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Preface

Among all computer-generated mathematical images, Julia sets of rational maps
occupy, perhaps, the most prominent position. Their beauty and complexity can be
fascinating. They also hold a deep mathematical content, and numerical experiments
have become a defining feature of the subject of Complex Dynamics.

Computational hardness of Julia sets is the main subject of this book. By defini-
tion, a computable set in the plane can be visualized on a computer screen with an
arbitrarily high magnification. In this definition the running time of the visualization
algorithm is not limited.

Countless programs to visualize Julia sets have been written. Yet, as we will see,

it is possible to constructively produce examples of quadratic polynomials, whose
Julia sets are not computable.

In a way, this result is striking – it says that while a dynamical system can be de-
scribed numerically with an arbitrary precision, the picture of the dynamics cannot
be visualized.

As one indication of how unusual this is, consider the following. Another inter-
esting object for a quadratic polynomial is its filled Julia set. It is obtained by “filling
in” all the holes in the Julia set itself. In doing this, the computable properties of the
picture can change dramatically:

a filled Julia set is always computable.

The non-computability phenomenon is very subtle, and in describing it we will re-
quire a very precise analytic machinery. Many of the techniques we use have only
become available in the last few years. Perversely, we are able to construct non-
computable examples of Julia sets because we understand Julia sets so well.

Non-computability turns out to be rare. Most Julia sets are computable. Their
computational hardness, however, may vary. The running time required to produce
a high-resolution image of a computable Julia set may be prohibitively high. Already
we have seen some further surprises – a class of Julia sets (Julia sets of quadratic
polynomials with parabolic orbits) empirically thought of as hard to compute turns
out to be easy (and with a practical algorithm).

vii



viii Preface

Our understanding of the computational complexity of Julia sets is in its first
stages. Examples of a truly pathological kind (Julia sets of quadratic polynomials
with Cremer periodic orbits) turn out to always be computable. No informative pic-
tures of this type have ever been produced, as the running time of all presently exist-
ing algorithms renders them impractical. However, it is not known if they are ever
computationally hard. This is probably the case at least sometimes, but it may also
be possible that some of them can be visualized effectively by a clever algorithm.
Many interesting problems await further study here.

The goal of the present book is to summarize our present knowledge about the
computational properties of Julia sets in a fashion that is as self-contained as possi-
ble. While we have found the interplay between theoretical Computer Science and
Dynamical Systems extremely fruitful, it makes the presentation more challenging.
We have striven to make the book accessible and interesting to experts in both fields.
The book assumes no prior knowledge of computability theory, and only a basic fa-
miliarity with complex analysis.

We start the book with an introduction to computability theory (Chapter 1) and a
survey of the basic principles of dynamics of rational maps (Chapter 2). In Chapter
3 we begin the study of the computability and complexity of Julia sets by looking at
some typical examples. We discuss the general positive results in Chapter 4. Non-
computability appears in Chapter 5. Chapter 6 serves to understand the topological
structure of non-computable examples in more detail.

The material we view as “optional reading” is

typeset like this.

It is either not directly related to the main storyline, or is too technical, and is di-
rected towards experts in one of the two fields.
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B(y,r) the ball with center y ∈ R
n and radius r;

B(Y,r) the r-neighborhood of the set Y in R
n;

U the unit disk in C;
D the set of dyadic rationals;
Ĉ the Riemann sphere;
T the circle R/Z;
M the Mandelbrot set;
Crit(R) the set of critical points of a rational map R;
Postcrit(R) the postcritical set of R;
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n;
RC the set of all computable real numbers;
Mφ an oracle Turing Machine;
T the circle R/Z;
S1 the unit circle {|z|= 1} ⊂ C;
C the set of finite unions of closed dyadic balls in R

k;
RC the field of computable real numbers;
CC the field of computable complex numbers;
f n unless otherwise specified, the n-th iterate f ◦ f ◦ · · · ◦ f

︸ ︷︷ ︸

n

;

J(R) the Julia set of the function R;
K(p) the filled Julia set of the polynomial p;
Jc the Julia set J(z2 + c);
Kc the filled Julia set K(z2 + c);
B the set of Brjuno numbers;
an � bn, or an = O(bn) and bn = O(an);
an =Θ(bn)
an � bn an = O(bn).
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Chapter 1
Introduction to Computability

One of the main goals of computability theory is to classify problems according to
whether or not they can be solved algorithmically. In fact, such questions existed
before computers. A famous example is Hilbert’s Tenth Problem:

“Given a diophantine equation with any number of unknown quantities and with
rational integral numerical coefficients: to devise a process according to which it
can be determined by a finite number of operations whether the equation is solvable
in rational integers.” [Bulletin of the American Mathematical Society 8 (1902), 437–
479.]

In other words:
Is it algorithmically possible to determine if a given Diophantine equation is

solvable?
It is fairly clear what an affirmative answer would mean in this case – an explicit

method to check if an equation has a solution. Giving a negative answer (which
turns out to be the correct one) requires a more formal definition of “methods” that
can be used in the solution – as one would need to prove that none of these methods
work.

Such formal models of computation precede modern computers. In 1936 two
essentially equivalent models were independently proposed by A. Turing [Tur36]
and E. Post [Pos36] (and many others have appeared since). Turing’s work has been
the most influential, and his concept of a Turing Machine has become a universally
accepted formal model of computation.

1.1 Discrete computability and complexity

1.1.1 Discrete computability and the Turing Machine

A precise definition of a Turing Machine (TM) is somewhat technical and can be
found in all texts on computability, e.g. [Pap94, Sip05]. Such a machine consists

M. Braverman and M. Yampolsky. Computability of Julia Sets.
Algorithms and Computation in Mathematics,
c© Springer-Verlag Berlin Heidelberg 2009
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2 1 Introduction to Computability

of a tape, and a head which can read/erase/write the symbols on the tape one at a
time, and can shift its position on the tape in either direction. The symbols on the
tape come from a finite alphabet, and the TM can be in one of a finitely many states.
Finally, a simple look-up table tells TM what action to undertake depending on the
current state, and the symbol read on the tape. The length of the tape is usually not
restricted in either direction, so there is no bound on the “memory” available to the
machine.

Despite its apparent simplicity, the computational power of a Turing Machine is
equivalent to that of a RAM computer (with an unlimited supply of RAM). In fact,
there is a general belief, usually referred to as the Church-Turing Thesis, which
states that any computation performed on a physical device can be simulated using
a Turing Machine.

Programming a Turing Machine can be a daunting task, and it is much easier
to think of an algorithm as a program in one of the many programming languages
available on a modern computer. Since the concepts are equivalent, this is the path
we will generally follow when describing a particular algorithm.

The formal notion of a Turing Machine gives a natural way of classifying the
computability of functions in the discrete setting, such as functions acting on the set
of naturals N or the set of finite binary strings {0,1}∗. Namely:

Definition 1.1.1 A function f (x) is computable, if there exists a TM which takes x
as an input and outputs the value f (x).

Computable functions are sometimes called recursive. They include simple func-
tions such as integer arithmetic operations and lexicographical sorting of strings.
They also include problems that appear to be difficult in practice, but can be solved
nonetheless if we are willing to wait sufficiently long. These include, for example,
computing the prime factorization of an integer and finding the optimal strategy in
the game of Go.

On the other hand, there are many functions that are not computable. One way
to see this is by a simple counting argument: any TM has a finite description, and
hence there are countably many TMs. On the other hand, there are uncountably
many functions from N to N, or even from N to {0,1} – and thus “most” functions
are not computable. It is much more interesting to have specific examples of non-
computability.

One such example is the Halting Problem. The halting function H maps a pair
(T,w), where T is an encoding of a TM M and w is a binary input, to 1 if the machine
M running on input w eventually halts, and 0 otherwise.

Proof (Sketch of proof that H is not computable). We argue by way of a contradic-
tion. Suppose there were a TM M1 computing the halting function. Let M2 be the
following machine: on an input w, M2 uses M1 to compute H(w,w). If H(w,w) = 0,
then M2 halts, otherwise it goes into an infinite loop.

Let w2 be the encoding of M2. What will be the outcome of running M2(w2)? If
M2 halts on w2, then H(w2,w2) = 1, and thus M2 cannot halt on w2 by definition. If
M2 fails to halt on w2, then H(w2,w2) = 0, and by its definition M2 halts on input
w2. In either case we arrive at a contradiction. ��
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Recall, that a function which takes only boolean values 0 (False) and 1 (True)
is called a predicate. Consider a predicate A : N×N→ {0,1} defined as follows.
On an input (x,t), A views x as an encoding of a pair (M,w) of a TM and an input.
A(x,t) is 1 if and only if x gives a valid encoding of a pair (M,w) and M halts on
w in exactly t steps. It is easy to see that A is a computable predicate. An algorithm
to determine the value of A(x,t) is simply to simulate the machine M for exactly t
steps with input w, and check whether it terminates at the last step.

On the other hand, computing the predicate

B(x) = ∃t A(x,t)

is as difficult as solving the Halting Problem, and thus B is non-computable. This
example will be useful later on.

More generally, a predicate of the form P(x) = ∃y R(x,y) for a computable
predicate R(x,y) is said to be recursively enumerable. Note that every computable
predicate is also recursively enumerable. In the case when, as above, for each x
there exists at most one y such that R(x,y) holds, we will emphasize it by writing
P(x) = ∃!y R(x,y).

Another explicit example of a non-computable function is given by the negative
solution to Hilbert’s Tenth Problem. This famous theorem was proved in 1970 by
Yuri Matiyasevich, using earlier results of Julia Robinson, Martin Davis, and Hilary
Putnam (see [Mat93] for details and the history of the problem).

Theorem 1.1 The function that maps an encoding of a diophantine equation E to 1
if E is solvable and to 0 otherwise, is non-computable.

1.1.2 Discrete complexity theory

In addition to studying computability properties of problems one is often interested
in the amount of computational resources needed to solve a certain problem. The
Computational Complexity Theory studies these questions.

Definition 1.1.2 For a TM M on input w, the running time of M(w) is the number
of steps M(w) makes before terminating with an output. The running time of M is
the function TM : N→ N such that

TM(n) = max
|w|=n
{the running time of M(w)},

where |w| denotes the length of w. In other words, TM(n) is the worst case running
time for inputs of length n.

For a predicate P : {0,1}∗ → {0,1} the time complexity of P is said to have an
upper bound T2(n) if there exists a Turing Machine MP with running time bounded
by T2(n) that computes P. The time complexity of P is said to have a lower bound
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of T1(n) if, for any Turing Machine M computing P with running time TM, TM(n) >
T1(n) for infinitely many n’s.

In this book we focus on the time complexity of problems. Other complexity
notions may include:

• space complexity – the amount of memory used by an algorithm solving the
problem,

• randomness complexity – the number of random bits used by an algorithm,
• and communication complexity – the number of bits transferred during an exe-

cution of a multi-party computation.

Proving an upper bound typically involves producing an algorithm running in
time bounded by T2(n). Proving lower bounds is generally much more difficult, and
most exciting problems such as the “P vs. NP” (see [Coo06]) fall into this cate-
gory. For theoretical purposes, a problem is considered “tractable” if its complexity
is polynomial in n. The class of polynomial-time computable problems is denoted
by P.

Example 1.1. Consider the satisfiability problem SAT :
Given a boolean formula φ(x) in k variables, decide whether there is an assign-

ment x′ of variables that satisfies φ , i.e. such that φ(x′) = 1.

Formally, the predicate we would like to compute is

SAT(w) = 1⇐⇒ w encodes a satisfiable boolean formula φ .

The naı̈ve way to check whether a formula φ in k variables is satisfiable is by trying
all possible truth assignments to see whether one of them satisfies φ . Checking one
assignment takes time bounded by O(|w|2), and hence SAT can be solved in time
O(|w|2 · 2k). With a reasonable encoding, k ≤ |w|/2, and thus the running time is
bounded by (recall the notation n = |w|):

O(|w|2 ·2k)≤ O(|w|2 ·2|w|/2)≤ O(2|w|) = O(2n).

Hence the complexity of SAT is at most exponential in n.
On the other hand, it is not hard to see that in order to solve SAT successfully

one needs at least to read the entire input w, and hence the complexity of SAT is at
least n – linear in the size of the input n.

The gap between the upper and lower bound is huge, and the question of the
“true” complexity of SAT is of great importance. For example, P=NP if and only
if SAT has polynomial time complexity. Most researchers believe that this is not
the case, but any substantial improvement on the trivial bounds above seems to be
remarkably hard to achieve.

There are many “natural” problems that appear to be hard, for which no uncon-
ditional super-polynomial lower bounds are known. In addition to the SAT problem
mentioned above, these include integer factoring, computing the number of perfect
matchings in a graph and finding the optimal strategy in the game of Go. In contrast,
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using reasoning similar to the proof that the Halting Problem is not computable, one
can construct an “artificial” problem of any reasonable time complexity. (cf. [Sip05]
Section 9.1).

Theorem 1.2 Suppose that t : N→N is a computable function. Then there is a com-
putable function ft : N→ {0,1} such that no TM M can compute ft while running
in time t(n) on input n.

The proof Theorem 1.2 is very similar to the proof that the Halting
Problem is not computable. An example of a hard problem is:

Given a machine M and an input w, does M halt on w for 2t(|w|)
steps?

Note that in order to perform the simulation we need to compute
t(|w|) first, and hence the requirement that the function t is com-
putable (the theorem is false without this requirement).

1.2 Computability and complexity of real numbers and functions

1.2.1 Computability and complexity of real numbers

One of Turing’s original motivations for introducing the Turing Machine was clas-
sifying real numbers into computable and non-computable ones. A number is said
to be computable if there exists a TM that writes its (infinite) decimal expansion
digit by digit. The following definition is equivalent, but slightly less representation
dependent:

Definition 1.2.1 A real number α is said to be computable if there is a computable
function φ : N→Q such that, for all n,

∣

∣

∣

∣
α− φ(n)

2n

∣

∣

∣

∣
< 2−n.

The set of the computable reals is denoted by RC .

In other words, there exists an algorithm to approximate α with any desired de-
gree of precision. As with discrete functions, “most” numbers are non-computable,
while most “nice” numbers, such as π and e are. It is easy to see that RC with the
usual arithmetic operations forms a field. Moreover, RC is a real closed field, that
is, every real number in the algebraic closure of RC belongs to RC . Computable
complex numbers CC = RC + iRC are defined in a similar way, and CC is an alge-
braically closed field.
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Below we present a generalization of the definition of a computable number
which will be useful later on:

Definition 1.2.2 A real number α is said to be right computable if there is a com-
putable function φ : N→Q such that

• the sequence {φ(n)} is non-increasing: φ(1)≥ φ(2)≥ . . ., and
• the sequence {φ(n)} converges to α: limn→∞ φ(n) = α .

Similarly, a number β is left computable if there is a computable rational sequence
ψ(n) that converges to β from below.

Note that the sets of right-computable and left-computable numbers are count-
able, because each such number α corresponds to a different TM that computes a
sequence converging to α . It is not hard to see that a computable real number is also
right- and left-computable. Conversely, if a number is both right-computable and
left-computable, then it is computable.

Being just left-computable or right-computable is insufficient for being com-
putable, in general. We will show that, in fact, right-computable numbers that are
not computable are dense in R:

Proposition 1.3 Right computable numbers form a dense subset in R\RC .

Proof. It is sufficient to present a single right computable number which is not com-
putable. If α is a right-computable number in R \RC then α + q is also such a
number for any q ∈ Q, yielding a dense set in R. Let P(x) = ∃!y R(x,y) be a non-
computable predicate on N such that R(x,y) is computable, as discussed above.
Consider the number

α = 1−
∞

∑
x=1

P(x) ·4−x.

Then α is non-computable, since computing α would also enable us to compute
the predicate P. On the other hand, α is right computable, as demonstrated by the
following computable function:

φ(n) = 1−
n

∑
x=1

n

∑
y=1

R(x,y) ·4−x.

φ(n) is obviously non-increasing, and

lim
n→∞φ(n) = 1−

∞

∑
x=1

∞

∑
y=1

R(x,y) ·4−x = 1−
∞

∑
x=1

P(x) ·4−x = α.

��
A more detailed discussion on the different extensions of the concept of a com-

putable number can be found in [Wei00].
Similarly to the discussion of the complexity of predicates in the previous sec-

tion, we can define the time complexity of a real number α ∈ RC .



1.2 Computability and complexity of real numbers and functions 7

Definition 1.2.3 We say that functions T1(n), T2(n) are lower, upper bounds on the
complexity of α ∈ RC if any algorithm which computes the function φ(n) as in
Definition 1.2.2 has running time at least T1(n) for infinitely many n’s, and there is
such an algorithm with running time of at most T2(n) for all sufficiently large values
of n. The number α is poly-time computable if T2(n) can be chosen as a polynomial
in n.

It is not hard to see that the “common” numbers such as 7, π and e are poly-
time computable. On the other hand, Theorem 1.2 gives us a way of constructing
computable reals of an arbitrarily high computational complexity:

Proposition 1.4 For any computable function T : N→ N there exists a computable
real number α of complexity greater than T (n).

Proof. The same trick as in the construction of a non-computable α in the proof of
Proposition 1.3 can be used here. Namely, by Theorem 1.2 there is a computable
function

ft : N→{0,1}
such that ft is computable, but not in time t(2n)+ 8n. Then the number

α =
∞

∑
x=1

f (x) ·4−x,

is not computable in time t(n)+ n, otherwise we could use the 4−n-approximation
for α to compute f (n) in time < t(2n)+ 8n.

��
The above definitions of computability and complexity using Turing Machines

directly apply only to computability questions for discrete objects, such as discrete
predicates and finite approximations of real numbers. It has to be extended if we
want to discuss the computability of continuous objects such as functions over R or
subsets of R

k.

1.2.2 Oracle computation, computable real functions

The history of defining computability for real objects probably begins with the work
of Banach and Mazur [BM37] in 1937, only one year after Turing’s paper. This work
has founded the tradition of Computable Analysis (sometimes also called Construc-
tive Analysis). Interrupted by war, it was further developed in the book by Mazur
[Maz63]. Much research took place in the mid 1950’s in the works of Grzegorczyk
[Grz55], Lacombe [Lac55], and others. A parallel school of Constructive Analysis
was founded by A. A. Markov in Russia in the late 1940’s. A modern treatment of
the field can be found in [Ko91] and [Wei00].

The definition of computability over the reals presented here falls into this frame-
work.
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Consider the simplest case in which we would like to compute a function f :
R→ R. On an input x, we are trying to compute f (x). As in the case with real
numbers, the machine M computing f should be able to output f (x) with any given
precision 2−n. The machine M, similarly to a practical computer, can only handle a
finite amount of information, and thus is not capable of reading or storing an entire
input x. Instead, it is allowed to request the input x with an arbitrarily high precision.
In other words, it has an external tape and a command READ(m) which requests a
2−m-approximation φ(m) of x to be written on this tape. It can then be read by the
machine from the external tape. It is convenient to take all the approximations from
the set of dyadic numbers

D =
{

k
2l : k ∈ Z, l ∈ N

}

,

as they possess a natural finite binary encoding.
To formally define computability of real functions let us first introduce the notion

of an oracle formalizing the command READ:

Definition 1.2.4 A dyadic-valued function φ : N→ D is called an oracle for a real
number x if it satisfies |φ(m)− x|< 2−m for all m.

An oracle Turing Machine is a TM which can query the value φ(m) of some oracle φ
for an arbitrary m ∈N. Note that the oracle φ itself is not a part of the algorithm, but
rather enters as a parameter. We will use a notation Mφ to emphasize the dependence
of the output of the TM on the values of the oracle.

To get used to the terminology, imagine a trivial algorithm which, given an n∈N

and a good enough approximation of x ∈ R, outputs a 2−n-approximation of the
number 2x. The algorithm executes the command

READ x WITH PRECISION 2−(n+1).

At this point the user (playing the role of an oracle in the dictionary sense) enters
a dyadic rational d for which |d− x| < 2−(n+1) from the keyboard. The algorithm
proceeds to output 2d as the answer.

Definition 1.2.5 Let S be a subset of R, and let f : S→ R be a real-valued function
on S. Then f is said to be computable if there is an oracle Turing Machine Mφ (n)
such that the following holds. If φ(m) is an oracle for x ∈ S, then for every n ∈ N,
Mφ (n) returns a dyadic number q such that |q− f (x)|< 2−n.

Note that Mφ is supposed to work with any valid oracle φ for x. The definition
generalizes trivially to functions with k > 1 variables. While any choice of norm in
R

k would do to measure distance, to fix the ideas we will use the �2-norm

|x̄|=
√

x2
1 + · · ·+ x2

k for x̄ = (x1, . . . ,xk) ∈ R
k.
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Examples of computable functions include most common functions such as an
integer power, exp(x), and any trigonometric function. A constant function f (x)≡ a
is computable if and only if a is a computable number.

The oracle terminology allows us to separate the problem of computing the pa-
rameter x from the problem of computing the function f on a given x. For example,
the function x �→ 2x is computable. Hence, even if a is a non-computable number,
we are still able to compute 2a, provided we have an oracle access to a. This is
despite the fact that 2a is a non-computable number in this case.

A fundamental fact about computable functions in this setting is that computable
functions are continuous:

Theorem 1.5 Let S ⊂ R
k, and suppose that f : S→ R is computable by an oracle

machine Mφ . Then f is continuous on S.

Proof. Let x ∈ S and ε > 0 be given. Choose an integer m such that 2−m < ε/2. Let
φ(n) be an oracle for x satisfying |φ(n)− x|< 2−n−1 for all n (thus “exceeding” the
minimum requirement from an oracle). Then Mφ (m) outputs a number d ∈ D such
that |d− f (x)| < 2−m. The computation of Mφ (m) terminates after finitely many
steps, and hence φ is only queried up to some finite precision 2−k. It is now not hard
to see that, for any x′ such that |x− x′| < 2−k−1, there is a valid oracle φ ′ which
agrees with φ up to precision 2−k. Thus, for any x′ ∈ S∩ (x− 2−k−1,x + 2−k−1),
Mφ ′(m) outputs the same answer d, and we must have |d− f (x′)|< 2−m. Hence, for
every x′ ∈ S such that |x− x′|< 2−k−1, we have

| f (x)− f (x′)| ≤ | f (x)−d|+ | f (x′)−d|< 2−m + 2−m < ε.

��
In particular, the theorem shows that discontinuous functions, such as arcsin or χQ

cannot be computed by a single machine on the whole domain of definition.

The continuity requirement may seem too restrictive. It is hard to
argue, for instance, that the function

sign(x) =
{

1 if x≥ 0,
0 if x < 0

is computationally hard. There exist various natural ways to soften
the definition of a computable function, to avoid such counterex-
amples (see [Bra05]). For most of our negative results, the domain
of the function will consist of a single point, and so Theorem 1.5
would not be relevant.

Same considerations can be used to prove a stronger result:
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Theorem 1.6 Under the conditions of Theorem 1.5 there exists an oracle machine
Mφ (k) that, for every valid oracle φ for x ∈ S, computes a function μφ (k) : S×N→
N such that

| f (y)− f (x)|< 2−k whenever y ∈ S and |y− x|< 2−μ(x,k).

We will refer to the this property by saying that f has a computable local modulus
of continuity.

Note that we cannot say that there is a well defined function μ :
S×N→N, because such a μ would have to be constant (or discon-
tinuous) for a fixed k. In the statement of Theorem 1.6 the value of
μφ depends not only on the value of x ∈ S but also on the particular
oracle φ for x.

In some cases, for example when S = [0,1], the global modulus of continuity (or
simply the modulus of continuity) of f on S is also computable. That is, we can
compute a function μ : N→ N such that

for any x,y ∈ S with |x− y|< 2−μ(k) we have | f (x)− f (y)|< 2−k (1.2.1)

(more generally, this is true whenever S is a compact computable set, as will be
defined in the next section).

Conversely, to guarantee that a function f : [0,1]→ R is computable, it suffices
to know that it has a computable modulus of continuity, and have a way to compute
its values at all dyadic rational points (cf. Proposition 2.6 in [Ko98]):

Theorem 1.7 A real function f of the interval [0,1] is computable if and only if it
has a computable modulus of continuity and there exists a computable function

g : (D∩ [0,1])×N→ D

such that
|g(r,n)− f (r)|< 2−n.

Similarly to the discrete case, the running time TM(n) of a machine Mφ (n) com-
puting a real function f : S→R is the worst case number of steps it takes to compute
f (x) with precision 2−n. Querying the oracle φ(m) counts as m time units. Here the
“worst case” is taken over all possible x ∈ S and all valid oracles φ for each such x.

Definition 1.2.6 A function f : S→ R is said to be poly-time computable if there is
a machine Mφ computing it such that TM(n) is bounded by a polynomial in n.

As expected, the common “calculator” functions such as x2, tanx and ex are poly-
time computable on suitably chosen domains. For example, tanx is poly-time com-
putable on any closed sub-interval of (−π/2,π/2).
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1.3 Computability and complexity of subsets of R
k

Let K ⊂ R
k be a compact set. We would like to give a definition for K being com-

putable. In the discrete case the distinction between computability of functions and
sets is not as important, since a set S is usually said to be computable, or decidable,
if and only if its characteristic function χS is computable. The same definition would
not work over R, since only continuous functions can be computable, and hence χK
would not be computable unless K = /0.

The goal of a machine M computing the set K in our setting is to produce “draw-
ings” of K with any prescribed precision. A “drawing” P of the set K on the com-
puter screen is just a collection of pixels that serve as an accurate description of
K (or a portion of K, if the image is zoomed-in). We would expect the following
properties from P:

• P should include all pixels that intersect with K (this guarantees that we get a
picture of the entire set P); and

• P should not include pixels that are “far” from K, for example pixels that are at
least one pixel diameter away from the set K.

By switching from the rectangular computer pixels to the mathematically more con-
venient round pixels, we see that to “draw” K one should be able to compute a
function fK : D

k×D→{0,1} from the family

fK(d,r) =

⎧

⎨

⎩

1 if B(d,r)∩K �= /0
0 if B(d,2 · r)∩K = /0
0 or 1 otherwise.

(1.3.1)

fK then can be used to decide whether to include a round pixel with center d and
radius r in P. Sample values of a function fK are illustrated on Figure 1.1.

Definition 1.3.1 The set K is said to be computable if a Turing Machine M comput-
ing a function fK from the family (1.3.1) exists.

Definition 1.3.2 The running time TM(n) is the worst-case time it could take to
compute fK(d,r) where r = 2−n and d is a dyadic point on the (Z/22n)k grid.

In other words, TM(n) is the longest time it takes to decide the color of one pixel
at resolution 1/2n. As before, a set K is said to be poly-time computable if there is
a machine MK computing K such that TMK (n) is bounded by a polynomial in n.

To see why this is the “right” complexity notion, suppose we are trying to draw
a set K on a computer screen which has a 1000× 1000 pixel resolution. A 2−n-
zoomed-in picture of S has O(22n) pixels of size 2−n, and at this resolution the whole
picture would take time O(TM(n) · 22n) to compute. This quantity is exponential in
n, even if TM(n) is bounded by a polynomial. But we are drawing K on a finite-
resolution display, and we will only need to draw 1000 ·1000 = 106 pixels. Deciding
these pixels would require O(106 ·TM(n)) = O(TM(n)) steps. This running time is
polynomial in n if and only if TM(n) is polynomial. Hence TM(n) reflects the ‘true’
cost of zooming in when drawing K.
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Fig. 1.1 Sample values of the function fK

Definition 1.3.1 is well-established in the literature (see e.g. [BW99, Wei00,
RW03]).

It is not hard to check that simple geometric shapes such as circles and line
segments are (poly-time) computable if and only if their parameters are (poly-time)
computable. For example, computing a circle (as a set in R

2) is as hard as computing
its radius and the coordinates of its center.

The set computability definition above may appear somewhat artificial, but in
fact we will see that it is quite robust. For example, it is equivalent to K being
approximable in the metric. Recall that the Hausdorff metric is a metric on compact
subsets of R

k defined by

dH(X ,Y ) = inf{ε > 0|X ⊂ B(Y,ε) and Y ⊂ B(X ,ε)},

where B(X ,ε) is the open ε-neighborhood of X :

B(X ,ε) :=
⋃

x∈X

B(x,ε).

We approximate K using a class C of sets which is dense in the metric dH among
compact sets, and such that elements of C have a natural binary encoding. Namely
C is the set of finite unions of dyadic balls:

C =

{

n
⋃

i=1

B(di,ri) | where di ∈ D,ri ∈ D
k

}

.
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Members of C can be encoded as binary strings in a natural way. The following
theorem connects Definition 1.3.1, approximability in the Hausdorff metric and the
computability of functions as per Definition 1.2.5.

Theorem 1.8 For a compact K ⊂ R
k the following are equivalent:

1. K is computable as per Definition 1.3.1,
2. there is a Turing Machine M that on input n produces a set Cn ∈ C that is a

2−n-approximation of K in the Hausdorff metric: dH(K,Cn) < 2−n,
3. the distance function dK(x) = inf{|x−y| | y∈K} is computable as per Definition

1.2.5.

Note that the equivalence holds if we are only concerned with computability of
sets, but it is no longer true if we are concerned with their computational complexity.
For example the set Cn ∈ C which is a 2−n-approximation of K could typically have
exponentially many balls in it, and thus would require an exponential number of
steps to compute, even for sets as “simple” as K0 = [0,1]×{0}⊂R

2.

Remark on the BSS computability model

We note that another approach to the computability of subsets of
R

k has been developed by Blum, Shub, and Smale [BCSS98]. It
is based on the concept of decidability in the Blum-Shub-Smale
(BSS) model of real computation. The BSS model is very differ-
ent from the Computable Analysis model we use, and can be very
roughly described as based on computation with infinite-precision
real arithmetic. Some discussion of the differences between the
models may be found in [BC06a] and [Bra05]. In the BSS model,
the computer has registers which can hold arbitrary elements of the
underlying ring R (R = R in our case). Computer programs per-
form exact arithmetic (+,−, ·, and÷) and can branch on conditions
based on exact comparisons.
A set S in R

2 is BSS decidable if there is a BSS machine that given
a point (x,y) ∈R

2 terminates and outputs whether or not (x,y) ∈ S.
It is shown in [BCSS98] that the Mandelbrot set (Theorem 2), and
most Julia sets (Theorem 3) are not BSS-decidable.
Algebraic in nature, BSS decidability is not well-suited for the
study of fractal objects, such as Julia sets. It turns out (see Chapter
2.3 of [BCSS98]) that sets with a fractional Hausdorff dimension,
including ones with very simple description, such as the Cantor set
and the Koch snowflake (Fig. 1.2), are BSS-undecidable. Moreover,
due to the algebraic nature of the model, very simple sets that do
not decompose into a countable union of semi-algebraic sets are
not decidable. An example of such a set is the graph of the function
f (x) = ex (Fig. 1.2).
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Fig. 1.2 The Koch snowflake and the graph of the function y = ex

1.4 Weakly computable sets

A different definition of set-computability was introduced by Chou and Ko [CK95]
under the name of strong recognizability. We will refer to it as weak computability:

Definition 1.4.1 We say that a set S is weakly computable if there is an ora-
cle Turing Machine Mφ (n) such that, if φ = (φ1,φ2, . . . ,φk) represents a point
x = (x1, . . . ,xk) ∈ R

k, then the output of Mφ (n) is

Mφ (n) =

⎧

⎨

⎩

1 if x ∈ K
0 if B(x,2−(n−1))∩K = /0
0 or 1 otherwise.

(1.4.1)

Condition (1.4.1) is similar to condition (1.3.1). The difference is that now we
allow x to be any point in R

k (not just D
k), and we do not require the machine

to output 1 if x is not in K but is “close”. It is evident from Figure 1.3 that Defi-
nition 1.4.1 requires less effort from the algorithm computing K than the original
definition. Thus, the new definition appears to be weaker than the definition of set
computability from last section, but it turns out that they are equivalent.

Theorem 1.9 [Bra05] A compact set K ⊂ R
k is weakly computable if and only if it

is computable as per Definition 1.3.1.

It is sometimes easier to use weak computability when proving that a certain set
is computable. Intuitively, the regular set computability definition requires us to be
able to estimate the distance from any point to the set K within a multiplicative
factor of 2. This might require a somewhat “global” understanding of the set K.
Weak computability, on the other hand, requires us to answer a very local question



1.4 Weakly computable sets 15

Fig. 1.3 The values of fK(•,2−n) in the definitions of regular (left) and weak set computability

about the presence of a specific point x in K. It allows us to err if the point x is not
in K even if it is very close.

