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Vitányi, Algorithmic Statistics



Alexander M. Bronstein
Michael M. Bronstein

Ron Kimmel

Numerical Geometry
of Non-Rigid Shapes

With 10 Color Figures

123



Alexander M. Bronstein Michael M. Bronstein
Technion-Israel Institute of Technology Technion-Israel Institute of Technology
Haifa, Israel Haifa, Israel
bron@cs.technion.ac.il mbron@cs.technion.ac.il

Ron Kimmel
Technion-Israel Institute of Technology
Haifa, Israel
ron@cs.technion.ac.il

ISSN: 0172-603x
ISBN: 978-0-387-73300-5 e-ISBN: 978-0-387-73301-2
DOI 10.1007/978-0-387-73301-2

Library of Congress Control Number: 2008934481

Mathematics Subject Classification (2000): 53AØ5, 52C25, 49M37

c© 2008 Springer Science+Business Media, LLC
All rights reserved. This work may not be translated or copied in whole or in part without the written
permission of the publisher (Springer Science+Business Media, LLC, 233 Spring Street, New York, NY
10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in connection
with any form of information storage and retrieval, electronic adaptation, computer software, or by similar
or dissimilar methodology now known or hereafter developedis forbidden.
The use in this publication of trade names, trademarks, service marks and similar terms, even if they are
not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject
to proprietary rights.

Printed on acid-free paper

springer.com



The mediocre teacher tells.
The good teacher explains.
The great teacher inspires.

W. A. Ward

Dedicated to our teachers.



Foreword

Once upon a time, a child imagined a fierce boa constrictor that swallowed an
elephant, giving rise to a most peculiar shape. The child made a drawing of
it and showed it to grown-ups around him, expecting them to be appalled by
the scene. Alas, nobody saw in his drawing more than a hat. The child then
proceeded to draw an explanatory drawing showing the elephant inside the
snake’s expansible stomach...

Non-rigid objects are all around us, from snakes to octopuses, from ropes
to the pages of this book, from the surface of the sea to the pudding in our
plates, and we have no particular problems in dealing with them in our daily
lives. Yet the mathematical tools we have for their description and analysis
are few, and only relatively recently researchers in graphics and computer
vision have started paying due attention to them. This book offers a rare op-
portunity to encounter the fascinating world of the flexible, elastic, plastic,
and amorphous form and shape through the looking glass of their mathemat-
ical representation and numerical treatment by our miraculous and powerful
computing machines.

I hope that after reading this book, you, too, just like the Little Prince,
will start to see in Saint-Exupery’s childhood drawing the elephant inside the
boa constrictor, rather than the obvious, boring and rigid hat.

Alfred M. Bruckstein
Ollendorff Professor of Science

Technion, Haifa, Israel
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Preface

Looking around, we notice that our world is full of objects that, due to their
physical properties, are non-rigid and therefore can be deformed and bent.
Non-rigid shapes appear at all scales in Nature – from the human body, its
organs and tissues, to tiny bacteria and microscopic protein molecules. Being
so ubiquitous, such shapes are often encountered in pattern recognition and
computer vision applications. The richness of the possible deformations of non-
rigid shapes appears to be a nightmare for a pattern recognition researcher,
who faces a vast number of degrees of freedom when trying to analyze them.
For this reason, explicit analysis of non-rigid objects has been avoided for a
long period in computer vision, and as it often happens in applied sciences,
research has focused on simplified problems that are easier to solve.

Today, there is a gradually penetrating comprehension that in many appli-
cations the necessity to model and understand non-rigid objects is unavoid-
able. At the same time, recent research results have shown that problems
related to non-rigid objects are not necessarily untractable. We decided to
write this book because we believed that a critical mass of research has accu-
mulated, making the field of non-rigid shape analysis sufficiently profound on
one hand and having significant open research questions on the other.

In some sense, the book can be considered as a sequel to Numerical Ge-
ometry of Images, which focused mainly on geometric methods in image pro-
cessing and analysis. In Numerical Geometry of Non-rigid Shapes, as the title
suggests, our main theme is two- and three-dimensional non-rigid objects. We
invite the reader to join us for a fascinating journey to the non-rigid world, a
rapidly developing field at the crossroad of computer vision, pattern recogni-
tion, and geometry, where the last word has not yet been spoken.

Intended use

This book was initially written as lecture notes for a one-semester mono-
graphic graduate course taught at the Technion – Israel Institute of Technology.
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The course was based on a corpus of recent research results, and its leit-
motif was intrinsic geometric invariants and embedding methods. However,
because the field of non-rigid object analysis is multi-disciplinary, bringing
together theoretical and numerical geometry, optimization, graph theory, ma-
chine learning, and computer graphics, it is almost impossible to expect stu-
dents to have all the necessary background. Therefore, we had to extend and
elaborate the text, including a gradual introduction of the material required
for understanding the mathematical machinery we use throughout the book.
The reader is assumed to have basic knowledge of calculus and algebra and can
acquire the required background through reading the introductory chapters.

The book is intended as a graduate-level textbook for engineers, computer
scientists, and applied mathematicians. For teachers, it can be the main ref-
erence for a monographic course on non-rigid shape analysis or a supplemen-
tary material for various courses in computer vision and pattern recognition,
geometry processing, computational and numerical geometry, and computer
graphics. For students, the book can be both course material and a self-study
reference. For mature experts and specialists in the field, the book offers front-
line methods and most recent results, as well as less traditional points of view
on old problems and approaches. In the book and supporting online material,
the reader can find numerical recipes, ready to use codes and references to
public domain and commercial software.

Features

When working on the book, we set ourselves to three main goals. First, we
tried to make the book as self-contained as possible. Given the breadth of
the material covered, it is obvious that in-depth study of all the fields could
easily spread over ten other books. One of the most difficult tasks was to
cherry-pick only the relevant material and present it consistently. Second, we
were convinced that any material, however complicated, could be simply pre-
sented. We therefore tried to maintain simplicity of explanation throughout
the book, often resorting to illustrative descriptions, drawing inspiration in
realms ranging from fairy tales to cartography. We believe this made the read-
ing even of the driest technical material somewhat more entertaining. Finally,
a special emphasis was made on practical applications, as our largest audience
is engineers and applied scientists who would like to see things work at the
end of the day. We tried to keep the right balance between the simplicity of
explanation and the amount of details necessary for implementation of the
discussed numerical algorithms. For those willing to dive deeper into addi-
tional details, we provide references to related books and research papers. In
order to increase the practical value of the book, we also provide references
to public domain and commercial software.

Each chapter includes references to implementation of some of the dis-
cussed algorithms and a list of suggested literature for those interested in
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wider and deeper understanding. We believe this will be especially appreciated
by readers using the book for self-education. In order to make the discussion
as focused as possible, we omit certain details, concentrating them into notes
at the end of each chapter. Proofs of some results are formulated as problems,
on which the reader may test his or her understanding of the material. So-
lutions of selected problems appear at the end of the book; other problems
are left as an exercise to the reader, which may help in using the book as
supplementary class material. The level of problems varies significantly, from
exercises involving basic calculus to open research questions. To leverage the
background and terminology and facilitate the reading, we provide a glossary
with the definitions of the most frequently used terms. At the end of the book,
the reader can find a subject and an author index.

Synopsis

The first chapters are dedicated to the mathematical background necessary to
create a common language and terminology. In many books, the theoretical in-
troduction is often apparently unrelated to the problems discussed afterwards.
We tried to avoid this impression, targeting our examples and illustrations at
the problems we solve, thereby motivating the background chapters.

Our model of non-rigid world stands on three pillars: metric geometry,
discrete geometry, and numerical optimization. We begin our mathematical
introduction (Chapter 2) with geometry. Geometry of surfaces is typically
presented either from the point of view of topology or by resorting to the
heavy apparatus of calculus and differential geometry. This creates an appar-
ent gap: whereas topology is too “crude” and usually does not satisfy our
needs in studying surfaces, differential geometry is often cumbersome and
poorly accessible by the average reader. We preferred to follow a somewhat
less orthodox path and present the metric point of view, using notions as ba-
sic as distance and length. This, following Dmitry Burago’s expression, brings
geometry back “down-to-earth” where it traditionally, and literally, began. In
our introduction to geometry, we explore the difference between intrinsic and
extrinsic geometry, the notion of isometry, and invariant description of shapes.
Chapters 3 and 4 present the geometric foundations through the glasses of a
computer scientist, who has to convert the continuous geometric world into
discrete objects tractable by a computer. Much attention in Chapter 4 is ded-
icated to fast marching, a class of efficient numerical algorithms for geodesic
distance measurement. The third pillar, numerical optimization, is presented
in Chapter 5.

Starting from Chapter 6, applications begin to appear. To ease the en-
trance into the non-rigid world, we first study a simple problem of rigid object
analysis, which has a smaller number of degrees of freedom. Our emphasis
in this chapter is on iterative closest point algorithms, a class of numerical
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methods for rigid object comparison and matching. In Chapters 7, 8, and
9, we discuss ways of creating deformation-invariant representations of non-
rigid shapes. The main focus is on multidimensional scaling methods, first
developed in psychology in the 1960s for multidimensional data analysis, and
more recently adapted to non-rigid surface matching. Chapter 10 is devoted
to problems of shape similarity, which is addressed by constructing an ideal
deformation-invariant distance. We encounter the Gromov-Hausdorff distance,
introduced in the early 1980s by Mikhail Gromov and first used in pattern
recognition applications by Facundo Mémoli and Guillermo Sapiro in 2005,
and study its theoretical properties and approaches for approximate compu-
tation. In Chapter 11, we discuss partial similarity, the problem of comparing
shapes having similar parts. Chapter 12 deals with the problem of corre-
spondence between non-rigid shapes. This problem is presented following the
same line of shape similarity. In Chapter 13, we study the problem of face
recognition, one of the most challenging computer vision applications. Face
recognition appears as a playground to demonstrate and summarize the tools
discussed in the book. Finally, Chapter 14 gives a short retrospective and
concludes the book.

How to use this book

The book is largely structured in such a way that new material builds up pro-
gressively and thus it can be read continuously. Some sections not essential for
the understanding of the entire material or those containing challenging math-
ematics are denoted by �. These sections can be skipped without sacrificing
future understanding.

Readers new to the field and those using the book for self-education are
recommended to start with the introductory chapters. Experts in the field
may be interested in focused topics offering new insight and state-of-the-art
methods. Those include parallel fast marching (Chapter 4), multigrid and
vector extrapolation accelerated multidimensional scaling (Chapter 7), gen-
eralized multidimensional scaling (Chapter 9), Gromov-Hausdorff distance
(Chapter 10), Pareto similarity (Chapter 11), and expression-invariant face
recognition (Chapter 13).

Teachers may use the book for a monographic course on analysis and
synthesis of non-rigid shapes, using the flow of the chapters. Detailed study
of examples, some technical descriptions, and solutions to selected problems
(marked with �) can be a basis for tutorials. Problems without solutions are
a potential source for home assignments. Alternatively, Chapters 4, 9, and 12
may be used as supplementary material for computer graphics related courses
and Chapters 7, 8, 10, and 11 for enrichment of computer vision and pattern
recognition curricula.
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Raviv, Guy Rosman, Guillermo Sapiro, Michael Saunders, Peter Schröder,
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- Do you see that cloud, that’s almost in shape
like a camel?
- By the mass, and ’t is like a camel, indeed.
- Methinks, it is like a weasel.
- It is backed like a weasel.
- Or, like a whale?
- Very like a whale.

W. Shakespeare, Hamlet

1

Introduction

Analysis and understanding of shapes is one of the most fundamental tasks
in our interaction with the surrounding world. When we see a picture, we un-
derstand it by recognizing the depicted objects and relating them to concepts
we have learned throughout our lives. An evidence to such an understanding
is the fact that we can translate a picture into a higher-level semantic de-
scription and communicate this description to another person. Hearing about
a “beautiful house made of rosy brick, with geraniums in the windows and
doves on the roof” [131], most of us would create a vivid mental image of
it in our imagination, that is, in some sense perform the inverse process of
synthesis of the picture from its semantic description.

In our everyday experience, we are often unaware of how extremely com-
plex the shape analysis performed by the brain is, because it is done mostly
subconsciously, without involving the higher level of cognition. Just imagine
how different and difficult our lives would be if this ability were gone. Waking
up in the morning, we would meet a lot of new people – their faces would seem
unfamiliar, because we recognize humans by the visual features of their faces.
Going into the bathroom would become an adventure of epic proportions, as
we would be unable to decide whether the object we pick up is a razor or
a toothbrush, because such a decision requires the analysis of the geometric
shape of these objects. Even continuing reading this book would become im-
possible, because the shapes of the letters would lose their meaning, and as a
result, we would lose our ability to read. Of course, this apocalyptic scenario
is exaggerated, as we do not rely only on visual information in our lives, and
other senses could somehow compensate for its loss. Yet, for most of us, the
most significant information about the surrounding world comes from vision,
such that, rephrasing an old proverb, a picture is worth a thousand odors or
touches.

In the era of computers, attempts to imitate the ability of the human visual
system to understand shapes gave birth to the fields of computer vision and
pattern recognition. When we say “shape” in this context, we usually imply
a visual representation of the object rather than the object itself. Because
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2 1 Introduction

Figure 1.1. Cave paintings are the one of the earliest evidences of the interest of
our prehistoric fathers in the understanding of shapes and their use as a method of
communicating information. Shown here are animal shapes from Salle des Taureaux
(Grotte de Lascaux, France), dating back to around 15,000 BC.

what we see is actually a two-dimensional picture perceived by our eyes, a
common way to think of a shape is of a two-dimensional projection of the
three-dimensional object. However, computers “see” the world differently from
us humans. A computer’s “eye” can be an ultrasonic sensor introduced into the
human body by an intravascular catheter, or a hyperspectral camera mounted
on a Martian rover crawling through the canyons of the red planet. Such
sensors may provide information normally imperceivable by humans, such
as sub-millimeter accurate measurement of object dimensions, or colors in
spectral ranges unseen by our eyes. Accordingly, in some computer vision
applications, besides the common two-dimensional shapes, we can encounter
shapes represented as three-dimensional point clouds, triangular meshes, or
parametric or implicit surfaces.

Usually, some model that relates the shapes to the underlying objects is
assumed. We call the model of shapes used throughout this book the non-rigid
world. In this world, objects have a certain degree of flexibility by virtue of
their natural properties. Consequently, we may find a great variety of shapes
produced as a result of deformations of a non-rigid object. Being able to
analyze the properties of such shapes and describe their behavior is the key
to understanding the non-rigid world.
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Figure 1.2. The legendary Russian ballerina Maya Plisetskaya and a stretching
Siberian tiger are living examples of non-rigid objects we will encounter in this book
(tiger photo reproduced by courtesy of Malene Thyssen).

1.1 Similarity of non-rigid shapes

In the epigraph we chose to open the book, we quote a renowned scene from
the third act of Shakespeare’s Hamlet, in which the Prince of Denmark and
Polonius argue about the shape of clouds they see from the windows of the
Elsinor Castle.1 Speaking in modern language, the topic of the two noblemen’s
dialogue is non-rigid shape similarity, or how to compare shapes that are
susceptible to deformations. Clouds are only one example of such shapes; we
see plenty of other non-rigid shapes in the world surrounding us at all scales.

Generally speaking, in the problem of shape similarity we are looking for
a quantitative measure of “distance” between two shapes: if this distance is
small, we conclude that the shapes are similar. The dispute between Hamlet
and Polonius teaches us that the definition of similarity may be subjective:
depending on the criterion used for similarity, one can recognize the same
shape of a cloud as a camel, a weasel, or a whale.

In the non-rigid world, this problem is especially acute due to the fact that
an object can assume many forms as a result of its deformations. The same
object deformed in different ways may result in shapes that are apparently
dissimilar. As an illustration, we resort to the example of a non-rigid object
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Figure 1.3. Depending on our definition of similarity, we may recognize hand pos-
tures used in the Rock, Paper, Scissors game either as the “objects” they mean to
imitate (top) or as postures of a hand (bottom).

literally available in our hands: the human hand. Most of the readers are prob-
ably familiar with Rock, Paper, Scissors, a hand game played by children in
many countries (Figure 1.3). In this game, at count, the players simultaneously
change their hands into any of three “objects”: rock (represented by a closed
fist), scissors (two extended fingers) or paper (open palm). The definition of
shape similarity in this example is ambiguous, as we find disagreement about
how to consider our objects. As children playing the Rock, Paper, Scissors
game, we recognize the hand shapes as the objects they intend to mimic. As
adults, we say that all these “objects” are nothing but deformations of the
same human hand. The reason for this difference is due to the fact that in the
first case, we consider the postures of the hands as stand-alone rigid shapes,
whereas in the second case, we consider them as deformations of a non-rigid
shape.

Defining similarity of non-rigid shapes, we are looking for properties
that distinguish between what really characterizes the object and what can
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Figure 1.4. Clay figures deformed nearly isometrically (top) and non-isometrically
(bottom).

be attributed to its deformations. Such properties are called deformation-
invariant, and a similarity criterion based on these properties is called
deformation-invariant similarity. In the human hand example, the length of
the fingers, which always remains the same no matter how we articulate them,
is one of the deformation-invariant characteristics.

Saying that a property is deformation-invariant, we need to specify what
type of deformation is considered. A human hand sculpted out of clay will
deform differently than will a real hand of flesh and bones: for example, the
length and the width of the fingers of a clay hand may change almost without
any restriction. Moreover, because a piece of clay can be torn apart, pierced,
and bent, we can create almost any shape out of it (Figure 1.4). In this case,
it will be hard to find any properties invariant under such a wide class of
deformations.

If, however, we restrict ourselves to deformations similar to those of a
human hand, we are in a much better situation. In geometric jargon, we call
such deformations articulations or more generally isometries, and say that
they preserve the intrinsic geometry of the shape. It appears that deformations
of many natural objects can be modeled as isometries. Human and animal
bodies deform approximately isometrically: we can flex our hands and legs to
some extent but cannot stretch or shrink them. Of course, as in any model,
there is a certain degree of inaccuracy in this assumption. At the same time,
the benefit of limiting our discussion to the class of isometric deformations is
that it leads to a well-defined geometric criterion of similarity based on the
comparison of intrinsic geometry, which we refer to as the intrinsic similarity.
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Such a similarity is invariant to isometries and therefore allows us to compare
shapes no matter how they are bent.

1.2 Correspondence problems

Another important class of problems in shape analysis is known under the
generic name of correspondence problems. When we put on a glove, we uncon-
sciously solve a problem of great complexity: how to wear the glove such that
it best fits the hand. For this purpose, we obviously need to insert each finger
into its corresponding location in the glove. By saying “corresponding loca-
tion,” we implicitly assume that there is a natural correspondence between
the hand and the glove – the thumb goes into the thumb of the glove, the
index finger into the index finger, and so on. However, an automatic com-
putation of such a “natural” correspondence is by no means trivial. Because
both the hand and the glove are non-rigid objects, the correspondence must
be independent of the deformations, that is, deformation-invariant.

The fact that we encounter deformation invariance again in this context
suggests that correspondence and similarity problems are intimately related.
In the glove fitting example, we can regard the “easiness” of putting on the
glove as a criterion of similarity: if in order to fit the glove we make an effort
to stretch it significantly (thus changing the intrinsic geometry), this means
that the two objects are dissimilar (Figure 1.5). Had the jury in the United
States court spoken in our terms, it would formulate the reason to acquit
O. J. Simpson in his controversial murder trial as “intrinsic dissimilarity.2”
The same criterion can be used for the definition of correspondence: we would
like the fitting to be performed the easiest way. Trying to fit the thumb into
the index finger of the glove is not an easy job. Therefore, like in similarity
problems, we can speak about intrinsic correspondence between two objects
and apply similar numerical tools for its computation.

Similarity and correspondence are two archetype problems used for shape
analysis and synthesis applications. Many applications in the non-rigid world
can be seen through the glasses of these two problems. As an example, we
consider the problem of face recognition, dealing with the question of how to
distinguish between the faces of two different people. Because of the flexibil-
ity of facial tissues and our ability to express a wide range of emotions, the
face is a non-rigid object. Therefore, face recognition falls into the category of
non-rigid shape similarity problems. Modeling facial expressions as deforma-
tions of the facial surface and using intrinsic geometric similarity criteria, we
can distinguish between features resulting from expressions and those char-
acterizing the person’s identity, or in other words, make our face recognition
expression-invariant.

Looking at the same application from a different perspective, we can ask
the question how to find the same facial features in two different expressions
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Figure 1.5. Glove fitting is an example of non-rigid shape similarity and correspon-
dence problems. Correct correspondence (left) does not require significant stretching
of the glove. Incorrect correspondence (right) results in a significant deformation.

of a face. This is exactly the problem of finding a deformation-invariant cor-
respondence between two non-rigid shapes. The knowledge of the correspon-
dence between faces allows us to perform different manipulations of them,
including exaggeration of expressions, expression-invariant texture mapping,
and morphing between faces.

In general, looking at the non-rigid world from the perspective of corre-
spondence problems, we find applications more related to computer graph-
ics and geometry processing (dealing mostly with synthesis), rather than to
computer vision and pattern recognition (traditionally dealing with analysis
problems).

1.3 A landscape of problems

To conclude our brief introduction to the forthcoming journey to the non-
rigid world, let us overview the landscape of related fields and try to position
the problems we will encounter in this book. In a broad sense, our problems
belong to the realm of computer vision. As we mentioned, computer vision
deals with extracting information about objects surrounding us from their
visual representation. Traditionally, the most commonly used representation
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Computer
vision
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Geometry
processing

Pattern
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“HORSE”

Figure 1.6. Conceptual representation of the relations between the fields of com-
puter vision, computer graphics, image processing, pattern recognition, and geome-
try processing.

of the world is a two-dimensional image and the objects are geometric mod-
els, therefore, computer vision can be thought of as a “geometry from image”
problem. A classic example is reconstructing the geometry of a scene from
images taken by multiple cameras. The converse problem is addressed in the
field of computer graphics: how to realistically and aesthetically render the
description of the world, or how to produce an image from a geometric model.
Geometry processing works with geometric models, trying to improve their
quality or make their handling easier. Image processing, at the other end, op-
erates on the images themselves, getting an image as the input and producing
its “better” version as the output (Figure 1.6).

This division, once so clear to a specialist in each of the above fields, is
becoming less obvious and less relevant in our days. For example, research re-
sults from the past decade have revealed a profound relation between geometry
and image processing.3 Considering images as geometric objects and operat-
ing on them using geometric tools created a revolution in image processing.
The opposite process is taking place in the geometry processing community:
it appears that by representing geometric objects as images, many efficient
and powerful methods can be borrowed from image processing and adapted
for geometry processing.
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A similar situation seems to be happening in the analysis of non-rigid
shapes: as we heavily rely on the model of the non-rigid world, our problems
and methods reach far beyond “classic” computer vision. The tools we will use
in this book range from theoretical geometry, used to model non-rigid objects,
to methods used in manifold learning and artificial intelligence, which we
employ for invariant representation of intrinsic geometry. In the next chapters,
we will meet many disciplines and approaches brought together by problems
of non-rigid shapes analysis. Such a diversity, in our opinion, makes research
in this fascinating new field interesting and attractive.

Notes
1This citation from the Bard also appears as an epigraph in the Ph.D. thesis of

Dragomir Anguelov [8].
2The moment at which the prosecution asked O. J. Simpson to put on a glove

that allegedly had been used at the crime scene was the turning point of the trial,
as the glove appeared too tight for Simpson to put on. The defense reflected this
fact in the phrase “If it doesn’t fit, you must acquit.” As a result, the jury acquitted
Simpson from murder charges.

3This relation is addressed in the book Numerical Geometry of Images [225].



Mεδεις αγεωμέτρητoς εισιτω μoν τ ήν στ ήγων.
Let none ignorant of geometry enter my door.

Legendary inscription over
the door of Plato’s Academy.1

2

A Taste of Geometry

Geometry is probably one of the oldest fields of mathematics, going back to
as early as 3000 BC. The ancient Greek venerated geometry and considered
it the crown jewel of science up to the level that, according to a legend, the
entrance to the school of Plato bore the inscription “let none ignorant of
geometry enter my door” [332]. At the same time, geometry was not only
a theoretical science and the domain of philosophers; the very fact that the
Greek word γεωμετρια literally means “measurement of the Earth” implies
that ancient engineers were skilled in geometry and employed it for practical
purposes, mainly in construction and urban planning.

Though modern geometry has significantly evolved since Euclid and Ar-
chimedes (Figure 2.1), many of the basic terms were well-known, maybe in
different formulation, to the ancient mathematicians. Today, engineers still
use geometry for modeling of physical objects. For us, geometric tools are
necessary for the description of the non-rigid world. In this chapter, we in-
troduce a geometric vocabulary that will allow us to formulate properties of
non-rigid objects.

2.1 Basic terms in metric geometry and topology

One of the most fundamental concepts in geometry is the notion of distance.
From our experience of the three-dimensional Euclidean world in which we
live, we are quite familiar with the intuitive way of measuring the distance be-
tween two points as the length of the straight line connecting them. However,
the three-dimensional space with the Euclidean distance is simply a partic-
ular instance of a more general notion of a metric space. Formally, a set X
equipped with a function d : X × X → R is said to be a metric space if the
following axioms hold for all x1, x2, x3 ∈ X :

(M1) Non-negativity: d(x1, x2) ≥ 0.
(M2) Indistinguishability: d(x1, x1) = 0 if and only if x1 = x2.

A. Bronstein et al., Numerical Geometry of Non-Rigid Shapes, 11
Monographs in Computer Science, DOI 10.1007/978-0-387-73301-2 2
c© Springer Science+Business Media, LLC 2008
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Figure 2.1. A portion of Raffaello Santi’s fresco The School of Athens (1509),
supposedly depicting Euclid of Alexandria, one of the founding fathers of geometry.

(M3) Symmetry: d(x1, x2) = d(x2, x1).
(M4) Triangle inequality: d(x1, x3) ≤ d(x1, x2) + d(x2, x3).

Elements of X are called points of the metric space, and the metric d(x1, x2)
is attributed the sense of distance between a pair of points. For brevity, we
will often omit an explicit reference to the metric and write “metric space X ,”
instead of the more rigorous form (X, d).

Example 2.1 (Euclidean space). The Euclidean space R
m, with the metric

defined using the Euclidean norm d(x1, x2) = ‖x1 − x2‖2 is a metric space.
In general, any normed vector space can be thought of as a metric space in
which the metric is induced by the norm.
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The metric quantifies the concepts of “near” and “far.” For example, in
the Euclidean space we can pick a point and say that all points located less
than one meter from it are “near” and the rest are “far.” Obviously, the set of
all near points falls into a ball (the interior of a sphere) of radius one meter.
This idea can be generalized for arbitrary metric spaces: let x ∈ X and r > 0;
the set Br(x) = {x′ ∈ X : d(x, x′) < r} of points at a distance less than r from
x is called an open metric ball (or simply an open ball) of radius r centered
at x. Similarly, the set Br(x) = {x′ ∈ X : d(x, x′) ≤ r} is called a closed ball.
The notion of a ball allows defining open sets : a set A ⊂ X is said to be open if
for every point x ∈ A there exists ε > 0 such that Bε(x) ⊂ A. Informally, this
means that A has no “boundaries” and every point in it has at least a small
neighborhood entirely contained in A. Closed sets are defined as complements
of open sets. Through the definition of open and closed sets, the metric induces
a topology on X , which is required to give a rigorous formulation of important
properties such as convergence, connectedness, compactness, and continuity.
Let us briefly overview each of them.

A space is said to be disconnected if it is the union of two disjoint,
nonempty, open sets; otherwise, it is said to be connected. Our everyday lives
give plenty of intuitive examples of connected and disconnected objects: a
piece of paper is connected, because we can draw a line between every pair
of points on it without raising the pen.2 On the other hand, a plate and a
fork placed apart are disconnected because they have no common points of
intersection (hence are disjoint). A metric space X is said to be compact if
any collection of open sets Ai ⊂ X that covers X (i.e.,

⋃
Ai = X) has a

finite sub-collection that still covers X . This formal definition generalizes the
simple Euclidean intuition that attributes compactness to every subspace of
R

n that is closed (has a boundary) and bounded (is contained in a ball of a
finite radius).

A sequence {xn}∞n=1 of points in X is said to converge to a point x ∈ X if
for every ε > 0, there exists some N such that xn ∈ Bε(x) for all n ≥ N . In
other words, every neighborhood of x contains all but a finite number of points
of the sequence. The point x is called a limit of the sequence and is denoted as
xn → x (as n → ∞). Note that convergence is a topological definition rather
than a metric one, meaning that we do not need the metric in order to define
a convergent series. In a metric space, xn → x if and only if d(x, xn) → 0,
which is sometimes referred to as convergence in the metric.

2.2 Isometries

Given two metric spaces (X, dX) and (Y, dY ), we often look for some cor-
respondence between their points, which can be expressed by a function
f : X → Y . Clearly, the distance dX(x1, x2) between a pair of points in
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X is mapped to the distance dY (f(x1), f(x2)) between the images of x1 and
x2 under f . Let us explore how dX changes under f . The most familiar way
to characterize dY (f(x1), f(x2)) in terms of dX(x1, x2) is the notion of conti-
nuity: f is said to be continuous at a point x if for every sequence {xn} in X
with the limit xn → x, the sequence {f(xn)} converges to f(x). Informally,
a continuous function transforms limits to limits, or maps nearby points to
nearby points. Continuous functions are known to preserve other topological
properties as well. In particular, for every open set A ⊂ Y , its preimage3

f−1(A) in X is open.4 Compactness and connectedness are also preserved un-
der continuous maps. A bijective continuous map f with a continuous inverse
f−1 is called a homeomorphism and two spaces related by such a map are said
to be homeomorphic. Homeomorphic spaces are indistinguishable in terms of
topology.

A property stronger than continuity is Lipschitz continuity: f is said to
be Lipschitz if there exists C ≥ 0 such that dY (f(x1), f(x2)) ≤ C · dX(x1, x2)
for all x1, x2 ∈ X . Being Lipschitz adds uniformity to the basic notion of
continuity in the sense that a small change in x results in a small change
in f(x), whose size depends only on the size of change in x but not on x
itself. For this reason, Lipschitz continuity is a global property in contrast
with continuity. The smallest admissible C is called the Lipschitz constant or
the dilation of f and is denoted by

dil f = sup
x1 �=x2∈X

dY (f(x1), f(x2))
dX(x1, x2)

.

Dilation is a quantitative measure of the maximum relative change of distances
in X under f . A map with C ≤ 1 is called nonexpanding and a map with C < 1
is called a contraction.

Example 2.2 (continuity). A function f : (0, 1) → (1,∞) defined by f(x) =
1/x is continuous at every point. To prove it, observe that every open interval
(a, b) is mapped to an open interval (1/b, 1/a). On the other hand, f is not
Lipschitz continuous. To verify this, consider two points x and x′ in (0, 1).
Obviously,

C ≥ |1/x − 1/x′|
|x − x′| =

1
x|x − x′| ≥ 1

x
.

For x → 0, the Lipschitz constant C is unbounded.

Example 2.3 (Lipschitz constant of smooth functions). For real valued
differentiable functions, a function f : [0, 1] → R is Lipschitz if its derivative
|f ′(x)| on [0, 1] is bounded. Moreover, dil f ≤ supx∈[0,1] |f ′(x)|. To show this
property, let |f ′(x)| be bounded by C and assume by contradiction that for
some x1, x2 ∈ [0, 1],

|f(x2) − f(x1)|
|x2 − x1|

> C.
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Then, by the mean value theorem, it follows that there exists x3 ∈ [x1, x2]
such that |f ′(x3)| > C, which contradicts the bound. Hence, f is Lipschitz
continuous and its dilation is bounded by C.

Going one step further, we can bound the minimum relative change of
distances that f introduces, defining a yet stronger property of bi-Lipschitz
continuity: f is said to be bi-Lipschitz if there exists a constant C ≥ 1 such
that C−1 · dX(x1, x2) ≤ dY (f(x1), and f(x2)) ≤ C · dX(x1, x2). Clearly,
every bi-Lipschitz function is injective, i.e., there exists an inverse map
f−1 : f(X) → X , which is also Lipschitz continuous (the proof is left to
the reader as Problem 2.1).

A bi-Lipschitz function f with C = 1 is called distance preserving, because
dY (f(x1), f(x2)) = dX(x1, x2) for all x1, x2 ∈ X . A bijective distance preserv-
ing map is called an isometry, and two metric spaces related by such a map are
referred to as isometric. Being isometric is an equivalence relation: isometric
spaces share all properties that can be expressed in terms of distances and,
consequently, are indistinguishable from the point of view of metric geometry.

Example 2.4 (Lipschitz, bi-Lipschitz, and isometric functions).

1. The function f(x) = x2 on (0, 1) is Lipschitz with the constant C = 2,
but not bi-Lipschitz, because its inverse f−1(y) =

√
y has an unbounded

derivative at y = 0.
2. The function f(x) = 2x on (0, 1) is bi-Lipschitz with the constant C = 2,

but clearly not distance preserving.
3. The function f(x) = 1 − x on (0, 1) is an isometry.

A particular case of isometries are maps of X onto itself called self-
isometries.5 Self-isometries form a group with the function composition oper-
ator, as a composition of two self-isometries is also a self-isometry. This group
is usually referred to as the isometry group of the space X and denoted by
Iso(X). Iso(X) is trivial for a “generic” space, containing only the identity
function. A non-trivial isometry group is often expressed by saying that the
space has (intrinsic) symmetries. There is a remarkable class of spaces with
a high degree of symmetry called homogenous. A metric space is said to be
homogenous6 if for every x1, x2 ∈ X there exists a self-isometry f : X → X
such that f(x1) = x2. Informally, this means that no place in the space is
“privileged” and it is impossible to distinguish a particular element of X from
any other element.

Example 2.5 (isometry groups).

1. In a planar triangle with unequal sides equipped with the Euclidean met-
ric, the isometry group is trivial.

2. In a planar triangle with two equal sides unequal to the third equipped
with the Euclidean metric, the isometry group is the cyclic group Z/2Z.
This group contains only two elements: the identity transformation and
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the reflection transformation, which flips the triangle about its symmetry
axis. The space is not homogenous, because there exists no isometry that
maps the center of one of the equal sides to the center of the unequal one.

3. In the Euclidean plane, the isometry group is the Euclidean group E(3)
(the group of rotations, translations, and reflections). The space is ho-
mogenous, because for every x1, x2 ∈ R

2 there exists a planar translation
by v = x2 − x1 such that x1 + v = x2.

In the real world, where many measurement devices have a finite precision,
the notion of isometry might appear too restrictive. Consider for example
an instrument capable of measuring distances with a relative error smaller
than, say, 1%. Equipped with such a tool, we are unable to discern between
an object and its scaled replica whenever the scaling factor falls between
0.99 and 1.01. We may say that two metric spaces related by a bi-Lipschitz
function with dil f ≤ 1.01 are indistinguishable due to the limited accuracy
of our measurements, and, hence, such bi-Lipschitz maps can be considered
isometries for every practical purpose.

Relative errors are what we usually care about concerning the metric of
physical objects. For example, finding the radius of the Earth with an error
of one centimeter is a formidable achievement, but measuring the width of
conductors on a silicon chip with such a precision is of little use. However, some
types of measurement devices can guarantee a certain precision no matter how
large the measured distance is; in this case, it is usually said that the tool has
an absolute error rather than a relative one. A natural relaxation of isometry
in this case is the notion of almost isometry: a function f : X → Y is said
to be an almost isometry (or ε-isometry) if there exists some ε ≥ 0 such that
|dY (f(x1), f(x2)) − dX(x1, x2)| ≤ ε for all x1, x2 ∈ X , and for every y ∈ Y
there exists x ∈ X such that dY (y, f(x)) ≤ ε (the latter property implies that
f is almost surjective in Y ). Clearly, a 0-isometry is a true isometry. It is also
convenient to define the distortion of a map

dis f = sup
x1,x2∈X

|dY (f(x1), f(x2)) − dX(x1, x2)| .

This definition resembles that of the dilation of Lipschitz maps. The only
difference is that dilation measures the relative change of distances under the
map f , whereas distortion measures absolute ones. In terms of distortion, an ε-
isometry is an ε-distance-preserving (dis f ≤ ε) ε-surjective map. Returning to
our example, a device measuring distances with an absolute precision of 1 mm
cannot distinguish between two 1 mm-isometric objects and, hence, 1 mm-
isometries are as good as isometries for any practical purpose.

So far, we have seen two natural ways of relaxing the notion of isome-
try. The first approach consisted of replacing distance preservation by the
less restrictive bi-Lipschitz continuity with dil f > 1. In the second, we re-
placed distance preservation by ε-distance preservation and surjectivity by
ε-surjectivity. Intuitively, one expects that the latter relaxation would have
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Figure 2.2. Visualization of the difference between bi-Lipschitz maps and almost-
isometries. The hand in the middle can be mapped to the smaller hand (right) using
a bi-Lipschitz map, yet the absolute distance distortion of such a function may be
very large. The hand can also be copied to the skeleton (left), this time with small
absolute distortions, yet with no good local properties. Note that the topology of
the skeleton and the hand is extremely different.

little effect on the good properties of a true isometry. In reality, it appears
that passing from zero distortion to “almost zero” distortion leads to dra-
matic changes. In fact, almost isometries are not even necessarily continuous
and may have very bizarre local behavior (Figure 2.2). Yet, if we were given the
possibility of observing their behavior from a distance, we would see that on
scales of distances significantly larger than ε, ε-isometries behave similarly to
true isometries. Such a behavior may appear natural in our physical universe.
In fact, at microscopic levels, the fabric of matter may be very non-smooth
with singularities and bizarre foam-like fluctuations [186]. However, observed
at a sufficiently coarse resolution at which we live, these details are hidden
from our eyes. We will use the notion of almost isometry throughout the book.
For example, it provides the basis for the definition of the Gromov-Hausdorff
distance.

2.3 Length spaces

Metric spaces allow the definition of an abstract distance function between
points. However, in many cases the notion of distance is somehow ambiguous.
To illustrate this, we borrow the following example given by Burago et al. [88].
With a certain degree of precision, the Earth can be considered a sphere im-
mersed into the three-dimensional Euclidean space representing our universe.
Using the Euclidean distance, one can claim that the distance between New
York and Sydney is about eight thousand miles; however, this number is of
little use to an aircraft pilot,7 as it assumes that we travel along a straight
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tunnel dug through the Earth between the two cities. In a similar way, a dis-
tance measured between two mountains by an optical instrument as the “bird
flies” (i.e., using the Euclidean distance) is useless to an alpinist. Confined to
the ground, our journey may be much longer than that of a winged creature.

The conclusion is that in many cases, the notion of distance is born from
the lengths of paths. We define a path as a continuous map Γ : [a, b] → X of
an interval. It is natural for us to associate length with a path Γ , i.e., to define
a functional L(Γ ) that assigns a nonnegative number to every path.8 Using
these two concepts, we can readily define a metric induced by the length as

dL(x, y) = inf
Γ

{L(Γ ) s.t. Γ : [a, b] → X, Γ (a) = x1, Γ (b) = x2} . (2.1)

The distance between two points is thereby the infimum of lengths of (admis-
sible) paths connecting between them. Such a metric is called a length metric
and a metric space (X, dL) is called a length space (the proof that dL is a met-
ric is left as Problem 2.2). Length metrics are not necessarily finite; in fact,
two disjoint sets are not path connected, as there exists no continuous path
joining a point from one set with a point from the other, and therefore the
distance between two points belonging to different disconnected components
is infinite.

Example 2.6 (undirected graph). The prototype example of a length
space is, without any doubt, an undirected graph comprising a set V of points
(vertices), a set E of unordered pairs of distinct vertices (edges), and a func-
tion L : E → [0,∞) assigning length to each edge. An ordered set of edges
Γ = {(v1, v2), (v2, v3), . . . , (vn−1, vn)} constitutes a path between the vertices
v1 and vn, whose length is given by L(Γ ) = L((v1, v2)) + L((v2, v3)) + ... +
L((vn−1, vn)). The length metric dL(v1, v2) between two vertices v1, v2 in the
graph is defined as the length of the shortest path between them. We will
encounter undirected graphs in the next chapters.

Note that in the definition of dL, infimum is used instead of minimum
because the shortest path between two points may not exist. For example,
consider the Euclidean plane, from which the open interval (0, 1) on the hor-
izontal axis has been removed. The points (0, 0) and (1, 0) can be connected
by a path, yet the shortest path passes through the removed interval, which is
not a part of the space. A length space is said to be complete if for every two
points x1, x2 there exists a path Γ joining them such that L(Γ ) = dL(x1, x2);
that is, there exists a shortest path (not necessarily unique) between every
two points. Because all tangible objects appearing in most real-life situations
are complete and compact, we will usually assume the existence of shortest
paths, which will avoid unnecessary complications.

Recalling our alpinist example, we may notice a strange fact: the Euclidean
distance was useless for measuring distances in mountains, because there were
no paths passing on the surface of the Earth realizing this distance. This,
however, means that before defining the length metric associated with a length
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function, we already knew how to measure length – this knowledge was derived
from the Euclidean distance! Indeed, it is intuitive to measure the length of a
path in Euclidean space by approximating it by a sequence of line segments
and define the path length as the limit of their lengths. For a differentiable
path Γ , this gives rise to the known formula

L(Γ ) =
∫ b

a

||Γ̇ (t)||2dt, (2.2)

where Γ̇ (t) is the derivative of Γ (t) with respect to the parameter t. This
observation touches upon the important distinction between the concepts of
intrinsic and extrinsic geometry, which we will often encounter in our ex-
ploration of non-rigid surfaces. The meaning of these two terms will become
clearer after the discussion of Riemannian geometry later in this chapter. For-
mally, we say that a metric (the Euclidean metric in our example) induces a
length structure. The latter, in turn, gives rise to a length metric dL. One may
ask what happens if we continue this process, i.e., use the length metric to
define a length structure to induce another length metric. It appears, however,
that this new metric will always be identical to the length metric from which
it was created.9 It is worthwhile mentioning that the terms intrinsic metric
and induced metric are often used as synonyms referring to a length metric.
In this book, we prefer to use the first term.

Example 2.7 (restricted vs. intrinsic metric). Consider the Euclidean
plane equipped with the standard Euclidean metric and a connected region
X ⊂ R

2 thereof. The most straightforward way to define a metric on X is
simply to assign a pair of points a distance equal to the distance between the
same pair of points in R

2. Such a metric is called a restricted metric and is
denoted by dR2 |X . Restriction of a metric is natural from the point of view
of topology, as a subspace with a restricted metric inherits the topology of
the space from which it was created. Another way to define a metric on X is
associated with length structures. Admissible paths are all piecewise smooth
paths contained in X and their length is measured using integration. If the
region X is convex, then all such paths are straight lines and the intrinsic met-
ric dX coincides with the usual (restricted) Euclidean distance. Non-convex
regions give rise to different metrics (compare between them in Figure 2.3).

This example brings up the important notion of convexity. Given a subset
X ′ in a complete length space (X, dL), we may define a metric on X ′ as the
restriction of the length metric dL. Another way to measure distances in X ′

is by using the length structure L to induce an intrinsic metric on X ′. A set
for which the two metrics coincide is called convex. An analogous definition
is that for each pair of points in X ′, the shortest path between them entirely
belongs to X ′ (the reader is invited to prove the equivalence of these two
definitions in Problem 2.6).

Analogously to isometries that preserve metric structures, we may define
a class of maps preserving length structures. An injective map f : X → Y is
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Figure 2.3. Birds flying over Antarctica travel along straight lines (left) and thus
measure distances using the standard Euclidean metric restricted to the non-convex
“island” in the Euclidean plane. People and quadrupeds, on the other hand, are
confined to the glacial surface and have to travel distances measured by the intrinsic
metric (right). Shades of gray visualize the metric balls produced by each metric.

called an arcwise isometry or an isometric embedding if L(Γ ) = L(f(Γ )) for
every path Γ . A bijective arcwise isometry is nothing but an isometry. How-
ever, unlike isometries, surjective arcwise isometries may have bad behavior.
We leave the comparison between these different types of maps as an exercise
in Problem 2.5.

2.4 Manifolds

So far, we have encountered objects like metric and length spaces, which
allowed us to abstract the notions of distance and path length. Both concepts
belong to the realm of metric geometry. Let us now take a step backward
to introduce an important class of topological objects called manifolds. A
space10 is said to be an n-dimensional manifold if every point in it has a
neighborhood homeomorphic to an open subset of R

n. In other words, for
every point x on the manifold, there exists a map α : Uα → R

n from an open
neighborhood Uα of x such that Uα is homeomorphic to α(Uα). The map α
is called a chart or a system of local coordinates. A collection of charts whose
domains cover the entire manifold is called an atlas. These terms, borrowed
from cartography, appear intuitive if we apply them to the most familiar
example of a manifold: the Earth. Although we know that our planet is round,
our everyday experience tells us that locally it is planar (that is why the
erroneous belief that the Earth is flat took so much time to eradicate), meaning
that a small region of the terrestrial surface can be charted or mapped on the
plane. Similarly, in our everyday lives a world atlas is nothing but a book
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collecting several maps of different geographic zones that together cover the
entire surface of our planet.

If we have two charts α : Uα → R
n and β : Uβ → R

n with overlapping
domains, a change of coordinates is possible by applying a transition function
β ◦ α−1 : α(Uα ∩ Uβ) → R

n. Resorting again to our cartographic illustration,
if a traveler has two different pages in a road atlas representing overlapping
regions, he or she needs to know how to translate the coordinates of a point on
one map into the coordinates on the other one. Thus, transition functions in
some sense allow us to seamlessly “glue” together different charts in the atlas,
such that we can plan our travel using local maps, passing from one map to
another without too much hindrance. When all the transition functions are
r-times continuously differentiable, the manifold is said to be Cr. We will use
a slightly relaxed terminology referring to a manifold as smooth, implying Cr

with a sufficiently large r (it is common to assume r = ∞). We will often
tacitly assume smoothness for our objects of interest.

There are a few important comments to be made at this point about man-
ifolds. First, from the definition it is obvious that manifolds are topological
objects and therefore are generally disconnected from the notion of metric
and length. There may exist metric and length spaces that are not manifolds
and manifolds without a metric. However, our discussion will focus on the
intersection of these two worlds, i.e., manifolds that are also metric or length
spaces. Second, we should distinguish between a manifold and a manifold with
boundary (see Figure 2.4). Consider as an example a closed subset A ⊂ R

n of
the Euclidean space. Points “inside” A have open neighborhoods homeomor-
phic to R

n and thus the interior of A is, indeed, a manifold. However, points
belonging to the “edge” of A are clearly not homeomorphic to R

n but to the
closed Euclidean half-space [0,∞)×R

n−1. Being more precise, a manifold with
boundary is a (non-empty) space X in which every point has a neighborhood
that can be charted either in R

n or in [0,∞) × R
n−1. The set of points in X

that can be charted only in [0,∞)×R
n−1 is called the boundary and denoted

by ∂X , whereas their complement is referred to as the interior and is denoted
by int(X). The interior (always non-empty) is an n-dimensional manifold, and
the boundary, when non-empty, is an (n − 1)-dimensional manifold. With a
slight abuse of notation, wherever no confusion may arise, we will abbreviate
“manifold with boundary” to simply “manifold.”

2.5 Embedded surfaces

Manifolds can be found everywhere: surfaces of all tangible objects can
be represented as smooth two-dimensional manifolds residing in the am-
bient three-dimensional Euclidean space. Such manifolds are often referred
to as embedded surfaces, as they constitute subspaces of a larger ambi-
ent space (in our case R

3) and are therefore embedded into it.11 Such sur-
faces can often be described by a smooth map x : U → R

3 from a
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Figure 2.4. Example of a two-dimensional manifold without boundary (left); object
that is not a manifold, as at one point it is not homeomorphic to R

2(center); and a
manifold with boundary (right).

subset U of R
2 to the three-dimensional Euclidean space. The set U is

called a parameterization domain and the vector-valued function x(u1, u2) =
(x1(u1, u2), x2(u1, u2), x3(u1, u2)) a (global) parameterization or the embed-
ding of the surface. The two-dimensional manifold formed by the image
X = x(U) of U in R

3 is referred to as a parametric surface.

Example 2.8 (parameterization of the Earth). The Earth modeled as a
two-dimensional sphere S

2 with the radius r ≈ 3678 km can be parameterized
by x : [−π

2 , π
2 ] × [0, 2π) → R

3 in the following way,

x1(u1, u2) = r cosu2 cosu1;
x2(u1, u2) = r sinu2 cosu1;
x3(u1, u2) = r sinu1,

where (u1, u2) are known as latitude and longitude, respectively.

The map x can be considered as a global coordinate system. A coordinate
system assigns to each point on the surface an ordered pair of real numbers,
whose meaning is usually associated with “location.” Using the Earth as an
illustration, location of geographical objects can be expressed using two global
coordinates: latitude and longitude. Sometimes it may be impossible to pro-
vide one consistent smooth coordinate system for the entire surface. Surfaces
for which a smooth x : U → R

3 does not exist are said not to admit a global
parameterization. In such cases, local coordinate systems (smooth charts) are
put together to form an atlas covering the entire surface. As a visualization,
recall again the road atlas example: each page in it is equipped with a local
Cartesian coordinate system, serving as a local parameterization of a portion
of the surface.

When the derivatives x1 = ∂u1x and x2 = ∂u2x of x with respect to the
coordinates are linearly independent for every (u1, u2) ∈ U , we say that x is
regular. In such a case, the vectors x1, x2 span a two-dimensional space at x =
x(u1, u2), referred to as the tangent plane or the tangent space and denoted
by TxX . The name speaks for itself: the tangent space can be thought of as
a local Euclidean approximation of the surface at x. A vector perpendicular
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to the tangent plane TxX is called the normal to the surface and is denoted
by N .12 If the normal direction depends smoothly on x, the surface is said to
be orientable. Orientability means for example that if a traveler starts with
a local right-handed system of coordinates, any round trip he makes on the
surface would not change the orientation (“handedness”) of his coordinates.
We will assume our surfaces to be orientable to exclude pathologies like the
Möbius stripe or the Klein bottle.

Let us select a point u in the parameterization domain and the corre-
sponding point x = x(u) on the surface. An infinitesimal displacement by
du = (du1, du2) around u will displace the point on the surface to

x(u + du) = x + x1du1 + x2du2 = x + Jdu. (2.3)

Here, J is a 3 × 2 matrix having x1 and x2 as the columns; such a matrix
is usually referred to as the Jacobian of the parameterization x : U → X
at a point u (Figure 2.5, left). To quantify the length of the displacement
dx = Jdu, we may write

d�2 = ‖dx‖2 = ‖Jdu‖2 = duTJTJdu = duTGdu, (2.4)

where G = JTJ is a symmetric 2 × 2 matrix, whose elements are the inner
products gij = 〈xi, xj〉, depending on the choice of the local system of co-
ordinates. Note that for a regular parameterization, g11g22 − g2

12 > 0, and
hence G is positive definite. The quadratic form (2.4) is called the first funda-
mental form of the surface or the Riemannian metric.13 The same definition
extends to n-dimensional manifolds embedded into a finite-dimensional Eu-
clidean space.

Example 2.9 (first fundamental form of a sphere). Let us consider the
two-dimensional unit sphere with the parameterization x1 = cosu2 cosu1, x2 =
sinu2 cosu1, x3 = sinu1, as in the previous example. The basis vectors of the
tangent plane of the sphere at the point (u1, u2) are given by

x1 = ∂u1x = (−cosu2 sinu1,−sinu2 sinu1, cosu1)
x2 = ∂u2x = (−sinu2 cosu1, cosu2 cosu1, 0).

The coefficients of the first fundamental form are given by the 2 × 2 matrix
of inner products,

G =
(
〈x1, x1〉 〈x1, x2〉
〈x1, x2〉 〈x2, x2〉

)

=
(

1 0
0 cos2 u1

)

.

The form of G implies that a latitudinal displacement by du2 translates to
a displacement by cosu1 du2 on the sphere. For this reason, a ship sailing
between two islands 1◦ latitude apart in the equatorial zone needs to travel a
larger distance than one navigating in the polar area.
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Figure 2.5. Left: an infinitesimal displacement by du in the parameterization
domain is translated to a displacement by dx in the tangent space, whose length can
be expressed using the first fundamental form. Right: an infinitesimal area element
in the parameterization domain is translated to the area element in the tangent
space, expressed in terms of det(G).

This example teaches us that the first fundamental form can be used to
translate the measurement of length on the surface into measurement of length
on its planar chart. To illustrate this better, imagine that a smooth curve
γ : [a, b] → U describes the route of a traveler plotted on a map, such that
Γ = x ◦ γ is the actual itinerary traveled on the surface. Equipped with the
first fundamental form, we may say that the distance the traveler traverses
by moving from t to t + dt along the curve on the map is

d� =
√

γ̇(t)TG(γ(t))γ̇(t) dt, (2.5)

where

γ̇ =
(

dγ1

dt
,
dγ2

dt

)T

denotes the derivative of γ with respect to the parameter t. Clearly, choosing a
different chart will change the curve γ, and G will contain different coefficients
to account for this change.

The quantity d� is called the differential arc length of the curve Γ at the
point t. The length of the entire curve can be obtained by simply integrating
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d� along Γ ,

L(Γ ) =
∫

Γ

d� =
∫ b

a

√
γ̇(t)TG(γ(t))γ̇(t) dt. (2.6)

As we have already seen, L(Γ ) induces a length metric, which for a two-
dimensional surface embedded in R

3 is nothing but the intrinsic metric in-
duced from the ambient Euclidean space. In the following, thinking of an
embedded surface X as of a metric space, we will assume it to be equipped
with the intrinsic metric, which will be denoted by dX . We will refer to the
geometry described by the intrinsic metric dX as to the intrinsic geometry
of the surface. The intrinsic geometry is completely described by the first
fundamental form and is invariant to isometries.

Apart from length and distance, another geometric quantity that can be
computed in the parameterization domain with the help of the first fundamen-
tal form is area. In order to understand how to measure area on the surface,
consider an infinitesimal rectangle formed at a point u in the parameterization
domain by du1 and du2. This rectangle is copied to the parallelogram formed
at x by x1du1 and x2du2 in the tangent space of the surface, whose area is
given by the length of the outer product of its sides,

da = ‖x1du1 ∧ x2du2‖ = ‖x1 ∧ x2‖du1du2 (2.7)

(Figure 2.5, right). Using simple identities, we can write

da =
√
‖x1‖2 ‖x2‖2 − 〈x1, x2〉2 du1du2

=
√

g11g22 − g2
12 du1du2 =

√
det(G) du1du2. (2.8)

The element da is called the differential area element of the surface at the point
u. In order to compute the area of a subset Ω ⊂ X charted as ω = x−1(Ω),
we integrate da, obtaining

μ(Ω) =
∫

Ω

da =
∫

ω

√
det(G) du1du2. (2.9)

Similarly to length, area is also an intrinsic quantity, completely described by
the determinant of G and invariant to isometries.

Although the function μ in (2.9) is probably the most natural way of
assigning the notion of “size” to a subset of the surface, it is clearly not the
only way to do so. For example, we can normalize μ by the area of the entire
surface, obtaining the relative area

ν(Ω) =
μ(Ω)
μ(X)

(2.10)

of the subset. Because the relative area of X is exactly one, we can associate
ν(Ω) with the probability of a point chosen at random from a uniform dis-
tribution on the surface to fall into Ω. It is worthwhile noting that area and
relative area are particular cases of a more general concept of measure, which
assigns non-negative values to subsets, quantifying their size.
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2.6 Curvature and the second fundamental form

When analyzing embedded surfaces, it is often important to tell how different
they are from a Euclidean space. The “non-Euclideness” can be expressed
in terms of how fast the normal vector rotates as we move on a surface (or,
informally, how “curved” is the surface). To quantify the rate of change of
the normal, we may use the notion of directional derivative that should be
familiar from multivariate calculus. Given a point x ∈ TxX and a direction
v ∈ TxX , the directional derivative of N is defined as

DvN = lim
t→0

1
t
(N(Γ (t)) − N(x)) =

d

dt
N(Γ (t))

∣
∣
∣
∣
t=0

, (2.11)

where Γ : (−ε, +ε) → X is an arbitrary smooth curve with Γ (0) = x and
Γ̇ (0) = v. DvN is a vector in R

3 measuring the change in N as we make a
differential step in the direction v.

It is important to observe that DvN ∈ TxX . Indeed, differentiating the
equation 〈N, N〉 = 1 with respect to the direction v, we obtain Dv〈N, N〉 =
2〈DvN, N〉 = 0. Thus, DvN is perpendicular to the normal and lies in TxX .
The negative14 directional derivative of the normal, −DvN , is called the shape
operator or the Weingarten map of the surface and is denoted by S(v). The
shape operator defines a linear map S : TxX → TxX . For a surface admitting
a parameterization x : U → R

3, this linear map can be expressed in the basis
spanned by x1, x2, as a 2 × 2 matrix S satisfying S(xi) = Sxi, or

(S(x1), S(x2))T = S(x1, x2)T.

Multiplying the former equation by (x1, x2) from the right, we obtain

(S(x1), S(x2))T(x1, x2) = S(x1, x2)T(x1, x2) = SG,

where G is the first fundamental form matrix. The left-hand side is a 2 ×
2 matrix B = (S(x1), S(x2))T(x1, x2), whose elements are given by bij =
〈S(xi), xj〉 (using the simple fact that S(xi) = −∂uiN , we may also write
bij = −〈∂uiN, xj〉). The matrix B is called the second fundamental form of
the surface and is expressed in the coordinates of the parameterization as the
quadratic form

B(v, w) = 〈S(v), w〉. (2.12)

The identity S = BG−1 connects the shape operator with the first and the
second fundamental forms.

Example 2.10 (second fundamental form of a sphere). We consider
again the two-dimensional unit sphere with the parameterization x1 = cosu2

cosu1, x2 = sinu2 cosu1, x3 = sinu1. The normal to the surface at a point
(u1, u2) is given by
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N = x = (cosu2 cosu1, sinu2 cosu1, sinu1),

and its derivatives with respect to u are

∂u1N = (−cosu2 sinu1,−sinu2 sinu1, cosu1)
∂u2N = (−sinu2 cosu1, cosu2 cosu1, 0);

in this specific example, ∂uiN coincide with xi. The second fundamental form
is given by the matrix of the inner products

B = −
(
〈∂u1N, x1〉 〈∂u1N, x2〉
〈∂u2N, x1〉 〈∂u2N, x2〉

)

= −G =
(
−1 0
0 − cosu1

)

.

The shape operator matrix is therefore S = BG−1 = −I.

It appears that the spectrum of the shape operator contains all informa-
tion about the curvature of the surface. Indeed, observe that for a direction v,
the second fundamental form B(v, v) = 〈−DvN, v〉 is the projection of −DvN
on v, which describes the change of the normal in the direction v caused by
an infinitesimal step in that direction. In the coordinates of the parameteriza-
tion, B(v, v) = vTSv, from where it follows that the smallest and the largest
eigenvalues of S express the smallest and the largest change of the normal,
respectively (Figure 2.6). The eigenvalues of S are denoted by κ1 ≤ κ2 and
are referred to as principal curvatures of the surface at the point x. The corre-
sponding eigenvectors are called the principal directions. An interesting fact is
that κ1 and κ2 are the same regardless of the parameterization, meaning that
the spectrum of the shape operator is invariant to the choice of coordinates.

Principal curvatures can be also interpreted in terms of curves passing on
the surface through the point x. Let us develop this intuition by considering a
smooth curve Γ : [a, b] → X , parameterized by arc length. We can think of Γ
as of a trajectory of a race car driving on the surface with a constant velocity
1 m/sec. From a physical point of view, the first derivative Γ̇ (t) is the velocity
vector, measuring the rate of change of the car position, and its direction is
tangential to the curve. The second derivative Γ̈ (t) is the acceleration vector,
measuring the rate of the change of the unit velocity vector direction. The
direction of Γ̈ (t) is called the principal normal to the path, and as follows
from the name, it is perpendicular to Γ̇ (t). At tight turns, the driver feels
that the direction of the velocity vector changes quickly, whereas when the
car goes nearly straight, the change is close to zero. The speed of the velocity
vector rotation at every point is called the curvature of the path and is denoted
by κ = ‖Γ̈ (t)‖2. Often, Γ̈ (t) is called the curvature vector. At a point x on
the path, we can decompose the curvature vector into two components. The
first component is the projection of the curvature vector onto the tangent
plane TxX , called the geodesic curvature and denoted by κg. The second is
the projection of the curvature vector onto the surface normal, called the
normal curvature and denoted by κn. Because the curve Γ lies on the surface,
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Figure 2.6. On an elliptic surface (left), both principal curvatures are positive,
meaning that a small step in the principal direction rotates the normal to the surface
toward the same direction. On the other hand, on a hyperbolic surface (right), the
principal curvatures have different signs. This means that a step in the principal
direction corresponding with κ1 rotates the normal toward the opposite direction.

Γ̇ ∈ TxX , and, consequently, 〈Γ̇ , N〉 = 0. Differentiating this equation with
respect to the parameter t yields

0 =
d

dt
〈Γ̇ , N〉 = 〈Γ̈ , N〉 + 〈Γ̇ ,

d

dt
N〉,

from where

κn = 〈Γ̈ , N〉 = 〈Γ̇ ,−DΓ̇ N〉 = B(Γ̇ , Γ̇ ).

Because Γ̇ is a unit vector, the normal curvature of any curve passing through
x lies in the interval κ1 ≤ κn ≤ κ2. Curves following the principal directions
realize the smallest and the largest κn. The mean value H = 1

2 (κ1 + κ2) =
1
2 trace(S) is called the mean curvature and the product K = κ1κ2 = det(S)
is called the Gaussian curvature of the surface. The values of K and H define
the local behavior of the surface, that is, how the surface is curved at the point
x. For example, a plane has K = H = 0 at every point. A sphere has K > 0.
A hyperbolic surface has K < 0 because one of the principal curvatures is
positive and one is negative.

In the same way the first fundamental form of a surface completely de-
scribes its intrinsic geometry, the second fundamental form is responsible for
the extrinsic one, that is, the way the surface resides in the ambient Eu-
clidean space. Note that the second fundamental form is invariant to Eu-
clidean isometries (i.e., a rigid motion of the surface in R

3 does not affect its
second fundamental form). Formally, a Euclidean isometry is often referred to
as congruence, and two surfaces differing by a Euclidean isometry are said to
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be congruent. Congruence preserves both the intrinsic and the extrinsic ge-
ometries and thus the first and the second fundamental forms. The converse
also appears to be true: any map preserving the first and the second funda-
mental forms is necessarily a congruence (or, said differently, an isometry15

preserving the second fundamental form is a restriction of a Euclidean isom-
etry). In simple words, this means that the first and the second fundamental
forms completely describe the geometry of the surface, which is sometimes
referred to as the fundamental theorem of the theory of surfaces.

2.7 Intrinsic view on geometry of surfaces

Embedded surfaces are important examples of manifolds, which have been
the motivation that led to the development of non-Euclidean geometries dur-
ing the nineteenth century. The German mathematician Berhnard Riemann
(1826–1866) was among the first to notice that some of the properties we
have defined so far can be described without the use of parameterization, but
rather as properties intrinsic to the surface [324]. Such a viewpoint requires
a certain degree of imagination, as it assumes that the surface has no ambi-
ent space, contrary to our everyday experience. Those familiar with general
relativity know that one of the hardest things to comprehend is the idea of
a four-dimensional space-time Riemannian16 manifold as a model of our uni-
verse. Simply put, this manifold is the whole universe and therefore, there
is no ambient space beyond it. In order to clarify the difference between the
two viewpoints, recall again the Earth example. Astronauts on a space shuttle
looking at the Earth and the space around it have an extrinsic point of view.
However, an insect living on the surface of the Earth will not agree with this
perception, as it has no idea about the three-dimensional space around the
Earth. It is constrained to the two-dimensional Earth surface, and therefore
has an intrinsic point of view.

From the intrinsic viewpoint, the tangent space TxX is a Euclidean space
associated with each point x of X . A Riemannian metric can be thought of as
an abstract inner product 〈·, ·〉x on the tangent space. Formally, a Riemannian
metric is a bilinear symmetric positive-definite map gx : TxX × TxX → R,
depending smoothly on x. The advantage of such a definition is that it is
coordinate-free. If we select a basis for the tangent space TxX , the Riemannian
metric gx can be expressed as a 2 × 2 matrix G and identified with the first
fundamental form.

Using the intrinsic definition of the Riemannian metric, we can give a
slightly different flavor to equation (2.6). Assuming Γ : [a, b] → X to be a
smooth path on the surface X , the length of Γ is given by

L(Γ ) =
∫ b

a

√
〈Γ̇ (t), Γ̇ (t)〉Γ (t) dt =

∫ b

a

√
gΓ (t)(Γ̇ (t), Γ̇ (t)) dt. (2.13)
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This formula has the following physical meaning: the length of a path can
be thought of as the time it takes to travel with a certain velocity from one
point to another, and the distance we effectively pass depends on where and in
which direction we travel. The vector Γ̇ (t) can be interpreted as the velocity
of movement along the path. The effective distance we travel at point Γ (t)
with the velocity vector Γ̇ (t) is given by the Riemannian metric

√
gΓ (t)(Γ̇ (t), Γ̇ (t)),

which is the length of the vector Γ̇ (t) measured locally.
In Riemannian geometry, extrema (i.e., minimizers or maximizers) of the

functional L(Γ ) are called geodesics. A path that minimizes L(Γ ) is called a
minimal geodesic. An important question is whether for every pair of points,
there exists a minimal geodesic that connects them, or in other words, whether
the space is complete? As we have already seen, minimal geodesics do not
necessarily exist in general length spaces. However, it appears that connected
and compact Riemannian manifolds are complete, a fact known as the Hopf-
Rinow theorem. We can therefore define the length metric, called the geodesic
metric, as

dX(x1, x2) = min
Γ

{L(Γ ) s.t. Γ : [a, b] → X, Γ (a) = x1, Γ (b) = x2} .

Note that we arrived at the same expression for dX using two different
definitions. In the first one, the metric was induced by Euclidean geometry
of the ambient space, whereas in the second one, it was induced by a local
Riemannian structure. It may seem that the intrinsic definition is more gen-
eral, as it is not restricted by a specific embedding: if in the extrinsic case
the Riemannian metric is a by-product of the parameterization, in the intrin-
sic case, the Riemannian metric is an abstract positive-definite bilinear form.
However, it appears that the intrinsic and the extrinsic views are equivalent.
According to the Nash embedding theorem, any smooth Riemannian manifold
can be realized as an embedded surface in a Euclidean space of sufficiently
high, but finite dimension [290].17 As a particular case, R

17 is sufficient to
realize any smooth two-dimensional manifold. It means that if we define an
arbitrary Riemannian metric on our surface, we can always find an embedded
surface in R

17, such that the Riemannian metric induced on it by the Eu-
clidean structure of the ambient space is equal to the Riemannian metric we
have defined.

As for notation, we will henceforth denote by (S, dS) an abstract metric
space created by a Riemannian metric, and by (X = x(S), dX ) its realization
as an embedded surface under the embedding x : S → R

3. We will say that the
intrinsic metric dX induced by the length structure of R

3 realizes the metric
dS . When our interest will be the intrinsic geometry only, we will prefer the
notation (S, dS).
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2.8 Bending and rigidity

Though the Nash embedding theorem guarantees that any Riemannian metric
can be realized as an embedded surface, it says nothing about the uniqueness
of such a realization. As a particular case, let us consider a Riemannian man-
ifold S, whose metric is realized in R

3 by the embedding x : S → R
3, that

is, the intrinsic metric induced on the embedded surface X = x(S) coincides
with dS . Clearly, the embedding x : S → R

3 is not unique, as for any con-
gruence h ∈ Iso(R3), h ◦ x(S) also realizes dS . This type of non-uniqueness
is rather trivial, and we are interested in richer non-uniqueness going beyond
Euclidean isometries. The question of existence of a non-unique embedding
can be therefore posed as whether dS can be realized by another embedding
y : S → R

3, such that Y = y(S) is incongruent with X = x(S). Said differ-
ently, we are looking for X and Y realizing the same intrinsic geometry while
differing in their extrinsic geometries.

It appears that some surfaces have non-unique embeddings in R
3. The

simplest example is the plane, which can be bent and folded in many ways.
A more sophisticated example is shown in Figure 2.7. Let us assume that S
admits two embeddings x and y. The map f : R

3 → R
3 defined by f = y◦x−1

describes the extrinsic deformation that we need to apply to X in order to
obtain Y . Such a deformation is called bending, and a surface having a non-
unique embedding is called bendable. Clearly, because f ◦ x(S) = y(S) and X
and Y are isometric, f must be distance preserving, that is,

dX(x1, x2) = dY (f(x1), f(x2))

for every x1, x2 ∈ X . Here, dX and dY denote the intrinsic metrics on the
embedded surfaces X and Y , respectively, induced by the Euclidean metric
in R

3.
Considering the example in Figure 2.7, it is easy to transform one wine

bottle into another by sawing off the bottle neck and welding it back “upside
down.” Now imagine that instead of glass the bottle is made of flexible, yet
inelastic material. Trying to push the neck inside the bottle, we will soon
realize that it is an impossible task, although the two versions of the bottle
are isometric. That is, there is no way to turn the bottle neck upside down
without distorting it – the only way to do so necessarily involves a cut. This
experiment brings us to the notion of continuous bending. Two isometric
surfaces X and Y are called applicable or continuously bendable if there exists
a family of bendings {fλ}1

λ=0 continuous with respect to λ, such that f0(X) =
X and f1(X) = Y . Physically, applicability means that given a surface X
realized as a thin shell of inelastic material, it can be pressed without tearing
into a mold having the form of Y . Being continuously bendable is a stronger
property than being bendable; in fact, the wine bottle example shows that
incongruent embeddings of the same surface are not necessarily applicable to
each other. A particularly interesting class of continuously bendable surfaces



32 2 A Taste of Geometry

Figure 2.7. An example of non-rigid objects. If we cut the neck of the wine bottle
on the left along the indicated circle and weld it back upside down, we will obtain
the object on the right. The new bottle is isometric to the original one, yet the two
objects are incongruent. Note that while the bottle is bendable, it is not continuously
bendable.

are flat surfaces, which are applicable to a subset of the plane.18 Such surfaces
can be flattened onto a plane without distortion and thus can be constructed
by cutting, folding, and bending a sheet of paper (Figure 2.8). Flat surfaces
are important in manufacturing, especially in shipbuilding, where different
parts of a ship are created from sheet steel.

