
Mathematics and Visualization

Series Editors
Gerald Farin
Hans-Christian Hege
David Hoffman
Christopher R. Johnson
Konrad Polthier
Martin Rumpf

Georges-Pierre Bonneau
Thomas Ertl
Gregory M. Nielson

Editors

Scientific Visualization:
The Visual Extraction of
Knowledge from Data
With 228 Figures

ABC

Georges-Pierre Bonneau
Universite Grenoble I
Lab. LMC-IMAG
BP 53, 38041 Grenoble CX 9
France
E-mail: georges-pierre.bonneau@imag.fr

Gregory M. Nielson
Department of Computer Science and Engineering
Ira A. Fulton School of Engineering
Arizona State University
Tempe, AZ 85287-8809
USA
E-mail: nielson@asu.edu

Thomas Ertl
University of Stuttgart
Visualization and Interactive Systems
Institute (VIS)
Universitätßtraße 38
70569 Stuttgart
Germany
E-mail: thomas.ertl@vis.uni-stuttgart.de

Library of Congress Control Number: 2005932239

Mathematics Subject Classification: 68-XX, 68Uxx, 68U05, 65-XX, 65Dxx, 65D18

ISBN-10 3-540-26066-8 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-26066-0 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting,
reproduction on microfilm or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9,
1965, in its current version, and permission for use must always be obtained from Springer. Violations are
liable for prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media
springeronline.com
c© Springer-Verlag Berlin Heidelberg 2006

Printed in The Netherlands

The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective laws
and regulations and therefore free for general use.

Typesetting: by the authors and TechBooks using a Springer LATEX macro package
Cover design: design & production GmbH, Heidelberg

Printed on acid-free paper SPIN: 11430032 46/TechBooks 5 4 3 2 1 0

Preface

Scientific Visualization is concerned with techniques that allow scientists and engi-
neers to extract knowledge from the results of simulations and computations. Ad-
vances in scientific computation are allowing mathematical models and simulations
to become increasingly complex and detailed. This results in a closer approximation
to reality thus enhancing the possibility of acquiring new knowledge and understand-
ing. Tremendously large collections of numerical values, which contain a great deal
of information, are being produced and collected. The problem is to convey all of
this information to the scientist so that effective use can be made of the human cre-
ative and analytic capabilities. This requires a method of communication with a high
bandwidth and an effective interface. Computer generated images and human vision
mediated by the principles of perceptual psychology are the means used in scien-
tific visualization to achieve this communication. The foundation material for the
techniques of Scientific Visualization are derived from many areas including, for ex-
ample, computer graphics, image processing, computer vision, perceptual psychol-
ogy, applied mathematics, computer aided design, signal processing and numerical
analysis.

This book is based on selected lectures given by leading experts in Scientific
Visualization during a workshop held at Schloss Dagstuhl, Germany. Topics include
user issues in visualization, large data visualization, unstructured mesh processing
for visualization, volumetric visualization, flow visualization, medical visualization
and visualization systems. The methods of visualizing data developed by Scientific
Visualization researchers presented in this book are having broad impact on the way
other scientists, engineers and practitioners are processing and understanding their
data from sensors, simulations and mathematics models.

We would like to express our warmest thanks to the authors and referees for their
hard work. We would also like to thank Fabien Vivodtzev for his help in administer-
ing the reviewing and editing process.

Grenoble, Georges-Pierre Bonneau
January 2005 Thomas Ertl

Gregory M. Nielson

Contents

Part I Meshes for Visualization

Adaptive Contouring with Quadratic Tetrahedra
Benjamin F. Gregorski, David F. Wiley, Henry R. Childs, Bernd Hamann,
Kenneth I. Joy . 3

On the Convexification of Unstructured Grids
from a Scientific Visualization Perspective
João L.D. Comba, Joseph S.B. Mitchell, Cláudio T. Silva 17

Brain Mapping Using Topology Graphs Obtained
by Surface Segmentation
Fabien Vivodtzev, Lars Linsen,
Bernd Hamann, Kenneth I. Joy, Bruno A. Olshausen . 35

Computing and Displaying Intermolecular Negative Volume for Docking
Chang Ha Lee, Amitabh Varshney . 49

Optimized Bounding Polyhedra
for GPU-Based Distance Transform
Ronald Peikert, Christian Sigg . 65

Generating, Representing
and Querying Level-Of-Detail Tetrahedral Meshes
Leila De Floriani, Emanuele Danovaro . 79

Split ’N Fit: Adaptive Fitting
of Scattered Point Cloud Data
Gregory M. Nielson, Hans Hagen, Kun Lee, Adam Huang 97

VIII Contents

Part II Volume Visualization and Medical Visualization

Ray Casting with Programmable Graphics Hardware
Manfred Weiler, Martin Kraus, Stefan Guthe, Thomas Ertl, Wolfgang Straßer . . 115

Volume Exploration Made Easy Using Feature Maps
Klaus Mueller, Sarang Lakare, Arie Kaufman . 131

Fantastic Voyage of the Virtual Colon
Arie Kaufman, Sarang Lakare . 149

Volume Denoising for Visualizing Refraction
David Rodgman, Min Chen . 163

Emphasizing Isosurface Embeddings
in Direct Volume Rendering
Shigeo Takahashi, Yuriko Takeshima, Issei Fujishiro, Gregory M. Nielson 185

Diagnostic Relevant Visualization
of Vascular Structures
Armin Kanitsar, Dominik Fleischmann, Rainer Wegenkittl, Meister Eduard
Gröller . 207

Part III Vector Field Visualization

Clifford Convolution and Pattern Matching
on Irregular Grids
Julia Ebling, Gerik Scheuermann . 231

Fast and Robust Extraction
of Separation Line Features
Xavier Tricoche, Christoph Garth, Gerik Scheuermann 249

Fast Vortex Axis Calculation Using Vortex Features
and Identification Algorithms
Markus Rütten, Hans-Georg Pagendarm . 265

Topological Features in Vector Fields
Thomas Wischgoll, Joerg Meyer . 287

Part IV Visualization Systems

Generalizing Focus+Context Visualization
Helwig Hauser . 305

Contents IX

Rule-based Morphing Techniques
for Interactive Clothing Catalogs
Achim Ebert, Ingo Ginkel, Hans Hagen . 329

A Practical System for Constrained Interactive Walkthroughs
of Arbitrarily Complex Scenes
Lining Yang, Roger Crawfis . 345

Component Based Visualisation
of DIET Applications
Rolf Hendrik van Lengen, Paul Marrow, Thies Bähr, Hans Hagen, Erwin

Bonsma, Cefn Hoile . 367

Facilitating the Visual Analysis
of Large-Scale Unsteady Computational Fluid Dynamics Simulations
Kelly Gaither, David S. Ebert . 385

Evolving Dataflow Visualization Environments
to Grid Computing
Ken Brodlie, Sally Mason, Martin Thompson, Mark Walkley and Jason Wood . . 395

Earthquake Visualization Using Large-scale Ground Motion
and Structural Response Simulations
Joerg Meyer, Thomas Wischgoll . 409

Author Index . 433

Part I

Meshes for Visualization

Adaptive Contouring with Quadratic Tetrahedra

Benjamin F. Gregorski1, David F. Wiley1, Henry R. Childs2, Bernd Hamann1, and
Kenneth I. Joy1

1 Institute For Data Analysis and Visualization
University of California, Davis
bfgregorski,dfwiley,bhamann,kijoy@ucdavis.edu

2 B Division Lawrence Livermore National Laboratory
childs3@llnl.gov

Summary. We present an algorithm for adaptively extracting and rendering isosurfaces
of scalar-valued volume datasets represented by quadratic tetrahedra. Hierarchical tetra-
hedral meshes created by longest-edge bisection are used to construct a multiresolution
C0-continuous representation using quadratic basis functions. A new algorithm allows us to
contour higher-order volume elements efficiently.

1 Introduction

Isosurface extraction is a fundamental algorithm for visualizing volume datasets.
Most research concerning isosurface extraction has focused on improving the per-
formance and quality of the extracted isosurface. Hierarchical data structures, such
as those presented in [2, 10, 22], can quickly determine which regions of the dataset
contain the isosurface, minimizing the number of cells examined. These algorithms
extract the isosurface from the highest resolution mesh. Adaptive refinement algo-
rithms [4, 5, 7] progressively extract isosurfaces from lower resolution volumes, and
control the quality of the isosurface using user specified parameters.

An isosurface is typically represented as a piecewise linear surface. For datasets
that contain smooth, steep ramps, a large number of linear elements is often needed
to accurately reconstruct the dataset unless extra information is known about the
data. Recent research has addressed these problems with linear elements by using
higher-order methods that incorporate additional information into the isosurface ex-
traction algorithm. In [9], an extended marching cubes algorithm, based on gradient
information, is used to extract contours from distance volumes that contain sharp
features. Cells that contain features are contoured by inserting new vertices that min-
imize an error function. Higher-order distance fields are also described in [12]. This
approach constructs a distance field representation where each voxel has a complete
description of all surface regions that contribute to the local distance field. Using this
representation, sharp features and discontinuities are accurately represented as their
exact locations are recorded. Ju et al. [11] describe a dual contouring scheme for

4 B.F. Gregorski et al.

adaptively refined volumes represented with Hermite data that does not have to test
for sharp features. Their algorithm uses a new representation for quadric error func-
tions to quickly and accurately position vertices within cells according to gradient
information. Wiley et al. [19, 20] use quadratic elements for hierarchical approxima-
tion and visualization of image and volume data. They show that quadratic elements,
instead of linear elements, can be effectively used to approximate two and three di-
mensional functions.

Higher-order elements, such as quadratic tetrahedra and quadratic hexahedra, are
used in finite element solutions to reduce the number of elements and improve the
quality of numerical solutions [18]. Since few algorithms directly visualize higher-
order elements, they are usually tessellated by several linear elements. Conventional
visualization methods, such as contouring, ray casting, and slicing, are applied to
these linear elements. Using linear elements increases the number of primitives, i.e.
triangles or voxels, that need to be processed. Methods for visualizing higher-order
elements directly are desirable.

We use a tetrahedral mesh, constructed by longest-edge bisection as presented
in [5], to create a multiresolution data representation. The linear tetrahedral elements
used in previous methods are replaced with quadratic tetrahedra. The resulting mesh
defines a C0-continuous, piecewise quadratic approximation of the original dataset.
This quadratic representation is computed in a preprocessing step by approximating
the data values along each edge of a tetrahedron with a quadratic function that inter-
polates the endpoint values. A quadratic tetrahedron is constructed from the curves
along its six edges. At runtime, the hierarchical approximation is traversed to approx-
imate the original dataset to within a user defined error tolerance. The isosurface is
extracted directly from the quadratic tetrahedra.

The remainder of our paper is structured as follows: Section 2 reviews related
work. Section 3 describes what quadratic tetrahedra are, and Sect. 4 describes how
they are used to build a multiresolution representation of a volume dataset. Sections 5
describes how a quadratic tet is contoured. Our results are shown in Sect. 6.

2 Previous Work

Tetrahedral meshes constructed by longest-edge bisection have been used in many
visualization applications due to their simple, elegant, and crack-preventing adap-
tive refinement properties. In [5], fine-to-coarse and coarse-to-fine mesh refinement
is used to adaptively extract isosurfaces from volume datasets. Gerstner and Pa-
jarola [7] present an algorithm for preserving the topology of an extracted isosurface
using a coarse-to-fine refinement scheme assuming linear interpolation within a tetra-
hedron. Their algorithm can be used to extract topology-preserving isosurfaces or to
perform controlled topology simplification. In [6], Gerstner shows how to render
multiple transparent isosurfaces using these tetrahedral meshes, and in [8], Gerstner
and Rumpf parallelize the isosurface extraction by assigning portions of the binary
tree created by the tetrahedral refinement to different processors. Roxborough and
Nielson [16] describe a method for adaptively modeling 3D ultrasound data. They

Adaptive Contouring with Quadratic Tetrahedra 5

create a model of the volume that conforms to the local complexity of the underly-
ing data. A least-squares fitting algorithm is used to construct a best piecewise linear
approximation of the data.

Contouring quadratic functions defined over triangular domains is discussed in
[1, 14, 17]. Worsey and Farin [14] use Bernstein-Bézier polynomials which provide a
higher degree of numerical stability compared to the monomial basis used by Marlow
and Powell [17]. Bloomquist [1] provides a foundation for finding contours in
quadratic elements.

In [19] and [20], quadratic functions are used for hierarchical approximation
over triangular and tetrahedral domains. The approximation scheme uses the normal-
equations approach described in [3] and computes the best least-squares approxima-
tion. A dataset is approximated with an initial set of quadratic triangles or tetrahedra.
The initial mesh is repeatedly subdivided in regions of high error to improve the ap-
proximation. The quadratic elements are visualized by subdividing them into linear
elements.

Our technique for constructing a quadratic approximation differs from [19] and
[20] as we use univariate approximations along a tetrahedron’s edges to define the
coefficients for an approximating tetrahedron. We extract an isosurface directly from
a quadratic tetrahedron by creating a set of rational-quadratic patches that approxi-
mates the isosurface. The technique we use for isosurfacing quadratic tetrahedra is
described in [21].

3 Quadratic Tetrahedra

A linear tetrahedron TL(u,v,w) having four coefficients fi at its vertices Vi is defined
as

TL(u,v,w) = f0u+ f1v+ f2w

+ f3(1−u− v−w) . (1)

The quadratic tetrahedron TQ(u,v,w) (called TQ) that we use as our decomposition el-
ement has linearly defined edges such that its domain is completely described by four
vertices (the same as a conventional linear tetrahedron). The function over TQ is de-
fined by a quadratic polynomial. We call this element a linear-edge quadratic tetra-
hedron or quadratic tetrahedron. The quadratic polynomial is defined, in Bernstein-
Bézier form, by ten coefficients cm, 0 ≤ m ≤ 9, as

TQ(u,v,w) =
1

∑
k=0

2−k

∑
j=0

2−k− j

∑
i=0

ci jkB2
i jk(u,v,w) (2)

The Bernstein-Bézier basis functions B2
i jk(u,v,w) are

B2
i jk =

2!
(2− i− j− k)!i! j!k!

(1−u− v−w)2−i− j−kuiv jwk (3)

6 B.F. Gregorski et al.

Fig. 1. Indexing of vertices and parameter space configuration for the ten control points of a
quadratic tetrahedron

The indexing of the coefficients is shown in Fig. 1.

4 Constructing a Quadratic Representation

A quadratic tetrahedron TQ is constructed from a linear tetrahedron TL with corner
vertices V0,V1,V2, and V3, by fitting quadratic functions along the six edges of TL.
Since a quadratic function requires three coefficients, there is an additional value
associated with each edge.

4.1 Fitting Quadratic Curves

Given a set of function values f0, f1 . . . fn at positions x0,x1 . . .xn, we create a
quadratic function that passes through the end points and approximates the remaining
data values.

The quadratic function C(t) we use to approximate the function values along an
edge is defined as

C(t) =
2

∑
i=0

ciB
2
i (t) (4)

The quadratic Bernstein polynomial B2
i (t) is defined as

B2
i (t) =

2!
(2− i)!i!

(1−u)2−iui (5)

Adaptive Contouring with Quadratic Tetrahedra 7

First we parameterize the data by assigning parameter values t0, t1 . . .tn in the
interval [0,1] to the positions x0,x1 . . .xn. Parameter values are defined with a chord-
length parameterization as

ti =
xi − x0

xn − x0
(6)

Next, we solve a least-squares approximation problem to determine the coeffi-
cients ci of C(t). The resulting overdetermined system of linear equations is⎡⎢⎢⎢⎣

(1− t0)2 2(1− t0)t0 t02

(1− t1)2 2(1− t1)t1 t12

...
...

...
(1− tn)2 2(1− tn)tn tn2

⎤⎥⎥⎥⎦
⎡⎣ c0

c1

c2

⎤⎦=

⎡⎢⎢⎢⎣
f0

f1
...
fn

⎤⎥⎥⎥⎦ . (7)

Constraining C(t), so that it interpolates the endpoint values, i.e. C(0) = f0 and
C(1) = fn, leads to the system ⎡⎢⎢⎢⎣

2(1− t1)t1
2(1− t2)t2

...
2(1− tn−1)tn−1

⎤⎥⎥⎥⎦ [c1] =

⎡⎢⎢⎢⎣
f1 − f0(1− t1)2 − fnt12

f2 − f0(1− t2)2 − fnt22

...
fn−1 − f0(1− tn−1)2 − fntn−1

2

⎤⎥⎥⎥⎦ (8)

for the one degree of freedom c1.

4.2 Approximating a Dataset

A quadratic approximation of a dataset is created by approximating the data values
along each edge in the tetrahedral mesh with a quadratic function as described in
Sect. 4.1. Each linear tetrahedron becomes a quadratic tetrahedron. The resulting
approximation is C1-continuous within a tetrahedron and C0-continuous on shared
faces and edges. The approximation error ea for a tetrahedron T is the maximum
difference between the quadratic approximation over T and all original data values
associated with points inside and on T ’s boundary.

In tetrahedral meshes created by longest-edge bisection, each edge E in the mesh,
except for the edges at the finest level of the mesh, is the split edge of a diamond D,
see [5], and is associated with a split vertex SV . The computed coefficient c1 for the
edge E is stored with the split vertex SV . The edges used for computing the quadratic
representation can be enumerated by recursively traversing the tetrahedral mesh and
examining the refinement edges. This process is illustrated for the 2D case in Fig. 2.
Since quadratic tetrahedra have three coefficients along each edge, the leaf level of a

8 B.F. Gregorski et al.

Fig. 2. Enumeration of edges for constructing quadratic approximation using longest-edge
bisection. Circles indicate original function values used to compute approximating quadratic
functions along each edge

Fig. 3. Top: leaf tetrahedra for a mesh with linear tetrahedra. Bottom: leaf tetrahedra for a
mesh with quadratic tetrahedra

mesh with quadratic tetrahedra is one level higher in the mesh than the leaf level for
linear tetrahedra, see Fig. 3.

In summary, we construct a quadratic approximation of a volume data set as
follows:

1. For each edge of the mesh hierarchy, approximate the data values along the edge
with a quadratic function that passes through the endpoints.

2. For each tetrahedron in the hierarchy, construct a quadratic tetrahedron from the
six quadratic functions along its edges.

3. Compute the approximation error ea for each tetrahedron.

5 Contouring Quadratic Tetrahedra

We use the method described in [21] to extract and represent isosurfaces of quadratic
tetrahedra. We summarize the main aspects of the method here. First, the intersection
of the isosurface is computed with each face of the quadratic tetrahedron forming
face-intersection curves. Next, the face-intersection curves are connected end-to-end
to form groups of curves that bound various portions of the isosurface inside the
tetrahedron, see Fig. 4. Finally, the face-intersection groups are “triangulated” with
rational-quadratic patches to represent the various portions of the isosurface inside
the quadratic tetrahedron.

Since intersections are conic sects. [14], the intersections between the isosurface
and the faces produce rational-quadratic curves. We define a rational-quadratic curve

Adaptive Contouring with Quadratic Tetrahedra 9

Fig. 4. Isosurface bounded by six face-intersection curves. Dark dots indicate endpoints of the
curves

Q(t) with control points pi and weights wi, 0 ≤ i ≤ 2, as

Q(t) = ∑2
i=0 wipiB

2
i (t)

∑2
i=0 wiB2

i (t)
(9)

By connecting the endpoints of the N face-intersection curves Q j(t), 0 ≤ j ≤ N −1,
we construct M rational-quadratic patches Qk(u,v), 0 ≤ k ≤ M−1, to represent the
surface. We define a rational-quadratic patch Q(u,v) with six control points pi j and
six weights wi j as

Q(u,v) =
∑2

j=0 ∑2− j
i=0 wi j pi jB2

i j(u,v)

∑2
j=0 ∑2− j

i=0 wi jB2
i j(u,v)

(10)

A patch Q(u,v) is constructed from two or three face-intersection curves by using
the control points of the curves as the control points for Q(u,v). Four or more face-
intersection curves require the use of a “divide-and-conquer” method that results in
multiple patches, see [21].

6 Results

We have applied our algorithm to various volume datasets. The datasets are all byte-
valued, and the quadratic coefficients along the edges are stored as signed shorts.
In all examples, the mesh is refined to approximate the original dataset, according
to the quadratic tetrahedra approximation, within a user specified error bound eu.
The resulting mesh consists of a set of quadratic tetrahedra which approximates the
dataset within eu. The isosurface, a set of quadratic bezier patches, is extracted from

10 B.F. Gregorski et al.

Table 1. Error values, number of quadratic tetrahedra used for approximation, and number of
quadratic patches extracted

Dataset Size Error Tets Patches
Buckyball 2563 2.0 8560 4609
Buckyball 2563 1.3 23604 10922
Buckyball 2563 0.7 86690 32662
H-Atom 1283 1.23 8172 3644
H-Atom 1283 0.57 20767 7397

this mesh. Table 1 summarizes the results. It shows the error value, the number of
quadratic tetrahedra needed to approximate the dataset to within the specified error
tolerance, and the number of quadratic patches extracted from the mesh.

As discussed in Sect. 4.2, the error value indicates the maximum difference be-
tween the quadratic representation and the actual function values at the data points.
On the boundaries, our quadratic representation is C0 continuous with respect to the
function value and discontinuous with respect to the gradient; thus the gradients used
for shading are discontinuous at patch boundaries. This fact leads to the creases seen
in the contours extracted from the quadratic elements. The patches which define the
contour are tessellated and rendered as triangle face lists. A feature of the quadratic
representation is the ability to vary both the patch tessellation factor and the resolu-
tion of the underlying tetrahedral grid. This gives an extra degree of freedom with
which to balance isosurface quality and rendering speed.

The storage requirements of the linear and quadratic representations are summa-
rized in Table 2. Storage costs of linear and quadratic representations with and with-
out precomputed gradients are shown. When gradients are precomputed for shading,
a gradient must be computed at each data location regardless of representation. When
rendering linear surfaces, gradients are often precomputed and quantized to avoid the
cost of computing them at runtime. For quadratic patches, gradients do not need to
be precomputed because they can be computed from the analytical definition of the
surface. However, if gradients are precomputed, they can be used directly.

Table 2. Storage requirements(bytes) for linear and quadratic representations for a dataset
with 23n points. The linear representation consists of L = 23n diamonds, and the quadratic
representation consists of L

8 = 23(n−1) diamonds. R is the number of bytes used to store the
error, min, and max values of a diamond, G is the number of bytes used to store a gradient,
and C is the number of bytes used to store a quadratic coefficient

Type Data Gradients Bézier Coeffs Error/Min/Max Total
Linear L 0 0 RL L(1+R)
Linear L GL 0 RL L(1+G+R)

Quadratic L
8 0 CL R L

8 L 1+8C+R
8

Quadratic L
8 GL CL R L

8 L 1+8G+8C+R
8

Adaptive Contouring with Quadratic Tetrahedra 11

The difference between the leaf levels of linear and quadratic representations, as
described in Sect. 4.2, implies that there are eight times as many diamonds in the
linear representation than there are in the quadratic representation. We represent the
quadratic coefficients with two bytes. The quadratic coefficients for the Buckyball
dataset shown in Figs. 5 and 6 lie in the range [−88,390]. The representation of
error, min, and max values is the same for both representations. They can be stored
as raw values or compressed to reduce storage costs. The quadratic representation
essentially removes three levels from the binary tree of the tetrahedral mesh reducing
the number of error, min, and max values by a factor of eight compared with the
linear representation.

Fig. 5. Left: Isosurface of quadratic patches extracted using quadratic tetrahedra. Middle: Full
resolution isosurface (1798644 triangles). Right: Isosurface of triangles extracted from the
same mesh used to show the resolution of the tetrahedral grid. Isovalue = 184.4, Error = 0.7

Fig. 6. Isosurfaces extracted using quadratic tetrahedra at different error bounds. Top to Bot-
tom: Error = 0.7, 1.2, and 2.0. Number of Quadratic Patches = 32662, 10922, 4609

The first dataset is a Buckyball dataset made from Gaussian functions. Figure 5
compares contours extracted using quadratic and linear tetrahedra against the full res-
olution surface. The isosurfaces are extracted from the same mesh which consists of
86690 tets; it yields 32662 quadratic patches. Figure 6 shows three isosurfaces of the
Buckyball from the same viewpoint at different resolutions. The images are created
by refining the mesh using a view-dependent error bound. Thus, the middle image,
for an error of 1.3 has more refinement in the region closer to the viewpoint and less
refinement in the regions further from the viewpoint. For the Buckyball dataset, the

12 B.F. Gregorski et al.

Fig. 7. Isosurface through the Hydrogen Atom dataset. The isosurface rendered using
quadratic patches, and the tetrahedra from which the contours were extracted. Isovalue = 9.4,
Error = 1.23, Number of patches = 3644

patches are tessellated with 28 vertices and 36 triangles. These images show how the
quadratic representation can be effectively used to adaptively approximate a dataset.
The second dataset is the Hydrogen Atom dataset obtained from www.volvis.org.
The dataset is the result of a simulation of the spatial probability distribution of the
electron in a hydrogen atom, residing in a strong magnetic field. Figure 7 shows
the surfaces generated from the quadratic tetrahedra and the coarse tetrahedral mesh
from which the contours are extracted.

Figure 8 is a closeup view of the dataset’s interior. It shows a thin “hourglass-
like” feature emanating from the probability lobe visible on the right. For the Hy-
drogen Atom dataset, the patches are tessellated with 15 vertices and 16 triangles.
The isosurface extracted from the quadratic representation is compared with the the
linear isosurface to shown how the quadratic representation accurately approximates
the silhouette edges with a small number of elements.

Fig. 8. Closeup view of hydrogen atom dataset rendered with quadratic patches(left). As in Fig.
5, the isosurface extracted using linear elements(right) shows the resolution of the underlying
tetrahedral grid. Isovalue = 9.4, Error = 0.566

Adaptive Contouring with Quadratic Tetrahedra 13

7 Conclusions

We have presented an algorithm for approximating and contouring datasets with
quadratic tetrahedra. Our algorithm uses hierarchically defined tetrahedral meshes
to construct a multiresolution representation. This representation is used to approxi-
mate the dataset within a user specified error tolerance. Quadratic tetrahedra are cre-
ated from this multiresolution mesh by constructing approximating quadratic func-
tions along edges and using these functions to form quadratic tetrahedra. We have
improved previous methods for visualizing quadratic elements by showing how to
directly contour them without splitting them into a large number of linear elements.
Comparisons of the storage costs of quadratic and linear representations show that
quadratic elements can represent datasets with a smaller number of elements and
without a large storage overhead.

Future work is planned in these areas:

• Improving the quality and speed of the contour extraction and comparing
the quality of the surfaces to those generated from linear tetrahedra. Cur-
rently, our algorithm generates some small thin surfaces that are undesirable for
visualization. Additionally we are working on arbitrary slicing and volume ren-
dering of quadratic elements.

• Improving the computation of the quadratic representation. Our current al-
gorithm, while computationally efficient, fails to capture the behavior of the
dataset within a tetrahedron, and yields discontinuous gradients at the bound-
aries. It is desirable to have an approximation that is overall C1-continuous or
C1-continuous in most regions and C0 in regions where discontinuities exist in
the data. A C1-continuous approximation might improve the overall approxima-
tion quality, allowing us to use fewer elements, and would improve the visual
quality of the extracted contours.

Acknowledgments

This work was performed under the auspices of the U.S. Department of Energy by
University of California Lawrence Livermore National Laboratory under contract
No. W-7405-Eng-48. This work was also supported by the National Science Foun-
dation under contracts ACI 9624034 (CAREER Award), through the Large Scien-
tific and Software Data Set Visualization (LSSDSV) program under contract ACI
9982251, through the National Partnership for Advanced Computational Infrastruc-
ture (NPACI) and a large Information Technology Research (ITR) grant; the National
Institutes of Health under contract P20 MH60975-06A2, funded by the National In-
stitute of Mental Health and the National Science Foundation; and the Lawrence Liv-
ermore National Laboratory under ASCI ASAP Level-2 memorandum agreement
B347878, and agreements B503159 and B523294; We thank the members of the
Visualization and Graphics Research Group at the Institute for Data Analysis and
Visualization (IDAV) at the University of California, Davis.

14 B.F. Gregorski et al.

References

1. B.K. Bloomquist, Contouring Trivariate Surfaces, Masters Thesis, Arizona State Univer-
sity, Computer Science Department, 1990

2. P. Cignoni and P. Marino and C. Montani and E. Puppo and R. Scopigno Speeding Up
Isosurface Extraction Using Interval Trees IEEE Transactions on Visualization and Com-
puter Graphics 1991, 158–170

3. P. J. Davis Interpolation and Approximation Dover Publications, Inc., New York, NY. 2,
3

4. Klaus Engel and Rudiger Westermann and Thomas Ertl Isosurface Extraction Techniques
For Web-Based Volume Visualization Proceedings of IEEE Visualization 1999, 139–146

5. Benjamin Gregorski, Mark Duchaineau, Peter Lindstrom, Valerio Pascucci, and Kenneth
I. Joy Interactive View-Dependent Extraction of Large Isosurfaces Proceedings of IEEE
Visualization 2002, 475–482

6. T. Gerstner Fast Multiresolution Extraction Of Multiple Transparent Isosurfaces, Data
Visualization 2001 Proceedings of VisSim 2001

7. Thomas Gerstner and Renato Pajarola, Topology Preserving And Controlled Topology
Simplifying Multiresolution Isosurface Extraction, Proceedings of IEEE Visualization
2000, 259–266

8. T. Gerstner and M. Rumpf, Multiresolution Parallel Isosurface Extraction Based On
Tetrahedral Bisection, Volume Graphics 2000, 267–278

9. Leif P. Kobbelt, Mario Botsch, Ulrich Schwanecke, and Hans-Peter Seidel Feature-
Sensitive Surface Extraction From Volume Data SIGGRAPH 2001 Conference Proceed-
ings, 57–66

10. Y. Livnat and C. Hansen View Dependent Isosurface Extraction Proceedings of IEEE
Visualization 1998, 172–180

11. Tao Ju, Frank Losasso, Scott Schaefer, and Joe Warren Dual contouring of hermite data
SIGGRAPH 2002 Conference Proceedings, 339–346

12. Jian Huang, Yan Li, Roger Crawfis, Shao-Chiung Lu, and Shuh-Yuan Liou A Complete
Distance Field Representation Proceedings of Visualization 2001, 247–254

13. Gerald Farin, Curves and Surfaces for CAGD, Fifth edition, Morgan Kaufmann Publish-
ers Inc., San Francisco, CA, 2001

14. A.J. Worsey and G. Farin, Contouring a bivariate quadratic polynomial over a triangle,
Computer Aided Geometric Design 7 (1–4), 337–352, 1990

15. B. Hamann, I.J. Trotts, and G. Farin On Approximating Contours of the Piecewise Trilin-
ear Interpolant using triangular rational-quadratic Bézier patches, IEEE Transactions
on Visualization and Computer Graphics, 3(3), 315–337 1997

16. Tom Roxborough and Gregory M. Nielson, Tetrahedron Based, Least Squares, Progres-
sive Volume Models With Application To Freehand Ultrasound Data”, In Proceedings of
IEEE Visualization 2000, 93–100

17. S. Marlow and M.J.D. Powell, A Fortran subroutine for plotting the part of a conic that
is inside a given triangle, Report no. R 8336, Atomic Energy Research Establishment,
Harwell, United Kingdom, 1976

18. R. Van Uitert, D. Weinstein, C.R. Johnson, and L. Zhukov Finite Element EEG and MEG
Simulations for Realistic Head Models: Quadratic vs. Linear Approximations Special
Issue of the Journal of Biomedizinische Technik, Vol. 46, 32–34, 2001.

19. David F. Wiley, H.R. Childs, Bernd Hamann, Kenneth I. Joy, and Nelson Max, Using
Quadratic Simplicial Elements for Hierarchical Approximation and Visualization, Visu-
alization and Data Analysis 2002, Proceedings, SPIE - The International Society for
Optical Engineering, 32–43, 2002

Adaptive Contouring with Quadratic Tetrahedra 15

20. David F. Wiley, H.R. Childs, Bernd Hamann, Kenneth I. Joy, and Nelson Max, Best
Quadratic Spline Approximation for Hierarchical Visualization, Data Visualization 2002,
Proceedings of VisSym 2002

21. D. F. Wiley, H. R. Childs, B. F. Gregorski, B. Hamann, and K. I. Joy Contouring Curved
Quadratic Elements Data Visualization 2003, Proceedings of VisSym 2003

22. Jane Wilhelms and Allen Van Gelder Octrees for Faster Isosurface Generation ACM
Transaction in Graphics, 201–227, July 1992

On the Convexification of Unstructured Grids
from a Scientific Visualization Perspective

João L.D. Comba1, Joseph S.B. Mitchell2, and Cláudio T. Silva3

1 Federal University of Rio Grande do Sul (UFRGS)
comba@inf.ufrgs.br

2 Stony Brook University
jsbm@ams.sunysb.edu

3 University of Utah
csilva@cs.utah.edu

Summary. Unstructured grids are extensively used in modern computational solvers and,
thus, play an important role in scientific visualization. They come in many different types.
One of the most general types are non-convex meshes, which may contain voids and cavities.
The lack of convexity presents a problem for several algorithms, often causing performance
issues.

One way around the complexity of non-convex methods is to convert them into convex
ones for visualization purposes. This idea was originally proposed by Peter Williams in his
seminal paper on visibility ordering. He proposed to fill the volume between the convex hull
of the original mesh, and its boundary with “imaginary” cells. In his paper, he sketches two
algorithms for potentially performing this operation, but stops short of implementing them.

This paper discusses the convexification problem and surveys the relevant literature. We
hope it is useful for researchers interested in the visualization of unstructured grids.

1 Introduction

The most common input data type in Volume Visualization is a regular (Cartesian)
grid of voxels. Given a general scalar field in ℜ3, one can use a regular grid of voxels
to represent the field by regularly sampling the function at grid points (λ i,λ j,λk),
for integers i, j,k, and some scale factor λ ∈ ℜ, thereby creating a regular grid of
voxels. However, a serious drawback of this approach arises when the scalar field
is disparate, having nonuniform resolution with some large regions of space having
very little field variation, and other very small regions of space having very high
field variation. In such cases, which often arise in computational fluid dynamics and
partial differential equation solvers, the use of a regular grid is infeasible since the
voxel size must be small enough to model the smallest “features” in the field. Instead,
irregular grids (or meshes), having cells that are not necessarily uniform cubes, have
been proposed as an effective means of representing disparate field data.

18 João L.D. Comba et al.

Irregular-grid data comes in several different formats [37]. One very common
format has been curvilinear grids, which are structured grids in computational space
that have been “warped” in physical space, while preserving the same topological
structure (connectivity) of a regular grid. However, with the introduction of new
methods for generating higher quality adaptive meshes, it is becoming increasingly
common to consider more general unstructured (non-curvilinear) irregular grids, in
which there is no implicit connectivity information. Furthermore, in some applica-
tions disconnected grids arise.

Preliminaries

We begin with some basic definitions. A polyhedron is a closed subset of ℜ3 whose
boundary consists of a finite collection of convex polygons (2-faces, or facets) whose
union is a connected 2-manifold. The edges (1-faces) and vertices (0-faces) of a
polyhedron are simply the edges and vertices of the polygonal facets. A bounded
convex polyhedron is called a polytope. A polytope having exactly four vertices (and
four triangular facets) is called a simplex (tetrahedron). A finite set S of polyhedra
forms a mesh (or an unstructured grid) if the intersection of any two polyhedra from S
is either empty, a single common vertex, a single common edge, or a single common
facet of the two polyhedra; such a set S is said to form a cell complex. The polyhedra
of a mesh are referred to as the cells (or 3-faces). We say that cell C is adjacent to
cell C′ if C and C′ share a common facet. The adjacency relation is a binary relation
on elements of S that defines an adjacency graph.

A facet that is incident on only one cell is called a boundary facet. A boundary
cell is any cell having a boundary facet. The union of all boundary facets is the
boundary of the mesh. If the boundary of a mesh S is also the boundary of the convex
hull of S, then S is called a convex mesh; otherwise, it is called a non-convex mesh.
If the cells are all simplicies, then we say that the mesh is simplicial.

The input to our problem will be a given mesh S. We let c denote the number of
connected components of S. If c = 1, the mesh is connected; otherwise, the mesh is
disconnected. We let n denote the total number of edges of all polyhedral cells in the
mesh. Then, there are O(n) vertices, edges, facets, and cells.

We use a coordinate system in which the viewing direction is in the −z direction,
and the image plane is the (x,y) plane. We let ρu denote the ray from the viewpoint
v through the point u.

