximation spaces Sj ⊂ E with S0 ⊂ S1 ⊂ · · · ⊂ Sn. Since we are
dealing with closed curves, these spaces have finite dimension. Let Sj be spanned
by a set of basis functions (ϕj

i)i, called scaling functions. A space W j being the
complement of Sj in Sj+1 is called the detail space. Its basis functions (ψj

i)i are
such that together with ϕj they form a basis of Sj+1. The functions ψj

i are called
wavelets. The space Sn can, therefore, be decomposed as follows:

Sn = Sn−1 ⊕ Wn−1 = Sn−2 ⊕
n−1⊕

j=n−2

W j = · · · = S0 ⊕
n−1⊕
j=0

W j . (3)

Condition (3) implies that the scaling functions are refinable; that is, for all j ∈
{0, . . . , n} there must exist some matrices P j and Qj such that the following refine-
ment equations hold:

ϕj−1 = (P j)T ϕj ,

ψj−1 = (Qj)T ϕj .
(4)

On the other hand, the “fine” scaling functions ϕj can be constructed from the coarser
scaling functions and wavelets with the aid of some matrices Aj and Bj :

ϕj = (Aj)T ϕj−1 + (Bj)T ψj−1. (5)

Note that [P j | Qj] and
[

Aj

Bj

]
are both square matrices, and that

⎡⎣P j Qj

⎤⎦⎡⎣ Aj

Bj

⎤⎦ = I. (6)

The choice of the scaling functions determines the structure of the matrices P j , Qj ,
Aj , and Bj . Sparse matrices are desirable for most of the applications.

94 G.-P. Bonneau et al.

Based on this framework let an MR curve C(t), t ∈ I be defined as an element of
some functional space Sn. Let D2n be the dimension of the space Sn, with D =
dim(S0). C(t) can be written as:

C(t) =
D2n−1∑

i=0

xn
i ϕn

i = (xn)T (ϕn), (7)

where xn is a column vector of D2n scaling coefficients xn
0 , . . . , xn

D2n−1 ∈ R
2. In

a more general setting, the vector of scaling coefficients xn can be thought of as a
discrete signal with D2n samples.

The relations (4) and (5) now allow us to create a low-resolution signal xn−1

with less samples by using the low pass filter matrix An:

xn−1 = Anxn,

where An is of size (D2n−1×D2n). The details, which have been lost in this filtering
process, can be captured as another signal dn−1 using the high-pass filter matrix Bn:

dn−1 = Bnxn,

where Bn is also a (D2n−1×D2n) matrix. The process of splitting a signal xn into a
coarser signal xn−1 with details dn−1 can now be repeated recursively with the new
signal xn−1. Finally, the original signal will be decomposed into a low-resolution
signal x0 and details d0, . . . ,dn−1. This recursive process is known as a filter bank
[64]; see Figure 8. At any intermediate level of resolution, L, the original signal is
decomposed into a coarser signal xL and details dL, . . . ,dn−1. Note that the vector
dj is of size D2j , j = 0, . . . , n − 1.

(xn) −→ (xn−1) −→ · · · (x1) −→ (x0)

↘ ↘ ↘

(dn−1) (dn−2) · · · (d0)

Fig. 8. A filter bank

Using the matrices P j and Qj the original signal xn can be reconstructed recur-
sively with

xj = P jxj−1 + Qjdj−1, for j = 1, . . . , n.

Since the filter bank also applies to the scaling coefficients of an MR curve (7), such
a curve can be represented at any level of resolution, L ∈ {0, . . . , n}, by some coarse
coefficients xL that form approximations of the initial coefficients and by the detail
coefficients dL, . . . ,dn−1 as follows:

Multiresolution Analysis 95

C(t) = (xL)T (ϕL) + (dL)T (ψL) + · · · + (dn−1)T (ψn−1), L = 0, . . . , n. (8)

In this wavelet-based MR framework, the area functional (2) of an MR curve (8)
can now be evaluated at any level of resolution L. This leads to the bi-linear equation

2A = (XL)
[

ML

]
(Y L)T , ∀L ∈ {0, . . . , n}, (9)

where XL and Y L are the line vectors of the x- and y-coordinates, respectively, of
all D2n coefficients (coarse and wavelet coefficients) of the MR representation of
the curve, i.e., (

XL

YL

)
= (xL,dL,dL+1, . . . ,dn−1),

and

ML =

⎡⎣ I(ϕL, ϕL) I(ϕL, ψl)n−1
l=L

I(ψk, ϕL)n−1
k=L I(ψk, ψl)n−1

k,l=L

⎤⎦ =

⎡⎣ A B

−BT C

⎤⎦ . (10)

The MR area constraint is then linearized during the optimization process in
order to locally or globally deform a curve at any level of resolution while preserving
the enclosed area; see Figure 9.

Fig. 9. Multiresolution editing of a coarse level of resolution with preservation of the enclosed
area and a positional constraint.

Some works that preserve volume while manipulating the shape are also avail-
able. In [74], a cuboid volume was manipulated while preserving its volume, han-
dling the problem as a non-linear optimization problem. In [19], it was also shown
that the volume constraint, which is cubic in general, could also be posed as a tri-
linear constraint. Volume-preserving editing of MR surfaces represented by wavelets
for uniform tensor-product B-splines following the MR setting described above has
been developed in [77]. An example of volume-preserving MR editing is shown in
Figure 10.

96 G.-P. Bonneau et al.

(c)
(b) (c)(a)

Fig. 10. An example of multiresolution editing with volume-preservation. (a) shows the orig-
inal tensor-product B-spline surface. In (b), a deformation is applied at a coarse level of reso-
lution without volume-preservation. In (c), the same deformation is applied but the volume of
the original surface is preserved.

Other non-linear constraints that are commonly considered are second-order
differential constraints such as convexity [51], and first- and second-order fairing
constraints, typically in the form of strain and stress surface shape optimization
functionals [89]. Another non-linear constraint of high interest is the preservation
of the arc-length of the curve. In [78], the arc-length of a curve was presented as a
non-linear constraint that is preserved during the curve’s manipulation. Herein the
constraint is integrated into an MR editing system that allows intuitive control of the
deformation’s extent and aspect. In [79] this length-constrained MR deformation has
been integrated in a wrinkling tool for soft tissue modeling.

The exploitation of first and second differential order constraints, in real-time,
is also highly intensive computationally. In [73], an interactive surface editing sys-
tem that supports real-time surface manipulation with convexity/developability con-
straints was reported. It exploits a careful symbolic pre-computation of the curvature
fields.

3.5 Intrinsic Multiresolution Decomposition of Freeform Shapes

The fundamental problem of MR decomposition is that the decomposition is typi-
cally not intrinsic. A curve or a surface could be arbitrary closely approximated using
different knot sequences and even different control points. Likewise, two similarly
looking objects could be represented using completely different polygonal meshes,
as it is evident by the vast remeshing results that have been published in recent years.

It is, therefore, plausible to try and execute this MR decomposition in a way that
is independent of the representation underneath, taking into account only the intrinsic
geometry, and ignoring, for example, the parameterization.

One such possibility with regard to a planar C2 freeform curve is to represent the
shape by its curvature signature, κ(t):

κ(t) =
x′(t)y′′(t) − x′′(t)y′(t)

(x′2(t) + y′2(t))3/2
, (11)

Multiresolution Analysis 97

assuming C(t) is regular or ||C ′(t)|| �= 0.
Assume C(s) is an arc-length parameterized curve. Then, κ(s) = x′(s)y′′(s) −

x′′(s)y′(s). Further,

C ′(s) = T (s), C′′(s) = T ′(s) = κ(s)N(s),

where T (s) and N(s) are the unit tangent and normal fields of C(s). T (s) =
(x′(s), y′(s)) is a unit size vector and hence is always on the unit circle. Let θ be
the angle between T (s) and the x-axis,

θ(s) = tan−1

(
y′(s)
x′(s)

)
,

and consider θ′(s),

θ′(s) =
(

tan−1

(
y′(s)
x′(s)

))′

=
1

1 +
(

y′(s)
x′(s)

)2

(
y′(s)
x′(s)

)′

=
x′2(s)

x′2(s) + y′2(s)
x′(s)y′′(s) − x′′(s)y′(s)

x′2(s)

=
x′(s)y′′(s) − x′′(s)y′(s)

x′2(s) + y′2(s)
= x′(s)y′′(s) − x′′(s)y′(s).

In other words, θ′(s) = κ(s) or a curve C(s) could be reconstructed from κ(s) by
(see also [10])

C(s) =
∫ s

0

T (s̄)ds̄ =
∫ s

0

Circ

(∫ s̄

0

κ(s̃)ds̃

)
ds̄,

up to a rigid-motion, where Circ(·) is an arc-length parameterized unit circle. We
are now able to switch back and forth between a regular parametric form of a planar
curve C(t) and its curvature signature κ(t), up to rigid-motion.

While polynomial parametric curves are not arc-length, in general, one can ap-
proximate a given polynomial parametric curve as an arc-length polynomial para-
metric curve to an arbitrary precision; see, for example [18]. Figure 11 shows one
example of a curvature signature computed to an approximation of an arc-length
polynomial curve.

Multiresolution decomposition could now be applied to κ(s) instead of C(s).
Alternatively, details could be added to low-resolution shapes by modulating the
base κ(s) signature and reconstructing the curve. Practical attempts of this procedure
turned out to be quite slow and a large number of κ(s) samples were necessary to
achieve a reasonable reconstruction.

98 G.-P. Bonneau et al.

0006100041000210000100080006000400020
05-

04-

03-

02-

01-

0

01

02

03

04

05

Fig. 11. A (portion of a) curvature signature (left) of an approximately arc-length parameter-
ized curve (right).

An actual intrinsic MR decomposition of a freeform curve using its curvature
signature is presented in Figure 12. A multiresolution analysis of κ(t) was performed
using Haar wavelets. New curvature functions κsmall, κmean, κlarge were computed
by partially reconstructing the wavelet decomposition using only detail coefficients
greater than a given (small, mean, large) threshold. The curves were then obtained
by the integration of the new curvature functions.

Further research in this direction of intrinsic MR decomposition of freeform
geometry is in order. One such research direction should seek an ability to preserve
the continuity of closed, periodic curves throughout the intrinsic MR process.

3.6 Multiresolution Morphing

Morphing (or metamorphosis) is known as the smooth and progressive transforma-
tion of one shape into another. The shape can be an image or a planar curve in 2D
space, or it can be a surface or a volume in 3D space. The problem is to create an aes-
thetic and intuitive transition between two shapes. The intermediate shapes should
preserve the appearance and the properties of the input shapes. A trivial linear inter-
polation is often not appropriate, since the intermediate shapes tend to vary a lot in
their volume or they lose the proportions of their shape features. Another negative
effect is that the geometric details can disappear and re-appear later during the tran-
sition. Good results are generally achieved not by interpolating the positions of the
boundary representation but by interpolating elements of alternative representations.
In the case of 2D polygonal shapes, Sederberg et al. [81] represented polygons by a

Multiresolution Analysis 99

2 4 6 8 10 12

1

2

3

4

5

6

7

8

9

10

2 4 6 8 10 12 14 16 18
2

3

4

5

6

7

8

9

10

0 5 10 15 20 25
0

2

4

6

8

10

12

0 5 10 15 20 25
-4

-2

0

2

4

6

8

10

12

Fig. 12. Multiresolution analysis and partial synthesis of a seahorse curve based on an intrinsic
curvature signature.

set of lengths and angles. Shapira and Rappoport [82] used a star-skeleton represen-
tation. Goldstein and Gotsman [30] used an MR representation based on curve evo-
lution. Alexa et al. [1] morphed compatible triangulations by locally least-distorting
maps. There is also the MR mesh morphing technique by Lee et al. [59]. The key
to a successful method thus seems to be the use of a representation based on intrin-
sic properties of the object geometry such that interpolation of its elements achieves
automatically pleasing morphs.

The morphing method we report on in this section is based on a new intrinsic
MR representation. It decomposes the source and the target shapes into a coarse
approximation and a set of detail coefficients. It computes separately the sequence of
coarse intermediate shapes and details, and then reconstructs all intermediate shapes.
The choice of the MR representation is crucial for the quality of the resulting shapes.
For example, a wavelet-based MR analysis would not preserve the orientation of the
details during deformation. In fact, the details here are encoded in a global coordinate
system. An MR representation that encodes the details using local frames similar to
[22] solves this problem, but the coarse representation of the curve in [22] is still not
intrinsic.

In [46] a curvature-based MR representation for 2D polygonal curves was intro-
duced. This MR representation is based on an intrinsic parameterization of both the
coarse shape and the detail coefficients. All coefficients will be represented intrinsi-

100 G.-P. Bonneau et al.

cally by lengths and angles. Similar to local frames, the MR representation preserves
the orientation of the details during deformation.

Let Pi = (xi, yi), i = 0, . . . , N − 1 denote the vertices of a polygon to be MR-
analyzed. The initial polygon needs to be transformed from (x, y)-coordinates into
so-called (θ, l)-coordinates, where θi = ∠(Pi−1Pi, PiPi+1) is the counterclock-
wise angle of the two consecutive polygon segments at Pi and li = ‖PiPi+1‖,
i = 0, . . . , N − 2. The (x, y)-coordinates of the control points Pi can be recov-
ered directly using, for example, P0 as an anchor point and P0P1 as an anchor line
(determining the translation and rotation, rigid-motion, degrees of freedom). Note
the (θ, l)-coordinates are rigid-motion invariant.

Following the filter bank algorithm presented in Figure 8, an angle-length MR
representation can be computed as follows. From a polygon with 2n+1 segments,
one analysis step creates a polygon with 2n segments and 2n detail coefficients,
which are represented by two-dimensional vectors of the form:

(θn+1, ln+1) → (θn, ln)
↘

(αn, βn),

where θn = (θn
0 , . . . , θn

2n−1) and is analogous for ln, αn, βn.

The MR analysis is the recursive procedure of splitting the vector of coefficients
of a polygon (θn+1, ln+1) into a vector of coarse coefficients of a lower resolution
polygon (θn, ln) and a vector of detail coefficients; see Figure 13. Let the upper
index n denote the level of resolution. Both coarse shape and detail coefficients of
level n must be computed directly from (θn+1, ln+1) and vice-versa. The coarse
shape and detail coefficients are computed using the basic cosine trigonometric rule
for triangles (also known as the Al-Kashi formula for triangles); see [46] for more
details.

Given two polygons with the same number of corresponding control points PS

and PT , called source and target polygons, the MR morphing algorithm constructs
in-between polygons Pt that gradually change PS into PT for t ∈ [0, 1], where
PS = P0 and PT = P1. For both polygons one disposes of two sets of coarse coeffi-
cients and of two sets of detail coefficients. In principle, the in-between morphs are
now generated by interpolating the coefficients of this intrinsic MR representation.
However, the coarse coefficients are interpolated using the locally least distorting in-
terpolation [1] in order to get “as-rigid-as-possible” intermediate morphs. Figure 14
shows two examples of curves with a complex shape and with a lot of fine details
that are difficult to interpolate with standard morphing techniques.

3.7 Variational Multiresolution Methods for Freeform Surface

The variational modeling paradigm is used in order to find the “best” curve or surface
amongst all solutions that meet some constraints. The constraints may result from
the particular modeling technique used, for example, sample point approximation,
or direct curve manipulation (see Section 3.2), or they may be one of the constraints

Multiresolution Analysis 101

pi+1

θ i

n

θ 2i

n+1

θ 2i+1

n+1 θ 2i-1

n+1

n

pi

n

pi-1

n
l i

l 2i

n+1

n

l 2i+1

n+1

β i-1

n

β i

n

αi

n

Fig. 13. The analysis. The dotted polygon belongs to resolution level n + 1, the fat polygon
belongs to level n.

Fig. 14. Two examples of intrinsic multiresolution morphing. The tree curves have 2048 con-
trol points. The animal curves have 1536 control points. The algorithm applies a multiresolu-
tion analysis to the source (left) and target (right) polygons. Then, the coarse shape and detail
coefficients are independently interpolated, and the intermediate curves are reconstructed. The
resulting curves are shown alongside the coarse polygons.

described in Section 3.3. In the context of smooth curve and surface design, the
notion of “best” is formulated by minimizing some energy functional.

Variational Shape Design

Although it is difficult to define exactly, in mathematical terms, what fairness of a
curve or surface is, it is commonly accepted that smooth and graceful shapes are
obtained by minimizing the amount of energy stored in the surface. The energy
functionals originating from elasticity theory, such as the bending energy for curves∫

κ2(t)dt or the thin-plate energy for surfaces
∫

κ2
1+κ2

2dA, are in general non-linear.
These and other higher order, non-linear, energy functionals were used in [67, 37].

In order to accelerate computations, linearized versions of these energy function-
als are generally used; see, for example, [11, 12, 89, 33]

102 G.-P. Bonneau et al.

E =
∫

σ

(α stretch + β bend)dσ,

where α and β are weights on the stretching and bending energies. These produce
a surface that tends to minimize its area to avoid folding and to distribute curvature
over large regions in order to result in fair shapes. The stretch-and-bend functionals
are typically approximated via the following quadratic terms: α11X

2
u +α12XuXv +

α22X
2
v and β11X

2
uu + β12X

2
uv + β22X

2
vv , respectively, only to be linearized in the

optimization process.
Historically, the use of such energy functionals goes back to early spline and

CAGD literature [65, 76] and has today led to a research area called variational
design (of smooth curves and surfaces) [21, 43, 42, 7, 44].

Variational Multiresolution Modeling

Gortler and Cohen [33] showed how the variational constraint, which generalizes
least-squares, can be solved through an MR formulation of a planar curve. A wavelet-
based MR curve satisfying some linear constraints and minimizing a linearized bend-
ing energy functional may be found by solving the following linear system [89]:[

H̄ ĀT

Ā 0

] [
x̄
λ

]
=

[
0
b

]
,

where Ā is the constraint matrix, H̄ is the Hessian matrix of the basis functions,
and λ is the vector of Lagrange multipliers. The bars signify that the variables
are wavelet coefficients. The wavelets allow acceleration of the iterative conjugate
gradient-solving of the variational problem.

Variational subdivision is another modeling technique where constraints are com-
bined with classical subdivision. Instead of applying explicit rules for the new ver-
tices, Kobbelt’s variational subdivision scheme [56] computes the new vertices such
that a fairness functional is minimized. At each step a linear system has to be solved.
The resulting curves have minimal total curvature. Furthermore, [58] showed how
wavelets can be constructed by using the Lifting Scheme [85], which is appropriate
for variational subdivision curves. Weimer and Warren [86, 87, 88] developed varia-
tional subdivision schemes that satisfy partial differential equations for, for instance,
fluid or thin-plate equations.

4 Multiresolution Analysis for Irregular Mesh-based
Representations

A lot of work has been done in the past ten years on MR analysis of models based
on a decomposition of the shape into triangles. This section will focus on two types,
scalar data defined on triangulations and mesh-based freeform surfaces.

Only certain types of data sets can be analyzed by wavelet MR analysis. One
principal restriction is that the grid on which the data is defined has to be obtained

Multiresolution Analysis 103

by successive subdivisions of a coarse grid. These subdivisions define a sequence of
grids such that the cells of one grid are subdivided by the cells of the next grid. Such
a sequence of grids is deemed “connected by subdivision”. This restriction is due
to the fact that wavelet analysis needs a nested sequence of approximating spaces;
see Section 3.1. In the case of quadrilateral or triangular grids, the regular four-way
split, as illustrated in Figure 15, is generally used to create a grid with subdivision
connectivity, since the grids will not tend to degenerate after several subdivisions.

Fig. 15. Regular four-way split for a quad mesh and a triangle mesh.

However, data defined on triangulations as well as freeform surface meshes are
generally of more complex structure due to acquisition techniques such as obser-
vation and laser range scanning. Thus, classical wavelet theory cannot be adapted
directly to these so-called irregular meshes, since it is impossible to associate a se-
quence of grids with subdivision connectivity to this data. In the case of quadrilateral
grids with subdivision connectivity, the one-dimensional wavelet-based MR analysis
applies directly by tensor-product [84, 66]. If the data is defined on a regular trian-
gular grid, classical wavelet theory can, and has also been adapted as well [68, 80].
Nevertheless, the case of freeform surfaces is more complicated since surfaces of
arbitrary topology cannot be parameterized on regular quad or triangle meshes.

The aim of the present section is to focus on MR analysis for irregular mesh-
based representations. Section 4.1 addresses the simplification of numerical data at-
tached to an irregular mesh. Section 4.2 covers the simplification of surface meshes.

4.1 Irregular Triangulations

Wavelet methods assume that the mesh on which the data is defined can be reached
by recursive subdivision of a basic mesh. Thus, every wavelet-based scheme is asso-
ciated with hierarchies that have a tree structure (where every parent node is subdi-
vided into a set of child nodes). Wavelet volume visualization [39] is related to Octree
structures. Wavelet radiosity [34] and wavelets over triangulated domains [61, 68, 80]
are based on Quadtree structures.

On the other hand, irregular triangular meshes cannot be reached by subdivi-
sion rules, therefore hierarchical structures that have been developed to handle them
are more complicated than trees. These include, for example, hierarchical Delaunay
triangulations [55, 23], or progressive meshes [48, 49]. These data structures are
appropriate for LOD models, see [24], but not for MR analysis as described in the
present chapter.

104 G.-P. Bonneau et al.

The approach introduced in [3] fills the gap between wavelet methods (on sub-
division hierarchies) and hierarchical structures on irregular triangular meshes for a
special type of data set, i.e., for piecewise constant data defined on irregular planar
or spherical triangulations.

The basic idea is to relax the restrictions imposed by classical wavelet-based
MR analysis, while preserving good properties such as constant memory require-
ments, linear computational time, and the ability to accurately approximate data
with few detail coefficients. The relaxed restrictions are related to the approxima-
tion spaces associated with the MR analysis. These spaces are the functional spaces
that correspond to each level of resolution where the original function is successively
approximated during the analysis. These spaces have to be nested, i.e., the space cor-
responding to one resolution has to be a subspace of all spaces corresponding to finer
resolutions. This property of nested spaces is the reason why the grids of data have
be to connected by subdivision.

The generalized framework of MR analysis for irregular triangulation introduced
in [3] does not require the nested property. The latter is replaced by a weaker condi-
tion that is related to the growth of the approximation spaces. If the data is defined
on irregular triangulations, it becomes possible to associate them with a sequence of
approximation spaces corresponding to coarser irregular triangular grids. There exist
numerous algorithms for reducing the number of triangles in a mesh—independently
of the data that is defined on this mesh. Delaunay-removal can be applied to planar
or convex triangular meshes, and edge-collapse to general triangular meshes. If the
mesh comes from the recursive four-way split of some triangles in a base mesh, then
the obvious way to simplify it, is to replace each group of four sub-triangles by their
parent triangle. The common setting of these decimation algorithms is that a set of n
triangles is replaced by a set of m triangles covering the same domain, with m < n,
as is shown in Figure 16.

Fig. 16. Local triangle decimation.

A sequence of triangulations obtained by successive decimation is generally not
nested because it is not connected by subdivision. However, the generalized frame-
work allows the development of MR analysis algorithms that generate a coarse ap-
proximation of the original data and a set of detail coefficients. Therefore, the same
types of applications that are mentioned in Section 3.1 are possible by selecting a
subset of the detail coefficients and by synthesizing the data set using only the se-

Multiresolution Analysis 105

lected coefficients. This idea has been used for different types of data sets defined on
irregular triangulations in [8, 4, 5, 6]. Below, we describe the basic principle.

Let T denote a triangle of the domain and s a data value (scalar) defined on
a triangle. The superscript f (fine) denotes quantities before the local decimation
algorithm, and c (coarse), after the decimation. Bold letters denote vectors. The pair
(T, s) denotes the piecewise constant function equal to si on the triangles Ti. If Q is
a matrix, then Qk denotes the k-th column vector of Q.

Let us focus here on the following setting: we are given a piecewise constant
function (Tf , sf) on n triangles, and a set of m triangles Tc covering the same
domain on the surface, with m < n.

The essence of an MR analysis is the filter bank algorithm [64] explained in Sec-
tion 3.4. It consists of the local decomposition and reconstruction algorithm. In the
present irregular setting this algorithm is the same as in wavelet theory: a function
living in a fine space (in our case, the piecewise constant function on the finer trian-
gulation) is decomposed into a coarser approximating function (piecewise constant
on the coarser triangulation) and error functions (piecewise constant on the finer tri-
angulation). These error functions have two properties: they can be used to recover
the original data exactly, and their norm is a measure of the error between the input
function and the approximation.

Intuitively, we have to define one smoothing operator that maps the input function
onto its approximation, and one error operator that captures the difference between
the input function and its approximation. These two operators are defined by two
rectangular matrices A and B of size m × n and (n − m) × n, respectively:

sc = Asf (12)

d = Bsf (13)

The smoothing operator (12) computes the coarser coefficients sc from the finer co-
efficients sf , and the error operator (13) computes the detail coefficients d. The
actual computation of the so-called analysis matrices A and B is detailed in [3]. One
step of the filter bank algorithm can thus be illustrated as follows:

sf −→ sc

↘
d

In order to keep a constant memory size for the data values, the original coeffi-
cients sf are cleared from memory after the decimation, and replaced by the coarse
and detailed coefficients sc and d. Of course, the sum of the sizes of sc and d equals
the size of sf . Since sf is cleared from memory, the decomposition formulas (12)
and (13) have to be invertible, in order to be able to recover the original data values.
This is the purpose of the reconstruction formula:

sf = Psc + Qd. (14)

The so-called synthesis matrices P and Q are of sizes n × m and n × (n − m),
respectively. Intuitively, the operator P is the inverse of the smoothing operator A:

106 G.-P. Bonneau et al.

P acts as a subdivision operator, although subdivision is not possible if the triangular
domains are non-nested. The operator Q adds the details d to the oversampled data
Psc, in order to recover the original data sf . The matrices P and Q can be computed
from A and B by: (

P Q
)

=
(
A
B

)−1

.

To be more precise about the properties of our decomposition, let us rewrite the
reconstruction formula (14) with a functional point-of-view instead of a coefficient
point-of-view:

(Tf , sf) = (Tf ,Psc) +
n−m∑
k=1

dk(Tf ,Qk), (15)

where Qk denotes the k-th column vector of Q, and dk denotes the k-th detail coef-
ficient of d.

Fig. 17. Local decomposition by 4-to-1 split: finer, intermediate and coarser approximations
on top, detail coefficients times wavelet functions on bottom. In this case, the coarse and
fine triangular domains are nested, and therefore, the intermediate approximation equals the
coarser approximation. The relative high magnitudes of the detail coefficients (bottom part)
show the large L2 error between the fine and coarse approximations.

Figs. 17 and 18 illustrate the local decomposition on two examples. In both fig-
ures, the top part shows, from left to right, the finer function (Tf , sf), the inter-
mediate function (Tf ,Psc), and the final coarser function (Tc, sc). The bottom
part shows the detail coefficients times the wavelet functions: d(Tf ,Qf). Figure
17 shows the local decomposition on a 4-to-1 split example. This leads to a tradi-
tional Haar wavelet decomposition for irregular triangular meshes. Note in this case
that the intermediate function (Tf ,Psc) (top-middle), although defined over a finer
mesh, equals the coarser function (Tc, sc) (top-right). In Figure 18, the block re-
sults from the removal of one interior vertex. Therefore, two detail coefficients are
computed (bottom part).

Multiresolution Analysis 107

Fig. 18. Local decomposition by Delaunay-removal: finer, intermediate and coarser approx-
imations on top, detail coefficients times wavelet functions on bottom. Since the triangular
domains are non-nested, the intermediate approximation differs from the coarse approxima-
tion. The relative low magnitude of the detail coefficients (bottom part) shows the small L2

error between the fine and coarse approximations.

Fig. 19. Original data set with 1.3 M faces. Middle: partial reconstruction with 60000 faces.
Right: partial reconstruction with 150000 faces.

Combining successive removal of sets of non-adjacent vertices with the filter
bank algorithm leads to the construction of a hierarchy of triangulations that cor-
responds to an MR analysis of the initial data set. Threshold reconstruction is one
of the possible applications of such a wavelet-based MR analysis. It consists of ap-
plying the reconstruction formula (15) only to the blocks of the hierarchy whose
wavelet coefficients are greater than a fixed threshold. The visual effect is illustrated
in Figure 19. The original data set (ETOP05 data set) in Figure 19 (left) has been
fully analyzed with the preservation of the coastlines. Figures 19 (middle and right)
show two partial threshold reconstructions. See also Figures CP-3 in Appendix C.

108 G.-P. Bonneau et al.

4.2 Surface Meshes

Developing MR modeling methods for large manifold surface meshes has been the
subject of a great many research papers. Motivated by the ever-increasing size of
polygonal meshes resulting from laser range scanners, researchers have tried to gen-
eralize the theory of wavelet MR analysis, successfully applied to 2D images, in
order to compress, efficiently render, transmit, and edit such large meshes. One in-
novative application of MR methods for surface meshes is the ability to perform
editing operations at different resolutions, as illustrated in Section 3.1 for curves.
However, these surface meshes are generally irregular meshes, i.e., they do not have
subdivision connectivity. Different approaches exist in the literature to define an MR
analysis for manifold surface meshes.

For example, one of the early papers [17] first computes an approximation of the
original data, a two-dimensional manifold triangular mesh, using new data defined
on a grid with subdivision connectivity. The new data can then be analyzed with a
wavelet analysis.

The groundbreaking work in the area of MR mesh representation was done
by [61]. This paper also proposed a theory close to wavelet MR analysis. Its MR
surface mesh model is closely related to subdivision surfaces. In general, in every
MR analysis/synthesis scheme, the synthesis (or reconstruction) process can be seen
as the combination of a subdivision step with a correction step. Based on this ob-
servation, [61] built an MR analysis/synthesis scheme on top of well known sur-
face subdivision schemes, including Loop and Butterfly subdivision schemes (see
the Chapter on Subdivision surfaces and applications in this volume). It turns out
that only interpolating subdivision schemes lead to a linear time analysis process,
while the synthesis process can always be performed in linear time. In order to build
an MR analysis/synthesis scheme on top of a surface subdivision scheme, Louns-
berry et al. [61] introduced a scalar product for functionals defined on the surface
domain, and used this scalar product in order to define wavelet functions with good
approximating properties. Based on this MR scheme, a fine mesh with subdivision
connectivity can be represented on a wavelet basis. Thus, compression of the mesh
can be performed by neglecting small wavelet coefficients. Progressive transmission
is efficiently implemented by sorting the wavelet coefficients and transmitting them,
starting with the most significant. The progressive transmission and its application to
MR mesh viewing is the topic of [13].

This pioneering work was followed by [91] and [57]. These two papers did not
rely on a genuine wavelet decomposition of the meshes. Rather, they mimicked the
analysis process of the wavelet MR representation, by using a smoothing procedure
to convert fine meshes into coarser meshes, and by encoding the error occurring
during this smoothing procedure. [91] introduced highly adaptive procedures, with
the aim of being able to edit large meshes in real-time. While [91] was still restricted
to meshes with subdivision connectivity, [57] proposed a generalization to arbitrary
meshes.

The idea of remeshing the irregular surface mesh into a semi-regular mesh
(see Figure 20) with subdivision connectivity [60, 41] before computing wavelet-

Multiresolution Analysis 109

detailsdetails detailsdetails detailsdetails detailsdetails

.
.

InputInput
meshmesh

CoarseCoarse
meshmesh.

.

Fig. 20. Multiresolution analysis of a semi-regular mesh.

based MR analysis has also been used for signal processing applications, such as
coding and compression of surface meshes. The compression allows a compact
storage or a fast transmission of these surface data in a bandwidth-limited appli-
cation. Wavelets are now frequently exploited to perform efficient compression.
Based on MR analysis, wavelet coders do not only achieve better compression rates
[61, 54, 40, 53, 69, 70] than methods based on signal quantization, but also make the
progressive transmission and adaptive display easier.

5 Conclusions and Open Issues

Multiresolution representations play an increasing role in geometric design. Their
use for both polygonal meshes and freeform polynomial and rational representations
is expected to increase as their usefulness is further recognized. Nevertheless, many
issues are still open and need to be resolved before the full power of this representa-
tion can be revealed.

Starting with MR representation for B-spline curves, both uniform and non-
uniform knot spacings are, by now, fully supported and understood. Yet, the compu-
tation of the B-wavelet basis functions for spaces with non-uniform knot sequences
is expensive and methods should be sought to reduce this cost.

Another related problem is the question of the inherent imprecisions of inter-
active MR editing of freeform curves. Being imprecise, it is difficult to employ in
precise engineering design. In order to improve the precision, linear constraints are
already embedded with interactive MR editing as well as a few non-linear constraints
such as area and arc-length. The efficiency in solving linear constraints makes them
attractive but also limited. Other families of non-linear constraints should be em-
bedded with MR as well. Examples include curvature prescriptions, fairing require-
ments, higher order moments, etc.

Features are, many times, viewed as high frequency details of the geometry. A
smooth shape of some animation could be combined with high frequency details of
hair, thorns, or just scales. However, the simple algebraic sum of the two shapes
would yield a result that is not necessarily the most appealing one. This is due to
the fact that the details, when added algebraically, are not oriented along the smooth
shape’s geometry. Different MR decomposition schemes, which are intrinsically geo-
metric and not algebraic, might be able to resolve such problems. In this sense,

110 G.-P. Bonneau et al.

intrinsic MR decomposition schemes, such as the presented curvature signatures,
should be further explored.

References

1. M. Alexa, D. Cohen-Or, and D. Levin. As-rigid-as-possible shape interpolation. In
SIGGRAPH ’00: Proceedings of the 27th annual conference on Computer graphics and
interactive techniques, pages 157–164, New York, NY, USA, 2000. ACM Press/Addison-
Wesley Publishing Co.

2. R. Bartels and J. Beatty. A technique for the direct manipulation of spline curves. Graph-
ics Interface ’89, pages 33–39, 1989.

3. G.-P. Bonneau. Multiresolution analysis with non-nested spaces. Computing Supplemen-
tum, 13:51–66, 1996.

4. G.-P. Bonneau. Multiresolution analysis on irregular surface meshes. IEEE Transactions
on Graphics and Visualization, 4(4):365–378, 1998.

5. G.-P. Bonneau and A. Gerussi. Hierarchical decomposition of datasets on irregular sur-
face meshes. In Proceedings of CGI’98,, pages 59–63, Hannover, Germany, June 1998.

6. G.-P. Bonneau and A. Gerussi. Level of detail visualization of scalar data sets on irregular
surface meshes. In Proceedings Visualization’98,, pages 73–77. IEEE, 1998.

7. G. P. Bonneau and H. Hagen. Variational design of rational bézier curves and surfaces.
In L. Laurent and L. Schumaker, editors, Curves and Surfaces, volume II, pages 51–58.
AK Peters, 1994.

8. G.-P. Bonneau, S. Hahmann, and G.M. Nielson. Blac-wavelets: a multiresolution analysis
with non-nested spaces. In Proceedings Visualization’96,, pages 43–48. IEEE, 1996.

9. P. Borel and A. Rappoport. Simple constrained deformations for geometric modeling and
interactive design. ACM Transactions on Graphics, 13(2):137–155, 1994.

10. M. P. Do Carmo. Differential Geometry of Curves and Surfaces. Cambridge University
Press, 1976.

11. G. Celniker and D. Gossard. Deformable curve and surface finite-elements for free-form
shape design. In ACM SIGGRAPH Conference Proceedings, pages 257–266. ACM, 1991.

12. G. Celniker and W. Welch. Linear constraints for deformable b-spline surfaces. In Sym-
posium on Interactive 3D Graphics, pages 165–170, 1992.

13. A. Certain, J. Popovic, T. DeRose, T. Duchamp, D. Salesin, and W. Stuetzle. Interactive
multiresolution surface viewing. Computer Graphics, 30(Annual Conference Series):91–
98, 1996.

14. C. K. Chui and E. G. Quak. Wavelets on a bounded interval. In D. Braess and L. Schu-
maker, editors, Numerical Methods of Approximation Theory, Volume 9, pages 53–75.
Birkhäuser Verlag, Basel, 1992.

15. P. Cignoni, C. Montani, E. Puppo, and R. Scopigno. Multiresolution representation and
visualization of volume data. IEEE Trans. on Visualization and Comp. Graph, 3(4):352–
369, 1997.

16. D. Eberly and J. Lancaster. On gray scale image measurements: I. arc length and area.
CVGIP: Graphical Models and Image Processing, 53(6):538–549, 1991.

17. M. Eck, T. DeRose, T. Duchamp, H. Hoppe, T. Lounsbery, and W. Stuetzle. Multiresolu-
tion analysis of arbitrary meshes. In Computer Graphics Proceedings (SIGGRAPH 95),
pages 173–182, 1995.

18. G. Elber. Symbolic and numeric computation in curve interrogation. Computer Graphics
forum, 14(1):25–34, March 1995.

Multiresolution Analysis 111

19. G. Elber. Multiresolution curve editing with linear constraints. The Journal of Computing
& Information Science in Engineering, 1(4):347–355, December 2001.

20. G. Elber and C. Gotsman. Multiresolution control for nonuniform bspline curve edit-
ing. In The Third Pacific Graphics Conference on Computer Graphics and Applications,
Seoul, Korea, pages 267–278, [August 1995.

21. G. Farin, G. Rein, N. Sapidis, and A. J. Worsey. Fairing cubic b-spline curves. Computer
Aided Geometric Design, 4:91–103, 1987.

22. A. Finkelstein and D. H. Salesin. Multiresolution curves. Computer Graphics Proceed-
ings (SIGGRAPH 94), pages 261–268, 1994.

23. L. De Floriani. A pyramidal data structure for triangle-based surface description. IEEE
Computer Graphics and Applications, 9(2):67–78, 1989.

24. L. De Floriani, M. Alexa, Marie-Paule Cani, Paolo Cignoni, Emanuele Danovaro,
Thomas Di Giacomo, HyungSeok Kim, Nadia Magnenat-Thalmann, and Enrico Puppo.
Level-of-detail shape modeling. In chapter 5 of this book. Springer, 2005.

25. D. Forsey and R. Bartels. Hierarchical b-spline refinement. Proceedings of SIG-
GRAPH’88, ACM New York, pages 205–212, 1988.

26. B. Fowler. Geometric manipulation of tensor product surfaces. In 1992 Symposium on
Interactive 3D Graphics, pages 101–108, 1992.

27. B. Fowler. Geometric manipulation of tensor product surfaces. In Proceedings of the
1992 symposium on Interactive 3D graphics, pages 101–108. ACM Press, 1992.

28. B. Fowler and R. Bartels. Constraint-based curve manipulation. IEEE Computer Graphics
and Applications, 13(5):43–49, 1993.

29. M. Gleicher. Integrating constraints and direct manipulation. In Proceedings of the 1992
symposium on Interactive 3D graphics, pages 171–174. ACM Press, 1992.

30. E. Goldstein and Craig Gotsman. Polygon morphing using a multiresolution representa-
tion. In Graphics Interface ’95, pages 247–254. Canadian Inf. Process. Soc., 1995.

31. C. Gonzalez-Ochoa, S. Mccammon, and J. Peters. Computing moments of objects en-
closed by piecewise polynomial surfaces. ACM Transaction on Graphics, 17(3):143–157,
July 1998.

32. C. Gonzalez-Ochoa and J. Peters. Localized-hierarchy surface splines (less). In Pro-
ceedings of the 1999 symposium on Interactive 3D graphics, pages 7–15. ACM Press,
1999.

33. S. Gortler and M. Cohen. Hierarchical and variational geometric modeling with wavelets.
In 1995 Symposium on 3D Interactive Graphics, pages 35–41, 1995.

34. S. Gortler, P. Schröder, M. Cohen, and P. Hanrahan. Wavelet radiosity. Computer Graph-
ics Proceedings (SIGGRAPH 93), pages 221–230, 1993.

35. S. J. Gortler. Private communications.
36. S. J. Gortler. Wavelet methods in computer graphics. PhD thesis, Department of Com-

puter Science, Princeton, 1994.
37. G. Greiner. Variational design and fairing of spline surfaces. In Proc. Eurographics 1994,

pages 143–154, 1994.
38. G. Greiner and J. Loos. Data dependent thin plate energy and its use in interactive surface

modeling. Eurographics ’96 (1996), 15:176–185, 1996.
39. M. Gross, L. Lippert, R. Dietrich, and S. Häring. Two methods or wavelet-based volume

rendering. Computers & Graphics, 21(2):237–252, 1997.
40. I. Guskov, A. Khodakovsky, P. Schröder, and W. Sweldens. Hybrid meshes: Multiresolu-

tion using regular and irregular refinement. In Proceedings of SoCG 2002, 2000.
41. I. Guskov, K. Vidimce, W. Sweldens, and P. Schröder. Normal meshes. In Kurt Ake-

ley, editor, Siggraph 2000, Computer Graphics Proceedings, pages 95–102. ACM Press /
ACM SIGGRAPH / Addison Wesley Longman, 2000.

112 G.-P. Bonneau et al.

42. H. Hagen and P. Santarelli. Variational design of smooth b-spline surfaces. In H. Hagen,
editor, Topics in Geometric Modeling, pages 85–94. SIAM Philadelphia, 1992.

43. H. Hagen and G. Schulze. Automatics smoothing with geometric surface patches. Com-
puter Aided Geometric Design, pages 231–236, 1987.

44. S. Hahmann. Shape improvement of surfaces. Computing Suppl., 13:135–152, 1998.
45. S. Hahmann and G.-P. Bonneau. Polynomial surfaces interpolating arbitrary triangula-

tions. IEEE Transactions on Visualization and Computer Graphics, 9(1):99–109, 2003.
46. S. Hahmann, G.-P. Bonneau, B. Caramiaux, and M. Cornillac. Multiresolution morphing

of planar curves. Computing, 2007. to appear.
47. S. Hahmann, B. Sauvage, and G.-P. Bonneau. Area preserving deformation of multireso-

lution curves. Computer Aided Geometric Design, 22(4):349–367, 2005.
48. H. Hoppe. Progressive meshes. Computer Graphics Proceedings (SIGGRAPH 96), pages

99–108, 1996.
49. H. Hoppe. View-dependent refinement of progressive meshes. Computer Graphics Pro-

ceedings (SIGGRAPH 97), pages 189–198, 1997.
50. W. M. Hsu, J. F. Hughes, and H. Kaufman. Direct manipulation of free-form deforma-

tions. In Computer Graphics (SIGGRAPH 92 Proceedings), pages 177–184, July 1992.
51. P. D. Kaklis and N. S. Sapidis. Convexity-preserving interpolatory parametric splines of

nonuniform polynomial degree. Comput. Aided Geom. Des., 12(1):1–26, 1995.
52. R. Kazinnik and G. Elber. Orthogonal decomposition of non-uniform bspline spaces using

wavelets. Computer Graphics forum, 16(3):27–38, September 1997.
53. A. Khodakovsky and I. Guskov. Compression of normal meshes, 2003.
54. A. Khodakovsky, P. Schröder, and W. Sweldens. Progressive geometry compression. In

Kurt Akeley, editor, Siggraph 2000, Computer Graphics Proceedings, pages 271–278.
ACM Press / ACM SIGGRAPH / Addison Wesley Longman, 2000.

55. D. Kirkpatrick. Optimal search in planar subdivisions. SIAM Journal on Computing,
12(1):28–35, 1983.

56. L. Kobbelt. A variational approach to subdivision. Computer Aided Geometric Design,
13:743–761, 1996.

57. L. Kobbelt, S. Campagna, J. Vorsatz, and HP. Seidel HP. Interactive multiresolution mod-
eling on arbitrary meshes. In Computer Graphics Proceedings (SIGGRAPH 98), pages
105–114, 1998.

58. L. Kobbelt and P. Schröder. A multiresolution framework for variational subdivision.
ACM Trans. on Graph., 17(4):209–237, 1998.

59. A. W. F. Lee, D. Dobkin, W. Sweldens, and P. Schröder. Multiresolution mesh morphing.
Computer Graphics Proceedings (SIGGRAPH 99), pages 343–350, 1999.

60. Aaron W. F. Lee, Wim Sweldens, Peter Schröder, Lawrence Cowsar, and David Dobkin.
MAPS: Multiresolution adaptive parameterization of surfaces. Computer Graphics,
32(Annual Conference Series):95–104, 1998.

61. M. Lounsbery, T. De Rose, and J. Warren. Multiresolution analysis for surfaces of arbi-
trary topological type. ACM Transaction on Graphics, 16(1):34–73, 1997.

62. T. Lyche and K. Morken. Spline wavelets of minimal support. In D. Braess and L. Schu-
maker, editors, Numerical Methods of Approximation Theory, pages 177–194. Birkhäuser
Verlag, Basel, 1992.

63. Tom Lyche and Knut Morken. Knot removal for parametric b-spline curves and surfaces.
Comput. Aided Geom. Des., 4(3):217–230, 1987.

64. S. Mallat. A theory for multiresolution signal decomposition: The wavelet representation.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 11:674–693, 1989.

65. E. Mehlum. Non-linear spline. In R. E. Barnhill and R. F.R iesenfeld, editors, Computer
Aided Geometric Design, pages 173–208. Academic Press, 1974.

Multiresolution Analysis 113

66. M.Gross, O. Staadt, and R. Gatti. Efficient triangular surface approximations using
wavelets and quadtree data structures. IEEE Transactions on Visualization and Computer
Graphics, 2(2):130–143, 1996.

67. H. P. Moreton and C. H. Séquin. Functional optimisation for fair surface design. Com-
puter Graphics, 26(2):167–176, 1992.

68. G. Nielson, IH. Jung, and J. Sung. Haar-wavelets over triangular domains with applica-
tions to multiresolution models for flow over a sphere. In IEEE Visualization’97, pages
143–150, november 1997.

69. F. Payan and M. Antonini. An efficient bit allocation for compressing normal meshes
with an error-driven quantization. Computer Aided Geometric Design, 22:466–486, July
2005.

70. F. Payan and M. Antonini. Mean square error approximation for wavelet-based semireg-
ular mesh compression. IEEE Transactions on on Visualization and Computer Graphics
(TVCG), 2006. to appear.

71. J. P. Pernot, S. Guillet, J. C. Leon, F. Giannini, B. Falcidieno B., and E. Catalano. A shape
deformation tool to model character lines in the early design phases. In Proceedings
Shape Modeling International 2002, Banff, Canada, 2002.

72. J. Peters. C1-surface splines. SIAM J. Numer. Anal., 32(2):645–666, 1995.
73. M. Plavnik and G. Elber. urface design using global constraints on total curvature. In The

VIII IMA Conference on Mathematics of Surfaces, September 1998.
74. A. Rappoport, A. Sheffer, and M. Bercovier. Volume-preserving free-form solids. In

Proceedings of Solid Modeling 95, pages 361–372, May 1995.
75. A. Raviv and G. Elber. Three dimensional freeform sculpting via zero sets of scalar

trivariate functions. CAD, 32(8/9):513–526, July/August 2000.
76. C. H. Reinsch. Smoothing by spline functions ii. Num. Math., 16:451–454, 1967.
77. B. Sauvage. Déformation de courbes et surfaces multirésolution sous contraintes. Phd,

Institut National Polytechnique de Grenoble (INPG), December 2005.
78. B. Sauvage, S. Hahmann, and G.-P. Bonneau. Length preserving multiresolution editing

of curves. Computing, 72:161–170, 2004.
79. B. Sauvage, S. Hahmann, and G.-P. Bonneau. Length constrained multiresolution de-

formation for surface wrinkling. In International Conference on Shape Modeling and
Applications, SMI’06, pages 113–121, Matsushima, June 2006. IEEE Computer Society
Press.

80. P. Schröder and W. Sweldens. Spherical wavelets: Efficiently representing functions on
the sphere. Computer Graphics Proceedings (SIGGRAPH 95), pages 161–172, 1995.

81. T.W. Sederberg, P. Gao, G. Wang, and H. Mu. 2-d shape blending: An intrinsic solution
to the vertex path problem. Computer Graphics,(SIGGRAPH 93 Proceedings), 27:15–18,
1993.

82. M. Shapira and A. Rappoport. Shape blending using the star-skeleton representation.
IEEE Comput. Graph. Appl., 15(2):44–50, 1995.

83. E. Stollnitz, T. DeRose, and D. Salesin. Wavelets for Computer Graphics: Theory and
Applications. Morgan-Kaufmann, 1996.

84. Eric J. Stollnitz, Tony D. DeRose, and David H. Salesin. Wavelets for computer graphics:
A primer, part 2. IEEE Computer Graphics and Applications, 15(4):75–85, 1995.

85. W. Sweldens. The lifting scheme: A construction of second generation wavelets. SIAM
J. Math. Anal., 29(2):511–546, 1997.

86. J. Warren and H. Weimer. Variational subdivision for natural cubic splines. Approxima-
tion Theory IX, 2:345–352, 1998.

87. H. Weimer and J. Warren. Subdivision schemes for thin plate splines. Computer Graphics
Forum (Proceedings of Eurographics 98), pages 303–313, 1998.

114 G.-P. Bonneau et al.

88. H. Weimer and J. Warren. Subdivision schemes for fluid flow. Computer Graphics (SIG-
GRAPH 99 Conference Proceedings), pages 111–120, August 1999.

89. W. Welch and A. Witkin. Variational surface modeling. Computer Graphics (SIGGRAPH
’92 proceedings), 26:157–166, July 1992.

90. A. Yvart, S. Hahmann, and G.-P. Bonneau. Hierarchical triangular splines. ACM Trans-
actions on Graphics, 24(4):1374–1391, 2005.

91. D. Zorin, P. Schröder, and W. Sweldens. Interactive multiresolution mesh editing. Com-
puter Graphics Proceedings (SIGGRAPH 97), pages 259–268, 1997.

Subdivision Surfaces and Applications

Chiara Eva Catalano1, Ioannis Ivrissimtzis2, and Ahmad Nasri3

1 Istituto di Matematica Applicata e Tecnologie Informatiche, Italian National Research
Council, Genova (Italy) chiara.catalano@ge.imati.cnr.it

2 Durham University, Department of Computer Science (UK)
ioannis.ivrissimtzis@durham.ac.uk

3 American University of Beirut, Department of Computer Science (Lebanon)
anasri@aub.edu.lb

Summary. After a short introduction on the fundamentals of subdivision surfaces, the more
advanced material of this chapter focuses on two main aspects. First, shape interrogation is-
sues are discussed; in particular, artifacts, typical of subdivision surfaces, are analysed. The
second aspect is related to how structuring the geometric information: a multi-resolution ap-
proach is a natural choice for this geometric representation, and it can be seen as a possible
way to structure geometry. Moreover, a first semantic structure can be given by a set of mean-
ingful geometric constraints that the shape has to preserve, often due to the specific application
context. How subdivision surfaces can cope with constraint-based modelling is treated in the
chapter with a special attention to applications.

1 Introduction

The problem of generating a smooth surface from a coarse mesh is one of the central
themes of Shape Modelling. In a typical application scenario, the smoothness of the
final surface is required for visually appealing renderings; on the other hand, many
times only a coarse mesh can be created and maintained. The latter is usually the case
with the manual creation and editing of a shape, or when there is limited memory and
bandwidth for the storage and transmission of the shape.

Subdivision employs a simple and intuitive procedure to solve this problem. The
surface is completely defined by an initial coarse mesh which is progressively re-
fined by inserting new vertices and connecting them with edges and faces, until it
converges to a smooth surface in the limit. Figure 1 shows two examples, one of a
geometric and one of a natural shape.

The capability of expressing a shape at incremental levels of resolution causes
a natural structuring of the geometric information according to different modelling
requirements. In this chapter, shape interrogation and structuring issues will be spe-
cialised for subdivision surfaces.

In the last decades great attention has been put on these surfaces and plenty of
literature has been produced. The biggest challenge still remains their practical usage

116 C.E. Catalano et al.

Fig. 1. Two examples of Loop subdivision. All the triangle meshes in the first four sections of
the chapter were rendered with Yutaka Ohtake’s MeshViewer, which is available online [54].

as an alternative geometric representation in application domains, Computer Aided
Design (CAD) above all. For such reason, subdivision surfaces will be treated here
mainly from the application point of view.

Section 2 gives some background on subdivision, introducing the main subdivi-
sion schemes and analysing their smoothness properties. The high-order continuity
of these schemes means that they generally produce high-quality surfaces. Neverthe-
less, this does not automatically make subdivision an intuitive design tool. Section
3 studies subdivision artifacts, defined as unexpected features on the subdivision
surface which cannot be intuitively controlled by repositioning the vertices of the
original coarse mesh. In Section 4, usability issues are discussed. Besides the alias-
ing effects, another limit that prevents subdivision surfaces from being a powerful
modelling tool for applications is the insufficient shape predictability. In Section 5,
the constrained based subdivision is introduced, which permits to overcome such a
restriction by fulfilling specific modeling needs.

2 Subdivision basics

2.1 Subdivision schemes

Traditionally, subdivision rules are defined in two stages. First, a refinement rule pro-
duces a sequence of ever increasing connectivities. Then, the actual positions of the
new vertices are computed, usually as an affine combination of the old vertices. The
coefficients of these affine combinations are described either in the form of stencils,
which give the weights of all the old vertices influencing the position of a single new
vertex, or masks, describing the influence of a single old vertex on the position of all
the new vertices it affects.

Even though the basic idea behind subdivision surfaces is extremely simple, it
can be implemented in a multitude of ways. Thus, over the years many different sub-
division schemes have been proposed and next we briefly describe the most popular.

Subdivision Surfaces and Applications 117

Following the standard terminology, a vertex of a quadrilateral mesh is called regular
if it has valence four, that is, there are four edges incident to it. Similarly, the regular
vertices of a triangular mesh are those with valence six, while all the other vertices
are called extraordinary.

The Catmull-Clark scheme [12] is a quadrilateral, approximating scheme. The
regular parts of the subdivision surface are tensor products of cubic B-splines and
have C2 continuity. At the extraordinary vertices the surface is C1 continuous.
Figure 2 shows the stencils of the scheme.

Fig. 2. The three stencils of the Catmull-Clark scheme. The new vertices correspond to old
faces, edges and vertices, respectively. α = 3

2k2 and β = 1
4k2 , where k is the valence of the

vertex.

The Doo-Sabin scheme [16] is a quadrilateral, dual, approximating scheme. Its
regular parts are tensor products of quadratic B-splines and have C1 continuity. At
the extraordinary vertices the surface is also C1 continuous.

The Loop scheme [41] is a triangular, primal, approximating scheme. Its regular
parts are quartic box splines and have C2 continuity. At the extraordinary vertices the
surface is C1 continuous. Special boundary rules for the Loop scheme were proposed
in [7] and a ternary version was proposed in [43].