Along with bendable and continuously bendable surfaces, many other sur-
faces admit a unique embedding into R

3 (of course, up to a Euclidean isom-
etry). Such surfaces, whose extrinsic geometry is completely determined by
the intrinsic one, are called non-bendable or rigid.

Example 2.11 (rigidity of planar shapes). Let X and Y be two subsets
of the plane with the intrinsic metrics dX and dY , respectively, induced by
the Euclidean metric. Because both X and Y are restricted to the plane, their
second fundamental forms are identically zero. As a consequence, if X and Y
are isometric, they are necessarily congruent. This result implies that planar
shapes are rigid, as their geometry is completely determined by the first fun-
damental form. This fact has an interesting consequence. If S is a flat surface,
one of its embeddings is a planar shape X = x(S) ⊂ R

2. This means that the
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Figure 2.8. Left: origami, the art of paper folding, consists of creating intricate
curved shapes from a flat piece of paper (image courtesy Alex Hubris). Right: approx-
imation of the Stanford Bunny as developable patches glued together (reproduced
from [354] with permission).

isometry group of S is isomorphic to the isometry group of X , comprising all
distance preserving mappings h : X → X . However, we have seen that X is
rigid, which implies that every such h must be a restriction of a Euclidean
isometry to X . Hence, any g ∈ Iso(S) can be represented as the composition
g = (x|X)−1 ◦ h ◦ x, where h is an Euclidean isometry obeying h(X) = X .
Intuitively, this means that studying the isometry (intrinsic symmetry) group
of S can be replaced by applying the surface to the plane followed by studying
the extrinsic symmetries of the obtained planar shape.

The question of rigidity interested many mathematicians for centuries,
who focused mostly on the class of polyhedral surfaces. Let us briefly review
the history of some dramatic developments in the field. As a starting point
we should probably consider 1766, when Euler proposed his renowned rigidity
conjecture, stating that all closed polyhedra embedded in R

3 are rigid. In 1813,
Cauchy (then only 24 years old) proved that convex polyhedra are, indeed,
rigid [94].19 In 1974, Gluck showed that almost all triangulated simply con-
nected closed surfaces are rigid, remarking that Euler was right “statistically”
[174]. Informally, Gluck’s result implies that picking a closed polyhedron “at
random,” the probability that it will bend is zero. In 1977, Euler’s conjec-
ture was finally disproved by Connelly [114], who found a simple bendable
closed polyhedron (Figure 2.9, right), sometimes referred to as the Connelly
sphere [113, 115]. Unlike polyhedra, much less is known about the rigidity of
smooth surfaces. One of the main results was proved in 1927 by Cohn-Vossen
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Icosahedron Connelly sphere

Figure 2.9. A paper realization of a convex polyhedron with twenty faces (left),
and a variant of the Connelly sphere (right). Unlike the icosahedron, the Connelly
sphere is non-rigid and can be bent along some of its edges.

[108], who showed that all surfaces with strictly positive Gaussian curvature
are rigid. Cohn-Vossen’s rigidity theorem can be thought of as a continuous
analog to Cauchy’s theorem for convex polyhedra.

These results may give the impression that most surfaces around us are
rigid, which is probably true if rigidity is considered in a strict sense. The
situation changes dramatically if small distortions are allowed. Although, to
the best of our knowledge, the question of whether or not two rigid surfaces can
be bent by an ε-isometric bending has not been addressed in the literature,
practice shows that a great variety of surfaces appearing rigid in the strict
sense, can be bent almost isometrically, or at least, can be realized with low
distortion by many incongruent surfaces in R

3. In a sense, a significant part
of this book is motivated by this astonishing fact.

2.9 Intrinsic invariants

So far, we have seen that the Gaussian curvature of a surface can be defined as
a product of the two principal curvatures or the determinant of the shape op-
erator. Apart from these two definitions, there exists yet another one. Imagine
an insect tied with a thread of length r to some point x on the surface. The
insect makes a round trip around x while the thread is completely stretched
on the surface, and we measure the perimeter P (r) of the closed curve it
describes. For a flat surface, we would obviously get P (r) = 2πr. When we
repeat the experiment on a curved surface, P (r) will differ from 2πr, and
measuring this discrepancy, we hope to realize how our surface is different
from a plane. It appears that for a sufficiently small r, we will measure

P (r) = 2πr − π

3
Kr3 + O(r4),
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where O(r4) is a fourth-order term. Thus, a Riemannian metric is locally
Euclidean up to a third-order error, and the third-order distortion is controlled
by K. This imaginary experiment leads to the following alternative definition
of the Gaussian curvature,

K = lim
r→0

(2πr − P (r))
3

πr3
,

where the term 2πr−P (r) measures the “defect” of the metric ball perimeter
compared with its Euclidean counterpart.

Note that the way we define the Gaussian curvature does not rely on the
ambient spaces in which the surface resides. The Gaussian curvature appears
to be an intrinsic quantity, that is, a two-dimensional creature living on the
surface is capable of measuring it. This striking result was probably acciden-
tally discovered by Gauss, who was so astonished that he labeled it as theorema
egregium (Latin for “Remarkable Theorem”) [169]. Gauss observed that the
Gaussian curvature can be expressed solely in terms of the first fundamental
form coefficients and is therefore an intrinsic property.20 This implies that if
we bend the surface in such a way that the first fundamental form is pre-
served, theorema egregium guarantees that the Gaussian curvature at every
point is also preserved. Put differently, the Gaussian curvature is invariant
under isometries.

In our everyday lives, we encounter the theorema egregium in a pizzeria.
An Italian pizza is topped with tomato sauce, mozzarella cheese, and olive
oil, which can easily fall off and spot our clothes. Most people bend the slice
across the radius, which creates non-zero principal curvature along the fold.
Because the slice is a patch of the plane and has zero Gaussian curvature, the
other principal curvature must remain zero in order to preserve the Gaussian
curvature of the bent surface – otherwise stretching will be inevitably intro-
duced (we of course assume that the bend is an isometry, which makes the
slice a flat surface). This maintains rigidity in the direction perpendicular to
the fold, such that the topping does not fall off.

Gauss’ Remarkable Theorem gives us a local invariant, which could be
potentially employed as a recipe for comparison of non-rigid surfaces insensi-
tively to isometric deformations: Given two surfaces, compare their Gaussian
curvature at every point and conclude whether they are similar or not (Fig-
ure 2.10). Unfortunately, in practice Gaussian curvature is a second-order
differential quantity and, thus, is sensitive to noise. Moreover, even if we were
able to compute it perfectly, there still remains the problem of identifying the
corresponding points on two different surfaces. In the following chapters, we
provide an answer to this question.

A possibility to overcome the correspondence problem is a trivial conse-
quence from the theorema egregium. If we integrate the Gaussian curvature
on the whole surface, such an integral will be invariant to isometries. Sur-
prisingly, the invariance is much stronger. It appears that deformations that
preserve a topological property of the surfaces known as the Euler charac-
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Figure 2.10. Gaussian curvature computed on two approximately isometric sur-
faces. Theorema egregium guarantees the invariance of Gaussian curvature under
isometries.

teristic [153] also preserve the integral of the Gaussian curvature. This result
is known as the Gauss-Bonnet theorem [43], which formally says that for a
compact orientable Riemannian surface X , the following relation holds21:

∫

X

Kda = χX ,

where da is an area element and χX is the Euler characteristic. We will not
extend our discussion on the meaning of χX . For polyhedra, it is defined as
χX = NF −NE + NV , where NF is the number of faces, NE is the number of
edges, and NV is the number of vertices in the polyhedron. For smooth sur-
faces, in a sense, the Gauss-Bonnet theorem can be thought of as a definition
of χ. It is worthwhile mentioning that the Euler characteristic is related to
another topological invariant called genus. Genus represents the largest num-
ber of cuts along nonintersecting closed simple curves that leave the manifold
connected, and can be intuitively interpreted as the number of “handles” or
“holes” a surface has. Genus and the Euler characteristic are related by the
formula χX = 2 − 2 genus(X).

The Gauss-Bonnet theorem allows us to compute a global invariant that is
robust but at the same time very crude – surfaces as different as those depicted
in Figure 2.11 may have the same Euler characteristic. This is not a very
useful result for our applications, as for example, all surfaces homeomorphic
to a sphere have χ = 2 and are thus indistinguishable. In general, global
topological characteristics usually do not give a sufficient level of “resolution”
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Figure 2.11. Though the depicted objects look different, they are all homeomorphic
to a sphere and have the same Euler characteristic χ = 2.

necessary to distinguish between non-rigid surfaces. This will motivate us to
look for better methods for comparing surfaces in the next chapters.

Suggested reading

An excellent introduction to metric geometry is given in the textbook Course
on Metric Geometry by Burago et al. [88]. A discussion of isometries can
be found in Chapter 11 in Geometry: a Metric Approach with Models by
Millman and Parker[275]. Good guides to differential geometry and analytic
machinery are the books Differential Geometry of Curves and Surfaces by do
Carmo[139], Elementary Differential Geometry by O’Neil [300], and Curves
and Surfaces by Montiel and Ros [281]. A great overview of Riemannian geom-
etry is Berger’s Panoramic View of Riemannian Geometry [26], which touches
virtually every topic in modern differential and Riemannian geometry. Par-
ticularly, the reader may find interesting the two proofs of theorema egregium
given by Berger.

Problems

2.1.� Show that a bi-Lipschitz function is injective (i.e., there exists an inverse
from its image) and its inverse is Lipschitz continuous.

2.2. Describe the isometric group for the following metric spaces:

1. Equilateral triangle in the plane with the standard Euclidean metric.
2. Perfect n-gon in the plane with the standard Euclidean metric.
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3. A unit two-dimensional sphere S
2 with the intrinsic metric induced from

the ambient Euclidean space R
3.

2.3. Show that

dL(x, y) = inf
γ

{L(γ) s.t. γ : [a, b] → X, γ(a) = x1, γ(b) = x2} .

stemming from a length structure is a metric.

2.4.� Show that the length structure induced by the intrinsic metric dL in-
duces the same intrinsic metric dL.

2.5. Articulate the difference between isometries and arcwise isometries (maps
preserving length structures) by showing examples of arcwise isometries, which
are not isometries.

2.6. Show that in a set A of a metric space (X, dX), dX |A coincides with the
intrinsic metric on A if and only if the shortest path between every pair of
points in A lies completely inside A.

2.7. Prove that the quadratic form d�2 = g11(du1)2 + 2g12du1du2 + g22(du2)2

is positive definite if and only if the parameterization x : U → R
3 is regular.

2.8. Prove that S(xi) = −∂uiN .

2.9. Prove that the second fundamental form is symmetric, i.e., B(v, w) =
B(w, v).

2.10. Prove that the elements of B are also given by bij = 〈N, ∂2x
∂ui∂uj 〉.

2.11. Prove that the spectrum of the shape operator is invariant to the choice
of coordinates.

2.12.� Express the first and the second fundamental forms of the surface
given as the graph of a function, (x, y, z(x, y)). Give an expression for the
shape operator and the mean and Gaussian curvatures.

2.13. Prove that a curve with everywhere vanishing geodesic curvature κg is
a geodesic.

2.14. Show surfaces with identical second fundamental forms, yet different
first fundamental forms.

2.15. Show that the Gaussian curvature is an intrinsic quantity by expressing
the determinant of the shape operator in terms of the first fundamental form
and its derivatives.

2.16. Prove equivalence of the intrinsic and the extrinsic definitions of the
Gaussian curvature.
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2.17. The Gaussian curvature has an alternative intrinsic definition: consider
a geodesic triangle ABC on the surface, i.e., a triangle composed of the inter-
section of three geodesics. The angles in the triangles are measured between
the vectors in the tangent space at the three vertices. Define the defect of the
triangle as δ(ABC) = α+β +γ−π, i.e., how the sum of angles in the triangle
is different from the 180◦ obtained on the plane. The limit

K = lim
ABC↘x

δ(ABC)
Area(ABC)

defines the Gaussian curvature at the point x, where ABC ↘ x means that the
triangle converges to a point. Prove equivalence of the two intrinsic definitions.

Notes
1A version of this Greek phrase decorates the logo of the American Mathematical

Society.
2The piece of paper enjoys an even stronger property of path-connectedness,

which means that every two points on it can be joined by a path.
3The notation of preimage is sometimes misleading. The symbol f−1(A) does not

assume that f is bijective, but rather denotes the set {x ∈ X : f(x) ∈ A} of points
in X that are mapped to A by f .

4This property is often used as an alternative, “purely topological,” definition of
continuity.

5We will slightly abuse the notation, referring to self-isometries simply as isome-
tries. Sometimes we will use the term isometry to denote the image of such a trans-
formation, i.e., f(X). For example, a smiling face will be called an isometry of the
same face with neutral expression.

6In the group theory jargon, we say that the concept of homogenous space is
equivalent to the concept of transitive group action.

7Though, knowing the radius of the Earth, the pilot can compute the geodesic
distance from the Euclidean one.

8A space equipped with the a length is usually referred to as a length space. For
a formal definition, the reader is referred to [88].

9More formally, we can say that inducing a length metric is an idempotent op-
eration.

10Being completely rigorous, a manifold has to be a Hausdorff space, a topological
property implying that for every two distinct points, there exist two disjoint open
sets containing one of the points (or, in a more humorous version, in a Hausdorff
space, points can be “housed off” from one another by open sets).

11In some literature, the term immersed is used instead.
12Because N is a unit vector in R

3, it can be represented as a point on the two-
dimensional unit sphere S

2. The map N : X → S
2 is called the normal or Gaussian

map.
13Traditionally, in the literature, the term metric or Riemannian metric is often

used along with the term first fundamental form. This creates confusion with the
notion of abstract metrics that we defined in the beginning of this chapter, although
the two notions are intimately related. Readers familiar with tensor notation may
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observe that the quadratic form can also be written as d�2 = gijduiduj . The tensor
g represented as the 2 × 2 matrix G once the coordinate system is chosen is called
the Riemannian metric tensor.

14Sometimes, the shape operator is defined as the negative directional derivative.
15To be precise, an arc-wise isometry is sufficient.
16Being completely rigorous, general relativity models the space-time as a pseudo-

Riemannian manifold.
17The Nash embedding theorem guarantees that an n-dimensional C3 Riemannian

manifold is Riemann-isometric to an n-dimensional Riemannian surface embedded
in R

m for m ≥ n2 + 5n + 3. Two Riemannian manifolds (X, g) and (Y, h) are
Riemann-isometric if there exists a diffeomorphism f : (X, g) → (Y, h) with the
associated differential dfx : TxX → Tf(x)Y , such that for all x ∈ X and v1, v2 ∈ TxX,
gx(v1, v2) = hf(x)(dfx(v1), dfx(v2)). Therefore, Nash’s theorem says that there exists
a smooth injective map f : (X, g) �→ R

m such that for all x ∈ X and v1, v2 ∈ TxX,
gx(v1, v2) = 〈dfx(v1), dfx(v2)〉Rm .

18Flat surfaces are a particular case of a wider family of the so-called developable
surfaces, which can be applied to a plane, a cylinder, or a cone.

19In fact, Cauchy’s result is even stronger: it appears that a convex polyhedron is
completely rigid, that is, cannot be subject to small perturbations without distortion
of the intrinsic geometry.

20Gauss himself presented his theorem this way:

Formula itaque art. praec. sponte perducit ad egregium theorema: Si superfi-
cies curva in quamcunque aliam superficiem explicatur, mensura curvaturae
in singulis punctis invariata manet.

which can be translated as

Thus, the formula of the previous article leads itself to a remarkable theo-
rem: If a curved surface is developed onto any other surface, the measure of
curvature at each point remains unchanged.

21The Gauss-Bonnet theorem can be extended to manifolds with boundary with
the addition of a term:

∫
X

Kda+
∫

∂X
κgd� = χX , where κg is the geodesic curvature,

integrated along the boundary.



The world is continuous, but the mind is discrete.

D. Mumford

3

Discrete Geometry

Surfaces we have encountered so far had the property of varying continuously:
for example, we could give the coordinates of a point on the surface in the
three-dimensional Euclidean space for every pair of real-valued coordinates
in the parameterization domain. In other words, our objects belonged to the
continuous world. All physical objects that surround us are continuous (at
least, up to a very fine resolution level where quantum phenomena break this
nice picture).

Unfortunately, digital computers can only work with discrete data, i.e.,
data that can assume only distinct, separated values. In order to perform any
computation on a surface, we have first to approximate it by some discrete rep-
resentation. In this chapter, we focus on building discrete approximations to
surfaces. In mathematics, properties of discrete geometric objects are studied
by combinatorial topology and geometry. The branch of computer science that
studies representations, data structures, and algorithms for problems stated in
terms of geometrical objects is called discrete or numerical geometry. The two
main problems we will encounter in this chapter are how to discretize surfaces
and how to approximate geometric quantities using discrete representations.

3.1 Point clouds and sampling

The most basic problem in discrete surface representation is sampling. When
we say that a surface X is sampled, we imply a finite discrete set of points
X ′ = {x1, . . . , xN} ⊆ X , called a point cloud (Figure 3.1, top left). Obviously,
there are infinitely many ways to produce a point cloud out of X , and the
natural question is how to decide whether one sampling is better than another.
Intuitively, we wish the sampling to be as dense as possible, in order to better
represent the underlying surface. On the other hand, we need to keep in mind
that the discrete representation is used by computer algorithms, and every
additional point increases storage and computational complexity costs.

A. Bronstein et al., Numerical Geometry of Non-Rigid Shapes, 41
Monographs in Computer Science, DOI 10.1007/978-0-387-73301-2 3
c© Springer Science+Business Media, LLC 2008



42 3 Discrete Geometry

Point Connectivity

Triangular

cloud graph

mesh

Figure 3.1. Different representations of a surface that we will encounter in this
chapter: a point cloud (top left), a local connectivity graph (top right), and a trian-
gular mesh (bottom).

As an illustration to the situation where trade-offs of this kind are encoun-
tered in real life, let us recall Example 2.7 from Chapter 2. Imagine that a
scientific expedition is sent to Antarctica. The researchers establish a number
of stations, spread all over the continent, which collect ice samples and study
the glacial surface in a certain region around the station. On one hand, the
stations have to be placed sufficiently densely to provide a good coverage of
the studied area. On the other hand, installation of each station costs millions
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of dollars, therefore, the scientists are interested in having their network as
sparse as possible.

In the above example, when we say that the stations are “spread all over
the continent,” we imply that such a sampling leaves no large uncovered re-
gions or “holes.” In order to give a quantitative interpretation to this phrase,
we will say that a subset X ′ ⊆ X is an r-covering of (or an r-net in) X if

⋃

x′∈X′

Br(x′) = X,

(here Br denotes a metric ball of radius r). In other words, an r-covering
does not leave uncovered regions of diameter larger than r in the sense of the
metric dX . An alternative to express this is by saying that dX(x, X ′) ≤ r for
all x ∈ X , where dX(x, X ′) = infx′∈X′ dX(x, x′) is an abbreviated notation
for the point-to-set distance.

Now, let use address the opposite problem: are all the points in the sam-
pling necessary? An r-covering is guaranteed to cover the whole surface, how-
ever, it is not necessarily the best way to do it, as an r-covering needs not
be a discrete set. Hence, we need some measure of how well the samples are
separated. We say that X ′ is r′-separated if dX(x, x′) ≥ r′ for all x, x′ ∈ X ′. If
the surface X is compact, a set that is r′-separated for some r′ > 0 is always
finite.

The combination of these two criteria defines a good sampling: the whole
surface is covered on one hand, and the sampling is sparse enough on the
other. In our terminology, the expedition wants to sample the Antarctic area
(modeled as a closed1 metric space (X, dX), see Figure 3.2), such that the
sampling is an r-covering and an r-separated set at the same time. Depending
on the sampling radius r, denser or sparser point clouds can be produced. At
this point, we leave open the question how to select r in such a way that the
surface is well-sampled and will return to it at the end of the chapter.

3.2 Farthest point sampling

Suppose that we start with placing the first station at a point x1. The second
station should be placed as far as possible from the first one, in order to
provide the best coverage:

x2 = argmax
x∈X

dX(x, x1).

Obviously, the points x1, x2 are a dX(x1, x2)-separated set and an r-covering
of X with r ≤ dX(x1, x2). The third station will be placed at the maximum
distance from x1 and x2, i.e.,
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input : metric space (X, dX), some initial point x1 ∈ X and the
desired sampling radius r0.

output : a sampling X ′ = {x1, . . . , xN}.
initialization: X ′ = {x1}, d(x) = dX(x, x1).

while r > r0 do1

Find the farthest point from X ′, x′ = argmaxx∈X d(x).2

Update the set of selected samples: X ′ ←− X ′ ∪ {x′}.3

Update the distance function d(x),4

d(x) ←− min
x∈X

{d(x), dX(x, x′)};

r ←− max
x∈X

d(x).

end5

Algorithm 3.1. Farthest point sampling algorithm.

x3 = argmax
x∈X

dX(x, {x1, x2}),

and so on. After repeating the procedure N − 1 times, we will end up with N
samples X ′ = {x1, . . . , xN}, which by construction constitute an r-covering
and an r-separated set in X with

r = max
i=1,...,N

min
k=1,...,N

dX(xi, xk).

We leave the formal proof as an exercise (Problem 3.3). The described strategy
can be summarized in Algorithm 3.1.

Algorithm 3.1 is known as farthest point sampling (FPS) [179, 151] and
is a way to obtain the “good” sampling we have defined. The FPS method
is generic, as we have only assumed X to be a closed metric space, without
adding any other restrictions to it. We have also tacitly assumed that the met-
ric dX is available, whereas in practice it must be approximated numerically.
We defer the discussion on metric approximation to the next chapter.

In many practical applications, farthest point sampling is employed to sub-
sample a discrete surface with a given dense but not necessarily uniform sam-
pling. Given a point cloud X ′ containing M points, we would like to produce
a subsampling X ′′ ⊂ X ′ with N < M points. For this purpose, Algorithm 3.1
is applied to the discrete metric space (X ′, dX |X′) with the stopping condition
(Step 1) replaced by |X ′′| < M . Implemented straightforwardly, the compu-
tational complexity of the farthest point sampling in this case is O(NM),
as every iteration of Algorithm 3.1 requires O(M) operations. Using efficient
data structures, this complexity can be reduced to O(N log M) [151].

Note that in the farthest point sampling strategy we are not allowed to
move the samples already placed and at each iteration can only add one point
in the best way. Algorithms with such a behavior, unable to undo what was
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Figure 3.2. Placement of research stations on the Antarctic continent according to
the farthest point strategy with the intrinsic metric dX (progress of the algorithm
is shown left to right, top to bottom after 1, 2, 3, 4, 5, and 20 iterations). Shades of
gray and contours visualize the distance function d(x) from the samples after each
iteration.

done on previous iterations, are called greedy. As a consequence, FPS does
not necessarily produce the optimal sampling, in the sense that there may be
another r-covering and r-separated set with the same radius containing less
points.
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3.3 Voronoi tessellation

The sub-optimality of FPS leads us to the conclusion that we need a finer
criterion for the sampling quality than just saying that X ′ is an r-separated
r-covering. A somewhat better point of view is to think of sampling as repre-
sentation, consisting of replacing continuous regions on the surface by single
representative points. We are now going to embark on a discussion that will
lead us to a quantitative definition of the representation error, and will allow
us to construct a sampling strategy minimizing it.

Taking xi from the sampling X ′, we may say that xi represents all the
points on X that are closer to it than to any other point in X ′. Consequently,
the sampling X ′ partitions the surface X into N regions,

Vi(X ′) = {x ∈ X : dX(x, xi) < dX(x, xj), xj ∈ X ′}. (3.1)

The open set Vi(X ′) is called the Voronoi region of xi with respect to X ′,
and the collection of all Voronoi regions is called the Voronoi decomposition2

of the surface generated by X ′ [390]. For brevity, we will omit X ′ and write
simply Vi wherever possible.

To avoid degenerate cases, we will henceforth assume that no three points
in X ′ lie on the same geodesic, and no four points lie on the boundary of the
same metric ball in X . In the Euclidean case, where dX is the restriction of
dR2 , the latter means that no three points in X ′ are collinear (i.e., belong
to the same line), and no four points are cocircular (i.e., belong to the same
circle). We refer to these two condition by saying that the points X ′ are in
general position. General position can be given a probabilistic interpretation
by saying that if we randomly distribute a set of points on X , the probability
of them not being in a general position is zero.

Given a point x on X , we may construct a closed metric ball of some small
radius ρ around it, and gradually increase ρ until the ball intersects X ′ for
the first time. If x belongs to the Voronoi region Vi, the intersection will occur
at one point, xi (Figure 3.3, left). Another possibility is that x is equidistant
from two points xi and xj , in which case the intersection will be at xi and xj

(Figure 3.3, middle). In this case, we say that x belongs to the Voronoi edge
Vij = V i ∩ ∂V j separating the regions Vi and Vj (V i denotes the closure of
Vi, i.e., V i = Vi ∪ Vi). Voronoi regions separated by a Voronoi edge are said
to be adjacent. A third possibility is that x is equidistant from three points
xi, xj , xk (Figure 3.3, right). We will say that such x is the Voronoi vertex
Vijk = V i ∩ V j ∩ V k adjacent to the three Voronoi regions Vi, Vj , and Vk.3

Shortly, a point on X can lie either in the interior of a Voronoi region, or
on a Voronoi edge, or be a Voronoi vertex. This brings us to an alternative
way of defining a Voronoi decomposition. Consider the open set of all points,
which are closer to xi than to xj ,

Dij = {x ∈ X : dX(x, xi) < dX(x, xj)}.
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Figure 3.3. Voronoi diagram in the Euclidean plane. For each point x ∈ X, the
following three cases can be distinguished: x belongs to the interior of a Voronoi
region (left), x belongs to an edge shared by two Voronoi regions (center), and x is
a vertex shared by three Voronoi regions (right).

Such a set is called the domain of dominance of xi over xj , and its boundary,
∂Dij = {x ∈ X : dX(x, xi) = dX(x, xj)}, describes the locus of all points
on the surface that are equidistant from xi and xj . In the case X ⊂ R

2 and
d is a Euclidean metric restricted to X , ∂Dij is nothing but a straight line,
bisecting the segment xixj , and Dij is an open half-plane. The interior of the
Voronoi region of xi can be described as the intersection of the domains of
dominance of xi over other points in X ′,

Vi =
⋂

i�=j

Dij .

In the Euclidean case, Vi is the intersection of N − 1 open half-planes con-
taining xi, which is a polygon without a boundary. Moreover, because the
half-planes are convex and convexity is preserved under intersection, the re-
sulting polygon is convex and thus homeomorphic to an open disk (we leave
it to the reader to prove that a convex set is homeomorphic to a disk).

Observe that Voronoi regions are disjoint, yet their closures cover the en-
tire surface. This means that if we cut X along Voronoi edges, it will fall
apart into tiles, which are precisely the Voronoi regions. As we said before,
in the Euclidean case, these tiles are convex polygons. A finite collection of
disjoint open topological disks (usually referred to as cells), whose closures
cover the entire surface, is called a cell complex or a tessellation of X (from
tessella meaning “small tile” in Latin). A particular tessellation created by
decomposition of X into Voronoi cells {Vi} is called a Voronoi tessellation
(Figure 3.4).

The situation changes significantly when considering a non-Euclidean met-
ric. Figure 3.5 shows that on a general surface, it may happen that Voronoi
regions are neither convex nor homeomorphic to a disk. Although Euclidean
Voronoi decompositions are well-studied and understood, much less results
are available for the general case. An important result is the paper by Leibon
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Figure 3.4. Voronoi decomposition of a surface with a non-Euclidean metric.

and Letscher [248], showing the existence of a Voronoi tessellation of a general
Riemannian manifold sampled with “sufficient density.” To give a quantitative
definition of what is meant by “sufficient density,” the authors resort to the
notion of convexity radius. Recall that in Chapter 2, we defined a convex set
in X as a set in which the minimal geodesic between each pair of points lies
inside the set. The convexity radius of the surface X at a point x is the largest
r for which the closed ball Br(x) is convex in X . The convexity radius of the
entire X is simply the infimum of the convexity radii over all points in X . In-
formally, we may say that on the scale below the convexity radius, the surface
behaves very much like a Euclidean space – any interesting topological and
geometric properties, like the one in Figure 3.5, appear on larger scales. Lei-
bon and Letscher prove that if X ′ is an r-separated r-covering with r smaller
than 1

5 the convexity radius of X , then the Voronoi regions are topological
disks and the Voronoi decomposition generated by X ′ is a valid tessellation
of the surface [248, 301].

3.4 Centroidal Voronoi sampling and the Lloyd-Max
algorithm

The notion of Voronoi tessellation allows us to express the sampling of a
surface as a mapping y∗ : X → X ′, copying the interior of each Vi to its
closest point xi in X ′ (the boundaries shared by more than one Voronoi cell
can be copied to xi belonging to any of the intersecting cells). Thinking of
sampling in these terms, it is natural to quantify the error introduced by
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Figure 3.5. Left: Voronoi decomposition of a surface with insufficient sampling
density. The shaded Voronoi region is not homeomorphic to a disk. Right: increasing
the sampling density produces a valid tessellation. Observe that now the body is
decomposed into topological disks.

replacing x with its representation y∗(x). For that purpose, let us assume
x is chosen at random with uniform distribution on X , where by uniform
distribution we mean that the probability that x falls into a subset A on X is
proportional to the area of A. Formally, this can be written as

P(x ∈ A) =
μ(A)
μ(X)

=
1

μ(X)

∫

A

da,

where μ(X) is the area of X , da is the differential area element, and P stands
for probability. The representation error associated with a sampling X ′ can
be expressed as the variance of the random variable dX(x, y∗(x)),

ε(X ′) = Var(dX(x, y∗(x)))

=
1

μ(X)

∫

X

d2
X(x, y∗(x)) =

1
μ(X)

N∑

i=1

∫

Vi(X′)

d2
X(x, xi)da. (3.2)

In the Euclidean case, the latter expression becomes

ε(X ′) =
1

μ(X)

N∑

i=1

∫

Vi(X′)

‖x − xi‖2
2dx,
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which can be interpreted as the mean squared error of the representation.
The representation error ε(X ′) gives a quantitative measure of the sam-

pling quality and leads to the natural question of finding the best sampling.
Formally, we are looking for a set X ′ of N points on X , bringing the error
ε(X ′) to minimum among all sets of N points on X . A related problem is
finding the smallest sampling X ′ having ε(X ′) below some predefined value.
It appears that a similar question arises in a variety of fields. For example,
in image processing, a continuous domain of vectors encoding the intensities
of different colors in an image often need to be represented by a finite set of
symbols. Computation of such a representation is known as vector quantiza-
tion [185, 172]. In machine learning, pattern recognition, and data mining, we
encounter objects represented as vectors of features, and it is often required to
aggregate them into groups sharing some common trait. The process of parti-
tioning a space into such groups is termed clustering or unsupervised learning
[141].

It can be shown (see Problem 3.5) that in order for a sampling X ′ to
minimize ε(X ′), each point xi has to satisfy

xi = arg min
x∈Vi

∫

Vi

dX(x, x′)da.

A point minimizing4 the latter integral is called the intrinsic centroid5 of Vi

[140]. To understand the origin of this name, note that in the Euclidean case
the condition becomes

xi = arg min
x∈Vi

∫

Vi

‖x − x′‖2dx′ =

∫

Vi

xdx

∫

Vi

dx
,

which is simply the centroid (or center of mass) of the set Vi. A Voronoi tes-
sellation generated by a set of points xi, which are themselves the intrinsic
centroids of the corresponding Voronoi cells Vi, is called a centroidal Voronoi
tessellation. We refer to a sampling associated with a centroidal Voronoi tes-
sellation as to a centroidal Voronoi sampling. Such a sampling is optimal in
the sense of ε(X ′) and is not unique.

A simple way to compute a centroidal Voronoi sampling starts by picking
up an arbitrary sampling X ′ (produced, for example, using the farthest point
sampling algorithm), and computing the associated Voronoi tessellation. Next,
we compute the intrinsic centroids for each Voronoi cell and use them as a
new sampling X ′. Clearly, the Voronoi tessellation has changed and needs
to be recomputed. Repeating this process several times gives a reasonable
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approximation of a true centroidal Voronoi tessellation. The entire procedure
can be summarized as shown in Algorithm 3.2.

input : metric space (X, dX), initial set of points X ′.
output : optimal set of points X ′, minimizing ε(X ′).
repeat1

Construct the Voronoi tessellation associated with X ′.2

Compute the intrinsic centroids of Vi and set X ′ to be these points.3

until X ′ stops changing significantly4

Algorithm 3.2. Lloyd-Max algorithm.

This procedure is known as Lloyd-Max algorithm6 in signal and image
processing [255, 263, 256] and k-means in statistics [260]. We are not going
to explore the full details of this algorithm and refer the reader to [312] for
additional information. We only mention that Lloyd-Max algorithm is a very
simple alternating minimization procedure, which attempts to produce a se-
quence of samplings that decrease the value of ε(X ′) [107]. We will encounter
more sophisticated numerical recipes for minimization of functions in Chap-
ter 5.

Compared with the greedy farthest point sampling, which never changes
the locations of the points previously added to the sampling and optimizes
only the location of the next point, centroidal Voronoi sampling allows us
to change the locations of all the points. As a consequence, the produced
sampling is more uniform and may require less samples than one produced
by FPS. In fact, as the number of samples grows asymptotically, all Voronoi
cells converge to a hexagonal shape, which is known to produce the densest
possible tessellation (“honeycomb” tiling, called this way because it is often
encountered in Nature, see Figure 3.6). This result was known for a while
in the Euclidean case and has been proved only recently for two-dimensional
Riemannian manifolds [191].

Figure 3.6. Nature surprises us by producing a variety of living examples of
Voronoi tessellations, including the spot-shaped coloring of an African giraffe (left),
the pattern on the shell of a testudo hermanni turtle (middle), and the hexagonal
wax honeycomb cells built by honey bees (right).
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3.5 Connectivity

The sampling techniques we have been discussing so far approximate a con-
tinuous surface by a point cloud. Point clouds are the most primitive repre-
sentations of surfaces at the level of set theory and, in fact, capture only the
extrinsic geometry. In many cases, such a representation is too crude as it
does not convey any information about the relations between different points.
In our Antarctica exploration example, the only information a point cloud
X ′ gives us is the coordinates of the stations. Yet, such an information may
be insufficient. Suppose that an accident happens at station xi, and the re-
searchers request help from nearby stations. For that purpose, they need to
know which stations are located near xi, in order to get the aid as promptly
as possible.

More formally, we say that we want to know the neighborhood of xi in X ′,
which is denoted by N (xi). In our example, if the accident is so serious and
the aid is required so urgently that only people from stations in a radius of
two miles could arrive in time, we will define N (xi) as the ball of radius r = 2
around xi in X ′,

N (xi) = {xj ∈ X ′ : dX |X′(xi, xj) ≤ r}.

Alternatively, we can think of a situation where in case of a disaster, aid from
K nearest neighbors is required, and define the neighborhood N (xi) as the
set of K points closest to xi.

It is worthwhile noting that though in our example the neighborhood
N (xi) is related to the metric dX , in general it can be defined independently.
The notion of neighborhood is topological rather than geometric and can there-
fore exist in spaces even not equipped with a metric. However, because we are
dealing with surfaces that are Riemannian manifolds and thus equipped with a
metric structure, the most natural way to define the concept of neighborhood
is in the way presented above.

We say that two points are adjacent or directly connected if they belong
to the same neighborhood (it is common to exclude the point itself, i.e., xi is
not adjacent to itself). A natural requirement is that the adjacency relation
is symmetric, i.e., if xi is adjacent to xj , then xj is adjacent to xi. The
connectivity structure can be represented as an undirected graph with vertices
representing the samples and edges telling us which samples are adjacent
(see an example in Figure 3.1, top right). Because connectivity is a purely
topological notion, we actually do not need the coordinates of the vertices
xi to define this graph. Therefore, the vertices of the graph are indices I =
{1, . . . , N} representing the corresponding samples and the edges are pairs of
indices E = {(i, j) ∈ I × I : xj ∈ N (xi)}. Numerically, the connectivity graph
can be represented as an N × N matrix with elements

eij =
{

1 xi and xj are connected;
0 otherwise,
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Eight-neighborFour-neighbor Six-neighbor

Figure 3.7. Connectivity patterns on a Cartesian grid with four (left), six (center),
and eight (right) neighbors.

E is usually referred to as adjacency or connectivity matrix and is typically
sparse.

Given the connectivity E, we can assign a length function L(xi, xj) =
dX(xi, xj) between all adjacent points (i, j) ∈ E. Edge lengths can be ap-
proximated as the Euclidean distances L(xi, xj) ≈ ‖xi −xj‖2. If the sampling
is sufficiently dense, L is a good approximation to the local distances mea-
sured on the surface using dX , due to the fact that a Riemannian surface can
be locally approximated as a Euclidean space. In order to measure distance
between non-adjacent points in X , we may use the length metric dL (often
called the graph distance) induced by the length structure L of the graph. A
legitimate question is whether dL is a good approximation to dX . We defer
the answer to the next chapter.

Example 3.1 (four-, six-, and eight-neighbor connectivity). In numer-
ical analysis application, we often encounter two important connectivity pat-
terns of a regular planar Cartesian grid Z × Z. When each point of the grid
is directly connected to its top, bottom, left, and right neighbors, the con-
nectivity is referred to as four neighbor (Figure 3.7, left). If in addition the
top-left and bottom-right (or alternatively, top-right and bottom-left) neigh-
bors are connected, we have a six-neighbor connectivity (Figure 3.7, center).
If all the neighbors in the grid are connected, we call this the eight-neighbor
connectivity (Figure 3.7, right).

3.6 Delaunay tessellation

Because the connectivity graph is merely a formal expression of adjacency,
different definitions of adjacency will result in different connectivity. For ex-
ample, we may call adjacent a pair of points xi, xj , whose Voronoi cells are
adjacent (separated by a common Voronoi edge Vij). The corresponding con-
nectivity graph can be realized by connecting each pair of adjacent points by
a minimal geodesic Γij : [0, L] → X , which we assume to be parameterized
by arclength.7 A traveler walking along Γij on the surface starts his journey
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at Γij(0) = xi, makes half of his way in the Voronoi cell Vi, then crosses the
Voronoi edge Vij at Γij(L/2), and continues the remaining half of the jour-
ney in Vj , until he reaches the destination point Γij(L) = xj . The obtained
connectivity graph is maximal in the sense that no edge can be added to it
without intersecting the other edges.

Let xi, xj , and xk be three points whose Voronoi cells are adjacent, i.e.,
share a Voronoi vertex. The region on the surface enclosed by the paths Γij ,
Γik, and Γjk is called a geodesic triangle, which is a generalization of the
Euclidean triangle. Because the Voronoi vertex Vijk adjacent to Vi, Vj , and Vk

is equidistant from xi, xj , and xk, an open metric ball of radius r = dX(xi, x)
centered at Vijk is empty of any points of X ′. If the sampling is sufficiently
dense, the ball is convex. This implies that the closed ball Br(x) entirely
includes the geodesic triangle formed by xi, xj , and xk. Moreover, Br(x) is
the smallest metric ball enclosing the geodesic triangle and having the vertices
xi, xj , and xk on its boundary. Such a ball is called the circumscribed ball8 of
the geodesic triangle and is unique if the sampling is sufficiently dense [247].

Cutting the surface along the edges Γij splits it into tiles formed by the
geodesic triangles (regions enclosed by Γij), and if the surface has a boundary,
additional tiles between the outmost edges and the boundary. In [248], Leibon
and Letscher show that under the sampling density conditions that guarantee
the existence of a Voronoi tessellation, these tiles form valid tessellation of the
surface. Such a tessellation is called a Delaunay tessellation after the Russian
mathematician Boris Delaunay (1890–1980),9 who first described it in 1934
[133]. The cells and the edges of a Delaunay tessellation are called Delaunay
cells and Delaunay edges, respectively.10

We have already seen that the circumscribed ball of a Delaunay cell con-
tains no points of X ′ in its interior. This property is called the empty circum-
scribed ball property and is often used as an alternative, axiomatic definition
of the Delaunay tessellation. The radius of the circumscribed ball can be
thought of as a measure of coarseness of a geodesic triangle; the coarseness of
the entire tessellation is measured as the maximal coarseness of its cells [15]. It
appears that among all tessellations of X into geodesic triangles having X ′ as
the vertices (and, possibly, the non-triangular cells including the boundary),
the Delaunay tessellation has the minimal coarseness.11 Delaunay tessellation
also minimizes the total length of the edges,

∑
L(Γij) [247]. In the Euclidean

case, additional optimality properties are known. For example, the Delaunay
tessellation maximizes the sum of the inscribed circles radii, and the minimal
angle of all triangles [15].

3.7 Triangular meshes

Delaunay tessellation associated with a sufficiently dense sampling allows us
to decompose the surface into a finite set of continuous two-dimensional cells.
However, the definition of a Delaunay cell relies on the notion of geodesic
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triangle, which can be neither represented nor processed by a computer. A
practical way of constructing a continuous approximation of the surface is
by replacing the geodesic triangles with the Euclidean ones, built upon the
same vertices, i.e., constructing an approximation of the surface by “gluing” a
collection of planar triangular tiles along their edges (see Figure 3.1, bottom).
In computational geometry and computer graphics, such an approximation is
called a triangular mesh.12 In a sense, if a point cloud is a “zero-dimensional”
approximation of a surface, and a connectivity graph is a “one-dimensional”
approximation, a triangular mesh can be thought of as “two-dimensional” one.

In discrete geometry, a mesh is usually defined as an abstract structure of
the form (I, E, F ), consisting of a set of vertices I, edges E, and triangular
faces

F = {(i, j, k) ∈ I × I × I : (i, j), (i, k), (k, j) ∈ E}

(this is simply to say that a triangular face is composed of three edges). The
faces can be represented as an NF × 3 matrix T of indices, where the kth
row tk = (t1k, t2k, t3k), tik ∈ {1, ..., N} is the set of vertices constituting the kth
triangle and NF is the number of triangular faces.13

The object (I, E, F ) is purely topological, as it does not contain any ge-
ometric properties of the underlying surface. A geometric realization of the
mesh is defined by specifying the coordinates of the vertices in R

3, which can
be represented as an N × 3 matrix of coordinates X ′ with the kth row given
by (x1

k, x2
k, x3

k). Together, the matrix of faces T and the matrix of coordinates
X ′ give a complete description of the triangular mesh. This is one of the most
common representations of discrete surfaces used in computer graphics.

Example 3.2. A simple example of a triangular mesh is a tetrahedron (Fig-
ure 3.8). It has four vertices, six edges,14 and four triangular faces.

It is natural to think of the mesh as of a piecewise-planar approximation
of the underlying smooth surface X , defined as the union of all the triangular
faces, which we denote by

T (X ′) =
NF⋃

k=1

conv(xt1k
, xt2k

, xt3k
)

(here, conv(xt1
k
, xt2

k
, xt3

k
) is the convex hull the vertices of the kth triangle,

containing all the points belonging to this triangle). In the following, we will
use the term mesh referring to this piecewise planar approximation. Any point
x on the mesh T (X ′) can be represented providing the triangle index k and
the coefficients of the convex combination of the triangle vertices,

x = u1xt1k
+ u2xt2k

+ (1 − u1 − u2)xt3k
, ui ∈ [0, 1].

The vector (u1, u2) is called the barycentric coordinates [279] of x and consti-
tutes a local (face-wise) parameterization of the mesh.
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Figure 3.8. A tetrahedron considered from topological (left) and geometric (right)
point of view.

Considering a mesh T (X ′) as a topological space, we can ask whether it is
topologically equivalent to the underlying continuous surface. If the neighbor-
hood of each vertex can be continuously mapped into a disk (or to half-disk
in case the manifold has boundary vertices), we say that T (X ′) is a manifold
mesh. Equivalently, any edge in a manifold mesh belongs to at most two trian-
gles (or a single triangle if the edge is part of the boundary) [193]. Because we
assume that all our surfaces are manifolds, we consider only manifold meshes
as valid.

Example 3.3 (geometry images). In Chapter 2, we mentioned that some
surfaces can be represented by a global parameterization of the form x(U) =
(x1(U), x2(U), x3(U)), where U denotes the parameterization domain (for sim-
plicity, let us restrict the discussion to parameterization on the unit square
U = [0, 1] × [0, 1]). Sampling of parametric surfaces is convenient because
it can be done in the parameterization domain. We can sample parametric
surfaces by sampling the parameterization domain on a uniform Cartesian
grid U ′ =

{
(iΔu1, jΔu2)

}
, where Δu1 = 1/M and Δu2 = 1/N denote the

grid sampling step (Figure 3.9, left). Applying the parameterization on U ′,
we obtain a point cloud X ′ = (x1(U ′), x2(U ′), x3(U ′)), which can be stored
as three N ×M matrices. Such a representation can be thought of as a three-
channel geometry image, a term coined by Hugues Hoppe and his co-authors
[192]. Surfaces reconstructed by range acquisition devices such as structured
and coded light three-dimensional scanners are often readily representable as
geometry images [62]. A particular case of parameterization is the so-called
Monge form, given by (u1, u2, x3(u1, u2)) and representing a surface that can
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Parametric

u1
u2

surface Depth image

Figure 3.9. Scanned facial surface of one of the authors, given in parametric rep-
resentation (left). Representation of the same surface as a depth image (right).

be realized as the graph of a function x3(u1, u2). For a Monge surface, the rep-
resentation is even simpler as we only have to store the matrix of the x3(U ′)
values. Such a single-channel geometry image is often called a depth image or
height field (Figure 3.9, right).

The connectivity can be derived from the connectivity of the Cartesian
grid in the parameterization domain, like in Example 3.1 (see Figure 3.9, left).
The set of edges produced in this way defines a triangular mesh (Figure 3.9,
right). However, not every connectivity pattern results in a manifold mesh.
For example, eight-neighbor connectivity produces a mesh where some edges
are shared by four triangles, whereas a six-neighbor connectivity produces a
valid manifold mesh.

3.8� Local feature size and curvature-dependent
sampling

In Example 3.3, we have seen two ways to triangulate a surface: a valid
manifold mesh and an invalid non-manifold mesh with self-intersecting faces.
The reader may come to the conclusion that being a manifold is enough for
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Six neighbor connectivity

Eight neighbor connectivity

Figure 3.10. Representation of a geometry image as a triangular mesh. Top row:
six-neighbor connectivity produces a manifold mesh. Bottom row: eight-neighbor
connectivity produces an non-manifold mesh with self-intersecting faces.

the mesh to be valid. However, the following example shows that this is not
enough:

Example 3.4 (self-intersecting manifold mesh). Consider a manifold
mesh obtained by triangulating a planar patch (e.g., using six-neighbor con-
nectivity). A different intrinsically equivalent embedding of the planar patch
can be obtained by rolling it as shown in Figure 3.11 (left) and keeping the
triangulation. In this case, though we have a manifold mesh, it still contains
self-intersections (Figure 3.11, middle).

Example 3.4 accentuates the difference between two different notions of
mesh “validity.” Topological validity implies that the mesh is topologically
equivalent to the underlying surface (in other words, is a manifold mesh).
Validity in the geometric sense means that the realization of the mesh in R

3

does not contain self-intersecting faces.
Why is not topological validity sufficient for a mesh to be also geometrically

valid? The problem is easy to illustrate recalling the step we made when
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Figure 3.11. A manifold mesh representing a smooth surface (left) can be self-
intersecting, depending on the embedding (middle). Making the sampling denser
allows us to overcome the problem (right).

passing from Delaunay tessellation to a triangular mesh, replacing geodesic
triangles by Euclidean ones. Whereas the definition of the former is intrinsic,
the latter is extrinsic, i.e., depends on the specific embedding. In the case
shown in Example 3.4, depending on the embedding of the surface in R

3,
the Euclidean distance between some points may be much smaller than the
geodesic ones. Therefore, replacing the geodesic triangles by Euclidean ones
does not guarantee that the resulting triangular mesh will not contain self-
intersections.

An additional condition that guarantees a geometrically valid Delaunay
triangulation has to do with the way the surface is embedded into the Euclid-
ean space. First, we want our mesh to be topologically equivalent (homeomor-
phic) to the underlying smooth surface. Secondly, we want the embedding to
be free of self-intersections. It can be shown that a smooth compact surface X
embedded into R

3 has an open envelope VX (an open set containing the sur-
face X), such that every point u in VX is continuously mappable to a unique
point x on X , realizing the distance from u to X [156] (we leave the proof as
Problem 3.9). This implies that if our triangular mesh T (X ′) is completely
contained in VX , then X and T (X ′) can be continuously mapped one to the
other, and particularly, this guarantees that our triangular mesh is valid.

The question is how to make sure that this condition is satisfied. The
definition of the envelope VX assumes that every point in it has a unique
nearest point on X , otherwise the map between VX and X is not well-defined.
In other words, all the problematic points are those points in R

3 that are
equidistant from two or more points on X . The closure of the set of all such
points is called the medial axis of X . Medial axis is sometimes referred to
as medial axis transform (MAT), symmetric axis, a term attributed to Blum
[39, 40, 41], who introduced this notion in the context of shape description
and recognition of biological applications, and skeleton [225]. The latter term
is used predominately in image processing, and the reason for this name is
clear from a two-dimensional example shown in Figure 3.12.
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Figure 3.12. Example of medial axis transform (skeleton) of a two-dimensional
shape used in image processing. Black indicates the locus of points equidistant from
the boundary of the shape. The resemblance of the medial axis to the human body
“bones” explains the term skeleton used in image processing.

The distance from a point x on X to the medial axis is called the local
feature size and denoted here by ρ(x) [7]. Local feature size is related to the
maximum curvature radius of the surface,

ρ(x) ≤ 1
max{κ1(x), κ2(x)} , (3.3)

where κ1 and κ2 are the principal curvatures of X at the point x. Unlike the
Gaussian curvature, the maximum curvature radius is an extrinsic quantity.
A global bound on the local feature size is called the reach of the surface X ,
defined as the distance of X to its medial axis [156].

Based on the result of Amenta and Bern [7], Leibon and Letscher [248]
showed that if the surface is sampled sufficiently densely, such that for every
x ∈ X , an open ball of radius 1

4ρX(x) contains a point of X ′, it is guaranteed
that the triangular mesh T (X ′) formed by Delaunay tessellation does not in-
tersect the medial axis. Consequently, T (X ′) is completely contained in VX ,
which implies a valid triangulation. This condition becomes more intuitive if
we interpret it as a curvature-adaptive sampling: at point where the surface
is more curved, the sampling is denser. We can see that the condition on sam-
pling density heals the problem we observed in Example 3.4: if the sampling
density is increased as shown in Figure 3.11 (right), the triangulation becomes
valid.
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3.9� Approximation quality

Using a triangular mesh as an approximation of our surface, we can approxi-
mate various geometric quantities. As an example of such quantities, we will
consider here the area and the normals to the surface, which play an impor-
tant role when measuring extrinsic similarity of discretized shapes. Intrinsic
geometric invariants of shapes, for which we will need to compute geodesic
distances on triangular meshes, will be discussed in the next chapters.

The area of X can be approximated as the sum of the areas of all the
triangular faces of T (X ′),

μ(X) ≈
NF∑

k=1

1
2
‖(xt2k

− xt1k
) ∧ (xt3k

− xt1k
)‖2,

using a simple formula for triangle area (see Problem 3.12). The normals to
the surface are approximated as the normals to the triangles of T (X ′). For
triangle k, the normal can be computed as the cross-product,

nk = (xt3k
− xt1k

) ∧ (xt2k
− xt1k

).

We implicitly assume that the triangle vertices are numbered consistently
such that all the normals are pointing inwards or outwards. Along the edges,
the average of the normal vectors in the two adjacent triangles is used. At
vertices, the normal is approximated as the average of the normals of the
triangles sharing the same vertex [284].

An important question the reader should ask at this point is how good an
approximation of geometric quantities is possible with a given mesh, and in
particular, is it enough to have a valid mesh to approximate well the underly-
ing surface? The first and the most obvious requirement is that the piecewise
planar approximation T (X ′) is “close” to the continuous surface X . A simple
way to quantify this proximity is by regarding X and T (X ′) as subsets of R

3

and measuring the minimum size of envelopes (closed neighborhoods) that
have to be created around X and T (X ′), such that X is completely contained
in the envelope around T (X ′) and vice versa. More formally, we can define,

dH,R3(X, T (X ′)) = max

{

sup
x∈X

dR3(x, T (X ′)), sup
x′∈T (X′)

dR3(x′, X)

}

,

called the Hausdorff distance after the German mathematician Felix Hausdorff
(1868–1942), who introduced it in 1914 [200].

Though the Hausdorff distance allows us to measure how “close” T (X ′)
and X are to each other, it is too crude to express the quality of approximation
of many geometric quantities. In order to accentuate this problem, let us
analyze the following example shown by Hermann Schwartz (1843–1921) in
1890 [346] and named in his honor15:
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N= 1 ,0 M= 10 N= 2 ,0 M= 20 N= 1 ,0 M= 20

Figure 3.13. Schwartz lantern is an example of triangular mesh that can be made
arbitrarily close to a cylinder, yet its area and normals will be arbitrarily different
from those of a cylinder. Shown (left to right) are examples with N = M = 10,
N = M = 20, and N = 10, M = 20.

Example 3.5 (Schwartz lantern). The Schwartz lantern is a triangular
mesh approximating a cylindrical surface, constructed in the following way:
a planar rectangular patch of size 2π × 1 is divided into N × M rectangles.
The patch is then rolled to form a prism. Each of the N × M rectangular
faces is further replaced by four triangular faces, by adding a vertex lying on
the cylinder As the result, a shape shown in Figure 3.13 is obtained. Setting
M = N , the area of the Schwartz lantern will approach 2π as N grows to
infinity. Yet, if we set M = N3, the area will become infinite in the limit
N → ∞. The approximated normals in this case tend to be orthogonal to the
normals of the continuous surface [284].

Schwartz’s example shows that while a triangular mesh can be made infinites-
imally close in the sense of the Hausdorff distance to the continuous one
(taking N and M to infinity, dH,R3(X, T (X ′)) vanishes), their areas and nor-
mals can differ arbitrarily. This gives a negative answer to our question: in
general, without additional assumption, a valid triangular mesh does not nec-
essarily approximate well a continuous surface, and the approximation quality
depends on the properties of the triangulation itself.

The reason for a pathological behavior in the Schwartz lantern is that the
triangles tend to become infinitely “thin.” Morvan and Thibert [284] showed
that if the triangulation is sufficiently fat (i.e., does not have pathologically
elongated triangles like in the Schwartz lantern), a bound exists for the area
approximation error. A similar result exists for the normals. Amenta and Bern
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[7] showed that if the triangles are sufficiently small and fat such that they
can be inscribed in a ball with a radius sufficiently small compared with the
local feature size, the maximum angle between the actual and the approximate
normals can be bounded.16

Suggested reading

A presentation of geometry images and their applications in computer graph-
ics can be found in [192, 335, 258]. Farthest point sampling strategy is in-
troduced for images in [151] and extended for surfaces in [312, 313]. In the
latter two papers, curvature-adaptive sampling schemes are also studied. For
a systematic overview of Voronoi tessellations (mainly Euclidean), the reader
is referred to [14, 15]. Voronoi tessellations of parametric surfaces are dis-
cussed in [235, 236]. Centroidal Voronoi tessellations and a variety of their
applications are explored in [140]. For proofs and discussions of properties of
Delaunay tessellations of general Riemannian manifolds, the reader is referred
to [247, 248]. Computation of Voronoi tessellations of surfaces using the fast
marching method is described in [226, 227]. A good introduction to discrete
geometry of polyhedral meshes can be found in [271] and on the Discrete
differential geometry site ddg.cs.columbia.edu. Estimation of differential
geometric properties on discretized surfaces is discussed in [272]. Approxima-
tion properties of triangular surfaces are discussed in [166, 7, 284, 101]. For a
study of properties of the medial axis transform, refer to [400, 228].

Software

Both the VTK and ITK toolboxes provide basic surface manipulation routines
in C++. An excellent tool for mesh simplification is Michael Garland’s QSlim
C++ library [168]. A MATLAB interface to QSlim is provided in TOSCA.
Farthest point sub-sampling for triangular meshes in MATLAB is also avail-
able as a part of TOSCA. Remeshing and surface extraction routines are
also available in the Afront C++ library, based on [343, 342, 338]. One of the
fastest codes for construction of Delaunay tessellations, Voronoi diagrams, and
convex hulls in R

n is Qhull. An interface to Qhull is available in MATLAB
through the functions qhull, convhulln, delaunayn, and voronoin.

Problems

3.1. Show that if in a compact metric space there exists an r/3-covering con-
taining n points, then an r-separated set cannot contain more than n points.

3.2. Show that in a compact metric space, a maximal r-separated set is an
r-covering.
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3.3.� Prove that the farthest point strategy produces an r-separated r-
covering.

3.4. Prove that a convex set is homeomorphic to a disk.

3.5. Prove that centroidal Voronoi tessellation minimizes the variance of the
representation error.

3.6. Show an example of a geodesic triangle, whose circumscribing ball is
non-unique due to insufficient sampling density.

3.7. Show an example when the Delaunay tessellation of a surface does not
exist due to insufficient sampling density.

3.8. Show an example when the Delaunay tessellation is not unique.

3.9. Show that given a smooth compact surface X embedded into R
3, there

exists an open set UX such that X ⊆ UX , and a continuous map ξ : UX → X ,
such that for all u ∈ UX , the point ξ(u) is the orthogonal projection of u onto
X and it is unique. Hint: see [156].

3.10. Show that |ρ(x) − ρ(x′)| ≤ dR3(x, x′) for all x, x′ ∈ X .

3.11. Show the relation between the local feature size and the maximum cur-
vature radius in equation (3.3).

3.12. Prove that the area of a triangle with vertices x1, x2, x3 ∈ R
3 can be

expressed as 1
2‖(x2 − x1) ∧ (x3 − x1)‖2.

3.13. Validate the results of Example 3.5 by a formal proof.

Notes
1The closedness of X is required in order to have all the infima and suprema

realized.
2Voronoi regions are named after the Russian mathematician Georgy Voronoi.

For the sake of historical justice, we should note that the concept of Voronoi re-
gions emerged independently in different fields of science. The earliest mentioning
in René Descartes’ Principia Philosophiae dates back to the seventeenth century.
Voronoi regions were formally described by the German mathematician Gustav Leje-
une Dirichlet in his 1850 paper [138], almost sixty years before Voronoi’s renowned
work [390]. As a tribute to Dirichlet, Voronoi regions are sometimes called Dirichlet
or Voronoi-Dirichlet regions. Other synonyms are Thiessen polytopes or polygons
[378] in meteorology and geography, Wigner-Seitz zones in chemistry and physics,
and domains of action in crystallography.

3If the points of X ′ are not in general position, there might be more than three
Voronoi regions adjacent to a Voronoi vertex.

4If the sampling is sufficiently dense, the existence and uniqueness of the mini-
mizer is guaranteed by the convexity of Vi.



Notes 65

5The intrinsic centroid, defined in terms of the intrinsic metric dX on the surface,
should be distinguished from its extrinsic counterpart, defined in terms of the Eu-
clidean metric in R

3. In Chapter 6, we are going to encounter the extrinsic centroid
when discussing moment signatures.

6As a historical remark, we should mention that Lloyd and Max were not coau-
thors. The algorithm was first proposed by Lloyd in 1957 [255, 256]. Unfortunately,
Lloyd’s paper was not published in a wide-audience journal and remained unno-
ticed, until Max, not acquainted with Lloyd’s work, rediscovered the algorithm in
1960 [263]. As a tribute to both researchers, the algorithm is usually referred to as
Lloyd-Max quantization algorithm.

7A graph created in this way is dual to the Voronoi tessellation.
8A related notion is that of a minimum bounding ball, which is the smallest metric

ball containing the geodesic triangle (without the demand that all vertices lie on the
boundary of the ball). The simplest example where the two notions do not coincide
is an obtuse triangle in the plane, whose minimum bounding ball has the hypotenuse
as diameter and does not pass through the opposite vertex.

9It is widely believed that the name Delaunay suggests his French origins. In
reality, Boris Delaunay got his surname from an Irish ancestor called Deloney, who
was among the mercenaries left in Russia after the Napoleonic invasion of 1812. The
closest transliteration from Russian should be “Delone,” yet, as Delaunay published
his works in French, he preferred to transliterate his name à la française.

10The term Delaunay geodesic triangulation (or simply Delaunay triangulation)
is also frequently used in the discrete geometry referring to Delaunay tessellation,
especially in the Euclidean case. However, we reserve the term triangulation to
denote a different concept.

11Coarseness can also be defined in terms of the minimum bounding ball. In the
Euclidean case, d’Azevedo and Simpson [124] showed that this alternatively defined
measure of coarseness is also minimized by the Delaunay tessellation. To the best
of our knowledge, no analogous property has been studied in the general case.

12Approximation of a surface by a triangular mesh constitutes a particular case
of a more general polyhedral approximation, where the surface is represented as a
collection of polygons glued along their edges.

13Note that the adjacency matrix E can be obtained from T .
14Being more rigorous, the tetrahedron has twelve edges, if we count the symmetric

ones as well (i.e, if we consider, for example, (1, 2) and (2, 1) as separate edges).
15Schwartz showed his lantern as an example of erroneous definition of the area

of a curved surface (the paper entitled in French Sur une définition erronée de l’aire
d’une surface courbe [346]). This paper did not address the approximation quality
in terms of the Hausdorff distance, which had not been defined yet at that time.

16A related bound expressed in terms of curvature appears in [284].



As regards obstacles, the shortest distance
between two points can be a curve.

B. Brecht

4

Shortest Paths and Fast Marching Methods

Dealing with discrete representation of surfaces in the previous chapter, our
main concerns were finding a sampling approximating the surface as a set
of points and constructing a polyhedral approximation, which conveys the
extrinsic geometry of the surface with sufficient accuracy. However, because
a surface is also characterized by an intrinsic geometry, such a discretization
is incomplete until the length and the metric structures are also discretized.
The ability to approximate the intrinsic geometry of a surface is crucial in
our exploration of the non-rigid world. It is also important for producing the
sampling itself. Recall that in our description of the farthest point sampling,
we tacitly assumed the availability of the intrinsic metric, which measures the
length of the minimal geodesic connecting two points on the surface. In this
chapter, we explore numerical tools that will allow us to compute the intrinsic
metric and the underlying shortest paths. We start our discussion with graphs
and then extend it to triangular meshes.

4.1 The shortest path problem

Imagine you plan a railroad trip from Paris to Vienna, and because there is
no direct connection between the two cities, you may choose between different
routes shown in Figure 4.1. Your travel agent informs you that the railroad
operator charges according to mileage. Which route is the most convenient?
The simplest way to answer this question is to go over all possible paths
between Paris and Vienna (seven in our case, if we exclude loops, i.e., paths
passing through the same point more than once) and calculate their lengths:

1. Paris–Brussels–Prague–Vienna (183 + 566 + 194 = 943 miles);
2. Paris–Brussels–Munich–Vienna (183 + 504 + 285 = 972 miles);
3. Paris–Brussels–Bern–Munich–Vienna (183+407+ 271+ 285 = 1146

miles);
4. Paris–Bern–Brussels–Prague–Vienna (346 + 407 + 566 + 194 = 1513

miles);

A. Bronstein et al., Numerical Geometry of Non-Rigid Shapes, 67
Monographs in Computer Science, DOI 10.1007/978-0-387-73301-2 4
c© Springer Science+Business Media, LLC 2008
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Paris

Bern

Brussels

ViennaMunich

Prague

346

18
3

407

271
285

566

504 194

Figure 4.1. Visualization of the shortest path problem in graphs: a traveler has to
choose the best route from Paris to Vienna. The route Paris–Bern–Munich–Vienna
(solid line) appears to be the shortest.

5. Paris–Bern–Brussels–Munich–Vienna (346+407+ 504+ 285 = 1542
miles);

6. Paris–Bern–Munich–Brussels–Prague–Vienna (346+271+504+566+
194 = 1881 miles); and

7. Paris–Bern–Munich–Vienna (346 + 271 + 285 = 902 miles).

Clearly, the preferred route is the last one. Note that the answer was obtained
by exhaustively searching all possible routes, which is not a feasible algorithm,
as its complexity grows exponentially as the number of cities increases. Indeed,
if it were used by GPS navigators in our cars, we could wait years before
getting the best route to the location of interest. This example serves as an
illustration to a fundamental graph theoretic problem known as the shortest
path problem, which arises in a variety of applications including networking,
traffic control, and navigation to name just a few. Our problem of computing
the distances between points on a surface approximated as a graph also falls
into this category.

Formally, we consider an undirected graph (X, E) endowed with a length
function L : E → R. Recall that when the graph represents a surface, the
length is simply given by the Euclidean distance L(x, x′) = ‖x − x′‖2 for
every two adjacent points (x, x′) ∈ E. A path between two points is a sequence
Γ (x, x′) = {xk}K

k=1 with x1 = x, xK = x′, and (xk, xk+1) ∈ E. The length of
a path is given by the sum of the lengths of its edges,

L(Γ ) =
K−1∑

k=1

L(xk, xk+1).

As we have previously seen, such a length structure induces the intrinsic metric
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dL(x, x′) = min
Γ

L(Γ (x, x′)).

The shortest path problem consists essentially of computing dL. Depending
on the application, we can distinguish between three problems: computation
of dL(x1, x2) for a given pair of points x1, x2 ∈ X ; computation of a distance
function or map d(x) = dL(x0, x) from a given source x0 ∈ X to every x ∈ X ;
and the computation of a distance matrix dij = dL(xi, xj) of all pair-wise
distances.

4.2 Dijkstra’s shortest path algorithm

Observe that given a shortest path Γ (x0, x) from x0 to x and some point x′ on
it, the two sub-paths Γ (x0, x

′) and Γ (x′, x) constitute shortest sub-paths from
x0 to x′ and from x′ to x, respectively. Indeed, if for example there existed a
shorter path Γ̃ (x0, x

′) from x0 to x, then by concatenating it with Γ (x′, x),
we could construct a new path Γ̃ (x0, x) = Γ̃ (x0, x

′) ∪ Γ (x′, x) from x0 to x′

with the length

L(Γ̃ (x0, x)) = L(Γ̃ (x0, x
′)) + L(Γ (x′, x))

< L(Γ (x0, x
′)) + L(Γ (x′, x)) = L(Γ (x0, x)).

This, however, would be a clear contradiction to the fact that Γ (x0, x) has
minimum length. This apparently obvious fact is a particular instance of the
Bellman principle of optimality, which guides a large family of methods known
as dynamic programming. A direct consequence of the Bellman principle is
that for every x ∈ X , there exists some point x′ ∈ N (x0) such that

dL(x0, x) = L(x0, x
′) + dL(x′, x),

that is, given the second-last point x′ in the shortest path between x0 and x,
it can be decomposed into two shortest sub-paths: the one between x0 and x′,
plus the edge (x′, x). This relation does not give us, however, any indication of
how to select such an x′ among all the points contained in N (x). Yet, because
dL(x0, x) is required to be the shortest distance, we need to select the one
that minimizes L(x0, x

′) + dL(x′, x), i.e.,

dL(x0, x) = min
x′∈N (x)

{L(x0, x
′) + dL(x′, x)}. (4.1)

The latter means that the problem of computing dL(x0, x) can be reduced to
a smaller sub-problem of computing dL(x0, x

′). Equation (4.1) can be applied
recurrently until dL(x0, x0) = 0 is reached. Such a recursive relation is called
a dynamic programming functional equation.

It is probable that similar reasoning guided the Dutch computer scientist
Edger W. Dijkstra when in 1959 he proposed his celebrated algorithm for the
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input : undirected graph (X, E), length function L : E → R,
source point x0 ∈ X.

output : distance map d : X → R from the source point.

Initialization
foreach point x ∈ X do1

d(x) ←− ∞2

end3

d(x0) ←− 04

Q ←− X5

Iteration
while Q �= ∅ do6

Get the point with smallest value of d(x)
x ←− arg minx∈Q d(x)7

Update all points x′ adjacent to x
foreach x′ ∈ N (x) ∩ Q do8

d(x′) ←− min{d(x′), d(x) + L(x, x′)}9

end10

Remove x from the unprocessed set
Q ←− Q \ {x}11

end12

Algorithm 4.1. Dijkstra’s shortest path algorithm.

shortest path problem [137]. Essentially, Dijkstra’s algorithm (Algorithm 4.1)
is a dynamic programming successive approximation procedure based on (4.1).
It works by keeping for each point x the length d(x) of the shortest path
found so far between x0 and x (i.e., an approximation to the exact distance
dL(x0, x)). Initially, this value is zero for the source point (d(x0) = 0) and
infinity for all other points. The algorithm then processes all the points in X
in an attempt to improve the approximation d(x). Each point is processed
exactly once. Initially, all points are marked as unprocessed and placed into
the set Q. Starting with x0, the next point to be processed each time is the one
whose d(x) value is the smallest over all unprocessed points. The processing
of x ∈ X consists of updating the distance approximation of points x′ ∈ N (x)
adjacent to x. The shortest path from x0 to x can be extended to a path
from x0 to x′ by adding the edge (x, x′) at the end. The new path length
d(x) + L(x, x′) is taken as the new approximation of d(x′) unless the current
value of d(x′) is smaller (Step 9 in Algorithm 4.1). Once processed, the point
is removed from Q. When all points are processed (i.e., when Q is empty), the
algorithm stops and returns d(x), which contain the exact values of dL(x0, x).