We say that cells C and C′ are immediate neighbors with respect to viewpoint
v if there exists a ray ρ from v that intersects C and C′, and no other cell C′′ ∈
S has a nonempty intersection C′′ ∩ ρ that appears in between the segments C ∩ ρ
and C′ ∩ ρ along ρ . Note that if C and C′ are adjacent, then they are necessarily
immediate neighbors with respect to very viewpoint v not in the plane of the shared
facet. Further, in a convex mesh, the only pairs of cells that are immediate neighbors
are those that are adjacent.

A visibility ordering (or depth ordering), <v, of a mesh S from a given viewpoint,
v∈ℜ3 is a total (linear) order on S such that if cell C ∈ S visually obstructs cell C′ ∈ S,
partially or completely, then C′ precedes C in the ordering: C′ <v C. A visibility

On the Convexification of Unstructured Grids 19

ordering is a linear extension of the binary behind relation, “<”, in which cell C
is behind cell C′ (written C < C′) if and only if C and C′ are immediate neighbors
and C′ at least partially obstructs C; i.e., if and only if there exists a ray ρ from
the viewpoint v such that ρ ∩C �= /0, ρ ∩C′ �= /0, ρ ∩C′ appears in between v and
ρ ∩C along ρ , and no other cell C′′ intersects ρ at a point between ρ ∩C and ρ ∩C′.
A visibility ordering can be obtained in linear time (by topological sorting) from
the behind relation, (S,<), provided that the directed graph on the set of nodes S
defined by (S,<) is acyclic. If the behind relation induces a directed cycle, then
no visibility ordering exists. Certain types of meshes, (e.g., Delaunay triangulations
[16]) are known to have a visibility ordering from any viewpoint, i.e., they do not
have cycles, and thus can be called acyclic meshes.

Spatial Decompositions

There is a rich literature in the computational geometry community on spatial decom-
positions. See Nielson, Hagen and Müller [25] for an overview of their importance
in the context of visualization applications.

Spatial decomposition is an essential tool in finite element analysis and geometric
modeling. Applications require high-quality mesh generation, in which the goal is to
triangulate domains with elements that are “nice” in some well-defined sense (e.g.,
triangulations having no large angle [3]). See the recent surveys of Bern and Epp-
stein [4], Bern and Plassmann [5], and Bern [2], and the book of Edelsbrunner [16],
for a comprehensive overview of the literature.

A problem extensively studied in the early years of computational geometry was
the polygon triangulation problem, in which the goal was to decompose a simple
polygon, or a polygon with holes, into triangles. A milestone result in two-dimensi-
onal triangulations was the discovery by Chazelle [6] of a linear-time algorithm for
triangulating a simple polygon. Optimization problems related to decompositions of
polygons into convex pieces have been studied in many variations; see Chazelle and
Dobkin [7] and the survey of Keil [21].

In three or more dimensions, decomposition of polyhedral domains into “trian-
gles” (tetrahedra) is substantially more complex. Ruppert and Seidel [27] have shown
that it is NP-complete to decide if a (non-convex) polyhedron can be tetrahedralized
without the addition of Steiner points. Chazelle and Palios [10] show that a (non-
convex) polyhedron having n vertices and r reflex edges can always be triangulated
(with the addition of Steiner points) in time O(nr + r2 logr) using O(n+ r2) tetrahe-
dra (which is worst-case optimal, since some polyhedra require Ω(n+ r2) tetrahedra
in any triangulation).

A regular triangulation in dimension d is the vertical projection of the “lower”
side of a convex polytope in one higher dimension. The most widely studied regular
triangulation is the Delaunay triangulation of a point set, which is the projection
of the downward-facing facets of the convex hull of the lifted images of the input
points onto the paraboloid in one higher dimension. An alternative characterization
of a Delaunay triangulation is that the (hyper)sphere determined by the vertices of
each triangle (simplex) of a Delaunay triangulation is “site-free,” not containing input

20 João L.D. Comba et al.

points in its interior. See Edelsbrunner [15], as well as the book of Okabe, Boots, and
Sugihara [26] and the recent survey articles of Fortune [17]

Chazelle et al. [8] have examined how selectively adding points to an input
set in three dimensions results in the worst-case size of the Delaunay triangulation
being provably subquadratic in the input size, even though the worst-case size of a
Delaunay triangulation of n points in space is Θ(n2).

The meshes we study here are decompositions of polyhedral domains and piece-
wise-linear complexes, in which the decomposition is required to respect the facets
of the input. A constrained Delaunay triangulation is a variation of a Delau-
nay triangulation that is constrained to respect the input shape, while being, in
some sense, “as Delaunay as possible.” Such decompositions have desirable prop-
erties, favoring more regular tetrahedra over “skinny” tetrahedra. This makes them
particularly appealing for interpolation, visualization, and finite element methods.
Two-dimensional constrained Delaunay triangulations have been studied by, e.g.,
Chew [11], De Floriani and Puppo [14], and Seidel [29]. More recently, three-
dimensional constrained Delaunay triangulations have been studied for their use in
mesh generation; see the surveys mentioned above [2, 4, 5, 16], as well as Weather-
ill and Hassan [39]. Shewchuk [30–34] has developed efficient methods for three-
dimensional constrained Delaunay triangulations, including, most recently [34],
provable techniques of inserting constraints and performing “flips” (local modifi-
cations to the mesh) to construct constrained Delaunay and regular triangulations
incrementally.

Exploiting Mesh Properties

Meshes that conform to properties such as “convexity” and “acyclicity” are quite spe-
cial, since they simplify the algorithms that work with them. Here are three instances
of visualization algorithms that exploit different properties of meshes:

• A classic technique for hardware-based rendering of unstructured meshes cou-
ples the Shirley-Tuchman technique for rendering a single tetrahedron [35] with
Williams’ MPVO cell-sorting algorithm [41]. For the case of acyclic convex
meshes, this is a powerful combination that leads to a linear-time algorithm
that is provably correct, i.e., one is guaranteed to get the right picture.1 When
the mesh is not convex or contains cycles, MPVO requires modifications that
complicate the algorithm and its implementation and lead to slower rendering
times [13, 22, 36].

• A recent hardware-based ray casting technique for unstructured grids has been
proposed by Weiler et al [40]. This is essentially a hardware-based implementa-
tion of the algorithm of Garrity [19]. Strictly speaking, this technique only works
for convex meshes. Due to the constraints of the hardware, instead of modify-
ing the rendering algorithm, the authors employ a process of “convexification”,
originally proposed by Williams [41], to handle general cells.

1The rendering technique of Shirley and Tuchman [35] requires certain modifications as
proposed in Stein et al [38].

On the Convexification of Unstructured Grids 21

• The complexities of the simplification of unstructured grids has led some re-
searchers to employ a convexification approach. As shown in Kraus and Ertl [23],
this greatly simplifies the simplification algorithm, since it becomes much sim-
pler to handle the simplification of the boundary of the mesh. Otherwise, expen-
sive global operations are necessary to guarantee that the simplified mesh does
not suffer from self intersections.

The “convexification” concept as proposed by Williams [41] is the process of
turning a non-convex mesh into a convex one. The basic idea is that this process can
be performed by adding a set of non-overlapping cells that fill up any holes or non-
convex regions up to the bounding box of the original mesh. Also, Williams proposes
that all the additional cells be marked “imaginary”. This is exactly the concept that
is used in the works of Weiler et al [40] and Kraus and Ertl [23]. In [23, 40], the
non-convex meshes were manually modified to be convex by the careful addition of
cells. This approach is not scalable to larger and more complex data.

In this paper, we discuss the general problem of convexification. We start by re-
viewing Williams’ work, and discuss a number of issues. Then, we talk about two
techniques for achieving convexification: techniques based on constrained and con-
forming Delaunay tetrahedralization, and techniques based on the use of a binary
space partition (BSP). Finally, we conclude the paper with some observations and
open questions. One of the goals of this paper is to help researchers be able to choose
among tools and options for convexification solutions.

2 Williams’ Convexification Framework

In his seminal paper [41] on techniques for computing visibility orderings for
meshes, Williams discusses the problem of handling non-convex meshes (Sect. 9).
(Also related is Sect. 8, which contains a discussion of cycles and the use of Delau-
nay triangulations.) After explaining some challenges of using his visibility sorting
algorithm on non-convex meshes, Williams says:

“Therefore, an important area of research is to find ways to convert non-
convex meshes into convex meshes, so that the regular MPVO algorithm
can be used.”

Williams proposes two solution approaches to the problem; each relies on “treat-
ing the voids and cavities as ‘imaginary’ cells in the mesh.” Basically, he proposes
that such non-convex regions could be either triangulated or decomposed into con-
vex pieces, and their parts marked as imaginary cells for the purpose of rendering.
Implementing this “simple idea” is actually not easy. In fact, after discussing this
general approach, Williams talks about some of the challenges, and finishes the sec-
tion with the following remark:

“The implementation of the preprocessing methods, described in this sec-
tion, for converting a non-convex mesh into a convex mesh could take a very

22 João L.D. Comba et al.

significant amount of time; they are by no means trivial. The implementa-
tion of a 3D conformed Delaunay triangulation is still a research question at
this time.”

In fact, Williams does not provide an implementation of any of the two proposed
convexification algorithms. Instead, he developed a variant of MPVO that works on
non-convex meshes at the expense of not being guaranteed to generate correct visi-
bility orders.

The first convexification technique that Williams proposes is based on triangu-
lating the data using a conforming Delaunay triangulation. The idea here is to keep
adding more points to the dataset until the original triangulation becomes a Delaunay
triangulation. This is discussed in more details in the next section.

The second technique Williams sketches is based on the idea of applying a de-
composition algorithm to each of the non-convex polyhedra that constitute the set
CH(S) \ S, which is the set difference between the convex hull of the mesh and the
mesh itself. In general, CH(S)\S is a union of highly non-convex polyhedra of com-
plex topology. Each connected component of CH(S)\S is a non-convex polyhedron
that can be decomposed into convex polyhedra (e.g., tetrahedra) using, for example,
the algorithm of Chazelle and Palios [10], which adds certain new vertices (Steiner
points), whose number depends on the number of “reflex” edges of the polyhedron.
In general, non-convex polyhedra require the addition of Steiner points in order to
decompose them; in fact, it is NP-complete to decide if a polyhedron can be tetrahe-
dralized without the addition of Steiner points [27].

2.1 Issues

Achieving Peter Williams’s vision of a simple convexification algorithm is much
harder than it appears at first. The problem is peculiar since we start with an exist-
ing 3D mesh (likely to be a tetrahedralization) that contains not only vertices, edges,
and triangles, but also volumetric cells, which need to be respected. Furthermore,
the mesh is not guaranteed to respect global geometric criteria (e.g., of being Delau-
nay). Most techniques need to modify the original mesh in some way. The goal is to
“disturb” it as little as possible, preserving most of its original properties.

In particular, several issues need to be considered:

Preserving Acyclicity. Even if the original mesh has no cycles, the convexification
process can potentially cause the resulting convex mesh to contain cycles. Certain
techniques, such as constructing a conforming Delaunay tetrahedralization, are guar-
anteed to generate a cycle-free mesh. Ideally, the convexification procedure will not
create new cycles in the mesh.

Output Size. For the convexification technique to be useful the number of cells
added by the algorithm needs to be kept as small as possible. Ideally, there is a prov-
able bound on the number of cells as well as experimental evidence that for typical
input meshes, the size of the output mesh is not much larger than the input mesh (i.e.,
the set of additional cells is small).

On the Convexification of Unstructured Grids 23

Computational and Memory Complexity. Other important factors are the process-
ing time and the amount of memory used in the algorithm. In order to be practical on
the meshes that arise in computational experiments (having on the order of several
thousand to a few million cells), convexification algorithms must run in near-linear
time, in practice.

Boundary and Interior Preservation. Ideally, the convexification procedure adds
cells only “outside” of the original mesh. Furthermore, the newly created cells should
exactly match the original boundary of the mesh. In general, this is not feasible with-
out subdividing or modifying the original cells in some way (e.g., to break cycles,
or to add extra geometry in order to respect the Delaunay empty-circumsphere con-
dition). Some techniques will only need to modify the cells that are at or near the
original boundary while others might need to perform more global modifications
that go all the way “inside” the original mesh. One needs to be careful when making
such modifications because of issues related to interpolating the original data values
in the mesh. Otherwise, the visualization algorithm may generate incorrect pictures
leading to wrong comprehension.

Robustness and Degeneracy Handling. It is very important for the convexifica-
tion algorithms to handle real data. Large scientific datasets often use floating-point
precision for specifying vertices, and are likely to have a number of degeneracies.
For instance, these datasets are likely to have many vertices (sample points) that
are coplanar, or that lie on a common cylinder or sphere, etc., since the underlying
physical model may have such features.

3 Delaunay-Based Techniques

Delaunay triangulations and Delaunay tetrahedralizations (DT) are very well known
and studied geometric entities (see, e.g., [16, Chap. 5]). A basic property that char-
acterizes this geometric structure is the fact that a tetrahedron belongs to the DT of
a point set if the circumsphere passing through the four vertices is empty, meaning
no other point lies inside the circumsphere. Under some non-degeneracy conditions
(no 5 points co-spherical), this property completely characterizes DTs and the DT is
unique.

Part of the appeal of Delaunay tetrahedralizations (see Fig. 1(b)) is the relative
ease of computing the tetrahedralizations. As a well-studied structure, often used
in mesh generation, standard codes are readily available that compute the DT. The
practical need of forcing certain faces to be part of the tetrahedralizations led to the
development of two main approaches: conforming Delaunay tetrahedralizations and
constrained Delaunay tetrahedralizations. Here, we only give a high-level discussion
on the intuition behind these ideas; for details see, e.g., [32]

Given a set of faces { fi} (Fig. 1(a)) that need to be included in a DT, the idea
behind conforming Delaunay tetrahedralizations (Fig. 1(c)) is to add points to the
original input set in order that the DT of the new point set (consisting of the orig-
inal points plus the newly added points) is such that each face fi can be expressed

24 João L.D. Comba et al.

(a) Input geometry (b) DT

(c) Conforming DT (d) Constrained DT

Fig. 1. Different triangulation techniques. (a) The input geometry; (b) the Delaunay trian-
gulation; (c) a conforming Delaunay triangulation with input geometry marked in red – note
how the input faces have been broken into multiple pieces; and, (d) the constrained Delaunay
triangulation. Images after Shewchuk [31]

as the union of a collection of faces of the DT. The newly added points are often
called Steiner points. A challenge in computing a conforming DT is minimizing the
number of Steiner points and avoiding the generation of very small tetrahedra. While
techniques for computing the traditional DT of point sites are well known, and reli-
able code exists, conforming DT algorithms are still in active development [12, 24].
The particular technique for adding Steiner points affects the termination of the al-
gorithm, and also the number and quality of the added geometry.

For convexification purposes, the conforming DT seems to be a good solution
upon first examination, and was one of the original techniques Williams proposed
for the problem. One of the main benefits is that since a conforming DT is actually
a DT of a larger point set, it must be acyclic. On closer inspection, we can see that
conforming DTs have a number of potential weaknesses. First, if the original mesh
was not a DT, we may need to completely re-triangulate it. This means that internal
structures of the mesh, which may have been carefully designed by the modeler, are
potentially lost. In addition, the available experimental evidence [12] suggests that a
considerable number of Steiner points may be necessary. Part of the problem is that

On the Convexification of Unstructured Grids 25

when a face fi is pierced by the DT, adding a local point p to resolve this issue can
potentially result in modifications to the mesh deep within the triangulation, not just
in the neighborhood of the point p. Another potential issue with using a conforming
DT is the lack of available robust codes for the computation. This is an issue that we
expect soon to be resolved, with advances under way in the computational geometry
community.

The constrained DT (Fig. 1(d)) is a different way to resolve the problem of re-
specting a given set of faces. While in a conforming DT we only had to make sure that
each given face fi can be represented as the union of a set of faces in the conforming
DT, for a constrained DT we insist that each face fi appears exactly as a face in the
tetrahedralization. In order to do this, we must relax the empty-circumsphere crite-
rion that characterizes a DT; thus, a constrained DT is not (in general) a Delaunay
tetrahedralization. The definition of the constrained DT requires a modification to the
empty-circumsphere criteria in which we use the input faces { fi} as blockers of vis-
ibility and empty-circumsphere tests are computing taking that into account. That is,
when performing the tests, we need to discard certain geometry when the sphere in-
tersects one (or more) of the input faces. We refer the reader to [32] and [16, Chap. 2]
for a detailed discussion. In regions of the mesh “away from” the input faces, a con-
strained DT looks very much like a standard DT. In fact, they share many of the same
properties [30].

Because we are not allowed to add Steiner points when building a constrained
DT, they have certain (theoretical) limitations. A particularly intriguing possibility
is that it may not be possible to create one because some polyhedra cannot be tetra-
hedralized without adding Steiner points. (In fact, it is NP-complete to decide if a
polyhedron can be tetrahedralized without adding Steiner points [27].) Further, con-
strained DTs suffer from some of the same issues as conforming DTs in that they
may require re-triangulation of large portions of the original mesh. While it may be
possible to maintain the Delaunay property on the “internal” portions of the mesh,
away from the boundary faces, it is unclear what effect the non-Delaunay portions
of the mesh near the boundary have on global properties, such as acyclicity, of the
mesh. At this point, some practical issues related to constrained DTs are an area of
active investigation [30, 33]; to our knowledge, there is no reliable code available for
computing them.

Whether using a conforming or a constrained Delaunay tetrahedralization, the
robust computation of the structure for very large point sets is not trivial. Even the
best codes take a long time and use substantial amounts of memory. Some of the
interesting non-convex meshes we would like to handle have on the order of ten mil-
lion tetrahedra or more. In the case that the whole dataset needs to be re-triangulated,
it is unclear if these techniques would be practical.

4 Direct Convexification Approaches Using BSP-trees

The Binary Space Partitioning tree (BSP-tree) is a geometric structure that has
many interesting properties that can be explored in the convexification problem. For

26 João L.D. Comba et al.

(a) (b)

(c) (d)

Fig. 2. Using BSP-trees to fill space. (a) The input non-convex mesh; (b) the BSP decom-
position using the boundary facets of the input mesh; (c) the corresponding BSP tree; and, (d)
the input mesh augmented with BSP cells

instance, the BSP-tree induces a hierarchical partition of the underlying space into
convex cells that allows visibility ordering to be extracted by a priority-search driven
by the viewpoint position (in a near-to-far or far-to-near fashion) [18]. In Fig. 2 we
show how the BSP is used to capture the structure of the empty space.

4.1 Implicit BSP-Tree Regions

The visibility-ordering produced by the BSP-tree was explored in [13] to pro-
duce missing visibility relations in projective volume rendering. The approach re-
lies on using the BSP-trees to represent the empty space surrounding a non-convex
mesh. Since the empty space CH(S) \ S and mesh S have a common intersection
at the boundary facets of the mesh S, a BSP-tree was constructed using cuts along
the supporting planes of the boundary facets. The construction algorithm starts with

On the Convexification of Unstructured Grids 27

the collection of boundary facets of the mesh, and uses an appropriate heuristic
to choose a cut at each step to partition the space. The partition process associates
each facet with the corresponding half-space (two half-spaces if a facet is split), stor-
ing the geometric representations of the boundary facets along the partitioning plane
at the nodes of the BSP. The process is recursively repeated at each subtree until a
stopping criterion is satisfied.

The resulting BSP-tree partitions the space into convex cells that are either inter-
nal or external to the mesh. If a consistent orientation for the boundary facet normals
is used, these sets can be distinguished by just checking to which side a given leaf
node is with respect to its parent (see Fig. 2).

In this approach no effort was made to enumerate explicitly the convex regions
corresponding to the empty space in the BSP-tree. However, their implicit represen-
tation was used to help provide the missing visibility ordering information in the
empty space surrounding the mesh.

Central to this approach is the extraction of visibility relations between interior
regions (mesh cells) and exterior regions (the convex cells of the empty space in-
duced by the BSP-tree). The boundary facets of the mesh S are the common bound-
ary between these two types of regions. The approach used in [13] explores one way
to obtain the visibility relations, using the visibility ordering produced by the BSP-
tree to drive this process. This is done by using a visibility ordering traversal in the
BSP-tree with respect to a given viewpoint (in a far-to-near fashion). When an inter-
nal node is visited we reach a boundary facet of the mesh. Only facets facing away
from the viewing direction impose visibility ordering restrictions, and, for these, two
situations can arise, as follows.

The first case happens when the facet stored at the node was not partitioned by
the BSP-tree, and therefore is entirely contained in the hyperplane (visible). Visiting
an entirely visible boundary facet allows the visibility ordering restriction imposed
by this facet into the incident mesh cell to be lifted, which may lead to the inclusion
of the cell in the visibility ordering if all restrictions to this cell were lifted.

The second case happens when the boundary facet is partially stored at the BSP
node, which indicates that is was partitioned by another cut in the BSP. In this case it
is not possible to lift the visibility ordering restriction, since other fragments were not
yet reached by the BSP traversal (and therefore not entirely visible). At the moment
that the last facet fragment is visited, a cell may be able to be included in the visibility
ordering. The solution proposed in [13] uses a counter to accumulate the number of
facet fragments created, decrementing this counter for each fragment visited, and
lifting the conditions imposed by the fragment when the counter gets to zero.

However, the partition of boundary facets by cuts in the BSP-tree has additional
side effects that need to be taken into consideration. In such cases, the BSP traversal
is not enough to produce a valid visibility ordering for mesh cells. This happens
because the BSP establishes a partial ordering between the convex cells it defines,
and a mesh cell that is partitioned by a BSP cut lies in different convex cells of the
BSP. In Fig. 3 we have an example in which a cell C1 cannot enter the visibility
ordering because a partially visited cell has facet fragments that were not yet visited.

28 João L.D. Comba et al.

(a) (b)

Fig. 3. Partially projected cells. Two cells, (a), and the corresponding BSP-tree, (b). The
moment that the traversal reaches node c, cell C1 cannot be projected, but has to wait until a
partially visited cell C2 has been projected

If the ordering to be produced is between the cell C1 and the two sub-cells of C2,
then the BSP ordering suffices.

Cells that have partially visited facets need special treatment; the collection of all
such cells at any given time is maintained in a partially projected cells list (PPC). It
can be shown that a valid visibility ordering can be produced by the partial orderings
provided by mesh adjacencies (<ADJ), the ordering produced by the BSP-tree traver-
sal (<BSP), and an additional intersection involving cells in the PPC list (<PPC). The
PPC test increases the complexity of the algorithm; however, it is guaranteed not to
generate cycles.

4.2 Explicit BSP-trees Regions

The implicit use of the convex regions induced by the BSP-tree in the previous ap-
proach required a BSP-traversal to drive the visibility ordering procedure. Another
approach is to compute explicitly such convex regions (filler cells) and combine them
with the mesh to form a convex mesh.

The construction of the BSP-tree uses, as before, partitioning cuts defined by the
planes through the boundary facets, except that a different heuristic is used to select
the cuts. The algorithm that computes the filler cells needs to perform the following
tasks:

• Computing the geometry of the filler cells:
Extracting convex regions associated with nodes of the BSP is straightforward; it
can be done in a top-down manner, starting at the root of the tree with a bounding
box that is guaranteed to contain the entire model. In order to obtain the convex
regions of the left and right children, the convex region associated with the node

On the Convexification of Unstructured Grids 29

Fig. 4. Geometric computation of filler cells. Illustration of the recursive procedure that
applies a partitioning operation to the cell of a node

is partitioned by the hyperplane. The resulting two convex regions are associated
with the children nodes, and the process continues recursively. Figure 4 illustrates
this process.

• Computing topological adjacencies between mesh and filler cells:
The extraction of topological information in the BSP is not as straightforward.
One difficulty that arises is the fact that a cell may be adjacent, by a single
facet, to more than one cell. (The cells do not form a cell complex.) The fact
that the BSP has arbitrary direction cuts makes the task even harder, requiring
an approach that handles numerical degeneracies. The topological adjacencies
that need to be computed include filler-to-filler adjacencies, mesh-to-filler and
filler-to-mesh adjacencies (see Fig. 5).

This convexification approach needs to satisfy the requirements posed before;
we briefly discuss them in the context of this approach: Preserving Acyclicity:

(a) (b)

Fig. 5. Topological adjacencies. Filler-to-filler adjacency relations (a) and mesh-to-filler (and
vice-versa) relations (b) that need to be computed

30 João L.D. Comba et al.

Although the internal adjacencies of the mesh may not lead to cycles in the visi-
bility ordering, the addition of filler cells may lead to an augmented model (mesh
plus filler cells) that contains cycles. Since the mesh is assumed acyclic, cycles do
not involve only mesh cells, and from the visibility ordering property of BSP-trees,
cycles do not involve only filler cells. Cycles will not involve runs of several filler
to mesh cells (filler-mesh), or vice-versa (mesh-filler), since each one of the runs is
acyclic. However, cycles can happen in filler-mesh-filler or mesh-filler-mesh cells.

It is still an open problem how to design techniques to avoid or to minimize
the appearance of cycles. (See [1, 9] for theoretical results on cutting lines to avoid
cycles.) Also, it would be interesting to establish bounds on the number of cells in a
cycle.

Output Size: The number of cells generated is directly related to the size of the
BSP-tree. Although the BSP can have worst-case Θ(n2) in ℜ3, in practice the use of
heuristics reduces the typical size of a BSP to linear. Preliminary tests show that one
can expect an increase of 5-10% in the number of cells produced.

Computational and Memory Complexity: The computational cost of the algorithm
is proportional to the time required to build a BSP for the boundary faces. The ex-
traction of geometric and topological information of the BSP is proportional to the
time to perform a complete traversal of the BSP.

Boundary and Interior Preservation: The BSP approach naturally preserves the
boundary and interior of the mesh, since it only constructs cells that are outside S.
This requires that the mesh has the interior well defined, i.e., each connected com-
ponent of the boundary is a 2-manifold. A consistent orientation of boundary facet
normals allows an easy classification of which cells of the BSP are interior or exterior
to the mesh.

Robustness and Degeneracy Handling: The fundamental operations used in the
construction of BSP-trees are point-hyperplane classification and the partition of a
facet by a hyperplane. The fact that geometric computations rely on only these two
operations allows better control of issues of numerical precision and floating point
errors. Of course, unless one uses exact geometric computation [28, 42], numeri-
cal errors are inevitable; however, several geometric and topological predicates can
be checked to verify if a given solution is numerically consistent. The literature on
solid modeling has important suggestions on how to do this [20], as in the problem
of converting CSG solids to a boundary representation. The possibility of having
nearly coplanar boundary facets needs to be treated carefully, since it may require
the partition of a facet by a nearly coplanar hyperplane.

The filler cells obtained after a convexification algorithm need to be added to the
non-convex mesh, with updates to the topological relationships. In particular, three
new types of topological relationships need to be added: filler to filler adjacencies,
filler to mesh adjacencies and mesh to filler adjacencies. This problem is compli-
cated by the fact that adjacencies do not occur at a single facet (i.e., a cell can be
adjacent to more than one cell, as the cells do not necessarily form a cell complex).
Again, geometric and topological predicates that guarantee the validity of topological

On the Convexification of Unstructured Grids 31

(a) (b)

(c) (d)

Fig. 6. Explicit BSP regions. Two sample meshes ((a) and (c)) and the correspond BSP-
regions that fill space ((b) and (d))

relationships need to be enforced (e.g., if a cell ci is adjacent to c j by way of facet
fm, then there must exist a facet fn such that c j is adjacent to ci by way of facet fn).

5 Final Remarks

This work presents a brief summary of the current status of strategies to compute
a convexification of space with respect to a non-convex mesh. We present a formal
definition of the problem and summarize the requirements that one solution needs to
fulfill. We discuss two possible solutions. The first is based in Delaunay triangula-
tions; we point out some of the difficulties faced by this approach. We discuss the
use of BSP-trees as a potentially better and more practical solution to the problem.
However, many problems are still open. For example, what is a practical method for
convexification that avoids the generation of cycles in the visibility relationship?

32 João L.D. Comba et al.

Acknowledgements

We thank Dirce Uesu for help in the preparation of images for this paper. Fig-
ure 1 was generated using Jonathan Shewchuk’s Triangle software. The work of
João L. D. Comba is supported by a CNPq grant 540414/01-8 and FAPERGS grant
01/0547.3. Joseph S.B. Mitchell is supported by NASA Ames Research (NAG2-
1325), the National Science Foundation (CCR-0098172), Metron Aviation, Honda
Fundamental Research Lab, and grant No. 2000160 from the U.S.-Israel Binational
Science Foundation. Cláudio T. Silva is partially supported by the DOE under the
VIEWS program and the MICS office, and the National Science Foundation under
grants CCF-0401498, EIA-0323604, and OISE-0405402.

References

1. M. de Berg, M. Overmars, and O. Schwarzkopf. Computing and verifying depth orders.
SIAM J. Comput., 23:437–446, 1994.

2. M. Bern. Triangulations and mesh generation. In J. E. Goodman and J. O’Rourke, editors,
Handbook of Discrete and Computational Geometry (2nd Edition), chapter 25, pp. 563–
582. Chapman & Hall/CRC, Boca Raton, FL, 2004.

3. M. Bern, D. Dobkin, and D. Eppstein. Triangulating polygons without large angles. In-
ternat. J. Comput. Geom. Appl., 5:171–192, 1995.

4. M. Bern and D. Eppstein. Mesh generation and optimal triangulation. In D.-Z. Du and
F. K. Hwang, editors, Computing in Euclidean Geometry, volume 1 of Lecture Notes
Series on Computing, pp. 23–90. World Scientific, Singapore, 1992.

5. M. Bern and P. Plassmann. Mesh generation. In J.-R. Sack and J. Urrutia, editors, Hand-
book of Computational Geometry, pp. 291–332. Elsevier Science Publishers B.V. North-
Holland, Amsterdam, 2000.

6. B. Chazelle. Triangulating a simple polygon in linear time. Discrete Comput. Geom.,
6(5):485–524, 1991.

7. B. Chazelle and D. P. Dobkin. Optimal convex decompositions. In G. T. Toussaint, editor,
Computational Geometry, pp. 63–133. North-Holland, Amsterdam, Netherlands, 1985.

8. B. Chazelle, H. Edelsbrunner, L. Guibas, J. Hershberger, R. Seidel, and M. Sharir. Select-
ing heavily covered points. SIAM J. Comput., 23:1138–1151, 1994.

9. B. Chazelle, H. Edelsbrunner, L. J. Guibas, R. Pollack, R. Seidel, M. Sharir, and
J. Snoeyink. Counting and cutting cycles of lines and rods in space. Comput. Geom.
Theory Appl., 1:305–323, 1992.

10. B. Chazelle and L. Palios. Triangulating a non-convex polytope. Discrete Comput. Geom.,
5:505–526, 1990.

11. L. P. Chew. Constrained Delaunay triangulations. Algorithmica, 4:97–108, 1989.
12. D. Cohen-Steiner, E. Colin de Verdière, and M. Yvinec. Conforming Delaunay triangu-

lations in 3d. In Proc. 18th Annu. ACM Sympos. Comput. Geom., 2002.
13. J. L. Comba, J. T. Klosowski, N. Max, J. S. Mitchell, C. T. Silva, and P. Williams.

Fast polyhedral cell sorting for interactive rendering of unstructured grids. In Computer
Graphcs Forum, volume 18, pp. 367–376, 1999.

14. L. De Floriani and E. Puppo. A survey of constrained Delaunay triangulation algorithms
for surface representaion. In G. G. Pieroni, editor, Issues on Machine Vision, pp. 95–104.
Springer-Verlag, New York, NY, 1989.

On the Convexification of Unstructured Grids 33

15. H. Edelsbrunner. Algorithms in Combinatorial Geometry, volume 10 of EATCS Mono-
graphs on Theoretical Computer Science. Springer-Verlag, Heidelberg, West Germany,
1987.

16. H. Edelsbrunner. Geometry and Topology for Mesh Generation. Cambridge, 2001.
17. S. Fortune. Voronoi diagrams and Delaunay triangulations. In J. E. Goodman and

J. O’Rourke, editors, Handbook of Discrete and Computational Geometry (2nd Edition),
chapter 23, pp. 513–528. Chapman & Hall/CRC, Boca Raton, FL, 2004.

18. H. Fuchs, Z. M. Kedem, and B. Naylor. On visible surface generation by a priori tree
structures. Comput. Graph., 14(3):124–133, 1980. Proc. SIGGRAPH ’80.

19. M. P. Garrity. Raytracing irregular volume data. Computer Graphics (San Diego Work-
shop on Volume Visualization), 24(5):35–40, Nov. 1990.

20. C. Hoffmann. Geometric and Solid Modeling. Morgan-Kaufmann, San Mateo, CA, 1989.
21. J. M. Keil. Polygon decomposition. In J.-R. Sack and J. Urrutia, editors, Handbook of

Computational Geometry, pp. 491–518. Elsevier Science Publishers B.V. North-Holland,
Amsterdam, 2000.

22. M. Kraus and T. Ertl. Cell-projection of cyclic meshes. In IEEE Visualization 2001, pp.
215–222, Oct. 2001.

23. M. Kraus and T. Ertl. Simplification of Nonconvex Tetrahedral Meshes. In Farin, G. and
Hagen, H. and Hamann, B., editor, Hierarchical and Geometrical Methods in Scientific
Visualization, pp. 185–196. Springer-Verlag, 2002.

24. M. Murphy, D. M. Mount, and C. W. Gable. A point-placement strategy for conforming
Delaunay tetrahedralization. In Proc. 11th ACM-SIAM Sympos. Discrete Algorithms, pp.
67–74, 2000.

25. G. M. Nielson, H. Hagen, and H. Müller. Scientific Visualization: Overviews, Methodolo-
gies, and Techniques. IEEE Computer Society Press, Washington, DC, 1997.

26. A. Okabe, B. Boots, and K. Sugihara. Spatial Tessellations: Concepts and Applications
of Voronoi Diagrams. John Wiley & Sons, Chichester, UK, 1992.

27. J. Ruppert and R. Seidel. On the difficulty of triangulating three-dimensional non-convex
polyhedra. Discrete Comput. Geom., 7:227–253, 1992.

28. S. Schirra. Robustness and precision issues in geometric computation. In J.-R. Sack
and J. Urrutia, editors, Handbook of Computational Geometry, chapter 14, pp. 597–632.
Elsevier Science Publishers B.V. North-Holland, Amsterdam, 2000.

29. R. Seidel. Constrained Delaunay triangulations and Voronoi diagrams with obstacles.
Technical Report 260, IIG-TU Graz, Austria, 1988.

30. J. R. Shewchuk. A condition guaranteeing the existence of higher-dimensional con-
strained Delaunay triangulations. In Proc. 14th Annu. ACM Sympos. Comput. Geom.,
pp. 76–85, 1998.

31. J. R. Shewchuk. Constrained Delaunay tetrahedralizations, bistellar flips, and provably
good boundary recovery. Talk slides; available from author’s web page.

32. J. R. Shewchuk. Lecture notes on Delaunay mesh generation. Technical report, De-
partment of Electrical Engineering and Computer Science, University of California at
Berkeley, 1999.

33. J. R. Shewchuk. Sweep algorithms for constructing higher-dimensional constrained De-
launay triangulations. In Proc. 16th Annu. ACM Sympos. Comput. Geom., pp. 350–359,
2000.

34. J. R. Shewchuk. Updating and constructing constrained Delaunay and constrained regular
triangulations by flips. In Proc. 19th Annu. ACM Sympos. Comput. Geom., pp. 181–190,
2003.

34 João L.D. Comba et al.

35. P. Shirley and A. Tuchman. A polygonal approximation to direct scalar volume rendering.
In San Diego Workshop on Volume Visualization, volume 24 of Comput. Gr, pp. 63–70,
Dec. 1990.

36. C. T. Silva, J. S. Mitchell, and P. L. Williams. An exact interactive time visibility ordering
algorithm for polyhedral cell complexes. In 1998 Volume Visualization Symposium, pp.
87–94, Oct. 1998.

37. D. Speray and S. Kennon. Volume probes: Interactive data exploration on arbitrary grids.
Computer Graphics (San Diego Workshop on Volume Visualization), 24(5):5–12, Novem-
ber 1990.

38. C. Stein, B. Becker, and N. Max. Sorting and hardware assisted rendering for volume
visualization. 1994 Symposium on Volume Visualization, pp. 83–90, October 1994. ISBN
0-89791-741-3.

39. N. P. Weatherill and O. Hassan. Efficient three-dimensional Delaunay triangulation with
automatic point creation and imposed boundary constraints. International Journal for
Numerical Methods in Engineering, 37:2005–2039, 1994.

40. M. Weiler, M. Kraus, M. Merz, and T. Ertl. Hardware-Based Ray Casting for Tetrahedral
Meshes. In Proceedings of IEEE Visualization 2003, pp. 333–340, 2003.