A quantitative version of Theorem 1.9 exists.

Theorem 1.10 [Bra04] If a set K is weakly computable in time T (n), then it is
computable as per Definition 1.3.1 in time 2O(T(n)+n).

Moreover, if we have a poly-time algorithm for computing a set K according to
the weak definition, we can derive from it an exponential-time algorithm for com-
puting it in the regular model.

Sketches of proofs of Theorems 1.9 and 1.10 (cf. [Bra05])

The “hard” direction is to show that every weakly computable set
is, in fact, computable according to Definition 1.3.1. To simplify
matters, suppose that the set S is a one-dimensional set. We assume
that S is weakly computable, and want to show that it is computable.
The transition to higher dimensions in this case is fairly straightfor-
ward. The reduction is “black box” in the sense that we are using
repeated simulations of the machine computing S in the weak sense
to compute the set S in the regular sense.
We are given a point d in D, and n > 0, and want to return 1 if
(d−2−n,d +2−n)∩S �= /0 and 0 if (d−2 ·2−n,d +2 ·2−n)∩S = /0.
Consider the infinite tree T of all the oracles for all the points
in (d − 2−n,d + 2−n). In Fig. 1.4, the first three levels of T are



16 1 Introduction to Computability

presented for d = 1
2 and n = 1 (all the numbers are written in bi-

nary). Each infinite path in T represents a real number in the inter-
val we are interested in. There is a path converging to each real x in
the interval. In fact, there are usually infinitely many such paths.

Fig. 1.4 The first three levels of the tree T

We simulate the run of the “weak” machine Mφ (n). The goal is
to make the simulation for all the real points in the interval (d −
2−n,d + 2−n) simultaneously.
If the machine asks for x with precision 2−m, m < n, we respond
with d as the approximation. This is a valid oracle value for any x
in the interval.
If m≥ n, we consider all the possible descendants of d on the level
with m+1-bit long numbers, and create a separate computation for
each of them (thus creating 3m−n+1 computations). Consider one of
the copies and denote the corresponding value on level m+1 by d′.
If we are now asked about φ(r) for some r < m + 1, we return the
value of d′ consistent with all the descendants of d′. Otherwise, we
again consider all possible descendants of d′ on level r+1, and split
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the computation into 3r−m computations. We continue this process
until all computations terminate.
If any of the computations returns 1, we terminate and return 1 for
the entire computation; otherwise we return 0. We first show that
the computation always terminates.
Suppose that the computation does not terminate. The entire com-
putation can be viewed as a tree where the nodes are the sub-
computations described above and a computation Ci is the parent
of the 3s computations it launches. If the entire computation does
not terminate, then there are two possibilities: either one of the com-
putations C′ fails to terminate without calling to sub-computations,
or the tree of all the computations to be performed is infinite.
In the first case the points represented by the oracle leading to C′
would cause Mφ (n) to run forever. In the second case, by König’s
lemma, there must be an infinite branch in the computations tree.
Denote the branch by C1,C2,C3, . . .. That is, C1 calls C2, C2 calls
C3 etc. Note that each Ci works with a node di of T and di+1 is a
descendant of di for each i, and hence the infinite sequence of Ci
corresponds to an infinite path p in T . The path converges to a real
number x ∈ [0,1], and p gives rise to an oracle φ for x. By the con-
struction, the sequence of C1,C2,C3, . . . simulates the computation
of Mφ (n). Hence Mφ (n) does not terminate: a contradiction. This
shows that the algorithm terminates. Note that for the proof to work
we need the fact that every Cauchy sequence in D converges to a
limit in our domain R.
For the correctness we see that, if there is an x ∈ S in the interval,
then there is an oracle φ for x which corresponds to an infinite path
in T . The computation branch corresponding to this path will return
1, and the algorithm will output 1. If, on the other hand, x is far
from S, then every branch in the computation corresponds to a point
which is at least 2−n-far from S, and all of them will return 0, and
the algorithm outputs 0 in this case.
Finally, to see that Theorem 1.10 is correct, note that if the weak
computation runs in time T (n), it can query the input x with pre-
cision of at most T (n), and thus the simulation on the tree T will
be limited to the first T (n) levels of the tree, thus running in time
exponential in T (n).

1.5 Set-valued functions and uniformity

The problem of computing Julia sets is essentially that of mapping the coefficients
of a rational function R(z) to the set JR. Thus we need a notion of computability of
set-valued functions to discuss computability questions about Julia sets.
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We can combine the definitions from previous sections to define computability
of set-valued functions. Informally, a set-valued function is computable if, given
an oracle access to the inputs to the function, we can compute the value of the
function according to the definition of set computability. As the focus of the present
book is Julia sets, we will consider functions that output two-dimensional sets. The
definition extends to sets in R

� for any � ∈ N.

Definition 1.5.1 Let S be a subset of R
k. Denote by K∗2 the set of all the compact

subsets of R
2. Let F : S→ K∗2 be a set-valued function mapping points in S to com-

pact subsets of R
2. The function F is said to be computable on S if there is an oracle

TM Mφ1,...,φk(d,r) which, for the oracles representing a point x = (x1,x2, . . . ,xk)∈ S,
computes a function f φ1,...,φk : D

2×D→ {0,1} from the family

f φ1,...,φk(d,r) =

⎧

⎨

⎩

1 if B(d,r)∩F(x1, . . . ,xk) �= /0
0 if B(d,2 · r)∩F(x1, . . . ,xk) = /0
0 or 1 otherwise.

(1.5.1)

The running time T (n) of Mφ1,...,φk (d,r) is the worst case time the computation
could take when r = 2−n and d ∈ (Z/22n)2. We are often interested in the run-
ning time T (x1, . . . ,xk,n) of Mφ1,...,φk (d,r) for a specific value of (x1, . . . ,xk). In
particular, we say that F is poly-time computable on a set S if there is a machine
Mφ1,...,φk (d,r) whose running time is bounded by

T (x1, . . . ,xk,n)≤C(x1, . . . ,xk) · p(n)

for all ((x1, . . . ,xk)∈ S for some polynomial p(n). Thereby the cost of “zooming in”
for any fixed parameter (x1, . . . ,xk) is always polynomial in n, with a coefficient that
may depend on the point (x1, . . . ,xk) ∈ S.

For computability purposes, the following simple corollary of Theorem 1.8 will
be useful.

Theorem 1.11 For a set-valued function F as above the following are equivalent:

(I) The function F is computable as per Definition 1.5.1.
(II) There is an oracle TM Mφ1,...,φk(n) that, for oracles representing a point

x = (x1,x2, . . . ,xk) ∈ S, outputs an encoding of a set Cn ∈ C such that the
Hausdorff distance dH(F(x),Cn) < 2−n.

In fact, the computability definitions for real functions, sets, and set-valued func-
tions presented above fit in nicely within the much more general framework of Type
Two Efficiency (TTE). See [Wei00], and references therein for more details. In par-
ticular, Theorem 1.5 stating that computable ⇒ continuous holds in a very broad
variety of settings. We will only need it in the case of set-valued functions.

Theorem 1.12 Suppose F : S ⊂ R
k → K∗2 is computable as per Definition 1.5.1.

Then F is continuous on S in the Hausdorff metric.
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Proof. The proof is very similar to the proof of Theorem 1.5. It will be convenient
for us to use the version of Definition 1.5.1 given by Theorem 1.11(II). Let Mφ (n)
be the Turing Machine with an oracle input for x̄ ∈ S, whose existence is postulated
by this statement. Let x̄ be any point in S, and let ε = 2−k be given. Again, consider
an oracle φ for x̄ such that |φ(n)− x̄|< 2−(n+1) for all k. We run Mφ (k+1) with this
oracle φ . By design, it outputs a set L which is a 2−(k+1) approximation of F(x̄) in
the Hausdorff metric.

The computation is performed in a finite amount of time. Hence there is an m
such that φ is only queried with parameters not exceeding m. Then, for any ȳ such
that |x̄− ȳ|< 2−(m+1), φ is a valid oracle for ȳ up to parameter value of m. In partic-
ular, we can create an oracle ψ for ȳ that agrees with φ on 1,2, . . . ,m. If ȳ ∈ S, then
the execution of Mψ (k + 1) will be identical to the execution of Mφ (k + 1), and it
will output L which has to be an approximation of F(ȳ). Thus we have

distH(F(x̄),F(ȳ))≤ distH(F(x̄),L)+ dH(F(ȳ),L) < 2−(k+1) + 2−(k+1) = 2−k.

This is true for any ȳ ∈ B(x̄,2−(m+1))∩S. Hence F is continuous on S. ��
Example 1.2. Let the complex plane C be naturally identified with R

2. Let d > 1
be an integer. Consider the multi-valued function fd = d

√ : C→ C. There is no
continuous single-valued branch of fd on the entire complex plane, and hence there
is no computable branch of fd that is defined on the entire C. There is a computable
branch of fd that is defined everywhere except for a slit connecting 0 to ∞.

On the other hand, if we view the function fd as a set-valued function that maps
a number z = r · e2π iθ to its d roots

{r1/d · e2π iθ/d,r1/d · e2π i(θ+1)/d, . . . ,r1/d · e2π i(θ+d−1)/d},

then it is not hard to see that fd becomes computable. And indeed, the map fd :
R

2→ K∗2 is continuous in the Hausdorff metric.

Note that Definition 1.5.1 makes sense even when S = {s} is a singleton. In this
case we say that F is nonuniformly computable on s. Otherwise, we say that F
is uniformly computable on the set S. It is generally easier to prove upper bounds
and more difficult to prove lower bounds in the non-uniform setting. For example,
Theorem 1.12 has no implications in the non-uniform case, as any function on a
singleton is continuous.

Theorems 1.9 and 1.10 still apply in the case of set-valued functions, because the
reduction from weak to regular computability is a “black box” reduction. Thus, if
there is an oracle machine Mφ that for an oracle φ for x weakly computes the set
F(x) for a set S of parameters x, then there is a machine that computes F(x) on S in
the sense of Definition 1.5.1.



Chapter 2
Dynamics of Rational Mappings

2.1 General facts about Riemann surfaces and the hyperbolic
metric

A Riemann surface is a complex analytic manifold of complex dimension one,
which we will also always assume to be connected. As an example, which will be
prominently featured in our discussion, consider the Riemann sphere Ĉ. Commonly
described as the complex plane C together with a single point at infinity, it can be
specified by an atlas consisting of two charts:

Ĉ\ {∞} z �→z−→ C,

Ĉ\ {0} z �→1/z−→ C.

Topologically, Ĉ can be identified with the unit sphere S2 ⊂ R
3. One such home-

omorphism which is particularly convenient, is the stereographic projection of the
unit sphere S2 = {x : |x|= 1} ⊂ R

3:

P : S2 \ {North Pole} �→ C.

Its inverse is given by

P−1 : z �→
(

2Re(z)
|z|2 + 1

,
2Im(z)
|z|2 + 1

,
|z|2−1
|z|2 + 1

)

; P−1 : ∞ �→ (0,0,1).

It induces the spherical metric on Ĉ, given by

ds =
dz

1 + |z2| .

Note that for this metric the map z �→ 1/z is an isometry.

M. Braverman and M. Yampolsky. Computability of Julia Sets.
Algorithms and Computation in Mathematics,
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Our definitions of complexity and computability naturally extend to closed sub-
sets of Ĉ. The easiest way to formalize this is by identifying Ĉ with S2 ⊂R

3 via the
stereographic projection P, as above:

Definition 2.1.1 We say that a closed set K ⊂ Ĉ is computable if P−1(K) is a com-
putable subset of R

3. The time complexity of K is again defined to be the time com-
plexity of P−1(K)⊂ R

3.

It is evident that, when K ⊂ C ⊂ Ĉ, the above definition is equivalent to the com-
putability of K as a subset of R

2. We formulate this as a proposition, together with
a corresponding complexity statement, for ease of future reference:

Proposition 2.1 A closed set K ⊂ Ĉ\{∞}∼= C is computable as a subset of Ĉ if and
only if K is computable as a subset of R

2. Similarly, K is poly-time computable as a
subset of Ĉ if and only if it is poly-time computable as a subset of C.

The Riemann sphere is an example of a simply-connected Riemann surface. A
fundamental Uniformization Theorem, due to Poincaré and Koebe, states that up to
isomorphism there are only three such surfaces:

Uniformization Theorem. Any simply-connected Riemann surface is conformally
isomorphic to one of the following:

• the complex plane C;
• the unit disk U = {|z|< 1};
• the Riemann sphere Ĉ.

The three possibilities here are really distinct: while there are natural conformal
inclusions

U ↪→ C ↪→ Ĉ,

the Liouville’s Theorem and Maximum Modulus Principle of classical complex
analysis assert that every holomorphic map C→ U or Ĉ→ C must be constant.

Recall that a covering map is a continuous map f : U → V between topological
spaces, such that for each v ∈ V has an open neighborhood W such that f−1(W ) is
a disjoint union of open neighborhoods Xi and f : Xi→W is a homeomorphism.

As a corollary to the Uniformization Theorem, we have:

Universal Covering Theorem. For every Riemann surface S there exists a complex-
analytic covering map U → S, where U is one of U, C, or Ĉ.

The only Riemann surface whose universal covering is Ĉ is Ĉ itself. For C the list
is slightly longer: it also includes the cylinder C/Z and conformal tori C/Λ , where
Λ is a two-generator lattice in C. For most of the Riemann surfaces the universal
covering is thus the unit disk U, in which case a surface is called hyperbolic.

For instance:

Proposition 2.2 Any domain W ⊂ Ĉ whose complement contains at least three
points is a hyperbolic Riemann surface.
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The statement of the Uniformization Theorem thus implies the Riemann Mapping
Theorem: every simply-connected bounded domain W ⊂ C is conformally isomor-
phic to U. More precisely:

Riemann Mapping Theorem. Let W ⊂C be a simply-connected bounded domain,
and let w be any point in W. There exists a unique conformal isomorphism

Ψ : W → U withΨ(w) = 0, andΨ ′(w) > 0.

As the Riemann Mapping Theorem is going to play a key role in our investiga-
tion, let us consider several illustrations. To visualize Ψ , in Figure 2.1 we draw a
polar grid in U, with an increasing density at the boundary, and its image in W for
two examples.

For a hyperbolic surface there is a natural choice of a conformally-invariant
metric:

Proposition 2.3 There exists a unique, up to multiplication by a positive constant,
Riemannian metric on U which is invariant under every conformal automorphism
of U:

ρU(z) =
2|dz|

1−|z|2 .

With this choice of normalization, ρU has a constant Gaussian curvature −1. A
covering map φ : U→ S transforms ρU into a metric on S. By the above proposition,
it is independent of the choice of the covering. We will denote this metric ρS and
call it the hyperbolic metric on S. We will further denote by distS the distance in
the hyperbolic metric, and by || · ||S the norm it induces in the tangent spaces. For a
differentiable mapping between two hyperbolic Riemann surfaces

f : U →V,

the expression || f ′(z)||U,V will stand for the magnitude of the derivative computed
with respect to the two hyperbolic norms.

For us, the crucial property of the hyperbolic metric is that it is contracted by a
holomorphic map:

Schwarz-Pick Theorem. If
f : U →V

is a holomoprhic mapping between two hyperbolic Riemann surfaces, then

|| f ′(z)||U,V ≤ 1 for every point z ∈U.

Moreover, if equality holds for some z ∈ U, then it holds everywhere, and f is a
covering map.



24 2 Dynamics of Rational Mappings

Fig. 2.1 Some illustrations of Riemann mappings: a polar grid in U, and its conformal images for:
(a) a disk with a slit U\(x,1), x > 0 with marked point w = 0; (b) the union of two overlapping disks
B(0,1)∪B(2− ε ,1) with a marked point w = 0. Pictures produced using the numerical package
“Zipper” by D. Marshall [Mar].
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Passing to the universal coverings for φU : U→ U and φV : U→ V , with the
normalization φU (0) = z, φV (0) = f (z), we obtain the Schwarz Lemma of classical
complex analysis:

Schwarz Lemma. If
f : U→ U

is a holomorphic mapping with f (0) = 0, then | f ′(0)| ≤ 1. If the equality holds, then
f is a conformal isomorphism of U, in this case a rotation f (z) = λ z with |λ |= 1.

If the equality does not hold, then | f (z)| < |z| for all z �= 0.

Let us quote two more facts of classical complex analysis in a similar vein, which
will be useful to us. First we state:

Koebe One-Quarter Theorem. Let

f : U→ C

be a one-to-one conformal mapping with f (0) = 0 and f ′(0) = 1. Then the image
f (U) covers the disk B(0,1/4).

Closely related is the following (see e.g. [Pom92]):

Koebe Distortion Theorem. Let f : U→ C be a one-to-one conformal mapping,
and fix r < 1. For any point z with |z|< r, we have:

1− r
(1 + r)3 ≤

| f ′(z)|
| f ′(0)| ≤

1 + r
(1− r)3 .

It is not hard to see from the expression for ρU that the hyperbolic length of any
path in U which leads to the boundary ∂U is infinite. On the other hand, on any
compact subset of U, the hyperbolic metric is equivalent to the Euclidean one. Let
us make a general note for future use:

Proposition 2.4 Given a hyperbolic domain W2 ⊂ Ĉ, and a subdomain

W1 � W2,

there exists a constant C > 1 such that for all z ∈W1

C−1 <
|dz|
ρW2(z)

< C.

Moreover, if W1 and W2 are in C , then such a constant can be obtained construc-
tively.

Proof. A crude but quick constructive estimate relies on the Schwarz-Pick Theorem.
Apply a Möbius map at first, if necessary, to ensure that W2 � C. Consider two disks
around a point z ∈W1:

B(z,r)⊂W2 ⊂ B(z,R).
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By the Schwarz-Pick Theorem, the inclusions

B(z,r) ↪→
ι1

W2 ↪→
ι2

B(z,R)

are hyperbolic contractions. Hence

2
R
|dz|< ρW2(z) <

2
r
|dz|.

For a compact subdomain W1 � W2, the values of r and R can be chosen simultane-
ously (and constructively) for all points z.

��
A much better way of estimating the hyperbolic metric can be derived from the

Koebe One-Quarter Theorem (compare [Mil06]):

Proposition 2.5 Let U ⊂ C be a simply-connected domain, and denote by r(z) the
distance from a point z in the plane to the boundary of U. Then for all z ∈U

1
2r(z)

≤ ρU(z)≤ 2
r(z)

.

Recall that a mapping h : X → Y between two topological spaces is proper if the
preimage of every compact set K ⊂ Y is compact in X . A non-constant, complex-
analytic, and proper mapping

f : U →V

between two Riemann surfaces is a branched covering. This means that there exists
a discrete set of ramification points S ⊂ U such that, restricted to U\S, the map
becomes a covering. In a neighborhood of each ramification point the map f in
appropriate coordinates becomes z �→ zn for some n ∈ N, with 0 corresponding to
the ramification point itself.

As an example of this, consider analytic branched coverings of the Riemann
sphere

R : Ĉ→ Ĉ.

Every such R is a rational mapping R(z). Its degree d ∈ N is the maximum of the
degrees of two polynomials P(z), Q(z) without common factors, such that R = P/Q.
The ramification points of R are its critical points

R′(z) = 0.

There are at most 2d− 2 of them when counted with multiplicity.
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2.2 Julia sets of rational mappings

2.2.1 Basic properties of Julia sets

An excellent general reference for the material in this section is the book of Milnor
[Mil06]. For a rational mapping R of degree degR = d ≥ 2 considered as a dynami-
cal system on the Riemann sphere

R : Ĉ→ Ĉ,

the Julia set is defined as the complement of the set where the dynamics is Lyapunov-
stable:

Definition 2.2.1 Denote by F(R) the set of points z ∈ Ĉ having an open neighbor-
hood U(z) on which the family of iterates Rn|U(z) is equicontinuous. The open set
F(R) is called the Fatou set of R and its complement J(R) = Ĉ \F(R) is the Julia
set.

It is evident from the definition that

Proposition 2.6 The Julia set is completely invariant under the action of R, that is,
R−1(J(R)) = J(R).

In the case when the rational mapping is a polynomial

P(z) = a0 + a1z+ · · ·+ adzd : C→ C

an equivalent way of defining the Julia set is as follows. Obviously, there exists
a neighborhood of ∞ on Ĉ on which the iterates of P uniformly converge to ∞.
Denoting by A(∞) the maximal such domain of attraction of ∞ we have A(∞) ⊂
F(R). We then have

J(P) = ∂A(∞).

The closed bounded set Ĉ\A(∞) is called the filled Julia set, and denoted K(P);
it consists of points whose orbits under P remain bounded:

K(P) = {z ∈ Ĉ| sup
n
|Pn(z)| < ∞}.

The name “filled” stems from the following easy consequence of the Maximum
Principle:

Proposition 2.7 The set K(P) is full, that is, the open set Ĉ\K(P) has a single
connected component.
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A very simple example

Consider the polynomial mapping f0(z) = z2 acting on the Riemann sphere Ĉ. Since
the n-th iterate

f n
0 (z) = z2n

,

for all points z with |z| > 1 we have f n
0 (z)→ ∞, uniformly on compact sets. The

closed unit disk B(0,1) is invariant under the action of f0, and therefore coincides
with the filled Julia set K( f ).

Thus the unit circle S1 = J( f0). In the interior
◦
K( f0) = B(0,1) the iterates f n

0 (z)
converge to 0 locally uniformly. Equicontinuity of the family of iterates { f n

0 (z)}
fails in any open set intersecting with S1, as arbitrarily near S1 there are both points
whose iterates converge to 0, and to ∞.

Restricted to the unit circle

S1 = {exp(2π iθ ), θ ∈ R},

the dynamics of f0 becomes the angle-doubling mapping:

θ �→ 2θ modZ.

The expansiveness of this linear map implies that for each nonempty open arc I ⊂ S1

there exists an iterate f m
0 (I) which covers all of S1. As a consequence, periodic

points ζ = f j
0 (ζ ) are dense in S1. The reader is invited to verify a more precise

version of this statement:

Proposition 2.8 An angle θ ∈ [0,1) is periodic under the doubling map if an only
if θ is a rational number, which in its reduced form p/q has an odd denominator q.

Fig. 2.2 Julia sets of f0 (left), and fε = f0 + ε with ε = 0.3+0.3i. The filled Julia set is rendered
gray, the Julia set is the black border.
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The fixed point ∞ ∈ Ĉ attracts the orbits of all nearby points. If an
orbit of a point converges to infinity, then so do the orbits of all
points which are sufficiently near. The open set of all points with
this property is the Fatou set F(h). We can describe its structure as
follows (without proofs). First, the connected component of F(h)
which contains the point ∞ turns out to be a topological disk. Let
us denote it by D. The boundary ∂D is a Jordan curve. Since the
first iterate of a point in a small neighborhood of the origin will be
contained in D, there is a set D′ � Ĉ\D around the origin which is
a component of the first preimage of D. It is not hard to see that it is
also simply connected. Removing it from the closed disk Ĉ\D has
the effect of removing the first middle square in the construction
of the Sierpinksi carpet. The next disks to be removed are the four
preimages of D′ in the annulus Ĉ\(D∪D′). The set F(h) is, in fact,
homeomorphic to Sierpinski carpet.

For future reference, let us summarize in a proposition below some of the main
properties of Julia sets:

Proposition 2.9 Let R : Ĉ→ Ĉ be a rational function. Then the following properties
hold:

• J(R) is a non-empty compact subset of Ĉ which is completely invariant:
R−1(J(R)) = J(R);

• J(R) = J(Rn) for all n ∈ N;
• J(R) is perfect (J(R) is closed and each of its points is a limit point);
• if J(R) has non-empty interior, then it is the whole of Ĉ;
• let U ⊂ Ĉ be any open set with U ∩ J(R) �= /0. Then there exists n ∈ N such that

Rn(U)⊃ J(R);
• periodic orbits of R are dense in J(R).

2.2.2 Computability without oracle access to c

To see an example of applying the ideas of computable analysis to Julia sets, let
us discuss the following natural question: how easy or how difficult is it to draw a
picture of a Julia set of a rational function without an oracle access to the values of
its coefficients?

As we see below, in such conditions even very simple Julia sets become algo-
rithmically non-computable. As an example, let us consider the family of quadratic
polynomials fc(z) = z2 + c with one complex coefficient c. Note first the following
elementary statement:

Proposition 2.10 If c ∈ (−∞,−2) then Kc ⊂ B(0,βc), where βc =
√

1/4− c +
1/2 > 2 is a fixed point of fc.
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Proof. Let z ∈ C with |z|= βc + δ , for some δ > 0. By the Triangle Inequality,

fc(z)|= |z2 + c| ≥ |z2|− |c|= |z|2 + c = (βc + δ )2 + c >

> β 2
c + c + 2βcδ = fc(βc)+ 2βcδ > βc + 4δ .

It follows immediately that f n
c (z)→ ∞, and hence Kc ⊂ B(0,βc). ��

As βc = fc(βc), this point itself lies in Kc. As the above proposition implies,

βc ∈ ∂Kc = Jc.

We are now in a position to prove our first negative result on the computability of
Julia sets:

Theorem 2.11 Let c < −2 be a non-computable real number. Then the Julia set Jc
is non-computable by a Turing Machine without oracle access to c.

Proof. The fixed point βc =
√

1/4− c+ 1/2 of the mapping fc is repelling under
our assumption on c, and hence lies in the Julia set. By the previous proposition,

βc = sup
z∈Jc

|z|.

Now assume that there exists a Turing Machine M(n) which computes Jc. Use it to
determine the largest j > 0 such that j ·2−n is at most 2−n-far from all points in Jc.
Then

0 < ( j ·2−n−βc) < 2−(n−1),

and hence βc is computable. But

c = βc−β 2
c ,

which contradicts the assumption that c is a non-computable real.
��

In the conditions of the above theorem, the quadratic polynomial fc is of a particu-
larly simple type (it is hyperbolic, and its Julia set is a Cantor set). In particular, as
we will see below, given oracle access to c, its Julia set is computable in poly-time.
This example thus confirms what we have expected: the values of the coefficients
of a rational map R have to be made available to the algorithm, to have a sensible
discussion of the computational hardness of J(R).

2.2.3 Periodic orbits of rational maps and the structure
of the Fatou set

For a periodic point z0 = Rp(z0) of period p, its multiplier is the derivative λ =
λ (z0) = DRp(z0). We may speak of the multiplier of a periodic cycle, as it is the
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Fig. 2.4 An attracting cycle of a rational map R with period 3. The multiplier λ = DR3(z0) =
R′(z0) ·R′(z1) ·R′(z2) ∈ U. In a small enough disk B around z0, the iterate R3(z) ≈ z0 +λ (z− z0),
and R3(B) � B.

same for all points in the cycle by the Chain Rule. In the case when |λ | �= 1, the
dynamics in a sufficiently small neighborhood of the cycle is governed by the Mean
Value Theorem: when |λ | < 1, the cycle is attracting (super-attracting if λ = 0),
and if |λ |> 1 it is repelling.

In both the attracting and repelling cases, the dynamics can be locally linearized:

ψ(Rp(z)) = λ ·ψ(z) (2.2.1)

where ψ is a conformal mapping of a small neighborhood of z0 to a disk around 0.
In the case when |λ | = 1, so that λ = e2π iθ , θ ∈ R, the simplest to study is the
parabolic case when θ = n/m ∈ Q, and so λ is a root of unity. In this case Rp is
not locally linearizable; it is not hard to see that z0 ∈ J(R). The description of the
dynamics in a small neighborhood of a parabolic orbit will be discussed below in
some detail.

Irrationally indifferent periodic points

When θ is irrational, the orbit is called irrationally indifferent. In this situation,
two non-vacuous possibilities are considered: the Cremer case, when Rp is not
linearizable, and Siegel case, when it is. In the latter case, the linearizing map ψ
from (2.2.1) conjugates the dynamics of Rp on a neighborhood U(z0) to the irra-
tional rotation by angle θ (the rotation angle) on a disk around the origin. The
maximal such neighborhood of z0 is called a Siegel disk (see Figure 2.5).
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Fig. 2.5 A Siegel disk of a rational mapping R (on the left). The linearizing coordinate ψ is shown.
The orbit of a small disk B inside the Siegel disk is indicated, as well as its image on the right.

A different kind of a rotation domain may occur only for a non-polynomial ra-
tional mapping R. A Herman ring A is a conformal image

ν : {z ∈ C| 0 < r < |z|< 1}→ A,

such that
Rp ◦ν(z) = ν(e2π iθ z),

for some p ∈N and θ ∈ R\Q.
The existence of rational maps with Siegel disks was first shown by C. Siegel

in 1942 [Sie42]. To formulate his result, several definitions will be needed. For
a number θ ∈ [0,1) denote by [r1,r2, . . . ,rn, . . .], ri ∈ N∪ {∞} its possibly finite
continued fraction expansion:

[r1,r2, . . . ,rn, . . .]≡
1

r1 +
1

r2 +
1

· · ·+ 1
rn + · · ·

(2.2.2)

Such an expansion is defined uniquely if and only if θ /∈Q. In this case, the rational
convergents pn/qn = [r1, . . . ,rn] are the closest rational approximants of θ among
the numbers with denominators not exceeding qn. In fact, setting λ = e2π iθ , we have

|λ h−1|> |λ qn−1| for all 0 < h < qn+1, h �= qn.

The difference |λ qn − 1| lies between 2/qn+1 and 2π/qn+1, and therefore the rate
of growth of the denominators qn describes how well θ may be approximated with
rationals.



34 2 Dynamics of Rational Mappings

Definition 2.2.2 The Diophantine numbers of order k, denoted by D(k), is the
following class of irrationals “badly” approximated by rationals. By definition,
θ ∈D(k) if there exists c > 0 such that

qn+1 < cqk−1
n

The numbers qn can be calculated from the recurrence relation

qn+1 = rn+1qn + qn−1, with q0 = 0, q1 = 1.

Therefore θ ∈ D(2) if and only if the sequence {ri} is bounded. Dynamicists call
such numbers bounded type (number-theorists prefer constant type). An extremal
example of a number of bounded type is the inverse golden mean

θ∗ =
√

5−1
2

= [1,1,1, . . .].

The set
D(2+)≡

⋂

k>2

Dk

has full measure in the interval [0,1). Siegel showed:

Theorem 2.12 ([Sie42]) Let R be an analytic map with a periodic point z0 ∈ Ĉ

of period p. Suppose that the multiplier λ of the cycle is

λ = e2π iθ with θ ∈D(2+),

then the local linearization equation (2.2.1) holds.

Structure of the Fatou set

The term basin in what follows will describe the set of points whose orbits converge
to a given periodic orbit under the iteration of R. We will denote Crit(R) the critical
set of R, defined as the set of points z ∈ Ĉ where R′(z) = 0. Further, we set the
postcritical set of R to be

Postcrit(R) = ∪i≥0Ri(Crit(R)).

Fatou made the following observation:

Proposition 2.13 Let p1, . . . , pk be a periodic orbit of a rational mapping R. If it is
either attracting or parabolic, then its basin contains a critical point of R.

By a perturbative argument, Fatou then concluded that for a rational mapping R with
degR = d ≥ 2 at most finitely many periodic orbits are non-repelling. A sharp bound
on their number depending on d has been established by Shishikura; it is equal to
the number of critical points of R counted with multiplicity:
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Fatou-Shishikura Bound. For a rational mapping of degree d the number of the
non-repelling periodic cycles taken together with the number of cycles of Herman
rings is at most 2d− 2. For a polynomial of degree d the number of non-repelling
periodic cycles in C is at most d−1.

Therefore, we may refine the last statement of Proposition 2.9:

• repelling periodic orbits are dense in J(R).

Classical results of Fatou also imply the following:

Proposition 2.14 Every Cremer point of a rational mapping R as well as every
point of the boundary of a Siegel disk or a Herman ring is contained in Postcrit(R).

By definition, the basin of an attracting or a parabolic point, as well as preim-
ages of Siegel disks and Herman rings, belong to the Fatou set. The Fatou-Sullivan
Classification Theorem formulated below rules out other possibilities:

Fatou-Sullivan Classification. For every connected component W ⊂ F(R) there
exists m ∈ N such that the image H = Rm(W ) is periodic under the dynamics of R.
Moreover, each periodic Fatou component H is of one of the following types:

• a component of the basin of an attracting or a super-attracting periodic orbit;
• a component of the basin of a parabolic periodic orbit;
• a Siegel disk;
• a Herman ring.