Example 4.1 (Dijkstra’s algorithm). Running Dijkstra’s algorithm on our
Europe touring example with x0 = Paris would produce the following sequence
of events visualized in Figure 4.2:
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1. Paris is processed by updating the approximations of Brussels and Bern
to 183 and 346.

2. The minimum unprocessed point is Brussels (d = 183). The approxi-
mations of Munich and Prague are be updated to 183 + 504 = 687 and
183+566 = 749, respectively, whereas the approximation of Bern remains
unchanged, as 346 < 407 + 183.

3. The minimum unprocessed point is Bern (d = 346). The only unprocessed
adjacent point is Munich, which is updated to 346 + 271 = 617.

4. The minimum unprocessed point is Munich (d = 617). The only unpro-
cessed adjacent point is Vienna, which is updated to 617 + 285 = 902.

5. The minimum unprocessed point is Prague (d = 749). The only unpro-
cessed adjacent point is Vienna, which is not updated, as 902 < 749+194.

6. The only remaining unprocessed point is Vienna, yet it has not unpro-
cessed adjacent points, so no update is performed.

Updating a single point requires finding the minimum of d over all elements
of Q (Step 7). As N = |X | points are updated, this results in O(N2) time
complexity. However, because in our case each point is connected only to
its local neighbors so that the graph has NE = O(N) edges, extraction of
the minimum value can be implemented more efficiently using a binary or a
Fibonacci heap, reducing the time complexity to O(N log N).

Dijkstra’s algorithm computes the distance from a single point in X to all
other points (one-to-all). If we need to compute the distances between all pairs
of points in X , we have to run the algorithm N times, each time selecting a
different point in X as the source.

4.3 Fast marching methods

Dijkstra’s algorithm is, beyond any doubt, one of the best choices for finding
shortest path lengths in graphs. However, if we try to use it for measuring
distances on surfaces, we are likely to encounter serious discrepancies between
the measured distances and the expected ones. To understand why this hap-
pens, consider a unit square patch in the plane evenly sampled on a regular
Cartesian grid and approximated as a graph with four-neighbor connectivity
(Figure 4.3). We expect the shortest path between the lower left and the up-
per right corners of the square to be simply the straight line of length

√
2

connecting them. Yet, Dijkstra’s algorithm measures a length of 2, no matter
how we refine the grid. We say that the distance measured by Dijkstra’s al-
gorithm in inconsistent with the Euclidean distance. There is no flaw in the
algorithm itself; in fact, every graph-based shortest path algorithm will yield
the same result.
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Figure 4.2. Running Dijkstra’s algorithm on the European tour example. The
algorithm successively improves the approximation of the shortest distance to Paris
(iterations are presented from left to right, top to bottom order). White circles
indicate unprocessed vertices, dashed circles stand for vertices being processed, and
bold circles indicate processed vertices.

The inconsistency is due to the fact that we are allowed to move in the
graph only parallel to the axes. This way, there exist many shortest paths
between the two corners of the square (two of them are depicted as solid lines
in Figure 4.3) all having the same length of 2 and giving no apparent reason
to prefer one over the other. Formally, the intrinsic metric induced by the
four-neighbor connectivity is called the L1 or Manhattan distance
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Figure 4.3. Shortest paths measured by Dijkstra’s algorithm (solid bold lines) do
not converge to the true shortest path (dashed diagonal), no matter how much the
grid is refined.

d(x1, x2) = ‖x1 − x2‖1 =
∑

i

|xi
1 − xi

2|

(in analogy to the way a taxi driver measures distance in Manhattan’s orthog-
onal grid of streets). This metric is clearly inconsistent with the Euclidean (L2)
distance

d(x1, x2) = ‖x1 − x2‖2 =
√∑

i

(xi
1 − xi

2)2.

We could replace the four-neighbor connectivity by the eight-neighbor one;
this would definitely resolve the inconsistency in cases where the path of
interest is a diagonal directed at 45◦, yet the problem would still remain,
for example for a diagonal path of 22.5◦.

The inconsistency of the metric, usually termed as metrication error, ap-
pears to be an inherent problem of representing the surface as a graph.1

However, it could be resolved by letting the paths pass “between” the graph
edges. Practically, this implies transition to a polyhedral representation of the
surface, which allows the paths to traverse the faces of the polyhedron with-
out being restricted to the edges. This, of course, requires a new algorithm
for computing the shortest path lengths. Here enters a family of algorithms
called the fast marching methods introduced independently by Sethian [348]
and Tsitsiklis [383] in 1995. Sethian presented a method for computing consis-
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tent distance maps on regular orthogonal grids, which was later extended to
general triangular meshes by R. K. and Sethian [226]. R. K. and Sethian also
proposed the geometric interpretation of fast marching methods. Because our
objects of interest are non-regular meshes, we focus on the latter algorithm,
assuming the surface is given as a triangular mesh.

In order to understand how fast marching works, we start with an illus-
tration. Imagine an imprudent visitor that leaves unextinguished fire at some
location in a natural reserve. The flame quickly becomes a forest fire, which
expands outwards with constant velocity of 1 m/sec. Trees reached by the
fire are consumed so the fire never propagates backward. When the firemen
arrive, they find the flames so fierce that every effort to extinguish them is
in vain. The best they can do is to record the fire front position at different
points in time; using these measurements, the firemen can predict when the
fire arrives to unburnt regions of the forest and order evacuation of the people.
The firemen soon discover that the time of arrival of the fire front to a point
in the forest is related to the shortest distance from that point to the source
(i.e., the point where the fire started). It appears that the fire traverses the
route having the smallest propagation time (and hence, the shortest length).
In optics and acoustics this fact is known as Fermat’s principle or, in a more
general form, the least action principle. In plain language, Fermat’s princi-
ple states that light traveling between two points always chooses the quickest
path. Snell’s law of refraction follows directly from this principle.

We associate the distance function d(x) = dX(x0, x) with the time of
arrival of the front to a point x. Making an infinitesimal step in a direction
v ∈ TxX , the value of d changes by

d(x + v) − d(x) = Dvd(x) + O(‖v‖2), (4.2)

where Dvd is the directional derivative we have already encountered in Chap-
ter 2. Dvd is a scalar measuring the change in the value of d as we make a
differential step in the direction v. Among the different directions a vector
v may have, there is some v1 ∈ TxX such that dX(x, x0) = dX(x + v1, x0).
Such a direction, characterized by Dv1d(x) = 0, is said to be tangential to the
front at the point x. On the other hand, if we make a step in the perpendic-
ular direction v2, the value of d will change the most. Such a direction of the
steepest change of d : X → R is usually referred to as the intrinsic gradient
of d at the point x, denoted by ∇Xd(x). Formally, the intrinsic gradient is a
map ∇Xd : TxX → TxX , satisfying 〈∇Xd(x), v〉 = Dvd(x) for any v ∈ TxX .

Thinking of d as a function of x ∈ R
3, we may also define its extrinsic

gradient as a map ∇xd : R
3 → R

3 satisfying

〈∇xd(x), dx〉R3 =
d

dt
d(x + t dx)

∣
∣
∣
∣
t=0

(4.3)

for any dx ∈ R
3. In the standard Euclidean basis, ∇xd can be expressed as

the vector of partial derivatives,
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∇xd =
(

∂d

∂x1
,

∂d

∂x2
,

∂d

∂x3

)T

, (4.4)

which is usually referred to simply as “the gradient of d” in multivariate
calculus. In the coordinate of the parameterization x : U → X , the intrinsic
gradient can be obtained by projecting its extrinsic counterpart on the tangent
space of X ,

∇Xd = J(JTJ)−1JT∇xd, (4.5)

where J = (x1, x2) is the 3 × 2 Jacobian matrix, whose columns span the
tangent space of X at the point x. We leave the formal proof to the reader as
Problem 4.8.

It appears that for a distance function, the direction of the steepest change
of d coincides with the direction of the front propagation,2 which is also the
direction of the shortest path connecting x0 with x. Formally, if Γ : [0, L] → X
is a minimal geodesic such that Γ (0) = x0 and Γ (t) = x, then

.

Γ (t) =
d

dt
Γ (t) = −∇Xd(Γ (t)). (4.6)

Since Γ is a geodesic, ‖
.

Γ‖2 = 1 (a formal proof is left to the reader as
Problem 4.1). We can therefore conclude that a distance map d has to satisfy

||∇Xd(x)||2 = 1 (4.7)

with the boundary condition d(x0) = 0. This partial differential equation is
called the eikonal equation (from Greek εικων for “image”), which points
to its optical origin. Note that along geodesics, the eikonal equation reduces
to the ordinary differential equation (4.6), called the characteristic equation
[106, 225]. Computation of the distance map d(x) requires solution of the
eikonal equation,3 whose characteristics (curves on which the partial differen-
tial equation becomes an ordinary differential equation) are minimal geodesics.

Fast marching (Algorithm 4.2) is a numerical procedure that solves the
eikonal equation by simulating wavefront propagation. Technically, it is a dy-
namic programming successive approximation method, very similar to Dijk-
stra’s algorithm, and can be considered a continuous version of the latter.
Fast marching keeps for each point x on the mesh the time of arrival d(x) of
the wave front originating in x0. Because of the equivalence of path length
and arrival time, we are going to switch freely between these two terms. The
initial approximation of d(x) is, like in Dijkstra’s algorithm, zero at x0 and
infinity elsewhere. The algorithm classifies the points of the mesh into three
categories, which we chose to label with black, red and green colors, suggested
by the forest fire example. Black points are points where the arrival time has
been computed and is not going to change in the future. Green points are
unprocessed points, for which the arrival time has not been computed yet
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input : non-obtuse triangular mesh (X, T ), source point x0.
output : distance map d : X → R from the source point.

Initialization
foreach point x ∈ X do d(x) ←− ∞1

d(x0) ←− 02

B ←− {x0}3

R ←− N (x0)4

G ←− X \ (B ∪ R)5

Iteration
while B �= X do6

Get the point with smallest value of d(x)
x1 ←− arg minx∈R d(x)7

Update all triangles that share x
foreach triangle (x1, x2, x3) ∈ {(x1, x2, x3) ∈ T : x2 ∈ X, x3 ∈ Bc}8

do
R ←− R ∪ {x3}9

Update (x1, x2, x3)10

end11

Remove x1 from the unprocessed set
R ←− R \ {x1}12

B ←− B ∪ {x1}13

end14

Algorithm 4.2. Fast marching algorithm.

(corresponding with live trees). Red points are those belonging to the prop-
agating wave front, which can be considered an interface between the black
and the green regions of the mesh. In our forest fire example, red points cor-
respond with trees that are currently in flames. Initially, only the source x0 is
marked as black and all points adjacent to it are marked as red. The remain-
ing points are marked as green. Like Dijkstra’s algorithm, at each iteration
we process the red point with the smallest value of d(x) by updating the ap-
proximation of all the non-black points in triangles sharing it. The red point
is then tagged as black and the updated adjacent points are tagged as red.
The process continues until all points become black.

The numerical heart of the fast marching method and its main difference
from Dijkstra’s algorithm is hidden in the update procedure (Step 10 in Algo-
rithm 4.2). Recall that in Dijkstra’s algorithm the path was restricted to the
graph edges, and a graph vertex was updated each time from an adjacent ver-
tex. In fast marching, because the path can pass through the triangular faces of
the mesh, a vertex has to be updated from a triangle, requiring two supporting
vertices. We assume that the update step is applied to a triangle (x1, x2, x3),
where x1 is the red point with the smallest arrival time d1 = d(x1), x2 is a
point for which some arrival time approximation d2 = d(x2) is available, and
x3 is the red or green point, whose arrival time approximation d3 = d(x3) is
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being updated. For simplicity, we further assume without loss of generality
that the triangle lies in the plane with x3 = 0, and leave to the reader to
derive the update equations in the general case.

In essence, given that the front reaches x1 at time d1 and x2 at time
d2, the update step has to estimate the time when the front arrives to x3.
Let us assume that the front is planar,4 i.e., propagating from some planar
source described by the equation nTx + p = 0. The unit vector n determines
the propagation direction, whereas the scalar p determines the source origin.
Clearly, x1 and x2 must be distant d1 and d2 from the plane, respectively.
Using the point-to-plane distance, we obtain the following set of equations

d1 = nTx1 + p;
d2 = nTx2 + p.

In matrix notation, the later system of equations can be expressed as

V Tn + p · 12×1 = d,

where V is a 2× 2 matrix whose columns are x1, and x2, 12×1 = (1, 1)T, and
d = (d1, d2)T. Our goal is to solve for the wavefront parameters n and p, and
compute d3 as the distance of x3 from the plane,

d3 = nTx3 + p = p. (4.8)

Assuming the triangle (x1, x2, x3) is non-degenerate, V is full-rank and we
can solve for n, obtaining

n = (V T)−1(d − p · 12×1) = V −T(d − p · 12×1).

Apparently, we have only two equations with three unknowns, but in reality
the wavefront has only two degrees of freedom: direction and origin. The
“missing” degree of freedom hides in the fact that n is a unit vector. Enforcing
‖n‖ = 1 yields

1 = nTn = (d − p · 12×1)TV −1V −T(d − p · 12×1)
= (d − p · 12×1)T(V TV )−1(d − p · 12×1)
= p2 · 1T

2×1Q12×1 − 2p · 1T
2×1Qd + dTQd,

where Q = (V TV )−1. Since d3 = p, we conclude that d3 is given as a solution
to the quadratic equation

d2
3 · 1T

2×1Q12×1 − 2d3 · 1T
2×1Qd + dTQd − 1 = 0. (4.9)

Note that equation (4.9) has two solutions, stemming from the fact that both
n and −n satisfy the condition ‖n‖ = 1. The smallest solution corresponds
with n forming an acute angle with x1 and x2 (Figure 4.4, left). In this case,
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Figure 4.4. Fast marching updates the triangle (x1,x2,x3) by estimating the planar
wavefront direction n and origin p based on d1 at x1 and d2 at x2, and propagating it
further to x3. d3 has two possible solutions: the one shown on the left is inconsistent,
as d3 < d1, d2. The solution on the right is consistent, as d3 > d1, d2. Geometrically,
in order to be consistent, the update direction n has to form obtuse angles with the
triangle edges (x3, x1) and (x3, x2).

the front arrives to x3 before it arrives to x1 and x2. This, of course, con-
tradicts the construction of the fast marching algorithm, which assumes that
the updated distance d3 is larger than the supporting distances d1 and d2.
We term such a solution inconsistent and discard it. As shown in Figure 4.4
(right), a consistent solution has to form an obtuse angle with both trian-
gle edges (x3, x1), (x3, x2), which can be expressed simply as V Tn < 0. The
reader is invited to check (Problem 4.4) that this condition is satisfied by the
largest solution for d3.

It appears that in order to make our distance map convergent to the true
solution of the eikonal equation as the mesh is refined, it is also required that
an increase of d1 or d2 increases d3. This monotonicity condition can be stated
as

∇d d3 =
(

∂d3

∂d1
,
∂d3

∂d2

)T

> 0,

where the inequality is interpreted coordinate-wise. In order to obtain an
expression for ∇d d3, we differentiate equation (4.9) with respect to d =
(d1, d2)T,

0 = d3 · ∇d d3 · 1T
2×1Q12×1 −∇d d3 · 1T

2×1Qd − d3 · Q12×1 + Q12×1,

from where

∇d d3 =
Q(d − p · 12×1)

1T
2×1Q(d − p · 12×1)

.
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Figure 4.5. The monotonicity condition QV Tn < 0 requires the wavefront prop-
agation direction n to form obtuse angles with the normals to the triangle edges
(x3, x1) and (x3, x2). Geometrically, this can be interpreted as demanding n to lie
within the triangle (left). Right: update direction violating the monotonicity condi-
tion lies outside the triangle.

Substituting n = V −T(d − p · 12×1), we can write

∇d d3 =
QV Tn

1T
2×1QV Tn

.

Observe that the monotonicity condition ∇d d3 > 0 is satisfied when either
QV Tn > 0, or QV Tn < 0, that is, both coordinates of QV Tn have the same
sign. However, because the consistency of the solution requires V Tn to be
negative, and Q is positive semi-definite, QV Tn cannot have both coordinates
positive. We therefore conclude that the solution has to satisfy QV Tn < 0.

From the relation

QV TV = (V TV )−1V TV = I,

it follows that the rows of QV T are orthogonal to the triangle edges (x3, x1),
(x3, x2). The monotonicity condition has therefore the following geometric
interpretation: the wavefront propagation direction n must lie within the tri-
angle (Figure 4.5). Adding the consistency condition, n must also form obtuse
angles with the triangle edges. To satisfy this demand for any update com-
ing from within the triangle, the angle �x1x3x2 must be acute. When the
triangle is obtuse, even if n lies inside the triangle, the front may arrive to
x3 before reaching x1 or x2 (Figure 4.6). To cure this problem, R. K. and
Sethian proposed to split an obtuse angle into two acute ones by connecting
the vertex x3 to another point on the mesh [226]. The splitting is performed
as a pre-processing stage.

If the wavefront propagation direction happens to violate the monotonicity
condition, we can force it to lie within the triangle. In such cases, n will
coincide with the direction of one of the edges (x3, x1) or (x3, x2), and the
update will assume the simple Dijkstra-like form

d3 = min{d1 + ‖x1‖, d2 + ‖x2‖}.
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x3

x2x1

x3

x2

x1

Figure 4.6. When updating an obtuse triangle, the front may come only from a
limited angular section (shaded) in order to obey d3 > d1, d2 (left). When the front
comes outside this section (right), it first arrives to x1 and x3 and only then to x2.
Consequently, x3 is supported by a single point, x1 only, which does not allow to
recover the actual front direction.

As in Dijkstra’s algorithm, if the computed d3 is larger than the current
approximation of d(x3), x3 is not updated. The entire update step can be
summarized as in Algorithm 4.3.

The described update procedure constructs a linear approximation of d(x)
over the triangle (x1, x2, x3). This construction can be viewed as fitting a tilted
plane to the given values of d1 and d2 anchored to the corresponding triangle
vertices. The tilt (the gradient) of the plane is set to 1 (45◦) in order to satisfy
the eikonal equation; the remaining two degrees of freedom are orientation
and origin, which correspond with n and p in our notation. By a sequence
of updates applied to different triangles, fast marching gradually constructs a
piecewise planar approximation to the true d(x). James Sethian compared the

input : non-obtuse triangle with the vertices x1, x2, x3, and the
corresponding arrival times d1, d2, d3

output : updated d3

Solve the quadratic equation1

p =
1T
2×1Qd +

√
(1T

2×1Qd)2 − 1T
2×1Q12×1 · (dTQd − 1)

1T
2×1Q12×1

.

where V = (x1 − x3, x2 − x3), and d = (d1, d2)
T.

Compute the front propagation direction n = V −T(d − p · 12×1)2

if (V TV )−1V Tn < 0 then3

d3 ←− min{d3, p}4

else5

d3 ←− min{d3, d1 + ‖x1‖, d2 + ‖x2‖}6

end7

Algorithm 4.3. Fast marching update step.
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Figure 4.7. Distance map measured on a triangular mesh. Equidistant contours
from the source located at the right hand are shown.

way such an approximation is constructed with erecting scaffolding around a
building: a worker stands on one of the boards, puts a board above his head,
and then moves to another board at the same level and puts a board one
level up. Once all the boards are placed at a given level, the worker climbs
up to the next level and repeats the process. The scaffolding is built from the
ground up; each level must be completed before the next is begun.

4.4 Fast marching on parametric surfaces

The fast marching method we have been discussing so far works for general
triangular meshes. Spira and R. K. showed that when the surface is given in
parametric form, the algorithm can be formulated entirely in the parameteri-
zation domain [367]. Let us be given a surface x : U → R

3 parameterized over
U ⊂ R

2; our goal is to compute the distance map d : U → R from some source
u0 ∈ U (note that d is now a function of the parameterization coordinates
u1, u2). Using the chain rule, we obtain

∂d

∂ui
=

∂d

∂x1

∂x1

∂ui
+

∂d

∂x2

∂x2

∂ui
+

∂d

∂x3

∂x3

∂ui

for i = 1, 2, or in vector notation,

∇ud = JT∇xd. (4.10)
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Projecting the extrinsic gradient ∇xd on the tangent space, we can express
the intrinsic gradient ∇Xd in terms of the parameterization coordinates,

∇Xd = J(JTJ)−1JT∇xd = JG−1∇ud, (4.11)

where G = JTJ is the first fundamental form matrix we have encountered
in Chapter 2. Substituting the latter expression into the eikonal equation, we
get

1 = ∇T
Xd∇Xd = ∇T

u dG−TJTJG−1 ∇ud = ∇T
u dG−1∇ud.

where G = JTJ is the first fundamental form matrix we have encountered in
Chapter 2. The latter is the eikonal equation expressed in the parameterization
coordinates. Note that the metric participates in the expression, accounting
for the fact that the distance d is measured on the surface.

The fast marching algorithm aims at computing an approximation to
d(u1, u2) on a numerical grid in the parameterization domain. For simplic-
ity, let us assume that U is discretized on a Cartesian grid with unit step in
each direction. A grid point (u1, u2) is connected to neighboring grid points
(u1 + m1, u2 + m2) according to some planar connectivity pattern, of which
the simplest is the four-neighbor connectivity (m1, m2) = (±1, 0), (0,±1).
Another possible grid connectivity is based on eight neighbors (m1, m2) =
(±1, 0), (0,±1), (±1,±1). Each vertex in the grid becomes supported by a
set of triangles (four and eight in the case of the former two connectivity pat-
terns), formed upon the neighboring vertices. The distance map d is computed
by traversing the numerical grid in the fast marching order and updating grid
points from the neighboring triangles using the previously described update
step.

Let u3 = (u1, u2) be a grid point being updated from the triangle formed
by u1 = (u1 +m1

1, u
2 +m2

1) and u2 = (u1 +m1
2, u

2 +m2
2). We denote by x1, x2

and x3 the corresponding points on the surface, and assume without loss of
generality that x3 = 0. Neglecting second-order terms, we can write

x1 ≈ m1
1r1 + m2

1r2 = Jm1

x2 ≈ m1
2r1 + m2

2r2 = Jm2,

or in matrix form, V ≈ JM , where V = (x1, x2) and M = (m1, m2). We can
now define

E = V TV ≈ MTGM, (4.12)

a 2 × 2 matrix, whose elements are the dot products eij = 〈xi, xj〉. It is re-
markable that the triangle geometry required for the fast marching update
step is contained entirely in that matrix. Indeed, the diagonal elements e11

and e22 are the squared lengths of the triangles edges x1x3 and x2x3, respec-
tively, whereas e12/

√
e11e22 is the cosine of the angle at x3. The knowledge of
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the metric coefficients and the connectivity pattern of the grid is sufficient to
compute a distance map on the parametric surface. This is a very handy prop-
erty in some applications, for example, where surface acquisition techniques
do not provide the surface itself, but rather its gradients [77].

As a final remark on this method, recall that the fast marching update
scheme was valid for acute triangles only. On parametric surfaces, this con-
dition can be stated as e12 > 0. In case where a triangle is obtuse (e12 < 0),
Spira and R. K. proposed to split it into two acute triangles by adding a
connection to another “virtual” non-adjacent neighbor on the grid [367]. The
virtual connection is selected as the one producing two acute angles and hav-
ing the shortest length in the parameterization domain. Adding such virtual
connections to grid points can be done in O(N) at the grid initialization
stage.

4.5 Marching even faster

One of the core components of all Dijkstra-type distance computation algo-
rithms, including fast marching methods, is the heap capable of extracting the
vertex with the smallest value of d in logarithmic time.5 Selecting the next
vertex to be updated according to minimum distance ensures that the grid
points are visited in an order simulating the propagation of a wavefront. This
fact conceals one of the major drawbacks of fast marching: the grid traversal
order depends on the data and cannot be known a priori. Moreover, this order
is not well-structured, making problematic an efficient use of memory systems.
Such a strident lack of structure calls for searching alternative traversal orders.

In his classic paper [121], Per-Erik Danielsson studied the computation
of distance maps from arbitrary sources in the plane. He observed that as
the Euclidean geodesics are straight lines, the characteristics of the eikonal
equation fall into one of the four plane quadrants and can be therefore cov-
ered by a sequence of four directed scans, where in each scan a grid point is
updated from the previously updated “causal” neighbors in the scan order
(Figure 4.8). Each point is updated four times, implying linear complexity in
the grid size, O(N). Because the order in which the grid points are visited
is known in advance and is independent of the data, Danielsson’s raster scan
algorithm is characterized by regular access to the memory and can benefit
significantly from the caching mechanism supported by most modern proces-
sor architectures.

Equipping the Danielsson’s raster scan algorithm with the fast march-
ing update scheme gives rise to a family of distance computation algorithms,
where the Dijkstra-type wavefront propagation is replaced by sweeping the
grid in four alternating directions. One of the earliest mentioning of this
technique dates back to Dupuis and Oliensis’ studies on shape from shad-
ing from 1994 [142]. A raster-scan algorithm for solving the eikonal equation
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Figure 4.8. Raster scan grid traversal used in Danielsson’s algorithm. Four directed
raster scans are sufficient to cover all the geodesic directions in the plane.

on weighted Euclidean domains was also studied by Zhao, who introduced the
name fast sweeping [411].

Because the raster scan algorithm operates on a regular Cartesian grid,
it is an attractive alternative to fast marching for computation of distance
maps on parametric surfaces [61, 60]. However, it is important to realize that
unlike the Euclidean case where the geodesics are straight lines and thus can
be covered by four directed raster scans, on a general surface geodesics are
usually curved. This implies that four raster scans may cover only a part of
an eikonal equation characteristic; in order to obtain a consistent distance
map, the scans have to be repeated several times. This fact is visualized in
Figure 4.9, where the raster scan algorithm is used to compute the distance
map in a “maze” with complicated spiral-shaped geodesics. Six iterations
of alternating raster scans are required in order to cover it completely. We
can therefore conclude that the complexity of the raster scan algorithm is
data-dependent. Nevertheless, it appears that the maximum number of itera-
tions required to produce a consistent distance map on a parametric surface
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Figure 4.9. Distance map computation on the “maze” surface using the raster
scan algorithm after an increasing number of iterations (left-to-right, top-down).
Note that a single repetition of the four directed raster scans is insufficient to cover
the complicated spiral-shaped characteristic.

can be bounded assuming some regularity of the metric coefficients and the
second-order derivatives of the parameterization [61, 60]. The bound does
not depend on the grid size, leaving the theoretical complexity of the algo-
rithm O(N). Yet, the number of iterations depends on the properties of both
the surface itself and its parameterization. This means that some parame-
terizations of the same surface may be less advantageous than others from
the point of view of the raster scan algorithm. For example, with the triv-
ial parameterization of the plane (x1, x2, x3) = (u1, u2, 0), the geodesics are
straight lines requiring one iteration. Using a more bizarre parameterization,
say, (x1, x2, x3) = (u1 cosu2, u1 sinu2, 0), several iterations are needed.

4.6 Parallel distance computation

In addition to the better structured access to memory, the raster scan algo-
rithm has another important advantage over traditional fast marching: unlike
fast marching methods, which are inherently sequential, raster scan can ben-
efit from parallelization. To demonstrate the parallelism, let us consider for
example the right-down scan (upper left in Figure 4.8) starting from the top
leftmost grid point d11 (we denote by dij the value of the distance map d
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Figure 4.10. Dependency graph of the right-down raster scan. Grid points lying
on the lines i + j = const can be updated concurrently.

at the point (i, j) on the grid). After d11 has been updated, the point d12 is
updated. Note that the point d21 can also be updated in parallel to d12, as it
depends only on d11. Next, points d31, d22, and d13 can be updated concur-
rently, and so on. Figure 4.10 visualizes the fact that grid vertices lying on the
lines i+ j = k depend only on the vertices lying on the lines i+ j = k− 1 and
i + j = k − 2 and can be therefore updated in parallel. Similar parallelization
can be used for the other three raster scans.

Whereas for sufficiently long lines the speedup due to parallelization is sig-
nificant, points located along shorter lines benefit less from concurrent com-
putation. Also, the fact that the number of update operations performed in
parallel is not constant may complicate efficient implementation. A way to
overcome this difficulty was found by Ofir Weber [61, 60], who proposed to
rotate the directions of all scans by 45◦, as depicted in Figure 4.11. Let us
examine again the right-down scan from the previous example, now rotating
the scan direction by 45◦ counter-clockwise (Figure 4.11, upper left). Because
a grid point dij is updated from di−1,j−1, di,j−1, and di+1,j−1, all points in the
j-th column of the grid can be processed simultaneously once the (j − 1)-st
column has been updated (Figure 4.12). In other words, depending on the
scan direction, all grid vertices belonging to the same row or column can be
updated concurrently. On k processors,6, such a parallelization allows one to
speed up the distance map computation by k which is referred to as “embar-
rassingly parallel” in the parallel computing jargon.

Practically, the structured memory access pattern of the raster scan al-
gorithm combined with parallel execution gives a dramatic improvement in
the execution time compared with that of conventional fast marching. An
implementation on standard 32-bit Intel architecture with SSE extensions7

shortens the execution time by one order of magnitude. Implementation on a
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Figure 4.11. Raster scan grid traversals from Figure 4.8 rotated by 45◦ counter-
clockwise.

graphics processing unit8 exhibits an improvement by another order of mag-
nitude. To give an impression, a single iteration of the raster scan algorithm
on a grid consisting of nine million vertices takes below 40 milliseconds, en-
abling real-time application of many computer graphics and computational
geometric algorithms based on geodesic distances [61, 60].

4.7� Minimal geodesics

Thus far, we have focused our attention on computing the geodesic dis-
tances on a surface. However, it is often important to compute paths real-
izing those distances, that is, minimal geodesics. As an illustration, imagine
that NASA has commissioned us the development of a navigation system of
an autonomous exploration vehicle that is supposed to land on the surface
of planet Venus. Because of the densely clouded Venusian atmosphere, little
sunlight reaches the ground, which precludes the use of solar cells. Hence, the
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Figure 4.12. Dependency graph of the right-down raster scan rotated by 45◦. Grid
points belonging to the same column can be updated concurrently.

vehicle will have to use batteries with limited capacity. Because a similar ex-
pedition will not be repeated in the nearest few decades, the scientists expect
to get maximum information from it. For this reason, the navigation system
of the exploration vehicle has to be smart: it should always follow the short-
est path between source and destination points, thus taking most advantage
of the battery life. Astronomers provide us with radar measurements of the
ground topography in the vicinity of the landing point; the optimal path of
the rover can be described as the shortest path on that surface.

Computation of shortest paths is important in many applications such as
the above navigation problem (though, usually in more down-to-earth sce-
narios). We have already mentioned that the characteristics of the eikonal
equation are shortest paths on the surface (the proof is left as an exercise in
Problem 4.3). This means that given the distance map d computed from some
source point x0 on the surface, a curve Γ satisfying the ordinary differential
equation

.

Γ = −∇Xd

(the characteristic equation) with the initial condition Γ (0) = x1 is a minimal
geodesic passing between x0 and x1. In order to find the geodesic, we have to
solve (or integrate) the characteristic equation. This is usually done using a
numerical ODE solver, sometimes referred to as backtracking [226]. Starting
at x1, we construct a curve passing on the surface and following the direction
of −∇Xd, until d = 0 is reached at x0. Intuitively, this process can be thought
of as descending “downhill” on the distance map. The selection of the negative
gradient direction guarantees the fastest decrease of the distance. In practice,
when the surface is represented as a triangular mesh and the distance map is
computed using the fast marching method, d is piecewise-linear. This means
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that ∇Xd is constant on any triangle of the mesh and changes only when
we transit from one triangle to another. As a consequence, the backtracked
geodesic is constructed of linear segments, lying in the planes of the mesh
faces. There exist higher-order methods for backtracking geodesics on the
surface, e.g., Huen’s (or modified Euler) numerical integration method, which
approximates Γ as a second-order polynomial. However, special care has to
be taken when using such methods, as the distance map and, consequently,
the geodesics, are not C1. The continuity of the gradient is violated at points
called shocks, where two wavefronts meet. At such points, it is common to
switch back to the first-order backtracking scheme.

When the surface is given in parametric form, the computation of geodesics
can be performed entirely in the parameterization domain. Let us denote by γ
the parameterization of a geodesic Γ . Substituting ∇ud from equation (4.10),
we obtain

∇ud = JT∇xd = −JT
.

Γ = −JTJ
.

γ = −G
.
γ.

We can now express the characteristic equation in terms of γ, as

.
γ = −G−1∇ud, (4.13)

which can be interpreted as a scaled gradient descent. Again, backtracking
techniques can be used to construct γ in the parameterization domain. Back-
tracking of minimal geodesics is intimately connected to the family of gradient
descent optimization techniques that we will encounter in the next chapter.

Suggested reading

For a mathematically oriented reader, we recommend Bellman’s book Dy-
namic Programming [23], which shows in depth the foundations of dynamic
programming and presents a different outlook on the calculus of variations
from the perspective of the principle of optimality. A detailed overview of fast
marching methods and their applications can be found in James Sethian’s
book Level Set Methods and Fast Marching Methods [349] and R. K.’s book
Numerical Geometry of Images [225]. The paper [268] by Mémoli and Sapiro
introduces an interesting fast-marching type algorithm for computation of
geodesic distances directly on point clouds and implicit surfaces. A fast march-
ing method for parametric surfaces is described in [367]. A family of raster-
scan based fast sweeping methods is discussed in [217, 382, 411]. Parallel algo-
rithms for distance computation and their implementation on SIMD processor
architectures and graphics hardware is presented in [61, 60]. For a reader inter-
ested in numerical solution of partial differential equations, the paper [350] by
Sethian and Vladimirsky presents a number of numerical schemes for solving
the eikonal equation as well as the more general class of static Hamilton-Jacobi
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equations. A fast marching algorithm based on an alternative spherical wave-
front model is discussed in [299]. For a completely different, non-fast marching
type algorithm for the computation of distance maps on meshes, known as the
Mitchell-Mount-Papadimitriou algorithm (MMP for short), the reader is re-
ferred to [276]. A fast approximation to the MMP algorithm is studied in
[371], which to the best of our knowledge is the fastest sequential algorithm
for geodesic distance computation available in the public domain.

Software

An implementation of the fast marching method on triangular meshes is avail-
able as part of TOSCA. SSE2 and GPU implementations of the parallel algo-
rithm for parametric surfaces are available as binaries accompanying [60].

Problems

4.1. Show that a geodesic satisfies ‖
.

Γ‖2 = 1.

4.2. Prove that the intrinsic gradient ∇Xd can be obtained by projecting the
extrinsic gradient ∇xd onto the tangent plane.

4.3. Prove that a distance function obeys the eikonal equation. Show that the
characteristics of the eikonal equation are minimal geodesics.

4.4. Show that the largest solution of the quadratic equation (4.9) is asso-
ciated with the normal direction n, which satisfies the consistency condition
V Tn < 0.

4.5.� In practical implementation, arithmetics has limited precision. Analyze
the sensitivity of the fast marching update scheme to additive truncation and
round-off noise. Hint: evaluate the derivative of d3 with respect to d1 and d2.

4.6. In our discussion, the fast marching update scheme was presented in
a special system of coordinates, where the triangle was supposed to lie in
the plane. Formulate the fast marching update scheme for a triangle in an
arbitrary system of coordinates in R

3.

4.7.� Devise an alternative update scheme for the fast marching algorithm
based on a circular wavefront approximation. Prove that such a scheme does
not always give a consistent update. What can be said about its numerical
stability?

4.8. There exist algorithms, like the Mitchell-Mount-Papadimitriou algorithm
[276, 371], capable of computing the exact geodesic distances on a triangular
mesh. Assuming that the mesh is only a first-order approximation of some
underlying continuous surface, do such algorithms have better accuracy com-
pared with fast marching that produces a first-order approximation of the
distance map?
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4.9. One of the main limitations of the raster scan algorithm is the fact that
it works only with a single-chart parametric surface. However, sometimes it is
impractical or impossible to represent a surface using a single chart. Extend
the raster scan algorithm to the multiple-chart case.

Notes
1In our regular example, we oversimplified the metrication problem in graphs. In

reality, there exist conditions on sampling and connectivity that guarantee conver-
gence to the true metric on the surface [47]. However, if the sampling of the surface
is a part of the acquisition process (e.g., the surface is sampled on a regular grid),
such conditions are usually violated.

2Formally, a wave traveling between two points must traverse a path whose length
is stationary with respect to variations of the path. According to calculus of varia-
tions, this path is exactly the characteristic of the eikonal equation.

3The eikonal equation differs from the majority of other familiar differential equa-
tions in the fact that d(x) does not have to be (and usually is not) everywhere differ-
entiable, i.e., ∇Xd(x) may not exist at some x ∈ X. The introduction of the concept
of viscosity solution by Pierre-Louis Lions and Michael Crandall [120] in the early
1980s permitted to address this problem formally. When computing the distance
function, we actually are looking for a viscosity solution of the eikonal equation.

4This assumption is accurate for points far away from the source; for points
nearby, a somewhat better assumption is a spherical model of the source. Such a
scheme was proposed by Klein and Novotni in [299] but appears to have numerical
stability and consistency problems [61, 60].

5Several alternatives to heap sorting have been proposed, among which a notable
example is the untidy priority queue mentioned by Tsitsiklis [383] and later by Yatziv
et al. [404]. Untidy priority queue is based on quantization of the distance values used
for selecting the next vertex to be updated, allowing one to extract the minimum in
O(1) with a slight reduction of the algorithm accuracy.

6Assuming the grid size M × N is such that M, N ≥ k.
7SSE, standing for Streaming SIMD Extensions, is a single instruction multiple

data (SIMD) instruction set introduced by Intel in 1999 in their Pentium III pro-
cessors, superseding the MMX extensions. SSE allows performing single-precision
floating point operations on four operands simultaneously.

8A graphics processing unit (GPU ) is a dedicated hardware rendering device
for a personal computer, workstation, or game console. Modern GPUs are very
efficient at manipulating and displaying computer graphics, and their highly parallel
structure makes them by far more efficient than conventional CPUs for a range of
complex algorithms. Since the introduction of programmable shading capabilities,
a trend of general-purpose computation on GPUs is becoming increasingly popular
[304]. Usually, GPU’s fragment processors are exploited for performing arithmetic
operations, and texture memory is used for storing the data.



Nature and Nature’s Laws lay hid in night;
God said, “Let Newton be!” – and all was light.

A. Pope, Epitaph for Newton

5

Numerical Optimization

In problems we have encountered thus far, the reader can recognize a repeating
motif: how to find a solution that is “the best” in some sense. For example, the
centroidal Voronoi tessellation could be viewed as finding a sampling with the
minimum mean squared error, or the measurement of geodesic distances as
finding a path with the shortest length. Such problems are generically called
optimization problems and play a fundamental role in our applications. In
this chapter, we will explore numerical algorithms that will allow us to solve
problems of this kind.

5.1 Local versus global optimization

The “bread and butter” of any optimization problem is a function f , called
the objective or the cost. This function measures how “good” a particular
solution is. In general, we deal with functions of the form f : X → R, where X

is some vector space (in particular, we will encounter the Euclidean space R
N

and the space of real matrices, R
N×M ). A generic unconstrained optimization

problem can be formulated as

min
x∈X

f(x).

A solution x∗ = argminx∈X
f(x) is called a global minimizer and the value

f(x∗) a global minimum of f .
The question discussed in this chapter is how to practically find the mini-

mum of f(x). Obviously, the näıve suggestion to perform an exhaustive search
in the space of all the possible solutions would fail to work – even in case when
the dimension of X is low, this space is very large. In the practical problems
we deal with, the dimensionality of X can be as high as a few thousands.
It turns out that finding a global minimum of a general function is as hard
a problem as trying to find a needle in a haystack. However, under certain
assumptions on the function, it is possible to find the minimum by analyzing
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the local behavior of the function, and thus the problem can be significantly
simplified.

As an illustration, consider an objective function of two variables whose
graph can be visualized as a landscape with valleys and hills. A traveler staying
at the bottom of a valley and seeing mountain walls rising up around him will
identify his location as a minimum. Yet, unable to see beyond the valley, he
may not be aware of other deeper valleys a few miles away – therefore, we
say that the traveler location is a local minimum. The traveler example is
a pictorial interpretation of local optimization. At the other end, a satellite
equipped with a radar will be able to measure precisely the depth of each
valley and find the global minimum, or, in our terminology, perform global
optimization.

5.2 Optimality conditions

How does the traveler verify that he has arrived at the bottom of the valley? In
the one-dimensional case, we know from basic calculus that a local minimum
of a twice-differentiable function f : R → R, is obtained at the point x∗ where
the following optimality conditions hold:

(O1) f ′(x∗) = 0;
(O2) f ′′(x∗) > 0.

Condition (O1) on the first-order derivative is necessary for the point x∗ to be
an extremum, but it does not guarantee that it is a minimum. Condition (O2)
is a sufficient condition, which ensures that locally around x∗ the function is
increasing, i.e., that x∗ is a local minimizer. This can be seen by writing a
second-order Taylor expansion of f around x∗,

f(x∗ + dx) = f(x∗) + f ′(x∗)dx +
1
2
f ′′(x∗)dx2 + O(|dx|3), (5.1)

and observing that in order for such an approximation to be a convex parabola
with respect to dx with the minimum at x∗, conditions (O1) and (O2) must
hold.

In order to generalize these conditions to the multidimensional case, we
first need to extend the definition of derivative to multivariate functions. For
this purpose, let us consider the value of a C2 function f : X → R at a point x
in X and see how it changes when we displace the point by some small value
dx. We can linearize the change of the function in the following way

f(x + dx) = f(x) + 〈∇xf(x), dx〉X + O(‖dx‖2),

where 〈·, ·〉X denotes an inner product on X. The second-order term can be
neglected assuming dx to be infinitesimal. In the one-dimensional case, the
inner product reduces to a simple multiplication ∇xf(x)dx; rearranging the
terms as
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∇xf(x) =
f(x + dx) − f(x)

dx
,

we obtain the standard definition of a derivative of f at x by taking dx to
zero.

The function ∇xf(x) : X → X is the gradient of f we have already en-
countered in Chapter 4 and in this context can be thought of just as a gener-
alization of the notion of derivative. In the Euclidean space, we can represent
∇xf(x) in the standard basis {e1, . . . , en}, where ei is a vector containing one
at the i-th position and zeros elsewhere, in the following way: we take the step
dx = εei, resulting in

f(x + εei) = f(x) + 〈∇f(x), εei〉X + O(ε2)
= f(x) + ∇f i(x)ε + O(ε2).

Taking ε → 0 we have the i-th coordinate of the gradient as (∇f(x))i = ∂f(x)
∂xi ,

which leads to the familiar expression,

∇f(x) =
(

∂f(x)
∂x1

, . . . ,
∂f(x)
∂xn

)T

,

often used as a definition of the gradient.

Example 5.1 (gradient of matrix functions). We exemplify the gra-
dient computation for functions defined on the space R

N×M of real matri-
ces, equipped with the standard inner product 〈A, B〉RN×M = trace(ATB) =
trace(BAT) (note that matrix multiplication is commutative under the trace
operator; see Problem 5.2).

1. f(X) = trace(AX), where A is an M×N matrix . Expanding the function
around X and neglecting O(‖dX‖2) terms, we have

f(X + dX) = trace(A(X + dX)) = trace(AX) + trace(AdX)
= f(X) + trace(dXTAT) = f(X) + 〈AT, dX〉RN×M .

Identifying the last term with the definition of the gradient, we obtain
∇f(X) = AT.

2. f(X) = trace(XTBX), where B is an N × N matrix. In a similar way,

f(X + dX) = trace((X + dX)TB(X + dX)) = trace(XTBX) +
+ trace(dXTBX) + trace(XTBdX) + trace(dXTBdX).

Neglecting the second-order term, trace(dXTBdX), we have

f(X + dX) = f(X) + trace(dXTBX) + trace(XTBdX)
= f(X) + trace(dXT(B + BT)X)
= f(X) + 〈(B + BT)X, dX〉RN×M ,

from which ∇f(X) = (B + BT)X .
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The second-order derivative can be obtained in a similar way by linearizing
the gradient,

∇f(x + dx) = ∇f(x) + Hx(dx) + O(‖dx‖2). (5.2)

The map H : X × X → X is called the Hessian of f (after the German
mathematician Ludwig Otto Hesse (1811-1871)) and is denoted by ∇2

xxf(x)
or simply as ∇2f(x). Similarly to the gradient, the Hessian can be expressed
in the standard basis as an n × n matrix of second-order partial derivatives,

∇2f(x) =
(

∂2f(x)
∂xi∂xj

)

,

which allows us to rewrite equation (5.2) as

∇f(x + dx) = ∇f(x) + ∇2f(x)dx + O(‖dx‖2).

Note that hereinafter we tacitly assume x to be a column vector. Because
we assume f to be a C2 function, the mixed derivatives satisfy ∂2

∂xi∂xj f(x) =
∂2

∂xj∂xi f(x), i.e., the Hessian is symmetric.
Equipped with the gradient and the Hessian, we are now ready to general-

ize the one-dimensional optimality conditions to multivariate functions. Ap-
proximating f around x∗ by a quadratic function, we rewrite equation (5.1)
as

f(x∗ + dx) = f(x∗) + ∇f(x∗)Tdx + dxT∇2f(x∗)dx + O(‖dx‖3).

First, it is clear that the first-order condition (O1) trivially generalizes as
∇f(x∗) = 0 or alternatively, as ‖∇f(x∗)‖ = 0. Second, in order for the func-
tion value to be increasing around x∗, the term dxT∇2f(x∗)dx must be pos-
itive for all dx ∈ X. This is equivalent to saying that the Hessian at x∗ is
positive-definite and is guaranteed by requiring that all the eigenvalues of
∇2f(x∗) are positive (we leave this simple exercise in algebra to the reader as
Problem 5.4). We arrive at the following conditions:

(O’1) ‖∇f(x∗)‖ = 0;
(O’2) ∇2f(x∗) � 0,

where the symbol “� 0” is a short notation for a positive-definite matrix.
As in the one-dimensional case, the optimality conditions (O’1–O’2) guar-

antee a local minimum, which is not necessarily a global one. Particular ex-
ceptions of this rule are convex functions. Formally, we say that a function
f : A ⊆ X → R defined on a subset A of X is convex if A is a convex set and
for any x1, x2 ∈ A and λ ∈ [0, 1]

f(λx1 + (1 − λ)x2) ≤ λf(x1) + (1 − λ)f(x2),
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f(x)

x

Non-convex Convex

f(x)

x

function function

Figure 5.1. One-dimensional example of non-convex (left) and a convex (right)
functions. The shaded area represents the epigraph of the function. The dashed line
shows a chord connecting two points on the graph of the function.

and strictly convex if the above inequality is strong (a subset A of a vector
space is called convex if for all x1, x2 ∈ A and λ ∈ [0, 1], the vector λx1 +(1−
λ)x2 is also in A).

In the one-dimensional case (see Figure 5.1), this definition can be easily
visualized geometrically: the graph of a convex function is always below the
chord connecting any two points on it. This property can be formulated as
f(x) ≥ f(x0) + ∇f(x0)T(x − x0), for all x, x0 ∈ X. Obviously, the definition
of a convex function is very similar to the definition of a convex set. A convex
function can be alternatively defined as a function whose epigraph (set of
points lying on or above the graph of the function) is a convex set, which
generalizes the one-dimensional intuition (see Problem 5.6).

From this geometric interpretation, it is clear why a convex function can-
not have more than one local minimum: indeed, if we had two local minima,
going from one to another would require the function graph to first go up and
then once more down, thus violating the convexity property. Consequently,
for a convex function, a local minimum is necessarily the global one1 (a rig-
orous proof is left as Problem 5.8). This property makes convex functions
especially favorable for optimization: using local optimization methods, we
can guarantee reaching the global minimum.

5.3 Unconstrained optimization algorithms

The traveler from our example, now equipped with the optimality conditions,
knows where to stop, yet now he has to figure out how to move in order to get
to the minimum. To make the situation even more dramatic, imagine that our
traveler has no topographic map of the area and the visibility conditions are
poor. Having no possibility to plan the entire route from his current location
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input : objective function f .
output : minimizer x∗ of f(x).
initialization: some initial x(0) and k = 0.

repeat1

Determine a descent direction d(k).2

Choose a step size α(k).3

Update x(k+1) ←− x(k) + α(k)d(k).4

k ←− k + 1.5

until convergence6

x∗ ≈ x(k).7

Algorithm 5.1. Generic minimization algorithm.

to the bottom of the valley (the local minimum), the traveler has to make
small steps that lead him to lower altitude, based only on local information.
For example, he can make a step in the direction in which the slope of the
mountain inclines downward. Then, he finds a “downward” direction in the
new point and makes another step and so on until the destination is reached.
Unconstrained minimization algorithms follow essentially the same idea, which
can be formalized as the following iterative procedure:

The algorithm starts with some initialization, x(0), which can be derived
from some a priori information about the optimal solution or a random
vector. It then chooses a vector d(0) and a scalar α(0) such that f(x(0)) >
f(x(0) +α(0)d(0)); d is called a descent direction and α a step size. The current
point x(0) is replaced with x(1) = x(0) + α(0)d(0) and the process is repeated
iteratively. An optimization algorithm is said to converge if it produces a con-
vergent sequence of points x(0), x(1), . . . → x∗ (called a minimizing sequence),
such that x∗ is a local minimizer of the objective function f . When f is con-
vex, x∗ is also its global minimizer; otherwise we say that the algorithm is
locally convergent.

Optimization algorithms differ in three basic components: Step 3 (the
choice of the descent direction), Step 4 (the choice of the step size), and Step 5
(the stopping criterion). We do not include Step 1 (initialization) into this list,
because it is problem- rather than algorithm-specific. An ideal way to stop the
optimization is when |f(x(k)) − f(x∗)| = 0 or ‖x(k) − x∗‖ = 0. However, be-
cause we do not know x∗ in advance, this criterion is unusable. The first-order
optimality condition tells us that ∇f = 0 in the minimum, and this condition
can be used to stop the algorithm. In practice, due to the use of finite-precision
arithmetic, it is unlikely that the gradient will vanish completely. For this rea-
son, practical optimization algorithms are usually stopped when ‖∇f‖ ≤ εg,
for some tolerance εg. It is also common to stop the algorithm when the rel-
ative change of the function value (f(x(k)) − f(x(k+1)))/f(x(k)) drops below
some tolerance threshold εf , or when the step size ‖x(k+1) − x(k)‖ becomes



5.3 Unconstrained optimization algorithms 99

sufficiently small.2 Combinations of one or more of these stopping criteria are
often used.

Provided that d is a descent direction, it is guaranteed that a sufficiently
small step in this direction will decrease the value of f . That is, if we define the
one-dimensional function fd(α) = f(x + αd), it is guaranteed that fd(α) <
fd(0) for a sufficiently small α. Step size selection determines where along
the ray {x + αd : α ≥ 0} the next iterate will be. The simplest choice is
the constant step size, α(k) = α0. Though widely used, such a strategy is
problematic. Indeed, d is a decrease direction only in the proximity of x; too
large a step size may increase the function resulting in oscillatory behavior of
f(x(k)) and often preventing convergence. A possible remedy is reducing the
step size, however, in this case a minimization algorithm will suffer from slow
convergence. For this reason, a far better strategy is to chose α(k) adaptively
by searching for suitable values along the ray {x + αd : α ≥ 0}. Such a
procedure is usually referred to as line search.3

The best way of choosing the step size is by using exact line search, in
which α is chosen to minimize f along the ray {x + αd : α ≥ 0}:

α = argmin
α≥0

f(x + αd). (5.3)

There exists a variety of numerical procedures for solving the above one-
dimensional minimization problem [30, 46]. In some special cases, the solution
may have an analytic form. Exact line search is used when its complexity is
significantly lower than the complexity of computing d itself.

Many times, the exact minimizer of f(x + αd) is not necessary or too
expensive to find. Line search methods that find a step size that reduces f
“sufficiently” are called inexact. One of the most popular versions of such
line searches is known as the Armijo rule or backtracking line search (Algo-
rithm 5.2).

Backtracking line search starts with some initial step size α0 and then
gradually reduces it by the factor β until the condition f(x + αd) ≤ f(x) +
σα∇f(x)Td is satisfied. The geometric meaning of this condition is visualized
in Figure 5.2: on one hand, for a sufficiently small α, the one-dimensional

input : descent direction d, objective function f(x) and its
gradient ∇f(x), parameters σ ∈ (0, 0.5) and β ∈ (0, 1).

output : step size α.
initialization: initial step size α0.

α ←− α01

while f(x + αd) > f(x) + σα∇f(x)Td do2

α ←− βα.3

end4

Algorithm 5.2. Backtracking line search (Armijo rule).



100 5 Numerical Optimization

f (x) + ∇f(x)Td

f(x + d)

f (x) + ∇f(x)Td

max0

Figure 5.2. Visualization of the Armijo rule applied to a one-dimensional function
f(x + αd). The lower dashed line shows the linear extrapolation of f , whereas the
upper dashed line has a slope smaller by a factor of σ. Armijo rule accepts any value
of α, for which the function lies between the two lines, i.e., 0 ≤ α ≤ αmax.

function f(x+ αd) behaves very similarly to its first-order Taylor approxima-
tion f(x)+ α∇f(x)Td, hence f can be decreased by α∇f(x)Td. On the other
hand, for larger values of the step size that are desired for faster convergence,
f(x+ αd) may lie above the line f(x)+ α∇f(x)Td and sometimes a too large
α may even increase the value of the function. The Armijo rule provides a rea-
sonable trade-off between the two situations by accepting a decrease of factor
σ of that suggested by first-order extrapolation. Typically, σ ranges between
0.01 to 0.3 and β between 0.1 (fast, yet crude search) and 0.8 (more accurate,
yet slower search).

Both exact and inexact types of line search guarantee a decrease of f at
every iteration of a minimization algorithm, which produces a monotonically
non-increasing sequence f(x(0)) ≥ f(x(1)) ≥ · · · ≥ f(x(k)) ≥ · · · of func-
tion values. For this reason, algorithms that use line search are often termed
safeguarded.

5.4 The quest for a descent direction

Thus far, we have assumed that the decrease direction d was given. We will
now explore several ways to find it. Observe the first-order Taylor approxima-
tion of f(x + d) around x,

f(x + d) ≈ f(x) + ∇f(x)Td.

The term ∇f(x)Td is called the directional derivative of f at x in the direction
d. It describes the approximate change in f for a small step in the direction d.
Observe that f(x+d) < f(x) if the directional derivative ∇f(x)Td is negative.
In other words, a descent direction must form an acute angle with the negative
gradient.
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Figure 5.3. Normalized steepest descent directions in sense of the L1 (left), L2

(middle), and a general Q-norm (right).

Intuitively, to make the descent the steepest, it is desirable to make
∇f(x)Td as negative as possible. Because the term ∇f(x)Td is linear, it is
unbounded below and thus we can make it as negative as we like by selecting
a very large d, provided that d is a descent direction. This, of course, does not
make much sense, as the above approximation holds only locally. To make the
problem well-defined, we will constrain d to have unit length. The direction
we are looking for is

dnsd = arg min
d:‖d‖=1

∇f(x)Td. (5.4)

Such a d is often called a normalized steepest descent direction [46]. Note that
dnsd is not unique and depends on the choice of the norm in ‖d‖ = 1.

Geometrically, dnsd can be thought of as the direction in the unit ball ‖d‖ =
1 that has the largest extension in the direction −∇f(x); different choices
of the norm ‖ · ‖ will result in different descent directions (see Figure 5.3).
For example, if we choose the L1 norm, the steepest descent direction is the
standard basis vector ei, onto which the projection of −∇f(x) is the largest:

dnsd = −sign
(

∂f(x)
∂xi

)

ei, (5.5)

where i = arg maxi=1,...,n |∂f(x)
∂xi |. Note that a step in the L1 steepest descent

direction will update a single coordinate of x at a time. For this reason, the L1

norm steepest descent algorithm is often called a coordinate descent algorithm.
Another by far more common choice is the standard L2 norm, which yields

simply the negative gradient direction,

dnsd = − ∇f(x)
‖∇f(x)‖2

, (5.6)

as the descent direction. The resulting algorithm is called normalized gradient
descent.4

Example 5.2 (condition number). Let us derive the gradient descent al-
gorithm with exact line search on the following quadratic function, borrowed
from Boyd and Vandenberghe’s book Convex Optimization [46]:
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f(x) =
1
2
((x1)2 + λ(x2)2)

(here xi stands for the i-th coordinate of the vector x, and (xi)2 is squared
value). Because the eigenvalues of the Hessian of f(x) are λ1 = 1, λ2 = λ,
the function is convex for λ > 0 and its minimum is achieved at x∗ = 0 with
the optimal value 0. The non-normalized gradient descent direction is given
by d = −∇f(x) = −(x1, λx2)T. Exact line search finds the step size α that
minimizes the one-dimensional function,

f(α) = f(x + αd) =
1
2

(
(x1 + αd1)2 + λ(x2 + αd2)2

)
.

α can be expressed analytically by imposing

0 = f ′(α) = (x1 + αd1)d1 + λ(x2 + αd2)d2

= −(x1)2 − λ2(x2)2 + α((x1)2 + λ3(x2)2),

from where

α =
(x1)2 + λ2(x2)2

(x1)2 + λ3(x2)2
.

We run the gradient descent algorithm starting at x(0) = (λ, 1)T. In this
case, the first descent direction will be d(0) = −λ(1, 1)T with the step size
α(0) = 2/(λ + 1). Consequently, the next point will be

x(1) = (λ, 1)T − 2λ

λ + 1
(1, 1)T =

(

λ

(
λ − 1
λ + 1

)

,
λ − 1
λ + 1

)T

.

Continuing in the same manner, we obtain

x(k) =

(

λ

(
λ − 1
λ + 1

)k

,

(

−λ − 1
λ + 1

)k
)T

,

which yields

f(x(k)) =
1
2
λ(λ + 1)

(
λ − 1
λ + 1

)2k

=
(

λ − 1
λ + 1

)2k

f(x(0)) =
(

λ − 1
λ + 1

)2

f(x(k−1)).

Note that the suboptimality f(x(k))−f(x∗) of the solution drops by the factor
(λ − 1)2/(λ + 1)2 after each gradient descent iteration. In other words, λ
influences the convergence rate of the algorithm: for λ = 1, it converges in
a single iteration; for λ ∼ 1, the convergence is fast, whereas for λ � 1 or
λ � 1, the convergence is extremely slow. Two examples of convergence are
shown in Figure 5.4.
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0.7= 0.2=

Figure 5.4. Convergence trajectory of the gradient descent algorithm on the func-
tion f(x1, x2) = (x1)2 + λ(x2)2 for λ = 0.7 (left) and λ = 0.2 (right).

Example 5.2 shows that on a simple quadratic function, for which the
Hessian is a constant 2 × 2 matrix with the eigenvalues 1 and λ, we have

f(x(k+1)) − f(x∗) ≤ γ(f(x(k)) − f(x∗)),

where the ratio

γ =
(

λ − 1
λ + 1

)2

< 1

is called the convergence rate. In simple terms, the solution suboptimality
f(x(k))− f(x∗) converges to zero at least as fast as a geometric series. This is
usually referred to as linear convergence, as f(x(k)) − f(x∗) falls below a line
on a log-linear plot of suboptimality versus iteration number. Setting some
tolerance ε on the solution suboptimality, f(x(k))−f(x∗) ≤ ε is achieved after
at most

kmax = − log(f(x(0)) − f(x∗))/ε)
log γ

iterations. Note that whereas the numerator of the above expression depends
on the initialization of the algorithm, the denominator is a function of γ only.

This simple convergence analysis can be generalized in the following way:
For a C2 function f with the Hessian ∇2f(x) having its eigenvalues in the
range [λmin, λmax], the convergence rate of the gradient descent algorithm is

γ =
(

λmax − λmin

λmax + λmin

)2

=
(

ξ − 1
ξ + 1

)2

,



104 5 Numerical Optimization

where the ratio ξ = λmax/λmin is referred to as the condition number of the
Hessian matrix.5 Because in the proximity of some point x a C2 function can
be expressed in terms of a quadratic form,

f(x + d) ≈ f(x) + ∇f(x)Td +
1
2
dT∇2f(x)d,

the condition number of ∇2f(x) describes how isotropic are the level lines of
f(x) close to x. In our mountain example, ξ ≈ 1 corresponds with a valley, in
which the slope in every direction is approximately the same. On the other
hand, ξ � 1 or ξ � 1 means that along some direction the valley is much
flatter than along some other.

The Hessian condition number governs the convergence speed of the gra-
dient descent algorithm. For example, for ξ = 106, about 5000 iterations
are required to decrease the solution suboptimality by 1%, meaning that the
convergence is extremely slow. Problems with a large ξ are usually called
ill-conditioned.

5.5 Preconditioning

Example 5.2 demonstrates that the gradient descent algorithm is not suitable
for solving ill-conditioned minimization problems. However, recall that we
have the flexibility to use a different norm in (5.4). Particularly, consider
the Q-norm ‖x‖Q = (xTQx)1/2 = ‖Q1/2x‖2, where Q is a positive-definite
matrix.6 This change of the norm can be considered as a change of coordinates.
The Q-norm steepest descent for f(x) with respect to x is equivalent to the
gradient descent for h(y) = f(Q−1/2y) with respect to y, where y = Q1/2x.
The normalized gradient descent direction at the point x = Q−1/2y is given
by the chain rule,

dnsd = −
(
∇f(x)TQ−1∇f(x)

)−1/2
Q−1∇f(x), (5.7)

(see Problems 5.11 and 5.12).
The change of the norm has a tremendous effect on the convergence rate.

Observe that in the new coordinate system, the Hessian of h(y) at a point
y = Q1/2x is given by

∇2h(y) = ∇2g(Q1/2x) = Q−1/2∇2f(x)Q−1/2.

If in the initial problem the Hessian is ill-conditioned, and the transformation
of coordinates by Q improves its condition number, the Q-norm steepest de-
scent will converge faster than does the regular gradient descent. The matrix
Q that improves the condition number of a problem is called a preconditioner.
In general, Q should be chosen such that after the transformation the Hes-
sian is well-conditioned, at least in the proximity of the minimum. Thus, if an
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approximation H̃ ≈ ∇2f(x∗) of the Hessian at the solution point is available,
the choice Q = H̃ results in ∇2h(y∗) = H̃−1/2∇2f(x∗)H̃−1/2 ≈ I. How-
ever, it should be stressed that there is no universal recipe for finding a good
preconditioner; in the majority of cases, it remains more of an art.

5.6 Let Newton be!

We have seen that the choice of a Q-norm with Q ≈ ∇2f(x∗) in the steepest
descent algorithm significantly improves its convergence, yet, clearly, except in
some special cases, the Hessian at the solution as well as the solution itself are
not known in advance. However, if f is sufficiently smooth, ∇2f(x) ≈ ∇2f(x∗)
in the proximity of x∗, we can select Q = ∇2f(x) (different at each iteration)
obtaining,

d = −(∇2f(x))−1∇f(x), (5.8)

called the Newton direction. When the Hessian is positive definite, d forms an
acute angle with ∇f(x), and thus is a descent direction. A steepest descent
algorithm using the Newton direction is called the Newton algorithm and a
single step in the Newton direction is called the Newton step.7 When line
search is used in the Newton algorithm, the method is usually referred to as
the damped or safeguarded Newton method.

Newton’s step can be considered a gradient descent iteration in a “canon-
ical” system of coordinates obtained by scaling x by the approximate inverse
Hessian matrix. It appears that such a scaling is the best possible precon-
ditioning in the sense that any affine change of coordinates in f(x) will not
influence the convergence of the method (Problem 5.13). The Newton step
can be interpreted as the minimizer of a second-order Taylor approximation
f(x + d) ≈ f(x) + ∇f(x)Td + dT∇2f(x)d, which is a quadratic function of
d and is minimized by d = (∇2f(x))−1∇f(x). Because a twice differentiable
function is locally quadratic, x+d should be a very good estimate of x∗ in the
proximity of the solution. In the trivial case where the function is quadratic,
the Newton algorithm converges in a single iteration. Because of the fact that
the Newton direction is derived from a second-order Taylor approximation of
the function and uses second-order derivatives, the Newton method is often
termed as a second-order optimization algorithm.

Yet another way to interpret the Newton step is by considering the solution
of the first-order (necessary) optimality condition ∇f(x∗) = 0. Linearizing this
equation around x with respect to d, we obtain

∇f(x + d) ≈ ∇f(x) + ∇2f(x)d = 0,

which is solved by selecting d to be the Newton direction. In other words, the
Newton step is the displacement that must be added to x in order to satisfy
the linearized optimality condition.
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The Newton algorithm exhibits very rapid convergence compared with
gradient descent. As soon as the iterations bring x(k) sufficiently close to the
solution x∗ (practically, when ‖∇f(x(k))‖2 is sufficiently small), the method
starts converging quadratically. Roughly, this means that the number of cor-
rect digits in the solution suboptimality, f(x(k)) − f(x∗), doubles after each
iteration. This stage is also characterized by a rapidly dropping gradient norm.

Another typical behavior is the fact that the Hessian usually does not
change significantly in the proximity of the optimum. It is possible to reduce
the number of Hessian evaluations and inversions by keeping the Hessian
from previous iterations and updating it only every few iterations. Such an
acceleration of the Newton method is referred to as frozen Hessian [285].

In practice, the Newton system is rarely solved by inverting the Hessian
matrix. A far more common way is to express the Hessian as a product
∇2f = LLT, where L is a lower triangular matrix. Such an expression is
called Cholesky decomposition or factorization, published posthumously and
honoring its inventor, the French military engineer Andre-Louis Cholesky [24].
Cholesky decomposition exists for any positive-semidefinite matrix.8 Using
this approach, the Newton system LLTd = −∇f is solved by two stages: first,
the system Ly = −∇f is solved for y (a step called forward substitution).
Second, the system LTd = y is solved for d. This step is referred to as back-
ward substitution. Because L is a triangular matrix, both systems are solved
efficiently, with O(N2) operations (Algorithm 5.3). Cholesky decomposition
requires 1

6N3 +O(N2) multiplication operations and the same amount of ad-
dition operations, which is usually more efficient than straightforward matrix
inversion (though the theoretical complexity is still O(N3)) [177].

When the objective function is non-convex, its Hessian may contain nega-
tive or zero eigenvalues, which means that the Newton direction may cease to
be a descent direction or ∇2f(x) may not be invertible. In order to cope with
this problem, the Hessian is often modified by adding some positive-definite
matrix, e.g., H̃ = ∇2f(x)+ εI, which makes its eigenvalues positive. Cholesky
decomposition can still be used with the modified Hessian.

5.7 Truncated Newton

The quadratic convergence of the Newton method is a clear advantage over
steepest descent algorithms. However, despite this advantage, the practical

input : Hessian ∇2f(x), gradient ∇f(x).
output: Newton direction d.

Find Cholesky decomposition of the Hessian, ∇2f(x) = LLT.1

Forward substitution: solve Ly = −∇f for y.2

Backward substitution: solve LTd = y, obtaining the Newton direction d.3

Algorithm 5.3. Newton system solution using Cholesky factorization.
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use of the Newton method is limited. First, computation of the Hessian ma-
trix is required at each iteration, which may be computationally intensive.
Second, the case where ∇f is not Lipschitz continuous may raise numerical
problems, as the Hessian may have unbounded spectrum (when f is not twice
differentiable, the Hessian does not exist and the Newton algorithm is not ap-
plicable). Yet, the major difficulty stems from the fact that at each iteration,
we have to solve the linear system ∇2f(x)d = −∇f(x)). Except some special
cases where the Hessian has a nice structure, this stage requires O(N3) oper-
ations. This makes the Newton algorithm applicable in general only to small
to medium-scale problems, in which the number of variables does not exceed
a few hundreds.

Fortunately, there exist various methods that were designed to achieve
rapid convergence without computing or inverting the Hessian matrix. A fam-
ily of algorithm called truncated or inexact Newton methods computes the
Newton direction approximately, requiring only that

‖∇2f(x)d + ∇f(x)‖2 ≤ η · ‖∇f(x)‖2 (5.9)

instead of solving the exact system ∇2f(x)d = −∇f(x). Approximate solution
of the Newton system is carried out using an iterative method for the solution
of linear equations,9 which is stopped as soon as (5.9) is satisfied. It is common
to refer to the sequence of Newton steps as the outer iterations, whereas the
iterations used to solve the linear system at each outer iteration are called the
inner iterations.

5.8 Quasi-Newton algorithms

Another class of approximate Newton algorithms replaces the exact Newton
step by

d(k) = −(H(k))−1∇f(x(k)), (5.10)

where H(k) is an approximate Hessian, which is usually initialized to H(0) =
I and then gradually built using the gradients from some or all previous
iterations, {∇f(x(0)), . . . ,∇f(x(k))}. Such algorithms are usually referred to
as quasi-Newton.

In order to understand how to obtain the new approximate Hessian H(k+1)

from the previous approximation H(k), recall how a derivative of a one-
dimensional function h(t) can be replaced by a finite-difference

h′(t) ≈ h(t) − h(t′)
t − t′

or, alternatively, h′(t)(t− t′) ≈ h(t)− h(t′). This intuition can be generalized
to the multi-variate case, leading to
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∇2f(x(k+1))(x(k+1) − x(k)) ≈ ∇f(x(k+1)) −∇f(x(k)).

Instead of using the exact Hessian, this condition can be enforced on some
approximate matrix H(k+1) ≈ ∇2f(x(k+1)),

H(k+1)(x(k+1) − x(k)) ≈ ∇f(x(k+1)) −∇f(x(k)).

This system provides only n equations to determine the n×n matrix H(k+1).
In 1965, Broyden [84] proposed the following update formula

H(k+1) = H(k) +
y − H(k)s

sTs
sT,

where y = ∇f(x(k+1)) − ∇f(x(k)) and s = x(k+1) − x(k). It can be shown
that H(k+1) defined in such a way leads to the least change of H(k) (see
Problem 5.14).

A somewhat more frequently used update was proposed independently by
Broyden [85], Fletcher [158], Goldfarb [175], and Shanno [352]:

H(k+1) = H(k) − H(k)s(H(k)s)T

sTH(k)s
+

yyT

yTs
.