41. P. L. Williams. Visibility ordering meshed polyhedra. ACM Transaction on Graphics,
11(2):103–125, Apr. 1992.

42. C. Yap. Towards exact geometric computation. Comput. Geom. Theory Appl., 7(1):3–23,
1997.

Brain Mapping Using Topology Graphs Obtained
by Surface Segmentation

Fabien Vivodtzev1, Lars Linsen2,
Bernd Hamann2, Kenneth I. Joy2, and Bruno A. Olshausen3

1 Laboratoire GRAVIR (CNRS, INP Grenoble, INRIA, UJF).
fabien.vivodtzev@imag.fr

2 Institute for Data Analysis and Visualization (IDAV), Department of Computer Science,
University of California, Davis. {llinsen}@ucdavis.edu,
{hamann|joy}@cs.ucdavis.edu

3 Center for Neuroscience, Department of Psychology, University of California, Davis.
baolshausen@ucdavis.edu

Summary. Brain mapping is a technique used to alleviate the tedious and time-consuming
process of annotating brains by mapping existing annotations from brain atlases to individual
brains. We introduce an automated surface-based brain mapping approach. After reconstruct-
ing a volume data set (trivariate scalar field) from raw imaging data, an isosurface is extracted
approximating the brain cortex. The cortical surface can be segmented into gyral and sulcal
regions by exploiting geometrical properties. Our surface segmentation is executed at a coarse
level of resolution, such that discrete curvature estimates can be used to detect cortical regions.
The topological information obtained from the surface segmentation is stored in a topology
graph. A topology graph contains a high-level representation of the geometrical regions of a
brain cortex. By deriving topology graphs for both atlas brain and individual brains, a graph
node matching defines a mapping of brain cortex regions and their annotations.

1 Introduction

Annotating brains is a tedious and time-consuming process and can typically only
be performed by an expert. A way to alleviate and accelerate the process is to take
an already existing completely annotated brain and map its annotations onto other
brains. The three-dimensional, completely annotated brain is called neuroanatomical
brain atlas. An atlas represents a single brain or unified information collected from
several “healthy” brains of one species. The digital versions of atlas brains are stored
in databases [30]. Neuroscientists can benefit from this collected information by con-
necting to the database, accessing atlas brains, and mapping annotations onto their
own data sets.

We propose an automated brain mapping approach that consists of several
processing steps leading from three-dimensional imaging data to mapped cortical
surfaces. Data sets are typically obtained in a raw format, which is the output of

36 F. Vivodtzev et al.

some imaging technique, such as functional magnetic resonance imaging (fMRI),
given as a stack of aligned two-dimensional images. Isosurface extraction is used to
obtain a surface representation of the brain cortex.

The shape of the brain cortex is complex, having many winding folds and creases,
but its main characteristic can be described by alternating convex and concave re-
gions called gyri and sulci. We use a multiresolution surface representation, since
fine details are not present at a coarse level of resolution, while more global gyral
and sulcal brain structures still are. We detect gyri and sulci by exploiting discrete
curvature estimates, and segment the cortical surface into distinct regions based on
curvature. The curvature-based segmentation is independent of the size of the seg-
ments. Thus, it is capable of extracting cortical regions of varying size and of de-
tecting corresponding cortical regions in atlas and user brains, even if a region’s size
varies substantially for two brains being compared.

Curvature-based segmentation leads to a topological characterization of the sur-
face. A topology graph is used to store the topological surface information at a high
level. The brain mapping is executed by generating topology graphs for atlas brain
and user brains and finding node correspondences for the graphs, where each node
represents a cortical region.

2 Related Work

First approaches in brain mapping used rigid models and spatial distributions. In [26],
a stereotactic atlas is expressed in an orthogonal grid system, which is rescaled to a
patient brain, assuming one-to-one correspondences of specific landmarks. Similar
approaches are discussed in [2, 5, 11] using elastic transformations. The variation
in brain shape and geometry is of significant extent between different individuals
of one species. Static rigid models are not sufficient to describe appropriately such
inter-subject variabilities.

Deformable models were introduced as a means to deal with the high complexity
of brain surfaces by providing atlases that can be elastically deformed to match a
patient brain. Deformable models use snakes [20], B-spline surfaces [24], or other
surface-based deformation algorithms [8, 9]. Feature matching is performed by mini-
mizing a cost function, which is based on an error measure defined by a sum measur-
ing deformation and similarity. The definition of the cost function is crucial. Some
approaches rely on segmentation of the main sulci guided by a user [4, 27, 29], while
others automatically generate a structural description of the surface.

Level set methods, as described in [21], are widely used for convex shapes. These
methods, based on local energy minimization, achieve shape recognition requiring
little known information about the surface. Initialization must be done close to sur-
face boundaries, and interactive seed placement is required. Several approaches have
been proposed to perform automatically the seeding process and adapt the external
propagation force [1], but small features can still be missed. Using a multiresolution
representation of the cortical models, patient and atlas meshes are matched progres-
sively by the method described in [16]. Folds are annotated according to size at a

Brain Mapping from Topology Graphs and Surface Segmentation 37

given resolution. The choice of the resolution is crucial. It is not guaranteed that
same features are present at the same resolution for different brains.

Many other automatic approaches exist, including techniques using active rib-
bons [10, 13], graph representations [3, 22], and region growing [18]. A survey is
provided in [28]. Even though some of the approaches provide good results, the
highly non-convex shape of the cortical surface, in combination with inter-subject
variability and feature-size variability, leads to problems and may prevent a correct
feature recognition/segmentation and mapping without user intervention.

Our approach is an automated approach that can deal with highly non-convex
shapes, since we segment the brain into cortical regions, and with feature-size as well
as inter-subject variability, since it is based on discrete curvature behavior. Moreover,
isosurface extraction, surface segmentation, and topology graphs are embedded in a
graphical system supporting visual understanding.

3 Brain Mapping

Our brain mapping approach is based on a pipeline of automated steps. Figure 1
illustrates the sequence of individual processing steps.

The input for our processing pipeline is discrete imaging data in some raw format.
Typically, imaging techniques produce stacks of aligned images. If the images are not

Mapped Brain Cortex

Registration

Smoothing

Multiresolution Representation

Imaging Data

Curvature−based Segmentation

Isosurface Extraction

Topology Graph

Graph Mapping

Fig. 1. Processing pipeline: from imaging data in raw format to mapped brain cortex surface

38 F. Vivodtzev et al.

aligned, appropriate alignment tools must be applied [25]. Volumetric reconstruction
results in a volume data set, a trivariate scalar field.

Depending on the used imaging technique, a scanned data set may contain more
or less noise. We mainly operate on fMRI data sets, thus having to deal with sig-
nificant noise levels. We use a three-dimensional discrete Gaussian smoothing filter,
which eliminates high-frequency noise without affecting visibly the characteristics of
the three-dimensional scalar field. The size of the Gaussian filter must be small. We
use a 3×3×3 mask locally to smooth every value of a rectilinear, regular hexahedral
mesh. Figure 2 shows the effect of the smoothing filter applied to a three-dimensional
scalar field by extracting isosurfaces from the original and filtered data set.

(a) Without Gaussian filter (b) With Gaussian filter

Fig. 2. Smoothing of volumetric scalar field visualized by extracting isosurfaces from original
and filtered data

After this preprocessing step, we extract the geometry of the brain cortex from the
volume data. The boundary of the brain cortex is obtained via an isosurface extraction
step, as described in Sect. 4. If desired, isosurface extraction can be controlled and
supervised in a fashion intuitive to neuroscientists.

Once the geometry of the brain cortices is available for both atlas brain and a
user brain, the two surfaces can be registered. Since our brain mapping approach is
feature-based, we perform the registration step by a simple and fast rigid body trans-
formation. For an overview and a comparison of rigid body transformation methods,
we refer to [6].

User-guided surface segmentation of the brain cortices is based on curvature es-
timates. Since curvature estimates are sensitive to high-frequency detail, a multires-
olution approach is used, as described in Sect. 5. On a coarse level of resolution,
only the main (low-frequency) features of the brain cortices are represented while
the small (high-frequency) details are not present.

Curvature estimates on surfaces are used to distinguish between regions of differ-
ent behavior [12]. We use Gaussian and mean curvatures to distinguish between el-
liptic and hyperbolic regions and between convex and concave regions, respectively.

Brain Mapping from Topology Graphs and Surface Segmentation 39

The shape of a brain cortex is mainly defined by gyral and sulcal regions. We segment
the surface based on these curvature characteristics, as described in Sect. 6.

Curvature-based surface segmentation describes the topological behavior of the
surface, which we store in a topology graph, as described in Sect. 7. Nodes of the
topology graph represent regions of the cortical surface. Neighborhood information
of such regions is represented by edges in the graph.

The final brain mapping is performed on the high-level and abstract representa-
tion of a topology graph, as described in Sect. 8. We construct a topology graph for
the atlas brain and a user brain and determine matching node correspondences.

4 Isosurface Extraction

Extracting the geometry of a brain cortex from a discrete trivariate scalar field can be
done by standard isosurfacing techniques. We decided to use a marching cubes-like
approach [19]. For the quality of brain mapping it is crucial to choose an “appropriate
isovalue,” such that the extracted isosurface follows closely the geometrical shape of
the brain cortex.

To validate the proper choice of an isosurface, we designed a tool that allows a
user to supervise the isosurfacing procedure. Traditionally, neuroscientists segment
data slice-by-slice in a two-dimensional setup. Thus, the supervision tool should
allow them to inspect the original two-dimensional slices and an extracted segment
boundary for that particular slice simultaneously.

Figure 3 shows an example of supervised isosurface extraction. The upper row
shows isosurfaces extracted for various isovalues. The two rows below show two
original two-dimensional slices with overlaid cross sections (red contour) of the ex-
tracted isosurface. The left column shows the location of the slice with respect to the
isosurface. In this particular example, the chosen isovalue is a good one, since the
red contours follow closely the gyri and sulci of the brain cortex.

Due to remaining noise in the data set, the isosurface extraction step produces one
large main component and many small isolated components. The main component
represents the brain cortex, while the small components should be removed. We use
a surface-growing algorithm that generates a watertight triangular mesh in a half-
edge data structure representing the largest component. The small components are
removed.

5 Multiresolution Surface Representation

To obtain a multiresolution surface representation of a brain cortex, we start with the
triangular isosurface mesh. To simplify the high-resolution triangular mesh we use
a simplification algorithm based on progressive meshes [14]. We iteratively apply
edge-collapse operations. Although collapsing an edge is a simple operation, it can
modify topology and geometry. To ensure consistency of our mesh, we use consis-
tency checks as described in [15], based on topological analysis in the neighborhood
affected by a collapse operation.

40 F. Vivodtzev et al.

Iso-value

Position 26.1 89.1 115.2

Fig. 3. Supervised isosurface extraction: overlaying original two-dimensional slices with cross
sections (red contour) of extracted isosurface

For each edge of the mesh, an error corresponding to the cost of its collapse is
computed and stored. According to this value an ordered heap of edges is created.
During mesh simplification, the method identifies the top edge, checks for consis-
tency, and, if possible, collapses it. This process is highly dependent on the error
metric used to decide which edge to collapse next. Many metrics have been pro-
posed for edge collapse algorithms over the past decade [7, 14, 17, 23]. Most of
these metrics attempt to preserve “sharp” edges and details. Our objective, instead,
is to remove detail even in regions of high curvature. Thus, our error metric is only
based on edge length, and our main goal is to create a near-uniform distribution of
vertices on the surface. After a valid collapse, the affected neighborhood is updated
accordingly.

Topology (i. e., adjacency information of triangles) and geometry (i. e., positional
information of the resulting “collapse” vertex) are modified by an edge collapse. An
edge collapses to its midpoint. (We decided not to optimize the position to keep
computation costs low.) Using midpoints also reduces the risk of self-intersections.

Figure 4 shows the result of simplifying a triangular mesh. The main gyral and
sulcal features of the cortical surface are well preserved at the coarse level of resolu-
tion.

Brain Mapping from Topology Graphs and Surface Segmentation 41

(a) 100% of original data (b) 10% of original data

Fig. 4. Multiresolution surface representation

6 Surface Segmentation

6.1 Curvature-based Surface Characteristics

A surface can be divided into regions of elliptic and hyperbolic behavior. The regions
of elliptic behavior can further be classified into convex and concave regions. When
considering the a brain cortex, the gyri contain convex elliptic regions and the sulci
contain concave elliptic regions. The blending areas between gyri and sulci are hy-
perbolic regions. This observation led to our decision to use curvature-based surface
characteristics for user-guided surface segmentation. Discrete curvature estimates
and their use for curvature-based surface segmentation were introduced in [31].

We use mean curvature estimates to distinguish between convex and concave re-
gions. A discrete version of the mean curvature operator at a vertex xi of a triangular
mesh can be defined by the length of a vector operator K(xi). For characterizing sur-
face behavior with respect to mean curvature, we only need to use the direction of
K(xi). Thus, we use a simplified operator Kdir(xi). The vector Kdir(xi) associated
with a vertex xi is computed as a weighted sum of difference vectors emanating from
xi and ending at the vertices being edge-connected with xi. The weight of the vector
associated with edge ei j between xi and its neighbor x j depends on the cotangents
taken from the opposite angles of its adjacent faces. This operator is defined as

Kdir(xi) =
Ni

∑
j=1

(cot α j + cot β j)(x j −xi) ,

where Ni is the number of neighbors constituting the set of edge-connected neighbor
vertices of xi, and α j, β j are the opposite angles of ei j with respect to its adjacent
faces, see Fig. 5.

We use the operator Kdir(xi) to define the Boolean operator mean(xi), which
allows us to distinguish between convex and concave regions. It is defined as

mean(xi) =

{
convex if Kdir(xi) · ni ≤ 0

concave if Kdir(xi) · ni > 0 ,

42 F. Vivodtzev et al.

Fig. 5. Parameters used by mean curvature operator

where ni is a discrete approximation of the normal vector at xi. In concave areas, the
operator Kdir(xi) and the normal vector ni are directed in roughly opposite directions,
whereas in convex areas they are directed in roughly the same direction, see Fig. 6.

Fig. 6. Using mean curvature to distinguish between convex and concave regions.

To further distinguish between elliptic and hyperbolic regions, i. e., to separate
local extrema from blending regions, we consider Gaussian curvature. A discrete
version of the Gaussian curvature at a vertex xi of a triangular mesh can be defined
by the length of an operator κG(xi). This operator compares 2π with the sum of inner
angles θ j of all the adjacent faces of a vertex xi, see Fig. 7. In the planar case, the
sum of the angles is 2π . When xi is an extremum, a plane through xi exists, such that
all neighbor vertices of xi lie on one side of that plane, see Fig. 7. Thus, the angles
sum to a value smaller than 2π . When xi is not an extremum and we compute the
best fitting plane in the least-squares sense through xi, the neighbor vertices lie above
and below that plane. In this situation, the angles sum up to a value larger than 2π .
Hence, we consider only the sign of the operator κG(xi), defined as

κG(xi) = 2π −
Ni

∑
j=1

θ j ,

where θ j is the angle between the difference vectors x j −xi and x j+1−xi, emanating
from vertex xi and ending at neighbors x j and x j+1, respectively, see Fig. 7.

Brain Mapping from Topology Graphs and Surface Segmentation 43

Fig. 7. Using Gaussian curvature to distinguish between elliptic and hyperbolic regions

We use κG(xi) to define another Boolean operator Gauss(xi), which is true if the
vertex xi is a local extremum:

Gauss(xi) =
{

elliptic if κG(xi) > 0
hyperbolic if κG(xi) ≤ 0

.

6.2 Curvature-based Segmentation

By combining the operators mean and Gauss, we can generate an initial surface
segmentation consisting of regions of the same type of curvature. Figure 8 shows
how a cortical surface of a human brain is partitioned into elliptical convex regions
(yellow), elliptical concave regions (red), hyperbolic convex regions (green), and
hyperbolic concave regions (blue).

Figure 9 shows the effect of the multiresolution surface representation by seg-
menting the high- and low-resolution surfaces from Fig. 4 with respect to mean
curvature. Only for the low-resolution surface, the cortical regions are detected as
desired.

Fig. 8. Curvature-based segmentation of cortical surface

44 F. Vivodtzev et al.

(a) High resolution (b) Low resolution

Fig. 9. Surface segmentation at different levels of resolution

7 Topology Graph

Curvature-based surface segmentation implies a topology for the surface. We con-
struct a graph that stores the topology information. The nodes in the graph represent
regions of a certain curvature type, and the edges in the graph represent neighbor-
hood information of the surface regions.

For cortical surfaces, gyral regions cover larger parts of the brain. Their seg-
mentation into smaller functional regions cannot be done automatically, since it is
not based on geometrical properties. Sulcal regions instead remain local. Thus, we
decided to use sulci only for the construction of topology graphs.

Each node in the topology graph represents one sulcus. The node representing a
certain sulcus is generated by collapsing all vertices of the triangulated surface that
are characterized by the surface segmentation procedure as belonging to that sulcus.
The position of the node is determined by averaging the positions of the collapsed
vertices.

To determine neighborhood information for sulci on the cortical surface, we use
a contour-growing algorithm. Starting from a polygonal contour that describes the
boundary of a sulcus on the triangulated surface, we grow the contour iteratively by
one triangle in all directions, i. e., after one iteration step, the new contour encloses
all vertices of the old contour plus all its neighbors. If the contour of a sulcus, when
growing, intersects another sulcus, then these sulci are considered neighbors, and the
nodes representing these sulci in the topology graph are connected by an edge. The
number of iteration steps depends on the resolution of the triangulated surface.

Figure 10 shows the generation of a topology graph for a cortical surface of a
human brain. Figure 10(a) shows the segmented surface, where the detected sulci
are rendered using random colors. Figure 10(b) shows the topology graph generated
from the segmented surface, where nodes are shown in red and edges in blue. We

Brain Mapping from Topology Graphs and Surface Segmentation 45

(a) Segmented surface (b) Topology graph associated

Fig. 10. Topology graph from surface segmentation

applied surface segmentation at a resolution of 50%, and used four iteration steps for
generating the edges in the graph.

8 Graph Mapping

We prepare the brain mapping step by generating a topology graph representation
for both atlas brain and a user brain. The mapping is performed by matching graph
nodes. In addition to node position and edge connectivity information, the graphs
also store, for each node, the size of the associated sulcus. Since edges in the trian-
gular mesh have nearly the same length, the size of a sulcus can be estimated well
by the number of vertices of the triangular mesh that are classified to belong to the
sulcus.

For each node nu of the topology graph representing a user brain, we identify a
node na in the topology graph representing the atlas brain that provides a best match
in terms of location and size. To find a best match for nu, we search for a node na,
representing the sulcus, whose size is closest to the size of the sulcus represented
by nu. The search is restricted by limiting the Euclidean distance from nu and the
topological distance in the graph to not being beyond a certain threshold.

Figure 11 shows the result of a graph-based brain mapping. Figure 11(a) shows
the atlas brain, and Fig. 11(b) shows the user brain. Colors of the sulci indicate which
sulci of the atlas brain are associated with which sulci of the user brain. Regions
consisting of less than a certain number of vertices are not considered as being useful
and are not mapped (indicated by red in Fig. 11(b)).

46 F. Vivodtzev et al.

(a) Atlas brain (b) Patient brain

Fig. 11. Brain mapping based on topology graphs

9 Conclusions and Future Work

We have presented an automated approach for brain mapping to map annotations
of the cortical surface from a brain atlas to individual brains. After reconstructing
trivariate scalar fields from raw imaging data, isosurfaces are extracted approximat-
ing brain cortices. A cortical surface is segmented into gyral and sulcal regions by
exploiting geometrical properties. Our surface segmentation step is performed at a
coarse level of resolution, such that discrete curvature estimates can be used to detect
cortical regions. The topological information obtained from the surface segmentation
step is stored in a topology graph. A topology graph contains a high-level represen-
tation of the geometrically distinct regions of a brain cortex. By deriving topology
graphs for both atlas brain and user brain, a high-quality brain mapping is obtained
by mapping graph nodes.

We plan to extend the node matching process in a way that further exploits region
neighborhood information. Moreover, we would like to develop a more sophisticated
registration method, which we should lead to further improvement of node matching
results.

Acknowledgments

This work was supported by the National Science Foundation under contracts ACI
9624034 (CAREER Award) and ACI 0222909, through the Large Scientific and
Software Data Set Visualization (LSSDSV) program under contract ACI 9982251,
and through the National Partnership for Advanced Computational Infrastructure
(NPACI); the National Institute of Mental Health and the National Science Foun-
dation under contract NIMH 2 P20 MH60975-06A2; and the Lawrence Livermore
National Laboratory under ASCI ASAP Level-2 Memorandum Agreement B347878

Brain Mapping from Topology Graphs and Surface Segmentation 47

and under Memorandum Agreement B503159. We thank the members of the Vi-
sualization and Graphics Research Group at the Center for Image Processing and
Integrated Computing (CIPIC) at the University of California, Davis.

References

1. C. Baillard and C. Barillot. Robust 3d segmentation of anatomical structures with level
lets. In G.-P. Bonneau, S. Hahmann, and Charles D. Hansen, editors, Proceedings of Med-
ical Image Computing and Computer-Assisted Intervention, MICCAI’00, LNCS 1935,
pages 236–245, 2000.

2. F.L. Bookstein. Thin-plate splines and the atlas problem for biomedical images. In
A. Colchester and D. Hawkes, editors, 12th Internat. Conf. Information Processing in
Medical Imaging, vol. 511 of Lecture Notes in Computer Science, pages 326–342, 1991.

3. P. Cachier, J.F. Mangin, X. Pennec, D. Rivière, D. Papadopoulos-Orfanos, J. Regis, and
N. Ayache. Multisubject non-rigid registration of brain MRI using intensity and geometric
features. In W.J. Niessen and M.A. Viergever, editors, 4th Int. Conf. on Medical Image
Computing and Computer-Assisted Intervention (MICCAI’01), vol. 2208 of Lecture Notes
in Computer Science, pages 734–742, 2001.

4. D.L. Collins, G. Le Goualher, and A.C. Evans. Non-linear cerebral registration with
sulcal constraints. In First International Conference on Medical Image Computing and
Computer-Assisted Intervention (MICCAI), LNCS 1496, pages 974–984, 1998.

5. D.L. Collins, T.M. Peters, and A.C. Evans. An automated 3d nonlinear image deformation
procedure for determination of gross morphometric variability in human brain. In Proc.
Conf. Visualization in Biomedical Computing, SPIE 2359, pages 180–190, 1994.

6. D.W. Eggert, A. Lorusso, and R.B. Fisher. Estimating 3-d rigid body transformation:
a comparison of four major algorithms. Machine Vision and Applications, 9:272–290,
1997.

7. M. Garland and P.S. Heckbert. Surface simplification using quadric error metrics. Com-
puter Graphics, 31st Annual Conference Series, pages 209–216, 1997.

8. R.D. Rabbitt G.E. Christensen and M.I. Miller. 3-d brain mapping using a deformable
neuroanatomy. Physics in Medicine and Biology, 39:609–618, 1994.

9. J.C. Gee, M. Reivich, and R. Bajcsy. Elastically deforming 3-d atlas to match anatomical
brain images. Journal of Computer Assisted Tomography, 17:225–236, 1993.

10. G. Le Goualher, E. Procyk, L. Collins, R. Venegopal, C. Barillot, and A. Evans. Auto-
mated extraction and variability analysis of sulcal neuroanatomy. IEEE Transactions on
Medical Imaging, TMI, 18(3):206–217, 1999.

11. T. Greitz, C. Bohm, S. Holte, and L. Eriksson. A computerized brain atlas: Construction,
anatomical content, and some applications. Journal of Computer Assisted Tomography,
15:26–38, 1991.

12. B. Hamann. Curvature approximation for triangulated surfaces. In G. Farin, H. Hagen,
and H. Noltemeier, editors, Geometric Modelling, Computing Suppl. 8, pages 139–153.
Springer-Verlag, 1993.

13. P. Hellier and C. Barillot. Coupling dense and landmark-based approaches for non-rigid
registration. IEEE Transactions on Medical Imaging, 22:974–984, 2003.

14. H. Hoppe. Progressive meshes. In Proceedings of SIGGRAPH 1996, pages 99–108. ACM
Press, 1996.

15. H. Hoppe, T.D. DeRose, T. Duchamp, J. McDonald, and W. Stuetzle. Mesh optimization.
In Proceedings of SIGGRAPH 1993, pages 19–26. ACM Press, 1993.

48 F. Vivodtzev et al.

16. S. Jaume, B. Macq, and S.K. Warfield. Labeling the brain surface using a deformable mul-
tiresolution mesh. In Proceedings of Medical Image Computing and Computer-Assisted
Intervention, MICCAI 2002, pages 451–458, 2002.

17. P. Lindstrom and G. Turk. Fast and efficient polygonal simplification. In Proceedings of
IEEE Conference on Visualization 1998, pages 279–286. IEEE Computer Society Press,
1998.

18. G. Lohmann and D.Y. von Cramon. Automatic labeling of the human cortical surface
using sulcal basins. Medical Image Analysis, 4(3):179–188, 2000.

19. William E. Lorensen and Harvey E. Cline. Marching cubes: A high resolution 3d sur-
face construction algorithm. In Proceedings of the 14th annual conference on Computer
graphics and interactive techniques - SIGGRAPH 1987, pages 163–169. ACM Press,
1987.

20. A. Witkin M. Kass and D. Terzopoulos. Snakes: Active contour models. International
Journal of Computer Vision, 1(4):321–331, 1988.

21. R. Malladi, J.A. Sethian, and B.C. Vemuri. Shape modeling with front propagation: A
level set approach. IEEE Transactions on PAMI, 17(2):158–175, 1995.

22. D. Rivière, J.F. Mangin, D. Papadopoulos, J.M. Martinez, V. Frouin, and J. Regis. Au-
tomatic recognition of cortical sulci using a congregation of neural networks. In Third
International Conference on Medical Robotics, MICCAI’00, Imaging and Computer As-
sisted Surgery, pages 40–49, 2000.

23. R. Ronfard and J. Rossignac. Full-range approximation of triangulated polyhedra. Com-
puter Graphics Forum, Proceedings of Eurographics 1996, 15(3), 1996.

24. S. Sandor and R. Leahy. Surface-based labeling of cortical anatomy using a deformable
atlas. IEEE Transaction on Medical Imaging, 16(1):41–54, 1997.

25. D. Shulga and J. Meyer. Aligning large-scale medical and biological data sets: Exploring
a monkey brain. In Visualization, Imaging and Image Processing (VIIP 2001), pages
434–439. The International Association of Science and Technology for Development
(IASTED), 2001.

26. J. Talairach and P. Tournoux. Co-Planar Stereotaxic Atlas of the Human Brain, 3-
Dimensional Proportional System: An Approach to Cerebral Imaging. Thieme Medical
Publisher, Inc., Georg Thieme Verlag, 1988.

27. P. Thompson and A.W. Toga. Detection, visualization and animation of abnormal
anatomic structure with a deformable probabilistic brain atlas based on random vector
field transformation. Medical Image Analysis, 1(2):271–294, 1996.

28. P.M. Thompson, R.P. Woods, M.S. Mega, and A.W. Toga. Mathematical/computational
challenges in creating deformable and probabilistic atlases of the human brain. Human
Brain Mapping, 9:81–92, 2000.

29. M. Vailland and C. Davatzikos. Hierarchical matching of cortical features for deformable
brain image registration. In Proceeding of IPMI’99, LNCS 1613, Springer-Verlag, Berlin,
Germany, pages 182–195, 1999.

30. D.C. Van Essen, J. Harwell, D. Hanlon, and J.P.M. Dickson. Surface-based atlases and a
database of cortical structure and function. In S.H. Koslow and S. Subramaniam, editors,
Databasing the Brain: From Data to Knowledge (Neuroinformatics), John Wiley & Sons,
2003.

31. Fabien Vivodtzev, Lars Linsen, Georges-Pierre Bonneau, Bernd Hamann, Kenneth I. Joy,
and Bruno A. Olshausen. Hierarchical isosurface segmentation based on discrete cur-
vature. In G.-P. Bonneau, S. Hahmann, and Charles D. Hansen, editors, Proceedings of
VisSym ’03, Eurographics-IEEE TVCG Symposium on Visualization, 2003.

Computing and Displaying Intermolecular Negative
Volume for Docking

Chang Ha Lee and Amitabh Varshney

Department of Computer Science and UMIACS, University of Maryland, College Park, MD
20742, USA,xs
{chlee, varshney}@cs.umd.edu

Summary. Protein docking is a Grand Challenge problem that is crucial to our understanding
of biochemical processes. Several protein docking algorithms use shape complementarity as
the primary criterion for evaluating the docking candidates. The intermolecular volume and
area between docked molecules is useful as a measure of the shape complementarity. In this
paper we discuss an algorithm for interactively computing intermolecular negative volume and
the area of docking site using graphics hardware. We also present the design considerations for
building an interactive 3D visualization tool for visualizing intermolecular negative volumes.

1 Introduction

Several drug development processes have so far begun with large-scale random
screening of candidate inhibitors. These initial discoveries are improved through
well-defined approaches to find new drugs. As molecular structure determination
techniques and computational methods progress, protein docking methods using
structure-based molecular complementarity have become an important substitute for
random screening in the drug design process [10].

Among many factors involved in protein-protein interactions such as electro-
statics, hydrophobicity, and hydrogen bonding, shape complementarity is of major
importance for protein docking. Purely geometric approach can restrict the time-
consuming calculations of interaction energy to be performed only for those cases
that have a good geometric fit. Geometric methods can also be used as foundations
for more complete approaches considering chemical and energetic characteristics [2].
A complete search of all possible geometric fits of two flexible molecules takes too
much time because of the extremely large degrees of freedom. Therefore, molecules
have been often assumed as rigid bodies. Even with the rigid body assumption, find-
ing accurate shape complementarities remains a challenging problem. Most existing
methods provide a list of candidates sorted by complementarity criteria and the final
decision by human is needed. Therefore, an interactive tool for visualizing the shape
complementarity would be useful.

50 C.H. Lee and A. Varshney

(a) Solid Surfaces (b) Translucent Surfaces (c) Cross Sections

Fig. 1. Traditional Complementarity Visualization Methods

There are many methods for visualizing the steric fit between molecules. These
include visualization using solid solvent-accessible smooth molecular surfaces, trans-
lucent molecular surfaces, and cross-sections of molecular surfaces (See Fig. 1). The
solid molecular surface representation is unsuitable for complementarity visualiza-
tion because the interface between molecules is difficult to observe due to occlusions
from the solid surfaces. Translucent molecular surfaces allow the visualization of the
interface between molecules. However, visual interference from other parts of the
molecules prevents a clear visualization of the intermolecular interface. The cross-
section method, also called the Z-clip method in graphics, visualizes the molecular
interface by displaying cross sections of the molecules at varying depths from the
viewer. Although the interface can be visualized clearly using two-dimensional cross
sections, it is difficult to construct a mental model of the three-dimensional spatial
structure of the interface. Therefore, in addition to the visualization of molecular
surfaces, we need new and more informative methods for the visualization of the
interface between molecules.

In this paper we present a method that computes the negative volume between
molecules to visualize their interface. Our method leverages the recent advances in
the 3D graphics hardware to achieve interactive rates of performance. Using this
method scientists can interactively study various possible docking conformations and
visualize the quality of the steric fit.

The remaining paper is organized as follows. In Sect. 2, we give an overview
of the previous work. The concept of intermolecular negative volume and the de-
scription of the algorithm for computing intermolecular negative volume are given
in Sects. 3, 4, and 5. The algorithm for computing the area and volume of the docking
site is described in Sect. 6. In Sect. 7, we describe our interactive 3D visual tool to
assist protein docking. We conclude this paper and discuss future work in Sect. 8.

2 Previous Work

The early research on drug design focused on geometric shape complementarity.
Connolly [2] has proposed a protein docking algorithm based on geometric shape
complementarity. He defines a molecule’s shape function parameterized by scale R,
at a surface point p as the volume of the molecule that lies inside a sphere of radius

Computing and Displaying Intermolecular Negative Volume for Docking 51

R centered at p. He defines the knobs as the local minima in the shape function and
holes as the local maxima. His method finds the transform to dock two proteins by
finding matches between quartets of knobs and holes on the two proteins. Katchalski-
Katzir et al. [8] have proposed a Fourier-transform-based geometric recognition al-
gorithm for molecular surface complementarity.

Edelsbrunner et al. [4, 5] have defined a pocket as a region in the complement
if it can be reached only via narrow pathways. They have proposed an algorithm to
compute pockets in a protein. They have also proposed a method to measure proper-
ties of surface pockets such as volume and area. They have applied their method to
discover the binding sites between molecules.

Word et al. [20] have proposed a method to measure the goodness-of-fit for mole-
cular interfaces. They have described small-probe contact dots for measuring and vi-
sualizing the atomic contacts inside or between molecules. Their algorithm is similar
to the Connolly’s algorithm [1] for computing solvent-accessible molecular surfaces,
in that a probe sphere is rolled over the spherical model of a molecule. The difference
is that they leave a dot when the probe touches atoms of two molecules. Quantita-
tive measure for goodness-of-fit is defined by the volume measured by the length
between dots.

Wintner and Moallemi [19] have proposed the concept of Quantized Surface
Complementarity Diversity, QSCD, for measuring complementarity between mole-
cules. Diversity is defined as the measure of the difference, or similarity, between
small molecules. They have defined a set of theoretical target surfaces that approx-
imate all possible binding pockets with a volume limited by a predefined threshold.
Each target surface is formed by cubic units carved out of the surface. These cubic
units represent negative space that a potential ligand could occupy. To measure the
complementarity of a molecule, the molecule is also quantized into a set of cubic
units, and the quantized cubes are compared with the target surfaces. In this paper
we discuss a shape complementarity definition based on the ratio of the negative
volume to area of the interface between two molecules.

Several researchers have worked on analyzing and classifying molecular inter-
faces and interactions. Kuntz [10] has proposed strategies for drug design based on
the structure of molecules. He finds possible docking sites by locating the grooves on
the surface and creating their negative images by using spheres. Then he matches the
ligand and the receptor by placing the ligand into the site using the isomorphic sub-
graph matching algorithms. Jones and Thornton [7] have analyzed protein complexes
for better understanding of the principles of protein–protein interactions. They have
defined the protein–protein interface based on the changes in the solvent-accessible
surfaces when going from a monomeric to a dimeric state. They have examined struc-
tural properties of protein–protein interfaces as well as the biochemical properties.
Specifically, they have measured the complementarity between surfaces using the
gap index. The gap index is defined as the gap volume between molecules divided by
the interface area. They calculate the gap volume using a method by Laskowski [11].
Laskowski defines the gap sphere as the largest sphere which can be placed between
two atoms from each molecule without penetrating either of the molecular surfaces.
He computes the gap volume by adding the volumes of all gap spheres. This is a

52 C.H. Lee and A. Varshney

good estimate for the intermolecular volume, however: 1) gap spheres might overlap
resulting in possible overestimation of the gap volume, 2) the gap spheres might not
cover the entire intermolecular volume resulting in possible underestimation of the
gap volume, 3) isotropic spheres might not be adequate to measure an anisotropic
intermolecular region, and 4) this method could take quadratic time if it considers
all possible pairs of atoms. Our approach computes the intermolecular volume accu-
rately to any desired level of precision and runs in linear time.

Nadassy et al. [14] have measured how compactly atoms are packed in molecu-
lar interfaces compared to the internal spaces by computing the atomic volumes in
double-stranded DNA and in protein–DNA interfaces. They have also used two mea-
sures for assessing packing in interfaces of macromolecular complexes: (a) the gap
volume index as defined above, and (b) the shape correlation index by Lawrence and
Colman [12]. The shape correlation index is derived from the distance between two
points on the surfaces of interacting molecules and the angle between normal vec-
tors of these points. This is an intuitive estimate for the shape complementarity and
could be implemented to run in linear time with a good data structure for identifying
nearest points. However, their metric is insensitive to the area of the intermolecular
interface.

Varshney et al. [18] have proposed an analytic approach for computing and visu-
alizing molecular interfaces in linear time. However, their primary goal is to visualize
the interface surfaces, not the intermolecular negative volume. Also, they do not use
the graphics hardware to accelerate the computation of the interface surfaces. To the
best of our knowledge, no previous work has been done in interactively computing
and visualizing intermolecular negative volume using linearly scalable algorithms
with user-specifiable accuracy.

Domik and Fels [3] have developed a visual tool for studying molecular docking.
Their system enables users to visually determine prospective binding sites by visu-
alizing collision detections. Recently Olson et al. [15] have developed an augmented
reality tool to study molecules. As the user rotates and translates a 3D printed replica
of a molecule, their system tracks the molecule’s movements and mimics them in
conjunction with a virtual molecule on the screen. This provides the users a com-
pelling sense of the shape of a molecule and how it relates to other molecules. This
can be valuably used in shape complementarity studies. Another powerful tool for
protein visualization has been recently developed by Kreylos et al. [9]. Their tool
allows the users to design proteins ab-initio using primary, secondary, and tertiary
structures. Their tool also allows inverse kinematics and interactive visualization of
proteins using a variety of motif visualizations as well as Ramachandran plots and
intra-molecular collisions.