The Butterfly scheme [21] is a triangular, interpolating scheme. It is based on the
univariate 4-point scheme [20] and gives C1 continuous surfaces in regular patches.
The original scheme has C0 continuity at the extraordinary vertices, while the Mod-
ified Butterfly scheme [75] has C1 continuity everywhere.

The above are the most commonly used schemes. Other, less frequently used
schemes include the Kobbelt scheme [30], the simplest scheme [57], the

√
3-scheme

[31, 35] and the Quad/Triangle scheme [70]. For an in-depth description of subdivi-
sion schemes we refer the reader to [74] and [72].

118 C.E. Catalano et al.

2.2 Subdivision analysis

As the main objective of subdivision is to produce a smooth surface out of a coarse
mesh, the study of the properties of the limit surfaces focuses on the issue of an-
alytical smoothness. In other words, we seek proofs that, given a generic control
polyhedron as input, the subdivision scheme will produce a Ck continuous surface.

Laurent polynomials

The continuity properties of subdivision curves and their tensor products (regular
subdivision surfaces) has been studied through the associated Laurent polynomial
[17, 19]. The vertices of the polygon correspond to monomial components of the
Laurent polynomial, and the effect of one subdivision step corresponds to polynomial
multiplication.

Laurent polynomials are convenient tools for dealing with the dynamic nature of
a subdivision mesh because operations such as addition, multiplication and convolu-
tion are defined over polynomials of any order. In contrast, in square matrix multi-
plication, all the matrices must have the same dimension and then they correspond
to a fixed part of the connectivity of the subdivision mesh (see the next subsection).

Here we outline the univariate case following the notation in [18]. Let the subdi-
vision rule be

fk+1
i =

∑
j∈Z

αi−2jf
k
j (1)

where {fk
j }, j ∈ Z is the control polygon at step k. The mask of the scheme corre-

sponds to a Laurent polynomial

α(z) =
∑
j∈Z

ajz
j . (2)

We define the generating function of the initial control polygon f0 as the Laurent
polynomial

F (z; f0) =
∑
j∈Z

f0
j zj . (3)

The generating function of the initial control polygon and the mask suffice to de-
scribe the final subdivision curve. In fact, simple computations involving these two
Laurent polynomials give the control polygon after k subdivision steps and its m-th
order divided differences.

In particular, the effect of one subdivision step on the control polygon is equiv-
alent to polynomial multiplication by q(z), where q(z) can be easily derived from
the mask α(z). The information contained in q(z) can also be written in the form of
a subdivision matrix Sq, with the odd and even coefficients of the polynomial cor-
responding to odd and even rows of the matrix. The convergence of the subdivision
scheme is equivalent to the convergence of

lim
k→∞

Sk
q . (4)

Subdivision Surfaces and Applications 119

For the latter, it is enough to show that the maximum row norm | · | of the matrix Sq

is less than one. If this is not the case, we proceed by computing the polynomial of
the double subdivision step and checking if the norm of the corresponding matrix is
less than 1. If not, n-multiple steps are considered. If the norm is less than one for
some value of n, then the scheme is convergent.

Spectral analysis of the subdivision matrix

The analytical properties of the subdivision surface around an extraordinary vertex
O of valence n are studied through the spectral analysis of a part of the subdivision
matrix. The approach was introduced in [16], where necessary conditions for C1

continuity were found and the coefficients of the Catmull-Clark and the Doo-Sabin
schemes were tuned according to these conditions. It can be noticed that for irregular
meshes we cannot use Laurent polynomials to describe the transformations of the
subdivision mesh. Instead, we use matrices and study a part of the mesh around
O, which contains enough information to determine a similar part with the same
connectivity on the next mesh.

Due to symmetry assumptions, which hold for any reasonable scheme, the part
of the mesh we study has rotational symmetry of order n around O. That means that,
with the exception of one row and one column corresponding to O, the rest of the
matrix has a circulant-block or block-circulant structure, depending on the labelling
of the vertices. The convergence of the subdivision scheme requires the largest eigen-
value to be equal to one and the corresponding eigenvector to be (1, 1, . . . , 1)T .

The next question is if the surface is tangent-plane continuous at the limit of
O. This depends on the second and the third eigenvalues and eigenvectors. These
two eigenvalues are complex conjugates (in particular, if they are real, then they are
equal). Sufficient conditions for a subdivision scheme to give tangent-plane continu-
ous surfaces for generic initial inputs are given in [3].

The next question is about C1 continuity, i.e., the existence of a local 1-1 con-
tinuous map, called the characteristic map, between the surface and the tangent
plane. The study of the characteristic map is facilitated by the observation that the
commonly used mesh refinement rules create around an extraordinary vertex a ring
structure with regular connectivity, which has a natural parameterisation. Conditions
guaranteeing the existence of the characteristic map were first obtained in [61]. In
[58, 59] practical criteria are proposed for verifying the existence of the character-
istic map, thus, guaranteeing C1 continuity of the subdivision surfaces for generic
initial inputs. Even though the sufficient conditions for C1 continuity seem to be
complex, in practice almost all of the proposed schemes are C1 continuous. The rea-
son relies on the symmetry assumptions taken into account in the design of a scheme,
which implicitly satisfy the C1 conditions.

The case is very different with C2 continuity. The most popular subdivision
schemes guarantee C2 continuity at the regular part of the surface, but they present
diverging second derivatives at the extraordinary points. Modifications in the masks
may lead to bounded but discontinuous second derivatives, or to vanishing ones.

120 C.E. Catalano et al.

This behaviour of the second derivatives means that the surfaces have either un-
bounded, zero or discontinuous curvature. Analyses of the curvatures can be found
in [62, 42, 64]. No C2 stationary scheme has been found yet.

The continuity degree of subdivision surfaces

As we discussed above, the analysis of subdivision focuses on the question of Ck

continuity of a given subdivision scheme. There are several limitations in this ap-
proach. First, all the subdivision surfaces produced by a scheme are treated as a
single class, i.e., trying to find theorems that apply to all of them. Secondly, Ck

continuity is a discrete measure of smoothness, as long as k is required to be an in-
teger. A comparison with a continuous measure of a curve’s smoothness, such as the
Hölder regularity, shows that the discrete one can lead to very conservative estimates
of smoothness. For example, the 4-point scheme for subdivision curves is not C2,
but nevertheless, it has Hölder regularity 2 − ε for arbitrary small ε > 0 [14].

Moreover, the analytical tools described above can mostly handle stationary
schemes, that is, schemes where the subdivision coefficients depend on the con-
nectivity only. For the evaluation of geometry-sensitive schemes, experimentation
seems to be the only available practical tool. In [55], the experimental computation
of Hölder exponents was proposed as an alternative way to estimate the degree of
continuity of a subdivision scheme. In [45], a large scale experiment over a diverse
sample of subdivision curves gave conclusive evidence for the behaviour of a non-
stationary subdivision scheme.

3 Artifacts in subdivision surfaces

As seen in 2.2, the behaviour of subdivision surfaces depends on few eigenvalues and
eigenvectors of the subdivision matrix. In many cases the spectral properties of the
subdivision matrix dominate the surface generation process, overwriting the intent of
the designer who is unable to use intuitively the vertices of the initial mesh to create
the shape he/she has in mind. Even on very simple meshes, designers encounter
unwanted artifacts in the form of spikes, ripples, oscillations, which they are not able
to remove by repositioning the control points. The existence of artifacts is the main
obstacle preventing the adoption of subdivision surfaces as a standard in industrial
design and several other applications.

The definition of the artifacts as features on the subdivision surface that were not
intended by the designer introduces an element of subjectivity [63]. Nevertheless,
we can identify several distinct types of artifacts and classify them according to the
eigenvalues and eigenvectors of the subdivision matrix that are responsible for them,
see [22].

We call first order artifacts the artifacts related to the second and third eigenval-
ues of the subdivision matrix. These two eigenvalues and the corresponding eigen-
vectors affect tangent plane properties of the subdivision surfaces. The corresponding

Subdivision Surfaces and Applications 121

artifacts appear in the form of uneven mesh structure with the neighbourhoods of low
valence vertices being more densely meshed than those of the high valence vertices.

We call second order artifacts the artifacts related to the fourth, fifth and sixth
eigenvalues of the subdivision matrix, that is, the eigenvalues and eigenvectors af-
fecting the curvature behaviour of the surface. They appear as unwanted ripples of
the surface around irregular vertices.

In principle, any type of artifact can be classified into one or both of the above
categories. However, designers have at their disposal some higher level operations
besides positioning control points: the two most common operations is curve extru-
sion and curve revolution around an axis. Thus, one can also study artifacts at that
higher level.

In the following we discuss these types of artifacts using the Loop subdivi-
sion scheme to produce all the pictures with the exception of Figure 12 where

√
5-

subdivision was used. Even though certain schemes may outperform the others with
regard to a particular artifact, the Loop scheme has generally the best behaviour
among all the triangular schemes and can be used as a benchmark.

3.1 First order artifacts

Around a vertex P , the subdivision mesh shrinks in the tangential direction by a
ratio λ which is equal to the norm of the second and third eigenvalues of the sub-
division matrix. In all major subdivision schemes (i.e., Catmull-Clark, Doo-Sabin,
Loop, Butterfly) the value of λ at regular vertices is 1

2 , which is compatible with the
binary refinement rule for the connectivity. The result is mesh evenly refined around
regular vertices. Figure 3 shows the mesh structure around a valence six vertex in
Loop subdivision.

Fig. 3. In the vicinity of a valence six vertex the mesh is evenly refined because the second
and third eigenvalues are equal to 1

2
.

On the other hand, in all major subdivision schemes, λ increases with the valence
k. That means that in the tangential direction the subdivision mesh shrinks slower
around high valence vertices than in the regular parts, resulting to an uneven mesh
structure. Figure 4 shows the slower refinement around a vertex of valence 18. It can

122 C.E. Catalano et al.

be noticed that the slower refinement around high valences does not affect the quality
of the limit surface. Nevertheless, very dense meshes may still produce low quality
renderings as a result of it.

Fig. 4. In the vicinity of a valence 18 vertex the mesh is unevenly refined because the second
and third eigenvalues are larger than 1

2
. Another artifact, in the form of a small spike at the

valence 18 vertex, is also visible.

In dual schemes the uneven refinement problem takes the form of high valence
faces with disproportionately large area. In some schemes the uneven refinement
problem can be severe, e.g., in the simplest scheme. There, the problem of slow
refinement of high valence faces is explicitly dealt with and modified subdivision
rules are proposed to rectify it.

One solution to the uneven mesh structure artifact is to modify the subdivision
coefficients, so that the second and third eigenvalues match the connectivity refine-
ment ratio for all valences. As the initial subdivision rules were found to be optimal
in some sense, such modifications require extra degrees of freedom, as for exam-
ple using special subdivision rules, or working with larger stencils. Without extra
degrees of freedom, we can expect that any modification ameliorating one kind of
problem may create other types of artifacts. The trade-off between uneven refinement
and ripples on the subdivision surface was shown in [74], pp.95-97, and studied in
[4] for the Loop scheme.

A second type of first order artifact concerns the normal of the tangent plane at
the limit of the vertex P . In many schemes, that normal depends only on the 1-ring
polygon of P and not on the position of P itself. Thus, changes in the position of P
do not change its normal. This is shown in Figure 5 where the high valence vertex of
Figure 4 has been repositioned, creating a spike on the mesh. The limit position of P
is not the point on the subdivision surface with the highest curvature, and its normal
does not point in the direction of the spike as one would intuitively expect.

The same artifact arises in the regular case, see Figure 6. Therefore, it is also
present when designing with B-splines. We consider this phenomenon to be an ar-
tifact because the resulting refined mesh is contrary to the designer’s intuition, and
this can hinder the design process. Nevertheless, it does not create any visible defect
on the subdivision surface.

Subdivision Surfaces and Applications 123

Fig. 5. The normal at the limit of the valence 18 vertex is the normal of its planar 1-ring
neighbourhood.

Fig. 6. The limit position of the spike on the coarse mesh is not in the highest curvature area
of the refined mesh.

3.2 Second order artifacts

Although the designer can intuitively use the vertices of the coarse mesh to control
the general shape of the subdivision surface, the same is not true for the local be-
haviour of the surface curvature. Thus, around extraordinary vertices the curvature
oscillates in a way that cannot be intuitively controlled by the designer. The visual
effect of the curvature oscillations is the rippling of the subdivision surface near large
valence vertices, see [74], pp. 94. Figure 7 shows this artifact around a vertex of va-
lence 12. Figure 11 shows curvature colourmaps for the subdivided meshes of this
section (see also Figure CP-1 in Appendix D).

Fig. 7. A dipyramid with valence 12 apices. Loop subdivision creates a feature near the equa-
torial line which was not intended by the designer.

As it was pointed out in [63], these artifacts are related both to the high valence
apices of the dipyramid and the 4-valent vertices in the equatorial line. In Figure 8,
in order to separate the effect of the high valence vertices from the low valence ones,
we first performed two steps of linear subdivision on the coarse mesh. We notice that

124 C.E. Catalano et al.

while both high and low valence vertices are responsible for the artifact, the impact
of the low valences is larger.

Fig. 8. The initial coarse mesh has been linearly subdivided twice. The artifact in the equatorial
line is even more pronounced.

Apart from the irregularities of the connectivity, curvature artifacts are also re-
lated to the geometry of the coarse mesh. As mentioned above, the curvature behav-
iour of the subdivision scheme depends on the fourth, fifth and sixth eigenvalues and
the corresponding eigenvectors. These eigenvalues and eigenvectors determine how
the corresponding eigencomponents of the coarse mesh scale at each subdivision
step.

In Figure 8 the negative Gaussian curvature areas in the equatorial line of the
dipyramid are due to the hyperbolic eigencomponent of the 1-ring polygons around
the 4-valent vertices, see [27]. By repositioning the apices of the dipyramid, the 1-
ring polygon of one of the 4-valent vertices can become planar, thus it will have no
hyperbolic component and the negative Gaussian curvature around that vertex will
disappear. This is shown in Figure 9, where we can eliminate the artifacts on the right
hand side of the model by moving the apices of the dipyramid to the right. On the
other hand, the artifact on the left hand side of the model is now worse because the 1-
ring polygons of the 4-valent vertices on the left have larger hyperbolic components.

Fig. 9. The 4-valent vertex on the right hand side of the skew dipyramid has planar 1-ring
polygon. Around this vertex there is no curvature artifact.

Subdivision Surfaces and Applications 125

Obviously the elimination of artifacts through the elimination of hyperbolic com-
ponents on the initial mesh is possible in very few cases only. In Figure 10 (a)-(b),
the two apices of the dipyramid have valence four and the coarse mesh is a regular
octahedron. It is one of the few meshes with the property that the 1-ring polygons
around all the vertices are planar. We notice that there are no curvature artifacts.
In Figure 10 (c)-(d), the apices of the dipyramid have valence 6 and, even though
the connectivity of the mesh is more regular than that of the octahedron, curvature
artifacts start to appear.

(a) (b) (c) (d)

Fig. 10. (a)-(b): A regular octahedron. (c)-(d): A dipyramid with valence 6 apices.

Fig. 11. Gaussian curvature colourmaps for the subdivided meshes shown in Figures 7, 8,
9 and 10, respectively. They are drawn in a relative scale, starting with red for the highest
curvature values and going through yellow, green, blue and black to the lowest values.

126 C.E. Catalano et al.

3.3 Higher level artifacts

Curve extrusion is an operation commonly used in surface design. In most imple-
mentations, extrusion creates a regular mesh with the extrusion path being one of the
mesh directions. When the extrusion path is a straight line, the designer expects the
subdivision mesh to respect it.

The behaviour of subdivision schemes on extrusion meshes is well understood
and it is known that, for a given mesh direction zi, a subdivision scheme will not have
extrusion artifacts along that direction if there is a term 1 + zi in the corresponding
z-transform, see [63]. For example, in Loop subdivision all three mesh directions are
safe for extrusion.

However, this property does not hold for all subdivision schemes. Figure 12
shows that the

√
5-scheme for quad meshes proposed in [25] does suffer from extru-

sion artifacts. The reason is that it does not have a term 1 + zi in either of the two
mesh directions. The same is true for the

√
3-scheme proposed in [31]. Both schemes

have totally fractal support [26], therefore they have extrusion artifacts in all mesh
directions [63].

Fig. 12. A coarse mesh obtained through extrusion. The
√

5-scheme produces an artifact along
the extrusion line.

Safe extrusion directions correspond to the connectivity, not to the geometry of
the mesh. Figure 13 (top) shows three simple planar meshes which can be used as
examples illustrating this point (see also Figure CP-2, top, in Appendix D).

In all the three cases we perform two steps of linear subdivision, and then lift in
the direction of the normal all the points lying on the bold line. The results are shown
in Figure 13 (see also Figure CP-2 in Appendix D).

The artifact in Figure 13 (b) (see also Figure CP-2 (b) in Appendix D) appears
because the extrusion line does not follow the mesh direction. It is clearly visibly
in the first subdivision step in the form of a surface feature perpendicular to the
extrusion line. In the limit surface it is revealed by the mean curvature colourmap.

Two of the coarse meshes in Figures 13 (a)-(b) (see also Figures CP-2 (a)-(b) in
Appendix D) make an interesting comparison because they have exactly the same
geometry, i.e., their sets of vertices are identical, as well as the underlying surfaces.

Subdivision Surfaces and Applications 127

Fig. 13. Loop subdivision. Left: The extrusion path is a straight line on a mesh direction.
Middle: The extrusion line is a straight line but not on a mesh direction. The artifact ap-
pears in the form of a feature perpendicular to the extrusion line at the point where it stops
following the mesh direction. It is more visible in the first subdivision step. Right: The ex-
trusion line is not straight but follows the mesh direction. There is no extrusion artifact.
From top to bottom: The extrusion path, the coarse mesh, the mesh after one step of subdivi-
sion, the subdivision surface and its mean curvature colourmap.

128 C.E. Catalano et al.

Also, inside the boundary, that is in the area of interest, both meshes have regular
connectivity (i.e., all the vertices have valence 6). Nevertheless, the 1-ring neigh-
bourhoods on these two meshes are different, which explain the artifact in Figure 13
(b) (see also Figure CP-2 (b) in Appendix D).

Another commonly used design operation is the rotation of a curve along an axis
to produce a surface of revolution. In this case, we expect artifacts similar to those
shown in Figure 7, as the dipyramid is a typical surface of revolution.

4 Implementation and usability issues

Subdivision fundamentals have been treated so far from a theoretical point of view.
In applications, designers needs some more practical clues to use comfortably sub-
division surfaces as an alternative shape representation. In fact, it is often not easy
and intuitive to get good results in terms of both shape and regularity when defin-
ing the control polyhedron of the surface desired. As a result, subdivision surfaces
have made significant inroads mainly in the entertainment industry, where the typi-
cal mesh is relatively dense and natural, the latter meaning also that the artifacts will
cancel each other.

A discussion will follow, where surface modelling and evaluation issues are faced
from a more practical perspective.

4.1 Direct evaluation of subdivision surfaces

Since the subdivision surface is continuous only at the limit, the evaluation at ar-
bitrary points is not always straightforward: in fact, every algorithm evaluating the
limit surface can provide values that are an approximation of the real value on the
discrete surface at a certain refinement level. Nevertheless, satisfying solutions have
been provided.

If an interpolation scheme is used, evaluation is simple since all the points at
each step belong to the final surface. If the subdivision scheme is a scheme extending
splines, the coordinates of the regular points at the limit are the values of the spline
at the corresponding points and the estimation is easy. As usual, the problem is given
by the extraordinary points. The Stam’s algorithm [69] is the work which answers
almost completely this issue. It allows for the calculation of points and derivatives
on the limit surface at arbitrary parameter values if using Catmull-Clark scheme.
He showed that the surface and its derivatives can be calculated in terms of a set of
eigenbasis functions depending only on the subdivision scheme. After treating the
regular part, the behaviour of extraordinary vertices is studied: using some manipu-
lations on the eigenstructure of the scheme, it is possible to analytically compute the
surface everywhere with an algorithm costing as much as the evaluation of bi-cubic
splines. This method can be analogously applied to Loop surfaces.

This work was extended by Zorin and Kristjansson [73] by considering the
subdivision rules for piecewise-smooth surfaces with boundaries depending on pa-
rameters. They introduced a different set of basis vectors for evaluation, which,
unlike eigenvectors, depend continuously on the coefficients of the subdivision rules.

Subdivision Surfaces and Applications 129

Thanks to that, it is possible to define an evaluation procedure for parametric families
of rules without considering an excessive number of special cases. In particular, the
authors demonstrate how such bases are computed for a specific parametric family
of subdivision rules extending Loop subdivision to meshes with boundaries.

4.2 Visual quality and shape predictability

Smoothness is important in many applications, being related to the quality of the
shape. CAD is probably one of the environments where such an issue is crucial.
Not only in the creation phase, but also at the manufacturing stage, high precision
is required: shape must be as much correct as possible and surfaces must often be
C2. For this reason, surface evaluation usually follows the creation step, necessary
in other phases as well, e.g., for estimating a tool path of numerical control machines
and for simulation purposes.

For the visual inspection of the smoothness of the surface, light lines, such as
reflection or shadow lines, are widely used in CAD and are mathematically related
to the C2-continuity of the surface. In [32] the treatment of light lines in generic
discrete geometry, useful for example for visualisation purposes, is described.

However, not only tools for high regularity are needed. Common objects are not
smooth everywhere and at the same rate; moreover, there are various contexts, such
as manufacturing [34], finite element analysis and the design of thin-shell structure
[13, 23], reverse engineering and the fitting of subdivision surfaces from clouds of
data points [24, 44], where the lack of smoothness is required. Conversely, subdi-
vision techniques tend to smooth the mesh and can be also used just as smoothing
operators. Hence, it is important to have methods to decrease the smoothness at some
points, or along some lines, e.g., when sharp edges are desired: using subdivision,
special rules are applied to edges or vertices to sharpen [24].

When modelling industrial products, the “pleasantness” of a surface to the eye
is not guaranteed by high smoothness only, but fairing issues have been considered
in order to optimise the shape. Such a formulation has been extended to discrete
representations as well, even specialised for subdivision models (i.e. variational sub-
division surfaces, [33]).

For applications other than CAD, such as animation, smoothness and exact pre-
dictability are less crucial. In these cases, artifacts constitute the main drawback for
visualisation and “pleasantness” purposes, thus requiring a satisfactory solution.

The research on artifacts follows two directions. One is the further tuning of the
subdivision scheme which can be done either by conceiving more degrees of freedom
[4] or by making the subdivision coefficients sensitive to the geometry of the control
mesh [45]. The second direction is the reverse engineering of the initial input so that
the subdivision surface has good properties even though the structure of the initial
control mesh is counter-intuitive [2], as shown in Fig 14.

A different solution to the artifact problem of the subdivision surfaces is given
by the multi-resolution surfaces, where subdivision surfaces are organised hierarchi-
cally, as naturally inspired by the recursive structure. They will be described in the
section 4.3, where also other properties of this formulation will be outlined.

130 C.E. Catalano et al.

Fig. 14. An initial control mesh of 428 vertices gives a high quality smooth surface under
Loop. Notice that the vertices of the initial mesh are not placed where would have been intu-
itively.

The problem of the control of the shape as required in product design is only
partially solved by the three approaches mentioned above, especially in CAD/CAM,
where it is very important that the shape of an object is represented as correctly as
possible. In the case of subdivision, it is not often straightforward finding the right
initial control net which will produce a good approximation of the real object when
refined. However, a similar problem also appears when using splines, since the shape
is not built directly but through a control polyhedron.

To have a better guess of the surface shape, it is generally convenient to use
schemes where the convergence rates is a-priori known. Catmull-Clark, Doo-Sabin
and Loop schemes converge to certain splines: envisaging the final shape is easier
in this case. On the other hand, they are approximating schemes, thus subject to
a shrinking effect which cannot be measured. By definition, interpolating schemes
allow for a more predictable final surface, but at the expenses of smoothness; for this
reason, approximating schemes are preferable. In addition, various studies have been
done about the adaptation of the refinement depth to the features of the shape (see, for
example, [56]). Naı̈ve local refinement produces inconsistencies in the connectivity
of the mesh, which affect further rendering, processing and editing of the shape.
Thus, more efficient algorithms are required to address different levels of refinement
on adjacent areas. Criteria to select automatically the regions requiring more density
are usually based on the (high) local curvature of the shape. When specific needs of
a user play a role, such as in the insertion of different kinds of features on a shape,
more complex strategies must be devised and no completely automatic solutions may
be possible.

An effective way to reduce the problem can be constraining the surface, where
some important features must be preserved, and this is the most adopted strategy in
editing subdivision surfaces. This can be seen as an alternative way of structuring
the shape accordingly to its characterising elements. Such entities can be points,
normals, curves and surfaces: they are geometrical, but -especially in applications-

Subdivision Surfaces and Applications 131

have strong relationship with the modelling intent and the semantics of the object. In
Section 5, a detailed treatment of constraint-based subdivision will be provided.

4.3 Multi-resolution subdivision surfaces

Subdivision surfaces belong to the continuous regular mesh-based LOD (Level-Of-
Detail) representation due to their refinement process. This naturally hierarchical
structure can be further enriched using multi-resolution techniques, which permit to
store details according to the modelling requirements of the application context (see
Chapter [9] in this volume).

In order to define multi-resolution subdivision surfaces, at each step of the al-
gorithm, the surface subdivision rule is used first to compute an initial estimate for
the position of a vertex, and then a displacement vector is added, which is stored
separately. Clearly, the multi-resolution surfaces have higher quality as the displace-
ment vectors improve the geometry of the original subdivision mesh. On the other
hand, they are more memory intensive, requiring the storage of displacement vectors.
Moreover, multi-resolution surfaces can be used to model a given set of data but not
for creating a shape from scratch in a free-form design application. The latter would
require a tedious input of displacement vectors.

Nevertheless, multi-resolution surfaces retain several of the good properties of
subdivision surfaces. Most importantly, they allow the user to change the resolution
of an object and represent it at a coarser or finer level. A typical application using this
property is the real time rendering of large scenes, where an object near the viewer is
represented in detail to increase the visual quality of the rendering, while an object
farther away is represented at a coarser resolution to save rendering time. Another
application is editing, where the user can either use a coarse resolution to make large
scale changes at the shape or work with finer resolution and edit the detail as in [6].
In [71] multi-resolution surfaces are used as a basis for multi-scale operations which
perform local and global deformations able to merge models with different shape
and textural characteristics.

Another application of multi-resolution surfaces is shape compression. Indeed,
the two steps of a computation of the position of a point can also be interpreted
as a form of predictive mesh encoding. That is, the subdivision rule predicts the
position of a vertex while the displacement vector stores the error of the prediction.
For the shapes commonly found in practical applications, the error of the prediction
is low and the displacement vectors can be compressed efficiently. If we can tolerate
some more error, the displacement vector can be substituted by a scalar representing
the length of the projection of the vector on the vertex normal. This latter method
works because most of the error lies in the direction of the vertex normal, being the
displacement vector usually almost parallel to it [36].

5 Constraint-based subdivision surfaces

To fulfil the need of various interpolation constraints, fast multi-level finite element
solution strategies for subdivision meshes have been designed, exploiting the natural

132 C.E. Catalano et al.

hierarchy of subdivision. These attempts are only a natural step towards the adapta-
tion of subdivision in these applications, but there are many open problems that still
have to be addressed. In this section, we face some of these problems and describe
possible solutions. While passing, we outline some of the remaining challenging is-
sues. For a deeper analysis, a complete taxonomy of interpolation conditions for both
subdivision curves and surfaces may be found in [51, 52].

5.1 Point interpolation

In subdivision surfaces, interpolation of vertices has so far been restricted to

1. Vertices that are part of the defining polyhedron of the limit surface, or
2. Vertices to which a corresponding polyhedron is constructed whose limit surface

interpolates the given vertices.

In either case, for each given vertex vi to be interpolated, a new vertex wi is
defined by a linear combination of some of the vertices vi, or the ones obtained
from one level of refinement. A system of linear equations is then obtained whose
solution gives the vertices of the constructed polyhedron. Note that the topology of
the constructed vertices is the same as the given polyhedron, or the one formed by
the given set of vertices.

Such interpolation is not enough for the CAD industry. Subdivision surfaces
should be able to interpolate arbitrary vertices that are not necessarily part of the
given polyhedron. Furthermore, the topology of the vertices to be interpolated should
not be a requirement for subdivision surfaces. Qin et al. [60] introduced dynamic
Catmull-Clark subdivision surfaces where a physical-based approach is coupled with
subdivision to locally deform an initial surface towards some point constraints. The
limits here are typical of the physical-based models: the deformation cannot be con-
trolled both in shape and in size.

5.2 Interpolation with normal constraints

Interpolation of vertices with given normal is also a major requirement for many of
subdivision-based applications. The initial attempt for generating subdivision sur-
faces with such constraints was reported in [48] for Doo-Sabin surfaces which was
later extended to Catmull-Clark in [7].

Again, based on the restrictions imposed in Sect. 5.1, normals are only interpo-
lated on vertices of the control polyhedron and the issue of interpolating normals at
arbitrary points remains to be addressed.

5.3 Interpolation of isolated curves

The next interpolation constraint often required in subdivision-based applications is
the curve constraint, in particular where shape is prescriptive. There are two cases to
be considered depending on the nature of the cross derivative needed. If only C0 is

Subdivision Surfaces and Applications 133

required the interpolated curve is then called a crease. This can be achieved by treat-
ing the curve as a boundary curve where two pieces may join with C0 as suggested in
[46] or by modifying the subdivision coefficient on either side of the tagged control
polygon as described in [24]. The previous work has been extended in [15], permit-
ting to obtain semi-sharp edges, useful for modelling fillets and blends. They used
subdivision surfaces in the animation field, modifying Catmull-Clark scheme by in-
troducing an edge sharpness parameter, whose values vary from zero (completely
smooth) to infinite (completely sharp) through an interpolation function.

Direct applications of curve interpolation are feature curves or even lofted sub-
division surfaces [50, 11, 10, 53]. One major approach for interpolating curves by
subdivision surfaces is the polygonal complex approach [47]. Under subdivision, a
polygonal complex P generates a curve C. The idea is that, by embedding such a
complex in the polyhedron defining a subdivision surface, the curve C will auto-
matically be interpolated by the limit surface. Typically, the topology of a polygonal
complex depends on the subdivision scheme to be used. In Catmull-Clark setting, a
polygonal complex can be defined by three rows of vertices (ti), (mi), and (bi), not
necessarily of equal size.

To be useful, the limit curve C of a complex should be identified. For Catmull-
Clark, two cases can be considered depending on whether the rows have the same
number of vertices or not. In the former case, the curve C is simply the cubic uniform
B-spline whose control polygon is give by:

1
8
(
1 6 1

)×
⎛⎝ t0 t1 .. tn−1

m0 m1 .. mn−1

b0 b1 .. bn−1

⎞⎠ .

If the rows have different number of vertices, the limit is also a uniform B-spline
curve obtained by using the vertices of first refinement of P . Since after one step of
Catmull-Clark all faces become quads, the refined mesh of a Camull-Clark polygonal
complex will have equal number of vertices. As such, a similar equation to 5 can be
defined. Figure 15 shows an example of such a complex.

m0

m1
m2 mn

t 0

bn

t 1

t 2

t n

b0

b1

b2

bi

mi

t i

Fig. 15. A basic Catmull-Clark polygonal complex.

134 C.E. Catalano et al.

A straightforward application of this property is to constrain a subdivision surface
to interpolate the uniform B-spline curve defined by a tagged control polygon on its
polyhedron. One solution can be found by building a polygonal complex from the
faces sharing the edges of the tagged control polygon. However, the limit curve of
this complex will not lie on the surface. To achieve that, a polygonal complex can be
constrained to have its limit curve defined by its middle control polygon (mi) which
will play the role of the tagged control polygon. This can be done by computing a
new middle row m̂i using the following equation:⎛⎜⎜⎜⎜⎝

m̂0

m̂1

.

.
m̂n−1

⎞⎟⎟⎟⎟⎠
T

=
1
4
(−1 6 −1

)×
⎛⎝ t0 t1 .. tn−1

m0 m1 .. mn−1

b0 b1 .. bn−1

⎞⎠ .

To interpolate the uniform cubic B-spline curve of a tagged control polygon on a
polyhedron, we simply reposition the tagged vertices by the formula proposed above.
It can be noted that if the faces of the complex obtained from the tagged edges are
not 4-sided, then one refinement is needed before we apply Eq. 5.

The limitation of this approach is that only uniform curves are interpolated,
which is not adequate for subdivision-based applications. Moreover, it addresses only
the creation of new surfaces, while editing existing shapes cannot be faced.

Techniques for editing curve constraints applicable both in the creation and in
the manipulation phase have been devised [39], based on the concept of combined
subdivision schemes, which include local samples of the desired curve as subdivision
control points [38]. This approach permits to fit curve constraints also at the boundary
of the surface, performing also trimming operations [40]: in fact, the trim curve is
curved as a boundary of a new subdivision surface; conversely, a hole can be filled
with the same philosophy.

Alternative approaches to curve-driven surface modification are followed in [29],
and, more accurately, in [6]. In both cases the constraint line is drawn by the user
arbitrarily onto the subdivision surface itself, but only a displacement operation is
performed on the points localised on the mesh. In a multi-resolution framework, the
first approach proposes a mesh editing technique which does not eventually provide
a pure multi-resolution surface; on the contrary, the second one includes the curve
constraints reparameterising the subdivision surface: in this way, sharp features (as
well as trim curves) are placed within the multi-resolution model, permitting to fur-
ther consistent manipulation.

An evolution of the latter work can be found in [5], where the authors, starting
from the method proposed in [6], solve the problem of pasting a given portion of sur-
face on another one. The area to paste is parameterised through a spine and distances
from the boundary: with a proper projection, the area is mapped and blended on the
second surface.

Subdivision Surfaces and Applications 135

5.4 Interpolation of isolated curves with cross derivative

The polygonal complex defining an interpolated curve carries with its cross deriva-
tives information such as tangent plan and cross curvature. A challenging problem
is to construct a polygonal complex to interpolate a given curve with predefined tan-
gent plane and/or cross curvature (see Figure 16, and also Figure CP-3 in Appendix
D). The interpolated curve can thus be used as a feature curve on the underlying
subdivision surface as suggested in [53].

Certainly it is hard to define the curvature at any point on the curve in terms of
the control vertices of the polyhedron. A possible solution is using a 2D polygon to
define a running feature on a subdivision surface, which can be seen as an interface
to control the cross curvature of the interpolated curve [11, 10]. The idea is then to
reposition the vertices of the polyhedron defining a subdivision surface in the vicin-
ity of a tagged control path. The intention of the work developed in [10] is capturing
the semantics of the styling activity through the concept of styling features described
and applied to subdivision surfaces. Since a curve-oriented design methodology ful-
fils designers’ attitude to sketch, features obtainable by means of generalised sweep
operations (named sweep-like features) have been defined and treated. The novelty
here is a proper support of the stylists’ creativity using subdivision surfaces as under-
lying geometric representation. Such an approach can lead to different behaviours of
the feature along the interpolated curve such as those shown in Figure 17 (see also
Figure CP-4 in Appendix D).

Fig. 16. One curve interpolated with predefined cross curvature (With kind permission of
Springer Science and Business Media).

5.5 Lofted subdivision surfaces

The natural flow of constraints is the generation of lofted subdivision surfaces. The
constraint here is a set of cross section curves defined in terms of B-spline control

136 C.E. Catalano et al.

Fig. 17. Insertion of different Sweep-like features on a car model.

vertices. What is needed is a subdivision surface that interpolates the given curves.
In [50] a polygonal complex is constructed for each of the given curves; such com-
plexes are then merged into a polyhedron that can be passed to a subdivision kernel
which simply does not see the interpolation constraints and generates a limit surface
interpolating the given curves. Figure 18 shows an example of such a surface with
its 14 limit curves.

Fig. 18. A lofted surface from 14 given curves.

Subdivision Surfaces and Applications 137

Building the control polyhedron after constructing the polygonal complexes re-
mains an open problem. A heuristic approach was used in [50] based on short dis-
tance distribution between complex boundaries.

5.6 Interpolation of a net of curves

One further constraint for subdivision surfaces that was introduced in [47], and later
considered in [37, 66, 65] is the generation of surfaces interpolating a net of curves.
To solve this problem, a solution to the interpolation of multiple intersecting curves
through an extraordinary point was needed. In the combined scheme proposed in
[37] no more than two intersecting curves can be interpolated, which is not adequate
in many applications. The polygonal complex approach was extended to interpolate
an unlimited number of curves through an extraordinary point using the Doo-Sabin
scheme [49].

This was recently extended to Catmull-Clark surfaces in [1] using the notion of
X-configuration. An X-configuration is composed of an even number of quads, all
adjacent around the same extraordinary point, see Figure 19. Multiple intersecting
curves can then be interpolated using an X-complex where a group of two or more
Catmull-Clark polygonal complexes can be connected to a common X-configuration.
In this way, an X-configuration can be visualised as a docking station where the
complexes may be connected to any of its available ports. Figure 19 shows one of
these complexes connected to an X-configuration, and a surface interpolating five
cubic B-spline curves through an extraordinary point.

Fig. 19. Left: an X Configuration with one complex attached to it. Right: A surface interpolat-
ing five intersecting curves.(images from [1], c©2005 IEEE)

In all approaches above the surface is not C2 through the extraordinary point, but
some sort of bounded curvature should be possible.

138 C.E. Catalano et al.

5.7 Non-uniform subdivision surfaces

Most subdivision-based applications concentrated on the uniform based subdivision.
Future work should emphasise the non-uniform subdivision in order to compete
with NURBS. Along this direction, we should note the NURCCS (Non Uniform
Catmull-Clark) scheme [67] which is a stationary scheme compared to the initial
non-stationary NURSS suggested in [68]. Constrained based non-uniform subdivi-
sion is not fully explored. For example, the notion of polygonal complexes can be
extended to interpolate non-uniform curves as suggested in [53].

Assume that the vertices (ai) correspond to a knot ui−1, (bi) to ui and (ci) to
ui+1, the following equation can then be used:

V =
(
f1 f2 f3

)×
⎛⎝a0 a1 .. an−1

b0 b1 .. bn−1

c0 c1 .. cn−1

⎞⎠
where the fi coefficients are computed using the polar form of B-splines, see [53]

for more details,

f1 =
(ui+1 − ui)2

(ui+1 − ui−2)(ui+1 − ui−1)

f2 =
(ui+1 − ui)(ui − ui−2)

(ui+1 − ui−2)(ui+1 − ui−1)
+

(ui − ui−1)(ui+2 − ui)
(ui+1 − ui−1)(ui+2 − ui−1)

f3 =
(ui − ui−1)2

(ui+1 − ui−1)(ui+2 − ui−1)
.

Figure 20 shows an example of a Non-Uniform Catmull-Clark interpolating a
non-uniform B-spline curve. (see also Figure CP-5 in Appendix D)

All other constraints such as normals, and even nets of curves need to be consid-
ered as future work.

6 Conclusions

Subdivision surfaces are powerful geometric representation being in-between con-
tinuous and discrete ones. Allowing for arbitrary connectivity while guaranteeing
smoothness properties, they are typically viewed as an alternative to NURBS. In
fact, subdivision surfaces are easier to treat, with the advantage of discarding multi-
patch representations. The literature is very wide about manipulation techniques for
discrete surfaces, even suitable for CAD applications. The subdivision surface rep-
resentation inherits all this background, with the further capability of a refinement
process. This permits to refine the surface only where necessary and to apply multi-
resolution approaches, which optimise the storage of the surface. In addition, some
work started on non-uniform configurations.

Subdivision Surfaces and Applications 139

Fig. 20. A non-uniform surface interpolating a non-uniform B-spline curve

As a consequence, animation and 3D effects companies started first to move to
subdivision schemes. In more recent times, CAD is following the same strategy [8].
In fact, in addition to discarding multi-patch models, recent literature related to the
product development process has been moving towards tessellations in phases where
continuous surfaces had been adopted traditionally, such as manufacturing. Consid-
ering that different phases of the process usually require discrete surfaces, an ideal
unified geometric framework for different phases appear promising and profitable
[10]. Conversion and transfer problems might be reduced in integrated modelling,
together with time to market and costs.

Among the more promising applications of subdivision surfaces, we can mention
free-form deformations, where the surface is embedded in a collection of solids.
Subdivision defines a map from each point enclosed in that solid to another point
depending on the position of the control points. In this way, intuitive animations can
be successfully obtained.

Finally, an application in the bio-medical area has been proposed [28], where
subdivision surfaces have been used to generate an atlas of a mouse brain. The sur-
face is overlayed on an image of the brain to generate a multi-resolution parame-
terisation which permits the brain to be partitioned into key anatomical regions. A
geometric database collected the models to allow biologists to organise and search
gene expression data.

Acknowledgement. A grant from the American University of Beirut Research Board, 2005-
2006, supported Ahmad Nasri

140 C.E. Catalano et al.

References

1. Abbas A and A. Nasri. Interpolating meshes of curves by catmull-clark subdivision sur-
faces with a shape parameter. In The Ninth International Conference on Computer Aided
Design and Computer Graphics (CAD-CG’05), CAD-CG, pages 107–112, Hong Kong,
2005. IEEE Press.

2. N. Alkalai and N. Dyn. Optimizing 3D triangulations: Improving the initial triangulation
for the butterfly subdivision scheme. In Neil Dodgson, Michael Floater, and Malcom
Sabin, editors, Advances in Multiresolution for Geometric Modelling, pages 231–244.
Springer, 2004.

3. A. A. Ball and D. J. T. Storry. Conditions for tangent plane continuity over recursively
generated B-spline surfaces. ACM Transactions on Graphics, 7(2):83–102, 1988.

4. L. Barthe and L. Kobbelt. Subdivision scheme tuning around extraordinary vertices. Com-
puter Aided Geometric Design, 21(6):561–583, 2004.

5. H. Biermann, I. Boier-Martin, F. Bernardini, and D. Zorin. Cut-and-paste editing of mul-
tiresolution surfaces. In Proc. of SIGGRAPH, pages 312–321, 2002.

6. H. Biermann, I. Boier-Martin, D. Zorin, and F. Bernardini. Sharp features on multireso-
lution subdivision surfaces. In Conference Proceedings of Pacific Graphics, 2001.

7. H. Biermann, A. Levin, and D. Zorin. Piecewise smooth subdivision surfaces with normal
control. In SIGGRAPH 00 Conference Proceedings, pages 113–120, 2000.

8. I. Boier-Martin and F. Bernardini. Subdivision-base representations for surface styling
and design. In DIMACS Workshop on Computer Aided Design and Manufacturing, Oc-
tober 2003. DIMACS Center, Rutgers University, Piscataway, New Jersey.

9. G.P. Bonneau, G. Elber, S. Hahmann, and B. Sauvage. Multiresolution analysis. In L. De
Floriani and M. Spagnuolo, editors, Shape Analysis and Structuring. Springer, 2007.

10. C.E. Catalano. Feature Based Methods for Free Form Surface Manipulation in Aesthetic
Engineering. PhD thesis, Genova, 2004.

11. C.E. Catalano. Introducing design intent in discrete surface modelling. International
Journal of Computer Applications in Technology (IJCAT), 23(2/3/4):108–119, 2005. Spe-
cial Issue on Models and methods for representing and processing shape semantics.

12. E. Catmull and J. Clark. Recursively generated B-spline surfaces on arbitrary topological
meshes. Computer-Aided Design, 10:350–355, 1978.

13. F. Cirak, M. Ortiz, and P. Schröder. Subdivision surfaces: a new paradigm for thin-shell
finite-element analysis. Numerical Methods in Engineering, 47(12):2039–72, April 2000.

14. I. Daubechies, I. Guskov, and W. Sweldens. Regularity of irregular subdivision. Con-
structive Approximation, 15(3):381–426, 1999.

15. T. DeRose, M. Kass, and T. Truong. Subdivision surfaces in character animation. In
SIGGRAPH 98 Conference Proceedings, pages 85–94, 1998.

16. D. Doo and M. Sabin. Behaviour of recursive division surfaces near extraordinary points.
Computer-Aided Design, 10:356–360, 1978.

17. N. Dyn. Subdivision schemes in Computer-Aided Geometric Design. In W. Light, editor,
Advances in numerical analysis, volume 2, chapter 2, pages 36–104. Clarendon Press,
1992.

18. N. Dyn. Analysis of convergence and smoothness by the formalism of Laurent polyno-
mials. In A. Iske, E. Quak, and M. S. Floater, editors, Tutorials on Multiresolution in
Geometric Modelling, chapter 3, pages 51–68. Springer, 2002.

19. N. Dyn and D. Levin. Subdivision schemes in geometric modelling. Acta Numerica,
11:73–144, 2002.

20. N. Dyn, D. Levin, and J. A. Gregory. A 4-point interpolatory subdivision scheme for
curve design. Computer Aided Geometric Design, 4:257–268, 1987.

Subdivision Surfaces and Applications 141

21. N. Dyn, D. Levin, and J. A. Gregory. A butterfly subdivision scheme for surface interpo-
lation with tension control. ACM Transactions on Graphics, 9(2):160–169, 1990.

22. G. Farin, J. Hoschek, and M. Kim, editors. Handbook of Computer Aided Geometric
Design. Elsevier, 2002.

23. S. Green and G. Turkiyyah. Second order accurate constraints for subdivision finite ele-
ments. Numerical Methods in Engineering, 60(13), 2004.

24. H. Hoppe, T. DeRose, T. Duchamp, M. Halstead, H. Jin, J. McDonald, J. Schweitzer, and
W. Stuetzle. Piecewise smooth surface reconstruction. Computer Graphics, 28:295–302,
1994.

25. I. Ivrissimtzis, N. Dodgson, and M. Sabin.
√

5-subdivision. In N. Dodgson, M. Floater,
and M. Sabin, editors, Advances in Multiresolution for Geometric Modelling, pages 285–
300. Springer, 2004.

26. I. Ivrissimtzis, M. Sabin, and N. Dodgson. On the support of recursive subdivision. ACM
Transactions on Graphics, 23(4):1043–1060, 2004.

27. I. Ivrissimtzis and H.-P. Seidel. Evolutions of polygons in the study of subdivision sur-
faces. Computing, 72(1-2):93–104, 2004.

28. T. Ju, J. Warren, G. Eichele, C. Thaller, W. Chiu, and J. Carson. A geometric database for
gene expression data. In Eurographics Symposium on Geometric Processing. L. Kobbelt,
P. Shroeder, H. Hoppe (Editors))p, 2003.

29. A. Khodakovsky and P. Schröder. Fine level feature editing for subdivision surfaces. In
Proc. ACM Solid Modeling, pages 203–211, 1999.

30. L. Kobbelt. Interpolatory subdivision on open quadrilateral nets with arbitrary topology.
Computer Graphics Forum, 15(3):409–420, 1996.

31. L. Kobbelt.
√

3 subdivision. In SIGGRAPH 00, Conference Proceedings, pages 103–112,
2000.

32. L. Kobbelt, M. Botsch, K. Kaehler, C. Rössl, R. Schneider, and J. Vorsatz. Geometric
modeling based on polygonal meshes. Tutorial T4, Eurographics 2000, 2000.

33. L. Kobbelt and P. Schröder. A multiresolution framework for variational subdivision.
ACM Trans. on Graph., 17(4):209–237, 1998.

34. J. Kuragano, H. Suzuki, and F. Kimura. Generation of NC tool path for subdivision
surfaces. In Proceedings of CAD/Graphics’ 2001, Kunming China, pages 676–682, 2001.

35. U. Labsik and G. Greiner. Interpolatory
√

3-subdivision. Computer Graphics Forum,
19(3):131–138, 2000.

36. A. Lee, H. Moreton, and H. Hoppe. Displaced subdivision surfaces. In SIGGRAPH ’00:
Proceedings of the 27th annual conference on Computer graphics and interactive tech-
niques, pages 85–94, New York, NY, USA, 2000. ACM Press/Addison-Wesley Publishing
Co.

37. A. Levin. Interpolating nets of curves by smooth subdivision surfaces. In Computer
Graphics Proceedings, ACM SIGGRAPH 1999, pages 57–64, 1999.

38. A. Levin. Combined subdivision schemes. PhD thesis, School of Mathematical Science,
Tel Aviv University, 2000.

39. N. Litke, A. Levin, and P. Schröder. Fitting subdivision surfaces. IEEE Visualization,
pages 319–324, October 1998.

40. N. Litke, A. Levin, and P. Schröder. Trimming for subdivision surfaces. Computer Aided
Geometric Design, 18(5):463–481, June 1998.

41. C. Loop. Smooth subdivision surfaces based on triangles. Master’s thesis, University of
Utah, Department of Mathematics, 1987.

42. C. Loop. Bounded curvature triangle mesh subdivision with the convex hull property. The
Visual Computer Journal, 18(5-6):316–325, 2002.

142 C.E. Catalano et al.

43. C. Loop. Smooth ternary subdivision of triangle meshes. In Proceedings of the 5th
Conference on Curves and Surfaces, pages 295–302. Nashboro Press, 2003.

44. W. Ma, X. Ma, S. Tso, and Z. Pan. Subdivision surface fitting from a dense triangular
mesh. In Proc. of Geometric Modeling and Processing, pages 94–103, July 1999.

45. M. Marinov, N. Dyn, and D. Levin. Geometrically controlled 4-point interpolatory
schemes. In N. Dodgson, M. Floater, and M. Sabin, editors, Advances in Multiresolu-
tion for Geometric Modelling, pages 301–315. Springer, 2004.

46. A. Nasri. Polyhedral subdivision methods for free-form surfaces. ACM Transactions on
Graphics, 6(1):29–73, 1987.

47. A. Nasri. Recursive subdivision of polygonal complexes and its applications in CAGD.
Computer Aided Geometric Design, 17:595–619, 2000. Presented also at The 5th Siam
Conferene On Geometric Design, Nashville, 1997.

48. A. Nasri. Constructing polygonal complexes with shape handles for curve interpolation
by subdivision surfaces. Computer Aided Design, 33:753–765, 2001.

49. A. Nasri. Interpolating an unlimited number of curves meeting at extraordinary points on
subdivision surfaces. Computer Graphics Forum, 22(1):87–97, 2003.

50. A. Nasri, Abbas A, and I. Hasbini. Skinning Catmull-Clark subdivision surfaces with
incompatible cross-sectional curves. In Pacific Graphics 2003, pages 102–111, Canmore,
Canada, 2003. IEEE Press. ISBN 0-7695-2028-6.

51. A. Nasri and M. Sabin. Taxonomy of interpolation conditions in recursive subdivision
curves. The Visual Computer, 18(4):259–272, 2002.

52. A. Nasri and M. Sabin. Taxonomy of interpolation conditions in recursive subdivision
surfaces. Journal Visual Computer, 18(6):382–403, 2002.

53. A. Nasri, M. Sabin, R. Abu Zaki, N. Nassiri, and R. Santina. Feature curves with cross
curvature control on Catmull-Clark subdivision surfaces. volume 4035 of Lecture Notes
in Computer Science, pages 761–768. Springer, 2006.

54. Y. Ohtake. Mesh Viewer. http://www.mpi-sb.mpg.de/∼ohtake/software. Last access
October 2006.

55. P. Oswald and P. Schröder. Composite primal/dual sqrt(3)-subdivision schemes. CAGD,
20(3):135–164, 2003.

56. H.R. Pakdel and F.F. Samavati. Incremental Catmull-Clark subdivision. In 5th Interna-
tional Conference on 3-D Digital Imaging and Modeling, pages 95–102, Canada, June
2005. IEEE Computer Society Press.

57. J. Peters and U. Reif. The simplest subdivision scheme for smoothing polyhedra. ACM
Transactions on Graphics, 16(4):420–431, 1997.

58. J. Peters and U. Reif. Analysis of algorithms generalizing B-spline subdivision. SIAM
Journal on Numerical Analysis, 35(2):728–748, 1998.

59. H. Prautzsch. Smoothness of subdivision surfaces at extraordinary points. Advances in
Computational Mathematics, 9(3-4):377–389, 1998.

60. H. Qin, C. Mandal, and B. C. Vemuri. Dynamic Catmull-Clark subdivision surfaces.
IEEE Transactions on Visualization and Computer Graphics, 4(3):216–229, 1998.

61. U. Reif. A unified approach to subdivision algorithms near extraordinary vertices. Com-
puter Aided Geometric Design, 12(2):153–174, 1995.

62. U. Reif and P. Schröder. Curvature integrability of subdivision surfaces. Advances in
Computational Mathematics, 14(2):157–174, 2000.

63. M. Sabin and L. Barthe. Artifacts in recursive subdivision surfaces. In Curve and Surface
Fitting, pages 353–362. Nashboro Press, 2003.

64. M. Sabin, N. Dodgson, M. Hassan, and I. Ivrissimtzis. Curvature behaviours at extraor-
dinary points of subdivision surfaces. Computer Aided Design, 35(11):1047–1051, 2003.

Subdivision Surfaces and Applications 143

65. S. Schaefer, D. Zorin, and J. Warren. Lofting curve networks with subdivision surfaces. In
Proceedings of Eurographics Symposium on Graphics Processing, pages 105–116, 2004.

66. J. Schweitzer. Analysis And Applications of Subdivision Surfaces. PhD thesis, The Uni-
versity of Washington, 1991.

67. T. Sederberg, J. Zheng, A. Bakenov, and A. Nasri. T-Splines and T-NURCCs. ACM
Transaction on Graphics, 22(3):477–484, 2003. ACM SIGGRAPH 2003, ACM Press.

68. T. W. Sederberg, J. Zheng, D. Sewell, and M. Sabin. Non-uniform subdivision surfaces.
In ACM Siggraph 1998, volume 17, pages 387–394, 1998.

69. J. Stam. Exact evaluation of Catmull-Clark subdivision surfaces at arbitrary parameter
values. In SIGGRAPH 98 Conference Proceedings, pages 395–404, 1998.

70. J. Stam and C. Loop. Quad/triangle subdivision. Computer Graphics Forum, 22(1):79–
85, 2003.

71. L. Velho, K. Perlin, L. Ying, and H. Biermann. Procedural shape synthesis on subdivision
surfaces. In SIBGRAPI 2001, 2001.

72. J. Warren and H. Weimer. Subdivision Methods for Geometric Design. Morgan
Kaufmann, 2001.

73. D. Zorin and D. Kristjansson. Evaluation of piecewise smooth subdivision surfaces. The
Visual Computer Journal, 18(5-6):299–315, 2002.

74. D. Zorin, P. Schröder, A. DeRose, L. Kobbelt, A. Levin, and W. Sweldens. SIGGRAPH
00 Course Notes, Subdivision for modeling and animation, 2000.