Using H(k) instead of the true Hessian matrix ∇2f(x(k)) in the Newton step
gives rise to a quasi-Newton algorithm named the Broyden-Fletcher-Goldfarb-
Shanno or BFGS method. The approximate Hessian remains positive definite
as long as yTs > 0.

Of course, we still face the problem of inverting H(k). A remedy is found
in the matrix inversion lemma from linear algebra, which allows us to express
explicitly the inverse of the sum of a symmetric positive-definite matrix with
a k-rank matrix (rank 1 in case of Broyden’s update and rank 2 in case
of the BFGS). This allows us to update directly an approximation of the
inverse Hessian B(k) ≈ (H(k))−1. The BFGS formula rewritten in terms of
B(k) assumes the form of

B(k+1) =
(

I − syT

yTs

)

B(k)

(

I − syT

yTs

)

+
ssT

yTs
. (5.11)

Like the steepest descent algorithms, the BFGS quasi-Newton method uses
only first-order derivatives and line search. Though BFGS requires slightly
more calculations per iteration and some additional storage compared with
steepest descent methods, it greatly outperforms the latter in convergence
speed. To date, the BFGS quasi-Newton method is considered one of the best
choices for medium and large-scale problems among the variety of existing
unconstrained minimization algorithms.

5.9 Non-convex optimization

All the optimization algorithms we have discussed so far are suitable for find-
ing local minima and have global convergence only if the objective function
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is convex. In case of a non-convex objective, unfortunately, there is no magic
recipe that can always guarantee global convergence. Therefore, local opti-
mization algorithm cannot be applied blindly in such cases.

There exist several heuristic methods for minimization of non-convex func-
tions. Assume that our objective function has one global and several local
minima. The simplest way to prevent local convergence is by starting with an
initialization x(0), sufficiently close to the global minimum. Often, non-convex
functions exhibit patterns referred to as basins of attraction around their min-
ima. Starting the optimization in such a “basin” will eventually “attract” the
solution to a local minimum. However, in many optimization problems (includ-
ing the ones we are focusing on), some a priori knowledge about the solution
is available to choose the initialization in the correct basin of attraction, thus
usually preventing local convergence.

When a good initialization is not readily available, in some problems it
is still possible to find one using multiresolution approaches. The key idea
is starting with the solution of a coarse-resolution version of the problem,
which contains significantly less variables and approximates in some sense the
original problem,10 proceeding to higher-resolution levels with the obtained
solution used as the initialization, until arriving to the full-resolution problem.
We will meet such approaches in Chapter 7 in our discussion of multidimen-
sional scaling methods.

In some cases, the iterative majorization approach can be used. Instead
of minimizing the function f , we minimize a convex majorizing function h :
X × X → R. A majorizing function is a function of two variables, h(x, q),
which touches f at the point q, i.e., h(q, q) = f(q) and is above f at all the
rest of the points, i.e., f(x) ≤ h(x, q) for all x ∈ X. The idea of iterative
majorization consists of sequentially updating the point q at which the two
functions touch each other with a point decreasing the value of the majorizing
function. Formally, the procedure is as shown in Algorithm 5.4.

Step 3 of Algorithm 5.4 can be carried out using local optimization. The
algorithm produces a sequence of points x(1), x(2), . . . on which the value of
f decreases. Though we cannot guarantee in general that such a sequence

input : objective function f , majorizing function h.
output : minimizer x∗ of f(x).
initialization: some initial q(0) and k = 0.

repeat1

Find x(k+1) for which h(x(k+1), q(k)) ≤ h(q(k), q(k))2

Update q(k+1) = x(k).3

k ←− k + 14

until convergence5

x∗ = q(k).6

Algorithm 5.4. Iterative majorization algorithm.
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Figure 5.5. Illustration of two steps of the iterative majorization algorithm.

converges to the global minimum of f , it is reported that in many non-convex
problems, the majorization approach helps prevent convergence to a local
minimum. Another advantage is that the majorizing function is usually much
simpler than the objective (for example, a quadratic function is a popular
choice of h) and, as a result, easier to minimize. We will touch upon the
majorization method when discussing the multidimensional scaling problem
in Chapter 7.

5.10 Constrained optimization

Let us return once more to our mountain traveler and put him in an unpleasant
situation: walking in the mountain, he suddenly comes across a lake. Unable
to swim, the traveler is constrained to walk around the lake and cannot get
into the water. Taking this illustration to the domain of optimization theory
brings us to constrained optimization problems, formulated in general form as

min
x∈X

f(x) s.t.
{

gk(x) ≤ 0, k = 1, . . . , K
hl(x) = 0, l = 1, . . . , L.

(5.12)

(here “s.t.” is read as “subject to”). The functions gk : X → R are called
inequality constraints and hl : X → R equality constraints (for notation con-
venience, the constraints are often written as vector functions, g : X → R

K

and h : X → R
L, respectively; g(x) ≥ 0 and h(x) = 0 are interpreted element-

wise). For simplicity, we assume that f, gk, and hk are C2. The constraints
define the subset of X to which the solution must belong, referred to as the
feasible set (in our illustration, the zone where the traveler can walk). A point
x satisfying all the constraints is said to be a feasible solution to (5.12), and
infeasible otherwise. If x is feasible and gi(x) = 0, the inequality constraint
gi(x) ≤ 0 is said to be active at x. If, on the other hand, gi(x) < 0, the con-
straint is inactive. If the gradients ∇hl(x) of the equality constraints and the
gradients ∇gk(x) of the active inequality constraints are linearly-independent



5.10 Constrained optimization 111

at x, the point x is called regular. Note that the minimizer of f(x) without the
constraints is not necessarily the solution of the constrained problem (5.12),
as it is not necessarily a feasible solution. Thus, the traveler from our exam-
ple, while descending down the valley, may find that he cannot go any further
without having to get into the water. The minimum in this case is located on
the boundary of the feasible set.

The main idea of solving constrained problems is to arrange the objective
and the constraints into a single function

L(x, λ, μ) = f(x) +
K∑

k=1

λkgk(x) +
L∑

l=1

μlhl(x)

= f(x) + g(x)Tλ + h(x)Tμ, (5.13)

which can be minimized like in a usual unconstrained problem. The func-
tion L is called the Lagrangian and the vectors λ = (λ1, . . . , λK) and
μ = (μ1, . . . , μL) the Lagrange multipliers. Informally, we can think of this
approach as of adding penalty for constraint violation to the objective. The
Lagrange multipliers define the trade-off between the importance of the objec-
tive and the constraint violation. A set of conditions known as Karush-Kuhn-
Tucker conditions (or KKT for short; sometimes the name Kuhn-Tucker is
also used) guarantees that the constrained problem (5.12) and the uncon-
strained problem (5.13) are equivalent [234]. Formally, they state the following:
If x∗ is a regular point and a local minimum of the constrained problem (5.12),
then

(KKT1) gk(x∗) ≤ 0 for all k = 1, . . . , K and hl(x∗) = 0 for all l =
1, . . . , L;

(KKT2) g(x∗)Tλ∗ = 0 and all the elements of λ∗ are non-negative;11

(KKT3) there exist unique Lagrange multipliers λ∗ and μ∗ such that

∇L(x∗, λ∗, μ∗) = ∇f(x∗) + ∇g(x∗)Tλ∗ + ∇h(x∗)Tμ∗ = 0.

Note that in general, the KKT conditions are necessary but not sufficient.
If the objective f and the constraints gk, hl (k = 1, . . . , K, l = 1, . . . , L) are
convex, then the KKT conditions are also sufficient, i.e., if (KKT1–KKT3)
hold, then x∗ is a solution of the constrained problem (5.12).

Example 5.3 (geometric interpretation of KKT conditions). In order
to get more geometric intuition about the KKT conditions, let us consider
a simpler minimization problem with only one equality constraint h(x) = 0.
Condition (KKT3) has the following geometric interpretation: the gradient of
the objective function, ∇f , has to be parallel to the gradient of the constraint,
∇h (Figure 5.6). To understand its necessity, assume that at some point x′

satisfying h(x′) = 0, the two gradients do not line up. This means that the
projection of ∇f(x′) on the tangent of the curve h(x) = 0 at x′ is non-zero.
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∇f

x

∇h

∇h
∇f

x′

h(x) = 0

Figure 5.6. Geometric interpretation of Karush-Kuhn-Tucker conditions: the gra-
dients of the objective f and the constraint h must line up at the constrained
minimum.

As consequence, a small displacement along that curve will decrease f while
still obeying the constraint, implying that x′ is not optimal.

5.11 Penalty and barrier methods

As we have mentioned, we can think of the Lagrangian as a way to convert
the constrained problem into an unconstrained one. A family of constrained
optimization algorithms called penalty methods is similar in its spirit to this
idea, defining the penalty aggregate

Fp(x) = f(x) +
K∑

k=1

ϕp(gk(x)) +
L∑

l=1

ψp(hl(x)),

which includes the objective and penalty on constraint violation. Here ϕp, ψp :
R → R is a parametric family of penalty functions defined as shown in Ta-
ble 5.11.
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Table 5.1. Penalties for equality and inequality constraints.

Inequality constraints penalty Equality constraints penalty

ϕp(t) = 1
pϕ(pt) ψp(t) = 1

pψ(pt)

ϕ′
p(t) = ϕ′(pt) ψ′

p(t) = ψ(pt)

limp→∞ ϕp(t) =
{

0 t ≤ 0
∞ t > 0 limp→∞ ψp(t) =

{
0 t = 0
∞ else

For example, ψ(t) = t2 is a popular choice for the equality constraint
penalty, and ϕ(t) = exp(t) − 1 is often used as the penalty for inequality
constraints (see Figure 5.7). When p grows to infinity, we approach the ideal
penalty function, which gives infinite penalty for constraint violation and zero
otherwise. Yet, the function becomes non-smooth, therefore, we must start
with a small p and then increase it gradually. In this way, we create a sequence
of problems, which are solved using unconstrained optimization algorithms,
and the solution is used as the initialization for the next problem with a larger
p. Formally, the penalty method proceeds as shown in Algorithm 5.5.

The stopping condition is usually a combination of a condition on the
constraint violation (g(x) ≤ εc, |h(x)| ≤ εc) and a tolerance on the objective
function change. It is also common to bound the values of p, such that the
algorithm is stopped when p > pmax. Typically, 4 ≤ β ≤ 10 is used in Step 4.

Another class of algorithms very similar to the penalty method is called
the barrier methods, whose only difference is that the constraints cannot be
violated.12 Barrier methods can be used in problems with inequality con-
straints only, and the barrier functions φp : R → R are defined similarly
to the inequality constraint penalty, with the difference that φp(t) → ∞ as
t → 0− for all p > 0 and undefined for t > 0. Commonly used barrier functions

input : Penalty aggregate Fp, parameter β.
output : approximate solution x∗ of constrained problem (5.12).

initialization: a small p and some initial x
(0)
p .

repeat1

Find x∗
p = argminx∈X

Fp(x) by unconstrained optimization initialized2

with x0
p.

Set p′ = βp.3

Set x
(0)
p′ = x∗

p.4

Update p ←− p′.5

until convergence6

x∗ = x∗
p.7

Algorithm 5.5. Penalty method.
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penalty penaltybarrier

Figure 5.7. Left: inequality constraint penalty ϕ(t) = exp(t) − 1; center: barrier
φ(t) = − log(−t); right: equality constraint penalty ψ(t) = t2. Shown in dashed line
is the asymptotic penalty/barrier for p → ∞.

are φ(t) = −t−1 or φ(t) = − log(−t), shown in Figure 5.7. The barrier method
should be used when it is absolutely important that the constraints are never
violated; it is more tricky than the penalty method, which is arguably pre-
ferred in general. The algorithm must be initialized with a feasible solution
and during all the optimization stages must always remain in the feasible set.
This usually requires certain modification in the line search, in order to ensure
that the selected step does not cause constraint violation.

5.12� Augmented Lagrangian method

The main disadvantage of the penalty and barrier methods is the fact that
for finite values of p, the penalty aggregate gives only an approximate way
to solve the constrained problem. Typically, large values of p are required to
achieve sufficient accuracy. At the same time, large values of p are hard to
handle, as |ϕ′

p| and |ϕ′′
p | become very large.

Recall that the meaning of Lagrangian according to the KKT conditions
is that the solution of the constrained problem (5.12) can be found by uncon-
strained minimization of L(x, λ∗, μ∗), once the optimal Lagrange multipliers
λ∗ and μ∗ are known. In practice, we do not know λ∗ and μ∗ in advance,
however, we can search for them together with x∗.

This observation gives rise to a method introduced by Hestenes [204] and
Powell [319] and referred to as augmented Lagrangian (AL). Instead of penalty
functions ϕp(t) and ψp(t) used for inequality and equality constraints in the
penalty method, two-parametric functions of the form ϕp(t; λ) and ψp(t; μ)
satisfying
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input : Augmented Lagrangian function Fp, parameter β.
output : approximate solution x∗ of constrained problem (5.12).
initialization: k = 0, a small p, some initial x(0), λ(0) and μ(0).

repeat1

Find x∗
p = argminx∈X

Fp(x, λ(k), μ(k)) by unconstrained optimization2

initialized with x(k).
Update the Lagrange multipliers: μ

(k+1)
i = ϕ′

p(gi(x
∗
p); μ

(k)
i ),3

λ
(k+1)
l = ψ′

p(hl(x
∗
p); λ

(k)
l ) > βλ

(k)
l .

x(k+1) = x∗
p.4

Set p ←− βp.5

Set k ←− k + 1.6

until convergence7

x∗ = x∗
p.8

Algorithm 5.6. Augmented Lagrangian method.

ψ′
p(0; λ) = λ,

ϕ′
p(0; μ) = μ,

are used. For example, such functions can be defined as ϕ(t; μ) = μϕp(t) and
ψp(t; λ) = ψp(t) + λt. The penalty aggregate is replaced by

Fp(x, λ, μ) = f(x) +
K∑

k=1

ϕp(gk(x); μk) +
L∑

l=1

ψp(hl(x); λl).

Differentiating Fp(x) with respect to x, we have

∇xFp(x, λ, μ) =

∇xf(x) +
K∑

k=1

ϕ′
p(gk(x); μk)∇xgk(x) +

L∑

l=1

ψ′
p(hl(x); λl)∇xhl(x),

which bears resemblance to the gradient of the Lagrangian ∇L(x) in (KKT3).
The terms ϕ′

p(gk(x); μk) and ψ′
p(hl(x); λl) can therefore be considered as esti-

mates of the Lagrange multipliers μk and λl, respectively. The entire algorithm
can be summarized as shown in Algorithm 5.6.

The update of the Lagrange multipliers in Step 3 of Algorithm 5.6 is usually
damped, in order to avoid significant change of λ(k) and μ(k) over subsequent
iterations. The advantage of augmented Lagrangian over the standard penalty
method is the fact that once μ∗, λ∗ are found, the optimal solution x∗ is
known after unconstrained minimization of Fp(x, λ∗, μ∗). For this reason, the
augmented Lagrangian method usually converges for small values of p.
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Suggested reading

A good starting point to get a general picture of numerical optimization is
the comprehensive books of Bertsekas [30], Kelley [221], and Nocedal and
Wright [298]. Boyd and Vandenberghe [46] dig deeper into the theory and show
multiple examples of different applications where optimization problems arise.
The most recent state-of-the-art theory and practice of convex optimization is
presented in Arkadi Nemirovsky’s lecture notes [293, 295]. He also has a review
of classic methods in [294], more accessible to the general reader. A good
survey of truncated Newton algorithm is presented by Stephen Nash [292].
An excellent book oriented toward specialists in optimization and covering in
depth different issues related to constrained optimization problems is Nesterov
and Nemirovsky [296]. An overview of augmented Lagrangian methods can be
found in [110, 29].

We left beyond the scope of this book a whole class of optimization prob-
lems with discrete variables (the graph shortest path problem is one example
we encountered in Chapter 4). Such problems are usually referred to as combi-
natorial optimization. For an overview of combinatorial optimization problems
and methods, the reader is referred to [116].

Software

The best starting point is the commercial MATLAB optimization toolbox,
available as part of MATLAB distribution. TOMLAB is another commer-
cial toolbox for MATLAB. Numerous optimization codes in MATLAB are
available in public domain. Kelley’s book [221] is accompanied by MATLAB
codes. OPT++ is a free C++ library of optimization algorithms from the San-
dia Lab, including different versions of Newton and quasi-Newton algorithms.
LANCELOT is a free Fortran software package for large-scale constrained
and unconstrained problems, implementing, among the rest, the augmented
Lagrangian method [111]. For a comprehensive survey of public domain and
commercial optimization software in different languages, we refer the reader
to the online document maintained by Robert Fourer [165].

Problems

5.1. Describe a function satisfying the optimality condition (O’1) and a
weaker version of (O’2): ∇2f(x∗) ≥ 0. Is it guaranteed that x∗ is a local
minimum?

5.2.� Show that matrix multiplication is commutative under the trace opera-
tor, i.e., trace(ATB) = trace(BAT) for A and B of size n × m.
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5.3. Verify the result of Example 5.1 by coordinate-wise differentiation in the
standard basis.

5.4. Show that a matrix is positive-semidefinite if and only if its eigenvalues
are non-negative.

5.5.� Show that an intersection of convex sets is a convex set.

5.6. Show that a function f : A ⊆ V → R is convex if and only if its epigraph
epif = {(v, y) ∈ A × R : f(v) ≤ y} is a convex set.

5.7.� Show that if a function f : A ⊆ V → R is convex, its sub-level sets
{v ∈ A : f(v) ≤ y} are convex sets.

5.8.� Show that a local minimum of a convex function is (i) a global minimum,
and (ii) it is unique if the function is strictly convex.

5.9. Show that Armijo rule eventually terminates.

5.10. Generalize Example 5.2 to a general positive-definite quadratic function
in R

n. Derive the descent direction and the optimal step size.

5.11. Prove the chain rule ∇xf(Ax) = A∇xf(Ax).

5.12. Derive the expression (5.7). (Hint: use the result of 5.11.)

5.13. Derive the Newton iteration as the best possible preconditioning.

5.14. Derive the Broyden approximation for the Hessian by solving

H(k+1)(x(k+1) − x(k)) = ∇f(x(k+1)) −∇f(x(k)),
H(k+1)u = H(k)u s.t. 〈x(k+1) − x(k), u〉 = 0.

Show that H(k+1) defined in this way is unique.

5.15.� Find the Lagrange multipliers in the following constrained problem,

min
(x1,x2)T∈R2

x1 + x2 s.t.
{

(x1 − 1)2 + (x2)2 = 1
(x1 − 2)2 + (x2)2 = 4.

Does this result contradict the KKT conditions? Explain.

5.16.� Find the solution of the constrained optimization problem

min
(x1,x2)T∈R2

x1 + x2 s.t. (x1)2 + (x2)2 = 2,

using geometric interpretation of KKT conditions only.
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Notes
1If A does not contain the local minimizer of f , then the global minimum is

obtained on the boundary of A.
2Typically, the value of εg ranges between 10−3 and 10−8, and the value of εf is

chosen about 10−3

3Boyd [46] suggests that the term ray search appears to be more appropriate.
4Gradient descent assumes Euclidean geometry of the problem. Shun-Ichi Amari

suggested that in some problems, the optimization variable x can be thought of as
a vector of parameterization coordinates, representing a point on a non-Euclidean
manifold [6]. In such a case, the steepest descent direction has to be computed
on the manifold and take into consideration its metric, giving rise to what Amari
termed natural gradient G−1∇f (note that we have already encountered a similar
construction in our discussion of minimal geodesic computation in Chapter 3). Nat-
ural gradient was first proposed for problems in blind separation and equalization
of signals. It can be interpreted as a “naturally” scaled gradient descent, thus being
intimately connected to the Newton algorithm.

5In optimization literature, condition number is usually denoted by κ. We use a
different notation to avoid the confusion with the curvature.

6The matrix square root can be defined as follows: if Q = UΛUT is the eigen-
decomposition of Q, then Q1/2 = UΛ1/2UT, where Λ1/2 is a diagonal matrix with
elements λ

1/2
1 , . . . , λ

1/2
N .

7Though bearing Sir Isaac’s name, Newton in fact did not invent this algorithm.
In his work De analysi per æquationes numero terminorum infinitas [297], New-
ton described an iterative method for finding roots of polynomials, which was later
extended by Thomas Simpson for general scalar functions. Today, this method is
usually referred to as the Newton-Raphson method. One can think of the Newton
optimization algorithm as using the Newton-Raphson to find the roots of the gra-
dient ∇f(x), which is equivalent to finding the local minimum of f(x).

8If in addition the matrix is positive-definite, its Cholesky decomposition is
unique.

9Typically, the conjugate gradient algorithm [292] is used in truncated Newton
methods for approximate solution of the Newton system.

10For example, in multidimensional scaling problems we will encounter in the fol-
lowing chapters, our variables will be coordinates of points sampled on a surface. In
multiresolution methods, we start with a coarse sampling and refine it on subsequent
resolution levels.

11From condition (KKT2), it follows that components of λ∗ corresponding with
inactive constraints vanish, i.e., inactive constraints are redundant and can be re-
moved without changing the solution.

12Often, penalty and barrier methods are referred to under the common name
penalty/barrier methods (PBM) [414].



...He had Cinderella sit down, and, putting the
slipper to her foot, he found that it went on very
easily, fitting her as if it had been made of wax.

C. Perrault, Cinderella

6

In the Rigid Kingdom

Imagine a glamorous royal ball hosted by a young Prince in his palace. Among
hundreds of elegantly dressed guests, a fair lady comes uninvited. The Prince,
struck by her radiant beauty, falls in love from the first sight. But all of
a sudden, as the tower clock bell sounds the first stroke of midnight, the
mysterious guest slips from the Prince’s arms and vanishes into the darkness
without a word of goodbye, leaving as the only evidence of her visit a tiny
glass slipper. The Prince swears to marry the girl whose petite foot fits into
it. He commands all maids in his kingdom to measure the slipper, and after
a long search finally finds a poor girl, whose foot fits perfectly. The Prince
recognizes his fair guest, declares his love to her, and they marry and live
happily ever after.

In this brief synopsis, the reader will certainly recognize the plot of
Cinderella.1 This fairy tale illustrates the problem of surface similarity. Speak-
ing in our language, the Prince was looking for a distance function that given
two surfaces (those of the slipper and the girl’s foot) provides a quantitative
measure of their similarity. For this discussion, we will assume that as well
as the glass slipper, Cinderella’s foot is rigid and cannot be bent, folded, or
deformed in any way; one can only change its location and orientation in
space. Formally, we say that our objects are subsets of R

3 with the standard
Euclidean metric, in which the isometry group contains only rigid transforma-
tions: translation and rotation (reflections are usually excluded because they
are not physical transformations). Similarity of two surfaces in such a case is
extrinsic and, up to a Euclidean isometry, can be thought of as a measure of
their congruence.

In this chapter, we explore tools for comparison of extrinsic geometries
in a way invariant to rigid transformations. We will start our discussion in a
pursuit after a representation of two surfaces X and Y that is invariant to
Euclidean isometries. Next, we will view the similarity problem through the
prism of numerical optimization and see how it is related to another problem
of alignment or correspondence of rigid surfaces.

A. Bronstein et al., Numerical Geometry of Non-Rigid Shapes, 119
Monographs in Computer Science, DOI 10.1007/978-0-387-73301-2 6
c© Springer Science+Business Media, LLC 2008
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Figure 6.1. Cinderella trying on the slipper in Gustave Doré’s engraving.

6.1 Moments of joy, moments of sorrow

Every rigid transformation in R
3 can be described by six parameters: three

rotation angles θ = (θ1, θ2, θ3)T about the x, y, and z axes, respectively, and
three translation coordinates t = (t1, t2, t3)T. Such a transformation reposi-
tions a vector x in R

3 to

x′ = Rx + t = R1R2R3x + t,

where

R1 =

⎛

⎝
1 0 0
0 cos θ1 sin θ1

0 − sin θ1 cos θ1

⎞

⎠ , R2 =

⎛

⎝
cos θ2 0 sin θ2

0 1 0
− sin θ2 cos θ2

⎞

⎠ ,

and
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R3 =

⎛

⎝
cos θ3 sin θ3 0
− sin θ3 cos θ3 0

0 0 1

⎞

⎠

are rotation matrices.2

A straightforward approach for getting rid of rigid isometries is to find a
Euclidean transformation that brings a surface X to some “canonical” place-
ment in R

3. For example, if we could identify a landmark point s0 on X ,
translating the surface by t = −s0 would always bring that point to the ori-
gin, resolving the ambiguity in surface position. However, finding landmark
points requires additional information about the surface, which is not always
available.

Nevertheless, there exist several points that can be found for every three-
dimensional surface. One of such points is the extrinsic centroid (the terms
center of mass and center of gravity are often used as synonyms),

x0 =
∫

X

xdx, (6.1)

which is essentially the “average location” of X (note that unlike its intrinsic
counterpart we have encountered in Chapter 3, the extrinsic centroid does not
necessarily belong to X). Clearly, translating the surface in such a way that
x0 coincides with the origin resolves the translation ambiguity.

Next, we have to resolve the remaining three degrees of freedom due to
rotation. This can be done by finding a direction in which the surface has
maximum extent, and aligning it, say, with the the e1 axis (Figure 6.2, left).
Because a direction is described by a unit vector in R

3, this step resolves only
two of the three degrees of freedom. The remaining degree of freedom is due
to the rotation ambiguity about the e1 axis. However, we can apply the same
idea again by rotating the surface such that the projection on the e2e3 plane,
which can be illustrated as the footprint of the shadow cast by the surface
(Figure 6.2, right), has the maximum extent in the direction of the e2 axis.

Formally, the first direction we are looking for can be defined as the one
that maximizes the variance of the projection of X onto it,

d1 = arg max
d1:‖d1‖2=1

∫

X

(dT
1 x)2dx,

where we assume that the surface has already been translated so that x0 = 0.
Observe that the integrand (dT

1 x)2 can be written as dT
1 xxTd1. Because d1

does not participate in the integration, we can write

d1 = arg max
d1:‖d1‖2=1

dT
1

(∫

X

xxTdx

)

d1 = arg max
d1:‖d1‖2=1

dT
1 ΣXd1.

Σ, is a 3 × 3 matrix, whose elements
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Figure 6.2. The first principal direction d1 of the surface maximizes the variance
of the projection of X onto it (left). Then, the surface is projected onto the plane
orthogonal to d1 (right, grayed) and the second principal direction d2 is chosen as
the maximum variance direction in that plane.

σij =
∫

X

xixjdx (6.2)

are usually referred to as the second-order geometric moments of the surface,3

and the direction d1 maximizing the projection variance is called the first
principal direction. Observe that the first principal direction, which has to
maximize dT

1 Σd1, is nothing but the first eigenvector of Σ corresponding with
its maximum eigenvalue. In order to find the second principal direction, we
have to project the surface onto the plane orthogonal to d1 and find the vector
d2 in that plane, which maximizes the variance of the projection. Obviously,
d2 corresponds with the second largest eigenvector of Σ.

Because the matrix Σ is symmetric, it admits unitary diagonalization, that
is, Σ = UTΛU , where Λ is a diagonal matrix with eigenvalues λ1 ≥ λ2 ≥ λ3

of Σ along the diagonal, and U is a unitary matrix whose columns are the
corresponding eigenvectors. We leave as an exercise (Problem 6.1) the proof
of the fact that UT is a rotation matrix aligning d1 and d2 with the e1 and
e2 axes, respectively. Clearly, after such an alignment, the main second-order
moments σii coincide with λi, whereas the mixed second-order moments (that
is, the off-diagonal elements σ12, σ13 and σ23) vanish.

Thus far, we have seen that the transformation (R, t) = (UT,−UTx0) re-
solves the ambiguity of rigid isometries and brings the surface into a “canon-
ical” configuration in the Euclidean space (Figure 6.3). Our goal is now to
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d3

d1

d2

x0

Figure 6.3. The two principal directions d1, d2 and a unit vector d3 orthogonal
to them define a natural coordinate system of the surface. Aligning these principal
directions with the axes ei of the standard Euclidean basis resolves the rotation
ambiguity.

compare between two surfaces X and Y and quantify their similarity. We ob-
serve that the three eigenvalues λ1, λ2, and λ3 of Σ provide some information
about the surface extrinsic geometry. Indeed, a shape similar to a sphere is
expected to have λ1 ≈ λ2 ≈ λ3, whereas a more elongated surface should def-
initely have λ1 � λ2. In other words, the ratios λ2 : λ1 and λ3 : λ1 describe
the shape eccentricity, and their magnitude express the shape scale.

We do not have to stop at the second-order moments and can define the
(p + q + r)-th order geometric moment as

mpqr =
∫

X

(x1)p(x2)q(x3)rdx. (6.3)

Note that the center of gravity of the surface is a vector of its first-order
moments, x0 = (m100, m010, m001)T, whereas the elements of Σ correspond
with σ11 = m200, σ22 = m020, σ33 = m002 (diagonal elements), and σ12 =
m110, σ13 = m101, σ23 = m011 (off-diagonal elements). Higher-order moments
depend on the surface position and orientation; they should be computed
after performing the alignment step that eliminates the first-order and mixed
second-order moments. The discretization of the integral in equation (6.3) is
left as an exercise to the reader (Problem 6.3).
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Intuitively, higher-order geometric moments provide us information about
the surface: the more mpqr’s we take, the better we can identify our object. It
appears that if all moments of two surfaces coincide, the surfaces are identical.
In order to understand this property, let us rewrite the (p, q, r) geometric
moment of a surface as

mpqr(f) =
∫

R3
ψpqr(x)f(x)dx = 〈ψpqr , f〉, (6.4)

where ψpqr(x) = (x1)p(x2)q(x3)r, and f : R
3 → R is a superposition of charac-

teristic functions, taking the value of “infinity” for x ∈ X and zero elsewhere4

in R
3. Using these notations, we immediately notice that {mpqr}∞p,q,r=0 assume

the role of the decomposition coefficients of f in the set of monomial functions
{ψpqr}∞p,q,r=0. Because {ψpqr} span the space of all finite energy (more pre-
cisely, square integrable or L2) functions on R

3, the set of coefficients {mpqr}
is unique for each surface. Indeed, if the functions f and g describing two
surfaces X and Y , respectively, differ by some h = f −g with non-zero energy
(that is,

∫
R3 h2(x)dx > 0), then there must exist some non-zero coefficients

mh
pqr(h) such that h =

∑
mpqr(h)ψpqr . Consequently,

mpqr(f) = 〈ψpqr , f〉 = 〈ψpqr , g + h〉 = mpqr(g) + mpqr(h) �= mpqr(f),

at least for some values of p, q, and r. This means that the set of all geometric
moments constitutes a unique descriptor of a given surface, which is also
invariant to rigid isometries if proper alignment is performed. This descriptor
is also complete, meaning that, at least theoretically, one can recover5 the
surface from {mpqr}∞p,q,r=0.

Generally, all moments are needed to uniquely identify a surface. If we are
given only a truncated set {mpqr}P

p,q,r=0 of moments up to the P -th order,
there exist an infinitely large number of surfaces differing only in moments
above the P -th order. However, it appears that this variety of surfaces becomes
more and more similar to our surface as we increase P . In other words, even
a finite set of high-order moments serves as a “fingerprint” or “signature”
that identifies a sufficiently narrow class of surfaces. Ideally, we would like
to be able to say that surfaces with bounded “frequencies” can be uniquely
described by a finite set of moments.6 Unfortunately, in the case of geometric
moments, it is difficult to express the geometric properties of such surfaces.
For this reason, geometric moments are not the best choice for measuring
similarity of shapes. Other types of moments having a more clear “frequency”
interpretation such as the spherical harmonics [188] or the Legendre moments
[376] are usually preferred.

Using a finite set of moments, either geometric or other, we can quantify
the similarity of two surfaces X and Y by applying some norm to the differ-
ence between their finite moment signatures {mpqr(X)} and {mpqr(Y )}, for
example,
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dMOM(X, Y ) =
P∑

p,q,r=0

(mpqr(X) − mpqr(Y ))2. (6.5)

Said differently, dMOM is a distance function that measures the dissimilarity
between two surfaces (hereinafter, we use the term “distance” in a broad
sense, not necessarily implying that dMOM is a metric). Provided that X and
Y are aligned prior to computing dMOM, this distance function is invariant to
rigid isometries. Surfaces having small distance between them are supposed to
be nearly congruent (extrinsically similar), and conversely, nearly congruent
surfaces result in a small dMOM.

However, it is important to mention that the moment signature distance
dMOM has several flaws. First, recall that the continuous surfaces X and Y
that we have been using freely are never available; all we have are samplings
of the surfaces. It appears that the computation of moments is sensitive to the
sampling, or more precisely, to sampling non-uniformity. Second, a relatively
dense sampling is required in order to obtain reliable results. Third, compu-
tation of high-order geometric moments is sensitive to acquisition noise and
inaccuracies due to the use of finite-precision arithmetics (see Problem 6.5).
These shortcomings may limit the applicability of surface comparison meth-
ods based on moment signatures. Yet, a more serious disadvantage of dMOM

is that we cannot use it as a criterion of partial similarity.
Returning to our fairy tale example, imagine that the Prince imprudently

drops the glass slipper, which breaks apart. Using moments signatures, he
would never succeed in finding Cinderella, as a part of the slipper obviously
has different moments than the does complete one. It is clear that the Prince
needs a better distance function that still works even when the surfaces are
given only partially. To his help comes a family of the so-called iterative closest
point algorithms (ICP for short), first introduced by Chen and Medioni [99],
and then independently by Besl and McKay [31].

6.2 Iterative closest point algorithms

The idea behind the iterative closest point algorithms is simple: given two
surfaces, X and Y , find the rigid transformation (R, t), such that the trans-
formed surface Y ′ = RY + t is as “close” as possible to X . “Closeness” is
expressed in terms of some surface-to-surface distance d(RY + t, X). More
precisely, ICP can be formulated as the minimization problem,

dICP(X, Y ) = min
R,t

d(RY + t, X). (6.6)

The minimum surface-to-surface distance expresses the extrinsic similarity of
X and Y . Because the minimum is searched over all Euclidean transforma-
tions, dICP is clearly invariant to rigid isometries. ICP was first proposed and
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is currently used mainly for registration (alignment) of surfaces. In fact, the
optimal rigid transformation (R∗, t∗) is the best alignment between Y and X .

Iterative closest point algorithms differ in the choice of the surface-to-
surface distance d(Y ′, X) and the numerical method for solving the mini-
mization problem. One of the possible candidates for such a distance could be
the Hausdorff distance

dH,R3(Y ′, X) = max
{

sup
x∈X

dR3(x, Y ′), sup
y∈Y ′

dR3(y, X)
}

,

which we have already encountered in Chapter 3. However, the Hausdorff
distance is rarely used in practice due to its sensitivity to outliers: difference
in a single sample can make dH arbitrarily large. Most commonly, d(Y ′, X)
is expressed as the sum of squared distances between all points on Y ′ to the
surface X ,

d(Y ′, X) =
∑

y∈Y ′

d2(y, X). (6.7)

Because Y is discrete, the sum is finite and can be thought of as an L2 ap-
proximation of the Hausdorff distance. Note that in this formulation d(Y ′, X)
is not symmetric, yet this “unaesthetic” lack of symmetry allows ICP to han-
dle partially missing data. Indeed, assume that Y ′ is congruent to a subset
of the surface X . Because every point y on Y ′ also exists on X , we obtain
d(Y, X) = 0 and, consequently, dICP(X, Y ) = 0. That is, we are able to tell
that a part is similar to the whole. If we now take X to be congruent to a part
of Y , no matter how we rotate and translate Y , there will always be points
on it that have no corresponding points on X and thus dICP(X, Y ) will not
vanish. This means that the whole surface is not similar to its part, which in
most cases satisfies our intuition.

The variety of choices of the surface-to-surface distance d(Y ′, X) is now
shifted to the choice of the squared point-to-surface distance d2(y, X). The
simplest possibility is to find for every y ∈ Y ′ the closest point7 x∗ on X and
define d2(y, X) as the Euclidean distance to that point,

d2(y, X) = min
x∈X

‖x − y‖2
2 = ‖x∗ − y‖2

2. (6.8)

This point-to-point distance (Figure 6.4, left) was first proposed by Besl and
McKay [31] and was probably the origin of the name “iterative closest point”
that labeled this family of rigid registration algorithms. Finding the closest
point on X for every y on Y establishes a correspondence between the two
surfaces. Clearly, every y may have its own closest point, and theoretically,
we have to go over all the points of X to find it for a given y.

Observe that the point-to-point distance treats X as a cloud of points.
However, in reality X is a surface, and when a point gets sufficiently close
to it, X can be approximated locally as a plane. Hence, if X is given as a
triangulated mesh, we can choose d2(y, X) to be the point-to-plane distance
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Figure 6.4. The point-to-surface distance approximated using the point-to-point
(left), point-to-plane (center), and point-to-quadratic surface (right) distances. v
and vn, v1, and v2 denote the vector y − x∗ and its projections on N , T1, and T2,
respectively.

d2(y, X) = min
x∈X

〈N(x), x − y〉2, (6.9)

where N(x) denotes the unit normal vector to the surface X at the point x
(Figure 6.4, center). However, now our situation is even worse than before, as
the closest point x∗ is no more restricted to be one of the samples of the surface
X and can be therefore found anywhere on its triangular faces. Obviously, it is
impractical to search for the exact closest point. A reasonable compromise is
to approximate x∗ by the closest sample of X as we did in the point-to-point
distance. Such an approximate point-to-plane distance was used by Chen and
Medioni [99].

The point-to-plane distance is based essentially on a local first-order ap-
proximation of the surface by a plane. We can refine this model by using a
second-order approximation, which in addition to the normal vector N also
requires the two principal curvatures κ1, κ2 and the corresponding principal
directions T1 and T2 at every point.8 Pottmann and Hofer [316] showed that
the second-order Taylor approximant9 of the squared point-to-surface distance
can be expressed as

d2(y, X) ≈ d

d − ρ1
〈T1(x∗), y − x∗〉2 +

d

d − ρ2
〈T2(x∗), y − x∗〉2

+ 〈N(x∗), y − x∗〉2 , (6.10)

where ρi = 1/κi are the principal curvature radii at the point x∗, and d is the
signed distance to the closest point, defined as d = ‖y−x∗‖2 when x∗ is found
at the same side of the surface pointed by the normal, and d = −‖y − x∗‖2

when x∗ is located at the other side (Figure 6.4, right).
Observe that for d � ρ, the first two terms vanish and d(y, X) becomes

the point-to-plane distance (6.9). At the other extremity, when d � ρ, one
has
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d2(y, X) ≈ 〈T1, y − x∗〉2 + 〈T2, y − x∗〉2 + 〈N, y − x∗〉2 = ‖x∗ − y‖2,

which is nothing but the point-to-point distance (6.8). Using wave termi-
nology, the point-to-point distance is a second-order accurate “far field” ap-
proximation of the true point-to-surface distance, whereas the point-to-plane
distance is second-order accurate in the “near field.” This corresponds with
our intuition: observed from a distance, X behaves like a point, whereas at
short distances, the planar approximation is more accurate.

The Pottmann-Hofer distance (6.10) gives an accurate approximation to
the point-to-surface distance for all ranges of d. Its only problem is that for
some values of d, this approximation may become negative. To avoid this
problem, Pottmann and Hofer proposed the following non-negative quadratic
approximant

d2(y, X) ≈ d

d + ρ1
〈T1(x∗), y − x∗〉2 +

d

d + ρ2
〈T2(x∗), y − x∗〉2

+ 〈N(x∗), y − x∗〉2 .

In general, it appears to be the best choice for the squared point-to-surface
distance; its only disadvantage is the need to compute the principal curvatures
and directions on the surface X . When X is contaminated by noise or sparsely
sampled, this is not a trivial task.

6.3 Enter numerical optimization

Thus far, we have explored three types of functions measuring the squared
distance between a point y and the surface X . Any of these distances can
be employed in the ICP algorithm by plugging it into d(RY + t, X) in (6.6).
Our next goal is to find such a Euclidean transformation (R, t) that minimizes
d(RY + t, X). A straightforward way is to find the correspondence between
Y and X , construct the objective function (whose terms d2(y′, X) depend on
the correspondence), and find the rigid isometry (R, t) that minimizes this
objective function. Once we have the optimal rigid isometry, we apply it to
the surface Y hoping that now it is aligned in the best way with X . However,
we may discover that the transformation has changed the correspondence and
the new objective can be further minimized by another rigid transformation.
Therefore, we repeat the entire process again until the surface Y comes to
a halt, that is, the optimal rigid transformation is close enough to the iden-
tity transformation. Formally, this leads to the iterative procedure shown in
Algorithm 6.1.

This is essentially the way the first ICP algorithms worked. Step 3 can be
performed using any unconditional minimization method. For the point-to-
point distance, there even exists a closed-form solution for the optimal (R, t)
[208].
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input : Surfaces X and Y .
output : Optimal alignment (R, t), extrinsic similarity dICP.
initialization: Y ′ = Y .

repeat1

Find the correspondence x∗(y) = arg min
x∈X

‖y − x‖2
2 for all y ∈ Y .

2

Minimize the error function3

(R, t) = arg min
R,t

∑

y∈Y ′

d2(Ry + t, X)

Transform Y ′ ←− RY ′ + t.4

until convergence5

Algorithm 6.1. Iterative closest point algorithm.

The above ICP algorithm is actually a heuristic approach, and little can be
said about its convergence. The optimal rigid transformation (R, t) found in
Step 3 minimizes the objective based on the correspondence found in Step 2.
However, after the transformation is applied, the function d(RY ′ + t, X) may
be different from the one for which the transformation was found. Conse-
quently, it is not guaranteed that this simple ICP algorithm will generate a
monotonically decreasing sequence of objective function values and eventually
converge.10 On the other hand, we are already acquainted with various nu-
merical optimization methods that guarantee convergence at least to a local
minimum. An attempt to fill this apparent gap by putting the iterative closest
point algorithms on this solid numerical ground seems to be imminent.

This was probably the motivation that guided Mitra et al. [277], who in
2004 made an important step toward this goal. The authors noted that the
quadratic approximant to d2(y, X) can be written as

d2(y, X) ≈ yTQ(y)y + b(q)Ty + c(y), (6.11)

where Q(y) is a 3 × 3 symmetric positive definite matrix, b(y) is a 3 × 1
vector, and c(y) is a scalar. Clearly, this function is valid only locally in the
neighborhood of y, implying that Q, b, and c depend on y.

Example 6.1 (quadratic approximation of squared distances). In this
example, we show how different squared distances can be brought into the
form of (6.11). For the squared point-to-point distance, we can write

d2(y, X) = ‖y − x∗‖2
2 = (y − x∗)T(y − x∗) = yTy − 2yTx∗ + x∗Tx∗;

hence, Q(y) = I, b(y) = −2x∗, and c(y) = x∗Tx∗. For the squared point-to-
plane distance,
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d2(y, X) = 〈N, y − x∗〉2 = (NTy − NTx∗)2

= (NTy)2 − 2NTyNTx∗ + (NTx∗)2

= yT(NNT)y − 2(NNTx∗)Ty + (NTx∗)2;

hence, Q(y) = NNT, b(y) = −2NNTx∗, and c(y) = (NTx∗)2.

We can plug this quadratic form into the ICP objective function (6.7), ob-
taining

d(RY + t, X) =
∑

y′∈RY +t

d2(y′, X) =
∑

y′∈RY +t

y′TQ(y′)y + b(y′)Ty′ + c(y′)

=
∑

y∈Y

(Rq + t)TQ(Ry + t)(Ry + t) + b(Ry + t)T(Ry + t) + c(Ry + t),

which should be minimized with respect to the rigid transformation (R, t).
This function is hard to minimize, as it involves Q(Ry + t), b(Ry + t) and

c(Ry + t), whose functional dependence on R and t might be complicated due
to the possible changes in the correspondence between Y and X . However,
assuming small motion (i.e., the rigid transformation is nearly the identity
transformation, RY + t ≈ Y ), we can omit this dependence, writing

d(RY + t, X) ≈
∑

y∈Y

(Ry + t)TQ(y)(Ry + t) + b(y)T(Ry + t) + c(y)

(the scalar c(y) can be discarded, as it does not depend on R or t). The new
objective appears much easier to minimize, as it is quadratic in R and t. Yet, if
we use the elements of R as our optimization variables, we have to enforce the
orthonormality of R in order to guarantee that it remains a rotation matrix.
This makes optimization cumbersome.

An alternative is to use the three rotation angles θ = (θ1, θ2, θ3) as opti-
mization variables. In this case, the objective function becomes nastier, due to
the complicated dependence of R on θ, which involves trigonometric functions,

R =

⎛

⎝
1 0 0
0 cos θ1 sin θ1

0 − sin θ1 cos θ1

⎞

⎠

⎛

⎝
cos θ2 0 sin θ2

0 1 0
− sin θ2 0 cos θ2

⎞

⎠

⎛

⎝
cos θ3 sin θ3 0
− sin θ3 cos θ3 0

0 0 1

⎞

⎠ .

At this point, to our help comes the fact that the small motion assumption
implies in particular a small rotation, θ � 1. Hence, using the first-order
Taylor approximations cos θ ≈ 1 and sin θ ≈ θ, we can linearize the rotation
matrix R as follows:

R ≈

⎛

⎝
1 θ1 −θ2

−θ1 1 θ3

θ2 −θ3 1

⎞

⎠ . (6.12)
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Using the linearized R, our objective becomes quadratic with respect to the
six rigid isometry parameters θ = (θ1, θ2, θ3) and t = (t1, t2, t3), and we can
use the Newton method to minimize it.

However, in spite of our small motion assumption, in practice the Newton
method may find a large transformation as the minimizer of d(RY + t, X).
Because our approximation to d2(y, X) is valid only locally, it may increase
the objective function. In such cases, we should only make a small step in the
direction of the transformation. In order to do it in a consistent way, let (R′, t′)
be a small transformation that when applied sequentially η times coincides
with the large transformation (R, t). Formally, this can be written as

Ry + t = R′(· · · (R′(R′y + t′) + t′) · · · ) + t′
︸ ︷︷ ︸

η times

= R′ηy + (R′η−1 + R′η−2 + · · · + R′ + I)t′.

Demanding R′ηy = Ry, one has R′ = R1/η, corresponding with a rotation by
θ/η. Multiplying the equation t = (R′η−1 +R′η−2 + · · ·+R′ + I)t′ by (R′− I)
from the left, one obtains the “telescopic” matrix polynomial

(R′ − I)t = (R′ − I)(R′η−1 + R′η−2 + · · · + R′ + I)t′

= (R′η + R′η−1 + · · · + R′ − R′η−1 − R′η−2 − · · · − I)t′ = (R′η − I)t′,

from where t′ = (R − I)−1(R′ − I)t. This simple relation can be extended to
non-integer values of η as well. The step size η has to be chosen sufficiently
small to guarantee a decrease of the objective function. This can be done
using, for example, the Armijo rule, as was proposed by Mitra et al. This ap-
proach results in a significantly more stable ICP algorithm, exhibiting better
convergence.

6.4 Rigid correspondence

Note that at each iteration of the ICP algorithm where Y is transformed, the
correspondence between X and Y may change and has to be recomputed. Even
in the elegant formulation proposed by Mitra et al., this need is inevitable, as
the parameters Q(y), b(y), and c(y) in the quadratic form (6.11) depend on y
and have to be found again once Y is transformed. The simplest way to solve
this problem is by computing the parameters on demand, i.e., for every point
y ∈ Y ′ at every iteration of the algorithm, we have to find the closest point,

x∗(y) = arg min
x∈X

‖y − x‖2
2.

This sounds like a potentially expensive algorithm. Indeed, if modern ICP
algorithms were implemented this way, they would have been terribly slow.
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Fortunately, there exist techniques for avoiding exhaustively searching over
all points on the surface. Observe that X subdivides R

3 into a collection of
Voronoi cells

V (x) = {y ∈ R
3 : ‖y − x‖2 < ‖y − x′‖2 ∀x′ �= x},

containing all points in R
3 that are closer to x than to any other point on X .

Finding the closest point in X given a query point y can be formulated as
determining the Voronoi cell to which y belongs. This observation motivates
the techniques that use efficient data structures for fast retrieval of the closest
point, without exhaustively searching all points in X . It appears that even
when X is given as a cloud of points, its Voronoi cells are convex polyhedra
with generally complicated shapes, hardly computable efficiently. However,
we can approximate the true Voronoi cells using some simpler shapes. One
of such approaches is based on a hierarchical data structure called the k-
dimensional (or kd) tree [25]. Each node of the kd tree corresponds with a
partition of the space (R3 in our case) by a plane perpendicular to one of the
axes. For example, the root node splits the space into two regions: {x1 < 0}
and {x1 ≥ 0}. The first region is assigned to the left child, whereas the second
region is assigned to the right child. Each child may introduce further splitting,
e.g., {x1 ≥ 0} is divided into {x1 ≥ 0} ∩ {x2 < 1} and {x1 ≥ 0} ∩ {x2 ≥ 1},
and so on. A leaf represents a (possibly unbounded) box-shaped region in R

3.
These boxes approximate the Voronoi cells of X . Using versions of the kd tree
allows finding the approximate nearest neighbor of y in X with logarithmic
complexity [11]. This significantly alleviates the computational burden of the
iterative closest point algorithm.

However, if we use the quadratic form (6.11) as proposed by Mitra et al.,
the need to recompute the correspondence at each iteration for every y ∈ Y ′

still seems somewhat superfluous. Indeed, we never use the correspondence
explicitly. All we need is to find the quadratic form parameters Q, b, and c for
a given query point y. Because the squared distance function d2(y, X) is at
least C0, these parameters vary smoothly and therefore, for a sufficiently small
region around y, the terms Q, b, and c remain nearly constant. Once again,
the idea of hierarchical space partitioning can be exploited here. Leopoldseder
et al. [249] proposed an octree-like structure that recursively splits the space
into eight octants, until the variance of the quadratic form parameters in the
created box-shaped cell falls below a small threshold. Once the tree is pre-
computed for the surface X , it allows the retrieval of Q(y), b(y), and c(y) with
logarithmic complexity.

It is worthwhile noting that all surface-to-surface distances we have dis-
cussed were based on the knowledge of correspondence between the two sur-
faces. We may therefore say that finding the rigid correspondence is the prin-
cipal ingredient of ICP. To emphasize this fact, Rusinkiewicz and Levoy even
suggested the backronym iterative corresponding point for ICP as a replace-
ment for the original iterative closest point [329]. In addition to being in the
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core of ICP, correspondence between two objects is required in many other ap-
plications. We defer this discussion to Chapter 12, where the correspondence
problem is explored in the more general non-rigid setting.

As a concluding remark, a few words ought to be said about the initial-
ization of the ICP algorithm. Being a non-convex minimization problem, ICP
may converge to a wrong local minimum if initialized incorrectly. While finding
a good initialization is considered a largely open problem typically solved ad
hoc, in the past few years guaranteed globally optimal initialization schemes
were proposed. In [170], Gelfand et al. address this issue using a branch and
bound global optimization algorithm to find the initial rigid correspondence.
A variant of this approach is proposed in [251] by Li and Hartley.

Suggested reading

A good overview of shape similarity techniques can be found in Veltkamp’s
papers [387, 388, 373]. Moment-based shape descriptors are reviewed in
[409, 320]. The reader is also referred to [150] for an interesting discussion
on reconstructing a shape from its moments. The review paper [329] discusses
efficient variants of the ICP algorithm and shows their convergence in different
scenarios. Convergence is also discussed in [317]. An interesting paper by Ezra
et al. [154] presents lower and upper bounds on the number of iterations in ICP
algorithms. A tighter lower bound as well as a probabilistic upper bound are
presented in [10]. In [318], Pottmann et al. introduce a “correspondence-less”
approach to rigid surface registration based on their quadratic approximation
to the squared point-to-surface distance previously discussed in this chapter.
Another interesting “correspondence-less” approach is proposed by Charpiat
et al. [98], where a smooth approximation to the Hausdorff distance is studied.

Software

A C++ implementation of ICP is available in the VTK and ITK toolboxes.

Problems

6.1. Show that the rotation matrix aligning the principal directions with the
axes is the diagonalizing matrix of Σ.

6.2. Try to characterize the class of surfaces completely described by a finite
set of their geometric moments {mpqr}N

p,q,r=0.

6.3.� Derive a consistent way to discretize the geometric moment integral.
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6.4. Discuss the use of the three-dimensional Fourier harmonics as a replace-
ment to the geometric moments. How can the translation invariance of Fourier
harmonics be helpful?

6.5.� In reality, finite-precision arithmetics are used to compute the moments.
Assume that the coordinates of the surface points are represented with the
absolute error of, say, ε = 10−8. What will be the relative error of mpqr? How
can this complicate the use of geometric moments?

6.6 (Research question). Suppose the surface is acquired each time from a
different known viewing angle, with partial occlusions. Given the signature of
the surface moments for each angle, what can be said about the moments of
the entire surface? Can it be reconstructed from such partial observations?

6.7. Derive the distance in equation (6.10) and show that it is a second-order
approximation to the true point-to-surface distance.

6.8. Prove that the squared point-to-surface distance is not C2 for query points
located on the surface’s medial axis.

6.9. Derive the quadratic form parameters Q, b, and c for the second-order
point-to-surface distance (as was shown in Example 6.1). Compare them with
the point-to-point and point-to-plane distances. What can be said about the
convexity of the quadratic form?

6.10.� Derive a closed-form solution for the optimal rigid isometry (R, t) min-
imizing the ICP objective function with the squared point-to-point distance.

Notes
1The earliest record of this popular fairy tale originated in China in the mid-ninth

century. There, the fair Ye Xian had the smallest foot in the kingdom, a synonym of
beauty in the Chinese culture. In the West, the most renowned version of Cinderella
belongs, perhaps, to the pen of the French author Charles Perrault (1628–1703)
[311].

2In order to include reflections, we can multiply x′ by a diagonal matrix contain-
ing ±1’s along the diagonal.

3In statistics, Σ is called the covariance matrix, and the process of finding the
variance-maximizing orthogonal directions is usually referred to as principal compo-
nent analysis (PCA) or the Karhunen-Loéve transform (KLT). PCA allows one to
construct a low-dimensional approximation of a multi-dimensional random process
that captures its “most significant” part (in the L2 sense). The invention of principal
component analysis is usually attributed to the American statistician and economist
Harold Hotelling [210], though similar ideas date back to Pearson [308].

4Such functions are called Dirac’s delta functions. If the reader feels uncomfort-
able with such a formulation, he or she can think of the surface X as of a thin
shell; in this case, f takes some constant value for x belonging to the shell, and 0
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otherwise. The constant is selected in such way that
∫

X
f(x)dx = 1. For vanishing

shell thickness, a delta function is obtained.
5The problem of reconstructing the surface from its moments is often called the

inverse moment problem, though in the signal processing jargon, the term synthesis
is more adequate [150]. Because the polynomial basis {ψpqr(x) = (x1)p(x2)q(x3)r} is
non-orthogonal, reconstruction of a surface from its geometric moments requires the
so-called biorthonormal basis, which behaves badly in this case. For this reason, in
applications where reconstruction is important, geometric moments are of little use.
The preference is given to orthonormal bases that allow direct reconstruction of the
surface according to f =

∑
mpqrψpqr =

∑
〈ψpqr, f〉ψpqr. An example of such type

of moments are the Legendre moments, which follow in spirit the Fourier transform
[376].

6Readers familiar with the Nyquist-Shannon sampling theorem will find such a
statement analogous to saying that a band-limited signal can be fully represented
by its discrete sampling.

7The closest point is sometimes referred to as the normal footpoint, as the line
segment connecting x∗ and y is always perpendicular to the surface.

8Some surfaces may have umbilical points, where the principal curvature direc-
tions are not well-defined. In this case, we may take any two orthogonal vectors
T1, T2 in the tangent plane.

9More precisely, the second-order approximant to d2 does not always exist. At
the points located on the surface’s medial axis, d2 is not C2. Such points have to be
detected and excluded in order not to jeopardize the convergence of ICP algorithms
based on quadratic surface approximation.

10Under certain conditions, Ezra et al. [154] show that ICP converges and present
a bound on the number of iterations.



The world is complex, dynamic, multidimensional;
the paper is static, flat. How are we to represent the
rich visual world of experience and measurement on
mere flatland?

E. R. Tufte, Envisioning Information

7

Multidimensional Scaling

Thus far, in our fairy-tale example, the Prince could find Cinderella by com-
paring the extrinsic geometries of the glass slipper and the feet of all the ladies
in his kingdom using rigid similarity methods. Now, assume that instead of
dropping a glass slipper, Cinderella has lost a silk glove while escaping from
the ball. Trying to näıvely approach the glove fitting problem with rigid simi-
larity tools, the Prince soon finds that, because the glove is a non-rigid object,
comparison based on the extrinsic geometry does not work anymore.

Let us leave the desperate Prince for a while and recall what we said in
Chapter 2: in order to compare non-rigid shapes, we should look at their
intrinsic geometries, which are invariant to isometric deformations. In other
words, considering shapes as metric spaces, we need to compare the spaces
X and Y with the geodesic metrics dX and dY , respectively. Such a compar-
ison appears to be by far a more complicated task than is the comparison
of extrinsic geometry, for the following reason. The relative simplicity of the
extrinsic similarity problem we had when discussing rigid shapes in Chapter 6
was due to the fact that the shapes were considered subsets of a common
metric space (R3 with the Euclidean metric). Hence, we could measure their
similarity using the Hausdorff distance, which led to the ICP algorithms. In
the case of intrinsic similarity, the situation is more difficult: we now have two
different metric spaces (X, dX) and (Y, dY ), which cannot be compared using
the Hausdorff distance.

In this and the next few following chapters, we try to build a bridge be-
tween the two approaches. We will see how to represent the intrinsic geometries
of the shapes in a common metric space where they can be compared using
rigid similarity algorithms. This will lead us to a class of computationally
tractable methods for measuring intrinsic similarity of non-rigid shapes.

A. Bronstein et al., Numerical Geometry of Non-Rigid Shapes, 137
Monographs in Computer Science, DOI 10.1007/978-0-387-73301-2 7
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Canonical formSurface

Figure 7.1. Illustration of the isometric embedding problem. Left: original shape;
right: canonical form.

7.1 Isometric embedding problem

Let us come back for a moment to the example we have already used in Chap-
ter 2 to illustrate the concept of intrinsic geometry. Assume that our shape
is inhabited by an insect, which always chooses the shortest path to crawl
between any two points. Now, imagine that there is another shape embed-
ded into R

m, whose points correspond with those of the original shape, while
the Euclidean distances between the points are equal to the original geodesic
ones. On this new shape, there lives another winged insect, which flies along
straight lines between the points.

The lengths of the paths are the isometry-invariant description of our ob-
ject. Because the distances traveled by both insects are equal, the descriptions
produced by them are the same. However, for our application, the second in-
sect’s point of view is preferable, as his world is Euclidean. The advantage
stems from the smaller number of degrees of freedom that influence our de-
scription: whereas the first insect would not feel any isometric deformation
of the shape, the only way we can fool the second one is by applying rigid
transformations, which are limited to rotations, translations, or reflections.

Formalizing the above intuition, given a shape (X, dX), we would like to
find a map f : (X, dX) → (Rm, dRm), such that

dX(x, x′) = dRm(f(x), f(x′)),
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for all x, x′ ∈ X . Such an f is an isometric embedding, and the space R
m is

referred to as the embedding space in this context. The image f(X), which
we call the canonical form of X , can be used as an extrinsic representation of
the intrinsic geometry of X (see example in Figure 7.1). Note that we regard
f(X) as a metric space with the restricted Euclidean metric dRm |f(X). Up
to isometries in R

m, it defines an equivalence class of all the shapes that are
indistinguishable from the point of view of intrinsic geometry. In simple words,
two isometric shapes have identical canonical forms, possibly differing by an
isometry of R

m.
In a sense, this embedding allows us to undo the non-uniqueness of the way

the metric structure of X is realized in R
m (all the possible bendings), thus

reducing its vast number of degrees of freedom. Consequently, considering the
canonical forms instead of the shapes themselves, we translate the non-rigid
shape similarity problem into a much simpler problem of rigid similarity, with
which we already know how to deal. This simple idea, proposed by Asi Elad
and R. K. [147, 149], allows us to define the similarity between two shapes
as an extrinsic distance between their canonical forms, measured by means of
ICP or the moments method as shown in Algorithm 7.1. We call this distance
the canonical form distance and denote it by dCF.

Though originally formulated with the particular choice of R
3 (i.e., m = 3)

as the embedding space, the canonical forms approach can be generalized to
any embedding space, as we will see in Chapter 9. Here, we stick to the Eu-
clidean embedding, but assume m to be arbitrary. Thus far, the canonical
forms method seems an ideal recipe for our problem of non-rigid shape com-
parison. However, there is still a question whether a shape X is isometrically
embeddable into R

m.
Unfortunately, the answer is usually negative. As the simplest case, con-

sider the problem of embedding a sphere into R
2. This problem arose in car-

tography centuries ago. One of the fundamental problems in map-making is
creating a planar map of the Earth, which reproduces, in the best way, the
distances between geographic objects. That is, equipped with a simple ruler,
we can measure distances on the map, which represent geodesic distances on
the Earth (Figure 7.2). Every cartographer knows that it is impossible to cre-
ate a map of the Earth that preserves all the geodesic distances.1 This, as a
matter of fact, is a consequence of the theorema egregium: because the Gaus-
sian curvature of the sphere is positive, whereas the plane has zero curvature,
these two surfaces cannot be isometric.

input : shapes (X, dX) and (Y, dY ).
output: canonical forms distance dCF(X, Y ).

Find the isometric embedding f and g of X and Y into R
m.1

Compute dCF(X, Y ) as dMOM(f(X), g(Y )) or dICP(f(X), g(Y )).2

Algorithm 7.1. Idealized canonical forms distance computation.
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Figure 7.2. The problem of isometric embedding arising in cartography: the spher-
ical surface of the Earth (shown is the upper hemisphere, left) is to be mapped into
the plane so that it preserves the geodesic distances (right). A consequence of theo-
rema egregium is that such a map does not exist, and a distortion of the distance is
inevitable.

Yet, maybe by increasing the embedding space dimension, i.e., trying to
embed the sphere into R

3, R4, R5, and so on, we could succeed in finding
an isometric embedding? Even this appears to be impossible. The following
example, shown by Nathan Linial [253], demonstrates that even a very simple
discrete metric space consisting of only four points cannot be isometrically
embedded into a Euclidean space of any finite dimension.

Example 7.1 (Linial’s example). Consider four points x1, . . . , x4, sam-
pled on the sphere of radius R = 2

π as shown in Figure 7.3 (one point at the
north pole and three points along the equator). The distances between the
points are given by the following matrix

DX =

⎛

⎜
⎜
⎝

0 1 2 1
1 0 1 1
2 1 0 1
1 1 1 0

⎞

⎟
⎟
⎠ .

We denote the embedded points by z1, . . . , z4 and assume that the embed-
ding is distortionless, that is, (DX)ij = dRm(zi, zj) for i, j = 1, . . . , 4. Let
us consider first the triangle with vertices z1, z2, z3, with edges of lengths
dRm(z1, z2) = dRm(z2, z3) = 1 and dRm(z1, z3) = 2. Because dRm(z1, z3) =
dRm(z1, z2) + dRm(z2, z3), the triangle is flat, i.e., the points z1, z2, z3 are
collinear. Applying the same reasoning, we conclude that the points z1, z4, z3

are collinear, which implies that z2 = z4 and consequently, dRm(z2, z4) = 0,
contradicting the assumption that dRm(z2, z4) = dX(x2, x4) = 1. Because we
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x2

x3

x4

x1

Figure 7.3. Linial’s example of a metric space obtained by sampling the sphere
at four points, which cannot be embedded into a Euclidean space of any finite
dimension.

have not assumed any particular m, we conclude that the given structure can-
not be isometrically embedded into a Euclidean space of any finite dimension.
Moreover, if this is the case for such a simple object as a sphere, our conclusion
is that a general shape cannot be isometrically embedded into R

m.

It is important to emphasize that this result by no means contradicts the
Nash embedding theorem. Nash guarantees that any Riemannian structure
can be realized as a length metric induced by a Euclidean metric, whereas we
are trying to realize it using the restricted Euclidean metric.

Although the embedding error makes it impossible to find a truly isomet-
ric embedding, we could try constructing an approximate representation of
the shape X , looking for a minimum-distortion embedding, i.e., such f that
distorts dX the least, in the sense of some criterion. In Chapter 2, we defined
the distortion, which reads in our problem as

dis f = sup
x,x′∈X

|dX(x, x′) − dRm(f(x), f(x′))|.

Adopting this criterion, we can measure how the distances on the original
shape differ from those in the embedding space in the sense of the L∞-norm.
In practice, it is useful to replace the L∞ criterion by an Lp analog,

σp =
∫

X×X

|dRm(f(x), f(x′)) − dX(x, x′)|p da × da, (7.1)

where da denotes the area element on X . The L∞ criterion can be obtained
as the limit of (σp)1/p when p → ∞.
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In the discrete setting, when the shape X is sampled at N points {x1, . . . ,
xN}, the L∞ criterion becomes

σ∞ = max
i,j=1,...,N

|dRm(f(xi), f(xj)) − dX(xi, xj)|,

and the discrete version of the Lp criterion can be expressed as

σp =
∑

i>j

aiaj |dRm(f(xi), f(xj)) − dX(xi, xj)|p, (7.2)

where ai and aj are discrete area elements corresponding with the points
xi, xj . If the shape is sampled uniformly, we can simplify σp by setting ai =
1/N .

The canonical form obtained by means of a minimum-distortion embed-
ding is only an approximate representation of the shape’s intrinsic geometry.
Nevertheless, we can still measure the similarity of shapes and the distance
between their canonical forms, of course, having in mind that the distortion
introduced by the embedding would influence the accuracy of such a similarity.

7.2 Multidimensional scaling

An important question is how to find the minimum-distortion embedding in
practice. Assume that the shape X is uniformly sampled at points {x1, . . . , xN}
and σ2 is used as the distortion criterion. We are looking for the minimum-
distortion embedding into R

m,

f = argmin
f :X→Rm

∑

i>j

|dRm(f(xi), f(xj)) − dX(xi, xj)|2.

Denoting by zi = f(xi) the m-dimensional Euclidean coordinates of the image
of the shape sample xi under f and arranging them into an N × m matrix
Z = (zj

i ), we can rewrite our distortion criterion as

σ2(Z; DX) =
∑

i>j

|dij(Z) − dX(xi, xj)|2.

Here DX = (dX(xi, xj)) is an N ×N matrix of geodesic distances and dij(Z)
is a shorthand notation for the Euclidean distance between the i-th and the
j-th points on the canonical form, dRm(zi, zj) = ‖zi−zj‖2. In this formulation,
we find the coordinates of the discrete canonical form directly as the solution
of a nonlinear least-squares problem,

Z∗ = argmin
Z∈RN×m

σ2(Z). (7.3)

Problem (7.3) is a non-convex optimization problem [380] in Nm variables,
in which the objective function σ2 : R

N×m → R is defined over the space of
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matrices R
N×m. The data in the problem are the geodesic distances, repre-

sented as an N × N matrix DX = (dX(xi, xj)). The solution is not unique,
because, as already mentioned, applying any Euclidean isometry to Z∗, we do
not change the value of σ2.

Historically, problem (7.3) is called multidimensional scaling (MDS), a
term coined by Torgerson [379] in 1952. Such problems have been researched
in depth in the psychology and statistics communities in the relation to multi-
dimensional data analysis and visualization. The MDS problem in a formula-
tion similar to the one we give here is attributed to Shepard [355] and Kruskal
[232, 233]; the latter also proposed a numerical algorithm for its solution. Ef-
forts to consolidate these methods were invested during the 1960s and the
1970s. To the field of computer vision and pattern recognition, MDS methods
arrived relatively late. One of the first applications to analysis of surfaces was
shown by Schwartz et al. in 1989, in relation to the problem of brain surface
analysis [345]. The paper showed how to use MDS in order to create a pla-
nar map of the convoluted brain cortex surface, in a manner similar to that
cartographers employ to map the Earth. Later, Schweitzer applied MDS for
classification of databases of images [347]. These studies have been an inspi-
ration for the embedding-based approaches to non-rigid shape comparison we
discuss here.

7.3 SMACOF algorithm

In the MDS literature, the function σ2(Z) we use as the distortion criterion
is commonly referred to as the (Kruskal) stress [44]. We call σ2(Z) the L2-
stress in order to distinguish it from other distortion criteria. We can write
the L2-stress in a more convenient matrix form,

σ2(Z; DX) = trace(ZTV Z) − 2trace(ZTB(Z; DX)Z)

+
∑

i>j

d2
X(xi, xj), (7.4)

where V is a constant N × N matrix with elements

vij =
{
−1 i �= j
N − 1 i = j,

and B(Z; DX) is an N × N matrix depending on Z and DX with elements,

bij(Z; DX) =

⎧
⎨

⎩

−dX(xi, xj)d−1
ij (Z) i �= j and dij(Z) �= 0

0 i �= j and dij(Z) = 0
−

∑
k �=i bik i = j.

(In the following, we will sometimes omit the dependence on DX for brevity).
A particular property of matrices B and V is that they are zero-mean, i.e.,
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the sum of the rows and the columns is zero. We leave the derivation of the
matrix form of the stress to the reader as Problem 7.2.

Solution of the MDS problem requires the minimization of σ2(Z; DX) with
respect to Z. The most straightforward way to do it is by using a first-order
gradient descent algorithm. Recall that gradient descent consists of making a
step in the negative gradient direction, which requires computing the gradient
of the stress at each iteration. Using matrix function differentiation similar
to that shown in Example 5.1 in Chapter 5, the gradient of σ2(Z) can be
expressed as

∇Zσ2(Z) = 2V Z − 2B(Z; DX)Z, (7.5)

see Problem 7.3. The gradient descent iteration has the following form,

Z(k+1) = Z(k) − α(k)∇Zσ2(Z(k))

= Z(k) − 2α(k)
(
V Z(k) − B(Z(k); DX)Z(k)

)
. (7.6)

The step size α(k) can be selected either as a constant, or computed at each
iteration using line search. The use of line search requires evaluating the stress
and its gradient a number of times. In our problem, the complexity of com-
puting σ2(Z) and ∇Zσ2(Z) is O(N2), which implies that for a large value of
N line search is usually disadvantageous.