Quadratic polynomials

To conclude the discussion of the basic properties of Julia sets, let us consider the
simplest examples of non-linear rational endomorphisms of the Riemann sphere, the
quadratic polynomials. Every affine conjugacy class of quadratic polynomials has a
unique representative of the form fc(z) = z2 + c, the family

fc(z) = z2 + c, c ∈ C

is often referred to as the quadratic family. For a quadratic map the structure of
the Julia set is governed by the behavior of the orbit of the only finite critical point 0.
In particular, the following dichotomy holds:

Proposition 2.15 Let Kc = K( fc) denote the filled Julia set of fc, and Jc = J( fc) =
∂K. Then:

• 0∈Kc implies that Kc is a connected, compact subset of the plane with connected
complement;

• 0 /∈ Kc implies that Kc = Jc is a planar Cantor set.
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Fig. 2.6 The Mandelbrot set M

The Mandelbrot set M ⊂ C is defined as the set of parameter values c for which
J( fc) is connected.

It is easy to verify that for |c|> 2 the orbit of the critical point 0 of fc converges
to ∞. Moreover, the only value of c with |c| = 2 for which this does not happen is
c =−2. We thus have:

Proposition 2.16 The set M is contained in B(0,2)∪{−2}.

The Fatou-Shishikura Bound implies that a quadratic polynomial has at most one
non-repelling cycle in the complex plane. We will therefore call the polynomial fc
(the parameter c, the Julia set Jc) Siegel, Cremer, or parabolic when it has an orbit
of the corresponding type.



Chapter 3
First Examples

3.1 A case study: hyperbolic Julia sets

Unless otherwise specified, in this section “dist” will stand for the distance in the
spherical metric in Ĉ.
A rational mapping R : Ĉ→ Ĉ is called hyperbolic if the orbit of every critical point
of R is either periodic, or converges to an attracting (or a super-attracting) cycle.
As easily follows from Implicit Function Theorem and considerations of local dy-
namics of an attracting orbit, hyperbolicity is an open property in the space of coef-
ficients of rational mappings of degree d ≥ 2. Fatou has conjectured that hyperbolic
parameters are also dense in this space. This conjecture, known as the Density of
Hyperbolicity Conjecture, forms the central open question in Complex Dynamics.
Considered as a rational mapping of the Riemann sphere, a quadratic polynomial
fc(z) = z2 + c has two critical points: the origin, and the super-attracting fixed point
at ∞. In the case when c /∈M , the orbit of the former converges to the latter, and
thus fc is hyperbolic. Proposition 2.13 implies that whenever fc has an attracting
orbit in C, it is a hyperbolic mapping and c ∈M . In the quadratic case, the Density
of Hyperbolicity Conjecture thus becomes:

Conjecture (Density of Hyperbolicity in the Quadratic Family). Hyperbolic
parameters are dense in M .

How accurate is the picture of M in Figure 2.6? Indeed, our ability
to produce accurate images of M hinges on this set being com-
putable. Peter Hertling [Her05] has shown that Density of Hyper-
bolicity in the quadratic family implies computability of M .

As an example of a hyperbolic Julia set, consider the quadratic polynomial f = fc
with c =−0.12 + 0.665i. This map has a periodic orbit

M. Braverman and M. Yampolsky. Computability of Julia Sets.
Algorithms and Computation in Mathematics,
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z0 ≈−0.15 + 0.19i �→ z1 ≈−0.13 + 0.61i �→ z2 ≈−0.47 + 0.5i �→ z0.

Its multiplier λ = ( f 3)′(z0) satisfies |λ | ≈ 0.84 < 1. We can select a small enough
disk D = B(z0,ε) so that

f 3(z)− z0 ≈ λ (z− z0) for all z ∈ D,

and hence f 3(D) � D. Using the Fatou-Sullivan Classification together with the
Fatou-Shishikura bound, we see that every component of the interior of K( f ) be-

longs to the basin of the attracting orbit. In particular, the orbit of every point in
◦
K( f )

eventually passes through D, after which it becomes trapped in D∪ f (D)∪ f 2(D).

Fig. 3.1 The Julia set of fc with c =−0.12+0.665i. A disk D around an attracting periodic point
z0 is shown together with its first fourteen preimages.

The union of the inverse images

· · · f−m(D) � f−(m−1)(D) � · · ·� f−1(D) � D
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exhausts the interior of K( f ). By Proposition 2.13, one of the sets in this sequence
captures the critical point 0 of f . As seen from Figure 3.1 for our choice of D it is
the set f−6(D).

Note that the three components of the basin which contain the points of the at-
tracting orbit meet at a “corner” point p≈−0.25+0.44i. The point p itself is fixed
under f . The shape of this Julia set is known under the name of a Douady’s rabbit.

Computability of hyperbolic Julia sets

For a hyperbolic rational map it is easy to account for the points in the complement
of the Julia set: they converge to one of the (finitely many) attracting orbits. This
fact is key to proving the following.

Theorem 3.1 Fix d ≥ 2. There exists a TM Mφ with oracle access to the coefficients
of a rational mapping of degree d which computes the Julia set of every hyperbolic
rational map of degree d.

In preparation to proving the theorem, let us first formulate a general fact:

Proposition 3.2 Let Q(z) be a complex polynomial. Then there exists a Turing Ma-
chine Mφ with an oracle input for the coefficients of Q(z) such that the following
holds. Consider any dyadic ball B = B(x̄,r) ⊂ C, x̄ ∈ D

2, r ∈ D, and let α1, . . . ,αm
be the roots of Q(z) contained in B. For any natural number n, the machine Mφ

will take n, r, and x̄ as inputs, and will output a finite sequence of complex numbers
β1, . . . ,βk with dyadic rational real and imaginary parts for which:

• βi ∈ B(x̄,r + 2−n);
• each βi lies at a distance not more than 2−n from some root of Q(z);
• for every α j there exists βi with |α j−βi|< 2−n.

For a classical reference, see [Wey24]; a review of modern approaches to iterative
root-finding algorithms may be found in [BCSS98].

To understand how the Weyl’s root-finding algorithm works, con-
sider first how a square of side L in the complex plane can be tested
for the presence of zeros of a polynomial Q. Not the most efficient,
but a rather straightforward test, is given by the Argument Principle:

1
2π i

∮

∂G

Q′(z)
Q(z)

dz = number of zeros inside of G

for any domain G in the plane whose boundary does not contain a
zero. One may thus verify whether there is an approximate zero in-
side the square. If so, one proceeds to subdivide the original square
into four congruent squares, and apply the test in each of those. The
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procedure is then repeated with the squares which tested positive,
until the size of a square becomes smaller than the desired precision
of the approximation.

Next, we show that if we know that a rational map R is hyperbolic, then given
enough time we will find all of its attracting periodic orbits. We can actually con-
struct trapping discs around the attracting orbits, such as the disc D and its preim-
ages in the example above.

Proposition 3.3 There is a TM Mφ that, given oracle access to the coefficients of R,
outputs a finite sequence of discs Bi = B(ci,ri) on Ĉ with dyadic centers and dyadic
radii such that

• all the attracting and super-attracting orbits of R belong to B≡∪Bi,
• all orbits under R originating in B converge to an attracting periodic orbit, and
• R(B) � B.

Proof. Let m ∈ N. By Proposition 3.2, it is possible to constructively approximate
all periodic points of R in Ĉ whose periods are at most m with precision 2−(m+3) in
the spherical metric.

For each such a periodic point zi we will thus obtain its approximate position pi
together with a positive integer ki such that Rki(zi) = zi. We will now approximate
the image Rki(B(pi,2−m/2)) of a ball around pi. In other words, we will compute a
set W ∈ C such that

distH(W,Rki(B(pi,2−m/2))) < 2−(m+1),

and will attempt to verify that

B(W,2−m)⊂ B(pi,2−m/2). (3.1.1)

This would imply

Rki(B(pi,2−m/2))⊂ B(W,2−(m+1))⊂ B(pi,2−m/2−2−(m+1)). (3.1.2)

Note that if zi is an attracting point, then the equation (3.1.1) will hold for any suf-
ficiently large value of m. On the other hand, by the Schwarz Lemma, equation
(3.1.2) implies the existence of an attracting orbit in B(pi,2−m/2), whose basin con-
tains B(pi,2−m/2). Once m and W satisfying (3.1.1) are found, we can also compute
dyadic balls B j containing each point R j(zi) of the cycle

zi �→ R(zi) �→ · · · �→ Rki(zi) = zi

so that, for each j = 0, . . . ,ki−1, R(B j) � B j+1, where j + 1 is taken modulo ki.
All such B j’s will eventually be found, and will satisfy the conditions of the

proposition. How will we know when to stop? To this end, we also compute at
the m-th step a finite set Cm which is a 2−(m+3)-approximation of the m-th image
Rm(Crit(R)), and attempt to verify that B(Cm,2−(m+3)) is contained in the union
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∪Bi of the balls we have already found. We terminate when this is the case, and
output the balls Bi that we have found.

By Fatou’s result 2.13, we know that, for each attracting periodic orbit, the orbit
of at least one critical point converges to it. Since in our case R is hyperbolic, we
know that the orbit of each critical point converges to an attracting periodic orbit,
and the algorithm is guaranteed to terminate. ��

We are now ready to prove computability of hyperbolic Julia sets.

Proof (Theorem 3.1). As a first step, by looking at one of the balls B j found in
Proposition 3.3, we can compute a dyadic a ∈ B j that converges to an attracting
orbit of R. Thus a /∈ J(R). By conjugating R by the fractional-linear map

fa(z) =
1

z−a
,

we obtain a rational map R′ with J(R′) = fa(J(R)). The effect of the conjugation on
the Julia set is to send the point a to ∞. In particular, ∞ /∈ J(R′). Thus, by a simple
change of coordinates, we may assume without loss of generality that ∞ /∈ J(R). By
Proposition 2.1 it suffices to prove the computability of J(R) as a subset of C.

Informally, the idea of the argument is to estimate the Julia set from “above” and
from “below”. On the one hand, we know that the orbit of every point outside J(R)
eventually reaches the set B from Proposition 3.3. This allows us to exclude points
that are far away from J(R). On the other hand, we know that repelling periodic
orbits are dense in J(R), which permits us to eventually identify every point which
is close to J(R).

More formally, let n ∈ N be the input specifying the required degree of the
approximation. The algorithm, which computes a set Jn ∈ C with

distH(Jn,J(R)) < 2−n,

works as follows. Denote by U the complement (∪Bi)c of the dyadic balls Bi that
have been found in Proposition 3.3.

(1) Set m := 1.
(2) Compute a set Um ∈ C such that distH(Um,R−m(U)) < 2−(n+3).
(3) Compute a finite set Lm which approximates with precision 2−(n+3) all periodic

points of R in U , whose periods are at most m. This is possible by Proposi-
tion 3.2.

(4) Check the inclusion B(Lm,2−(n+1))⊃Um. If the inclusion holds, output the set
Jn ≡ Lm and exit. If not, go to step (5).

(5) Increment m← m+ 1 and go to step (2).

Denote by Om the set of all periodic points of R which are contained in U , and
whose periods are at most m. All periodic orbits in U must be repelling. We thus
have

Om ⊂ J(R) = ∪Om. (3.1.3)

On the other hand, by the Fatou-Sullivan classification, we have
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∩R−m(U) = J(R). (3.1.4)

For all m greater than some large enough m0, the open neighborhood

B(Om,2−(n+3))⊃ J(R),

as seen from the right-hand side of (3.1.3).
On the other hand, for all m greater than some large enough m1, the open neigh-

borhood
B(J(R),2−(n+3))⊃ R−m(U).

Therefore, for each m≥max(m0,m1) we have

B(Lm,2−(n+1))⊃ B(Om,2−(n+1)−2−(n+3))⊃ B(J(R),2−(n+2))⊃
B(R−m(U),2−(n+2)−2−(n+3))⊃Um, (3.1.5)

and so the algorithm is guaranteed to terminate. When that happens, by the left-hand
side of (3.1.3) we have

dist(z,J(R)) < 2−n

for all z ∈ Lm. On the other hand, by (3.1.4) and (3.1.5) we have

dist(z,Lm) < 2−n

for all z ∈ J(R). ��
The idea of approximating the Julia set from “above” and “below” which is fea-

tured in the above algorithm will be very useful for us in proving positive results.
As far as we could tell, its first appearance in the theoretical literature is in the work
of Zhong [Zho98]. Its practical applications are, however, rather limited. Of course,
one can always attempt to generate images of a Julia set by computing the periodic
orbits of periods at most m (or, alternatively, the first m preimages of a single point
in J(R)). Apart from the fact that the picture may be rather far from the true image
of J(R), it will also generally require exponential time to generate.

On the other hand, for a polynomial mapping P, it is easy to determine a domain
U ∈ Ĉ whose preimages shrink to the filled Julia set K(P). Indeed, any large enough
disk around the origin would do. Algorithms approximating K(P) by P−m(U) are
perhaps the most widely used. They are known as the escape-time algorithms.
Their obvious Achilles’ heel is the general absence of an estimate on the distance
distH(K(P),P−m(U)) in terms of m.

Obtaining an estimate on the distance to J(R) in polynomial time requires another
idea, which is a key in the proof of the following:

Theorem 3.4 (Cf. [Bra04, Ret05]) Fix d ≥ 2. There exists a TM Mφ with oracle
access to the coefficients of a rational mapping of degree d which computes the
Julia set of every hyperbolic rational map of degree d with a polynomial complexity
bound.
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We begin with the following standard fact:

Proposition 3.5 A rational mapping R of degree d ≥ 2 is hyperbolic if and only
if there exists a smooth metric μ defined on an open neighborhood of J(R) and a
constant λ > 1 such that the derivative

||DRn(z)||μ > λ n for every z ∈ J(R),n ∈N,

as long as the image Rn(z) stays in the domain of definition of μ .

Note that the term “hyperbolic” has an established meaning in
dynamics. In the context of one dimensional dynamical systems
it means “uniformly expanding (or contracting)”. Thus Proposi-
tion 3.5 justifies the use of the word in our case.

By compactness of J(R), in the spherical metric, we will have

||DRn(z)||> Cλ n, (3.1.6)

for C > 0 independent of n.
The proof of the existence of a metric μ for a hyperbolic mapping R is both

instructive and useful for our purposes, and so we outline it below.

Proof (Proposition 3.5.). Let {Bi} be the finite collection of dyadic balls around
the attracting periodic orbits as in Proposition 3.3. Consider the union B = ∪Bi. By
Proposition 3.3, the sequence of preimages of B grows successively larger:

B⊂ R−1(B)⊂ R−2(B)⊂ ·· · , and J(R)⊂ Ĉ\R−k(B) for all k ∈ N.

By Fatou’s result 2.13, there exists k ∈ N such that R−k(B) contains the entire post-
critical set of R. Setting V = Ĉ\R−k(B) and U = R−1(V ), we see that U � V , and

R : U →V

is an unbranched analytic covering. By the Schwarz-Pick Theorem, it is an isometry
of the hyperbolic metrics of U and V . On the other hand, by the same theorem, the
proper inclusion ι : U ↪→ V is a contraction of the hyperbolic metric. By the Chain
Rule, for z ∈U , we have

||DR(z)||V,V = ||Dι−1(z)||V,U ||DR(z)||U,V = ||Dι−1(z)||V,U > 1.

Note that the Julia set J(R) � U and, selecting a neighborhood W ⊂U of J(R)
which is compactly contained in V , we have

||DR(z)||μ > λ > 1 for all z ∈W,

where μ denotes the hyperbolic metric ρV . By the Chain Rule, the derivative of the
n-th iterate
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||DRn(z)||μ > λ n for z ∈ J(R),

which concludes our proof. ��
Let us make a useful note:

Proposition 3.6 The constants λ and C of (3.1.6) can be estimated constructively.

Proof. The algorithm for estimating C is easily derived from Proposition 2.4.
To estimate λ , note that the contraction coefficient of the inclusion ||ι ′(z)||U,V

can be bounded by a constant depending only on the value of

d = distV (z,V\U)

(the distance measured in the hyperbolic metric of V ). Indeed, let us lift the inclusion
z ∈U ↪→V to z′ ∈U ′ ↪→ U. Denote by v any of the points of U\U ′ for which

distU(z′,v) = d.

By applying a suitable fractional-linear transformation, send v to 0, and z′ to
x ∈ (0,1). An explicit computation gives

d = log
1 + x
1− x

, so that x =
ed−1
ed + 1

.

By the Schwarz-Pick Theorem, the hyperbolic derivative of the inclusion U ′ ↪→U

will become larger, if we make U\U ′ smaller. More specifically, let us consider the
domain W = U\{0}. Then, comparing the inclusions

ι1 : U ′ ↪→ U, ι2 : W ↪→ U,

we have
||Dι(z)||U,V = ||Dι1(x)||U ′ ,U ≤ ||Dι2(x)||W,U.

The expression on the right can be estimated explicitly. It is equal to

a(x) =
2|x logx|

1− x2 < 1.

We obtain a lower bound on the expansion factor λz at the point z as

λ (d) = 1/a(x) for x =
ed−1
ed + 1

.

Note that this bound decreases with d.
From Proposition 2.4, we can constructively obtain a uniform lower bound

dl ≤ sup
z∈U

distV (z,V\U).



3.1 A case study: hyperbolic Julia sets 45

The value of λ (dl) > 1 is thus a constructive estimate for the expanding factor λ .
��

Fig. 3.2 Domains U (the complement of darker gray) and V (the complement of lighter gray) for
a rabbit from the previous figure. The rabbit has two attracting orbits in Ĉ, the fixed point at ∞, and
the period-3 cycle.

Proposition 3.7 (Preparatory step in the construction of Mφ ) There exists an al-
gorithm which, given the coefficients of a hyperbolic rational map R of degree d ≥ 2,
outputs a planar domain U ∈ C such that:

(I) U � R(U),
(II) R(U)∩Postcrit(R) = /0,

(III) J(R) � U.
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Proof. We use the balls Bi around the attracting periodic orbits we found in
Proposition 3.3. Let Ω0 := Ĉ \ ∪Bi. Define Ωi+1 := R−1(Ωi) for all i ≥ 0. By
the properties of Bi, we have Ω1 � Ω0. If we let U0 ∈ C be any set such that
Ω1 ⊂U0 ⊂ Ω0, U0 will satisfy properties (I) and (III) above. To see that (I) holds
observe that

U0 ⊂Ω0 = R(Ω1)⊂ R(U0).

(III) holds because JR ⊂Ω1 ⊂U0. Similarly, for any k we can compute Uk ∈ C such
that Ωk+1 ⊂Uk ⊂Ωk. For each such Uk conditions (I) and (III) hold just as they do
for U0.

Note that, if for some k

Uk−2∩Postcrit(R) = /0, (3.1.7)

we will be able to verify this. In this case Ωk−1∩Postcrit(R) = /0, and thus R(Uk)∩
Postcrit(R) = /0, and U = Uk satisfies condition (II). It remains to see that there is a
k such that (3.1.7) holds. To this end, we use Fatou’s result 2.13, which guarantees
that all postcritical orbits leave Ω0 in finitely many steps. Hence there is an � such
that Ω�∩Postcrit(R) = /0, and k := �+ 2 satisfies (3.1.7). ��

We are now ready to compute J(R) in polynomial time.

Proof (Theorem 3.4). At the preparatory stage of the computation, we obtain the
domain U as in Proposition 3.7. Since the closure of the domain U does not intersect
the postcritical set of R, we can compute a lower bound s > 0 on the distance from
U to Postcrit(R).

Let us now run the algorithm of Theorem 3.1 to obtain a set L ∈ C with

distH(L,J(R)) < s/8.

Computing several further preimages of U with sufficient precision, we can
obtain a smaller domain ˜W � J(R) and such that:

• R2( ˜W ) � U , and
• dist(z,L) < s/4 for each z ∈ ˜W ∪R(˜W );

and compute a dyadic number � > 0 such that

dist(z,J(R)) > � for all z /∈ ˜W .

Set V = R(U). Compute a dyadic ε > 0 such that B(˜W ,ε) � U .
From Proposition 3.6 we find a lower bound λ > 1 on the expansion ||R′(z)|| in

the hyperbolic metric in V for z∈ R( ˜W ). We also construct a constant C from (3.1.6)
as per Proposition 2.4. Thus, we have

||DRn(z)||> Cλ n,

for as long as the orbit of z stays in R( ˜W ).
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Suppose now that we are given a dyadic point x∈ Ĉ, and a parameter m. Our goal
is to output 1 if d(x,J(R)) < 2−m, and 0 if d(x,J(R)) > 2 ·2−m. All the preliminary
steps take time that depends on the hyperbolic function R but not on the precision
parameter m. Consider the following subprogram; the logs are all base-2:

i := 1

while i≤ m/ logλ − logC/ logλ + 1 do

(1) Compute the values of

pi ≈ Ri(x) = R(Ri−1(x)) and di ≈ DRi(x) = DRi−1(x) ·DR(Ri−1(x))

with precision min(2−(m+3),ε/4).
(2) Check the inclusions pi ∈ ˜W and pi ∈ R(˜W ):

• if pi ∈ ˜W , go to step (5),
• if pi /∈ R(˜W ), proceed to step (3),
• if neither holds either option is fine.

(3) Check the inequality
�

di
> 2−m

with precision 2−(m+1). If true, output 0 and exit the subprogram, else
(4) output 1 and exit the subprogram.
(5) i← i+ 1

end while

(6) Output 1 and exit.

end

The program runs for at most m/ logλ − logC/ logλ + 1 = O(m) iterations
each of which consists of a constant number of arithmetic operations with
O(m) bits of precision. Hence the running time of the program can be bounded
by O(m2 logm loglogm) using efficient multiplication (even slightly faster, see
[Fur07]).

Suppose the subprogram outputs 0 and exits on line (3). This case is illustrated in
Figure 3.3(A). The fact that the subprogram has reached line (3) means that the ball
B(pi, l) is disjoint from J(R). Also by the construction of ˜W this ball contains no
postcritical points, and hence there is a neighborhood N0 of x that maps conformally
to B(pi, l) under Ri. By the invariance of J(R), N0 is disjoint from J(R). By the
Koebe One-Quarter Theorem, the distance from x to J(R) is at least

dist(x,J(R))≥ �′ =
1
4
· �

DRi(x)
≥ 2−(m+3).

On the other hand, suppose the subprogram exits on line (4), a case illus-
trated in Figure 3.3(B). If this is true, surround the point Ri(x) with the disks
B = B(Ri(x),s/2), and B̂ = B(Ri(x),3s/4) � B. By construction, B∩ J(R) �= /0.
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Fig. 3.3 A schematic figure illustrating the proof of correctness of the algorithm. Figure (A)
illustrates exit on line (3) of the algorithm. Figure (B) illustrates exit on line (4).

On the other hand, as R2( ˜W ) ⊂U , the disk B̂ does not intersect with Postcrit(R).
Hence there exists a well-defined branch of the inverse ν = R−i : B̂ �→ B̂′ � x. De-
note by B′ � B̂′ the image of B by this branch. Note that B′ ∩ J(R) �= /0.

We will now apply the Koebe Distortion Theorem to the restriction of ν from the
larger disk B̂ to the smaller one B. Namely, set M(r) = (1 + r)/(1− r)3. Note that
the ratio of the radii of B and B̂ is r = 2/3. By the Koebe Distortion Theorem

B′ ⊂ B(x,h), where h =
s

2DRi(x)
·M(2/3).
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Putting this together with the negation of the inequality from line (3), we have

dist(x,J(R)) < K ·2−(m+3), where K =
8sM(2/3)

�
. (3.1.8)

Finally, suppose the sub-program exits on the last instruction. In this case,
x ∈ R−(i−1)( ˜W ). On the other hand,

dist(R−(i−1)( ˜W ),J(R)) < C−1λ−m/ logλ+logC/ logλ = 2−m.

In summary, converting all exponential estimates to base 2, there exists M ∈ N

such that, for every j ∈ N sufficiently large, the subprogram can be used to distin-
guish between the cases:

• dist(x,J(R)) > K ·2− j (outputs 0), and
• dist(x,J(R)) < 2− j (outputs 1).

This is not quite what we need, as we would like to distinguish the cases when
this distance is > 2−(m−1) from when it is < 2−m. To this end, we simply need to par-
tition each pixel with side 2−n into sub-pixels of size 2−n/K and run the subprogram
in the center of each of the sub-pixels. This only introduces a constant multiplicative
overhead into the algorithm. ��

The algorithms which use the estimate on the derivative of an iterate Ri(z) to get
an upper and lower bounds on the distance to J(R) through the considerations of the
Koebe One-Quarter Theorem and the Koebe Distortion Theorem, are known as Dis-
tance Estimators. They were first proposed by Milnor [Mil89] and Fisher [Fis89].
This approach can be very useful but, however, it has several obvious limitations.
Firstly, a domain U whose preimages shrink to J(R) cannot always be constructed
(and indeed, does not always exist). But even when this obstacle can be overcome,
the time bound on the rate of convergence of R−m(U) to J(R) may be impractical.
In the next section we will discuss a simple family of examples for which this bound
becomes exponential.

3.2 Maps with parabolic orbits

Local dynamics of a parabolic orbit

We will describe here briefly the local dynamics of a rational mapping R with a
parabolic periodic point p. By replacing R with its iterate, if needed, we may assume
that R(p) = p, and R′(p) = 1. The map R then can be written as

R(z) = z+ a(z− p)n+1 + O((z− p)n+2), (3.2.1)

for some n∈N and a �= 0. Note that the integer n+1 is the local multiplicity of p as
the solution of R(z) = z.
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A complex number ν ∈ T is called an attracting direction for p if the product
aνn < 0, and a repelling direction if the same product is positive. For each infinite
orbit {Rk(z)} which converges to the parabolic point, there is one of the n attracting
directions ν for which the unit vectors

(Rk(z)− p)/|Rk(z)− p| −→
k→∞

ν.

We say in this case that the orbit converges to p in the direction of ν . For each
attracting direction ν , we say that a topological disk U is an attracting petal of R at
p if the following properties hold:

• U � {p};
• Rn(U)⊂U ∪{p};
• an infinite orbit {Rk(z)} is eventually contained in U if and only if it converges

to p in the direction of ν .

Similarly, U is a repelling petal for R if it is an attracting petal for the local branch
of R−1 which fixes p.

Fig. 3.4 A Leau-Fatou flower with three attracting petals (shaded) and three repelling petals
(emphasized). The attracting and repelling directions are also indicated. The arrows show the di-
rection of the orbits in one of the petals; the image of this petal is also indicated.

The petals form a Leau-Fatou Flower at p:

Theorem 3.8 There exists a collection of n attracting petals Pa
i , and n repelling

petals Pr
j such that the following holds. Any two repelling petals do not intersect,
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and every repelling petal intersects exactly two attracting petals. Similar properties
hold for attracting petals. The union

(∪Pa
i )∪ (∪Pr

j )∪{p}

forms an open simply-connected neighborhood of p.

The proof of this statement is based on a multivalued change of coordinates

w = κ(z) =
c

(z− p)n , where c =− 1
na

.

The map κ conformally transforms the infinite sector between two repelling direc-
tions into the plane with the negative real axis removed. In this sector, it changes the
map R into

F(w) = w+ 1 + O(1/ n
√

|w|), as w→ ∞.

Selecting a right half-plane Hr = {Rez > r} for a sufficiently large r > 0, we have

ReF(w) > Rew+ 1/2, and hence F(H)⊂ H.

The corresponding attracting petal can then be chosen as the domain κ−1(H), using
the appropriate branch of the inverse. Note that, given the coefficients of the rational
mapping R, the description of the petal is constructive. Let us formulate this last
statement in a language suitable for later references:

Lemma 3.9 For each degree d ≥ 2 there exists an oracle Turing Machine Mφ such
that the following holds. Let R be a rational mapping of degree d with a parabolic
periodic point p, with period m and multiplier 1. Let n be as in (3.2.1). The machine
Mφ takes as input the values of m, n and a natural number k; it is given oracle
access to the coefficients of R and the value of p. It outputs a set Lk ∈ C such that
the following is true:

• Lk+1 ⊃ Lk and ∪ Lk = P is the union of attracting petals of R at p, covering all
the attracting directions;

• distH(Lk,P) < 2−k.

The dynamics inside a petal is described by the following:

Proposition 3.10 Let P be an attracting or repelling petal of R. Then there exists a
conformal change of coordinates Φ inside P, transforming R(z) into the unit trans-
lation z �→ z+ 1. The image Φ(P) covers a right half-plane.

The function Φ is called the Fatou coordinate , with the prefix attracting or
repelling depending on the type of the petal P.

As an implication of Proposition 3.10, consider the quotient manifold CA ≡
P/z∼R(z), which parametrizes the orbits converging to the parabolic point through
P. Then CA is conformally isomorphic to the quotient of a right half-plane by the
unit translation, which is the cylinder C/Z.
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Suppose now that the multiplier of the fixed point p is a q-th root of unity, R′(p) =
e2π ip/q, where (p,q) = 1. A fixed petal for the iterate Rq corresponds to a cycle of
q petals for R. It thus follows that q divides the number n of attracting/repelling
directions of p as a fixed point of Rq. We make note of the following proposition,
due to Fatou:

Proposition 3.11 Each cycle of attracting petals of a rational mapping R captures
an orbit of a critical point of R.

This implies, in particular, that a quadratic polynomial fc with a parabolic periodic
point ζ with multiplier e2π ip/q has a Leau-Fatou flower at ζ with a single cycle of
q attracting petals.

Computability of Julia sets in the presence of a parabolic orbit

A hyperbolic Julia set is computable (cf. Theorem 3.1) because it is easy to verify
that an orbit belongs to the Fatou set of a hyperbolic rational mapping. A trapping
neighborhood around every attracting orbit of such a mapping can be constructed
algorithmically, and only those orbits which enter one of these neighborhoods do
not lie in the Julia set.

An analogous approach in the presence of a parabolic cycle would require us to
construct attracting petals, to detect the orbits which converge to the cycle. This con-
struction cannot be made fully automated. Some non-uniform information will be
required by the algorithm. For simplicity, let us formulate the computability state-
ment only for Julia sets of parabolic quadratics. A more general theorem on the Julia
set of a rational map whose Fatou set consists only of parabolic and attracting basins
is easily obtained along the same lines.

Theorem 3.12 There exists a Turing Machine Mφ with an oracle for a complex pa-
rameter c which computes the Julia set Jc of every parabolic quadratic polynomial
fc, given the following non-uniform information:

• the period m of the unique parabolic orbit of fc;
• positive integers p and q with (p,q) = 1 such that the multiplier of the parabolic

orbit of fc is equal e2π ip/q.

Proof. Denote the parabolic orbit of fc by

p1 �→ p2 �→ · · · �→ pm.

Note that the Taylor’s expansion of f q·m
c near each of the points pi has the form

f q·m
c (z) = pi +(z− pi)+αn+1(z− pi)n+1 + . . .αn+2(z− pi)n+2 + . . .
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Here n is the number of attracting (or repelling) directions. As we are in the
quadratic case, there are exactly q attracting petals in the Leau-Fatou flower,
so that n = q.

By Proposition 3.2, the roots of

f m
c (z) = z

can be determined with an arbitrary accuracy. Among these solutions, repelling
periodic points can be identified and excluded algorithmically. Thus the points
p1, . . . , pm can be identified with any desired precision. Hence, we can construct
a sequence of domains Lk for the iterate f qm

c provided by Lemma 3.9.
Now the proof of the theorem proceeds similarly to that of Theorem 3.1. By

Proposition 2.16, |c| ≤ 2. Hence the ball D = B(0,4.1) has the property f−1
c (D) � D,

and all orbits which originate outside of D converge to ∞. Fixing k, we obtain the
picture of Jc with precision 2−k as follows:

1. Set t = 1.
2. Compute Ut ∈ C which approximates f−t

c (D)\ f−t
c (Lt) up to an error of 2−(k+3)

in Hausdorff metric.
3. Compute Vt ∈ C which approximates ∪t

s=1 f−s
c (p1) up to an error of 2−(k+3) in

Hausdorff metric.
4. Check the inclusion Ut ⊂ B(Vt ,2−(k+1)). If true, output Vt and halt. If false,

increment t �→ t + 1 and go to step 2.

The verification of the algorithm is straightforward, and is left to the reader. Note
that by Proposition 2.9 the set ∪∞s=1 f−s

c (p1) is dense in Jc, and thus the sequence
{Vt} approximates Jc well from below. ��

3.3 Computing Julia sets with parabolic orbits efficiently

3.3.1 The Distance Estimator in the parabolic case

Julia sets with parabolic orbits are well-known examples for which the Distance
Estimator algorithm of §3.1 becomes impractical (cf. the discussion in [Mil06]). As
we have already noted, a key to the successful application of the algorithm in the
case of a hyperbolic rational map R is that, for a point z which lies at a distance 2−n

of the Julia set J(R), it would only take O(n) iterates to magnify this distance to the
order of 1. The situation becomes very different if there is a parabolic orbit in J(R).