75. D. Zorin, P. Schröder, and W. Sweldens. Interpolating subdivision for meshes with arbi-
trary topology. In SIGGRAPH 96 Conference Proceedings, pages 189–192, 1996.

Skeletal Structures

Silvia Biasotti1, Dominique Attali2, Jean-Daniel Boissonnat3, Herbert Edelsbrunner4,
Gershon Elber5, Michela Mortara1, Gabriella Sanniti di Baja6, Michela Spagnuolo1, Mirela
Tanase7, and Remco Veltkamp7

1 CNR. - Ist. di Matematica Applicata e Tecnologie Informatiche, Genova, Italy.
silvia.biasotti,michela.mortara,
michela.spagnuolo@ge.imati.cnr.it

2 LIS-CNRS, Domaine Universitaire, BP 46, 38402 Saint Martin d’Hères, France.
Dominique.Attali@lis.inpg.fr

3 INRIA, 2004 Route des Lucioles, BP 93, 06904 Sophia-Antipolis, France.
Jean-Daniel.Boissonnat@sophia.inria.fr

4 Department of Computer Science, Duke University, Durham, and Raindrop Geomagic,
Research Triangle Park, North Carolina, USA. edels@cs.duke.edu

5 Technion, Israel Institute of Technology, Israel. gershon@cs.technion.ac.il
6 CNR - Ist. di Cibernetica “E. Caianello”, Pozzuoli, Napoli, Italy.
gsdb@imagm.cib.na.cnr.it

7 Universiteit Utrecht (UU), The Netherlands. remco.veltkamp@cs.uu.nl

Shape Descriptors are compact and expressive representations of objects suitable for solving
problems like recognition, classification, or retrieval of shapes, tasks that are computationally
expensive if performed on huge data sets. Skeletal structures are a particular class of shape
descriptors, which attempt to quantify shapes in ways that agree with human intuition. In fact,
they represent the essential structure of objects and the way basic components connect to form
a whole.

In the large amount of literature devoted to a wide variety of skeletal structures, this Chap-
ter provides a concise and non-exhaustive introduction to the subject: indeed the first structural
descriptor, the medial axis, dates back to 1967, which means forty years of literature on the
topic.

1 Introduction

The main issue in high-level structuring is to extract an abstract description of the shape that
can be more useful for many purposes. For instance, the search in a data base for an object
similar to a query shape can be nearly impossible if approached comparing bulks of thousand
triangles. Conversely, the process is extremely facilitated when two descriptors of the shapes
are compared instead. Of course the performance and the quality of results depends on the
conciseness and on the expressiveness of the description. A shape descriptor may be any num-
ber, property or function that can be used to discriminate between shapes. For instance, the
edge number can be used to classify polygons. Depending on the application tasks and on the
shape domain, usually more sophisticated descriptors are needed. In this Chapter we introduce
and describe a particular class of shape descriptors, i.e., skeletal structures.

146 S. Biasotti et al.

As everybody knows, the word “skeleton” generally indicates the bone structure of ver-
tebrates; in general, skeleton recalls a support structure (e.g., the skeleton of a ship), or the
scheme of something (the skeleton of an opera). Translating the concept in the digital context
is not straightforward. Intuitively, the skeleton can be defined following two different philoso-
phies: one privileges the aspect of the skeleton of being a medial structure, i.e., an entity that
always falls inside the shape and is in each point equidistant from the shape boundary. From
this point of view, the skeleton of a planar shape is a linear graph, and each point on the skele-
ton is equidistant from the boundary points of the shape. In the 3D space things change: a
cylinder with circular base sufficiently far from the bases exhibits a linear skeleton, while the
skeleton of an elongated box is conversely a medial surface, i.e., a two dimensional sheet,
which extents in the longitudinal direction.

From the other point of view, the skeleton can be regarded as the explicit representation
of how the basic components of the shape are glued together to form a whole. A strictly
tubular shape has normally one skeletal line, which lays medial to the object and acts as a
symmetry axis, usually referred to as a centreline. Furthermore, complex objects formed by
the arrangement of tubular-like components can be abstracted to a collection of centrelines
which split and join, following the object topology.

The definition of skeleton as a medial structure privileges the geometric aspect of the
descriptor. Therefore the skeleton retains a strong correspondence with the shape, so that the
boundary can be exactly reconstructed, or at least approximated, from the information encoded
in the skeletal structure.

Conversely, the second paradigm regards the skeleton as an abstract adjacency graph of
salient shape features and relies on shape decomposition in a way that agree with human in-
tuition: recent cognitive research, alongside with new developments in digital imaging and
computer vision, has led to a growing consensus that decomposition of shapes into their con-
stituent parts is fundamental to human vision as an early stage of the cognitive process.

Following the previous considerations, a unique formal definition of skeleton in the con-
text of digital shapes, i.e., n-dimensional data having a visual representation, can not be given.
In this Chapter we will distinguish between geometric skeletons, like the medial axis trans-
form, which give a richer encoding of the spatial extent of the shape, and topological skele-
tons, that dismiss some geometric information but make explicit higher level properties of the
shape (main features, adjacency relations among parts, number of components, holes, ...).

The choice on which descriptor should be preferred relies on the application context it
must cope with. In a variety of applications it is desirable for the skeleton to be linear (e.g.,
in medical imaging for vascular narrowing detection, in computer-aided screening for early
detection of polyps, and so on). Conversely, other applications may require that the skeleton
retains a full correspondence with the shape geometry. This is the case of many CAD/CAM
applications, where medial surfaces are exploited, for instance, for subdivision of complex
solids into simpler pieces for automatic mesh generation and also for the generation of simpler
idealised models such as shells and beams for stress analysis.

1.1 Overview

An exhaustive review of the existing literature on skeletal structures would require an effort
which is beyond the scope of the Chapter. The goal here is to provide a selection of the methods
that are more relevant for subsequent applications in shape modelling. For the classes of meth-
ods reviewed we will provide basic definitions and an overview of the structure with respect to
different discrete settings. Comparative remarks and examples of their applications will also

Skeletal Structures 147

be given. The presentation is organized into two main classes: geometric skeletons including
the medial axis and other medial structures like bisectors, and skeletons derived from topolog-
ical structures, possibly enriched by geometric information to retain a strong correspondence
to the shape; the Reeb graph belongs to this category.

Maybe the best known of geometric skeletal descriptors is the Medial Axis Transform,
(MAT) defined by Blum in the sixties [21]; he first described the medial axis extraction for a
2D shape by analogy with a fire front which starts at the boundary of the shape and propagates
isotropically towards the interior. The medial axis is defined by the locations at which the fire
fronts collide.

In the planar case the medial axis is a graph, while for shapes in R
3 the MAT is a dimen-

sionally heterogeneous entity composed by curves and surface patches. Small modifications
of the input shape can induce large modifications of its medial axis; nonetheless they do not
affect the entire medial axis. Typical effects for shapes in R

2 are spurious branches that leave
the rest of the medial axis unchanged.

The exact computation of the medial axis is extremely complex in the domain of freeform
shapes. Nonetheless, results exist for computing bisectors between rational entities exactly.
The concept of bisector is strictly related to the medial axis, but while the medial axis can
be computed for a given object, the bisector involves more entities, being the locus of points
equidistant from two (or more) shapes. We present this approach since bisectors can be effec-
tively used as primitives to construct the MAT and the Voronoi diagram of rational curves (see
Section 3.2).

Conversely, many approaches have been adopted to implement Blum’s original definition
in the discrete case. Basically, we can distinguish them into four categories, depending on the
adopted skeletonisation method: skeleton extraction from Voronoi diagrams; simulation of the
grassfire; topological thinning; skeleton extraction from distance maps. The medial axis of a
planar curve can be thought of as the Voronoi diagram generalized to an infinite set of points
(the boundary points) [3, 83, 84]. It has been formally shown [28] that the Voronoi diagram
becomes an increasingly precise approximation of the continuous medial axis as the density of
boundary samples increases. Algorithms which actually try to implement the grassfire process
are quite rare; examples are the straight skeleton, first introduced by [1], and the linear axis
[97]. Thinning and distance map computation can be directly applied to volumetric discrete
representations that are widely used especially in medical applications: most acquisition tech-
niques produce in fact voxel grids, like the Computed Tomography or the Magnetic Resonance
Imaging. All these skeletonisation methods are detailed in Section 4.

Concerning topological structures, the Reeb graph was defined much before the MAT
[89], but its potential in shape description has been understood and formalized later on [94].
Reeb graphs act as a tool for studying shapes through the evolution and the arrangement of
the level sets of a real function defined over the shape. This fact relies to Morse theory, [80],
that studies the link between the differential properties of a shape and its algebraic topology
(in the sense of the number of connected components, number and type of holes, etc.). From
this point of view, an object can be partitioned into protrusions, holes and other characteristics
and can be efficiently represented as a collection of features with a set of adjacency relations
between them. These facts raise the idea that topology-based descriptors, maybe integrated
with geometric information, are suitable for dealing with the definition of basic models to
represent, generate and manipulate shapes without forgetting the feasibility and the computa-
tional complexity of the problem, [15]. In fact, a recent work by Goswami et al. [68] exploits
topological structures to locate flat and tubular shaped regions on 3D shapes. Focusing on
the level set evolution, we obtain a discrete description which effectively represents the shape

148 S. Biasotti et al.

and can be encoded in a topological graph. Some methods follow this paradigm and compute
skeletons joining the barycentres of adjacent sections [81, 76, 72].

The remainder of this Chapter is organized as follows: the MAT and geometric skeletons
are treated first. In Section 2 the definitions of the main concepts are given of medial axis,
Voronoi diagram, shock graphs and bisectors, while the Reeb Graph definition is shifted to the
topological skeleton Section (5) for a better reading. Techniques that construct an exact repre-
sentation of medial structures for particular classes of shapes are detailed in Section 3, while
approximated methods are described in Section 4. Skeleton derived from topological struc-
tures including the Reeb graph are presented in Section 5. Finally, some concluding remarks
and future developments are given in Section 6.

2 Definitions of geometric medial structures

In this Section the concepts of medial axis transform, shock graphs, Voronoi diagrams and
bisectors are introduced. All these entities share the property of being medial with respect
to the shape boundary (medial axis and shock graphs) or to two or more objects (Voronoi
diagrams, bisectors); therefore they can be referred to as medial structures.

The medial axis transform (MAT) has been introduced by Blum [21] as a tool in image
analysis. To get an intuitive feeling for this concept, consider starting a grass fire along a curve
in the plane. The fire starts at the same time, everywhere along the curve, and it grows at
constant speed in every direction. The medial axis is the set of locations where the front of the
fire meets itself. Formally, let X be a bounded open subset of the Euclidean k-dimensional
space, R

k. The medial axis, M[X], is the set of points that have at least two closest points in
the complement of X [78], see Figure 1.

Fig. 1. Medial axis of two planar shapes. In the second example the medial axis is shown also
for the external part of the shape.

The medial axis of a shape captures its connectivity, ignoring local dimensionality. More
precisely, a shape and its medial axis are homotopy equivalent [78, 91, 101]. In R

k, the medial
axis has generically dimension k−1, one less than the dimension of the space. In the plane, the
medial axis is a (one-dimensional) graph whose branches correspond to regions of the shape
it represents. The MAT of planar polygons consists of straight lines and parabolic arcs; each
convex vertex of the polygon has an edge of the MAT terminating in it. The MAT structure
is very sensitive to noise: the insertion of a new vertex in the boundary of the shape will

Skeletal Structures 149

cause new edges to appear in the skeleton. In R
3, it is composed of pieces of surfaces, and is

sometimes called a medial surface. When each point x of the medial axis is weighted with the
radius ρ(x) of the maximal ball centered at x, then we have enough information to reconstruct
the shape. In other words, the medial axis together with the map ρ provides a reversible coding
of shapes. This coding is not necessarily minimal and some shapes, such as finite union of
balls, can be reconstructed from proper subsets of their weighted medial axes.

Another medial structure is the shock graph, [75], which is obtained by viewing the me-
dial axis as the locus of singularities (shocks) generated during the fire front propagation from
the shape boundary. This dynamic view of the medial axis associates a direction and an instan-
taneous speed of flow to each shock point, [67]. In particular, shock points may be classified
according to the number of contact points and to the flow direction, as described in [66]: source
and sink points determine the nodes of the graph while the links connect source points to sink
ones and define the arcs of the graph. In addition, attributes are associated to the shock graph
to store both the intrinsic geometry of the portion of shape corresponding to a link and the
radius and the flow direction of each node. Analogously to the MAT, the shock graph structure
and the corresponding point classification have been extended to 3D shapes [67]. Also, in this
case the shock graph structure contains dimensionally heterogeneous components and it is not
a planar graph.

The medial axis and the shock graph differ for the interpretation of the structure entities
rather than for the geometric abstraction they provide. For example, the shock graph and the
MAT of a curve have the same arcs and nodes, but the shock graph associates also to each arc
the growing direction of the radius of the bi-tangent spheres, see Figure 2(b). In general, we
may consider that the shock graph is a finer partition of the medial axis.

(a) (b)

Fig. 2. The medial axis (a) and the shock graph (b) of two simple curves.

Shock graphs are widely used for image matching, recognition and curve alignment, there-
fore methods proposed in literature mainly address the problem in the bi-dimensional case and
the shape is supposed to be a closed curve.

Strictly related to the medial axis is the Voronoi diagram . Given a finite set of points S
in R

k, for each point p in R
k there is at least one point in S closest to p; a point p may be

equally close to two or more points in S. For each point in S its Voronoi cell is defined as the
subset of R

k of points closest to it than to any other point in S. The union of Voronoi cells of
all points in S is a partition of R

k called Voronoi Diagram corresponding to the set S.
For instance, in the planar case, given two points a and b, the set of points equidistant

from a and b is an infinite line l, the perpendicular bisector of the segment joining a and b. l
represents the boundary between the two infinite Voronoi cells of a and b (two half-planes).

The concept of Voronoi diagram is much correlated to the MAT: indeed the MAT of a
shape can be approximated by the Voronoi diagram of a finite set of boundary points, as

150 S. Biasotti et al.

detailed in Section 4.1; on the other hand, while the MAT is the skeleton of a shape, the
Voronoi diagram represents a medial structure between two or more entities (points or objects).

Indeed the Voronoi diagram definition can be easily generalized to set of objects: given
m different objects O1, ... Om, the Voronoi cell of an object Oi, (1 ≤ i ≤ m) is defined as
the set of points that are closer to the object Oi than to any other object Oj (1 ≤ j ≤ m)).
The bisector of two objects is the locus of points that are equidistant from the two shapes. The
Voronoi cell that contains all points in space that are closer to some object than to any other
in space is, therefore, formed out of these bisectors. Similarly, the Voronoi diagram and the
medial axis transform are also prescribed by subregions of these bisectors. Therefore, bisectors
can be seen as building blocks for the MAT and the Voronoi diagram in such cases where a
direct computation of these structures is too complex.

3 Exact representation of medial structures

Indeed, the exact MAT computation was considered for long time affordable only for polygons
[77, 65], and more recently for polyhedra [92, 42]. Recently, a few researchers have tackled
the problem in the context of freeform (piecewise) rational entities.

Today’ accepted approach for computing the planar arrangements of freeform geometry
approximates the geometry using piecewise lines and arcs, but this method has noteworthy
disadvantages. First, the approach is only an approximation. Second, it is also erroneous. The
MAT of a planar shape enclosed by two concentric circles is another mean circle in between
them. Yet, by tessellating the two input circles into lines, one introduces numerous C1 discon-
tinuities along these circles. The resulting MAT will consist of numerous and erroneous edges
from the mean circle toward all the C1 discontinuities in the two boundary circles.

Fortunately, methods exist to compute bisectors of rational entities exactly. For these rea-
son, new approaches aim at computing bisectors between basic freeform shapes as building
blocks of every Voronoi Diagram or Medial Axis Transform.

Beyond computing the bisectors between points, lines and arcs in the plane, the current
state-of-the-art not only provides complete answers on when an analytic bisector exists be-
tween rational manifolds in R

n, but also proposes tractable computational schemes to derive
it, as described in Section 3.1.

3.1 Bisectors for freeform shapes

In the following, we will restrict our discussion to rational parametric curves and surfaces,
only. Since the rational representation is fully capable of representing all the simple primi-
tives common to the Constructive Solid Geometry (CSG) modelling technique, such as cones,
cylinders, spheres, and torii, we will focus on this representation. The fundamental question
is whether the bisector between two rational manifolds in R

n is rational, hence retaining a
closure that enables the precise representation of the bisector sheet in the same geometric
modelling environment.

The building blocks of every Voronoi diagram or medial axis transform computed in the
plane or 3-space must include all cases. These include point-point and point-curve bisectors
that are rational in both R

2 and R
3, point-surface and curve-curve bisectors that are rational in

R
3, and curve-surface and surface-surface bisectors that are not rational in either space. These

non rational curve-curve bisectors in the plane must be differently represented or approximated
and such approximations are considered in [54, 62]. [54] maps the problem of computing

Skeletal Structures 151

the bisector between two planar curves C(t) and C(r) to a zero-set-finding problem in the
parameter space of the two curves (t, r). In [62], the planar curve-curve bisector problem is
reduced to an envelope of a continuum of point-curve bisectors. The rational surface bisector
cases in R

3 are considered in [56].
While the bisectors between points, lines, and arcs have been known for thousands of

years, the first real step toward support of freeform geometry was made by Farouki [61]. He
showed that the bisector between a point and a rational curve in the plane is indeed rational.

Let C(t) = (cx(t), cy(t)) be a rational plane curve and P = (px, py) a point in the plane.
The planar bisector sheet, B(t) = (bx(t), by(t)), could then be characterized as,

< B(t) − P, B(t) − P > = < B(t) − C(t), B(t) − C(t) >,

< B(t) − C(t), C ′(t) > = 0. (1)

The first constraint above merely states that the distance between the bisector B and point
P should equal the distance between the bisector and curve C(t). The second constraint en-
sures we measure the distance in an orthogonal direction to the curve, or in the normal space
of C(t). It is simple to show that the set of Equations (1) is linear in B(t). Hence one can
rewrite Equations (1) as,[

cx(t) − px cy(t) − py

c′x(t) c′y(t)

][
bx

by

][
〈C(t), C(t)〉 − 〈P, P 〉

< C(t), C′(t) >

]
. (2)

Clearly B(t) in Equation (2) has a rational representation, employing the Cramer rule.
The fact that the number of degrees of freedom equals the number of constraints is a strong

hint that the point-rational curve in the plane has a rational representation. Generally speaking,
the (n − 1)-manifold bisector between two input manifolds in R

n must satisfy three sets of
constraints:

1. It must be at an equal distance from the two manifolds.
2. It must be in the normal space of the first manifold.
3. It must be in the normal space of the second manifold.

The distance equality 1 is always there and always imposes one constraint. Constraints
2 and 3 depend on the dimensions of the normal spaces of the two input manifolds. Inter-
estingly enough, Constraints 1-3 are all linear in the bisector function. Hence, the number
of constraints for bisectors between zero-, one-, and two-manifolds inputs equal (written as
equality constraint + first manifold normal space constraints + second manifold normal space
constraints) is listed in Table 1.

Point Curve Surface
Point 1=1+0+0 2=1+0+1 3=1+0+2
Curve 2=1+1+0 3=1+1+1 4=1+1+2
Surface 3=1+2+0 4=1+2+1 5=1+2+2

Table 1. Number of constraints in the bisector computations between points, curves and sur-
faces. Constraints are listed as distance constraint plus orthogonality constraint(s) to first man-
ifold plus orthogonality constraint(s) to second manifold.

Rational solutions exist whenever the number of constraints, as prescribed in Table 1, is
less than or equal to the number of degrees of freedom of the bisector, which is always the

152 S. Biasotti et al.

same as the dimension of the space. Every case for which the total number of constraints is
less than or equal to two has a rational bisector representation in the plane. The point-point
and point-curve bisectors are both rational in the plane. Further, every case for which the
number of constraints is less than or equal to three has a rational bisector representation in
R

3. Consequently, in R
3, one has a rational representation for point-point, point-curve [61],

curve-curve [55] and point-surface [56] bisector cases. Interestingly enough, after inspecting
Table 1, we can see that the bisector between two curves is not rational in the plane (R2),
yet is rational in all higher dimensional spaces (Rn, n > 2); specifically it is rational in R

3.
Figure 3 (see also Figure CP-1 in Appendix E) shows two examples of rational curve-curve
and point-surface bisectors in R

3.

Fig. 3. Curve-curve (left) and point-surface (right) bisector examples in R
3. The curve-curve

bisector (in red) on the left is between a horizontal circle and a vertical line (in yellow). The
point-surface bisector (in blue) on the right is between a torus (in magenta) and a point at its
centre (in yellow). This bisector has two sheets that extend all the way to infinity.

If the number of constraints is less than the number of degrees of freedom, a rational
solution still exists. Further readings on these rational cases can be found in [55].

The following set of constraints is defined for the surface-surface bisector, B=(bx, by, bz),
in R

3:

0 =

〈
B − S1(u, v),

∂S1(u, v)

∂u

〉
,

0 =

〈
B − S1(u, v),

∂S1(u, v)

∂v

〉
,

0 =

〈
B − S2(s, t),

∂S2(s, t)

∂s

〉
,

0 =

〈
B − S2(s, t),

∂S2(s, t)

∂t

〉
,

0 = 〈B − S1(u, v),B − S1(u, v)〉 − 〈B − S2(s, t),B − S2(s, t)〉 .

These five (linear in B) constraints also have seven degrees of freedom: u, v, s, t, bx, by, bz .
Hence, having two more degrees of freedom than constraints, the solution space is a two-

Skeletal Structures 153

manifold, the bisector sheet in R
3 (recall that the bisector sheet in R

n is an (n−1)-manifold).
One needs to solve these five equations in seven degrees of freedom – by any means, a non triv-
ial task. In [58], a special non-linear multivariate solver has been employed, presented in [59],
which supports cases with non-zero dimensional solution spaces. The solution is given as a
dense set of (u, v, s, t, bx, by, bz) points in R

7. Then, exploiting the given (u, v) parameteri-
sation of S1, a two-manifold in R

3 is fitted to this data, satisfying the interpolation constraints
of x(u, v) = bx, y(u, v) = by, z(u, v) = bz . The non rational bisector between a curve and
a surface in R

3 is computed using a similar approach. In Figure 4 (see also Figure CP-2 in
Appendix E), the solution point set is shown as yellow points on the fitted bisector sheet in
red/magenta.

Fig. 4. Curve-surface (left) and surface-surface (right) approximations to the bisector sheets
(in red/magenta) in R

3. The dense solution point set is shown as yellow points.

Clearly, being an approximation, the curve-surface and surface-surface bisectors are fur-
ther more difficult to compute than their analytic counterparts. They become even more dif-
ficult when the result is numerically unstable – a not an uncommon case when dealing with
bisectors. In many cases, the bisector sheets introduce poles as they vanish at infinity (see the
bisector in Figure 3 (right)), and cusps, and hence, self-intersections when the bisector sheet
is not regular (see the bisector in Figure 4 (right)). Luckily, many important cases exist where
the bisector between a curve and a surface or between two surfaces is indeed rational. One
notable simple case is the plane-plane bisector that is another (bisector) plane.

In [57, 86], more special curve-surface and surface-surface rational bisectors in R
3 are

identified. The full details of these results are beyond this survey but we will describe a few
of the approaches that are presented in [57, 86]. The bisector between a line and a plane in
a general position is simply a cone. This is obvious if the line is orthogonal to the plane but
also holds for any non-coplanar line (see Figure 5 (a) and Figure CP-3 (a) in Appendix E).
An offset is an operation to which the bisector is invariant. The bisector between a sphere and
any surface that yields a rational offset could be reduced to a point-surface bisector via the
simultaneous offset of the sphere and the other surface by the sphere’s radius (see Figure 5 (b)
and Figure CP-3 (b) in Appendix E). The bisector computation between a sphere and a canal
surface that yields a rational offset is reduced to a bisector computation between a point and
rational surface representing the offset of a canal surface. In Figure 5 (c) (see also Figure CP-
3 (c) in Appendix E), the line-sphere bisector is similarly reduced to a cylinder-point bisector

154 S. Biasotti et al.

(a) (b) (c)

Fig. 5. The bisector sheets (in red/magenta) of a plane and a line (a), a sphere and a canal
surface (b), and a line and a sphere (c).

computation, again via an offset operation. Table 2 summarizes the cases known to be ratio-
nal, as presented in all above references. As can be seen from Table 2, pretty much all CSG
primitive shapes yield a rational bisector in R

3 with the exception of the torus, which in most
cases has a rational bisector only in special arrangements.

Point Line Plane Cylinder Sphere Cone Torus
Point Yes Yes Yes Yes Yes Yes Yes
Line Yes Yes Yes Yes Yes Partial
Plane Yes Yes Yes Yes Partial
Cylinder Yes Yes Yes Partial
Sphere Yes Yes Yes
Cone Yes Partial
Torus Partial

Table 2. The existence of rational bisectors between CSG primitives in R
3.

3.2 Exact computation of the medial axis

As noted above, the construction of the Voronoi diagram and MAT for freeform curves in
the plane is more difficult because of the complexity of the bisectors. Ramamurthy and
Farouki [63, 64] implemented an incremental algorithm in which the bisectors are inserted
one by one and the Voronoi diagram of the curves is updated after each insertion; the MAT
is derived from the Voronoi diagram and is represented as a piecewise linear approxima-
tion of the actual bisector, computed as the envelope of the point-curve rational bisectors.
Ramanathan and Gurumoorthy [87] implemented a different tracing algorithm for the con-
struction of the MAT of a freeform shape. This implementation also approximates the edges of
the MAT by computing samples of bisector points on the edges and interpolating these sample
points. Piecewise linear curves involve the comparison of expressions with two nested square
roots [29]. Efficient and fully robust implementations are few [71]. An exact algorithm for
not-necessarily convex polyhedra in R

3 can be found in [41].
A fairly general class of shapes for which it is possible, in principle, to compute the medial

axis exactly are the semi-algebraic sets . These sets are the solutions of a finite system of

Skeletal Structures 155

algebraic equations and inequalities. The medial axis of such a set is itself semi-algebraic and
can be computed with tools from computer algebra. To describe this, let X be a shape in R

3

whose boundary is a C1-smooth manifold. We introduce the symmetry set of X , consisting of
the centers of spheres tangent to the boundary of X at two or more points. It contains all points
of the medial axis but also possibly additional points since the spheres are not constrained to
bound balls contained in X . Suppose now the boundary of X is defined by the algebraic
equation f(x) = 0 and 0 is a regular value of f . It follows that the gradient for all points of
the boundary is non-zero, ∇f(x) �= 0. In this case, the symmetry set is the closure of the set
of points z for which there exists points x and y that satisfy the following system of algebraic
equations: ⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

f(x) = 0,
f(y) = 0,
(x − z) ×∇f(x) = 0,
(y − z) ×∇f(y) = 0,
‖x − z‖2 = ‖y − z‖2,
t‖x − y‖2 = 1.

In the last condition, t is an additional free variable that ensures that x and y are distinct. If 0 is
not a regular value of f , we need to add ∇f(x)∇f(y)s = 1 as yet another equation, with s as
a free variable. Finally, the medial axis is obtained by imposing the additional conditions that
‖u− z‖2 ≥ ‖x− z‖2, for all points u on the boundary, and z be contained in X . Considering
u to be a new free variable, it is possible to remove points from the solution, namely the points
z for which f(z) < 0 or for which there exists u with f(u) = 0 and ‖u − z‖2 < ‖x − z‖2.
This new set is still semi-algebraic since it is the difference between two semi-algebraic sets.

In [70], the fact that one can express the bisectors of rational curves and the MAT of ra-
tional curves as (semi-) algebraic sets is used to derive an algorithm that computes the precise
Voronoi cells of rational curves in the plane. Using the precise low degree algebraic formula-
tion offered in [54] to represent the bisector of two planar curves, trimming conditions based
on orientation and curvature properties are formulated for these bisectors. The trimmed bi-
sectors are then fed into a lower envelope computation stage in which the Voronoi cells are
precisely extracted. The bisector segments are represented as implicit B-spline bivariate forms
and hence are algebraic. Further, the locations where adjacent bisectors intersect, and there-
fore define the corners of the Voronoi cells, are also representable as a set of algebraic con-
straints. The end result is a precise representation of the Voronoi cells of planar rational curves.
Figure 6 shows a few examples of precise Voronoi cells of rational curves.

Dutta and Hoffman [51] proposed a scheme to compute the Voronoi diagram and MAT of
CSG primitives. As noted above, their results on bisectors of CSG primitives were partial and,
therefore, their work was theoretical and never implemented. A recent result by Ramanathan
and Gurumoorthy [88], which is based on their work in [87], constructs the MAT of extruded
and revolved shapes. In their work, they exploit the fact that the 3D MAT of an extruded or
revolved shape is closely related to the 2D MAT of its creating section curve. This is the only
implementation, as far as we can determine, that constructs a MAT in R

3 of surfaces that are
not polyhedra.

For the complement of a union of balls in R
k, the medial axis can be derived from the

Apollonius diagram of the corresponding spheres or from convex hulls of finitely many points
in R

k+2 [12, 23]. Perhaps surprisingly, the medial axis of the union of finitely many balls is
simpler than that of the complement. As first described in [5], it is piecewise linear and can
be constructed from the Voronoi diagram of a finite set of points. As discussed in more detail
shortly, the cells of dimension less than k in this diagram may be interpreted as the medial

156 S. Biasotti et al.

Fig. 6. Three examples of precise Voronoi regions (in gray wide lines) of rational closed
parametric curves. The Voronoi region of one curve (the curve inside the Voronoi region) is
shown in each example.

axis of a punctured Euclidean space, a case that permits particularly simple exact algorithms.
Finally, the MAT of spheres in R

3 was also recently considered in [74].

4 Approximation of the medial axis

Except for the few cases described in the previous Section, when effectively computing a me-
dial representation of a shape, we face the problem of extracting a finite representation of the
medial axis. Let M[X] be the MAT of the shape X . In most cases, we apply an approximation
of M[X] that may be either numerical, in the sense that our output is always “near” or exactly
M[X], or geometric, in the sense that we define new descriptors that are geometrically similar
to the skeleton of the shape. The approximation techniques discussed in Section 4.1 refer to
numerical approximations of the medial axis. These techniques compute the medial axis as a
subset of the Voronoi Diagram of a set of points sampled on the shape boundary. Geometric
approximations of the medial axis are shown in Sections 4.2, 4.3 and 4.4. Such approaches
are classified on the basis of the skeletonisation method adopted, i.e. implementation of the
grassfire propagation, distance map computation and thinning .

Moreover, while techniques based on approximating the Voronoi diagram and on simu-
lating the grassfire represent continuous methods that manipulate points with real coordinates
(see also Section 4.2), distance maps and thinning constitute discrete methods: the object is
stored as a collection of pixels/voxels and the resulting skeleton is a connected subset of such
pixels/voxels. Working in the discrete space means that we have to face problems specific to
this space, which are relevant for medial axis extraction and skeletonisation. It is well known
that a different connectivity type has to be used for the shape and for its complement to avoid
topological paradoxa. The connectivity type depends on which, among the neighbors of a
pixel/voxel, are considered as directly connected to each other. In two dimensions, each pixel
p has four neighbors sharing an edge with p, and other four neighbors sharing a vertex with p.
The 4-connectivity considers as directly connected to each other pixels sharing an edge, while
the 8-connectivity considers both kinds of neighbors. In three dimensions, a voxel v has six
neighbors sharing a face with v, twelve neighbors sharing an edge and eight neighbors sharing
a vertex. Three connectivity types are hence possible: 26-connectivity, when all three kinds
of neighbors are considered, 18-connectivity, when neighbors sharing a face or an edge are
considered, and 6-connectivity, when only the neighbors sharing a face are considered. If the

Skeletal Structures 157

same connectivity type is used for both the object and its complement, a closed curve/surface
would not divide its complement into disjoint parts, or an open curve/surface would divide
its complement into disjoint parts. For discrete space in two dimensions, the 8-connectivity
and the 4-connectivity are generally adopted for the object (and, hence, its skeleton) and for
its complement, respectively. In three dimensions, the 26-connectivity and the 6-connectivity
are generally used for the object and its complement. Another problem relevant for skeleton-
isation is strictly related to the nature of the discrete space. In correspondence with regions
whose thickness is expressed by an even number of pixels/voxels, the set of centers of max-
imal balls is 2-pixel/voxel wide. This means that whenever a discrete solution to medial axis
extraction or skeletonisation is desired, the resulting set can locally be 2-pixel/voxel wide. Al-
ternatively, which is generally regarded as preferable, the nearly-thin medial axis or skeleton
can be reduced to a 1-pixel/voxel thick set by means of final thinning, but the complete re-
versibility is lost. We remark that the loss in object recovery exclusively regards pixels/voxels
on the boundary of the original object. The loss in recovery is generally considered as accept-
able, since the actual belonging of pixels/voxels to the boundary of an object obtained after
acquisition and digitisation of a continuous object is questionable. We also remark that, in the
two-dimensional space, the skeleton is a union of arcs and curves and reversibility is almost
completely guaranteed, starting from the 1-pixel wide linear skeleton. In turn, in the three-
dimensional space, reversibility is possible only if the so called surface-skeleton, consisting
of surfaces and curves, is computed. For solid objects, i.e., objects having no cavities, the
surface-skeleton can be furthermore compressed to obtain a linear shape representation (the
so called curve-skeleton.) In this case, reversibility is no longer possible. In fact, a large num-
ber of centers of maximal balls is unavoidably removed from the surface-skeleton to reduce it
to the curve-skeleton. In Sections 4.3 and 4.4 we will mainly focus on linear skeletons.

A more detailed analysis of medial axis extraction and skeleton computation can be found
in [31] for objects in the two-dimensional space and in [47] for the three-dimensional case.
Other recent contributions on this topic are provided in [40, 43].

4.1 Skeletons from Voronoi Diagrams

We have pointed out that the exact computation of the medial axis runs into obstacles except
for certain classes of shapes. Another approach is to approximate the smooth shape with a
discrete one, for which the medial axis can be computed exactly.

Despite the intuitive correlation between the Voronoi diagram of a set of points sampling
the boundary of a planar shape and its MAT, the formal proof of the Voronoi diagram con-
vergence to the MAT as the number of samples goes to infinite has come rather recently [27].
In this Section we introduce methods that approximate the medial axis of a shape using the
Voronoi graph of points sampling its boundary. The role of these methods is twofold: they
can either compute the MAT on an approximation of smooth shapes or be applied directly to
discrete representations such as triangulations.

In the following we introduce the approximation paradigm; for more details about the
stability and computation of medial axes see [6].

Instability and semi-continuity

We think of M as a transform that maps the shape X to its medial axis, M[X]. As emphasized
in [78], geometric shapes are usually not known exactly and represented by approximations
of one kind or another. For example, the boundary of a shape may be approximated by a

158 S. Biasotti et al.

triangulation obtained by software for surface reconstruction or segmentation. Under these
circumstances, it would be important that the transform be continuous. In other words, one
should be able to compute an arbitrarily accurate approximation of the output for a sufficiently
accurate approximation of the input. Most commonly, one would use the Hausdorff distance
to quantify the difference between two inputs and two outputs and this way define what it
means for the transform to be continuous. Unfortunately, the medial axis transform is not
continuous under this notion of distance: small modifications of the input shape can induce
large modifications of its medial axis. This effect is illustrated in Figure 8, where we compare
the medial axis of an oval on the left with the medial axis of a set whose Hausdorff distance
to the oval is bounded from above by ε > 0. The difficulty of approximating the medial axis
due to its instability with respect to the Hausdorff distance is a well-known but until recently
not well-understood problem.

One can observe experimentally that small modifications of a shape do not affect the entire
medial axis. Typical effects for shapes in R

2 are fluctuating branches that leave the rest of the
medial axis unchanged. Similarly, for shapes in R

3 we notice fluctuating spikes, added to or
removed from the otherwise stable structure. This observation is consistent with the fact that
the medial axis is semi continuous with respect to the Hausdorff distance [79, chapter 11]. To
explain this concept, we let A and B be subsets of R

k and write dH(A | B) supx∈A d(x, B)
for the one-sided Hausdorff distance of A from B, where d(x, B) is the infimum of the Euclid-
ean distances between x and points y in B. Observe that dH(A | B) < ε if and only if A is
contained in the offset B+ε = {x ∈ R

k | d(x, B) < ε}. The Hausdorff distance between A
and B is dH(A, B)max{dH(A | B), dH(B | A)}. We write Ac and Bc for the complements
of A and B and note that the Hausdorff distance between Ac and Bc is generally different
from that between A and B. Indeed, dH(Ac, Bc) is forgiving for small islands of A far away
from B, while dH(A, B) is forgiving for small holes of A far away from Bc. With this nota-
tion, we are ready to define the concept of semi continuity. Specifically, a transform T is semi
continuous if for every bounded open subset X ⊆ R

k and for every δ > 0, there exists ε > 0
such that for every open subset Y of R

k,

dH(Xc, Y c) < ε =⇒ dH(T [X] | T [Y]) < δ. (3)

Note that ε depends on X . In words, small Hausdorff distance between the complements of X
and Y implies that T [X] is contained in a tight parallel body of T [Y]. As mentioned earlier,
this condition is satisfied for T = M.

Approximation paradigm for the medial axis

The difficulty of computing the medial axis exactly (see Section 3) motivates a serious look
at approximation algorithms. A framework that captures a common line of attack to approx-
imating the medial axis is sketched in Figure 7. First, Y that belongs to a class of shapes for
which the medial axis can be constructed exactly is found such that it approximates X . Sec-
ond, the medial axis of Y is constructed. Third, the medial axis of Y is pruned to get a subset
P[M[Y]] ⊆ M[Y] that approximates the medial axis of X . The composition of the three
steps provides the approximation of the medial axis of X . The most challenging step in this
paradigm is the extraction of a subset P[M[Y] of M[Y] that indeed approximates M[X].
Recent mathematical results that rationalize this approach are discussed shortly.

The notion of approximation used in the first step varies between different implementa-
tions of the approximation paradigm. It either means that Y is the image of X under a small
Cm-perturbation [36], or that the Hausdorff distance between the complements of X and Y
is small, as in [35]. Other notions of approximation are conceivable.

Skeletal Structures 159

X Y

P[M[Y]] M[Y]

�APPROXIMATE

�

�

�

�

�

�

��
APPROXIMATE
MEDIAL AXIS

�
CONSTRUCT ME-
DIAL AXIS

� PRUNE

Fig. 7. An approximation P[M[Y]] of the medial axis of a shape X can be found as part of
the medial axis of a shape Y approximating X .

Punctured Euclidean spaces

We start by identifying a class of shapes for which the medial axis can be constructed exactly
and efficiently. We obtain shapes in this class by puncturing the k-dimension real space at a
discrete set of locations. Equivalently, we consider the complement of a discrete set of points P
in R

k. The medial axis of this space is the Voronoi graph of P . Algorithms for constructing the
Voronoi graph are well-studied in computational geometry and implementations are available
from the geometric software library CGAL [33]. For a set P of n points in R

k, the graph can
be constructed in time O(n�k/2� + n log n), which is optimal in the worst case because the
graph can consist of a constant times n�k/2� faces. In most practical applications, the number
of faces, F , is much less and the output-sensitive algorithm in [34] constructs the graph in R

3

in time O((n + F) log2 F). Examples of point sets with provable small Voronoi graphs are
so-called κ-light ε-samples of compact smooth generic surfaces in R

3, with F = O(n log n)
[9], and κ-light ε-samples of polyhedral surfaces in R

3, with F = O(n) [8]. Such samples
will be studied in more detail shortly.

Consider a finite point set P whose Hausdorff distance to the boundary of a shape X is less
than ε and write Vor[P] for the Voronoi graph of P . Using the semi continuity of the medial
axis expressed in (3), the subset of Vor[P] inside X contains an approximation of the medial
axis of X . In the approximation paradigm for medial axes, this subset can be interpreted as
part of the medial axis of a shape Y close to X . Following [35], Y is defined to be the parallel
body X+ε of X minus the points in P ; see Figure 8. Since the Hausdorff distance between P
and the boundary of X is less than ε, the same is true for the complements of X and the thus
constructed space: dH(Xc, Y c) < ε. In summary, we have M[Y] ∩ X = Vor[P] ∩ X .

Fig. 8. On the left, a shape X and its medial axis. In the middle, a finite set of points P whose
Hausdorff distance to the boundary of X is less than ε and its Voronoi graph. On the right,
X+ε − P and its medial axis.

160 S. Biasotti et al.

Pruning the Voronoi graph

We now consider results that focus on the detailed relationship between the Voronoi graph of
a finite point set and the medial axis of the shape whose boundary the points sample. A sample
of the boundary of a shape X is a finite set of points (exactly and not just approximately) on
that boundary. An ε-sample is a sample whose Hausdorff distance to the boundary of X is less
than ε. In other words, every point of the boundary is less than distance ε away from a point
in the ε-sample. The ε-sample is κ-light if the number of sample points within distance ε is
never more than κ. The ε-sample is noisy if points are not necessarily on the boundary but at
Hausdorff distance less than ε to the boundary.

An early result on the connection between the Voronoi graph and the medial axis is due to
Brandt [27]. Given a shape in R

2, he takes an ε-sample on the boundary curve and considers
the Voronoi edges and vertices that are completely contained in the shape; see Figure 9.

Fig. 9. In R
2, vertices and edges lying inside a shape and extracted from the Voronoi graph of

an ε-sample of the boundary approximate the medial axis (courtesy of Attali and Montanvert
[10]).

Brandt then proves that under some technical conditions on the boundary curve, the por-
tion of the Voronoi graph defined by these edges and vertices approximates the medial axis.
Amenta and Bern [2] point out that the direct extension of this result to shapes in R

3 does
not hold; see Figure 10. The validity of the extension is spoiled by the existence of slivers in
three-dimensional Delaunay triangulations, which occur for ε-samples with arbitrarily small
ε > 0. Roughly, a sliver is a tetrahedron whose four vertices are almost co-circular. The lo-
cation of the Voronoi vertex corresponding to the sliver depends on the four vertices but is
generally unrelated to any feature of the surface and does not necessarily lie near the medial
axis. As a first step to cope with slivers, Amenta and Bern eliminate all except a few Voronoi
vertices they refer to as poles. Every sample point p generates a Voronoi polyhedron and the
vertices furthest away from p on the two sides of the surface are the poles of p. Clearly, there
are at most 2n poles for a sample of n points. As proved in [3], for a shape whose boundary is

Skeletal Structures 161

a smooth C1-manifold, the poles tend to the medial axis of the shape and its complement as ε
goes to zero.

Fig. 10. On the left we see a triangulation of the boundary of a shape in R
3. Its vertices

determine a Voronoi diagram whose vertices inside the shape are shown in the middle. The
subset of poles inside the shape is shown on the right.

To extend the result of Brandt to R
3, we need more than just points (the poles) near

the medial axes, we also need to connect them to form a geometric structure approximating
the medial axis. In [3], Amenta, Choi and Kolluri use simplexes of the (weighted) Delaunay
triangulation of the poles. To avoid the construction of this weighted Delaunay triangulation
and connect the poles directly inside the Voronoi graph, we need to know about its local
distance from the medial axis. Bounds on this distance can be found in [7, 22, 38]. Assuming
the boundary of the shape is a smooth C1-manifold and using these bounds, among other
things, Dey and Zhao [44] give an algorithm that identifies a sub graph of the Voronoi graph
that approximates the medial axis for the Hausdorff distance. We note that the above results are
limited to smooth surfaces and to samples of points that lie on that surface. In [35], Chazal and
Lieutier obtain a similar result but for more general data: shapes are bounded open subsets and
samples are noisy. They introduce a subset of the Voronoi graph, called the λ-Voronoi graph ,
that approximates the medial axis for a particular sequence of decreasing λ [6]; see Figure 11.
Furthermore, for small enough values of λ, this subset is homotopy equivalent to the shape
[35].

4.2 Skeleton trough the simulation of the grassfire

Beside methods for the exact computation of a polygon like that proposed in [77], several
approximate variations of the medial axis have been proposed in the literature. In particular, in
this Section we focus on the straight skeleton and on one of its approximation: the linear axis.

Straight skeleton

Aichholzer and Aurenhammer [1] introduced the straight skeleton, a new type of skeleton for
polygons. It is closely related to the medial axis, being also based on a wavefront propagation.
The wavefront consists of straight line segments and circular arcs (see Figure 12 (a)) and, as
it propagates inwardly, the breakpoints between consecutive line segments and circular arcs
trace the Voronoi diagram of the polygon. By removing the segments in the diagram incident

162 S. Biasotti et al.

Fig. 11. Two λ-Voronoi graph of the same shape, with λ increasing from left to right, con-
structed as a subset of the Voronoi graph of a sample of the boundary.

(a) (b)

Fig. 12. Medial Axis (a) vs. Straight Skeleton (b). In (b) the black disk marks a reflex edge
annihilation, while gray disks mark convex edge annihilations. An edge-edge collision gen-
erates the arc between the black box (vertex-edge collision) and a gray disk (convex edge
annihilation)

to the reflex vertices, we obtain the medial axis, which consists of straight line segments and
parabolic arcs.

To construct the straight skeleton, we let wavefront edges move parallel to the polygon
sides. In contrast to the medial axis, edges incident to a reflex vertex will grow in length.
The front remains a polygon, whose vertices during the process trace out the skeleton (see
Figure 12(b)). As its name suggests, it consists of straight line segments only. It also has
a smaller combinatorial complexity (n − 2 internal nodes, with n the number of polygon
vertices) than the medial axis (n + r − 2 nodes, with r the number of reflex vertices).

A straightforward computation of the straight skeleton consists of simulating the sequence
of events occurring in the propagation process described above. Possible edge events are given
by intersections of the bisectors of adjacent vertices of the current wavefront. If we maintain a
priority queue E of all these events, indexed by the moment in time when they occur, the next
edge event can be detected in constant time. Also after each event occurring in the propagation,
only a constant number of updates in E are necessary. These updates come from changes in
the wavefront at the location of the newly occurred event. The priority queue can be created

Skeletal Structures 163

in O(n log(n)) time, and each update requires O(log(n)) time, where n is the number of
vertices in P . Unlike for the edge events, the computation of possible split events can not
be done locally. For this purpose we maintain a priority queue S of all pairs (reflex vertex,
wavefront edge), indexed by the moment in time when a split between them would occur.
After each event in the propagation a linear number O(n) of updates in S are necessary. Thus
S can be created in O(nr log(n)) time, and the updates after each event take O(n log(n))
time, where r is the number of reflex vertices of P . The straight skeleton S(P) can thus be
computed in O(nr log(n)) time, and the above algorithm requires O(nr) space.

A faster algorithm that uses more complex data structures can be found in [60]. It runs
in O(n1+ε + n8/11+εr9/11+ε) time with a similar space complexity, where ε is an arbitrarily
small positive constant. Eppstein’s algorithm simulates the sequence of interactions between
edges and vertices in the propagation process. If the polygon P is interpreted as the outline of
a building’s groundwalls, the straight skeleton is the projection of a roof over P , whose facets
are all of equal slope. In simulating the events defining the skeleton, they view time as a third
spatial dimension, so that the propagation process becomes an upward sweep of the roof of
the polygon with a horizontal plane.

A more recent algorithm by Cheng and Vigneron [37] computes the straight skeleton of a
non-degenerate simple polygon in O(n log2 n + r

√
r log r) expected time. For a degenerate

simple polygon, its expected time bound is O(n log2 n + r17/11+ε).

The Linear Axis

When a simple polygon contains sharp reflex angles with short incident edges, its straight
skeleton gives counterintuitive results (see the left column of Figure 14). In [97], Tanase and
Veltkamp introduce the linear axis. It is based on a linear wavefront propagation like the
straight skeleton, but the discrepancy in the speed of the points in the propagating wavefront,
though never zero, can decrease as much as wanted.

More formally, let {v1, v2, . . . , vn} denote the vertices of a simple polygon P and let
κ = (k1, k2, . . . , kn) be a sequence of natural numbers. If vi is a convex vertex of P , ki = 0,
and if it is a reflex vertex, ki ≥ 0. Let Pκ(0) be the polygon obtained from P by replacing
each reflex vertex vi with ki + 1 identical vertices, the end points of ki zero-length edges,
which will be referred to as the hidden edges associated with vi. The directions of the hidden
edges are chosen such that the reflex vertex vi of P is replaced in Pκ(0) by ki + 1 “reflex
vertices” of equal internal angle.

Then, the linear axis Lκ of P , corresponding to a sequence κ of hidden edges, is the trace
of the convex vertices of the linear wavefront Pκ in the above propagation process. Lκ is a
subset of the straight skeleton of Pκ(0); it is sufficient to remove the bisectors traced by the
reflex vertices of the wavefront (see Figure 13 (a)). If each reflex vertex vj of internal angle
greater than 3π/2 has at least one associated hidden edge (kj ≥ 1), then Lκ is a connected
graph. This is because only bisectors incident to reflex vertices of P are removed from the
straight skeleton of Pκ(0) in order to obtain Lκ.

Obviously, the larger the number of hidden edges, the better the linear axis approximates
the medial axis. A thorough analysis of the relation between the number of the inserted hid-
den edges and the quality of this approximation is given in [97]. They introduce the notion
of ε-equivalence between two skeletons. Nodes in the two skeletons are clustered based on a
proximity criterion, and the ε-equivalence between the two skeletons is defined as an isomor-
phism between the resulting graphs with clusters as vertices. This allows to compare skeletons
based on their main topological structure, ignoring local details. In [97], an algorithm is given

164 S. Biasotti et al.

(a) (b)

Fig. 13. (a) The linear axis in the case when one hidden edge is inserted at each reflex vertex.
A linear wavefront is drawn in dotted line style; the dashed lines are the bisectors that are not
part of the linear axis. (b) The linear offset (solid line) of a reflex vertex with 3 associated
edges is made of 5 line segments tangent to the uniform offset (dotted line) of this vertex.

for computing the number of hidden edges for each reflex vertex such that the resulting linear
axis is ε-equivalent to the medial axis. The whole linear axis computation takes linear time for
polygons with a constant number of nodes in any cluster. There is only a limited category of
polygons not having this property. Implementation results suggest that in practice only a few
hidden edges are necessary to yield a linear axis that is ε-equivalent to the medial axis.

4.3 Skeletons based on topological thinning

Thinning refers to the process of removing pixels or voxels from a discretised object in an
attempt to whittle the object down in topological fashion to a more simple representation
consisting of connected, unit-wide pathways of pixels or voxels. This process, applied to elon-
gated objects characterized by nearly constant thickness (e.g., printed or hand-written char-
acters, line drawings, blood vessels, or branching patterns of air passageways in the lungs),
leads to a set of lines centered within the object and retaining the relevant structural and shape
information of the object. For this reason, the main focus of thinning is the preservation of
topology, with the primary purpose being to aid in the identification of a basic structure.

Solutions for different grid types such as the rectangular, the triangular and the hexago-
nal grid have been proposed. Rosenfeld [90] provides a list of over 160 papers on thinning;
note, however, that the vast majority of these papers deal with the problem in two dimen-
sions. Ideally, thinning is an isotropic compression process. Since compression takes place
from all directions at the same rate, its implementation by means of a parallel algorithm is a
natural choice. Actually, both parallel and sequential algorithms have been developed and the
literature includes a huge number of papers on this subject (for a survey of two-dimensional
thinning algorithms, see e.g. [46]). In parallel algorithms, the processing done at each iteration
is a function of the object resulting from the previous iteration only. In sequential algorithms,
the elements are processed one after another and are updated in terms both of the object re-
sulting from the previous iteration, and of the modifications produced so far in the current
iteration. Thus, the structure of the set resulting from a sequential algorithm depends on the
order in which pixels/voxels are processed. Sometimes, spurious branches appear in a particu-
lar order of processing, but do not appear in a different order. End-point detection criteria have
great importance in this case, to guarantee isotropic object compression and to avoid unwanted
shortening of branches in the resulting set.

Skeletal Structures 165

Fig. 14. A comparison of the straight skeleton (left column), the medial axis (middle column),
and the linear axis (right column). The skeletons are drawn in solid line style. The dashed
lines in the medial axis figures are the Voronoi edges, which are not part of the medial axis.
The dashed lines in the linear axis figures represent the bisectors traced by the reflex vertices
of the wavefront, which are not part of the linear axis. In these examples, the linear axis is
isomorphic with the medial axis (ε = 0).

Topologically oriented thinning consists of repetitive testing and subsequently deletion of
pixels or voxels on the boundary of the object, whenever their removal does not alter the topol-
ogy of the thinned shape. However, as said above, in order the resulting set reflects the geomet-
rical structure of the object, removal operations should be combined with suitable preservation
criteria to avoid non isotropic object compression and unwanted shortening of branches in the
resulting representation. Practically, in correspondence with every significant protrusion of the
object, a branch is expected to be found in the thinned shape. To correctly map protrusions with
branches, the tip of each protrusion should be identified and an element in correspondence of
each tip (i.e. the end-point of a branch) should be preserved from removal. Unfortunately, most
of the existing thinning algorithms do not ensure that the previous correspondence between
tips of protrusions and end-points always holds, so their performance is likely to become unac-
ceptable when a wide repertory of objects is to be processed. This behaviour is imputable to the
fact that removal occurs during a ‘blind’ sequential process, that uses the property satisfied by

166 S. Biasotti et al.

Fig. 15. A lace-shaped 2D object that cannot be reduced to one-pixel wide subset.

the end-points in the resulting set, i.e. the property of having only one neighbor in the skeleton
branch, as a criterion to detect the end-points during thinning. This may cause end-points to be
originated or not, depending on the order in which the chosen sequence of removal operations
is applied to the object’s elements. To overcome this problem, the boundary configurations
that are assumed to be sufficiently significant to originate end-points, should be identified at
the beginning of each iteration of the object compression process, before applying the removal
operations. In the opposite case, the sequential way of examining and deleting elements would
change the geometry of the neighbourhood the elements are embedded in and may allow the
creation of spurious end points, as well as an excessive shortening of significant branches.
Effective criteria to correctly identify the tips and mark therein the elements, which will be the
end points in the resulting thin set, can be based on the distance of boundary elements from
the interior of the object at each iteration of thinning. Boundary subsets including elements
whose distance from the interior of the object overcomes a given threshold are preserved from
removal, as they correspond to significantly elongated object protrusions [30]. Alternatively,
effective criteria can be based on the selection and preservation from removal of all centers
of maximal balls in the distance map of the object. In fact, in correspondence with the tip of
an object protrusion, a maximal ball of the object exists, whose boundary fits the boundary of
the object protrusion for a (wide) connected portion. The center of such a maximal ball can
be selected as the endpoint of the branch corresponding to the protrusion(for more details, see
next Section).