Interactivity is crucial for task-completion in 3D visualization applications. This
has been proven by several researchers including Smets and Overbeeke [17] and
Hawkes et al. [6]. To achieve interactivity while studying shape complementarity for
a pair of molecules, we have developed an algorithm for computing and visualiz-
ing the intermolecular negative volume and the area of docking site using graphics
hardware. Our work complements previous work on protein visualization in that it
provides a new way to interactively visualize molecular interfaces.

Computing and Displaying Intermolecular Negative Volume for Docking 53

3 Defining the Intermolecular Negative Volume

The smooth molecular surface, first proposed by Richards [16], is defined as the sur-
face which an external probe sphere touches as it is rolled over the spherical atoms
of a molecule. This representation is useful for studying interaction between mole-
cules as it provides a smooth surface approximation to a molecule while retaining
its most important shape features. Specifically, this surface representation is useful
for studying shape complementarity since the two molecular surfaces are approxi-
mately coincident in the interfacial region [2]. We use the smooth solvent-accessible
molecular surface to represent a molecule.

Fig. 2. Computing Intermolecular Negative Volume

(a) Intermolecular Volume of (b) Intermolecular Volume of
Docked Molecules Penetrating Molecules

Fig. 3. Intermolecular Negative Volume

54 C.H. Lee and A. Varshney

Given two molecules A and B, let the set of points on the molecular surfaces be
represented by Ao and Bo respectively. Here the subscript o denotes that the points in
these are defined in the object (world) coordinate system. Further, let the cardinalities
of Ao and Bo be given by n and m, respectively. The centers of Ao and Bo are defined
as the average of their respective surface points: cA = 1

n ∑n
j=0 xo j and cB = 1

m ∑m
k=0 xok,

where xo j ∈ Ao,xok ∈ Bo.
We define the aligning direction d between molecules A and B as (cB−cA)/|cB−

cA|. The aligning direction is the unit vector from the center of A to the center of B.
We define the aligning direction this way only as a heuristic. Our system can accept
user-defined aligning directions as well. We define two mutually orthogonal vectors
u, v, perpendicular to the vector (d) to construct the interface coordinate system. In
this coordinate system x axis is considered to be along u, y along v, and z along (d).
Now consider an axis-aligned bounding box in the interface coordinate system that
contains both molecules. We assume the origin lies at the center of that face of the
bounding box which is parallel to the x-y plane and below the molecule A as shown in
Fig. 4. This assumption makes all z values in the interface coordinate system positive.
We shall use the subscript i to denote the interface coordinate system. Let the matrix
to transform a point from the object coordinate system to the interface coordinate
system be given by Mi. The point sets in the interface coordinate system Ai and Bi

can be defined as Ai = {xi|xi = Mixo, xo ∈ Ao}, and Bi = {xi|xi = Mixo, xo ∈ Bo}.
Let P(Ai,d) and P(Bi,d) be the parallel projections of Ai and Bi onto the x-y

plane of the interface coordinate system. Then, we define the intersection of projected
regions, P(Ai, Bi,d) = P(Ai,d)∩P(Bi,d). This region is shown in Fig. 4 in dark
green color between the two molecules.

Fig. 4. The Interface Coordinate System and the Molecular Projection Regions

Computing and Displaying Intermolecular Negative Volume for Docking 55

The docking region of a molecule is the region of the molecular surface which
borders the intermolecular negative volume. We define the docking region of A as
RA = {(xi,yi,zi)|(xi,yi) ∈ P(Ai, Bi,d) ∧ zi = max{z| (xi,yi,z) ∈ Ai}. Similarly,
the docking region of B is defined as RB = {(xi,yi,zi)|(xi,yi) ∈ P(Ai,Bi,d) ∧ zi =
min{z|(xi,yi,z) ∈ Bi}. The intermolecular negative volume between RA and RB is
defined in the interface coordinate system as Vi = {(xi,yi,zi)|(xi,yi) ∈ P(Ai,Bi, d)
∧zi ∈ [RA(xi,yi),RB(xi,yi)]}, where RA(xi,yi) = {zi| (xi,yi,zi)∈RA} and RB(xi,yi) =
{zi| (xi,yi,zi) ∈ RB}.

The intermolecular negative volume between molecules A and B is transformed
back to the object coordinate system as V (A,B) = {xo|xo = M−1

i xi, xi ∈Vi}. Figure 2
shows the intermolecular negative volume in blue.

4 Computing the Intermolecular Negative Volume

We compute the intermolecular negative volume using the graphics hardware. The
graphics hardware depth-testing functionality can compute the distance from the
viewing plane to the nearest (or the farthest) surface for each pixel in the viewing
plane. For instance, in OpenGL the depth-testing option to select the surface clos-
est to the viewing plane is GL LESS, and the option to select the farthest surface
is GL GREATER. We can also change the level of detail of the interface by simply
changing the resolution of the viewing plane.

The algorithm for computing intermolecular negative volume using depth buffer
is as follows. First, we set the viewing direction as the aligning direction d and draw
molecule A with the depth-testing option to select the farthest depth coordinate. The
depth buffer now contains the distance from the viewing plane to the farthest surface
of A (the surface that defines one side of the intermolecular volume). The depth
buffer is read-back and saved as DA and the buffer is reset. Second, with the viewing
direction still d we draw molecule B with the depth-testing option to select the nearest
depth coordinate. The depth buffer now contains the distance from the viewing plane
to the nearest surface of B (which is the surface that defines the second side of the
intermolecular volume). The depth buffer is again read back and saved this time
as DB.

In DA, the region that lies outside the molecule has the largest possible value (1
in OpenGL), and in DB, the region outside the molecule has the smallest possible
value (0 in OpenGL). For each (x,y) value, if DA(x,y) is equal to 1 or DB(x,y) is
equal to 0, we set both DA(x,y) and DB(x,y) to 0. This gives us the intersection of
projected regions P(Ai,Bi,d) and sets the remaining region to 0 in DA and DB. Now,
DA and DB store RA and RB, respectively, which are the docking regions of A and B
as defined in the previous section. Therefore, the volume between DA and DB is the
intermolecular negative volume between A and B. The overview of our algorithm is
shown in Fig. 5. To visualize the intermolecular negative volume, we build a triangle
mesh using DA and DB. The method for triangulating the intermolecular negative
volume is described in the next section.

56 C.H. Lee and A. Varshney

Fig. 5. Algorithm for Computing Intermolecular Negative Volume

5 Visualizing the Intermolecular Negative Volume

The intermolecular negative volume is the set of voxels between two 2D pixelated
depth buffers, DA and DB. An obvious choice to extract an isosurface from volume
data is the Marching Cubes algorithm [13]. However, we have additional informa-
tion in this case that we can use. Since the non-zero regions of DA and DB are the
same, we can reduce the marching cubes algorithm to its two-dimensional analog,
the marching squares algorithm. For each vertex in the triangle mesh, we produce
x and y coordinates using the marching squares algorithm and get the z coordinate
from DA and DB.

There are six cases for the squares according to the values of four corner points.
In Fig. 6, the white dots are points with zero values, and the black dots are points with
non-zero values. For each square (pixel) of DA, we repeat the following process. We
create a gray point in the middle of an edge that connects a zero (white) point to
a non-zero (black) point. The black and gray points are added to the vertex list of
the resulting triangle mesh. The z coordinate of a black point is the value of DA

at the point, and the z coordinate of the gray point is same as that of the adjacent
black point. We then generate triangles connecting black and gray dots, which are
the shaded regions in Fig. 6. These triangles are part of the docking region of A.
Similarly, we can produce triangles with same x and y coordinates and the z values
from DB, and these triangles form the docking region of B.

Computing and Displaying Intermolecular Negative Volume for Docking 57

(a) Case 0 (b) Case 1 (c) Case 2-a

(d) Case 2-b (e) Case 3 (f) Case 4

Fig. 6. Cases for building Triangle Meshes : White dots are zero points, black dots are non-
zero points, and gray dots are middle points added by the algorithm. Shaded regions show the
polygonal mesh

Next we connect the boundaries of the two surfaces representing docking regions
of A and B. We define a gray edge as the edge formed by two adjacent gray points.
The boundary of the docking region consists of gray edges. Therefore, we create two
triangles to connect two gray edges with same x and y coordinates and different z
coordinates from DA and DB. Figure 7 shows the construction of the mesh. Figure 8
shows the mesh of the intermolecular negative volume between the Proteinase and
its Inhibitor in the Protein Data Bank complex 4SGB.

(a) Marching Squares Algorithm (b) 3D Intermolecular Volume

Fig. 7. A Mesh Construction Using Marching Squares Algorithm

58 C.H. Lee and A. Varshney

(a) Visualization with Solid Molecules (b) Intermolecular Volume Only

Fig. 8. Interactive Visualization of the Intermolecular Negative Volume between Proteinase
and Inhibitor (4SGB)

6 Modifications for More Accurate Computation

6.1 Intermolecular Negative Volume with a Threshold

The algorithm for computing intermolecular negative volume described in Sect. 4
might not produce desirable results when the docking site is relatively small. The ac-
tual docking site might be smaller than the intersection of projected region as shown
in Fig. 9. This problem causes the thick borders in the intermolecular negative vol-
ume that you can see in Fig. 8.

We have extended our algorithm to trim the thick borders that do not, in gen-
eral, define the intermolecular volume. We exclude the regions where the distance
between surfaces is greater than a certain threshold ε when we compute the in-
tersection of projected regions. Specifically, we compute the difference of z values
Dist(x,y) = DA(x,y)−DB(x,y) for each (x,y) in the depth buffers DA and DB. Only
if the absolute value of the difference is less than a threshold ε , |Dist(x,y)| < ε , we

Fig. 9. Intermolecular Negative Volume with a Small Docking Site

Computing and Displaying Intermolecular Negative Volume for Docking 59

(a) Visualization with Molecular Surface (b) Intermolecular Volume Only

Fig. 10. The Intermolecular Negative Volume between Proteinase and Inhibitor (4SGB) with
a threshold ε = 2.8 Å

add (x,y) to the docking site. The rest of algorithm is same as described in Sect. 4.
Figure 10 shows the visualization of the intermolecular negative volume modified
from Fig. 8. We have currently set the ε to be the diameter of a water molecule,
2.8 Å to make the intermolecular volume solvent inaccessible.

6.2 Computing the Area of the Docking Site

The intermolecular negative volume is often not enough to characterize the docking
site. For instance, in Fig. 11, the correct fit (a) has larger area-volume ratio even
though the incorrect fit (b) has smaller volume. We observe that the ratio of the area
of the interface to the intermolecular volume is a much better heuristic than just using
the intermolecular volume. We compute the area of the molecular interface by simply
adding up the areas of the mesh triangles in the intermolecular volume that are de-
fined by the surfaces of one of the two molecules A and B. The fit between molecules
is considered good when the volume between them is small and the docking site area
is large. We propose the ratio of the area of the interface and intermolecular volume
as a criterion for characterizing the goodness-of-fit for protein docking as well as
rational drug design. The larger this ratio, the better the fit between molecules.

7 Interactive Visualization

We have developed a 3D visualization tool for visualizing the intermolecular negative
volume interactively, which can be used as a complementary tool to existing drug-
design systems. Users can manipulate the molecules together or separately while the
intermolecular negative volume is computed and rendered for every frame at interac-
tive rates. Our system also provides various visualization options. The intermolecular

60 C.H. Lee and A. Varshney

(a) Correct Fit: (b) Incorrect Fit:
Volume = 195.54 Volume = 179.73

Docking Site Area = 283.20 Docking Site Area = 148.46
Area/Volume = 1.45 Area/Volume = 0.83

Fig. 11. Intermolecular Negative Volume between Proteinase and Inhibitor (4SGB)

negative volume can be visualized alone, or together with molecules as the images
in this paper show. The molecules can be visualized in solid surfaces or translucent
surfaces.

Table 1 shows the intermolecular volumes, the interface area contributions from
the two molecules, and the ratio of the average interface area to the intermolecular
volume for a number of naturally occurring molecular complexes. Table 2 shows the
times for computing intermolecular negative volumes for the same molecular com-
plexes. This includes the time to generate and render the triangle mesh for visualizing

Table 1. Intermolecular Negative Volume and Interface Area

Complex Names Volume Interface Area Ratio
(Å3) (Å2) (Area/Volume)

Protease/Inhibitor 538.60 443.46 / 510.64 0.89
alpha-chymotrypsinogen/Trypsin inhibitor 539.75 602.76 /651.60 1.16
beta-trypsinogen/Trypsin inhibitor 521.61 479.96 / 493.38 0.93
Subtilisin Novo/Chymotrypsin inhibitor 2 666.67 605.26 / 679.02 0.96
Subtilisin BPN/Subtilisin inhibitor 553.15 536.00 / 609.72 1.04
Barnase/Barstar 1224.65 1229.19 / 1171.00 0.98
Acetylcholinesterase/Inhibitor 955.03 837.64 / 810.42 0.86
Ribonuclease inhibitor/Ribonuclease A 536.34 406.89 / 401.39 0.75
IgG1 D44.1 Fab Fragment/Lysozyme 603.93 353.73 / 363.46 0.59
IgG1 E8 Fab Fragment/Cytochrome C 892.38 637.04 / 648.74 0.72
Antibody Hulysll Fv/Lysozyme 1674.65 1174.88 / 1140.83 0.69
CDK2 cyclin-dependant kinase 2/Cyclin 1534.82 1512.47 / 1705.81 1.05
Methylamine dehydrogenase/Amicyanin 2017.78 1517.69 / 1503.73 0.75

Computing and Displaying Intermolecular Negative Volume for Docking 61

Table 2. Timing Information for Various Complexes

Complex Names Number of Time for Time for Time for
Atoms 643 (msec) 1283 (msec) 2563 (msec)

Protease/Inhibitor 1310/380 20 50 170
alpha-chymotrypsinogen/Trypsin inhibitor 1799/440 30 50 170
beta-trypsinogen/Trypsin inhibitor 1629/454 30 50 170
Subtilisin Novo/Chymotrypsin inhibitor 2 1938/513 30 60 170
Subtilisin BPN/Subtilisin inhibitor 1938/764 30 70 210
Barnase/Barstar 2581/2059 40 70 190
Acetylcholinesterase/Inhibitor 4116/460 40 70 190
Ribonuclease inhibitor/Ribonuclease A 951/3411 40 70 190
IgG1 D44.1 Fab Fragment/Lysozyme 4291/4291 60 90 211
IgG1 E8 Fab Fragment/Cytochrome C 3340/823 40 70 210
Antibody Hulysll Fv/Lysozyme 3488/2002 50 70 191
CDK2 cyclin-dependant kinase 2/Cyclin 4796/4202 71 110 241
Methylamine dehydrogenase/Amicyanin 4280/4281 81 120 261

the intermolecular volume. We have computed the intermolecular volume at various
resolutions: 643, 1283, and 2563. The computing time of our algorithm is linearly
related to the number of atoms and runs at interactive rates as shown in Fig. 12. We
have obtained these results on a Dell Precision Workstation with 1.5 GHz Pentium
4, 1 GB RAM, and a nVidia GeForce FX 5900 graphics card.

Fig. 12. Time for Computing Intermolecular Negative Volumes

62 C.H. Lee and A. Varshney

(a) Intermolecular Negative Volume (b) Intermolecular Negative Volume
with Color Coding

Fig. 13. Color Coding of Intermolecular Negative Volume between Proteinase and Inhibitor
(4SGB). The red color shows overlap between the two molecules of the 4SGB complex

In the study of intermolecular negative volumes, the variation of the distance
between the two molecular surfaces is also important in addition to aggregate infor-
mation such as area and volume. We have encoded the distance information into the
color of the intermolecular negative volume as shown in Fig. 13. Deep blue shows
larger interface distance and light blue shows a smaller interface distance.

8 Conclusions and Future Work

Our algorithm for computing intermolecular negative volume and the area of the
molecular interfaces can be used for computing criteria for shape complementarity.
Our 3D visualization tool for visualizing intermolecular negative volume interac-
tively can be used as a complementary tool for existing protein docking and rational
drug design systems. The visualization tool can be used to select the best fit among
the candidates, and to improve the result by moving the molecules interactively to
produce a better fit. Currently, we have only considered the geometric shape com-
plementarity as a way of characterizing the goodness-of-fit between two molecules.
Shape complementarity is an important criterion, but not the only one. It would be
very helpful to include other criteria such as electrostatics, hydrophobicity, hydrogen
bonding in developing a comprehensive metric for characterizing good molecular in-
terfaces that can be used in protein docking and rational drug design applications.

Acknowledgements

We would like to thank Sergei Sukharev at the Department of Biology at the Uni-
versity of Maryland, Ron Unger at the Bar-Ilan University in Israel, and John Moult

Computing and Displaying Intermolecular Negative Volume for Docking 63

at the Center for Advanced Research in Biotechnology at Rockville, Maryland for
valuable discussions and for providing the data sets for testing. This work has been
supported in part by the NSF grants: IIS 00-81847, CCF 04-29753, and CNS 04-
03313.

References

1. M. L. Connolly. Solvent-accessible surfaces of proteins and nucleic acids. Science,
221:709–713, 1983.

2. M. L. Connolly. Shape complementarity at the hemoglobin a1b1 subunit interface.
Biopolymers, 25:1229–1247, 1986.

3. G. Domik and G. Fels. HotDock: An interactive approach to molecular docking, 1996.
http://www.uni-paderborn.de/ lst/HotDock/.

4. H. Edelsbrunner, M. A. Facello, and J. Liang. On the definition and the construction of
pockets in macromolecules. Discrete Applied Mathematics, 88(4):83–102, 1998.

5. H. Edelsbrunner, J. Liang, and C. Woodward. Anatomy of protein pockets and cavities:
Measurement of binding site geometry and implications for ligand design. Protein Sci-
ence, 7(9):1884–1897, 1998.

6. R. Hawkes, S. Rushton, and M. Smyth. Update rates and fidelity in virtual environments.
Virtual Reality: Research, Applications and Design, 1(2):46–51, 1995.

7. S. Jones and J. M. Thornton. Principles of protein–protein interactions. In Proc. Natl.
Acad. Sci. USA, volume 93, pp. 13–20, 1996.

8. E. Katchalski-Katzir, I. Shariv, M. Eisenstein, A. A. Friesem, C. Aflalo, and I. A. Vakser.
Molecular surface recognition: determination of geometric fit between proteins and their
ligands by correlation techniques. In Proceedings of the National Academy of Sciences of
United States of America, volume 89, pp. 2195–2199, March 1992.

9. O. Kreylos, N. L. Max, B. Hamann, S. N. Crivelli, and E. W. Behel. Interactive protein
manipulation. In Proceedings of the IEEE Visualization, pp. 581–588, Seattle, Washing-
ton, October 2003.

10. I. D. Kuntz. Structure-based strategies for drug design and discovery. Science, 257:1078–
1082, 1992.

11. R. A. Laskowski. SURFNET: a program for visualizing molecular surfaces, cavities, and
intermolecular interactions. Journal of Molecular Graphics, 13(5):323–330, 1995.

12. M. C. Lawrence and P. M. Colman. Shape complementarity at protein/protein interfaces.
Journal of Molecular Biology, 234(4):946–950, 1993.

13. W. E. Lorensen and H. E. Cline. Marching cubes: a high resolution 3d surface construc-
tion algorithm. In Proceedings of SIGGRAPH, pp. 163–169, July 1987.

14. K. Nadassy, I. Tomas-Oliveira, I. Alberts J., Janin, and S. J. Wodak. Standard atomic
volumes in double-stranded DNA and packing in protein–DNA interfaces. Nucleic Acids
Research, 29(16):3362–3376, 2001.

15. A. Olson. Tangible interfaces for molecular biology. In Demos at the IEEE Visualization,
page D12, Seattle, Washington, October 2003.

16. F. M. Richards. Areas, volumes, packing and protein structures. In Annual Review of
Biophysics and Bioengineering, volume 6, pp. 151–176, 1977.

17. G. J. F. Smets and K. J. Overbeeke. Trade-off between resolution and interactivity in
spatial task performance. IEEE Computer Graphics and Applications, 15(5):46–51, 1995.

64 C.H. Lee and A. Varshney

18. A. Varshney, F. P. Brooks Jr., D. C. Richardson, W. V. Wright, and D. Manocha. Defin-
ing, computing, and visualizing molecular interfaces. In IEEE Visualization, pp. 36–43,
October 1995.

19. E. A. Wintner and C. C. Moallemi. Quantized surface complementarity diversity (QSCD):
A model based on small molecule-target complementarity. Journal of Medicinal Chem-
istry, 43:1993–2006, 2000.

20. J. M. Word, S. C. Lovell, T. H. LaBean, H. C. Taylor, M. E. Zalis, B. K. Presley, J. S.
Richardson, and D. C. Richardson. Visualizing and quantifying molecular goodness-of-
fit: Small-probe contact dots with explicit hydrogen atoms. Journal of Molecular Biology,
285(4):1711–1733, 1999.

Optimized Bounding Polyhedra
for GPU-Based Distance Transform

Ronald Peikert and Christian Sigg

Swiss Federal Institute of Technology, CH-8092 Zürich, Switzerland
peikert@inf.ethz.ch, sigg@inf.ethz.ch

Many problems in areas such as computer graphics, scientific visualization, compu-
tational geometry, or image processing require the computation of a distance field.
The distance field indicates at each point in space the shortest distance to a given
object. Depending on the problem setting, the object is described either by a voxel
attribute within a volume data set or by a surface representation such as a triangle
mesh. The two cases require separate approaches, and only the case of the triangle
mesh is studied in this paper. Often, the distance field is needed as a regular grid of
samples. The samples can be computed either in image space or object space, refer-
ring to the outer loop of the algorithm, which iterates over all samples or all trian-
gles of the mesh, respectively. Object space methods can be competitive, especially
for higher resolutions. An ideal object space method would compute a generalized
Voronoi diagram (GVD) of the mesh and then scan convert its cells. At each sample
location, the distance to the Voronoi site associated with the cell would yield the field
value. A practical method however, avoids the expensive GVD computation and in-
stead works with bounding polyhedra for the Voronoi cells. In this paper, we propose
a new type of bounding polyhedra. This reduces the number of polyhedra and sim-
plifies their geometry. The choice of these bounding polyhedra pays off especially if
scan conversion is run on graphics hardware.

1 Introduction

For any set S of points in R
n, the distance field u is a unique scalar function defined

in R
n. At each point, u equals the distance to the closest point on S. If S is a closed

and orientable manifold of dimension n−1, the space is divided into inner and outer
parts. Therefore, a signed distance field can be defined. A positive sign is chosen
outside the surface and a negative sign inside. Thus, the gradient of the distance field
on the surface is equivalent to the surface normal.

The type of distance metric which is chosen depends on the application. Com-
mon choices are chessboard, chamfer and Euclidean distance [14]. We will restrict

66 R. Peikert and C. Sigg

ourselves to the Euclidean distance, which is probably the most meaningful, but it is
also the most expensive to compute.

The signed distance field u is the solution to the Eikonal equation |∇u| = 1 with
boundary condition u|S = 0. The boundary condition shows that the definition of S as
a subset of R

n and the signed distance function are equivalent descriptions. The man-
ifold corresponds to the zero-set of the signed distance function: S = {x|u(x) = 0}.
Therefore, the signed distance transform converts an explicit surface representation
to an implicit one.

Signed or unsigned distance fields have many applications in computer graph-
ics, scientific visualization and related areas, such as implicit surface representa-
tion [6] [7], object metamorphosis [3], collision detection and robotics [6], skele-
tonization [1] [19], accelerated volume raytracing [17], camera path planning and
image registration [4]. Depending on the application, the distance field is required
on a full pixel or voxel grid or only within a band of width d around the objects.

2 Related Work

The problem of computing a 3D Euclidean distance transform exists in two varieties,
distinguished by the type of object representation. The object can either be given as
data on a voxel grid or in vector representation. The latter is typically a triangle
mesh in the case where the object is a surface. Both problems have been studied
extensively and fast methods have been developed for both of them. It is reason-
able to treat the two problems separately. If the goal is to sample the exact distance
to a triangle mesh, the problem cannot be stated in voxel space. Likewise, there is
usually no advantage to transform the problem from voxel representation to vector
representation. For triangle meshes, time complexity must depend on the number M
of surface primitives (faces, edges, and vertices). Therefore, algorithms for the two
different problem settings cannot be directly compared.

A method [12] which has been recently presented, finds the distance transform in
voxel data in O(N) time, where N is the number of voxels. In the same paper, a good
overview of earlier methods is given. Essentially, methods fall into two categories,
propagation methods and methods based on Voronoi diagrams.

In propagation methods, the distance information is carried over to neighbor vox-
els, either by sweeping in all grid dimensions, or by propagating a contour. A well-
known example of the latter is the Fast Marching Method (FMM) [15], an upwind
scheme which can solve the Eikonal Equation |∇u|= 1/ f in a single iteration and in
O(N logN) operations. A signed distance field is obtained by using a constant propa-
gation function f . However, due to the finite difference scheme, FMM is not an exact
method.

Besides the distance, additional information can be stored in the distance field.
Such information can be the vector pointing to the nearest object point, known as the
vector distance transform [13]. Alternatively, the index of the nearest surface prim-
itive can be attributed to each point, the resulting field is called a complete distance
field representation [9]. By propagating this type of additional information, FMM

Optimized Bounding Polyhedra for GPU-Based Distance Transform 67

and similar propagation methods can be turned into exact distance transform algo-
rithms [2, 5, 18].

For the second type of problem setting where the distance field of a polyline
or triangle mesh is sought, a brute force algorithm would compute the distance of
each grid point to each primitive. If the triangle mesh consists of a large number of
triangles and the sampling grid is large, this approach is impractical. For an efficient
algorithm, one needs to reduce the number of distances calculated per grid point or
alternatively, per primitive.

To achieve this goal, a spatial data structure such as a BSP tree can be used for
storing the primitives. When computing the distance field value for a given sample,
a primitive can be excluded from the calculation if it is known that a closer primitive
exists. By using this data structure, one can quickly find the closest primitive to a
point: While the tree is scanned for the closest primitive, one can give an upper limit
of the final distance. At the same time, a lower bound of the distance can be computed
for any subtree. If the lower bound of a subtree is larger than the current upper bound
of the final distance, the subtree can be excluded from the search. This leads to an
algorithm logarithmic in the number of primitives of the input mesh.

An alternative to such an image space approach are object space methods, i.e.
methods based on scan conversion. Here, the distance field is obtained by scan con-
verting a number of polyhedra related to the triangle mesh and by conditionally over-
writing the computed voxel values. The advantage of object space methods is their
sub-pixel accuracy. However, it is obvious that the relative performance degrades if
the average size of the polyhedra shrinks to the size of a single voxel. It has been
shown that for distance fields of triangle meshes, methods based on scan conversion
are competitive.

Optimally, only distances to grid points contained in the Voronoi cell of the cor-
responding primitive are calculated. If the primitives are not restricted to points, but
include edges and triangles, a generalized Voronoi diagramm (GVD) is required.
Once a GVD is computed, the distance field can easily be caluclated as the distance
to the respective site. However, the computation of Voronoi diagrams is not easier
than the computation of distance fields. The time for generating a diagram with M
sites is O(M logM). Generalized Voronoi diagrams can be computed on graphics
hardware [8] by rendering local distance fields as n+1-dimensional function graphs
and using the z-buffer for minimization. A disadvantage of this method is that it re-
quires accurate rendering of curved surfaces, requiring tesselations in the order of
100 triangles for a cone. The 3D version even requires doubly curved surfaces which
strongly limits the number of primitives that can be handled.

Nevertheless, if a point is known to lie outside of a Voronoi cell, the distance
to its base primitive does not need to be calculated. This led to the idea of using
polyhedra bounding a Voronoi cell instead of the Voronoi cells themselves. The first
such algorithm was presented by Mauch [11]. It will be shortly explained in Sect. 3.3.
It is possible to run the scan conversion part of that algorithm on graphics hardware.
Although the scan conversion runs faster on the graphics hardware, the overall speed
up gained is minimal because of the large amount of geometry that has to be send

68 R. Peikert and C. Sigg

to the graphics card. In Sect. 3.4, we present an optimized type of polyhedra [16]
giving significantly better performance on the graphics hardware.

3 Distance Field Methods for Triangle Meshes

For the rest of the paper, we focus our attention to the distance field computation
for a triangle mesh. We shortly describe the more theoretical method based on scan
conversion of the generalized Voronoi cells. We also outline Mauch’s method of
using bounding polyhedra. In Sect. 3.4, we describe how the method can be made
more suited to be run on a programmable graphics card by using an optimized type
of bounding polyhedron.

3.1 Vertex Classification

The vertices of a closed and oriented triangle mesh can be classified into convex,
concave and saddle vertices, depending on their incident edges. If all of them are
convex (concave), the vertex is convex (concave), if both types occur, it is a saddle.
Because convex edges become concave and vice-versa when we flip the orientation
of the surface, we only distinguish convex/concave vertices and saddle vertices.

Besides the topological consistency, we assume also a geometric regularity re-
quirement for mesh: At saddle points, all incident faces must keep their orientation
when viewed from the normal direction. The normal direction in a vertex is defined
simply by averaging all incident face normals. Failure of this assumption would in-
dicate a poor triangulation. It can be fixed by subdividing triangles.

3.2 Voronoi Diagrams of Triangle Meshes

The Voronoi diagram of a finite set of points is a partitioning of space into cells. Each
site (i.e. point) is associated with a cell containing all points for which this site is the
nearest one. Points on cell boundaries have more than one nearest site.

A straightforward extension is to allow sites to be manifolds than just points,
leading to generalized Voronoi diagrams. For our purpose, sites will be restricted to
the points, edges and faces of a closed and oriented triangle mesh.

If the GVD of such a mesh was known, it would be a simple task to compute the
distance field. For a given sample point, one would first identify the cell in which
it is contained and then calculate the distance to the associated site. If a full grid of
samples is needed, one would use an object-space approach, i.e. loop over the cells,
which is known as scan conversion.

In computer graphics, scan conversion is a key operation in the rendering pipeline
and is efficiently performed by standard graphics cards. By reading back the frame
buffer data, the computing power of graphics cards becomes available for more pur-
poses than just rendering. In recent years, the programmability of graphics cards
made it possible to adapt the scan conversion operation. In particular, nonlinear in-
terpolation functions can be programmed.

Optimized Bounding Polyhedra for GPU-Based Distance Transform 69

3.3 GVD-based Bounding Polyhedra

To actually compute a GVD is not only expensive, it can also produce arbitrarily
complex polyhedra. Therefore, Mauch [11] replaced the cells by bounding volumes.
As bounding volumes he used polyhedra which are possibly larger but of simpler
geometric shape than the cells. The distance field can again be calculated by looping
over the polyhedra. To correctly treat regions where two or more polyhedra overlap
it is sufficient to take the minimum of all computed values.

For reasons of efficiency, only local information is used for constructing bound-
ing polyhedra. This requires the introduction of a maximal distance d up to which
the distance field is computed on either side of the surface. The following types of
bounding polyhedra are used, depending on the type of site

• three-sided orthogonal prism for faces (“tower” of height 2d extruded from the
triangle in both directions),

• three-sided orthogonal prism for edges (“wedge” of height d, filling the space
between towers)

• n-sided pyramid for convex/concave vertices of degree n (of height d, filling the
space left by towers and wedges, see Fig. 1).

Fig. 1. Polyhedra constructed on one side of a (yellow) one-ring of the mesh: (cyan) towers,
(blue) wedges, and a (red) cone. The polyhedra are moved away from the surface for better
visibility

The case of the saddle vertex is not mentioned in [11]. However, a possible
solution would be to construct an n-sided pyramid in the same way as for a con-
vex/concave vertex, but on both sides of the surface, and then taking the convex hull
of each pyramid.

3.4 Optimized Bounding Polyhedra

While these bounding polyhedra work well for scan conversion done purely in
software, the large number of polyhedra is not ideal for a hardware-based scan

70 R. Peikert and C. Sigg

conversion method. The reason is that the overhead per polyhedron is larger for the
hardware-based method because the geometry data has to be sent to the graphics
card.

In order to reduce the number of polyhedra, our approach uses a different type
of bounding polyhedra for the faces, such that their union completely covers space.
This eliminates the need for wedges and pyramids. The price to pay is a slightly
more complicated distance field computation: Each polyhedron no more represents
a single site, but seven sites, namely a face, its three boundary edges, and its three
vertices. In principle, the minimum of the distances to the seven sites must be calcu-
lated. However, we showed in [16] that this can be done quite efficiently, requiring
little more operations than for a single distance calculation.

Now, in order to construct the new bounding polyhedra, we must divide wedges
and pyramids among the neighbor polyhedra. Two observations can be made:

• Any way of splitting a wedge is allowed because the Voronoi site which it repre-
sents is also represented by the new polyhedra.

• On the convex side of the surface, i.e. opposite the wedge, the original towers
overlap. This overlap can be eliminated by using the bisector plane of the dihedral
angle as a divider. This is exactly where the two Voronoi cells meet.

Taking both observations into account, we can now use the angle bisector planes
as the three lateral boundaries of the new polyhedron. Adding two planes parallel to
the face at distances ±d (the limiting distance used for the distance field computa-
tion), a three-sided pyramid frustum is obtained (see Fig. 2). This bounding polyhe-
dron has the advantage of having a single topological type and only five faces, all of
them planar.

While the bounding polyhedra match along the edges of the mesh, this is not true
near the mesh vertices in general. Near mesh vertices, the polyhedra can overlap. This
is not a problem, it just leads to repeated distance calculations. But the polyhedra can

Fig. 2. Optimized bounding polyhedra for a one-ring of the mesh. The polyhedra extend to the
other side of the surface, too, which is not shown in this figure. Some non-adajacent pairs of
polyhedra are seen to overlap

Optimized Bounding Polyhedra for GPU-Based Distance Transform 71

Fig. 3. Example of a saddle vertex with eight incident triangles. Bounding polyhedra are out-
lined (left) and filled (right). A gap in the shape of an eight-sided double-pyramid is visible in
the center

also leave a gap. An example is shown in Fig. 3. In such cases, the gap must be closed
by making some of the polyhedra slightly larger. We show in the appendix, that gaps
can occur only for saddle vertices.

In order to study the situation near a mesh vertex, we introduce a few notations,
see Fig. 4. Let c denote the vertex, x0, · · · ,xn−1 its neighbor vertices, Fi = 〈c,xi,xi+1〉
the incident faces (all indices are meant modulo n), and Pi the polyhedron constructed
for the face Fi. That means that Pi−1 and Pi are separated by the angle bisector plane
of Fi−1 and Fi which we denote by Ai. We denote by F the union of the Fi and by P
the union of the Pi (for i = 0, · · · ,n−1).

Fig. 4. A vertex c with neighbor vertices xi, faces Fi, angle bisector planes Ai, and polyhedra
Pi

If P completely covers a neighborhood of c, this means that any test point y near
c is contained in at least one of the Pi. The point y is contained in Pi if it lies on the
right hand side of Ai and on the left hand side of Ai+1. We also observe that in the
reverse case (i.e. left of Ai and right of Ai+1), the antipodal point 2c− y is contained
in Pi. Because in the cycle A0,A1, · · · ,An = A0 there are as many left-right transitions
as right left transition, it follows, perhaps surprisingly, that the covering is point-
symmetric w.r.t. the center c. The point symmetry holds for the multiplicity of the
covering, not for each single polyhedron.

72 R. Peikert and C. Sigg

Therefore, if we can verify, that y lies neither on the left hand side of all Ai nor on
the right hand side of all Ai, it follows that both y and its antipodal point are covered
by P. For the practical test, it is sufficient to use one point on each intersection line
Ai ∩Ai+1. Each test point must lie on the left of at least one A j with j �= i and on the
right of at least one such. Points lying exactly on a plane should pass the test, too.
Also, it has to be noted that full planes can be used for the test, thus there is no need
to bother with half-planes.

If the test fails for some of the test points, this means that the corresponding
polyhedra must be made larger to avoid a gap. A possible way to do this is to take the
centroid of the test points. Polyhedra must be enlarged just as much that they contain
this centroid and its antipodal point. We want the polyhedra to remain pyramid frusta,
therefore we restrict the modifications to parallel shifts of edges.

4 Results

In Sect. 4.1, the amount of vertices where the bounding polyhedra leave holes is
analysed. In Sect. 4.2, the performance results of out algorithm are presented.

4.1 Saddle Vertices and Gaps

By looking at a few typical triangle meshes, it can be noticed that there are often more
saddle vertices than convex/concave vertices. This can be caused by the geometry
itself, but also by the triangulation. Especially, if a quadrilateral mesh is subdivided
to atriangle mesh, the diagonals can turn a convex vertex into a saddle vertex. This is
why the torus mesh has more than the expected 50% of saddle vertices.