Jan de Leeuw [125, 129, 126] noticed that the term trace(ZTB(Z)Z) of the
stress can be bounded below by trace(ZTB(Q)Q) for all Q ∈ R

N×m, which
leads to the inequality

h(Z, Q) = trace(ZTV Z) − 2trace(ZTB(Q)Q) +
∑

i>j

d2
X(xi, xj)

≥ trace(ZTV Z) − 2trace(ZTB(Z)Z) +
∑

i>j

d2
X(xi, xj) (7.7)

(the reader is invited to prove the inequality in Problem 7.5). The function
h(Z, Q) is convex and quadratic with respect to Z and touches σ2(Z) at the
point Q = Z, i.e., h(Z, Z) = σ2(Z).

By virtue of inequality (7.7), h(Z, Q) serves as a majorizing function for the
stress. We can resort to the iterative majorization algorithm for the solution
of the MDS problem. At the (k +1)st iteration of the majorization algorithm,
the solution Z(k+1) is found as the minimizer of h(Z, Z(k)) with respect to
Z. Because the majorizing function is quadratic, the minimizer can be easily
expressed analytically by imposing

∇Zh(Z, Z(k)) = 2V Z − 2B(Z(k); DX)Z(k) = 0.

This leads to the following multiplicative update formula

Z(k+1) = V †B(Z(k); DX)Z(k), (7.8)
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input : N × N matrix of geodesic distances DX .
output : canonical form Z∗.
initialization: some initial Z(0) and k = 0.

repeat1

Multiplicative update: Z(k+1) = 1
N

B(Z(k); DX)Z(k).2

k ←− k + 1.3

until convergence4

Z∗ = Z(k).5

Algorithm 7.2. SMACOF algorithm.

where V † = (V TV )−1V T denotes the pseudoinverse of V (as the matrix V
has rank N − 1, it is not invertible). Further noticing that the pseudoinverse
can be written as V † = 1

N (I − 1
N 1N×N ), where 1N×N denotes an N × N

matrix of ones, and keeping in mind that B(Z(k); DX) is zero mean, such that
1N×NB(Z(k); DX) = 0, we can rewrite the update formula (7.8) as

Z(k+1) =
1
N

B(Z(k); DX)Z(k).

This multiplicative update was given the name SMACOF, standing for
scaling by minimizing a convex function.2 The entire algorithm can be sum-
marized as shown in Algorithm 7.2. SMACOF has become one of the most
successful and widely used MDS methods, mainly due to its simplicity and
public availability of efficiently implemented code [189].

Though not straightforward to observe, a simple manipulation of the SMA-
COF multiplicative update (7.8) leads to

Z(k+1) = V †B(Z(k))Z(k)

= Z(k) − Z(k) + V †B(Z(k); DX)Z(k)

= Z(k) − 1
2
V †

(
2V Z(k) − 2B(Z(k); DX)Z(k)

)

= Z(k) − 1
2
V †∇Zσ2(Z(k)).

Using the zero-mean property once more, we can make the final retouch to
the update formula,

Z(k+1) = Z(k) − 1
2N

∇Zσ2(Z(k); DX).

This is a somewhat surprising conclusion: the SMACOF algorithm appears
to be nothing but a gradient descent with a constant step size, α(k) = 1

2N .
In a sense, the whole idea of majorization has been reduced in our prob-
lem to the specific choice of the step size in the gradient descent algorithm.
On the other hand, the majorization algorithm guarantees that the sequence
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Z(1), Z(2), . . . produces decreasing values of the stress, and that the iterative
process converges to a (possibly local) minimum of σ2(Z). Such a behavior
is a particularly interesting property of the MDS problem, rarely observed in
other optimization problems – in general, it is uncommon that constant-step
gradient descent produces a monotonic decrease of the objective function.

As a historical remark, we shall note that the SMACOF iteration was
derived as early as in 1968 by Louis Guttman (1916–1987), who observed [196]
that the first-order optimality condition ∇Zσ2(Z∗; DX) = 0 can be written
as

Z∗ = V †B(Z∗; DX)Z∗.

This condition can be thought of as the fixed point of the multiplicative up-
date formula (7.8). This observation is a third way toward deriving the SMA-
COF algorithm. Recognizing Guttman’s prior work, de Leeuw and Heiser [128]
dubbed their multiplicative update as the Guttman transform.

7.4� Second-order methods

As an alternative to the first-order SMACOF algorithm, we can use second-
order methods for the solution of the MDS problem. Such methods have been
studied by Kearsley et al. [220]. The basic Newton iteration in our problem
takes the form

Z(k+1) = Z(k) + α(k)H−1(Z(k); DX)∇Zσ2(Z(k); DX).

In this notation, the Hessian H is a tensor, which can be thought of as a
four-dimensional matrix with elements

hkl
ij (Z; DX) =

{
h̃kl

ij (Z; DX) if k �= l,

h̃kl
ij (Z; DX) + 2(vij − bij(Z; DX)) if k = l,

for 1 ≤ k, l ≤ m and 1 ≤ i, j ≤ N , where h̃kl
ij (Z; DX) are given by

h̃kl
ij (Z; DX) = −

⎧
⎨

⎩

2(zk
i − zk

j )(zl
i − zl

j)dX(xi, xj)d−3
ij (Z) if i �= j, dij(Z) �= 0,

0 if i �= j, dij(Z) = 0,
∑

n�=i h̃kl
in if i = j.

H is symmetric with respect to the indices i, j and k, l. The derivation of the
Hessian is tedious and is left to the reader (Problem 7.6).

Because working with such a structure can sometimes be cumbersome, it is
common to convert the matrix variable into a vector one, by parsing the N×m
matrix Z into an Nm × 1 column vector in column-stack order. We denote
this transformation by z = vec(Z). The Hessian in this representation is an
Nm × Nm symmetric block matrix, consisting of m2 blocks Hkl(z; DX) =
(hkl

ij (Z; DX)) of size N × N ,
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H(z; DX) =

⎛

⎜
⎝

H11(Z; DX) H12(Z; DX) . . . H1m(Z; DX)
...

...
Hm1(Z; DX) Hm2(Z; DX) . . . Hmm(Z; DX)

⎞

⎟
⎠ . (7.9)

The Newton iteration, in turn, can be rewritten as

z(k+1) = z(k) + α(k)H−1(z(k); DX)∇zσ2(z(k); DX),

where ∇zσ2(z; DX) = vec(∇Zσ2(Z; DX)). Note that the Hessian is not in-
vertible: because each of the blocks is zero-mean, it has zero eigenvalues. The
Hessian may also contain negative eigenvalues because the problem is non-
convex. In order to invert such a matrix, we can modify its eigenvalues to
make all the negative and zero ones to be positive, e.g., by adding a small
value to its diagonal, H + εINm×Nm.3 The step size α(k) is selected using
line search. Because of high computational complexity of the stress and its
gradient, inexact line search (for example, the Armijo rule) is preferred over
exact one. The main complexity of the Newton iteration is due to the Hessian
construction (O(N2m2) operations) and inversion. Because the Hessian is full,
solution of the Newton system requires O(N3m3) operations.

Example 7.2 (SMACOF vs. Newton). We exemplify the difference
between the SMACOF and the Newton MDS algorithms on the problem of
embedding the Swiss roll surface (shown in Figure 7.4) into R

3. The Swiss roll
can be thought of as a rolled piece of paper, therefore, it is isometric to the
plane. In our example, the surface is given in a triangular mesh representation
and the geodesic distances computed using fast marching, therefore, the isom-
etry is only approximate. Both algorithms are implemented in MATLAB. For
the Newton algorithm, Armijo rule with α, β = 0.3 is used. Hessian inversion
is performed using eigendecomposition of the Hessian matrix with a modifica-
tion of the negative eigenvalues forcing them to be positive. Both algorithms
are initialized with the same random configuration of points. The stopping
condition uses the normalized gradient norm, ‖∇Zσ2(Z(k))/N2‖ ≤ 10−3 (the
scaling is necessary for the stopping condition to be independent of N).

Figure 7.5 (first row) depicts the normalized gradient norm on the logarith-
mic scale versus time for the SMACOF and Newton algorithms in embedding
of the Swiss roll sampled at N = 50 points. The Newton algorithm shows
a classic case of quadratic convergence, whereas SMACOF has linear con-
vergence, typical for a first-order algorithm. Overall, the convergence of the
Newton algorithm is much faster: 24 iterations (1.45 sec) compared with 1094
iterations (3.6 sec) for SMACOF.

Yet, the situation changes dramatically when the number of variables be-
comes larger (N = 200, see Figure 7.5 second row). Because the complexity
of the Newton system solution is proportional to N3, the iteration complexity
increases by about 64 times. As the result, the overall convergence time in-
creases significantly to 119.4 sec (at the same time, the number of iterations of
the Newton algorithm is now 43, i.e., does not grow so significantly). Unlikely,
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20Swiss roll Iteration 50Iteration 1000Iteration

Figure 7.4. The Swiss roll surface sampled at 200 points and represented as a
triangular mesh (left) and the result of its embedding into R

3 using a few iterations
of the SMACOF algorithm, starting from a random initialization.

the complexity of the SMACOF iteration is O(N2), a 16 times increase. The
SMACOF algorithm converges in 29.6 sec (1216 iterations).

Our first conclusion from Example 7.2 is that in large-scale MDS prob-
lems, SMACOF is advantageous over the Newton algorithm. In particular, in
our problems, where typically N ∼ 1000, performing the Newton iteration
straightforwardly becomes almost impractical. Secondly, the MDS problem
usually does not require reaching a very high accuracy, therefore, the con-
dition on the gradient norm is rather inappropriate. In the MDS literature,
a condition on the relative change of the stress is often used instead. If we
stop the optimization when σ2(Z(k+1))/σ2(Z(k)) ≤ 0.001, we will see that
SMACOF terminates much faster than does the Newton algorithm. This phe-
nomenon is also observed in both of our experiments. In the case of N = 50
points, SMACOF reaches this stopping criterion in 0.4 sec compared with 1.4
sec required for the Newton algorithm. In the second case (N = 200), the
corresponding numbers are 4.5 sec for SMACOF and 119.4 sec for Newton.

7.5 Variations on the stress theme

Thus far, we have considered embedding obtained by minimizing the L2-stress
criterion. Let us say a few words about other possibilities. Besides p = 2
yielding the L2-stress we have already seen, the cases p = 1 and p = ∞ are
the most interesting among the possible choices of p in our definition of (7.2).
The L1-stress,

σ1(Z; DX) =
∑

i>j

|dij(Z) − dX(xi, xj)|,

is similar to the L2-stress, with the exception that the sum of squared differ-
ences is replaced with the sum of absolute differences. Yet, optimization of
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Figure 7.5. Convergence plots of the SMACOF (solid) and Newton (dashed) MDS
algorithms in the problem of Swiss roll embedding with N = 50 (top) and N = 200
(bottom) points. Shown is the normalized gradient norm ‖∇Zσ2(Z

(k))‖2/N
2 (bot-

tom) as a function of CPU time. The horizontal line denotes the stopping criterion,
‖∇Zσ2(Z

(k))‖2/N
2 ≤ 10−5.

the L1-stress is more difficult, as the absolute value function |t| is not differ-
entiable at t = 0. It is possible to smooth the absolute value by replacing it
with a differentiable function, e.g., ϕ(t) =

√
t2 + ε, such that ϕ(t) ≈ |t| for a

small positive ε. An alternative is resorting to more complicated optimization
algorithms referred to as subgradient methods, based on a generalization of
the notion of gradient for non-differentiable functions [315].
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In the case of p = ∞, minimization of σ∞ is a min-max problem,

Z∗
∞ = argmin

Z
max

i,j=1,...,N
|dij(Z) − dX(xi, xj)|. (7.10)

A common trick in optimization is to reformulate this problem as a constrained
one, introducing an artificial variable τ ,

Z∗
∞ = argmin

Z,τ
τ s.t. |dij(Z) − dX(xi, xj)| ≤ τ

= argmin
Z,τ

τ s.t.
{

dij(Z) − dX(xi, xj) − τ ≤ 0,
−dij(Z) + dX(xi, xj) − τ ≤ 0,

(7.11)

where i > j. It can be shown that the two problems (7.10) and (7.11) are
equivalent. In the new problem, we have Nm + 1 variables, a linear objective
function and 1

2N(N − 1) constraints. Parsing the matrix variable into an
Nm × 1 vector, the gradients of the constraints can be written as an (Nm +
1) × 1

2N(N − 1) sparse matrix, in which each column is a gradient of dij(Z)
with respect to (τ, Z).

Example 7.3 (L2- vs L∞-stress). We exemplify the difference between
distortion criteria by showing an embedding of the horse shape into R

3. The
horse is represented as a triangular mesh with N = 153 points (see Figure 7.6,
top). The distances are measured using fast marching on the triangular mesh.
Figure 7.6 (bottom left) shows the canonical form Z∗

2 obtained using the L2-
stress. The average distortion of the distances at the minimum is the average
stress, (2σ2(Z∗

2 )/N(N − 1))1/2 = 0.037. Figure 7.6 (bottom right) shows the
canonical form Z∗

∞ obtained using the L∞-stress. The value of the stress
obtained in this case is σ∞(Z∗

∞) = 0.105.

Carefully observing the canonical forms obtained in Example 7.3, we notice
that the L2 canonical form is much smoother than its L∞ counterpart. Such
behavior is typical and highlights the difference between the two distortion
criteria. Note that in our constrained problem, the value of τ is essentially the
L∞-stress, as τ gives a tight upper bound on the distance distortion. In our
example, only a small number of constraints are active in the L∞ problem.
This means that there are few “problematic” pairs of points, the distances
between which determine the value of the L∞-stress. Other distances result
in a smaller stress, such that the corresponding constraints are inactive.

It may often happen that a few “bad” distances (arising, for example, from
numerical inaccuracies) will result in a large L∞ measure, whereas the other
distances have significantly smaller distortion. Such a situation is improbable
in the L2 problem, as a single distance does not contribute much to the L2-
stress, and the effects of numerical inaccuracies are “distributed” among all
the points. In other words, the L∞ problem is more sensitive to outliers, which
makes the L∞-stress disadvantageous in practical applications. On the other
hand, theoretical analysis of the L∞ problem is simpler than that of the L2
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L2 canonical form L canonical form

Horse

∞

Figure 7.6. Embedding of the horse shape into R
3 using the L2-stress and the

L∞-stress as the distortion criterion.

one. As we will see in the next chapters, the L∞-stress allows the use of the
powerful tools of metric geometry.

Besides the Lp-stress, there exist other distortion criteria, often encoun-
tered in the MDS literature. For example, the relative stress,

σREL(Z; DX) =
∑

i>j

|dij(Z) − dX(xi, xj)|2
d2

ij(Z)
,

can be used to measure the relative distortion of the distances. In a sense, it
can be thought of as the discrete L2 version of the dilation dil f , in the same
way we think of σ2 as of an L2 approximation of dis f . If we wish to attribute
more importance to some distances (e.g., if it is known that the accuracy of
some distances may be lower), we can use the weighted stress,

σW(Z; DX , W ) =
∑

i>j

wij |dij(Z) − dX(xi, xj)|2,

where wij are some non-negative weights. For example, if the shape is sampled
non-uniformly, we can define wij = aiaj, where ai, aj are discrete area ele-
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ments. The weights wij can be represented as a symmetric N ×N matrix W .
The SMACOF algorithm can still be used in this case, with the only difference
that in (7.8) we use the matrix V defined as

vij =
{
−wij i �= j∑

k �=i wik i = j,

(observe that our previous definition of V is a particular case corresponding
with the choice wij = 1).

A notable use of the weighted stress is the so-called iteratively reweighted
least squares technique (IRLS for short), often used in statistics to approxi-
mate the solution of problems with robust norms [199, 164, 212]. To demon-
strate the use of IRLS for the solution of MDS problems, we consider the
following general stress function,

σρ(Z; DX) =
∑

i>j

ρ(dij(Z) − dX(xi, xj)), (7.12)

with ρ(t) being some norm. For example, setting ρ(t) = |t|p gives the Lp norm;
other notable choices are the German-McLure function

ρGM(t) =
t2

t2 + ε2
, (7.13)

and the quadratic-linear Huber function

ρH(t) =
{

t2

2ε : |t| ≤ ε
|t| − 0.5ε : |t| > ε,

(7.14)

where ε is a positive constant, The necessary condition for Z to be a local
minimizer of σρ is

∇Zσρ(Z∗; DX) =
∑

i>j

ρ′(dij(Z∗) − dX(xi, xj))∇Zdij(Z∗) = 0.

Instead of minimizing σρ, we can minimize the weighted L2 stress (7.12),
whose minimizer has to satisfy

∇Zσ(Z∗; DX , W ) =
∑

i>j

2 wij(dij(Z∗) − dX(xi, xj))∇Zdij(Z∗) = 0.

If we could selecting the weights in σ(Z; DX , W ) according to

wij =
ρ′(dij(Z∗) − dX(xi, xj))
2(dij(Z∗) − dX(xi, xj))

, (7.15)

the two minimizers would coincide and we could solve the weighted L2 MDS
problem instead of the general one. However, such a selection of the weights



7.6 Multiresolution methods 153

input : N × N matrix of geodesic distances DX , the derivative of
ρ

output : canonical form Z∗.
initialization: some initial Z(0), w

(0)
ij = 1, and k = 0.

repeat1

Find Z(k+1) = arg min σ(Z; DX , W (k)) using Z(k) as the initialization.2

Update weights according to3

w
(k+1)
ij =

ρ′(dij(Z
(k+1)) − dX(xi, xj))

2(dij(Z(k+1)) − dX(xi, xj))

k ←− k + 1.4

until convergence5

Z∗ = Z(k).6

Algorithm 7.3. Iteratively reweighted least squares MDS.

requires the knowledge of the minimizer Z∗, which is, of course, unknown.
A possible remedy is to start by solving the un-weighted L2 problem (all
wij = 1), use the solution to update the weights, and iterate the process
until convergence. This iteratively reweighting procedure can be summarized
as shown in Algorithm 7.3.

Step 2 can be performed using the SMACOF algorithm. The reweighting
in Step 3 depends on the specific selection of the function ρ. For example, if
ρ(t) = |t|p is used, the update formula becomes

w
(k+1)
ij =

1
2
p |dij(Z(k+1)) − dX(xi, xj)|p−2.

7.6 Multiresolution methods

High computational complexity and the risk of local convergence are problems
common to all the MDS algorithms we have discussed. Trying to reduce the
complexity of MDS has recently become an important research trend in the
MDS community, where the growth of the data sets dealt with (sometimes
exceeding N ∼ 106) has led to the development of approximate large-scale
MDS methods. The idea of most of these methods is reducing the complexity
by considering a part of the data. For example, Chalmers [95], Morrison et al.
[283], and Williams and Munzner [398] showed an approximation to the MDS
problem, in which a distinction is made between near and far neighbors for
each point. In our formulation, this approach is equivalent to removing a major
part of the distances from the stress computation, leaving only the distances
to the near neighbors of each point and only a few to the far ones. Faloutsos
and Lin [155], Wang et al. [391], and de Silva and Tennenbaum [132] proposed
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performing MDS on a small subset of points (the so-called landmarks) and
then finding the rest of the points by means of interpolation.4

The common denominator of approximate MDS approaches is posing a
problem whose solution is close to the solution of the original MDS problem,
but which is much simpler to solve. Such methods are applicable in problems
of data visualization, where usually only qualitative results are required. In
our problem of non-rigid shape comparison, the use of approximations of this
kind may compromise the accuracy of shape representation [149]. Hence, in
most cases, we have no choice but to solve the full MDS problem. At the same
time, an approximate MDS solution can be used as a good initialization.

As an illustration, consider the landmarks method. Assume that we have
N = 1000 points (a typical order of magnitude of the number of samples in our
problems) and use 250 landmarks. We first solve the small MDS problem to
embed the 250 landmarks, and then add the other 750 points by interpolation.
Though the canonical form obtained this way may be insufficiently accurate
for comparison of shapes, it is still close to the one obtained by solving the full
MDS problem with 1000 points and can therefore be used for its initialization.
This way, we spend more effort at the coarse level, where each iteration costs
16 times less, in order to save computations at the fine resolution level. Besides
the complexity advantage, we also reduce the risk of local convergence: when
solving the MDS problem at a coarse resolution, small local minima of the
stress are usually avoided.

This idea, which we call multiresolution optimization, can be extended
to more than two resolution levels. It is not limited to the specific choice of
the distortion criterion but rather acts as an external framework, into which
any iterative MDS algorithm can be incorporated. Formally, we assume to
be given a hierarchy of grids, indexed by l = 0, . . . , L, which successively
approximate the full MDS problem. The Lth level is the coarsest one, while
the zeroth level is the finest one, corresponding with the full problem. At each
level, we work with a grid consisting of points with indices ΩL ⊂ ΩL−1 ⊂
· · · ⊂ Ω0 = {1, . . . , N}. We denote the number of points at each level by
NL < NL−1 < · · · < N0 = N . At the lth level, the data is represented
as an Nl × Nl matrix Dl, obtained by extracting the rows and columns of
D0 = DX , corresponding with the indices Ωl. The MDS problem at the lth-
level is Z∗

l = argminZl
σ(Zl; Dl); we write σ(Z; D) as a generic distortion

criterion, emphasizing its dependence on the distance data D. The solution
Z∗

l is transferred to the next level l − 1 using an interpolation operator P l−1
l ,

which can be represented as an Nl−1 ×Nl matrix. The whole multiresolution
MDS algorithm can be summarized as Algorithm 7.4.

Initialization of the multiresolution optimization algorithm actually con-
ceals two problems: construction of the hierarchy of resolution levels and in-
terpolation operators. The hierarchy of resolution levels can be constructed
using the farthest point sampling strategy we have described in Chapter 3.
This approach naturally allows creating a set of “nested” subsamplings, guar-
anteeing that every level is an rl-covering of the shape. Typically, the number
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input : (L + 1)-level hierarchy of data D0, . . . , DL, interpolation
operators P 0

1 , . . . , P L−1
L .

output : canonical form Z∗.
initialization: some initial Z

(0)
L at the coarsest grid.

for l = L, . . . , 0 do1

Solve the lth level MDS problem,2

Z∗
l = argmin

Zl∈R
Nl×m

σ(Zl; Dl),

using Z
(0)
l as the initialization for the optimization algorithm.

Interpolate the solution to the next level, Z
(0)
l−1 = P l−1

l Z∗
l .3

end4

Solve the finest level MDS problem,5

Z∗ = argmin
Z∈RN×m

σ(Z; DX),

using Z
(0)
0 as the initialization for the optimization algorithm.

Algorithm 7.4. Multiresolution MDS algorithm.

of points at each level is chosen such that 2 ≤ Nl−1/Nl ≤ 4. The fact that
FPS is a purely intrinsic geometric algorithm allows us to employ it in the
most general MDS setting, where the matrix of geodesic distances DX is the
only information available, and no extrinsic geometry can be assumed. The
cost of the hierarchy construction is of O(N2) complexity, usually significantly
smaller compared with the MDS algorithm itself.5

The interpolation operators are constructed based on the hierarchy of
grids. In order to pass from the lth level to the (l − 1)st level, we need to
interpolate the points of the fine grid Ωl−1 from the points of the coarse grid
Ωl. For each fine grid point zi∈Ωl−1 , we define the neighborhood Nl(i) ⊂ Ωl

of coarse grid points, from which the point zi is interpolated. Points common
to the fine and the coarse grid have a trivial neighborhood (equal to the point
itself, Nl(i ∈ Ωl) = {i}), and are transferred unchanged. The coordinates of
the rest of the points, i ∈ Ωl−1 \ Ωl, are interpolated according to

zi =
∑

j∈Nl(i)

pijzj .

The scalars pij are called interpolation coefficients or weights and can be iden-
tified with the elements of the interpolation matrix P l−1

l . Because usually the
number of neighbors used for interpolation is small (|Nl(i)| � Nl), the matrix
P l−1

l is sparse. Consequently, the interpolation operation can be carried out
efficiently, with O(Nl−1) complexity.

The specific choice of Nl(i) and pij depends on the interpolation method.
The neighborhood Nl(i) can be defined as the K nearest neighbors of xi on the
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coarse grid, or alternatively, as the metric ball of radius proportional to the
sampling radius. If the shape is represented as a triangular mesh, the neigh-
borhood can be inferred from the triangulation. In the case of parametric sur-
faces, the interpolation coefficients can be computed in the parameterization
domain. There are numerous ways to define the interpolation coefficients, on
which we will not spend our attention. The simplest choice is pij = |Nl(i)|−1,
giving zi as the center of mass of the points {zj}j∈Nl(i).

7.7� Multigrid MDS

Assume that we have a good initialization Z
(0)
0 ≈ argminZ0

σ(Z0; D0) for the
MDS problem on the finest grid and wish to improve it. Z

(0)
0 can be improved

by performing a few optimization steps minimizing the stress σ(Z0; D0) on
the fine grid, but such a minimization can be computationally expensive,
especially if N is large. Instead, we would like to solve a smaller and compu-
tationally cheaper problem on the coarse grid and use the obtained solution to
improve Z

(0)
0 (here, we assume two levels of grids, L = 1). For this purpose,

we first need to transfer the solution from the fine grid to the coarse grid
using a decimation operator P 1

0 , which, much like the interpolation operator
P 0

1 , can be thought of as an N1 ×N0 sparse matrix. In a sense, decimation is
dual to interpolation, and in many cases, the decimation operator is obtained
as the transpose of the interpolation operator, P 1

0 = (P 0
1 )T. For the sake of

simplicity, we assume this relation in the following discussion.
Having transferred Z

(0)
0 to the coarse grid and obtained Z

(0)
1 = P 1

0 Z
(0)
0 ,

we solve the coarse grid problem, which yields the solution Z∗
1 . Using Z∗

1 , we
can correct the fine grid solution by transferring the difference in the coarse
grid solution Z∗

1 − Z
(0)
1 to the fine grid,

Z
(1)
0 = Z

(0)
0 + P 0

1 (Z∗
1 − Z

(0)
1 )

= Z
(0)
0 + P 0

1 (Z∗
1 − P 1

0 Z
(0)
0 ).

Obviously, we would like the new fine grid solution Z
(1)
0 to be at least as good

as Z
(0)
0 , i.e., σ(Z(1)

0 ) ≤ σ(Z(0)
0 ). Yet, this would not necessarily hold, as the

stress functions on the fine and coarse grids may be inconsistent: their minima
do not necessarily coincide. More precisely, given the fine grid minimizer Z∗

0 ,
for which ∇Z0σ(Z∗

0 ) = 0, transferring it to the coarse grid, we will generally
have ∇Z1σ(P 1

0 Z∗
0 ) = T1 �= 0. The term T1 is the residual, reflecting the

inconsistency of the coarse and fine grid problems. To cancel the residual,
we have to make an adjustment of the coarse grid problem by introducing a
correction term to the stress

σ(Z1; D1) − 〈T1, Z1〉 = σ(Z1; D1) − trace(ZT
1 T1).

After this correction, the coarse grid problem becomes



7.7� Multigrid MDS 157

min
Z1

σ(Z1; D1) − 〈T1, Z1〉.

In order to guarantee consistency, T1 must satisfy

∇Z1σ(Z1; D1) − T1 = ∇Z1σ
(
Z

(0)
0 + P 0

1 (Z1 − P 1
0 Z

(0)
0 ); D0

)
,

for Z1 = P 1
0 Z

(0)
0 . Using the chain rule, we obtain

∇Z1σ(Z1; D1) − T1 = ∇Z1σ
(
Z

(0)
0 + P 0

1 (Z1 − P 1
0 Z

(0)
0 ); D0

) ∣
∣
∣Z1=P 1

0 Z
(0)
0

= (P 0
1 )T∇Z0σ(Z(0)

0 ; D0)

= P 1
0 ∇Z0σ(Z(0)

0 ; D0), (7.16)

which leads to the expression for the correction term,

T1 = ∇Z1σ(P 1
0 Z

(0)
0 ; D1) − P 1

0 ∇Z0σ(Z(0)
0 ; D0).

In particular, when we take Z
(0)
0 to be the fine grid minimizer Z∗

0 , it is easy
to verify that ∇Z1

(
σ(P 1

0 Z∗
0 ; D1) − trace((P 1

0 Z∗
0 )TT1)

)
= 0, i.e., that P 1

0 Z∗
0 is

the coarse grid minimizer.
Yet, resolving one problem, we have created a new one: the coarse grid

problem Z∗ = argminZ σ(Z) − trace(ZTT ), after the introduction of the cor-
rection term becomes unbounded. Indeed, we can add an arbitrarily large
scalar to the coordinates Z without changing σ(Z), yet, if T �= 0, the term
−trace(ZTT ) can decrease arbitrarily. In order to overcome this difficulty, in
[79, 80] Irad Yavneh and the authors introduced the modified stress by adding
a quadratic penalty to σ(Z),

σ̂(Z) = σ(Z) + λ

m∑

k=1

(
N∑

i=1

zk
i

)2

= σ(Z) + λ trace(ZT1N×NZ). (7.17)

Here, λ is some positive constant. Recall that the solution to the MDS prob-
lem is defined up to an isometry in the embedding space. Our modification
merely resolves the translation ambiguity by restricting the center of mass
of the resulting canonical form to the origin. The penalty would not change
the solution, and we can therefore use σ̂(Z) instead of σ(Z) in our problem.
Because the penalty term is quadratic, it grows faster than does the linear
term trace(ZTT ). Consequently, the function σ̂(Z)− trace(ZTT ) is bounded.
The gradient of the modified stress has practically the same computational
complexity as that of the standard stress and is given by

∇Z σ̂(Z) = ∇Zσ(Z) + 2λ1N×NZ.

Now we can combine the pieces of the puzzle together into a scheme, usu-
ally referred as the two-grid algorithm (Algorithm 7.5). The scheme consists of
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input : two-level hierarchy of data D0, D1, interpolation operator
P 0

1 , decimation operator P 1
0 .

output : canonical form Z∗.
initialization: some initial Z

(0)
0 at the fine grid.

repeat1

Compute an improved fine grid solution Z
(1)
0 by performing NR2

optimization iterations on σ(Z0), initialized with Z
(0)
0 .

Decimate the fine grid solution: Z
(1)
1 = P 1

0 Z
(1)
0 .3

Compute the correction: T1 = ∇Z1 σ̂(Z
(1)
1 ; D1) − P 1

0 ∇Z0 σ̂(Z
(1)
0 ; D0).4

Solve the coarse grid problem,5

Z∗
1 = argmin

Z1∈R
N1×m

σ̂(Z1; D1) − trace(ZT
1 T1),

using Z
(1)
1 as the initialization.

Correct the fine grid solution, Z
(2)
0 = Z

(1)
0 + α1P

0
1 (Z∗

1 − P 1
0 Z

(1)
0 ).6

Set Z
(0)
0 ←− Z

(2)
0 .7

until convergence8

Z∗ = Z
(0)
0 .9

Algorithm 7.5. Two-grid MDS algorithm.

repeatedly improving the fine grid solution by performing a few optimization
steps on the fine grid, decimating the result to the coarse grid and solving the
coarse grid problem with an appropriate correction term, and then using the
coarse grid solution to improve the fine grid result.

At the correction stage (Step 6 of the two-grid algorithm), a step size α1

must be determined using line search (for example, Armijo rule) in order to
guarantee a descent direction [291]. Step 5 is generic, and the choice of the
optimization algorithm usually depends on the stress used. For example, if
the L2-stress is used as the distortion criterion, we can employ SMACOF-
type iteration,

Z(k+1) = Z(k) − 1
2N

∇Z σ̂2(Z(k))

=
1
N

B(Z(k))Z(k) − T + 2λ1N×NZ(k).

Applying the two-grid algorithm repeatedly, we converge to its fixed point,
the fine grid minimizer Z∗

0 .
The two-grid algorithm we have described appears to be a particular case

of a multigrid algorithm. The idea of multigrid dates back to the papers of
Fedorenko [157] and Bakhvalov [18] in the 1960s, though the method as we
know it today was formulated a decade later by Brandt [49, 50] and Hack-
busch [197]. Originally, multigrid methods were applied to partial differential
equations and introduced relatively late to the field of numerical optimization
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input : (L + 1)-level hierarchy of data D0, . . . , DL, interpolation
operators P 0

1 , . . . , P L−1
L , decimation operators P 1

0 , . . . , P L
L−1,

constants NR, N ′
R.

output : canonical form Z∗.
initialization: some initial Z(0) and k = 0.

repeat1

Z(k+1) ← V-cycle(Z(k), 0, D0, NR, N ′
R).2

k ←− k + 1.3

until convergence4

Z∗ = Z(k).5

Algorithm 7.6. MG-MDS algorithm with V-cycle outer iterations.

[135, 291]. In the multigrid jargon, Step 5 is called relaxation; interpolation
and decimation are often referred to respectively as prolongation and restric-
tion.

The two-grid algorithm can be easily extended by applying it on the coarse
grid repeatedly in a recursive manner. In a general multigrid MDS algorithm
(referred to as MG-MDS for brevity), we have a hierarchy of grids Ω0, . . . , ΩL

and data D0, . . . , DL, interpolation operators P 0
1 , . . . , PL−1

L , and decimation

if l = L (coarsest resolution) then1

Solve the Lth level problem,2

Z∗
L = argmin

ZL∈R
NL×m

σ̂(ZL; DL) − trace(ZT
L TL),

using Z
(0)
L as the initialization.

return Z∗
L.3

else4

Relaxation: apply NR optimization iterations on5

σ̂(Zl; Dl) − trace(ZT
l Tl) initialized with Z

(0)
l , obtaining Z

(1)
l .

Restriction: Z
(1)
l+1 = P l+1

l Z
(1)
l .6

Recursively apply the V-cycle on the coarser level,7

Z
(2)
l+1 ← V-cycle(Z

(1)
l+1, Tl+1, Dl+1, NR, N ′

R).

Correction: Z
(2)
l = Z

(1)
l + αlP

l
l+1(Z

(2)
l+1 − Z

(1)
l+1).8

Relaxation: apply N ′
R optimization iterations on9

σ̂(Zl; Dl) − trace(ZT
l Tl) initialized with Z

(2)
l , obtaining Z

(3)
l .

return Z
(3)
l10

end11

Algorithm 7.7. Function V-cycle(Z
(0)
l , Tl, Dl, NR, N ′

R)



160 7 Multidimensional Scaling

relax relax

relax relax

relax relax

relax relax

solve

decimate

decimate

decimate

decimate correct

correct

correct

correct
l = 0

l = 1

l = L

Figure 7.7. Illustration of the V-cycle iterative process.

operators P 1
0 , . . . , PL

L−1. The algorithm first goes down from the finest grid to
the coarsest grid, performing NR relaxation iterations at each level, and then
back to the finest grid, with N ′

R relaxation iterations (typically, NR and N ′
R

range from 1 to 5). Because of the resemblance of the outer iterative process
to the letter “V” (Figure 7.7), it has been named the V-cycle, or, being more
specific, the V (NR, N ′

R)-cycle. As in the two-grid algorithm, the V-cycles are
repeated until convergence (Algorithms 7.6 and 7.7).

The cost of a V-cycle is usually comparable with a few SMACOF iterations.
Yet, the MG-MDS algorithm requires much fewer iterations to converge. More
importantly, the number of cycles (outer iterations) is approximately constant
with N , unlike SMACOF, whose number of iterations tends to grow with N .
This behavior is often observed in multigrid methods. For this reason, the
use of multigrid offers a significant speedup of MDS algorithms, especially
pronounced in large-scale problems.

Example 7.4 (multigrid acceleration). We demonstrate the MG-MDS
method on the problem we have already seen in Example 7.2, Swiss roll em-
bedding into R

3. The Swiss roll surface is sampled at N = 2145 points, which
results in a relatively large-scale MDS problem. We use a multigrid V (3, 3)-
cycle with SMACOF-type relaxation and compare it with the standard SMA-
COF algorithm. Both algorithms are initialized by the coordinates of the
points on the original surface. To ensure a fair comparison, we first run SMA-
COF with the stopping criterion σ2(Z(k+1))/σ2(Z(k)) ≤ 0.01, and then let the
MG-MDS algorithm reach the same stress. Figure 7.8 depicts the L2-stress on
a logarithmic scale versus time for the SMACOF and multigrid algorithms.
The MG-MDS algorithm converges in 229.46 sec (7 cycles), compared with
2.03 × 103 sec (341 iterations) of the SMACOF algorithm – almost an order
of magnitude speedup.

7.8� Vector extrapolation

As an alternative way to accelerate the convergence of the SMACOF itera-
tions, Guy Rosman proposed using vector extrapolation [327, 326]. Such meth-
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Figure 7.8. Convergence plots of the standard SMACOF algorithm (solid) and
the multigrid V(3,3)-cycle with SMACOF-type relaxation (dashed) in the problem
of Swiss roll embedding with N = 2145. Shown is the L2-stress value σ2(Z

(k)) as a
function of CPU time.

ods were originally derived for speeding up slowly converging linear iterative
minimization and numerical approximation schemes,6 though in practice they
also work well for nonlinear problems [51], like certain processes in computa-
tional fluid dynamics [359] and reconstruction in tomography [321, 386].

Assume that we have a sequence of iterates Z(0), Z(1), . . . produced by some
optimization algorithm (e.g., SMACOF), which converges to the minimizer
Z∗ = limk→∞ Z(k). The key idea of vector extrapolation is the following: if
Z(k) converges slowly, we can construct another sequence, denoted by Ẑ(k),
which will converge to the same minimizer Z∗, but much faster. Writing the
original sequence as Z(k) = Z∗ + E(k), where E(k) is the remainder, we are
looking for a new sequence Ẑ(k) = Z∗ + Ê(k) such that

lim
k→∞

‖Ê(k)‖
‖E(k)‖ = 0. (7.18)

The new sequence is given as some transformation of the form Ẑ(k) =
T (Z(k), . . . , Z(k+K)), applied to K + 1 iterates Z(k), . . . , Z(k+K) produced by
a standard optimization algorithm. The extrapolation is used as a new ini-
tialization to restart the optimization. The entire process is repeated for a
few cycles (Algorithm 7.8). Because in general there is no guarantee for the
extrapolation to succeed, a safeguard (Steps 4–8) must be used to ensure that
the stress value does not increase.

It is common to construct Ẑ(k) as a linear combination of K + 1 iterates,

Ẑ(k) = γ0Z
(k) + . . . + γKZ(k+K)

= (γ0 + · · · + γK)Z∗ + γ0E
(k) + . . . + γKE(k+K) (7.19)
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input : N × N matrix of geodesic distances DX .
output : canonical form Z∗.
initialization: some initial Z(0) and k = 0.

repeat1

Generate the sequence of iterates Z(k+1), . . . , Z(k+K) by some2

optimization algorithm on σ(Z; DX), using Z(k) as initialization.
Extrapolate Ẑ(k) from the iterates Z(k), Z(k+1), . . . , Z(k+K).3

if σ(Ẑ(k); DX) > σ(Z(k+K); DX) then4

Z(k+K+1) ←− Z(k+K)
5

else6

Z(k+K+1) ←− Ẑ(k)
7

end8

k ←− k + K + 1.9

until convergence of Z(k)
10

Z∗ = Z(k).11

Algorithm 7.8. MDS algorithm with vector extrapolation acceleration.

where γi are some coefficients. Various vector extrapolation algorithms differ
in the definition of these coefficients. Ideally, the new sequence should be
Ẑ(k) = Z∗, such that one can try to select the coefficients γi in order to
satisfy this requirement. Usually this is impossible to achieve, thus we will try
to reduce the residual terms γ0E

(k) + . . . + γKE(k+K) as much as possible, at
the same time requiring γ0 + · · · + γK = 1 in equation (7.19).

Note that E(k) = Z(k) − Z∗ depends on the unknown Z∗. In order to
eliminate this dependence, we can consider the difference ΔẐ(k) = Ẑ(k+1) −
Ẑ(k), which ideally should vanish. This leads to a constrained linear system,

γ0ΔZ(k) + . . . + γKΔZ(k+K) = 0 s.t. γ0 + . . . + γK = 1, (7.20)

with Nm equations and K +1 variables. Because typically K � Nm, the sys-
tem is over-determined and usually cannot be satisfied. We therefore compute
the coefficients γi by finding a least-square solution to (7.20). This method of
vector extrapolation is known as reduced rank extrapolation (RRE) [270, 144].7

If we parse the N ×m matrices ΔZ(k), . . . , ΔZ(k+K) into Nm× 1 vectors
Δz(i) = vec(ΔZ(i)) and denote AK+1 = (Δz(k) . . .Δz(k+K)), we can for-
mulate the RRE method as finding a least-squares solution to the following
constrained over-determined linear system,

AK+1γ = 0 s.t. γ0 + . . . + γK = 1. (7.21)

which can be solved by first solving

AT
(K+1)A(K+1)γ̃ = 1(K+1)×(K+1), (7.22)
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and then setting

γ =
γ̃

γ̃0 + . . . γ̃K

(prove this result in Problem 7.11).
For a numeric solution, the matrix AK+1 can be represented as AK+1 =

QK+1RK+1 using QR factorization, where QK+1 is an Nm× (K +1) unitary
matrix and RK+1 is a (K + 1) × (K + 1) upper triangular matrix [359].
This type of factorization can be carried out efficiently using the modified
Gram-Schmidt algorithm [177]. Because QT

K+1QK+1 = I, equation (7.22)
becomes RT

K+1RK+1γ̃ = 1(K+1)×(K+1). Because of the triangular form of the
matrix RK+1, we can employ forward and backward substitutions, similarly
to the solution of the Newton system with Cholesky factorization we have
encountered in Chapter 5. The entire RRE method can be summarized as
shown in Algorithm 7.9.

Example 7.5 (RRE acceleration). We demonstrate the vector extrapo-
lation method on the problem of Swiss roll embedding into R

3, with the same
data and the same settings as in the previous Example 7.4. We compare the
SMACOF algorithm with and without vector extrapolation acceleration. In
the accelerated version, we use the RRE method with K = 10. Figure 7.9 (top)
depicts the L2-stress on a logarithmic scale versus time for both algorithms.
The SMACOF algorithm without acceleration converges after 2.03 × 103 sec
(341 iterations) compared with 256.59 sec (4 cycles) for the RRE-accelerated
version. Figure 7.9 (bottom) shows the inner iterations of the RRE algorithm.
The “jumps” in the stress values correspond with extrapolated values in each
cycle.

The RRE approach gives nearly the same acceleration to the SMACOF
algorithm as the multigrid scheme but is advantageous being significantly sim-
pler and easier to implement. In addition to RRE, many other vector extrap-
olation methods exists, the most popular choices being minimal polynomial
extrapolation (MPE) [91] and the topological ε-algorithm (TEA) [51]. We refer
the reader to the above references for additional details.

input : sequence of iterates ΔZ(k), . . . , ΔZ(k+K).
output : extrapolation Ẑ∗.

Compute the matrix AK+1 = (Δz(k) . . . Δz(k+K)) and find its QR1

factorization AK+1 = QK+1RK+1.
Forward substitution: solve RT

K+1y = 1(K+1)×(K+1) for y.2

Backward substitution: solve RK+1γ̃ = y for γ̃.3

Compute γ = γ̃/(γ̃0 + . . . + γ̃K).4

Compute the extrapolation Ẑ(k) = γ0Z
(k) + . . . + γKZ(k+K).5

Algorithm 7.9. Reduced Rank Extrapolation (RRE).
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Figure 7.9. Convergence plots of the SMACOF algorithm with (top, dashed) and
without (top, solid) RRE acceleration in the problem of Swiss roll embedding with
N = 2145. Shown is the L2-stress value in outer cycles as a function of CPU time.
Values of the stress in inner iterations (bottom, dotted) and outer cycles (bottom,
bold dots) of the RRE algorithm are shown in the bottom plot.

7.9 A trouble with topology

Using intrinsic similarity criterion for the comparison of non-rigid shapes,
we have been tacitly assuming that the shapes have similar topology. Said
differently, we did not allow our deformations to make holes or “glue” parts of
the shapes. In certain situations, however, this assumption does not necessarily
hold.
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For example, when acquiring three-dimensional objects using range cam-
eras, a phenomenon called topological noise is a well-known problem. A range
camera estimates the three-dimensional coordinates of the object at a discrete
set of points, producing a point cloud. The point cloud is then triangulated
in order to obtain a triangular mesh representation of the object. Yet, if no
additional information is assumed, the problem of constructing a mesh out
of a point cloud is not well-defined. The same object can be triangulated dif-
ferently, in some cases producing meshes with different topology. Typically,
topological noise is manifested in the form of connections between vertices
that should not be connected or vice versa.

Topological noise affects the intrinsic geometry of the shape. Connectivity
changes can significantly alter the geodesics, and consequently, if we try to
compute the canonical forms of two topologically different shapes, they may
differ substantially (see example in Figure 7.10). We therefore conclude that
intrinsic similarity can be used only for shapes undergoing topology-preserving
deformations.

At the other end, extrinsic similarity is insensitive to topological noise,
yet, as we have already seen, is sensitive to non-rigid deformations. In [74], we
showed that it is possible to define a new criterion of similarity insensitive to
some types of topological noise by combining extrinsic and intrinsic similarity
criteria. We must note, however, that the general problem of shape similarity
invariant under deformation not preserving topology appears as a very chal-
lenging problem, to which, to the best of our knowledge, no complete solution
has been proposed thus far.

Suggested reading

For a comprehensive overview of MDS problems and algorithms, the reader
is referred to the books by Cox and Cox [119] and Borg and Groenen [44]. A
good treatment of MDS with a theoretical emphasis is the book by Young and
Hamer [405]. In the fields of machine learning and neural networks, the concept
of self-organizing maps introduced by Teuvo Kohonen [231] is closely related
to MDS. A classic reading on multigrid methods is Briggs [54], McCormick
[264], and Wesseling [393]. A more recent overview is the book by Trottenberg
et al. [381]. A detailed description and experimental validation of the multigrid
MDS method can be found in [79, 80]. For an introduction and overview of
vector extrapolation methods, we refer to review papers by Sidi and coauthors
[366, 362, 360, 363, 361] A different approach to vector extrapolation through
the Shanks-Schmidt transformation is presented in [339, 351, 52]. The use
of vector extrapolation for MDS problems is described in [327]. A different
acceleration of the SMACOF algorithm was proposed by de Leeuw [127]. An
attempt to address the problem of comparison of topologically different shapes
using a combination of extrinsic and intrinsic similarity criteria is presented
by the authors in [74].



166 7 Multidimensional Scaling

Figure 7.10. Illustration of the effect of the topological noise on the computation
of canonical forms. Gluing the fingertips of the hand (right) changes the intrinsic
geometry of this shape and as a result, the canonical form is substantially different
from that of the original shape (left).

Software

A free MATLAB implementation of the SMACOF algorithm with vector ex-
trapolation acceleration is distributed as part of the TOSCA toolbox. Mark
Steyvers’ Nonmetric MDS for MATLAB allows minimization of different vari-
ants of stress. The function mdscale supports different types of MDS problems
and is distributed as part of the commercial MATLAB Statistics toolbox.
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Problems

7.1. Verify that the L2-stress function is non-convex.

7.2. Derive the matrix form of the L2-stress in equation (7.4).

7.3.� Derive the matrix form of the gradient of the L2-stress in equation (7.5).

7.4. How does the fact that the matrix B(Z) is zero-mean relate to the degrees
of freedom in the MDS problem?

7.5.� Prove the bound on the L2-stress in inequality (7.7).

7.6. Derive the Hessian of the L2-stress.

7.7. For the case m = 2, show a way to invert the Hessian matrix (7.9) using
the inversion formula for block matrices.

7.8. Show that the constrained optimization problem (7.11) is equivalent to
the L∞-stress minimization optimization problem (7.10).

7.9. Derive the matrix form of the modified stress (7.17) and show that the
addition of the quadratic penalty does not change the solution of the MDS
problem.

7.10.� Derive the relation (7.16).

7.11.� Derive the equation (7.22).

Notes
1One peculiar example of the distortion introduced by cartographic projections

is the fact that river Lena appears to be the longest river in the world when viewed
on a map using a Mercator projection. In reality, Amazon and Nile hold this title.

2Borg and Groenen [44] give a different meaning to this acronym, scaling by
majorizing a complex function. We find this a slight misnomer, as the term “complex
function” usually refers to a complex-valued function.

3The presence of zero eigenvalues is directly related to the degrees of freedom in
the MDS problem. An alternative way to resolve the degrees of freedom is to fix the
positions of three non-collinear points [220].

4It was shown by Platt [314] that these three methods are equivalent.
5As we have already mentioned in Chapter 3, this cost can be reduced to

O(N log N) using efficient data structures. The complexity of MDS is often given as
O(N3), though, more rigorously, it should be proportional to N2 multiplied by the
number of iterations.

6There are evidences that prototypes of extrapolation methods are very old.
Brezinsky [53] traces the history of speeding up convergence of sequences by means
of extrapolation back to Christian Huygens (1629–1695).

7The derivation of RRE is done assuming that the sequence Z(k+1), . . . , Z(k+K)

is produced by a linear iteration formula [366]. In the nonlinear case, the algorithm
can still be used, but some of its properties are lost.



Can you hear the shape of the drum?

M. Kac

8

Spectral Embedding

In the previous chapter, we showed how to represent the intrinsic geometry of
a non-rigid shape in a Euclidean space using canonical forms. Given a shape
(X, dX) sampled at N points {x1, . . . , xN}, we first computed the N × N
matrix DX of geodesic distances between the samples. Then, we employed an
iterative MDS algorithm in order to find the minimum-distortion embedding
of the shape into the m-dimensional Euclidean space. As a result, we obtained
an N × m matrix Z∗ representing the canonical form of X – the best possi-
ble approximation of the intrinsic geometry of X in R

m with the restricted
Euclidean metric.

We start this chapter with a mathematical exercise that will bring us to
a new class of MDS algorithms and set the scene for a somewhat different,
algebraic viewpoint on the problem of non-rigid shape similarity. For sim-
plicity, we first assume that X is isometrically embeddable into R

m, that is,
we can find a canonical form Z∗ such that dX(xi, xj) = ‖z∗i − z∗j ‖Rm for all
i, j = 1, . . . , N . Consequently, we can also write

d2
X(xi, xj) = d2

ij(Z
∗) = 〈z∗i − z∗j , z∗i − z∗j 〉Rm

= 〈z∗i , z∗i 〉Rm − 2〈z∗i , z∗j 〉Rm + 〈z∗j , z∗j 〉Rm .

This equality can be rearranged as

2〈z∗i , z∗j 〉Rm = 〈z∗i , z∗i 〉Rm + 〈z∗j , z∗j 〉Rm − d2
X(xi, xj). (8.1)

Recall that isometric embedding into R
m is defined up to Euclidean isometry.

Therefore, we can translate the canonical form by an arbitrary vector, for
example, by setting the origin at z∗1 = 0. We can subtract the vector z∗1 from
all the coordinates of the canonical form Z∗ without changing the distances
between them. Such a transformation allows us to rewrite the right-hand side
of equation (8.1): because the embedding is isometric, the terms 〈z∗i −z∗1 , z∗i −
z∗1〉Rm and 〈z∗j − z∗1 , z∗j − z∗1〉Rm can be identified with the squared geodesic
distances d2

X(x1, xi) and d2
X(x1, xj), respectively. Therefore, we have

A. Bronstein et al., Numerical Geometry of Non-Rigid Shapes, 169
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2〈z∗i , z∗j 〉Rm = 〈z∗i − z∗1 , z∗i − z∗1〉Rm + 〈z∗j − z∗1 , z∗j − z∗1〉Rm − d2
X(xi, xj)

= d2
X(x1, xi) + d2

X(x1, xj) − d2
X(xi, xj). (8.2)

We notice that on the left-hand side, up to the factor of two, we have the
elements of the matrix Z∗(Z∗)T, referred to as the Gram matrix. Defining an
N × N matrix KX with the elements

kij =
1
2

(
d2

X(x1, xi) + d2
X(x1, xj) − d2

X(xi, xj)
)
, (8.3)

we can rewrite condition (8.2) as KX = Z∗(Z∗)T.
Using the properties of Gram matrices (see Problem 8.1), from condi-

tion (8.2) it follows that KX is positive semidefinite and of rank m, which
implies that it has m positive and N − m zero eigenvalues. Denoting by Λm

an m × m diagonal matrix of the positive eigenvalues and by Um the N × m
matrix of the corresponding eigenvectors, we can write KX in the following
way,

KX = UmΛmUT
m = UmΛ

1
2
mΛ

1
2
mUT

m = (UmΛ
1
2
m)(UmΛ

1
2
m)T.

8.1 Classic MDS

Let us draw some conclusions from this mathematical exercise. The assump-
tion that the shape X can be isometrically embedded into R

m leads to the
fact that KX can be realized as a Gram matrix of rank m, which is positive
semidefinite by definition. Conversely, given a positive semidefinite matrix KX

or rank m, we can write it as KX = (UmΛ
1
2
m)(UmΛ

1
2
m)T. This gives us a simple

recipe for computing the canonical form by setting Z∗ = UmΛ
1
2
m, and implies

that X is isometrically embeddable into R
m. Combining both directions, we

can say that X is isometrically embeddable into R
m if and only if KX � 0.

This result was proved by Isaac Schoenberg in 1935 [340], of which the statis-
tician John Clifford Gower commented “a surprisingly late date for such a
fundamental property of Euclidean geometry” [184].1

Unfortunately, the geometry of the objects we are dealing with is non-
Euclidean: in Chapter 7, we saw that usually it is impossible to isometrically
embed a shape into R

m, in contradiction to what we assumed throughout
our exercise. For a general shape that is not isometrically embeddable into a
Euclidean space, some of the eigenvalues of KX will be negative. As a result,
we can no more write KX as a Gram matrix. If the reader still insists on
writing KX as a Gram matrix of rank m, we can resort to the following
approximation: define a new N × N matrix

K̃X = UΛ̃UT,

where
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input : N × N matrix of geodesic distances DX , dimensionality m.
output: canonical form Z∗.

Compute the matrix KX according to (8.3).1

Perform an eigendecomposition of KX to compute the m × m matrix Λm2

of the m largest nonnegative eigenvalues and the N × m matrix of
corresponding eigenvectors Um.

Compute the canonical form as Z∗ = UmΛ
1
2
m.3

Algorithm 8.1. Classic MDS.

Λ̃ =
(

Λm

0(N−m)×(N−m)

)

.

is a matrix produced by taking the m largest positive eigenvalues of KX

(assuming that KX has at least m positive eigenvalues) and removing all
the rest. K̃X is the best rank-m approximation of KX ; it allows us to define
the canonical form as Z∗ = UΛ̃

1
2 = UmΛ

1
2
m, which satisfies condition (8.2)

approximately: K̃X ≈ Z∗(Z∗)T. This brings us to the way to compute the
canonical form shown in Algorithm 8.1.

This approach, usually referred to as classic MDS,2 is due to Torgerson
[379] and Gower [183] and is based on the theoretical results of Schoenberg
[341] and Eckart, Young and Householder [143, 406]. It is one of the earliest
practical MDS methods, derived from purely algebraic considerations and be-
longing to a family of methods known as spectral embeddings or eigenmaps –
methods in which the embedding coordinates are computed as eigenvectors of
some matrix. Classic MDS has some very appealing properties: it is based on
eigendecomposition, a procedure extensively researched in numerical linear al-
gebra, for which many efficient numerical algorithms are available. Therefore,
classic MDS is typically significantly faster compared, for example, with the
SMACOF algorithm. More importantly, unlike the iterative MDS methods
discussed in Chapter 7, classic MDS does not suffer from local convergence.

At the same time, the Achilles’ heel of classic MDS is the lack of geometric
meaning. To understand why, let us quantify the error introduced by taking
K̃X instead of KX ,

‖K̃X − KX‖2
F = ‖U(Λ − Λ̃)UT‖2

F = λ2
m+1 + · · · + λ2

N , (8.4)

measured by the Frobenius norm, which is defined as ‖A‖2
F = trace(ATA).

It is easy to see (a formal proof is left as Problem 8.2) that defining Λ̃ by
taking the largest m eigenvalues of Λ produces the smallest error in the sense
of the Frobenius norm in (8.4). Therefore, we can think of classic MDS as of
a minimization problem, in which the objective is the strain function,

σF(Z) = ‖ZZT − KX‖2
F.
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The strain measures how “close” a Gram matrix of rank m can be to KX .3

Such a criterion does not have much geometric sense: we cannot interpret it as
the average or the maximum distortion of the geodesic distances, a meaning
we could attribute to σ2 and σ∞. In practice, it also appears that shape simi-
larity based on canonical forms computed using classic MDS usually produces
inferior results compared with that based on least-squares MDS [149].

As previously, the canonical form is defined ambiguously: the liberty we
have in the definition of KX reflects the degrees of freedom related to transla-
tion ambiguity in the MDS problem. In equation (8.3), we defined KX based
on the assumption that the point z∗1 is located at the origin. This definition
is not unique, and we can define KX in different ways by choosing a different
origin for the embedding space (see Problem 8.3). The rotation and reflection
ambiguity is concealed in the fact that eigenvectors are defined up to a uni-
tary transformation: if U are the eigenvectors of the matrix KX , then RU are
eigenvectors as well (here R is a rotation and reflection matrix). This makes
our definition of the canonical form ambiguous up to a rotation and reflection
transformation, that is, we can write Z∗ = RUmΛ

1
2
m.

Another observation is that if we have a canonical form in R
m and wish to

compute a canonical form in R
m′

, m′ > m, there is no need to re-compute it
(which we actually need to do in the case of iterative MDS methods). Because
each dimension is considered separately, it is enough to compute the (m+1)st
to m′th eigenvalues and eigenvectors. This interesting property is called nested
dimensions ; as we will see, it appears to be common to spectral embedding
algorithms.

Our final remark is about numerical algorithms for classic MDS. The core
of this approach is the eigendecomposition of a large-scale symmetric matrix
KX with non-negative elements. Because in most cases N � m, computing all
the eigenpairs of KX may be computationally expensive or even prohibitive.
Instead, we can compute a few largest eigenvalues and the corresponding
eigenvectors. Algorithms especially suitable for eigendecomposition problems
include the Arnoldi [9] and Lanczos [240] methods and their variants [246,
92, 16].4 These algorithms find the largest-magnitude eigenvalues, therefore,
it may happen that the first computed eigenvalues are negative. This problem
can usually be avoided by computing more than m eigenvalues and taking
only the m largest positive ones.

Example 8.1. We exemplify the classic MDS on the problem of embed-
ding of the horse shape from Example 7.3 into R

3. The eigenvalues of KX ,
computed using the Arnoldi method (MATLAB function eigs) are shown in
Figure 8.1. The first three eigenvalues (λ1 = 42.82, λ2 = 10.34 and λ3 = 3.87)
capture about 99% of the information about the shape. About half of the
eigenvalues are negative. The canonical form obtained is shown in Figure 8.2
(left).
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Figure 8.1. Eigenvalues of the matrix KX in Example 8.1. Note the negative eigen-
values, which are evidence of the inability to embed the shape without distortion.

8.2 Local methods

Thus far, we have derived approaches for constructing the canonical forms
while trying to preserve the geodesic distances measured between all pairs
of shape samples. This is a global approach. Instead of thinking globally, we
could formulate a local criterion and apply it to overlapping small regions of
the shape. Combined together, these local criteria form a global one, or, as
Saul and Roweis [336] formulated it paraphrasing the famous phrase of the
environmentalist David Brower,5 “think globally, fit locally.”

The local criterion must guarantee the preservation of local metric prop-
erties of the shape. Roughly speaking, we would like our embedding f :
(X, dX) → (Rm, dRm) to map neighboring points to neighboring points. For
example, locally linear embedding (a map that is piecewise linear on small
neighborhoods in X) preserves such local structures. Speaking more formally,
assume that the shape is represented as a graph, with the connectivity ma-
trix EX , defining the neighborhood N (xi) for each shape sample (as we saw
in Chapter 3, there are many ways to define the neighborhood, for example,
taking a fixed number of nearest neighbors or points within a fixed radius). If
xj ∈ N (xi), that is, dX(xi, xj) is small, we want the corresponding distance in
the embedding space to be small as well. We can therefore think of d2

ij(Z) as
a local criterion, which incurs large penalty if neighboring points are mapped
apart by the embedding. Summing up the local criteria at every point, we
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have a global criterion,

σLOC(Z) =
1
2

N∑

i=1

∑

j∈N (xi)

d2
ij(Z) =

∑

i>j

wijd
2
ij(Z), (8.5)

where

wij =
{

1 xj ∈ N (xi)
0 else. (8.6)

Yet, at the same time, we want to avoid the trivial solution of all the neighbor
points collapsed to a single point (which would give d2

ij(Z) = 0). This can be
done, for example,6 by introducing the constraint ZTZ = I. Following steps
similar to those we have seen in the case of the L2-stress (see Problem 8.5),
we rewrite the embedding error criterion as

σLOC(Z) = trace(ZTLXZ), (8.7)

where LX is an N × N matrix with elements,

lij =
{
−wij i �= j∑

k �=i wik i = j.

LX is often referred to as the Laplacian matrix (or simply Laplacian) in graph
theory [105, 280] and is positive semidefinite. Notice further that it is zero-
mean, similarly to the matrices we had in the least-squares MDS.

Combining everything together, we formulate a constrained optimization
problem

Z∗ = argmin
Z∈RN×m

σLOC(Z) s.t. ZTZ = I, (8.8)

which, in turn, is equivalent to finding eigenvectors corresponding with the
smallest eigenvalues of LX (the proof is left to the reader as Problem 8.7).
Therefore, this approach also belongs to the family of spectral embedding
algorithms. The resulting canonical form Z∗ is called Laplacian eigenmap,
first introduced by Belkin and Niyogi [21]. Laplacian eigenmap computation
is summarized in Algorithm 8.2.

Let us make a few remarks about the computational aspects of the Lapla-
cian eigenmap algorithm. First, we note that the matrix LX is sparse. Usually,
this offers a significant computational advantage in most eigendecomposition
algorithms. Second, we need to compute the lower part of the spectrum of LX .
Standard eigendecomposition techniques (which compute the largest eigenval-
ues) can be applied in this case using a spectral shift transformation [177].
Finally, because LX is zero-mean, it has a zero eigenvalue corresponding with
the constant eigenvector, which we would definitely like to exclude.

The reader may notice that in our description of the Laplacian eigenmap
algorithm, the definition of wij in (8.6) is quite arbitrary. It is possible to
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choose different weights wij , e.g., inversely related to the distances dX(xi, xj),
in order to increase the influence of small distances. Belkin and Niyogi suggest
using the Gaussian weights,

wij =

{
exp

(
− d2

X(xi,xj)
t2

)
xj ∈ N (xi)

0 else,
(8.9)

which include the previous case defined in (8.6) as t = ∞. Another important
example is a family of Laplacians constructed by limiting the weights to the
1-ring support (i.e., j ∈ N (i) if i and j share an edge) and requiring them
to be non-negative. In discrete geometry, such Laplacians are referred to as
umbrella operators.

Let us make a further step toward the generalization of the Laplacian
eigenmap approach. For this purpose, we write formula (8.5) in a slightly
different way,

σLOC(Z) = trace(ZTLXZ)

=
1
2

m∑

k=1

N∑

i=1

N∑

j=1

lijz
k
i zk

j =
1
2

m∑

k=1

N∑

i=1

ai(zk),

where zk is the kth column of Z. We can think of ai(z) as of an operator,
applied to the coordinates of the canonical form, and measuring its local vari-
ation in the neighborhood of the point zi, independently for each dimension
(recall the nested dimensions property). It appears that such a view unites
many spectral embedding algorithms. In general, we can define ai(z) to be an
arbitrary quadratic positive semidefinite form on the columns of Z, and use
the respective definition of σLOC(Z) in our optimization problem (8.8). For
example, choosing ai(zk) to measure the Frobenius norm of the Hessian of
the kth coordinate of the embedding at zi, we have the Donoho and Grimes
Hessian Locally Linear Embedding (HLLE) algorithm [187]. Defining it as
a measure of deviation from a local linear representation of the points, we
have the Locally Linear Embedding (LLE) [328] and the Local Tangent Space
Alignment (LTSA) [410] algorithms. Using the diffusion operator instead of
LX leads to the diffusion map approach, introduced by Lafon et al. [109].

input : N × N matrix of geodesic distances DX , dimension m.
output: canonical form Z∗.

Compute the Laplacian LX .1

Perform eigendecomposition of LX to compute the m × m matrix Λm of2

the m smallest positive eigenvalues and the N × m matrix of
corresponding eigenvectors Um.
Compute the canonical form as Z∗ = Um.3

Algorithm 8.2. Laplacian eigenmap.



176 8 Spectral Embedding

Classical MDS Laplacian eigenmap

Horse

Figure 8.2. Embedding of the horse shape into R
3 using classic MDS (left) and

Laplacian eigenmaps (right).

In practice, all these algorithms are reduced to constructing a sparse matrix
representing some local operator and performing its eigendecomposition.7

Example 8.2. To exemplify the difference between local and global spec-
tral embedding methods, we compare the Laplacian eigenmap and the classic
MDS on the horse shape from Example 7.3. The connectivity is defined using
metric ball of fixed radius. Gaussian weights with t = 1 are used for the com-
putation of LX , and the eigendecomposition is performed using the Arnoldi
method. We ignore the zero eigenvalue of LX . The canonical form obtained by
Laplacian eigenmap is shown in Figure 8.2 (right). It appears to be “twisted,”
which demonstrates the disadvantage of the local methods: while keeping the
local properties, there is nothing that preserves the global ones.8

8.3 The Laplace-Beltrami operator

Discrete spectral embedding methods have an important relation to the con-
tinuous geometry of surfaces. In order to understand this relation, we need
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to recall the basics of differential geometry from Chapter 2 and prepare some
additional machinery. Let X be our shape, equipped with the Riemannian
metric g, and f : X → R be a C2 scalar field on the shape. In our problem,
f represents a coordinate of the embedding of X into R

m (due to the nested
dimensions property, we can consider each coordinate separately). We define
the differential dfx(dv) as a linear form df : TxX → R, approximating the
change in the function f at the point x, if we make an infinitesimal step dv in
the tangent space TxX . We can express the differential as an inner product,

dfx(dv) = 〈∇f(x), dv〉x = gx(∇f(x), dv),

where ∇f(x) : X → TxX is the gradient of f at the point x. Note that
our definition is a natural extension of the gradient we have encountered in
Chapter 5.9 In a similar manner, we can define the Hessian as ∇2f = ∇df .

Let us assume that we are given a point x on the shape and another point
x′, obtained by making an infinitesimal displacement dv from x. The absolute
value of the differential measures how our embedding maps away the points
x and x′,

|f(x′) − f(x)| ≈ |dfx(dv)| = |〈∇f(x), dv〉x|.

At the same time, by the Cauchy-Schwartz inequality, we have

|〈∇f(x), dv〉x| ≤ ‖∇f(x)‖x · ‖dv‖x.

We therefore see that if ‖∇f(x)‖x is small, then points close to x are mapped
to points close to f(x). This is the continuous analog of our discrete local
embedding error criterion. Averaging the criterion on the whole shape, we
arrive at the following optimization problem,

min
f∈L2(X)

∫

X

‖∇f(x)‖2
xda s.t. ‖f‖2

L2(X) = 1, (8.10)

which replaces problem (8.8). Here ‖f‖2
L2(X) = 〈f, f〉L2(X) =

∫
X
|f(x)|2da

is the norm on the space L2(X) of square-integrable functions on X and da
denotes the area element. This condition corresponds with the normalization
constraint zTz = 1 in the discrete case.

In order to unveil the relation to eigendecomposition of the Laplacian
matrix, we use the fact that

∫

X

〈∇f(x),∇f(x)〉xda = −
∫

X

f(x) div(∇f(x))da.

This is a generalization of the Stokes theorem, known from basic calculus, to
Riemannian manifolds. In Riemannian geometry, the operator

ΔXf = −div(∇f(x)),
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is called the Laplace-Beltrami operator, or sometimes the Laplacian for
short.10 The Laplace-Beltrami operator is expressible solely in terms of the
Riemannian metric and is therefore an intrinsic property of the shape. It can
be alternatively defined as ΔXf = trace(∇2f), from which it follows that
the Laplace-Beltrami operator is the non-Euclidean analog of the Laplacian
operator: in the Euclidean case, we have Δf = −(fxx + fyy).

Using ΔX , we can rewrite problem (8.10) as

min
f∈L2(X)

∫

X

f(x)ΔXf(x)da s.t. ‖f‖2
L2(X) = 1. (8.11)

Note that now the integral
∫

X f(x)ΔXf(x)da in (8.11) replaces the term
zTLXz we had in the discrete case, and the Laplace-Beltrami operator ΔX

takes the role of the Laplacian matrix LX .

8.4 To hear the shape of the drum

In 1787, the German physicist Ernst Chladni, considered by many the father
of acoustics, published the book Entdeckungen über die Theorie des Klanges
(“Discoveries concerning the theory of sound”) [102]. In his book, Chladni
described a famous experiment for the visualization of vibrations produced
by acoustic waves: covering a thin plate with sand and making it vibrate by
running a violin bow. The sand was observed to accumulate in certain regions,
producing patterns of beautiful complexity. A modern physicist would call
these shapes stationary waves. Mathematically, the behavior of such waves is
governed by the stationary Helmholtz equation (representing the spatial part
of the wave equation solutions),11 which in our notation reads

ΔXf = λf.

It follows that the beautiful patterns observed by Chladni are eigenfunc-
tions (the continuous analog of eigenvectors) of the Laplace-Beltrami operator
ΔX .12 An example of such eigenfunctions is shown in Figure 8.3.