To fix the ideas, let us consider a very simple example – a quadratic polynomial
f (z) = z + z2 with a parabolic fixed point at the origin. Take a point z0 = 2−n for
some large value of n. On the one hand, z0 /∈ J( f ). Indeed, if we denote zk = f k(z0),
then an easy induction shows that

zk ≥ 2−n + k ·2−2n−→ ∞.
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In fact, z0 lies at a distance of approximately 2−2n from J( f ).

Fig. 3.5 Slow orbits in the neighborhood of the parabolic point.

On the other hand, if

zk < 2−(n−1), then zk+1 < zk + 2−(2n−2).

Hence it will take the orbit of z0 at least 2n−1 steps to reach 2 ·2−n (cf. Figure 3.5).
We see that the orbit escapes to ∞, but it will take approximately 2n steps to reach
distance of order 1 from the origin. So if we apply the Distance Estimator algorithm
to f (z), it will become exponential- rather than polynomial-time.

Thus, a naı̈ve approach to drawing a Julia set with parabolics leads to an imprac-
tical algorithm. To accelerate it, we will have to look at the dynamics of a rational
map near a parabolic point more carefully. To avoid messy technicalities, let us again
concentrate on the example of f (z).

3.3.2 Accelerating the map z �→ z+ z2

Instead of iterating f (z) starting at z0 which is very near zero, let us write down the
iterates of f on an arbitrary z symbolically. We only write the first 5 coefficients of
each iteration.
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⎪
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⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎩

f 1(z) = z+ 1 · z2+ 0 · z3+ 0 · z4+ 0 · z5 + . . .
f 2(z) = z+ 2 · z2+ 2 · z3+ 1 · z4+ 0 · z5 + . . .
f 3(z) = z+ 3 · z2+ 6 · z3+ 9 · z4+ 10 · z5 + . . .
f 4(z) = z+ 4 · z2+ 12 · z3+ 30 · z4+ 64 · z5 + . . .
f 5(z) = z+ 5 · z2+ 20 · z3+ 70 · z4+ 220 · z5 + . . .

...

We can see some patterns in the coefficients of f k(z). For example, the coefficient
of z is always 1 and the coefficient of z2 is k. Higher coefficients are given by

f k(z) = z+ k · z2 + k(k−1) · z3

+
(2k−3)k(k−1)

2
· z4 +

(3k−4)k(k−1)(k−2)
3

· z5 + . . . (3.3.1)

A few observations can be made about the formula:

• The coefficient of zr is a polynomial in k of degree r−1 with leading coefficient 1;
• the coefficient of zr is always between 0 and kr−1.

Denote the coefficient of zr by cr(k). First, let us show how to compute cr(k)
explicitly in general. We know that c0(k) = 0 and c1(k) = 1. For r ≥ 2, we use
the recurrence f k+1(z) = f ( f k(z)) to obtain

cr(k + 1) = cr(k)+
r−1

∑
j=1

c j(k)cr− j(k). (3.3.2)

Thus we obtain an explicit recurrence

cr(k) =
k−1

∑
t=1

r−1

∑
j=1

c j(t)cr− j(t). (3.3.3)

By solving the recurrence we obtain the formulas for the coefficients in (3.3.1).
Formulas for the first n coefficients can be obtained with sufficiently high precision
in time polynomial in n.

We would like to use the newly obtained symbolic coefficients of the k-th itera-
tion of f to make big “leaps” in the iterations of f for values of z that are very close
to 0 (where the iteration takes a long time to converge). We have the formula

f k(z) = z+ c2(k)z2 + c3(k)z3 + . . . (3.3.4)

For a small z with |z| ≈ 2−n, we would like to make 2n−1 = Ω(1/|z|) iterations in
one step. We do this by plugging in k = 2n−1. We can afford to take poly(n) terms
of the sum (3.3.4), and thus we need all the subsequent terms to be insignificant.

Proposition 3.13 For each k and for each r, cr(k)≤ kr−1.
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Proposition 3.13 implies that as long as k < 1
2|z| , we will have cr(k)zr < 2−r/k,

and thus n terms would suffice in order to maintain precision of 2−n. The proposition
is proved by induction.

Proof (Proposition 3.13). c1(k) = 1 and c2(k) = k, hence the statement is true for
r = 1,2. For higher r’s we prove it by induction. Assume it is true up to r− 1 for
some r ≥ 3. By the induction hypothesis,

cr(k) =
k−1

∑
t=1

r−1

∑
j=1

c j(t)cr− j(t)≤
k−1

∑
t=1

r−1

∑
j=1

t j−1tr− j−1 =

k−1

∑
t=1

r−1

∑
j=1

tr−2 =
k−1

∑
t=1

(r−1)tr−2 ≤

k−1

∑
t=1

((t + 1)r−1− tr−1) = kr−1−1 < kr−1.

��
Proposition 3.13 can now be used to compute a “long” iteration of a point z such

that |z| is small.

Proposition 3.14 Suppose |z| < 1/m for a sufficiently large m. Then we can com-
pute the � = �m/2�-th iterate of z and its derivative d f �/dz(z) with a given precision
2−s in time polynomial in s and log m.

Proof. We compute the first s coefficients c2(m),c3(m), . . . ,cs+1(m) with precision
2−s−1. This can be done in time polynomial in s and log m. Denote the approximate
coefficients by c′2,c

′
3, . . . ,c

′
s+1. We then approximate f m(z) by

f m(z)≈ z+ c′2z2 + c′3z3 + . . .+ c′s+1zs+1.

The error is bounded by

|c2(m)− c′2|z2 + |c3(m)− c′3|z3 + . . .+ |cs+1(m)− c′s+1|zs+1

+ |cs+2(m)zs+2|+ |cs+3(m)zs+3|+ . . .≤ 2−s−1(z2 + z3 + . . .)

+ ms+2zs+2 + ms+3zs+3 + . . .≤ 2−s−1 + 2−s−1 = 2−s.

We use Proposition 3.13 here to bound the tail terms cr(m)zr. ��
The algorithm now works similarly to the hyperbolic case (Theorem 3.4), occa-

sionally using Proposition 3.14 to perform a long iteration when the orbit is close to
0. We first construct a domain U similar to the initial domain used in Proposition 3.7:

Proposition 3.15 We can compute a planar domain U ∈ C such that:

(I) U � f (U), with finitely many intersection points at preimages of the parabolic
point 0,
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(II) f (U)∩Postcrit( f ) = /0,
(III) J( f )⊂U.

Fig. 3.6 The sets ˜U , U ⊂ f (U) and A.

The set U is obtained by taking a domain ˜U that is a sufficiently large disc with
a wedge removed around the attracting direction of the parabolic point 0 (see Fig-
ure 3.6). All orbits originating in the wedge stay there and converge to the parabolic
point 0. The orbit of the critical point −1/2 converges to 0 and eventually ends up
in the wedge. Hence the inverse images of ˜U will eventually consume the critical
point. In our illustration, we take U = f−3(˜U). It then satisfies the requirements of
Proposition 3.15. Furthermore, as in the hyperbolic case, by taking a few more in-
verse images under f , we can assure that every point in U is at least 32 times closer
to J( f ) than to the postcritical set of f .

We can now apply a combination of the Distance Estimator algorithm with the
“giant steps” from Proposition 3.14. For the algorithm, we will need to define a re-
gion A which is a wedge around the repelling direction of the map of some constant
radius ε that contains J( f )∩B(0,ε) (see Figure 3.6 again). If a point z is ε-close to
0 (|z| < ε) but it is not in A, then we can estimate the distance d(z,J( f )) within a
constant multiplicative error.

Suppose now that we are given a dyadic point x ∈ Ĉ, and a parameter m, and
our goal is to output 1 if d(x,J( f )) < 2−m, and 0 if d(x,J( f )) > M · 2−m for some
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constant M. We use the following algorithm, where C is an appropriately chosen
large constant (full details may be found in [Bra06]).

begin
i = 1, x0 = x, d0 = 1.
if x0 /∈U , estimate d(x0,J( f )) directly;
while i≤Cm do

(1) xi← xi−1 + x2
i−1;

(2) di← 2xi−1 ·di−1;
(3) Check the inequality |xi| < 2−Cm with precision 2−Cm; if the inequality holds

halt and return 1, otherwise continue to (4);
(4) Check whether xi ∈ U with precision 2−2m; if not, estimate d(x,J( f )) by

d(xi,J( f ))/di, return the appropriate answer and halt;
(5) Check whether |xi|< ε with precision 2−2m; if it is the case

(a) check whether xi ∈ A with precision 2−2m;
(b) if xi is in A, make a “giant leap” of �1/(2|xi|)� steps from xi to obtain

x′i and d′i ;
• if x′i escapes U use binary search to find the smallest iterate f l(xi) that

escapes U ; set di← D f l(xi)di, xi← f l(xi);
• otherwise, set xi← x′i and di← d′i ;
• loop back to step (5);

(c) if xi is not in A, estimate d(xi,J( f )), estimate d(x,J( f )) by d(xi,J( f ))/di,
return the appropriate answer and halt;

(6) i← i+ 1

end while

Output 1 and exit.

end

The proof of the fact that d(xi,J( f ))/di estimates d(xi,J( f )) within a constant
multiplicative error whenever xi is in U is similar to the hyperbolic case. Also, out-
side of A and finitely many preimages of A, ∂U and ∂ f (U) are bounded away from
each other, thus giving an expansion by some c > 1 in the hyperbolic metric of f (U).
This means that if d(x0,J( f )) > 2−m, then the main loop may be executed at most
Cm times for some constant C. Note that step (5)(c) does not decrease the hyperbolic
distance from xi to J( f ) by the same argument, although we have no estimate on the
factor by which it increases this distance (only that it is ≥ 1).

Evidently, if the algorithm exists on line (4), i.e. when xi+1 is very close to J( f ),
then x0 must have been closer than 2−m to J( f ).

Finally, assuming that |xi| > 2−Cm, it will take O(m) iterations of step (5)(b) to
escape the set A, which means that the total number of jumps in the algorithm is
bounded by O(m2), which is polynomial in m.
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3.3.3 Computing parabolic Julia sets in polynomial time: the
general case

The construction above generalizes to any rational map R(z) that only has parabolic
and attracting orbits. Full details may be found in [Bra06]. We state:

Theorem 3.16 Given

• a rational function R(z) such that every critical orbit of R converges to an at-
tracting or a parabolic orbit; and

• some finite combinatorial information about the parabolic orbit of R;

there is an algorithm M that produces an image of the Julia set J(R). It takes M
at most time CR · nc to decide one pixel in J(R) with precision 2−n. Here c is some
(small) constant and CR depends on R but not on n.

The combinatorial information is required to identify the parabolic orbits, for
instance, by specifying their periods, and approximate locations. It should also allow
us to present an iterate Rq of R near each parabolic point pi in a canonical form

Rq : pi + z �→ pi + z+ zui+1 + aui+2zui+2 + . . . ;

to do this we need to know q and ui.
The algorithm works exactly as in the example above. It starts by creating a

domain U such that U ⊂ R(U) with only finitely many intersection points between
∂U and ∂R(U) (at some preimages of the parabolic points). The set U is selected
so that U ∩Postcrit(R) = /0.

To find out whether a point x is 2−n-close to J(R), the algorithm iterates it until
the orbit escapes U while keeping track of the derivative. As in the special case, if the
orbit reaches a set A which is a collection of wedges around the repelling directions
of the parabolic orbits, it applies one long iteration to accelerate the computation. If
the orbit lands extremely close to one of the parabolic points, then x must have been
2−n-close by a derivative argument. Otherwise, it will take O(n) long steps to escape
A. Using a hyperbolic metric argument as above, one shows that at most O(n) steps
may be made outside A, bringing the total number of iterations before the algorithm
terminates to O(n2).

The only possible complication is in computing the long iteration. Note that if
our map was g(z) = z+ z3 instead of z+ z2, it would take ≈22n iterations to escape
from x0 = 2−n, rather than ≈2n iterations. Thus we would need a more powerful
acceleration (that jumps (1/z)2 steps rather than 1/z steps) in this case. To justify
plugging in k =

⌊

1/(2z2)
⌋

into the formula for gk(z) we need a generalization of
Proposition 3.13.

Proposition 3.17 (cf. Lemma 5 in [Bra06]) Let u≥ 1 be an integer. Set g(z) = z+
zu+1. Let α = 2u3. Write the k-th iterate of g:

gk(z) = z+ cu+1(k)zu+1 + cu+2(k)zu+2 + . . .
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Then cr(k)≤ (αk)r/u.

In particular, for g(z) = z + z3, u = 2 and cr(k) ≤ (16k)r/2. Thus we can take
k =

⌊

1/(32z2)
⌋

and the series will still converge. This allows for a jump of Ω(1/z2)
in one step, as required. Proposition 3.17 allows us to take even bigger jumps for
higher values of u.

3.4 Lack of uniform computability of Julia sets

Our first interesting result in the negative direction answers the following natural
question:

Is it possible to compute all Julia sets, or in particular all quadratic Julia sets, with a
single oracle Turing Machine Mφ (n)?

This is ruled out by Theorem 1.12, as the dependence c �→ J( fc) is discontinuous
in the Hausdorff distance. For an excellent survey of the continuity problem see the
paper of Douady [Dou94].

Theorem 3.18 ([Dou94]) Denote by J(c) and K(c) the functions c �→ Jc and c �→Kc
respectively viewed as functions from C to K∗2 with the latter space equipped with
Hausdorff distance. Then the following is true:

(a) if c is Siegel then J(c) is discontinuous at c, but K(c) is continuous at c;
(b) if c is parabolic then both J(c) and K(c) are discontinuous at c;
(c) if c is neither Siegel nor parabolic, then both J(c) and K(c) are continuous

at c.

The discontinuity of J at Siegel parameters is not difficult to prove:

Proposition 3.19 Let c∗ ∈M be a parameter value for which fc∗ has a Siegel disk.
Then the map J(c) is discontinuous at c∗. More specifically, let z0 be the center of
the Siegel disk. For each s > 0 there exists c̃ ∈ B(c∗,s) such that fc̃ has a parabolic
periodic point in B(z0,s).

Proof. Denote by Δ the Siegel disk around z0, p its period, and θ the rotation an-
gle. By the Implicit Function Theorem, for some ε > 0 there exists a holomorphic
mapping ζ : B(c∗,ε)→ C such that ζ (c∗) = z0 and ζ (c) is fixed under ( fc)p. The
mapping

ν : c �→ D( fc)p(ζ (c))

is holomorphic, and hence it is either constant or open.
If ν(c) ≡ d is constant, then there exists a maximal non-empty open set of pa-

rameters A � c∗ with a Siegel periodic point with the same period and multiplier.
Since A is obviously closed in C, it follows that every quadratic has a Siegel disk.
This is not possible: for instance, f1/4 has a parabolic fixed point, and thus no other
non-repelling cycles, by the Fatou-Shishikura Bound. Therefore ν is open, and in
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particular there is a sequence of parameters cn→ c∗ such that ζ (cn) has multiplier
e2π ipn/qn . Since ζ (cn) is parabolic, it lies in the Julia set of fcn . ζ (cn)→ z0. Hence

distH(J( fcn),J( fc∗ ))≥ dist(ζ (cn),∂Δ) > dist(z0,∂Δ)/2

for n large enough. ��
Thus an arbitrarily small change of the multiplier of the Siegel point may lead to an
implosion of the Siegel disk – its inner radius collapses to zero.

Fig. 3.7 An illustration of a Siegel implosion. On the left is the filled Julia set Kc∗ (gray) and the
Julia set Jc∗ (black) of a quadratic polynomial with a Siegel fixed point ζ0. The multiplier fc∗(ζ0) =
e2πiθ , where the rotation angle θ is the inverse golden mean, given by the infinite continued fraction
[1,1,1,1,1, . . .]. On the right is the filled Julia set of a nearby quadratic polynomial, whose fixed
point is parabolic, with multiplier [1,1,1,1,1] = 5/8.

As an immediate consequence of Proposition 3.19 and Theorem 1.12 we have:

Proposition 3.20 For any TM Mφ (n) with an oracle for c∈C, denote by SM the set
of all values of c for which Mφ computes Jc. Then SM �= C.

In other words, a single algorithm for computing all quadratic Julia sets does not
exist.

3.4.1 Discontinuity at a parabolic parameter

The discontinuity in J(c) which occurs at parabolic parameter values has found
many interesting dynamical implications. The proof is very involved, and its outline
may be found in [Dou94]. It is based on the Douady-Lavaurs theory of parabolic im-
plosion. Let us briefly describe its mechanism for the case of a quadratic polynomial
fc.
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Fig. 3.8 Before and after a parabolic implosion. The Julia sets (black) and filled Julia sets (light
gray) of a parabolic quadratic f1/4 (left), and of f1/4+ε for a small complex ε .

Denote by ζ a parabolic periodic point of fc with multiplier e2π ip/q, and let m∈N

be its period. Let PA and PR be attracting and repelling petals of fc. Recall that, by
Proposition 3.11, the cycle of images f jm

c (PA ∪ PR), j = 0, . . . ,q− 1 forms a full
Leau-Fatou flower at ζ .

By Proposition 3.10, the quotient

CA = PA/ f mq
c � C/Z.

The quotient CA, is sometimes called the attracting Fatou cylinder. It parametrizes
the orbits converging under the dynamics of the iterate f m

c to the point ζ . A repelling
Fatou cylinder CR � C/Z is defined similarly as the quotient of a repelling petal.

Let τ be any conformal isomorphism CA→CR. After uniformization,

CA �→≈ C/Z, CR �→≈ C/Z

τ(z) ≡ z+ qmodZ for some q ∈ C. Let gτ : PA→ PR be any lift of τ; it necessarily
commutes with f mq

c . Consider the semigroup G generated by the dynamics of the
pair ( fc,gτ). The orbit Gz of a point z ∈C is independent of the choice of the lift gτ
and only depends on τ .

Set
J(c,τ) = {z ∈C such that Gz∩ Jc �= /0}.
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It can be shown that this set is the boundary of

K(c,τ) = {z ∈ C such that Gz is bounded}.

Notice that K(c,τ) � Kc: some of the orbits which converge to ζ under fc are thrown
into the complement (C\Kc)∩PR by gτ . Holes which thus open in the set Kc moti-
vate the use of the term “implosion”.

The Douady-Lavaurs theory postulates:

Theorem 3.21 For every τ as above and every s > 0 there exists c̃ ∈ B(c,s) such
that B(Jc̃,s)⊃ J(c,τ).

Thus the Julia set of fc “explodes” under the perturbation from c to c̃.



Chapter 4
Positive Results

4.1 Computability of filled Julia sets

Computability of Julia sets of rational functions can be rather subtle, and will lead
us to some surprising findings in the next chapter. The situation is much simpler,
however, with filled Julia sets of polynomial mappings. In this section we show:

Theorem 4.1 For any polynomial p(z) there is an oracle Turing Machine Mφ (n)
that, given an oracle access to the coefficients of p(z), outputs a 2−n-approximation
of the filled Julia set Kp ≡ K(p(z))1.

Moreover:

Theorem 4.2 In the case when p(z) = z2 +c is quadratic, only two oracle machines
suffice to compute all non-parabolic filled Julia sets: one for c ∈M , and one for
c /∈M .

For a given polynomial p(z) we construct a machine computing the correspond-
ing filled Julia set Kp. We will use some combinatorial information about p in the
construction, and so the algorithm will, in general, vary with the polynomial. Note
that all the information we will need can be encoded using a finite number of bits.

• Information that would allow us to compute the non-repelling orbits of the poly-
nomial with an arbitrary precision, as well as their type: attracting, parabolic,
Siegel, or Cremer. By the Fatou-Shishikura bound, there are at most deg p−1 of
them.
By Proposition 3.2, such information could, for example, consist of the list of
periods ki of such orbits; and for each i a finite collection of dyadic balls {D j

i }ki
j=1

separating the points of the corresponding orbit from the other solutions of the
equation pki(z) = z.

1 Theorem 4.1 answers in the affirmative the question posed to us by J. Milnor, after we first
demonstrated the existence of non-computable quadratic Julia sets in [BY06].
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• For each parabolic periodic point with period m and multiplier p/q, the values of
m, p, q.

• In the case of a Siegel disc D, information that would allow us to identify a
repelling periodic point ζD in the same connected component of Kp as D. Again,
by Proposition 3.2, it is sufficient to know both its period and a small enough
dyadic ball around it, which separates it from all other periodic points with the
same period.

4.1.1 Computing Kp

We are given a dyadic point d ∈ D and an n ∈ N. Our goal is to output 1 if
B(d,2−n)∩Kp �= /0 and to output 0 if B(d,2 ·2−n)∩Kp = /0. We do it by construct-
ing five machines. They are guaranteed to terminate each on a different condition,
always with a valid answer. Together they cover all possible cases.

Lemma 4.3 There are five oracle machines Mext , Mjul , Mattr , Mpar, Msieg such that

1. if d is at distance ≥ 4
3 · 2−n from Kp, Mext (d,n) will halt and output 0. If d is at

distance ≤ 2−n from Kp, Mext(d,n) will never halt;
2. if d is at distance ≤ 5

3 ·2−n from Jp = ∂Kp, Mjul(d,n) will halt and output 1. If d
is at distance≥ 2 ·2−n from Jp, Mjul(d,n) will never halt;

3. Mattr(d,n) halts and outputs 1 if and only if d is inside the basin of an attracting
orbit of p;

4. Mpar(d,n) halts and outputs 1 if and only if d is inside the basin of a parabolic
orbit of p;

5. Msieg(d,n) halts and outputs 1 if the orbit of d reaches a Siegel disc, and d is at
distance ≥ 4

3 ·2−n from Jp. It never halts if d is at distance ≥ 2 ·2−n from Kp.

Proof (Theorem 4.1,given Lemma 4.3). By the Fatou-Sullivan classification it is
clear that for each (d,n) at least one of the machines halts. Moreover, by the defini-
tion of the machines, they always output a valid answer whenever they halt. Hence
running the machines in parallel and returning the output of the first machine to halt
gives the algorithm for computing Kp. ��

We now prove Lemma 4.3.

Proof (Lemma 4.3). We give a simple construction for each of the five machines.

1. Mext : Take a large ball B such that p−1(B) � B. Outside of B all orbits converge
to infinity. Intuitively, we pull the ball back under p to get a good approximation
of Kp. Let Bk be a 2−(n+3)-approximation of the set p−k(B). Output 0 iff Bk ∩
B(d, 7

6 ·2−n) = /0 for some k. It is not hard to see that this algorithm satisfies the
conditions on Mext .
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2. Mjul : By Proposition 3.2 for each k we can compute all periodic orbits of p(z) in
B with periods j ≤ k, as roots of the equation

p j(z)− z = 0

with an arbitrarily high precision. Moreover, by our assumptions, we have the
means to distinguish the non-repelling orbits from the repelling ones.
Let Ck be a finite collection of complex numbers with dyadic rational real and
imaginary parts which approximate the repelling periodic orbits with periods
up to k with precision 2−(n+3). Output 1 iff dist(d,Ck) < 11

6 · 2−n. The repelling
periodic orbits are all in Jp and are dense in this set. Hence the algorithm satisfies
the conditions on Mjul .

3. Mattr : For each k, and for each 0 ≤ i < j ≤ k, compute a 1/k2-approximation
Ci j

k ∈ C of
p j−i(B(pi(d),1/k)),

and check whether
Ci j

k ⊂ B(pi(d),1/(2k)).

If this is the case we terminate and output 1. In other words, we look for a
small ball B(pi(d),1/k) around an image of d such that it is mapped strictly into
itself under an iteration p j−i of p. By the Schwarz Lemma, this implies that
p has an attracting orbit that passes through B(pi(d),1/k), to which the orbit of
d converges.
Conversely, if the orbit of d converges to an (super-)attracting periodic orbit ζ of
period m, then the convergence happens at a (super-)geometric rate. Thus there
is a z0 ∈ ζ , n0 ∈ N, and τ < 1 such that

|pmt(d)− z0|< τmt

for every t > n0. Moreover, there is an ε > 0 such that if

|x− z0|< ε

then
|pmt(x)− z0|< τmt |x− z0|

for all t. Choose a k > 3n0 such that

4/k < ε and τk/3 < 1/(4k).

Then there is a t such that
k/3 < mt < k/2.

Let i = mt and j = 2mt. We have

|pi(d)− z0|< 1/(4k), thus B(pi(d),1/k)⊂ B(z0,2/k)⊂ B(z0,ε).
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Hence

p j−i(B(pi(d),1/k))⊂ p j−i(B(z0,2/k))⊂ B(z0,2τ j−i/k)

⊂ B(z0,1/k2)⊂ B(pi(d),1/k2 + 1/(4k))⊂ B(pi(d),1/(2k)−1/k2).

The machine will therefore terminate and output 1.
4. Mpar: We make use of Lemma 3.9. Since we can produce arbitrarily good approx-

imations of every parabolic periodic point ζ of p(z), we do not need an oracle
for the value of this point. Let Lζk be the sets from Lemma 3.9 corresponding to
the point ζ . Let zk = pk(d) computed with precision 2−(k+2). We output 1 if zk is
inside Lζk for some ζ and at least 2−k-away from its boundary.

5. Msieg: This is the most interesting case. It is not hard to see (cf. Figure 2.5) that,
for each k, we can compute a union Ek ∈ C of dyadic balls such that

k
⋃

i=0

pi
(

B(d,
4
3
·2−n)

)

⊂ Ek ⊂
k
⋃

i=0

pi
(

B(d,
5
3
·2−n)

)

.

Let ζ∗ be the center of the Siegel disc (one of the centers, in case of an orbit), and
let y be the given periodic point in the connected component of ζ∗. We terminate
and output 1 if Ek separates ζ∗ from y in C (or covers either one of them) for
some k.
Clearly, if d is inside the Siegel disc, then the forward images of B(d, 4

3 · 2−n)
will cover an annulus in the disc that will separate ζ∗ from the boundary of the
disc, and in particular from y. Hence Msieg will terminate and output 1.
On the other hand, if the distance from d to Kp is ≥ 2 ·2−n, then Ek∩Kp = /0 for
all k. In particular, Ek cannot separate ζ∗ from y, since they belong to the same
connected component of Kp.

��
The proof is simplified in the case of a quadratic polynomial.

Proof (Theorem 4.2). If we assume that p(z) = fc(z) then by the Fatou-Shishikura
bound, there is at most one non-repelling orbit. By our assumption, it is not
parabolic. Moreover, if it is a Siegel orbit, then the Julia set is connected. There-
fore, any repelling periodic orbit will be in the same connected component of Kp as
the Siegel disk.

If c /∈M , we run Mext and Mjul . One and only one of them is guaranteed to halt
and output a correct answer.

For c ∈M we will use a modified Turing Machine ̂Msieg. It will compute the
set Ek as before. If Ek separates the plane into two or more components, it will use
the algorithm from Proposition 3.2 to search for two periodic points of period at
most k in different components separated by Ek. If a k is found for which such two
orbits are located, or if Ek covers a periodic orbit, ̂Msieg will terminate and output 1.
Since all periodic points are in Kc, and Kc is connected, this would clearly be a valid
answer.
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If c ∈M , then we run Mext , Mjul , Mhyp, and ̂Msieg. As before, it is easy to see
that one of them will terminate, and its output will be a correct one. ��

Using Theorem 1.12 we obtain an interesting corollary:

Corollary 4.4 (Continuity of Kc) Denote by P the set of c’s for which Jc is para-
bolic. The function

K : c �→ Kc = K(z2 + c)

is continuous in the Hausdorff metric on the set M \P .

This result is well-known (see [Dou94]). However, it is quite remarkable that
we have arrived at it using considerations of computability, rather than an analytic
construction.

4.2 Computability of Julia sets in the absence of rotation
domains

Similar ideas were used in [BBY07a] to prove the following theorem:

Theorem 4.5 Let f be a rational map f : Ĉ→ Ĉ without rotation domains. Then
its Julia set is computable in the spherical metric by an oracle Turing machine Mφ

with the oracle representing the coefficients of f . The algorithm uses the following
non-uniform information about each parabolic periodic point ζ of f with period m
and multiplier e2π ip/q:

• a dyadic ball B(w,r) � p such that B(w,2r) does not contain any other points
periodic with period m;

• the values of m, p, and q.

Proof. We will show how to approximate J( f ) with any desired precision in the
spherical metric on Ĉ. Note, that this metric is equivalent to the metric induced on
Ĉ by the Euclidean distance in R

3 via the stereographic projection (see Definition
2.1.1). The spherical metric leads to a natural definition of Hausdorff distance be-
tween compacta in Ĉ. As before, we will denote this distance dH .

For every natural n we can compute a sequence of rationals {qi} such that

B(J( f ),2−(n+2)) �
∞
⋃

i=1

B(qi,2−(n+1)) � B(J( f ),2−n). (4.2.1)

To do this, for each k > n + 2, we compute 2−k-approximations of the periodic
points of f in Ĉ with periods at most k using Proposition 3.2. Let M > 0 be some
bound on |D2 f m(z)| in the area of an approximate periodic orbit ri with period m.
Then |D f m(ri)| > 1 + 2−kM implies that |D f m(w)| > 1 for the periodic point w
which ri approximates. In this case we add the point ri to our sequence of ratio-
nals. Clearly, for each repelling periodic point of f we will eventually obtain in this
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way a rational point which approximates it with precision at least 2−(n+3). Since
such points are contained in J( f ), and are dense there, our sequence has the desired
property.

Of course, we can similarly eventually find every attracting orbit ζ̄ of f with an
arbitrary precision. In this case, we will compute a set Dζ̄ – a union of k dyadic
balls – for this orbit such that f k(Dζ̄ ) � Dζ̄ . Set D = ∪ζ̄Dζ̄ .

Finally, for each parabolic periodic point ζ of f let Lζk be the sets from
Lemma 3.9. Set Lk = ∪ζLζk .

We are now ready to present an algorithm to find a set Cm ∈ C with
distH(Cm,J( f )) < 2−m. Fix m ∈N. Our algorithm to find Cm ∈ C works as follows.
At the k-th step:

• compute the finite union Bk = ∪k
i=1B(qi,2−(m+1)) ∈ C ;

• compute with precision 2−(m+3) the complement of the preimage

f−k(D∪Lk),

that is, find Wk ∈ C such that

dH(Wk,Ĉ\( f−k(D∪Lk))) < 2−(m+3),

where D is the union of Dζ̄ ’s discovered so far by the algorithm.
• if Wk ⊂ Bk output Cm = Bk and terminate. Otherwise, go to step k + 1.

By the Fatou-Sullivan classification, the algorithm will eventually terminate. Now
suppose that the algorithm terminates at step k. Since Wk ⊂ Bk and
J( f )⊂ B(Wk,2−(m+3)) we have J( f )⊂ B(Cm,2−(m+3)). On the other hand,∪{qi}⊂
J( f ), and thus Bk = Cm ⊂ B(J( f ),2−(m+1)).

��
Using the result we have just obtained together with Theorem 1.12, we see that

the examples of discontinuity in the dependence c �→ Jc which we discussed in §3.4
are the only possible ones:

Corollary 4.6 (Continuity of Jc) The dependence c �→ Jc is continuous with re-
spect to the Hausdorff distance at all values of c which are neither parabolic nor
Siegel.

4.3 Computable Julia sets of Siegel quadratics

What can we say about computability of Julia sets with Siegel disks or rotation
domains? For simplicity, let us concentrate on one particular example: the family of
quadratic polynomials given by the formula

Pθ (z) = z2 + e2π iθ z, where the parameter θ ∈ R/Z.
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Each Pθ has a neutral fixed point at the origin, and so, by the Fatou-Shishikura
bound, every other periodic cycle of Pθ is repelling. In the next chapter we will
describe a precise characterization of those values of θ ∈ R\Q for which 0 is a
Siegel fixed point of Pθ . For the moment let us simply assume that this is the case,
and denote by Δθ � 0 the Siegel disk.

Let us give a simple necessary and sufficient condition for computability of Jθ .

Definition 4.3.1 The inner radius of the Siegel disk Δθ is the distance

ρθ = dist(0,Δθ ).

That is, ρθ is the radius of the largest Euclidean circle about the origin which can
be inscribed into Δθ .