Fig. 5. Datasets used for experiment

As mentioned, saddle vertices can lead to gaps between the bounding polyhedra
and the extra effort to fill them. However, our experiment showed that gaps occur
only for some of the saddle vertices. Depending on the mesh characteristics, the
percentage of saddle vertices leading to gaps can be quite small (see Table 1).

4.2 Performance of the Hardware-based Distance Transform

The way to make use of the GPU’s computing power is to work on layers of sample
locations. Each layer defines a slicing plane which is intersected with the bounding

Optimized Bounding Polyhedra for GPU-Based Distance Transform 73

Table 1. Number of vertices, saddle vertices and vertices with incomplete covering by the
unmodified bounding polyhedra

Mesh Vertices Saddles Gaps

sphere6 16386 0 0
torus 3000 1788 0
knot 1440 1378 674
seashell 915 843 148
bunny 34834 30561 516

polyhedra. A list of active edges is used to avoid empty intersections. The resulting
slices are sent to the GPU for scan conversion, where a fragment program is used
to compute the local distance field. The local distance field is the distance field of
only the seven sites (one triangle, three edges, three vertices) associated with the
bounding polyhedron. The final distance field is obtained at each fragment by taking
the minimum of the computed local distance field values. An outline of the fragment
program can be found in [16].

Fig. 6. Slices of the distance fields of bunny and knot data set, computed by the HW-based
algorithm

As a basis for comparison of performance, we used the software scan conversion
algorithm, which we downloaded from the URL [10]. We then re-implemented this
algorithm such that the scanconversion part was done on the GPU. The machine
at our disposition was a 2.4 GHz Pentium 4 equipped with 2 GB of RAM and an
ATI Radeon 9700 PRO graphics card. It turned out only a negligible speedup could
be obtained by this hardware-based program. In addition, the range of parameters
(resolution, width of computational band) where a speedup could be measured, was
rather narrow. This performance problem could be tracked down to the overhead
caused by rendering too many small polygons.

When using our optimized bounding polyhedra, the speedup delivered on the
same machine was significant for a wide range of resolutions and widths. When
choosing a band of 10% of the model extent and a resolution of 2563 samples, we
measured an average speedup close to 5 for the sphere6, knot and bunny models.

74 R. Peikert and C. Sigg

For higher resolution as well as for wider bands, the speedup improved. But also for
extremely low sample grid resolutions, the hardware-assisted program performed
well. For instance, in the case of a mesh with 131072 triangles of average area less
then 2 on the voxel scale, we measured a speedup of 3.30. However, it is obvious
that the the scan conversion approach, with or without hardware support, is no more
an efficient strategy if sampling density is further decreased. For such problems,
an image space method combined with a spatial data hierarchy would obviously be
more adequate.

The advantage of the scan conversion approach also degrades when the narrow
band is large in comparison to the volume the surface encloses. Because the bound-
ing polyhedra for one triangle is computed using its neighboring triangles only, the
bounding volumes tend to overlap on the convex side of the surface. The amount of
overlap grows superlinearly with the thickness of the narrow band. In order to com-
pute the distance transform in a dense volume around the surface, the fastest solution
would be a combination the CSC and the FMM approach. While the CSC algorithm
is faster in computing the distance in the narrow band, the FMM algorithm can then
be used to compute the distance in regions further away from the surface.

5 Conclusion

We have shown that today’s graphics hardware is suitable for supporting the signed
distance field computation. A GPU implementation has a larger overhead per poly-
hedron while sampling the distance field using scan conversion is faster. By reducing
the amount of polyhedra to approximatley one third, we were able to get a significant
speed up in comparison to the CPU implementation. It was proven that the polyhedra
cover the area around triangles, edges and convex or concave vertices up to a user de-
finable distance. However, the polyhedra can leave a hole in special configurations at
saddle vertices. These holes are filled by shifting the sides of the polyhedra outward
until they cover the normal of the saddle vertex. This procedure increases the amount
of overlap and therefore introduces a certain overhead. But it was shown that gaps
don’t appear very often for common meshes. For an implementation using graphics
hardware, the speed up gained by the reduced amount of geometry outweighs the
extra cost of additional distance samples.

Acknowledgment

This work was partially funded by Schlumberger Cambridge Research.

References

1. Ingmar Bitter, Arie E. Kaufman, and Mie Sato. Penalized-distance volumetric skeleton
algorithm. IEEE Transactions on Visualization and Computer Graphics, 7(3):195–206,
2001.

Optimized Bounding Polyhedra for GPU-Based Distance Transform 75

2. D. Breen, S. Mauch, and R. Whitaker. 3D scan conversion of csg models into distance,
closest-point and colour volumes. In M. Chen, A.E. Kaufman, and R. Yagel, editors,
Volume Graphics, pp. 135–158, 2000.

3. Daniel Cohen-Or, Amira Solomovici, and Levin Levin. Three-dimensional distance field
metamorphosis. ACM Transactions on Graphics, 17(2):116–141, April 1998. ISSN 0730-
0301.

4. Olivier Cuisenaire. Distance Transformations: Fast Algorithms and Applications to Med-
ical Image Processing. PhD thesis, Université Catholique de Louvain, Louvain-La-
Neuve, Belgium, January 1999.

5. Hinnik Eggers. Two fast Euclidean distance transformations in Z2 based on sufficient
propagation. Computer Vision and Image Understanding: CVIU, 69(1):106–116, January
1998.

6. Sarah F. Frisken, Ronald N. Perry, Alyn Rockwood, and Thouis R. Jones. Adaptively
sampled distance fields: A general representation of shape for computer graphics. In Kurt
Akeley, editor, Siggraph 2000 Proceedings, pp. 249–254. ACM SIGGRAPH, 2000.

7. Sarah F. F. Gibson. Using distance maps for accurate surface reconstruction in sampled
volumes. In Proceedings of the 1998 Symposium on Volume Visualization (VOLVIS-98),
pp. 23–30, New York, October 19–20 1998. ACM Press.

8. Kenneth Hoff, Tim Culver, John Keyser, Ming Lin, and Dinesh Manocha. Fast computa-
tion of generalized voronoi diagrams using graphics hardware. In Alyn Rockwood, editor,
Siggraph 99 Proceedings, pp. 277–286, N.Y., August8–13 1999. ACM SIGGRAPH.

9. Jian Huang, Yan Li, Roger Crawfis, S.C. Lu, and Shu Liou. A complete distance field
representation. In Thomas Ertl, Ken Joy, and Amitabh Varshney, editors, Proceedings
Visualization 2001, pp. 247–254. IEEE Computer Society Technical Committee on Visu-
alization and Graphics Executive Committee, 2001.

10. Sean Mauch. A fast algorithm for computing the closest point and distance transform,
2000.
http://www.acm.caltech.edu/∼seanm/projects/cpt/cpt.html.

11. Sean Mauch. Efficient Algorithms for Solving Static Hamilton-Jacobi Equations. PhD
thesis, Caltech, Pasadena CA, April 2003.

12. Calvin R. Maurer, Jr., Rensheng Qi, and Vijay Raghavan. A linear time algorithm for
computing exact euclidean distance transforms of binary images in arbitrary dimensions.
IEEE Trans. Pattern Anal. Mach. Intell., 25(2):265–270, 2003.

13. James C. Mullikin. The vector distance transform in two and three dimensions. Com-
puter Vision, Graphics, and Image Processing. Graphical Models and Image Processing,
54(6):526–535, November 1992.

14. A. Rosenfeld and J. L. Pfalz. Distance functions on digital pictures. Pattern Recognition,
1:33–61, 1968.

15. J. A. Sethian. A fast marching level set method for monotonically advancing fronts. Proc.
Nat. Acad. Sci., 94:1591–1595, 1996.

16. Christian Sigg, Ronald Peikert, and Markus Gross. Signed distance transform using
graphics hardware. In R. Moorhead, G. Turk, and J. van Wijk, editors, Proceedings of
IEEE Visualization ’03, pp. 83–90. IEEE Computer Society Press, October 2003.

17. M. Sramek and A. Kaufman. Fast ray-tracing of rectilinear volume data using distance
transforms. In Hans Hagen, editor, IEEE Transactions on Visualization and Computer
Graphics, volume 6 (3), pp. 236–252. IEEE Computer Society, 2000.

18. Yen-hsi Richard Tsai. Rapid and accurate computation of the distance function using
grids. Technical report, Dept. of Mathematics, University of California, Los Angeles,
2000.

76 R. Peikert and C. Sigg

19. Ming Wan, Frank Dachille, and Arie Kaufman. Distance-field based skeletons for virtual
navigation. In Thomas Ertl, Ken Joy, and Amitabh Varshney, editors, Proceedings of the
Conference on Visualization 2001 (VIS-01), pp. 239–246, Piscataway, NJ, October 21–26
2001. IEEE Computer Society.

Appendix: Proof for Complete Covering
Around Convex/Concave Vertices

Let c be a convex/concave vertex of a closed and oriented triangle mesh. Using the
notation of Sect. 3.4, we want to show that a small neighborhood of c is completely
covered by the union P of polyhedra. This can be seen best by taking intersections
with a small sphere S centered at c (see Fig. 7). We use the overbar symbol to de-
note the intersection with S. It follows that F̄i are great circles, and their union F̄
is a convex spherical polygon. Also the Āi are great circles, which can be oriented
consistently towards the interior of F̄ . Finally, P̄i are spherical lunes, because we can
assume that the diameter of S is smaller than all edges.

Fig. 7. Intersections of faces and angle bisector planes with the sphere

The conjecture is now that S is completely covered by P̄, the union of the lunes.
By the argument given in Sect. 3.4, it is sufficient to show that the northern hemi-
sphere is covered.

Let y be a test point on S and on the convex side of the surface, i.e. an interior
point of F̄ . We choose coordinates in such a way that y is the north pole of the
sphere. By connecting the vertices of the spherical polygon with the north pole, we
get n spherical triangles which add up to a full 2π angle at the north pole. For the i-th
triangle, let γi be the angle at the north pole, and αi and βi the angles to the meridians
(see Fig. 8).

Let us now assume that the north pole lies on the left of all Āi which can be
expressed as

Optimized Bounding Polyhedra for GPU-Based Distance Transform 77

Fig. 8. Spherical triangles above mesh triangles

αi+1 > βi (1)

Convexity implies that

αi+1 +βi ≤ π (2)

From (1), (2) and 0 < αi+1,βi < π follows that

0 <
sinβi

sinαi+1
< 1 (3)

Taking the product yields

n−1

∏
i=0

sinβi

sinαi
=

n−1

∏
i=0

sinβi+1

sinαi
< 1 (4)

On the other hand, we can derive

n−1

∏
i=0

sinβi

sinαi
=

n−1

∏
i=0

sinbi

sinai
=

n−1

∏
i=0

sinbi

sinbi+1
= 1 (5)

making use of the spherical law of sines, the fact that ai = bi+1 because triangles fit
together, and finally bn = b0.

From this contradiction follows that the test point is covered by P̄, and so the
interior of the spherical polygon F̄ .

Because of convexity, it is possible to choose an interior point of F̄ as the north
pole such that all of F̄ lies in the northern hemisphere. It remains to show that P̄ not
only covers F̄ but the whole hemisphere. Any spherical lune must have one of its end
points below the equator, and because of convexity, this is the one on the concave
side. But this means that along the equator, the sequence of lunes P̄0, · · · , ¯Pn−1, P̄0

can’t have any gaps, and therefore the hemisphere is completely covered, which was
the conjecture.

Generating, Representing
and Querying Level-Of-Detail Tetrahedral Meshes

Leila De Floriani1,2 and Emanuele Danovaro1

1 Department of Computer Science, University of Genova, Genova, Italy
2 Department of Computer Science, University of Maryland, College Park, MD, USA

Summary. In this paper, we survey techniques for building, encoding and querying Level-
Of-Detail (LOD) models of three-dimensional scalar fields based on a domain decomposition
into tetrahedral meshes. We focus on continuous LOD models, and we classify them into
unstructured (irregular) and regular nested LOD models depending on the mesh subdivision
pattern and on the distribution of the data points. Within each class, we review data structures,
construction algorithms, as well as techniques for extracting adaptively refined field represen-
tations from an LOD model.

1 Introduction

Level-Of-Detail (LOD) models have been proposed to control and adapt the accuracy
in the representation of large-size volume data sets. LOD models encode in a com-
pact data structure the steps performed by a refinement process applied to a coarse
representation of a scalar field, or by a decimation process applied to a full- resolu-
tion representation. A large numbers of simplified meshes can be extracted from an
LOD model, in which the resolution (i.e., the density of the cells) of the simplified
mesh may vary in different parts of the field domain, or in the proximity of interest-
ing field values. The extraction of a simplified representation from an LOD model
is called a selective refinement. The challenge in designing an LOD model is repre-
sented by the trade-off between the efficiency of the selective refinement algorithms
and the storage cost of the representation.

This paper reviews techniques proposed in the literature for encoding, generat-
ing and performing selective refinement on an LOD model. We focus on so-called
continuous LOD models, from which a virtually continuous simplified adaptive rep-
resentations can be extracted. Discrete (non-continuous) LOD models consist of a
(usually small) collection of representations at different LODs and only representa-
tions of the scalar field at uniform resolutions can be extracted from them [6].

The remainder of this paper is organized as follows. Section 2 introduces some
background notions on tetrahedral meshes and discusses data structures for encod-
ing them. Section 3 introduces the basic elements of an LOD model and the most

80 L.D. Floriani and E. Danovaro

common update operations through which an LOD model is generated. Section 4
reviews incremental refinement and coarsening techniques used to generate unstruc-
tured LOD models. Section 5 discusses data structures for encoding unstructured
LOD models. Section 6 reviews techniques for encoding and querying nested LOD
models. Section 7 presents some comparisons of performances of unstructured and
nested LOD models in extracting adaptively-refined meshes, and discusses some
open research issues.

2 Background

A volume data set S consists of a set V of points in the three-dimensional Euclidean
space, and of one or several field values associated with the points of V . The points
in V can be regularly spaced, i.e., they are the vertices of a regular, rectilinear grid, or
irregularly spaced. In the former case, we will call S a structured, or a regular, data
set, while, in the latter case, we will call it an unstructured, or an irregular data set.

A tetrahedral mesh Σ is a connected set of tetrahedra such that the union of all
tetrahedra in Σ covers a domain D in 3D space and any two distinct tetrahedra have
disjoint interiors. A tetrahedral mesh Σ is called a conforming mesh if the intersection
of the boundaries of any two tetrahedra σ1 and σ2 of Σ , which have a non- empty
intersection, consists of lower dimensional simplexes (vertices, edges, or triangles)
that belong to the boundary of both σ1 and σ2. Conforming meshes have a well-
defined combinatorial structure in which each tetrahedron is adjacent to exactly one
other tetrahedron along each of its faces. This is important when a tetrahedral mesh
is used as a decomposition of the domain of a volume data set.

We call nested meshes those meshes which are defined by the uniform subdivi-
sion of a tetrahedron into scaled copies of it. In particular, we will consider nested
regular meshes, in which the vertices are a subset of the vertices of a regular grid. A
mesh which is not nested is called irregular, or unstructured. A mesh is called sta-
ble if the tetrahedra forming it satisfy some measure of non-degeneracy. Measures
commonly used in the finite element literature are the circumradius- to-shortest-edge
ratio (where the circumradius is the radius of the circumsphere of a tetrahedron), and
the minimum solid angle associated with a tetrahedron [39].

The most common data structure for encoding a tetrahedral mesh Σ is the so-
called indexed data structure, which, for each tetrahedron σ of Σ , stores the indexes
of the four vertices of σ . If n denotes the number of vertices of Σ , the storage cost
of this data structure is equal to to 102n bytes by assuming to encode indexes on 4
bytes, and coordinates on 2 bytes. The indexed data structure with adjacencies [31]
generalizes the indexed data structure by encoding, for each tetrahedron σ of Σ , also
the indexes of the four tetrahedra which are adjacent to σ along a face. The storage
cost if this data structure is equal to 198n bytes. This latter data structure has been
extended to be able to retrieve all tetrahedra incident at a vertex efficiently, by storing,
for each vertex v, the index of just one tetrahedron incident at v, leading to a storage
cost of 202n bytes.

Level-Of-Detail Tetrahedral Meshes 81

3 LOD Models

The basic elements of an LOD model of a spatial object are a base mesh, that de-
fines the coarsest approximation to the object, a set of updates, that, when applied to
the base mesh, provide variable resolution mesh-based representations of the spatial
object, and a dependency relation among updates, which allows combining them to
extract consistent intermediate representations as well as the mesh at full resolution,
that we call the reference mesh [11].

Intuitively, an update on a tetrahedral mesh Σ consists of replacing a connected
set of tetrahedra Σ1 in Σ with another set of tetrahedra Σ2 in such a way that the result
is still a mesh (see [11] for a formal definition). An update is conforming if, when
applied to a conforming mesh, it produces a conforming mesh as result. An update is
either described explicitly, as the set of tetrahedra involved in Σ1 and Σ2, or implicitly,
by encoding the operation which produces it. An update is called a refinement update
if Σ2 contains more tetrahedra than Σ1, a coarsening update, otherwise.

The dependency relation can be an inclusion relation or a representation of the
possible orders in which updates can be performed to extract conforming meshes at
different resolutions. When the base mesh is a nested regular mesh and all updates
involve replacing one tetrahedron σ with a set of tetrahedra whose union cover σ , we
call the resulting LOD model a nested LOD model, we call it an unstructured LOD
model otherwise. In a nested LOD model, the dependency relation is an inclusion
relation, since it captures the nestedness property of the underlying subdivision.

The basic operation on an LOD model, called selective refinement, consists of
extracting a conforming mesh satisfying some application-dependent requirements
based on level of detail, such as approximating a scalar field with a certain accu-
racy which can be uniform or variable in space. We consider a Boolean function τ ,
that we call an LOD criterion, defined over the tetrahedra of an LOD model, which
returns a value true if a tetrahedron satisfies the requirements of the query, a value
false otherwise. The general selective refinement query on an LOD model can be thus
formulated as follows: given an LOD criterion τ , extract from the model the mesh
M of minimum size that satisfies τ . In general, the LOD criterion is based on some
approximation error, like the field error, which measures the accuracy with which a
scalar field approximation provided by a simplified domain decomposition approx-
imates the original field data, or the isosurface error, which measures the accuracy
with which the isosurfaces extracted from a simplified representation of the field ap-
proximate the isosurfaces extracted by the representation at full resolution (see [5]
for a thorough analysis of the different errors).

3.1 Updates in Unstructured LOD Models

In this Subsection, we briefly review the most common update for LOD models
based on unstructured tetrahedral meshes, namely edge collapse/vertex split. Ver-
tex insertion/removal, which is commonly used in the case of triangle meshes, is
much less common for tetrahedral meshes, because of the theoretical problems in-
volved in removing and in inserting a vertex in a tetrahedral mesh with a non-convex

82 L.D. Floriani and E. Danovaro

domain [38, 42]. Tetrahedron collapse to a new vertex has also been used to simplify
tetrahedral meshes [4]. Note that a tetrahedron collapse can be expressed also as a
sequence of three edge collapses.

A full-edge collapse consists of contracting an edge e with extreme vertices v′
and v′′ to a new vertex v. The tetrahedra incident at v′ or v′′ become incident at v, and
the tetrahedra incident at both v′ and v′′ collapse into triangles (see Fig. 1 from left
to right). The reverse operation, called a full-vertex split, expands a vertex v into an
edge e having its endpoints at v′ and v′′. A full-vertex split partitions the tetrahedra
incident at v into two subsets, which are separated by a fan T of triangles incident
at v. Tetrahedra of the two subsets are deformed to become incident at v′ and v′′,
respectively. Triangles belonging to fan T become tetrahedra incident at both v′ and
v′′ (see Fig. 1 from right to left).

A half-edge collapse consists of contracting an edge e = (v,w) to one of its ex-
treme vertices, say w (see Fig. 2 from left to right). The reverse update of a half-edge
collapse is a half-vertex split, which expands a vertex w into an edge e by inserting the
other extreme vertex v of e (see Fig. 2 from right to left). A half-edge collapse mod-
ifies the set of tetrahedra incident at v, while a half-edge split only a face-connected
subset of tetrahedra incident at w. Our experiments have shown that, on average, a
full-edge collapse replaces 33 tetrahedra with 27, while a half-edge collapse replaces
11 tetrahedra with 16 [8].

vertex split

edge collapse

e

v’

v

0 0

0

1 1
v’’

0

Fig. 1. Update of a tetrahedral mesh through a full-edge collapse and a full-vertex split. On the
left, tetrahedra that degenerate into triangles after full-edge collapse are shaded. On the right,
tetrahedra marked with 0 and with 1 result from the deformation of tetrahedra incident at v′
and at v′′, respectively

w

v

w

vertex split

half−edge collapse

Fig. 2. Update of a tetrahedral mesh through a half-edge collapse and a half-vertex split

Level-Of-Detail Tetrahedral Meshes 83

3.2 Updates in Nested LOD Models

Updates in nested LOD models consist of refining a three-dimensional cell σ with
a set of three-dimensional cells whose union covers σ (nestedness property). The
refinement rule is specific to each update rule. The most common refinement rules :
tetrahedron bisection, regular tetrahedron subdivision, and tetrahedron/octahedron
subdivision. Note that all such refinement rules generate non-conforming updates.

Tetrahedron Bisection

Tetrahedron bisection consists of replacing a tetrahedron σ with the two tetrahedra
obtained by splitting σ at the middle point of its longest edge through the plane
passing through such point and the opposite edge in σ [24, 30, 36, 39, 40]. It is
applied recursively to an initial decomposition of a cubic domain into six tetrahedra
(see Fig. 3a). This gives rise to three congruent tetrahedral shapes, that we call 1/2
pyramids, 1/4 pyramids and 1/8 pyramids, respectively (see Fig. 3). The tetrahedra in
the initial cube subdivision are 1/8 pyramids. In general, if we consider as level 0 in
the recursive subdivision the one corresponding to the domain subdivision, we have
1/8 pyramids at any level i = 3 j, 1/2 pyramids at any level i = 3 j+1, 1/4 pyramids at
any level i = 3 j +2, j = 0,1, Note that all three shapes satisfy stability measures.

(a) (b) (c) (d)

Fig. 3. (a) Subdivision of the cubic domain into six tetrahedra. Examples of (b) a 1/2 pyramid,
(c) a 1/4 pyramid, and (d) a 1/8 pyramid

In order to guarantee that a conforming mesh is generated when applying tetra-
hedron bisection, all tetrahedra that share their longest edge with the tetrahedron
being split must be split at the same time. Such tetrahedra form a diamond (some-
times called a cluster) [19, 26, 34]. The conforming update defined by tetrahedron
bisection consists of replacing all the tetrahedra in a diamond with the tetrahedra
obtained by splitting them along their longest edge. The vertex used to split a dia-
mond is called the split vertex of the diamond. There are three types of diamonds,
generated by the three congruent tetrahedral shapes, that we call plane-aligned, axis-
aligned and non-aligned diamonds, which are formed by 1/2, 1/4 and 1/8 pyramids,
respectively (see Fig. 4).

84 L.D. Floriani and E. Danovaro

(a) (b) (c)

Fig. 4. (a) A plane-aligned diamond. (b) An axis-aligned diamond. (c) A non-aligned diamond

Regular Tetrahedron Refinement

The regular tetrahedron refinement rule subdivides a tetrahedron σ into eight tetra-
hedra by bisecting all edges of σ [1, 22, 45]. Four tetrahedra in regular tetrahedron
refinement correspond to the vertices of σ , since each of them is obtained by cut-
ting off the corresponding corner. These four tetrahedra are congruent with σ . The
other four tetrahedra are obtained by splitting the octahedron generated when cut-
ting off the four corner tetrahedra from σ (see Fig. 5). The octahedron is split into
two pyramids, each of which is partitioned into two tetrahedra. The splitting of the
octahedron into four tetrahedra is not unique (there are three possible choices for a
diagonal) and a wrong choice can generate unstable meshes. The method proposed
by Bey [1] generates three congruence classes.

To generate a conforming mesh, when a tetrahedron has to be split, all the tetra-
hedra at the same level of subdivision have to be split at the same time. In this way,
adaptive meshes, i.e., meshes in which the size of the tetrahedra varies in different
parts of the domain, cannot be obtained. To overcome this problem, the above sub-
division rule, also called a red refinement rule, is combined with a refinement rule
which generates irregular tetrahedra, called green refinement rule [1, 22, 45] (see
Subsect. 6.2).

Tetrahedron/Octahedron Refinement

The tetrahedron/octahedron refinement rule [20] combines the regular refinement
rule for a tetrahedron which subdivides a tetrahedron σ into four tetrahedra and one

Fig. 5. Splitting of a tetrahedron into four tetrahedra and an octahedron

Level-Of-Detail Tetrahedral Meshes 85

octahedron, with a refinement rule for an octahedron which subdivides an octahedron
γ into eight tetrahedra and six octahedra by connecting the edge midpoints of each
face of γ and by connecting all edge midpoints to the barycenter of octahedron γ
(see Fig. 6). To generate a conforming mesh, when a tetrahedron or an octahedron
at a certain level has to be split, all the tetrahedra and octahedra at the same level
of subdivision have to be split at the same time. Thus, the only conforming meshes
are those including all the tetrahedra and octahedra at the same level. To generate
adaptive meshes, an irregular refinement rule must be applied (see Subsect. 6.2).

Fig. 6. Splitting of an octahedron into eight tetrahedra and six octahedra.

4 Generating LOD Models

LOD models are generated through simplification algorithms. Many simplification
methods have been developed in the literature for dealing with triangulated sur-
faces (see, e.g., [16] for a survey).The most effective solutions to the simplification
problem have been provided by incremental techniques, based on either coarsening
(decimation), or refinement strategies. Incremental techniques are especially interest-
ing for generating LOD models, since the intermediate steps of the process produce
meshes at decreasing (or increasing) LODs.

4.1 Coarsening Algorithms

Most coarsening algorithms simplify a volume data set by performing an edge- col-
lapse. They all work on irregular tetrahedral meshes. Gross and Staadt [21] present
a decimation technique based on collapsing an edge to an arbitrary interior point,
and they introduce various cost functions to drive the collapsing process. Cignoni et
al. [5] propose an algorithm based on half-edge collapse, in which the decimation
process is driven by a combination of the geometric error introduced in simplifying
the shape of the domain and of the error introduced in approximating the scalar field
with fewer points. Trotts et al. [44] perform half-edge collapse as well. They control
the quality of the simplified mesh by estimating the deviation of the simplified scalar
field from the original one, and by predicting the increase in deviation caused by a
collapse.

Renze and Olivier [38] use vertex removal on a Delaunay mesh as a decimation
criterion: their algorithm removes a vertex v only if the hole left in the mesh can be

86 L.D. Floriani and E. Danovaro

re-triangulated without inserting new points. Vertex removal cannot always be per-
formed on a Delaunay tetrahedral mesh: there is no guarantee that the star-shaped
polyhedron generated by vertex removal can be re-triangulated without adding ex-
tra points. Chopra e Meyer [4] present a decimation algorithm based on iteratively
collapsing a tetrahedron σ into a new vertex. This technique produces a higher deci-
mation rate per step compared with methods based on edge collapse.

4.2 Refinement Algorithms

Refinements algorithms are used for both regular and irregular meshes. Refinement
techniques for regular meshes consists of recursively applying to the base mesh a
refinement update, defined through a refinement rule satisfying the nestedness prop-
erty.

Refinement techniques for irregular meshes are based on incremental point in-
sertion. In [23], Hamann and Chen describe a refinement technique for an irregu-
lar mesh with a convex boundary, which performs a top-down selection of relevant
points, based on curvature. Significant data are identified by large absolute curva-
tures obtained through a local least-square approximation method. When a point is
inserted into the mesh, local modifications are performed in order to minimize a
local approximation error, thus leading to a data-dependent triangulation of the do-
main. In [6], an incremental refinement technique based on inserting a point in a
Delaunay tetrahedral mesh with a convex domain is described. The point with the
largest error with respect to the original volume data set is selected. LOD models
based on vertex insertion can be generated only for unstructured meshes with a con-
vex domain, or for meshes generated by warping of a regular grid [6]. This is due to
the intrinsic theoretical difficulties in generating a constrained Delaunay tetrahedral
mesh in three dimensions by using just the vertices in the data set.

5 Data Structures for Unstructured LOD Models

Unstructured LOD models are based on conforming updates and on a dependency
relation defined among updates as follows: an update u is dependent on another up-
date u′ if and only if u deletes some tetrahedron introduced by u′. This rule imposes
a strict partial order on the set of updates, which encodes all and only those depen-
dencies that are necessary to perform either refinement or coarsening updates in the
same situation in which they were performed during construction, thus guaranteeing
that the result is a conforming mesh.

The data structures for encoding unstructured LOD models can be classified into
explicit data structures, which explicitly represent the tetrahedra in the LOD model,
and into implicit data structures, which encode the operations through which the
LOD model is generated (see also [10]). Adaptive meshes are extracted through top-
down refinement or through alternating incremental refinement and coarsening steps
by traversing the data structure which implements the dependency relation. In this
Section, we briefly review an explicit data structure, and three implicit ones based on
edge collapse (see [10] for an implicit data structure encoding vertex-based updates).

Level-Of-Detail Tetrahedral Meshes 87

5.1 An Explicit Data Structure

An LOD model based on d-dimensional simplicial meshes, called a Multi-Tessell-
ation (MT), has been defined in [13], which is independent of the dimension of the
complex and of the specific strategy through which the model is built. This model
extends the Multi-Triangulation, proposed in [37], to three and higher dimensions. A
data structure implementing the three-dimensional MT describes the dependency re-
lations as a DAG (Directed Acyclic Graph) and represents each tetrahedron explicitly
as the 4-tuple of its vertex indexes [10]. The total cost of the 3D MT data structure,
when built through half-edge collapses, has been shown to be equal to 360n bytes,
which is about 3.5 times the cost for encoding the reference mesh as an indexed data
structure, and about 1.8 times the cost for encoding the reference mesh as an indexed
data structure with adjacencies.

5.2 A Data Structure based on Full-Edge Collapse

In [7], an LOD data structure for unstructured LOD models, called a Full-Edge
Multi-Tessellation (MT), has been developed to efficiently encode an LOD model
generated through full-edge collapses.

The dependency relation between pair of updates is encoded implicitly through
a data structure proposed in [14], called a view-dependent tree. A view-dependent
tree consists of a binary forest of vertices, enriched with a vertex numbering scheme.
In the binary forest, the roots are vertices of the base mesh Σ0, and the two children
of a vertex v are the vertices v′ and v′′ generated by splitting v, i.e., the endpoints
of the edge collapsed into v. Vertices of the reference mesh are assigned labels from
1 to n in arbitrary order. Vertices created in simplification are assigned consecutive
integer labels. In order to check whether or not a split [collapse] can be performed,
it is sufficient to compare the label of the vertex to be split [extreme vertices of the
edge to collapse] with the labels of its [their] adjacent vertices. This guarantees that
all splits and collapses applied in selective refinement will be performed in the same
situation as in the simplification algorithm.

An internal node of the view-dependent tree corresponds to the collapse of an
edge e = (v′,v′′) to a vertex v (see Fig. 1) and to its inverse vertex split. It contains
offset values, used to find the positions and the field values at vertices v′ and v′′
from that of v, and vice-versa, the approximation error introduced by performing the
edge collapse, and a bit mask, used to partition the set of tetrahedra incident at v
by labeling each tetrahedron with one bit. Vertex v must be replaced with v′ in all
tetrahedra marked with 0, while v must be replaced with v′′ in all tetrahedra marked
with 1. Each triangular face shared by two differently marked tetrahedra must be
expanded into a tetrahedron incident at both v′ and v′′ (see Fig. 1).

The total cost of the Full-Edge MT data structure is equal to 32n bytes, which is
about 1/3 of the cost for encoding the reference mesh as an indexed data structure,
and about 19% of the cost for encoding the reference mesh as an indexed structure
with adjacencies [7].

88 L.D. Floriani and E. Danovaro

5.3 Data Structures based on Half-Edge Collapse

A compact data structure for encoding a Half-Edge Multi-Tessellation (MT), i.e., an
LOD model generated through half-edge collapses, is described in [8]. The depen-
dency relation is encoded as a DAG by using the technique proposed by Klein and
Gumhold [25], in which each arc of the DAG is encoded only once. A half-edge
collapse of an edge (v,w) to a vertex w and its corresponding half-vertex split are
encoded by storing: the coordinates of vertex v and the field value at vertex v, the
approximation error introduced by performing the half-edge collapse, an implicit
encoding of vertex w and a compact encoding of the set of tetrahedra incident in w
which are affected by inserting vertex v (that we call the region of influence of the
update). This encoding consists of an initial tetrahedron plus a traversal of the region
of influence represented as a string of bits. The bit string is generated by traversing
the tetrahedra involved in the vertex split in a breadth-first fashion, starting from the
given tetrahedron. Any tetrahedral face f crossed during the traversal is labeled with
1 or 0, depending on whether it is an internal face or it is on the boundary of the
region of influence (see Fig. 2). The total cost of this DAG-based Half-Edge MT
data structure (including the cost of encoding the direct dependencies) is equal to
56n bytes [8], which is about half of the cost for encoding the reference mesh as an
indexed data structure, and about 28% of the cost for encoding the reference mesh as
an indexed structure with adjacencies.

A more space-efficient data structure for a Half-Edge MT has been introduced
in [43]. In this data structure, the direct dependency relation is encoded implicitly
through an extension of the view-dependent tree. The vertices of the reference mesh
still correspond to the leaves of the binary forest, but, if an edge (v,w) is collapsed
to vertex w, then a renamed copy w′ of w appears in the binary tree as the parent of
vertices v and w: vertex w is called a false child of w′. For each false child q, a true
parent of q is defined as the true parent of the nearest ancestor q of q, such that q is a
true child. Updates are encoded in a similar way as in the previous DAG-based data
structure. The total cost is 33n bytes, which is about 60% of the cost of encoding the
DAG-based representation.

Table 1 shows experimental comparisons between a Half-Edge MT and a Full-
Edge MT based on mesh extractions at a uniform as well as at a variable LOD. For
extractions at a uniform LOD, the error with which the extracted mesh approximates
the reference mesh is required to be less or equal a threshold value, expressed as
a percentage of the range of the field values. For extractions at variable LODs, we
require the approximation error to be less or equal to a threshold value in a focus set
(which is a box in the experiments presented here) and arbitrarily large outside the
focus set. The ratio between the size of any extracted mesh and the reference mesh
is shown in the table.

The experiments shown have been performed on three different data sets, namely:
Plasma (Visual Computing Group, CNR, Italy), which is a regular synthetic data set
representing Perlin noise, with 274,625 vertices and 1,310,720 tetrahedra, Blunt Fin
(C.M. Hung and P.G. Buning, NASA), which is a curvilinear data set representing
an airflow over a flat plate and has 40,948 vertices and 222,414 tetrahedra, and San

Level-Of-Detail Tetrahedral Meshes 89

Table 1. Size of the meshes extracted from Plasma, Blunt Fin and San Fernando data sets at a
uniform LOD and at a variable LOD with a box as focus set. The values represent the size of
the extracted mesh with respect to the size of the reference mesh

Uniform LOD Variable LOD – Box
Half-Edge MT Full-Edge MT Half-Edge MT Full-Edge MT

Error Blunt Plasma SF Blunt Plasma SF Blunt Plasma SF Blunt Plasma SF
0.00% 1.00 1.00 1.00 1.00 1.00 1.00 0.55 0.06 0.25 0.77 0.28 0.53
0.03% 0.91 0.98 0.84 0.95 0.99 0.91 0.52 0.06 0.21 0.75 0.27 0.52
0.09% 0.83 0.97 0.77 0.89 0.99 0.85 0.49 0.06 0.19 0.71 0.27 0.48
0.30% 0.63 0.95 0.67 0.72 0.97 0.77 0.35 0.06 0.15 0.59 0.27 0.39
0.90% 0.40 0.72 0.51 0.51 0.75 0.61 0.20 0.05 0.11 0.34 0.17 0.37
3.00% 0.26 0.18 0.41 0.33 0.21 0.45 0.09 0.02 0.06 0.07 0.06 0.36
9.00% 0.24 0.02 0.24 0.33 0.03 0.32 0.03 0.01 0.01 0.04 0.01 0.04

20.00% 0.20 0.01 0.02 0.28 0.01 0.32 0.03 0.00 0.00 0.03 0.00 0.02

Fernando (D.R. O’Hallaron and J.R. Shewchuk, Quake project), which is an irregular
data set representing the simulation of an earthquake in the San Fernando Valley in
Southern California and has 378,747 vertices and 2,067,739 tetrahedra. The results
show that, on average, the size of the meshes extracted from a Half-Edge MT is about
16% less that the size of those extracted from a Full-Edge MT at a uniform LOD,
while this percentage increases to 51% for extractions at variable LOD with a box as
focus set.