For compact shapes, the spectrum of ΔX is discrete, that is, there exists
a countable set of the solutions to the equation ΔXf = λf . Because the
Laplace-Beltrami operator is an intrinsic property of the shape, its spectrum
(the set of all eigenvalues) is isometry-invariant (this property is exemplified
in Figure 8.4). Based on this property, Reuter et al. proposed an isometry-
invariant description of shapes by numerically approximating the Laplace-
Beltrami spectrum [323] (a related approach was also described in [330]).

However, does the Laplace-Beltrami spectrum completely characterize the
intrinsic geometry of a shape? More formally, we want to know whether two
shapes with the same spectrum (such shapes are called isospectral) are nec-
essarily isometric. The question whether a Riemannian surface can be de-
termined by its spectrum was asked for the first time in the early 1960s by
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Figure 8.3. The first non-trivial eigenfunctions of the Laplace-Beltrami operator
of a human shape. Colors and contours visualize the values of the eigenfunctions at
each point of the shape.

Leon Green. Because of the acoustic interpretation of the Laplace-Beltrami
spectrum, Mark Kac has posed this question metaphorically in a 1966 paper
entitled “Can one hear the shape of the drum?” [215]. Kac addressed the
particular case of the Laplace-Beltrami spectrum on planar domains and is
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Figure 8.4. Empirical evidence of the fact that the Laplace-Beltrami operator is
an intrinsic property of a shape. Shown is one of the eigenfunctions of the Laplace-
Beltrami operator, which remains approximately without changes despite the near-
isometric deformations of the shape.

quoted to have said, “Personally, I believe that one cannot hear the shape,
but I may well be wrong and I am not prepared to bet large sums either way.”

In Riemannian geometry, it is known that the area of two isospectral sur-
faces is equal, which implies that the area can be “heard” from the Laplace-
Beltrami spectrum [394, 27]. Other “audible” properties include the total
Gaussian curvature

∫
X

Kda and Euler characteristic χ [265]. Yet, gener-
ally, a Riemannian manifold cannot be determined by its spectrum. In other
words, one cannot hear the shape of the drum. This fact is supported by nu-
merous counterexamples of manifolds that are isospectral but not isometric
[389, 90, 82, 83, 180].

On the other hand, in order to apply methods based on the Laplace-
Beltrami spectra to the problem of non-rigid shape representation, it is crucial
to know how different the classes of isospectral and isometric surfaces are.
That is, whether there exist large classes of non-isometric but isospectral
surfaces, and how different (non-isometric) can isospectral surfaces be. For
the time being, this is an open research question.

8.5� Discrete Laplace-Beltrami operator

Before concluding this chapter, there are a few words to say about the dis-
crete approximation of the Laplace-Beltrami operator. The resemblance of the
Laplace-Beltrami operator to the graph Laplacian may create a wrong impres-
sion that the two are equivalent. First, note the Laplace-Beltrami operator is
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uniquely defined, whereas the discrete Laplacian can be defined in many ways,
some of which were mentioned in this chapter. Secondly, excepting some spe-
cial cases (see, for example, Belkin and Niyogi [22], Singer [364], and Hein et
al. [201]), the discrete Laplacian would not converge to the Laplace-Beltrami
operator. In discrete geometry, a distinction is usually made between dis-
crete (or combinatorial) and discretized Laplacian. Discrete Laplacian arises
from a discrete object, a triangular mesh representing the shape. Discretized
Laplacian, on the other hand, is a consistent numerical approximation of the
Laplace-Beltrami operator of the shape, consistency in this context imply-
ing that the discrete approximation preserves certain geometric properties of
its continuous counterpart. Because we are interested in intrinsic geometric
properties of the underlying continuous surface, we want the Laplacian to be
independent or at least minimally dependent on the triangular mesh and thus
need the discretized rather than the combinatorial Laplacian.

Surprisingly, it appears that consistently discretizing the Laplace-Beltrami
operator is not an easy task. To be more specific, we need a list of properties
of the continuous Laplace-Beltrami operator that a consistent discretization
must satisfy. Our analysis closely follows [392]; the reader is referred to this
paper for more details. Let X be a Riemannian manifold (possibly with bound-
ary) and f, h : X → R smooth functions on the manifold. We further assume
that f and h are smooth and vanishing around the boundary. The continuous
Laplace-Beltrami operator ΔX has the following properties:

(L1) Constant eigenfunction: ΔXf = 0 for any f = const;
(L2) Symmetry: 〈ΔXf, h〉L2(X) = 〈h, ΔXf〉L2(X);
(L3) Locality: ΔXf(x) is independent of f(x′) for any points x �= x′ on

X ;
(L4) Euclidean case: if X is a part of R

2, for any linear function of the
form f(x, y) = ax + by + c, ΔXf = 0.

(L5) Positive semidefiniteness : 〈ΔXf, f〉L2(X) ≥ 0.

Property (L3) implies that the action of the Laplace-Beltrami is local,
and a change in the value of the function f at a point will not influence the
value of ΔXf at another point. Property (L4) stems from the fact that in the
Euclidean case, ΔX is the Laplace operator and thus for any linear function
of the form f(x, y) = ax + by + c, ΔXf = −(fxx + fyy) = 0.

For the construction of a discrete version of the Laplace-Beltrami operator
(which we denote here by LX), we assume that the shape X is sampled at
N points {x1, . . . , xN} and represented as a triangular mesh TX . A function
on the shape is discretized and given as a vector with elements fi = f(xi)
for i = 1, . . . , N . The discrete Laplacian is defined as a linear operator of the
form

(LXf)i =
N∑

j=1

wij(fi − fj)
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on the vertex-based function f and can be represented in a matrix-vector
notation as LXf .

Note that for f = const, we have LXf = 0, and thus the discrete analog
of (L1) is satisfied automatically. The discrete equivalent of other properties
(L2)–(L5) can be stated as follows:

(DL2) Symmetry: LX = LT
X ;

(DL3) Locality: wij = 0 if i and j do not share an edge13;
(DL4) Euclidean case: if X is a part of R

2, then

(LXx)i =
N∑

j=1

wij(xi − xj) = 0

for all interior vertices (here xj ∈ R
2 denotes the planar coordinates

of the jth sample).
(DL5) Positive semidefiniteness : LX � 0.

Properties (DL2) and (DL5) guarantee that the eigenvalues of the ma-
trix LX are real and non-negative, and its eigenvectors orthogonal. It is also
common to add the following constraint,

(DL6) Positive weights : wij ≥ 0 for all i �= j, and for each i, there exists
at least one j such that wij > 0.

The convenience of this requirement is that combined with Property (DL2),
it gives (DL5); however, the converse is not necessarily true. Finally, it is
important that the discrete Laplacian converges to its continuous counterpart,
in the following sense:

(DL7) Convergence: solution to the discrete PDE involving LX con-
verges to the solution of the smooth PDE involving ΔX as N → ∞,
assuming appropriate boundary conditions and refinement scheme.

For a rigorous formulation of Property (DL7), we refer the reader to [205]. For
us, it implies that the eigenvectors of LX are a good numerical approximation
of the eigenfunctions of ΔX .

The “quality” of a discretization of the Laplace-Beltrami operator can be
judged by how many of the above properties it satisfies, with an ideal wish to
satisfy all of them. For example, umbrella operators and their variants violate
property (DL4) and thus are not geometric. The Laplacian with Gaussian
weights (8.9) used by Belkin and Niyogi violates the locality property (DL3).
An even worse piece of news is that these discrete Laplacians do not converge
to their continuous counterpart [403, 402], violating property (DL7). In our
application, this is especially disadvantageous, as we are interested in a good
approximation of the eigenfunctions of the Laplace-Beltrami operator.

In [134], Desbrun et al. proposed a discretization that was later shown to
be convergent, under certain conditions, to the continuous Laplace-Beltrami
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ij

ij

xi

xj

Figure 8.5. Discretization of the Laplace-Betrami operator using cotangent
weights. Shaded is the area ai.

operator [403, 402]. This fact makes such a discretization a good choice for
shape description [250]. According to Desbrun et al., the value of ΔXf at
point i is approximated as

(LXf)i =
3
ai

∑

j∈N (i)

cotαij + cotβij

2
(fi − fj),

where ai is the area of the triangles sharing the vertex xi, and αij and βij

are angles shown in Figure 8.5. In discrete geometry, this approximation is
commonly known as cotangent weights.

In matrix notation, the discretized Laplacian is obtained by choosing the
following weights,

wij =
{

1.5(cotαij + cotβij)a−1
i i is adjacent to j

0 else.

Note that as in general ai varies from vertex to vertex, the matrix of weights
is not symmetric, and consequently, the Laplacian matrix LX violates the
symmetry property (DL2) [330]. This gives rise to an unpleasant drawback:
because the matrix is not symmetric, there is no guarantee that the eignvectors
and eigenvalues of LX are real. Lévy [250] suggested treating this problem by
symmetrizing the matrix, i.e., using 0.5(LX + LT

X) instead of LX .
Before ending this chapter, we should satisfy the reader’s curiosity regard-

ing a discrete Laplacian meeting all the aforementioned requirements. Most
recently, Wardetzky et al. have put an end to the search for such an “ideal”
Laplacian. In the paper entitled “Discrete Laplace operators: no free lunch”
[392], they showed that for a general mesh, it is theoretically impossible to
satisfy properties (DL2)–(DL7) at the same time, and thus the ideal dis-
cretization does not exist. Retrospectively, this result also explains why there
exists such a large diversity of discrete Laplacians, each having a subset of the
above properties that make it suitable for certain applications and unsuitable
for others.
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Suggested reading

For a traditional presentation of classic MDS, we refer the reader to Borg
and Groenen [44]. An interesting view from the perspective of kernel PCA is
presented by Williams [397]. Dattorro presents a comprehensive overview of
distance matrix properties in [123]. The basics of spectral graph theory are
presented in the book of Chung [105]; alternatively, see the review article by
Mohar [280]. Berger [26] devotes Chapter 9 entirely to the spectral properties
of the Laplace-Beltrami operator and gives various examples of isospectral
non-isometric manifolds. For details on computational eigendecomposition al-
gorithms, the reader is referred to the classic numerical linear algebra book
by Golub and van Loan [177]. An insightful review of Laplace-Beltrami op-
erator discretization techniques is presented in [392]; convergence of different
discretizations is analyzed in [403, 402] . For additional applications of the
Laplace-Beltrami operator for shape editing and compression, see [250] and
[218].

Software

An implementation of the classic scaling algorithm is distributed as part of
the TOSCA toolbox. The function cmdscale invokes classic scaling in the
commercial MATLAB Statistics toolbox. Classic scaling is also used in the
Isomap algorithm [377]. Laurens van der Maaten’s MATLAB Toolbox for
Dimensionality Reduction includes LLE, HLLE, LTSA, diffusion maps, and
many other algorithms discussed in this chapter.

Problems

8.1. Let XXT be a Gram matrix, where X is an N × m matrix. Prove the
following properties:

1. XXT � 0,
2. rank(XXT) = rank(X).

8.2. Show that the classic MDS solution minimizes the strain σF(Z).

8.3. Show that one way to obtain the matrix KX is

KX = −1
2
J(DX � DX)J,

where � denotes the Hadamard (element-wise) matrix product, such that
(DX�DX)ij = d2

X(xi, xj) and J =
(
IN − N−11N×N

)
is the centering matrix.

Extend this result by replacing J by a general projection matrix P = IN −
1N×NwT, where w is a vector satisfying wT1N×1 = 1.
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8.4. Establish the duality between classic MDS and PCA.

8.5.� Derive the expression (8.7).

8.6.� Show that the Laplacian matrix LX is positive semidefinite.

8.7.� Show that the minimum eigenvalue problem Ax = λminx, where A � 0,
is equivalent to the constrained optimization problem

min
x∈RN

xTAx s.t. xTx = 1.

Extend this result by showing that

min
X∈RN×m

trace(XTAX) s.t. XTX = I,

is equivalent to finding the m smallest eigenvalues of A.

8.8. Show that ∇f projected onto TxX coincides with ∇Xf .

Notes
1More precisely, Schoenberg showed in [340] that in order for DX to represent

lengths of the edges of an N-simplex lying in R
m but not in R

m−1, the matrix KX

must be positive-semidefinite and of rank m.
2In some references, classic MDS is referred to as classic scaling, CMDS [405],

Young-Householder algorithm, Torgerson algorithm, or Torgerson-Gower scaling
[44]. In manifold learning and dimensionality reduction applications, the name
Isomap, due to Tenenbaum et al. [377], is sometimes used referring to an algorithm
that is essentially classic MDS applied on the distances measured using the Dijkstra
algorithm. In computer vision, this approach was introduced earlier by Schwartz et
al. [345].

3Speaking in signal processing terminology, we can say that the strain measures
the energy of the error introduced by our approximation to KX . Dividing it by
the energy of all eigenvalues,

∑m
k=1 λ2

k/
∑N

k=1 λ2
k, we have a criterion of how much

“information” of the shape the m-dimensional Euclidean embedding captures.
4Prof. Michael Saunders of Stanford University suggests that one of the most

efficient public domain MATLAB codes for our problem is the implicitly restarted
block-Lanczos (IRBL) method by Baglama et al. [16].

5David Brower is credited with coining the phrase “think globally, act locally”
as the founding motto of the environmentalist organization Friends of Earth.

6Belkin and Niyogi [21] use the constraint ZTDZ = I , where D is an N × N
diagonal matrix with elements of the diagonal of LX . This results in the generalized
eigenvalue problem LXZ = DZΛ.

7Ham et al. [198] showed that all these algorithms can be considered as instances
of kernel PCA.

8A way to overcome this problem of local methods by introducing stiffness con-
straints was shown by Brand [48].
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9A 1-form defined as v∗(u) = gx(v, u) is called dual to v. In our case, we can
think (pointwise) of the the differential df as the dual to the gradient ∇f .

10Here, we use sign convention to define the Laplace-Beltrami operator as positive
definite. A more common definition is ΔXf = div(∇f(x)). We do not go into details
on the exact definition of the div operator, appealing to the analogy with classic
results known from analysis.

11This is, of course, an over-simplified mathematical description of Chladni fig-
ure formation. We tacitly ignore the material properties and assume a Dirichlet
boundary condition f(∂X) = 0.

12Chladni’s experiments were performed on planar domains, on which the Laplace-
Beltrami operator equals the Laplacian. It is more difficult to repeat these experi-
ments for curved shapes, as sand will not remain on their surface. Yet, the intuitive
interpretation of the results is similar.

13In other words, the support of the discrete operator is a 1-ring.



Out of nothing I have created a strange new universe.

J. Bolyai, on the creation of non-Euclidean geometry.

9

Non-Euclidean Embedding

In the previous two chapters, we explored a variety of numerical techniques
used for embedding of surfaces. A common property that all these techniques
share is that the embedding space was always chosen to be Euclidean. In
other words, a complicated metric structure of a surface seeks for the best
possible housing (in the sense of some distortion criterion) in a flat space. We
have also seen that such a Euclidean embedding is rarely distortionless. The
“suffering” of the sphere from Example 7.1 in Chapter 7 struggling to find
a comfortable accommodation in R

m clearly demonstrates the fact that the
intrinsic geometry of many surfaces may significantly differ from the Euclidean
one. As a consequence, an attempt to embed a surface that looks more like a
sphere than a plane into a Euclidean space is likely to result in high distortions
of the metric. On the other hand, a surface resembling a sphere would feel more
comfortable in the curved rooms of S

m. Said in a broader manner, embedding
a surface into a non-Euclidean space may decrease the distortion. In this
chapter, we consider generalizations of multidimensional scaling that allow
for non-Euclidean embedding.

9.1 Spherical embedding

A non-Euclidean embedding problem can be formulated in the MDS flavor as

min
z1,...,zN∈Z

∑

i>j

|dX(xi, xj) − dZ(zi, zj)|p ,

where (Z, dZ) is some metric space. As in the Euclidean case, given a discrete
metric space XN = {x1, . . . , xN} equipped with dX |XN , we replace this metric
with dZ and aim at finding a configuration of points {z1, . . . , zN} in Z that
represents the original geometry as accurately as possible. Several practical
issues arise at this point. First, in order to allow for a formulation of the
problem in terms of continuous minimization, Z should be a manifold and have

A. Bronstein et al., Numerical Geometry of Non-Rigid Shapes, 187
Monographs in Computer Science, DOI 10.1007/978-0-387-73301-2 9
c© Springer Science+Business Media, LLC 2008
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a convenient representation of points using some, preferably global, system
of continuous coordinates. Second, the metric dZ participating in the stress
function should have a simple analytic form or, at least, there should be a
way to compute it efficiently. Third, because our final goal is non-rigid surface
matching, the primary use of the embedding is to replace the complicated
isometry group of the embedded surface with the isometry group of Z. It is
therefore advantageous that such a group be as simple as possible and easy
to handle. Practically, this implies the existence of an efficient algorithm for
rigid surface matching in Z.

The simplest choice of a non-Euclidean geometry for the embedding space
Z is the spherical geometry. Formally, an m-dimensional1 unit sphere is the m-
dimensional manifold embedded in R

m+1, described by the set of unit vectors
S

m = {z ∈ R
m+1 : ‖z‖2 = 1}. A sphere of radius r is obtained by scaling

S
m by r. A one-dimensional sphere is simply a circle and a two-dimensional

sphere is the surface of revolution created by rotating a circle. S
m is a very

special manifold, as it has constant positive curvature. Moreover, it can be
shown that every space of constant positive curvature is isometric to a sphere.

Because we live on the surface of an approximately spherical planet, spher-
ical geometry should be familiar to us. As we have already seen in previous
chapters, a point z on a two-dimensional sphere can be parameterized by a
pair of coordinates (u1, u2) ∈ [0, 2π)× [−π

2 , π
2 ], usually referred to as longitude

and latitude. The corresponding vector in R
3 is given by

z1(u1, u2) = r cosu1 cosu2;
z2(u1, u2) = r sinu1 cosu2;
z3(u1, u2) = r sinu2,

as shown in Figure 9.1.
Centuries ago, cartographers learned that the shortest path between two

points on the face of the Earth is a segment of a planar section of the sphere,
which is called a great circle (we leave the proof of this fact as an exercise
in Problem 9.1). The geodesics on the sphere are therefore arcs centered at
the origin. For example, the great circle connecting Moscow and San Francisco
passes approximately over the North Pole, which explains the route of aircraft
flying between these two distant cities.2 The geodesic distance between two
points u and u′ on a two-dimensional sphere is simply given by the length of
the arc Γ (u, u′) connecting them,

d(u, u′) = r · L(Γ (u, u′)) = r · acos
(

z(u)Tz(u′)
r2

)

,

as visualized in Figure 9.2. The same rules apply in higher dimensions: an
m-dimensional sphere can be parameterized by an m-tuple of coordinates;
if (u1, . . . , um−1) represent a vector x on an m − 1-dimensional sphere of
radius r, then (z1 cosum, . . . , zm−1 cosum, r sin um)T represents a vector on
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z 1

z 2

z 3

u1

u2

z(u)

Figure 9.1. Parameterization of a point on the two-dimensional sphere S
2.

an m-dimensional sphere. For example, the three-dimensional sphere S
3 is

parameterized as

z1(u1, u2, u3) = r cosu1 cosu2 cosu3;
z2(u1, u2, u3) = r sinu1 cosu2 cosu3;
z3(u1, u2, u3) = r sinu2 cosu3;
z4(u1, u2, u3) = r sinu3.

As in the two-dimensional case, the geodesic distances are measured as arc
lengths.

The spherical MDS problem can be written as

min
u1,...,uN

∑

i>j

|dX(xi, xj) − dSm(ui, uj)|p . (9.1)

Observe that the embedding space Z = S
m admits a global parameteriza-

tion (in our case, on [0, 2π) × [−π
2 , π

2 ]m−1) and therefore allows a convenient
representation of points as vectors of coordinates (u1, . . . , um). Moreover, the
geodesic distances in S

m are given analytically by

dSm(u, u′) = acos
(
z(u)Tz(u′)

)
. (9.2)
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z

z

′

d(z )z ′,

Figure 9.2. The geodesic distance on the sphere is measured as the length of a
segment of a great circle.

Here we assume r = 1; without loss of generality, we can limit our attention
to unit spheres, as the effect of changing the sphere radius is equivalent to
scaling the distance terms dX(xi, xj) by 1/r. Note that by taking r to infinity,
we end up with R

m. Consequently, if we are given the control over the radius,
S

m constitutes a richer embedding space, which includes the Euclidean space
as a limit case. Typically, for every class of surfaces, there exists some optimal
value of r that minimizes the embedding error, and in most cases this value
is smaller than infinity (see Example 9.1 below).

Example 9.1. In order to visualize the dependence of the distortion on the
sphere radius, we embedded four objects (cat, dog, horse, and man) into a
two-dimensional sphere with the radius ranging from 1 to 104 by minimizing
the stress (9.1) with p = 2. The obtained results are depicted in Figure 9.3. For
most surfaces, there exists some “sweet spot” for the radii ranging from 500
to 1000 (depending on the surface geometry and scale), where the distortion
reaches its minimum. Increasing or decreasing the radius usually increases the
distortion, sometimes by an order of magnitude. An extreme case of such a
behavior is exhibited by a sphere, for which the distortion would drop drasti-
cally (to zero, in theory) for embedding into a sphere with a matching radius.
An exception from this rule would be a convex planar patch, for which the
embedding distortion decreases monotonically with the radius and achieves
smaller values as r increases.
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Figure 9.3. Distortion (in terms of the L2 stress) produced by embedding different
surfaces into S

2 with varying radius. Each surface has its optimal radius. Uniformly
scaling a surface scales the optimal radius by the same amount.

The spherical MDS problem (9.1) can be solved using one of the continu-
ous minimization techniques discussed in Chapter 5. However, unlike the Eu-
clidean case where the optimization variables are coordinates in R

m and can
therefore assume any value, here the optimization variables must be restricted
to the parameterization domain. One possibility is to impose the inequality
constraints 0 ≤ u1

i < 2π and −π
2 ≤ uk

i ≤ π
2 for k = 2, 3, . . . , m. Yet, because

the parameterization is periodic and defined up to an integer product of 2π,
no catastrophes happen even if some optimization variables go outside the
domain [0, 2π)× [−π

2 , π
2 ]m−1, as they would still represent valid points on S

m.
Consequently, the preferred numerical trick often used in this case is a pro-
jected descent : after each iteration of an unconstrained descent algorithm, the
current solution is projected onto the parameterization domain by applying
a projection operator, u(k) = P

(
u(k)

)
. In the case of a two-dimensional case,

the projection operator is defined as

P (u) =
{

(u1 mod 2π, (u2 + π
2 ) mod 2π − π

2 )T : (u2 + π
2 ) mod 2π ≤ π

(u1 mod 2π, 3π
2 − (u2 + π

2 ) mod 2π)T : (u2 + π
2 ) mod 2π > π

(the general case is left to the reader as Problem 9.4). Applying P to the
optimization variables {ui} forces them to reside in [0, 2π)× [−π

2 , π
2 ]m−1 while

clearly not changing the position of the points on the sphere they represent.
Multi-resolution and multi-grid methods can also be exploited for solving the
spherical MDS problem.

Spherical embedding replaces the rich isometry group of the embedded
surface with the isometry group of S

m, which includes all Euclidean isometries
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v

z
Rz

z ′ Rz′

μ

μ

Figure 9.4. A rigid isometry R ∈ O(3) on the two-dimensional sphere can be
represented as rotation by an angle θ about an axis v̂.

in R
m+1 that leave the origin fixed (Figure 9.4). Such a group, generated by

(m+1)×(m+1) unitary matrices, is called the orthogonal group and is denoted
by O(m+1). From the first sight, comparison of the spherical canonical forms
appears straightforward using an analog of ICP, which minimizes the distance
between two surfaces in S

m over all rotations and inversions about the origin
defined by m+1 degrees of freedom. However, in order to measure the distance
between two surfaces in S

m, dSm has to be used, which makes the transition
from R

m to S
m far from trivial. Unfortunately, unlike the exceptionally well-

developed algorithms available for rigid surface matching in R
3, there are no

such tools readily available for spherical spaces. Comparison of surfaces in S
m

invariant to rigid isometries is an interesting open research question.

9.2 Generalized multidimensional scaling

Replacing the Euclidean geometry of the embedding space by the spherical
one usually leads to smaller metric distortions (and, consequently, to better
isometry-invariant representation of surfaces) while maintaining practically
the same computational complexity compared with the Euclidean MDS al-
gorithms. However, this apparent improvement pales facing the difficulty of
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rigid surface matching in spherical spaces, despite the simplicity of the isom-
etry group. On one hand, non-Euclidean embeddings seem very attractive
because they allow reducing the metric distortion. On the other hand, there
is little hope to achieve anything useful out of such an embedding, as even
geometries as simple as the spherical one appear hardly tractable when rigid
surface matching is considered.

A way out of this seemingly hopeless situation is to use an embedding
space Z with a trivial isometry group. In this case, the canonical form of X
in Z will be uniquely defined. We still have to measure the distance between
two canonical forms, but now this distance does not involve any minimization
at all, as there is no more rigid isometry ambiguity. However, we would like
to go further and avoid completely the need to compute the distance between
two canonical forms in Z. The ultimate way to achieve this goal is by choosing
one of the surfaces, say Y , as the embedding space. In other words, we would
like to embed X into Y by solving the following problem

min
y′
1,...,y′

N∈Y

∑

i>j

∣
∣dX(xi, xj) − dY (y′

i, y
′
j)

∣
∣p , (9.3)

which we refer to as the generalized MDS or GMDS for short [70, 67]. We
intentionally denote the images of xi in Y as y′

i in order to avoid confusion
with the samples of the surfaces Y , which are denoted by yi. The minimum
stress value quantifies how much the metric of X has to be distorted in order
to fit into Y .

At this point, several conceptual shifts are required in order to fully un-
derstand this apparently small change. First, note that we no more need any
“intermediate” metric space. Instead of embedding X and Y into some com-
mon embedding space Z that introduces inevitable distortions, we embed X
directly into Y . If the two surfaces are isometric, such an embedding will be
distortionless (up to numerical errors); otherwise, the distortion will measure
the dissimilarity between X and Y . Thus far, the embedding distortion has
been an enemy that was likely to lower the sensitivity of the canonical form
method; now it has become a friend that tells us how different the surfaces
are.

Second, there is no more need for measuring distances between canonical
forms in Z invariant to the isometries of Z (recall that this was an obstacle in
using spherical and other non-Euclidean embeddings). On one hand, GMDS
constitutes the best non-Euclidean embedding, in the sense that it allows us to
completely avoid unnecessary representation errors stemming from embedding
into an intermediate space Z. On the other hand, GMDS renders superfluous
the need to measure distances between sets in spaces with complicated geome-
tries. Strictly speaking, we do not use canonical forms anymore; the distance
between two surfaces is obtained from the solution of the embedding problem
itself.
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Third, recall that the canonical form method requires the embedding space
to be at least three-dimensional (or, in fancier terminology, the co-dimension
of the embedding has to be at least one). In GMDS, a two-dimensional space
is embedded into another two-dimensional space. Last but not least, observe
that given a subset X ′ ⊂ X with dX |X′ , the embedding error of X ′ in Y
is not higher than that of X . This feature enables partial matching between
non-rigid surfaces: if X is similar to Y , then a subset of it is also similar to
Y . We defer the discussion of this important property to Chapter 11.

Generalized multidimensional scaling can be viewed as minimization of the
generalized Lp-stress,

σp
p(y′

1, . . . , y
′
N) =

∑

i>j

∣
∣dX(xi, xj) − dY (y′

i, y
′
j)

∣
∣p , (9.4)

or, for p = ∞,

σ∞(y′
1, . . . , y

′
N ) = max

i>j

∣
∣dX(xi, xj) − dY (y′

i, y
′
j)

∣
∣ , (9.5)

that looks pretty much like the standard MDS problem.
Although GMDS seems a panacea for isometry-invariant surface match-

ing, it introduces several challenges. First, in order to be able to keep on using
efficient minimization algorithms, {y′

i} has to be a set of continuous variables.
In other words, the issue of the representation of points in Y and its implica-
tions on the minimization algorithm have to be addressed. Second, unlike the
Euclidean or the spherical cases, we have no more the luxury of computing
the distance terms dY (y′

i, y
′
j) analytically. Because Y is an arbitrarily compli-

cated surface, the geodesic distances in the embedding space are unlikely to
have any closed form expression at all, and we have to devise a method to
efficiently approximate dY .

9.3 Representation issues

The requirement of the points on Y to be represented in continuous coordi-
nates implies that Y must be a continuous surface. On the other hand, in
order to be computationally tractable, Y has to be represented by a finite
discrete sampling YM = {y1, . . . , yM}. The simplest representation of the em-
bedding space that satisfies both conditions is a triangular mesh T (YM ). Let
us start with the simple case where the mesh obeys a global parameterization
y : [0, 1]2 → Y . In this case, every point on the triangular faces of Y can
be represented as a pair of continuous coordinates (u1, u2) ∈ [0, 1]2, and the
triangulation of Y induces a triangulation of the parameterization domain.

Recall that because the images y′
i of xi in Y may fall “between the sam-

ples” on the mesh, we have to approximate the geodesic distances between any
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pair of arbitrary points u, u′ in the parameterization domain. Clearly, these
distances cannot be pre-computed, as y′

i are the optimization variables. How-
ever, it is possible to pre-compute all pairwise geodesic distances dY (ui, uj)
between the points of YM and use them to approximate dY (u, u′). As we will
see shortly, for this purpose we need to determine the vertices on YM of the
two triangles enclosing u and u′. Thus, given a point in the parameterization
domain, we have to find to which triangle it belongs.

For a surface represented as a geometry image, the parameterization do-
main is sampled on a regular Cartesian grid, producing the trivial regular
triangulation depicted in Figure 9.5 (top). In this case, the enclosing triangle
can be found in O(1). The regularity of geometry images makes them a very
appealing choice for representing the embedding space. Surfaces reconstructed
by many range acquisition devices such as structured and coded light scanners
are often readily representable as geometry images. Other, more general, ob-
jects can be re-parameterized and re-sampled on a regular grid [192, 335, 258].
However, the process introduces inevitable inaccuracies. Much worse is the
fact that it is hard to estimate the effect of such inaccuracies on the intrinsic
geometry of T (YM ).

Relaxing the regularity of the grid (Figure 9.5, bottom), we can still work in
the continuous parameterization domain, yet now the search for the enclosing
triangles becomes a non-trivial task. Using binary space partition trees or
similar structures, it can be done with logarithmic complexity. This adds
O(N log N) operations to the evaluation of all distance terms dY (y′

i, y
′
j), which

is still negligible compared with the O(N2) complexity of the generalized stress
computation.

However, objects are often given as general triangular meshes rather than
parametric surfaces and therefore have to be parameterized. Finding an ac-
curate continuous global parameterization is a challenging task, especially
for surfaces with complicated topology. A preferable solution is to use local
parameterization, that is, represent the points y′

i in some local coordinate sys-
tems. A good candidate for such a representation is barycentric coordinates,
which we have already encountered in Chapter 3. In barycentric coordinates,
each point on the mesh T (YM ) is represented as a convex combination of the
vertices of the triangle enclosing it. This way, each y′

i is represented by a trian-
gle index ti and a triplet ui = (u1

i , u
2
i , u

3
i ). In practice, one of the coordinates

is redundant and can be inferred from the relationship u1
i + u2

i + u3
i = 1; this

allows us to actually represent the point as a pair of coordinates ui = (u1
i , u

2
i ).

At first sight, the fact that ti is a discrete index may appear problematic,
as we desire to deal with continuous optimization variables only. However,
the problem can be resolved by devising a way to smoothly switch between
different local charts of Y , or using a more relaxed terminology, to travel along
a path on the mesh. In the following sections, we will explore the implications
that such a solution has on the minimization algorithm.
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Figure 9.5. Global parameterization of a surface on a unit square. Top: the param-
eterization domain is sampled on a regular Cartesian grid inducing a trivial regular
triangulation. Bottom: arbitrary triangulation.

To summarize, when Y is given as a geometry image or a parametric sur-
face, we prefer the global parametric approach, whereas for general triangular
meshes, local parameterization appears to be more suitable. At the same time,
the representation issue is less relevant for the surface X we are embedding
into Y , as the only information needed from X is the matrix of all pair-wise
geodesic distances dX(xi, xj). In fact, we can think of the GMDS problem
as of embedding any metric structure represented by the matrix of geodesic
distances DX into an arbitrary two-dimensional surface represented as a mesh
T (YM ).
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9.4 Geodesic distance computation

The generalized stress (9.4) involves the geodesic distance terms dY (y′
i, y

′
j).

However, because Y is an arbitrarily complex surface, generally there is no
analytic expression for the geodesic distances. Recall that this is where GMDS
differs the most from standard MDS algorithms. For this reason, the compu-
tation of the geodesic distances between arbitrary points in Y is the numerical
core of GMDS. Let us now address this important issue. Formally, we are given
a triangular mesh T (YM ) approximating the surface Y . We assume that all
pair-wise geodesic distances dij = dY (yi, yj) between the points on T (YM ) are
available (for example, computed using fast marching). Given two arbitrary
points on the mesh, y = (t, u) and y′ = (t′, u′) in barycentric coordinates
(points in global representation can always be translated into barycentric co-
ordinates), our goal is to find d̂Y (y, y′) ≈ dY (y, y′) that approximates the true
geodesic distance between y and y′.

There is a set of properties d̂Y should satisfy. First, because dY (yi, yj) are
first-order approximations to the true geodesic distances, we require that d̂Y is
also first-order accurate. Second, d̂Y has to be consistent with the data, mean-
ing that d̂Y (yi, yj) = dY (yi, yj) for any pair of samples of Y . Third, d̂Y (y, y′)
has to be symmetric, that is, d̂Y (y, y′) = d̂Y (y′, y). Fourth, because d̂Y (y, y′)
is used in an optimization algorithm, it has to be at least C1 with respect to
y and y′, and we have to be able to compute its derivatives analytically. We
may, though, allow d̂Y (y, y′) not to be C1 at some points or along some lines.
Last, as each computation of the generalized stress involves O(N2) distance
terms, d̂Y and its derivatives have to be computed efficiently with constant
complexity, independent of M and N .

We will now explore an interpolation method we first proposed in [67]
under the name of three point geodesic distance interpolation. Let us start
with the particular case where y′ is one of the mesh vertices. Assume without
loss of generality that triangle t to which y belongs is formed by the vertices
y1, y2, and y3 of T (YM ), and the coordinates of y can be expressed as

y = u1y1 + u2y2 + u3y3, (9.6)

where u1 + u2 + u3 = 1. We will switch freely between y and u. Because
y′ ∈ YM , the distances d1 = dY (y1, y

′), d2 = dY (y2, y
′), and d3 = dY (y3, y

′)
are known. Using this information as well as the geometry of the triangle t, we
have to approximate dY (y, y′). Recall that this was exactly the problem we
encountered in Chapter 3 while discussing the fast marching algorithms. We
borrow the fast marching wavefront propagation model to compute d̂Y (y, y′).

Using the planar wavefront model, the distance map from y′ on the mesh
is piecewise linear, meaning that for any point u in the triangle t, it can
be expressed as a linear function of u. Such a function has three degrees
of freedom, which can be resolved by substituting the data d̂Y (y1, y

′) = d1,
d̂Y (y2, y

′) = d2, and d̂Y (y3, y
′) = d3. This yields the following simple interpo-

lation formula



198 9 Non-Euclidean Embedding

d̂Y (y, y′) = u1d1 + u2d2 + u3d3 = dTu, (9.7)

where d = (d1, d2, d3)T.
Let us now remove the restriction that y′ coincides with one of the vertices

of YM and consider the general case where y′ = (t′, u′) is an arbitrary point
on the mesh. The major difference is that now the distances d1 = dY (y1, y

′),
d2 = dY (y2, y

′), and d3 = dY (y3, y
′) are unknown. Yet, assuming that the

triangle t′ to which y′ belongs is formed by the vertices y4, y5, and y6, we
may apply the previously described interpolation method in the triangle t
with d = (d14, d24, d34)T, dij = dY (yi, yj), to obtain d̂4 ≈ d(y, y4). In a similar
manner, d̂5 ≈ d(y, y5) and d̂6 ≈ d(y, y6) are obtained. This can be expressed
as

⎛

⎝
d̂4

d̂5

d̂6

⎞

⎠ =

⎛

⎝
d14 d24 d34

d15 d25 d35

d16 d26 d36

⎞

⎠ u = DY (t, t′)u, (9.8)

where the matrix DY (t, t′) depends on the triangle indices t and t′ only. Now,
we may apply the interpolation once again, this time in the triangle t′ with
d = (d̂4, d̂5, d̂6)T, obtaining the sought interpolant

d̂Y (u, u′) = u′TDY (t, t′)u. (9.9)

This final step completes the picture: now we have a computational tool
for the interpolation of the geodesic distances on T (YM ). Figure 9.6 visualizes
the four steps. We leave as an exercise to the reader (Problem 9.9) the proof
of the fact that d̂Y satisfies the five properties stated in the beginning of the
section.

9.5 Minimization of the generalized stress

Substituting the interpolated distance terms d̂Y (ui, uj) = uT
i DY (ti, tj)uj to

the generalized Lp stress function, we obtain

σp
p(t1, u1, . . . , tN , uN ) =

∑

j>i

(
dX(xi, xj) − uT

i DY (ti, tj)uj

)p
. (9.10)

We now have all the ingredients ready for constructing a numerical scheme
for the solution of the GMDS problem. In what follows, we will focus our
attention on the L2 case only; other cases can be addressed, for example, by
using the iterative reweighting scheme described in Chapter 7. To simplify
notation, we will write σ instead of σ2

2 .
The choice of the L2 stress has a significant advantage: Because the sum-

mation excludes the cases where i = j, the interpolated distance terms
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Step 1: d̂4 ≈ dY (y, y4) is computed from
d14, d24, d34 in the triangle y1, y2, y3.
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Step 2: d̂5 ≈ dY (y, y5) is computed from
d15, d25, d35 in the triangle y1, y2, y3.
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Step 3: d̂6 ≈ dY (y, y6) is computed from
d16, d26, d36 in the triangle y1, y2, y3.
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Step 4: d̂ ≈ dY (y, y′) is computed from
d̂4, d̂5, d̂6 in the triangle y4, y5, y6.

Figure 9.6. Four steps performed to interpolate the geodesic distance d̂Y (y, y′)
between two arbitrary points on the mesh Y .

uT
i DY (ti, tj)uj are linear in ui. This implies that fixing all the tj ’s and all

the uj’s except for some ui, we obtain a quadratic stress function

σ(ui) =
∑

j �=i

(
dX(xi, xj) − uT

i DY (ti, tj)uj

)2
, (9.11)

which we write for brevity as σ(ui) = uT
i Aiui + 2bT

i ui + ci, denoting by

Ai =
∑

j �=i

DY (ti, tj)uju
T
j DY (ti, tj)T, (9.12)

bi = −
∑

j �=i

dX(xi, xj)DY (ti, tj)uj , (9.13)
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and

ci =
∑

j �=i

d2
X(xi, xj) (9.14)

the quadratic form coefficients. We leave to the reader to show that the matrix
Ai is positive semi-definite, that is, σ(ui) is convex.3

The quadratic form of σ(ui) allows us to express its minimizer in a closed
form,

u∗
i = argmin

ui

σ(ui) = −A−1
i bi. (9.15)

However, such a solution may happen to be outside the triangle, rendering
the barycentric representation invalid. In order to obtain a valid point, we
constrain u∗

i to lie within the triangle:

u∗
i = argmin

ui

σ(ui) s.t.
{

ui ≥ 0,
u1

i + u2
i + u3

i = 1.
(9.16)

This linearly constrained quadratic problem still has a closed-form solution,
the derivation of which is left as an exercise to the reader.

Observe that replacing ui with u∗
i results in a decrease of the stress value.

We can use this fact to construct an algorithm that fixes all the variables
except for some ui, updates ui with u∗

i , then picks a different ui while fixing
the rest of the variables, and continues in the same way, producing a sequence
of updates. A reasonable choice of the point to update can be based on the
gradient of the stress function with respect to each ui,

gi = ∇σ(ui) = 2Aiui + 2bi. (9.17)

It is desirable to select the ui with the largest gradient in order to obtain
the steepest decrease in the stress function value when the point is updated.
The resulting algorithm is similar in its spirit to the coordinate descent (L1

steepest descent) method from Chapter 5, where each time only one coordinate
corresponding with the largest derivative was updated. Here, we operate on a
single point ui, resulting in an update of a block of two coordinates, u1

i and
u2

i , in the vector of optimization variables. For this reason, our minimization
algorithm belongs to the family of block coordinate descent algorithms.

It is important to note that the updated point u∗
i may happen to lie on

an edge or a vertex of the triangle ti (that is, at least one constraint in (9.16)
is active). In this case, the need to update the triangle index ti may arise.
If u∗

i lies on a triangle edge shared with some other triangle t′i, we translate
the vector of barycentric coordinates u∗

i in the coordinate system of ti to
another vector u′∗

i in the coordinate system of t′i. This translation does not
change the value of σ(ui), yet, as the stress function is not C1 on the triangle
boundaries, the gradient direction may change. We evaluate the new gradient
direction in the triangle t′i and update ti to be t′i only if the negative gradient
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for k = 0, 1, 2, . . . do1

Compute the parameters Ai, bi and the gradients gi of the stress2

function σ(t
(k)
1 , u

(k)
1 , . . . , t

(k)
N , u

(k)
N ).

Select i corresponding to max ‖gi‖.3

if ‖gi‖ is sufficiently small then stop4

Solve the constrained quadratic problem5

u∗
i = arg min

ui≥0
σ(ui) s.t. u1

i + u2
i + u3

i = 1

with the rest of the uj ’s fixed to u
(k)
j .

if u∗
i is on an edge of the triangle ti then6

let N (u∗
i , ti) be the triangle sharing the edge with ti, or ∅ if the7

edge is on the shape boundary.
else if u∗

i is on a vertex of ti then8

let N (u∗
i , ti) be the set of triangles sharing the vertex with ti.9

else10

set N (u∗
i , ti) = ∅.11

if N (u∗
i , ti) = ∅ then update u(k+1) = u∗

i , and go to Step 2.12

forall t′ ∈ N (u∗
i , ti) do13

Translate u∗
i in the triangle ti to u′∗

i in the triangle t′.14

Evaluate the gradient gi = ∇uiσ(t′, u′∗
i ).15

if −gi is directed inside the triangle t′ then16

update t
(k+1)
i = t′, u(k+1) = u′∗

i , and go to Step 2.17

end18

end19

end20

Algorithm 9.1. Least squares GMDS.

direction points inside t′i. In this case, subsequent minimization of σ with
respect to ui will guarantee a further decrease of the stress function value.
If the triangle edge is not shared with another triangle (i.e., the edge is part
of the mesh boundary), no index update is performed. The case where u∗

i

lies on a triangle vertex is treated in a similar way. The entire minimization
procedure is summarized in Algorithm 9.1.

It is worthwhile noting that the described algorithm is also suitable when
the surface Y admits a global parameterization. In this case, the point coor-
dinates ui are expressed in the global system of coordinates, and the triangle
indices ti are inferred from the point locations. As a concluding remark before
we proceed to the next topic, we should mention that Algorithm 9.1 is by no
means the only way to solve the GMDS problem. For example, in [67] we pro-
posed a different numerical scheme based on a path search – a generalization
of line search, where instead of a line in a high-dimensional Euclidean space
the minimum is searched over poly-linear paths on the mesh T (YM ).



202 9 Non-Euclidean Embedding

9.6 Multiresolution encore

Like in the Euclidean MDS case, we can use the multiresolution strategy to
solve the GMDS problem. We define ΩL ⊂ ΩL−1 ⊂ · · · ⊂ Ω0 = {1, . . . , N} to
be a hierarchy of L + 1 grids on the surface X , such that at the lth level we
have Nl points. The data at each level is the Nl × Nl matrix Dl. Under the
assumption that Y is given as a parametric surface, the coordinates of the lth
level solution y′

1, . . . , y
′
Nl

are represented by u1, . . . , uNl
and arranged into the

Nl × 2 matrix Ul. The lth level GMDS problem is formulated as

U∗
l = argmin

Ul∈R
Nl×2

σ(Ul; Dl, DY );

This notation emphasizes the dependence on the data Dl and on the embed-
ding space (expressed in terms of its geodesic distances DY ). Going up to the
finer (l − 1)st level is performed using the data interpolation operator P l−1

l ,
applied to Ul. The whole process is essentially equivalent to the multiresolu-
tion MDS algorithm we described in Chapter 7, with the exception of the fact
that now our variables are parametric coordinates of the points on Y and not
their Euclidean coordinates.

In case of local parameterization, that is, using barycentric coordinates, the
interpolation operation P l−1

l is not straightforward and, particularly, cannot
be represented as a matrix. When going up in the resolution level, the points
{y′

i : i ∈ Ωl} are transferred “as are” to the finer grid Ωl−1. The rest of the
points, {y′

i : i ∈ Ωl−1 \ Ωl}, can be chosen in such a way that the geodesic
distances from y′

i to nearby points are as close as possible to the geodesic
distances from xi to its nearby points. Formally, we define

y′
i = arg min

y

∑

j∈N (xi)

(
dY (y, y′

j) − dX(xi, xj)
)2

,

for all i ∈ Ωl−1 \ Ωl. Here N (i) is a neighborhood of xi on X . Note that
practically, the minimum can be found by exhaustively searching over a subset
of the samples of Y , with the complexity of O(M). This interpolation does
not have to be very accurate, as it is subsequently refined by the minimization
of the stress.

In the GMDS problem, the idea of multiresolution optimization can be
taken another step further by noting that the embedding space itself (that
is, the surface Y ) can also be represented at different resolution levels. At
coarse levels, the embedding is performed into a coarse embedding space (i.e.,
Y approximated using a smaller number of triangles), which is more efficient
computationally. When going upwards in the hierarchy of resolutions, the em-
bedding space is gradually refined. For this purpose, we construct a hierarchy
of L + 1 grids Ω′

L ⊂ Ω′
L−1 ⊂ · · · ⊂ Ω′

0 = {1, . . . , M} on Y , in a manner
equivalent to the construction of the data hierarchy. The number of points
at each level is denoted by ML < ML−1 < · · · < M0 = M and the matrices
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Construct the hierarchy of data D0, . . . , DL, data interpolation operators1

P 0
1 , . . . , P L−1

L and the hierarchy of embedding spaces with distance
matrices D′

0, . . . , D
′
L.

Start with some initial parametric coordinates U
(0)
L at the coarsest grid,2

and l = L.
while l ≥ 0 do3

Solve the lth level GMDS problem,4

U∗
l = argmin

Ul∈R
Nl×2

σ(U ; Dl, D
′
l),

using U
(0)
l as the initialization for the optimization algorithm.

Interpolate the solution to the next resolution level, U
(0)
l−1 = P l−1

l U∗
l5

l ←− l − 16

end7

Algorithm 9.2. Multiresolution GMDS.

of geodesic distances by D′
L, . . . , D′

0 = DY . At the lth resolution level, we
minimize the generalized stress σ(Ul; Dl, D

′
l), that is, embedding Nl points

into an Ml-point approximation of Y . The whole scheme can be summarized
as shown in Algorithm 9.2.

Though the multiresolution framework improves the convergence of the
GMDS algorithm, the importance of its initialization is hard to overestimate.
Like in the case of ICP algorithms, there probably exists no universally good
answer to this issue. However, some globally optimal initialization ideas in the
spirit of [170] can be adopted for GMDS. The reader is referred to [59, 322]
for further details.

Suggested reading

A brief explanation of spherical multidimensional scaling techniques can be
found in Cox and Cox [119]. For a more detailed presentation, the reader is
referred to [118]. For the uses of spherical embedding for representation of
cortical surfaces and human faces, the reader is referred to [148] and [69],
respectively. A different numerical scheme for GMDS based on the spherical
wavefront model is discussed in [67]. In [59, 322], a globally optimal branch
and bound technique is proposed as a means for the initialization of GMDS.

Software

An implementation of the multiresolution GMDS algorithm is available in the
TOSCA toolbox.
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Problems

9.1. Write the differential arclength in S
m. Given a path, formulate a func-

tional measuring its length and using the Euler-Lagrange equations, show that
the geodesics on a sphere are portions of great circles.

9.2. Derive the gradient for the stress function in problem (9.1).

9.3. Show that the spherical embedding problem can be formulated as an
algebraic problem similar to classic MDS.

9.4. Derive the projection operator for the general m-dimensional sphere.

9.5. Show that the isometry group in S
m is the orthogonal group O(m + 1).

9.6. Express a rigid isometry in S
2 as a transformation in the parameterization

domain.

9.7 (Research question). Derive an ICP-like algorithm for rigid alignment
and matching of surfaces in S

3.

9.8 (Research question). Derive a method for rigid surface matching in S
m

based on moment signatures.

9.9. Prove that our interpolation d̂Y (u, u′) = u′TDY (t, t′)u satisfies the five
properties stated in the beginning of Section 9.4. Is d̂Y (u, u′) continuously
differentiable everywhere?

9.10. Derive a different geodesic distance interpolation scheme based on a
spherical wavefront model.

9.11.� Prove that the L2 stress is convex with respect to each ui.

9.12. Derive a closed-form expression for the minimizer of the linearly con-
strained quadratic stress function σ(ui) in (9.16).

9.13 (Research question). Show a way to introduce point or curve con-
straints into the GMDS problem, forcing all points lying on some ΓX ⊂ X to
be mapped onto some ΓY ⊂ Y .

Notes
1The term m-dimensional sphere refers to the dimension of the manifold (e.g., a

two-dimensional sphere is a two-dimensional manifold). However, in the literature
S

m is sometimes referred to as an m+1-dimensional sphere, referring to the dimen-
sion of the ambient space, R

m+1. We find the latter notation slightly misleading,
and stick to the former one.

2In reality, aircraft routes are also influenced by the so-called jet streams – narrow
air currents found just under the boundary of the stratosphere, at altitudes around
11 kilometers. Wind speeds inside a jet stream may reach hundreds of km/h, making
them an important factor in planning the flight course.

3The fact that the stress is convex with respect to each ui does not contradict
the fact that it is not convex with respect to all the ui’s together.



It is incredible what Gromov can do just with the
triangle inequality!

D. Sullivan, quoted by M. Berger.

10

Isometry-Invariant Similarity

In the previous three chapters, we explored computational tools for the com-
parison of non-rigid shapes. The discussed methods had one property in com-
mon: they gave a quantitative measure of similarity between two shapes. It is
natural to think of such a similarity as of a distance function on some abstract
shape space. Because our goal is to compare objects in a way insensitive to
isometric deformations, a key property of such a distance is isometry invari-
ance. In this chapter, we put the non-rigid shape matching problem on a more
solid theoretical ground. We start by defining a set of desired properties that a
good isometry-invariant distance should satisfy and show that the previously
presented approaches satisfy them only partially. We then proceed by defining
the important notion of the Gromov-Hausdorff distance and show how it fits
to the same computational framework.

10.1 Equivalence, similarity, and distance

Let us examine an object X and its non-rigid deformation Y ; as a visualiza-
tion, the reader may consider different folding of a piece of paper or postures
of his or her hand. An observer, judging two such objects only by their in-
trinsic properties, will find them indistinguishable, though the objects may
differ significantly in their extrinsic geometric properties (we emphasize that
for us such a short-sightedness is rather beneficial, as we would like to “undo”
the richness of non-rigid deformations). On one hand, we know that the two
objects X and Y are not identical (incongruent), and at the same time we
deem them “the same” (isometric). This idea can be expressed by saying that
rather than being equal, the two objects are equivalent. Formally, an equiva-
lence relation is a relation between pairs of objects, which is

(E1) reflexive, meaning that X is equivalent to itself;
(E2) symmetric, meaning that if X and Y are equivalent, then Y and

X are also equivalent; and

A. Bronstein et al., Numerical Geometry of Non-Rigid Shapes, 205
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(E3) transitive, meaning that if X and Y are equivalent, and Y and Z
are equivalent, then X and Z are equivalent.

An equivalence relation is usually denoted as X ∼ Y , pronounced as “X
is equivalent to Y .” The set of all shapes in M, which are equivalent (in
our case, isometric) to X ∈ M, is called the equivalence class of X . We say
that the equivalence relation partitions the space M into equivalence classes.
Considering each equivalence class as a single unit, M can be transformed
into a new space, referred to as the quotient space of M under the equivalence
relation ∼ (denoted as M

∗ or M\ ∼). A point in M
∗ is a surface together with

all its isometries.
Equivalence is a binary relation, which can be described by a function

d : M × M → {0, 1}. Each pair of objects X, Y ∈ M, is either isometric
(d(X, Y ) = 0) or not (d(X, Y ) = 1). However, ideal equivalence is rare to find
in our imperfect world, and we would therefore like to relax this notion by
allowing a surface X to be “almost equivalent” to another surface Y . As we
have already seen, a natural way to do so is by resorting to almost isometries.
We say that two objects are similar if they are almost isometric. Clearly, the
relation of being similar is, in a sense, a superset of being equivalent and allows
some mismatch in the intrinsic geometries. Unlike the binary answer we get
from the equivalence relation on whether or not X and Y are isometric, if X
and Y are ε-isometric, we would like to associate the number ε with the pair
(X, Y ). This brings us from the informal concept of similarity to a somewhat
more rigorous notion of distance – a non-negative function d : M × M → R

quantifying the degree of similarity of a pair of objects in M. Because there
exists no unique recipe for defining such a function, let us now examine the
list of properties that a good distance should satisfy.

First, as similarity is a reflexive relation, we require d to be symmetric,
that is, d(X, Y ) = d(Y, X). Second, similarity is also transitive, which can be
expressed by requiring d to obey the triangle inequality d(Z, X) ≤ d(Y, X) +
d(Z, Y ). This inequality guarantees that if X is similar to Y and Y is similar
to Z, then X and Z cannot be dissimilar. Third, because we look for isometry
invariance, we would like d to associate zero distance to pairs of isometric
objects, which are indistinguishable in terms of intrinsic geometry. On the
other hand, we would like to distinguish between non-isometric objects, and
thus require d to be strictly positive for any pair of such objects. Formally,
this demand is expressed as d(X, Y ) = 0 if and only if X and Y are isometric.
We can briefly summarize the former three requirements by saying that we
want our distance to be a metric on the quotient space M

∗.
The same way the last property associated equivalence with zero distance,

we would like to associate similarity with small distance by requiring that if
d(X, Y ) ≤ ε, then X and Y are cε-isometric, and vice versa, if X and Y are
ε-isometric, then d(X, Y ) ≤ cε, where c is a positive constant independent of
X , Y , and ε. Observe that if d(X, Y ) > ε, then X and Y are not ε/c-isometric,
because if they were, one would have d(X, Y ) ≤ ε. Similarly, if X and Y are
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not ε-isometric, then d(X, Y ) > ε/c. This gives us the converse association of
dissimilarity with large distance.

Thus far, we tacitly assumed to be able to work with continuous surfaces
from M. However, in practice we can only compute an approximation d̂ of
our distance, operating on sampled surfaces Xr

N = {x1, . . . , xN} and Y r
M =

{y1, . . . , yM} that constitute r-coverings of X and Y , respectively. In order to
make such a numerical approximation practical, we demand d̂ to be consistent
to sampling, that is

lim
r→0

d̂(Xr
N , Y r

M ) = d(X, Y ).

This guarantees that the approximated distance approaches the true one as the
sampling density increases. Also, practical considerations require d̂(Xr

N , Y r
M )

to be computable efficiently, which we interpret as polynomial time complexity
with respect to the sample sizes M and N .

10.2 Embedding distance

In Chapter 9, we have seen that finding the minimum distortion embedding
of X into Y allows us to quantify the dissimilarity of the intrinsic geometries
of the two surfaces – that was precisely the raison d’être of generalized mul-
tidimensional scaling. The lowest achievable distortion can be viewed as the
distance

dE(Y, X) = inf
ϕ:X→Y

dis ϕ, (10.1)

which we term as the embedding distance. In practice, we compute an approx-
imation d̂E(Y r

M , Xr
N) ≈ dE(Y, X) by solving the GMDS problem. We leave

the reader to verify that |d̂E(Y r
M , Xr

N)− dE(Y, X)| = O(r), implying that the
embedding distance is consistent to sampling.

Observe that if X and Y are ε-isometric, then there exists a mapping
ϕ : X → Y with dis ϕ ≤ ε, meaning that dE(Y, X) ≤ ε (and, consequently,
if dE(Y, X) > ε, X and Y are not ε-isometric). Unfortunately, the converse
is generally not true, as dE(Y, X) ≤ ε implies only that X can be embedded
with low distortion into Y but does not guarantee that such an embedding
is ε-surjective. In fact, X and Y may have arbitrarily different intrinsic ge-
ometries while having small dE (an extreme example is X being a very small
part of Y ). Another observation suggests that d(Y, X) is not symmetric. In-
deed, if X is a small portion of Y , it is embeddable into the latter without
distortion (d(Y, X) = 0); however, Y cannot be embedded into X without
distortion, and thus d(X, Y ) > 0. Though dE still satisfies the triangle in-
equality d(Z, X) ≤ d(Y, X) + d(Z, Y ), unlike a true metric, the other side of
the inequality, d(X, Z) ≤ d(Y, X) + d(Z, Y ) does not generally hold.
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We conclude that while being reasonably efficient to compute and consis-
tent to sampling, the embedding distance does not satisfy all of the desired
properties. In particular, it is not a metric, and, which is by far worse, the
connection between similarity and the distance values works only in one di-
rection.

10.3 Gromov-Hausdorff distance

Another type of similarity we met in Chapter 7 was the canonical form dis-
tance, computed as the Hausdorff distance between the minimum-distortion
embeddings of two shapes into some common metric space (Z, dZ). For ex-
ample, we used the Euclidean space R

m or the m-dimensional sphere S
m. As

we mentioned, this approach suffers from an inherent inaccuracy due to the
fact that usually a zero-distortion embedding of a surface into a given metric
space is impossible to obtain.

Instead of having Z fixed for all surfaces, we can let Z be the best suitable
space for the comparison of two given surfaces X and Y by introducing it as a
variable into our optimization problem. Formally, we can write the following
distance,

dGH(Y, X) = inf
Z

f :X→Z

g:Y →Z

dH,Z(f(X), g(Y )), (10.2)

where the infimum is taken over all metric spaces Z and isometric embeddings
f and g from X and Y , respectively, to Z. dGH is called the Gromov-Hausdorff
distance and can be thought of as an extension of the Hausdorff distance.
The Gromov-Hausdorff distance was introduced in 1981 by the Russian-born
mathematician Mikhail Gromov [190] and first applied to the field of pattern
recognition by Facundo Mémoli and Guillermo Sapiro in 2004 [269].

At this point, the reader might wonder whether the space Z in (10.2)
exists at all. In fact, we demand that Z has two metric subspaces f(X) and
g(Y ) with the restriction of dZ that are isometric to X and Y , respectively,
which seems like a very strong property. However, it appears that such a space
always exists; moreover, we can even reduce it to the disjoint union of X and
Y . More precisely, we may let Z = X � Y and define a (semi-) metric dZ

such that its restrictions to X and Y coincide with dX and dY (clearly, dZ

is not unique). Using this reduction, the Gromov-Hausdorff distance can be
reformulated in terms of the infimum over all the metrics dZ on X � Y ,

dGH(Y, X) = inf
dZ

dH,(X�Y,dZ)(Y, X). (10.3)

The Gromov-Hausdorff distance brings us excellent news, as it satisfies all
the desired theoretical properties: it is a metric on M

∗, and it satisfies the
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similarity property with the constant c = 2 (namely, dGH(X, Y ) < ε implies
that X and Y are 2ε-isometric, and X and Y are ε-isometric implies that
dGH(X, Y ) < 2ε). We leave the proof as an exercise for the reader (Prob-
lem 10.1).

At the first glance, the theoretical properties of the Gromov-Hausdorff
distance make it a perfect choice for comparing non-rigid shapes. Yet, from
definition (10.2), dGH seems alarmingly impractical, as the minimization over
all metric spaces Z or over all metrics dZ on X �Y is intractable. Fortunately,
the Gromov-Hausdorff distance can be reformulated in terms of distances in
X and Y , without resorting to the embedding space Z:

dGH(Y, X) =
1
2

inf
ϕ:X→Y

ψ:Y →X

max{disϕ, dis ψ, dis (ϕ, ψ)}. (10.4)

Let us understand the notation first. The first two terms,

dis ϕ = sup
x,x′∈X

|dX(x, x′) − dY (ϕ(x), ϕ(x′))|;

dis ψ = sup
y,y′∈Y

|dY (y, y′) − dX(ψ(y), ψ(y′))|,

denote the familiar distortion of the embeddings ϕ and ψ, respectively. On
the other hand, the term dis (ϕ, ψ) is new and is used to denote

dis (ϕ, ψ) = sup
x∈X,y∈Y

|dX(x, ψ(y)) − dY (y, ϕ(x))|

(see Figure 10.1). This reformulation of the Gromov-Hausdorff distance can
be interpreted in the following way: we try to jointly embed X into Y and
Y into X such that the distortions of the embeddings ϕ and ψ are as low as
possible. In addition, we would like ϕ and ψ to be as close as possible one to
the inverse of the other, in the sense that the compositions ψ ◦ ϕ : X → Y
and ϕ◦ψ : Y → X are as close as possible to identity mappings (Figure 10.2).
We leave to the reader to prove this extraordinary transfiguration of dGH

(Problem 10.2).
In its alternative formulation (10.4), the Gromov-Hausdorff distance closely

resembles the embedding distance. The only difference is that now we have a
slightly more complicated problem involving two embeddings and three dis-
tortion terms, yet it can be solved in the same spirit. Indeed, discretizing X
and Y , we obtain

dGH(YM , XN) =
1
2

min
y′
1,...,y′

N∈Y

x′
1,...,x′

M∈X

max

⎧
⎪⎨

⎪⎩

|dX(xi, xj) − dY (y′
i, y

′
j)|,

|dY (yk, yl) − dX(x′
k, x′

l)|,
|dX(xi, x

′
k) − dY (yk, y′

i)|

⎫
⎪⎬

⎪⎭
, (10.5)

where i, j = 1, . . . , N , and k, l = 1, . . . , M . This problem can be viewed as a
simultaneous solution of two L∞ GMDS problems, coupled together by the
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Figure 10.1. An illustration of the three distortion terms participating in the
Gromov-Hausdorff distance: dis ϕ (top row), dis ψ (middle row), and dis (ϕ, ψ) (bot-
tom row).

distortion terms |dX(xi, x
′
k)− dY (yk, y′

i)|. As in the GMDS, the minimization
is performed over the images y′

i = ϕ(xi) and x′
k = ψ(yk), instead of the

mappings ϕ and ψ themselves. The only difference is that now we have two
sets of variables: one on the surface Y and the other on the surface X .

One of the ways to solve (10.5) is by introducing an artificial variable ε ≥ 0
and casting the min-max problem to the following constrained minimization
problem,
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Figure 10.2. The distortion term dis (ϕ, ψ) tells us how far is ϕ from the inverse
of ψ and vice versa, how far is ψ from the inverse of ϕ.

dGH(YM , XN) = min
ε≥0

y′
1,...,y′

N∈Y

x′
1,...,x′

M∈X

ε

2
s.t.

⎧
⎪⎨

⎪⎩

|dX(xi, xj) − dY (y′
i, y

′
j)| ≤ ε

|dY (yk, yl) − dX(x′
k, x′

l)| ≤ ε

|dX(xi, x
′
k) − dY (yk, y′

i)| ≤ ε.

(10.6)

Example 10.1. As a visualization of the performance of dGH, we reproduce
here a numerical experiment from [67], performed on the set of non-rigid
shapes. The Gromov-Hausdorff distances were computed numerically between
each pair of objects. The matching results are visualized in Figure 10.3 as
dissimilarities in R

2 (i.e., the closer are the points, the smaller is the distance
between the corresponding objects).

It should be noted that our analysis was done with the L∞ distortion.
The reader may wonder whether similar results can be made for some Lp

formulation of the distortion. Unfortunately, it appears that the properties of
the Gromov-Hausdorff distance change dramatically when L∞ is substituted
by Lp. For example, the beautiful connection to the Hausdorff distance ceases
to exist (although, the intriguing question whether an Lp version of dGH is
connected to some Lp version of the Hausdorff distance is still open). Having
said that, an Lp formulation of the Gromov-Hausdorff distance is clearly useful
for practical non-rigid surface matching and may be even more useful than its
L∞ counterpart due to its lower sensitivity to noise.

10.4 Intrinsic symmetry

This chapter dedicated to shape similarity would be incomplete without men-
tioning an interesting and beautiful particular case of shape self-similarity
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Figure 10.3. Comparison of non-rigid surfaces using the Gromov-Hausdorff dis-
tance. Each point in the plot represents a surface; Euclidean distances between
the points approximate the computed dGH. Surfaces were represented as triangular
meshes with 2000 vertices, and 50 points were embedded.

or symmetry. Symmetry, self-similarity, and invariance are synonyms of the
same cornerstone of nature, exhibiting itself through the shapes of natural
creations and ubiquitous laws of physics. As it was noted by Hermann Weyl
“symmetry, as wide or as narrow as you may define its meaning, is one idea
by which man through the ages has tried to comprehend the created order,
beauty, and perfection” [395]. These words of one of the greatest twentieth
century mathematicians reflect the importance symmetry has in all aspects
of our life.

The interest in symmetry of shapes dates back to the dawn of human
civilization. Early evidences that our predecessors attributed importance to
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symmetries can be found in many cultural heritages, ranging from monumen-
tal architecture of the Egyptian pyramids to traditional ancient Greek decora-
tions. Johannes Kepler was among the first who attempted to give a geometric
formulation to symmetries in his treatise On the six-cornered snowflake [223]
in as early as 1611. A few centuries later, the study of symmetric shapes
became a foundation of crystallography. Finally, symmetries of more compli-
cated higher-dimensional objects underlie modern physics theories about the
nature of matter, space and time.

Because many natural objects are symmetric, symmetry breaking can often
be an indication of some anomaly or abnormal behavior. Therefore, detection
of asymmetries arises in numerous practical problems, among which medical
applications are probably the first to come in mind. For example, detection
of tumors in medical images can be based on deviations from otherwise sym-
metric body organs and tissues. Facial symmetry is important in craniofacial
plastic surgery, as symmetric facial features are often associated with beauty
and aesthetics [266]. Furthermore, facial asymmetry can also be an indication
of various syndromes and disorders. Conversely, the assumption of symmetry
can be used as a prior knowledge in many problems. It may facilitate, for ex-
ample, the reconstruction of surfaces, face detection, recognition, and feature
extraction.

In pattern recognition and computer vision, there exists a wealth of liter-
ature dedicated to finding symmetries in images, two-dimensional and three-
dimensional shapes (see, e.g., [401, 13, 5, 278]). Traditionally, symmetries are
considered as extrinsic geometric properties of shapes that related to the way
the shape is represented in the Euclidean space. Though adequate for rigid
shapes, such a point of view is inappropriate for non-rigid or deformable ones.
Because of the deformations such shapes can undergo, the extrinsic symme-
tries may be lost while intrinsically the shape still remains symmetric. Con-
sider as an example the human body. Extrinsic bilateral symmetry of the body
is broken when the body assumes different postures. Yet, from the point of
view of intrinsic geometry, the new shape remains almost identical; as such, a
deformation does not significantly change its metric structure (Figure 10.4).
In this sense, intrinsic symmetries are a superset of the extrinsic ones. Consid-
ering intrinsic rather than extrinsic symmetries allows us to characterize the
object self-similarity that is invariant to nearly isometric deformations. Using
our terminology, intrinsic symmetries are the group of self-isometries on the
metric space formed by the non-rigid shape with its intrinsic geometry. We
will speak more about such self-isometries in Chapter 12.

Whereas extrinsic symmetry computation is a well-established subject, in-
trinsic symmetries remain largely terra incognita. In [322], Dan Raviv and the
authors used the generalized multidimensional scaling to compute approxi-
mate self-isometries of non-rigid shapes. For the time being, this seems to be
the only study dedicated to intrinsic symmetry.
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Figure 10.4. Symmetric or not? Extrinsically symmetric shape is also intrinsically
symmetric (left), however, isometries of the shape are intrinsically symmetric but
extrinsically asymmetric (three rightmost shapes).

Suggested reading

For a comprehensive overview of the theoretical properties of the Gromov-
Hausdorff distance, the reader is referred to the textbook Course on Metric
Geometry by Burago et al. [88] and to the original work of Gromov [190].
For practical aspects of using the Gromov-Hausdorff distance in applications
of shape analysis, the reader is referred to [269, 67]. For the presentation
of theoretical and computational frameworks for the treatment of intrinsic
symmetries of shapes, the reader is referred to [322].

Problems

10.1. Prove that the Gromov-Hausdorff distance obeys all the desired proper-
ties listed in the beginning of the chapter. Hint: use the equivalent definition
(10.4) of the Gromov-Hausdorff distance.

10.2.� Prove the equivalence of the two definitions (10.2) and (10.4) of the
Gromov-Hausdorff distance. Hint: use the correspondences ϕ and ψ to define
a valid metric on X � Y .

10.3.� Show that the Gromov-Hausdorff distance is consistent to sampling.

10.4. Consider the following distance

d(Y, X) =
1
2

inf
ϕ:X→Y

ψ:Y →X

max{disϕ, dis ψ},

which resembles dGH without the term dis (ϕ, ψ). What is the relation between
the new distance and the Gromov-Hausdorff distance? Does the new distance
obey the similarity property?
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10.5. Consider the following distance

d(Y, X) =
1
2

inf
ϕ:X→Y

ψ:Y →X

dis (ϕ, ψ),

What is the relation between the new distance and the Gromov-Hausdorff
distance? Does the new distance satisfy the similarity property?

10.6 (Research question). Consider an Lp formulation of the distortion

disϕ =
∫

X×X

|dX(x, x′) − dY (ϕ(x), ϕ(x′)|pdμ × μ(x, x′),

where μ is some measure on the surface X (for example, the standard Haus-
dorff or area measure). Using the new distortion, devise the Lp Gromov-
Hausdorff distance and investigate its properties. Does it satisfy axioms (D)?
Devise a new notion of surface similarity satisfied by the Lp Gromov-Hausdorff
distance.