Topological thinning guarantees connected skeletons; on the other hand, topological thin-
ning does not obligatory produce perfectly thinned output (i.e. one-pixel/voxel-wide paths)
since there exist arrangements of pixels/voxels which cannot be further eroded, unless altering
object’s topology. A 2D example is the lace-shaped object shown in Figure 15, whose border
pixels are all non-removable. The alternative approach is based on distance map computation.

4.4 Skeletons from distance maps

Like thinning, skeletonisation based on distance maps is especially suitable for image process-
ing and pattern recognition, and in general for the analysis of discrete objects represented

Skeletal Structures 167

by grids of pixels or voxels. While thinning is mainly suited to elongated objects, distance
map based skeletonisation is also suited to objects that are not elongated as well as to objects
that have variable thickness, and provides a representation including also surfaces/branches
originating from significant convexities of the boundary of the objects. Distance map based
skeletonisation is more directly related to the Blum’s notions of a symmetric point and a
growth process. In fact, in the distance map the centers of the maximal balls can be easily
detected and assigned to the skeleton. The detection of the remaining pixels/voxels necessary
to guarantee that the skeleton has the same homotopy type as the object is also an easy task,
due to the structure provided by the distance map to the portion of space occupied by the
object. Differently from iterative thinning, which requires a number of iterations proportional
to the object thickness and, hence, a generally large number of scans of the image when se-
quential computers are used, distance map based skeletonisation requires a small number of
scans, independent of object thickness. Distance map based skeletonisation directly identifies
and marks on the distance map of the object the elements that are recognized as belonging to
the skeleton, due to the local configuration they are embedded in. The set of elements detected
on the distance map includes all the centers of maximal balls (which implies skeleton re-
versibility), is symmetrically placed within the object and has the same topology as the object.
This set is likely to be 2-element wide, in correspondence with object parts characterized by a
thickness expressed by an even number of elements. To obtain the unit-wide skeleton, a final
thinning, based on topology preserving removal operations, is necessary. We point out that in
the three-dimensional case, the skeleton computed by means of the distance map is actually
a surface-skeleton. For solid objects, the surface-skeleton can be furthermore compressed to
a linear structure, the curve-skeleton, by using an iterative thinning, based on topology pre-
serving removal operations, see e.g. [96]. The so obtained curve-skeleton, though providing a
significant representation of the object’s shape, does no longer allow object recovery.

In the distance map, each object point is labeled with its distance to the nearest back-
ground point. The distance of an element measures the length of a shortest path from that
element to the background, where the path consists of elements linked to each other according
to the selected connectivity type. Good approximations to the Euclidean distance are obtained
by using weighted distances, where suitable integer weights are employed to compute the con-
tribution given to the length of the path by the elements, depending on their relative positions
(see, e.g., [24, 25]).

Ridges of the distance map are expected to belong to the skeleton, since they are centrally
located within the object. Almost all the elements of a ridge are centers of maximal balls. As
such, they can be identified by comparing the distance label of the element z at hand with
the distance label of its neighbors, since this is equivalent to comparing the radii of the balls
centered on z and on its neighbors. The extrema of a ridge, which are not necessarily centers
of maximal balls, can be identified by taking into account that they are placed in saddle con-
figurations. Their detection can be accomplished by counting for each element z, the number
of components consisting of neighbors of z with distance labels larger than or equal to the dis-
tance label of z, and the number of components of neighbors of z with distance labels smaller
than the distance label of z, respectively. Slopes connecting the ridges in the distance map are
also expected to belong to the skeleton, to guarantee that the skeleton has the same homotopy
type as the object. These linking elements can be found by growing, from the already detected
skeletal elements, connecting paths according to the increasing value of the gradient in the
distance map. For skeletonisation in the three-dimensional space, besides the linking elements
necessary to guarantee skeleton connectedness, also further voxels necessary to prevent the
creation of spurious tunnels have to be assigned to the surface skeleton. Roughly speaking, a
distance map based skeletonisation algorithm includes three steps:

168 S. Biasotti et al.

- distance map computation;
- identification of ridges and slopes;
- reduction of the set of ridges and slopes to unit width.

Obviously different skeletons are obtained depending on the chosen distance function.
A number of algorithms can be found in the literature, each of which tailored to a specific
distance function (as an example, see [4, 45, 48] for the two-dimensional case, and [49], for the
three-dimensional case). Although all distance map based skeletonisation algorithms follow
more or less the above scheme, ad hoc rules are often used (for instance to identify the centers
of the maximal balls, or to obtain skeleton connectedness through the linking elements), which
apply only to the specific distance case.

An important post-processing step is devoted to skeleton simplification [26] and prun-
ing [45, 95]. Simplification is done in the three-dimensional case only, to remove from the
surface-skeleton short peripheral curves, whose presence would only make the curve-skeleton
structure unnecessarily complex. Pruning is done both in three and in two dimensions and
should not be simply regarded as an optional step for a skeletonisation algorithm. In fact,
pruning is useful to get rid of superfluous noisy branches and is indispensable to make the lin-
ear skeleton stable under object rotation, by eliminating those branches whose presence in the
skeleton depends on object orientation. In turn, a post-processing aimed at improving skele-
ton aesthetics by removing zigzags mostly created by final thinning, can also be performed to
favour the use of the skeleton for shape analysis.

In Figure 16, the skeleton of an object in the two-dimensional space is shown, which
has been computed according to different distance functions. Namely, the Manhattan dis-
tance d(1, 2) , the chessboard distance d(1, 1) , the weighted distance d(3, 4) , which assigns
weights 3 and 4 to the steps in the path via the edge-neighbors and the vertex-neighbors re-
spectively, and the weighted distance d(5, 7, 11), which also consider as possible neighbors
along the path pixels that can be reached with the knight move in the game of chess and as-
signs weights 5, 7 and 11 to the steps via edge-, vertex- and knight-neighbors along the path.
In each row, from left to right, the nearly thin skeleton, the unit-wide skeleton and the skeleton
resulting after pruning non significant peripheral branches are shown.

In Figure 17, a 3D object, its surface skeleton, computed according to D6, and the curve
skeleton obtained by furthermore compressing the surface skeleton by the algorithm [96] are
shown. As said before, in the three-dimensional case only the surface skeleton is reversible.

5 Skeletons from topological structures

Methods grouped in this Section have in common the property of coding the evolution and
the arrangement of the level set curves of a real, at least continuous, function defined on the
shape. The most popular representative of this class of descriptors is the Reeb graph [89].

In principle, topological graphs give an abstract representation of the shape structure, with
no information about the geometric embedding. Nevertheless, salient geometric information
can be extracted from the shape and attached to the skeleton, thus obtaining a representa-
tion that is not only topological but retains also a geometric correspondence with the original
shape. In this Section we overview the most popular techniques for constructing skeletons
from topological structures related to level sets, distinguishing them in two main classes:
those that derive from wave-like expansion techniques and those that more explicitly refer
to the Reeb graph definition. Contour trees, a specific kind of Reeb Graphs for scalar fields,
are treated in [19].

Skeletal Structures 169

Fig. 16. From top to bottom, skeletons computed by using d(1,2), d(1,1), d(3,4) and d(5,7,11).
From left to right, the nearly thin skeleton, the unit-wide skeleton and the skeleton resulting
after pruning non significant peripheral branches.

5.1 Methods based on wavefront propagation

Algorithms belonging to this category compute each level set of a continuous function defined
over the paradigm of a wave that originates in one point and propagates isotropically with

170 S. Biasotti et al.

(a) (b) (c) (d) (e) (f)

Fig. 17. A 3D object, a), its surface-skeleton computed according to D6, b), the simplified
surface-skeleton, c), the nearly thin curve-skeleton, d), the unit-wide curve-skeleton, e) and
the pruned-curve-skeleton, f).

respect to a given function f in each direction on the surface. Points belonging to the same
wave-front are characterized by the same function value by construction, and therefore define
a level set of f .

The construction of the Level Set Diagrams from triangulated polyhedra proposed in [76]
uses Euclidean distances for wave propagation [14]. In practice the wave traversal associates
to each vertex of a triangle mesh the Euclidean length of the minimal path from that point and
a source point. In particular, at the starting point the value of the wave traversal is zero. Each
successive wave is a sub-complex and a subset of the link of the previous one. The wave prop-
agation process continues until all vertices of the mesh have been selected using the Dijkstra
algorithm for finding the paths of minimum length. The wave traversal may be also defined
as a distance function. The seed point to start the wave propagation is automatically selected
using a heuristic, which works well on elongate tubular shapes. In this case, skeletal lines
obtained with different source points are very similar and the resulting skeleton is invariant
under rotation, translation and scaling. Anyway, the choice of only one source point deter-
mines a privileged “slicing direction”, which can lead to the loss of some features if the object
is not tubular shaped (like the horse ears in Figure 18(b)).

(a) (b) (c)

Fig. 18. Isolevels (a) and the centreline (b,c) of the horse as computed as described in [76].

An extension of the approaches in [14] and [76] to non-zero genus surfaces has been pre-
sented in [72]. In this case, the evaluation of the measuring function, the mesh characterization

Skeletal Structures 171

(based on local criteria) and the construction of the graph are performed at the same time using
the Djikstra’s algorithm. The independence on the object position makes this representation
suitable to quadrangulate a surface. A similar extension to volume models with through holes
has been presented by Wood et al. [103]; there, the graph is implicitly stored for generating
high quality semi-regular and multi-resolution meshes from distance volumes. Also in this
case, the object topology is achieved by considering a wavefront-like propagation from a seed
point, [13] (see figure 19). The calculation of the isosurfaces is obtained by applying the Dijk-
stra’s algorithm; this makes this approach unavailable for non-uniform scaling.

Fig. 19. Simulation of the wave-front propagation in [103].

Finally, a multi-resolution curvature evaluation is introduced in [82] to locate seed points
which are sequentially linked by using the natural topological distance on the simplicial com-
plex (see Figure 20(a,b) and also Figure CP-4(a,b) in Appendix E). More precisely, once
computed the approximated Gaussian curvature for the mesh vertices, for each high curvature
region Ri, i = 1, . . . , n, a representative vertex pi is selected.

(a) (b) (c) (d)

Fig. 20. (a) Vertex classification based on Gaussian curvature, (b) high curvature regions are
highlighted; (c) topological rings expanded from centers of high curvature regions (d) resulting
skeleton.

Starting at the same time from all representative vertices, waves made of vertices of in-
creasing neighbourhoods are computed in parallel until the whole surface is covered (see Fig-
ure 20(c) and also Figure CP-4(c) in Appendix E), in a way similar to the wave-traversal

172 S. Biasotti et al.

technique [13]. Waves growing from different seed points will collide and join where two
distinct protrusions depart, thus identifying a branching zone; self-intersecting waves can ap-
pear expanding near handles and through holes. A skeleton is drawn according to the wave
expansion: terminal nodes are identified by the representative vertices, while union or split of
topological rings give branching nodes. Arcs are drawn joining the center of mass of all rings
(see Figure 20(d) and also Figure CP-4(d) in Appendix E). This curvature-based graph graph
is invariant to translation, rotation and scaling. On the other hand, if the curvature evaluation
process does not recognize at least one feature region, e.g. surfaces with constant curvature
value as spheres, this approach is not meaningful for extracting a description of the shape.
Finally, this curve-line representation has at least as many cycles as the number of holes of
the surface; however, some unforeseen cycles may appear in correspondence of the wavefront
collisions.

5.2 Methods based on the Reeb graph

In the general case, the Reeb graph [89] of a n-dimensional manifold M under a mapping
function f is defined as a quotient space, which identifies the levels sets of f . More formally:
let f : M → R be a real valued function on a compact manifold M . Then, the Reeb graph of
M with respect to f is the quotient space of M × R defined by the equivalence relation “∼”,
which states that (P, f(P)) ∼ (Q, f(Q)) iff:

1. f(P) = f(Q);
2. P , Q are in the same connected component of f−1(f(P)).

Under the hypotheses that M is smooth and the function f is Morse and simple (i.e., its
critical points have different values of f), Reeb demonstrated that the quotient space is a finite
and connected simplicial complex of dimension 1, i.e., it is made of a connected collection
of vertices and edges. The counter-image of each vertex is a singular connected component
of the level sets of f , and the counter-image of an edge is homeomorphic to the topological
product of one connected component of the level sets by R [89]. Under the same hypotheses,
the number of cycles of the Reeb graph is an upper bound of the number of loops β1(M) on
the manifold [39].

Even if the Reeb graph definition holds in any dimension, in this Chapter we mainly focus
our attention to surfaces (bi-dimensional manifolds) embedded in R

3. In the graph represen-
tation a node is defined for each creation, merging, split or deletion of a contour, that is, to
topological changes affecting the number of connected components in the counter-image of
f . Each arc joins two successive critical levels in their own component. If an arc connects two
nodes, n1 and n2, then the topology of isolevels on M between the levels n1 and n2 does not
change along the connected component of M joining the corresponding points [69].

From a computational point of view, a centreline representation of the abstract graph may
be obtained associating to each contour its centroid; thus providing a geometric embedding
of the structure. In this way, the structure roughly sketches the shape, even if some points of
the skeletal structure may lye outside the shape. In addition, other geometric entities related to
the contour form may be stored in each node so that the original shape may be approximately
reconstructed from such a structure.

In Figure 21(a) the points drawn on the manifold represent the equivalence classes of
a closed surface with respect to the height function highlighted. In Figure 21(b) the Reeb’s
quotient space is represented as a traditional graph, where the equivalence classes are grouped
into arcs.

Skeletal Structures 173

(a) (b)

Fig. 21. A surface, (a), and its Reeb graph representation with respect to the height function,
(b).

From the application point of view, the properties of the Reeb graph strongly depend on
those of the function f and the “best” choice for the function f depends on the application
context. For a detailed overview on possible choices of the function f and their application in
Computer Graphics we refer to [20].

Firstly introduced in Computer Graphics by Shinagawa et al. [94], Reeb graphs have ini-
tially been limited to Morse height functions. Methods for extracting Reeb-like graphs have
been proposed in [94, 93, 98, 32, 73, 11, 85, 72, 39, 18, 102]. In this Section we focus on
methods for constructing the Reeb graph representation of closed surfaces.

A first algorithm, proposed by Shinagawa et al. [93], automatically constructed the graph
from surface contours generated by the height function. The extraction algorithm automati-
cally generates the graph arcs relative to a one-to-one correspondence between cross section
consisting of only one contour at first. Then the graph is completed using some heuristics
based on a weight function and a priori knowledge on the surface genus. Main drawbacks of
this algorithm are the need of a priori knowing the genus of the surface and the fact that this
procedure is limited to contour levels of the height function [93]. In addition, since information
on the shape between two consecutive cross sections is necessarily lost, the frequency of the
contours of the surface is critical; therefore, a reasonable computation of the graph requires a
high number of surface slices and it is time and space consuming (O(n2), where n represents
the total number of vertices of the scattered contours).

The method proposed by Hilaga et al. in [73] provides a multi-resolution Reeb graph rep-
resentation of triangle meshes which is independent of the object topology. The construction
of the graph begins with the extraction of the graph at the finest resolution desired, then adja-
cency rules are used to complete the multi-resolution representation in a fine-to-coarse order.
First of all, the domain of the mapping function is divided into a set of intervals. Second, tri-
angles whose image under f lies in two intervals are subdivided so that the image of every
triangle belongs to only one interval. Third, triangle sets, that is a connected component of
triangles whose images belong to the same interval, are calculated. A node of the graph is
associated to each triangle set. Then, arcs are detected by checking the region adjacency of
triangle sets. The graph extraction is computed in O(n + m) operations, where n and m rep-
resent, respectively, the number of triangles of the original mesh and those inserted during the
subdivision phase. In Figure 22 an example of the Reeb graph construction method proposed
in [73] is shown; in this case the domain of f is subdivided into 4 intervals. The contour inser-
tion in 22(b) determines a set of mesh regions that correspond to the graph nodes 22(c), while
their adjacency originates the arcs of the graph 22(d).

174 S. Biasotti et al.

1

0.75

0.25

0.5

0

1

0.75

0.25

0.5

0

11

0.75

0.25

0.5

0

0.75

0.25

0.5

0

n4

n3

n2

n0

n1

n4

n3

n2

n0

n1

(a) (b) (c) (d)

Fig. 22. Pipeline of the Reeb graph extraction in [73]. (b)

In [39] a method that performs also for non-orientable surfaces with or without bound-
aries, such as the Klein’s bottle, has been proposed. Basic assumption of this approach is that
the mapping function is Morse, thus critical points have pairwise different function values.
Critical points are detected analysing the star of each vertex and non-simple critical points
are simplified using the approach proposed in [53]. Once critical points have been identified,
all vertices of the model are processed according the increasing value of the function f and
the evolution of level sets is tracked. Since operations are done edges the complexity of the
algorithm is O(nlog(n)), where n is the number of edges of the complex. An extension of
this method has been proposed in [52] to analyse the evolution of the Reeb graph when the
mapping function varies with time. In this case a point at infinity is added to make the space
topologically equivalent to the 3-sphere so that the Reeb graph will be equivalent to a tree.
Evolution with time of the graph is coded using a Jacobi curve that collects the birth-death
points. Once a Reeb graph is computed, it is updated when an event occurs and stored in a
data structure that code the entire evolution. Finally the computational cost of this approach,
O(N + En), depends on the number N of simplexes of the triangulation of the space-time
data, the upper number n of simplexes at a time t and the amount E of birth-death and inter-
change events.

The approach proposed in [11, 17, 16] extracts a Reeb graph-like representation, called an
Extended Reeb graph representation both from a surface with or without boundary through a
finite set of contour levels of a given mapping function f . Since the contour levels decompose
a surface S into a set of regions, the behavior of their boundaries is used TO detect critical
areas and TO classify them as maximum, minimum and saddle areas. The characterization is
performed by analysing the number of border components of each region and the values of the
function f around them [11]. Critical areas correspond to nodes of the graph. Then arcs be-
tween nodes are constructed through an expansion process of the critical areas, in two phases:
first arcs from minima/maxima to saddle areas, then the remaining links between saddle areas
are inserted. In Figure 23 (see also Figure CP-5 in Appendix E) the main steps of the ERG
extraction process are depicted; in Figure 23(a) to each critical area is associated a node; Fig-
ure 23(b) represents how the maximum (resp. the minimum) is connected to another critical
area and the corresponding partial graph representation; finally, Figure 23(c) shows how the
expansion process continues until the graph is completed.

On the basis of the ERG representation, a further extension of the domain of the Reeb
graph to unorganized point clouds of 3D scan data has been proposed in [100]. The assumption
on the point clouds is that they represent a human body. The limitation that the original data are
not organized in a polygonal mesh is overcome assuming that the Euclidean distance among
a point p and its closest point q, is smaller than a given threshold ε, d(p, q) < ε. Point sets
whose sampling is sufficiently fine are connected in a discrete sense. Therefore, level sets are
defined as points that share the same value of the mapping function and are connected in the
discrete sense. The resulting graph is called the Discrete Reeb Graph (DRG).

Skeletal Structures 175

(a) (b) (c)

Fig. 23. The recognition of the critical areas (a), the expansion of maxima and minima (b) and
the complete graph. This model comes from the AIM@SHAPE repository: http://shapes.aim-
at-shape.net/.

Finally, the method proposed in [102] has been proposed for topologically simplifying and
repairing regularly sampled 3D grids of scalar values. That is a volumetric model in which
each grid cube has 8 neighbor grid points. In this case, the data are swept with a set of parallel
planes generating a set of slices, which are the sets of grid cubes bounded by two adjacent iso-
surfaces. Each connected component of a slice is called ribbon. The contours are given by the
intersection of the isosurfaces the slicing plane. In particular, the graph described in this ap-
proach is called augmented Reeb graph because it codes also geometric information for each
contour and each ribbon. Contour nodes in the graph correspond to a distance function traver-
sal of the surface, and cycles, in addition to the geometric information stored in the ribbons,
correspond to handles. The traversal is analyzed at discrete z intervals of the volumetric grid
along the boundary of a distance function. Therefore, the planar slices are used as an ordered
traversal through the slices an may be processed out-of-core of the volume data. Both ribbons
and contours correspond to nodes of the Reeb graph while their adjacency is coded in the
edges. To avoid that a handle is completely contained within a ribbon, the Euler characteristic
of each isosurface component is computed and the sweep is locally refined. In this way the
topology of the volume is completely coded and, in each interval, there is the correspondence
of the Reeb graph structure with its Euler characteristic.

6 Conclusions and future developments

In this Chapter we have briefly sketched a wide variety of skeletal structures defined in Com-
puter Graphics and Computer Vision. As discussed throughout the Chapter, there is one main
structure often referred to as the skeleton, the medial axis transform, and a huge quantity of
very similar skeletons that exhibit some (often very small) modifications. Being the MAT un-
fortunately hard to be computed in the general case and unstable to small perturbations of
the shape, a large number of variations of the MAT were introduced: some of them are just
approximations of the MAT for facilitating the skeleton computation (e.g. MAT computation
through Voronoi diagrams), while others come from different definitions and present different
properties. A few descriptors are able to represent the exact medial axis for a small category
of input shapes, like the bisectors of parametric curves and surfaces.

In the 3D case the distinction between the MAT and others skeletal structures becomes
more evident: in fact, while the MAT in 3D is essentially a medial surface, in many appli-
cations a linear skeleton may be preferable. This is the case of path planning for medical
applications in which a linear skeleton, as far as possible from the shape boundary, is needed,

176 S. Biasotti et al.

maybe to plan the inspection of a human organ [99]. The definitions and properties of these
linear 3D skeletons depend mostly on the input data type: for discrete representations like
collection of voxels, distance maps and thinning techniques are used; wave-front propagation
and level set approaches are preferred in the continuum case.

With reference to the properties that should characterize a descriptor, we highlight that
all the skeletal structure described in this Chapter provide a dimensional reduction of the
original representation. From the storage point of view the MAT (and the shock graph) gives
a representation which is also invertible, thus paying in terms of spatial and computational
costs. Bisectors (that may be seen as an over set of the medial axis) provide the most com-
plete information among the structures considered in this work, but, in practice, their effective
computation is limited to a few classes of models. Linear structures, like centrelines provided
by thinning or distance maps computations, provide a very compact and concise represen-
tation of the shape, even in case of 3D data; unfortunately loosing the invertibility property.
Nevertheless, as all medial representations, discrete centrelines satisfy the property of being
always inside (centrality) the shape, which made them popular in applications related to shape
animation, deformation and retrieval.

Other structures that are defined on the basis of a real function, like Reeb graphs, capture
the topology of the shape. They can always be represented as graphs, eventually enriched
with additional geometric attributes, but they are only able to approximate the original dataset.
Depending on the application context, the flexibility in the choice of the functions makes these
descriptors tunable to different application domains. In particular, there is a growing interest
on the definition of functions that do not depend on the (geometric) embedding of the shape,
like the so-called Laplacian eigenvalues [50].

In every application context, the choice of the most suitable skeleton must cope with effi-
ciency and expressive power of the representation, and we tried to underline these aspects in
the Chapter. Provided that a function, which is independent of object rigid transformations, is
suitable for recognition tasks, the Reeb graph it could be anyway preferable to the MAT, which
is usually complex (in terms of number of nodes and edges) and is unstable to small pertur-
bations of the shape, thus giving very different skeletons also for similar shapes. Therefore,
the relatively simple but topologically effective structure of these descriptions has suggested a
large use of them in shape matching and retrieval tasks.

About the stability of the representation we observe that bisectors, medial axes and shock
graphs intrinsically depend on small shape modifications. Nevertheless, as discussed in Sec-
tion 4.1, this problem has been partially overcome with pruning strategies that are stable un-
der small shape perturbations. Discrete centrelines derived from thinning or distance maps are
usually robust to small shape variations.

As far as computational issues are concerned, in table 3 we briefly summarize the com-
plexity of the algorithms described in the Chapter.

In particular, we point out that the complexity of the bisectors may be expressed in terms
of degree of the parametric representation. In particular, given two polynomial parametric
curves in the plane of degree m, the bisector curve is represented as an implicit function of
degree 4m − 2. For example, for two cubic curves (m = 3), the bisector is represented as

1 For point sets with provable small Voronoi graph, F is reasonably small: F = O(n log n)
[9] or F = O(n) [8].

2 Once a set of seed points has been recognized, the complexity of the skeleton extraction
is linear in the number of mesh vertices but an accurate evaluation of the high curvature
points has quadratic cost.

Skeletal Structures 177

Summary
Approach Description Costs

[33] Voronoi graph O(n[k
2]) + n log n

[34] Voronoi graph O((n + F) log2 F)1

[77] Medial axis of a polygon O(n log n

Discrete skeleton 2D images O(n2)

Discrete skeleton 3D images O(n3)

[1] Straight skeleton O(nr log n)

[60] Straight skeleton O(n1+ε + n8/11+εr9/11+ε)

[37] Straight skeleton O(n log2 n + r
√

r log r)

[97] Linear Axis O(n)

[76, 72] Centerline O(n log(n))

[103] Centerline O(n log(n))

[81]2 Centerline O(n)

[93, 94] Reeb graph O(n2)

[73] Reeb graph O((n + m))

[11, 16] Reeb graph O(max(m + n, n log(n)))

[39] Reeb graph O(n log(n))

[102] Reeb graph O(n log(n))

Table 3. Classification of the methods for skeleton extraction. Symbols: n represent the num-
ber of vertices or points or pixels (voxels); m the number of vertices inserted in the mesh
during an eventual contouring phase; e the number of edges in the neighborhood tree, r is the
number of reflex vertices.

an implicit of degree 10. Hence, the Voronoi cells and diagrams of cubic curves could be
represented as subregions of degree 10 implicits.

To conclude, we would like to emphasize that skeletal structures will play a fundamental
role in the development of specific tools for the (future) semantic annotation of shapes, or
shape parts, according to the concepts formalised by a domain ontology. In fact, the computa-
tion of a skeleton and the extraction of features automatically provide a way for decomposing
a shape into significant parts, which may be further analysed and annotated.

References

1. O. Aichholzer, D. Alberts, F. Aurenhammer, and B. Gartner. A novel type of skeleton
for polygons. Journal of Universal Computer Science, 1:752–761, 1995.

2. N. Amenta and M. Bern. Surface reconstruction by Voronoi filtering. Discrete and
Computational Geometry, 22:481–504, 1999.

3. N. Amenta, S. Choi, and R.K. Kolluri. The power crust, unions of balls, and the medial
axis transform. Computational Geometry: Theory and Applications, 19:127–153, 2001.

4. C. Arcelli and G. Sanniti di Baja. Euclidean skeleton via center-of-maximal-disc extrac-
tion. Image and Vision Computing, 11:163–173, 1993.

5. D. Attali. Squelettes et graphes de Voronoi 2-D et 3-D. PhD thesis, University Joseph
Fourier, 1995.

178 S. Biasotti et al.

6. D. Attali, J.-D. Boissonnat, and H. Edelsbrunner. Stability and computation of medial
axes — A state-of-the-art report. In T. Möller, B. Hamann, and B. Russell, editors,
Mathematical Foundations of Scientific Visualization, Computer Graphics, and Massive
Data Exploration. Springer-Verlag, 2005. To appear.

7. D. Attali and J.D. Boissonnat. Complexity of the Delaunay triangulation of points on
polyhedral surfaces. Discrete and Computational Geometry, 30(3):437–452, 2003.

8. D. Attali and J.D. Boissonnat. A linear bound on the complexity of the Delaunay tri-
angulation of points on polyhedral surfaces. Discrete and Computational Geometry,
31:369–384, 2004.

9. D. Attali, J.D. Boissonnat, and A. Lieutier. Complexity of the Delaunay triangulation of
points on surfaces: the smooth case. In SCG ’03: Proc. of the 19th Annual Symposium
on Computational Geometry 2003, pages 201–210. ACM Press, 2003.

10. D. Attali and A. Montanvert. Modeling noise for a better simplification of skeletons. In
ICIP ’96: Proc. of the International Conference on Image Processing, volume 3, pages
13–16, 1996.

11. M. Attene, S. Biasotti, and M. Spagnuolo. Shape understanding by contour-driven retil-
ing. The Visual Computer, 19(2-3):127–138, 2003.

12. F. Aurenhammer and H. Imai. Geometric relations among Voronoi diagrams. Geometria
Dedicata, 27:65–75, 1988.

13. U. Axen and H. Edelsbrunner. Auditory Morse analysis of triangulated manifolds. In
Mathematical Visualization, pages 223–236. Springer-Verlag, 1998.

14. Ulrike Axen. Computing Morse functions on triangulated manifolds. In SODA ’99:
Proc. of the 10th ACM-SIAM Symposium on Discrete Algoritms 1999, pages 850–851.
ACM Press, 1999.

15. M. Bern, D. Eppstein, P.K. Agarwal, N. Amenta, P. Chew, T. Dey, D.P. Dobkin,
H. Edelsbrunner, C. Grimm, L.J. Guibas, J. Harer, J. Hass, A. Hicks, C.K. Johnson,
G. Lerman, D. Letscher, P. Plassmann, E. Sedgwick, J. Snoeyink, J. Weeks, C. Yap,
and D. Zorin. Emerging challenges in computational topology. In Report from the
NSF-funded Workshop on Computational Topology, 1999.

16. S. Biasotti. Computational Topology Methods for Shape Modelling Applications. PhD
thesis, Università degli Studi di Genova, May 2004.

17. S. Biasotti. Reeb graph representation of surfaces with boundary. In SMI ’04: Proc.
of Shape Modeling Applications 2004, pages 371–374, Los Alamitos, Jun 2004. IEEE
Computer Society.

18. S. Biasotti, B. Falcidieno, and M. Spagnuolo. Surface shape understanding based on
extended Reeb graphs. In Topological Data Structures for Surfaces: An Introduction for
Geographical Information Science, pages 87–103. John Wiley and Sons, 2004.

19. S. Biasotti, L. De Floriani, B. Falcidieno, and L. Papaleo. Morphological representations
of scalar fields. In Shape Analysis and Structuring. Springer, 2007.

20. S. Biasotti, S. Marini, M. Mortara, and G. Patane. An overview on properties and effi-
cacy of topological skeletons in shape modelling. In M.S. Kim, editor, SMI ’03: Proc.
of Shape Modeling International 2003, pages 245–254, Los Alamitos, May 2003. IEEE
Computer Society.

21. H. Blum. A transformation for extracting new descriptors of shape. In Weiant Wathen-
Dunn, editor, Models for the Perception of Speech and Visual Form. Proc. of a Sympo-
sium, pages 362–380, Cambridge MA, Nov 1967. MIT Press.

22. J.D. Boissonnat and F. Cazals. Natural neighbor coordinates of points on a surface.
Computational Geometry-Theory and Applications, 19(2-3):155–173, 2001.

Skeletal Structures 179

23. J.D. Boissonnat and M. Karavelas. On the combinatorial complexity of Euclidean
Voronoi cells and convex hulls of d-dimensional spheres. In SODA ’03: Proc. of the
14th ACM-SIAM Symposium on Discrete Algoritms, pages 305–312. ACM Press, 2003.

24. G. Borgefors. Distance transformations in digital images. Computer Vision, Graphics,
and Image Processing, 34:344–371, 1986.

25. G. Borgefors. On digital distance transform in three dimensions. Computer Vision and
Image Understanding, 64(3):368–376, 1996.

26. G. Borgefors, I. Nyström, G. Sanniti di Baja, and S. Svensson. Simplification of 3D
skeletons using distance information. In L. J. Latecki, R. A. Melter, D. M. Mount, and
A.Y. Wu, editors, Proc. of SPIE - Vision Geometry IX, volume 4117, pages 300–309,
San Diego - USA, 2000.

27. J.W. Brandt. Convergence and continuity criteria for discrete approximations of the
continuous planar skeletons. CVGIP: Image Understanding, 59:116–124, 1994.

28. J.W. Brandt and V.R. Algazi. Continuous skeleton computation by Voronoi diagram.
CVGIP: Image Understanding, 55:329–337, 1992.

29. C. Burnikel. Exact Computation of Voronoi Diagrams and Line Segment Intersections.
Ph.D thesis, Universität des Saarlandes, March 1996.

30. C.Arcelli and G. Sanniti di Baja. A thinning algorithm based on prominence detection.
Pattern Recognition, 13(3):225–235, 1981.

31. C.Arcelli and G. Sanniti di Baja. Skeletons of planar patterns. In T.Y. Kong and
A. Rosenfeld, editors, Topological Algorithms for Digital Image Processing, pages 99–
143. North-Holland, 1996.

32. H. Carr, J. Snoeyink, and U. Axen. Computing contour trees in all dimensions. In
SODA ’00: Proc. of the 11th ACM-SIAM Symposium on Discrete Algoritms 2000, pages
918–926. ACM Press, 2000.

33. The CGAL 3.1 User Manual.
34. T.M. Chan, J. Snoeyink, and C.K. Yap. Primal dividing and dual pruning: Output-

sensitive construction of 4-D polytopes and 3-D Voronoi diagrams. Discrete and Com-
putational Geometry, 18:433–454, 1997.

35. F. Chazal and A. Lieutier. Stability and homotopy of a subset of the medial axis. In SMA
’04: Proc. of the 9th ACM Symposium on Solid Modeling and Applications 2004, pages
243–248. ACM Press, 2004.

36. F. Chazal and R. Soufflet. Stability and finiteness properties of medial axis and skeleton.
Journal on Control Dynamics and Systems, 10:149–170, 2004.

37. S.W. Cheng and A. Vigneron. Motorcycle graphs and straight skeletons. In SODA ’02:
Proc. of the 13th ACM-SIAM Symposium on Discrete Algoritms 2002, pages 156–165.
ACM Press, 2002.

38. S.W. Choi and H.P. Seidel. Linear one-sided stability of MAT for weakly injective
3D domain. In SMA ’02: Proc. of the 7th ACM Symposium on Solid Modeling and
Applications 2002, pages 344–355. ACM Press, 2002.

39. K. Cole-McLaughlin, H. Edelsbrunner, J. Harer, V. Natarajan, and V. Pascucci. Loops
in Reeb graphs of 2-manifolds. In SCG ’03: Proc. of the 19th Annual Symposium on
Computational Geometry 2003, pages 344–350. ACM Press, 2003.

40. N. D. Cornea, D. Silver, and P. Min. Curve-skeleton applications. In Proceedings IEEE
Visualization, pages 95–102, 2005.

41. T. Culver. Computing the medial axis of a polyhedron reliably and efficiently. PhD
thesis, University North Carolina, Chapel Hill, North Carolina, 2000.

42. T. Culver, J. Keyser, and D. Manocha. Exact computation of the medial axis of a poly-
hedron. Computer Aided Geometric Design, 21(1):65–98, 2004.

180 S. Biasotti et al.

43. T. Dey and j. Sun. Defining and computing curve-skeletons with medial geodesic func-
tion. In Proceedings of the Symposium on Geometry Processing, pages 143–152, 2006.

44. T.K. Dey and W. Zhao. Approximating the medial axis from the Voronoi diagram with
a convergence guarantee. Algorithmica, 38, 2004.

45. G. Sanniti di Baja. Well-shaped, stable and reversible skeletons from the (3,4)-distance
transform. Visual Communication and Image Representation, 5:107–115, 1994.

46. G. Sanniti di Baja. Representing shape by line patterns. In P. Wang and A. Rosenfeld,
editors, Advances in Structural and Syntactical Pattern Recognition, volume 1121 of
Lecture Notes in Computer Science, pages 230–239. Springer-Verlag, 1996.

47. G. Sanniti di Baja and I. Nyström. Skeletonization in 3D discrete binary images. In C.H.
Chen and P.S.P. Wang, editors, Handbook of Pattern Recognition and Computer Vision,
Chapter 2.2, pages 137–156. World Scientific, Singapore, 3rd edition, January 2005.

48. G. Sanniti di Baja and E. Thiel. Skeletonization algorithm running on path-based dis-
tance maps. Image and Vision Computing, 14:47–57, 1997.

49. G.Sanniti di Baja and S. Svensson. Surface skeletons detected on the D6 distance trans-
form. In F.J. Ferri et al., editor, Proc. of SSSPR’2000 - Advances in Pattern Recognition,
volume 1121, pages 387–396, Alicante, 2000. LNCS, Springer-Verlag.

50. S. Dong, P.-T. Bremer, M. Garland, V. Pascucci, and J. Hart. Spectral surface quadran-
gulation. ACM Transactions on Graphics, 25(3):1057–1066, August 2006.

51. D. Dutta and C. Hoffmann. On the skeleton of simple CSG objects. ASME J. of Me-
chanical Design, 115:87–94, 1993.

52. H. Edelsbrunner, J. Harer, A. Mascarenhas, and V. Pascucci. Time-varying Reeb graphs
for continuous space-time data. In Proceeding of the 20-th ACM Symposium on Compu-
tational Geometry, pages 366–372, 2004.

53. H. Edelsbrunner, J. Harer, and A. Zomorodian. Hierarchical Morse-Smale complexes
for piecewise linear 2-manifolds. Discrete and Computational Geometry, 30:87–107,
2003.

54. G. Elber and M. S. Kim. Bisector curves of planar rational curves. Computer Aided
Design, 30(14):1089–1096, December 1998.

55. G. Elber and M. S. Kim. The bisector surface of freeform rational space curves. ACM
Trans. on Graphics, 17(1):32–50, January 1998.

56. G. Elber and M. S. Kim. Computing rational bisectors. Computer Graphics and Appli-
cations, 19(6):76–81, November-December 1999.

57. G. Elber and M. S. Kim. Rational bisectors of CSG primitives. In The Fifth ACM/IEEE
Symposium on Solid Modeling and Applications, Ann Arbor, Michigan, pages 159–166,
June 1999.

58. G. Elber and M. S. Kim. A computational model for nonrational bisector surfaces:
Curve-surface and surface-surface bisectors. In Geometric Modeling and Processing
2000, Hong Kong, pages 364–372, April 2000.

59. G. Elber and M. S. Kim. Geometric constraint solver using multivariate rational spline
functions. In The Sixth ACM/IEEE Symposium on Solid Modeling and Applications, Ann
Arbor, Michigan, pages 1–10, June 2001.

60. D. Eppstein and J. Erickson. Raising roofs, crashing cycles, and playing pool: Applica-
tions of a data structure for finding pairwise interactions. Discrete and Computational
Geometry, 22:569–592, 1999.

61. R. Farouki and J. Johnstone. The bisector of a point and a plane parametric curve.
Computer Aided Geometric Design, 11(2):117–151, April 1994.

62. R. Farouki and R. Ramamurthy. Specified-precision computation of curve/curve bi-
sectors. Int. J. of Computational Geometry & Applications, 8(5-6):599–617, October-
December 1998.

Skeletal Structures 181

63. R. Farouki and R. Ramamurthy. Voronoi diagram and medial axis algorithm for planar
domains with curved boundaries I. theoretical foundations. J. of Computational and
Applied Mathematics, 102:119–141, 1999.

64. R. Farouki and R. Ramamurthy. Voronoi diagram and medial axis algorithm for planar
domains with curved boundaries II. detailed algorithm description. J. of Computational
and Applied Mathematics, 102:119–141, 1999.

65. S. Fortune. A sweepline algorithm for Voronoi diagrams. Algorithmica, 2:153–174,
1987.

66. P. Giblin and B.B. Kimia. A formal classification of 3D medial axis points and their local
geometry. In CVPR 2000: Proc. of the IEEE Computer Society Conference on Computer
Vision and Pattern Recognition 2000, volume 1, pages 566–573, Los Alamitos, 2000.
IEEE Computer Society.

67. P.J. Giblin and B.B. Kimia. On the local form and transitions of symmetry sets, medial
axes, and shocks. International Journal of Computer Vision, 54:143–157, 2003.

68. S. Goswami, T. K. Dey, and C. L. Bajaj. Identifying flat and tubular regions of a shape
by unstable manifolds. In SPM ’06: Proceedings of the 2006 ACM symposium on Solid
and physical modeling, pages 27–37, New York, NY, USA, 2006. ACM Press.

69. A. Gramain. Topologie des surfaces. Presses Universitaires de France, 1971.
70. I. Hanniel, R. Muthuganapathy, G. Elber, and M. S. Kim. Precise Voronoi cell extraction

of free-form rational planar closed curves. In ACM Symposium on Solid and Physical
Modeling, pages 51–59, June 2005.

71. M. Held. Vroni: An engineering approach to the reliable and efficient computation of
Voronoi diagrams of points and line segments. Computational Geometry: Theory and
Applications, 18:95–123, 2001.

72. F. Hetroy and D. Attali. Topological quadrangulations of closed triangulated surfaces
using the Reeb graph. Graphical Models, 65(1-3):131–148, 2003.

73. M. Hilaga, Y. Shinagawa, T. Kohmura, and T. L. Kunii. Topology matching for fully
automatic similarity estimation of 3D shapes Los Angeles, CA. Computer graphics
proceedings, annual conference series: SIGGRAPH conference proceedings, pages 203–
212, Aug 2001.

74. D.S. Kim, Y. Cho, and D. Kim. Euclidean Voronoi diagram of 3D balls and its com-
putation via tracing edges. In Computer Aided Design, pages 1412–1424, November
2005.

75. B. Kimia, A. Tannenbaum, and S. Zucker. Shapes, shocks, and deformations, I: The
components of shape and the reaction-diffusion space. International Journal of Com-
puter Vision, 15:189–224, 1995.

76. F. Lazarus and A. Verroust. Level set diagrams of polyhedral objects. In W.F. Bronsvoort
and D.C. Anderson, editors, SMA ’99: Proc. of the 5th ACM Symposium on Solid Mod-
eling and Applications 1999, pages 130–140. ACM Press, 1999.

77. D. T. Lee. Medial axis transformation of a planar shape. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 4(4):363–369, 1982.

78. A. Lieutier. Any open bounded subset of R
n has the same homotopy type as its medial

axis. In Proc. 8th ACM Sympos. Solid Modeling Appl., pages 65–75. ACM Press, 2003.
79. G. Matheron. Examples of topological properties of skeletons. In Image Analysis and

Mathematical Morphology, Volume 2: Theoretical Advances, pages 217–238. Academic
Press, 1988.

80. J. Milnor. Morse Theory. Princeton University Press, New Jersey, 1963.
81. M. Mortara and G. Patané. Shape-covering for skeleton extraction. International Journal

of Shape Modelling, 8:245–252, 2002.

182 S. Biasotti et al.

82. M. Mortara, G. Patane, M. Spagnuolo, B. Falcidieno, and J. Rossignac. Blowing bubbles
for multi-scale analysis and decomposition of triangle meshes. Algorithmica, 38(1):227–
248, 2004.

83. R.L. Ogniewicz. Skeleton-space: A multi-scale shape description combining region and
boundary information. In CVPR ’94: Proc. of the IEEE Computer Society Conference
on Computer Vision and Pattern Recognition 1994, pages 746–751, Los Alamitos, 1994.
IEEE Computer Society.

84. R.L. Ogniewicz and O. Kubler. Hierarchic Voronoi skeletons. Pattern Recognition,
28:343–359, 1995.

85. V. Pascucci and K. Cole-McLaughlin. Parallel computation of the topology of level sets.
Algorithmica, 38:249–268, 2003.

86. M. Peternell. Geometric properties of bisector surfaces. In Graphical Models and Image
Processing, 2000.

87. M. Ramanathan and B. Gurumoorthy. Constructing medial axis transform of planar
domains with curved boundaries. Computer Aided Design, 35:619–632, 2002.

88. M. Ramanathan and B. Gurumoorthy. Constructing medial axis transform of ex-
truded and revolved 3D objects with free-form boundaries. Computer-Aided Design,
37(13):1370–1387, 2005.

89. G. Reeb. Sur les points singuliers d’une forme de Pfaff complètement intégrable ou
d’une fonction numérique. Comptes Rendus Hebdomadaires des Séances de l’Académie
des Sciences, 222:847–849, 1946.

90. A. Rosenfeld. Digital geometry: Introduction and bibliography. In Advances in Digital
and Computational Geometry, 1998.

91. E. Sherbrooke, N. M. Patrikalakis, and F.-E. Wolter. Differential and topological prop-
erties of medial axis transforms. Graphical Models and Image Processing, 58:574–592,
1996.

92. E.C. Sherbrooke, N.M. Patrikalakis, and E. Brisson. An algorithm for the medial axis
transform of 3D polyhedral solids. IEEE Trans. on Visualization and Computer Graph-
ics, 22:44–61, 1996.

93. Y. Shinagawa and T.L. Kunii. Constructing a Reeb graph automatically from cross
sections. IEEE Computer Graphics and Applications, 11:44–51, 1991.

94. Y. Shinagawa, T.L. Kunii, and Y.L. Kergosien. Surface coding based on Morse theory.
IEEE Computer Graphics and Applications, 11:66–78, 1991.

95. S. Svensson and G. Sanniti di Baja. Simplifying curve skeletons in volume images.
Computer Vision and Image Understanding, 90:242–257, 2003.

96. S. Svensson, I. Nystr om, and G. Sanniti di Baja. Curve skeletonization of surface-
like objects in 3D images guided by voxel classification. Pattern Recognition Letters,
23(12):1419–1426, 2002.

97. M. Tanase and R. C. Veltkamp. A straight skeleton approximating the medial axis.
Lecture Notes in Computer Science, 3221:809–821, Sep 2004.

98. M. van Kreveld, R. Oostrum, C. Bajaj, V. Pascucci, and D. Schikore. Contour trees
and small seed sets for isosurface transversal. In SCG ’97: Proc. of the 13th Annual
Symposium on Computational Geometry 1997, pages 212–220. ACM Press, Jun 1997.

99. M. Wan, Z. Liang, Q. Ke, L. Hong, I. Bitter, and A. Kaufman. Automatic centerline
extraction for virtual colonoscopy. IEEE Trans. on Medical Imaging, 21(12):1450–1460,
December 2002.

100. N. Werghi, Y. Xiao, and J. P. Siebert. A functional-based segmentation of human body
scans in arbitrary postures. IEEE Transactions on Systems, Man, and Cybernetics - Part
B: Cybernetics, 36(1):153–165, 2006.

Skeletal Structures 183

101. F.E. Wolter. Cut locus & medial axis in global shape interrogation & representation.
Technical Report Design Laboratory Memorandum 92-2, MIT, 1992.

102. Z. Wood, H. Hoppe, M. Desbrun, and P. Schroeder. Removing excess topology from
isosurfaces. ACM Trans. on Graphics, 23:190–208, 2004.

103. Z.J. Wood, M. Desbrun, P. Schroder, and D. Breen. Semi-regular mesh extraction from
volumes. In VIS 2000: Proc. of IEEE Conference on Visualization 2000, pages 275–282,
Los Alamitos, 2000. IEEE Computer Society.

Morphological Representations of Scalar Fields

Silvia Biasotti1, Leila De Floriani2, Bianca Falcidieno1, and Laura Papaleo2

1 Istituto di Matematica Applicata e Tecnologie Informatiche, - Italian National Research
Council, Genova (Italy) {silvia,bianca}@ge.imati.cnr.it

2 Department of Computer Science (DISI) - University of Genova, Genova (Italy)
{deflo,papaleo}@disi.unige.it

Summary. We consider the problem of representing and extracting morphological informa-
tion from scalar fields. We focus on the analysis and comparison of algorithms for morpho-
logical representation of both 2D and 3D scalar fields. We review algorithms which compute
a decomposition of the domain of a scalar field into a Morse and Morse-Smale complex and
algorithms which compute a topological representation of the level sets of a scalar field, called
a contour tree. Extensions of the morphological representations discussed in the chapter are
briefly discussed.

1 Introduction

The problem of representing morphological information extracted from discrete scalar fields is
a very relevant issue in several applications, such as terrain modeling and volume data analysis
and visualization.

Discrete scalar fields are defined by a finite set of points in a domain D in Rd, at each
of which a value of a scalar function f is given. Traditionally, discrete scalar fields are de-
scribed by decomposing their domain into cells, on which an interpolating function is based
on discrete function values given as input. The discretization of the domain is often obtained
through a simplicial mesh (such as a triangle, or a tetrahedral mesh), or through a regular grid
formed by square cells in 2D, or by hexahedral cells in 3D.

This geometry-based description provides an accurate representation of a scalar field, but
it fails in capturing the morphological structure of the field defined by its critical points, and
by its integral lines and surfaces. Beside being compact, a morphological description supports
also a knowledge-based approach to analyze, visualize and understand the scalar field behav-
ior (in space and time), as required, for instance, in visual data mining applications. Since
topology focuses on qualitative properties of spaces (such as their connectedness or the num-
ber and types of their holes), it is the best tool to describe the shape of a mathematical model
at a high level of abstraction. Specifically, Morse theory deals with the analysis of geomet-
ric shapes and on the extraction of synthetic shape abstractions, preserving their topological
properties as well as their main morphological characteristics.

In the last decades, there has been a considerable amount of research on extracting criti-
cal features from grey-scale images and terrain models, and a more limited amount of work
in the case of 3D scalar fields. Also watershed algorithms, originally developed for image

186 S. Biasotti et al.

segmentation, can be applied to extract critical features from a scalar field [53, 85, 75, 8]. A
survey of watershed techniques can be found in [84, 69]. While most of watershed algorithms
are focused on 2D regular grids, there are some algorithms which extend the watershed ap-
proach to triangular meshes [50]. More recent work in computational geometry concentrates
on representing the morphology of a d-dimensional scalar field through a decomposition of its
domain into d-dimensional cells bounded by cells of lower dimensionality, forming a so-called
Morse-Smale decomposition. [36, 77]. These techniques are rooted in Morse theory and try
to simulate in the discrete case the Morse-Smale decomposition defined for C2-differentiable
functions [54, 73]. Another fundamental way for analyzing a scalar field is to extract its level
sets. The contour tree is a topological abstraction that encodes the evolution and the arrange-
ment of the contour lines [16, 63, 20, 23]. The contour tree provides a more concise description
of the topology of a scalar field, and, unlike a Morse-Smale complex, it does not encode geo-
metric information related to the flow of the gradient of the field.

In this chapter, we focus on the analysis of algorithms for extracting structural information
from 2D and 3D scalar fields. Specifically, we will review: (i) algorithms for extracting critical
points; (ii) algorithms for computing cellular decompositions of the domain of a scalar field
which capture the configuration of the critical points and the integral lines connecting them as
well as (iii) algorithms for computing the contour tree. We analyze and classify these methods
based on the dimension of the scalar field (2D or 3D) and on the digital model underlying the
scalar field. Morphological representations for vector fields are treated in Chapter [81].

The remainder of the chapter is organized as follows. Section 2 reviews some background
notions. Section 3 presents theoretical results and algorithms for extracting critical points.
Section 4 reviews algorithms for the extraction of a decomposition of the domain of a scalar
field into a Morse-Smale complex, while Section 5 reviews algorithms for extracting a contour
tree. Section 6 draws some concluding remarks and discusses open problems.

2 Background Notions

In this Section, we introduce some background notions required in the rest of this chapter.
First, we briefly review some concepts from algebraic topology on cell and simplicial com-
plexes (see [52] for a complete treatment of this subject). Then, we formalize the notion of
digital model of scalar fields in a dimension-independent way (see [33]). We introduce some
basic notions of Morse theory in d-dimensions, although our main interest will be in the 2D
and 3D cases (see [54, 73], for more details). We then introduce Morse and Morse-Smale com-
plexes for a C2-differentiable real-valued function f defined over a domain D ⊆ R

d [36].
Finally, we discuss a representation of the level sets of a scalar field, called the contour tree
[20], or, in case of generic manifolds, a Reeb graph [68, 72]. In Table 1 we list some of the
most important symbols used in the rest of the chapter together with their meaning.

2.1 Cell and Simplicial Complexes

Intuitively, a Euclidean cell complex is a collection of basic elements, called cells, which
cover a domain in the Euclidean space [51]. A k-dimensional cell (k-cell) γ in the Euclidean
space Rd, 1 ≤ k ≤ d, is a subset of Rd homeomorphic to an open k-dimensional ball
Bk = {x ∈ R

k : ||x|| < 1}3. A 0-cell is a point in Rd, k is called the order, or dimension, of
a k-cell γ.

3 ||x|| denotes the norm of vector x

Morphological Representations of Scalar Fields 187

Table 1. Symbols used throughout the chapter

Symbol Description

D Domain
Rd d-dimensional Euclidean Space
γ k-dimensional cell
Bk k-dimensional ball
Γ Euclidean cell complex
Σ k-dimensional simplicial complex
σ simplex
V finite set of points in Rd

S scalar dataset
M digital model
∇f gradient vector of f
λ index of a critical point
W s(p) stable manifold
W u(p) unstable manifold
SN surface network

A Euclidean cell complex is a finite set Γ of cells of dimension at most k in Rd, 0 ≤ k ≤
d, such that the interiors of the cells of Γ are disjoint, and if γ, γ1 ∈ Γ , such that γ ∩ γ1 �= ∅,
then γ ∩ γ1 is the disjoint union of cells of Γ .

The maximum k of the dimensions of the cells γ over all cells of a complex Γ is called
the dimension, or the order, of the complex. The domain (or carrier) ∆Γ of a Euclidean cell
complex Γ is the subset of Rd spanned by the cells of Γ . The relative boundary b(γ) of
a k-cell γ, 1 ≤ k ≤ d, is the boundary of γ with respect to the topology induced by the
usual topology of Rd. Note that the relative boundary of a 0-cell is empty. The combinatorial
boundary B(γ) of a cell γ is the collection of all cells γ′ of Γ such that γ′ ⊆ b(γ) (as a point
set). An h-cell γ′ which belongs to the combinatorial boundary B(γ) of a cell γ is called an
h-face of γ. If γ′ �= γ, then γ′ is called a proper face of γ. Note that each cell γ is a face of
itself. The star (or combinatorial co-boundary) St(γ) of a cell in a Euclidean cell complex
Γ is the union of {γ} with the set of all cells γ′ of Γ which contain γ in their combinatorial
boundary (see Figure 1). Given a real function f defined on Γ , the upper star St+(γ) and
lower star St−(γ) are formed by those simplexes in the star of γ having a function value less
or greater than f(γ), respectively.

The link Lk(γ) of a cell γ is the set of cells of Γ forming the combinatorial boundary of
the cells in St(γ) − {γ} not containing γ (see Figure 1). Note that Lk(γ) is a subcomplex of
Γ formed by the cells of St(γ) not intersecting γ.

A subset Λ of Γ is called a sub-complex of Γ if and only if Λ is a cell complex. In this
work, we are interested in a specific kind of sub-complexes, called skeletons. The k-skeleton
of a d-dimensional Euclidean cell complex Γ is the sub-complex of Γ which consists of all
the cells of Γ of dimension less than or equal to k, where 0 ≤ k ≤ d.