6 Encoding and Querying Nested LOD Models

Most data structures for nested LOD models maintain a table of field values and, pos-
sibly, the approximation errors associated with the tetrahedra (or octahedra) gener-
ated at intermediate steps in the subdivision. In this latter case, approximation errors
are encoded in an array which provides a pointer-less representation of the hierarchy
describing the nested mesh. The hierarchy consists of a forest of tetrahedra (and pos-
sibly octahedra), in which the roots correspond to the initial domain subdivision, any
other node describes a tetrahedron, or an octahedron, and the children of a node are
tetrahedra (and octahedra) subdividing the corresponding cell. The leaf nodes, which
correspond to tetrahedra (or octahedra) in the reference mesh, are not encoded, since
they have a null error. Note that the forest of tetrahedra does not need to be explicitly
encoded unless approximation errors or other attribute information are attached to
the tetrahedra (or octahedra) in the forest.

In this Section, we review data structures which have been developed for nested
LOD models generated through tetrahedron bisection, and we discuss techniques for
extracting adaptive conforming meshes from such representations.

90 L.D. Floriani and E. Danovaro

6.1 Data Structures

The data structures for encoding nested regular meshes produced through tetrahe-
dron bisections encode (implicitly or explicitly) either a binary forest of tetrahedra,
called a Hierarchy of Tetrahedra (HT), or a DAG of diamonds with their direct de-
pendencies.

An HT consists of a field table containing the field values at the data points plus
an array containing the approximation errors associated with the tetrahedra corre-
sponding to the internal nodes in the forest. Alternatively, error information can be
associated with the vertices. Each split vertex v of a diamond would have an approx-
imation error associated with which is equal to the maximum of the approximation
errors associated with the tetrahedra in the diamond. In this case, the hierarchy is
not encoded and the inclusion relation is implicit. If n is the number of points in the
reference mesh, 2n bytes are necessary for the field table, while between 2n and 12n
bytes are required for the error values, assuming two bytes per error and depend-
ing on whether errors are associated with tetrahedra in the hierarchy or just to the
vertices =. If the error and the field values are quantized as in [19] to one byte, the
storage cost of the data structure ranges from 2n to 7n bytes.

A different, but equivalent, representation is defined by considering the conform-
ing updates, i.e. the diamonds, generated by the tetrahedron bisection process and
their dependency relations [19, 34]. We call such representation a DAG of diamonds.
It extends similar representations used for describing nested LOD models based on
triangle meshes [28, 29, 33]. Given a diamond D, the parents of D are those diamonds
that must be split to create the tetrahedra of D. The diamonds that are created when
D is split are the children of D. Note that a plane-aligned diamond has two parents
and four children, an axis-aligned diamond has four parents and eight children, and a
non-aligned diamond has three parents and six children. In a DAG of diamonds GD,
the root is the initial subdivision of the cube (a non-aligned diamond), any other node
is a diamond and the arcs describe the parent-child relation. Note that the diamonds
at level i are non-aligned diamonds, those at level i+1 are plane-aligned diamonds,
while those at level i+2 are axis-aligned diamonds, where i = 3 j, j = 0,1, ...,max.

In [19], a compact data structure for encoding a DAG of diamonds is described
in which the DAG structure has not to be explicitly recorded. Diamond information
as well as error information are attached to each vertex together with its field value.
Only three bytes per diamond are used to store the pre-computed error information
for each diamond.

6.2 Extracting Conforming Meshes

In order to compute adaptive conforming meshes from a nested LOD model built
through tetrahedron bisection, it is necessary to apply conforming updates to the
currently extracted mesh. In a selective refinement algorithm, when a tetrahedron σ
must be refined, all tetrahedra belonging to the same diamond as σ must be refined
as well. When a DAG of diamonds is maintained, the conforming updates are pre-
computed. Otherwise, the diamonds must be computed while extracting a mesh at a

Level-Of-Detail Tetrahedral Meshes 91

certain LOD. Two techniques have been used in order to apply conforming updates
at each step: one is based on error saturation [18, 32, 46], and the other one is based
on neighbor finding [24, 26].

One way to ensure that all tetrahedra belonging to the same diamond are refined
at the same time is to assign all of them the same error value, which is equal to
the maximum of their original error values. The saturation condition states that ap-
proximation error associated with each tetrahedron must be greater than or equal to
the error associated with its children. The saturation condition can be applied to any
error metric as shown in [17] for the case of terrains.

An alternative method consists of computing the diamond to which a given tetra-
hedron σ belongs during selective refinement by finding the tetrahedra sharing their
longest edge with σ . The neighbor finding algorithms is based on assigning a loca-
tion code to each tetrahedron, with a mechanism similar to that adopted for linear
encoding of triangle quadtrees [27], or hierarchies of right triangles [15]. Location
codes are not stored, but they are computed when extracting a mesh during selective
refinement. A location code for a tetrahedron σ consists of a pair of numbers, in
which the first denotes the level of σ in the tree, and the second indicates the path
from the root of the tree to σ . The location code for a tetrahedron is defined on the
basis of a labeling scheme for its children and for the vertices of such children in the
forest [26].

The neighbor finding algorithm sketched in [26] uses an approach similar to the
one defined in [41] for region quadtrees. It consists of two steps. Given an input
tetrahedron σ and a face viv jvk, the first step identifies the nearest common ancestor
of σ and its neighbor σ ′ along face viv jvk by scanning the location code from right
to left. The second step updates the location code for the neighbor by using the
information obtained while finding the nearest common ancestor: just the one bit
corresponding to the child of the nearest common ancestor needs to be inverted.
In [26], an implementation is proposed which performs neighbor finding in worst-
case constant time. The algorithm makes use of the carry property of addition to find
a neighbor efficiently without specifically searching for a nearest common ancestor.
In [24], Hebert proposes a technique for computing parents, children, and neighbors
of a tetrahedron in a symbolic way, but finding neighbors still takes time proportional
to the depth of the subdivision.

Experimental comparisons between saturation-based and neighbor finding tech-
niques, discussed in [12], performed on the basis of mesh extractions at uniform
resolution, have shown that the meshes extracted using error saturation have, on av-
erage, 5% more tetrahedra than those extracted with the neighbor finding algorithm.
On the other hand, the computing times for mesh extraction are the same for the
saturated and non-saturated versions.

Extracting uniformly-refined conforming meshes from nested LOD models based
either on regular tetrahedron bisection, or on tetrahedron/octahedron subdivision just
requires to refine all tetrahedra or octahedra at the same level of subdivision at the
same time. The extracted meshes will be just those corresponding the different subdi-
vision levels. Extracting adaptive meshes requires combining the regular refinement

92 L.D. Floriani and E. Danovaro

rules, discussed in Subsection 3.2, with irregular refinement rules, which refine a
tetrahedron by bisecting it on one to five edges.

The refinement algorithm performs all the regular (red) refinements (as defined
in Subsection 3.2) in a top-down fashion to meet a certain LOD criterion. Then the
resulting mesh Σ is refined by still applying the regular refinement rule, until any pair
of edge-adjacent 3-cells (tetrahedra or octahedra) differ at most in one subdivision
level. Thus, any 3-cell in the resulting refined mesh Σ ′ is at a level i or at a level
i− 1. Any octahedron at level i− 1 in a tetrahedron/octahedron subdivision is first
split by connecting the vertices to its centroid. Then, the irregular refinement rule is
applied to all tetrahedra at level i−1. A tetrahedron has 64 irregular edge-refinement
patterns, which can be grouped into 9 patterns due to symmetry considerations [20].

7 Concluding Remarks

In [9], we have compared the performance of the Half-Edge MT, and of a model
based on tetrahedron bisection on regular volumetric data sets, encoded as a Hierar-
chy of Tetrahedra (HT), by considering a set of queries at a uniform LOD and at vari-
able LODs. We have used two regular data sets, namely the Buckminster Fullerene
(Buckyball) data set (Robert Haimes, MIT), which consists of 262,144 vertices and
1,250,235 tetrahedra and the Plasma data set, previously described.

The graph in Fig. 7 (a) shows the results of extractions at uniform LOD, i.e., the
number of tetrahedra in the meshes extracted at a uniform LOD for different error
thresholds. The graph in Fig. 7 (b) shows the results of extractions at variable LOD,
i.e., the number of tetrahedra in the meshes extracted at a variable LOD for different
error thresholds inside a box and arbitrary large error outside. At a uniform LOD,
the meshes extracted from the HT have roughly 20% more tetrahedra than those ex-
tracted from the Half-Edge MT, since in the Half-Edge MT there is more flexibility
in choosing which tetrahedra are to be split, while in the HT these are determined
by the fixed recursive decomposition rule. On the other hand, extractions at vari-
able LOD show the opposite behavior: the meshes extracted from an HT have fewer
tetrahedra than those extracted from an Half-edge MT (about 1/4 for extractions
with maximum resolution in a box).

There are several open research issues related to data structures for LOD mod-
els. Out-of-core issues, like simplification of meshes on secondary memory, as well
as data structures and querying algorithms for LOD models stored on secondary
memory, are very important both in the regular and irregular cases to be able to han-
dle meshes of large size efficiently (see [35] for a proposal for regular tetrahedral
meshes). Inserting information about the morphological structure of the underlying
scalar field in its LOD model could enhance the accuracy and the adaptivity of the
extracted representations. Some proposals exist for simplifyinga 3D scalar field by
maintaining the topology of the isosurfaces [3], and for an LOD model of a 2D
scalar field built by starting with a decomposition of the domain of the scalar field
defined by its critical points and separatrix lines and progressively canceling critical
points [2].

Level-Of-Detail Tetrahedral Meshes 93

(a)

(b)

Fig. 7. Comparison between HT and MT at uniform LOD (a) and at variable LOD with a box
as focus set (b) on the Buckyball and Plasma data sets

Acknowledgments

This work has been partially supported by two projects funded by the Italian Ministry
of Education, University, and Research (MIUR) Algorithmic and Computational
Methods for Geometric Object Representation (MACROGeo) and Representation
and Management of Spatial Data on the WEB (SPADA-WEB).

94 L.D. Floriani and E. Danovaro

References

1. J. Bey. Tetrahedral mesh refinement. Computing, 55:355–378, 1995.
2. P.-T. Bremer, H. Edelsbrunner, B. Hamann, and V. Pascucci. A multi-resolution data

structure for two-dimensional Morse functions. In J. van Wijk G.Turk and R.Moorhead,
editors, Proceedings IEEE Visualization 2003, pp. 139–146. IEEE Computer Society, Oc-
tober 2003.

3. Y.-J. Chiang and X. Lu. Progressive simplification of tetrahedral meshes preserving all
isosurface topologies. Computer Graphics Forum, 22(3), 2003.

4. P. Chopra and J. Meyer. Tetfusion: an algorithm for rapid tetrahedral mesh simplification.
In Proceedings IEEE Visualization 2002, pp. 133–140. IEEE Computer Society, October
2002.

5. P. Cignoni, D. Costanza, C. Montani, C. Rocchini, and R. Scopigno. Simplification of
tetrahedral volume data with accurate error evaluation. In Proceedings IEEE Visualization
2000, pp. 85–92. IEEE Computer Society, 2000.

6. P. Cignoni, L. De Floriani, C. Montani, E. Puppo, and R. Scopigno. Multiresolution
modeling and visualization of volume data based on simplicial complexes. In Proceedings
1994 Symposium on Volume Visualization, pp. 19–26, October 1994.

7. P. Cignoni, C. Montani, C. Rocchini, and R. Scopigno. External memory management
and simplification of huge meshes. IEEE Transactions on Visualization and Computer
Graphics, 9(4):525–537, November 2003.

8. E. Danovaro and L. De Floriani. Half-Edge Multi-Tessellation: a compact representations
for multiresolution tetrahedral meshes. In Proceedings 1st International Symposium on
3D Data Processing Visualization and Transmission, pp. 494–499. IEEE Computer Soci-
ety, 2002.

9. E. Danovaro, L. De Floriani, M. Lee, and H. Samet. Multiresolution tetrahedral meshes:
an analysis and a comparison. In Proceedings 2002 International Conference on Shape
Modeling, pp. 83–91, May 2002.

10. E. Danovaro, L. De Floriani, P. Magillo, and E. Puppo. Data structures for 3D Multi-
Tessellations: an overview. In F.H. Post, G.P. Bonneau, and G.M. Nielson, editors, Pro-
ceedings Dagstuhl Scientific Visualization Seminar, pp. 239–256. Kluwer Academic Pub-
lishers, 2002.

11. L. De Floriani and P. Magillo. Multi-resolution mesh representation: models and data
structures. In M. Floater, A. Iske, and E. Quak, editors, Principles of Multi-resolution in
Geometric Modeling, Lecture Notes in Mathematics, Springer Verlag, Berlin (D), 2002.

12. L. De Floriani and M.Lee. Selective refinement on nested tetrahedral meshes. In
B.Hamann G.Brunett and H.Mueller, editors, Geometric Modelling for Scientific Visu-
alization, pp. 329–344. Springer Verlag, 2003.

13. L. De Floriani, E. Puppo, and P. Magillo. A formal approach to multiresolution modeling.
In R. Klein, W. Straßer, and R. Rau, editors, Geometric Modeling: Theory and Practice,
pp. 302–323. Springer Verlag, 1997.

14. J. El-Sana and A. Varshney. Generalized view-dependent simplification. Computer
Graphics Forum, 18(3):C83–C94, 1999.

15. W. Evans, D. Kirkpatrick, and G. Townsend. Right-triangulated irregular networks. Al-
gorithmica, 30(2):264–286, 2001.

16. M. Garland. Multi-resolution modeling: Survey & future opportunities. In Eurographics
’99 – State of the Art Reports, pp. 111–131. Eurographics Association, 1999.

17. T. Gerstner. Top-down view-dependent terrain triangulation using the octagon metric.
Technical report, Institut für Angewandte Mathematik, University of Bonn, Bonn, Ger-
many, 2003.

Level-Of-Detail Tetrahedral Meshes 95

18. T. Gerstner and M. Rumpf. Multiresolutional parallel isosurface extraction based on
tetrahedral bisection. In Proceedings 1999 Symposium on Volume Visualization. IEEE
Computer Society, 1999.

19. B. Gregorski, M. Duchaineau, P. Lindstrom, V. Pascucci, and K. Joy. Interactive view-
dependent rendering of large isosurfaces. In Proceedings IEEE Visualization 2002. IEEE
Computer Society, October 2002.

20. G. Greiner and R. Grosso. Hierarchical tetrahedral-octahedral subdivision for volume
visualization. The Visual Computer, 16:357–369, 2000.

21. M.H. Gross and O.G. Staadt. Progressive tetrahedralizations. In Proceedings IEEE Visu-
alization’98, pp. 397–402, Research Triangle Park, NC, 1998. IEEE Computer Society.

22. R. Gross, C. Luerig, and T. Ertl. The multilevel finite element method for adaptive mesh
optimization and visualization of volume data. In R. Yagel and H. Hagen, editors, Pro-
ceedings IEEE Visualization ’97, pp. 387–394, Phoenix, AZ, October 1997.

23. B. Hamann and J.L. Chen. Data point selection for piecewise trilinear approximation.
Computer Aided Geometric Design, 11:477–489, 1994.

24. D. J. Hebert. Symbolic local refinement of tetrahedral grids. Journal of Symbolic Com-
putation, 17(5):457–472, May 1994.

25. R. Klein and S. Gumhold. Data compression of multiresolution surfaces. In Visualization
in Scientific Computing ’98, pp. 13–24. Springer Verlag, 1998.

26. M. Lee, L. De Floriani, and H. Samet. Constant-time neighbor finding in hierarchical
tetrahedral meshes. In Proceedings International Conference on Shape Modeling & Ap-
plications, pp. 286–295, Genova, Italy, May 2001.

27. M. Lee and H. Samet. Navigating through triangle meshes implemented as linear
quadtrees. ACM Transactions on Graphics, 19(2):79–121, April 2000.

28. P. Lindstrom, D. Koller, W. Ribarsky, L. F. Hodges, N. Faust, and G. A. Turner. Real-time
continuous level of detail rendering of height fields. In Proceedings SIGGRAPH’96, pp.
109–118, New Orleans, August 1996.

29. P. Lindstrom and V. Pascucci. Terrain simplification simplified: A general framework
for view-dependent out-of-core visualization. IEEE Transactions on Visualization and
Computer Graphics, 8(3):239–254, 2002.

30. J. M. Maubach. Local bisection refinement for n-simplicial grids generated by reflection.
SIAM Journal on Scientific Computing, 16(1):210–227, January 1995.

31. G. M. Nielson. Tools for triangulations and tetrahedralizations and constructing func-
tions defined over them. In G. M. Nielson, H. Hagen, and H. Müller, editors, Scientific
Visualization: Overviews, Methodologies and Techniques, chapter 20, pp. 429–525. IEEE
Computer Society, Silver Spring, MD, 1997.

32. M. Ohlberger and M. Rumpf. Adaptive projection operators in multiresolution scientific
visualization. IEEE Transactions on Visualization and Computer Graphics, 5(1):74–93,
1999.

33. R. Pajarola. Large scale terrain visualization using the restricted quadtree triangulation.
In D. Ebert, H. Hagen, and H. Rushmeier, editors, Proceedings IEEE Visualization’98,
pp. 19–26, Research Triangle Park, NC, October 1998. IEEE Computer Society.

34. V. Pascucci. Slow Growing Subdivisions (SGSs) in any dimension: towards removing the
curse of dimensionality. Computer Graphics Forum, 21(3), 2002.

35. V. Pascucci. Multi-resolution indexing for hierarchical out-of-core traversal of rectilinear
grids. In G. Farin, H. Hagen, and B. Hamann, editors, Hierarchical and Geometrical
Methods for Scientific Visualization, Springer Verlag, Heidelberg, Germany, 2003.

36. V. Pascucci and C. L. Bajaj. Time critical isosurface refinement and smoothing. In Pro-
ceedings IEEE Symposium on Volume Visualization, pp. 33–42, Salt Lake City, UT, Oc-
tober 2000. IEEE Computer Society.

96 L.D. Floriani and E. Danovaro

37. E. Puppo. Variable resolution triangulations. Computational Geometry Theory and Ap-
plications, 11(3-4):219–238, December 1998.

38. K.J. Renze and J.H. Oliver. Generalized unstructured decimation. IEEE Computational
Geometry & Applications, 16(6):24–32, 1996.

39. M. Rivara and C. Levin. A 3D refinement algorithm for adaptive and multigrid techniques.
Communications in Applied Numerical Methods, 8:281–290, 1992.

40. T. Roxborough and G. Nielson. Tetrahedron-based, least-squares, progressive volume
models with application to freehand ultrasound data. In Proceedings IEEE Visualization
2000, pp. 93–100. IEEE Computer Society, October 2000.

41. H. Samet. Applications of Spatial Data Structures: Computer Graphics, Image Process-
ing, and GIS. Addison-Wesley, Reading, MA, 1990.

42. J. Shewchuk. Tetrahedral mesh generation by Delaunay refinement. In Proceedings of
the Fourteenth Annual Symposium on Computational Geometry, pp. 86–95, Minneapolis,
Minnesota, June 1998. Association for Computing Machinery.

43. N. Sokolovsky, E. Danovaro, L. De Floriani, and P. Magillo. Encoding level-of-detail
tetrahedral meshes based on half-edge collapse. In MINGLE’2003 Proceedings, pp. 91–
102. Springer Verlag, Cambridge, UK, September 2003.

44. I.J. Trotts, B. Hamann, and K.I. Joy. Simplification of tetrahedral meshes with error
bounds. IEEE Transactions on Visualization and Computer Graphics, 5(3):224–237,
1999.

45. S. Zhang. Successive subdivision of tetrahedra and multigrid methods on tetrahedral
meshes. Houston J. Mathematics, 21:541–556, 1995.

46. Y. Zhou, B. Chen, and A. Kaufman. Multiresolution tetrahedral framework for visualizing
regular volume data. In R. Yagel and H. Hagen, editors, Proceedings IEEE Visualization
’97, pp. 135–142, Phoenix, AZ, October 1997.

Split ’N Fit: Adaptive Fitting
of Scattered Point Cloud Data

Gregory M. Nielson1, Hans Hagen2, Kun Lee3 and Adam Huang4

1 Arizona State University
nielson@asu.edu

2 University of Kaiserslauten
hagen@informatik.uni-kl.de

3 Handong University
kunlee@handong.edu

4 National Institute of Health
hhuang@cc.nih.gov

1 Problem and Basic Strategy

In this paper, we describe a new technique for computing a triangular mesh surface
approximation to a point cloud of unorganized 3D data points. We should point out
that the problem of point cloud fitting should be distinguished from that of scattered
data modeling [13] Even though many of the basic techniques and tools from CAGD
and multivariate approximation theory apply to both problems, they are basically dif-
ferent. The term “scattered data” was coined by Schumaker in his 1976 paper [27]
and there was a great deal of interest and published research on (mainly) bivariate
problems in the 70s and 80s. With the advent of scientific visualization along with
volume visualization in the 90s, there has been growing interest in trivariate scat-
tered data modeling [19, 21] and interest in this area continues to grow. In many
respects, the problem of scattered point cloud fitting is more difficult because it is

Fig. 1. Illustrating the process of fitting a point cloud with a triangular mesh surface

98 G.M. Nielson et al.

less understood, but the widespread and strong need for practical and effective meth-
ods make this an important problem. One fundamental connection between scattered
data fitting and scattered point cloud fitting is through some type of parameterization
of the point cloud [12] whether this be implicit or explicit, but this relationship is
not well and completely understood today. Currently, there is widespread interest in
the problem of point cloud fitting and many algorithms, methods and techniques are
being proposed. See the survey [16] and the methods of [5, 9, 11, 17, 26, 28–30].

Some methods require normal vectors (see, for example, [8]) and without a
scheme for computing these estimates the method is really incomplete as many data
sets from practical applications do not include normal vectors. The most difficult
part of estimating normals is to obtain a consistent orientation of inside or outside
pointing normals. In some cases, knowing the origin of the point cloud data can aid
this determination. For example; if the data is range data from some scanner, then
the method of collection can yield the proper orientation. The method we describe
here does not require or assume that normal estimates are available.

A number of methods involve the signed distance function, D(P), which is a
trivariate function defined to be zero on the surface S, negative interior to S and pos-
itive outside of S. Typically, D(P) is sampled on a 3D rectilinear grid and a method
like the marching cubes algorithm [15, 18, 22] is used to extract a triangular mesh
surface approximation. Once it is decided what the metric or the definition of dis-
tance from a surface to a point cloud is to be, it is usually not too difficult to develop
algorithms for the efficient computation of the distance function. The particular dif-
ficulty here is getting the sign correct; that is, to be able to efficiently and effectively
determine when a point is inside the surface or outside. Typical of the methods based
upon distance functions is that of [14] where the sign is based upon local least squares
estimates of the normal vector of the surface and a consistent orientation (in or out)
is sought using estimates of global properties. One of the drawbacks to this method
is the heuristics of the signed distance function calculation may lead to gaps in the
surface and the difficulty of choosing the proper resolution for the marching cubes
voxel grid can have detrimental effects on the success of the method.

Another important concept involved in point cloud fitting problems is the De-
launay Tetrahedrization and its dual, the Dirichlet tessellation and Voronoi dia-
gram [20]. The method based upon alpha shapes of [10] is a typical and early ex-
ample. Here the first step is the Delaunay tetrahedrization. The second step is to
apply the alpha-erasure to remove tetrahedra, triangles and edges whose minimum
surrounding sphere is not contained in the alpha–erasure sphere. The result is called
the alpha-shape. In the third step, triangles for the final surface are selected so that a
sphere of radius alpha containing the triangle does not contain any other point cloud
points. The main negative aspect of this approach is the choice of a suitable value
of alpha. Too big of a choice leads to poor approximations not utilizing many of the
points of the point cloud and too small a choice leads to gaps and fragmented sur-
faces. Even though the methods of [6] and [7] guarantee for sufficiently dense sam-
plings a surface that is homeomorphic and geometrically close to the point clouds
resulting from sampling, in practice, it can be the case that point density varies con-
siderably limiting the success for these methods for certain applications. [4] suggest

Split ’N Fit: Adaptive Fitting of Scattered Point Cloud Data 99

a postprocessing, topological clean up phase based upon linear programming “that
can (to some extent) reconstruct non-smooth or undersampled surfaces.” We men-
tion another potential drawback to these types of methods based upon DT in general
for certain applications. The resulting triangular mesh surface has vertices that are
points of the original point cloud. For noisy data or overlapping data resulting from
imperfect registration of scanned data, this may not be undesirable. Rather than inter-
polated the point cloud (or a subset), it is potentially more desirable to approximate
it for some applications. In addition it would be desirable to take advantage of the
fact the many point cloud data sets have varying density. This leads us to the present
method.

The method we describe here uses the general strategy of a top-down, adaptive
least squares approach that allows for the complexity of the approximating surface to
conform to the complexity of the data. We discuss the two main aspects of the algo-
rithm consisting of the refinement strategy and the surface fitting criteria. Triangles
are selected for refinement based upon a global error distribution are subdivided so as
to optimize triangle shape properties while allowing overall quality fitting surfaces.
Selecting vertex positions for optimal fitting surfaces is based upon a least squares
method of measuring the error between surfaces and scattered point clouds.

We need the following notation in the subsequent sections. Let Pi = (xi,yi,zi) i =
1, · · · ,M denote the point cloud and Vi = (ui,vi,wi) ; i = · · · ,N will denote the ver-
tices of the triangular mesh surface that constitutes the approximation to the point
cloud. In addition to the geometry of a triangular mesh surface S, consisting of a
list of vertices Vi = (xi,yi,zi) , i = 1, · · · ,N, we have the topology consisting of a
list of triple indices (in, jn,kn) , n = 1, · · · ,NT indicating that the surface contains
the triangles with vertices Vin ,Vjn and Vkn . The list of edge indices is denoted by
e =
{

(i, j) : Vi Vj ∈ S
}

. If Vi is a vertex of S, then the star of Vi is consists of all
triangles of S that include Vi. We denote the star by (Vi)

∗. The list of indices of
the vertices of (Vi)

∗ connected by edges to Vi is called the contiguity list which is
denoted by (i)o. The list of vertices Vi, i ∈ (i)o is called the one-ring of Vi. Some-
times the topology is specified by giving the contiguity list for each vertex rather
than the list of triangles. These two methods are equivalent. It is also useful to define
(i)∗ = {i}∪ (i)o and the collection of triple indices that comprise the triangles of the
star of a vertex, ∆ ∗ (n) =

{
(i, j,k) : Ti, j,k ⊂ (Vn)

∗}.
2 Best Approximation and Characterization

A common method of measuring the distance between a collection of points, PtC,
and a triangular mesh surface, S, is

ρ2 (S,PtC) =
N

∑
i=1

Min
V∈S

‖V −Pi‖2 (1)

which is illustrated in Fig. 3.

100 G.M. Nielson et al.

Scatterd Point Cloud

(1) Initial Mesh (2) Optimize

(3) Refine (4) Optimize (again)

Fig. 2. The basic steps of the adaptive fitting scheme

While the method of (1) is useful for some applications, it has some problems
in this context. This can be observed in the 2D diagram of Fig. 4. The polygon can
actually be quite far from the point cloud and yet the distance computed by (1) is
relatively small.

In order to alleviate this problem, we add some additional terms to our measure
of distance which account for the distance from the polygon back to the scattered
point cloud. See Fig. 5. Let

Split ’N Fit: Adaptive Fitting of Scattered Point Cloud Data 101

Vk

Vi

iP

iP

Fig. 3. The point P̄i is the closest point of S to Pi

Fig. 4. This 2D example illustrates the problem of using (1) as a measure of distance between
a scattered point cloud and a triangular mesh surface

Pn
i,j

Pn
i,j,k

Vk

Vi

Pn
i

Vj

Fig. 5. Additonal points for error metric

Pni be the closest point of the point cloud to Vi;

Pni, j be the closest point to the midpoint
Vi+Vj

2

Pni, j,k be the closest point to the centroid
Vi+Vj+Vk

3 ,

and define the error measure as

102 G.M. Nielson et al.

PnVn
,j

Vn
i

Vn
k

Pn

Fig. 6. Illustrating the notation for the triangle containing the point P̄n that is the closest point
on S to Pn

ρ2 (S,PtC) =
N
∑

i=1
Min
V∈S

‖V −Pi‖2 +w1
N
∑

i=1
‖Vi −Pni‖2

+w2 ∑
i, j∈E

∥∥∥Vi+Vj
2 −Pni, j

∥∥∥2

+w3 ∑
i, j,k∈T

∥∥∥Vi+Vj+Vk
3 −Pni, j,k

∥∥∥2

(2)

We now discuss our approach to solving the problem

Min
Vi

ρ2 (S,PtC) . (3)

A necessary conditions is
∂ρ2 (S,PtC)

∂Vi
= 0 . (4)

Let P̄n be the closest point on S to Pn so that ‖P̄n −Pn‖ ≤ ‖V −Pn‖∀V ∈ S and let
(i)⊥be the set of all indices whose projected point P̄n falls into the star of Vi, that is
(i)⊥ =

{
n : P̄n ∈ (Vi)

∗}. Let Vi,Vn j ,Vnk be the triangle of the star of Vi that contains

P̄n,n /∈ (i)⊥. We can utilize barycentric coordinates and write

P̄n = αn,niVi +αn,n jVn j +αn,nkVnk (5)

Using (5) we can see that necessary conditions of the vertices of a triangular mesh
surface that minimizes the error to a point cloud given by (2) are

Vi = W

{
∑

n∈(i)⊥

(
Pni −αn,n jVn j −αn,nkVnk

)
αn,ni

w1Pni +
w2
2

(
Pni, j − Vj

2

)
+ w3

3

(
Pni, j,k −

Vj+Vk
3

)} (6)

Split ’N Fit: Adaptive Fitting of Scattered Point Cloud Data 103

where

W =
1

∑
(
αn,ni +w1 + w2

4 + w3
9

)
In order to solve the equations of (6) we use a straightforward iterative method. That
is, we successively compute

V (k+1)
i = Φ

(
V (k)

1 , · · · ,V (k)
i−1,V

(k)
i+1, · · · ,V (k)

M

)
, i = 1, · · · ,M (7)

where Φ represents the right hand side of (6).

We now summarize the overall strategy of our fitting algorithm.

1. Initialize V (0)
i

2. Compute Pni ,Pni, j and Pni, j,k as defined in (2)
3. Compute P̄n and the barycentric coordinates defined in (5)
4. Do K steps of (6) or iterate to prescribed convergence tolerance.
5. Compute error contribution of each triangle. If the error distribution has a vari-

ance less than a user specified tolerance, δ , then a uniform refinement step is
made else the triangle with the larges error is subdivided and the next step is 2.

In order to complete the description of the new adaptive fitting scheme, we need
to describe what type of refinement strategy we will use. This is covered in the next
section.

3 Refinement Strategy

We use two types of refinement strategies; one uniform and one adaptive. In the early
stages of the fitting process it is more efficient to invoke the adaptive refinement
scheme. As the fit progresses, the error tends to be more uniformly distributed over
the mesh approximation and it can be more efficient to use a uniform refinement
strategy.

3.1 Uniform Refinement

Fig. 7. Uniform refinement

104 G.M. Nielson et al.

3.2 Adaptive Refinement

The refinement strategy that we use is illustrated in Fig. 8 for a single triangle. It
has previously been discussed by [24] and [25]. The order of the refinements of
Fig. 8 are from left to right and from top to bottom. When a triangle is refined it
is always split along its longest edge. If a neighboring triangle must also be refined
in order to avoid the cracking problem, this neighbor is also refined by splitting its
longest edge even if the common edge to its just split neighbor is not its longest edge.
Splitting one triangle may cause refinement to permeate out through the triangular
grid. The number of permeations is bound by the number of levels present in the
triangular mesh. See [23] for more details and implementation strategies on this type
of refinement.

The overall oracle for deciding whether to use adaptive refinement (and which
triangle to refine) or uniform refinement is a variable in our general approach. For
the examples of this paper, we use a greedy strategy of adaptively refining the tri-
angle with the largest error contribution from (4). A uniform refinement is made if
the variance of the error contributions over all triangles is less than a user specified
parameter, δ .

Fig. 8. Illustrating the adaptive refinement strategy

Split ’N Fit: Adaptive Fitting of Scattered Point Cloud Data 105

Fig. 9. An example of the adaptive refinement strategy with a cube as the initial domain

4 Examples

In this section we illustrate our adaptive fitting technique with several examples. The
first two examples are “proof of concept” examples and use contrived data. The third
example uses data that we collected in our own lab using an LDI scanner. The data
of the fourth example is made available by Geomagic and illustrates the ability of
our new method to handle noisy data with missing regions of data and data that is
not very uniformly sampled.

Example 1. Simple, Genus Zero, Geometric Object

For this first example, the scattered point cloud consists of 64K, randomly perturbed
points sampled from a simple geometric object shown in the upper left image of
Fig. 10. The initial triangular mesh approximation with 52 vertices is shown in the
left image of the middle row of Figure N. Using the values w1 = 1.0, w2 = 0.1, w3 =
1.0 , K = 5, δ = 0.1 to obtain the approximations with 150, 300 and 700 vertices
shown in the right image of the middle row and the bottom row of Fig. 10 respec-
tively. From this example we clearly see how the complexity of the approximation
conforms to the complexity of the data.

Example 2. Geometric Object With Genus 3

This next example utilizes data sampled from an object with genus three. The geo-
metric object shown in the upper left image of Fig. 11 is sampled and perturbed to
yield the scattered point cloud shown in the upper right image of Fig. 11. The ini-
tial approximation of the left image of the center row of Fig. 11 has 90 vertices.
The subsequent three stages of the fitting process have 300, 500 and 2000 vertices
respectively. Here we have used w1 = 1.0, w2 = 1.0, w3 = 1.0, K = 3, δ = 0.01

Example 3. Rubber Duck Example

For this next example, we have gathered a scatted point cloud by using a free-hand
LDI scanner. The data collection process is illustrated in Fig. 12. The laser scanner

106 G.M. Nielson et al.

Fig. 10. Images of the top row show object and sampled, perturbed scattered point cloud.
The initial approximation is shown in the left image of the center row. Approximations with
150, 300 and 700 vertices are shown in the right image of the center row and the last row,
respectively

collects a rectangular grid of data points representing distances to the object. We do
not know the position nor orientation of the data relative to the object or any other
coordinate system. We arbitrarily pick one scan and use this as the base 3D coor-
dinate system. All other scans are mapped to this coordinate system by registering
the data. We do not go into the details of the registration process here as what we
did was not particularly innovative. Mainly it was an interactive, by-hand process.
The overall quality of the data is certainly dependent upon how well the registration
is done, but since we are using a least squares fitting process, a certain amount of
bounded error is tolerable. This is one of the nice properties of the present method
that is not shared by some of the other fitting strategies.

The initial approximation, which is shown in the left image of Fig. 13, was ob-
tained in the following manner. A voxel grid of resolution N ×M×K is placed over
the domain of the scattered point cloud domain. If a voxel contains points of the scat-

Split ’N Fit: Adaptive Fitting of Scattered Point Cloud Data 107

Fig. 11. The images of the top row show the object of genus three and points, randomly
sampled and perturbed from this object. The initial triangular mesh approximation is shown in
the left image of the middle row, followed by approximations with 300, 500 and 2000 vertices

tered point cloud is is marked as “occupied” and given a value of 1. All other voxels
are marked “empty” and give a value of 0. The marching cubes isosurface that sepa-
rated the occupied voxels from the empty voxels serves as the initial triangular mesh
surface. In the middle image of Fig. 13, the first iteration of the fitting process is
shown. The converged triangular mesh with the same topology as the initial approx-
imation of the left image is shown in the right image. The success of this automated
method of obtaining an initial approximation is, of course, dependent upon the se-
lection of the voxel grid. We make this selection interactively and the whole process
works rather well.

108 G.M. Nielson et al.

Fig. 12. Data collection and the resulting scattered point cloud

Fig. 13. Initial approximation, one fitting iteration and converged approximation

Fig. 14. Steps of the adaptive fitting process with models having 250, 500 and 1000 vertices

Example 4. Noisy Foot Example

This example serves to illustrate two additional properties of the new fitting scheme;
namely that holes or missing data can be handled and the uniform splitting step of
Fig. 7. In this example we have set the parameter for doing a uniform split at a fairly
large value and so that it is more likely to do uniform split. A close examination of
the point cloud shown in Figure 16. will reveal the missing data at the heel and near
the balls of the foot. Also the data is not very uniformly distributed. All of these
properties are not obstacles to the present method of fitting. The approximations
shown in Fig. 17 utilize w1 = 9.13, w2 = .43 and w3 = 1.0, K = 2 and δ = 0.5.