Denote by Jθ the Julia set J(Pθ ). As ρθ = dist(0,Jθ ), the following is evident:

Proposition 4.7 Suppose that Jθ is computable by a Turing Machine Mφ with an
oracle for θ . Then the same is true for ρθ .

The converse also holds:

Theorem 4.8 Suppose that ρθ is computable by a Turing Machine Mφ with an
oracle for θ . Then so is Jθ .

Proof. The algorithm for producing the 2−n approximation of the Julia set is as
follows. First, compute a large disk D around 0 with P−1

θ (D) � D. Then

(I) compute a set Dk ∈ C which is a 2−(n+3)-approximation of the preimage
P−k
θ (D);

(II) set Wk to be the round disk with radius ρθ −2−k about the origin. Compute a
set Bk ∈ C which is a 2−(n+3)-approximation of P−k

θ (Wk);
(III) if Dk is contained in a 2−(n+1)-neighborhood of Bk, then output a 2−(n+1)-

neighborhood of Dk \Bk, and stop. If not, go to step (I).

A proof of the validity of the algorithm is completely straightforward. The idea is
that Dk is an “upper bound” on the filled Julia set Kθ , and Wk is a “lower bound”.
The increasing sequence {Wk} fills in the interior of Kθ , approximating it from the
inside, and {Dk} approximates it from the outside. When the two approximations
meet, we know that set Dk \Bk must be approximating Jθ = ∂Kθ . We let the reader
fill in the details of the argument. A step in the approximation process is illustrated
in Figure 4.3. ��

Here is a particular class of examples of Siegel Julia sets for which ρθ is com-
putable. Recall that an irrational θ whose continued fraction expansion is given by
θ = [a1,a2, . . .] is said to be of bounded type if sup{an}< ∞.

Proposition 4.9 Let θ be of bounded type. Then Jθ is computable by a TM with an
oracle for θ .
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Fig. 4.1 A figure produced by the algorithm of Theorem 4.8 for θ = (
√

5−1)/2.

For θ of bounded type, the boundary ∂Δθ is a quasi-fractal Jordan curve passing
through the critical point pθ of Pθ . Although it cannot be smooth because of this, its
shape is well-controlled. Recall that a simple closed curve γ : T→ C in the plane is
called M-quasisymmetric, if the following holds.

Let a, b be a pair of points in T. Then

diam(γ([a,b]))≤M|a−b|.

The image of an M-quasisymmetric curve is called a quasicircle.

Proposition 4.10 For each B ∈ N there exists M(B) > 1 such that the following
holds. Assume that all terms in the continued fraction of θ ∈ (0,1)\Q are bounded
by B. Then ∂Δθ is a quasicircle with M ≤M(B).

This statement is due to Douady, Ghys, Herman, and Shishikura, and the proof can
be found in [Dou88].

4.3.1 Approximating the boundary of Δθ by the critical orbit.

The same work of Douady, Ghys, Herman, and Shishikura yields the following
statement:

Proposition 4.11 Let θ be of bounded type, and denote by pn/qn its continued frac-
tion convergents. Let B > 0 be an upper bound on supqn+1/qn. There exist constants
K > 0, τ < 1 which depend only on B, such that

distH(Ωn,∂Δθ ) < Kτn, where Ωn = {Pi
θ (pθ ), i = 0, . . . ,qn+2}.
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Here pθ =−e2π iθ/2 is the critical point of Pθ .

Proposition 4.11 gives a recipe for computing the inner radius, approximated by

rn = min
i=0,...,qn+2

|Pi
θ (pθ )|,

and thus implies Proposition 4.9.

Proof of Proposition 4.11

Siegel quadratic Julia sets of bounded type may be constructed by
means of quasiconformal surgery due to Douady, Ghys, Herman,
and Shishikura (cf. [Dou88]) on a Blaschke product

Bθ (z) = e2π iτ(θ)z2 z−3
1−3z

.

This map homeomorphically maps the unit circle T onto itself with
a single (cubic) critical point at 1. The angle τ(θ ) can be selected
uniquely and constructively in such a way that the rotation number
of the restriction ρ(Bθ |T) = θ .
For each n, the points

{1,Bθ (1),B2
θ (1), . . . ,Bqn+1−1

θ (1)}

form the n-th dynamical partition of the unit circle. The following
result is due to Swiatek and Herman (for the proof see e.g. Theorem
3.1 of [dFdM99]):
Theorem 4.12 (Universal real a priori bound) There exists an ex-
plicit constant C > 1 independent of θ and n such that the following
holds. Let θ ∈ R\Q and n ∈ N. Then any two adjacent intervals I
and J of the n-th dynamical partition of Bθ are C-commensurable:

C−1|I| ≤ |J| ≤C|I|.

Proposition 4.13 ([Her86]) For each bounded type θ = [a0, . . . ,ak, . . .]
the Blaschke product Bθ is M-quasisymmetrically conjugate to the
rotation Rθ : x �→ x + θ modZ. The quasisymmetric constant may
be taken as M = (2maxai)

10C2
.

Let us now consider the mapping Ψ which identifies the critical
orbits of Bθ and Pθ by

Ψ : Bi
θ (1) �→ Pi

θ (pθ ).

We have the following (for details see, for example, Theorem 3.10
of [YZ01]):
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Fig. 4.2 For the Blaschke product Bθ denote by U the component of the first preimage of the unit
disk U which is contained in C\U. The top figure consists of the closed unit disk and all the points
whose orbits under Bθ will eventually land in Ū . Quasiconformal surgery transforms it into the
filled Julia set Kθ , and its boundary into Jθ (the bottom figure). The image of U is the Siegel disk
Δθ , the image of U is −Δθ .
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Theorem 4.14 (Douady, Ghys, Herman, Shishikura) The mapp-
ingΨ extends to a K-quasiconformal homeomorphism of the plane
C which maps the unit disk D onto the Siegel disk Δθ . The con-
stant K may be taken as the quasiconformal dilatation of any global
quasiconformal extension of the M-quasisymmetric conjugacy of
Proposition 4.13. In particular, we can ensure that K ≤ 2M.

Elementary combinatorics implies that each interval of the n-th dy-
namical partition contains at least two intervals of the (n + 2)-nd
dynamical partition. This in conjunction with Theorem 4.12 implies
that the size of an interval of the (n + 2)-nd dynamical partition of
Bθ is at most τn where

τ =

√

C
C + 1

.

Hence, setting

Ωn = {Pi
θ (pθ ), i = 0, . . . ,qn+2},

by Theorem 4.14,

distH(Ωn,∂Δθ )< Kτn. �

4.4 Robust computability

In practice, a Julia set J(R) is often computed without regard for a round-off error.
This can be thought of as iterating a point z ∈ Ĉ by a sequence of rational mappings
Ri whose coefficients are close (but not necessarily equal) to those of R.

Note here the strong similarity to random iteration of rational maps,
as described, for example in [FS91].

In our context, the appropriate question to ask here is the following:

Given a point z and a rational map R, can we determine whether z is close to the
Julia set of some nearby rational map R′?

More specifically, restricting ourselves to quadratic polynomials, let J be the subset
of C×C given by

J = {(z,c) : z ∈ Jc}.
We formulate the question:

Is the set J computable?
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We thank M. Shub for suggesting this question to us. The answer is “yes”:

Theorem 4.15 Let d > 0 be any computable real. Then the compact set

J∩C×B(0,d)

is a computable subset of C×C.

Informally, we may think of the projection of J∩C× (c− ε,c + ε) to the first co-
ordinate as the picture that a computer could produce when ignoring the round-off
error.

We prove Theorem 4.15 by showing that J is weakly computable (Definition
1.4.1).

We will need the following lemma.

Lemma 4.16 For any point (z,c) in the complement of the closure J, z converges to
an attracting periodic orbit of fc : z �→ z2 + c.

The proof of the lemma will require us to recall the nature of discontinuities in
the function J(c), particularly the theory of parabolic implosion, as was described
in §3.4.1. We postpone it until the end of the section.

The following lemma allows us to “cover” all points that belong to J.

Lemma 4.17 There is an algorithm A1(n) that on input n outputs a sequence
of dyadic points p1, p2, . . . ∈C×C such that

B(J,2−(n+3))⊂
∞
⋃

j=1

B(p j,2−(n+2))⊂ B(J,2−(n+1)).

Proof. The repelling periodic orbits of fc are dense in Jc. Hence the set

Srep = {(z,c) : z is in a repelling periodic orbit of fc}

is dense in J. Srep is a union of a countable number of algebraic curves Sm
rep given

by the constraints
{

f m
c (z) = z
|( f m

c )′(z)| > 1.

For each m we can compute a finite number of points pm
1 , . . . , pm

rm
approximating

Sm
rep such that

B(Sm
rep,2

−(n+3))⊂
rm
⋃

j=1

B(pm
j ,2−(n+2))⊂ B(Sm

rep,2
−(n+1)).

We have

J = Srep =
∞
⋃

m=1

Sm
rep.
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Hence the computable sequence p1
1, . . . , p1

r1
, p2

1, . . . , p2
r2

, . . . , pm
1 , . . . , pm

rm , . . . satisfies
the conditions of the lemma. ��
Corollary 4.18 There is an oracle machine Mφ1,φ2

1 (n), where φ1 is an oracle for
z ∈ C and φ2 is an oracle for c ∈ C, such that Mφ1,φ2

1 always halts whenever
d((z,c),J) < 2−(n+4) and never halts if d((z,c),J)≥ 2−n.

Proof. Query the oracles for a point p∈C×C such that d(p,(z,c)) < 2−(n+4). Then
run the following loop:

i← 0
do

i← i+ 1
generate pi using A1(n) from Lemma 4.17

while d(p, pi) > 2−(n+2)

If d((z,c),J) < 2−(n+4), then d(p,J) < 2−(n+3), and hence by Lemma 4.17
there is an i such that d(p, p j) ≤ 2−(n+2), and the loop terminates. If d((z,c),J) >

2−n, then d(p,J) > 2−n − 2−(n−4) > 1.5 · 2−(n+1). Hence, by Lemma 4.17, p /∈
B(pi,2−(n+1)) for all i, and the loop will never terminate. ��

The following lemma allows us to exclude points outside J from J.

Lemma 4.19 There is an oracle machine Mφ1,φ2
2 , where φ1 is an oracle for z ∈ C

and φ2 is an oracle for c ∈ C, such that Mφ1,φ2
2 halts if and only if z converges to an

attracting periodic orbit (or to ∞) under fc : z �→ z2 + c.

Proof. M2 is systematically looking for an attracting cycle of fc. It also iterates fc
on z with increasing precision and for increasingly many steps until we are sure that
either one of the following two things holds:

1. the orbit of z converges to ∞; or
2. we find an attracting orbit of fc and the orbit of z converges to it.

If the search is done systematically, the machine will eventually halt if one of the
possibilities above holds. It obviously won’t halt if neither holds. ��
Proof (Theorem 4.15). The algorithm is: Run the machines Mφ1,φ2

1 (n) from Corol-
lary 4.18 and Mφ1,φ2

2 from Lemma 4.19 in parallel. Output 1 if M1 terminates first
and 0 if M2 terminates first.

First we observe that M1(n) only halts on points that are 2−n-close to J, in which
case 1 is a valid answer according to Definition 1.4.1. Similarly, M2 only halts on
points that are outside J, in which case 0 is a valid answer. Hence if the algorithm
terminates, it outputs a valid answer. It remains to see that it does always terminate.
Consider two cases.

Case 1: (z,c) ∈ J. In this case d((z,c),J) = 0 < 2−(n+4), and the first machine is
guaranteed to halt.

Case 2: (z,c) /∈ J. By Lemma 4.16, z converges to an attracting periodic orbit of fc
in this case, and hence the second machine is guaranteed to halt. ��
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Proof of Lemma 4.16

Suppose z /∈ Jc and the orbit of z does not belong to an attracting basin. By the Fatou-
Sullivan classification (see e.g. [Mil06]), there exists k ∈ N such that w ≡ f k

c (z)
belongs to a Siegel disk or to the immediate basin of a parabolic orbit. Our aim is to
show that for an arbitrary small δ > 0, there exists a pair (z̃, c̃) ∈C×C with

|z− z̃|< δ , |c− c̃|< δ , and for which z̃ ∈ Jc̃.

We will treat the Siegel case first.

The case when w lies in a Siegel disk. Let us denote by Δ the Siegel disk containing
w, and let m ∈N be its period, that is, the mapping

f m
c : Δ → Δ

is conjugated by a conformal change of coordinates φ : Δ → D to an irrational rota-
tion of D.

By Proposition 3.19, we have the following. Denote ζ = φ−1(0) ∈ Δ the center
of the Siegel disk. For each s > 0 there exists c̃ ∈ B(c,s) such that fc̃ has a parabolic
periodic point ζ̃ of period m in B(ζ ,s). In particular, Jc̃ is connected, and B(ζ ,s)∩
Jc̃ �= /0.

Consider now the f m
c -invariant analytic circle

Sr = φ−1({z = re2π iθ , θ ∈ [0,2π)})

which contains w. Let ε > 0 be such that

B(w,ε)⊂ f k
c (B(z,δ ))∩Δ .

Set B≡ B(w,ε/2) and let n ∈ N be such that the union
⋃

0≤i≤n

f mi
c (B)⊃ Sr.

By Proposition 3.19 for all δ > 0 small enough, there exist c̃ ∈ B(c,δ ) for which
Jc̃ is connected and there is a point of Jc̃ inside the domain bounded by Sr. Since
repelling periodic orbits of fc are dense in ∂Δ , again for δ small enough, there are
points of Jc̃ on the outside of Sr as well, and so there exists a point ξ ∈ Jc̃∩Sr. By
construction, there exists j ∈N such that f j

c (B(z,δ )) � ξ . By the invariance of Julia
sets, if c̃ is close enough to c we have B(z,δ )∩ Jc̃ �= /0, and the proof is complete.

The case when w lies in a parabolic basin. Denote by ζ the parabolic periodic point
of fc whose immediate basin contains w, and let m ∈ N be its period. We employ
the notations of §3.4.1.

Recall that, by Theorem 3.21, for every s > 0 there exists c̃ ∈ B(c,s) such that
B(Jc̃,s)⊃ J(c,τ).
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Since ζ ∈ Jc, and Jc is connected, there exists a point u ∈ Jc ∩PR, where PR is a
repelling petal. Let ŵ∈CA be the orbit of w, and let û∈CR be the orbit of u. Choose
the translation τ : CA→CR so that τ(ŵ) = û. Then J(c,τ) �w, which implies J(c,τ) � z.
The claim follows by Theorem 3.21. ��



Chapter 5
Negative Results

5.1 Occurrence of Siegel disks and Cremer points
in the quadratic family

Let us discuss in more detail the occurrence of Siegel disks in the quadratic family.
First we formulate the following strengthening of Siegel’s Theorem 2.12, proved
by Brjuno in the early 1970’s . Recall that, for an irrational number θ ∈ (0,1),
represented by an infinite continued fraction

θ = [r1,r2, . . . ,rn, . . .]

with positive terms, we denote its rational convergents by pn/qn = [r1, . . . ,rn].

Theorem 5.1 ([Brj71]) Let R be an analytic map with a periodic point z0 ∈ Ĉ

of period p. Suppose that the multiplier of the cycle is λ = e2π iθ , with the ratio-
nal convergents of θ satisfying

B(θ ) =∑
n

log(qn+1)
qn

< ∞. (5.1.1)

Then the local linearization equation (2.2.1) holds, and hence z0 is a Siegel point.

As we have noted before, a quadratic polynomial with a fixed Sigel disk with rota-
tion angle θ can after an affine change of coordinates be written as

Pθ (z) = z2 + e2π iθ z. (5.1.2)

In 1987 Yoccoz [Yoc95] proved the following converse to Brjuno’s Theorem:

Theorem 5.2 ([Yoc95]) Suppose that for θ ∈ [0,1) the polynomial Pθ has a Siegel
point at the origin. Then B(θ ) <∞.

The numbers satisfying (5.1.1) are called Brjuno numbers; the set of all Brjuno
numbers will be denoted B. It is evident that∪D(k)⊂B and thus the set B has full

M. Braverman and M. Yampolsky. Computability of Julia Sets.
Algorithms and Computation in Mathematics,
c© Springer-Verlag Berlin Heidelberg 2009
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Fig. 5.1 The Julia set of Pθ for θ = [1,1,1,1, . . .] (the inverse golden mean).

measure in the unit circle. On the other hand, it can be shown that its complement
is dense-Gδ .

The sum of the series (5.1.1) is called the Brjuno function. For us a different
characterization of B will be more useful. Inductively define θ1 = θ and θn+1 =
{1/θn}. In this way, if θ = [r1,r2, . . .], then

θn = [rn,rn+1,rn+2, . . .].

We define the Yoccoz’s Brjuno function as

Φ(θ ) =
∞

∑
n=1

θ1θ2 · · ·θn−1 log
1
θn

= log
1
θ1

+θ1 log
1
θ2

+θ1θ2 log
1
θ3

+ . . .

One can verify that
B(θ ) < ∞⇔Φ(θ ) <∞.

The value of the function Φ is related to the size of the Siegel disk in the following
way.

Definition 5.1.1 Let W ⊂ C be a simply-connected domain in the complex plane,
and let w ∈W be an arbitrary choice of a marked point. Consider the unique con-
formal isomorphism

φ(W,w) : U→W (5.1.3)
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which maps 0 to w and has a positive derivative at 0. Then the conformal radius of
the marked domain (W,w) is

r(W,w) = φ ′(W,w)(0).

For example, if the domain V is a disk of radius r,

(V,v) = (B(0,r),0),

then φ(V,v)(z) = r · z, and r(V,v) = r. Note that by the Koebe One-quarter Theorem,
for any domain (W,w) we have

W ⊃ B(w,r(W,w)/4).

Definition 5.1.2 Let P(θ ) be a quadratic polynomial with a Siegel disk Δθ � 0.
The conformal radius of the Siegel disk Δθ is

r(θ ) = r(Δθ ,0).

For all other θ ∈ [0,∞) we set r(θ ) = 0.

Fig. 5.2 The image of the polar grid by the Riemann Mapping of Δθ with θ =
[3,20,200,1,1,1, . . .].
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Yoccoz [Yoc95] has shown that the sum

υ(θ )≡Φ(θ )+ logr(θ ) (5.1.4)

is bounded from below independently of θ ∈B. Recently, Buff and Chéritat have
greatly improved this result by showing that:

Theorem 5.3 ([BC06b]) The function υ : θ �→ Φ(θ )+ logr(θ ) extends to R as a
1-periodic continuous function.

We remark that the following stronger conjecture exists (see [MMY97]):

Marmi-Moussa-Yoccoz Conjecture. [MMY97] The function

υ : θ �→Φ(θ )+ logr(θ )

is Hölder with exponent 1/2: that is, there is a constant C > 0 such that for any
x,y ∈ [0,1],

|υ(x)−υ(y)|< C · |x− y|1/2.

We have actually demonstrated the following in [BY06]:

Theorem 5.4 There exists θ0 ∈B such that the function θ �→Φ(θ )
is non-computable on the domain consisting of a single point {θ0}
by a Turing Machine with an oracle access to θ .

Assuming that the Marmi-Moussa-Yoccoz Conjecture holds, The-
orem 5.4 would be sufficient to demonstrate that r(θ ) is not com-
putable for some values of θ ∈ T; which in turn, by Proposition
5.13 below, would imply non-computability of J(Pθ ):

Conditional Implication 1. If the function

υ : θ �→Φ(θ )+ logr(θ )

has a computable modulus of continuity, then it is uniformly com-
putable on the entire interval [0,1].

The proof of the above implication uses the following result of Buff
and Chéritat ([BC06b]).

Lemma 5.5 ([BC06b]) For any rational point θ = p
q ∈ [0,1] de-

note, as before,
Pθ (z) = e2π iθ z+ z2,

and let the Taylor expansion of P◦qθ (z) at 0 start with

P◦qθ (z) = z+ Azq+1 + . . . , for q ∈ N
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Fig. 5.3 The top figure is an attempt to visualize the (non-computable!) function Φ , by plotting
the heights of exp(−Φ(θ)) over a grid of Brjuno irrationals. The lower figure is the graph of the
(conjecturally computable) function υ(x).
Both figures courtesy of Arnaud Chéritat

Let L(θ )=
(

1
qA

)1/q
. Denote byΦtrunc the modification ofΦ applied

to rational numbers where the sum is truncated before the infinite
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term. Then we have the following explicit formula for computing
υ(θ ):

υ(θ ) =Φtrunc(θ )+ logL(θ )+
log2π

q
. (5.1.5)

Equation (5.1.5) allows us to compute the value of υ easily at ev-
ery rational θ ∈ Q∩ [0,1] with an arbitrarily good precision. As-
suming that υ has a computable modulus of continuity, and putting
together Lemma 5.5 and Theorem 1.7, we have the Conditional Im-
plication 1.
The following conditional result follows:

Conditional Implication 2. Suppose that Conditional Implication
1 holds. Let θ ∈ [0,1] be such that Φ(θ ) is finite. Then there is an
oracle Turing Machine Mφ

1 computing Φ(θ ) with an oracle access
to θ if and only if there is an oracle Turing Machine Mφ

2 computing
r(θ ) with an oracle access to θ .

Proof. Suppose that Mφ
1 computes Φ(θ ) for some θ . Let Mφ be

the machine uniformly computing the function υ . Then we can use
Mφ

1 and Mφ to compute logr(θ ) = υ(θ )−Φ(θ ) with an arbitrarily
good precision. We can then use this construction to give a machine
Mφ

2 which computes r(θ ).
The opposite direction is proved analogously. ��

Dependence of the conformal radius of a Siegel disk
on the parameter

In this section we will show that the conformal radius of a Siegel disk varies contin-
uously with the Julia set. To that end we will need a preliminary definition:

Definition 5.1.3 Let (Un,un) be a sequence of topological disks Un ⊂ C with
marked points un ∈Un. The kernel or Carathéodory convergence (Un,un)→ (U,u)
means the following:

• un→ u;
• for any compact K ⊂U and for all n sufficiently large, K ⊂Un;
• for any open connected set W � u, if W ⊂Un for infinitely many n, then W ⊂U.
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The geometric meaning of this convergence is as follows. For a pointed domain
(U,u) denote by

φ(U,u) : U→U

the unique conformal isomorphism with φ(U,u)(0) = u, and (φ(U,u))′(0) > 0. We
again denote r(U,u) = |(φ(U,u))′(0)| the conformal radius of U with respect to u.

By the Riemann Mapping Theorem, the correspondence

(U,u) �→ φ(U,u)

establishes a bijection between marked topological disks properly contained in C

and univalent maps φ : U→ C with φ ′(0) > 0. The following theorem is due to
Carathéodory; a proof may be found in [Pom92]:

Theorem 5.6 (Carathéodory Kernel Theorem) Pointed simply-connected do-
mains (Un,un) converge to (U,u) in the sense of Carathéodory if and only if the
Riemann mappings

φ(Un,un)→ φ(U,u) uniformly on compact subsets of U.

We can now state and prove the following:

Proposition 5.7 The conformal radius of a quadratic Siegel disk varies continu-
ously with respect to the Hausdorff distance on Julia sets.

Proof. To fix the ideas, consider the family Pθ with θ ∈ B and denote by Δθ
the Siegel disk of Pθ . It is evident that the Hausdorff convergence J(Pθn)→ J(Pθ )
implies the Carathéodory convergence of the pointed domains

(Δθn ,0)→ (Δ ,0).

The proposition follows from this and the Carathéodory Kernel Theorem. ��
Recall that for a pointed domain (U,u) the inner radius is given by

ρ(U,u) = dist(u,∂U).

To understand how the conformal radius of the domain is affected by the change in
the inner radius, consider the example of the slit disk

Ux ≡ U\(x,1) for x ∈ (0,1)

(see Figure 2.1). A direct computation shows that

r(Ux,0) =
4x

(1 + x)2 < 1,

and so the conformal radius decreases linearly with the size of the slit. In fact, the
domain Ux is extremal in the following sense:
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Proposition 5.8 Let W � 0 be a simply-connected open subset of U. Assume that
ρ(W,0)≤ x. Then

r(W,0)≤ 4x
(1 + x)2 .

The proof uses a standard complex-analytic technique, which goes beyond the scope
of this book (see e.g. [Ahl06]).

Let us now state a quantitative version of Proposition 5.7:

Lemma 5.9 Let U be a simply-connected bounded subdomain of C containing the
point 0 in the interior. Suppose V ⊂U is a simply-connected subdomain of U, and
∂V ⊂ B(∂U,ε). Then

r(U,0)− r(V,0)≤ 4
√

r(U,0)
√
ε.

Moreover, let F(x) = 4x/(1 + x)2. Then

r(V,0)≤ r(U,0)F
(

ρ(V,0)
ρ(U,0)

)

.

Proof. We begin with the proof of the first inequality (cf. Proposition 1 of [RZ04]).
Let us set φU ≡ φ(U,0) : U→U and φV ≡ φ(V,0) : U→V as in (5.1.3). It is not difficult
to see that the Koebe Distortion Theorem (§2.1) implies

dist(φU (z),∂U)≥ 1
16

(1−|z|)2φ ′U(0). (5.1.6)

Set
DV ≡ φ−1

U (V )⊂ U.

By (5.1.6) we have
DV ⊃ B(0,r) (5.1.7)

for any r satisfying
1

16
(1− r)2r(U,0)≥ ε. (5.1.8)

Fix any such r, and set
hV ≡ φ(DV ,0).

The inclusion (5.1.7) together with the Schwarz Lemma implies that

1 > h′V (0)≥ r.

Since
r(U,0)h′V (0) = r(V,0),

we have
r(U,0)− r(V,0)≤ (1− r)r(U,0). (5.1.9)
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To complete the proof of the first inequality of the lemma, it remains to rewrite the
inequality (5.1.8) as

(1− r)≥ 4
√

ε
r(U,0)

,

and substitute into (5.1.9).
Let us prove the second statement, The domain U contains a round disk B =

B(0,ρ(U,0)). Applying the Schwarz Lemma to the restriction of φ−1
U to the disk B,

we have

|φ−1
U (z)| ≤ |z|

ρ(U,0)
.

Let z ∈ ∂V ∩B be such that
|z|= ρ(V,0).

Then

x = |φ−1
U (z)| ≤ ρ(V,0)

ρ(U,0)
.

Let us apply Proposition 5.8 to estimate:

r(φ−1
U (V ),0) = r(V,0)/r(U,0)≤ F(x),

and the claim immediately follows. ��

We also state for future reference the following proposition:

Proposition 5.10 Let {θi} be a sequence of Brjuno numbers such that θi→ θ and
lim r(θi) = l > 0. Then θ is also a Brjuno number and r(θ )≥ l.

Proof. Denote φi ≡ φ(Δθi ,0). By the Schwarz Lemma, the inverse ψi ≡ (φi)−1

linearizes Pθi on Δθi :
ψi ◦Pθi ◦ψ−1

i (z) = e2π iθi z.

Note first that, by the Koebe Distortion Theorem, the family of maps {φi} is
equicontinuous on any proper subset of the unit disk. Further, Kθi ⊂ B(0,2), and
hence there is a uniform upper bound on {φi}. By the Arzelà-Ascoli Theorem, we
can pass to a subsequence to assure that

φi→ φ locally uniformly, and φ ′(0) = l.

By continuity, φ−1 is a linearizing coordinate for Pθ , so θ is a Brjuno number.
Moreover, φ(U)⊂ Δθ , and so by the Schwarz Lemma r(θ )≥ l. ��
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5.2 Computability of Julia sets of Siegel quadratics and negative
results

5.2.1 Computability of r(θ) is equivalent to computability of Jθ

.
Of course, the change in parametrization from c to θ makes it natural to talk about

computability of J(Pθ ) by a TM with an oracle for θ , rather than for c. However,
these notions are obviously equivalent, as c = c(θ ) is found by the formula

c = c(θ ) = λ/2−λ 2/4, where λ = e2π iθ . (5.2.1)

Let us abbreviate J(Pθ ) as Jθ in what follows. To address the question of com-
putability of Jθ for θ ∈B we first make note of the following result:

Proposition 5.11 Suppose r(θ ) is computable by a Turing Machine Mφ with an
oracle to θ . Then so is Jθ .

Proposition 5.11 follows from Theorem 4.8, and the following lemma:

Lemma 5.12 Suppose r(θ ) is computable by a Turing Machine Mφ with an oracle
for θ . Then so is the inner radius ρ(Δθ ,0)≡ ρθ .

Proof. The algorithm works as follows:

(I) For k∈N compute a set Dk ∈C which is a 2−m-approximation of the preimage
P−k
θ (D), for some sufficiently large disk D;

(II) evaluate the conformal radius r(Dk,0) with precision 2−(m+1) (this can be
done, for example, by using one of the numerous existing methods for computing
the Riemann Mapping of a computable domain, see [BB85]);

(III) as before, let
F(x) = 4x/(1 + x)2, for x ∈ [0,1].

Note that this function is monotone, and let ψ(w) = F−1(w). This function is
computable, and ψ(1) = 1.
Evaluate

p = ψ(r(θ )/r(Dk,0))

with precision 2−(m+5)/ρ(D,0). If

|1− p|< 2−(m+3)/ρ(D,0),

then compute the inner radius ρ(Dk,0)≡ rk around 0 with precision 2−(m+1) and
output this number. Else, increment k and return to step (I).

Termination. Let K = K(Pθ ) be the filled Julia set of Pθ . Then

∩∞k=0Dk = K ⊃ Δθ
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and
D0 ⊃ D1 ⊃ D2 ⊃ . . . .

Hence for every δ > 0 there will be a step k = k(ε) after which

dist(∂Dk,Jθ ) < δ .

Since ∂Δθ ⊂ Jθ , by Lemma 5.9 this implies that

|r(Dk,0)− r(Δθ ,0)|= |r(Dk,0)− r(θ )|< 4
√

r(D,0)
√
δ −→
δ→0

0.

Since for every large enough k, the value of

ψ(r(θ )/r(Dk,0)) > 1−2−(m+4)/ρ(D,0),

the algorithm will eventually terminate on step (III).

Correctness. Now suppose the algorithm has terminated on step (III). As Δθ ⊂Dk,
Lemma 5.9 implies that

1≥ ρθ
ρ(Dk,0)

≥ 1− 2−(m+1)

ρ(D,0)
,

and so
|ρ(Dk,0)−ρθ | ≤ 2−(m+1).

��
As a converse to Proposition 5.11, we have the following:

Proposition 5.13 Suppose that the function θ �→ J(Pθ ) is computable at a point θ0
by a TM Mφ with an oracle access to θ0, then the same is true for r(θ0).

Proof. Using the output of the TM computing J(Pθ0) in an obvious way, for each
ε > 0 we can obtain a simply-connected domain V ∈ C such that

V ⊂ Δθ0 and ∂V ⊂ B(∂Δθ0 ,ε).

It is elementary to verify that for every θ ∈ T, the set J(Pθ )⊂ B(0,2). This implies,
by the Schwarz Lemma, that the conformal radius r(θ0) < 2. Hence, by Lemma 5.9,

|r(V,0)− r(θ0)|< δ = 8
√
ε .

Using any constructive version of the Riemann Mapping Theorem (see e.g. [BB85]),
we can compute r(V,0) to precision δ , and hence know r(θ0) up to an error of 2δ .
Given that δ can be made arbitrarily small, we have shown that r(θ0) is computable.

��
By Propositions 5.11 and 5.13 we have:
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Theorem 5.14 The conformal radius r(θ ) is computable by a Turing Machine with
an oracle for θ if and only the same is true for the Julia set Jθ .

Note that both directions of Theorem 5.14 are explicitly construc-
tive. That is, the Julia set Jθ can be computed for all θ if provided
with an oracle for both θ and r(θ ). To formalize the converse state-
ment we need the following natural definition of an oracle repre-
senting a subset of R

k.

Definition 5.2.1 A function ψ : D
k×D→ {0,1} is said to be an

oracle for a compact set K ⊂ R
k if ψ is from the family (1.3.1) for

the set K.

The proofs of Propositions 5.11 and 5.13 are constructive, yielding
the following constructive version of Theorem 5.14.

Theorem 5.15 There is an oracle TM Mφ1,φ2 that, given an oracle
φ1 for θ ∈ (0,1)\Q and an oracle φ2 for r(θ ), computes the Julia
set Jθ = J(z2 + e2π iθz).
Conversely, there is an oracle TM Mφ ,ψ that, given an oracle φ
for θ ∈ (0,1)\Q and an oracle ψ for Jθ , computes the conformal
radius r(θ ).