In this chapter, we will consider two classes of complexes that are used as the basis for
defining a digital model of a scalar field (see Subsection 2.2), namely regular grids, and sim-
plicial complexes. A d-dimensional regular grid is a Euclidean d-dimensional cell complex in
which all k-cells, 0 < k ≤ d, are hypercubes. In 2D, 1-cells are straight-line segments and
2-cells are squares. In 3D, 1- and 2-cells are the same as in the 2D case, and 3-cells are cubes.

188 S. Biasotti et al.

v

Fig. 1. A complex and the star (the set of cells shaded) and the link (the lines in bold) of a
vertex v

Euclidean simplicial complexes are special cases of cell complexes, but their cells, called sim-
plexes, are closed and defined by the convex combination of points in the Euclidean space.
Let k be a non-negative integer. A k-simplex (or a k-dimensional simplex) σ is the convex hull
of k + 1 affinely independent points in Rd (with k ≤ d), called vertices of σ. k is called the
dimension of σ. A face σ of a k-simplex γ, σ ⊆ γ, is any h-simplex (0 ≤ h ≤ k) generated
by (h + 1) vertices of γ. Conversely, γ is said to be a co-face of σ.

In the remainder of this chapter, we will consider d-dimensional simplicial complexes
with a manifold domain, embedded either in the d-dimensional or in the (d + 1)-dimensional
space (in particular, d will be 2, or 3). Recall that a d-manifold is a (separable Hausdorff)
topological space in which each point p has a neighborhood which is homeomorphic to the
Euclidean space Rd.

2.2 Digital Models of a Scalar Field

Let V be a finite set of points in Rd, and F be a set of scalar values given at the points of V .
Then, S = (V, F) is called a scalar data set. Given the scalar data set S = (V, F), a digital
model of a scalar field defined on S is a pair M = (Γ, f), where Γ is a d-dimensional cell
complex such that the vertex set of Γ is the same as V , and f is a function defined at least at
the vertices of Γ , such that f(p) = F (p), for all p ∈ V .

The two most relevant cases of a digital model of a scalar field arise depending on whether
Γ is a simplicial complex, or a regular grid. In the former case, we call the field model a
simplicial model, in the latter case, we call it a regular model . In a simplicial model, usually f
is chosen as a piecewise-linear interpolating function defined over the simplexes of Γ . Regular
models can be encoded in very compact data structures, since only the scalar values have to
be stored. Simplicial models, on the other hand, better adapt to the morphology of the field,
since their vertices can be irregularly and adaptively sampled over its domain.

In the 2D case, M is called a terrain model. A regular terrain model M is often called a
Regular Square Grid (RSG). A simplicial terrain model M is called a Triangulated Irregular
Network (TIN), when f is a piecewise-linear interpolating function defined on the triangles
and the edges of Γ .

2.3 Morse Theory

We review here the basic notions of Morse theory in the case of d-manifolds (see [54, 73]
for more details). Morse theory is a powerful tool to capture the topological structure of a

Morphological Representations of Scalar Fields 189

scalar field. In particular, it states that it is possible to construct topological spaces equivalent
to a given differential manifold describing the surface as a decomposition of the manifold into
primitive topological cells, through a limited amount of information [54, 73, 43, 42, 15, 38].

Let f be a C2-differentiable real-valued function defined over a domain D ⊆ R
d. A

point p ∈ R
d is a critical point of f if the gradient ∇f of f vanishes on p, i.e., if and only

if ∇f(p) = 0. function f is said to be a Morse function if all its critical points are non-
degenerate, i.e., the Hessian matrix of the second derivatives of f at p is non-singular (its
determinant is �= 0) [54]. The number of negative eigenvalues of the Hessian matrix is called
the index of a critical point p. In particular, the so-called Morse Lemma states that a Morse
function f looks extremely simple near non-degenerate critical points: an appropriate local
reference system can be always chosen such that f can be expressed in a canonical quadratic
form. This result implies that the critical points of a Morse function are isolated.

The set of points belonging to f−1(h) forms a level set of function f at value h. The level
sets may have several connected components, each of which is called a contour or an isocon-
tour of f . In case of three-dimensional data, an isocontour is an isosurface. The topology of
level sets varies only in correspondence of the critical points of f [54]. Finally, it provides a
way of describing a manifold as a CW-decomposition [54, 73].

A two-dimensional manifold can have three types of non-degenerate critical points. A
non-degenerate critical point p can be a minimum (pit), a saddle, or a maximum (peak) if p has
index 0, 1 or 2, respectively. A three-dimensional manifold has four types of non-degenerate
critical points. A non-degenerate critical point p is a minimum, a 1-saddle, a 2-saddle, or a
maximum if p has index 0, 1, 2 or 3, respectively.

The concepts of critical point and Morse function may be extended to d-manifolds with
boundary, assuming suitable conditions on the smoothness of the boundary components [24].
In this case, the neighborhood of a point p on the boundary is homeomorphic to the half-
space Rd

+ = {(x1, x2, . . . , xd) ∈ Rd : xd ≥ 0}. Most of the results previously stated are
still valid and may be adopted to model d-dimensional scalar fields, since they correspond to
d-manifolds with boundary embedded in Rd+1.

An integral line of a function f is a maximal path which is everywhere tangent to the
gradient vector field ∇f of f . The classical Taylor formula shows that integral lines follow the
gradient directions in which the function has the maximum increasing growth. Integral lines
cannot be infinite (in a compact domain D), and they cover the entire domain of f . An integral
line is emanating from a critical point, or from the boundary of D, and it reaches another
critical point or the boundary of D. If function f is defined on a manifold with boundary D,
then an integral line may be open at both ends. The point q ∈ D, q = lim

t→−∞
c(t) is called

the origin of c, and the point r ∈ D, r = lim
t→∞

c(t) is called the destination of c. An integral

line which connects a critical point p of index ı to a critical point q of index ı + 1 is called
a separatrix line. In Geographic Information Systems (GISs), separatrix lines that connect
minima to saddles are usually called ravines, or valley lines, while those that connect saddles
to maxima are called ridge lines.

2.4 Morse Complexes and Morse-Smale Complexes

Let f : D → R be a Morse function (see Subsection 2.3), where D is a d-manifold without
boundary. Let Critf be the set of critical points of f . Integral lines that converge to a critical
point p of index ı form an ı-cell, called a stable (or descending) manifold, which is denoted
as W s(p). Similarly, integral lines that originate from a critical point p of index ı form a
(d − ı)-cell called an unstable (or ascending) manifold, which is denoted as W u(p). Thus,

190 S. Biasotti et al.

W s(p) = {q ∈ D : lim
t→+∞

cq(t) = p},

W u(p) = {q ∈ D : lim
t→−∞

cq(t) = p}.

The stable manifolds are pairwise disjoint and decompose the domain D of a scalar field f
into open cells which form a complex, since the boundary of every cell is the union of lower-
dimensional cells. Such complex is called a stable Morse complex. The unstable manifolds
form a complex as well, called an unstable Morse complex, which is dual with respect to the
stable complex. Thus,

D =
⋃

p∈Critf

W u(p) =
⋃

p∈Critf

W s(p).

Figure 2(a) shows an example of a decomposition of the domain of a scalar field into an
unstable Morse complex.

In a 2D unstable (stable) Morse complex, the 2-cells correspond to the maxima (minima),
the 1-cells to the saddle points, and the 0-cells to the minima (maxima). In a 3D unstable
(stable) Morse complex, the 3-cells correspond to the maxima (minima), the 1-cells to the
2-saddles (1-saddles), the 1-cells to the 1-saddles (2-saddles), and the 0-cells to the minima
(maxima).

Moreover, a Morse function f is a Morse-Smale function when the stable and the unstable
manifolds intersect only transversally. This means that the intersection (if it exists) of the stable
(d − ı)-dimensional manifold of a critical point p of index ı, and the unstable j-dimensional
manifold of a critical point q of index j, is a (j − ı)-dimensional manifold. The connected
components of sets W u(p) ∩ W s(q), for all critical points p, q ∈ Critf , decompose D
into a so-called Morse-Smale complex. Each cell of the Morse-Smale complex is the union of
integral lines that all originate from the same critical point p, with index ı, and converge to the
same critical point q, with index j. The dimension of the cell is then j − ı. Figure 2(b) shows
the Morse-Smale complex for the same function shown in Figure 2(a).

maximum

saddle

minimum

Fig. 2. (a) An example of an unstable Morse complex (the 2-cells correspond to the minima).
(b) The Morse-Smale complex. Its 1-skeleton is the critical net.

The 1-skeleton of a Morse-Smale complex consists of critical points and separatrix lines,
and it is often called a critical net (see Figure 2 (b)). The surface network [66, 71], widely used
in GISs for morphological terrain modeling, is a combinatorial representation of the critical
net in the case of 2D scalar fields. The surface network is a planar graph in which the nodes
correspond to the critical points, and the arcs to the integral lines connecting them. Thus, there
exists an arc between a pair of nodes in the surface network if the two corresponding critical
points are connected by an integral line in the critical net.

Morphological Representations of Scalar Fields 191

The Critical Point Configuration Graph (CPCG) [56] describes the configuration of the
critical points of a C2-differentiable Morse function f defined on the closure D = Ō of a
simply-connected open set O in R2. Note that f does not need to satisfy the Morse-Smale
condition. The nodes of the CPCG represent critical points, while its arcs are in one-to-one
correspondence with the integral lines connecting them. A CPCG is a planar graph and its
embedding on the domain D of f induces a partition of D into 2D regions, called slope
districts. Since f is not necessarily a Morse-Smale function, there are configurations of the
critical points of f which do not occur for Morse-Smale functions. For instance, an arc may
connect a saddle to a maximum, a saddle to a minimum, but also a pair of saddles. Nackman
in [56] shows that all the possible configurations for slope districts are equivalent to four basic
configurations (up to equivalence, which consists of insertion of saddle points in the arcs),
which are illustrated in Figure 3. The first three are quadrangles (which may be glued along
the edges) with nodes of index 1,0,1,2 respectively (saddle, minimum, saddle, maximum).
These quadrangles correspond to the possible types of 2-cells in a Morse-Smale complex. The
first type occurs most frequently in real cases (see Figure 3 (a)), the second and third type
correspond to an isolated mountain, or a crater, respectively (see Figure 3 (b) and Figure 3
(c)). The last type of slope district can occur when f is a Morse, but not a Morse-Smale,
function. In this case, ascending and descending 1-manifolds do not intersect transversally,
but may coincide (see Figure 3 (d)).

(a) (b) (c) (d)

Fig. 3. The four possible configuration for the slope districts in a CPCG.

2.5 Contour Trees

As mentioned before, Morse theory studies the evolution of the level sets of function f that
defines the scalar field. The structure that tracks the changes of the contours of the function f
is called the contour tree. It was originally introduced for terrain models and, more recently,
for d-dimensional scalar fields.

Several variations of the contour tree may be found in the literature: the augmented con-
tour tree [83, 64, 21, 22]; the contour topology tree, [23]; the criticality tree, [26]; the topo-
graphic change trees [41]; or the component tree, [25, 46]. In the larger context of manifolds,
where the definition of function f may also vary, contour trees are special cases of the more
general Reeb graphs [68], as they are also based upon adjacency relationships between con-
tour lines. The contour tree corresponds to the Reeb graph of the digital model M studied
according to the evolutions of the level sets as the scalar function f changes. However, since
in this chapter we consider only simply connected domains, we will refer to this coding of
the contours as contour tree while the presentation of the Reeb graph in a general setting is
proposed in chapter [12].

A formal definition of the contour tree in terms of nodes, as critical points of the function
f , and edges, which represent the portions of the scalar field where the topology of the contour

192 S. Biasotti et al.

does not change, can be found in [20]. Edges of the contour tree are generally assumed to be
directed from the higher to the lower values of function f along the specific edge. Informally,
the contour tree of a scalar field is the graph obtained by the continuous contraction of each
contour of a scalar field to a single point [63, 23].

This representation describes the relations between the connected components of the level
sets of a scalar field (see Figure 4). In the case of 2D scalar fields, the level sets of f may be
represented as the intersections of the model M with planes orthogonal to the model height.
If the function f is Morse, the contour tree may assume only three configurations around a
critical point. This fact follows from the Morse Lemma, see Section 2.3. As a consequence,
the contour tree of a terrain (also known as paper surface [42]) M encodes the shape of M
in terms of its meaningful topographic features, i.e., peaks, pits or passes and structures these
features into a topologically consistent framework.

(a) (b) (c)

Fig. 4. A data set (a) with a set of contour levels (b) and the contour tree corresponding to the
contours depicted (c). Numbers indicate the elevation of the contours.

The contour tree can be effectively represented as a graph: a node is defined for each crit-
ical level of f that corresponds to the creation, merging, split or deletion of a contour, that
is, to topological changes affecting the number of connected components of the level sets of
f . Each node corresponds to a critical point but, in case of scalar fields of dimension higher
or equal to three, there are critical points that do not affect the number of connected com-
ponents of the contour level. For instance, this happens when in correspondence to a critical
point the topological genus of the isosurface changes. Therefore, no node of the contour tree
is associated with such critical points. Each arc joins two successive critical levels in their
own component. If an arc connects two nodes, n1 and n2, then the number of the connected
components of the level sets between the critical levels n1 and n2 does not change along the
connected component of M joining the corresponding critical points.

Since a scalar field f assumes only one value at a given point of the domain D, any given
contour divides its complement into disjoint sub-regions, so that every path from a region to
another must pass through that contour. This implies that a contour tree has no cycles and can
always be represented as a tree.

The definition of a contour tree has been provided also when a mapping function is not
formally defined [16]. It can be defined for any set of isocontours that nest inside each other,
as shown in [20], where the author proposes to locally take advantage of the property that each
contour comes from a scalar field and has “increasing” and “decreasing” directions.

Morphological Representations of Scalar Fields 193

30 30

10
10

0

0

30 30

10
10

0

0

(a) (b)

Fig. 5. The comparison of the surface network (a) and the contour tree representation (b) of a
terrain model.

Considering simple4 Morse functions, i.e., functions whose critical points are non-
degenerate, contour trees and surface networks can be compared: the contour tree can be
obtained from the surface network of the same scalar field, as in the algorithms proposed in
[78, 77]. Both the contour tree and the surface network encode the topological structure of a
surface, but surface networks provide a surface-oriented decomposition, while contour trees
provide a contour-oriented description. In Figure 5, the surface network of a terrain repre-
sented by contours is compared with the corresponding contour tree. All arcs of the surface
network coming from the outside of the surface boundary originate from the isocontour having
minimum height that encloses the others.

3 Extracting Critical Points

Almost all the algorithms that compute a Morse-Smale decomposition, or a contour tree first
extract the critical points from the digital model of the scalar field. In this Section, we focus
on the problem of extracting critical points from digital models of 2D and 3D scalar fields.

In the literature, several algorithms have been proposed for simplicial models and for reg-
ular ones. All algorithms apply a local approach that simulates the definition of critical point in
the continuum. In this context, one of the most representative approaches is the one presented
by Banchoff in [6] where the vertices of a polyhedral surface are locally characterized analyz-
ing their star. Note that in a simplicial model, critical points can only be at the vertices, while
they may be inside the square or hexahedral cells in regular models when a C0-continuous
(at least) interpolating function is selected. Homology-oriented methods have also been devel-
oped which detect the regions where the topology changes instead of the points.

3.1 Extracting Critical Points from a Piecewise Linear Field

The algorithms for extracting critical points from a simplicial model of a scalar field apply a
result by Banchoff [6], who has generalized the notion of critical point for a Morse function
to piece-wise linear functions defined over a d-dimensional simplicial complex. Let Σ denote
a k-dimensional simplicial complex in Rd. Let f : Rd → R be a function. f is called general

4 A function is called simple if all its critical points have different values, i.e., any pair x, y of
distinct critical points is such that f(x) �= f(y). Notice that a Morse and simple function
is sometimes referred as Morse [37].

194 S. Biasotti et al.

for Σ if f(v) �= f(w) whenever v and w are the vertices of a 2-simplex of Σ. Then, for each
simplex σ ∈ Σ a value Aσ is defined as follows [2]:

Aσ(v) =

{
1 if v ∈ σ and f(v) ≥ f(w) ∀w ∈ σ
0 otherwise

Let σ be an r-dimensional simplex of Σ and f a general function defined on Σ, the index
of the vertex v with respect to f is given by:

i(v) =

k∑
r=0

(−1)r
∑

σ∈S,dim(σ)=r

Aσ(v). (1)

For regular points both the indices λ and i(v) are 0. If v is a critical point for f , having
index λ, the relation i(v) = (−1)λ is verified.

The assumption on the function being general is the discrete counterpart of the hypothesis
a C2-differentiable function is Morse. Nevertheless, it may happen that a function f may
have m-fold saddles even if it is general for Σ. However, m-fold saddles may be unfolded by
considering a barycentric subdivision of all the triangles and performing a small perturbation
of the function values [3], or splitting the wedges of the lower and upper stars of a critical point
p [37]. In particular, each m-fold saddle may be unfolded in m simple saddles. According to
this fact, the value i(v) in correspondence of a multiple saddle may be written as: i(v) = −m.
Note that the result of the unfolding may be ambiguous since there are several splitting choices.
Examples of critical points for a triangular mesh are given in Figure 6.

p
p

p

(a) (b) (c)

Fig. 6. A maximum (a), a simple saddle (b) and a 2-fold (monkey) saddle (c).

Formula (1) implicitly defines an algorithm for detecting the index of a point p in a sim-
plicial model, when the interpolating function f satisfies the discrete Morse condition, which
takes into consideration all the simplexes in the star of p. Several authors have developed
simplified versions of the algorithm, thus considering only edges or vertices in the link of p
[36, 35, 58, 78]. In [5], Bajaj et al. apply a different approach for identifying and classifying
the critical points in a 2D simplicial model. They study the normal vectors of the triangles in
the star of p and they consider a range of values based on these vectors. A vertex p is consid-
ered a critical point when this range of values includes a vector (0, 0, 1). A critical point p is
classified as minimum, maximum, or saddle point, depending on whether the gradient flow is
away from, towards, or towards-and-away from p, respectively.

Several algorithms have been proposed for extracting critical points from a 3D simplicial
model [40, 79, 35, 23]. All of them detect minima, maxima and saddle points, but sometimes
they do not distinguish between 1- and 2-saddles [40], or they fail in recognizing multiple
saddles [23]. As in the 2D case, the classification of a vertex p is performed by considering the
link of p. Given a vertex p, we denote as N+(p), N−(p), the number of vertices q in Lk(p)

Morphological Representations of Scalar Fields 195

such f(p) ≤ f(q), f(p) ≥ f(q), respectively. We denote as C+(p) and C−(p) the numbers
of connected components in N+(p) and in N−(p), respectively. Thus, if C+(p) = 0 (and,
thus. C−(p) = 1), then p is maximum, while if C−(p) = 0, (and thus C+(p) = 1), then p
is minimum. Chiang et al. [23] identify saddle points as those points for which C−(p) ≥ 1,
and C+(p) ≥ 1. In particular, they identify the saddle points as points at which an iso-surface
splits into two, or two iso-surfaces merge. Gerstner et al. [40] identify a saddle point p as
a point such that C+(p) + C−(p) = 2, without distinguishing between 1- and 2-saddles.
In order to identify multiple saddles, Takahashi et al. [79] count the multiplicity of multiple
saddles as follows. If C+(p) = k + 1, then p is a 1-saddle with multiplicity k. If C−(p) =
k + 1, then p is a 2-saddle with multiplicity k.

The algorithm proposed by Edelsbrunner et al. [35] uses the reduced Betti numbers of the
lower link of a vertex in order to classify saddle points. The lower link Lk−(p) of a vertex p
is defined as the collection of all simplexes in the link of p such that the value of the function
f at such simplexes is less than f(p). Note that the values of the function f are given at the
vertices of the complex, and are defined on any other higher-dimensional simplex by linear
interpolation. Informally, the Betti numbers β0, β1, and β2 of a simplicial complex indicate
the number of connected components, the number of independent ’tunnels’, and the number
of holes of its carrier, respectively. The reduced Betti numbers β̃−1, β̃0, β̃1, and β̃2 are the
same as Betti numbers, except that β̃0 = β0 − 1 for non-empty complexes, and β̃−1 = 1 for
empty complexes. The reduced Betti numbers of the lower link of a regular point are all equal
to zero, while simple critical points have exactly one non-zero Betti number (which is equal
to one). A multiple saddle p satisfies β̃−1 = β̃2 = 0, and β̃0 + β̃1 >= 0. It has been shown
that p can be unfolded into simple β̃0 1-saddles, and β̃1 2-saddles.

It can be easily seen that the worst-case time complexity of all the algorithms for extracting
critical points is linear in the number of maximal simplexes5 in the simplicial complex in both
the 2D and 3D case. This time is provided if the underlying simplicial complexes are encoded
in data structures which allow retrieving the maximal simplexes in the star of a vertex in time
linear in the number of such simplexes. Thus, the worst-case complexity of critical points
extraction algorithm is linear in the number of vertices of the complex in the 2D case, but it
may be quadratic in the number of vertices of the complex in 3D case [35].

3.2 Extracting Critical Points from a Regular Grid

Several algorithms have been developed over the years to extract critical points from regular
grids, mainly within the field of image processing. Since a grey-scale image can be seen as an
integer-valued scalar field, the grid vertices are in this case the pixels, or voxels, in the image.
The general idea is to consider a vertex p of a regular grid and compare its field value f(p)
with the field values of some suitably-defined neighbors on the grid. These algorithms, rooted
in digital geometry, consider a discontinuous approximation of the field, which is just a step
function defined at the vertices of grid (i.e., the pixels or voxels of the image). Most of such
algorithms do not extract only critical points, but also label vertices of the grid belonging to
critical lines of the scalar field, such as crest and course lines. These latter are characterized
locally by considering principal normal curvature k1 and k2 of f at p. A line is considered
a crest (course) line if one of the principal curvatures k1 and k2 has an extremum along its
curvature line, which is an integral line of the vector field of principal directions. Note that the
set of separatrix lines is a subset of the set of crest and course lines, while the reverse is not
true.

5 Recall that a maximal simplex is any k-simplex in a k-dimensional simplicial complex.

196 S. Biasotti et al.

Two classical algorithms [65, 82] produce a set of uniformly labeled regions of points
of a regular grid, identifying maxima, minima, saddles, and also points belonging to crest
and course lines. Both can be applied by considering the 4-adjacent, or the 8-adjacent vertex
neighbors of a vertex p of the grid, where the 4-adjacent vertex neighbors are those connected
to p by an edge, and the 8-adjacent neighbors of p are the vertices in the link of p. These
techniques have been extended to 3D grids by Papaleo in [59] considering the 6-adjacent
neighbors of p, i.e., the vertices in the link of p connected to p through an edge.

Other algorithms extract critical points by fitting some local, sometimes globally discon-
tinuous, approximating function on grid data. Watson et al. [86] present a classification algo-
rithm for grey-scale images in which a surface on the square patch centered at the vertex p is
defined by considering the field values of its 8-adjacent vertices. The approximation is a gener-
alized quadratic B-spline, and it is C0- differentiable inside the square patch, C2-differentiable
at p, but globally discontinuous. First and second partial derivatives of the approximating func-
tions are computed at p analytically, and critical points as well as points belonging to course
or crest lines are classified as in the C2-differentiable case. Schneider et al. in [71] fit a bi-
quadratic polynomial by considering the 8-adjacent neighbors for each vertex p of the regular
grid. The method produces a globally discontinuous approximation, formed by local surface
patches (see [71] for details).

The algorithm proposed by Schneider et al. in [70] uses a bilinear C0-differentiable in-
terpolating function on each 2-cell of the grid. Minima and maxima can occur only at grid
vertices, but additional saddles may be introduced by the interpolation inside the cell. Bajaj et
al. [4] use a globally C1-differentiable Bernstein-Bézier bi-cubic interpolant, locally defined
on each square cell. This interpolating function does not remove any critical point of the initial
input data and may add a small number of additional critical points. The classification of the
points is done analytically.

Extraction methods based on grid data interpolation have been also developed for 3D
regular models. Bajaj et al. [4] extend their 2D algorithm to the 3D case by considering a
Bernstein-Bézier tri-cubic function as interpolant in each cubic grid cell. Weber et al. [87]
use a tri-linear interpolating function in each cubic cell. In this case also, there may be saddles
inside the cubic cells and on their boundaries. The algorithm does not distinguish between
1-saddles and 2-saddles. Weber et al. in [88] relax the assumption that edge-adjacent vertices
must have different field value, and thus connected components of grid points at the same
elevation, which are critical for an function f , are extracted.

3.3 Extracting Critical points from Contours

Analyzing the evolution of the contour levels of the field function provides an alternative way
of characterizing the critical points. Let f be a scalar piecewise-linear function defined on a
simplicial decomposition of a two- or three-dimensional manifold. If the interval [a, b] ⊆ R

does not contain any critical value, all level sets f−1(h), h ∈ [a, b] are homeomorphic. On
the contrary, if [a, b] contains a critical value, the topology of the level sets varies at this value,
[23] (see Figure 7).

In the case of surfaces, critical points are located where the number of contour levels
varies. Based on these considerations, several approaches have considered the evolution of
the contour levels for characterizing a surface [47, 13, 14, 1, 11], while methods for three-
dimensional data are still missing. This approach is independent of the underlying digital
model. For example, the method in [47] works on a parametric surface with boundary, while
the method in [13, 1] has been developed for simplicial models.

Morphological Representations of Scalar Fields 197

Fig. 7. Possible configurations of contour levels around a critical point.

In the presence of noise, this approach is more stable (i.e., less sensitive to noise) than
those methods that compute the critical points through analytical techniques, and it is also
able to detect degenerate configurations, like critical regions.

4 Extracting Approximations of a Morse-Smale Complex

In this Section, we review algorithms for decomposing the manifold domain of a scalar field f
into an approximation of a Morse-Smale complex. Such an approximation is obtained either
by fitting a C1-, or C2-differentiable surface on a discrete dataset, or by simulating a Morse-
Smale complex, or a Morse complex, on a piecewise-linear interpolation of the input data.

Most of the algorithms proposed in the literature, with the exception of the one proposed
in [35], work on 2D scalar fields. Most of them use a boundary-based approach, in the sense
that they extract an approximation of the critical net, by computing the critical points and
then tracing the integral lines, starting from saddle points. Some of these algorithms are based
on regular models [4, 71, 70], others are based on simplicial models, such as the ones in
[78, 36, 5, 17, 60, 35].

Boundary-based methods which operate on simplicial models can be viewed as techniques
for computing the discrete component of a Morse-Smale complex, called a Quasi Morse-
Smale complex (QMS) introduced in [36, 35]. In Subsection 4.1, we present algorithms for
extracting a Morse-Smale complex from a simplicial model. In Subsection 4.2, we review
boundary-based algorithms for 2D regular models.

A different approach to compute a discrete approximation of Morse complexes on a sim-
plicial model is based on a region-growing technique which starts from the minima (max-
ima) and compute a stable (unstable) 2-cell by adding one triangle at time [27, 28, 49]. In
Subsection 4.3, we present such algorithms. Finally, in Subsection 4.4, we discuss methods
for simplifying Morse-Smale complexes and generating hierarchical representations of such
complexes.

4.1 Boundary-based Algorithms on a Simplicial Model

In [36, 35], the definition of a complex is introduced which has the same combinatorial struc-
ture of a Morse-Smale complex for 2D and 3D simplicial models defined over a 2-manifold,
or a 3-manifold without boundary, respectively. Such complex is called a Quasi Morse-Smale
complex (QMS). The 0-cells (vertices) of a QMS complex are the critical points of function f ,
the 1-cells connect minima to saddles (1-saddle in 3D), maxima to saddles (2-saddles in 3D)
and, only in the 3D case, 1-saddles to 2-saddles. There are no critical points inside 1-cells,
2-cells (or 3-cells in 3D). In the 2D case, each saddle point p has four incident 1-cells, two
joining p to maxima, and two joining p to minima. Such 1-cells alternate in a cyclic order
around p. Also, the 2-cells are quadrangles whose vertices are critical points of f of index
1,0,1,2 (saddle, minimum, saddle, maximum) in this order.

198 S. Biasotti et al.

In the 3D case, all 2-cells are quadrangles whose vertices are a minimum, 1-saddle, 2-
saddle, 1-saddle in this order (quadrangles of type 1) , or a 1-saddle, a 2-saddle, a maximum, a
1-saddle in this order (quadrangles of type 2). A 1-cell connecting a 1-saddle and a 2-saddle is
on the boundary of four quadrangles which alternates between quadrangles of type 1 and type
2. The 3-cells are called crystals and are bounded by quadrangles. A QMS complex differs
from the Morse-Smale complex defined in the C2 differentiable case since the 1-cells in 2D,
and the 1-cells and 2-cells in 3D are not necessarily those of maximal ascent, or descent. The
1-skeleton of the QMS complex is a discrete version of the critical net.

In the 2D case, most algorithms [78, 5, 36, 17, 60] extract a QMS complex from a 2D
simplicial model by computing its 1-skeleton (the critical net) in three steps:

1. extract the critical points (see Section 3)
2. unfold multiple saddles (see Section 3)
3. compute the 1-cells of the QMS complex by starting from the saddle points, and by

tracing two paths of steepest descent and two paths of steepest ascent on the underlying
triangle mesh which stop at minima and maxima, respectively.

The algorithms in [78, 36, 5] extract the 1-cells of the QMS complex by computing paths
along the edges of the triangle mesh. The algorithms in [5, 78] trace the paths by selecting
the vertex of highest (or lowest) elevation at each step, while the algorithm in [36] selects the
steepest ascending or descending edge at each step. The algorithms in [17, 60] estimate the
gradient along 1-simplexes and 2-simplexes, and compute the ascending and descending paths
not only moving along the edges, but possibly cutting triangles in order to follow the actual
paths of steepest ascent, or descent.

All such algorithms have a worst-case time complexity which is linear in the number of
vertices of the simplicial model. This happens provided that suitable data structures are used
for encoding the triangle mesh, which allow retrieving the star of a vertex in time linear in the
number of triangles in the star.

An algorithm has been proposed by Edelsbrunner et al. in [35] for computing a QMS
complex for a 3D simplicial model. An implementation is described in [57]. The algorithm
computes the QMS complex for a 3D simplicial model by extracting first the critical points,
then the stable Morse complex and, finally, the unstable manifolds in pieces inside the cells
formed by the stable manifolds. In other words, the structure of the stable manifolds is used
while computing the unstable ones in order to maintain the structural integrity of the QMS
complex. Note that it is not guaranteed that the same complex would be obtained if first the
unstable, and then the stable manifolds were computed.

4.2 Boundary-based Algorithms on a Regular Model

No discrete definition has been introduced of discrete a Morse or of a Morse-Smale complex
when we consider a regular model. The three algorithms in [4, 71, 70] compute the boundary of
the Morse-Smale complex, i.e., the critical net from a 2D regular model, through a technique
conceptually very similar to the one used for 2D simplicial models. They classify critical
points as maxima, minima, saddle or regular points, as discussed in Section 3. For each saddle
point, they trace the four separatrix lines emanating from it as lines of steepest ascent or
descent. All three algorithms try to fit a surface of a certain degree of continuity to the input
data in order to extract the critical points.

The algorithm by Bajaj et al. [4] uses a C1-differentiable Bernstein-Bézier bicubic inter-
polant and computes integral lines through a Runge-Kutta integration technique [67]. Four

Morphological Representations of Scalar Fields 199

separatrix lines are traced, from each saddle point, in the direction of the appropriate eigen-
vectors. The computation stops when the line reaches a neighborhood of another critical point,
or the boundary of the domain.

The algorithm proposed by Schneider et al. in [70] traces separatrix lines point by point.
Separatrix lines can follow grid edges, or can cross 2-cells. When a separatrix line crosses a
grid cell, it can be approximated with small (linear) steps, or computed exactly, by solving a
linear system of differential equations. The exact integral line is a hyperbolic function inside a
grid cell. The algorithm by Schneider et al. in [71] computes the the first and second derivatives
analytically (see also [70]) and uses this information to trace the separatrix lines starting from
the saddles.

4.3 Region-based Algorithms for Approximating Morse complexes

Region-based algorithms [27, 28, 49] compute approximation of the stable and unstable Morse
complexes, by simulating in the discrete case the behavior of the gradient of the field function
f . The only assumption is that the function f defining the simplicial model is a Morse function,
i.e., no adjacent vertices have the same height. Recall that the unstable (stable) manifold of a
point p for a Morse function f is the set of points q such all that the descending (ascending)
integral lines from q reach p. The algorithms simulate this definition in the discrete case and
they consist of two major steps:

1. Extract minima and maxima.
2. Compute the stable (unstable) Morse complex by applying a region-growing procedure.

This procedure add triangles to a 2-cell of the complex incrementally.

The three algorithms differ in the way they select the next triangle to add to a 2-cell at
each step. We consider, for clarity, the computation of the stable complex. In [28], a triangle
t is added to the current 2-cell C in the stable complex if the vertex of t which is not on the
boundary of C has higher elevation than the other vertices of t. If a local minimum lies on
the boundary of a 2-cell generated, this latter is merged with the adjacent 2-cell. In [55], it
has been proven that the discrete gradient field generated by this approach can be interpreted
as a discrete Forman gradient field within the discrete Morse Theory framework proposed by
Forman [39].

The algorithm in [27] computes the gradient for each triangle t in the model M , and
the angles between the normal vector at each edge of t and the gradient. The edge e of t
corresponding to the largest angle is marked as exit, the one corresponding to the smallest
angle is marked as entrance. At a generic step, a 2-cell of the stable complex is extended by
adding a new triangle t sharing an edge e with the cell provided that e is an entrance for t and
an exit for the triangle t′ in the cell sharing edge e with t.

The algorithm in [49] initially classifies the three vertices of each triangle t in the model.
The highest, middle, amd lowest vertex of a triangle are labelled as S (source), T (through),
and D (drain), respectively, corresponding to the intuitive idea that water flows from S to D
through T . As the previous algorithms, it starts from each local minimum m of the model
and grows its 2-cell in the stable complex (initially formed by the star of m). At each step,
a triangle t externally adjacent to a boundary edge e of the current 2-cell is considered, and
the algorithm decides whether to include t or not as follows. If the opposite vertex of t to e is
labelled D, then t is not included; if it is labelled S, then t will be included. If it is labelled T ,
then the fan of triangles having their lowest vertex in the D-labelled vertex of t are examined
(such edge is an endpoint of e). The fan is splitted into two parts at its radial edge of maximum
slope, and the part adjacent to e (if not empty) is included in the basin of m.

200 S. Biasotti et al.

All the algorithms exhibit a worst-case time complexity which is linear in the number
of vertices in the simplicial model. Note that the algorithms in [55, 49] do not require any
floating point computation. The algorithm in [55] has been extended to arbitrary dimensional
simplicial models. All of them compute the unstable complex in a completely simmetric way.

The overlay of the two Morse complexes provides the QMS complex, if the two complexes
intersect transversally. Saddle points are extracted as the intersection of the two complexes.
Computing the overlay also is a linear process since each triangle in Σ belongs to one 2-cell
in the stable and to one 2-cell in the unstable complex. Figure 8 (a) and (b) (see also Figure
CP-1 in Appendix F) show the stable and unstable Morse-complexes, respectively, computed
on Mont Marcy dataset by using the algorithm in [27]. Figure 8 (c) shows the intersection of
the two (see also Figure CP-1 (c) in Appendix F).

The region-growing approach used in [27, 28, 49] is similar the approach used by water-
shed algorithms which are region-growing in nature, as for example the algorithms presented
in [53, 85, 50]. This makes them suitable to be extended to 3D simplicial models.

Fig. 8.

4.4 Generalization of Morse-Smale Complexes

Two major issues arise when computing a representation of a scalar field as a Morse, or a
Morse-Smale, complex. The first issue which is a common problem in image and mesh seg-
mentation algorithms, is the over-segmentation due to the presence of noise in the data sets. To
this aim, generalization algorithms have been developed by several authors to locally simplify
the structure of a Morse-Smale complex [89, 36, 18, 78, 77, 44]. The second issue is related
to the large size and complexity of available scientific data sets. Thus, a multi-resolution rep-
resentation is crucial for an interactive exploration of such data sets. There exist just a few
proposals in the literature for multi-resolution representation for 2D scalar fields based on
morphology [27, 18, 19].

The generalization of a Morse-Smale complex for a two-dimensional scalar field consists
of collapsing a maximum-saddle pair into a maximum, or a minimum-saddle pair into a min-
imum, so as to maintain the consistency of the underlying complex. Usually, this operation is

Morphological Representations of Scalar Fields 201

viewed as the cancellation of a pair of critical points, namely, a maximum and a saddle, or a
minimum and a saddle. A cancellation simulates the smoothing of the scalar field by modify-
ing the gradient flows around two critical points. A generalization can be formalized in terms
of the combinatorial representation of the critical net, defined by the surface network [29].

Suitable feasibility conditions need to be satisfied for the cancellation of a pair of critical
points p and s to be feasible. If p is a minimum (maximum), all relevant saddles must be at
a higher (lower) elevation than p. Moreover, a cancellation cannot involve isolated minima or
maxima, as in the two configurations described in Figures 3(b)-(c). The various generalization
techniques proposed in the literature differ in the criterion used to pair the critical points for
cancellation, and in the order in which the cancellations are performed. In [89], a minimum
(maximum) p is chosen for cancellation together with its lowest (highest) adjacent saddle s.
In [36, 18], a saddle s is chosen together with its adjacent maximum at lower elevation, or its
adjacent minimum at higher elevation. The order in which the pairs of points are canceled is
determined based on a technique, called persistence, which grows a space incrementally and
analyzes the topological changes that occur during this growth [36].

In [77], a pair of critical points p and s, which are adjacent in the contour tree, is chosen in
a way such that the difference in elevation between p and s is minimal among all (unsigned)
differences in elevation between a saddle and an adjacent minimum, or a saddle and an adja-
cent maximum. The order is according to increasing values of the differences in elevation.

The problem of generalizing 3D Morse-Smale complexes has been recently investigated
[44]. This method extends the technique discussed in [36, 18] to functions defined over 3-
manifolds. The extension is not trivial, since in 3D there are three possible types of legal
cancellations: minimum and 1-saddle, 1-saddle and 2-saddle, and 2-saddle and maximum.
The cancellations are performed in order of persistence. Conditions on the elevations of the
critical points involved in the generalization operation similar as in the 2D case have to be
imposed. While the two cancellations involving a minimum or a maximum are similar to the
ones performed in the 2D case, the saddle-saddle cancellation does not have an analog in lower
dimensions. In order to ensure the separation of the minima and maxima originally separated
by the two saddles, additional cells has to be introduced in the Morse-Smale complex, and thus
this operation may not produce a reduction of the number of its cells. However, the authors
show in [44] that all these cells are removed by subsequent saddle-extremum cancellations.

In [27], a multi-resolution representation for a triangulated terrain is proposed which in-
cludes the critical net at different levels of resolution. This is achieved through an algorithm
for building and simplifying a constrained Delaunay triangulation of a set of points, where
the constraints are represented by the polygonal edges forming the critical net at different res-
olutions. In [18, 19, 29], multi-resolution representations of a triangulated terrain have been
proposed. The method in [29] is based on the framework for multi-resolution modeling of
simplicial and cell complexes proposed in [32, 31]. According to this framework, a multi-
resolution representation can be defined on the basis of a sequence of legal generalizations
applied to the a complex at the maximum resolution. This representation encodes the complex
at the coarsest resolution, obtained as result of the generalization sequence, plus the a collec-
tion of atomic operations, called anti-cancellations, and a dependency partial order relation
among them. An anti-cancellation is the inverse operation with respect to a cancellation of
a pair of critical points. Intuitively, two anti-cancellations are considered to be independent
if they do not affect the same region in the Morse-Smale complex, called the region of influ-
ence of the operation. The dependency relation is then encoded as a Directed Acyclic Graph
(DAG). The region of influence of an anti-cancellation defined in [18] is larger than the ones
defined in the other approaches. This gives less flexibility in extracting variable resolution
representations.

202 S. Biasotti et al.

5 Algorithms for Extracting a Contour Tree

The contour tree was originally introduced in topography for encoding the contours of a map in
an ordered manner. A first overview of algorithms for extracting the contour tree representation
can be found in [20]. As discussed in Subsection 2.5, the contour tree is a special case of the
Reeb graph [68]; therefore, differently from [20], in this Section we describe algorithms that
refer to both concepts. Several algorithms proposed for the computation of the Reeb graph
can be easily adapted to terrains [78, 14], or to scalar fields in higher dimensions [79] through
the addition of a minimum to the set of critical points that virtually closes the scalar field and
makes it homeomorphic to a d-dimensional sphere, as discussed in [13, 78, 79].

The algorithm proposed in [16] encodes the contour tree of a terrain considering the nest-
ing relationship of a set of polygonal contours manually extracted from a topographical map.
The whole surface is enclosed by an “outside region”, so that each contour has an inside and
an outside region. Nodes representing contours are added to the tree one at time. Methods that
perform the automatic contour tree extraction usually take as input a mesh, often a triangle
mesh.

A systematic approach to encode geographical data organized in a triangle mesh has been
proposed by de Berg and van Kreveld in [30]. This method is specialized for two-dimensional
scalar fields and runs in O(Nlog(N)) operations, where N is the number of simplexes of the
mesh. A simplification of the algorithm for two-dimensional scalar fields and the extension to
higher dimensions has been proposed in van Kreveld et al. [83]. There, the authors suggest to
extract the iso-lines (also called contours) and keep track of their evolution by sweeping the
data set twice: first, from the highest to the lowest height value and then sweeping again in the
reverse direction (from low to high). Moreover, the notion of augmented contour tree has been
introduced to encode the vertices along an arc of the contour tree. In [83], the vertices and the
edges of the contour tree are called super-nodes and super-arcs. In addition to super-nodes,
nodes are introduced to represent the regular points in the augmented contour tree, that is,
the nodes represent points which belong to a super-arc. Such nodes have always degree two.
Super-nodes, indeed, have variable degrees: one, if they correspond to minima, or maxima
(i.e., the leaves of the tree), and at least three if they correspond to passes. Moreover, contour
trees of terrain surfaces may also have super-nodes with degree two [83]. During the compu-
tation, all super-nodes of the contour tree, which point out where topological changes happen,
are assumed to be simple (i.e., no more than two contours meet in correspondence of them).
Critical points in the mesh correspond to super-nodes of the contour tree, while super-arcs
determine the connections between super-nodes.

The proposed algorithm constructs the contours tree of a given mesh coding the junctions
and the branches of the surface in two separate trees that are successfully merged [83]. Each
level set is explicitly stored as a set of contours, each one represented as an ordered list of
simplexes. However, each list of simplexes may correspond to more than one contour in the
first sweep, as this sweep does not detect when contours separate. Since it is assumed that all
vertices have different elevation, contours may appear and merge only in correspondence of a
vertex. In the first sweep, as each local maximum is passed, a new contour is constructed in
the level set. Since contours are separately labeled during the sweeping, when two contours
meet in a vertex, the smaller of the two contours is merged to the largest one and the ver-
tex is classified as a join. In the second phase, the algorithm detects both local minima and
splits and it stores the information necessary to know how components break apart splits. It
finally constructs the complete contour tree. The computational cost of this last algorithm is
reasonable, (O(NlogN) for terrain surfaces, O(N2) for higher dimensions, where N is the

Morphological Representations of Scalar Fields 203

number of simplexes) but, similarly to the approach in [78], the critical point definition suffers
of instability.

Tarasov at al. [80] improves the time complexity of this approach for 3D scalar fields,
by showing that the relabeling process could also be done efficiently in three dimensions (it
requires O(nlogn) operations, where n denotes the number of vertices), and by extending the
pre-processing to multiple saddles, while Carr at al. [21, 22, 20] consider also scalar fields
of higher dimensions so their algorithm can be applied for X-ray analysis. In particular, in
the method proposed by Carr et al. [21, 22] contours are not explicitly maintained and no pre-
processing for multiple saddles and the surface boundary is required. Analogously to [83], two
sweeps are performed to compute a join tree and a split tree, which represent the connectivity
of the sets {x : f(x) ≥ h} and {x : f(x) ≤ h}, respectively (see Figure 9). Finally, similarly
to the algorithm proposed in [78], the contour tree is assembled by picking local extrema from
the join and split trees and transferring them to the augmented contour tree. As an optional
step, nodes belonging to super-arcs may be removed so that the contour tree is explicitly coded.
This method performs in four main steps:

1. computation of the join tree;
2. computation of the split tree;
3. merge of the join tree and the split tree to obtain the augmented contour tree;
4. eventual extraction of the contour tree from the augmented contour tree.

The merge step has been shown to be equivalent to the sweep through the data [83],
sweeping one contour at a time through the height values represented by a single arc (or super-
arc) of the join and split tree. Height values are associated to each node of both the joint and
the split trees. Moreover, to speed up the merging phase, it is observed that the up-degree of a
node in the join tree is the same as the up-degree of the corresponding node in the contour tree.
Analogously, the down-degree of a node in the split tree and its equivalent in the contour tree
are the same. Taking advantage of this observation, leaf nodes of the contour tree are easily
identified as nodes having up-degree 0 in the joint tree and down-degree 1 in the split tree, or
nodes having up- degree 1 in the joint tree and down degree 0 in the split tree. Moreover, once
a node has been inserted in the contour tree, it is removed from both the split and joint tree
so that it is possible to recursively continue until the contour tree is computed. The following
algorithm has been proposed in [20]:

1. choose a leaf node l by checking the up-degree and the down-degree of both joint and
split trees (denoted J and S);

2. remove the edge e in J incident to l;
3. remove the node l from S. If l is not the global maximum in S, the nodes u and w adjacent

to l in S are added to S by splicing (u, l) and (l, w);
4. Add the edge e to the contour tree T .

By recursively invoking this procedure, the smaller T is computed and the contour tree
may be successively obtained. Moreover, the same authors propose an iterative version of the
algorithm in which the queue of leaf nodes is maintained. The most efficient implementation
of this method requires O(tlog(t) + Nα(N)) operations, where t is the number of nodes of
the tree, N is the number of simplexes and α is the inverse of the Ackermann number. Details
may be found in [21, 22, 20].

An algorithm that optimally (both in space and time) computes the contour tree for two-
and three-dimensional scalar fields has been proposed in [23]. Here, the algorithm of Carr et
al. [21, 22] has been slightly modified, by differing the way in which the join and the split tree
are obtained. Instead of ordering all mesh vertices, the authors propose of firstly characteriz-
ing the critical points and, then, sorting and connecting them through monotone paths [23].

204 S. Biasotti et al.

+

(a) (b) (c)

Fig. 9. The join (a) and the split tree (b) of a terrain model are merged in the contour tree (c).
Image taken from [20].

Only the critical points where the number of contours of the level sets varies are needed for
constructing the contour tree,. These critical points are denoted as component-critical points
and may be identified through an initial (unordered) scan of the vertices analyzing each vertex
neighborhood. The main advantage of this method is that only the component-critical points
are ordered. This improves the computational complexity to O(N + clog(c)), where N is the
number of simplexes and c the number of component-critical points of the mesh.

Finally, an extension of the algorithm in [83] to the three-dimensional domain has been
proposed in [62] and further extended in [63], where the topology of the contour levels is
detected with a parallel approach, which is based on a divide-and-conquer paradigm. This
paradigm is used to compute both the joint and the split tree. In addition, a more detailed
characterization of a contour is achieved by encoding the Betti numbers associated to each
arc of a tree. The Betti numbers are computed by augmenting all reduced trees with all Morse
critical points, and by making local revisions to the Betti numbers of each component during
the merge phase. Also in this case, the tree (obtained by adding all nodes that correspond to
Morse critical nodes) is called augmented contour tree. The meaning is different with respect
to [21, 22] where it denotes the subdivision of the contour tree by all vertices of the input mesh.
To avoid this ambiguous notation, Chiang et al. in [23] denote the augmented contour tree in
[62] as contour topology tree. The complexity of the algorithm in [62] for a three-dimensional
structured mesh, that is triangle mesh obtained from a regular grid, depends on the output size
since it is O(n + clog(n)) where n is number of vertices of the mesh and c is the number
of critical points [23]. However, in case of arbitrary simplicial meshes, even if the method is
available, the need of splitting the mesh into sub-parts for the parallel computation does not
improves the complexity which still is O(nlog(n)).

The approach in [45] extracts a tree-like structure for a volumetric dataset that may be
considered equivalent to the contour tree (see [20] for details). The approach is based on the
removal of simplexes (i.e., vertices, edges, faces and tetrahedra) in a mesh without removing
the local maxima of the given function f . The process is heuristic: simplexes are removed as
long as critical points of the height function are not disconnected (i.e., for any two critical
points, there is a continuous chain of simplexes connecting them). The simplexes of the tree
structure, provided by the algorithm, are used as seeds for the isosurface extraction procedure.
Since all critical points are included and all are connected to each others, this structure inter-
sects all possible contours. Moreover, cycles can be broken by removing a single cell. Thus,
this structure will be a tree that, heuristically, corresponds to the contour tree. The authors
remove simplexes (i.e., vertices, edges, faces and tetrahedra), preserving the connection be-

Morphological Representations of Scalar Fields 205

tween the mesh critical points. Even if the quality of the resulting tree is quite poor, the time
complexity is linear in the number of vertices of the mesh.

Takahashi et al. [78] use an approach based on surface-networks to reconstruct the Reeb
graph of a terrain surface. The terrain model is represented by a grid and the output structure
encodes only the topological relationship among the critical points, neglecting intermediate
points. The nodes of the two structures (surface network and Reeb graph) are identified by the
critical points on a triangulation associated to the grid, which are detected through a classifica-
tion criterion similar to that proposed by Banchoff [7]. Moreover, a global virtual minimum is
introduced to give a unique interpretation of the surface behavior along its boundary [78, 13].
Then, the surface network of the model is obtained by connecting minima with passes and
passes with maxima. This is done by analyzing the star of each vertex and following the steep-
est ascend direction. Finally, the contour tree extraction easily follows from the remark that, in
case of generic height functions, the Reeb graph is a sub-graph of the surface network and it
may be obtained with a finite number of pruning operations. The computational complexity of
this algorithm is not directly given by the authors but an analysis is provided in [23], where it
is claimed that the method requires O(N) operations for reading the data, O(nc) operation for
finding the paths and O(c2) time for constructing the tree, where N , n and c are the number
of simplexes, vertices and critical points of the mesh, respectively. Finally, this approach has
been extended to volume data [79] represented by tetrahedral cells. In this case, the contour
tree extraction is performed with the support of a so-called voxel flow network (instead of a
surface network).

Finally, the algorithm for extracting the extended Reeb graph representation (ERG) of a
two-dimensional scalar field proposed in [13] and extended in [14] is a special case of the
more general approach to Reeb graph representation proposed in [1, 10]. The algorithm clas-
sifies a surface according to the a model decomposition induced by the insertion of a number
of contour levels. When a scalar field is considered, each contour is either a simple closed line
or an open line with the end points on the surface boundary BS . If a region R intersects the
surface boundary BS , its external component is a closed sequence of open contours connected
among them through open contours. In particular, the existence of the virtual minimum im-
plies that, during the classification process, each border component has to be considered as
a descending direction. In Figure 10(b), the dark regions represent critical areas, which be-
long to the boundary surface. Due to the assumption that all outgoing directions across the
surface boundary BS are descending, minima cannot be adjacent to BS , and in this sense the
classification of minima and maxima is not fully symmetrical.

(a) (b) (c)

Fig. 10. Maximum and saddle characterization for regions of a terrain surface (a), (b). In (c) a
minimum and a non-simply connected maximum are presented.

206 S. Biasotti et al.

Since the critical areas have been recognized, the ERG is initialized by creating the node
corresponding to the virtual minimum, VM . The VM is connected to the saddle having the
minimum elevation and being external to each macro-node. If such a saddle does not exist,
the VM is connected to the nearest (in terms of geodesic distance) complex maximum area.
Otherwise, if there are not complex maxima, the ERG is a trivial graph connecting the VM to
the only simple maximum existing and the surface is topologically equivalent to a sphere [54].
To detect arcs of the graph, contours and regions are topologically growned until a critical
area, or the surface boundary BS , is reached. The algorithm can be summarized as proposed
in the following:

1. recognition of the critical areas;
2. ordering of the critical areas by elevation;
3. expansion of maxima and minima (leaf arc extraction);
4. completion of the set of arcs.

The set of arcs of the ERG is completed by iteratively running the following instructions:

1. for each non visited growing direction of a node N expand the region until another critical
area or the surface boundary are reached;

2. if another critical area R has been reached, connect the node N with R.

An example of the ERG extraction in [14] for a real model is provided in Figure 11 (see also
Figure CP-2 in Appendix F). The nodes of the ERG representation correspond to critical areas
of the model.

(a) (b)

Fig. 11.

The computational cost of the whole algorithm for the ERG extraction is given by the
sum of the costs of its single sub-parts (i.e., the insertion of contour levels into the mesh, the
extraction of the critical areas and the final expansion process). In particular, both the extrac-
tion of the critical areas and the expansion process are linear in the number of triangles of the
constrained mesh. Thus, the main contribution to the complexity of the algorithm are given by
the insertion of the contours in the triangle mesh, which requires O(nlog(n)) operations in
average, the extraction of the critical areas that costs O(n+m), where m is the number of ver-
tices inserted in the mesh during the slicing phase, and the ordering of the critical areas, which
costs O(Alog(A)) operations at most, where A is the number of critical areas and generally
small with respect to the number n of vertices of the mesh. Therefore, the computational cost
of the overall graph construction is O(max((n + m), nlog(n))).

Morphological Representations of Scalar Fields 207

Cox et al. [26] propose a variant of the contour tree named criticality tree for volume
data sets. This approach is based on the analysis of the isosurfaces without considering the
classical Morse theory. In particular, the authors take advantage of the criteria provided by
the digital Morse theory [48] to disambiguate the isosurfaces characterization of cubic grids
and include also functions whose values are no unique. In practice, the criticality tree is a join
tree with the insertion of the component-critical points rather than a contour tree. In fact, only
maxima are leaf nodes of the criticality tree. Moreover, the criticality tree stores the evolution
of the volumes that, starting from maxima, are bounded by the isosurfaces. These volumes
are denoted topological zones and they are locally nested. Due to the need of extracting the
topological zones, the computational complexity of this method is O(kNlog(kN)), where N
is the of simplexes and k is the length of the longest path traversed in the tree.