Split ’N Fit: Adaptive Fitting of Scattered Point Cloud Data 109

Fig. 15. Three views of the final approximation with 2000 vertices illustrating the property that
the complexity of the model conforms to the complexity of the shape implied by the scattered
point cloud data

Fig. 16. This data is courtesy of Geomagic. The data is noisy, the sampling density is not
uniform and there are regions of missing data near the heel, the balls and the ankle

110 G.M. Nielson et al.

Fig. 17. The initial approximation consists of a triangulated parallelepiped. The upper right is
the best fitting surface with 20 vertices and the lower left is the optimal fit with 36 vertices. A
uniform split occurs after this fit and the optimal fit with 138 vertices is shown in the lower
right image

Fig. 18. Two views of the approximation with 3002 vertices. Note how the regions with miss-
ing data have been filled in because the topology does not change from the initial approxima-
tion

Split ’N Fit: Adaptive Fitting of Scattered Point Cloud Data 111

Acknowledgments

We wish to acknowledge the support of the Office of Naval Research (N00014-97-1-
0243 & N00014-00-1-0281), the National Science Foundation (NSF IIS-9980166 &
ACI-0083609) and DARPA (MDA972-00-1-0027). Thanks to T. Roxborough and R
Holmes for their help. Thanks to Geomagic for the noisy foot data.

References

1. Kagan, A.M., Linnik, Y.V., Rao, C.R.: Characterization Problems in Mathematical Statis-
tics. Wiley, New York (1973)

2. Meyer, P.A.: A short presentation of stochastic calculus. In: Emery, M. (ed) Stochastic
Calculus in Manifolds. Springer, Berlin Heidelberg New York (1989)

3. Miller, B.M., Runggaldier, W.J.: Kalman filtering for linear systems with coefficients
driven by a hidden Markov jump process. Syst. Control Lett., 31, 93–102 (1997)

4. Adamy, U., Giesen, J., John, M. 2000. New techniques for topologically correct surface
reconstruction, In: Proceedings of IEEE Visualization 2000, IEEE Press, 372–380.(2000)

5. Algorri, M.-E. and Schmitt, E. Surface reconstruction from unstructured 3D data, Com-
puter Graphics Forum 19, No. 3, Proceedings of EUROGRAPHICS, 69–81. (2000)

6. Amenta, N. and Bern, M., Surface reconstruction by Boronoi filtering, Discrete & Com-
putation Geometry 22, 4, 481–504. (1999)

7. Amenta, N., Bern, M., and Kamvysselis, M. A new Voronoi-based surface reconstruction
algorithm, In: Proceedings of SIGGRAPH 1998, ACM Press/ACM SIGGRAPH, New
York. Computer Graphics Proceedings, Annual Conference Series, ACM, 39–48. (1998)

8. Bernardini, F., Silva, C., Mittleman, J., Rushmeier, H. and Taubin, G. The ball-pivoting
algorithm for surface reconstruction, IEEE Transactions on Visualizaton and Computer
Grahics 5, 4, 123–143. (1999)

9. Cureless B. and Levoy, M. A volumetric method for building complex models from range
images, In: Proceedings of SIGGRAPH 1996, ACM Press/ACM SIGGRAPH, New York.
Computer Graphics Proceedings, Annual Conference Series, ACM, 303–312. (1996)

10. Edelsbrunner, H. and Mücke, E.P. 1994. Three-dimensional alpha shapes, ACM Transac-
tions on Graphics 13, No. 1, 43–72. (1994)

11. Guo, B., Surface reconstruction: From points to splines, CAGD 29, No. 2, 269–277.
(1997)

12. Floater, M.S. Parameterization of trianguations and unorganized points, In: Tutorials on
Multiresolution in Geometric Modelling, eds. A. Iske, E. Quak and M.S. Floater, Springer,
287–316. (2002)

13. Franke, R. and Nielson, G.M. Scattered data interpolation and applications: A tutorial and
survey, In: Geometric Modelling: Methods and Their Applications, eds. H. Hagen & D.
Roller, Springer, 131–160. (1990)

14. Hoppe, H., DeRose, T., Duchamp, T., McDonald, J. and Stuetzle, W. Surface reconstruc-
tion from unorganized points, In: Proceedings of SIGGRAPH 1992, ACM Press/ACM
SIGGRAPH, New York. Computer Graphics Proceedings, Annual Conference Series,
ACM, 71–78. (1992)

15. Lorensen, W.E. and Cline, H.E. 1987. Marching cubes: A high resolution 3D surface con-
struction algorithm, In: Proceedings of SIGGRAPH 87, ACM Press/ACM SIGGRAPH,
New York. Computer Graphics Proceedings, Annual Conference Series, ACM, 163–169.
(1987)

112 G.M. Nielson et al.

16. Müller, H. Surface Reconstruction – An introduction, In: Scientific Visualization, H. Ha-
gen, G. Nielson, F. Post, eds. IEEE Computer Society Press, 239–242. (1999)

17. Morse, B., Yoo, T.S., Rheingans, P., Chen, D.T. and Subramanian K. R. Interpolating
Implicit Surfaces from Scattered Surface Data Using Compactly Supported Radial Basis
Functions. In: Proceedings of International Conference on Shape Modeling and Applica-
tions ’01, IEEE Computer Society Press, 89–98. (2001)

18. Nielson, G.M., and Hamann, B. The asymptotic decider: Resolving the ambiguity in
marching cubes, In: Proceedings of Visualization ’91, IEEE Computer Society Press, 83–
91. (1991)

19. Nielson, G.M. Scattered data modelling, Computer Graphics and Applications 13, 1,
IEEE Press, 60–70. (1993)

20. Nielson, G.M. Tools for Triangulations and Tetrahedrizations, Scientific Visualization,
Volume modeling, In: Scientific Visualization, G. Nielson, H. Hagen & H. Mueller, Eds.,
IEEE CS Press, 429–526. (1997)

21. Nielson, G.M. Volume modeling, In: Volume Graphics, M. Chen, A.E. Kaufman and R.
Yagel, Eds., Springer, 29–48. (2000)

22. Nielson, G.M. On Marching Cubes, IEEE Transactions on Visualization and Computer
Graphics N, Vol. 9, No. 3, IEEE Press, 283–297. (2003)

23. Nielson, G.M. and Roxborough, T., Tetrahedron based, least squares, progressive volume
models with applications to freehand ultrasound data, In: Proceedings of the conference
on Visualization ’00, IEEE Computer Society Press, pp. 93–100. (2000)

24. Maubach, J.M. Local bisection refinement for N-simplicial grids generated by reflection,
SIAM Journal of Scientific Computing 16, 210–227. (1995)

25. Rivara, M.C. Local Modification of meshes for adaptive and/or multigrid finite element
methods, Journal of Computaiton and Applied Mathematics 36, 79–89. (1991)

26. Savchenko, V.V., Pasko, A.A., Okunev, O.G., and Kunii, T.L., Function representation
of solids reconstructed from scattered surface points and contours, Computer Graphics
Forum, Vol. 14, No. 4, 181–188. (1995)

27. Schumaker, L. Fitting surfaces to scattered data, In: Aprorixmation Theory II, G.G.
Lorentz, C.K. Chui and L.L. Schumaker, eds., 203–268. (1976)

28. Turk, G. and Levoy, M. Zippered polylgon meshes from range images, In: Proceedings of
SIGGRAPH 1994, ACM Press/ACM SIGGRAPH, New York. Computer Graphics Pro-
ceedings, Annual Conference Series, ACM, 311–318. (1994)

29. Zhao, H.-K., Osher, S., Fedkiw, R., Fast Surface Reconstruction Using the Level Set
Method, In: 1st IEEE Workshop on Variational and Level Set Methods, in conjunction
with the 8th International Conference on Computer Vision (ICCV), Vancouver, Canada,
194–202. (2001)

30. Xie, H., Wang, J. Hua, J., Qin, J., Kaufman, A., Piecewise C1 continuous surface recon-
struction of noisy point clouds via local implicit quadric regression, In: Proceedings of
IEEE Visualization 2003, IEEE Press, 91–98.

Part II

Volume Visualization and Medical Visualization

Ray Casting with Programmable Graphics Hardware

Manfred Weiler1, Martin Kraus2, Stefan Guthe3,
Thomas Ertl1, and Wolfgang Straßer3

1 Institute of Visualization and Interactive Systems, University of Stuttgart
2 PURPL, Purdue University
3 WSI/GRIS, University of Tübingen

Summary. The flexible programmability introduced with the latest graphics chip generations
has led to a new class of hardware-accelerated volume rendering algorithms implementing
ray casting on the graphics processor. Three independent publications have presented this idea
in the context of volume rendering for uniform meshes and tetrahedral meshes. This paper
provides a more general survey of the topic. In reviewing the background, extracting the basic
techniques and mechanisms common to all three approaches, and highlighting the differences,
we hope to provide a comprehensive discussion of the subject.

1 Introduction

Interactive volume rendering has always been one of the most challenging techniques
in computer graphics; therefore, algorithms suited for a hardware-accelerated imple-
mentation have been and still are of particular interest. For example, the linear inter-
polation provided by triangle rasterization is exploited by the Shirley-Tuchman cell
projection [21] and hardware-accelerated texture mapping is exploited by texture-
based volume rendering [3].

Today, programmable graphics hardware is available allowing us to implement
much more complex algorithms directly on the graphics hardware, thus, removing
the bottleneck of the communication between the graphics hardware and the CPU.
Moreover, modern graphics hardware offers a high degree of parallelism that is very
well suited for particular algorithms. For example, the fragments of slices for texture-
based volume rendering are processed independently; therefore, this technique ben-
efits directly from the parallel architecture of modern graphics hardware. In contrast,
an efficient parallel implementation of the visibility sorting required for cell projec-
tion is rather difficult to achieve.

Ray casting is an efficient volume rendering technique, which is also very well
suited for parallel implementations since the rays are processed independently. How-
ever, the basic algorithm requires certain optimizations (e.g., early ray termination,
empty space leaping, adaptive sampling distance, etc.) in order to work efficiently.
Unfortunately, hardware-based implementations of these optimizations are usually

116 M. Weiler et al.

impossible. (In fact, texture-based volume rendering may be considered as a very
simple ray casting algorithm with constant sampling distance, no empty space leap-
ing, and no early ray termination.) Therefore, ray casting in volume rendering was
restricted to software-based, non-interactive implementations [5] or custom hardware
designs [15] in the past. This situation, however, has dramatically changed recently.

Modern programmable graphics hardware allows us to implement many of the
most important ray casting optimizations, in particular early ray termination, empty
space leaping, and adaptive sampling distance. It also allows us to employ improved
ray integration schemes, e.g., pre-integrated classification. Moreover, ray casting on
programmable graphics hardware is not restricted to uniform grids but may also be
applied to unstructured meshes, e.g., tetrahedral meshes.

This paper summarizes three approaches to the implementation of ray casting
on programmable graphics hardware, published in [8, 17, 22]. The common concept
is to trace all rays in parallel by rasterizing many screen-filling polygons. Several
optimization techniques are implemented in very similar ways, e.g., early ray termi-
nation by early depth tests, while other techniques are implemented differently, e.g.,
the computation of the sampling distance. Furthermore, ray casting in tetrahedral
meshes offers several additional challenges, e.g., non-convex mesh boundaries and
non-trivial mesh connectivity.

In Sect. 2, we present the basic ideas and concepts of ray casting algorithms
for volume visualization, in particular the volume rendering integral, classification
schemes, and sampling strategies. We also compare ray casting with other volume
rendering algorithms. This comparison shows the importance of optimizations for
volume rendering algorithms since ray casting algorithms are not necessarily more
efficient than, for example, object-order algorithms. Sect. 3 gives a first overview
of the three approaches to ray casting of volume data using programmable graphics
hardware. Optimization techniques for ray casting algorithms and their implementa-
tion on programmable graphics hardware are discussed in Sect. 4.

2 Ray Casting for Volume Visualization

As depicted in Fig. 1, the basic idea of ray casting algorithms for volume visualiza-
tion is to trace viewing rays through a volumetric scalar field. Along each ray, colors
and opacities are calculated at discrete sampling points and composited in order to
compute the total color of each ray. Usually, at least one ray is traced for each pixel
and the final image is generated pixel by pixel, i.e., in image-order. Ray casting algo-
rithms are among the earliest volume rendering algorithms; see for example [5, 10].

2.1 Volume Rendering Integral

The basic task of any volume renderer is an (approximate) evaluation of the vol-
ume rendering integral for each pixel, i.e., the integration of attenuated colors and
extinction coefficients along each viewing ray. Although this is obvious for ray cast-
ing algorithms, note that the volume rendering integrals do not necessarily have to

Ray Casting with Programmable Graphics Hardware 117

viewing ray

eye point

view plane volume

Fig. 1. Direct volume rendering with ray casting: One viewing ray is traced for each pixel

be evaluated one by one; rather the integrals for all pixels may be evaluated simul-
taneously; therefore, ray casting algorithms are particularly well suited for parallel
computers.

We assume that the viewing ray x(λ) is parameterized by the distance λ to the
eye point. A scalar data value at point x(λ) is denoted as s(x). Color and extinction
densities are computed from this scalar value by applying transfer functions c̃(s) and
τ(s), i.e., the color density at point x is c̃(s(x)) and the extinction density is τ(s(x)).
This process is often referred to as classification of the scalar data. The units of
color and extinction densities are color intensity per length and extinction strength
per length, respectively. However, we will refer to them as colors and extinction
coefficients when the precise meaning is clear from the context.

We write the volume rendering integral as

I =
∫ D

0
c̃
(

s
(
x(λ)
))

exp

(
−
∫ λ

0
τ
(

s
(
x(λ ′)
))

dλ ′
)

dλ . (1)

with the maximum distance D, i.e., there is no color density for λ greater than D.
In words, color is emitted at each point x according to the function c̃(s(x)), and
attenuated by the integrated extinction coefficients τ(s(x)) between the eye point
and the point of emission.

2.2 Pre- and Post-Classification

Direct volume rendering techniques differ considerably in the way they evaluate (1).
One important and very basic difference is the computation of c̃(s(x)) and τ(s(x)).
The scalar field s(x) is usually defined by a mesh with scalar values si specified at
each vertex vi of the mesh in combination with an interpolation scheme.

The ordering of the two operations, interpolation and the application of trans-
fer functions, defines the difference between pre- and post-classification. Post-
classification is characterized by the application of the transfer functions after the
interpolation of s(x) from the scalar values at several vertices (as suggested by (1));

118 M. Weiler et al.

while pre-classification is the application of the transfer functions before the interpo-
lation step, i.e., colors c̃(si) and extinction coefficients τ(si) are calculated in a pre-
processing step for each vertex vi and then used to interpolate c̃(s(x)) and τ(s(x))
for the computation of the volume rendering integral.

2.3 Numerical Integration

The most common numerical approximation of the volume rendering integral in (1)
is the calculation of a Riemann sum for n equal ray segments of length d := D/n. (See
Fig. 2a and Section IV.A in [13].) It is straightforward to generalize the following
considerations to unequally spaced ray segments.

s�x�i d��

s�x��i � 1� d��

d

s�x�Λ��

Λi d �i � 1� d

x�Λ�x�i d� x��i � 1� d�

(a)

s f � s�x�i d��

sb � s�x��i � 1� d��

d

s�x�Λ��

Λi d �i � 1� d

x�Λ�x�i d� x��i � 1� d�

(b)

Fig. 2. (a) Piecewise constant approximation of the function s(x(λ)) along a viewing ray
(b) Piecewise linear approximation of s(x(λ))

We define the opacity αi of the i-th ray segment by

αi := 1− exp

(
−
∫ i(d+1)

i d
τ
(

s
(
x(λ ′)
))

dλ ′
)

(2)

and approximate it by

αi ≈ 1− exp

(
−τ
(

s
(
x(i d)

))
d

)
. (3)

This approximation assumes a piecewise constant value of s(x(λ)) as illustrated in
Fig. 2a. The result is often further approximated to

αi ≈ τ
(

s
(
x(i d)

))
d . (4)

1−αi will be called the transparency of the i-th ray segment.

Ray Casting with Programmable Graphics Hardware 119

Similarly, the color C̃i emitted in the i-th ray segment is defined by

C̃i :=
∫ i(d+1)

i d
c̃
(

s
(
x(λ)
))

exp

(
−
∫ λ

i d
τ
(

s
(
x(λ ′)
))

dλ ′
)

dλ . (5)

Neglecting the self attenuation within a ray segment C̃i may be approximated by

C̃i ≈ c̃
(
s(x(i d))

)
d . (6)

Thus, the approximation of the volume rendering integral in (1) is

I ≈
�D/d�
∑
i=0

C̃i

i−1

∏
j=0

(1−α j) . (7)

Therefore, a front-to-back compositing algorithm will implement the equation

C̃′
i = C̃′

i−1 +(1−α ′
i−1)C̃i and α ′

i = α ′
i−1 +(1−α ′

i−1)αi , (8)

where the color accumulated in the first i ray segments is denoted by C̃′
i and the

accumulated opacity is denoted by α ′
i .

Substituting c̃(s) by τ(s)c(s) and employing the approximation

Ci ≈ τ
(
s(x(i d))

)
c
(
s(x(i d))

)
d (9)

will result in the more common approximation

I ≈
n

∑
i=0

αiCi

i−1

∏
j=0

(1−α j) (10)

with the corresponding front-to-back compositing equations

C̃′
i = C̃′

i−1 +(1−α ′
i−1)αiCi and α ′

i = α ′
i−1 +(1−α ′

i−1)αi . (11)

This compositing equation indicates that C̃ corresponds to a pre-multiplied color
αC; which is also called opacity-weighted color (see [25]) or associated color (see
[2]).

The compositing of colors described by (8) and (11) is often terminated as soon
as α ′

i has reached some threshold close to 1 because the contribution of colors from
more distant samples is negligible if they are multiplied with (1 − α ′

i) ≈ 0. This
acceleration technique is usually referred to as early ray termination or adaptive ray
termination; see for example [11].

The sampling distance (or sampling length) does not need to be constant. Often,
the sampling distance is adaptively increased in order to quickly skip empty space.
This technique is known as empty space leaping; see for example [11].

For unstructured meshes, the sampling points are usually chosen at the intersec-
tions of the viewing ray with cell boundaries (see for example [5]); thus, the sampling
distances depend on the geometry of the unstructured mesh; see Fig. 3b.

120 M. Weiler et al.

2.4 Pre-Integrated Classification

The discrete approximation of the volume rendering integral will converge to the
correct result for d → 0, i.e., for high sampling rates 1/d. According to the sampling
theorem, a correct reconstruction is only possible with sampling rates greater than
the Nyquist frequency. However, non-linear features of transfer functions may con-
siderably increase the sampling rate required for a correct evaluation of the volume
rendering integral as this sampling rate depends on the product of the Nyquist fre-
quencies of the scalar field s(x) and the maximum of the Nyquist frequencies of the
two transfer functions c̃(s) and τ(s) (or of the product c(s)τ(s); see also [20]).

In order to overcome this problem, the approximation of the volume rendering
integral has to be improved. With pre-integrated classification high sampling fre-
quencies are avoided by reconstructing a piecewise linear, continuous scalar function
along the viewing ray (see Fig. 2b), and evaluating the volume rendering integral be-
tween each pair of successive samples of the scalar field by lookups in a precomputed
table. This allows us to avoid the problematic product of Nyquist frequencies since
the sampling rate for the reconstruction of the scalar function along the viewing ray
does not depend on the transfer functions.

Pre-integrated classification was first published for cell projection in [18] by
Röttger et al. and was later adapted for texture-based volume rendering in [4] by
Engel et al. The first application to ray casting was published by Knittel in [6].

One drawback of this technique introduced by the relatively expensive compu-
tation of the pre-integration table is the lacking possibility to interactively change
the transfer function, which was addressed by an approximative computation in [4].
Recently an acceleration technique has been published by Lum et al. [12] that allows
for the accurate computation of the precomputed table at interactive rates without
any approximation.

2.5 Comparison with Other Volume Rendering Algorithms

In contrast to image-order algorithms, object-order algorithms process part after part
of the volumetric data. Each part, usually a cell of a volumetric mesh, can contribute
to the color of many pixels; however, there are very efficient ways to compute all
contributions of a single cell of the mesh. One of the most important object-order al-
gorithms in volume rendering is cell projection, in particular the projection of tetra-
hedra as first suggested by Shirley and Tuchman in [21]. However, cells of other
shapes may also be projected to the view plane. Object-order volume rendering al-
gorithms also include splatting (suggested by Westover in [24]) and the shear-warp
algorithm (see for example [9]).

The availability of hardware-accelerated texture mapping led to texture-based
volume rendering algorithms, see for example Cabral et al. in [3]. Although texture-
based volume rendering using two-dimensional textures is conceptually very similar
to the shear-warp algorithm, it has to be classified as an image-order algorithm since
the number of texture lookups depends on the image resolution instead of the number
of voxels. If the slice distance is chosen to correspond to the size of a voxel, we

Ray Casting with Programmable Graphics Hardware 121

might think of the algorithm as working in object-order in one dimension and in
image-order in the other two (image) dimensions.

The time complexity of a naive object-order projection of all cells of a mesh is
linear in the number of cells. Moreover, the time complexity of most object-order
volume rendering algorithms, e.g., splatting or the Shirley-Tuchman cell projection,
is also linear in the number of rasterized fragments. However, some object-order
algorithms are only linear in the number of pixels covered by the final image; for
example, the shear-warp algorithm, which requires only one warp of the final image.
Also note that the constants for the linear dependency on the number of fragments
or pixels is usually very small since very efficient rasterization techniques can be
employed.

The time complexity of image-order algorithms, in particular ray casting and
texture-based approaches, does not depend on the total number of cells but on the
number of cells actually intersected by viewing rays, assuming a constant time access
to the data. Thus, for large meshes image-order algorithms are in theory preferable.
Unfortunately, for implementations based on graphics hardware, all the data should
fit into texture memory; otherwise, these approaches are far less efficient. Moreover,
the theoretical advantage of image-order algorithms is in practice often compensated
by choosing a higher resolution for the generated images for larger meshes. Thus,
neither object-order nor image-order volume rendering algorithms are very efficient
for large meshes. Therefore, optimization techniques are of particular interest.

Empty space leaping is a standard technique for image-order algorithms. For
object-order algorithms it corresponds to culling empty cells, for example by simply
testing each cell and skipping the projection of completely transparent cells. Hier-
archical data structures may also be employed to avoid any empty cell processing.
Thus, image-order and object-order algorithms benefit similarly from empty space
leaping in this wider sense.

Early ray termination is also a standard technique for image-order algorithms. In
general, it is very difficult to apply it to object-order algorithms; the only exception
being the shear-warp algorithm. Thus, for volume visualizations with many opaque
regions, e.g., opaque isosurfaces, image-order algorithms can often perform consid-
erably better than object-order algorithms.

Hierarchical data structures for different level-of-detail representations of volume
data have been published for software implementations of image-order and object-
order volume rendering algorithms. However, for hardware-based implementations
any additional data structures are usually problematic since they also require scarce
texture memory. Note that an adaptive computation of sampling distances combined
with pre-integrated classification can achieve a similar effect for image-based volume
rendering algorithms.

122 M. Weiler et al.

3 Ray Casting Based on Programmable Graphics Hardware

3.1 Common Concepts

The basic principle of a ray casting implementation based on programmable graph-
ics hardware is to trace all viewing rays from front to back at the same time in order
to exploit the parallel architecture of modern rasterization hardware; see Fig. 3. In
an initialization step, typically performed by rendering the non-occluded boundary
faces of the mesh, the first intersection of each ray with the mesh is computed. After
this, the rays are consecutively propagated from one sampling point to the next until
the whole volume has been processed. Note that several (or even all) of these propa-
gation steps can be combined in one rasterization pass depending on the capabilities
of the graphics hardware.

pixels in

view plane uniform grid

(a)

pixels in
view plane

tetrahedral mesh

(b)

Fig. 3. (a) Ray casting in uniform grids: The initial intersections with the boundary are marked
with dots (•); further sampling points with circles (◦), squares (�), and diamonds (�). (b) Same
as (a) for tetrahedral meshes: The sampling points are at the intersections of the viewing rays
with the cell boundaries

Intermediate information on the current sampling point of each viewing ray is
stored in the frame buffer and in several two-dimensional textures of the same di-
mensions as the frame buffer, which are used as additional output targets for the
rasterization. Each of the viewing rays corresponds to exactly one pixel of the frame
buffer and one texel in the supplemental textures. Computations for all viewing rays
are performed by rasterizing screen-filling rectangles into the texture maps. The per-
pixel computations are described by so called fragment shaders or fragment pro-
grams, which are loaded onto the graphics hardware. They implement the following
main tasks:

1. Initialization of the textures with the first intersection of the viewing rays with
the boundary of the mesh.

2. Computation of the next sampling point for each texel.
3. Sampling of the mesh data, classification of the scalar value, and compositing of

the colors for each texel based on the computed extinction coefficient.

This basic scheme is the same for all published ray casters implemented on pro-
grammable graphics hardware [8, 17, 22]. In fact, it is also similar to ray tracing with

Ray Casting with Programmable Graphics Hardware 123

programmable graphics hardware as suggested by Purcell et al. in [16]. Moreover,
all three ray casters implement early ray termination by early depth tests.

3.2 Overview of the Differences

Although the three approaches reviewed in this paper are all based on the ray casting
algorithm and employ similar graphics hardware, they differ considerably in several
ways. Looking at Table 1, the most important difference is the kind of volumetric
meshes these systems visualize. While the ray caster published by Weiler et al. [22]
works on tetrahedral meshes; both, the ray casters described by Röttger et al. [17]
and the system published by Krüger and Westermann [8], render uniform meshes.

Table 1. Overview of the differences and common features of the presented ray casting algo-
rithms

Algorithm Grid Type
Adaptive Sampling
(Sects. 4.1 and 4.2)

Classification
(Sect. 4.3)

Early Ray
Termination
(Sect. 4.4)

Krüger [8] uniform
fixed distance +

empty space leaping
post-classification yes

Röttger [17] uniform data dependent pre-integration yes

Weiler [22] tetrahedral
intersection with
cell boundaries

pre-integration yes

Therefore, the sampling distance is determined in different ways: The system
by Weiler et al. computes intersections with cell boundaries in order to determine
the sampling points, while the ray caster described by Röttger et al. computes an
adaptive sampling distance depending on the data at the sampling point. The system
by Krüger and Westermann implements a fixed sampling distance but optimized by
empty space leaping.

Furthermore, the three systems employ different classification schemes. Weiler
et al.’s system employs pre-integrated classification, which is the obvious choice for
tetrahedral meshes since the linear interpolation of scalar data values between two
sampling points on the boundary of one tetrahedron is well justified. Although the
system published by Röttger et al. computes the sampling distance differently and
trilinear interpolation is employed for the interpolation of data values, it also im-
plements pre-integrated classification in order to improve the image quality. Both
systems use similar methods to compute the required look-up tables efficiently; a
detailed description is given in [22]. Meanwhile, an even faster acceleration tech-
nique based on incremental computation has been published in [12]. The system by
Krüger and Westermann also employs trilinear interpolation for the scalar data but
implements traditional post-classification.

124 M. Weiler et al.

All approaches store volumetric data in the local memory of the graphics adapter.
However, uniform meshes are stored as three-dimensional texture maps similar to
classical texture-based volume rendering algorithms, whereas for the representation
of tetrahedral meshes several texture maps are used for storing connectivity, neigh-
borhood information, and vertex properties.

4 Optimization Techniques

This section presents the different implementations of the most relevant optimization
techniques described in [8, 17, 22] in more detail than in Sect. 3. Of course, the
original publications are even more detailed. However, by directly comparing the
three systems we hope to offer a more comprehensive discussion of the subject.

With these optimization techniques the system by Weiler et al. achieves 2.0−5.0
fps, corresponding to 280K−760K tetrahedra per second, the system by Krüger et al.
between 13 and 24 fps and the system by Röttger et al. between 0.3 and 1.4 fps. Note
that all reported timings were taken for a 512×512 viewport and that Röttger et al.
employ a four times finer sampling than Krüger et al. (see the original papers for
more details about the data sets and the test setups).

4.1 Empty Space Leaping

Apart from the size of the output image, the second most dominant factor for the
performance of a ray casting algorithm is the number of samples that are taken along
each viewing ray. Avoiding the sampling of areas without contribution to the final
image can therefore significantly improve the rendering speed.

In the work of Krüger and Westerman [8] empty space leaping is incorporated
by the help of an auxiliary data structure allowing to determine whether a block of
8× 8× 8 voxels of a uniform mesh contains relevant information or not. This data
structure consists of a texture map 1/8 the width, height, and depth of the origi-
nal data texture and holds the minimum and the maximum data value of each voxel
block. The visibility of a block depends on the applied transfer function but can
easily be decided by a dependent lookup in a texture, storing for each pair of min-
imum/maximum values whether the transfer function maps to visible colors or not.
Only this relatively small dependent texture has to be recalculated on updates of the
transfer function.

The rendering is then performed by rasterizing a polygon of at least the size of the
projected volume several times. A fragment shader capable of evaluating 8 sampling
points is applied to the rasterized polygon but its execution is suspended with the
help of the early depth test if the sampling points lie within an invisible block. The
speedup is gained from the fact that fragments blocked by the early depth test will not
be shaded at all. Thus, no operations will be spent by the GPU on those fragments.

The empty block test is performed in an additional rendering pass between two
sampling passes since the early depth test is only effective for fragment shaders not
modifying the depth value. Finally note that although not clearly stated in [8] the

Ray Casting with Programmable Graphics Hardware 125

auxiliary data structure stores the minimum/maximum value not only of the voxels
in the corresponding 83 voxel block. Actually, the minimum/maximum is computed
with respect to the current block and all 26 neighboring blocks. This reflects the
fact, that an 8-sample ray segment may start anywhere inside a voxel block and may,
therefore, very likely reach into an adjacent block.

Incorporating empty space leaping into a ray caster for tetrahedral meshes is
more sophisticated since here the sampling is guided by the geometry of the tetrahe-
dral mesh. Therefore, an adapted mesh geometry would be required, recomputed on
every transfer function update.

4.2 Adaptive Sampling Distance

Beside from empty space skipping, other improvements can be added to the ray
casting algorithm in order to increase the performance. One of them which is used
by Röttger et al. [17] is the variation of the sampling distance. Along the viewing
ray, we can observe the following scenarios:

• constant sample values
• linear changing sample values
• non-linear changing sample values

For constant sample values we can adopt a similar scheme as for empty space leap-
ing, i.e., we skip the homogeneous region during the ray sampling by increasing the
sampling distance. However, we need to acquire at least one sample inside the ho-
mogeneous region and account for the correct attenuation along the sampling ray.
Thus, if we increase the sampling distance from d to d′, we also have to increase the
opacity αi to 1− (1−αi)

d′/d . If the sample values vary linearly along the viewing
ray we can use the same approach as for cell projection rendering, i.e., we have to
both increase the opacity and account for the changing self-attenuation. In the case of
non-linear varying sample values the sampling distance has to be decreased in order
to improve the quality of the rendered image.

If we add lighting effects to the volume rendered image, we are not only inter-
ested in the sample values but in the gradients as well. However, these only change
for non-linearly varying sample values so we are still on the safe side, if we use the
lighting algorithm proposed by Meißner et al. [14], i.e., also pre-integrate the lighting
over a certain interval.

In areas with varying gradients the lighting can be computed as proposed by
Lum et al. [12]. For each ray segment they look up two pre-integrated lighting terms
based on the two gradients at consecutive sample points which are assumed to be
constant along the segment. These values can be blended by choosing different pre-
integration tables for the previous and the current sample point and adding both con-
tributions. Similar to Gouraud shading this resembles an interpolation of the lighting
value rather than an interpolation of the lighting normals.

For more aggressive optimizations to the sampling distance in non-linearly vary-
ing areas, we also have to take the transfer function into account. Disregarding light-
ing, we can also increase the sampling distance in areas that, after applying the

126 M. Weiler et al.

transfer function, share the same color and opacity value. Taking lighting into ac-
count is more sophisticated in this case since the gradients change even in those
areas where the color stays constant. Therefore, we can only increase the sampling
distance if ambient lighting is dominant in this area.

In order to implement the changing sampling distances efficiently, we build a
texture map that for each voxel of the original data set contains the maximum al-
lowed sampling distance in any direction. This texture has to be updated whenever
the transfer function or the volume data changes. It is created using a simple three
pass algorithm. The first pass marks all voxels that have the same gradient in their
immediate 26 voxel neighborhood, i.e., the data varies linearly in space. The second
pass marks with a different marker voxels with all neighbors mapped to the same
ambient color. Finally, the third pass then calculates the oversampling factor for each
unmarked voxel based on the non-linearity of voxel values in that region or stores
the distances to the next differently marked or unmarked voxel as sampling distance
for the marked voxel.

With the help of this sampling distance texture, adaptive ray sampling works
as follows: In each rendering pass the current sampling position for each pixel is
read from a supplemental texture map. Then the volume data acquired from this
position is used for ray integration, and a new sampling position is written back to
the supplemental texture map. However, instead of adding a constant length to the
current position in order to compute the next sampling position, a scaling factor is
retrieved from the sampling distance texture with the current sampling position as
texture coordinates. This factor is used to compute the next sampling position by
adding the scaled distance between two voxels to the current position.

4.3 Ray Integration

In all surveyed papers the ray integration is performed on a per-sample basis. For
each newly computed sampling point the color and the opacity contribution for the
ray segment between the previous and the current sampling point is evaluated and
composited with the already accumulated color and opacity in front-to-back order
(see Sect. 2.3). The accumulated colors are written into a hardware-accelerated off-
screen buffer, which allows to access the results of a previous rendering pass by
binding the off-screen buffer as a texture map. Precision issues are a second reason
for not using the framebuffer and regular OpenGL alpha blending for color accu-
mulation since the provided 8-bit color format is insufficient in particular for ray
casting tetrahedral grids where the contribution of a single tetrahedron tends to be
very small. The floating-point off-screen buffers used instead provide sufficient ac-
curacy. A disadvantage of this approach is the use of two off-screen buffers and the
ping-pong rendering, which is required due to hardware restrictions.

In order to reduce the number of required rendering passes, both Krüger and
Westermann and Röttger et al. perform several sampling and blending steps at once
in the fragment shader before writing the result to the off-screen buffer.

As mentioned previously there are two different approaches in the surveyed pa-
pers for determining the color and opacity contribution of a ray segment. Krüger and

Ray Casting with Programmable Graphics Hardware 127

Westermann employ traditional post-classification, i.e., they determine the color and
opacity of the ray segment only from the data value at the current sampling point.
Röttger et al. and Weiler et al. both apply pre-integrated classification which also
requires the data value from the previous sample point along with the length of the
ray segment for the lookup of the volume rendering integral in a three-dimensional
pre-integration texture map. This requires additional information to be stored in the
off-screen buffers. Apart from the data value at the current sampling position Röttger
et al. also write the distance to the next sampling point whereas Weiler et al. compute
the ray segment length on the fly from the current sampling position and the stored
coordinates of the previous sample.

The most sophisticated part in ray casting on tetrahedral meshes is the computa-
tion of the sampling points. Given the current cell and an entering intersection point,
the next sampling point can be computed by intersecting the viewing ray with all
remaining faces of the tetrahedron and taking the intersection on the face – closest to
the viewer – that has a normal pointing in the view direction. The next cell can then be
determined from the neighborhood information. In [22] all this is performed within
a fragment shader accessing the required mesh data from several three-dimensional
texture maps. This iterative traversal, of course, only works for convex meshes since
there is no information about the next cell for viewing rays leaving the mesh. One
way to overcome this limitation is to add virtual tetrahedra between the boundary
of the mesh and its convex hull, which are traced just like ordinary tetrahedra but
without adding a contribution to the color and opacity. Alternatively, as has been
demonstrated in [1, 23], reentries of the viewing rays can be handled by a rendering
technique similar to depth peeling.

Note that the pre-integrated classification only guarantees artifact-free renderings
in the presented ray casting on tetrahedral meshes since here the assumption of lin-
ear data variation along the ray holds. Trilinear interpolation in uniform grids as in
Röttger et al. yields a cubic behavior of the data values which has to be compensated
by a more dense sampling. Thus, with respect to rasterization, pre-integration pro-
vides only limited benefits compared to the traditional post-classification approach.

4.4 Early Ray Termination

The basic idea behind early ray termination is to avoid the processing of occluded
samples that do not contribute to the final color, leading to a speedup due to saved
fragment operations. The processing of a pixel can be aborted if either the opacity
exceeds a certain threshold or the corresponding viewing ray has left the volume.
The latter case can be mapped to the first case by assigning an opacity of 1 to the
fragments corresponding to those viewing rays.