The whole is more than the sum of its
parts.

Aristotle, Metaphysica

11

Partial Similarity

In Chapter 2, we drew inspiration from Greek science as the foundation of
modern geometry. Let us now resort to ancient Greece again, this time for
a mythological rather than scientific illustration. In the pantheon of strange
living things in Greek mythology, the most famous and strange are centaurs,1

half-equine half-human creatures (Figure 11.1). Arguing whether a centaur is
similar to a horse or to a man is as useless as asking whether a zebra is white
or black. In a sense, it is similar to both, because its upper part is similar to
that of a human, and the lower part makes it similar to a horse.

Note, however, that here we attribute a different meaning to the term
“similar.” The methods we have discussed thus far, whether iterative closest
point and moment methods for rigid object comparison or MDS-based tech-
niques and the Gromov-Hausdorff distance for the comparison of non-rigid
objects, considered the shape as a whole, or in other words, measured global
or full similarity. In the centaur example, on the other hand, we encounter
a new type of similarity, which we call partial. There is sufficient evidence
that such a type of similarity plays an important role in human judgment.
In fact, our everyday experience is a proof that the human visual system has
a very developed ability of judging partial similarity: seing a small fragment
of a picture, we are usually able to recognize the entire object in spite of it
having large missing parts [206, 357, 358, 207]. Often, even a single significant
part is sufficient to recognize the entire object.

The properties of full and partial similarities are substantially different.
In general, partial similarity is a weaker criterion, as it does not require the
whole shapes to be similar, but rather parts of them. Typically, partially
similar objects have similar parts but are globally dissimilar. Furthermore,
the partial similarity relation is intransitive. In our mythological example,
whereas a centaur is partially similar to a man and a horse, a man and a
horse are dissimilar (Figure 11.2). As a result, if we consider partial similarity
as an abstract distance on the space of our objects, as we did in the previous
chapter, it will not be a metric, as the triangle inequality does not hold.2

A. Bronstein et al., Numerical Geometry of Non-Rigid Shapes, 217
Monographs in Computer Science, DOI 10.1007/978-0-387-73301-2 11
c© Springer Science+Business Media, LLC 2008
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Figure 11.1. Centaurs (Greek κένταυρoι) are a mythological race of half-human
half-horse creatures. Marble depiction of centaur Nessus by Laurent-Honoré Mar-
queste, 1892, Tuileries Gardens, Paris.

11.1 Recognition by parts

Conceptually, the human visual perception can be thought of as a three-stage
process: division of the shapes into meaningful parts, comparison of the parts
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Figure 11.2. Partial similarity is an intransitive relation.

separately, and merging of the “partial” similarities (Figure 11.3). Alex Pent-
land referred to such a mechanism as “recognition by parts” [310]. For us,
all the stages of this task seem so natural that we almost never notice it in
everyday life, unless it is lost due to neurological disorders – sometimes, in
quite peculiar ways. A remarkable case was described by the British psychi-
atrist Oliver Sacks in his book The Man Who Mistook His Wife for a Hat
[331]. A patient, suffering from a rare disease called visual agnosia, was able
to recognize parts of objects and describe them in detail, but at the same
time, failed to recognize the entire objects.

More formally, partial similarity can be derived from a full similarity cri-
terion in the following way. Given two objects X and Y , we first decompose
them into parts X1, . . . , XK and Y1, . . . , YL. Then, each pair of parts is com-
pared by using some full similarity criterion dF, which is selected depending
on the type of the objects being compared and the desired properties of such
comparison (for instance, comparing rigid objects, we will select dF as the
Hausdorff distance, and comparing nonrigid objects, we will use the Gromov-
Hausdorff distance). The partial similarity can be defined as some aggregation
of part-wise full dissimilarities, for example,



220 11 Partial Similarity

Figure 11.3. Recognition by parts.

dP(X, Y ) = min
i=1,...,K

j=1,...,L

dF(Xi, Yj).

Unfortunately, we do not have a clear understanding of how our brain
partitions the objects we see into meaningful parts [19]. Consequently, we
cannot provide a precise recipe for finding X1, . . . , XK and Y1, . . . , YL in the
“algorithm” described above. Many attempts to imitate the human “recogni-
tion by parts” in the literature on object recognition use ad hoc definitions
[112, 237, 325, 358, 42]. Some examples include parts described as convex or
near-convex subsets [206, 230], primitive geometric objects [34, 33, 17, 310],
or parametric description derived from a model of the shape class [81, 202].
The meaningfulness of parts described in such ways is not always obvious,
and therefore, such approaches are generally limited.

In a recent paper, Latecki et al. [241] proposed a partial similarity criterion
that avoids the necessity to use arbitrary shape partition.3 A meaningful part
is defined as the most similar common part of two shapes and is practically
found by simplifying the shapes until they look the most similar, in the sense
of some full similarity dF. The easiest way to perform shape simplification is
by removing parts from it. The partial similarity by Latecki et al. (referred to
by the authors as the optimal partial similarity) can be formulated as follows:

dOPS(X, Y ) = inf
X′∈ΣX

dF(Y, X ′c).

Here X ′c = X \X ′c is the simplified shape obtained by removing the part X ′

from it. ΣX is the set of all the possible parts of X , a subset of the powerset
2X . 4
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Figure 11.4. Grotesque medieval monsters composed of human body parts are an
example of how the human perception of partial similarity can be misleading (wood-
cuts from folio XIIr of Hartman Schedel’s 1493 Liber Chronicarum [337], Morse
Library, Beloit College. Reproduced by courtesy of Constantine T. Hadavas).

Note that the object Y is used entirely, whereas parts are cropped only
from X ; this makes the distance dOPS non-symmetric. Latecki et al. give an
analogy with text search according to keywords: the large object X can be
thought of as text and a small query object Y as a keyword. The optimal
partial similarity approach relies on a tacit assumption that the query object
Y is carefully selected in order to be sufficiently representative, very much like
text search is sensitive to the selection of keywords.

However, in many situations, the knowledge of parts similarity does not
allow us to infer information about the similarity of the whole objects – we may
be comparing small parts that happen to be similar, yet, belong to objects that
are completely different. For example, a leg is supposed to be a representative
part according to which we would recognize an object as a human body;
this is a prior information we have acquired during our lives and use in our
judgment of similarity. Yet, applied to grotesque medieval monsters depicted
in Figure 11.4, this judgment could be wrong: the shapes, though including
legs, are not of human beings. Normally, one would label such objects as
“weird” or “strange,” implying that they look differently from what we are
used to.5

11.2 Paretian approach to partial similarity

The above example teaches us that often two dissimilar shapes have many
common parts, yet, using these parts to conclude that the shapes are similar
would be wrong. The existence of common similar parts appears to be insuffi-
cient per se: such a criterion does not describe how significant such parts are.
It is clear that some parts carry more information that allows us to recognize
the entire object, hence they are more significant than other parts.

The most straightforward way to quantitatively define significance is by
making it proportional to the “size” of the parts: the larger is the part, the
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more it is significant. For the following formulation, it is convenient to define
partiality λ(X ′, Y ′), which represents how small X ′ and Y ′ are compared with
the entire surfaces X and Y (the larger is the partiality, the smaller are the
parts). In shape comparison problems, it is natural to use

λ(X ′, Y ′) = μX(X ′c) + μY (Y ′c) (11.1)
= (μX(X) + μY (Y )) − (μX(X ′) + μY (Y ′))

as the partiality, where

μX(X ′) =
∫

X′
da (11.2)

is the measure of area derived from the Riemannian structure of X . The
partiality can also be interpreted as a measure of “reliability” of our judgment
of similarity: if there exist two parts of the objects that are similar, but these
parts are small, our conclusion about the similarity of the entire objects is
unreliable.

Following this logic, in order for two objects to be partially similar, they
must have significant similar parts. The computation of partial similarity be-
tween X and Y can be therefore formulated as a problem of finding a pair of
parts (X ′, Y ′) with minimum dissimilarity dF(X ′, Y ′) and minimum partiality
λ(X ′, Y ′). More formally, we define a multicriterion optimization problem,6 in
which a vector objective function Φ(X ′, Y ′) = (λ(X ′, Y ′), dF(X ′, Y ′)) is mini-
mized over Ω = ΣX ×ΣY . Because we optimize over all the possible combina-
tions of parts, the headache of finding a meaningful shape partition is avoided
– we obtain it as a by-product of our solution, like in the method by Latecki
et al. [241].

It is important to understand that partiality and dissimilarity are com-
peting, such that no solution simultaneously optimal for both can be found,
unless X and Y are fully similar. One consequence is that the notion of op-
timality used in traditional scalar optimization must be replaced by a new
one, adapted to the multicriterion problem. Recall that for a scalar objec-
tive function f : R

N → R, we define a global minimizer as a point x∗, for
which the value of the objective is “the best,” or, said differently, there does
not exist another x such that f(x∗) > f(x). In the vector case, we cannot
straightforwardly apply this definition, as there does not exist a total order
relation between vectors: we cannot say, for example, whether (0.5, 1) is better
than (1, 0.5) or vice versa. At the same time, there is no doubt that (0.5, 0.5)
is better than (1, 1), because it has both criteria smaller. We can therefore
define partial order between vectors, saying that (λ1, ε1) < (λ2, ε2) if λ1 < λ2

and ε1 < ε2 simultaneously.
Using this relation, we define a minimizer of our vector objective Φ as a pair

(X∗, Y ∗), such that there is no other pair (X ′, Y ′) ∈ Ω for which Φ(X∗, Y ∗) >
Φ(X ′, Y ′), where the inequality is understood in the vector sense. Such a
point is called Pareto optimal,7 after the Italian economist Vilfredo Pareto
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Figure 11.5. Illustration of the multicriterion optimization problem used for the
computation of partial similarity. The Pareto frontier is shown as a curve.

(1842–1923), who first introduced this notion [307]. An intuitive explanation of
Pareto optimality is that no criterion can be improved without compromising
the other: if we try to reduce the dissimilarity, we necessarily increase the
partiality, and vice versa. Note that Pareto optimum is not unique. If we
denote by Ω∗ ⊆ Ω the set of all pairs (X∗, Y ∗) satisfying the above condition,
the set of the corresponding criteria values Φ(Ω∗) can be represented as a
planar curve referred to as the Pareto frontier (see Figure 11.5).

The notion of Pareto optimality brings us to a somewhat unorthodox con-
cept of partial similarity: the entire Pareto frontier is used as generalized,
set-valued distance. We denote dP(X, Y ) = Φ(Ω∗) and call it the Pareto dis-
tance. The dissimilarity value at the point λ = 0 on dP(X, Y ) coincides with
the value of the full similarity dF(X, Y ). Consequently, the information con-
tained in the set-valued Pareto distance is a superset of that contained in the
traditional full similarity. The following example accentuates this difference.

Example 11.1 (set-valued distances). Consider the shapes depicted in
Figure 11.6: a man, a spear-bearer, and a centaur. We would like to find
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their partial intrinsic similarity. The Gromov-Hausdorff distance (acting as
dF in this example and corresponding with the point with λ = 0 on the
Pareto frontier) between the man and the spear-bearer is large, due to the
distortion caused when trying to embed the spear into the spear-less human
shape. Similarly, the Gromov-Hausdorff distance between the man and the
centaur is large due to the distortion caused by the bottom part of the horse
body, which has approximately the same diameter as the spear. Hence, from
the point of view of global intrinsic similarity, the man is approximately as
dissimilar to the spear-bearer as it is dissimilar to the centaur. This is the
only information we can infer from the scalar-valued distance.

However, if we consider the entire Pareto frontier, we see that the curve
representing the set-valued distance between the man and the spear-bearer
decays much faster compared with the one representing the distance between
the man and the centaur. The reason is that in order to make a spear-bearer
similar to a man, we have to remove only a small part (the spear), whereas
in order to make a centaur similar to a man, we have to remove large parts
(the horse body from the centaur and the legs from the man). Thus, from
the set-valued distances, we can infer that the man is more similar to the
spear-bearer than to the centaur, which corresponds with our intuition.

11.3 Scalar partial similarity

Although containing more information than scalar-valued distances, the in-
convenience of Pareto distances is that they are not always mutually compa-
rable. This problem stems from the absence of a total order relation between
vectors: we can say that dP(X, Y ) < dP(X, Z) (meaning that X and Z are
more partially dissimilar than X and Y ) only if the curve dP(X, Y ) is entirely
below dP(X, Z) (in Example 11.1, the man–spear-bearer Pareto distance was
below the man–centaur distance, therefore, we could say that a man is more
similar to a spear-bearer than to a centaur). In order to define a total order
between partial similarities, we have to convert our set-valued Pareto distance
into a scalar-valued one. We refer to such a “scalarized” partial dissimilarity
criterion as a scalar partial distance and denote it by dSP(X, Y ).

Straightforwardly, a scalar partial distance can be obtained by selecting a
single point on the Pareto frontier. For example, with a fixed partiality λ0,
we can set a minimum threshold on the area of the parts we compare. This
way, small values of λ0 will make our criterion more reliable but at the same
time, more restrictive: in order to say that two shapes are partially similar,
they must have larger parts. The extreme case of λ0 = 0 brings us back to
the full similarity.

The scalar partial distance in this case is computed as the solution to a
constrained optimization problem with a scalar valued objective,

dSP(X, Y ) = min
(X′,Y ′)∈Ω

dF(X ′, Y ′) s.t. λ(X ′, Y ′) ≤ λ0,
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Figure 11.6. Visualization of the difference between scalar-valued and set-valued
distances.

which can be reformulated as an unconstrained optimization problem,

dSP(X, Y ) = min
(X′,Y ′)∈Ω

dF(X ′, Y ′) + ηλ(X ′, Y ′), (11.3)

by introducing the Lagrange multiplier η. Alternatively, we can set the dis-
similarity to ε0 and define the scalar partial similarity as the area of the parts
we have to remove from the objects X and Y in order to make the remaining
parts ε0-dissimilar. Such a criterion may be useful for numerical computation
if we know in advance a bound on the accuracy of sampling and geodesic dis-
tance measurement and say that below the value of ε0, our distance is unable
to discern between the shapes.

We should however note that in most cases, it is impossible to pre-set a
value of dissimilarity or partiality suitable for partial comparison of different
objects, but these values should be chosen adaptively (in Example 11.1, for
instance, we could fix a small λ0 to compare the man and the spear-bearer
but would be forced to choose a large λ0 to compare the man and the cen-
taur). A pretty generic approach for such a choice was proposed by Mindia
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Salukwadze8 in the context of control theory [333]. Recall that in our multi-
criterion optimization problem, we wish to bring to minimum the partiality
λ and the dissimilarity dF. Ideally, both of them should be zero, which cor-
responds with the “utopia point” (0, 0); however, this point is usually not
achieved. Salukwadze proposed quantifying the degree of non-optimality of
a solution (X ′, Y ′) by measuring the distance of Φ(X ′, Y ′) from the utopia
point. A solution yielding the minimum distance is called Salukwadze optimal.
It can be shown that Salukwadze optimum is necessarily realized on Ω∗ (the
proof is straightforward and we leave it as Problem 11.1). In a sense, Saluk-
wadze optimum can be considered as a measure of how “fast” the Pareto
frontier curve decays.

Using this idea, we can define the scalar partial distance (Salukwadze dis-
tance) as

dSP(X, Y ) = inf
(X′,Y ′)∈Ω

‖Φ(X ′, Y ′)‖.

Here, ‖ · ‖ is some norm on R
2
+ that is used to measure the distance from the

utopia point. If, for example, we use the weighted L1-norm, the Salukwadze
distance is given as an aggregation of the partiality and the dissimilarity, which
is exactly optimization problem (11.3). Changing the value of the multiplier η
allows us to control the location of the selected point on the Pareto frontier.

11.4 Fuzzy approximation

A more significant drawback of our multicriterion optimization framework for
the computation of partial similarity is that optimization is performed over
all possible parts of the objects, ΣX ×ΣY . In a discrete setting, this problem
becomes intractable, as the number of possible parts explodes exponentially
as the number of samples grows.9 In order to overcome this difficulty, we
need to find a different way to represent the parts. A subset of X can be
characterized by a function mX : X → {0, 1}, which indicates whether a
point belongs to the subset or not. Our problem is thus posed as optimization
over (mX , mY ) instead of the parts (X ′, Y ′) and is still intractable, as the
requirement that mX and mY obtain the values of 0 or 1 only results in a
combinatorial optimization problem.

A computationally tractable problem is obtained by relaxing the values
of mX to the entire interval [0, 1]. Resorting to such a relaxation, we break
the boundaries of the traditional set theory and land in the realm of fuzzy
set theory, introduced in 1965 by Lotfi Zadeh [407, 408]. In fuzzy set theory,
unlike the traditional “crisp” one, instead of saying that a point x belongs to
a subset of X , we define the degree of its membership. The function mX is
referred to as a membership function.

Adapting our problem to the new setting, we need to recall that our partial
similarity has three ingredients: sets of parts, partiality, and dissimilarity. The
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Figure 11.7. Example of a crisp (left) and a fuzzy part (right). Darker shades
correspond with larger values of the membership function.

fuzzy versions of these definitions will be an extension of the crisp ones. A
fuzzy part is defined by its membership function mX : X → [0, 1] (see example
in Figure 11.7). The complement of a fuzzy part is defined as mc

X = 1−mX ,
which coincides with the standard definition on crisp sets. We say that a
membership function mX is ΣX -measurable if thresholding mX at a value of
0 ≤ θ ≤ 1 always produces a set {x : mX(x) ≤ θ} belonging to ΣX . We
define the set MX of all the fuzzy parts as the set of all the ΣX -measurable
membership functions. Obviously, MX is a superset of ΣX (the reader is
requested to prove this straightforward fact in Problem 11.2).

A fuzzy version of partiality (11.1) can be obtained in the following way.
First, we define the fuzzy measure as

μ̃X(mX) =
∫

X

mX(x)dμX ,

for all mX ∈ MX . For crisp parts, the fuzzy measure μ̃X boils down to the
standard measure μX . Using this definition, the fuzzy partiality is given as

λ̃(mY , mY ) = μ̃X(1 − mX) + μ̃Y (1 − mY ),

and it also coincides with λ on crisp sets.
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repeat1

Fix the fuzzy parts mX , mY and find the correspondences ϕ and ψ,2

(ϕ, ψ) = argmin
ϕ:X→Y

ψ:Y →X

σ(mX , mY , ϕ, ψ).

Fix the correspondences ϕ and ψ and find the fuzzy parts mX , mY ,3

(mX , mY ) = min
(mX ,mY )∈Ω̃

σ(mX , mY , ϕ, ψ) s.t. λ̃(mX , mY ) ≤ λ0.

until convergence4

Algorithm 11.1. Fuzzy Pareto distance computation.

The definition of the fuzzy dissimilarity is trickier and depends on the type
of full similarity used. For the following discussion, we assume that the fuzzy
dissimilarity can be written in the form

d̃F(mX , mY ) = min
ϕ:X→Y

ψ:Y →X

σ(mX , mY , ϕ, ψ),

where σ(mX , mY , ϕ, ψ) is a fuzzy version of the stress function, measuring an
aggregate of some local dissimilarity between the corresponding points. We
will see a few specific examples in the following sections.

The multicriterion optimization problem is similar to the crisp case with
all the crisp quantities replaced by fuzzy ones: we minimize the objective
function Φ̃(mX , mY ) = (λ̃(mX , mY ), d̃F(mX , mY )) over Ω̃ = MX ×MY . The
Pareto optimal set Ω̃∗ and the Pareto frontier Φ̃(Ω̃∗) are defined exactly as
before. We call the set-valued distance d̃P(X, Y ) = Φ̃(Ω̃∗) the fuzzy Pareto
distance.

A single point on d̃P(X, Y ) is computed as a scalar partial distance by
fixing a value of partiality λ̃(mX , mY ) ≤ λ0 and minimizing d̃F(mX , mY )
with respect to mX , mY subject to this constraint,

d̃SP(X, Y ) = min
(mX ,mY )∈Ω̃

d̃F(mX , mY ) s.t. λ(mX , mY ) ≤ λ0,

= min
(mX ,mY )∈Ω̃

min
ϕ:X→Y

ψ:Y →X

σ(mX , mY , ϕ, ψ) s.t. λ(mX , mY ) ≤ λ0.

One can notice that this problem involves two sets of variables: the fuzzy parts
mX , mY and the correspondences ϕ and ψ. These two sets of variables can
be decoupled, resulting in the following two-stage iterative scheme shown in
Algorithm 11.1.

By gradually varying the value of λ0 from zero to μX(X)+μY (Y ), the en-
tire Pareto frontier can be obtained. We should emphasize that Algorithm 11.1
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is generic: depending on the definition of σ (expressing the full similarity cri-
terion), we can obtain different ways to define the partial similarity. In the
next sections, we show two specific examples: a partial version of extrinsic and
intrinsic similarity criteria.

11.5 Extrinsic partial similarity

A reader remembering our discussion on rigid shape matching in Chapter 6
will find a resemblance between ICP methods and our Algorithm 11.1. In
ICP algorithms, we had an alternating minimization over correspondence and
rigid motion, which minimized extrinsic dissimilarity (for example, a non-
symmetric L2 version of the Hausdorff distance). Here, we also need to opti-
mize over the parts and can formulate partial extrinsic similarity as finding
parts of given size, such that the ICP distance between them is minimized.

Recall from Chapter 6 that if we know the closest point correspondences

x∗(y) = min
x∈X

‖x − y‖2

y∗(x) = min
y∈Y

‖y − x‖2

between the shapes, the symmetric L2 version of the ICP distance can be
written as

dICP(X, Y ) = min
R,t

∫

X

‖x − (Ry∗(x) + t)‖2
2 dx

+
∫

Y

‖(Ry + t) − x∗(y)‖2
2 dy,

where R and t express the rotation and translation transformation. Once the
optimal rigid motion R and t is found, the correspondences x∗(y) and y∗(x)
are recomputed, and the process is iterated until convergence.

If we wish to compare parts of X and Y rather than the entire shapes, we
should limit the integration domain to those parts only. In the fuzzy setting,
this can be done by using the membership functions mX and mY as the
weights,

d̃ICP(mX , mY ) = min
R,t

∫

X

‖x − (Ry∗(x) + t)‖2
2 mX(x)dx (11.4)

+
∫

Y

‖(Ry + t) − x∗(y)‖2
2 mY (y)dy.

In Step 2 of Algorithm 11.1, the parts mX and mY are fixed. By solving
problem (11.4), we find the optimal weighted rigid alignment between the
shapes, realized by the transformation (R∗, t∗). This, in turn, allows us to
define the optimal correspondences,
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ϕ(x) = argmin
y∈Y

‖x − (R∗y + t∗)‖2
2; (11.5)

ψ(y) = argmin
x∈X

‖(R∗y + t∗) − x‖2
2.

In Step 3, we fix the correspondences according to (11.5) and perform opti-
mization over the parts,

(mX , mY ) = argmin
mX ,mY

∫

X

‖x − ϕ(x)‖2
2 mX(x)dx

+
∫

Y

‖y − ψ(y)‖2
2 mY (y)dy

s.t. λ̃(mX , mY ) ≤ λ0.

We should note that numerically, Step 2 is nothing else but a weighted
version of the ICP algorithm, carried out by optimization schemes we have
described in Chapter 6. The weights in the discretized problem are represented
as vectors containing the point-wise values of the membership functions. Step 2
involves constrained optimization over the discretized membership functions.
This appears to be a well-structured optimization problem, which can be
solved efficiently (we refer the reader to [55] for additional details).

To summarize our discussion of partial rigid similarity, we show the fol-
lowing example illustrating the method.

Example 11.2 (extrinsic partial similarity of rigid shapes). As a
demonstration of extrinsic partial similarity computation, we reproduce a nu-
merical experiment from [55]. In this experiment, male and female figures in
similar poses are compared as rigid shapes using the described approach with
partiality set to half of the sum of the shape areas. Figure 11.8 depicts the
corresponding parts in the two shapes. Observe that the computed parts suffer
from irregularity. We will address this issue in the conclusion of this chapter.

11.6 Intrinsic partial similarity

The derivation of intrinsic partial similarity is very similar in its spirit to the
derivation of the extrinsic partial similarity above. For simplicity, we start with
an L2 formulation. Given the correspondences ϕ and ψ between the shapes
X and Y , we can use the generalized L2-stress to measure their intrinsic
similarity,

σ2(ϕ, ψ) =
∫

X×X

|dX(x, x′) − dY (ϕ(x), ϕ(x′))|2 da × da (11.6)

+
∫

Y ×Y

|dY (y, y′) − dX(ψ(y), ψ(y′))|2 da × da.
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Figure 11.8. Extrinsic partial similarity of rigid shapes. Highlighted are the cor-
responding parts. See insert for image in color.

Expression (11.6) can be regarded as a symmetric L2 version of the embedding
distance we have seen in Chapter 10 (here, we embed X into Y and vice versa).
When we wish to compare parts of the shapes, we use a continuous equivalent
of the weighted stress,

σ2(mX , mY , ϕ, ψ) =
∫

X×X

|dX(x, x′) − dY (ϕ(x), ϕ(x′))|2 mX(x)mX(x′)da × da

+
∫

Y ×Y

|dY (y, y′) − dX(ψ(y), ψ(y′))|2 mY (y)mY (y′)da × da, (11.7)

like we did in the case of the ICP algorithm. Note that the weight is point-
wise rather than pair-wise. This means that if we remove a point (by setting
its membership to zero), all the distances from this point are not taken into
account in the stress computation.

From this point on, Algorithm 11.1 goes straightforwardly. In Step 2, we
fix the fuzzy parts and find the best correspondences that minimize the stress
σ2(mX , mY , ϕ, ψ). Numerically, this is carried out using a weighted version of
GMDS. Note that the variables in the two terms of the stress are decoupled:
we can embed X into Y and Y into X independently, or in other words, find
ϕ independently of ψ. Having fixed the correspondences, Step 3 is performed
by minimizing σ2(mX , mY , ϕ, ψ) over the fuzzy parts mX and mY under the
constraint λ̃(mX , mY ) ≤ λ0.

If one wishes to use the Gromov-Hausdorff distance rather than an L2

criterion for the computation of partial intrinsic similarity, the derivation is
a bit trickier. In the crisp case, the dissimilarity of the parts dGH(X ′, Y ′) is
expressed in terms of the distortions of the maps between the parts (ϕ : X ′ →
Y ′ and ψ : Y ′ → X ′). In the fuzzy setting, we have to rewrite the Gromov-
Hausdorff distance using maps defined on the entire objects (ϕ : X → Y and
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ψ : Y → X). It can be done in the following way,

d̃GH(mX , mY ) =
1
2

inf
ϕ:X→Y

ψ:Y →X

σGH(mX , mY , ϕ, ψ), (11.8)

where

σGH(mX , mY , ϕ, ψ) =

max

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

sup
x,x′∈X

mX(x)mX(x′)|dX(x, x′) − dY (ϕ(x), ϕ(x′))|

sup
y,y′∈Y

mY (y)mY (y′)|dY (y, y′) − dX(ψ(y), ψ(y′))|

sup
x∈X
y∈Y

mX(x)mY (y)|dX(x, ψ(y)) − dY (ϕ(x), y)|

D sup
x∈X

(1 − mY (ϕ(x)))mX (x)

D sup
y∈Y

(1 − mX(ψ(y)))mY (y)

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

, (11.9)

and D ≥ max{diam(X), diam(Y )}. When mX and mY are crisp parts, such
a definition is just an equivalent way to write the Gromov-Hausdorff distance
(see Problem 11.3). The computation of the partial similarity is performed in
the same way, with σ2(mX , mY , ϕ, ψ) replaced by σGH(mX , mY , ϕ, ψ).

Example 11.3 (intrinsic partial similarity of mythological creatures).
As an example of intrinsic partial similarity computation, we show a numerical
experiment performed on the set of mythological creatures. The set contains
five different objects (horse, centaur, seahorse, male, and female). Each object
appears in five instances, representing its nearly-isometric deformations (Fig-
ure 11.9). We compare two criteria: full intrinsic dissimilarity (the Gromov-
Hausdorff distance dGH) and partial intrinsic dissimilarity (scalar partial dis-
similarity d̃SP, computed using the fuzzy approximation scheme described
above). Both criteria are computed using 50 samples on the shapes. The
matching results are visualized in Figure 11.10 as dissimilarity matrices (the
color of each element in the matrix represents the dissimilarity; the darker the
smaller). Being an intrinsic criterion of similarity, the Gromov-Hausdorff dis-
tance captures the intra-class similarity of shapes (i.e., that different instances
of the same objects are similar). However, it fails to adequately capture the
inter-class similarity: the centaur, horse, and seahorse appear as dissimilar.
On the other hand, the partial similarity captures correctly both the intra-
and inter-class similarity (the centaur, horse, and seahorse are similar).

11.7 Not only size matters

Thus far, in defining the significance of parts we considered only their size,
trying to find the largest and most similar parts, without saying anything
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Figure 11.9. Three-dimensional mythological creatures data set.

about what these parts look like. It appears that in some cases, such a for-
mulation may tend toward preferring to select a large number of disconnected
parts, small in size and similar on one hand and summing up to a large area
on the other (for instance, this is a behavior observed in Example 11.2). The
conclusion is that in the problem of partial similarity, not only size matters:
the definition of significance should account not only for the area but also for



234 11 Partial Similarity

Full similarity Partial similarity

Figure 11.10. Intrinsic similarity of mythological creatures computed using dGH

and d̃SP. Shown are dissimilarity matrices (darker colors mean smaller dissimilarity).

the “quality” of the parts [55]. For example, we would probably prefer a sin-
gle part than multiple parts even with larger area. To quantitatively express
the “quality” of the parts, we can define an irregularity function r(X ′) and
add it as the third criterion into our vector-valued objective function. This
new multicriterion optimization problem requires simultaneous minimization
of dissimilarity, partiality, and irregularity r(X ′) + r(Y ′). The Pareto frontier
in this case becomes a surface in R

3 (Figure 11.11).
The most straightforward definition of the irregularity is the boundary

length: given a part X ′ with boundary ∂X ′, we define irregularity as

r(X ′) =
∫

∂X′
d. (11.10)

In case of two-dimensional shapes, fixing the area of the part and minimizing
the boundary length will produce a circle, which is the shape with the smallest
possible perimeter to area ratio and has the highest regularity.10

Unfortunately, this result cannot be immediately generalized to non-
Euclidean manifolds, such that small boundary length of a part of a manifold
does not necessarily guarantee that the part is “good.” It may appear, for ex-
ample, that a part consisting of a single connected component and another one
consisting of multiple disconnected components have equal area and boundary
length. In this case, we can use a topological regularity criterion, defined as
the genus of X ′, which, as we have seen in Chapter 2, can be expressed as

r(X ′) = 1 − 1
2

∫

X′
K(x)dx − 1

2

∫

∂X′
κg(x)d,
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Figure 11.11. Three-dimensional Pareto frontier in the space of the dissimilarity,
partiality, and irregularity criteria.

according to the Gauss-Bonnet theorem. Such a definition penalizes parts
having holes or multiple disconnected components (and, thus, larger genus),
and provide the desired topological regularity.

In the fuzzy case, there is no “boundary” in the strict sense. However, we
can replace integration along the boundary by integration of the band in which
the membership function changes from small to large values. The regularity
criterion (11.10) can be approximated as

r̃(mX) =
∫

X

δ(mX(x) − 0.5) ‖∇XmX(x)‖ dx, (11.11)
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where δ denotes the Dirac delta function, in practice approximated by

δ(t) ≈ ε

π(ε2 + t2)
,

and ∇XmX(x) is the intrinsic gradient of mX at the point x. The quantity
‖∇XmX(x)‖ can be thought of as the length of the extrinsic gradient vector
∇R3mX projected on the tangent space of X at a point x.

Regularization of the form (11.11) was introduced by Mumford and Shah
[288] and used for segmentation problems in computer vision [96]. In our for-
mulation, it can be thought of as an extension of the Mumford-Shah functional
to general non-Euclidean manifolds. The influence of such regularization on
the selected part shape is depicted in Figure 11.12. Concluding this chapter,
we should note that the definition of significance of parts still remains an open
question.

Suggested reading

A good review of early shape similarity methods, including the problem of
shape partitioning, is presented in the paper of Basri et al. [19]. For a dis-
cussion on partial shape similarity, we refer the reader to Latecki et al. [241].
A generic framework of partial similarity of objects, going beyond geometric
shapes, is presented in [58]. For additional details on numerical implementa-
tion and examples, the reader is referred to [57] and [56, 59] (dealing exclu-
sively with two-dimensional object recognition). A more extensive discussion
of regularized partial similarity can be found in [55]. For classic references on
multicriterion optimization, see [333, 303]; a more recent reference is the book
by Miettinen [274]. Boyd and Vandenberghe [46] present the notion of Pareto
optimality briefly but comprehensively. As an introduction to fuzzy logic and
fuzzy set theory, we refer to [229, 416]. An interesting view on fuzzy sets from
the perspective of metric geometry is presented in [136].

Problems

11.1.� Show that a Salukwadze optimum is also a Pareto optimum.

11.2. Show that characteristic functions representing crisp parts belong to
MX .

11.3.� Show that the definition (11.8) is equivalent to the Gromov-Hausdorff
distance for crisp parts.

11.4. What will be the consequence of choosing large values of D in the
computation of the fuzzy Pareto distance? Explain.
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Figure 11.12. The selected part in Example 11.2 for different values of partiality
and irregularity. Observe that for stronger regularization (or, equivalently, smaller
irregularity), the part moves to decrease the boundary length at the expense of
dissimilarity.

11.5. Show that if D = max{diam(X), diam(Y )}/θ(1 − θ), where 0 < θ < 1
is a parameter, the following relation between dP and d̃P holds:

d̃P(X, Y ) ≤
(
(1 − θ), θ−2

)
· dP(X, Y ),

where the inequality is understood in the vector sense.

11.6. In lossy image and video compression, a fundamental problem is the
trade-off between the amount of information used to describe the data (rate)
and the amount of error introduced by the compression process (distortion).
Describe the rate-distortion optimization problem from the perspective of
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partial similarity. Prove that the Pareto frontier (the rate-distortion curve) is
convex.

11.7. Show a closed form solution for the best rigid motion between the two
sets of corresponding points {xi}N

i=1 and {yi}N
i=1, minimizing the weighted

point-to-point distance

N∑

i=1

wi‖xi − (Ryi + t)‖2
2,

where wi are non-negative weights.

Notes
1The example of centaurs was given by Jacobs et al. [213].
2Distances not satisfying the triangle inequality are generally referred to as pra-

metrics. Psychological research (see, e.g., [385]) shows that such type of distances
can be used to describe human reasoning when judging similarity.

3The paper by Latecki et al. [241] discusses two-dimensional shapes represented as
polylinear curves and uses the similarities defined respectively, though their concepts
can be generalized to generic shape representation and other similarities, as we do
here.

4Technically, we require ΣX to be a σ-algebra (a subset of 2X closed under
complement and countable union) in order to guarantee that the shape simplification
is well defined. This requirement guarantees that X is a part of itself and that X ′c

is also a part.
5In [59], we used a frivolous cartoon Temptation by the Danish cartoonist Herluf

Bidstrup in order to exemplify an everyday situation in which partial similarity
could be misleading. It was removed from the book due to copyright considerations.

6Multicriterion optimization problems are widely known in information theory.
For example, the bias and the variance of an estimator in statistical estimation or
distortion and bitrate in lossy signal compression [130] can be considered as two
competing criteria that should be simultaneously minimized.

7In some references, Pareto optimum is also referred to as Edgeworth-Pareto op-
timum, crediting the Irish economist Francis Ysidro Edgeworth (1845–1926), whose
mathematical formalism presented in the book Mathematical Psychics [145] was
later adopted by Pareto.

8Sometimes alternatively transliterated as Salukvadze.
9The number of possible subsets of a discrete surface sampled at N points is 2N .

10This result is known as isoperimetric inequality, stating that 4πa ≤ p2, where p
is the perimeter of a closed curve and a is the area enclosed by it. Equality 4πa = p2

is realized on a circle.
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Non-rigid Correspondence and Calculus of

Shapes

In Chapter 1, we mentioned two main problems in the analysis of non-rigid
shapes: similarity and correspondence. Thus far, our main focus was on finding
similarity between objects. Now, we finally arrive to correspondence problems.
Automatic computation of correspondence is an important active research
field in computer graphics and computational geometry. In simple terms, the
correspondence problem consists of finding a mapping between two shapes
that copies similar features to similar features. The term “similar features”
in this context has a semantic rather than geometric meaning. For example,
we have no doubt how a “natural” correspondence between a cat and a dog
should look like, as both have two ears, two eyes, a nose, four legs, and a
tail. At the same time, it would probably be more difficult to consent about a
natural correspondence between a dog and a flamingo – because the bird has
only two legs whereas the dog has four, it is not clear, for example, which part
of the dog’s body corresponds with the bird’s wings. In computer graphics,
aesthetic considerations are often applied in such cases to judge the quality
of the correspondence.

Though the general correspondence problem is not well-defined mathe-
matically, restricting the surfaces of interest to a sufficiently narrow class of
similar objects increases the chances to express the problem in purely geomet-
ric terms. In Chapter 6, we have already encountered the rigid correspondence
problem when discussing iterative closest point algorithms. Here, we are going
to explore techniques to construct correspondences between non-rigid objects
and study several applications that rely on them. We will also see that corre-
spondence provides a tool to synthesize new objects and construct a calculus
of non-rigid shapes, which allows us to apply signal processing-like operations
to shapes.

A. Bronstein et al., Numerical Geometry of Non-Rigid Shapes, 239
Monographs in Computer Science, DOI 10.1007/978-0-387-73301-2 12
c© Springer Science+Business Media, LLC 2008
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12.1 Intrinsic parameterization

As a motivating example, we first go to a lower dimension and start our dis-
cussion from correspondence between curves (one-dimensional manifolds). Let
us be given two planar curves α : [0, a] → R

2 and β : [0, b] → R
2. Our goal is to

establish a bijective mapping between α and β copying corresponding points
on the two curves. Recall from Chapter 2 that a curve can be parameterized
so that

∫ t1

t0

‖α̇(t)‖dt = t1 − t0,

for any t0, t1 ∈ [0, L], where L is the length of α. Such a parameterization
is called the arclength parameterization, as the parameter t measures the
distance traveled along the curve. A handy property of arclength parameter-
ization is that it is unique for open curves and unique up to selection of the
starting point and direction for closed curves. For this reason, it can be consid-
ered as a canonical parameterization. Therefore, by reparameterizing α and β
using the arclength parameterization, the correspondence problem boils down
to finding an isometry ξ : [0, L] → [0, L] between the two parameterization
intervals.

The reader may protest that whereas the example of curves may be in-
sightful in visualizing rigid correspondence, it is over-simplistic and has little
sense in the non-rigid setting. Non-rigid deformations of curves are tremen-
dously boring, as all curves are isometric either to a straight line or to a
circle of corresponding length. Following the analogy of curves, we could try
extending our reasoning to surfaces, attempting to find a canonical parame-
terization for X and Y . Unfortunately, such a parameterization does not exist
for surfaces. The arclength parameterization of curves was possible thanks
to the existence of a total order relation between real numbers. Because no
such order exists in R

2, there is no analogy of arclength parameterization for
surfaces or higher-dimensional manifolds.

Nevertheless, we can still construct an intrinsic parameterization of the
surface, which will be independent of the extrinsic geometry and, consequently,
isometry-invariant. Formally, given a surface X and a parameterization do-
main U , our goal is to devise a procedure for constructing a bijective mapping
πX : U → X , such that for every isometric deformation f applied to X ,

f ◦ πX = πf(X), (12.1)

where (f ◦ πX) = f(πX(u)) denotes function composition. In their study
on texture mapping problems, Zigelman et al. [415], motivated by Schwartz
et al. [345], proposed to embed the surface into R

2, creating a minimum-
distortion parameterization. This approach can be expressed as the familiar
minimization problem,

ψ = arg min
ψ:X→R2

dis ψ,
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and solved using an MDS algorithm.
The embedding ψ can be interpreted as an inverse parameterization π−1

X ,
and its image U = ψ(X) as the parameterization domain. The process resem-
bles the computation of the canonical form discussed in Chapter 7, with the
only exception that here the embedding is performed into a two-dimensional
rather than a three-dimensional Euclidean space. Because the MDS problem
is expressed only in terms of geodesic distances on X , the parameterization
created this way is intrinsic.

As in the case of canonical forms, the minimum distortion parameteriza-
tion is defined up to the isometry group in R

2, namely, translations, planar
rotations, and reflections. Therefore, in order to find correspondence between
X and Y , their intrinsic parameterizations have to be aligned by finding a
congruence (i.e., a Euclidean isometry) ξ : R

2 → R
2, which brings the two

parameterizations into correspondence. The mapping ϕ : X → Y is then
expressed as ϕ = πY ◦ ξ ◦ π−1

X [214].

12.2 An image processing approach

A potential difficulty of using planar embedding for surface correspondence
stems from the fact that generally the surfaces are not isometric to the plane,
and like in the case of canonical forms, the embedding introduces inevitable
distortion. As a consequence, relation (12.1) holds only approximately, and
the computed correspondence may be inaccurate, as generally there exists
no congruence ξ bringing the two intrinsic parameterizations into a perfect
alignment.

The problem can be overcome by allowing ξ to be an arbitrary bijective
mapping between the two parameterization domains of X and Y . This can be
thought of as creating a low-distortion parameterization of X and Y , followed
by translating the correspondence problem into the parameterization domain.
Apparently, this reformulation does not make the problem easier, yet, now the
correspondence can be computed in the Euclidean parameterization domain,
which is usually easier to handle. Many correspondence techniques follow this
strategy, differing mainly in the way the map ξ is found [3].

Because the computation is performed in the two-dimensional parame-
terization domain rather than in R

3, the advantage of such approaches be-
comes especially pronounced when the surfaces are represented as geometry
images, that is, are parameterized and sampled on a regular Cartesian grid.
In their 2005 paper, Litke et al. [254] observed that well-established match-
ing and registration methods from image processing can be used to find the
correspondence between two shapes. It is common to find the correspondence
between two grayscale images I and J by minimization of the least-squares
error between I and the warped version of J ,

min
ξ

∫

(I(u) − J ◦ ξ(u))2du
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where the integration is performed in the image domain. Problems of this
type arise, for example, in the computation of optical flow in video sequences
[209] and disparity estimation in stereoscopic imaging [396, 261]. Following
the image processing spirit, the pursuit for the best correspondence between
two surfaces can be formulated as minimization of some local matching error
e(u, ξ) between π−1

X (X) and (πY ◦ ξ)−1(Y ), which gives rise to the following
minimization problem,

min
ξ:UX→UY

∫

UX

e(u, ξ)du. (12.2)

Here, UX = π−1
X (X) and UY = π−1

Y (Y ) denote the parameterization domains
of X and Y , respectively. Note that integration over UX is merely an example;
other error criteria such as the L∞ norm can be used instead. The local match
error e(u, ξ) measures the degree of dissimilarity between the point πX(u) on
X and the point πY ◦ ξ(u) on Y , based on some local features.

Note that the functional (12.2) and its minimizer depend on the parameter-
ization. While in image processing this is less an issue as the parameterization
is fixed, in our setting we have the freedom of choosing the surface param-
eterizations (ideally, but not necessarily, the parameterizations should have
as low distortion as possible). In order to make the minimization problem
independent of the choice of πX and πY , we have to substitute all coordinate-
dependent quantities by their intrinsic counterparts. For example, the Eu-
clidean differential element du has to be replaced by the differential area ele-
ment da =

√
det GXdu on X , where GX denotes the first fundamental form

of X in the coordinates of the parameterization. This yields the following
minimization problem,

min
ξ:UX→UY

∫

UX

e(u, ξ)
√

detGXdu. (12.3)

Clearly, the local match error e should also be parameterization-independent.
Various local matching errors exist in the literature. For example, Surazh-

sky and Elber [368] proposed to use the inner product between the unit surface
normals,

e(u, ξ) = 1 − 〈NX(πX(u)), NY (πY ◦ ξ(u))〉R3 , (12.4)

as a degree of surface mismatch. However, while being invariant to translation
and scaling, normals are sensitive to non-rigid deformations. In order to obtain
an isometry-invariant local match error, an intrinsic geometric quantity has
to be used. Recall that in Chapter 2 we have encountered one such quantity
– the Gaussian curvature. A Gaussian curvature-based local match error,

e(u, ξ) = (KX(πX(u)) − KY (πY ◦ ξ(u)))2, (12.5)

is truly invariant to isometries. Its disadvantage is the fact that because the
curvature is a second-order quantity, it is more sensitive to noise. In general,
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e(u, ξ) is not necessarily limited to geometric features; for example, when X
and Y are endowed with photometric properties, those as well could be incor-
porated into the matching error. A remarkable use of photometric information
for registration of human faces is made in the studies by Vetter and Blanz
[36, 37, 35].

It is a well-known fact that for most reasonable types of e(u, ξ), the prob-
lem (12.3) is ill-posed due to the richness of the space of maps ξ : UX → UY .
This irregularity is manifested in the possibility to find a very irregular map
ξ giving a good local match, yet a poor global match. In such cases, we would
prefer to slightly compromise the local match in order to have a more regular
ξ. A “healthy” solution to ill-posed problems is generally found by introducing
a regularization into the cost function, whose goal is to penalize for irregular
solutions. Minimization problem (12.3) can be therefore rendered well-posed
by solving the regularized problem,

min
ξ:UX→UY

∫

UX

e(u, ξ)
√

detGXdu + R(ξ). (12.6)

The term R(ξ) is scaled to control the degree of regularization.
The regularizer R(ξ) conceals our prior knowledge on what a good corre-

spondence ξ should look like. Because there exists no universal recipe to select
it, different regularizations are possible. In image processing, one of the most
common choices for R(ξ) is

R(ξ) =
∫

‖∇ξ‖2
Fdu =

∫

(‖∇ξ1‖2 + ‖∇ξ2‖2)du. (12.7)

Here, ξ = (ξ1, ξ2)T, the 2 × 2 matrix

∇ξ =

(
∂ξ1

∂u1
∂ξ2

∂u1

∂ξ1

∂u2
∂ξ2

∂u2

)

,

is the Jacobian of ξ, and

‖∇ξ‖2
F = trace((∇ξ)T∇ξ) = ‖∇ξ1‖2

2 + ‖∇ξ2‖2
2,

is its Frobenius norm.
As before, in order to make this regularizer parameterization-invariant, the

differential element du has to be replaced by
√

detGXdu, and the Frobenius
norm ‖∇ξ‖2

F has to be replaced by its intrinsic counterpart,

‖∇ξ‖2
HS = trace(G−1

X (∇ξ)T(GY ◦ ξ)∇ξ),

called the Hilbert-Schmidt norm.1 Informally, this norm can be interpreted as
replacing the gradient ∇ξ by the intrinsic gradient and the standard Frobenius
norm by the Frobenius norm in the tangent space of Y at ξ(u). The obtained
regularization functional,
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R(ξ) =
∫

UX

‖∇ξ‖2
HS

√
detGXdu, (12.8)

is independent of the choice of parameterization, and can be rewritten in terms
of ϕ : X → Y as

R(ϕ) =
∫

X

‖∇Xϕ‖2
Y da. (12.9)

All quantities are now intrinsic, meaning that R(ϕ) is also invariant to isome-
tries of X and Y .

Litke et al. [254] give a physical interpretation to this regularizer. In elas-
ticity theory, the term G−1

X (∇ξ)T(GY ◦ ξ)∇ξ is known as the Cauchy-Green
deformation tensor, which expresses the square of local changes in distances
due to an elastic deformation. Its trace, expressed by ‖∇ξ‖2

HS, measures the
square of the average local change of length due to the deformation created
by pressing a thin rubber shell X into a mold having the form of Y . R itself
is called the Dirichlet energy functional and measures (up to a factor of 1

2 )
the elastic energy of the deformation.

12.3 Minimum distortion correspondence

The choice of an intrinsic local match error, like the one based on the Gaus-
sian curvature, and an intrinsic regularizer like (12.9), make the minimization
problem (12.6) invariant to isometries. By combining the two terms of the
minimized functional, we can formulate a general isometry-invariant corre-
spondence problem as

min
ϕ:X→Y

∫

X

e(x, ϕ) da,

where e(s, ϕ) can be expressed as

e(x, ϕ) =
∫

X

σ(dX(x, x′), dY (ϕ(x), ϕ(x′))) da,

with σ(dX , dY ) depending only on the metrics dX and dY . Consequently, our
correspondence problem assumes the form

min
ϕ:X→Y

∫

X×X

σ(dX(x, x′), dY (ϕ(x), ϕ(x′))) da × da. (12.10)

This minimization problem can be recognized as a GMDS problem with some
generalized distortion expressed as the integral over X × X , in which σ can
be interpreted as a local stress. For the particular choice of σ(dX , dY ) =
(dX − dY )2, the familiar least-squares version of GMDS is obtained.
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Figure 12.1. A minimum distortion correspondence between different postures
of a male figure computed using GMDS. Corresponding regions on the meshes are
denoted with the same colors (see insert for image in color). Note that the correspon-
dence is defined up to a self-isometry (symmetry) of both shapes; for example, the
correspondence between the two left-most and the two right-most shapes is reflected.

If previously we were looking for the distortion dis ϕ, which quantified the
intrinsic dissimilarity of the two objects, we are now interested in ϕ itself, or
formally,

ϕ = arg min
ϕ:X→Y

dis ϕ. (12.11)

We call this map the minimum-distortion correspondence between X and Y .
An example is shown in Figure 12.1. Note that the computation of ϕ can be
performed either directly on the surfaces themselves or in the parameterization
space if X and Y admit a global parameterization. The map ϕ can also be
interpreted as a parameterization of Y in X .

Minimum distortion correspondence is not limited to isometric surfaces.
Many classes of objects though not isometric share common (intrinsic) geo-
metric properties – for example, two different faces have nose, eyes, mouth,
and so forth. Finding the minimum distortion correspondence between two
faces can be visualized as the problem of putting a flexible rubber mask over
one face, trying to minimize its stretch. Obviously, in most cases we will place
the mask in such a way that the facial features coincide, at least roughly,
so that the correspondence is semantically correct. Practice shows that even
when dealing with two substantially different objects, the minimum distortion
map usually gives a reasonable correspondence (Figure 12.2). The approach
can also be applied to partially similar objects using the scheme described in
Chapter 11. An example is shown in Figure 12.3.

It is worthwhile noting that any intrinsic correspondence, including the
one computed using GMDS, is defined up to the isometry groups of the two
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Figure 12.2. A minimum distortion correspondence between male, female, and
gorilla figures computed using GMDS. Corresponding regions on the meshes are
denoted with the same colors (see insert for image in color). The male-female cor-
respondence (left) appears accurate (up to a symmetry reflecting the left and the
right) despite the differences in the intrinsic geometry. On the other hand, the min-
imum distortion correspondence between the male and the gorilla figures fails, as
the human legs are mapped to the elongated gorilla’s hands (second from the right).
Manually fixing four semantically correct landmarks in GMDS initialization fixes
the correspondence (right).

surfaces, meaning that if one or both surfaces have symmetries, there will be
multiple mappings ϕ : X → Y achieving the minimum distortion. In such a
case, there is no way to give any preference to one of these correspondences
based on the intrinsic geometry only, and we have to introduce extrinsic or
other (e.g., photometric) information in order to make the right choice. For
example, our face is known to have an approximate reflection symmetry with
respect to the vertical axis. Consequently, there may exist two minimum dis-
tortion correspondences, one mapping the left eye of X to the left eye of Y ,
and another mapping the left eye of X to the right eye of Y (Figure 12.1).
Adding an extrinsic constraint demanding that the correspondence does not
change the surface orientation would exclude the second possibility.

12.4 Texture mapping and transfer

Imagine that an animation studio wishes to create a synthetic animation char-
acter for its new movie. Developing an animation system that will allow the
character’s face to reproduce basic human expressions is a Sisyphean work,
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Figure 12.3. Partial minimum distortion correspondence. See insert for image in
color.

requiring months of manual labor of a group of artists. Because of budget
considerations, the producer may choose a much cheaper approach: scan a
human actor using a real-time three-dimensional scanner2 and create the syn-
thetic character by drawing his features on the actor’s face. Such a “virtual
makeup” is achieved by means of texture mapping and can create a realistic
face.

Consider a three-dimensional video (see an example in Figure 12.4) as a
sequence of surfaces Xt, where t represents the time index. Our goal is to map
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Figure 12.4. An example of a three-dimensional video acquired with a coded light
range scanner at 3 frames per second. Photometric information (texture) is not
shown.

a single texture image onto all Xt, which essentially consists of drawing a high
resolution RGB image containing the “texture” of the personage and finding
a set of correspondences that maps every point on the scanned surfaces into
image coordinates.3 Practically, this can be thought of as attaching a set of
vector fields ρt : Xt → R

3 to the surfaces Xt.
Despite some automation provided by modern 3D modeling tools, this pro-

cess is a manual work performed by an artist, usually taking a non-negligible
amount of time. Although it is feasible to manually map the texture onto a
single surface, it is clearly impractical to do such a work for each frame in the
scanned sequence, which may easily contain thousands of frames. However, if
we were able to automatically compute a correspondence ϕt : Xt → X0 be-
tween a frame Xt and the first frame X0, to which a texture ρ0 : X0 → R

3 was
mapped manually, we could generate a sequence of textures ρt = ρ0 ◦ ϕt for
all the frames Xt. The correspondence allows one to transfer the texture from
the manually created reference surface to the entire sequence (Figure 12.5).
Because the expressions of the human face are approximately isometries, the
minimum distortion correspondence generated by GMDS accurately maps the
features throughout the entire sequence.

The same technique can be applied to other objects, for example the hu-
man body, which fits the isometric model even better than does the human
face. Imagine that we would like a human actor to be used as a character in
a movie. The actor is first scanned in several poses, then, an artist draws the
texture that should be mapped onto the character. In order to avoid draw-
ing a different texture for each pose, the texture from some reference pose
has to be transferred to the rest of the poses of the character (Figure 12.6).
Following the “virtual makeup” analogy, such texture transfer can be thought
of as a computer-age version of body painting, a contemporary stream of art of
drawing clothes directly on the skin, in order to create an illusion of a genuine
dress. When the person moves, the drawn picture deforms naturally with the
skin, thus looking realistic practically in every pose of the body.

Texture transfer can also be used for the reverse problem of mapping the
texture of a human actor onto a synthetic animated personage, or “trans-
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Figure 12.5. A virtual makeup experiment from [72]. A green texture image (in-
spired by the DreamWorks Shrek movie) is automatically transferred from a man-
ually created reference frame using the minimum distortion correspondence estab-
lished by GMDS. See insert for image in color.

plantation” of photometric properties from one face to another (Figure 12.7).
Other surface attributes such as geometric details expressed as normal dis-
placement maps can can be transferred as well [195].

12.5 Morphing

Another application heavily relying on the ability to find correspondence be-
tween objects is morphing or metamorphosis (from Greek μετά, “beyond,”
and μóρϕως , “shape”), a seamless transformation of one object into another
(Figure 12.8). Morphing techniques have become widespread in computer
graphics, animation, and modeling, achieving spectacular results. One of such
first impressive uses of digital morphing appeared in Michael Jackson’s 1991
music video “Black or white.” Although much research has been conducted in
the field since then, the morphing process still requires a significant amount of
manual work to achieve aesthetically pleasant results. Automation of digital
morph remains a major research challenge.
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Reference

Figure 12.6. A virtual body painting experiment from [72]. The texture is trans-
ferred from a reference pose of the human body (left column, outlined in gray) to its
different poses. The correspondence between the objects is established by embed-
ding 200 points on the reference object into its poses using the GMDS algorithm.
See insert for image in color.

In our formulation, given the source and the target surfaces X and Y , a
morphing process aims at finding a temporal sequence of intermediate sur-
faces, Xt (t ∈ [0, 1]) such that X0 = X and X1 = Y . Typically, morphing is
performed in three steps. The first step consists of finding a correspondence
relating points on X to points on Y . We have already seen that this can be
done using GMDS, which finds the minimum distortion correspondence be-
tween the source and the target. Practically, we select a subset of N points
{xi} on X and find a corresponding set of points {yi} on Y . Neither xi, nor
yi have necessarily to be restricted to mesh vertices. Once the correspondence
is found, we can work with two clouds of corresponding points {x1, . . . , xN}
and {y1, . . . , yN} in R

3. From this point on, we do not have to deal anymore
with the intrinsic geometry of X and Y and will work only with their extrinsic
geometries.
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Alice Bob

Figure 12.7. In the texture substitution application, GMDS is used to find the
minumum distortion correspondence between two faces. Using this mapping, the
texture is transferred from one face to the other. See insert for image in color.

In the discrete setting where the surfaces are represented as triangular
meshes, X and Y often have different number of vertices and different con-
nectivity. Consequently, morphing should involve computations not only on
the extrinsic geometry of the meshes but also on their topology. Given the
source mesh TX({xi}) and the target mesh TY ({yi}), our second step consists
of creating a common mesh connectivity T such that T ({xi}) and T ({yi}) are
two valid meshes. Such meshes are usually referred to as compatible or isomor-
phic. In order to allow creation of compatible meshes, T ({xi}) and T ({yi})
have to be topologically equivalent (homeomorphic). For example, a morph
between a sphere and a cube (which are topologically equivalent) is simple
and intuitive, whereas a morph between a sphere and a torus (which have
different topologies) is not well-defined. As most morphing techniques assume
homeomorphic source and target shapes, we will stick to this setting, which
appears to be still sufficiently wide.

Figure 12.8. Morphing. In the example from Figure 12.7, the correspondence is
used to transform the texture and the extrinsic geometry of the source (left) into
the corresponding texture and extrinsic geometry of the target (right), creating a
morphing effect. See insert for image in color.



252 12 Non-rigid Correspondence and Calculus of Shapes

One of the most frequently used approaches for finding a common connec-
tivity of two homeomorphic meshes is mesh overlay, generating a supergraph
of the two mesh connectivities [3]. We construct a new connectivity T , con-
taining all edges and faces of TX and TY , and add new vertices if some edges
intersect. Mesh overlay guarantees that if a point lies on the original mesh
TX({xi}), the new mesh T ({xi}) will also necessarily contain it. This does
not take into account the fact that in most practical cases, a mesh is only a
piecewise linear approximation of some smooth surface. As there is nothing
special in this specific approximation, the construction by which the new mesh
has to reproduce the given mesh may be disadvantageous. We can therefore
reformulate the goal of our second step as finding a common connectivity T ,
such that the meshes T ({xi}) and T ({yi}) approximate respectively the sur-
faces X and Y themselves. This problem is known as compatible meshing (or
compatible re-meshing if X and Y are already given as meshes). The exact
description of mesh overlay and compatible meshing techniques is beyond the
scope of this book. For an overview, the reader is referred to [3].

Once compatible meshes are created, we have to actually define the set
of intermediate surfaces Xt. Therefore, the third step of a morphing process
consists of creating a set of smooth trajectories xi(t) for t ∈ [0, 1], such that
xi(0) = xi and xi(1) = yi for i = 1, . . . , N . Intermediate surfaces are defined as
the set of meshes T ({xi(t)}). Computation of trajectories is where morphing
techniques differ the most. As in the case of correspondence, there exists no
formal definition of what a “good” trajectory should look like, and aesthetic
criteria are often applied. The simplest solution to the trajectory problem is
to displace each source point toward the corresponding target point with con-
stant velocity along a straight line, creating the following linear trajectories,

xi(t) = (1 − t)xi + tyi. (12.12)

A morph generated in this manner is referred to as linear. It is optimal in the
sense that linear trajectories are the shortest among all possible trajectories
connecting xi and yi.

Unfortunately, linear morph often leads to undesirable results. For ex-
ample, trajectories may intersect at some t ∈ (0, 1), leading to an invalid
self-intersecting intermediate mesh (Figure 12.9, first row). One may argue
that we can try to maintain the linear trajectories while relaxing the con-
stant velocity constraint and allowing xi to move with some variable velocity
vi(t) > 0, obeying

∫ 1

0

vi(τ)dτ = 1.

This yields straight trajectories of the following form,

xi(t) =
(

1 −
∫ t

0

vi(τ)dτ

)

xi +
∫ t

0

vi(τ)dτ yi. (12.13)
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0 0.25 0.5 0.75 1.0

Figure 12.9. First row: linear morph produces a sequence of invalid self-intersecting
intermediate meshes. Second row: guaranteed self-intersection free morph obtained
by linear interpolation of barycentric coordinates.

However, it appears that this more general setting cannot completely avoid
self-intersections of the intermediate meshes [161]. Even when no such catas-
trophes happen, linear morph often produces intermediate surfaces, which
differ significantly from the source and the target.

Example 12.1. We show an example when linear morph fails, following the
scenario described in Lemma 4.3 in [161]. Let {x1, . . . , xN} and {y1, . . . , yN}
be two clouds of points with x1 = y2 and x2 = y1. Then, the trajectories

x1(t) = (1 − t)x1 + ty1 = (1 − t)x1 + tx2;
x2(t) = (1 − t)x2 + ty2 = (1 − t)x2 + tx1

intersect at t = 0.5, yielding an invalid morph. Considering a more general
linear morph of the form (12.13), we define the weight functions,

wi(t) =
∫ t

0

vi(τ)dτ.

Here wi(t) are increasing continuous functions, obeying wi(0) = 0 and wi(1) =
1. Hence, w(t) = w1(t) + w2(t) is an increasing continuous function, obeying
w(0) = 0 and w(1) = 2. This implies that there exists t0 ∈ (0, 1), for which
w(t0) = 1. Consequently, the trajectories

x1(t) = (1 − w1(t))x1 + w1(t)y1 = (1 − w1(t))x1 + w1(t)x2;
x2(t) = (1 − w2(t))x2 + w2(t)y2 = (1 − w2(t))x2 + w2(t)x1
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intersect at t0.

12.6� Guaranteed self-intersection free morph

The fact that the linear morph as well as the majority of other morphing
techniques are unable to guarantee the validity of intermediate shapes was
probably the main consideration driving Floater and Gotsman to propose in
their 1999 paper [161] a guaranteed self-intersection free morphing method.
In their study, Floater and Gotsman considered the particular case of morph-
ing between two compatible planar triangulations having a common convex
boundary. In follow-up works by Gotsman and Surazhsky [182, 369, 370], the
method was extended to arbitrary shapes.

The method requires both {xi}N
i=1 and {yi}N

i=1 to be bounded by a common
convex shape. Let us assume that a set of points {xN+1, . . . , xN ′} is found such
that their convex hull

conv({xN+1, . . . , xN ′}) =

⎧
⎨

⎩

N ′
∑

i=N+1

λixi :
N ′
∑

i=N+1

λi = 1

⎫
⎬

⎭
(12.14)

contains both {xi}N
i=1 and {yi}N

i=1. We can think of two larger clouds of points
{xi}N ′

i=1 and {yi}N ′

i=1 as of two sets of interior vertices {xi}N
i=1 and {yi}N

i=1 and
a common convex boundary {xi}N ′

i=N+1 = {yi}N ′

i=N+1. This allows us to express
each interior vertex xi as a strictly convex combination of its neighbors Ni,
that is, there exist some λij > 0 (not necessarily unique) for all i = 1, . . . , N
and j ∈ Ni such that

∑
j λij = 1 and

xi =
∑

j∈Ni

λijxj .

Using matrix notation, we can write

Xi = Λ

(
Xi

Xb

)

= (Λi Λb)
(

Xi

Xb

)

= ΛiXi + ΛbXb, (12.15)

where Xi and Xb are two N × 3 and (N ′ − N) × 3 matrices containing the
interior and the boundary vertices, respectively, as the rows, and Λ is an
N ×N ′ matrix with non-negative elements, whose rows sum to one. Gotsman
and Surazhsky refer to Λ as the neighborhood matrix, as it describes both the
connectivity of the mesh and the position of the interior vertices in barycentric
coordinates relative to their neighbors [182, 369].

Because the barycentric representation of the interior vertices is not
unique, there exist many ways to construct a valid neighborhood matrix for a
given mesh. On the other hand, it appears that Λi − I is non-singular, which
implies that the equation
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(I − Λi)Xi = ΛbXb (12.16)

has a unique solution [159, 160]. In other words, given the neighborhood ma-
trix Λ and the boundary points Xb, the interior points Xi can be uniquely de-
termined. Moreover, in [159], Floater proved that given any neighborhood ma-
trix of any valid mesh with triangulation T , the interior vertices constructed
by solving (12.16) form a valid mesh with the same triangulation.

This result allows us to create a self-intersection free morph. Given two
clouds of corresponding points {xi}N

i=1 and {yi}N
i=1 with a compatible trian-

gulation T and a common convex boundary {xi}N ′

i=N+1, we first construct two
neighborhood matrices Λ0 and Λ1 for {xi} and {yi}, respectively. Next, in-
stead of interpolating between xi and yi directly, we interpolate between their
barycentric coordinates, creating a sequence of matrices Λ(t). The simplest
way to do so is by using linear interpolation,

Λ(t) = (1 − t)Λ0 + tΛ1. (12.17)

Observe that if Λ0 and Λ1 are valid neighborhood matrices of T , then Λ(t) is
also a valid neighborhood matrix of T . The sequence Λ(t) uniquely defines a set
of trajectories xi(t), obtained by solving the linear system (12.16). The morph
is constructed from intermediate meshes T ({xi(t)}), which are guaranteed to
be valid triangulations (Figure 12.9, second row).

Currently, this appears to be the only mesh morphing technique with theo-
retical guarantee of non self-intersecting intermediate meshes. However, there
exist other algorithms and heuristics that practically avoid self-intersections.
For more details, the reader is referred to [353, 176, 334, 4]. The reader might
be wondering about what happens to the intrinsic geometry of the shape un-
dergoing a metamorphosis. Even if X and Y are isometric, generally there is
no guarantee that the intermediate shapes will be isometric, as a continuous
bending of X might not exist. In [224], Kilian et al. address this important
question by proposing an as isometric as possible morphing technique. For
details, the reader is referred to the original paper.

12.7 Calculus of shapes

By morphing between source and target shapes, intermediate shapes are cre-
ated. This gives us a tool to synthesize new non-rigid objects. In a broader
perspective, we can think of non-rigid objects as points in some infinite-
dimensional space. Let X be a shape, and let M denote the shape space
created by the deformations of X . It is known empirically that the dimension-
ality of M is usually low, and it can be represented approximately as some
abstract manifold [377]. Let X0 and X1 be two deformations of X . If the dif-
ference between X0 and X1 is sufficiently small, we can linearize the manifold
M around the point X0, approximating its generally non-Euclidean structure
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Figure 12.10. Geometric illustration of calculus of shapes. Surfaces can be repre-
sented as points in the shape space M, visualized here as a two-dimensional surface.
Left: by linearization around some point, an analog of a locally linear tangent space
is created. Right: when X0 and X1 are significantly distinct, the convex combination
Xt = tX1 + (1 − t)X0 defined using linear morph may produce an invalid surface
(point outside M). A self-intersection free morph guarantees that Xt lies on M.

by a Euclidean one (Figure 12.10, left). This construction resembles the no-
tion of tangent space in Riemannian geometry, which allows us to consider
surfaces as vectors in a locally linear space.4 In other words, it provides us
with a calculus, i.e., the ability to “add,” “subtract,” and “scale” surfaces.

The knowledge of a correspondence ϕ : X0 → X1 between X0 and X1 is
crucial in order to define operations on their extrinsic coordinates in R

3. Once
the correspondence is available, we can express the “difference” dX = X1−X0

as

dx(x) = ϕ(x) − x. (12.18)

for all x ∈ X0. Moving from X0 to X1 along dX can be expressed as the
convex combination Xt = X0 + t dX , or

xt = x + t dx = t ϕ(x) + (1 − t)x, (12.19)

which is nothing but a linear morph between X0 and X1. If in addition the
surfaces are endowed with textures represented as vector fields ρ0 : X0 → R

3

and ρ1 : X1 → R
3, we can similarly construct the texture ρt by blending
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between the corresponding texture intensities, e.g.,

ρt(x) = tρ1 ◦ ϕ(x) + (1 − t)ρ0(x). (12.20)

Again, the term “corresponding” is well-defined as soon as a correspondence
has been established.

We have already seen that when the difference between X0 and X1 is large
(i.e., dX is large), X0 + t dX defined as a linear morph can cease from being
a valid surface. Geometrically, this can be interpreted as follows: because the
manifold M is locally Euclidean, if X0 and X1 are sufficiently close, the straight
line connecting them lies on M. Yet, when X0 and X1 are distant, some points
on that line may lie outside the manifold. The use of a self-intersection free
morphing technique replaces the linear trajectory X0 + t dX by a non-linear
one, guaranteeing that Xt is a valid surface. Geometrically, this is equivalent
to traveling between X0 and X1 on the manifold M (Figure 12.10, right).

As an example visualizing the calculus of surfaces, consider a temporal
sequence of deformations of X , which can be represented as a smooth tra-
jectory Xt on M. As in our previous examples, this can be a 3D video of
a human actor acquired by a range scanner. In practice, only a discrete set
of frames XnΔt can be acquired with finite sampling rate Δt, rarely exceed-
ing 30 frames per second. Without loss of generality, we assume Δt = 1 and
denote this sequence by Xn. Because our eyes are very sensitive to motion dis-
continuities, low frame rate sequences usually appear unpleasant to a human
observer. A way to improve the visual experience is by creating a higher frame
rate sequence by interpolating the “missing” frames. An intermediate frame
Xn+t : t ∈ (0, 1) can be created as a convex combination (1 − t)Xn + t Xn+1

between the two adjacent frames Xn and Xn+1, using either linear or non-
linear morphing (see Figure 12.10 for a geometric illustration). The trajectory
connecting two corresponding points on Xn and Xn+1 describes the motion
of a point on Xn, and interpolation along that trajectory creates an illusion
of a smoothly moving surface.