More recently, the interest in time-dependent datasets has increased and methods for ex-
tracting the graph have been proposed for time-varying models: [76, 74]. The method in [76]
describes how contours of a 2D and 3D dataset join and split during a time interval. In particu-
lar, the author investigates also the relationship between the contour tree in a domain and those
restricted to its sub-domains. The contour tree of the whole domain and those of its sub-parts
are computed in a pre-processing stage, using the sweep algorithm proposed in [23, 21, 22]
and extracting the iso-surfaces from regularly sampled scalar fields, according to the method
[9]. In particular, the domain is divided in time slices (D × {t}, where t ∈ [T0, T1] is an time
integer), thick time slices (D× [t, t+1]) and thick boundary slices ((δD)× [t, t+1]). There-
fore the novelty of this approach is in how contour trees relate among them rather than in the
contour tree extraction algorithm. Similarly, the method proposed in [74] faces the problem of
defining and computing the temporal correspondence of contours. Also in this case, contour
trees are computed for each time in a pre-processing phase. The method chosen for the con-
tour tree computation is the one proposed in [21, 22]. Then, the evolution in time of contours
is computed through the analysis of the significant overlapping area between the contours of
two successive time values. Once the contour correspondence has been identified, it is stored
in a graph called a topology change graph that supports the visualization of the contour evo-
lution. Computationally, for the detection of the contour correspondence, the labeling phase is
the most expensive one: O(nlog(n) + N + (ct)2)ct+1, where n and N are respectively the
number vertices and tetrahedra of the mesh and ct is the number of critical points of f at the
time t.

6 Concluding Remarks

We have provided an overview and an analysis of algorithms which extract structural informa-
tion from 2D and 3D scalar fields. We have analyzed algorithms for the extraction of critical
points as well as algorithms which compute a cellular decomposition of the domain of the
scalar field capturing the configuration of the critical points and the integral lines. We have
also reviewed and analysed algorithms for computing the contour tree of a scalar field. The
analysis and the classification have been performed on the basis of the dimension of the scalar
field and on the underlying digital model of the scalar field.

From the application point of view, Morse and Morse-Smale complexes have proven to
be useful tools in analyzing the morphology of terrains. Moreover they naturally provide a
shape segmentation, which is suitable both for cutting a surface into a single flattenable piece,
and for simplifying the model representation through the extraction of a combinatorial base
domain. This is fundamental for several geometry processing tasks, such as parameterization,
remeshing, surface texturing and deformation.

208 S. Biasotti et al.

Structural problems, like over-segmentation in the presence of noise, or efficiency issues
arising because of the very large size of existing data sets have been faced and solved by
using generalization techniques and hierarchical representations. Beside the visual inspec-
tion skills of these descriptions, recent works use the Morse-Smale complex defined by the
eigenfunctions of the Laplacian of the simplicial model as bases for the extraction of surface
quadrangulations that are stable and intrinsic to the model [34].

Contour trees are mainly exploited in the visualization context. They have become popular
in image processing and topography for their properties that allow a real time navigation of the
data. In particular, the recent developments on this topic have highlighted their potential for
analysing high-dimensional and time dependent data, like the visualization of the hemoglobin
dynamic and the simulation of galaxy formation in the universe (see for example [74]).

Challenging research issues rely in developing techniques for computing the Morse-Smale
decomposition for 3D and 4D scalar fields. The algorithm proposed in [35] is theoretically
correct and its implementation [61] is efficient only for small size datasets. Region-based
techniques seem to be more promising for extensions to higher dimensions, and the algorithm
in [27] is already working in arbitrary dimension, and they are specific for computing the
stable and unstable Morse complexes.

Acknowledgments

The authors want to thank Paola Magillo and Emanuele Danovaro from the University of
Genova (Italy), Lidija Comic from the University of Novi Sad (Serbia) and Michela Spagn-
uolo from the IMATI-CNR (Italy) for many helpful discussions. This work has been partially
supported by the MIUR-FIRB project SHALOM under contract number RBIN04HWR8, by
the MIUR-PRIN project on Multi-resolution modeling of scalar fields and digital shapes, and
by the National Science Foundation under grant CCF-0541032.

References

1. M. Attene, S. Biasotti, and M. Spagnuolo. Shape understanding by contour-driven retil-
ing. The Visual Computer, 19(2-3):127–138, 2003.

2. U. Axen. Topological Analysis using Morse Theory and Auditory Display. PhD thesis,
University of Illinois at Urbana-Champaign, 1998.

3. U. Axen. Computing Morse functions on triangulated manifolds. In SODA ’99: Pro-
ceedings of the 10th ACM-SIAM Symposium on Discrete Algoritms 1999, pages 850–851.
ACM Press, 1999.

4. C. L. Bajaj, V. Pascucci, and D. R. Shikore. Visualization of scalar topology for struc-
tural enhancement. In Proceedings IEEE Visualization’98, pages 51–58. IEEE Computer
Society, 1998.

5. C. L. Bajaj and D. R. Shikore. Topology preserving data simplification with error bounds.
Computers and Graphics, 22(1):3–12, 1998.

6. T. F. Banchoff. Critical points and curvature for embedded polyhedra. Journal of Differ-
ential Geometry, 1:245–256, 1967.

7. T. F. Banchoff. Critical points and curvature for embedded polyhedral surfaces. American
Mathematical Monthly, 77:475–485, 1970.

Morphological Representations of Scalar Fields 209

8. S. Beucher. Watershed, hierarchical segmentation and waterfall algorithm. In Jean Serra
and Pierre Soille, editors, Proc. Mathematical Morphology and its Applications to Image
Processing, pages 69–76, Fontainebleau, September 1994. Kluwer Ac. Publ.

9. P. Bhahaniramka, R. Wenger, and R. Crawfi. Iso-contouring in higher dimensions. In
IEEE Visualization 2000, pages 267–273, 2000.

10. S. Biasotti. Computational topology methods for shape modelling applications. PhD
thesis, University of Genova, May 2004.

11. S. Biasotti. Reeb graph representation of surfaces with boundary. In SMI ’04: Proceedings
of Shape Modeling Applications 2004, pages 371–374, Los Alamitos, Jun 2004. IEEE
Computer Society.

12. S. Biasotti, D. Attali, J.-D. Boissonnat, H. Edelsbrunner, G. Elber, M. Mortasa,
G. Sanniti di Baja, M. Spagnuolo, and M. Tanase. Skeletal structures. In Shape Analysis
and Structuring. Springer, 2007.

13. S. Biasotti, B. Falcidieno, and M. Spagnuolo. Extended Reeb graphs for surface under-
standing and description. Lecture Notes in Computer Science, 1953:185–197, 2000.

14. S. Biasotti, B. Falcidieno, and M. Spagnuolo. Surface Shape Understanding based on
Extended Reeb Graphs, pages 87–103. John Wiley & Sons, 2004.

15. R. Bott. Morse Theory Indomitable. Publ Math.I.H.E.S., 68:99–117, 1998.
16. R.L. Boyell and H. Ruston. Hybrid techniques for real-time radar simulation. In Pro-

ceedings of the 1963 Fall Joint Computer Conference, Nov 1963.
17. P.-T. Bremer, H. Edelsbrunner, B. Hamann, and V. Pascucci. A multi-resolution data

structure for two-dimensional Morse functions. In G. Turk, J. van Wijk, and R. Moorhead,
editors, Proceedings IEEE Visualization 2003, pages 139–146. IEEE Computer Society,
October 2003.

18. P.-T. Bremer, H. Edelsbrunner, B. Hamann, and V. Pascucci. A topological hierarchy for
functions on triangulated surfaces. IEEE Transactions on Visualization and Computer
Graphics, 10(4):385–396, July/August 2004.

19. P.-T. Bremer, V. Pascucci, and B. Hamann. Maximizing adaptivity in hierarchical topo-
logical models. In International Conference on Shape Modeling and Applications, pages
300–309. IEEE Computer Society, 2005.

20. H. Carr. Topological Manipulation of isosurfaces. PhD thesis, The University of British
Columbia, 2004.

21. H. Carr, J. Snoeyink, and U. Axen. Computing contour trees in all dimensions. In SODA
’00: Proceedings of the 11th ACM-SIAM Symposium on Discrete Algoritms 2000, pages
918–926. ACM Press, 2000.

22. H. Carr, J. Snoeyink, and U. Axen. Computing contour trees in all dimensions. Compu-
tational Geometry : Theory and Applications, 24:75–94, 2003.

23. Y.-J. Chiang, T. Lenz, X. Lu, and G. Rote. Simple and optimal output-sensitive con-
struction of contour trees using monotone paths. Computational Geometry: Theory and
Applications, 30:165–195, 2005.

24. K. Cole-McLaughlin, H. Edelsbrunner, J. Harer, V. Natarajan, and V. Pascucci. Loops in
Reeb graphs of 2-manifolds. In SCG ’03: Proceedings of the 19th Annual Symposium on
Computational Geometry 2003, pages 344–350. ACM Press, 2003.

25. M. Couprie and G. Bertrand. Topological grayscale watershed transformation. In Vision
Geometry V. Proceedings SPIE 3168, pages 136–146. SPIE, 1997.

26. J. Cox, D. B. Karron, and N. Ferdous. Topological zone organization of scalar volume
data. Journal of Mathematical Imaging and Vision, 18:95–117, 2003.

27. E. Danovaro, L. De Floriani, P. Magillo, M. M. Mesmoudi, and E. Puppo. Morphology-
driven simplification and multi-resolution modeling of terrains. In E. Hoel and P. Rigaux,

210 S. Biasotti et al.

editors, Proceedings ACM-GIS 2003 - The 11th International Symposium on Advances in
Geographic Information Systems, pages 63–70. ACM Press, November 2003.

28. E. Danovaro, L. De Floriani, and M. M. Mesmoudi. Topological analysis and characteri-
zation of discrete scalar fields. In T. Asano, R. Klette, and C. Ronse, editors, Theoretical
Foundations of Computer Vision, Geometry, Morphology, and Computational Imaging,
volume 2616 of Lecture Notes on Computer Science, pages 386–402. Springer Verlag,
2003.

29. E. Danovaro, L. De Floriani, L. Papaleo, and M. Vitali. A multi-resolution representation
for terrain morphology. In M. Raubal, H.J. Miller, A.U. Frank, and M.F. Goodchild,
editors, Geographic Information Science, 4th International Conference, GIScience 2006,
Münster, Germany, September 20-23, 2006, Proceedings, volume 4197 of Lecture Notes
in Computer Science, pages 33–46. Springer, 2006.

30. M. de Berg and M. van Kreveld. Trekking in the Alps without freezing or getting tired.
Algorithmica, 19:306–323, 1997.

31. L. De Floriani, P. Magillo, and E. Puppo. Data structures for simplicial multi-complexes.
In R. H. Guting, D. Papadias, and F. Lochovsky, editors, Advances in Spatial Databases,
volume 1651 of Lecture Notes in Computer Science, pages 33–51. 1999.

32. L. De Floriani, E. Puppo, and P. Magillo. A formal approach to multi-resolution modeling.
In W. Strasser, R. Klein, and R. Rau, editors, Geometric Modeling: Theory and Practice,
pages 302–323. Springer-Verlag, 1997.

33. L. De Floriani, E. Puppo, and P. Magillo. Applications of computational geometry to
Geographic Information Systems. In J. R. Sack and J. Urrutia, editors, Handbook of
Computational Geometry, chapter 7, pages 333–388. Elsevier Science, 1999.

34. Shen Dong, Peer-Timo Bremer, Michael Garland, Valerio Pascucci, and John C. Hart.
Spectral surface quadrangulation. ACM Transactions on Graphics, 25(3):1057–1066,
July 2006.

35. H. Edelsbrunner, J. Harer, V. Natarajan, and V. Pascucci. Morse-Smale complexes for
piecewise linear 3-manifolds. In Proceedings 19th ACM Symposium on Computational
Geometry, pages 361–370, 2003.

36. H. Edelsbrunner, J. Harer, and A. Zomorodian. Hierarchical Morse complexes for piece-
wise linear 2-manifolds. In Proceedings 17th ACM Symposium on Computational Geom-
etry, pages 70–79. ACM Press, 2001.

37. H. Edelsbrunner, J. Harer, and A. Zomorodian. Hierarchical Morse-Smale complexes for
piecewise linear 2-manifolds. Discrete and Computational Geometry, 30:87–107, 2003.

38. R. Forman. Morse theory for cell complexes. Advances.in Mathematics, 134:90–145,
1998.

39. R. Forman. Morse theory for cell complexes. Advances in Mathematics, 134:90–145,
1998.

40. T. Gerstner and R. Pajarola. Topology-preserving and controlled topology simplifying
multi-resolution isosurface extraction. In Proceedings IEEE Visualization 2000, pages
259–266, 2000.

41. C. Giertsen, A. Halvorsen, and P.R. Flood. Graph-directed modelling from serial sections.
The Visual Computer, 6:284–290, 1990.

42. H. B. Griffiths. Surfaces. Cambridge University Press, 1976.
43. V. Guillemin and A. Pollack. Differential Topology. Englewood Cliffs, New Jersey, 1974.
44. Attila Gyulassy, Vijay Natarajan, Valerio Pascucci, Peer-Timo Bremer, and Bernd

Hamann. Topology-based simplification for feature extraction from 3d scalar fields. In
Proceedings of IEEE Conference on Visualization, 2005.

Morphological Representations of Scalar Fields 211

45. T. Itoh and K. Koyamada. Automatic isosurface propagation using extrema graph and
sorted boundary cell lists. IEEE Transactions on Visualization and Computer Graphics,
1:319–327, 1995.

46. R. Jones. Connected filtering and segmentation using component trees. Computer Vision
and Image Understanding, 75:215–228, 1999.

47. C. Jun, D. Kim, D. Kim, H. Lee, J. Hwang, and T. Chang. Surface slicing algorithm based
on topology transition. Computer-Aided Design, 33(11):825–838, 2001.

48. D. B. Karron and J. Cox. Extracting 3D objects from volume data using digital morse
theory. In CVRMed ’95: Proc. of the First Int. Conf. on Computer Vision, Virtual Reality
and Robotics in Medicine, volume 905 of Lecture Notes in Computer Science, pages 481–
486, London, UK, 1995. Springer-Verlag.

49. P. Magillo, E. Danovaro, L. De Floriani, L. Papaleo, and M. Vitali. Extracting terrain mor-
phology: A new algorithm and a comparative evaluation. In 2nd International Conference
on Computer Graphics Theory and Applications, March 2007.

50. A. Mangan and R. Whitaker. Partitioning 3D surface meshes using watershed segmenta-
tion. IEEE Transaction on Visualization and Computer Graphics, 5(4):308–321, 1999.

51. M. Mantyla. An Introduction to Solid Modeling. Computer Science Press, 1987.
52. W. S. Massey. A basic course in algebraic topology. Springer-Verlag, New York, NY,

USA, 1991.
53. F. Meyer. Topographic distance and watershed lines. Signal Processing, 38:113–125,

1994.
54. J. Milnor. Morse Theory. Princeton University Press, New Jersey, 1963.
55. Mesmoudi Mohammed Mostefa and De Floriani Leila. Morphology-based representa-

tions of discrete scalar fields. In In proceedings of the 2nd International Conference on
Computer Graphics Theory. ISI Proceedings, March 2007.

56. L. R. Nackman. Two-dimensional critical point configuration graph. IEEE Transactions
on Pattern Analysis and Machine Intelligence, PAMI-6(4):442–450, 1984.

57. V. J. Natarajan and N. Pascucci. Volumetric data analysis using Morse-Smale complexes.
In Proceedings Shape Modeling International 2005, 2005.

58. X. Ni, M. Garland, and J. C. Hart. Fair morse functions for extracting the topo-logical
structure of a surface mesh. ACM Transaction on Graphics, 23(3):613–622, 2004.

59. L. Papaleo. Surface Reconstruction: online mosaicing and Modeling with uncertnaity.
PhD thesis, Department of Computer Science - University of Genova, May 2004.

60. V. Pascucci. Topology diagrams of scalar fields in scientific visualization. In S. Rana,
editor, Topological Data Structures for Surfaces, pages 121–129. John Wiley and Sons
Ltd, 2004.

61. V. Pascucci. Generalization 3D Morse-Smale complexes. In Dagstuhl Seminar on Scien-
tific Visualization, 2005 - to appear.

62. V. Pascucci and K. Cole-McLaughin. Efficient computation of the topology of the level
sets. In Proceedings of Visualization 2002, pages 187–194. IEEE Press, 2002.

63. V. Pascucci and K. Cole-McLaughlin. Parallel computation of the topology of level sets.
Algorithmica, 38:249–268, 2003.

64. Valerio Pascucci. On the topology of the level sets of a scalar field. In Proceedings of
the 13th Canadian Conference on Computational Geometry, pages 141–144, University
of Waterloo, Ontario, Canada, 2001.

65. T. K. Peucker and D. H. Douglas. Detection of Surface-Specific Points by Local Parallel
Processing of Discrete Terrain Elevation Data. Computer Graphics and Image Process-
ing, 4:375–387, 1975.

66. J. L. Pfaltz. Surface networks. Geographical Analysis, 8:77–93, 1976.

212 S. Biasotti et al.

67. W. Press, S. Teukolsky, W. Vetterling, and B. Flannery. Numerical recipes in c - second
edition. Cambridge University Press, 1992.

68. G. Reeb. Sur les points singulièrs d’une forme de Pfaff complètement intégrable ou d’une
fonction numèrique. Comptes Rendu de l’Academie des Sciences, 222:847–849, 1946.

69. J. Roerdink and A. Meijster. The watershed transform: definitions, algorithms, and paral-
lelization strategies. Fundamenta Informaticae, 41:187–228, 2000.

70. B. Schneider. Extraction of hierarchical surface networks from bilinear surface patches.
Geographical Analysis, 37:244–263, 2005.

71. B. Schneider and J. Wood. Construction of metric surface networks from raster-based
DEMs. In S. Rana, editor, Topological Data Structures for Surfaces, pages 53–70. John
Wiley and Sons Ltd, 2004.

72. Y. Shinagawa, T. L. Kunii, and Y. L. Kergosien. Surface coding based on Morse theory.
Ieee Computer Graphics and Applications, 11:66–78, 1991.

73. S. Smale. Morse inequalities for a dynamical system. Bulletin of American Mathematical
Society, 66:43–49, 1960.

74. B.-S. Sohn and C. L. Bajaj. Time-varying contour topology. IEEE Transactions on
Visualization and Computer Graphics, 12(1):14–25, 2006.

75. P. Soille. Morphological Image Analysis: Principles and Applications. Springer-Verlag,
Berlin and New York, 2004.

76. A. Szymczak. Subdomain aware contour trees and contour evolution in time-dependent
scalar fields. In SMI ’05: Proceedings of Shape Modeling Applications 2005. IEEE Press,
2005.

77. S. Takahashi. Algorithms for Extracting Surface Topology from Digital Elevation Models,
pages 31–51. John Wiley & Sons Ltd, 2004.

78. S. Takahashi, T. Ikeda, Y. Shinagawa, T. L. Kunii, and M. Ueda. Algorithms for extract-
ing correct critical points and constructing topological graphs from discrete geographical
elevation data. Computer Graphics Forum, 14:181–192, 1995.

79. S. Takahashi, Y. Takeshima, and I. Fujishiro. Topological volume skeletonization and its
application to transfer function design. Graphical Models, 66(1):24–49, 2004.

80. S. P. Tarasov and M. N. Vyalyi. Construction of contour trees in 3D in O(nlogn) steps. In
SCG ’98: Proceedings of the 14th Annual Symposium on Computational Geometry 1998,
pages 68–75. ACM Press, 1998.

81. H. Theisel and C. Roessl. Morphological representations of vector fields. In Shape Analy-
sis and Structuring. Springer, 2007.

82. J. Toriwaki and T. Fukumura. Extraction of structural information from gray pictures.
Computer Graphics and Image Processing, 7:30–51, 1978.

83. M. van Kreveld, R.van Oostrum, C. Bajaj, V. Pascucci, and D. Schikore. Contour trees
and small seed sets for isosurface traversal. In SCG ’97: Proceedings of the 13th Annual
Symposium on Computational Geometry 1997, pages 212–220. ACM Press, 1997.

84. L. Vincent and S. Beucher. Introduction to the morphological tools for segmentation.
Traitement d’images en microscopie balayage et en microanalyse par sonde lectronique,
pages F1–F43, March 1990.

85. L. Vincent and P. Soille. Watershed in digital spaces: an efficient algorithm based on
immersion simulation. IEEE Transactions on Pattern Analysis and Machine Intelligence,
13(6):583–598, 1991.

86. L. T. Watson, T. J. Laffey, and R. M. Haralick. Topographic classification of digital
image intensity surfaces using generalized splines and the discrete cosine transformation.
Computer Vision, Graphics, and Image Processing, 29:143–167, 1985.

Morphological Representations of Scalar Fields 213

87. G. H. Weber, G. Schueuermann, H. Hagen, and B. Hamann. Exploring scalar fields us-
ing critical isovalues. In Proceedings IEEE Visualization 2002, pages 171–178. IEEE
Computer Society, 2002.

88. G. H. Weber, G. Schueuermann, and B. Hamann. Detecting critical regions in scalar
fields. In G.-P. Bonneau, S. Hahmann, and C. D. Hansen, editors, Proceedings Data
Visualization Symposium, pages 85–94. ACM Press, New York, 2003.

89. G. W. Wolf. Topographic surfaces and surface networks. In S. Rana, editor, Topological
Data Structures for Surfaces, pages 15–29. John Wiley and Sons Ltd, 2004.

Topological Representations of Vector Fields

Holger Theisel1, Christian Rössl2, and Tino Weinkauf3

1 Bielefeld University theisel@techfak.uni-bielefeld.de
2 INRIA Sophia-Antipolis christian.roessl@sophia.inria.fr
3 Zuse Institute Berlin (ZIB) weinkauf@zib.de

Summary. This chapter gives an overview on topological methods for vector field process-
ing. After introducing topological features for 2D and 3D vector fields, we discuss how to
extract and use them as visualization tools for complex flow phenomena. We do so both for
static and dynamic fields. Finally, we introduce further applications of topological methods
for compressing, simplifying, comparing, and constructing vector fields.

1 Introduction

Vector fields appear in many areas of science, engineering, and industry. In recent years, a
variety of methods to process, model, analyze and visualize vector fields have been devel-
oped. Similar to other areas of Computer Graphics, a common challenge is the dramatically
increasing size and complexity of the vector fields. One common approach to processing vec-
tor fields is feature extraction [24]. Features represent certain interesting objects or structures
in the vector field like topological features, vortex core lines, or shock waves. The idea of fea-
ture extraction is to detect, extract and track these features and use them instead of the whole
data set for further processing.

Among the feature extraction techniques, topological methods have gained a rather high
popularity because they offer to describe even complex flow behaviors by only a limited num-
ber of graphical primitives. The main idea of them is to segment the vector field into areas of
different flow behavior.

Topological structures are well-studied in the context of dynamical systems and partial
differential equations [1, 3, 10]. However, in recent years they attracted the Visualization com-
munity, leading to a quite intensive research on how to use them as visualization tools.

In this chapter, we give an overview of topological methods for vector field processing.
The main class of applications we have in mind is the visualization of flow structures (sections
2–4). In addition, we discuss further applications of topological methods for vector fields
(section 5).

216 H. Theisel et al.

2 Topological features of 2D vector fields

2.1 Concepts

To describe topological features of 2D vector fields in detail, we start with a steady 2D vector
field

v(x, y) =

(
u(x, y)
v(x, y)

)
(1)

and assume v to be continuous and differentiable. Then the Jacobian matrix Jv is a 2 × 2
matrix which is defined in every point of the domain of the vector field by

Jv(x, y) = (vx,vy) =

(
ux(x, y) uy(x, y)
vx(x, y) vy(x, y)

)
. (2)

The determinant of Jv is called Jacobian of v.
A point x0 ∈ E2 is called a critical point if v(x0) = (0, 0)T = 0 and v(x) �= 0 for any

x �= x0 in a certain neighborhood of x0.
A stream line s(t) of the vector field v is a curve in the domain of v with

ṡ(t) = v(s(t)) (3)

for any t of the domain of s. In (3), ṡ denotes the tangent vector of s. Considering the vector
field v as the velocity field of a steady flow, a stream line describes the path of a massless
particle set out at a certain location in the flow.

Stream lines do not intersect each other (except for critical points of v). Given a point in
the flow, there is one and only one stream line through it (except for critical points of v).

Classification of critical points

To classify a critical point in a 2D steady vector field, sectors of different flow behavior around
it have to be considered. Three kinds of sectors can be distinguished ([7]):

• In a parabolic sector either all stream lines end, or all stream lines originate, in the critical
point. Figure 1a shows an example.

• In a hyperbolic sector all stream lines pass by the critical point, except for two stream
lines being the boundaries of the sector. One of these two stream lines ends in the critical
point while the other one originates in it. Figure 1b shows an example.

• In an elliptic sector all stream lines originate and end in the critical point. Figure 1c shows
an example.

A critical point in a 2D vector field is completely classified by specifying number and order
of all sectors around it. Consider figure 2a for an example. This critical point consists of 7
sectors in the following order: hyperbolic, elliptic, hyperbolic, elliptic, parabolic, hyperbolic,
hyperbolic.

The different sectors are delimited by stream lines originating or ending in the critical
point. Figure 2b shows such a stream line delimiting two hyperbolic sectors.

Each critical point can be assigned an index:

index = 1 +
ne − nh

2
(4)

Topological Representations of Vector Fields 217

a)

c)b)

Fig. 1. Sectors of a critical point; a) parabolic sector; b) hyperbolic sector; c) elliptic sector
(from [42]).

h

h

h

h

p

e

e tangent
curve

a) b)

Fig. 2. a) general critical point; b) stream line separating two hyperbolic sectors.

where ne is the number of elliptic sectors and nh is the number of hyperbolic sectors. The
index can also be interpreted as the number of counterclockwise revolutions made by the
vectors of v while travelling counterclockwise on a closed curve around the critical point
(the closed curve must be so tight to the critical point that no other critical point is inside it).

The index can be considered as an overview of the complexity of a critical point but does
not cover the complete classification: there are critical points with different sectors but the
same index. An further introduction to the classification of 2D critical points and their indices
can be found in [7].

A critical point x0 in the vector field v is called a first-order critical point if the Jaco-
bian does not vanish in x0; otherwise the critical point is called high-order critical point. As
shown in [13] and [14], the classification of critical points x0 = (x0, y0) in the vector field v
simplifies if x0 is a first order critical point. In this case a first order Taylor expansion

vT1,x0 =

(
ux(x0) uy(x0)
vx(x0) vy(x0)

)
·
(

x − x0

y − y0

)
(5)

of the flow around x0 is sufficient to obtain the complete classification of it. (5) ensures that

Jv(x0) = JvT1,x0
(x0). (6)

It turns out that for det(Jv(x0)) < 0, the critical point x0 consists of 4 hyperbolic sectors
and therefore has an index of -1. A critical point of this classification is called a saddle point.
In this case the eigenvectors of Jv(x0) denote the delimiters of the hyperbolic areas around
x0. For det(Jv(x0)) > 0, the critical point x0 consists of one parabolic sector and therefore
has an index of +1.

218 H. Theisel et al.

This classification of a first order critical point x0 with an index of +1 can be refined
by considering the eigenvalues of Jv(x0). Let R1, R2 be the real parts of the eigenvalues of
Jv(x0), and let I1, I2 be the imaginary parts of the eigenvalues of Jv(x0). Then the refined
classification following [13] is shown in figure 3. Note that positive real parts denote a re-
pelling behavior of the flow while negative real parts indicate an attracting behavior. Non-zero
imaginary parts denote a circulating behavior of the flow. [23] detects and classifies critical

Fig. 3. Classification of first order critical points; R1, R2 denote the real parts of the eigen-
values of the Jacobian matrix while I1, I2 denotes its imaginary parts (from [13]).

points using a discrete Hodge decomposition.

Boundary switch points

Vector fields are usually defined over a limited domain. Along its boundary curves, the vector
field has either an inflow or an outflow behavior. Boundary switch points separate these areas.
A boundary switch point is a point on the boundary curve with the property that the tangent
of the boundary curve is parallel to the vector of the field there. Two kinds of boundary switch
points can be distinguished: inbound or outbound points. At an inbound point, the stream
line starting there in forward and backward direction goes into the domain of v, while for an
outbound point it leaves the domain immediately. Figure 4 (a) and (b) give an illustration.

A
1

(a) (b)
(c) (d)

A
2

A
3

Fig. 4. (a) inbound boundary switch point; (b) outbound boundary switch point; (c) separatrix
from inbound boundary switch points divides the domain into 3 sectors A1, A2, A3; (d) an
isolated closed stream line divides the domain into 2 sectors.

Separatrices

Separatrices are stream lines which divide the domain of v into areas of different flow behav-
ior. Different types of separatrices are possible:

Topological Representations of Vector Fields 219

• Each tangent curve originating/ ending in the critical point and separating two sectors
there is a separatrix. Figure 2b illustrates a separatrix which separates two hyperbolic
sectors of a critical point.

• Stream lines from inbound boundary switch points divide the domain into 3 different
areas. Figure 4(c) gives an illustration.

• Isolated closed stream lines are separatrices. Figure 4(d) gives an illustration.

2.2 Visualizing 2D topology

After the introduction of topological methods as a visualization tool for 2D vector fields in
[13], an intensive research has been done in this field. [26] treats higher order critical points.
In [5], separatrices starting from boundary switch points are discussed. [46] and [37] give
methods to detect closed separatrices. To visualize the topology of a 2D vector field, critical
points, boundary switch points, and separatrices have to be extracted. Critical points can be ex-
tracted directly (in case of a piecewise (bi-)linear vector field) or numerically. Also, boundary
switch points can be found by a closed solution.

Most visualization approaches consider only first order critical points. Then the starting
directions of the separatrices are the eigendirections of the Jacobian matrices at the saddle
points.

For integrating stream lines (for instance separatrices), usually numerical methods are ap-
plied4. Standard is a fourth order Runge-Kutta integration [27]. Figure 5 shows an example of

Fig. 5. Topological skeleton of the skin friction data set.

a topological skeleton of a 2D vector field describing the skin friction on a face of a cylinder5.
Isolated closed stream lines can only be extracted and visualized by a global analysis

of the vector field. [46] uses the underlying grid structure of a piecewise linear vector field:
each grid cell is analyzed concerning the re-entering behavior of the stream lines starting at
its boundaries. [37] presents an approach which uses the fact that searching isolated stream
lines in 2D vector fields corresponds to intersecting stream surfaces in certain 3D vector fields.
Figure 6 gives an illustration (see also Figure CP-1 in Appendix G).

4 Only for piecewise linear vector fields, a closed solution exists [21].
5 The data set was generated by R.W.C.P. Verstappen and A.E.P. Veldman of the University

of Groningen (the Netherlands).

220 H. Theisel et al.

(b)(a)

Fig. 6. (a) detected closed stream lines in a 2D vector field; (b) to get them, certain stream
surfaces of a 3D vector field are integrated and intersected (from [37]).

3 Topological Features of 3D Vector Fields

3.1 Concepts

Topological structures of 3D vector fields are well-understood in the visualization community
for many years [14, 2, 4, 22]. In this section, we collect the most important concepts and
properties.

Critical points

Given a 3D vector field v : IE3 → IR3, a first order critical point x0 (i.e., a point x0 with
v(x0) = 0 and det(Jv(x0)) �= 0, where Jv(x) = ∇v(x) is the Jacobian matrix of v, can
be classified by an eigenvalue/eigenvector analysis of Jv(x0). Let λ1, λ2, λ3 be the eigen-
values of Jv(x0) ordered according to their real parts, i.e. Re(λ1) ≤ Re(λ2) ≤ Re(λ3).
Furthermore, let e1, e2, e3 be the corresponding eigenvectors, and let f1, f2, f3 be the eigen-
vectors of the transposed Jacobian (Jv(x0))

T corresponding to λ1, λ2, λ3. (Note that J and
JT have the same eigenvalues but not necessarily the same eigenvectors.) Concerning the real
parts of the eigenvalues, the following classification of critical points is possible:

• sources: 0 < Re(λ1) ≤ Re(λ2) ≤ Re(λ3)
• repelling saddles: Re(λ1) < 0 < Re(λ2) ≤ Re(λ3)
• attracting saddles: Re(λ1) ≤ Re(λ2) < 0 < Re(λ3)
• sinks: Re(λ1) ≤ Re(λ2) ≤ Re(λ3) < 0

Each of these classes can be further divided into two stable6 subclasses by deciding if imagi-
nary parts in the eigenvalues are present. Since vector fields usually consist of a finite number
of critical points, an iconic representation is the appropriate visualization approach. Several
icons have been proposed in the literature, see [14, 9, 19, 11]. In the following we describe
the different classes of critical points as well as the icons which were used in [36, 43] for their
visual representation. These icons were colored depending on the flow behavior: Attracting
parts (inflow) are colored blue, while repelling parts (outflow) are colored red.

Topological Representations of Vector Fields 221

e1

f1

e1

e2

e3

e1

f1

b) c) d)

e)
f)

e1

e2

e3

g)

a)

h)

Fig. 7. Sources and sinks; (a) repelling node and (b) its icon; (c) repelling focus and (d) its
icon; (e) attracting node and (f) its icon; (g) attracting focus and (h) its icon (from [43]).

Sources and Sinks

A source xSo is characterized by the fact that in its neighborhood all stream lines diverge from
xSo. The two stable subclasses are repelling nodes and repelling foci.

A repelling node is characterized by the absence of imaginary parts in λ1, λ2, λ3, and
e1, e2, e3 are linearly independent (Figure 7a). To visualize a repelling node, we use a red
ellipsoid with a shape determined by the eigenvectors and eigenvalues of the Jacobian (Figure
7b).

A repelling focus is characterized by the presence of two eigenvalues with imaginary parts,
say λ2, λ3. In this case, the only real eigenvector e1 of J describes the direction of straight
outflow. In addition, there is a plane in which a 2D repelling focus behavior appears. This
plane is perpendicular to the only real eigenvector f1 of JT (Figure 7c). As an icon, we used a
red double cone representing the outflow plane and the outflow direction by its shape (Figure
7d).

A sink xSi can be considered as an inverse source: in its neighborhood all stream lines
converge to xSi. The two subcases are attracting nodes (Figures 7e-f) and attracting foci
(Figures 7g-h). See also Figure CP-2 in Appendix G.

Repelling Saddles and Attracting Saddles

A repelling saddle xR has one direction of inflow behavior (called inflow direction) and a
plane in which a 2D outflow behavior occurs (called outflow plane through xR). For all other
directions around xR, the stream lines do not touch xR. The two stable subclasses are repelling
node saddles and repelling focus saddles.

A repelling node saddle has no imaginary parts in λ1, λ2, λ3, and e1, e2, e3 are linearly
independent (Figure 8a). Its icon includes a red ellipse denoting the outflow plane defined by
e2, e3 and λ2, λ3, while a blue arrow pointing to the center of the ellipse represents the inflow
direction (Figure 8b).

6 A critical point in v is called stable if a small perturbation of v does not change the classi-
fication of the critical point.

222 H. Theisel et al.

A repelling focus saddle is characterized by Im(λ2) = −Im(λ3) �= 0. Here, the only
real eigenvector e1 of J describes the inflow direction. The only real eigenvector f1 of JT

describes the plane with the 2D repelling focus behavior (Figures 8c-d).
An attracting saddle xA can be interpreted as an inverse version of a repelling saddle. It

has one direction of outflow behavior (outflow direction) and a plane in which a 2D inflow
behavior appears (inflow plane through xA). The two stable subclasses are attracting node
saddles without imaginary parts of the eigenvalues (Figures 8e-f) and attracting focus saddles
(Figures 8g-h).

Fig. 8. Repelling and attracting saddles; (a) repelling node saddle and (b) its icon; (c) repelling
focus saddle and (d) its icon; (e) attracting node saddle and (f) its icon; (g) attracting focus
saddle and (h) its icon (from [43]).

See also Figure CP-3 in Appendix G.

Unstable Critical Points

In addition to the kinds of critical points described above, a number of unstable versions
of sources, sinks and repelling/attracting saddles exist. Also, two further classes of unstable
critical points exist which do not belong to any of the above-mentioned classes: attracting
centers and repelling centers. A repelling center is characterized by Re(λ1) = Re(λ2) = 0 <
Re(λ3) and Im(λ1) = −Im(λ2) �= 0. It consists of one direction e3 of outflow behavior
and one plane perpendicular to f3 with a 2D circulating behavior. An attracting center has
Re(λ1) < 0 = Re(λ2) = Re(λ3) and Im(λ2) = −Im(λ3) �= 0. The inflow direction is
defined by e1 and the 2D circulating behavior can be found in the plane perpendicular to f1.

Boundary switch curves

Consider the 3D vector field v in the domain

D = (xmin, xmax) × (ymin, ymax) × (zmin, zmax) (7)

with xmin < xmax, ymin < ymax, zmin < zmax. The boundary surfaces of D (which are
the 6 faces of the bounding box) consist of outflow and inflow areas which are separated by
boundary switch curves. Boundary switch curves consist of all points on the boundary where
the flow direction is tangential to the boundary surface. Figure 9(a) illustrates an example of
the boundary plane z = zmin consisting of one inflow and one outflow area. (In the following

Topological Representations of Vector Fields 223

Fig. 9. (a) boundary plane z = zmin consisting of an inflow area (blue), an outflow area
(red), and their separating boundary switch curve; shown are 4 vectors of v on the boundary
switch curve, and one each in the inflow and outflow area; (b) inbound point p0 on a boundary
switch curve: v(p0) points into the inflow area, v̇(p0) points inside D; shown is a part of the
stream line starting in p0 both in forward and backward integration; (c) outbound point p0 on
a boundary switch curve; v(p0) points into the outflow area, v̇(p0) points outside D; shown
is a stream line close to p0 starting in the inflow area and leaving D in the outflow area.

we illustrate the concept of boundary switch curves only on the boundary plane z = zmin.
Similar statements hold for the 5 remaining boundary planes of D.)

Given a point p0 on a boundary switch curve, two cases are possible concerning the stream
line starting at p0:

• Starting from p0, the stream line integration moves inside D for both backward and for-
ward integration. We call this point an inbound point on the boundary switch curve (Figure
9(b)).

• Starting from p0, the stream line integration moves outside D for both backward and
forward integration. Therefore, this stream line in D consists only of p0 itself. We call
this point an outbound point (Figure 9(c)).

Separatrices

Separatrices are curves or surfaces which separate regions of different flow behavior. Since
around sources and sinks a homogeneous flow behavior is present (either a complete outflow
or inflow), sources and sinks do not contribute to separatrices. A repelling saddle xR creates
two separatrices: one separation curve (which is a stream line starting in xR in the inflow
direction by backward integration) and a separation surface (which is a stream surface starting
in the outflow plane by forward integration). Separatrices are also emanating from inbound
segments of boundary switch curves.

Figure 10 shows the topological visualization of a data set describing the electrostatic field
of a Benzene molecule7. Figure 10(a) shows the iconic representation of all 184 critical points.
Figure 10(b) shows the critical points and the separation surfaces starting from the saddles,
while figure 10(c) additionally shows the separatrices emanating from boundary switch curves.
See also CP-4 in Appendix G.

7 This data set was calculated on a 1013 regular grid using the fractional charges method
described in [28].

224 H. Theisel et al.

(a)
(b) (c)

Fig. 10. Topological representations of the benzene data set with 184 critical points; (a) iconic
representation; (b) separation surfaces starting from saddles; (c) separation surfaces starting
from saddles and boundary switch curves (from [36, 43]).

Saddle- and boundary switch connectors

A saddle connector is the intersection curve between a separation surface starting from an
attracting saddle and a separation surface starting from a repelling saddle. Figure 11(a),(b)
give an illustration.

(a) (b)
(c)

Fig. 11. (a) separation surfaces of two saddles; (b) the intersection of the separation surfaces
is the saddle connector; (c) finding the intersection of two separation surfaces one comes from
a saddle, while the other one comes from a boundary switch curve (from [36, 43]).

Boundary switch connectors are the intersection curves of separation surfaces starting
from saddles or boundary switch curves. Figure 11(c) illustrates this. Concerning the different
kinds of separation surfaces, 4 kinds of boundary switch connectors are possible. They are
shown in figure 12

3.2 Visualizing 3D topology

Given a 3D vector field v, the critical points can be extracted directly (if v is piecewise linear)
or numerically. Then the classification is done by an eigenvalue/eigenvector analysis of the
Jacobian matrix.

Stream surfaces are obtained by a numerical stream surface integration [15, 25]. A stan-
dard approach is a 4th order Runge-Kutta integration. The result is a triangular mesh represent-
ing the stream surface which can be represented in a semitransparent way (figures 10(b),(c)).

Topological Representations of Vector Fields 225

Fig. 12. Cases of intersection curves of separation surfaces: a) saddle connectors; b)-e) bound-
ary switch connectors (from [43]).

Saddle connectors can serve as a visual alternative to visualizing separation surfaces since
they tend to hide themselves and other features and thus produce cluttered visual represen-
tations (figures 10(b),(c)). In order to extract saddle connectors, stream surfaces have to be
intersected. To do so, the front of the evolving stream surfaces are observed for intersection.
Figure 13 gives an illustration. Boundary switch connectors are extracted in a similar way.

Fig. 13. Extracting a saddle connector: (a) simultaneously observe fronts of evolving stream
surfaces; (b) stream line integration from intersection point gives saddle connector; (c) closeup
shortly before intersection is found; (d) intersection is found (from [36]).

226 H. Theisel et al.

Example:

Figures 14a–d visualize a snapshot of a transitional wake behind a circular cylinder [48].
See also Figure CP-5 in Appendix G. This flow exhibits periodic vortex shedding leading to
the well known von Kármán vortex street. This phenomenon plays an important role in many
industrial applications, like mixing in heat exchangers or mass flow measurements with vortex
counters. However, this vortex shedding can lead to undesirable periodic forces on obstacles,
like chimneys, buildings, bridges and submarine towers.

This data set was derived from a direct numerical simulation of the Navier-Stokes equation
by Gerd Mutschke [20]. The data resolves the so-called ‘mode A’ of the 3D transition at a
Reynolds number of 200 and at a spanwise wavelength of 4 diameters. The figures display a
small near-wake region of a large computational domain. All 13 critical points are contained
in the shown domain and on its boundaries 13 boundary switch curves are observed. Together
they span the topological skeleton of the incompressible velocity field.

The inspection of figure 14a suggests a high amount of circulating flow behavior in the
data set, but due to the occlusion effects introduced by the separation surfaces neither the flow
behavior on the boundaries nor the critical points can be seen easily. This complicates further
examinations to a high degree.

The simplified topological skeletons shown in Figures 14b–d enable to reduce this high-
dimensional data set to a simple conceptual flow representation from which qualitative con-
clusions can be drawn. Using connectors, the skeleton elucidates the symmetry of the mode
A with respect to a plane which is perpendicular to the cylinder axis. The high number of
spanwise and transverse running connectors of a single snapshot already indicate the experi-
mentally observed good mixing properties of vortex shedding.

4 Topological features of time-dependent vector fields

Up to now we treated the topology of steady (time-independent) vector fields by segmenting
areas of similar behavior of the stream lines. For time-dependent vector fields, there are two
important classes of characteristic curves: stream lines and path lines. Hence, two different
kinds of topologies can be obtained: a stream line and a path line oriented topology. We explain
both concepts for 2D time-dependent vector fields and mention that – except for some special
configurations [8] – the topology of 3D time-dependent vector field is rather unsolved.

Given a 2D time-dependent vector field

v(x, y, t) =

(
u(x, y, t)
v(x, y, t)

)
, (8)

where (x, y) describe the 2D domain and t is the temporal component, stream and path lines
are generally different classes of curves. Stream lines are the tangent curves of v for a fixed
time t, while path lines describe the paths of massless particles in v over time. To capture both
types of lines, we define two 3D vector fields and consider their topological behavior.

To treat stream lines and path lines of v, we consider

s(x, y, t) =

(
u(x, y, t)
v(x, y, t)

0

)
, p(x, y, t) =

(
u(x, y, t)
v(x, y, t)

1

)
. (9)

Both s and p can be seen as a steady 3D vector field. The stream lines of s coincide with the
stream lines of v, since any integration step in s keeps the time component unchanged. Any

Topological Representations of Vector Fields 227

(c)

(a) (b)

(d)

Fig. 14. Flow behind a circular cylinder: (a) separation surfaces emanating from boundary
switch curves and saddles; (b) boundary switch connectors between boundary switch curves;
(c) boundary switch connectors between saddle points and boundary switch curves; (d) saddle
connectors and both types of boundary switch connectors (from [43]).

(x, y)-slice through s represents v at a constant time. The stream lines of p coincide with the
path lines of v: given a starting point (x0, t0), one step of a simple Euler approximation of p
would be (

x1

t1

)
=

(
x0

t0

)
+ d p(x0, t0) =

(
x0 + d v(x0, t0)

t0 + d

)
(10)

which does not only change the location but also goes forward in time.8 Figure 15 illustrates s
and p for a simple example vector field v. Note that in all figures throughout this section the
coordinate system is shown as follows: red/green coordinate axes denote the (x, y)-domain,
the blue axis shows the time component.

Now the problem of finding a stream line and path line oriented topology is simply reduced
to finding the topological skeletons of s and p respectively. Unfortunately, neither for s nor for
p the classical vector field topology extraction techniques for 3D vector fields are applicable:
s consists of critical lines while p does not have any critical points at all.

4.1 Stream line oriented topology

Stream line oriented topology is well-understood in the visualization community ([14], [1],
[3]). In addition to track the topological features over time, bifurcations have to be extracted.
Bifurcations are the events of structural changes of the flow behavior at a certain time. We can
distinguish between local and global bifurcations depending on whether a local or a global
analysis is necessary to extract them.

8 For the actual integration one may use a fourth-order Runge-Kutta method.

228 H. Theisel et al.

(a) (b)

Fig. 15. Characteristic curves of a simple 2D time-dependent vector field shown as illumi-
nated field lines: Stream lines of s correspond to the stream lines in v; (b) stream lines of p
correspond to the path lines in v.

Tracking critical points

Critical points are important topological features of steady vector fields. Tracking their loca-
tion over time is necessary for capturing the topological behavior of v. This is equivalent to
extracting the zero lines of s, where all points on these lines are zero points of v at a certain
time. To do so, one can either extract and connect the zeros on the faces of an underlying
prism cell grid ([41]), or a feature flow field integration from a start zero point of s is applied.
The feature flow field for tracking critical points is a 3D vector field f which points into the
direction where all components of s remain unchanged. [34] shows that

f(x, y, t) =

(
det(vy,vt)
det(vt,vx)
det(vx,vy)

)
. (11)

Starting a stream line integration of f from a point x0 with s(x0) = (0, 0, 0)T , all points x
on this stream line fulfill s(x) = (0, 0, 0)T as well.

To extract all critical lines of s, an appropriate number of starting points is needed. We
get them by considering all critical points at the boundaries of the domain of s (which can
easily be obtained as critical points of 2D vector fields) and by additionally considering all
fold bifurcations of v. A fold bifurcation appears if at a certain time t a critical point appears,
and in the same moment splits up to a saddle and source/sink/center.9 Fold bifurcations can be
found as the zeros of the following system of equations: [u = 0, v = 0, det(vx,vy) = 0]
which can be solved numerically.

Another important class of local bifurcations are Hopf bifurcations denoting locations
where a sink becomes a source or vice versa. Thus, this denotes the location of a center, i.e.

9 Or the other way around: a saddle and a source/sink/center collapse and disappear.

Topological Representations of Vector Fields 229

a critical point with a vanishing divergence and a positive Jacobian. Hopf bifurcations can
be extracted similar to fold bifurcations by numerically solving the system [u = 0, v =
0, div(v) = ux + vy = 0] for (x, y, t) and selecting all isolated solutions with positive
Jacobian.

Another part of the topological skeleton of v are the separation curves starting from sad-
dle points. It is a well-known fact that a saddle of a 2D vector field creates 4 separation curves
by starting the integration into the directions of the eigenvectors of the Jacobian matrix. While
the saddle moves over time in v, their swept surfaces form 4 stream surfaces dividing s into
areas of different flow behavior. Figure 16(a),(b) gives an illustration of a simple vector field
containing all topological feature mentioned above. In this figure (as well as in the following

(a)
(b)

(c) (d)

Fig. 16. (a),(b) topological visualization of a simple 2D time-dependent vector field consisting
of sink, source, saddle, fold and Hopf bifurcation - one of each type: (a) critical lines of s, LIC
plane through Hopf bifurcation; (b) separation surfaces created by the moving saddle. (c),(d)
Extracting saddle connections: (c) separation surfaces starting from critical lines of s; (d)
saddle connection as the intersection of these surfaces (from [38]).

figures) we use the following color coding: the critical lines of s are color coded according
to the inflow/outflow behavior of the represented critical points in v: a red/blue/green/yellow
line segment represents a source/sink/center/saddle critical point respectively. The same color
coding is used for particular critical points which are visualized as small spheres. This means
that a Hopf bifurcation is shown as a small green sphere. Furthermore, fold bifurcations are
shown as gray sphere, while particular stream lines of s are shown as gray lines. For inte-
grated separation surfaces we color code according to the integration direction as red (forward
integration) or blue (backward integration) surfaces.

Saddle connections

Saddle connections are global bifurcations which appear when two separatrices starting from
saddle points collapse, i.e. when a separatrix of one saddle ends in another saddle. To extract

230 H. Theisel et al.

them, we modify the idea of saddle connectors of 3D vector fields [36]: instead of starting the
integration of one separation surface at each saddle of a 3D vector field, we start in the critical
lines of s which represent a moving saddle. In fact, we start four stream surface integrations10

at the critical lines of s into the directions of the eigenvectors of the Jacobian matrix. The rest
of the algorithm is similar to saddle connectors [36] and yields all saddle connections in v.
Figure 16(c),(d) give an illustration.

A special case of saddle connections is the so-called periodic blue sky bifurcation ([1])
where two separatrices of the same saddle collapse. The algorithm described above to extract
saddle connections automatically extracts these bifurcations as well. Figure 17 illustrates this.

(a) (b)

(c) (d)

Fig. 17. Periodic blue sky bifurcation: (a) critical lines of s and two LIC planes; (b) separation
surfaces shortly after their intersection; (c) two separation curves of the same saddle collapse;
(d) tracked closed stream line starting from Hopf bifurcation. (from [38])

Tracking closed stream lines

Closed stream lines are global topological features which evolve over time in v. Doing so,
several bifurcations can occur: a closed stream line may appear or disappear, or two closed
stream lines may collapse and disappear. The last case is called cyclic fold bifurcation.

To track isolated closed stream lines, an extraction in different time slices and subsequent
linking was demonstrated in [47]. [38] presents a solution based on feature flow fields which
works on space-time and can detect cyclic fold bifurcations as well. Figure 17(d) given an
illustration.

10 Two forwards and two backwards.

Topological Representations of Vector Fields 231

4.2 Path line oriented topology

Considering a path line oriented topology for visualization purposes is a relatively new re-
search area. Constructing a path line oriented topology means to consider the stream lines
of p and segment p into regions of different flow behavior of them. [38] introduces an ap-
proach which does the segmentation based on local path line properties. This way the domain
segmented into areas where the path lines have attracting, repelling, or saddle like behavior.

4.3 An Example:

Figure 18 shows the visualization of a vector field describing the flow over a 2D cavity11.
1000 time steps have been simulated using the compressible Navier- Stokes equations; it ex-
hibits a non-zero divergence inside the cavity, while outside the cavity the flow tends to have
a quasi-divergence-free behavior. See also Figure CP-6 in Appendix G. Figure 18 shows ap-
proximately one period, 100 time steps, of the full data set. Figures 18 both reveal the overall
movement of the topological structures, the most dominating ones originating in or near the
boundaries of the cavity itself. The quasi-divergence-free behavior outside the cavity is con-
firmed by the fact that a high number of Hopf bifurcations has been found in this area.

(a) (b)

Fig. 18. 2D time-dependent flow at a cavity: (a) stream line oriented topology of the first 100
time steps; (b) path line oriented topology of the first 100 time steps (from [38]).

5 Further applications of topological features

Topological features of vector fields have not only proved to be a valuable visualization tool,
they can also be used for other task in processing vector fields. Here we introduce approaches
to compress, simplify, compare, and construct vector fields based on topological methods.

11 This data set was kindly provided by Mo Samimy and Edgar Caraballo (both Ohio State
University) [30] as well as Bernd R. Noack and Ivanka Pelivan (both TU Berlin).

232 H. Theisel et al.

5.1 Compressing vector fields

Flow data sets (i.e., vector fields) tend to be large and complex. This fact has motivated an
intensive research in simplifying and compressing vector fields. For both challenges, topolog-
ical concepts have been applied. Compression techniques for vector fields are motivated by
the necessity of transmitting large flow data sets over networks with low bandwidth, or by the
goal to produce visualizations of the data in low-end machines with a small main memory. For
these cases the consideration of compressed vector fields makes the process of visual analysis
of the flow data more efficient and is sometimes the only way to process the data in reasonable
time rates at all.

The main idea of a (lossy) data compression is to reduce the amount of data while keeping
the important structures. Since generally the topological skeleton is known to give a compact
description of the global flow behavior, topology preserving compression techniques are an
obvious approach. Lodha et al. [18, 17] introduce a compression technique for 2D vector
fields which prohibits strong changes of location and Jacobian matrix of the critical points.

Theisel et al. [32] introduce an approach which guarantees that the topology of original
and compressed vector field coincides both for critical points and for the connectivity of the
separatrices. It is shown that even under these strong conditions high compression ratios for
vector fields with complex topologies are achieved. The method works on a piecewise linear
vector field over a triangulation. The vector field is interpreted as a piecewise triangular mesh.
Then a standard mesh reduction algorithm can be adapted to this specific problem, i.e. the
compression is achieved by iteratively applying half-edge collapses. Before a half-edge col-
lapse is carried out, it is checked that it does not change the global topology of the vector field.
As the theoretical foundation of the algorithm in [32], it is shown that for local modifications
of a vector field, it is possible to decide entirely by a local analysis whether or not the global
topology is preserved.

Figure 19 shows the application of the compression algorithm to a data set of a com-
plex topology. Figure 19(a) shows the underlying triangular grid of the data set consisting of
12,726 triangles. Figure 19(c) shows the topological skeleton consisting of 338 critical points,
34 boundary switch points, and 714 separatrices. Figure 19(b) shows the underlying triangu-
lar grid after applying the compression algorithm. This grid contains of 2,153 triangles. The
topological skeleton of the compressed vector field is shown in figure 19(d).