Note that, for example, when θ corresponds to a Cremer Julia set,
the oracle for r(θ ) = 0 becomes redundant, and Jθ is computable
by a single machine Mφ1 with an oracle for θ . We already know this
fact from Theorem 4.2.

5.2.2 Conformal radius of a Siegel quadratic with a computable θ

The theorem we formulate below characterizes the values of r(θ ) which correspond
to computable parameters θ :

Theorem 5.16 Let r ∈ (0,rsup) be a real number. Then r = r(θ ) is the conformal
radius of a Siegel disk of the Julia set Jθ for some computable number θ if and only
if r is right-computable.

Before proving this theorem, let us formulate a corollary:

Corollary 5.17 There exist computable values of the parameter c, such that the
Julia set Jc is not computable by a TM Mφ with oracle access to c.

Proof. By Proposition 1.3 there exist right computable numbers r∗ ∈ [0,rsup] which
are not in RC . By Theorem 5.16, r∗ = r(θ∗) for θ∗ ∈ RC . Since θ∗ itself is com-
putable, r∗ is non-computable by a TM with an oracle access to θ∗. By Theo-
rem 5.14, the Julia set Jθ∗ is non-computable by a TM with an oracle access to
θ∗. The claim follows by (5.2.1). ��
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Proof (The “only if” direction of Theorem 5.16). We assume that θ is computable,
and show that r(θ ) is right-computable. Recall that repelling periodic orbits are
dense in the Julia set Jθ .

By Proposition 3.2 we can algorithmically find an arbitrarily good approximation
of the set of all periodic points with period not greater than n by dyadic rationals.
Moreover, for every repelling point p with period k ≤ n we can eventually verify
that it is of a repelling type, by checking the inequality

|DPk
θ (p)|> 1 + 2−l,

for l ∈ N.
Hence there exists a growing sequence of sets H1 ⊂ ·· · ⊂ Hn ⊂ Hn+1 ⊂ ·· · with

the properties:

• each Hn consists of repelling periodic orbits of Pθ with period at most n;
• the union ∪Hn is dense in Jθ ;
• we can algorithmically find an arbitrarily good approximation of Hn by dyadic

rationals.

A set Hn gives a lower bound on the set Jθ . By “connecting the dots” in Hn,
we can get an upper bound on Δθ , and use that to estimate r(θ ) from above. The
estimates improve as n grows, since periodic orbits in Hn fill out more details in
∂Δθ .

To put this plan into action, first note that

∪Hn = Jθ is connected.

Hence, for every l, there exists nl such that the set B(Hnl ,2
−(l+1)) is connected.

Of course, such a number nl can be found algorithmically.
Since Jθ separates 0 from ∞, the same is true for B(Hnl ,2

−(l+1)) provided l is
sufficiently large. Hence we can compute a strictly increasing sequence {nl}∞l=l0

⊂
N, and a set Ul ⊂ C with the property

B(Hnl ,2
−(l+1))⊂Ul ⊂ B(Hnl ,2

−l)

such that C\Ul has a simply-connected component Wl containing 0.
Using any constructive algorithm for computing the conformal radius (such as,

for instance, the one in [BB85]) we can approximate the k-th term of the sequence

tk = r(Wk,0).

By Lemma 5.9,
tk→ r(θ ).

However, this sequence need not to decrease in a monotone way. Set

Gk = {z : B(z,2−k+1)⊂Wk} ⊂Wk.
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Clearly, Gk is either empty or simply-connected. The Schwarz Lemma implies that
r(Gk,0) < 4. On the other hand, by construction we have

Gk+1∩B(Jθ ,2−k) = /0,

and thus, by definition,

Gk+1 ⊂ {the connected component of C\B(Jθ ,2−k) around 0} ⊂Wk.

By Lemma 5.9, this implies

tk = r(Wk,0)≥ r(Gk+1,0)≥ r(Wk+1,0)−8 ·2−(k−1)/2 = tk+1−23−(k−1)/2.

To turn tk into a decreasing subsequence, we add a correction term:

Rk = r(Wk,0)+ 25−(k−1)/2↘ r(θ ).

We can algorithmically compute a sequence �k of dyadic approximation of Rk such
that |�k−Rk|< 2−k. Set

rk = �k + 3 ·2−k.

Then {rk} is a computable sequence of dyadic numbers. We have

lim
k→∞

rk = lim
k→∞

�k = lim
k→∞

Rk = lim
k→∞

tk = r(θ )

and, for each k,

rk = �k + 3 ·2−k ≥ Rk + 2 ·2−k ≥ Rk+1 + 4 ·2−(k+1)≥ �k+1 + 3 ·2−(k+1) = rk+1.

This shows that r(θ ) is right-computable.
��

Remark 5.2.1 Note that we know that Hn→ Jθ is Hausdorff metric, which allows
us to conclude that rk→ r(θ ). However, we do not have (and cannot have) an esti-
mate on the rate of convergence of Hn to Jθ , and thus cannot obtain an estimate on
the rate of convergence of rk→ r(θ ) and compute r(θ ).

PROOF OF THE “IF” DIRECTION OF THEOREM 5.16. Now comes the hard part
of the proof of Theorem 5.16. Given a computable sequence {rn} such that rn↘ r
we claim that we can construct a θ such that r = r(θ ). Before we proceed with the
argument, let us describe the plan of attack.

An outline of the proof. The strategy of the argument lies in computing a sequence
θn of parameters such that

1. {θn} converges to θ effectively: |θn−θ | < 2−n. Thus to compute θ with preci-
sion 2−n it suffices to compute θn+1 with precision 2−(n+1);

2. the sequence {r(θn)} behaves similarly to the sequence {rn}:
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r(θn)≈ rn.

In particular,
limr(θn) = limrn = r;

3. Finally, the sequence {θn} should be constructed in a fashion that would make
passing to the limit possible: we want

r(θ ) = r (limθn) = limr(θn) = r,

which would then complete the proof.

In our construction, all θn’s will correspond to golden Siegel parameters, that is,
their continued fraction expansions will have the form

θn = [In,1,1, . . .].

How will we carry out one step of the construction? For this, given a golden
rotation angle

θn−1 = [In−1,1,1, . . .] such that r(θn−1)≈ rn−1

and, given rn < rn−1 we will need to construct θn = [In,1,1, . . .] such that

|θn−θn−1|< 2−n and r(θn)≈ rn.

Moreover, to facilitate an inductive argument, we will ask that the initial segment of
the continued fraction In be an extension of In−1.

Note that we have no control over the way the sequence {rn} descends to r. In
particular, the drop rn−1− rn may be arbitrarily large compared to 2−n, which is the
amount by which we are allowed to change θn−1 to obtain θn. Thus our main task
may be summarized as follows:

make an arbitrarily large or small drop in the value of r(θn−1) while only changing
θn−1 by a controlled amount (≤ 2−n).

This goal will be accomplished as follows. Suppose that In−1 has k elements in it.
We choose a position m > k in the continued fraction expansion of θn−1, and denote
by

θN = [In−1,1,1, . . . ,1,N,1, . . .],

where N is located in the m-th position. The number m can be chosen so large that
any change beyond position m in the continued fraction expansion does not change
θn−1 by more than 2−n. In particular, for any N,

|θN−θn−1|< 2−n.

When N = 1, we have

θN = θn−1 and r(θN) = r(θn−1)≈ rn−1.
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On the other hand, when N → ∞, the parameters θN approach a rational number,
and the Siegel disk implodes. Hence

lim
N→∞

r(θN) = 0.

A precise control of the behavior of r(θN) can be obtained using the representation
of the function Φ(θ ) and continuity of the function υ(θ ). Thus, we will see that
when we increase N gradually from N = 1 to N =∞, the value r(θN) decreases also
gradually, in small steps, from r(θn−1)≈ rn−1 to 0. Thus it will reach a point where
r(θN)≈ rn. We then take

θn = θN .

The above strategy has its obvious gaps. We do not know exactly at what rate
r(θN) descends to 0 as N→ ∞. Moreover, since the set of parameters N is discrete,
we cannot just use an “intermediate value theorem” to claim that the value rn will
be attained at some point. Nonetheless, as we will see in this section, the process
described here can be made to work.

In Fig. 5.4 we see an illustration of this process for

θn−1 = [1,1,20,1,1, . . .]≈ 0.511838.

In this case In−1 = [1,1,20]. The corresponding Siegel disk is illustrated in
Fig. 5.4(a). We choose m = 6, so that θN would have the form [1,1,20,1,1,N,1, . . .].
It is not hard to see that, for any such N,

|θn−1−θN |< 2−13.

In Fig. 5.4(b)–(f), the Siegel disks corresponding to θN are shown for N = 10, 100,
1000 and 10000. One sees that the Siegel disk gradually shrinks, thus allowing us
to attain any conformal radius between r(θn−1) and 0 within a certain degree of
accuracy.

The proof

The technical side of the argument will rely on the following three lemmas. The first
one is Lemma 3.1 of [BY06], and the second one is Lemma 4.2 of [BBY06]. We
will postpone their proofs until later in the chapter (§5.4).

Lemma 5.18 For any initial segment I = [a0,a1, . . . ,an], write ω = [a0,a1, . . . ,
an,1,1,1, . . . ]. Then for any ε > 0, there is an m > 0 and an integer N such that,
if we write β = [a0,a1, . . . ,an,1,1, . . . ,1,N,1,1, . . .], where the N is located in the
n + m-th position, then

Φ(ω)+ ε <Φ(β ) <Φ(ω)+ 2ε.
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Fig. 5.4 To illustrate the idea of the argument, consider the Siegel disks Δθn−1 for θn−1 given
by the continued fractions [1,1,20,1, . . .] (a), and ΔθN for N = 10,100,1000,10000 (b)–(e). The
conformal radius r(θN) slowly tends to 0 as N→ ∞, as illustrated by combining the images (f).
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Lemma 5.19 With ω as above, for any ε > 0 there is an m0 > 0, which can
be computed from (a0,a1, . . . ,an) and ε , such that for any m ≥ m0 and any tail
I = [an+m,an+m+1, . . .]

Φ(β I) >Φ(ω)− ε,
where

β I = [a1,a2, . . . ,an,1,1, . . . ,1,an+m,an+m+1, . . .].

Lemma 5.20 Let ω = [a1,a2, . . .] be a Brjuno number, that is, Φ(ω) < ∞. Write
ωk = [a1,a2, . . . ,ak,1,1, . . .]. Then for every ε > 0 there is an m such that, for all
k ≥ m,

Φ(ωk) <Φ(ω)+ ε.

Using Proposition 4.9, this implies computability of r(θ ) for θ of bounded type,
and we can get a computable version of Lemmas 5.18 and 5.19.

Lemma 5.21 For any given initial segment I = [a0,a1, . . . ,an] and m0 > 0, write
ω = [a0,a1, . . . ,an,1,1,1, . . . ]. Then for any ε > 0, we can uniformly compute m >
m0, an integer t and an integer N such that, if we write β = [a0,a1, . . . ,an,1,1, . . . ,
1,N,1,1, . . .], where the N is located in the n + m-th position, we have

r(ω)−2ε < r(β ) < r(ω)− ε, (5.2.2)

Φ(β ) >Φ(ω) (5.2.3)

and, for any

γ = [a0,a1, . . . ,an,1,1, . . . ,1,N,1, . . . ,1,cn+m+t+1,cn+m+t+2, . . .],

Φ(γ) >Φ(ω)−2−n. (5.2.4)

Proof. We first show that such m and N exist, and then give an algorithm to com-
pute them. By Lemma 5.18 we can increase Φ(ω) by any controlled amount by
modifying one term arbitrarily far in the expansion.

By Theorem 5.3,
υ : θ �→Φ(θ )+ logr(θ )

extends to a continuous function over the reals. Hence for any ε0 there is a δ such
that

|υ(x)−υ(y)|< ε0 whenever |x− y|< δ .

In particular, there is an m1 such that

|υ(β )−υ(ω)|< ε0 whenever m≥ m1.

This means that, if we choose m large enough, a controlled increase of Φ closely
corresponds to a controlled drop of r by a corresponding amount, and hence there
are m > m0 and N such that (5.2.2) holds. (5.2.3) is satisfied almost automatically.
The only problem is to computably find such m and N.
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To this end, we apply Proposition 4.9. Together with Theorem 5.14, it implies
that for any specific m and N we can compute r(β ). This means that we can find
the suitable m and N by enumerating all the pairs (m,N) and exhaustively checking
(5.2.2) and (5.2.3) for all of them. We know that eventually we will find a pair for
which (5.2.2) and (5.2.3) hold.

Finally, t exists and can be computed by Lemma 5.19. ��
Lemma 5.20 yields the following lemma.

Lemma 5.22 The supremum of r(θ ) over all angles is equal to the supremum over
the angles whose continued fraction expansion has only finitely many terms that are
not 1:

rsup = sup
θ=[a1,a2,...,ak,1,1,...]

r(θ ).

Proof. Let ε > 0 be an arbitrarily small positive number. By the definition of rsup
there is a θ = [a1,a2, . . .] such that logr(θ ) > logrsup− ε . Write

θk = [a1,a2, . . . ,ak,1,1, . . .].

Lemma 5.20 states that there is an m such that Φ(θk) <Φ(θ )+ ε for k≥ m. More-
over, there is a δ such that whenever |φ −θ |< δ we have |υ(φ)−υ(θ )|< ε .

Now θk → θ and hence there is an n ≥ m such that |θn− θ | < δ . θn has the
required form, and we have

logr(θn) = υ(θn)−Φ(θn) > υ(θ )−Φ(θ )−2ε = logr(θ )−2ε > logrsup−3ε.

This shows that we can make r(θn) as close to rsup as we like. ��
We are given

r = lim↘ rn < rsup,

and hence there is an s and an ε > 0 such that

rs < rsup−2ε.

By Lemma 5.22, there exists

γ0 = [a1,a2, . . . ,an,1,1, . . .]

such that
rs + ε/2 < r(γ0) < rs + ε.

We are now ready to give an algorithm for computing a rotation number θ for
which

r(θ ) = lim↘ rn.

The algorithm works as follows. At stage k it produces a finite initial segment Ik =
[a0, . . . ,amk ] such that the following properties hold:
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(1) I0 = [a1,a2, . . . ,an];
(2) Ik has at least k terms, i.e. mk ≥ k;
(3) for each k, Ik+1 is an extension of Ik;
(4) for each k, define γk = [Ik,1,1, . . .]. Then

rs+k + 2−(k+1)ε < r(γk) < rs+k + 2−kε;

(5) for each k, Φ(γk) >Φ(γk−1);
(6) for each k and for any extension

β = [Ik,bmk+1,bmk+2, . . .],

Φ(β ) >Φ(γk)−2−k.

The first three properties are very easy to verify. The last three are checked using
Lemma 5.21. By this Lemma we can decrease r(γk−1) by any given amount (pos-
sibly in more than one step) by extending Ik−1 to Ik. Here we use the facts that the
rk’s are computable and non-increasing.

Denote
θ = lim

k→∞
γk.

The continued fraction expansion of θ is the limit of the initial segments Ik. This
algorithm gives us at least one term of the continued fraction expansion of θ per
iteration, and hence we would need at most O(n) iterations to compute θ with pre-
cision 2−n (in fact, much fewer iterations would suffice). The initial segment of γ0
can also be computed as in the proof of Lemma 5.21. It remains to prove that, in
fact, θ is the rotation number we are looking for.

Lemma 5.23 The following equalities hold:

Φ(θ ) = lim
k→∞

Φ(γk) and r(θ ) = lim
k→∞

r(γk) = r.

Proof. By the construction, the limit θ = limγk exists. We also know that the se-
quence r(γk) converges to the number r = lim↘ rk, and that the sequence Φ(γk)
is monotone non-decreasing, and hence converges to a value ψ (a priori we could
have ψ =∞). By Proposition 5.10, we have r(θ )≥ r > 0, and so Φ(θ ) <∞. On the
other hand, by the property we have established through the construction, we know
that

Φ(θ ) >Φ(γk)−2−k for all k.

Hence
Φ(θ )≥ ψ .

In particular, ψ < ∞.
From [BC06b] we know that υ : θ �→Φ(θ )+ logr(θ ) is continuous, and thus

ψ+ logr = lim(Φ(γk)+ logr(γk)) = limυ(γk) = υ(γ) =Φ(θ )+ logr(θ ). (5.2.5)
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Hence we must have ψ =Φ(θ ) and r = r(θ ), which completes the proof. ��

5.2.3 How difficult is it to produce a θ for which Jθ is
non-computable?

As we have seen, a value of θ for which Jθ is non-computable can be produced
constructively. As we will see below, under a reasonable assumption, it is not even
hard to do so:

Conditional Implication 3. Assume that the 1-periodic continuous function υ :
θ �→Φ(θ )+ logr(θ ) has a computable modulus of continuity (1.2.1); this follows,
for instance, from the Marmi-Moussa-Yoccoz Conjecture. Suppose there is a com-
putable sequence r1,r2, . . . of dyadic numbers such that

• {ri} is non-increasing, r1 ≥ r2 ≥ . . ., and
• limi→∞ ri = r.

Then there is a poly-time computable θ (and hence a poly-time computable c =
c(θ )) such that r(θ ) = r.

Proof. By the assumption, there is a computable function μ : N→ N such that

|υ(θ1)−υ(θ2)|< 2−n whenever |θ1−θ2|< 2−μ(n).

The proof goes along the lines of the proof of the “if ” direction of Theorem
5.16. We outline the modifications made to the proof here and leave the details to
the reader. The key difference is that in the proof of Theorem 5.16 we used Lemma
5.21 to perform a step in decreasing the conformal radius from r(γk−1) to r(γk). The
algorithm there is basically an exhaustive search, which, of course, could take much
longer than polynomial time in the precision of γk to compute. By assuming that
υ has a computable modulus of continuity, we can deal with Φ(γk−1) and Φ(γk)
instead of the r(•)’s. We have an explicit formula for Φ that converges well, and we
can compute the continued fractions coefficients to make Φ(γk) close to whatever
we want relatively fast.

The step of going from γk−1 to γk is as follows. First, we do the following com-
putations:

• compute dk which is the “drop” in r we are trying to achieve; we want

dk/2 < log(r(γk−1))− log(r(γk)) < dk;

• compute using the function μ a value δk such that |υ(x)−υ(y)|< dk/8 whenever
|x− y|< δk.

We have no a priori bound on how long these computations would take, but we
would still like to be computing θ in polynomial time. To achieve this, we use 1’s
in the continued fraction expansion of θ to “pad” the computation.
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When asked about the value of θ with precision 2−n which is higher than what
the known terms of the expansion [Ik−1] can provide, we do the following:

• try to compute dk and δk as above, but run the computation for at most n steps;
• if the computation does not terminate, output an answer consistent with the initial

segment [Ik−1,1,1, . . . ,1
︸ ︷︷ ︸

2n

];

• if the computation terminates in less than n steps proceed as described below.

Note that so far the computation is polynomial in n. For some sufficiently large n
the computation will terminate in n steps, at which point we will have computed dk
and δk. If necessary, we then add more 1’s to the initial segment to assure that

|γk−1− γk|< δk.

Recall that our goal is to assure that

dk/2 < log(r(γk−1))− log(r(γk)) < dk.

With the current initial segment for γk we have |γk−1− γk| < δk, and hence in the
difference

log(r(γk−1))− log(r(γk)) =Φ(γk)−Φ(γk−1)+ (υ(γk−1)−υ(γk)),

the last term is bounded by dk/8. This means that for the current step it suffices to
increase Φ(γk) relative to Φ(γk−1) by between 5

8 dk and 7
8 dk.

Let M be the total length of Ik−1 and the 1’s we have added, and let us extend the
continued fraction by putting N ∈ N in the M + 1-st term, and all 1’s further. Thus,
Ik has the form [Ik−1,1, . . . ,1,N,1, . . . ,1]. Increasing M if necessary, we can ensure
an approximate equality

Φ(γk)≈Φ(γk−1)+α(N) logN

up to an error of 1
32 dk. Let pM/qM be the M-th convergent of the resulting continued

fraction. Recall that on an input n we need to compute θ with precision 2−n in time
polynomial in n. If

2−n > 1/
√

qM,

then we do not need to know anything about N to compute the required approxima-
tion.

Suppose that

2−n < 1/
√

qM , which means that n > logqM/2.

We have time polynomial in logqM to perform the computation.
Note that M = O(logqM). It is also not hard to see that

α(N) < 2−M/2,
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and so in order to have a change by ≈ 3dk/4 we must have

N > eΩ(2M/2),

hence by making M sufficiently large (depending on the value of dk), we can guar-
antee that

N > e2M/3
.

This means that we can approximateα(N) with the truncated functionΦ at the M-th
convergent of the continued fraction. Write

pM/qM = [a1,a2, . . . ,aM],

and denote

β = [a1,a2, . . . ,aM] · [a2,a3, . . . ,aM] · . . . · [aM−1,aM] · [aM].

Then β approximates α(N) within a very small relative error. In particular, we can
assure that

β ·
(

1− 1
32

)

< α(N) < β ·
(

1 +
1

32

)

.

In time polynomial in logqM we can compute the exact expression for β using
rational arithmetic: β = p/q. Now we can estimate N and write it as e6dk/8β in time
polynomial in log(qM). From there we can continue by adding enough 1’s to get Ik
and γk = [Ik,1,1, . . .]. By construction, it would give us the necessary decrease in the
value of r(γk). ��

5.3 The complexity of Julia sets

5.3.1 Siegel Julia sets with an arbitrarily high complexity

We will show that in addition to non-computable Julia sets, it is possible to construct
Julia sets Jθ of an arbitrarily high computational complexity.

Theorem 5.24 Let t : N→ N be a computable function. Then we can compute a
parameter c, such that the Julia set Jc is computable, but is not computable by a TM
Mφ with an oracle access to c in time bounded by t(n).

Moreover, assuming the function υ (5.1.4) is computable, the parameter c can be
computed in polynomial time.

We will prove the conditional second statement of the theorem first.
For a direct proof of the first statement, using tools similar to the ones used in

Theorem 5.16, see [BBY06]. Here, we will give a proof using a slight extension of
Theorem 5.16.

We first note that Proposition 1.4 extends to a dense set of reals:
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Proposition 5.25 Let t : N→N be a computable function. Then there is a dense set
St of computable numbers such that for any x ∈St the complexity of x has a strict
lower bound of t(n).

Proof. By Proposition 1.4 a single computable number α with this property exists.
For any rational number q, the sum α + q is also a computable real. Moreover,
every TM which computes α + q does so in time strictly greater than t(n) for all n
sufficiently large.

��
Since every computable real number is right-computable, we know that a number

x as in Proposition 5.25 can be the conformal radius of a Siegel disk Δθ , with a
computable parameter θ . Moreover, by Conditional Implication 3, we can choose
such a parameter θ to be poly-time computable:

Proposition 5.26 Let t : N → N be a computable function. Assuming υ is com-
putable, there exists θ , computable in time O(nc) for some c, such that r(θ ) is not
computable in time t(n).

We will also need an explicit complexity bound on the time it takes to compute
r(θ ), assuming we have an algorithm that runs in time T (n) for computing Jθ . Such
a bound is given in [BBY07b]:

Lemma 5.27 (Theorem 1.10 in [BBY07b]) Suppose there is an algorithm that
computes Jθ in time T (n). Then r(θ ) can be computed in time

T ′(n) = 2O(n) ·T (O(n)).

We can now prove the second statement of Theorem 5.24:

Proof (The second statement in Theorem 5.24.). Suppose the computable function
t(n) is given. For convenience we may assume that t(n) is non-decreasing. Let

t1(n) = (2n2
t(n2))c+1,

where c is the constant from Proposition 5.26. Let r = r(θ ) ∈ RC be a number that
is not computable in time t1(n). According to Proposition 5.25 such a number exists,
and according to Proposition 5.26, the parameter θ is computable in time O(nc).

Assume, for the sake of a contradiction, that Jθ is computable in time t(n). Then
by Lemma 5.27, r(θ ) can be computed in time

t2(n) = 2O(n) · t(O(n)) < 2n2
t(n2),

for sufficiently large n with oracle queries to the number θ . We know that θ is
computable in time O(nc) and the queries are of precision bounded by t2(n) – it
suffices to evaluate θ with precision 2−t2(n). Hence the running time of the algorithm
together with the time it takes to respond to queries is bounded by
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O(t2(n)c) < t2(n)c+1 < t1(n)

for sufficiently large n, and we have arrived at a contradiction. ��
We will now prove the first statement in Theorem 5.24 using reasoning similar to

the discussion above. We cannot just take an r(θ ) that requires a long time to com-
pute, and say that Jθ takes a long time to compute. This is because the computation
is with an oracle for θ . Thus even if r(θ ) is a very hard number, it may be the case
that it becomes very easy with an oracle for θ . More work is needed to bypass this
difficulty. First, we will need a slight extension of Theorem 5.16.

Lemma 5.28 Suppose that for a computable number r ∈ (0,rsup) there is a com-
putable decreasing sequence {rn} such that

• rn = an
2n for an integer an;

• rn ≥ rn+1;
• for all n, |r− rn|< 2−n+2.

Suppose further that we are given a computable function T1(n). Then there is a TM
M that computes θ with r = r(θ ). Moreover, M needs only the first n terms of the
sequence {rn} to evaluate θ with precision 2−T1(n).

We will not present a proof of the lemma here. It is proved similarly to Theorem
5.16. The only difference now is that when computing the n-th iterate θn = [In,1, . . .]
we will insert 2T1(n) 1’s after In so that θn would be a 2−T1(n)-approximation of θ .

Note that for each n there are finitely many possible finite sequences r1, . . . ,rn
as in Lemma 5.28, and they can be easily enumerated. Hence:

Corollary 5.29 Under the assumptions of Lemma 5.28, we can compute a function
T2(n) such that each evaluation of θn takes time bounded by T2(n).

Proof (The first statement in Theorem 5.24.). Suppose that the statement is not true.
Then there is a computable function T3(n) such that for any c such that the the Julia
set Jc has a Siegel disk and is computable in time O(T3(n)) with oracle access to c.
By Lemma 5.27, for any θ such that Jc(θ) has a Siegel disk, r = r(θ ) is computable
in time O(T4(n)), where

T4(n) = 2O(n) ·T3(O(n)),

with an oracle access to θ .
Let r ∈ (0,rsup) be a computable number. We will show how to compute r

efficiently. Suppose that we know r with precision 2−n−2. Then we can compute
an initial sequence of r1,r2, . . . ,rn so that it can be extended to a sequence as in
Lemma 5.28. Then by Corollary 5.29, there exists a computable function T2(n),
such that, for

T1(n) = T4(2n + 2)2,

a 2−T1(n)-approximation of θ with r = r(θ ) can be computed in time T2(n) from
the sequence r1, . . . ,rn. By our assumption, a 2−2n−2-approximation of r can be
computed from the approximation of θ in time T4(O(n)).
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Hence a 2−2n−2-approximation of r can be computed from a 2−n−2-approxima-
tion of r in time

O(T4(O(n))+ T2(n)).

Hence r is computable in time

O(n · (T4(O(n))+ T2(n))).

By Proposition 5.25 we can find a computable number r ∈ (0,rsup) that is not com-
putable in time

O(n · (T4(O(n))+ T2(n))),

thus arriving at a contradiction. ��

5.3.2 The mystery of Cremer Julia sets.

By the Fatou-Shishikura bound, and the Fatou-Sullivan classification, the filled Julia
set Kc of a Cremer quadratic polynomial has no interior. As we have seen in §4.1
this means that Jc = Kc is always computable. It is easy, using the Brjuno condition
(5.1.1), to construct a Cremer parameter value c. Yet no informative pictures of
Cremer Julia sets have ever been produced. The topological structure of a Cremer
Julia set is known to be quite pathological. It is not well understood in general,
although a lot is already known (see e.g. [BBCO] and references therein for some
state-of-the-art results).

Dynamically, a Cremer polynomial can be described by a sequence of very small
perturbations of parabolic maps. This approach, pioneered by Douady, was origi-
nally developed by Sørensen [Sør98]. While throwing some light on the nature of
the topological complexity of a Cremer Julia set, it also helps to understand the
computational difficulty. Parabolic dynamics is very slow, and hence orbits outside
Jc but near the Cremer point may take an enormous number of iterates to escape a
small neighborhood of Jc. This renders the Distance Estimator algorithm practically
useless in a Cremer case. Strangely, however, we do not know of any Cremer Julia
sets with a complexity provably higher than polynomial. Two natural questions thus
emerge:

Questions:

(I) Is there any Cremer quadratic Julia set with a low complexity bound? More
specifically, is there a practical algorithm to draw pictures of at least one Cremer
Julia set?

(II) Does there exist any Cremer quadratic Julia set with a complexity higher than
polynomial? Moreover, are there Cremer Julia sets of an arbitrarily high complex-
ity?
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The existence of an efficient way to compute Julia sets of parabolics (as described
in §3.3) suggests that the answer to the first question could be “Yes”. It may also
suggest a possible strategy for constructing such an algorithm. It is probable that
the second question also has an affirmative answer. However, we cannot rule out the
annoying possibility that there is an easy way to compute every Cremer Julia set,
which has so far remained undetected by the dynamicists.

5.4 Proofs of the main technical lemmas

We present outlines of proofs for Lemmas 5.18, 5.19 and 5.20. The complete proofs
of the intermediate lemmas can be found in [BBY06] and [BY06]. For convenience,
we restate the lemmas here:

Lemma 5.18 For any initial segment I = [a1,a2, . . . ,an], writeω = [a1,a2, . . . ,an,
1,1,1, . . . ]. Then for any ε > 0, there is an m > 0 and an integer N such that if we
write β = [a1,a2, . . . ,an,1,1, . . . ,1,N,1,1, . . .], where the N is located in the n+m-th
position, then

Φ(ω)+ ε <Φ(β ) <Φ(ω)+ 2ε.

Lemma 5.19 With ω as above, for any ε > 0 there is an m0 > 0, which can
be computed from (a1,a2, . . . ,an) and ε , such that for any m≥ m0, and for any tail
I = [an+m,an+m+1, . . .]

Φ(β I) >Φ(ω)− ε
where

β I = [a1,a2, . . . ,an,1,1, . . . ,1,an+m,an+m+1, . . .].

Lemma 5.20 Let ω = [a1,a2, . . .] be a Brjuno number, that is, Φ(ω) <∞. Write
ωk = [a1,a2, . . . ,ak,1,1, . . .]. Then for every ε > 0 there is an m such that, for all
k ≥ m,

Φ(ωk) <Φ(ω)+ ε.

To prove the lemmas we will need some preliminary bounds. Let η1(ω) := ω , and

ηi+1(ω) :=
{

1
ηi(ω)

}

, so that ηi(ω) = [ai,ai+1, . . .].

Write
Φ−(ω) =Φ(ω)−η1(ω)η2(ω) . . .ηn+m−1(ω) log

1
ηm+n(ω)

.

The value of the integer m > 0 is yet to be determined. Write

βN = [a1,a2, . . . ,an,1,1, . . . ,1,N,1,1, . . .].

The following estimates are proved by induction.
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Lemma 5.30 For any N, the following holds:

1. For i≤ n + m we have
∣

∣

∣

∣
log

ηi(βN)
ηi(βN+1)

∣

∣

∣

∣
< 2i−(n+m)/N;

2. for i < n + m,
∣

∣

∣

∣
log

ηi(βN)
ηi(β 1)

∣

∣

∣

∣
< 2i−(n+m);

3. for i < n + m,
∣

∣

∣

∣

∣

log
log 1

ηi(βN)

log 1
ηi(βN+1)

∣

∣

∣

∣

∣

< 2i−(n+m)+1;

4. for i < n + m− 1,
∣

∣

∣

∣

∣

log
log 1

ηi(βN)

log 1
ηi(β 1)

∣

∣

∣

∣

∣

< 2i−(n+m)+1.

These estimates yield the following.

Lemma 5.31 For any ω of the form as in lemma 5.18 and for any ε > 0, there is an
m0 > 0 such that, for any N and any m≥ m0,

|Φ−(βN)−Φ−(β 1)|< ε
4
.

Proof. (Sketch) The ∑ in the expression for Φ(β 1) converges, and hence there is an
m1 > 1 such that the tail of the sum

∑
i≥n+m1

η1η2 . . .ηi−1 log
1
ηi

<
ε
16

.