In video processing, such an interpolation is often referred to as frame rate
up conversion or temporal super-resolution, as it increases the sampling rate
(or resolution) along the time axis.5 Interpolating along the trajectory of a
point is similar in its spirit to motion-compensated frame rate conversion tech-
niques widely used for conventional two-dimensional video sequences. There,
correspondence between points in adjacent frames is computed by means of
a motion estimation algorithm, based essentially on finding the highest cor-
relation between displaced regions in the two images [238, 100, 103, 243]. In
this terminology, the use of non-rigid correspondence produces a deformation-
compensated interpolation. Figure 12.11 shows an interpolated sequence be-
tween two frames in a 3D video.

The combination of two surfaces X0 and X1 does not necessarily have to
be convex. Allowing for t < 0 or t > 1, we can extrapolate Xt beyond X0

or X1. As a particular example in the facial animation problem, if X0 is a
neutral posture of the face and X1 is an expression, we can exaggerate this
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Interpolation ExtrapolationExtrapolation

0 0.5 1 1.5-0.5

Figure 12.11. Expression interpolation between two frames in the video sequence is
obtained by taking t ∈ (0, 1). Allowing for t < 0 or t > 1, it is possible to extrapolate
the expression, creating a caricaturization effect as shown on the right.

expression by constructing the non-convex combination (1− t)X0 + t X1 with
t > 1 (Figure 12.11). The opposite process allows us to undo the expression.

Suggested reading

A survey of surface parameterization methods is available in Michael Floater’s
review papers [163, 162]. The book Warping and Morphing of Graphical Ob-
jects by Gomes [178] presents perhaps the widest perspective on morph-
ing techniques in various computer graphics applications. A comprehensive
overview of mesh correspondence and morphing techniques is presented in
Alexa’s review paper [3]. For more details on the guaranteed self-intersection
free morphing technique discussed in this chapter, the reader is referred to
the original paper by Floater and Gotsman [161] and follow-up works by
Surazhsky and Gotsman [182, 370]. The “as isometric as possible” morphing
technique is introduced in [224]. Theoretical foundation of shape spaces is pre-
sented systematically in [273]. For details on the texture transfer and calculus
of shapes experiments, the reader is referred to [72]. An interesting point of
view on geometry manipulation through the prism of signal and image pro-
cessing was pioneered by Taubin [374, 375] and Schröder and Sweldens [344]
under the name of geometric signal processing or digital geometry processing.

Software

Intrinsic correspondence computation by means of GMDS is available as a part
of the TOSCA toolbox. The toolbox also contains Euclidean MDS routines,
which can be used to create planar minimum distortion parameterization. The
C++ GoTools parameterization library distributed by SINTEF contains an
implementation of Floater’s surface parameterization algorithms.
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Problems

12.1 (Research question). Elaborate a way to transfer bump maps and
normal displacement maps using the correspondence-based texture transfer
technique.

12.2 (Research question). Devise a self-intersection free morphing tech-
nique, which given two ε-isometric surfaces X and Y , guarantees that all
intermediate meshes are cε-isometric to X or Y .

12.3. Does the guaranteed self-intersection free morph guarantee valid shapes
for t < 0 or t > 1?

Notes
1Formally, the Hilbert-Schmidt norm is defined for a linear operator L : U → V

from a Hilbert space U to a Hilbert space V , as

‖L‖2
HS =

∑

i

‖Lei‖2
V ,

where {ei} is an orthonormal basis in U . The norm is independent on the choice of
this basis.

2Current technology allows the acquisition of three-dimensional geometry at
video frame rates, see, e.g., [211].

3The texture image coordinate system (also known as the UV coordinates) is
usually normalized between 0 and 1.

4More rigorously, we construct a locally affine space with the origin X0.
5Clearly, temporal super-resolution creates new information from nowhere. Un-

der the assumption of smooth motion, interpolated frames are usually close to the
true “continuous” version of the sequence. However, if the trajectories are irregular
between the samples, peculiar aliasing effects are likely to arise.



“And in stature he is small, chest broad, one arm
shorter than the other, blue eyes, red hair, a wart
on his cheek, another on his forehead.” Then is it
not you, my friend?

A. S. Pushkin, Boris Godunov

13

Three-dimensional Face Recognition

In this chapter, the theoretical and algorithmic apparatus we have developed
so far will be used for an important practical application: biometric authenti-
cation. The term biometric refers to methods of identifying a person’s identity
according to individual characteristics of the human body, like fingerprints,
iris texture, the vein pattern in the eye retina, or the face structure. Just
a decade ago, biometrics were considered almost science-fiction technologies,
seen in the James Bond movies. Today, many laptop computers are equip-
ped with a fingerprint scanner, which is used as an alternative to typing a
password.

Being apparently the fruit of the hi-tech era, biometric technologies have
been exploited from the dawn of the human civilization [78], long before the
famed Agent 007 was born. One of the oldest written testimonies of a bio-
metric technology and the first identity theft dates back to the age of the
Patriarchs, when Jacob fraudulently used the identity of his twin brother
Esau to benefit from their father’s blessing. The book of Genesis describes a
multimodal biometric test comprising hand scan and voice recognition that
Isaac, already blind at his age, used in an attempt to verify his son’s identity,
without knowing that the smooth-skinned Jacob had wrapped his hands in
kidskin: “And Jacob went near unto Isaac his father; and he felt him, and
said, ‘The voice is Jacob’s voice, but the hands are the hands of Esau.’ And
he discerned him not, because his hands were hairy, as his brother Esau’s
hands.” [171]. The recognition error, as we know today, had consequences of
historic proportions.

In our everyday routine, we use biometric technology without paying at-
tention. From the very first years of infancy, our brain develops the ability to
distinguish between faces of different people. A grown person is able to recog-
nize thousands of individuals encountered during his life. It is not a surprise
that law enforcement forces were among the first to take advantage of this
most natural kind of biometrics. A legend accounts that the runaway French
king Louis XVI was arrested after a clerk recognized his face on a gold coin (a
nineteenth century engraving in Figure 13.2 shows this dramatic moment in
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Figure 13.1. “And Jacob went near unto Isaac his father...” Gustave Doré’s il-
lustration of the biblical blessing scene, in which one of the earliest identity thefts
known to human civilization occurred.
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Figure 13.2. An engraving from Camille Pelletan’s book Les guerres de la
Révolution [309], showing the arrest of the French king Louis XVI.

the history of the French Revolution). In our days, in most countries citizens
are obliged by law to carry a photo-ID, in order to allow the respective author-
ities to confirm the document bearer’s identity by comparing the photograph
with his or her face.

13.1 Some terminology

Though a routine task for humans, face recognition is thus far a great challenge
for the machine. From the point of view of pattern recognition, face recognition
is a classification problem. A generic face recognition algorithm tries to find
similarity between the face of an enrolled person (referred to as probe) and a
database of faces of known identities (gallery). For every entry in the gallery,
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a distance from the probe is computed. The best match (i.e., one with the
smallest distance) below some threshold is then identified with the probe.
This scenario is referred to as a one-to-many or identification problem. It can
be applicable, for example, if face recognition is used to track employees of a
large corporation. The recognition accuracy in this setting is measured as the
fraction of correct identifications within the closest k matches (referred to as
rank -k recognition rate). The plot of the recognition rate versus the rank is
called the cumulative match characteristic (CMC).

A simpler setting is the one-to-one or authentication problem, in which
the supposed identity of the subject is known in advance, and the comparison
is performed only with one gallery entry corresponding with the claimed iden-
tity. The output in this case is binary: identity confirmed or not confirmed.
As an application, one may think of an automated teller machine (ATM) that
uses face recognition instead of typing a PIN code. The algorithm perfor-
mance in this setting is quantified in terms of the false acceptance and false
rejection rates (FAR and FRR, respectively). The first refers to the fraction of
different subjects wrongly recognized as being the same, and the latter refers
to the fraction of instances of the same subject wrongly recognized as being
different. Obviously, the two criteria are competing. Defining a threshold on
the distance value below which the probe is accepted, it is possible to trade
off between the false acceptance and the false rejection rates. This trade-off
can be represented graphically as a curve, referred to as the receiver operat-
ing characteristic (ROC) – a term dating back to the early 1940s in relation
to radar detection efficiency characterization. A point on the ROC curve at
which the false acceptance and the false rejection rates coincide is called the
equal error rate (EER).

13.2 A retrospective

First insights on face recognition came from the psychological community [87]
and eventually penetrated into the realm of engineering [38]. As the inception
of the field of automatic face recognition, the landmark papers of Kelly [222]
and Kanade [216] are usually cited. These and other early publications on
face recognition were motivated by the studies of human vision and perception,
which found that the human eye concentrates its attention on local features of
the face (such as the mouth, nose, eyes, etc.) [356, 86]. Attempting to imitate
this property of the human visual system, algorithms based on measuring
geometric relations between feature points were proposed [38, 222, 216, 399]
in the 1960s.

Another landmark in face recognition research was the paper of Sirovich
and Kirby [365] followed by Turk and Pentland [384], who proposed an alge-
braic approach to the face recognition problem. They considered facial images
as vectors in a linear space and, by applying principal component analysis,
created bases of faces (Turk and Pentland coined the famous term eigenfaces
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Figure 13.3. A face shown with different illuminations, head positions, and facial
expressions. The variability of the image due to these factors is very high, which
makes automatic two-dimensional face recognition a great challenge. (This image
was rendered using data from the Notre Dame database [97]; see insert for a color
version).

referring to such bases) in which the recognition was performed. This led to
the birth of the so-called holistic algorithms (from the Greek oλoς, meaning
“entire”), which, as opposed to feature-based (“local”) methods, use the whole
facial image as the input [152, 20, 412].

It appeared that one of the main obstacles complicating the face recogni-
tion problem is the large variability of the facial image due to external fac-
tors, for example, variations in illumination and head pose (see Figure 13.3).
Both feature matching and holistic approaches are sensitive to such factors: in
feature-based algorithms, illumination and head pose tamper with the feature
detection accuracy [117], and holistic methods work well only when a face has
been observed beforehand in similar conditions.

These limitations stem from the fact that the face recognition problem is
approached as a two-dimensional pattern recognition one, whereas in prac-
tice, the human face is a three-dimensional object. If we had a rough esti-
mation of the three-dimensional face geometry forming the two-dimensional
image, we could compensate for the pose and the illumination, or generate new
images, in previously unseen conditions. This approach, based on a generic
three-dimensional model as an intermediate stage for a two-dimensional face
recognition algorithm, was introduced and popularized by Blanz and Vetter
[37] and Gheorghiades et al. [173].1

Taking one step forward, the problem of face recognition can be consid-
ered as a three-dimensional pattern recognition problem, i.e., as a problem of
surface comparison. Here, the technology deviates from Nature, as it appears
that the human visual perception does not attribute much attention to the
three-dimensional structure of faces. We demonstrate this phenomenon in a
simple experiment shown in the following example.

Example 13.1 (2D vs. 3D in human perception of faces). In this ex-
ample, we created the faces of George Bush and Osama Bin Laden by simply
mapping the respective textures onto a three-dimensional surface of Prof.
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Figure 13.4. Is our eye more sensitive to texture or geometry? Simple texture
mapping makes a three-dimensional surface look like George Bush or Osama Bin
Laden (third and fourth from the left, respectively), though the person from whom
the facial geometry has been taken looks completely different (first and second from
left). This proves that texture information is more important for human face recog-
nition. (This image was rendered using data from the Notre Dame database [97]
and photos of Bush and Bin Laden from the World Wide Web; see insert for a color
version).

Kevin Bowyer, who has resemblance to none of the above individuals (Fig-
ure 13.4). Our eye recognizes the synthetic faces as the forty-third president
of the United States and the most wanted international terrorist, though the
underlying geometry belongs to Prof. Bowyer.

Example 13.1 teaches us about an inherent sensitivity of two-dimensional
approaches to variations in the facial texture, which, in practical situations,
may result from the use of cosmetics. Theoretically, had it been possible to
draw any texture on our faces, we could fool any two-dimensional face recog-
nition algorithm.

Unlike two-dimensional images, three-dimensional geometric information
is less sensitive to illumination and head orientation, and therefore adds new
information that can be employed for more accurate face recognition. Cartoux
et al. [93] were among the first to realize this potential of the three-dimensional
data. They still did not take advantage of the whole facial surface and used a
one-dimensional section (profile) for recognition. In subsequent research, their
approach was extended to multiple sections of the face [289, 32].

As a historical comment, we should note that these ideas bear an amazing
resemblance to the results of Sir Francis Galton (1822–1911). In his 1888 pa-
per [167], Galton proposed to compare profiles in order to identify a suspected
criminal and even designed a mechanical device to carry out this task. To-
day, Galton’s ideas would probably be deemed as politically incorrect, being
heavily motivated by eugenics, a controversial field of science aimed at “im-
proving the quality of human stock.” Yet, together with Alphonse Bertillon
[28], he may be considered the father of biometric methods that revolution-
ized the criminology of the late nineteenth century. The methods of Galton
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Figure 13.5. Identity recognition in the nineteenth century: a mugshot of Sir
Francis Galton, taken during his visit to Bertillon’s laboratory in 1893.

and Bertillon belong to the field called anthropometry (from Greek ανθρωπoς
meaning “man” and μετρoν, “measure”), a science concerning the measure-
ment of physical parameters of the human body. The breakthrough of Galton
and Bertillon was the systematization of anthropometric data and its applica-
tion for the recognition of recidivists. Their methods bear much resemblance
with modern biometrics. Previous anthropometric studies in the field of crim-
inology, like the works of Cesare Lombroso (1835-1909), attempted mainly
to predict an inherent criminal predisposition of an individual, based on the
theory that a “born criminal” could be identified by certain characteristic
physical features [257], which modern science has rejected.

In the late 1990s and the beginning of the 2000s, the face recognition
community has turned to three-dimensional methods in pursuit of better ac-
curacy and robustness. Along with attempts to generalize two-dimensional
PCA-like approaches to the three-dimensional problem [2, 262, 203, 306, 305],
new recognition methods based on geometric features like curvatures were
proposed [242, 181, 372, 104, 282, 245]. Another class of popular geometric
approaches is based on the Hausdorff distance and variants of the ICP algo-
rithm [1, 267, 244, 259, 305].

The disadvantage of the majority of these methods is rooted in treating
faces as rigid surfaces, an assumption that fails to hold when considering facial
expressions. The richness of human expressions and the fact that they involve
changes of many facial features has been noticed already by Charles Darwin
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[122]. Facial expression may result in significant deformations of the three-
dimensional structure of the face, and consequently, we have to think of the
face as of a non-rigid surface. This links the face recognition problem to the
scope of our book.

13.3 Isometric model of facial expressions

Describing expressions as deformations of the facial surface, we can formu-
late the problem of expression-invariant face recognition as the comparison
of facial surfaces invariant to such a class of deformations. The question is
whether it is actually possible to model facial expressions. Synthesizing the
deformations of the face as the result of expressions appears to be too compli-
cated a task: in the animated movie industry, months are spent on rendering
realistic faces of three-dimensional characters. Yet, in our problem, we just
need to characterize the class of deformations that result from natural ex-
pressions. Here, we have a surprisingly simple result: facial expressions can be
approximated by isometries!

In order to convince ourselves in this model, we conducted an experiment,
in which a set of flexible markers was attached to the face of a person (Eyal
Gordon, then the engineer of the Geometric Image Processing Laboratory,
volunteered to act as the “guinea pig” in this experiment). The subject was
asked to demonstrate different expressions, ranging from mild to extreme (see
some examples in Figure 13.6). By tracking the markers, we could measure
the geodesic distances between a set of fixed points on his facial surface. It
appeared that the geodesic distances remain approximately invariant to facial
expressions. On the other hand, the Euclidean counterparts (describing the
extrinsic geometry of the face) show a notably higher variance (Figure 13.7).
Later, Mpiperis et al. [286, 287] repeated our experiments and independently
confirmed the isometric model of facial expressions. Another validation was
performed by Gupta et al. [194].

The isometric model is of course an approximation; deviations from the
model may be attributed to the fact that facial tissues may stretch and there-
fore are not precisely isometric. For example, expressions with open mouth

Figure 13.6. Empirical verification of the isometric model of facial expressions.
Shown are the points that were tracked.
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Figure 13.7. Histogram of the geodesic distance deviation from the isometric
model (solid); for comparison, a histogram for the Euclidean distances is shown
(dashed).

deviate from the isometric model, being topologically different from those
with closed mouth. Thus, a geodesic between two points on the upper and the
lower lip that crossed the lips when the mouth was closed will circumflex the
lip contour when the mouth is open. However, if we introduce a topological
constraint into the model, we can easily handle both types of expressions. The
easiest way to enforce such a constraint is by cropping out the lips region [73].

13.4 Expression-invariant face recognition

Stated concisely, the isometric model can be formulated as follows: the identity
is described by the intrinsic geometry of the face and the expression by the
extrinsic one. This means that under the assumption of the isometric model,
expression-invariant face recognition is formulated as isometry-invariant com-
parison of surfaces.

We realized this fact in 2002, thinking of an interesting application for Asi
Elad and R.K’s canonical forms algorithm. Our first experiments were based
on the canonical form distance [63]. A face was first scanned by a coded-light
range scanner designed for this purpose, and the input data (in the form of
a geometry image) were cropped and sub-sampled to about 2500 points. The
matrix of all pair-wise geodesic distances between these points was computed
using the fast marching method. Next, the sampled surfaces were embedded
into R

3 using the SMACOF algorithm. The obtained canonical form (see
examples in Figure 13.8) was aligned by canceling the first-order and the
mixed second-order moments, and a signature of moments was computed. The
probe signature was then compared with the signatures from the gallery using
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Without topological constraint

With topological constraint

Figure 13.8. Examples of canonical forms of faces obtained by embedding into
R

3 using the L2-stress criterion. Top row shows expressions with closed mouth and
the corresponding canonical forms without any pre-processing. Bottom row shows
expressions with both open and closed mouth, which were pre-processed by removing
the lips region.

the Euclidean distance. Such a comparison procedure allowed quick matching
of the probe to a gallery of almost arbitrarily large size.

Because the canonical form distance does not allow comparison of partially
overlapping surfaces, it is crucial that every canonical form contain the same
parts of the face. The extraction of the facial contour has to be invariant to
facial expressions and hence based on the intrinsic geometry only. For this
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Probe
surface

Cropped
surface

Sub-sampled
surface

Canonical
form

Gallery

Matching

Figure 13.9. Block diagram of the expression-invariant face recognition algorithm.

purpose, we located two invariant fiducial points on the face, the nose tip and
the upper point of the nose bridge located between the eyes (referred to as
sellion in anthropometry), and measured a geodesically equidistant contour
around it. This procedure was termed the geodesic mask and allowed to crop
approximately the same region of the face regardless of the expression.

Figure 13.9 depicts the stages in the three-dimensional face recognition
system. In our first experiments, the entire processing took about five min-
utes per face; this time was gradually reduced to less than a minute. Further
improvements lowered the end-to-end processing time to about five seconds
on a standard PC, using the parallel raster-scan version of fast marching de-
scribed in Chapter 4. For demonstration purposes, the face recognition was
also equipped with a graphics interface shown in Figure 13.10.

The data for our first experiments were acquired during the Science Festi-
val organized by the Ministry of Science at the Hebrew University campus in
Jerusalem in September 2002. The 3D face scanner we used at the time fea-
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Figure 13.10. A screen shot of the three-dimensional face recognition system user’s
interface.

tured a menacingly-looking wooden headrest, having certain resemblance to
a guillotine. For this reason, people initially felt reluctant to scan their faces.
The first feasibility tests of the face recognition algorithm gave encouraging
results: even in the presence of extreme facial expressions, the canonical form
distance yielded less than 2% EER recognition error, about three times better
compared with rigid surface matching of the same data [66]. In addition, it
exhibited sufficient accuracy to distinguish between the subtle differences in
the geometry of the faces of two identical twins, co-authors of this book. This
curious fact attracted the media and gave rise to the weird title “Twins crack
the face recognition puzzle” of a CNN news item reporting about our research,
afterwards repeated in dozens of newspapers in various languages. Some time
later, we repeated the “twins experiment” with other pairs of identical twins.
In all cases, the canonical form distance was able to tell apart the visually
indistinguishable siblings.

A few improvements followed. First, it became clear that in order for the
algorithm to be insensitive to expressions with open mouth, comparison of sur-
faces with different topology is required. In [73], we used an improved geodesic
mask that also included a cut through the lips, thus imposing the same topol-
ogy for all expressions, both with open and closed mouth. Alternatively, in
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[71] we proposed removing geodesic distances that become inconsistent as
the result of facial expressions. More recently, Li and Zhang [252] extended
this idea, proposing weighting different geodesic distances according to their
consistency under facial expression. By means of training, they selected the
weights in such a way that gives a description with the highest discrimination
between different faces and the smallest between different expressions of the
same face.

Secondly, attempting to combat the embedding error inherent to the
canonical forms approach, we tried different embedding spaces. In [65, 71],
we showed that the representation accuracy of faces (and as a result, the
face recognition accuracy) can be improved by embedding into a space with
spherical geometry, using methods discussed in Chapter 9. In [71], we showed
that using GMDS instead of canonical forms, much higher accuracy could be
achieved. In addition, GMDS naturally allowed handling partial comparison
of faces, for example, in situations where acquisition imperfections results in
parts of the facial surfaces missing or noisy.

13.5 Comparison of photometric properties

Thus far, we focused our attention on the recognition of the intrinsic facial
geometry, which appeared to be insensitive to expressions. However, our face
is also endowed with rich photometric characteristics that carry additional
information useful for recognition. A somewhat simplified model incorporating
both geometric and photometric properties of the face consists of a non-rigid
surface S and a texture represented as a scalar field ρ : S → [0, 1] (or a
vector field ρ : S → [0, 1]× [0, 1]× [0, 1] if a color sensor is used). The texture
represents the reflectance coefficient or albedo at each point on the surface,
that is, the fraction of the incident light reflected by the surface.

Unfortunately, the albedo cannot be directly measured by a camera; what
we observe is the brightness β : S → R (or β : S → R

3 in the color case,
respectively) of the surface, or, in simple words, the amount of radiation scat-
tered from it in the direction of the camera. It appears that our skin behaves
approximately like a diffusive reflector, which means that its apparent bright-
ness is roughly the same regardless of the observer’s angle of view. Formally,
this can be expressed as

β(s) = max{〈n̂(s), ̂〉, 0}, (13.1)

where n̂(s) denotes the unit normal vector to the surface at the point s, and
̂ stands for the illumination direction. This formula is known as the Lambert
cosine law, named after the German mathematician Johann Heinrich Lam-
bert, who discovered it in 1760 [239]. The knowledge of the three-dimensional
surface geometry gives us the surface normal field, which, under controlled il-
lumination conditions, allows us to estimate the reflectance coefficient ρ. Note
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that such information is unavailable in purely two-dimensional face recogni-
tion methods, which are all based essentially on the brightness image of the
face.

In this setting, the problem of expression-invariant face recognition fits
into the context of correspondence problems we discussed in Chapter 12. Our
goal is to measure the similarity of two faces, based on the similarity of their
geometries (S, dS) and (Q, dQ), as well as their photometric properties, ρS
and ρQ. In order to be able to compare between ρS and ρQ, we have to bring
them first to some common system of coordinates, in which corresponding
facial features coincide. This can be achieved by finding a common parame-
terization, πS : U → S and πQ : U → Q, where U ⊂ R

2. Such a parameteriza-
tion should be invariant to facial expressions, which in terms of the isometric
model means that π should depend on the intrinsic geometry of the surface
only. After the surfaces S and Q are re-parameterized, ρS and ρQ can be rep-
resented as ρS ◦ πS and ρQ ◦ πQ on the common parameterization domain U ,
which makes the comparison trivial using standard image comparison tech-
niques. Expression-invariant comparison of the photometric properties of the
faces therefore reduces to finding an isometry-invariant “canonical” parame-
terization of the facial surfaces.

As we mentioned in Chapter 12, the simplest way to construct an isometry-
invariant parameterization of a surface is by embedding it into R

2 using an
MDS algorithm. The problem is very similar to the computation of the canon-
ical form, except that now the embedding space, serving as the parameteri-
zation domain, has to be two-dimensional. Because the embedding is based
on the intrinsic geometry only, such a parameterization will be invariant to
isometries, and consequently, the albedo image in the embedding space will
be insensitive to facial expressions. We term such an image as the canoni-
cal image of the face. However, recall that the embedding into R

2 is defined
up to a Euclidean isometry, implying that the canonical images are defined
up to planar rotation, translation and reflection, which has to be undone in
order to enable the comparison. Also, the inevitable distortion of the metric
introduced by the embedding into the plane makes the canonical image only
approximately invariant.

As we have already seen in Chapter 9, a partial remedy to the latter
problem comes from non-Euclidean embedding, for example into the two-
dimensional sphere S

2 in our case. Because a face is more similar to a sphere
than to a plane, spherical embedding produces more accurate canonical images
with lower distortion. The minimum distortion, better by about a factor of
two compared to the Euclidean embedding, is typically achieved for a sphere
radius ranging between 75 and 100 millimeters. In addition, a clear correla-
tion between the representation error and the recognition error is observed:
the recognition error closely follows the embedding distortion [64]. Another
advantage of the spherical embedding is that the obtained spherical canonical
images (Figure 13.11) can be represented using a signature of the spherical
harmonic coefficients, which are known to be invariant to rigid isometries on
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Figure 13.11. Canonical images of a face in S
2 with different radii.

S
2. This property is analogous to the translation invariance of the Fourier

transform [219].
Nevertheless, canonical images give only an approximately invariant rep-

resentation, as a fixed embedding space implies necessarily embedding dis-
tortion. Exactly as in the case of isometry-invariant comparison of non-rigid
surfaces, an alternative approach is to resort to GMDS for embedding S into
Q. In addition to quantifying the similarity of the two intrinsic geometries,
the embedding ϕ : S → Q would also bring ρS and ρQ to the same system of
coordinates in Q. The photometric distance between ρQ and ρS ◦ϕ measured
either locally or globally provides additional information about the similarity
of the two faces. Such an approach is inherently distortion-free and naturally
allows for partial comparison of photometric and geometric information.

Suggested reading

For a general overview of biometric technologies, the reader is referred to
[12] and [302]. The most complete and up-to-date review of face recognition
methods is presented in the paper of Zhao et al. [413]. A review with the
emphasis on three-dimensional methods can be found in the paper of Bowyer
et al. [45]. Details on expression-invariant face recognition algorithms based on
the isometric model are presented in [66, 77, 65, 71] (geometry only) and [63,
76, 64, 73] (geometry and texture). Face recognition using spherical harmonics
is detailed in [64, 73]. A less technical presentation can be found in [75, 68].
For a reader interested in biological and psychological studies on the nature
of human facial expressions, we recommend the book by Paul Ekman [146].

Notes
1Two-dimensional face recognition methods based on a three-dimensional model

to produce facial images in new, previously unseen conditions, are often referred to
as generative methods.



I hope that posterity will judge me kindly, not only
as to the things which I have explained, but also
to those which I have intentionally omitted so as to
leave to others the pleasure of discovery.

R. Descartes, La géométrie.

14

Epilogue

Here comes the end of our journey in the non-rigid world, a new and fascinat-
ing field of research on the boundary of computer vision, pattern recognition,
computer graphics, and numerical geometry. However, the exploration does
not end here, as there is still much to say and much to discover. Some parts
of the non-rigid world still remain a terra incognita (unknown land), or, like
self-confident cartographers of the great era of exploration preferred to write
on their incomplete maps, terra nondum cognita (not yet known land), to
optimistically say that those coming after them would discover this territory.

This book, to the best of our knowledge, is the first attempt to consistently
present the map of the non-rigid world and bring together a wide spectrum
of problems and approaches. As any first attempt, it is prone to critique.
Anticipating the question why a certain work is not mentioned, we should
say that comprehensive overview of all the research related to non-rigid shape
analysis was not our main goal. Instead, we rather tried to present a common
denominator of numerous apparently unrelated fields, problems, solutions, and
algorithms. We are aware of the fact that a large number of works has been
left outside the scope of our discussion and hope to extend our discussion in
future editions to address new problems and new methods.

The decision to finish this book at the face recognition chapter leaves us
with a slight sensation of dissatisfaction of a mission not completely accom-
plished. At the same time, we believe in the value of timely publication, and
however imperfect and incomplete, our treatise hopefully presents new points
of view and gives some food for thought. We hope this book will catalyze the
interest in non-rigid shapes and generate research leading to new results and
approaches that will eventually remove the uncharted spots from our map of
the non-rigid world.

A. Bronstein et al., Numerical Geometry of Non-Rigid Shapes, 277
Monographs in Computer Science, DOI 10.1007/978-0-387-73301-2 14
c© Springer Science+Business Media, LLC 2008
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Chapter 2

2.1 Let f : X → Y be a bi-Lipschitz function. For any x �= x′ ∈ X ,
dX(x, x′) > 0 and hence dY (f(x), f(x′)) ≥ C−1dX(x, x′) > 0, from where
it follows that f(x) �= f(x′). Hence, f is injective, implying that there ex-
ists f−1 : f(X) → X . Let us now select some y �= y′ ∈ f(X), and
denote x = f−1(y), x′ = f−1(y′). Because f is bi-Lipschitz, dY (y, y′) =
dY (f(x), f(x′)) ≥ C−1dX(x, x′) = C−1dX(f−1(x), f−1(x′)), implying that
f−1 is Lipschitz with the constant C−1.

2.4 See proof of Proposition 2.4.1 and the relevant discussion in Burago et
al. [88].

2.12 Taking the derivatives of (x, y, z(x, y)) with respect to x and y yields
x1 = (1, 0, zx)T and x2 = (0, 1, zy)T, where zx and zy denote the partial deriva-
tives of z. Expressing the inner products of xi, we obtain the first fundamental
form matrix

G =
(
〈x1, x1〉 〈x1, x2〉
〈x1, x2〉 〈x2, x2〉

)

=
(

1 + z2
x zxzy

zxzy 1 + z2
y

)

.

The normal to the surface is given by the cross-product

N = ± x1 ∧ x2

‖x1 ∧ x2‖2
= ± (zx, zy,−1)T

√
1 + z2

x + z2
y

.

The second fundamental form can be expressed as

B =
(
〈N, ∂xx1〉 〈N, ∂yx1〉
〈N, ∂xx2〉 〈N, ∂yx2〉

)

=
1

√
1 + z2

x + z2
y

(
zxx zyx

zxy zyy

)

.

The shape operator is given by

279
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S = BG−1 =
1

(1 + z2
x + z2

y)3/2

(
zxx zxy

zxy zyy

) (
1 + z2

y − zxzy

−zxzy 1 + z2
x

)

=
1

(1 + z2
x + z2

y)3/2

(
zxx + zxxz2

y − zxzyzxy −zxxzxzy + zxy + zxyz
2
x

−zxxzxzy + zxy + zxyz
2
x zyy + zyyz

2
x − zxzyzxy

)

,

from where one can compute the Gaussian and the mean curvatures

K = det(S) =
zxxzyy − z2

xy

(1 + z2
x + x2

y)2

H = trace(S) =
zxx + zxxz2

y − 2zxyzxzy + zyy + zyyz2
x

(1 + z2
x + x2

y)3/2
.

Chapter 3

3.3 Let us assume that the sampling X ′
n = {x1, . . . , xn} is created according

to the recursion formula
{

X ′
1 = {x1}

X ′
n = X ′

n−1 ∪ {argmaxx∈X minxi∈X′
n−1

dX(x, xi)}

and let us denote

rn = max
x∈X

min
xi∈X′

n−1

dX(x, xi) = min
xi∈X′

n−1

dX(xn, xi).

Clearly, as X ′
n−1 ⊂ X ′

n,

min
xi∈X′

n−2

dX(x, xi) ≥ min
xi∈X′

n−1

dX(x, xi),

and hence rn−1 ≥ rn. Let us denote X ′ = X ′
n and r = rn. Let us pick any xi

and xj with j > i. Then,

dX(xi, xj) ≥ min
k=1,...,j−1

dX(xk, xj) = rj ≥ r,

meaning that X ′ is r-separated. To show that X ′ is an r-covering, let us pick
a point x ∈ X . Then,

dX(x, X ′) = min
xi∈X′

n

dX(x, xi) ≤ max
x∈X

min
xi∈X′

n

dX(x, xi) = rn+1 ≤ r.

Chapter 4

4.5 Our argument closely follows [61]. In order to show that the update
formula is numerically stable, we assume that an input di, i = 1, 2, is affected
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by a small error ε, which, in turn, influences the computed time of arrival
d3. Denoting by d̃3 the perturbed value of d3, our goal is to establish the
relationship between the magnitude of the perturbation ε and ‖d̃3−d3‖. Using
first-order Taylor expansion, we have

d̃3 ≈ d3 + ε · ∂d3

∂di
≤ d3 + ε ·

(∣
∣
∣
∣
∂d3

∂d1

∣
∣
∣
∣ +

∣
∣
∣
∣
∂d3

∂d2

∣
∣
∣
∣

)

.

Under the monotonicity condition ∇d d3 > 0, and we can therefore write

d̃3 ≈ d3 + ε · 1T
2×1∇d d3 = d3 + ε ·

1T
2×1Q(d − p · 12×1)

1T
2×1Q(d − p · 12×1)

= d3 + ε.

In the case of the Dijkstra-type update from either d1 or d2, we also trivially
get

d̃3 ≈ d3 + ε.

This implies that regardless of the value of di, ‖d̃3 − d3‖ ≈ ε, meaning that
update formula stable.

4.7 This alternative update scheme based on a circular wavefront model was
proposed by Novotni and Klein in [299]. Here, we show a derivation following
[61]. The wavefront is modeled as a circular wave propagating from a virtual
point source x. Demanding that the supporting vertices x1, x2 of the triangle
being updated lie at distances d1 and d2, respectively, from the source, we
obtain for i = 1, 2

d2
i = (xi − x)T(xi − x) = xT

i xi − 2xT
i x + xTx. (S.1)

The time of arrival of the wavefront to the updated vertex x3 is given by its
distance from the point source,

d2
3 = (x3 − x)T(x3 − x) = xTx

(the last transition is due to the fact that x3 = 0). Denoting si = d2
i , and

q = (s1 − xT
1 x1, s2 − xT

2 x2)T, we obtain

s3 · 12×1 − 2V Tx = q.

Assuming the mesh to be non-degenerate,

x =
1
2
V (V TV )−1(s3 · 12×1 − q) =

1
2
V Q(s3 · 12×1 − q).

Plugging the later result into the expression for d2
i in (S.1), we have

s3 = xTx =
1
4
(s3 · 12×1 − q)TQ(s3 · 12×1 − q)

=
1
4

(
s2
3 · 1T

2×1Q12×1 − 2s3 · 1T
2×1Qq + qTQq

)
.
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Consequently, d3 is given as the largest positive solution of the following bi-
quadratic equation

d4
3 · 1T

2×1Q12×1 − 2d2
3 · (1T

2×1Qq + 2) + qTQq = 0.

The reader is referred to [61], where an analysis similar to that in Chapter 4
is presented. It appears that for the circular wavefront model, there is no
analogy of the non-obtuse angle condition we had in the planar wavefront case,
which guarantees that all update directions coming from within the triangle,
the update will be monotonous and consistent. Furthermore, repeating the
stability analysis from the solution of Problem 4.5 shows that the circular
wavefront scheme may amplify noise. The amplification factor depends on the
values of d1 and d2 and in some cases may even grow unbounded, making the
scheme numerically unstable.

Chapter 5

5.2 Commutativity of matrix multiplication under the trace operator is easy
to verify. Let A and B be two N × M matrices, and let C = ATB and
D = BTA be the M × M product matrices. The elements of C are given by

cij =
N∑

k=1

akibkj ,

so that

trace(C) =
M∑

i=1

cii =
M∑

i=1

N∑

k=1

akibki.

In the same manner, the elements of D are given by

dij =
N∑

k=1

bkiakj ,

so that

trace(D) =
M∑

i=1

dii =
M∑

i=1

N∑

k=1

bkiaki.

5.5 Let A, B ⊆ X be two convex sets. Given any x, x′ ∈ A∩B, the combination
λx + (1 − λ)x′ belongs both to A and to B for all λ ∈ [0, 1]. Hence, A ∩ B is
convex.

5.7 Let A ⊆ X be a convex set, f : A → R a convex function, and Xc = {x ∈
A : f(x) ≤ c} its c sub-level set. Let x, x′ ∈ Xc. Because f(x), f(x′) ≤ c and
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f is convex, f(λx + (1− λ)x′) ≤ λf(x) + (1− λ)f(x′) ≤ c for every λ ∈ [0, 1].
Hence, λx + (1 − λ)x′ ∈ Xc, which proves that Xc is a convex set.

5.8 Let X ⊆ X be a convex set, f : X → R a strictly convex function, and
x∗ ∈ X its local minimizer. Therefore, there exists an open neighborhood U
of x where f(x∗) ≤ f(x) for all x ∈ U . Let y ∈ X be an arbitrary point;
by continuity of scalar multiplication and addition in the vector space X, the
combination x(λ) = λy+(1−λ)x∗ approached x∗ as λ approaches 0. Therefore,
for a sufficiently small λ, x(λ) ∈ U . Then, f(x) ≤ f(x(λ)) ≤ f(λy + (1 −
λ)x∗) ≤ λf(y)+(1−λ)f(x∗). Rearranging terms, we get f(x∗) ≤ f(x), which
proves that x∗ is a global minimizer. For a strictly convex function, the latter
inequality is strong, implying that x∗ is also unique.

5.15 The constraints are two circles of radii 1 and 2 tangent at the origin.
Because x∗ = (0, 0) is the only point where both constraints are satisfied, it
is the minimizer of the constrained optimization problem (objective value 0).
However, because the gradients to both constraints are aligned at the same
direction (1, 0) at the origin, there exist infinitely many Lagrange multipliers
satisfying μ1 ∇h1(x∗) + μ2 ∇h2(x∗) + ∇f(x∗) = 0. This does not contradict
the KKT conditions, because x∗ is not a regular point, as ∇hi are not linearly
independent.

5.16 The objective x1 + x2 is a linear function, whose gradient is constant
and directed in (1, 1). The constraint (x1)2 + (x2)2 = 2 is a circle of radius 2
centered at the origin. At a constrained minimizer, the normal to the circle has
to be aligned with the gradient direction. This happens exactly at two points:
(1, 1) and (−1,−1). The former one is a constrained maximum (objective
value 2), whereas the latter one is a constrained minimum (objective value
−2).

Chapter 6

6.3 The main issue in consistently discretizing the geometric moment integral

mpqr =
∫

X

(x1)p(x2)q(x3)rda

on a triangular mesh T ({x1, . . . , xN}) is to correctly account for the possibly
non-uniform triangle areas. A reasonable accuracy can be obtained by com-
puting the centroid xt = 1

3 (xt1 + xt2 + xt3) for each of the mesh faces and
replacing the integral with the weighted sum,

m̂pqr =
∑

t∈T

(x1
t )

p(x2
t )

q(x3
t )

rat,

where at is the area of the triangle t.
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6.5 Let x be a real number and y = x ± ε its finite precision approximation.
Raising y to the p-th power yields yp ≤ (x + ε)p, which by first-order Taylor
expansion can be approximated as

yp ≈ xp + p xp−1ε.

Hence, the relative error of the approximation of xp by yp is

yp − xp

xp
≈ p xp−1ε

xp
= p

ε

x
.

Because ε
x is fixed for given data, the error grows linearly with the increase of

the p, which complicates the practical use of high-order geometric moments.

6.10 Let us be given two sets of corresponding points {x1, . . . , xn} and
{y1, . . . , yn} in R

3. Our goal is to find the rotation matrix R and transla-
tion vector t minimizing

d2 =
n∑

i=1

‖xi − (Ryi + t)‖2
2.

Let us fix R and find the t minimizing d2. Denoting by zi = Ryi, we have

d2 =
n∑

i=1

‖xi − zi + t‖2
2 =

n∑

i=1

(xi − zi + t)T(xi − zi + t)

=
n∑

i=1

(xi − zi)T(xi − zi) + 2(xi − zi)Tt + tTt.

Taking the derivative with respect to t yields

∇td
2 = 2

n∑

i=1

(xi − zi + t).

Requiring ∇td
2 = 0, we obtain

t =
1
n

n∑

i=1

(xi − zi) =
1
n

n∑

i=1

xi −
1
n

n∑

i=1

zi,

which is nothing but the difference between the centroids of {xi} and {zi}. In
other words, t = x−Ry minimizing d2 translates the centroid x of {xi} to the
centroid Ry of {Ryi}, for any rotation matrix R. We will therefore assume for
the following discussion that both {xi} and {yi} are zero-centered, i.e., have

x =
1
n

n∑

i=1

xi = 0 , y =
1
n

n∑

i=1

yi = 0.
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In this case, the optimal t will always be zero, and our problem reduces to

d2 =
n∑

i=1

‖xi − Ryi‖2
2.

Arranging the xi into the columns of a 3 × n matrix X , and the yi into the
columns of a 3 × n matrix Y , the latter can be rewritten in terms of the
Frobenius norm as

d2 = ‖X − RY ‖2
F = trace((X − RY )T(X − RY ))

= trace(XTX) − 2 trace(XTRY ) + trace(Y TRTRY ).

Because R is a rotation matrix, RTR = I. Furthermore, due to the commuta-
tivity of multiplication under the trace operator (see solution to Problem 5.2),
trace(XTRY ) = trace(RY XT). This allows us to write

d2 = trace(XTX + Y TY ) − 2 trace(RY XT) = const − 2 trace(RH),

where H is the “covariance matrix,” defined as

H = Y XT =
n∑

i=1

yix
T
i .

Therefore, in order to minimize d2, R has to maximize trace(RH) = 〈R, HT〉.
We leave to the reader to prove the simple algebraic fact that the latter inner
product is maximized by R = V UT, where U and V are the unitary matrices
obtained by the singular value decomposition H = UΛV T of H .

Chapter 7

7.2 The gradient of the first term of σ2(Z) is immediate using the results
of Example 5.1 in Chapter 5. Differentiating the second term is slightly more
complicated, as it involves a non-linear matrix function B(Z; DX).

To derive the gradient, we start writing the stress as

σ2
2(Z) =

∑

i>j

(dij(Z) − dX(xi, xj))2

=
∑

i>j

d2
ij(Z) − 2dij(Z)dX(xi, xj) + d2

X(xi, xj).

and do some acrobatics with the formulae. The first term can be written as
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∑

i>j

d2
ij(Z) =

∑

i>j

m∑

k=1

(zk
i − zk

j )2 =
∑

i>j

m∑

k=1

(zk
i )2 − 2zk

i zk
j + (zk

j )2

=
∑

i>j

〈zi, zi〉 + 〈zj , zj〉 − 2〈zi, zj〉

= (N − 1)
N∑

i=1

〈zi, zi〉 −

⎛

⎝
N∑

i,j=1

〈zi, zj〉 −
N∑

i=1

〈zi, zi〉

⎞

⎠

= N
N∑

i=1

〈zi, zi〉 −
N∑

i,j=1

〈zi, zj〉, (S.2)

where 〈zi, zi〉 are the inner products of the vectors zi, zj in R
m. Note that

what we got is an expression in 〈zi, zj〉, i.e., elements of the Gram matrix
ZZT. Using this observation, we can express equation (S.2) as trace(V ZZT),
where V is an N × N matrix with elements

vij =
{
−1 i �= j
N − 1 i = j.

Using the property of matrix commutativity under trace, we obtain
∑

i>j

d2
ij(Z) = trace(ZTV Z).

The second term is written in a slightly more complicated but similar way,

∑

i>j

dij(Z)dX(xi, xj) =
∑

i>j

dX(xi, xj)

(
m∑

k=1

(zk
i − zk

j )2
)1/2

=
∑

i>j

dX(xi, xj)d−1
ij (Z)

m∑

k=1

(zk
i − zk

j )2

=
∑

i>j

dX(xi, xj)d−1
ij (Z)(〈zi, zi〉 + 〈zj , zj〉 − 2〈zi, zj〉)

=
N∑

i,j=1

dX(xi, xj)d−1
ij (Z)(〈zi, zi〉 − 〈zi, zj〉)

= trace(B(Z)ZZT) = trace(ZTB(Z)Z), (S.3)

where B(Z) is an N × N matrix with elements,

bij(Z) =

⎧
⎨

⎩

−dX(xi, xj)d−1
ij (Z) i �= j and dij(Z) �= 0

0 i �= j and dij(Z) = 0,
−

∑
k �=i bik i = j.

The last term
∑

i>j d2
X(xi, xj) does not depend on Z, and therefore, we leave

it as is. Arranging all the intermediate results, we finally arrive at the matrix
expression of the stress
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σ2(Z) = trace(ZTV Z) − 2trace(ZTB(Z)Z) +
∑

i>j

d2
X(xi, xj).

7.3 In order to prove the majorizing inequality (7.7), it is sufficient to show
that trace(ZTB(Q)Q) ≤ trace(ZTB(Z)Z) for all Q ∈ R

N×m. Our proof is
similar to one given by Borg and Groenen [44]. First, from the Cauchy-Schwarz
inequality, it follows that

m∑

k=1

(zk
i − zk

j )(qk
i − qk

j ) ≤
(

m∑

k=1

(zk
i − zk

j )2
)1/2 (

m∑

k=1

(qk
i − qk

j )2
)1/2

= dij(Z)dij(Q),

where an equality is achieved for Q = Z. Using this result, we have

trace(ZTB(Z)Z) =
∑

i>j

dij(Z)dX(xi, xj)

≥
∑

i>j

m∑

k=1

(zk
i − zk

j )(qk
i − qk

j )d−1
ij (Q)dX(xi, xj).

Recognizing the elements of the matrix B(Z) in the last term, we can rewrite
it as

trace(ZTB(Z)Z) ≥ trace(ZTB(Q)Q),

similarly to (S.3), which completes the proof.

7.10 The derivation of (7.16) is based on the chain rule for matrix functions,
which we show here. Let us be given a function f : R

N×m → R, a matrix
A ∈ R

N×N ′
, and a vector Y ∈ RN ′×m. By definition of the gradient,

f(X + dX) = f(X) + 〈∇Xf(X), dX〉
= f(X) + trace(dXT∇Xf(X)).

On the other hand, denoting X = AY and dX = AdY , we have

f(A(Y + dY )) = f(AY + AdY ) = f(AY ) + 〈∇Y f(AY ), dY 〉
= f(AY ) + 〈∇Xf(AY ), AdY 〉

Rewriting the last equality explicitly,

〈∇Y f(AY ), dY 〉 = trace(dY T∇Y f(AY ))
= trace((AdY )T∇Xf(AY )) = trace(dY T(AT∇Xf(AY ))),

we obtain the chain rule,

∇Y f(AY ) = AT∇Xf(AY ).
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7.11 Equation 7.21 amounts to solving the constrained optimization problem,

min
γ

1
2
‖AK+1γ‖2

2 s.t. 1T
(K+1)×(K+1)γ = 1. (S.4)

From the optimality conditions for problem (S.4), we obtain

AT
(K+1)A(K+1)γ − λ1(K+1)×(K+1) = 0, (S.5)

where λ is the Lagrange multiplier (for convenience, we choose it with a neg-
ative sign). Taking the inner product with γ, we obtain

γTAT
(K+1)A(K+1)γ − λγT1(K+1)×(K+1) = 0,

and plugging in the constraint 1T
(K+1)×(K+1)γ = 1, we finally have λ =

γTAT
(K+1)A(K+1)γ. This result allows us to solve (S.5) as follows: first, we

solve the system

AT
(K+1)A(K+1)γ̃ = 1(K+1)×(K+1),

whose solution is related to the solution of (S.5) as

γ = λγ̃. (S.6)

Taking the inner product with 1(K+1)×(K+1) on both sides of equation (S.6),
we have

1 = 1T
(K+1)×(K+1)γ = λ1T

(K+1)×(K+1)γ̃,

from where

λ =
1

γ̃0 + . . . γ̃K
.

Chapter 8

8.5 Our derivation is similar to one we did in Problem 7.2 to derive the
matrix form of the L2-stress:

∑

i>j

wijdij(Z) =
∑

i>j

wij〈zi − zj , zi − zj〉

=
∑

i>j

wij(〈zi, zi〉 − 2〈zi, zj〉 + 〈zj , zj〉)

=
N∑

i,j=1

wij(〈zi, zi〉 − 〈zi, zj〉)

=
N∑

i=1

⎛

⎝
∑

j �=i

wij

⎞

⎠ 〈zi, zi〉 −
∑

i�=j

wij〈zi, zj〉

= trace(LXZZT) = trace(ZTLXZ),
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where LX is an N × N matrix with elements

lij =
{
−wij i �= j∑

k �=i wik i = j.

8.6 The positive semidefiniteness of LX follows straightforwardly from our
previous derivation, as a particular case when we take z ∈ R

N instead of Z.
The expressions simplify in the following way,

zTLXz =
∑

i>j

wij(zi − zj)2 ≥ 0,

which lead to LX � 0.

8.7 The geometric intuition of this result is the following: we are looking for
the vector x of fixed length, which is shortened the most by the operation
of the matrix A. The factor by which this vector is shortened is the smallest
eigenvalue λmin of A, and the vector x itself is the corresponding eigenvector.

Chapter 9

9.11 Let us fix some i. Because the stress σ(ui) = uT
i Aiui + 2bT

i ui + ci is
quadratic, in order to show convexity with respect to ui, it is sufficient to
show that the matrix

Ai =
∑

j �=i

DY (ti, tj)uju
T
j DY (ti, tj)T

is positive semi-definite. For that purpose, it is further sufficient to show
that DY (ti, tj)uju

T
j DY (ti, tj)T � 0 for each j �= i, as the sum of positive

semi-definite matrices is positive semi-definite. Let us fix some j and denote
R = DY (ti, tj)uj. We have to show that RRT � 0. This, however, follows
straightforwardly, as for any x, xTRRTx = (RTx)T(RTx) = ‖RTx‖2

2 ≥ 0.

Chapter 10

10.2 See proof of Theorem 7.3.25 in [89].

10.3 Let us start by evaluating dGH(X, Xr). We construct ψ : Xr → X
simply as the identity map, copying xi to xi. Clearly, dis ψ = 0. Because
the image ϕ(Xr) = Xr is an r-net in X , the map is r-surjective. Let us
now construct another map ϕ : X → Xr, copying a Voronoi region of xi in
X to xi (points along Voronoi edges can be copied arbitrary to any of the
adjacent regions). The map is clearly surjective. To evaluate its distortion, let
us take x and x′ in X , belonging to the Voronoi regions of some xi and xj

(not necessarily distinct). Using the triangle inequality on X ,
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dX(x, x′) ≤ dX(x, xi) + dX(xi, x
′) ≤ dX(x, xi) + dX(x′, xj) + dX(xi, xj),

and, similarly,

dX(xi, xj) ≤ dX(xi, x) + dX(x, xj) ≤ dX(xi, x) + dX(xj , x
′) + dX(x, x′).

Combining these results and using the fact that Xr is an r-net yields

|dX(x, x′) − dX(xi, xj)| ≤ dX(xi, x) + dX(xj , x
′) ≤ 2r,

from where dis ϕ ≤ 2r. In a very similar way, we obtain dis (ϕ, ψ) ≤ r. Com-
bining the previous results, we have dGH(X, Xr) ≤ r. Now, using the triangle
inequality on M, we have

dGH(X, Y ) ≤ dGH(X, Xr) + dGH(Xr, Y )
≤ dGH(X, Xr) + dGH(Y, Y r) + dGH(Xr, Y r);

similarly,

dGH(Xr, Y r) ≤ dGH(Xr, X) + dGH(X, Y r)
≤ dGH(Xr, X) + dGH(Y r, Y ) + dGH(X, Y ).

Combining these results and using the symmetry of dGH, we can write

|dGH(Xr, Y r) − dGH(X, Y )| ≤ dGH(X, Xr) + dGH(Y, Y r) ≤ 2r.

Chapter 11

11.1 Let us be given a Salukwadze optimal solution (X ′∗, Y ∗), on which the
minimum of ‖Φ(X ′, Y ′)‖ on Ω is achieved. Assume that (X ′∗, Y ∗) is not Pareto
optimal. Then, there exists another (X ′, Y ′) ∈ Ω, such that Φ(X ′, Y ′) <
Φ(X∗, Y ∗). It therefore follows that ‖Φ(X ′, Y ′)‖ < ‖Φ(X∗, Y ∗)‖ by properties
of the norm, which contradicts the assumption that (X ′∗, Y ∗) is Salukwadze
optimal. Therefore, (X ′∗, Y ∗) is necessarily Pareto optimal.

11.3 In order to show the equivalence, we have to show that though the maps
are defined as ϕ : X → Y and ψ : Y → X , their ranges and images are X ′

and Y ′. Given a crisp part X ′, we denote by

δX′(x) =
{

1 x ∈ X ′

0 else

its characteristic function. The characteristic functions in the infima terms
restrict the ranges,
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1
2

inf
ϕ:X→Y

ψ:Y →X

max

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

sup
x,x′∈X

δX′(x)δX′ (x′)|dX(x, x′) − dY (ϕ(x), ϕ(x′))|

sup
y,y′∈Y

δY ′(y)δY ′(y′)|dY (y, y′) − dX(ψ(y), ψ(y′))|

sup
x∈X
y∈Y

δX′(x)δY ′(y)|dX(x, ψ(y)) − dY (ϕ(x), y)|

D sup
x∈X

(1 − δY ′(ϕ(x))) δX′ (x)

D sup
y∈Y

(1 − δX′(ψ(y))) δY ′(y)

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

=
1
2

inf
ϕ:X′→Y

ψ:Y ′→X

max

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

sup
x,x′∈X′

|dX(x, x′) − dY (ϕ(x), ϕ(x′))|

sup
y,y′∈Y ′

|dY (y, y′) − dX(ψ(y), ψ(y′))|

sup
x∈X′

y∈Y ′

|dX(x, ψ(y)) − dY (ϕ(x), y)|

D sup
x∈X′

(1 − δY ′(ϕ(x)))

D sup
y∈Y ′

(1 − δX′(ψ(y)))

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

assuming D = max{diam(X), diam(Y )}. If ϕ(X ′) � Y ′ or ψ(Y ′) � X ′, we
have supx∈X′ (1− δY ′(ϕ(x))) = 1 (respectively, supy∈Y ′ (1− δX′(ψ(y))) = 1);
hence, the values of the above expression will be at least D. Because the
other terms are bounded above by D, it follows that for ϕ(X ′) ⊆ Y ′ and
ψ(Y ′) ⊆ X ′, the above expression will be at most D. As the result, we can
rewrite the infimum on the maps ϕ : X ′ → Y ′ and ψ : Y ′ → X ′,

=
1
2

inf
ϕ:X′→Y ′

ψ:Y ′→X′

max

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

sup
x,x′∈X′

|dX(x, x′) − dY (ϕ(x), ϕ(x′))|

sup
y,y′∈Y ′

|dY (y, y′) − dX(ψ(y), ψ(y′))|

sup
x∈X′

y∈Y ′

|dX(x, ψ(y)) − dY (ϕ(x), y)|

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

= dGH(X ′, Y ′).
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TOSCA Code accompanying Numerical geometry of nonrigid shapes. Fast
marching algorithms, farthest point sampling, Voronoi diagrams. Includes
MATLAB interface to QSlim. MDS with vector extrapolation accelera-
tion; Generalized MDS.
http://tosca.cs.technion.ac.il
License: Free
Language: MATLAB/MEX

Visualization Toolkit (VTK) Library for 3D data handling and visualiza-
tion. Includes everything that can be desired for rendering, basic surface
manipulation routines, importers/exporters for many 3D data formats.
http://www.vtk.org
License: Free
Language: C++

QSlim Mesh simplification code by Michael Garland [168].
http://graphics.cs.uiuc.edu/~garland/software/qslim.html
License: Free
Language: C++

Afront Advancing front remeshing; mesh extraction from volumetric data
and point clouds. Based on [343, 342, 338].
http://afront.sourceforge.net
License: Free
Language: C++

Qhull One of the fastest codes for the computation of the convex hull and
Euclidean Voronoi and Delaunay tesselations.
http://www.qhull.org
License: Free
Language: C
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MATLAB Optimization Toolbox The best starting point for MATLAB
users. Includes constrained and unconstrained optimization problems;
nonlinear and multi-objective optimization; nonlinear least-squares; data
fitting; nonlinear equations; quadratic and linear programming; integer
programming.
http://www.mathworks.com/products/optimization
License: Commercial
Language: MATLAB

TOMLAB Nonlinear optimization; data fitting; global, non-convex and non-
smooth optimization; linear, quadratic, and semidefinite programming.
Supports large-scale sparse matrices. Compatible with MATLAB Opti-
mization Toolbox.
http://tomopt.com
License: Commercial
Language: MATLAB

Iterative Methods for Optimization Codes accompanying Kelley’s book
[221]. Line search algorithms; trust region; Newton; conjugate gradients;
BFGS.
http://www4.ncsu.edu/~ctk/matlab_darts.html
License: Free
Language: MATLAB

OPT++ Object-oriented nonlinear optimization library. Newton methods;
nonlinear interior-point method; parallel direct search; trust region.
http://csmr.ca.sandia.gov/opt++
License: Free
Language: C++

LANCELOT Unconstrained and constrained optimization problems; non-
linear equations; nonlinear least-squares problems. Includes an implemen-
tation of Augmented Lagrangian method.
http://www.cse.scitech.ac.uk/nag/lancelot
License: Free
Language: Fortran 77

ANN David Mount’s library for approximate nearest neighbor search.
http://www.cs.umd.edu/~mount/ANN
License: Free
Language: C++

MATLAB Statistics Toolbox Supports different types of MDS problems,
including classic scaling.
http://www.mathworks.com/products/statistics
License: Commercial
Language: MATLAB
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Nonmetric MDS Mark Steyvers’ code allows minimization of different vari-
ants of stress.
http://www.mathworks.com/products/statistics
License: Free
Language: MATLAB

Isomap Low-dimensional embedding of Euclidean data.
http://isomap.stanford.edu
License: Free
Language: MATLAB

Toolbox for Dimensionality Reduction by Laurens van der Maaten. In-
cludes PCA, LLE, HLLE, LTSA, and diffusion maps.
http://www.cs.unimaas.nl/l.vandermaaten
License: Free
Language: MATLAB

An up-to-date list of relevant software is available on the book website
tosca.cs.technion.ac.il/book.



Notation

R Real numbers
R+ Non-negative real numbers
R

m m-dimensional Euclidean space
R

m
+ Non-negative m-dimensional orthant

R
m×n Space of m × n matrices

Cr Class of r-times continuously differentiable maps
C∞ Class of smooth maps
‖ · ‖ Norm
‖ · ‖p p-norm
‖ · ‖F Frobenius matrix norm
‖ · ‖Q Q-norm
〈·, ·〉 Inner product
· ∧ · Wedge (cross) product
2X Powerset of X
ΣX σ-algebra on X
� Disjoint union
(X, dX) Metric space
dX |X′ Restricted metric
BX(x, r) Open ball of radius r around the point x with respect to

the metric dX

BX(x, r) Closed ball of radius r around the point x with respect to
the metric dX

xn → x Convergence of sequence {xn} to the limit x
f−1(A) Preimage of the set A under the map f
f−1 Inverse of a bijective map f
dil f Dilation of the map f
dis f Distortion of the map f
Iso(X) Isometric group of the metric space X
dL Length metric
dG Geodesic metric
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L(γ) Length of curve γ
γ̇(t) First derivative of γ(t) with respect to t (velocity)
γ̈(t) Second derivative of γ(t) with respect to t (acceleration)
X Surface (Riemannian manifold)
XN Finite sampling of surface X
Xr

N Finite r-covering of surface X
∂X Boundary of X
int(X) Interior of X
conv(X) Convex hull of a set X
g Riemannian metric
TX Tangent space (plane)
κ Curvature
κn Normal curvature
κg Geodesic curvature
K Gaussian curvature
H Normal curvature
N (x) Neighborhood of point x
T (XN) Triangulation of a cloud of points XN (triangular mesh)
df Differential of map f
∇f Gradient of map f
∇2f Hessian of map f
∇Xf Intrinsic gradient of map f : X → R

AT Transpose of matrix A
A−1 Inverse of matrix A
A† Pseudoinverse of matrix A
det(A) Determinant of matrix A
trace(A) Trace of matrix A
rank(A) Rank of matrix A
� Hadamard (element-wise) matrix product
� Positive definite
� Positive semi-definite
ai ith coordinate of vector a
aij ijth element of matrix A
vec(A) Column-stack representation of matrix A
ΔX Laplace-Beltrami operator
LX Laplacian matrix of a graph



Acronyms

2D Two-dimensional
3D Three-dimensional
AL Augmented Lagrangian
BFGS Broyden-Fletcher-Goldfarb-Shanno
CMC Cumulative match characteristic
EER Equal error rate
FAR False acceptance rate
FMM Fast marching method
FPS Farthest point sampling
FRR False rejection rate
GMDS Generalized multidimensional scaling
GPU Graphics processing unit
GSS Generalized Shanks-Schmidt transform
HLLE Hessian locally linear embedding
ICP Iterative closest point
IRBL Implicitly restarted block-Lanczos
IRLS Iteratively reweighted least squares
KKT Karush-Kuhn-Tucker
KLT Karhunen-Loéve transform
LLE Locally linear embedding
LTSA Local tangent space alignment
MDS Multidimensional scaling
MG Multigrid
MPE Minimal polynomial extrapolation
PBM Penalty/barrier method
PCA Principal component analysis
RGB Red green blue
ROC Receiver operating characteristic
RRE Reduced rank extrapolation
SIMD Single instruction multiple data
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SMACOF Scaling by minimizing a convex function
SSE Streaming SIMD extensions
TEA Topological ε-algorithm



Glossary

ε-isometry a map that has distortion ε and is ε-surjective.
ε-surjection a map f : (X, dX) → (Y, dY ), such that, dY (Y, f(X)) ≤ ε.
Ck-function a function that is k-times continuously differentiable.
σ-algebra on X (denoted by ΣX) is a subset of the power set of X closed

under complement and countable union, i.e., (i) if X ′ ∈ ΣX then X
′c ∈

ΣX ; (iii) if X ′
i ∈ T for i = 1, 2, ... then

⋃
i Xi ∈ T .

Armijo rule an algorithm for inexact line search.

bending of a surface X is a deformation f : X → Y , satisfying dX(x1, x2) =
dY (f(x1), f(x2)) for every x1, x2 ∈ X .

bi-Lipschitz function an injective Lipschitz function whose inverse is also
a Lipschitz function.

bijection a map that is surjective and injective. Bijective maps have an in-
verse.

characteristic function of a subset X ′ of X is a function obtaining the
value 1 on X ′ and zero on X \ X ′.

column stack of an N × M matrix A (denoted as vec(A)) is a column vec-
tor of size NM produced by appending the columns of A, such that
vec(A)i+(j−1)N = Aij .

condition number of a matrix is the ratio of its maximum and minimum
eigenvalues.

continuous bending of a surface X is a family {fλ} of bendings continuous
in λ such that f0(X) = X .

convex function a function whose epigraph is a convex set.
convex hull of a subset A of a metric space (X, dX) is the minimum set

containing A that is convex in X .
convex set a subset A of a vector space X , such that for every x, x′ ∈ X

and λ ∈ [0, 1], it holds λx + (1 − λ)x′ ∈ A.
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crisp set is a fuzzy set whose membership function obtains discrete values
{0, 1}. Crisp set coincides with the traditional definition of a subset in set
theory.

diffeomorphism a bijective map between two smooth manifolds that is dif-
ferentiable and its inverse is also differentiable.

differentiable function a function whose derivative exists at every point of
its domain.

dilation of a map f : (X, dX) → (Y, dY ) is the measure of the maximum
relative change of the metric,

dil f = sup
x 	=x′∈X

dY (f(x), f(x′))
dX(x, x′)

.

disjoint union (or discriminated union) of two sets A and B is denoted by
A � B and can be thought of as (A × {0}) ∪ (B × {1}).

eigenvalue or a square matrix A is a scalar λ such that Au = λu for some
vector u, referred to as an eigenvector.

epigraph of a function f (denoted by epi (f)) is a set of functions lying on
or above the graph of f .

equivalence class of x ∈ X under the equivalence relation ∼ is the set
[x] = {y ∈ X : x ∼ y}.

equivalence relation a binary relation, which is reflexive, symmetric, and
transitive.

Euler characteristic of a polyhedron (denoted by χX) is defined as χX =
NF − NE + NV , where NF is the number of faces, NE is the number of
edges, and NV is the number of vertices in the polyhedron. For manifolds,
the Euler characteristic is defined through the Gauss-Bonnet theorem.

fuzzy set on X is a generalization of the notion of subset, described by a
membership function m : X → [0, 1] that determines the degree of “be-
longing” of a point in x to the fuzzy set.

genus of a manifold X is the largest number of cuts along nonintersecting
closed simple curves that leave the manifold connected. Genus can be
intuitively interpreted as the number of “handles” or “holes” a manifold
has.

geodesically convex set a subset A of a length space X , containing the
geodesics between all x, y ∈ A.

gradient of a differentiable function f : X → R (denoted by ∇f) is an
operator on X satisfying df(x) = 〈∇f(x), dx〉 for an infinitesimal dx.
In coordinate notation, the gradient is a vector of the first-order partial
derivatives of f .

Gram matrix a symmetric matrix of inner products.
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group a pair (G, ∗) of a set G and a binary operator ∗ : G → G, satisfying
(i) closure: for all a, b ∈ G, a ∗ b ∈ G; (ii) associativity: for all a, b, c ∈ G,
(a ∗ b) ∗ c = a ∗ (b ∗ c); (iii) there exists an identity element e ∈ G such
that for all a ∈ G e ∗ a = a ∗ e = a; and (iv) for all a ∈ G, there exists an
inverse element b ∈ G such that a ∗ b = b ∗ a = e.

Hadamard product element-wise product of two matrices.
Hausdorff space a topological space (X, T ), in which for every distinct x, y,

there exist disjoint open sets U, V ∈ T such that x ∈ U and y ∈ V .
Hessian of a twice-differentiable function f : X → R (denoted by ∇2f) is a

bilinear operator satisfying d(∇f)(x) = ∇2f(x)dx. In coordinate notation,
the Hessian is a symmetric matrix of the second-order partial derivatives
of f .

homeomorphism a bijective continuous map with a continuous inverse.
Homeomorphisms preserve topological properties.

injection (one-to-one map) a map f : X → Y associating distinct argu-
ment to distinct values, such that f(x1) = f(x2) implies x1 �= x2 for all
x1, x2 ∈ X .

intrinsic geometry generic name for properties of a Riemannian manifold,
expressible in terms of the distance structure.

isometric embedding a distance-preserving map.
isometry bijective distance-preserving map.

line search generic name for a procedure for finding the minimum of a one-
dimensional function.

Lipschitz function a function whose dilation is bounded.
lower triangular matrix a matrix A with elements aij = 0 for all j > i.

measurable function (or ΣS-measurable function) is a function f : X → R

such that {x : f(x) ≤ δ} ∈ ΣS for all δ, where ΣX is a σ-algebra on X .
metric a non-negative function d : X → R satisfying for every x, y, z ∈ X (i)

d(x, y) = 0 if and only if x = y; (2) d(x, y) = d(y, x); and (3) d(x, y) ≤
d(x, z) + d(y, z).

metric space (denoted by (X, dX)) a space X equipped with a metric dX .
minor of an N × N matrix A (denoted by Mij(A)) is the determinant of

the (N − 1)× (N − 1) matrix, obtained by removing the ith row and jth
column from A.

multicriterion optimization optimization problem in which the objective
function is vector-valued.

normed vector space a vector space equipped with a norm.

over-determined a system of linear equations containing more equations
than variables.
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Pareto optimum a solution of a multicriterion optimization problem, at
which none of the criteria can be improved without compromising the
other ones.

positive-definite matrix a matrix A satisfying Au > 0 for all vectors u �= 0.
This definition can be extended to operators.

positive-semidefinite matrix a matrix A satisfying Au ≥ 0 for all vectors
u. This definition can be extended to operators.

power set of X (denoted by 2X) is the set of all subsets of X .
preimage of A ⊆ Y under the map f : X → Y (denoted by f−1(A)) is the

set of all the arguments mapped by f into A, i.e., f−1(A) = {x ∈ X :
f(x) ∈ A}.

pseudoinverse of a matrix A (denoted by A†) is a generalization of in-
verse for non-invertible matrices. The pseudoinverse is given by A† =
(ATA)−1AT and coincides with the standard definition of inverse in the
case when A is invertible.

quotient space of a space X under the equivalence relation ∼ (denoted by
X\ ∼) is the set X∗, whose members are equivalence classes.

rank of a matrix A is the dimensionality spanned by the columns (column
rank) or the rows (row rank) of A. For square matrices, the row and
column rank is equal to the number of non-zero eigenvalues.

reflexive relation a binary relation on X , such that every x ∈ X is in
relation with itself.

Salukwadze optimum the closest of all Pareto optima to the utopia point.
smooth function (C∞-function) a function that has continuous derivatives

of all orders.
sparse matrix a matrix containing mostly zero values.
spectrum set of eigenvalues of a matrix or an operator.
suboptimality of an objective function f at the solution x is the difference

f(x) − f(x∗).
surjection (onto map) a map f : X → Y , whose range spans the whole

codomain, i.e., f(X) = Y .
symmetric matrix a square matrix A satisfying AT = A.
symmetric relation a binary relation on X , such that if x is in relation

with y, then y is in relation with x for all x, y ∈ X .

topological space denoted by (X, T ) is a space X equipped with a topology
T .

topology on X is a subset T of the power set of X closed under union and
intersection, i.e., (i) X, ∅ ∈ ΣX ; (ii) if Xα ∈ T , then

⋃
α Xα ∈ T ; (iii) if

Xα ∈ T , then
⋂

α Xα ∈ T . Broadly, topology also refers to topological
properties of an object.

transitive relation such that if x is in relation with y, and y is in relation
with z, then x is in relation with z for all x, y, z ∈ X .
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unitary matrix a square matrix A satisfying ATA = I.
utopia point an ideal, usually non-achievable solution of a multicriterion

optimization problem.

vector space a set that is closed under finite vector addition and scalar
multiplication.
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