5.2 Topological simplification of vector fields

The topological skeleton of a vector field may be very complex due to the presence of noise. In
this case, unimportant topological features have to be removed. This is done by a topological
simplification. The simplest way to do so is to apply a smoothing of the vector field before
extracting the topology ([6]). More involved techniques start with the original topological
skeleton and repeatedly apply local modifications of the skeleton and/or the underlying vector
field in order to remove unimportant critical points. They are based on the index theorem for
vector fields which ensures that the sum of the indices of the critical points remains constant
in the modified area. (See [7] or another textbook on vector analysis for an introduction of the
index of critical points and the index theorem.)

De Leeuw and van Liere [5] denote the importance of a critical point (source or sink)
by computing the area from which the flow ends in forward or backward integration. Based
on this area metric, the unimportant critical points are repeatedly collapsed to more important
critical points in the neighborhood. [6] finds couples of first order critical points by considering
distance and connectivity of them. Then the unimportant critical points are pairwise removed.

Topological Representations of Vector Fields 233

a)

b)

c)

d)

Fig. 19. (a) piecewise triangular domain of the original data set; (b) piecewise triangular
domain of the compressed data set; (c) topological skeleton of original data set; (d) topological
skeleton of compressed data set (from [32]).

Tricoche et al. [40] use a similar approach but provide a way of consistently updating the
underlying vector field.

Theisel et al. [31] solve the coupling problem of critical points by a feature flow field
approach. This gives not only the couples of critical points but also provides them and the
separatrices with an importance weight. Then topological features with an importance below
a certain threshold can be removed. Figure 20 gives an illustration.

Tricoche et al. [39] present another approach to simplifying the topology of 2D vector
fields by replacing clusters of first order critical points with a higher order critical point.
Weinkauf et al. [45] extend this to 3D vector fields. Figure 21 illustrates this.

234 H. Theisel et al.

Fig. 20. Important topological features for different thresholds w0; the image upper left (w0 =
0) shows the complete topological skeleton. (from [31]).

5.3 Topological comparison of vector fields

To deal with the increasing size and complexity of the vector fields, a number of reconstruc-
tion, compression and simplification techniques have been introduced. All these techniques
rely on certain distance measures between vector fields: the original and the derived vector
field have to be compared to guarantee a sufficient similarity between them. Hence the def-
inition of useful metrics on vector fields plays a crucial role in the applications above. The
first approaches on metrics (distance measures) of vector fields consider local deviations of
direction and magnitude of the flow vectors in a certain number of sample points ([12], [29]).
These distance functions give a fast comparison of the vector field but do not take any struc-
tural information of the vector fields into consideration.

Topological Representations of Vector Fields 235

(a) (b)

Fig. 21. Topological representations of the electrostatic field of the Benzene molecule: (a)
184 first order critical points. The box around the molecule represents the chosen area for
topological simplification. (b) Topologically simplified representation with one higher order
critical point elucidates the far field behavior of the benzene (from [45]).

A first approach to define a topology based distance function was given in [16]. Given two
vector fields v1 and v2, all critical points are extracted and coupled. Then the distance of the
vector fields is obtained as sum of the distances of the corresponding critical points in v1 and
v2. To compute the distance between two critical points, a number approaches exist [16, 35].
To couple the points, [33] proposes to use feature flow fields: a time-dependent vector field
v = (1 − t)v1 + tv2 is constructed in which the critical points are tracked by a stream line
integration of (11).

We demonstrate the application of topological comparison on a real data set. Figure 22(a)
shows the visualization of a 2D flow in a bay area of the Baltic Sea near Greifswald, Germany
(Greifswalder Bodden) at two different time steps12. The data set can be considered as a col-
lection of 25 vector fields v0, ...,v24. To evaluate the temporal behavior of the topology, the
topological distance of each time step with all other time steps is computed. As an example,
figure 22(a) illustrates the computation of the distance of the vector fields v5 and v10. Shown
are the topological skeletons of v5 and v10 as well as the integration of the stream lines of
the feature flow field starting in the critical point. We can see that most of the points find their
partners in the other vector field. Figures 22(b),(c) show magnifications of figure 22(a). Fig-
ure 22(d) shows the color coded distance matrix of all vector fields v0, ...,v24. The distance
varied between 0 and a maximal value of 104.5 (which was detected between v3 and v24).
The distance was linearly color coded in such a way that a zero distance corresponds to black
while the maximal distance corresponds to white. Figure 22(d) shows that the distance matrix
is symmetric and with a zero main diagonal. The most important observation which can be
made from figure 22(d) is that the distance of two vector fields vi and vj is approximately
proportional to the distance ‖i − j‖ of the time indices. This means that the rate of change
of the topology is approximately linear over time. This result is particularly interesting if the
number of critical points in the vector fields v0, ...,v24 is considered. They are (in this order)
65, 71, 71, 68, 65, 71, 63, 62, 66, 64, 65, 63, 70, 70, 51, 61, 52, 50, 56, 52, 63, 62, 72, 65.
This shows that there is no correlation between the number of critical points and the topo-
logical distance: both v0 and v24 have the same number 65 of critical points but a maximal
topological distance.

12 This data set was obtained by a numerical simulation on a regular 115×103 grid at 25 time
steps. It was created by the Department of Mathematics, University of Rostock (Germany).

236 H. Theisel et al.

(a) (b) (c) (d)

Fig. 22. (a) coupling the critical points of the v5 and v10 of the bay data set by integrating the
stream lines of f ; (b),(c): magnifications of (a); (d) distance matrix between v0, ...,v24 (from
[33]).

5.4 Constructing vector fields

The vector fields considered in flow visualization are usually obtained by a simulation or
measurement process. Nevertheless they can also be obtained by construction. Applications
of this approach are vector fields used for pattern matching, optimizing flow, education and
testing new visualization techniques.

The approach of constructing vector fields is strongly related to the ideas of constructing
curves and surfaces in the context of CAGD (Computer Aided Geometric Design). There the
curves/surfaces are designed by creating a skeleton of control polygons (for instance Bezier- or
B-spline polygons). This skeleton contains the relevant information of the curve/surface in an
intuitive way. [30] presents an approach to transform the CAGD methods to the construction
of 2D vector fields. To do so, first the topological skeleton of a vector field is constructed by
a number of control polygons. As a second step, a piecewise linear vector field of exactly the
specified topology is automatically created. Figure 23 gives an example.

a) c)b) d)

Fig. 23. Constructing a 2D vector field; a) topological skeleton of a vector field containing
a number of higher order critical points; b) piecewise linear vector field describing the con-
structed topological features, i.e. the critical points and separatrices; c) complete piecewise
linear vector field; d) curvature plot (from [30]).

An approach to constructing 3D vector fields is presented in [44]. There, the skeleton
is modeled by interactively moving a number of control polygons determining location and
characterization of the (first or higher order) critical points and the saddle connectors. Then
a piecewise linear vector field is automatically constructed which has the same topological
skeleton as modeled before. This approach is based on a complete segmentation of the areas
around critical points into sectors of different flow behavior. Based on this, an approach to
visualizing higher order critical points of 3D vector fields is presented.

Topological Representations of Vector Fields 237

Figure 24(a) shows a modeled topological skeleton consisting of 6 critical points and 8
connectors. Each of the critical points consists of two hyperbolic sectors and is actually a
first order saddle point. Each of the connectors was defined by specifying start and end point
and omitting any intermediate points. Thus, each connector consists of one cubic segment.
Figure 24(b) shows the result of the tetrahedrization of the critical points and the connectors.
In this figure we can clearly see that each connector is constructed in one tetrahedron. Figure
24(c) shows the complete tetrahedrization of the piecewise linear vector field consisting of
256 tetrahedra. Figures 24(d) and 24(e) show different visualizations of the newly constructed
vector field. Figure 24(d) shows a stream surface integration of the separation surfaces. They
are color coded in red (outflow surface) and blue (inflow surface). Figure 24(e) shows the
extraction of saddle connectors [36] revealing that they coincide with the modeled connectors
of figure 24(a). In addition, figure 24(e) shows a number of illuminated stream lines [49]. See
also Figure CP-7 in Appendix G.

(a)
(b) (c)

(d)
(e)

Fig. 24. Constructed 3D vector field: (a) Modeled topological skeleton; (b) Tetrahedrization
of critical points and connectors; (c) Complete tetrahedrization; (d) Separation surfaces of
constructed vector field, view from top; (e) Saddle connectors and stream lines of constructed
vector field (from [44]).

6 Conclusions

In this chapter we have shown that topological methods provide a useful framework for the
visual analysis of vector fields. However, there is a number of open problems which are still
rather unsolved. Firstly, an appropriate visual representation of the topological skeleton of 3D

238 H. Theisel et al.

time-dependent vector fields is still a challenge. Secondly, the path line oriented topological
representation of time-dependent vector fields remains an open problems. Because of this we
expect an active ongoing research in the field in the next years.

References

1. L. Abraham and K. Shaw. Dynamics, The Geometry of Behaviour. Addison-Wesley,
1992.

2. D. Asimov. Notes on the topology of vector fields and flows. Technical report, NASA
Ames Research Center, 1993. RNR-93-003.

3. P. G. Bakker. Bifurcations in Flow Patterns (Theory and Applications of Transport in
Porous Media). Kluwer Academic Publishers, 1991.

4. M. S. Chong, A. E. Perry, and B. J. Cantwell. A general classification of three-
dimensional flow fields. Physics of Fluids A, 2(5):765–777, 1990.

5. W. de Leeuw and R. van Liere. Collapsing flow topology using area metrics. In Proc.
IEEE Visualization ’99, pages 149–354, 1999.

6. W. de Leeuw and R. van Liere. Visualization of global flow structures using multiple
levels of topology. In Data Visualization 1999. Proc. VisSym 99, pages 45–52, 1999.

7. P.A. Firby and C.F. Gardiner. Surface Topology, chapter 7, pages 115–135. Ellis Horwood
Ltd., 1982. Vector Fields on Surfaces.

8. C. Garth, X. Tricoche, and G. Scheuermann. Tracking of vector field singularities in
unstructured 3D time-dependent datasets. In Proc. IEEE Visualization 2004, pages 329–
336, 2004.

9. A. Globus, C. Levit, and T. Lasinski. A tool for visualizing the topology of three-
dimensional vector fields. In Proc. IEEE Visualization ’91, pages 33–40, 1991.

10. J. Guckenheimer and P. Holmes. Nonlinear Oscillations, Dynamical Systems, and Bifur-
cations of Vector Fields. Springer, 2nd edition, 1986.

11. H. Hauser and E. Gröller. Thorough insights by enhanced visualization of flow topology.
In 9th international symposium on flow visualization, 2000.

12. B. Heckel, G.H. Weber, B. Hamann, and K.I.Joy. Construction of vector field hierarchies.
In D. Ebert, M. Gross, and B. Hamann, editors, Proc. IEEE Visualization ’99, pages 19–
26, Los Alamitos, 1999.

13. J. Helman and L. Hesselink. Representation and display of vector field topology in fluid
flow data sets. IEEE Computer, 22(8):27–36, 1989.

14. J. Helman and L. Hesselink. Visualizing vector field topology in fluid flows. IEEE
Computer Graphics and Applications, 11:36–46, May 1991.

15. J. Hultquist. Constructing stream surfaces in steady 3D vector fields. In Proc. IEEE
Visualization ’92, pages 171–177, 1992.

16. Y. Lavin, R.K. Batra, and L. Hesselink. Feature comparisons of vector fields using earth
mover’s distance. In Proc. IEEE Visualization ’98, pages 103–109, 1998.

17. S. Lodha, N. Faaland, and J. Renteria. Topology preserving top-down compression of 2d
vector fields using bintree and triangular quadtrees. IEEE Transactions on Visualization
and Computer Graphics, 9(4):433–442, 2003.

18. S.K. Lodha, J.C. Renteria, and K.M. Roskin. Topology preserving compression of 2D
vector fields. In Proc. IEEE Visualization 2000, pages 343–350, 2000.

19. H. Löffelmann, H. Doleisch, and E. Gröller. Visualizing dynamical systems near critical
points. In Spring Conference on Computer Graphics and its Applications, pages 175–184,
Budmerice, Slovakia, 1998.

Topological Representations of Vector Fields 239

20. G. Mutschke, 2003. private communication.
21. G.M. Nielson. Tools for computing tangent curves and topological graphs for visualiz-

ing piecewise linearly varying vector fields over triangulated domains. In G.M. Nielson,
H. Hagen, and H. Müller, editors, Scientific Visualization, pages 527–562. IEEE Com-
puter Society, 1997.

22. P. A. Philippou and R. N. Strickland. Vector field analysis and synthesis using three
dimensional phase portraits. Graphical Models and Image Processing, 59:446–462,
November 1997.

23. K. Polthier and E. Preuss. Identifying vector fields singularities using a discrete hodge
decomposition. In H.-C. Hege and K. Polthier, editors, Visualization and Mathematics
III, pages 135–150. Springer Verlag, Heidelberg, 2002.

24. F.H. Post, B. Vrolijk, H. Hauser, R.S. Laramee, and H. Doleisch. Feature extraction and
visualisation of flow fields. In Proc. Eurographics 2002, State of the Art Reports, pages
69–100, 2002.

25. G. Scheuermann, T. Bobach, H. Hagen K. Mahrous, B. Hamann, K. Joy, and W. Koll-
mann. A tetrahedra-based stream surface algorithm. In Proc. IEEE Visualization 01,
pages 151 – 158, 2001.

26. G. Scheuermann, H. Krüger, M. Menzel, and A. Rockwood. Visualizing non-linear vector
field topology. IEEE Transactions on Visualization and Computer Graphics, 4(2):109–
116, 1998.

27. H. Schumann and W. Müller. Visualisierung - Grundlagen und allgemeine Methoden.
Springer-Verlag, 2000. (in German).

28. D. Stalling and T. Steinke. Visualization of vector fields in quantum chemistry. Technical
report, ZIB Preprint SC-96-01, 1996. ftp://ftp.zib.de/pub/zib-publications/reports/SC-96-
01.ps.

29. A. Telea and J.J. van Wijk. Simplified representation of vector fields. In D. Ebert,
M. Gross, and B. Hamann, editors, Proc. IEEE Visualization ’99, pages 35–42, Los
Alamitos, 1999.

30. H. Theisel. Designing 2D vector fields of arbitrary topology. Computer Graphics Forum
(Eurographics 2002), 21(3):595–604, 2002.

31. H. Theisel, Ch. Rössl, and H.-P. Seidel. Combining topological simplification and topol-
ogy preserving compression for 2d vector fields. In Proc. Pacific Graphics, pages 419 –
423, 2003.

32. H. Theisel, Ch. Rössl, and H.-P. Seidel. Compression of 2D vector fields under guaranteed
topology preservation. Computer Graphics Forum (Eurographics 2003), 22(3):333–342,
2003.

33. H. Theisel, Ch. Rössl, and H.-P. Seidel. Using feature flow fields for topological compar-
ison of vector fields. In Proc. Vision, Modeling and Visualization 2003, pages 521 – 528,
Berlin, 2003. Aka.

34. H. Theisel and H.-P. Seidel. Feature flow fields. In Data Visualization 2003. Proc. VisSym
03, pages 141–148, 2003.

35. H. Theisel and T. Weinkauf. Vector field metrics based on distance measures of first order
critical points. In Journal of WSCG, volume 10:3, pages 121–128, 2002.

36. H. Theisel, T. Weinkauf, H.-C. Hege, and H.-P. Seidel. Saddle connectors - an approach
to visualizing the topological skeleton of complex 3D vector fields. In Proc. IEEE Visu-
alization 2003, pages 225–232, 2003.

37. H. Theisel, T. Weinkauf, H.-C. Hege, and H.-P. Seidel. Grid-independent detection of
closed stream lines in 2D vector fields. In Proc. Vision, Modeling and Visualization 2004,
2004.

240 H. Theisel et al.

38. H. Theisel, T. Weinkauf, H.-C. Hege, and H.-P. Seidel. Stream line and path line oriented
topology for 2D time-dependent vector fields. In Proc. IEEE Visualization 2004, pages
321–328, 2004.

39. X. Tricoche, G. Scheuermann, and H. Hagen. A topology simplification method for 2D
vector fields. In Proc. IEEE Visualization 2000, pages 359–366, 2000.

40. X. Tricoche, G. Scheuermann, and H. Hagen. Continuous topology simplification of
planar vector fields. In Proc. Visualization 01, pages 159 – 166, 2001.

41. X. Tricoche, G. Scheuermann, and H. Hagen. Topology-based visualization of time-
dependent 2D vector fields. In Data Visualization 2001. Proc. VisSym 01, pages 117–126,
2001.

42. T. Weinkauf. Krümmungsvisualisierung für 3D-Vektorfelder. Diplomarbeit, University
of Rostock, Computer Science Department, 2000. (in German).

43. T. Weinkauf, H. Theisel, H.-C. Hege, and H.-P. Seidel. Boundary switch connectors for
topological visualization of complex 3D vector fields. In Proc. VisSym 04, pages 183–192,
2004.

44. T. Weinkauf, H. Theisel, H.-C. Hege, and H.-P. Seidel. Topological construction and
visualization of higher order 3D vector fields. Computer Graphics Forum (Eurographics
2004), 23(3):469–478, 2004.

45. T. Weinkauf, H. Theisel, K. Shi, H.-C. Hege, and H.-P. Seidel. Extracting higher order
critical points and topological simplification of 3D vector fields. In Proc. IEEE Visual-
ization 2005, pages 95–102, 2005.

46. T. Wischgoll and G. Scheuermann. Detection and visualization of closed streamlines in
planar flows. IEEE Transactions on Visualization and Computer Graphics, 7(2):165–172,
2001.

47. T. Wischgoll, G. Scheuermann, and H. Hagen. Tracking closed stream lines in time-
dependent planar flows. In Proc. Vision, Modeling and Visualization 2001, pages 447–
454, 2001.

48. H.-Q. Zhang, U. Fey, B.R. Noack, M. König, and H. Eckelmann. On the transition of the
cylinder wake. Phys. Fluids, 7(4):779–795, 1995.

49. M. Zöckler, D. Stalling, and H.C. Hege. Interactive visualization of 3D-vector fields using
illuminated stream lines. In Proc. IEEE Visualization ’96, pages 107–113, 1996.

Control Structure and Multi-Resolution Techniques
for Virtual Human Representation

Thomas Di Giacomo1, HyungSeok Kim2, Laurent Moccozet3, and Nadia
Magnenat-Thalmann4

1 MIRAlab, University of Geneva, giacomo@miralab.unige.ch
2 MIRAlab, University of Geneva, hyung.kim@acm.org
3 MIRAlab, University of Geneva, moccozet@miralab.unige.ch
4 MIRAlab, University of Geneva, thalmann@miralab.unige.ch

Summary. A virtual human is a typical instance of articulated physical objects: it does not
have only one shape but many, corresponding to all the possible postures that the underlying
articulated skeleton can reach. For realistic rendering results, a high-quality texture is usually
associated to the shape and skeleton structure. Controlling and animating a virtual human
model requires simultaneously many graphics and computational resources.

The first part of this chapter discusses the control articulated skeleton structure and differ-
ent approaches to build skeletons [10] and bind it to the geometry. The second part addresses
the production of LoDs for virtual humans, both for the 3D shape (geometry) and the articu-
lated skeleton (motion and animation).

1 Definitions and Background

A virtual human is a subset of a larger family that can be defined as articulated deformable
characters. To mimic the flexible and dynamic behaviour of the human body shape, the tra-
ditional approach uses skeleton-driven deformations; a classical method for basic skin defor-
mation that is the most widely used technique in 3D character animation. It binds a 3D shape
representing the body shape to an articulated control skeleton. Binding information is then
used to deform the body shape according to the skeleton motion. The control skeleton is the
main structuring information for articulated deformable characters. Constructing such a char-
acter requires assembling a static 3D shape with a control skeleton so that skeleton-driven
deformations accurately reproduce the body shape in any possible skeleton posture.

Textured virtual humans are used in a wide range of applications, from movies to 3D
games, and platforms, from high-end graphics workstation to PDA. Adapting a virtual human
model to the application and platform context therefore requires defining Level of Details
(LoDs) without penalising the Degrees of Freedom (DoF) and visual results. To that end, the
production of LoDs must consider the virtual human as a whole including the 3D body shape,
the articulated skeleton and if necessary the texture, which implies to consider at the same time
geometric and animation LoDs. Moreover, geometry simplification must not alter the DoF of
the underlying skeleton and the visual quality of the associated texture.

242 T.D. Giacomo et al.

1.1 Control skeleton definition

A control skeleton is a connected set of segments, corresponding to limbs, and joints. A joint
is the intersection of two segments, which means it is a skeleton point where the limb that is
linked to this point may move. The angle between two segments connected by a joint is called
the joint angle.

A joint may have at most three kinds of position angles: flexion, pivot and twisting. The
flexion is a rotation of the limb influenced by the joint, and which causes the motion of all
limbs linked to this joint. This flexion is carried out relatively to the joint point and a flexion
axis has to be defined. The pivot makes the flexion axis rotate around the limb influenced by
the joint. Twisting causes a torsion of the limb influenced by the joint. The direction of the
twisting axis is found similarly to the direction of the pivot. Static posture and motions can be
produced by modifying the joint angles of the skeleton. Various approaches are available to
control the skeleton posture and produce new postures or motions [23]. Control skeletons are
particularly applied to simulate and control anthropomorphic characters where the segments of
the control skeleton correspond to the limbs of the body. Control skeleton are usually used to
drive deformation of an attached geometric skin surface. The issues to solve are organized into
two main categories: producing realistic and believable motion of the skeleton and adjusting
the geometric skin in order to constrain it to “follow” the motion of the skeleton. An articulated
skeleton can be seen as an extension to the traditional transformation hierarchy where a single
rotational Degree of Freedom (DoF), i.e. flexion, twist or pivot, is attached to each node.

The main structure of transformation hierarchy in computer graphics is a tree data struc-
ture. It is described as a n-ary tree of nodes with an homogeneous transform at each node.
The transformation represents the node’s local transformation with respect to its parent. Each
node can store its local information in its own local coordinate system. In addition to the joint
angle value, each joint data structure requires maintaining information about the joint limits
and a default or rest position. Joint limits are important to prevent the skeleton from achieving
unrealistic postures.

A standard way of representing virtual humans has been defined in VRML/X3D: H-ANIM
[1]. No assumptions are made about the types of applications that will use virtual humans. An
H-ANIM model is made of different types of nodes. The main ones are the Joint and Segment
nodes. Joint nodes represent skeleton joints and are arranged to form a hierarchy similar to the
ones described previously. Each Joint node can contain other Joint nodes and may also contain
a Segment node. A Segment node describes the body part associated with a joint.

Various approaches have been proposed to control articulated skeletons and generate pos-
tures and motions. These approaches are reviewed in Section 2 and an overview of motion
control methods for articulated figures is also proposed in [49].

1.2 Historical background

Historically, the first characters animated with a skeleton were only represented using stick
figures, i.e. a graphical representation of the control skeleton structure, such as for example
“‘Hipi”’, the hero of the film “‘Dream Flight”’ [97]. Rapidly, volume and surface figures
have then been proposed. The volume figure representation is an approach that consists in
decomposing the body into several rigid primitive volumes such as cylinders or ellipsoids.
These primitives are matched to the limbs of the control skeleton, and they are also used for
the visualization of the character.

Control Structure for Virtual Human 243

The NUDES (Numerical Utility Displaying Ellipsoid Solids) illustrates this kind of an-
imation system. This approach has been surpassed by surface figures [40]. They are still in-
teresting as many articulated character animation systems are based on a volume approach to
produce body motion and deformation. In these approaches, the volume primitives are para-
meterized according to the joint angles. Once they are adjusted to match the skeleton posture,
they are used to produce a continuous skin surface. A usual approach is based on fusing el-
lipsoids together as metaballs [98] in order to produce a single continuous skin surface. In the
surface figures approach, skeletons are surrounded by surfaces. In these approaches, the main
issue consists in accurately mapping the skin surface to the control skeleton. Early examples
are the human skin model proposed by Komatsu in [51] and the Joint-dependent Local Defor-
mation (JLD) operators, introduced by Magnenat-Thalmann in [66] to smoothly deform the
skin surface. This latter approach has been applied in the film Rendez-vous in Montreal.

Skeleton techniques for animation have a long history. They have initially been proposed
for 2D computer animation as a tool to simplify and automate the production of in-between
images from 2D key-frames. Although the methods to map the skin to the skeleton have pro-
gressed, the basic approach is still the same. The idea between the skeleton technique [19]
is that skeletons of 2D figures, rather than the figures themselves, can be used as a basis for
inbetweening. A skeleton is defined as a network of 4-sided polygons. Relative coordinates
can then be associated to each vertex. Once the skeleton has been assigned a new posture, the
figure can be reconstructed using the relative coordinates of the figure vertices with respect to
the skeleton. The film “‘The Hunger”’ has been produced with this technique in 1974.

A survey of the most recent approaches for handling skeleton-driven deformations is pro-
posed in the next Section, and a review of common methods for the construction and defor-
mation of articulated character models is also proposed in [28].

2 Skeleton control methods

In real life, human motions are basically activated by muscles, i.e. rigid and inert bones are
moving by contractions of muscles. The general approach adopted in computer graphics, com-
ing first from robotics and extended over the years, is to define an underlying articulated
structure which joints control the displacements. These articulated structures, or skeletons, are
topologically defined by a set of bones, or limbs, and a set of joints, and can be mathematically
expressed by directed acyclic graphs.

Generally, skeleton-based animation consists in computing the variation of positions and
orientations of the joints to drive the motion of bones and of the attached geometric repre-
sentations, independently from their topology and complexity. One of the main advantages is
the possibility to animate complex representations with high resolution meshes using a simple
structure for motion computations, the skeleton. Bones, with constant lengths in the case of
rigid bodies, are connected by joints, which have a certain DoF, to form a hierarchy. Further-
more, skeletons feature a reference point, named the root, that handles their global positioning,
thus the global translations of the structure. The root node also provides an initial frame for
the cascade of transformations.

Traditionally, two main approaches have coexisted to control skeletons, namely kinematics
and dynamics. Kinematics are dealing with pre-recorded and stored geometrical parameters,
and they have been extended by parameters processing with various interpolation tech-
niques in keyframing methods. It is a fast approach, relatively easy to manage, but it lacks
interactivity, genericity and automaticity. On the other hand, dynamics generates geometric

244 T.D. Giacomo et al.

parameters to simulate motion according to forces and physical constraints. Though anima-
tions are automatically produced and are reactive to input, they might look un-natural, es-
pecially for human, and they are computationally expensive. Those two approaches are now
detailed, as well as the intermediate kinetics and some combined methods.

2.1 Control Techniques

Kinematics methods animate a skeleton by dealing with linear or angular positions and ve-
locities of the joints. The fewer DoF or number of joints, the less a kinematically animated
skeleton costs in terms of transformation. A structure consists in a hierarchy of joints. Let
θ = (θ0, ..., θn), referred as the state-vector, or generalized coordinates, denotes the different
DoF of the structure in the joint space, where n is the number of joints. Let X = (X0, ..., Xn)
denotes the position in the Cartesian space, or world coordinates. θi are one to three dimen-
sional, and both Xi and θi are time dependent for animation.

Forward, or direct, kinematics, usually expressed in the joint parameter space consists in
fixing the different ∆θ over time, to compute the ∆X . In other words, the orientations of all
joints are specified by the animator, computed or pre-recorded and stored for runtime uses, and
the motion of bones are processed as the results of previous transformations in the hierarchy.
It is actually relatively simple to implement and gives direct control over the joints’ DoF,
though it is not really suitable to explicitly control the position of end-effectors, i.e. specific
nodes corresponding to the leaves in the hierarchy. One of the main limitations of forward
kinematics, apart from difficulties in control and user-interaction, is the prohibitive quantity
of manual input required to produce animation. For instance, Kalra et al. [44] are using a 32
joints skeleton with 74 DoF, including 25 DoF for each hand, and complex human models
can even consist of more than 100 DoF. Thus even by using keyframing, forward kinematics,
where each joints parameters are user-defined, are not straightforwardly usable to animate
complex skeletons.

With user-defined positions of the end-effectors as input, e.g. hands and feet in grasping
or walking tasks, inverse kinematics compute automatically the previous joint angles in the
hierarchy. It is equivalent to setting Xj , where j ∈ E with E being the set of end-effectors,
and then computing θi, where i /∈ E. From Watt et al. [103], a general solution to inverse
kinematics is ∆θ = J+∆X + α(I − J+J)∆z, where J is the Jacobian matrix of the system
of equations, J+ its pseudo-inverse, α a penalty constant and ∆z a constraint to be minimized,
e.g. on one angle range. ∆z is called the secondary task, since it is independent from the first
term J+∆X . For any unknown parameters, some bottlenecks arise due to the non-linearity of
the systems to solve. Furthermore, these systems are possibly ill-conditioned. Some numerical
optimizations, aiming at convergence to a single solution, and algebrical methods can be used
to solve these systems [76]. To further accelerate solving, one can use heuristics or constrained
angles, or can specify intermediate orientations, additional end-effectors, or also limit cones
associated to bones. Actually, human body is a highly redundant system, and the limits of
joints are both implicit due to biomechanical properties and explicit with selecting specific
task or families of motion to achieve. Manocha et al. [67] propose fast and robust algorithms
to solve systems for skeletons of six or fewer joints, i.e. robot-like structures. Recently, Tolani
et al. [99] propose some analytical and numerical algorithms to compute real-time inverse
kinematics for a human arm or leg. The sample 7 DoF chain consists of two spherical joints,
one for the shoulder and one for the wrist, and a single revolute joint for the elbow. The
combination of inverse and direct kinematics is explored by Boulic et al. [16]. They control
joints by both techniques, and they apply the method to walking with half-spaces constraints

Control Structure for Virtual Human 245

to correct the positions of end-effectors. To reduce the computations of the correction process,
when meeting an enforced Cartesian constraint the articulated structure is duplicated into a
coach and a trainee structures.

Kinetics are a combination of kinematics with the effect of a mass distribution concen-
trated on the centre of mass of the skeleton. Direct kinetics consist in computing the sequential
positions of the centre of mass according to the configurations of the structure, while inverse
kinetics consist in computing the skeleton configurations according to the positions of the cen-
tre of mass. At the same order of complexity, this approach extends previous control methods
of skeleton by providing a physical behaviour to the animation through intuitive parameters
such as mass. Furthermore, inverse kinetics resolve some additional constraints to inverse
kinematics as stated by Boulic et al. [15], who investigate the design of static human postures.
Their approach allows for single or multiple supports of the body mass distribution using
a compatible flow model of the supporting influence. A mass fraction is associated to each
support with the sum of all fractions being the total body mass. Zhao [110] also proposes a
technique based on kinetics to control human postures for performing specific tasks. The pos-
tures are first simplified by manually decoupling the DoF of the human body, e.g. the upper
and lower body movements, in order to reduce the configuration space.

Skeletons are also animatable with the use of dynamics properties such as mass, inertia,
linear or angular acceleration. These dynamics-based methods have several benefits: exter-
nal world influences such as gravity and collisions are more easily handled compared to pure
kinematics, they allow motion interactions between objects, etc. As for kinematics, we can
distinguish between direct and inverse dynamics. Direct dynamics compute new states, i.e.
positions, velocities, accelerations, of the system when all external and internal forces are
known. Inverse dynamics, computing forces according to new states, are very expensive. Ad-
ditionally, similar artefacts as inverse kinematics can occur, such as un-natural motions if used
globally on the skeletons. Direct dynamics compute and update motions thanks to forces and
dynamics. The Newton laws are the fundamental principles of dynamics that bound force and
acceleration, i.e. the second derivative of motions as follows: ΣF = M d2x

dt2
, where F is a sum

of forces applied on an object, M its mass and x its position. Though these equations hold for
a single object, they have been validated for articulated figures, considered as hierarchies of
rigid solids connected by articular joints. To effectively compute position updates, one must
integrate accelerations over time. Due to the computational complexity of this task, various
schemes have been proposed: explicit or implicit Euler methods, Verlet or Runge-Kutta inte-
gration schemes etc., refer to Volino et al. [101], and many work are still dealing with this
topic. To compute the update of accelerations, one must sum all external and internal forces
applied to an object. Torque is an example of an external momentum due to forces occurring
on angular joints. A torque τ is computed as the cross product between the bone segment r

and the force applied on the segment F : −→τ = −→r × −→
F . For joints, the dynamics of rota-

tion are: Στi = I d2θ
dt2

+ θ × i dθ
dt

, where I is the inertia matrix, θ the orientation. τ can then
be summed to other forces or projected on the axis of the bone to update its position. For in-
stance, Hodgins et al. [41] uses joints torque as an external force of a leg on a bicycle. Kokkevis
et al. [50] combine kinematics and forward dynamics. Kinematics enable a direct and intuitive
user-control on the main trajectories and goals, while dynamics compute all the other joints
with physical correctness.

246 T.D. Giacomo et al.

2.2 Space-time Constraints and Controllers

Introduced by Witkin and Kass [105], space-time constraints methods compute motions and
time-varying forces over the whole animation sequence. The large vector of unknowns con-
sisting of forces, velocities and positions, is computed iteratively through a constrained op-
timization process. The constraints are the Newton laws, the limit of the muscular forces,
some intermediate positions and velocities, initial and final positions and velocities. Though
extending and optimizing the use of dynamics, this method has a few limitations due to the
high number of unknowns, the non-linearity of constraints and goals, and the a-priori spec-
ifications of constraints. To decrease the computational costs and to allow user interactions
and system convergence, some improvements have been proposed such as the use of subsets
of DoF, sub-intervals of time, hierarchical wavelets representations, etc. For instance, Brogan
et al. [17] propose to use space-time constraints to generate biomechanical motions. Rose
et al. [80] take advantage of the space-time constraints, combined with inverse kinematics
on the root and supports of the body, by using them for transitions during motion blending
between segments of human bodies with 44 DoF.

The finest and most efficient control on skeletons is a combination of the different meth-
ods previously discussed. Combining them is however not straightforward, since they are of-
ten based on different sets of parameters. With Newton laws and time integration, forces can
lead to positions, therefore the definition of forces is a possible bound between the differ-
ent methods. Controllers are basically processing forces for required goals, and in most work
controllers are combined with kinematics for the description of desired-motions and direct
dynamics for generating motions out of the controllers forces. Proportional-Derivative (PD)
controllers are expressed as: f = −kp(q − qd) − kv(dq

dt
− dqd

dt
), where kp and kv are re-

spectively the proportional and derivative gains, q is the current state of the system, mostly
the positions, and qd its desired state. PD controllers can be used as transitions between two
adjacent states, each with an associated shape of the figure, of a finite state machine. As stated
by Multon et al. [72], who survey different human walk models from purely kinematics tech-
nique to dynamic simulations, some approaches use finite state machines since they are parti-
cularly well-suited for cyclic motions. When controllers are tuned by hand, such as proposed
by Hodgins et al. [41], the process is long and the resulting controllers are specific to a certain
figure. On the other hand, when controllers are generated automatically, it is difficult to predict
the resulting motions. Additionally to walking, controllers are widely investigated for general
animations. Hodgins et al. [41] apply dynamics to bodies, of approximately 30 DoF, perform-
ing athletic behaviours. The algorithm is based on dynamics controlled by state machines.
The mass and moment of inertia are computed for each part of the human body, allowing the
simulated human to maintain balance and to add secondary motions. To efficiently manage
dynamics, Brogan et al.[18] propose behavioural controllers to simulate a herd of one-legged
robots and virtual cyclists who consist of 17 DoF including 4 DoF for the bicycle. A damped
spring is linked between the hands of the cyclists and the handlebar, between the feet and
the pedals for the interactions. Wooten et al. [106] present a work on smooth transition be-
tween dynamically simulated motions. As the authors state, most approaches are based on a
library of motions in which a user can select a desired motion, then the current motion and
the newly selected one are blended together by interpolation. Here, Wooten et al. [106] use
parameterized basis controllers such as landing or leaping, where the parameters define the
height of the jump. The controllers are designed so that all their exit states leave the simula-
tion in a valid initial state for the next controllers. Though this enables smooth transitions, it
also constraint them to occur at the end of a motion. Faloutsos et al. [32] compose controllers
to simulate realistic motions of 37 DoF humans. This framework needs controllers to meet

Control Structure for Virtual Human 247

manual or automatic pre-conditions, involving the initial state and the balance of the figure,
some environmental parameters and a target state, to be selected as candidates.

3 Skeleton skinning and skin mapping

Various approaches have been proposed to connect a deformable skin to a control skeleton.
They can be subdivided into two main categories: skin mapping and skeleton skinning. A
third alternative approach, where the skeleton is directly built from the 3D shape to control, is
described in Section 4. All approaches share the same multi-layers organization, with at least
two layers: the skeleton and the skin. Intermediate structures are inserted in-between to tune
and control more precisely the behaviour of the skin shape. Many models insert a third layer
usually called musculature by analogy with anatomy.

3.1 Skeleton skinning

The typical example of this approach is proposed by Thalmann et al. [98] and [14]. The au-
thors proposed to interactively attach ellipsoids to the control skeleton in order to define a
simplified musculature. The main parameters of the ellipsoids are parameterized with joints
angles. The shape of the ellipsoid muscles are controlled by the values of the joint angles of
the skeleton. To produce the final skin for rendering and visualization, the ellipsoid muscles
are fused together as metaballs. This approach has been investigated to simulate the behaviour
of the real anatomy and reproduce as close as possible the anatomical behaviour of the body
[84] (see Figure 1). It can be defined as anatomy-based modelling. The anatomy based mod-
elling approach considers that simply using flexible surfaces at joints and along the limbs is an
oversimplification producing poor results. It follows the same approach as the one applied in
artistic anatomy and assume that the skin surface shape changes may be more accurately rep-
resented as the result of the behaviour of the underlying anatomical structures such as muscles,
fat and connective tissues.

Turner et al. [100] propose a more sophisticated multi-layers structure, where the skin is
modelled as an elastic surface, muscles as ellipsoids, connective tissues as springs connecting
the skin surface to the muscles.

Complex volumes are used to approximate the real shape of muscles with tendons’ attach-
ments to the bones. Various approaches have been investigated:

1. Passive muscles: in this category, geometric [104] or physics-based deformations are used
to adjust the shape of the muscle to the current posture of the skeleton.

2. Active muscles: in this category, biomechanical physics-based deformation models [26]
are used to simulate the dynamic behaviour of muscles. Muscles contraction and elonga-
tion are used to activate the skeleton joints and produce motions.

Cani et al. [20] propose to use an automatic skinning algorithm based on swept surfaces.
The skeleton is used as a path for extrusion of interpolating spline surfaces. This approach
is called automatic fleshing of skeletons and wrap a regular skin around the skeleton of an
object. This skeleton coating process is based on various surface operators proposed to create
complex shapes from simple surfaces such as welding and pinching. Skin binding is achieved
by linking the skeleton to the skin with stiff springs.

248 T.D. Giacomo et al.

Fig. 1. Realistic musculature structure attached to the skeleton, [84], (courtesy of F. Sheepers
and R. Parent)

3.2 Skin mapping

In this family of approaches, the skin is produced separately as a geometric surface and is then
attached to the limbs of the skeleton. Intermediate data structures, or layers, can be used to
connect the skin to the skeleton. Their role consists in keeping the skin tightly attached to the
skeleton. Two main constraints have to be considered:

1. The skin has to follow the motion of the skeleton and to keep globally the same relative
position with respect to the skeleton at any time of the animation. The main constraint
here is to keep globally the skin wrapped around the control skeleton.

2. The skin has to mimic the real behaviour of the physiology and anatomy of the character
simulated. For example for a virtual human, the shape of the muscles is changing accord-
ing to the posture and therefore local deformations have to be controlled and adjusted
along the limbs and at the joints. The main constraint here is to add a level of refinement
to the skin deformation process in order to adjust it to mimic the anatomy of the simulated
character.

The first issue consists in segmenting the skin and in binding each skin segment to the bone
segment(s) that is(are) expected to control. The next issue is to define a local representation
system so that each skin segment can be represented locally with respect to the influencing
bone segments. Once the local representation is defined between the skin and the skeleton,
skeleton-driven deformation can be applied to deform the skin when the skeleton is in motion.

In most of the skeleton-driven deformation models, the articulated character is made of
two layers: the skeleton and the skin. More complex models include intermediate layers to
improve and refine the control of the skin. For example, a complex layered elastic framework

Control Structure for Virtual Human 249

for animated characters is proposed in the CRITTER system by Chadwick et al. [25]. An in-
termediate muscle layer is introduced between the flexible skin and the rigid skeleton. This
intermediate structure is made of Free-Form Deformation (FFD) control boxes attached to
the skeleton. These boxes define a space deformation around the skeleton. The control boxes
shapes are parameterized with the joint angles of the skeleton. Two main deformation oper-
ators are applied to the control boxes, the first one controls the bending of the mesh around
the joint and the second one mimics the muscle behavior by inflating the skin along the bones
to replicate muscle contraction effect. Similar extended and optimized approaches have been
proposed in [64, 69, 70] where the deformable skin is embedded inside a control lattice. Singh
et al. [88] propose an alternative intermediate structure that consists of a low resolution mesh
instead of a control lattice.

Most of the existing modeling approaches attempt to capture and simulate the deforma-
tions due to skeleton motion. Very few approaches are investigating secondary deformations
such as the one due to biological functions such as breathing [111]. In [111], Zordan et al.
propose a sophisticated extended anatomy-based model of the trunk based on a simple spring
system to represent the muscles that control the motion of the ribs and diaphragm combined
with a volume conserving deformable model that integrates the motion of the abdomen mov-
ing in reaction to the simulated diaphragm. The volume of the abdomen’s deformable body is
preserved and is quasi-incompressible.

4 Skeleton-driven deformation

Skeleton-driven deformation, a classical method for basic skin deformation, is probably the
most widely used technique in 3D character animation. In research literature, an early version
was presented by Magnenat-Thalmann et al. [66], who introduced JLD (Joint-dependent Local
Deformation) operators to smoothly deform the skin surface.

This technique has been given various names such as Sub-Space Deformation (SSD), lin-
ear blend skinning, or smooth skinning. This method works first by assigning a set of joints
with weights to each vertex in the character. The location of a vertex is then calculated by a
weighted combination of the transformation of the influencing joints. The skeletal deformation
makes use of an initial character pose, namely dress pose, where the transformation matrix of
the ith influencing joint and the position of the vertex are defined. While this method provides
fast results and is compact in memory, its drawbacks are the undesirable deformation artefacts
in case of important variation of joint angles. Several attempts have been made to overcome the
limitation of geometric skin deformation by using examples of varying postures and blending
them during animation. Aimed mostly at real-time applications, these example-based meth-
ods essentially seek for solutions to efficiently leverage realistic shapes that come either from
captured skin shape of real people, physically based simulation results, or sculpted by skilled
designers. Mohr et al. [71] have presented an extension to SDD by introducing pseudo-joints.
The skeleton hierarchy is completed with extra joints inserted between existing ones to reduce
the dissimilarity between two consecutive joints. These extra joints can also be used to simu-
late some nonlinear body deformation effects such as muscle bulges. Once all the extra joints
have been defined, they use a fitting procedure to set the skinning parameters of these joints.
The weights and the dress position of the vertices are defined by a linear regression so that
the resulting skin surface fits to example body shape designed by artists. Having weights well
defined, those examples could be discarded during runtime. Guo et al. [38] propose a pseudo-
anatomical skinning method. Their purpose is to provide a simple intermediate layer between
the skeleton and the skin, namely the chunks, to avoid the tedious design of the anatomical

250 T.D. Giacomo et al.

layers. Their hypothesis is that internal anatomical structures do not need to mimic the real
ones. A chunk is a deformable structure modeled as a set of nodes connected by links in a
multi-sliced structure, automatically extracted from a few patches designed on the skin by the
user. All chunks are connected and constitute a continuous layer between the skeleton and the
skin. When large volume of space needs a huge amount of nodes to fill it up, it is possible
to reduce computational costs by only taking a thinner layer of space between the skin and a
base shell attached to the skeleton. Deformations of chunks, controlled with a finite element
method (FEM), are adjusted according to the skeleton posture. The authors demonstrate that
their approach is able to depict most of the visual aspects of skin deformations generated by
real internal anatomical structure and particularly by muscle contractions. However, the final
visual results and the computational costs greatly rely on the designed chunks architecture and
therefore on the designer’s skills.

Fig. 2. Interactive construction process for skeleton-driven animation, [22], (courtesy of S.
Capell, B. Curless and Z. Popovic)

As stated by Capell et al. [21], “elastic simulation has proved to be a powerful method
both for automatically creating plausible skeleton-dependent deformations and for introduc-
ing secondary motions”. Since Terzopoulos et al. [94, 96, 95], various approaches have been
proposed to introduce more realism by introducing dynamic-based deformations such as pro-
posed by Faloutsos et al. [33]. Among the most recent ones, Capell et al. [22] introduce a
framework for skeleton-driven animation of elastically deformable characters. The proposed
framework is somehow similar to FFD-based (Free Form Deformation) animation approaches
as it embeds the object in a control lattice. However, the authors use continuum elasticity and
FEM to compute the dynamics of the object being deformed. Bones of the control skeleton are
restricted to lie along the edges of the control lattice, so that the skeleton can be considered
as a constraint in the dynamic system. The animator specifies the skeleton and the control
lattice interactively (see Figure 2). A joint is created by clicking on the object and it is placed
midway between the two mouse ray/surface intersections to ensure that joints are centrally

Control Structure for Virtual Human 251

located inside the object. By selecting a root joint and defining bones, a complete control
skeleton can be defined. The control lattice is also interactively constructed by the user by
adding cells incrementally and updating the control vertices as needed. Although the authors
stated that existing volumetric meshing schemes should allow the automatic construction of
the control lattice, they acknowledged that several hours are required even for an experienced
user to create a moderately complex control lattice. This approach has been recently extended
by Capell et al. [21] to provide more control and flexibility at interactive rate by introducing
force-based rigging. Force-based rigs provide more flexibility to the animator for controlling
the shape, other than by only moving the skeleton (see Figure 3). The realism of the deforma-
tions is improved by introducing a collision scheme for managing collisions near creases. Rig
forces can be computed from sculpted or measured surface deformations. Moreover, rigs can
be transferred between characters.

Fig. 3. Constrained deformations on a Ganesh-like character, [21], (courtesy of S. Capell, B.
Curless and Z. Popovic)

Fig. 4. Pose space deformation, [59], (courtesy of J. P. Lewis)

Pose space deformation [59] approaches the problem by using artistically sculpted skin
surfaces of varying posture and blending them during animation. Each vertex on the skin
surface is associated with a linear combination of Radial Basis Functions (RBFs) that compute
its position given the pose of the moving character (see Figure 4). These functions are formed
by using the example pairs - the poses of the character, and the vertex positions that comprise
skin surface. More recently, Kry et al [53] proposed an extension of that technique by using
Principal Component Analysis (PCA), allowing for optimal reduction of the data and thus
faster deformation. Sloan et al [90] have shown similar results using RBFs for blending the arm
models. Their contribution lies in that they make use of equivalent of cardinal basis function.
The blending functions are obtained by solving the linear system per example rather than per
DoF, which potentially is of a large number, thus resulting in an improved performance.

252 T.D. Giacomo et al.

The method proposed by Allen et al. [4] is also based on skin pose examples (see Fig-
ure 5). Similarly to animation by target-morph, they use a set of poses as targets or examples
in order to produce the skinning information, whereas traditional approaches rely on much
less information, namely a skeleton and a template skin in a neutral posture. If the set of tar-
get poses correctly covers the pose space, then the estimated skinning can be applied to any
motion. The resulting advantages over other approaches are to be able to introduce the tar-
gets as constraints in the skinning and to rely on real or manually designed data, such as the
ones obtained from 3D scanners. Moreover, it alleviates the designer’s involvement so that the
results are less dependent on their skills but still remain user controllable. The approach re-
cently proposed by James et al. [42], named Skinning Mesh Animations (SMAs), presents an
original example-based skinning scheme. The main difference is that it does not require any
pre-defined skeleton. The method takes as inputs a set of deformed meshes representing the
pseudo-articulated deformable shape in different poses. It then automatically estimates statis-
tically relevant bones based on the hypothesis that clustering triangles with analogous rotation
sequences indicates the near-rigid structure of the mesh animation. It further determines bone
transformations, bone-vertex influence sets, and vertex weight values for producing skinned
animations that approximate the original deformable animation. The skinning approximation
is particularly suited for shapes with a sufficient near-rigid structure and does not apply well
for highly deformable shapes. SMAs support hardware rendering and pose editing as well.

Fig. 5. Example-based skin deformation, [4], (courtesy of B. Allen, B. Curless and Z. Popovic)

Recent attempts extend the usual input data to other capture and acquisition modalities in
order to achieve more reliable and accurate models. For example in [55], Kurihara and Miy-
ata propose an example-based deformable human hand model derived from medical images.
Multiple CT scans of the hand are taken in several poses. The link structure, joint rotation
centers and joint angles are estimated for each scan using bone shapes. A polygonal mesh
of one pose, the reference mesh, is deformed and fitted to other poses. The resulting hand
model is deformed by using pose space deformation. In [75], the authors present a technique
for capturing and animating human body motions using a commercial motion capture system
and approximately 350 markers. Their goal is to obtain not only the motion of the skeleton
but also the motion of the surface of the skin. The motion of the body surface is reconstructed
by applying the three-dimensional trajectories for this dense marker set to a subject-specific
polygonal model. The polygonal model is first adapted to fit the three-dimensional locations
of the markers from a static pose. The rigid body motion is then extracted from the marker
set whereas the remaining motion of the markers is used to estimate local deformations of
the polygonal model. The deformations of the markers set allow dynamically simulating the
fleshy areas under the influence of muscle shape variations.

Control Structure for Virtual Human 253

5 Generation of Control Skeleton

In most cases, the articulated character is made of some geometric structure, and an articu-
lated skeleton is bound to the model by the user, typically by manual interactions defining a
correspondence between the primitives of each structure. Some binding must then be made to
couple skin surface motions to those of the skeleton. This can be done for example by generat-
ing spring networks or spatial deformation fields. These two processes are particularly tedious,
especially when the model to be articulated is given only as a boundary representation. Few
attempts have been done in order to automatically generate the articulated skeleton from a
3D surface or shape. The main expected advantage of this approach is to have an immediate
mapping of the skin to the skeleton.

The main difficulty of the automatic generation of control skeleton is to map the artic-
ulated skeleton to the extracted geometric skeleton, particularly when the topology of the
articulated skeleton is predefined such as for virtual humans. There is no guarantee that the
topology of the extracted geometric skeleton will match the predefined topology of the cor-
responding articulated one. Moreover, the geometric skeleton only defines the location of the
joints, but does not contain the rotation axis.

5.1 Medial axis-based methods

Some of the existing approaches are based on the generation of the medial axis, which is
further simplified in order to catch the appropriate articulated structure of the 3D shape.
Bloomenthal [12] proposes a method to derive a geometric skeleton from the medial axis of a
static object. An articulated skeleton is further attached to the geometric and is used to control
and alter the shape of the object for animation. The shape of the object is reconstructed from
the updated geometric skeleton once it has been updated by the articulated one. Teichmann
et al. [93] create an articulated control skeleton and bind it to the surface by first computing an
approximate medial axis of the 3D mesh using 3D Voronoi diagram. The medial axis is then
simplified, resulting in a tree structure made of chains of edges and nodes. Selected nodes are
interpreted as joints of a skeleton, and the chains connecting them as its limbs (see Figure 6). A
spring network is then produced to bind the skeleton to the boundary, so that skeletal motions
will update the surface boundary as specified by the animator (see Figure 7).

Wade et al. [102] describe an algorithm for automatically generating a control skeleton
for use in polygonal data model animation. The main process consists in discretizing the 3D
shape by voxelization, computing the corresponding discrete medial surface, and then using it
both to create the skeletal structure and to attach the vertices of the model to that structure (see
Figure 8). Unlike previous methods, the algorithm is almost fully automatic, requiring very
little user input.

Lazarus et al. [56] provide an approach that is expected to overcome the limitations
of medial axis for boundary-based representations. The proposed paradigm constructs one-
dimensional axial structures associated with a polyhedral surface. These structures are called
the level set diagrams (LSDs). They are associated with scalar functions defined over the set
of vertices of a polyhedron. They catch the overall shape and the topology of an object and
can be used for deforming or animating an object. The skeletons for a man, a dolphin and a
horse are demonstrated in the paper (see Figure 9). However, the skeleton proposed for the
man shape is not accurate for animation as the location of joints and segments do not corre-
spond to anatomical joints and limbs with enough accuracy. This is particularly obvious for
the hand. A similar diagram based on the Reeb graph has been investigated in [45].

254 T.D. Giacomo et al.

Fig. 6. Generation of control skeleton from approximate medial axis of the 3D mesh, [93],
(courtesy of M. Teichmann and S. Teller)

Fig. 7. Skin binding and update according to skeleton motion, [93], (courtesy of M. Teichmann
and S. Teller)

Fig. 8. Resulting articulated cactus character, [102], (courtesy of L. Wade and R. Parent)

Control Structure for Virtual Human 255

Fig. 9. Skeleton extraction using LSD, [56], (courtesy of F. Lazarus)

An alternate method has been suggested by Liu et al. [62] based on the computation of the
repulsive force field with ray-casting. Local minimal points are selected as joint candidates.
A modified thinning algorithm is then used to identify the final joints. Skin vertices are then
bound to the resulting skeleton for animation using an SSD solution. Du et al. [31] propose to
use diffusion equations to approximate medial axis of arbitrary 3D objects. The skeletoniza-
tion method allows user interactions in order to build user-controlled skeleton. Yoshizawa
et al. [109] propose an automatic method where a control animation structure and the asso-
ciated skinning information are automatically obtained from a 3D surface. A skeletal mesh
is first extracted from a given 3D surface using a Voronoi-based medial axis approximation.
This skeletal mesh is then deformed with an interactive FFD scheme, detailed in [108]. Dur-
ing this skeletal deformation process, control points are first associated to the skeletal mesh
and FFDs are applied to the skeletal mesh so that it follows the control points’ displacements.
The 3D surface is further reconstructed according to the skeletal mesh deformation. A two-
step post-process is finally applied in order to remove artefacts such as folds, protrusions and
global and local self-intersections. Gagvani et al. [34] propose a voxel-skeleton based method
to animate a virtual human model made of volume data. They compute the skeleton of the
Visible Human data set. The volume data set is skeletonised, then a skeleton tree is defined by
connecting voxels, prior to animate it using motion capture data. Finally, the volume date set
is regenerated to match to the skeleton tree and the volume animation is produced.

Most of the medial axis [10] approaches are sensitive to noise and deformation, which is
particularly critical for extracting articulated skeletons from human scan data sets. Moreover,
there is no guarantee on the topology of the extracted skeleton. This may not be important
for most of articulated characters, but it is mandatory for virtual humans, as the articulated
skeleton topology is fixed and predefined.