It can be shown that

• for a sufficiently large m0 > m1, if m > m0, then for any N the influence on the
sum of the “head” elements is very small:

∣

∣

∣

∣

∣

n+m1−1

∑
i=1

η1(βN) . . .ηi−1(βN) log
1

ηi(βN)
−

−
n+m1−1

∑
i=1

η1(β 1) . . .ηi−1(β 1) log
1

ηi(β 1)

∣

∣

∣

∣

∣

<
ε
16

;

• for the “tail” terms, for i≥ n + m1 such that i �= n + m,

η1(βN) . . .ηi−1(βN) log 1
ηi(βN)

η1(β 1) . . .ηi−1(β 1) log 1
ηi(β 1)

≤ e.
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After the change each term of the tail could increase by a factor of e at most.
The value of the “tail” starts at the interval (0, ε

16 ]. Hence it remains in the interval
(0, eε

16 ], and the change in the tail is bounded by

eε
16

<
3ε
16

.

So the total change in Φ− is bounded by

change in the “head” + change in the “tail” <
ε
16

+
3ε
16

=
ε
4
.

��
Lemma 5.31 immediately yields:

Lemma 5.32 For any ε and for the same m0(ε) as in Lemma 5.31, for any m≥ m0
and N,

|Φ−(βN)−Φ−(βN+1)|< ε
2
.

Write

Φ1(ω) = η1(ω)η2(ω) . . .ηn+m−1(ω) log
1

ηm+n(ω)
=Φ(ω)−Φ−(ω).

Using the estimates 5.30 one can prove the following:

Lemma 5.33 For sufficiently large m, for any N,

Φ1(βN+1)−Φ1(βN) <
ε
2
.

Since Φ =Φ−+Φ1, summing the inequalities in Lemmas 5.32 and 5.33 yields:

Lemma 5.34 For sufficiently large m, for any N,

Φ(βN+1)−Φ(βN) < ε.

It is immediate from the formula of Φ(βN) that:

Lemma 5.35
lim

N→∞Φ(βN) = ∞.

We are now ready to prove Lemma 5.18.

Proof (Lemma 5.18.). Choose m large enough for Lemma 5.34 to hold. Increase N
by one at a time starting with N = 1. We know thatΦ(β 1) =Φ(ω) <Φ(ω)+ε and,
by Lemma 5.35, there exists an M with Φ(βM) >Φ(ω)+ ε . Let N be the smallest
such M. Then Φ(βN−1)≤Φ(ω)+ ε , and by Lemma 5.34

Φ(βN) <Φ(βN−1)+ ε ≤Φ(ω)+ 2ε.
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Hence
Φ(ω)+ ε <Φ(βN) <Φ(ω)+ 2ε.

Choosing β = βN completes the proof. ��
The second part of the following lemma follows by the same argument as Lemma
5.31 by taking N ≥ 1 to be an arbitrary real number, not necessarily an integer. The
first part is obvious, since the tail of ω has only 1’s.

Lemma 5.36 For an ω = β 1 as above, for any ε > 0 there is an m0 > 0, such that
for any m≥ m0, and for any tail I = [an+m,an+m+1, . . .] if we write

β I = [a1,a2, . . . ,an,1,1, . . . ,1,an+m,an+m+1, . . .],

then

∑
i≥n+m

η1(β 1)η2(β 1) . . .ηi−1(β 1) log
1

ηi(β 1)
< ε,

and

n+m−1

∑
i=1

∣

∣

∣

∣
η1(β I) . . .ηi−1(β I) log

1
ηi(β I)

−η1(β 1) . . .ηi−1(β 1) log
1

ηi(β 1)

∣

∣

∣

∣
< ε.

Moreover, such an m0 can be computed from (a1,a2, . . . ,an).

We can now prove Lemma 5.19.

Proof (Lemma 5.19). Applying Lemma 5.36 with ε
2 instead of ε , we get

Φ(β I)−Φ(ω) =∑{“head”(β I)− “head”(ω)}+∑{“tail”(β I)− “tail”(ω)}>

−ε
2
−∑{“tail”(ω)}>−ε

2
− ε

2
=−ε.

��
Proof (Sketch of the proof of Lemma 5.20). We divide the sum for Φ(ω),

Φ(ω) =
s

∑
i=1

η1(ω) . . .ηi−1(ω) log
1

ηi(ω)
︸ ︷︷ ︸

“head”

+
∞

∑
i=s+1

η1(ω) . . .ηi−1(ω) log
1

ηi(ω)
︸ ︷︷ ︸

“tail”

,

so that “tail” < ε/16. Using the estimates from Lemma 5.30 one can show that
modifying ω to ωk for some appropriately chosen k s will satisfy:

•
s

∑
i=1

η1(ωk) . . .ηi−1(ωk) log
1

ηi(ωk)
<

s

∑
i=1

η1(ω) . . .ηi−1(ω) log
1

ηi(ω)
+ ε/16,

since the relative error in the “head” terms can be made arbitrarily small;
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• for i > s,

η1(ωk) . . .ηi−1(ωk) log
1

ηi(ωk)
< 9 ·η1(ω) . . .ηi−1(ω) log

1
ηi(ω)

+ 2−(i−1)/2.

Note that for i > k the 2−(i−1)/2 term alone dominates the expression on the left.

Finally for a k as above,

Φ(ωk) < “head”(ωk)+ “tail”(ωk) < “head”(ω)+ ε/16 + 9 · “tail”(ω)+ 22−s/2 <

“head”(ω)+ ε/16 + 9ε/16 +22−s/2 <Φ(ω)+ ε,

for a sufficiently large s.
��

5.5 Number-theoretic properties of c and computability of Jc

We have shown that there exist computable parameters c for which Jc is not com-
putable. Assuming that υ has a computable modulus of continuity, some such c’s
can even be constructed in polynomial time – that is, they are computationally easy.
It is reasonable to ask, whether there also exist parameters with this property, which
are easy to write down. A classical interpretation of this question is

Do there exist quadratics with algebraic parameters and non-computable Julia sets?

We again concentrate our attention on the quadratic polynomials fc(z) = z2 + c
which have a Siegel disk at the origin, that is, maps which after a change of co-
ordinates can be written as

Pθ (z) = z2 + e2π iθ z with c = λ/2−λ 2/4, where λ = e2π iθ .

Let us disregard for the moment the unknown computable properties of the func-
tion υ , and discuss the computability of the value of the Yoccoz’ Brjuno function
Φ , rather than that of the Julia set.

We recall the formula

Φ(θ ) =
∞

∑
n=1

θ1θ2 · · ·θn−1 log
1
θn

,

where θ1 = θ , and θi = {1/θi−1}. In other words, if θ is expanded into an infinite
continued fraction [a1,a2, . . .] with ai ∈ N, then

θi = [ai,ai+1, . . .].

The rotation angle θ can itself be considered as the parameter of our quadratic
map, and we can ask what happens if it is an algebraic number. It is not difficult
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to see that in this case Φ(θ ) is computable, starting with the classical result of
Liouville:

Proposition 5.37 Suppose ζ ∈ R\Q is a root of an algebraic equation of degree k
with integer coefficients. Then ζ belongs to the Diophantine class D(k).

Now let us prove:

Proposition 5.38 If θ ∈D(k) then Φ(θ ) is a finite computable real.

Proof. As usual, pn/qn denotes the n-th convergent of θ , and recall that

qn = anqn−1 + qn−2. (5.5.1)

Standard considerations starting with (5.5.1) imply that

θ1θ2 · · ·θn � 1
qn

.

By (5.5.1),
logan � logqn.

As
qn � (qn−1)k,

we have the following estimate for the n-th term in the series Φ(θ ):

vn ≡ θ1θ2 · · ·θn−1 log
1
θn
� logan

qn−1
� logqn

qn−1
� k logqn−1

qn−1
.

The denominators qn−1 grow at least exponentially,

qn−1 > wn for some w > 1.

Thus, we have
vn � u−n

for any 1 < u < w and the claim of the theorem follows. ��
A much more interesting question is what happens when the parameter c, or

equivalently, λ = e2π iθ is algebraic. The answer is the same:

Theorem 5.39 Suppose λ = e2π iθ with θ ∈ R\Q is an algebraic parameter on the
unit circle. Then the value of the Yoccoz’s Brjuno function Φ(θ ) is a finite com-
putable real number.

As the first step toward the proof, consider the difference:

zn ≡
∣

∣

∣

∣
θ − pn

qn

∣

∣

∣

∣
=
∣

∣

∣

∣

1
2π i

logλ − pn

qn

∣

∣

∣

∣
. (5.5.2)

On the one hand, by the standard facts about continued fractions, we have
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zn � 1
an+1q2

n
� 1

qnqn+1
. (5.5.3)

On the other hand,

zn �
∣

∣

∣

∣
logλ −4

pn

qn
logA

∣

∣

∣

∣
, (5.5.4)

where A is the algebraic number i = exp(π i/2).
We will make use of a version of Baker’s lower bound on linear combinations of

logs of algebraic numbers [Bak75]. Namely:

Theorem 5.40 [Bak75] Consider a linear combination

L =
∣

∣

∣

∣
logα1 +

p
q

logα2

∣

∣

∣

∣
,

where α1,α2 are algebraic numbers, and p/q ∈ (0,1) is a rational number written
in lowest terms. Then there exists a constant C > 1 which depends only on α1, α2
such that, assuming L �= 0, L has a lower bound

L≥ q−C.

Applying the bound of Theorem 5.40 to (5.5.4), we have

zn � q−C
n (5.5.5)

for C > 1.
Putting together equations (5.5.3) and (5.5.5), we have a Diophantine estimate

qn+1 � (qn)C−1. (5.5.6)

Theorem 5.39 follows from this and Proposition 5.38.
Assuming that the function υ is in fact computable, we obtain the analogues of

Proposition 5.38 and Theorem 5.39 that deal with the Julia sets rather than with the
Yoccoz’s Brjuno function Φ(θ ).

Conditional Implication 4. Assume that υ is computable. Suppose that either the
number θ ∈ R\Q or the number λ = e2π iθ is algebraic. Then the Julia set Jλ cor-
responding to the polynomial fλ (z) = z2 +λ z is computable.

5.6 Quadratics with non-computable Julia sets are rare

It is a standard fact that the complement of the set of all Diophantine numbers (the
Liouville numbers) is very sparse:
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Theorem 5.41 The set of Liouville numbers in T has Hausdorff dimension zero
(so, in particular, its Lebesgue measure is also null).

Using this together with Proposition 5.38, we obtain:

Corollary 5.42 The function Φ : T→ R is computable on a set whose complement
has Hausdorff dimension zero.

We thus have a conditional statement:

Conditional Implication 5. Assuming that υ has a computable modulus of conti-
nuity, the set of all θ ∈ T for which the Julia set Jθ is not computable by a TM with
an oracle access to the value of θ has zero Hausdorff dimension.

Using techniques of Complex Dynamics, we can take this one step further:

Conditional Implication 6. Assuming that υ has a computable modulus of conti-
nuity, the set of all parameters c for which the Julia set Jc is not computable by a
TM with an oracle for c has Hausdorff dimension zero.

Proof of Conditional Implication 6.

The proof involves deep results of Douady-Hubbard renormaliza-
tion theory. We will not attempt to review this theory here, and point
the expert reader to the original article of Douady and Hubbard
[DH85] and to the works of Lyubich [Lyu97] and [Lyu99].
Let H be a hyperbolic component of the Mandelbrot set M , and
denote by MH the corresponding small copy of M . For the main
component H0 of M we have MH0 = M . Further, denote

χH : MH →M

the Douady-Hubbard embedding, induced by renormalization and
straightening. Note that χH maps hyperbolic components of MH
conformally to those of M , beginning with H �→ H0. It further has
a quasiconformal extension to the whole complex plane, with a pos-
sible exclusion of a small disk around the root of H. Its restriction to
the boundary of each hyperbolic component of MH is real-analytic
(again, except possibly at the root of H).
Let us recall the construction of χH . Let k = k(H) be the period
of H. Then for every c ∈MH , the iterate f k

c has a quadratic-like
restriction

Fc ≡ f k
c |Uc

to a topological disk around the origin. The straightening map ψc is
a quasiconformal homeomorphism of the plane which conjugates
Fc to fχH(c). In particular, it maps the filled Julia set
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Fig. 5.5 Above on the right is the Mandelbrot set M . On the left, a small copy of M is seen
in an enlargement of a fragment of M . The hyperbolic component H corresponds to Douady’s
rabbit. Below is an example of a map ψc for c ≈ −0.05624− 0.80907i ∈MH . The parameter
c′ = χH(c) corresponds to the map with a Siegel fixed point whose rotation number is equal to
the golden mean. On the left, the inner and outer boundaries of the fundamental annulus Ac of the
quadratic-like mapping Fc = f 3

c are indicated.
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K(Fc) �→ K( fχH (c)),

and is analytic on the interior
◦
K(Fc).

We are not able to argue that the map ψc can be obtained construc-
tively in general – even when Jc is computable. However, the fun-
damental annulus

Ac = Fc(Uc)\Uc

can be computed with an arbitrary precision, given an oracle for c.
Therefore, we have:

Proposition 5.43 There exists a TM with an oracle for c which
computes a bound κ = κc for the quasiconformal dilatation of the
conjugacy ψc.

As a corollary, using the Hölder bound on quasiconformal homeo-
morphisms of the sphere, we have:

Proposition 5.44 With an oracle for c we can compute bounds for
the moduli of continuity of ψc and ψ−1

c .

We now prove:

Proposition 5.45 Let c ∈ ∂H be such that Jc possess a Siegel disk
Δc, and denote by ρc its inner radius. Assume that the inner radius
ρ ′ = ρχH(c) is computable with an oracle for χH(c). Then ρc is
computable with an oracle for c.

Proof. First note, that knowing c, we can compute the rotation an-
gle θ of the Siegel disk Δc. Indeed, we can use Proposition 3.2 to
compute the center pc of Δc with an arbitrary precision, and then
estimate

θ =
1

2π i
logD f k

c (p)modZ.

Of course, the rotation number of the Siegel disk ΔχH(c) is the same
θ . Hence, an oracle for c allows us to compute ρ ′.
Let Pn be the periodic orbits of Fc whose periods do not exceed n.
Denote the corresponding set of periodic orbits of fχH(c) by

P′n = ψc(Pn).

As ρ ′ is computable, and by Proposition 3.2, we can determine n
such that

∂ΔχH(c) ⊂ B(P′n,ε)

for every ε > 0. By Proposition 5.44 we can for every l ∈N compute
n = n(l) such that

∂Δc ⊂ B(Pn,2−(l+1)).
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To compute ρc with precision 2−l , it remains to compute Wn with
distH(Wn,Pn) < 2−(l+2), and evaluate dist(pc,Wn) with precision
2−(l+2). ��
Since χ−1

H |∂H preserves the property of a set to have zero Hausdorff
dimension, the Conditional Implication 6 readily follows from Con-
ditional Implication 5.
It is likely true that υ has a computable modulus of continuity, and
hence Conditional Implication 6 holds. Non-computable examples
occur only for parameters c such that a Siegel disk is present in Jc.
Such parameters are contained in the set of boundaries B of the
hyperbolic components in M . The set B is a countable union of
algebraic curves, and hence has Hausdorff dimension 1. Thus we
immediately obtain an unconditional statement that is weaker than
Conditional Implication 6:

Theorem 5.46 The set of parameters c for which Jc is not com-
putable with an oracle for c has a Hausdorff dimension of at most 1.

In fact, a stronger statement can be shown unconditionally:

Theorem 5.47 The linear Lebesgue measure of the set of quadratic
parameters c for which Jc is not computable with an oracle for c, is
equal to zero.

We sketch the proof below. Its foundation is a theorem of Petersen
and Zakeri [PZ04]. Their results strengthen a theorem of Douady,
Ghys, Herman, and Shishikura [Dou88], which we have employed
in §4.3.1, as follows. Assume that θ is an irrational number in (0,1)
for which

θ = [a1,a2, . . .] with the property logan = O(
√

n). (5.6.1)

Then the Julia set of Pθ (z) = z2 +e2π iθ z can be obtained by a David
surgery [Dav88] on a cubic Blaschke product

Bθ (z)e2πτ(θ)z2 z−3
1−3z

.

In particular, there exists a David map ζ which maps the unit disk
onto Δθ .
Notably, such a map has an explicit bound on its modulus of conti-
nuity, of the form

|ζ (z)− ζ (z0)| ≤ const/(log |z− z0|)α .

The proof of this statement can be found in [GMSM04]. Peter Jones
has pointed out to us that it is implicitly contained in the papers of
Lehto [Leh70, Leh71].
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This implies:

Proposition 5.48 Assume that θ satisfies condition (5.6.1). Then
the inner radius of the Siegel disk Δθ (and hence also Jθ ) is com-
putable with an oracle for θ .

As shown in [PZ04], the numbers satisfying (5.6.1) form a set
of full Lebesgue measure on the unit circle. The claim of Theo-
rem 5.47 follows by Proposition 5.45.

As we have previously seen, a Julia set Jθ = J(z2 +e2π iθ z) for θ /∈Q

is computable by a single Turing Machine, given an oracle access
to θ and the conformal radius r(θ ) of the Siegel disk (r(θ ) = 0 for
a Cremer Julia set). The inner radius ρθ can obviously be computed
from Jθ , and hence it can be computed with an oracle access to θ
and r(θ ). Thus, Proposition 5.45, together with the constructiveness
of Propositions 5.43 and 5.44, implies:

Theorem 5.49 There is an oracle TM Mφ1,φ2(m) that gets an inte-
ger m as an input and the parameters c ∈ C and r(θ ) ∈R from the
oracles so that whenever the following conditions are satisfied:

1. the map z �→ z2 + c has a neutral periodic orbit of period m with
multiplier e2π iθ ;

2. θ /∈Q;
3. r(θ ) is the conformal radius of the Siegel disk of Jθ ;

Mφ1,φ2(m) computes the Julia set Jc.

The fact that r(θ ) can be computed from an oracle for the set Jθ
(see Definition 5.2.1) implies that the oracle for r(θ ) in Theorem
5.49 can be replaced with an oracle for Jθ .



Chapter 6
Computability versus Topological Properties
of Julia Sets

6.1 How can the boundary of a computable set be
non-computable?

To provide some intuition why the filled Julia set is computable even when the Julia
set is not, we propose a “toy” example. As a first step, let us denote by W (θ ,w) the
closed wedge in the unit disc U around direction θ with width w at the base, which
penetrates the disc to depth 1/2 (as shown in Figure 6.1(a)).

Fig. 6.1 Toy model of an non-computable Julia set. Here A(1,1)=1, A(2,1)=1, B(3)=0,
A(4,100) = 1 and A(5,1) = 1.

Let A : N× N → {0,1} be a computable predicate such that the predicate
B(x) = ∃y A(x,y) is not computable. We can choose A such that, for each x, A(x,y)
holds for at most one value of y. For example, one can take the Halting predicate

A(x,t) = 1 iff x is an encoding of a TM that halts in time exactly t.

M. Braverman and M. Yampolsky. Computability of Julia Sets.
Algorithms and Computation in Mathematics,
c© Springer-Verlag Berlin Heidelberg 2009
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As we have seen in §1.1.1, the predicate A(x,y) is computable, but the predicate
B(x) = ∃t A(x,t) is not: it is precisely equivalent to the non-computable Halting
Problem.

Let

SA = U−
⋃

A(x,y)=1

W
(

2π
x

,
1

10x2y

)

.

A sample set SA is shown in Figure 6.1(b), and its boundary is shown in Figure
6.1(c). We first observe:

Proposition 6.1 The boundary ∂SA is not computable.

Proof. Consider the part of SA around the tip of the wedges W (x,•), which is located
at point px =

( 1
2 cos 2π

x , 1
2 sin 2π

x

)

. If B(x) = 1, then px ∈ ∂SA. If B(x) = 0, then the

ball B
(

px,
1

10x2

)

is disjoint from ∂SA. Thus if ∂SA were computable, we would be
able to compute B(x), which is a contradiction. ��

The reason why ∂SA is not computable is that the wedges that go into SA, however
thin, still affect the picture of ∂SA dramatically in the sense of distH .

In contrast, very thin wedges are almost invisible in the picture of SA. In fact, if
we are interested in computing SA with precision 2−n we may safely ignore wedges
that have width smaller than 1

m = 2−n−1. Hence to get such a picture we will only
need to evaluate A(x,y) for values of x and y such that x2y≤ m, and there are < m2

such pairs. Thus, we have:

Proposition 6.2 The set SA is computable.

The situation is analogous for the examples of non-computable Julia sets we
have constructed. The non-computability of Jθ is due to narrow fjords of the Siegel
disk Δθ . Accurately computing these fjords is equivalent to estimating the non-
computable number r(θ ), which is impossible. On the other hand, for an approxi-
mate picture of Kθ most of these fjords can be ignored.

6.2 Locally connected quadratic Julia sets

6.2.1 Local connectedness of sets in C

Recall that a topological space X is locally connected if for each point x ∈ X there
exists a sequence of neighborhoods Ui(x) � x such that:

(1) Ui(x) is open and connected in X ;
(2) ∩Ui(x) = {x}.
We remark that the condition (1) can be weakened:

(1a) Ui(x) connected in X and contains an open neighborhood around x.
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The main significance of local connectedness in the study of quadratic Julia sets
comes from the following construction. Consider a quadratic polynomial fc(z) =
z2 + c with a connected Julia set. The Riemann mapping

Φ : Ĉ\Kc→ Ĉ\U

is uniquely determined by the normalization Φ(∞) = ∞ and Φ(z) ∼ z for z→ ∞.
It then coincides with the Böttcher coordinate of fc(z) at infinity:

Φ( fc(z)) = (Φ(z))2. (6.2.1)

As the map z �→ z2 preserves the polar coordinate grid on Ĉ\U, the equation
(6.2.1) implies that the preimages of polar coordinate lines under Φ form an invari-
ant grid for fc. In particular, each radial curve

Rθ ≡Φ−1({re2π iθ | r ∈ (1,∞)})

is mapped onto the curve Rθ ′ by fc, with θ ′ ≡ 2θ modZ. These curves are known as
the external rays of Jc. For a fixed angle θ , as r→ 1+, the points re2π iθ approach
the Julia set Jc. We say that a ray Rθ lands at a point z ∈ Jc if

lim
r→1+

Φ−1(re2π iθ ) = z.

In this case, the point z is accessible from infinity.
The equipotential curve Er for r > 1 is the preimage

Er ≡Φ−1({re2π iθ | θ ∈ T}).

It is mapped to Er2 by fc.
It is well-known that a connected Julia set may fail to be locally connected. In

particular, the following theorem was proved by Douady and Sullivan [Sul83], and
independently by Lyubich [Lyu86]:

Proposition 6.3 If a polynomial fc has a periodic point of Cremer type, then its
Julia set is not locally connected. Moreover, if fc has a cycle of Siegel disks, and Jc
is locally connected, then necessarily the critical point 0 of fc is contained in the
boundary of one of the periodic Siegel disks.

In the case when the Julia set Jc is locally connected, a key to its topological struc-
ture is given by the Theorem of Carathéodory. Recall that a set K ⊂ C is full if its
complement is connected in C:

Carathéodory’s Theorem. For a connected compact and full set K ⊂ C denote by
Φ the Riemann mapping

Φ : Ĉ\K→ Ĉ\U with Φ(∞) = ∞ and Φ ′(∞) = 1.

Then the following conditions are equivalent:
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• the set K is locally connected;
• the set J = ∂K is locally connected;
• the inverse mapping Φ−1 extends continuously to a map S1→ J;
• every radial ray Φ−1({re2π iθ | r > 1}) lands at a point of J.

As an immediate corollary we have the following:

Corollary 6.4 Assume that the Julia set of fc is connected and locally connected.
Then the inverse Böttcher mapΦ−1 continuously extends to a surjection ψ : S1→ Jc
which is a semi-conjugacy

ψ(z2) = fc(ψ(z)).

The parametrization

γc : θ �→ z = exp(2π iθ ) �→ ψ(z) ∈ Jc

is known as the Carathéodory loop of Jc.

6.2.2 Local connectedness of Jc for a hyperbolic parameter

As our first example, consider a hyperbolic parameter c ∈M :

Proposition 6.5 The Julia set of a hyperbolic quadratic polynomial in M is locally
connected.

As an illustration, consider the example of Douady’s rabbit. Denote by p ∈ Jc
the repelling fixed point where the ears are attached. It is known that every such
point is accessible from infinity; in this case by three external rays R1/7, R2/7, R4/7
(cf. Figure 6.2). It follows that removing p separates Jc into three connected sets Ji,
i = 1,2,3. Hyperbolicity of the polynomial implies that the sizes of the connected
components f−k

c (Ji) shrink geometrically with k. These components can now be
used to define a basis of connected neighborhoods at every point z ∈ Jc.

In fact, in the case of a hyperbolic quadratic polynomial, an explicit topological
model of the dynamical system fc : Jc→ Jc can be defined following Thurston and
Douady (see [Thu, Dou93]).

Let B be the connected component of the immediate basin of the finite attracting
orbit of Jc which contains the critical value c in its interior. Consider the periodic
point p ∈ ∂B with the lowest period. Such a point is always unique. It is accessi-
ble from ∞ by two or more external rays. Select from them the pair of rays which
separates B from the others, and let θ∗ ∈ [0,1) be the smaller of their arguments.

Partition the unit circle S1 into two half-open arcs:

A0 =
(

θ∗
2

,
θ∗+ 1

2

]

, A1 =
(

θ∗+ 1
2

,
θ∗+ 2

2

]

.
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Fig. 6.2 The Julia set of a rabbit. The external rays R1/7, R2/7, R4/7 landing at a fixed point p are
indicated, as well as their preimages R1/14, R9/14, R11/14 which land at−p. An equipotential curve
Er is also drawn, together with its image Er2 . The figure is produced using the software package
iDynamics for Macintosh, written by M. Shishikura.

Define the itinerary of a point x = exp(2π it) ∈ S1 as a sequence of 0’s and 1’s in
which the n-th symbol σn is chosen so that

2nt ∈ Aσn .

Define an equivalence relation ∼c on S1 which identifies those points whose
itineraries coincide.

Proposition 6.6 Under these definitions, s∼c t if and only if γc(s) = γc(t).

It is not difficult to see that every equivalence class of ∼c is finite. Moreover,
for every such class s̄ = {s1, . . . ,sk} denote by C(s̄) its convex hull in U. This is
either a finite-sided polygon, a chord, or a single point in S1. For different equiva-
lence classes, these convex hulls turn out to be disjoint. A natural way to extend the
relation ∼c to U is by identifying the points which fall into the same C(s̄).
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The quotient U/∼c is known as the pinched disk model of Kc:

U/∼c � Kc.

1/7

2/7

4/7

Fig. 6.3 The equivalence relation ∼c in U for a rabbit. The large triangle with the vertices 1/7,
2/7, 4/7 corresponds to the fixed point p. Note that the three vertices form a set invariant under
angle-doubling. The symmetric large triangle corresponds to −p.

By construction, the equivalence relation ∼c on S1 is equivariant with respect to
the angle-doubling map f0(z) = z2. Hence f0 projects to a well-defined mapping F
of the quotient S1/∼c � Jc. The pair (S1/∼c ,F) forms a topological model of the
restriction of the dynamical system fc to Jc.

6.2.3 Locally connected Siegel Julia sets

As was first shown by Herman [Her85], there exist quadratic polynomials in the
family Pθ (z) = z2 + e2π iθ z with a Siegel disk Δθ at the origin, such that the critical
point

pθ =−e2π iθ/2 /∈ ∂Δθ .
By Proposition 6.3 in this case Jc is not locally connected.

In the case when c ∈ ∂Δθ , the boundary of Δθ cannot be a smooth
curve. In recent papers of Buff-Chéritat [BC02] and Avila-Buff-
Chéritat [ABC04], it is shown that in some cases, the boundary
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∂Δθ of the Siegel disk can itself have smoothness just a hair breadth
short of analytic.

There exist, however, topologically well-behaved examples with Siegel disks.
Their existence was first demonstrated by Petersen [Pet96]. A different proof was
also given by the second author in [Yam99]. Recall that an irrational number θ ∈
(0,1) is of bounded type if there exists a finite upper bound on the terms in its
continued fraction expansion.

Theorem 6.7 ([Pet96]) If θ is an irrational number of bounded type, then the Julia
set Jθ is locally connected.

The construction of Petersen and Zakeri [PZ04] later extended this
result to a class of rotation numbers θ having full measure in S1:

Theorem 6.8 ([PZ04]) Suppose that θ is an irrational angle which
satisfies the condition (5.6.1). Then Jθ is locally connected.

Assume now that Pθ has a Siegel disk with the critical point pθ = −e2π iθ/2 in
the boundary. Assume further that this point is accessible from infinity. In this case,
Jθ\{pθ} has two connected components; we denote by L0 the one which does not
contain Δθ . A limb of generation n is a component of P−n

θ (L0).
There exist various natural ways of labeling limbs of generation n. For instance,

let R1 and R2 denote the two external rays which land at pθ , and set

Γ = R1∪R2∪{pθ}.

Then we have two well-defined branches of the inverse map P−1
θ mapping C\Pθ (Γ )

to one of the components of C\Γ . Letψ0 denote the inverse branch which fixes Δθ ,
and ψ1 the other one. We can then distinguish the limbs of the same generation by
the order in which the two inverse branches were applied, so for σ̄ ∈ {0,1}n we
have

Lσ̄ = ψσn ◦ · · · ◦ψσ1(L0).

Theorem 6.9 The Julia set Jθ is locally connected if and only if the following three
properties hold:

(I) ∂Δθ is a Jordan curve, and contains pθ ;
(II) the point pθ is accessible from infinity;

(III) there exists a positive function s : N→R with s(n)−→
n→∞ 0 such that the diameter

of each limb of generation n is bounded from above by s(n).

The necessity of the condition (III) is not difficult to see. If there existed a non-trivial
accumulation set of an infinite sequence of limbs (a “ghost limb”) then all its points
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Fig. 6.4 On the left is the filled Julia set of the quadratic polynomial Pθ with θ =
1

1+
1

1+ · · ·
. The

critical point pθ is on the boundary of the Siegel disk; the two external rays landing at pθ and the
initial limb L0 are also indicated. On the right is an illustration to the topological model of Jθ .

would have to correspond to a single external ray Rθ , in violation of Carathéodory’s
Theorem.

As for the sufficiency of conditions (I)-(III), the limbs themselves can be used to
construct a basis of connected neighborhoods. For more details, see e.g. [Yam99].

Note that Carathéodory’s Theorem implies that, if Jθ is locally connected, then
the conformal linearizing coordinate

φθ : U→ Δθ

extends continuously to the boundary. Hence the restriction

Pθ : ∂Δθ → ∂Δθ

is conjugated by a homeomorphic change of coordinates φθ : S1→ ∂Δθ to an irra-
tional rotation of the circle. As pθ ∈ ∂Δθ , we obtain the following:

Proposition 6.10 If Jθ is locally connected, then

∂Δθ = Postcrit(Pθ ).

Recall that, by Proposition 4.10 in the case when θ is of bounded type, the curve
∂Δθ is a quasicircle.

If Jθ is locally connected, then a topological model for the dynamics of Pθ :
Jθ → Jθ can be constructed similarly to what was done above for the hyperbolic
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case. However, if we are interested in constructing a topological model of Jθ without
the dynamics, the exercise becomes rather trivial. We can, for instance, replace the
Siegel disk itself, as well as its every preimage, with a round circle. Each of the
circles has a countable set of circles attached to its boundary, at a dense set of points.
Putting them together has to be done so that there are no intersections not only of
the circles themselves, but of the closures of infinite chains of circles.

Here is one explicit way to do this: at each of the points of C = S1 with a rational
angle p/q we adjoin a small round circle Cp/q, with radius rad(Cp/q) = 0.1q−3.
Parametrizing Cp/q by the angular coordinate with angle 0 corresponding to the
point Cp/q ∩ S1, we in turn attach a round disk Cp/q,s/t at each rational angle s/t.
The radius of Cp/q,s/t will be equal to 0.1t−3× rad(Cp/q). The process is illustrated
in Figure 6.4. Continuing this procedure indefinitely, and taking the closure, we
obtain a set S with the property:

Proposition 6.11 Any locally connected Jθ is homeomorphic to S.

We leave the formal verification of this to the reader as a straightforward exercise.
As we will see below, the triviality of the topological model in this case does not

guarantee that the computational properties of Jθ will be simple.

6.3 Local connectedness versus computability of Jθ

6.3.1 Non locally connected examples

Let us first note the following, rather elementary, observation:

Proposition 6.12 Suppose that ∂Δθ contains the critical point pθ of the quadratic
map Pθ . Then ∂Δθ cannot be a smooth curve.