5.2 Template-based methods

In [85], the authors propose a template-based method to synthesise automatically human body,
including the body shape and the control skeleton, from body measurements. The main idea
consists in fitting a pre-defined template model to match a set of constraints corresponding to
body measurements. The result is immediately ready for animation. The skeleton of the tem-
plate model is adjusted to match the body measurements. The reconstruction process maintains
the coherence between the resulting skin and skeleton. The skeleton of the template model can

256 T.D. Giacomo et al.

be produced with any method. A previous template-based approach has also been proposed to
reconstruct body shape from two photographs [58] (see Figure 10).

[79] and [3] propose deformation techniques to create individual hand models from pho-
tographs. In [79], an individual model is built from the surface anatomy visible in a single
photograph of the palm. Image analysis allows extracting surface anatomy features, hand
geometry and creases. The joint structure is then estimated from the surface anatomy features
and the skin geometry is deformed using Radial Basis Functions (RBFs). In [3] Albrecht et al.
developed a human hand anatomy-based model with its three layers structure: skin, muscles,
and bones. Hand animation employs a hybrid muscle model. Pseudo-muscles control the mo-
tion of joints based on anatomical data and mechanical laws, while geometric muscles deform
the skin tissue using a standard mass-spring system. Based on this reference model, they pro-
pose a deformation technique based on feature points to create individual hand models from
photographs where the whole structure of the reference model is warped according to feature
points assignments. The resulting deformed hand model is instantly animatable.

In [91], the authors aim at animating high-resolution human surface data captured from
commercially available 3D active sensing technology. They apply a model-based approach,
by matching a generic control model to the acquired surface data. The generic model is reg-
istered with the surface data using a set of interactively defined feature points, i.e. landmarks,
and joint locations to recover the model posture. The generic model is further automatically
fitted to the surface data as a shape constrained deformable surface. A similar approach is pro-
posed by Moccozet et al. [68]. A full reconstruction pipeline produces a close to animatable
approximation of the scanned data of a human body (see Figure 11). It is based on fitting a hu-
man template model defined in [86]. An initial location of landmarks is automatically defined
from a multi-scale morphological analysis of the 3D data surface.

Fig. 10. Human body shape cloning from photos, [58]

Blanz and Vetter [11] derive a morphable face model from a data set of 3D face models
by transforming the shape and texture of the examples into a vector space representation using
statistical analysis (Principal Components Analysis - PCA). New faces and expressions can be
produced by linear combinations of the examples. Shape and texture constraints derived from
the reference faces can be used to control manual modeling or automated matching algorithms
from individual photographs. Reveret et al. [78] propose a method based on PCA for the
automatic generation of control skeletons for four footed animals. They use a set of skeletons

Control Structure for Virtual Human 257

built by a skilled animator as the learning database. The resulting morphable skeleton model
can be adjusted to any 3D quadruped model by taking three measurements on the side view
on the quadruped mesh. Animation is further controlled with smooth skinning for geometry
binding.

Fig. 11. Template-based reconstruction pipeline, [68]

The reconstruction of human body shapes from skeletal remains of particular interest in
forensic medecine (postmortem identification [43]) or archeology and ethnology (reconstruc-
tion from ancient skeletal remains [8]). The point is to predict and model the layers of tis-
sue from the skull. Such prediction is a well-known approach in forensic medecine, usually
achieved by physical sculpting with clay. These techniques are very close to surface fitting and
can be easily automated based on the forensic knowledge. The input data sets can be either a
surface mesh built from 3D scan data or volumetric model made from medical images such as
CT. In [43], anatomical landmarks are attached to a skull model generated from 3D scan data
of a skull. The landmarks are correlated with statistical tissue depth measurements in order
to provide reference points to generate muscles and skin by fitting a reference anatomy-based
virtual head model, incorporating skin and muscles. The resulting anatomical model can be
animated in order to mimic various expressions of the reconstructed face. A similar approach
is proposed in [8] where a volumetric model of a Egyptian mummy head is processed in order
to fit a reference model. The model can also be textured in order to improve the visual aspect
of the result.

Template-based methods rely on prior knowledge of the articulated structure of the artic-
ulated 3D shape to build. A drawback of this approach is that it is not general and requires to
produce a template for each family of articulated shape to handle. In addition, these methods
usually require landmarks extraction for template matching that are difficult to control in a
fully automatic way.

258 T.D. Giacomo et al.

5.3 Mesh decomposition based methods

Although in [42] an underlying skeleton is implicitly extracted by clustering triangles with
similar rotation sequences, indicating the near-rigid structure of the mesh animation, work
with a specific focus on mesh decomposition to extract skeleton have been proposed. Katz
et al. [46] apply a hierarchical decomposition algorithm to define a method for generating
and attaching an articulated control skeleton to a given polyhedral surface for animation (see
Figure 13). Once the main components of the objects have been segmented and identified
by the decomposition algorithm, joints are hierarchically positioned and attached to the skin
surface (see Figure 12). A similar technique is proposed in [60]. The authors use approximate
convex decomposition, which partitions a model into nearly convex components. A skeleton
of the model is then extracted from the convex hulls of the nearly convex components. This
process is iterated until the quality of the skeleton becomes satisfactory. They also demonstrate
that this can be used to generate natural skeletal deformations. They compare their results
with [46] and [107] and show that the skeleton extraction remains stable and robust under
perturbation and deformation.

Fig. 12. Polyhedral surface and associated reconstructed skeleton, [46], (courtesy of S. Katz
and A. Tal)

The method proposed by Anguelov et al. [5] starts from a set of 3D meshes correspond-
ing to different configurations of an articulated object. The algorithm automatically recovers
a decomposition of the object into approximately rigid segments, the location of the seg-
ments in the different object instances, and the articulated object skeleton corresponding to
the segments (see Figure 14). The algorithm registers the input meshes with the correlated
correspondence algorithm. It then iteratively evaluates the segment assignment for each point
and the rigid transformation of each segment. Finally, the joints are estimated with articulation
constraints.

Similarly to the previous family of approaches, segmentation methods do not guarantee
the topology of the extracted skeleton, although some of them show that they are quite robust
and stable under noise, perturbation and deformation. More precise and stable results can be
obtained with methods that use a set of data scans from the same subject in different postures.

Control Structure for Virtual Human 259

Fig. 13. Animated surface driven by the articulated skeleton, [46], (courtesy of S. Katz and A.
Tal)

Fig. 14. Automatic decomposition of articulated object into rigid parts, [5], (courtesy of D.
Anguelov)

6 Discussion on skeleton for Virtual Humans

Based on this survey, we suggest the following taxonomy regarding articulated skeleton gen-
eration for virtual humans:

1. Direct binding approaches
In this family of approaches, a skin shape and a pre-defined skeleton are first produced
separately and the skin is then bound to the skeleton. Traditional approaches consist in
interactively or semi-automatically placing the skeleton inside the skin, and in associating
skin vertices to skeleton limbs to bind the skin deformations to the skeleton motions.
These methods are usually time-consuming and greatly rely on the skills of the designers.
The accuracy of the skin deformations is closely related to the correct placement of the
skeleton with respect to the skin shape. It usually requires a lot of interactive tuning and
refinements in order to achieve a correct and appropriate binding.

2. Pseudo-anatomical approaches
In pseudo-anatomical approaches, intermediate layers are attached to the skeleton. They
usually mimic the behaviour of a muscular layer and reproduce the real or visual behav-
iour. The geometric primitives associated to the layers can be deformed according to the
postures of the skeleton. Once these geometric primitives have been adjusted to match

260 T.D. Giacomo et al.

the current skeleton posture, a geometric skin is produced to reflect the posture. The geo-
metric skin can be either generated from the muscle layers at each frame or deformed
to match to the shapes of the muscle geometric primitives. The main advantage of this
family of approaches is that the articulated character is iteratively built from the skeleton
layer to the skin layer. In addition, these approaches allow modelling a wide range of
articulated characters and are not limited to a specific type. The main drawback is related
to the building of the character, which is usually tedious and time consuming. Addition-
ally, existing methods are mainly focused towards the deformations during motion and do
not address the issue of modeling new characters. Some methods provide example-based
features and propose to adjust some parameters of the multi-layer structure in order to
reflect possible modification of anatomy if the underlying skeleton structure is the same.

3. Skeleton extraction-based approaches
In these approaches, the articulated skeleton is directly extracted from the skin shape.
The main advantages are that the resulting skeleton catches the structure of the shape
and that the binding between the skeleton and the skin is immediately available from the
extraction process. The drawback is that extracted skeletons are usually too complex to
reflect the anatomical skeleton structure and that it is not immediately usable, moreover
it does not provide the DoF of the articulated structure.

4. Example-based approaches
In example-based approaches, a pre-defined articulated template model is fitted to match
some data extracted from the instances to model. The main limitation is that these meth-
ods are based on pre-existing know-how and are therefore limited to a given range of
articulated models. A new template has to be built for each kind of character. On the
other side, the binding between the skin and the skeleton is immediate, and depending on
the methods used to fit the template to the input data, it is possible to get a multi-modal
reconstruction scheme able to handle low and high level data input for the reconstruction.

New approaches are currently investigated that do not limit capturing techniques to catch
the static shape or the skeleton motion but instead consider at the same time dynamic shapes
and skeleton motions to automate the building and deformation of articulated character. In
[81], the authors propose a method for the acquisition of deformable human geometry from
silhouettes. The technique involves a tracking system to capture the motion of the skeleton,
and estimates skin shape for each bone using constraints provided by the silhouettes from one
or more cameras. The proposed algorithm provides a simple mechanism for solving the prob-
lems of view aggregation, occlusion handling, hole-filling, noise removal, and deformation
modelling. The resulting model can be parameterized to synthetize geometry for new poses of
the skeleton. The quality of this kind of approach is limited by the amount of details captured,
the accuracy of the skeleton estimation from motion capture, and the range of motion in the
training data set as usual for example-based approaches. In [6], the SCAPE method (Shape
Completion and Animation for PEople) is a data-driven method for building a human shape
model. It simultaneously catches the variation in both subject shape and pose. The method is
based on a representation that incorporates both skeletal and body deformations. A pose de-
formation model is trained to derive the body surface deformation as a function of the pose of
the articulated skeleton. A second model is trained to acquire the variation of the body shape.
The two models are combined to produce 3D surface models with realistic body deformations
for different people in different postures.

The investigation of hybrid methods combining example-based and skeleton extraction-
based approaches should lead to the development of robust and accurate frameworks for re-
construction of deformable articulated characters.

Control Structure for Virtual Human 261

7 Multi-Resolution Techniques

A virtual human is represented through a set of surfaces for describing the shape of a body
and through its animation information, which usually consist of facial and body animation.
In general, a surface is described by a triangle mesh enhanced with texture information. A
high-quality texture gives realistic rendering results with relatively lower computational costs.
With respect to regular solid objects in a virtual environment, the most important feature of the
virtual human is animation. The surface of a virtual human is deformed by its animation. In this
Section, we discuss several approaches to Level-of-Detail (LoD) representations for virtual
humans, which are independant of the four families of approaches presented in Section 6.

7.1 Simplification of Shape and Control Structure

Simplification of textured body surfaces

An LoD model of a free-form surface is generated by a repeated sequence of surface simpli-
fication operations. One important surface feature is the texture information associated with
the surface (see Figure 15). Several approaches have been proposed in the literature to deal
with texture information while simplifying a surface [35, 27, 82, 48]. A LoD model for the
virtual human should preserve information on deformations that would be changed by anima-
tion along with traditional surface features. Here, we briefly review approaches that consider
texture information in surface simplification and possible extensions to deformable surfaces.

Fig. 15. Example of texture generating simplification, [48]

A common approach to consider texture is texture preserving simplification methods.
These methods preserve texture coordinates during simplification. Garland et al. [36] extend
energy space into combined space of position, color and normal vectors. Cohen et al. [27] use

262 T.D. Giacomo et al.

transformed deviation of the normal and color in the three-dimensional geometric space.
Lindstrom [61] proposes to use deviation criteria based on image differences. Although texture
preserving simplification methods give good results, applying these methods to deformable
object still has limitations. As a deformable surface has different mapping onto the surface
caused by the changing in surface areas, polygon distributions and shapes, most of the current
measurements for texture distortion do not correctly fit into the deformable surface. Simplifica-
tion approaches based on texture generation have been proposed with the purpose of replacing
complex geometry with texture information.

An impostor is an example of this kind of texture generating simplification [65]. It is an
image that represents a part of a complex object, and it is usually generated by capturing a ren-
dered image from predefined camera positions. It is mapped on the polygon that is best suited
for other camera positions. Sillion et al. [87] suggest re-meshing the area of an impostor to
improve rendering results. Schaufler [83] proposes a regeneration method of impostors using
image warping techniques while Oliveira et al. [74] uses more general image-based rendering
techniques. An impostor approach to reproduce character animation with animated textures
has been proposed by Aubel et al. [9], and by Tecchia et al. [92]. With the pre-sampling of
32 positions at 8 elevations, Tecchia et al. [92] select at runtime a texture to map with the
animation current frame and the orientation of the character to the camera as inputs. By taking
advantage of the temporal coherence, Aubel et al. [9] use geometric LoDs and dynamically
generated animated impostors with multi-planes. The textures are regenerated when needed,
according to a threshold value on the animation. Dobbyn et al. [30] also use impostors on
top of a full geometry-based crowd rendering engine (see Figure 16). Their hybrid engine is
able to seamlessly switch from geometry to impostor, computed on the GPU, according to a
pixel-to-texel ratio computed as:

dswitch =
dnearplane.T exelsize

Pixelsize

with dswitch the distance where the ratio is equal to 1, dnearplane the distance from the camera
to the near plane, and:

Texelsize =
2.dnearplane.tan−1(θ

2
)

x

Pixelsize =
2.dcam.tan−1(θ

2
)

x

where x is the resolution of the impostor image, θ the camera’s field of view, and dcam the
distance of the character to the camera. Hamill et al. [39] study the perceptual impact of both
image-based and hybrid geometry-impostor methods on characters and on virtual buildings
with different experiments: character discrimination, transition detection, impostor updates,
etc. Their experiments also provide thresholds on impostors efficiency. Although an impostor
offers the advantage of preserving details with a small number of triangles, it cannot be easily
applied to general detailed triangle meshes, especially those used for deformable surfaces. In
addition, the possible variety of different character animations is an important issue for such
approaches.

There have been other approaches to generate texture images to be used in combination
with an LoD model. Certain et al. [24] propose a model for generating a texture map for a sim-
plified surface, which keep geometry resolution under control. Cohen et al. [27] propose an
energy-based metric for mapping texture images to different geometries. This error measure-
ment can be used for a simplification method combined with texture generation to ensure the
quality of the simplified mesh in terms of texture mapping error. The most significant accom-

Control Structure for Virtual Human 263

Fig. 16. Generation of impostors from different viewpoints, [30], (courtesy of C. O’Sullivan)

Fig. 17. The left two images are generate without proper handling of texture information. The
right two images with minimized texture stretching, [82], (courtesy of P. Sander)

plishment in simplification methods based on texture generation is given by texture generation
methods for LoD meshes as [82, 48] (see Figure 17).

Preservation of Features in Simplification

Considering animation parameters is an important issue in surface simplification for virtual
humans. The animation of the virtual human consists of facial and body animation. The sim-
plification process to generate an LoD model should consider these animation parameters so
that the low complexity model can be animated as close as possible to the original model.

Facial animation is usually represented by the movement of feature points on the surface
of the face. Feature points also control deformations of neighbouring surfaces thus resulting in
the animation of facial expressions [54]. A method has been developed to preserve facial an-
imation parameters in simplification [47] (see Figure 18). Facial animation has a well-defined
surface deformation which follows facial action points and follows deformation parameters.
One fundamental issue is preserving facial action points over the simplification process as
long as possible. Whether action points are preserved or not, it is still required to regenerate
deformation parameters. A method for regenerating these deformation parameters from the
action points and deformation bounds, both in direction and magnitude, is proposed in [89].

264 T.D. Giacomo et al.

Fig. 18. Handling facial animation parameters in multiresolution model, [47]

The surface deformation parameter is calculated by its geometrical properties such as surface
distance, or curvature.

For body animation, it is important to preserve surface details around deforming parts
such as surface parts near joints. For example, a surface part which is close to a joint could
have more detail, to represent enough surface detail even when the part is highly deformed by
joint rotation. Overlapping regions around joints could be simplified according to animation
parameters as well. Preserving more details for the dynamically deformable surface is still
an open research problem as research that relates LoD representations with skeleton-based
deformation and animation is relatively recent.

Control Structure for Virtual Human 265

7.2 Multi-Resolution Modeling for Key Parameters

Although the complexity and representation of 3D humans are predominant factors to con-
sider for optimization, motion data (see Figure 19) is also a very important step in character
animation that researchers investigate for improvements.

Fig. 19. Illustration of sample costs per step for a 1000 animated characters crowd, [2]

Motion LoD

As for geometry, animation models and parameters can be adapted and simplified in certain
cases, i.e. when motions are too fast, too distant, or too numerous for human sight, or when
motions are of low interest in a given context. LoD-like approaches are thus applicable for an-
imation to manage the computational and memory costs of transformations and deformations,
and to provide a controlled trade-off between performances and quality.

Early work by Granieri et al. [37] proposes the pre-definition of three different static
resolutions for character animation. These resolutions are depending on the geometric model
complexity, but also on the motion sampling frequency and on the skeleton complexity of
characters, i.e. DoF, number of bones and joints. The pre-processed resolutions are stored
in a graph and selected during the real-time rendering based on characters distance to the
camera. To reduce the animation complexity, Ahn et al. [2] present a method that simplifies
motion data to be used later on in real-time applications. The simplification phase consists
in a posture clustering, generated according to the frame-based computations of joint motion
distances and a given error threshold. Cozot et al. [29] propose an architecture to adapt the
complexity of character animation based on a pipeline of different animation models. For
each step in the pipeline, namely the body motion, the angular trajectories and the remainder
of the body, a set of different animation models with different complexity are usable, i.e. none,
direct and inverse kinematics and dynamics. The possible resolutions for runtime are therefore
pre-defined by the architecture construction, which facilitates smooth transitions between the
different levels. They apply their method on walking characters, where models are selected
dynamically according to the global complexity of the scene and the distance of the character
to the camera.

Recently, Redon et al. [77] presented an adaptive forward dynamics model. Based on
dynamic bodies, they simulate hybrid skeletons with active joints, with complete accelerations,
velocity and position updates, passive joints, with bias acceleration and inverse inertia updates,
and rigid joints, with only bias acceleration. In areas concerned, and according to a defined
total desired number of DoF, joints change states according to error metrics on acceleration
and velocity updates detailed below.

266 T.D. Giacomo et al.

MULTIRES Dynamic Character Data
Granieri[37] Low Medium Low
Cozot[29] Medium High Low

Ahn[2] Low High High
Redon[77] High Medium Medium

Table 1. Adaptation features from multi-resolution methods for character animation.

RESOLUTION Grain Control
Granieri[37] Low High
Cozot[29] Medium Medium

Ahn[2] High High
Redon[77] High Medium

Table 2. Resolution features from multi-resolution methods for character animation.

We propose an overview of the features of methods in multi-resolution character anima-
tion in Tables 1, 2 and 3. The first one is on the multi-resolution mechanism itself, its dynam-
icity, its application for character animation, and if it provides data adaptation. The second
presents the granularity of the multi-resolution methods, as well as the control on resolution in
terms of generation. The last table illustrates the features for runtime selection of appropriate
resolutions based on a cost for resolution changes, on view dependency and on motion error
metrics.

DECISION-MAKING Cost View Error
Granieri[37] Low Yes No
Cozot[29] Medium Yes No

Ahn[2] Low No Low
Redon[77] High No Medium

Table 3. Decision features from multi-resolution methods for character animation.

Motion Error Metrics

Motion error metrics allow the quantification of loss when simplifying skeletons with joint or
DoF reduction. This provides a useful control to select appropriate resolution according to dif-
ferent animations. Although some of the metrics presented here might have not been initially
designed for multi-resolution animation methods, such as the error metrics from motion graph
techniques, we believe they are relevant for the optimization of character animation as used
by Redon et al. [77] and Ahn et al. [2]. In the later work, the posture clusters are computed
according to an error cost on joint motion depending on orientation (first term in the equation
below), and on position (second term) errors:

Ej(t, tref) = α.2log(qj(t)
−1.qj(tref)) + rj(t).θj(t, tref))

with t the current frame, tref the estimated key frame, and qj the orientation of joint j. θj ,
respectively rj , is an angle difference, respectively a weighting factor, defined as:

Control Structure for Virtual Human 267

θj(t, tref) = arccos
v
′
j(t).v

′
j(tref).

||lj,c(t)||2

rj(t) =

leaf∑
c

lj,c(t)

where lj,c is the segment length between j and c, and v
′
j the trajectory of j. Key-postures per

cluster are then computed in the resulting cost matrix as KP = mintref (
∑m

t
Ej(t, tref)).

In the adaptive forward dynamics model proposed by Redon et al. [77], joints are acti-
vated, rigidified or set as passive according to error metrics on acceleration a(C) and velocity
v(C) updates as follows:

a(C) =
∑
i∈C

q̈T
i .Ai.q̈i

v(C) =
∑
i∈C

˙qT
i .Vi.q̇i

with C is the articulated structure, Ai and Vi two dixdi symmetric positive definite weight
matrices equal to the identity matrix in their work, and qi the position of joint i.

To define and select potential transitions in motion graph, error metrics have also been
defined in such work. Kovar et al. [52] propose a 2D similarity metric with point clouds based
on vertices positions of polygonal meshes and not on the orientation and/or position of the
skeleton joints. The distance D between two frames Ai and Bi is:

min
θ,x0,z0

∑
i

wi||pi − Tθ,x0,z0p′
i||2

where Tθ,x0,z0 is a rigid 2D transformation that rotates p on the y axis of θ degrees and
translates it by (x0, z0), wi weights, pi and p′

i corresponding points in the point clouds. A
closed-form solution to his optimization is:

θ = arctan

∑
i
wi(xiz

′
i − x′

iz − i) − 1∑
i

wi
(x̄z̄′ − x̄′z̄)∑

i
wi(xix′

i + ziz′
i) − 1∑

i
wi

(x̄x̄′ − z̄z̄′)

x0 =
1∑
i
wi

(x̄ − x̄′ cos(θ) − z̄′ sin(θ))

z0 =
1∑
i
wi

(z̄ + x̄′ sin(θ) − z̄′ cos(θ))

where x̄ =
∑

i
wixi. Also for motion graphs, Lee et al. [57] propose a different metric,

which is more similar to [2] and [77]. It is based on joint angles and velocities with which a
probability of transitioning from frame i to frame j is mapped and estimated. The distance
between frame i and frame j is computed as:

Dij = d(pi, pj) + νd(vi, vj)

with d(vi, vj) the difference of joint velocities, ν its weight, and d(pi, pj) the following joint
angles difference:

d(pi, pj) = ||pi,0 − pj,0||2 +

m∑
k=1

wk|| log(q−1
j,k , qi,k)||2

268 T.D. Giacomo et al.

where pi,0 ∈ �3 the root position at frame i, qi,k ∈ S3 the relative orientation of joint k,
wk joint weights manually determined, and m the number of joints. To express an animation
sequence with selected key poses, Assa et al. [7] compute affinity matrices, representing the
dissimilarities between frames, as:

da(f1, f2) =
∑

j∈joints

bj

(xf1
j − xf2

j)2

σ2
j

where da is the dissimilarity aspect between frame f1 and f2, xf
a the a aspect at frame f and

σ2
j the variance of joint j coordinates. With the same goals, Loy et al. [63] compute distance

matrices with shape matching between each pair of frames of an animation.

7.3 Discussion on LoD for Virtual Humans

Virtual humans are represented by their shape and animation structures. The animation control
structures modify shape through segment transformation or skin deformation. In parallel, for
real-time rendering and animation, multiresolution methods for shape have been investigated
and widely used [13]. There have been a few approaches to remap the animation structures for
the simplified shapes but those are partly limited to the specific cases such as facial animation
parameters. For efficient control and rendering, further research focus should be on generating
animation structures according to the simplified shapes. To do this, it is necessary to make
a mapping between the animation semantics (control structure) and syntax (shape). Further-
more, using this mapping, simplification on the animation structures could be conceivable in
a more flexible way.

The animation of virtual humans is not only related to the body itself but also its close
surroundings, especially clothes. For efficient animation, relationships between all component
should be conceived in simulation methods. There have been a few works on modeling and
simplification of these structures [73]. A control hierarchy starting from the environment to
the base of body control, e.g. skeletons, would bring a full control of semantics over shapes in
virtual human animation and rendering.

References

1. ISO/IEC JTC1/SC24 FCD 19774:200x. Humanoid animation (h-anim), 2004. http:
//www.h-anim.org/.

2. J. Ahn and K. Wohn. Motion level-of-detail: A simplification method on crowd scene.
In Proc. Computer Animation and Social Agent, CASA’04, pages 129–137, 2004.

3. I. Albrecht, J. Haber, and H.-P. Seidel. Construction and animation of anatomically based
human hand models. In Proc. of the 2003 ACM SIGGRAPH/Eurographics Symposium
on Computer Animation, pages 98–109, 2003.

4. B. Allen, B. Curless, and Z. Popović. Articulated body deformation from range scan
data. ACM Transactions on Graphics, 21(3):612–619, July 2002.

5. D. Anguelov, D. Koller, H.-C. Pang, P. Srinivasan, and S. Thrun. Recovering articu-
lated object models from 3d range data. In Proceedings of the Uncertainty in Artificial
Intelligence Conference (UAI2004), 2004.

6. D. Anguelov, P. Srinivasan, D. Koller, S. Thrun, J. Rodgers, and J. Davis. Scape: Shape
completion and animation of people. In Proceedings of the SIGGRAPH Conference
2005, 2005.

Control Structure for Virtual Human 269

7. J. Assa, Y. Caspi, and D. Cohen-Or. Action synopsis: pose selection and illustration.
ACM Transactions on Graphics, 24(3):667–676, 2005.

8. G. Attardi, M. Betro, M. Forte, R. Gori, A. Guidazzoli, S. Imboden, and F. Mallegni.
3d facial re-construction and visualization of ancient egyptian mummies using spiral CT
data. In SIGGRAPH99 Abstracts and Applications, pages 223–239, 1999.

9. A. Aubel, R. Boulic, and D. Thalmann. Real-time display of virtual humans: Levels of
detail and impostors. IEEE Transactions on Circuits and Systems for Video Technology,
2:207–217, 2000.

10. S. Biasotti, D. Attali, J.-D.l Boissonnat, H. Edelsbrunner, G. Elber, M. Mortara,
G. Sanniti di Baja, M. Spagnuolo, and M. Tanase. Skeletal structures. In L. De Flo-
riani and M. Spagnuolo, editors, Shape Analysis and Structuring. Springer, 2007.

11. V. Blanz and T. Vetter. Construction and animation of anatomically based human hand
models. In Proc. of ACM SIGGRAPH 99, pages 187–194, 1999.

12. J. Bloomenthal. Skeletal methods of shape manipulation. In Bob Werner, editor, Pro-
ceedings of the International Conference on Shape Modeling and Applications (SMI-99),
pages 44–49, Los Alamitos, CA, March 1–4 1999. IEEE Computer Society.

13. G.-P. Bonneau, G. Elber, S. Hahmann, and B. Sauvage. Multiresolution analysis. In
L. De Floriani and M. Spagnuolo, editors, Shape Analysis and Structuring. Springer,
2007.

14. R. Boulic, T. Capin, Z. Huang, P. Kalra, B. Linterrnann, N. Magnenat-Thalmann,
L. Moccozet, T. Molet, 1. Pandzic, K. Saar, A. Schmitt, J. Shen, and D. Thalmann. The
humanoid environment for interactive animation of multiple deformable human charac-
ters. Computer Graphics Forum, 14(3):337–348, August 1995.

15. R. Boulic, R. Mas, and D. Thalmann. Complex character positioning based on a com-
patible flow model of multiple supports. In IEEE Transactions on Visualization and
Computer Graphics, volume 3, 1997.

16. R. Boulic and D. Thalmann. Combined direct and inverse kinematic control for articu-
lated figure motion editing. Computer Graphics Forum, 2, 1992.

17. D. Brogan, K. Granata, and P. Sheth. Space-time constraints for biomechanical move-
ments. In IASTED International Conference on Applied Modeling and Simulation
(AMS), 2002.

18. D. Brogan, R. Metoyer, and J. Hodgins. Dynamically simulated characters in virtual
environments. In IEEE Computer Graphics and Applications, pages 58–69, 1998.

19. N. Burtnyk and M. Wein. Interactive skeleton techniques for enhancing motion dynam-
ics in key frame animation. Commun. ACM, 19(10):564–569, 1976.

20. M. P. Cani-Gascuel and M. Desbrun. Animation of deformable models using implicit
surfaces. IEEE Transactions on Visualization and Computer Graphics, 3(1):39–50, jan
- mar 1997.

21. S. Capell, M. Burkhart, B. Curless, T. Duchamp, and Z. Popović. Physically based rig-
ging for deformable characters. In Proc. Symposium on Computer Animation, SCA’05,
pages 301–310, 2005.

22. S. Capell, S. Green, B. Curless, T. Duchamp, and Z. Popović. Interactive skeleton-driven
dynamic deformations. In Proc. SIGGRAPH’02, pages 41–47, 2002.

23. M. Cavazza, R. Earnshaw, N. Magnenat-Thalmann, and D. Thalmann. Survey: Motion
control of virtual humans. IEEE Computer Graphics & Applications, 18(5):24–31, sep -
oct 1998.

24. A. Certain, J. Popovic, T. DeRose, T. Duchamp, D. Salesin, and W. Stuetzle. Interac-
tive multiresolution surface viewing. In Proceedings of the 23rd annual conference on
Computer graphics and interactive techniques, pages 91–98. ACM Press, 1996.

270 T.D. Giacomo et al.

25. J. E. Chadwick, D. R. Haumann, and R. E. Parent. Layered construction for deformable
animated characters. In Proceedings of the 16th annual conference on Computer graph-
ics and interactive techniques, pages 243–252. ACM Press, 1989.

26. D. Chen and D. Zeltzer. Pump it up: Computer animation of a biomechanically based
model of muscle using the finite element method. In Computer Graphics (Proceedings
of SIGGRAPH 92), pages 89–98, July 1992.

27. J. Cohen, M. Olano, and D. Manocha. Appearance-perserving simplification. In Pro-
ceedings of the 25th annual conference on Computer graphics and interactive tech-
niques, pages 115–122. ACM Press, 1998.

28. G. Collins and A. Hilton. Modelling for character animation. Software Focus, 2(2):44–
51, 2001.

29. B. Cozot, F. Multon, B. Valton, and B. Arnaldi. Animation levels of detail design for
real-time virtual human. In Proc. Eurographics Workshop on Computer Animation and
Simulation, EGCAS’99, pages 35–44, 1999.

30. S. Dobbyn, J. Hamill, K. O’Conor, and C. O’Sullivan. Geopostors: A real-time geome-
try/impostor crowd rendering system. In Proc. ACM SIGGRAPH Symp. Interactive 3D
Graphics and Games, pages 95–102, 2005.

31. H. Du and H. Qin. Medial axis extraction and shape manipulation of solid objects using
parabolic pdes. In Proceedings of the Ninth ACM Symposium on Solid Modeling and
Applications 2004, pages 25–35, 2004.

32. P. Faloutsos, M. Van de Panne, and D. Terzopoulos. Composable controllers for physics-
based character animation. In SIGGRAPH’01, pages 251–260, 2001.

33. P. Faloutsos, M. VanDePanne, and D. Terzopoulos. Dynamic freeform deformations
for animation synthesis. IEEE Transactions on Visualization and Computer Graphics,
3(3):201–214, 1997.

34. N. Gagvani and D. Silver. Animating volumetric models. Graphical models, 63(6):443–
458, nov 2001.

35. M. Garland and P. Heckbert. Surface simplification using quadric error metrics. In
Proceedings of the 24th annual conference on Computer graphics and interactive tech-
niques, pages 209–216. ACM Press/Addison-Wesley Publishing Co., 1997.

36. M. Garland and P. Heckbert. Simplifying surfaces with color and texture using quadric
error metrics. In Proceedings of the conference on Visualization ’98, pages 263–269.
IEEE Computer Society Press, 1998.

37. J. Granieri, J. Crabtree, and N. Badler. Production and playback of human figure motion
for visual simulation. ACM Transactions on Modeling and Computer Simulation, 5(3),
1995.

38. Z. Guo and K. C. Wong. Skinning with deformable chunks. Computer Graphics Forum,
24(3):373–382, 2005.

39. J. Hamill, R. McDonnell, S. Dobbyn, and C. O’Sullivan. Perceptual evaluation of im-
postor representations for virtual humans and buildings. Computer Graphics Forum,
24(3), 2005.

40. D. Herbison-Evans. Real-time animation of human figure drawings with hidden-lines
omitted. IEEE Computer Graphics & Applications, 2(9):27–33, 1982.

41. J. Hodgins, W. Wooten, D. Brogan, and J. O’Brien. Animating human athletics. In
SIGGRAPH’95, pages 71–78, 1995.

42. D. James and C. Twigg. Skinning mesh animations. ACM Transactions on Graphics,
24(3), 2005.

43. K. Kahler, J. Haber, and H.-P. Seidel. Reanimating the dead: Reconstruction of expres-
sive faces from skull data. ACM Transactions on Graphics, 22(3):554–561, 2003.

Control Structure for Virtual Human 271

44. P. Kalra, N. Magnenat-Thalmann, L. Moccozet, G. Sannier, A. Aubel, and D. Thalmann.
Real-time animation of realistic virtual humans. In IEEE Computer Graphics and Ap-
plications, volume 18, 1998.

45. P. Kanongchaiyos and Y. Shinagawa. Articulated reeb graphs for interactive skeleton
animation. In Proceeding Modeling Multimedia Information and System, pages 451–
467, october 2000.

46. S. Katz and A. Tal. Hierarchical mesh decomposition using fuzzy clustering and cuts.
ACM Transactions on Graphics, 22(3):954–961, July 2003.

47. H. Kim, C. Joslin, T. Di Giacomo, S. Garchery, and N. Magnenat-Thalmann. Adaptation
mechanism for three dimensional content within the mpeg-21 framework. In Computer
Graphics International 2004, June 2004.

48. H. Kim and K. Wohn. Multiresolution model generation with geometry and texture.
Proceedings of Seventh International Conference on Virtual Systems and Multimedia,
pages 780–789, 2001.

49. S. Kiss. Computer animation for articulated 3d characters. Technical Report 45, Twente
University, 2002. http://purl.org/utwente/38232.

50. E. Kokkevis, D. Metaxas, and N. Badler. User-controlled physics-based animation for
articulated figures. In Computer Animation, 1996.

51. K. Komatsu. Human skin model capable of natural shape variation. The Visual Com-
puter, 3(5):265–271, 1988.

52. L. Kovar, M. Gleicher, and F. Pighin. Motion graphs. In Proc. SIGGRAPH’02, pages
473–482, 2002.

53. P. Kry, D. James, and D. Pai. Eigenskin: Real time large deformation character skinning
in hardware. In ACM SIGGRAPH Symposium on Computer Animation, pages 153–160,
July 2002.

54. S. Kshirsagar, S. Garchery, G. Sannier, and N. Magnenat-Thalmann. Synthetic faces :
Analysis and applications. International Journal of Imaging Systems and Technology,
13(1):65–73, June 2003.

55. T. Kurihara and N. Miyata. Modeling deformable human hands from medical images. In
Proc. of the 2004 ACM SIGGRAPH/Eurographics symposium on Computer animation,
2004.

56. F. Lazarus and A. Verroust. Level set diagrams of polyhedral objects. In ACM Solid
Modeling’99, Ann Arbor, Michigan, USA, June 1999.

57. J. Lee, J. Chai, P. Reitsma, J. Hodgins, and N. Pollard. Interactive control of avatars
animated with human motion data. In Proc. SIGGRAPH’02, pages 491–500, 2002.

58. W. Lee, J. Gu, and N. Magnenat-Thalmann. Generating animatable 3d virtual humans
from photographs. Computer Graphics Forum, 19(3), August 2000.

59. J. P. Lewis, M. Cordner, and N. Fong. Pose space deformations: A unified approach
to shape interpolation and skeleton-driven deformation. In Proceedings of ACM SIG-
GRAPH 2000, Computer Graphics Proceedings, Annual Conference Series, pages 165–
172, July 2000.

60. J.-M. Lien and N. M. Amato. Simultaneous shape decomposition and skeletonization
using approximate convex decomposition. Technical report, Texas A&M University,
2005. http://parasol-www.cs.tamu.edu/publications/download.
php?file id=461.

61. P. Lindstrom and G. Turk. Image-driven simplification. ACM Trans. Graph., 19(3):204–
241, 2000.

62. P. Liu, F. Wu, W. Ma, R. Liang, and M. Ouhyoung. Automatic animation skeleton
construction using repulsive force field. In Pacific Graphics 2003, page 409, october
2003.

272 T.D. Giacomo et al.

63. G. Loy, J. Sullivan, and S. Carlsson. Pose-based clustering in action sequences. In Proc.
Workshop on Higher-Level Knowledge in 3D Modeling and Motion Analysis, HLK’03,
page 66, 2003.

64. R. MacCracken and K. Joy. Free-form deformations with lattices of arbitrary topology.
In Proc. SIGGRAPH’96, pages 181–188, 1996.

65. P. Maciel and P. Shirley. Visual navigation of large environments using textured clusters.
In Proceedings of the 1995 symposium on Interactive 3D graphics, pages 95–ff. ACM
Press, 1995.

66. N. Magnenat-Thalmann, R. Laperriere, and D. Thalmann. Joint-dependent local de-
formations for hand animation and object grasping. In Graphics Interface ’88, pages
26–33, June 1988.

67. D. Manocha and Y. Zhu. A fast algorithm and system for inverse kinematics of general
serial manipulators. In IEEE Conference on Robotics and Automation, 1994.

68. L. Moccozet, F. Dellas, N. Magnenat-Thalmann, S. Biasotti, M. Mortara, B. Falcidieno,
P. Min, and R. Veltkamp. Animatable human body model reconstruction from 3d scan
data using templates. In Proc. CapTech Workshop on Modelling and Motion Capture
Techniques for Virtual Environments, CAPTECH2004, 2004.

69. L. Moccozet and N. Magnenat-Thalmann. Dirichlet free-form deformations and their
application to hand simulation. In Proc. Computer Animation, CA’97, pages 93–102,
1997.

70. L. Moccozet and N. Magnenat-Thalmann. Multilevel deformation model applied to hand
simulation. In Proc. Virtual Systems and MultiMedia, VSMM’97, pages 119–128, 1997.

71. A. Mohr and M. Gleicher. Building efficient, accurate character skins from examples.
ACM Transactions on Graphics, 22(3):562–568, July 2003.

72. F. Multon, L. France, M.-P. Cani, and G. Debunne. Computer animation of human
walking: a survey. The Journal of Visualization and Computer Animation, 10:39–54,
1999.

73. S. Oh, H. Kim, N. Magnenat-Thalmann, and K. Wohn. Generating unified model for
dressed virtual humans. The Visual Computer, 21(8):522–531, 2005.

74. M. Oliveira, G. Bishop, and D. McAllister. Relief texture mapping. In Proceedings
of the 27th annual conference on Computer graphics and interactive techniques, pages
359–368. ACM Press/Addison-Wesley Publishing Co., 2000.

75. S. Park and J. K. Hodgins. Capturing and animating skin deformation in human motion.
ACM Trans. Graph., 25(3):881–889, 2006.

76. W. Press, B. Flannery, S. Teukolsky, and W. Vetterling. Numerical Recipes in C: The
Art of Scientific Computing. Cambridge University Press, 1992.

77. S. Redon, N. Galoppo, and M. Lin. Adaptive dynamics of articulated bodies. In Proc.
SIGGRAPH’05, pages 936–945, 2005.

78. L. Reveret, L. Favreau, C. Depraz, and M.-P. Cani. Morphable model of quadrupeds
skeletons for animating 3d animals. In Eurographics/ACM SIGGRAPH Symposium on
Computer Animation (2005), 2005.

79. T. Rhee, U. Neumann, and J. P. Lewis. Human hand modeling from surface anatomy. In
Proc. of the 2006 Symposium on Interactive 3D graphics and games, 2006.

80. C. Rose, B. Guenter, B. Bodenheimer, and M. F. Cohen. Efficient generation of motion
transitions using space-time constraints. Computer Graphics, 30(Annual Conference
Series):147–154, 1996.

81. P. Sand, L. McMillan, and J. Popović. Continuous capture of skin deformation. ACM
Transactions on Graphics, 22(3):578–586, July 2003.

Control Structure for Virtual Human 273

82. P. Sander, J. Snyder, S. Gortler, and H. Hoppe. Texture mapping progressive meshes.
In Proceedings of the 28th annual conference on Computer graphics and interactive
techniques, pages 409–416. ACM Press, 2001.

83. G. Schaufler. Per-object image warping with layered impostors. In Proceedings of the
9th Eurographics Workshop on Rendering ’98, pages 145–156, June 1998.

84. F. Scheepers, R. E. Parent, W. E. Carlson, and S. F. May. Anatomy-based modeling of the
human musculature. In Proceedings of SIGGRAPH 97, Computer Graphics Proceedings,
Annual Conference Series, pages 163–172, August 1997.

85. H. Seo, F. Cordier, and N. Magnenat-Thalmann. Synthesizing animatable body mod-
els with parameterized shape modifications. In Proc. ACM SIGGRAPH/Eurographics
Symposium on Computer Animation, San Diego, CA, USA, 2003.

86. H. Seo and N. Magnenat-Thalmann. An automatic modeling of human bodies from
sizing parameters. In ACM SIGGRAPH Symposium on Interactive 3D Graphics, pages
19–26, 2003.

87. F. Sillion, G. Drettakis, and B. Bodelet. Efficient impostor manipulaiton for real-time
visualization of urban scenery. In Proceedings of Eurographics ’97, pages 207–218,
September 1997.

88. K. Singh and E. Kokkevis. Skinning characters using surface oriented free-form defor-
mations. In Proc. Graphics Interface, GI’00, pages 35–42, 2000.

89. S. Kshirsagar, S. Garchery, and N. Magnenat-Thalmann. Feature point based mesh de-
formation applied to mpeg-4 facial animation. In Proceedings Deform’2000, Work-
shop on Virtual Humans by IFIP Working Group 5.10 (Computer Graphics and Virtual
Worlds), pages 23–34. Kluwer Academic Publishers, November 2000.

90. P. P. Sloan, C. Rose, and M. Cohen. Shape by example. In ACM SIGGRAPH Symposium
on Interactive 3D Graphics, 2001.

91. J. Starck, G. Collins, R. Smith, A. Hilton, and J. Illingworth. Animated statues. Journal
of Machine Vision Applications, 2002.

92. F. Tecchia, C. Loscos, and Y. Chrysanthou. Image-based crowd rendering. IEEE Com-
puter Graphics & Applications, 22(2):36–43, 2002.

93. M. Teichmann and S. Teller. Assisted articulation of closed polygonal models. In
Proc. 9th Eurographics Workshop on Animation and Simulation, pages 87–102, Lisbon,
Portugal, August 31 - September 1 1998.

94. D. Terzopoulos and K. Fleischer. Modeling inelastic deformation: Viscoelasticity, plas-
ticity, fracture. Computer Graphics, 22(4):269–278, 1988.

95. D. Terzopoulos, J. Platt, A. Barr, and K. Fleischer. Elastically deformable models. Com-
puter Graphics, 21(4):205–214, 1987.

96. D. Terzopoulos and A. Witkin. Physically based models with rigid and deformable
components. IEEE Computer Graphics and Applications, 8(6):41–51, 1988.

97. D. Thalmann, N. Magnenat-Thalmann, and P. Bergeron. Dream flight: a fictional film
produced by 3d computer animation. In Proceedings Computer Graphics’82, pages
353–368, 1982.

98. D. Thalmann, J. Shen, and E. Chauvineau. Fast realistic human body deformations for
animation and vr applications. In Computer Graphics International 1996, 1996.

99. D. Tolani, A. Goswami, and N. Badler. Real-time inverse kinematics techniques for
anthropomorphic limbs. Graphical Models, 62(5):353–388, 2000.

100. R. Turner and E. Gobbetti. Interactive construction and animation of layered elastically
deformable characters. Computer Graphics Forum, 17(2):135–152, 1998.

101. P. Volino and N. Magnenat-Thalmann. Comparing efficiency of integration methods for
cloth simulation. In Computer Graphics International, CGI’01, pages 265–274, 2001.

274 T.D. Giacomo et al.

102. L. Wade and R. E. Parent. Automated generation of control skeletons for use in anima-
tion. The Visual Computer, 18(2):97–110, March 2002.

103. A. Watt and M. Watt. Advanced animation and rendering techniques. Addison-Wesley,
1992.

104. J. Wilhelms. Animals with anatomy. IEEE Computer Graphics and Applications,
17(3):22–30, /1997.

105. A. Witkin and M. Kass. Space-time constraints. In SIGGRAPH’88, pages 159–168,
1988.

106. W. Wooten and J. Hodgins. Transitions between dynamically simulated motions: Leap-
ing, tumbling, landing, and balancing, 1997. Animation Sketch, Siggraph’97.

107. F.-C. Wu, W.-C. Ma, P.-C. Liou, R.-H Laing, and M. Ouhyoung. Skeleton extraction of
3d objects with visible repulsive force. In Computer Graphics Workshop 2003, Taiwan,
2003.

108. S. Yoshizawa, A. G. Belyaev, and H.-P. Seidel. A simple approach to interactive free-
form shape deformations. In Proc. Pacific Graphics, PG’02, pages 471–474, 2002.

109. S. Yoshizawa, A. G. Belyaev, and H.-P. Seidel. Free-form skeleton-driven mesh defor-
mations. In Proc. ACM Solid Modeling, pages 247–253, 2003.

110. X. Zhao. Kinematic Control of Human Postures for Task Simulation. PhD thesis, Uni-
versity of Pennsylvania, 1996.

111. V. B. Zordan, B. Celly, B. Chiuand, and P. C. Dilorenzo. Breathe easy: Model and
control of human respiration for computer animation. In Proc. of the 2004 ACM SIG-
GRAPH/Eurographics Symposium on Computer Animation, pages 29–38, 2004.

A

Colour Plates: Shape Interrogation

(a) (b) (c) (d)

Fig. CP-1.

Fig. CP-2.

276 Colour Plates: Shape Interrogation

Fig. CP-3.

Fig. CP-4.

Fig. CP-5.

B

Colour Plates: Recent Advances in Remeshing
of Surfaces

Fig. CP-1.

278 Colour Plates: Recent Advances in Remeshing of Surfaces

Fig. CP-2.

Fig. CP-3.

C

Colour Plates of the Chapter: Multiresolution Analysis

Fig. CP-1.

280 Colour Plates: Multiresolution Analysis

(a) (b) (c) (d)

(e) (f) (g) (h)Fig. CP-2.

Fig. CP-3.

D

Colour Plates: Subdivision Surfaces and Applications

Fig. CP-1.

282 Colour Plates: Subdivision Surfaces and Applications

(a) (b) (c)

Fig. CP-2.

Colour Plates: Subdivision Surfaces and Applications 283

Fig. CP-3.

Fig. CP-4.

Fig. CP-5.

E

Colour Plates: Skeletal Structures

Fig. CP-1.

286 Colour Plates: Skeletal Structures

Fig. CP-2.

(a) (b) (c)

Fig. CP-3.

(a) (b) (c) (d)

Fig. CP-4.

(a) (b) (c)

Fig. CP-5.

F

Colour Plates: Morphological Representations
of Scalar Fields

Fig. CP-1.

(a) (b)

Fig. CP-2.

G

Colour Plates: Topological Representations of Vector
Fields

(b)(a)

Fig. CP-1.

e1

f1

e1

e2

e3

e1

f1

b) c) d)

e)
f)

e1

e2

e3

g)

a)

h)

Fig. CP-2.

290 Colour Plates: Topological Representations of Vector Fields

Colour Plates: Topological Representations of Vector Fields 291

(c)

(a) (b)

(d)

Fig. CP-5.

(a) (b)

Fig. CP-6.

292 Colour Plates: Topological Representations of Vector Fields

(a)
(b) (c)

(d)
(e)

Fig. CP-7.

Index

k-simplex, 174
k-skeleton, 173
boundary-based approach, 183
1-skeleton, 176

advancing front, 57
algorithm

eigenvalue, eigenvector, 40, 41
aliasing, 45
analysis

multiresolution, 69
anatomy-based, 231–233, 241, 243
angle-length multiresolution, 86
area constraint, 78
Artifact, 106

First order artifact, 106
Second order artifact, 107

attracting saddle, 207
augmented contour tree, 178, 188

Betti numbers, 181
bi-linear constraints

area, 78
Bisector, 136, 137

curve-curve bisector, 138
curve-surface bisector, 136
point-curve bisector, 138
point-point bisector, 138
point-surface bisector, 138
rational bisectors, 140
surface-surface bisector, 136

Boundary sample, 146
ε-sample, 146
κ-light ε-sample, 146

noisy ε-sample, 146
boundary switch connector, 211
boundary switch curve, 208
boundary switch point, 204
boundary swtich connector, 210
Butterfly scheme, 103

cancellation, 187
Catmull-Clark scheme, 103
cell complex, 172
Centreline, 132
chamfer triangle, 63
Characteristic map, 105
combinatorial boundary, 173
component tree, 178
component-critical points, 190
contour, 175
contour topology tree, 191
contour tree, 178
critical net, 176
critical point, 175, 180, 202

first-order, 203
high-order, 203
index, 202
saddle, 207
sectors, 202
sink, 207
source, 207
tracking, 214
unstable, 208

Critical Point Configuration Graph, 177
criticality tree, 193
Curvature-based graph, 158
Curve-skeleton, 143

294 Index

d-manifold, 174
Delaunay tree, 89
detail coefficients, 81
digital model, 174
digital Morse theory, 193
direct manipulation, 74
Discrete Reeb Graph, 160
Distance map, 152

chessboard distance, 154
Manhattan distance, 154
weighted distance, 154

DOF, 226–228, 235, 244, 249, 250
DoF, 225
Doo-Sabin scheme, 103
dynamics, 227, 229, 230, 234, 249

edge sharpener, 63
eigenvalue, 40, 41
eigenvector, 40, 41
elliptic sector, 202
Euclidean cell complex, 173
extended Reeb graph, 191
extraordinary vertex, 47

fairing, 81
fast marching method, 57
filter bank, 80
form

normal, 40

generalization algorithms, 187
generalization of a Morse-Smale complex,

187
geometry image, 51

Hausdorff distance
one-sided Hausdorff distance, 144

Hausdorff distance, 144
hierarchical Delaunay triangulations, 89
hierarchical representations, 70

arbitrary topology, 70
hierarchical B-splines, 70
hierarchical triangular splines, 70

hyperbolic sector, 202

index, 202
interpolation, 70
irregular mesh representations

filter bank algorithm, 91

multiresolution, 88
non-nested multiresolution analysis, 89

isocontour, 175

join tree, 189
joint parameterization, 53

kinematics, 227–230, 249

Laurent polynomial, 104
level of detail, 69
Level set, 154
level set, 175
Level set diagram, 156
Linear axis, 149
linear constraints, 77

normal, 77
position, 77
tangency, 77

link, 173
LoD, 225, 245, 247, 249
Loop scheme, 103

Mask, 102
Maximal ball, 152, 153
maximum, 175
Medial Axis Transform, 133, 134
Medial structures, 134
Medial surface, 135
mesh

finite element, 45
parameterization, 48
piecewise regular, 52
regular, 47
semi-regular, 47
valid, 44

metamorphosis, 84
minimum, 175
morphing, 84
Morse complex, 176
Morse function, 175
Morse Lemma, 175
Morse theory, 174
Morse-Smale complex, 176
Morse-Smale function, 176
multiplication map, 39
multiresolution analysis, 69
multiresolution curve, 81

non-linear constraints, 81

Index 295

Offset, 139, 144

parabolic sector, 202
path line, 212, 217
PN triangle, 46
pose space deformation, 237, 240, 243

Quasi Morse-Smale complex, 183, 184

Reeb graph, 133, 158
augmented Reeb graph, 161
extended Reeb graph, 160

refinement, 70
regular grid, 174
regular model, 174
Regular Square Grid, 174
remeshing

anisotropic, 65
applications, 44
definition, 44
techniques, 46

repelling saddle, 207
root

multiple, 41
simple, 40

saddle, 175, 207
saddle connector, 210, 211
Semi-algebraic sets, 140
separatrix, 204, 209
separatrix lines, 182
Shape descriptors, 131
Shock graph, 135
shrink wrap, 50
simplicial complexes, 174
simplicial model, 174
sink, 207
skeleton, 225–228, 231–233, 237, 242, 249,

250
skeleton generation, 237
skeleton-driven deformation, 225, 227,

232–234
Skeletonisation, 142, 152
skinning, 231, 233, 236, 239
slope districts, 177
solver

algebraic, 40, 41
source, 207
spline

knot sequence, 72
wavelet decomposition, 72

split tree, 189
stable Morse complex, 176
star, 173
steam line, 212
Stencil, 102
Straight skeleton, 147
stream line, 202

separatrix, 204
tracking, 216

sub-complex, 173
surface mesh representations

multiresolution, 94
surface network, 176
Surface-skeleton, 143
Sweep-like feature, 121
Symmetry set, 141

tangent plane continuity, 70
Taylor formula, 175
terrain model, 174
Thinning, 142, 150
topology change graph, 193
Triangulated Irregular Network, 174

unstable Morse complex, 176

variational approximation, 66
variational modeling, 86
vector field, 202

compression, 218
construction, 222
simplification, 218
time dependent, 212
topological comparison, 220

Vertex
Extraordinary vertex, 103
Regular vertex, 103

virtual human, 225, 226, 232, 237, 239, 243,
245, 247, 252

volume constraint, 81
Voronoi cell, 135
Voronoi diagram, 135
Voronoi graph, 145

λ-Voronoi graph, 147

wavelet
B-spline, 72

296 Index

wavelets, 81
analysis, 81
multiresolution analysis, 81
scaling functions, 81

synthesis, 81
well-shaped triangle, 56

X-configuration, 123

	cover-image-large.jpg
	front-matter.pdf
	fulltext.pdf
	fulltext_001.pdf
	fulltext_002.pdf
	fulltext_003.pdf
	fulltext_004.pdf
	fulltext_005.pdf
	fulltext_006.pdf
	fulltext_007.pdf
	back-matter.pdf