Proof. Smoothness of ∂Δθ at Pθ (pθ ) would imply that ∂Δθ has a cusp at pθ , con-
tradicting its smoothness at pθ . ��

Below we will demonstrate the following refinement of the “if” part of Theo-
rem 5.16:

Theorem 6.13 For each right-computable r ∈ (0,rsup) there exists a computable θ
such that r = r(θ ) and, moreover, ∂Δθ is a C∞-smooth curve.

In view of Proposition 6.3 and Proposition 6.12, this implies:

Corollary 6.14 There exists a computable parameter θ such that Jθ is not com-
putable, and not locally connected.

We first showed the existence of a non-computable non locally-connected Jθ in
[BY06]. Our argument used a construction of Siegel disks with C∞ boundaries given
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by Buff and Chéritat [BC02]. The proof of Theorem 6.13 will follow the streamlined
argument of Avila, Buff, and Chéritat [ABC04].

Let θ be a Brjuno number. It will be convenient for us to consider the conformal
mapping

hθ : B(0,r(θ ))→ Δθ , with hθ (0) = 0, and h′θ (0) = 1.

Of course,
hθ (z) = φ(Δθ ,0)(z/r(θ )),

and thus
(hθ )−1 ◦Pθ ◦ hθ(z) = e2π iθ z. (6.3.1)

As a preliminary step, let us formulate a standard fact:

Proposition 6.15 Let θn be a sequence of Brjuno numbers converging to a Brjuno
number θ , and such that

r(θn)≥ r.

Then
hθn → hθ , uniformly on compact subsets of B(0,r).

Proof. By the Koebe Distortion Theorem, the sequence hθn is equicontinuous on
compact subsets of B(0,r). Hence, from any subsequence we can extract a converg-
ing one. It remains to show that, if

hθnk
→ h

for some {nk}, then h = hθ . Passing to the limit in the linearization equation (6.3.1),
we see that h is a linearizing coordinate for Pθ on B(0,r). The uniqueness part of
the Riemann Mapping Theorem implies that h coincides with hθ on B(0,r). ��
Proof (Theorem 6.13). We will modify the proof of the “if” part of Theorem 5.16
by adding a condition (7) to the algorithm of constructing θ with r = r(θ ) (page
99):

(7) for each k≥ m≥ 0 the difference between the m-th derivatives

|h(m)
γk (x)−h(m)

γk+1(x)|

is bounded by 2−k for all x with |x| ≤ r.

To ensure that this property holds for each k, we modify the argument slightly.
We construct a sequence

γ l
k = [Il

k,1,1,1, . . .]−→ γk−1,

where each Il
k extends Ik, and

r(γ l
k)→ rs+k + 2−(k+1)ε.
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Now by Proposition 6.15, the maps hγ l
k
→ hγk−1 uniformly on B(0,r). By the Koebe

Distortion Theorem, these mappings are equicontinuous on B(0,r) with a construc-
tive bound on the modulus of continuity. Hence we can algorithmically find γk ≡ γ l

k,
for which (7) holds, along with (4)–(6).

With this change in the argument, C∞-smoothness of

∂Δθ = hθ ({|x|= r})

is assured by the uniform in k convergence of the derivatives {h(m)
γk } for m≥ 0.

��

6.3.2 Non-computable locally connected Jθ

It would be comforting to think that high computational hardness of Jθ always im-
plies that the Julia set has a bad topology. In view of Proposition 6.11, locally con-
nected Siegel Julia sets are particularly simple from a topological point of view. It
is somewhat surprising then, that we can show the following:

Theorem 6.16 There exist values of θ for which Jθ is locally connected and not
computable by any Turing Machine with oracle access to θ .

Thus, a topological model for such Jθ is easy to draw, but the true picture of
Jθ is impossible to draw. The method of the proof, combined with techniques of
[BBY06], also yields locally connected Julia sets of arbitrarily high computational
complexity, giving the following strengthening of Theorem 5.24:

Theorem 6.17 For every computable function h : N→ N there exists a computable
value of θ such that the computational complexity of Jθ is greater than h, and Jθ is
locally connected.

Sets without simple topological models

Obviously, there are many other examples of computationally hard sets which have
easily computable topological models. The simplest one is, of course, a point {x} ⊂
R. The set {x} is not computable whenever the number x is non-computable. On the
other hand, regardless of the number x the computable set {0} ⊂ R is a topological
model for {x}.

It is important to note, however, that it is not true that every set in R
k, no mat-

ter how computationally complex, has a computable topological model. The phe-
nomenon described in Theorem 6.17 is specific to the examples of Julia sets we
construct.
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Consider, for instance, the following family of compact subsets of R. For every
sequence S = {a1,a2, . . .} of 0’s and 1’s define

AS =
⋃

n for which an=0

[

1
n
− 1

n(n + 2)
,

1
n

]

⋃

n for which an=1

{

1
n

}

⋃

{0} .

Thus the set AS consists of “dashes” and “dots”, where the former mark 0’s and the
latter 1’s in the sequence S. It is not hard to see that

Proposition 6.18 If S1 and S2 are two different sequences, then AS1 and AS2 are not
homeomorphic.

On the other hand, there exist countably many Turing Machines, and hence only
countably many of possible sets AS may have computable topological models. This
example easily generalizes to R

k for any k ∈ N.

Existence of non-computable Julia sets following [BY06]

Theorem 6.16 does not say that the θ in its statement can be computed explicitly,
and thus does not directly generalize Corollary 5.17. It is, however, a direct gener-
alization of the following theorem, proved in [BY06].

Theorem 6.19 There exist values of θ for which Jθ is not computable by any Turing
Machine with oracle access to θ .

We will outline the proof of Theorem 6.19 below.
There are countably many oracle Turing Machines. Let us write them in a se-

quence
Mφ

1 ,Mφ
2 , . . .

The argument proceeds by induction, in which at the n-th step we maintain a
growing segment of a continued fraction

In = [a1,a2, . . . ,aKn ],

and a shrinking interval of values [ln,rn] of length �n = rn− ln, such that the follow-
ing two properties hold:

• rn = r(γn), where γn = [In,1,1, . . .],
• for any

β = [In,tKn+1,tKn+2, . . .] with r(β ) ∈ [ln,rn]

the machine Mφ
n fails to compute Jβ .

To perform the step of the induction, let us select �n+1 = �n/20, and try to “fool”
the machine Mφ

n+1. Two possibilities exist. In the first case, Mφ
n+1 does not compute

Jβ for any β = [In, . . .] with r(β ) ∈ [rn− �n+1,rn]. Then we just choose
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[ln+1,rn+1] = [rn− �n+1,rn], In+1 = [In,1]

and continue.
In the other case, there is a value

β = [In,tKn+1,tKn+2, . . .] with r(β ) ∈ [rn− �n+1,rn],

such that Mφ
n+1 correctly computes the set Jβ . In particular, we can use Mφ

n+1 with an
oracle access to β to evaluate r(β ) with precision �n+1. In the process, Mφ

n+1 learns
only some finite number Kn + Ln+1 digits in the continued fraction expansion of β .
Thus running Mφ

n+1 on any β ′ = [I′, . . .] with

I′ = [In,tKn+1,tKn+2, . . . ,tKn+Ln+1 ]

will result in an output with conformal radius within [rn−2�n+1,rn +�n+1]. We will
“fool” the (n + 1)-st machine, by making a change in finitely many digits of β ′
beyond the Kn + Ln+1-th position, to reduce the conformal radius of the Siegel disk
between rn−8�n+1 and rn−7�n+1. Since our machine only reads the first Kn +Ln+1
digits of the continued fraction, it will not suspect the change. We will then define
the new segment In+1 to include all digits including the changed one, set

[ln+1,rn+1] = [r(γn+1)− �n+1,r(γn+1)],

and the induction step will be complete. The drop in the value of the conformal
radius is made possible by the technical lemmas from §5.2.

It is not difficult to carry out the above induction to ensure that

limrn = r(limγn).

We then set γ = limγn. For each n, the continued fraction expansion of γ starts with
In and r(γ) ∈ [ln,rn], and thus by the construction Mφ

n will fail to compute Jγ . Since
this is true for every n, the set Jγ is non-computable.

The difficulty

Before we proceed any further, let us describe informally the problem we will need
to tackle. By Theorem 6.7, each of the Julia sets Jγn is locally connected because γn
is of bounded type.

What would it take to show that the limiting Julia set also satisfies the conditions
of Theorem 6.9? For instance, how could we ensure that the first condition, which
asserts that ∂Δθ is a Jordan curve passing through the critical point, holds?

It would be sufficient to show that the parametrizations

φγn : S1→ ∂Δγn
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converge uniformly to a homeomorphism φ . A resulting Pθ -invariant Jordan curve
φ(S1) would pass through the critical point, and thus would coincide with the bound-
ary of Δθ .

It is a much taller order to show that a perturbation γn �→ γn+1 can be carried out
so that not only |rn− rn+1| is small, but also the geometric shapes of the boundaries
of the two Siegel disks are close. In view of Proposition 6.10 the question becomes:

How do we carry out a perturbation γn→ γn+1 so that Postcrit(Pγn+1) remains near
Postcrit(Pγn)?

6.3.3 Cylinder renormalization and the control of the postcritical
set

Cylinder renormalization is the tool which we will use to gain control of the post-
critical set of Pθn in the above discussion. It was introduced by the second author in
[Yam02], and applied to maps with Siegel disks in [Yam08]. We refer the reader to
these two works for a more detailed description.

To define the procedure, we start with an analytic map f defined in a neighbor-
hood W of the origin, and of the form

f (z) = e2π iθ z+ o(z),

where θ is some Brjuno number. Recall that {pn/qn} denote its rational conver-
gents. Fix some n≥ 0. Assume that there exists a simple arc l ⊂W which connects
a fixed point a of the iterate f qn to 0, and has the property that f qn(l) is again a
simple arc whose only intersection with l is at the two endpoints. Let Cf be the
topological disk in C\{0} bounded by l and f qn(l). We say that Cf is a fundamental
crescent if the inverse branch f−qn |Cf mapping f qn(l) to l is defined and univalent,
and the quotient of

Cf ∪ f−qn(Cf )\{0,a}
by the iterate f qn is conformally isomorphic to C/Z.

For a point z in the fundamental crescent, consider the first return map R f (z)
given by the smallest iterate f i(z) which is again contained in Cf , assuming such
an i exists. It will, of course, exist, and will be locally constant for all z in the
intersection of Cf with the Siegel disk Δ f .

Let us now select a conformal isomorphism

κ :
(

Cf ∪ f−qn(Cf )\{0,a}
)

/ f qn
�−→ C/Z,

which sends the puncture at {0} to the “upper” end +i ·∞ of C/Z. Its composition
with the exponential map χ(z) = exp(2π iκ(z)) maps the quotient of the crescent to
the complex plane punctured at the origin. Consider the map
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Fig. 6.5 Schematics of cylinder renormalization.

h = χ ◦R f ◦ χ−1

It is not difficult to see that it is an analytic function defined in a neighborhood of
the origin. Moreover, filling in the removable singularity at 0, we have:

h = exp(2π iθ ′)z+ o(z), with θ ′ = Gn+1(θ ),

where G(θ ) =
{ 1
θ
}

is the Gauss map. How well-defined is h? First, and most cru-
cially, Liouville’s Theorem implies that the only flexibility we have in the choice of
χ is in post-composing it with a homothety around 0. A different choice of Cf could
a priori produce a different h. However,

Proposition 6.20 Every other fundamental crescent C′f with the same endpoints as
Cf , and such that C′f ∪Cf is a topological disk, produces the same renormalized
map h (defined up to a change of coordinates by a homothety).

Now, let us suppose that θ is of bounded type, and the Siegel disk Δ f is contained
in the domain W of f . Further, let the boundary of Δ f contain a unique critical point
of f . Then h is also going to have a single critical point on the boundary of its Siegel
disk. Let us uniquely specify χ by putting this point at 1. We then call the map h a
cylinder renormalization of f with period qn.

The boundary of the Siegel disk of h is obtained by a conformal “blow-up” of an
arc of the boundary of Δ f . The cylinder renormalization acts as a zoom-in into the
postcritical set.

Now let us specialize to the case of quadratic polynomials Pθ :
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Theorem 6.21 Let θ be of a bounded type. Let Pθ be as above. There exists a se-
quence gn, n ∈N, of cylinder renormalizations of Pθ with the following properties.

(I) For each n, the map gn is a cylinder renormalization of Pθ with period qn.
Thus gn has a Siegel disk with rotation number Gn+1(θ ) centered at the origin,
whose boundary is a quasicircle, containing the critical point 1.

(II) Denoting Cn the fundamental crescent of the respective renormalization,
we have

dn = sup
z∈Cn

dist(z,Δθ )→ 0.

Moreover, dn is commensurable with Cn∩∂Δθ , and hence

dn < Ab−n for some A > 0, and b > 1.

(III) Finally, there exists k ∈N such that, for all n1 and for n2 ≥ n1 +k, the map gn2

is a cylinder renormalization of gn1 .

What can we say about the sequence of the cylinder renormalizations thus obtained?
A recent result of Inou and Shishikura [IS06] implies that under an additional as-
sumption on θ all of these analytic maps belong to a compact family:

Theorem 6.22 There exist N0 ∈ N, a pair of topological disks ˜W � W � {0,1}, an
open set V in the Banach space of analytic maps in W with the sup-norm, and a
compact subset Y � V such that the following is true.

• Let θ = [a1,a2, . . .] ∈ (0,1)\Q with ai ≥ N0. For every f ∈ V with f ′(0) = e2π iθ

we have the following. The map f is cylinder renormalizable with period 1 = q0,
and the corresponding cylinder renormalization

g(z) = exp(2π iG(θ ))z+ o(z) ∈ Y .

Moreover, g analytically extends to the larger domain ˜W.
• Further, consider the quadratic polynomial f = Pθ (z). Set gn to be the sequence

of cylinder renormalizations of f as in Theorem 6.21. Then there exists j ∈ N

such that g j|W ∈ Y .

As an easy corollary, note that:

Corollary 6.23 Let g(z) and W be as in the above theorem. Then the critical orbit
⋃

n≥0

gn(1)⊂W.

Proof. Indeed, the theorem implies that there exists an infinite sequence of cylinder
renormalizations of the restriction g|W . Hence, iterates (g|W )n(1) are defined for
arbitrarily large values of n.

��
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Much more can be said about the sequence of cylinder renormaliza-
tions of a quadratic map, than just compactness. Let us define some
function spaces. For a topological disk W ⊂ C containing 0 and 1
we will denote by AW the Banach space of bounded analytic func-
tions in W equipped with the sup norm. Let us denote by CW the
Banach subspace of AW consisting of analytic mappings h : W →C

such that h(0) = 0 and h′(1) = 0.
Suppose that f ∈ CW is cylinder renormalizable with some period
k. Let Cf be the corresponding fundamental crescent. Assume fur-
ther that the first return map R f has a critical point ζ ∈ Cf which
corresponds to an orbit of f passing through 1. Let h be obtained
from R f as before, by uniformizing the quotient of Cf , with the nor-
malization, sending ζ to 1. Assume further that h∈CV for some V .

Proposition 6.24 Suppose that f ∈CW is cylinder renormalizable,
and that its renormalization h f is contained in CV . Then the follow-
ing holds.

• There exists an open neighborhood U( f ) ⊂ CW such that ev-
ery map g ∈ CW is cylinder renormalizable, with a fundamental
crescent Cg which can be chosen to move continuously with g.

• Moreover, the dependence g �→ hg of the cylinder renormaliza-
tion on the map g is an analytic mapping CW → CV .

We have thus defined an analytic cylinder renormalization operator
Rcyl from an open neighborhood in CW to CV .

Hyperbolicity of Renormalization ([Yam08]). There exists a do-
main U ⊃ {0,1} such that the following holds. Every periodic con-
tinued fraction

θ = [a1,a2, . . . ,an,a1,a2, . . .]

corresponds to a periodic point P̂θ ∈ CU of Rcyl with a Siegel disk
with the same rotation number. The operator L = DRn

cyl|P̂θ is com-
pact.
Further, let θ1 be such that Gk(θ1) = θ for some k, and as before
write Pθ1(z) = e2π iθ1z+ z2. Then

Rk+mn
cyl Pθ1 → P̂θ

in the space CU geometrically in m.
Moreover, suppose that minai ≥ N0. Then L is hyperbolic with
one-dimensional unstable direction.
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6.4 Non-computable locally connected Julia sets

Let N0 be as in Theorem 6.22, and fix N > N0. An admissible irrational number
θ = [a1,a2, . . .]∈T has all of the coefficients ai ≥N0, and a j = N for all sufficiently
large values of j.

The changes in the supporting lemmas of §5.4 needed to replace the digit 1 by N
in the tails of the continued fractions θi are trivial and will be left to the reader.

One consequence of the renormalization picture we have described above is the
following strengthening of Proposition 4.10:

Proposition 6.25 There exists B = B(N) such that the following holds. Suppose
that θ is an admissible number. Then there exists k0 ∈ N such that for all k ≥ k0
the boundary of the Siegel disk ∂Δgk is a B-quasicircle, where gk is the cylinder
renormalization of Pθ from Theorem 6.21,

In fact, denoting by f̂ the fixed point of Rcyl with rotation num-
ber [N,N,N, . . .] whose existence is postulated in the Theorem on
Hyperbolicity of Renormalization, we see that the boundary of the
Siegel disk of Pθ at small scales looks like that of f̂ .

Definition 6.4.1 Now let α be a Brjuno number such that Jα is locally connected.
We will say that Jβ is an admissible 2−n-perturbation of Jα if the following proper-
ties hold.

1. The Julia set Jβ is locally connected.
2.

distH(∂Δα ,∂Δβ ) < 2−n.

3. For each n and each σ̄ ∈ {0,1}n, denoting by Lασ̄ and Lβσ̄ the limbs of Jα and Jβ
respectively, we have

|diam(Lασ̄ )−diam(Lβσ̄ )|< 2−n.

4. Consider the Riemann mapping

Ψα : U→ Δα normalized byΨα(0) = 0,Ψ ′α(0) = 1,

and a similarly definedΨβ . Then

sup
z∈U

|Ψα −Ψβ |< 2−n.

5. Similarly, let
Φα : Ĉ\U→ Ĉ\Kα
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be the Böttcher map of Pα , and Φβ the Böttcher map of Pβ . Let γ±α be the angles
of the two external rays of Jα , which land at the critical point pα , and similarly
for γ±β . Then

||Φβ (te2π iγ±β )−Φα(te2π iγ±α )||< 2−n

in the spherical norm for t ∈ [1,∞). In particular,

|pα − pβ |< 2−n.

We now formulate the following key consequence of the result of Inou and
Shishikura (cf. the discussion in [BC05]):

Proposition 6.26 Consider an admissible number

α = [Iα ,N,N,N, . . .],

where Iα is some initial segment of the continued fraction. For every ε > 0 there
exist δ > 0 and M ∈ N such that the following holds. Let β be a perturbation of α
of the form

β = [Iα ,N,N, . . . ,N
︸ ︷︷ ︸

m

,A1,A2, . . . ,Ak,N,N,N, . . .], where m≥M and Ai ≥ N,

and such that
|rα − rβ |< δ .

Then
distH(∂Δα ,∂Δβ ) < ε.

Sketch of proof of Proposition 6.26. The boundary of Δα is obtained by taking the
closure of the critical orbit {Pn

α(1)}. By simple considerations of continuity, there
exists k0 ∈N such that, for every m≥ k0,

∂Δα ⊂ B(∂Δβ ,ε).

Let τ be any positive number smaller than ε . For the map Pα select Cn as in
Theorem 6.21, (II). Consider the arc

�n = ∂Δα ∩Cn

of the boundary of the Siegel disk trapped inside the fundamental crescent. By the
inverse branch (Pα)−1, fixing the Siegel disk, the arc is rotated around the boundary.
An inspection shows that

(

qn
⋃

j=0

(Pα)− j(�n−1)

)

⋃

(qn−1
⋃

j=0

(Pα)− j(�n)

)

⊃ ∂Δα .
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Denote by Wn ⊂ Cn the lift of the domain W from Theorem 6.22. Note that by
Corollary 6.23,

�n ⊂Wn.

By Theorem 6.21 (II), for any ν > 0, there exists k1 ∈ N such that

Wn � B(Δα ,ν)

for n≥ k1. An application of the Koebe Distortion Theorem to pull-backs

Yn ≡
(

qn
⋃

j=0

(Pα)− j(Wn−1)

)

⋃

(qn−1
⋃

j=0

(Pα)− j(Wn)

)

implies the existence of k2 ∈ N such that, for n≥ k2,

Yn ⊂ B(Δα ,τ/2).

Set
k = k2 + |Iα |.

Now let C′n, W ′n, and Y ′n denote the corresponding objects for Pβ . By considera-
tions of continuity, C′n, C′n−1 are small perturbations of Cn, Cn−1, provided that

m n≥ k.

By Corollary 6.23, we have
Δβ ∩C′n ⊂W ′n.

Select mτ large enough so that for m > mτ the previous inclusions hold, and

Y ′n ⊂ B(Yn,τ/2).

Then
Δβ ⊂ B(Δα ,τ).

Thus by moving the perturbation far enough to the right in the continued fraction of
α , we can guarantee that ∂Δβ does not extend outside a small neighborhood of Δα .

It remains to ensure that ∂Δβ does not have decorations which grow deep into
Δα . The easiest way to see this is to note that, by Proposition 6.25, ∂Δα is a B-
quasicircle for some B ∈ N. Hence, for every δ > 0, there exists 0 < τ < ε/2 such
that, setting

Uτ = B(Δα ,τ),

we have
r(Uτ ,0)− rα < δ , so that r(Uτ ,0)− rβ < 2δ .

By Proposition 5.8 applied to uniformization of Uτ , for δ small enough, the above
inequality implies that

∂Δβ ⊂ B(∂Uτ ,ε).
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Taking these δ and τ , and m > mτ we have

∂Δβ ⊂ B(Δα ,ε)∩B(∂Uτ ,ε)⊂ B(∂Δα ,ε).

�

We now state:

Proposition 6.27 Consider an admissible number

α = [Iα ,N,N,N, . . .].

For every n ∈ N there exist δ = δ (α,n) > 0 and M = M(α,n) ∈ N such that the
following holds. Let β be a perturbation of α of the form

β = [Iα ,N,N, . . . ,N
︸ ︷︷ ︸

m

,A1, . . . ,Ak,N,N,N, . . .], where m≥M and Ai ≥ N,

and such that
|rα − rβ |< δ .

Then Jβ is an admissible 2−n-perturbation of Jα .

The property (1) of an admissible perturbation follows by Pe-
tersen’s theorem [Pet96]. Property (2) is proved in Proposition 6.26,
and the stronger property (4) follows by similar considerations, to-
gether with Carathéodory’s Theorem.
Control of the postcritical set of Δβ allows us to show that all limbs
of Jβ of a sufficiently high generation are uniformly small. This
technical and rather difficult exercise is carried out in [Yam99].
The property (3) follows from this, and simple considerations of
continuity (limbs of a low generation do not move much under a
small perturbation of the parameter). Finally, (5) follows from this,
Proposition 6.26, and Carathéodory’s Theorem.

The induction in the proof of Theorem 6.19 can now be modified using Proposi-
tion 6.27 so that each Jγn+1 is an admissible 2−(n+1)-perturbation of Jγn . We modify
the induction statement to be:

• rn = r(γn), where γn = [In,N,N, . . .] is an admissible number,
• for any

β = [In,tKn+1,tKn+2, . . .] with r(β ) ∈ [ln,rn] and tKn+i ≥ N for all i

the machine Mφ
n fails to compute Jβ ,

• Jγn is an admissible 2−n-perturbation of Jγn−1 .
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To guarantee that Jγn+1 is an admissible 2−(n+1)-perturbation of Jγn , we first select
δ = δ (γn,n + 1) and M = M(γn,n + 1) as in Proposition 6.27 and set

I′n = [In,N,N, . . . ,N
︸ ︷︷ ︸

M

] and �n+1 = δ/20.

We then choose In+1 to be an extension of I′n which satisfies the first two conditions
of the induction statement. Jγn+1 is an admissible 2−(n+1)-perturbation of Jγn by
Proposition 6.27, since by the construction

r(γn+1) ∈ [r(γn)−20�n+1,r(γn)],

and thus |r(γn)− r(γn+1)|< δ .
In view of Theorem 6.9, the limiting Julia set Jθ will be locally connected and

non-computable, as required in Theorem 6.16.
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Further questions about quadratic Julia sets

The computability theory of quadratic Julia sets presented in this book is fairly com-
plete. We know that non-computable examples exist only among maps with Siegel
disks. The computability of the conformal radius r of the Siegel disk is equiva-
lent to the computability of the Julia set. Finally, if we restrict ourselves to maps
Pθ (z) = z2 + e2π iθ z with a neutral fixed point at the origin, then computability
of the parameter θ implies right-computability of rθ . Conversely, for each right-
computable r there is a computable θ with rθ = r.

When it comes to computational complexity, the picture becomes much murkier.
All the examples of Julia sets with non-polynomial complexity in this book come
from Siegel disks. Somewhat counter-intuitively, parabolic Julia sets have polyno-
mial time complexity. Cremer Julia sets present the biggest mystery. No informative
pictures of these sets have ever been produced, and yet we have shown that all of
them are computable. It is worth repeating here the two questions we have posed in
§5.3.2:

• Is there any Cremer quadratic Julia set with a low complexity bound? More
specifically, is there a practical algorithm to draw pictures of at least one Cre-
mer Julia set?

• Does there exist any Cremer quadratic Julia set with a complexity higher than
polynomial? Moreover, are there Cremer Julia sets of an arbitrarily high com-
plexity?

Much is known about quadratic maps with weakly hyperbolic dynamics, such as,
for instance, Collet-Eckmann maps. Deep analytic results about them should trans-
late into complexity bounds – this is an interesting direction of further study. At
the other end of the spectrum are extremely non-hyperbolic examples of infinitely
renormalizable maps. Some of them should be at least as bad as Cremer polynomi-
als. Other examples, such as the celebrated Feigenbaum map, have been frequently
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simulated numerically. We expect them to be of a low complexity, perhaps even
polynomial, and ask:

• What is the computational complexity of the Feigenbaum quadratic map?

Turning to topological properties, as we have shown in Theorem 6.16, there exist
non-computable and locally connected Julia sets. It is natural to ask:

• Can a parameter for a non-computable locally connected quadratic Julia set be
produced constructively?

In the opposite direction, the question remains open:

• Can a Julia set with a low computational complexity be non locally-connected?

This is, of course, related to the complexity lower bounds in the Cremer case.

Extending the results to other dynamical systems

One of the surprises of our study is how delicate the non-computability results are.
To isolate the class of the parameters for which they hold true, we need a cutting
edge analytical machinery. Moreover, from the sharpness of the results, it appears
that any alternative route would require a machinery of a similar strength. The non-
computable examples are very fragile, destroyed both by “filling in”, and by adding
small perturbations to the parameter. All this suggests that extending this study to
attractors/repellers in other natural families of dynamical systems (such as polyno-
mials in higher dimension, for example) will be both interesting, and very challeng-
ing.

There are, of course, many examples which can be directly reduced to the study
of quadratic maps. Notably, using the Douady-Hubbard theory of quadratic-like
maps (see p. 114), it is easy to produce non-computable Julia sets of polynomi-
als of an arbitrary degree. Rational maps with Herman rings should also present
non-computable cases, and finding such examples may be possible along similar
lines.

It is worth noting that there exists an approach to creating dynamical systems
which are difficult to simulate by embedding a copy of a Turing Machine into the
dynamics. This translates simple questions about infinite orbits into intractable prob-
lems, such as the Halting Problem. Even seemingly innocuous examples, such as
piecewise-linear maps of the square (see [Moo90]), are capable of simulating a uni-
versal computer. It is unlikely that our results can be derived in a similar manner.
However, in other settings this approach should lead to non-computability state-
ments for attractors. This is an interesting question to study, as “Turing complete-
ness” has been shown to exist in many natural families of dynamical systems. It is
an important problem (and an object of much speculation in the literature) whether
computational hardness due to completeness can be observed in nature. It is possible
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that it is destroyed by small random perturbations, so even a very complex system
becomes easy to predict statistically when a random noise is added.

Practical implications of non-computability results

The main result of this book seems to go against our established intuition. Computer
simulation of dynamical systems has become ubiquitous. This is particularly true in
complex dynamics, where computational experiments have motivated much of the
development in the field. Numerical modeling of attractors/repellers ranges from
Julia sets to attractors of truly staggering complexity, such as weather patterns. It is
difficult to imagine that for a simple non-linear dynamical system in one complex
dimension, whose coefficients can be computed efficiently (and very likely easily),
the global repeller cannot be numerically simulated. We can take some comfort in
the fact that for Julia sets these parameters are very rare. Still, they exist, and proving
this connects Computational Complexity Theory to a beautiful chapter in modern
Complex Dynamics.

Fig. 6.6 Kasimir Malevich. Black Square. 1923–29, Oil on canvas. Russian Museum, St. Peters-
burg.

A striking practical consequence of the existence of non-computable Jc is that we
will never see their pictures. On a 100× 100 screen there are 21002

possible black
and white pictures. Non-computability of Jc means that there exists no systematic
way to distinguish a correct one among these. The likelihood of stumbling upon it
even for a screen of this size is very slim indeed. It is not much of an exaggeration to
say that we should not expect to do much better than a true one-pixel approximation
of Jc – the Black Square.



A Brief Historical Note

Blum, Cucker, Shub, and Smale [BCSS98] were among the first to approach the
computer-theoretic foundations of the numerical study of dynamics in a systematic
way. While the model of computation they used was algebraic in nature, and not
suitable to study fractal objects, they have also listed understanding of the compu-
tational hardness of Julia sets and the Mandelbrot set as one of their prime motiva-
tions.

Our work fits into the tradition of Computable Analysis, founded by Banach and
Mazur [BM37] in 1937, only one year after the birth of Turing Machines and Post
Machines. Computability of Euclidean sets has been discussed recently by Brattka
and Weihrauch [BW99], Chou and Ko [CK95], and others. Probably, the first work
addressing Julia sets in this context was the work of Zhong [Zho98] (also partly
motivated by the discussion in [BCSS98]). Several other papers in a similar vein
have appeared, notably the work of Hertling [Her05] on computability of the Man-
delbrot set, and Rettinger and Weihrauch on complexity of some Julia sets [RW03],
[Ret05].

Countless programs to visualize Julia sets have been written by practicing com-
plex dynamicists. Perhaps the only systematic effort to bound their complexity had
been the introduction of Distance Estimators by Milnor [Mil06] and Fisher [Fis89],
whose ideas play an important role in our study.

Our main break-through came in the work [BY06] where we first showed that
some quadratic Julia sets are not computable. This had taken us completely by sur-
prise, and had motivated further study of which this book is a result. Some of the
results presented here were obtained in collaboration with Ilia Binder [BBY07a],
[BBY06]. Much of the material is new, and has never been published previously.
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Vol. 1986/87, Astérisque 152-153 (1988), no. 4, 151–172.



References 147

[Dou93] , Descriptions of compact sets in c, Topological methods in modern mathemat-
ics (Stony Brook, NY, 1991) (1993), 429–465.

[Dou94] , Does a Julia set depend continuously on the polynomial?, Complex dynam-
ical systems: The mathematics behind the Mandelbrot set and Julia sets (R L De-
vaney, ed.), Proc. of Symposia in Applied Math., vol. 49, Amer. Math. Soc., 1994,
pp. 91–138.

[Fis89] Y. Fisher, Exploring the Mandelbrot set, The Science of Fractal Images (H Peitgen and
D Saupe, eds.), Springer, 1989.

[FS91] J. Fornæss and N. Sibony, Random iterations of rational functions, Ergodic Theory
Dynam. Systems 11 (1991), no. 4, 687–708.

[Fur07] M. Furer, Faster integer multiplication, Proceedings of Thirty-Ninth ACM Symposium
on Theory of Computing (STOC 2007), 2007.

[GMSM04] V. Gutlianski, O. Martio, T. Sugawa, and Vuorinen M., On the degenerate Beltrami
equation, Transactions of the Amer. Math. Soc. 357 (2004), no. 3, 875–900.

[Grz55] A. Grzegorczyk, Computable functionals, Fund. Math. 42 (1955), 168–202.
[Her85] M. Herman, Are there critical points on the boundaries of singular domains?, Com-

mun. Math. Phys. 99 (1985), no. 4, 593–612.
[Her86] , Conjugaison quasi symétrique des homéomorphismes du cercle à des
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Böttcher coordinate, 121
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