For a tetrahedral mesh, leaving rays can be easily determined from the neighbor-
hood information by tagging faces with no neighbor with a special index, which can
be checked for in the fragment shader. In the case of a uniform mesh, leaving rays
have to be determined geometrically by checking the current sample position against
the bounding box of the volume.

128 M. Weiler et al.

Preventing the processing for finished viewing rays is also implemented by ex-
ploiting the early depth test of modern graphics adapters. In an intermediate render-
ing pass that reads the accumulated colors and writes only to the depth buffer, the
depth value of all fragments with an accumulated opacity greater than the thresh-
old is modified in such a way that the corresponding pixel is blocked from further
shading operations. A depth value of znear or zfar is written depending on whether the
regular rendering is performed with the depth test set to GL LESS or GL GREATER.

However, unless a fixed number of rendering passes can be performed as in [8],
we still have to detect when all viewing rays have been fully processed and the poly-
gon rendering can be stopped. This information can be provided via the occlusion
query functionality of modern graphics adapters. Issued with a rendering pass, the
occlusion query returns the number of pixels that passed the z-test. In [17] and [22]
occlusion queries are, therefore, emitted from time to time. If the result of one such
query reaches a count of zero fragments, the frame has been completed and the ren-
dering can be terminated. Unfortunately, the result of an occlusion query is delivered
asynchronously with some delay which typically leads to additional rendering passes
according to [22]. However, this effect can be neglected compared to the delay caused
by waiting for the results.

4.5 Compression of Volume Data

Efficient ray casting of volume data requires an extremely fast access to the volume
data at any point. Thus, this access should not only be performed in constant time,
but the constant should also be very small. Since all three systems reviewed in this
paper store the volume data in texture maps, they are limited by the size of texture
memory on the graphics hardware. If this limit is exceeded and texture data has to
be transferred between the CPU and the graphics hardware for individual texture
lookups, the performance of the three systems will drop significantly.

The most straightforward way to provide a high performance for large uniform
volume meshes that do not fit into texture memory is the compression of volume
textures combined with an on-the-fly decoding in constant time performed by pro-
grammable texture lookups as published in [7] and [19]. While the integration of
these compression techniques with ray casters for uniform meshes requires longer
fragment programs, it does not pose any crucial difficulties.

Although a compression of tetrahedral meshes with on-the-fly decoding in con-
stant time is less straightforward, Weiler et al. have published a data structure based
on tetrahedral strips in [23] that allows the ray caster presented in [22] to work di-
rectly on the tetrahedral strips, i.e., directly on the compressed mesh.

Of course, an additional decoding step for each lookup of volume data reduces
the overall performance of any ray caster. For large meshes that have to be stored
in texture memory, however, it avoids the bottleneck of transferring volume data
between the CPU and the graphics hardware. Thus, the compression of volume data
appears to be a particularly important extension of the three systems reviewed in this
paper.

Ray Casting with Programmable Graphics Hardware 129

5 Conclusions

Ray casting on programmable graphics hardware is an interesting way of exploiting
the parallel architecture of modern graphics hardware. Moreover, the almost simulta-
neous publication of the discussed implementations also indicates that the program-
mability of graphics hardware has reached a critical level, which now allows us to
implement many more algorithms on modern graphics hardware. With respect to
hardware-accelerated ray casting algorithms, these include, for example, more com-
plex – possibly hierarchical – data structures, higher order interpolation schemes,
and more elaborate computations of sampling distances.

References

1. F. F. Bernardon, C. A. Pagot, J. L. D. Comba, and C. T. Silva GPU-based Tiled Ray
Casting using Depth Peeling Techreport UUSCI-2004-006, SCI Institute, University of
Utah, 2004.

2. J. F. Blinn. Jim Blinn’s Corner – Compositing, Part I: Theory. IEEE Computer Graphics
and Applications, 14(5): 83–87, 1994.

3. B. Cabral, N. Cam, and J. Foran. Accelerated Volume Rendering and Tomographic Re-
construction Using Texture Mapping Hardware. In Proceedings 1994 Symposium on Vol-
ume Visualization, pp. 91–98, 1994.

4. K. Engel, M. Kraus, and T. Ertl. High-Quality Pre-Integrated Volume Rendering Using
Hardware-Accelerated Pixel Shading. In Proceedings Graphics Hardware 2001, pp. 9–
16, 2001.

5. M. P. Garrity. Raytracing Irregular Volume Data. ACM Computer Graphics (Proceedings
San Diego Workshop on Volume Visualization), 24(5): 35–40, 1990.

6. G. Knittel. Using Pre-Integrated Transfer Functions in an Interactive Software System
for Volume Rendering. In Proceedings Short Presentations EUROGRAPHICS 2002, pp.
119–123, 2002.

7. M. Kraus and T. Ertl. Adaptive Texture Maps. In Proceedings SIGGRAPH/EG Graphics
Hardware Workshop ’02, pp. 7–15, 2002.

8. J. Krüger and R. Westermann. Acceleration Techniques for GPU-based Volume Render-
ing. In Proceedings Visualization 2003, pp. 287–292, 2003.

9. P. Lacroute and M. Levoy. Fast Volume Rendering Using a Shear-Warp Factorization of
the Viewing Transformation. In Proceedings SIGGRAPH 94, pp. 451–458, 1994.

10. M. Levoy. Display of Surfaces from Volume Data. IEEE Computer Graphics and Appli-
cations, 8(3): 29–37, 1988.

11. M. Levoy. Efficient Ray Tracing of Volume Data. ACM Transactions on Graphics, 9(3):
245–261, 1990.

12. E. B. Lum, B. Wilson, and K.-L. Ma. High-Quality Lighting and Efficient Pre-Integration
for Volume Rendering. In Proceedings of the Joint EUROGRAPHICS - IEEE TVCG Sym-
posium on Visualization 2004, pp. 25–34, 2004.

13. N. Max. Optical Models for Direct Volume Rendering. IEEE Transactions on Visualiza-
tion and Computer Graphics, 1(2): 99–108, 1995.

14. M. Meißner, S. Guthe, W. Straßer. Interactive Lighting Models and Pre-Integration for
Volume Rendering on PC Graphics Accelerators. In Proceedings of Graphics Interface
2002, pp. 209–218, 2002.

130 M. Weiler et al.

15. M. Meißner, U. Kanus, G. Wetekam, J. Hirche, A. Ehlert, W. Straßer, M. Doggett,
P. Forthmann, and R. Proksa. VIZARD II: A Reconfigurable Interactive Volume Ren-
dering System. In Proceedings Graphics Hardware 2002, pp. 137–146, 2002.

16. T. J. Purcell, I. Buck, W. R. Mark, and P. Hanrahan. Ray Tracing on Programmable Graph-
ics Hardware. ACM Transactions on Graphics (Proceedings SIGGRAPH 2002), 21(3):
703–712, 2002.

17. S. Röttger, S. Guthe, D. Weiskopf, T. Ertl, and W. Straßer. Smart Hardware-Accelerated
Volume Rendering. In Proceedings Symposium on Visualization, VisSym 2003, pp. 231–
238, 2003.

18. S. Röttger, M. Kraus, and T. Ertl. Hardware-Accelerated Volume and Isosurface Render-
ing based on Cell-Projection. In Proceedings Visualization 2000, pp. 109–116, 2000.

19. J. Schneider and R. Westermann. Compression Domain Volume Rendering. In Proceed-
ings IEEE Visualization 2003, pp. 293–300, 2003.

20. J.P. Schulze, M. Kraus, U. Lang, and T. Ertl. Integrating Pre-Integration into the Shear-
Warp Algorithm. In Proceedings Third International Workshop on Volume Graphics, pp.
109–118, 2003.

21. P. Shirley and A. Tuchman. A Polygonal Approximation to Direct Scalar Volume Ren-
dering. ACM Computer Graphics (Proceedings San Diego Workshop on Volume Visual-
ization), 24(5): 63–70, 1990.

22. M. Weiler, M. Kraus, M. Merz, and T. Ertl. Hardware-Based Ray Casting for Tetrahedral
Meshes. In Proceedings Visualization 2003, pp. 333–340, 2003.

23. M. Weiler, P. N. Mallón, M. Kraus, and T. Ertl. Texture-Encoded Tetrahedral Strips. In
Proceedings Symposium on Volume Visualization 2004 (to appear), 2004.

24. L. Westover. Footprint Evaluation for Volume Rendering. ACM Computer Graphics (Pro-
ceedings SIGGRAPH ’90), 24(4): 367–376, 1990.

25. C. M. Wittenbrink, T. Malzbender, and M. E. Goss. Opacity-Weighted Color Interpola-
tion for Volume Visualization. In Proceedings 1998 Symposium on Volume Visualization,
pp. 135–142, 1998.

Volume Exploration Made Easy Using Feature Maps

Klaus Mueller, Sarang Lakare∗, and Arie Kaufman1

Center for Visual Computing, Computer Science Department, Stony Brook University, Stony
Brook, NY 11794, USA.
{mueller,lsarang,ari}@cs.sunysb.edu

We present a framework that enables an intuitive, feature-centric exploration of seg-
mented volumetric datasets. Our system is geared towards users familiar with the
basic elements of volume rendering, but who seek to conduct volume exploration
in a guided fashion. It provides the infrastructure to organize features and objects
extracted from a volume dataset, via segmentation or otherwise, and provides the
functionality to view these features with standard volume rendering tools. A novel
aspect of our system is that it does not require a separate binary tag volume to in-
dicate the presence of a feature (or object). Instead, we mark a feature by migrating
its density range, including its smooth boundary, to a private interval. This avoids
the aliasing problems associated with binary tag volumes as well as the extensive
run-time costs incurred to resolve these. In addition, since the smooth boundaries of
the features are preserved, any volume renderer can be used for data visualization,
without modification.

1 Introduction

The extraction of features in volumetric datasets remains a hard task, and these diffi-
culties are among the main impediments in making volume rendering a main-stream
data investigation tool for general users, such as medical doctors and other clinical
personnel, computational scientists, and even data miners. A main advantage of vol-
ume visualization is that it allows users to “play” with the data, exploring different
aspects in an engaging interrogative experience. This is usually done via modifying
the transfer functions that map raw volume data to visual attributes, such as color
and transparency. Transfer functions give users the flexibility to “sculpt” a visual-
ization from the raw volume data, including densities and their derivatives. Transfer
functions allow users to show certain features as soft, semitransparent gel-like mate-
rials or as accentuated surfaces. A number of elaborate tools have become available
that enable users to assist in this endeavor. One such framework is the dual-domain

∗Currently at Siemens Medical Solutions, Malvern, PA, USA

132 K. Mueller et al.

interaction tool by Kniss et al. [8], which builds on earlier work by Kindlmann and
Durkin [7]. Here, users can find and accentuate features by probing the volume to
find critical points in a 2.5D histogram that plots the magnitudes of first and second
derivatives over voxel densities. Users can then place so-called transfer function wid-
gets directly into the histogram to visually accentuate the probed features. Tenginakai
and Machiraju extended the range of data signatures from the first and second-order
to higher-order moments and their derivatives, such as skew and kurtosis [23], which
essentially extends the dimensionality of the transfer functions further. Other related
work includes that of Pekar [14] who applied cumulative Laplacian-weighted gray
value histograms.

While these tools are undoubtedly extremely valuable for visualization experts,
they are likely too involved for users who are only marginally experienced in the
theoretical underpinnings of feature exploration using data signatures. Here, it does
not help either that the tools become quite difficult, and perhaps even inadequate, to
use once the density distributions in the data grow more complex, such as for MRI
volumes, fine-scale computational data, and others. An example for such a configu-
ration is illustrated in Fig. 1, which shows the visible human’s foot. In this dataset,
both the muscle and the bone-marrow have very similar data signatures, and the cor-
responding region voxels will all fall into the same portion of the density-signature
histogram. Thus, their given visual attributes will overlap as well, and as a conse-
quence, the two features will not be visually distinguishable.

It has become a trend, in particular in medical visualization, to create very simple
interfaces for clinical practitioners. These applications have just a few buttons and
sliders, to allow a fast and target-oriented visualization of the patient data for diag-
nosis and planning. In the typical case, there are a number of task-specific feature
extraction tools, such as a vessel segmentation tool sensitive to tubular structures,
or a lung nodule tool sensitive to spherical objects of certain densities [19]. Beyond
these capabilities, there are typically only a set of navigation facilities, such as zoom,

Fig. 1. Features with similar data signatures are hard to distinguish since they map to the same
visual attributes. (a) Muscle and bone marrow are both mapped to gray when using transfer
functions. (b) Our method maps the bone marrow’s density interval to a private range, which
allows different visual attributes to be assigned for it (compared to muscle), while using the
same transfer function interface as in (a)

Volume Exploration Made Easy Using Feature Maps 133

rotate, tilt, and slice. No transfer functions are usually available to change visual at-
tributes, rather, users can choose among a few provided colormaps to colorize the
data.

Thus, these highly-specialized tools are on one end of the spectrum of data vi-
sualization frameworks, while the data-signature tools mentioned earlier are on the
other. In this paper, we suggest a system that is somewhere inbetween. It is geared
towards a user who is comfortable in using low-dimensional transfer functions for
volume exploration, and would like to enjoy the benefits of applying density-based
histograms to create custom visualizations of a dataset. This user either lacks the ex-
pertise, time, or motivation to engage into a session with a complex transfer function-
based data explorer that operates directly on the raw volume data. Instead, our system
provides what one might call a “groomed” data exploration experience, that is, the
data are converted into a representation in which exploration with transfer functions
is still possible, yet the transfer functions have low dimensionality and are therefore
easy to manage and to interact with.

Our system takes as its input a segmented dataset, which has either been pre-
pared by an automated segmentation method or an experienced “senior-user” with
an advanced interactive segmentation tool. Here, the segmentation could have been
obtained via seed-growing, watershed algorithms, snakes, balloons, live-wires, statis-
tical methods, level sets, deformable models, feature-tracking, and the like. In this re-
gard, our tool may also proof useful to fine-tune a prior automated pre-segmentation.
Our system represents the extracted features as a graph, which allows grouping and
selection of individual features. However, contrary to other methods of this nature,
it does not represent the features as binary objects captured in a tag volume. The
problem with tag volumes is that they must invoke tedious and time-consuming al-
gorithms when a ray sample point falls into the proximity of a boundary interface,
to determine the object at that position for visual property look-up [24]. When more
naive algorithms are used instead, staircasing artifacts may be visible in the result-
ing image. Our system, on the other hand, maintains objects in their original fuzzy
boundary representation, which avoids all visual artifacts and allows any available
volume renderer to be used unchanged to produce the visualization.

Our paper is structured as follows. First, in Sect. 2, we will overview related work
and preliminaries. The following sections will then focus on our new contribution.
Here, Sect. 3 will describe our approach of feature migration, in which we port the
density intervals of segmented features to private intervals, and Sect. 4 will describe
how these features can be managed using transfer functions in conjunction with fea-
ture maps. Finally, Sect. 5 will end with final conclusions and give an outlook onto
future work.

2 Preliminaries and Related Work

Our method takes as its input regions of voxels that have been associated with a
particular feature or region of interest. Here, a feature may just be one of the skele-
tonized toes in a foot dataset, the entire skeleton, the muscles, or any other region.

134 K. Mueller et al.

(a) (b)

(c) (d)

Fig. 2. Feature extraction (the valve) from the Engine dataset: (a) original slice (left) and
zoomed into the valve (right), (b) binary extraction (left) and fuzzy extraction (right), (c)
and (d) volume renderings of the extracted valve: binary extraction (left) and fuzzy extraction
(right)

This feature-centric approach makes it possible for visualization users to manipulate
the feature in isolation of other, previously signature-similar, regions, which could
not be distinguished with the transfer function interface before.

We refer to the process of extracting the voxels belonging to a particular region of
interest as volume extraction. This term has been used previously in the literature [1,
22], but it has always referred to the extraction of 3D surfaces from a volume. In
contrast, we actually extract voxels from one volume and port them into another
volume, which we call the feature volume. This feature volume is the data, which the
end-user interacts with. Here, volume regions, which were not specifically tagged as
features may simply be copied into the new volume at verbatim, without change.

One of our main goals is to allow high quality volume rendering of these fea-
ture regions. To achieve this, we need to avoid artifacts caused by aliasing, since any
aliasing in the data results in subsequent aliasing effects in the volume rendered im-
age. One of the locations where aliasing often occurs in extracted volumes is at the
boundary of the segmented region. We shall illustrate this by ways of an example.
Consider Fig. 2a (left), where we show a cross-sectional image of the Engine dataset,
while Fig. 2b (left) shows the result of a segmentation via thresholding, followed by
a simple extraction of the valve in which the intensities of all voxels that do not
belong to the valve are set to the air intensity. Consider now Fig. 2a (right) which
shows the zoomed-in images of the valve. We observe that the object boundaries
were originally fuzzy, and not binary. That is, there is a smooth intensity variation
as one moves from one region to another due to the partial volume effect. In the

Volume Exploration Made Easy Using Feature Maps 135

segmented image (see Fig. 2b (left)), however, the fuzziness is not present. Instead
there is a sharp contrast between the intensities of the segmented valve and the sur-
rounding air. This sharp contrast causes an aliasing effect, mostly due to the poor
gradient estimation it affords (see the rendered images Figs. 2c and 2d (left)). The
intensity-flipping algorithm described in [8] restores the fuzziness at the boundaries
of an extracted feature, and rendering results are shown in Figs. 2b, c and d (right).

The effect of the intensity flipping algorithm of [11] is illustrated in Fig. 3a. Here,
the boundary profile (labelled before flipping) separates two objects. The goal is to
remove the object with the higher density (the one on the right), but leave the bound-
ary characteristics (the position of the zero-crossing of the second derivative and the
location of the maximum of the first derivative) unchanged since these will determine
the location of the iso-surface in the volume rendering (while the fuzziness will de-
termine gradients and the overall look of the volume rendered surface). Figure 3b
shows the intensity/density transfer function. Here, δ1 is the density of the object we
would like to keep, while δ2 is the density of the object we would like to remove. The
range δ2 − δ1 is the density range that the boundary bridges. The transfer function
maps this density range linearly to the range δ1 − δAIR such that the new density of
the other side of the boundary to δ1 is set to δAIR. The algorithm described in [11]
performs this mapping using local measures of δ1 and δ2, thus the mapping func-
tion adapts to the local density statistics of the boundary. The current work borrows
from this technique, when merging the extracted features into the newly constructed
feature volume, preventing aliasing in the process.

Work related to our intensity-flipping technique includes the smooth boundary
enhancement of voxelized geometric objects [1, 21] as well as adaptive distance
fields (ADFs) [4, 5]. While the former methods append a smoothly (linearly) decay-
ing intensity seam to the binary density field generated by voxelization algorithms,
the latter stores a distance field in the non-occupied voxels. Both help alleviate the
aliasing problems associated with binary and near-binary objects. In contrast, our
method is not geared towards voxelized objects and does not seam an object with a
static, artificial function. Rather, it restores the original smooth density-falloff at the
boundary of the sampled object, which may vary with spatial location. These bound-
ary effects may be partially due to the partial volume effect and the lowpassing of
the sampling process, but may also be due to the object characteristic itself.

Another approach to reach our goal might be gleaned from the soft-segmentation
technique [16]. Soft-segmentation seeks to overcome the fundamental problem in
image segmentation. For many images there is no way to uniquely and correctly de-
termine the object boundaries. Instead of the usual crisp segmentation where a fixed
boundary is derived for a region, soft-segmentation proposes an approach where a
pixel/voxel can belong to more than one region. This results in voxels around the
region boundary being assigned partially to each of the neighboring regions. How-
ever, such an approach would require either non-scalar volumes for storage of these
mixed-membership voxels or an extra set of tags, one for each mixed class. We will
achieve similar effects with a single scalar volume, allowing users to enhance and
visualize mixed regions by ways of the transfer function.

136 K. Mueller et al.

δp

voxel p

Intensity

f
..

f
. Boundary

δ2

δ1

δl
p

δAIR

Before Flipping

After Flipping

 Distance along the ray

(a)

δR
1

δΟ

δR
1

δAIR

δp

Original Intensity

New
Intensity

δl
ρ

(b)

Fig. 3. Effect of the intensity flipping algorithm. (a) The old and new boundary profile with the
location of the maximum of the first derivative and the zero-crossing of the second derivative
left intact. (b) The corresponding density/intensity transfer function

3 Density Range Migration

In the following, we will use the term region [2] to refer to a connected group of
voxels with similar properties (e.g., a bone or a muscle), while we use the notion
region of interest (ROI) to describe a group of one or more connected regions that
we are interested in. The ROI is the feature to which range shifting is applied so
that it can be assigned optical properties without interfering with other objects or
features. Our algorithm is composed of four steps. In the first step, we define the
ROI. In the second step, we separate the data voxels into different categories in order
to perform different actions on them. In the third step we move the scalar value range

Volume Exploration Made Easy Using Feature Maps 137

of the ROI so that it now occupies a different space in the histogram, and in the final
step we modify the boundary between the ROI and its neighboring regions to reflect
the change in the ROI range. We shall now describe these four steps in turn.

3.1 Defining the ROI

The ROI is defined by a mask volume, which marks all voxels that are part of the
ROI, as well as a list of voxels that form the boundary of the ROI. A voxel is said to
be on the boundary if one of its neighboring voxels is not part of the ROI. The mask
volume, which defines the ROI can be generated using any suitable segmentation
algorithm (as mentioned in the introduction). Feature tracking has also been em-
ployed for time-varying datasets [13, 20]. Fortunately, the recent advances in com-
puter graphics hardware [10, 18] make interactive, user-assisted methods, such as
seed growing [9, 17], level set methods [12], or snakes/balloons [6], a viable solu-
tion. Using such an interactive segmentation system with immediate visual feedback
on the segmentation result, ROI-mask voxels can be quickly labeled. We shall illus-
trate our algorithm using the Lobster CT dataset as an example. Figure 4a show a
cross-section of this dataset. The goal of our example application is to apply range
shifting to one of the claws, which forms the ROI (shown in a box) in our example.
We segment the claw using an interactive seed growing algorithm. The result of the
segmentation is shown in Fig. 4b. The voxels which lie on the boundary of the ROI
are highlighted in Fig. 4c.

3.2 Categorizing the Voxels

After selecting the ROI, we divide the data voxels into separate categories depending
on the actions we perform on them in the later stages. From the previous step we
have identified the voxels that are part of the ROI and a list of those that lie on the
ROI boundary (Fig. 4b, c). Each ROI boundary voxel can be of one of two types:
(1) adjacent to at least one non-boundary ROI voxel, and (2) not adjacent to any
non-boundary ROI voxel.

In Fig. 4d, the voxels of the first and second have been painted in differnt shades
of gray. The significance of the voxels of the second type (shown in light gray on the
periphery) is that they are part of a very thin ROI. The ROI is so thin that all ROI
voxels are also boundary voxels.

A volumetric dataset obtained from a scanning modality, such as CT, MRI or
PET, displays a natural fuzziness at the object boundaries. This can be attributed to
the partial volume effect which occurs due to a finite resolution sampling of a con-
tinuous signal by the scanners and the reconstruction operators. The ROI boundary
voxels are also part of a naturally fuzzy boundary between the ROI and its neigh-
boring regions. The only exception occurs when the ROI boundary voxels are of the
second type. In that case, the ROI boundary voxels are not part of the fuzzy boundary,
however, the voxels that surround them are.

We now attempt to find all voxels that form this fuzzy boundary. We assume that
the width of the fuzzy boundary is between 3-4 voxels. This can be justified by the

138 K. Mueller et al.

ROI

(a)

(b) (c) (d)

Fig. 4. The Lobster dataset serves as an example to illustrate parts of our algorithm. (a) a slice,
(b) segmenting the ROI (the left claw), (c) marking the boundary voxels, (d) categorizing the
voxels

fact that commonly the radius of the Gaussian kernel used in 3D reconstruction from
medical and other image data is about 1.5 times the size of the voxel. To mark the
fuzzy boundary voxels, we grow the ROI boundary region once in all directions using
an 18-neighbor region grow, which is a 3D version of the 8-neighbor (in 2D) region
grow [15]. Next, we categorize the data voxels into the following four categories:

1. Voxels that form the fuzzy boundary between the ROI and its neighboring re-
gions.

2. Voxels of a thin ROI.
3. The remaining voxels of the ROI.
4. The rest of the voxels in the dataset.

We begin with voxels which belong to category 1. In this we include the ROI
boundary voxels of the first type and the fuzzy boundary voxels we found by region
growing. The ROI boundary voxels of the second type are the category 2 voxels.
The remaining voxels of the ROI belong to category 3. All remaining voxels in the
dataset belong to category 4 (shown in black in Fig. 4).

Volume Exploration Made Easy Using Feature Maps 139

ROI Range

 Input Range

(a)

New ROI Range

 Output Range

ε
 ∆

(b)

ε

Input Range

Output
Range

New ROI Range

ROI Range

∆

(c)

Fig. 5. Migration of the ROI densities: (a) the histogram of the input volume, (b) the histogram
of the constructed feature volume, after importing the migrated (shifted) ROI density interval,
(c) the density mapping function that achieves this

3.3 Moving the ROI Density Range

In this step, we change the scalar value of the ROI voxels, which effectively moves
the density range of the ROI. We start by finding the current density range of the ROI.
We define the range as a pair of the lowest and the highest scalar values present, and
the width of the range as their difference. The range can be easily computed by loop-
ing over the voxels once to find the highest and the lowest scalar values. Migrating the
entire density interval preserves the fine density fluctuations within the object. These
can be meaningful in later visualizations. For example, NPR (Non-Photo-Realistic)
techniques can be applied to accentutate even minute density variations to produce
more insight into the micro-scale definition of an object [3].

In the following, we assume that the range of the input data is: (INlow, INhigh).
We find the range of the ROI by taking into consideration all category 2 and category

140 K. Mueller et al.

3 voxels. We denote this range by (ROIlow, ROIhigh) and its width by ROIwidth. Some
of the ROI voxels (those on the ROI boundary that now belong to category 1) are not
considered when finding the range because they are part of the partial volume and
we want to avoid the partial volume being part of the range.

As our goal is to move the range of the ROI, we have to select the new range.
The new range should be such that no other voxel in the input data has values in
that range. There are two possibilities for the new range. First, the new range can be
placed within INlow and INhigh if there are ROIwidth consecutive levels of the range
that are unused in the input data. In this case, the range of the resultant data remains
the same as that of the input data. However, in practice, such cases are rare as the
voxel values usually cover the entire range. The second possibility is to place the new
range outside the initial range of the input data. This effectively increases the range
of the resultant data to:

Out = (INlow, INhigh +ROIwidth) (1)

We focus on this second case since it is always possible to increase the data
range to accommodate the new range of the ROI. Assuming that the ROI range is to
be moved beyond the current data range, the new range for the ROI is:

ROI′ = (INhigh + ε, INhigh +ROIwidth + ε) (2)

where e is a small number to provide a gap between the ROI and the rest of the
data in the histogram (Fig. 5a,b). This gap makes transfer function assignment easier
when focussing on the ROI. The starting position of the new ROI range is:

ROI′low = INhigh + ε (3)

Thus, the shift in ROI range from the original position to the new position is
given by:

∆ = INhigh + ε −ROIlow (4)

We can now write the equation for moving the ROI range as:

δ ′ =
{

(δ +∆) if category 2 or 3 voxel
δ otherwise

(5)

where δ is the original scalar value of the voxel and δ ′ is the new scalar value for the
voxel. This transformation for the category 2 and 3 voxels is shown by the graph in
Fig. 5c. Figure 5a shows a hypothetical histogram of a dataset with the ROI histogram
shown by a dotted region. The result after applying (5) to the histogram in Fig. 5a is
shown in Fig. 5b.

3.4 Reconstructing the Fuzzy Boundary

The final step consists of reconstructing the fuzzy boundary such that the fuzziness
reflects the new region intensities around the boundary. This procedure has two steps.

Volume Exploration Made Easy Using Feature Maps 141

Fig. 6. Region-grow with voxel p at the center

In the first step, we compute a local average intensity of the regions surrounding
each voxel in the fuzzy boundary. In the second step, we use these local averages to
compute the new intensity for the fuzzy boundary voxel. The following two steps are
repeated for each voxel p that belongs to category 1.

Step 1. With p as the center, in the original dataset, a region-grow is performed
such that the region includes voxels which are nearest to the central voxel and belong
to categories 2, 3 or 4. All category 1 voxels are ignored (Fig. 6). The region-grow
continues until the following two conditions are satisfied:

• The region includes at least l voxels from categories 2 or 3 OR γ voxels from
category 2.

• The region includes at least l voxels from category 4.

where l is a number small enough to compute a reliable local average intensity of the
region, and g is a number small enough to compute a reliable local average intensity
of the ROI voxels in the thin ROI (category 2). A large value for l or g can result in a
wrong average intensity for the surrounding regions. For our experiments, we chose
a value of 5 for l and 3 for g. The region-grow is stopped after 3 iterations even if the
above conditions are not satisfied. This is done to avoid going past a 3-voxel radius.
Voxels beyond a radius of 3 are unlikely to affect the intensity at voxel p and should
not be considered. The idea behind the region-grow is to find the voxels that are
nearest to voxel p. Some of these belong to categories 2 or 3 and some to category 4.
These neighboring voxels represent the regions that surround p, and are responsible
for influencing the intensity value at p. We therefore calculate the average intensity
of each of these sets of neighboring voxels. We assume that at the end of the region
grow, we have li voxels that belong to categories 2 or 3 (or gi voxels that belong to
category 2) and lo voxels that belong to category 4. The subscript i denotes that the
voxels belong to the ROI and the subscript o denotes that the voxels are outside the
ROI.

We compute the average intensity of the ROI voxels nearest to p, denoted by δi,
using the following:

i f (γi = γ) δi =
∑γi

k=1 δk

γi
else δi =

∑λi
k=1 δk

λi
(6)

142 K. Mueller et al.

The condition γ = γi checks if the nearest ROI voxels belong to a thin ROI and in
that case γ voxels are used to compute the average intensity rather than the l voxels.
This change allows our algorithm to work even when the ROI is extremely thin. We
similarly compute the average intensity of the non-ROI voxels nearest to p, denoted
by do using:

δo =
∑λo

k=1 δk

λo
(7)

Equations (6) and (7) assume that the values of γi, λi, and λo are non-zero. This
is however not always true. An important condition under which one of the values is
zero (except γi which can be zero when p is not near a thin ROI), is when the region
grow stops after going past the 3-voxel radius. At this stage, we make an assumption
that since there is no voxel from one of the regions within a 3 voxel radius, the voxel
was probably categorized incorrectly as a category 1 voxel and does not belong to the
fuzzy boundary. We re-categorize the voxel based on the region whose voxels were
included in the region grow. If λi is non-zero and λo is zero, we consider the voxel as
a category 2 or 3 voxel that belongs to the ROI and change its intensity based on 5.
In the other case, the voxel is considered part of category 4 and its intensity remains
unchanged. Another degenerate case occurs when either λi or λo are not equal to λ
at the end of the region grow. In those cases, we use 6 and 7 to compute the average
intensities.

In addition to λi and λo we also need to compute the new average intensity of
the ROI voxels nearest to p after the shifting of the ROI range. We compute the new
average intensity without performing another region grow. A region grow performed
from p on new values of ROI would include the same voxels that were included in
the first region grow performed at p, since we do not move the location of any voxel.
Also, all of the ROI voxels included (either γi or λi) have values shifted by D in the
previous step as they belong to category 2 or 3. Thus, the new average intensity of
these ROI voxels is shifted by D, and is given by:

δ ′
i = δi +∆ (8)

Step 2. The goal in this step is to find the new intensity at voxel p, after the
ROI range has moved. In Fig. 7a we show an intensity profile along a hypothetical
ray that would pass through voxel p, moving along the approximate direction of
the gradient, but traversing through voxel centers. Before intensity flipping, the ray
profile would be as shown in Fig. 7a with the points which are the voxels that the rays
traverses. As we go across voxel p (dashed vertical line), we see that the intensity
gradually changes from δo, to δi. This intensity profile basically depicts how the
intensity changes at the boundary of the region (solid vertical line), as we move
across the boundary.

The goal of intensity flipping is to preserve the boundary location while changing
the intensities of the voxels along the ray. The basic idea is that if the new voxel
intensities are all scaled by the same ratio, the gradient magnitude would increase,
but the maxima, which defines the boundary, will remain at the same location. The

Volume Exploration Made Easy Using Feature Maps 143

δp

voxel p

Intensity

f
..

f
.

Boundary

δi

δo

δl
p

Before Flipping

After Flipping

 Distance along the ray

δl
i

(a)

δiδp

δl
p

δo

 Original Intensity

New
Intensity

δl
i

δi

∆

δo

(b)

Fig. 7. Migrating a density interval. (a) The old and new boundary profile with the location of
the maximum of the first derivative and the zero-crossing of the second derivative left intact.
(b) The corresponding density/intensity transfer function

assumption here is that the voxel intensities along the ray lie inbetween those of the
surrounding regions (δi and δo).

We now present the generic intensity flipping equation when one of the regions
around the voxel p has changed its average intensity. Assuming that δi is the new
average intensity of the region whose original average intensity was δi, the intensity
flipping equation will be given by:

144 K. Mueller et al.

δ ′
p = δo +

δp −δo

δi −δo
(δ ′

i −δo) (9)

where δ ′
o is the new intensity for the voxel p. Substituting δ ′

o from (8) into (9) we
get:

δ ′
p = δo +

δp −δo

δi −δo
(δi +∆ −δo) (10)

The intensity flipping curve corresponding to (10) is shown in Fig. 7b. When this
intensity flipping is applied to all the voxels along the ray, the intensity profile of
our hypothetical ray changes, and is shown by the curve labelled “after flipping” in
Fig. 7a. The points are the intensities of the same voxels along the ray but now with
different values than before. As a result of this flipping, the first derivative changes,
but the maximum of the first derivative (the boundary) remains at the same spatial
location. Similarly, the second derivative zero-crossing remains unchanged. This nice
property gives us an unchanged boundary location, even though one of the regions
around the boundary has changed.

Equation (10) is based on the assumption that dp is somewhere inbetween δi

and δo. However, there are cases when this is not true. This is either due to noise
in the dataset or due to an incorrect location of the fuzzy boundary. We solve this
degenerate case by suggesting that whenever such a case occurs, the voxel should
not be part of the fuzzy boundary, and was categorized incorrectly to category 1. We
compute the new intensity for this voxel by re-categorizing the voxel based on its
original intensity δp. If the original intensity is beyond the intensity δi, then we shift
its intensity as if it were a category 2 or 3 voxel using (5). Otherwise, we leave its
intensity unchanged as if it were a category 4 voxel.

We apply the previous two steps on all category 1 voxels as mentioned before.
All the category 4 voxels are left untouched.

4 Volume Exploration with Feature Maps

The process described above yields the feature volume in which each feature (or ROI)
takes up a private density interval (but with the original density statistics), surrounded
by a smooth boundary. In essence, the feature volume can also be regarded as a
segmentation notebook where features, once captured, are collected in a common
environment. In practice, we first copy the original volume into the feature volume
and then perform the segmentation and migration there. In this way, unsegmented
volume portions are kept “as-is”. To keep track of the extracted objects and their
assigned density intervals, we log them in a hierarchical organization, which we
call a feature map. Displaying this feature map directly below the transfer function
window enables users to easily navigate the volume. Descriptive labels and text may
also be associated with each map node, and this labeling may be done either at the
segmentation stage or later by the user in the general viewing stage.

A simple example for such a user interface is depicted in Fig. 8a. Here, the fibula
of the Visible Human Foot was extracted and its density interval migrated to the

Volume Exploration Made Easy Using Feature Maps 145

(a)

(b) (c)

Fig. 8. (a) A feature volume of the Visible Human Foot with opacity and color transfer func-
tions and a relatively simple hierarchical feature map for navigation. On the left, the user was
painted the fibula green, and the rest of the skeleton white. On the right, the user decided to
eliminate the occluding bone structures and just show the fibula, along with a faint outline of
the tissues. (b) The Engine with one valve separated from the rings. (c) The lobster with one
claw separated from the remaining body structures

upper portion of the density range. The new density layout is communicated below
in form of the feature map hierarchy. The user may now use the indicated density
intervals (or brackets) as a guide to quickly give each feature the desired look. The
color transfer function uses a color palette along with a brightness (luminance) curve,

146 K. Mueller et al.

while the opacity transfer function works with the familiar 1D curve. While on the
left panel the user decided to show the fibula colored in green and the remaining
bones in white, on the right panel he/she chose to eliminate all other bones to reveal
the fibula in full view, still colored in green. Finally, Fig. 8b shows the Engine with
one of the valves extracted as a separate feature, while Fig. 8c shows the Lobster
with one claw separated from the remaining tissue and shell.

5 Conclusions

We have presented a framework that enables an intuitive, feature-centric exploration
of (possibly automatically) segmented volumetric datasets. This approach is geared
towards users who are familiar with the basic elements of volume rendering, but
who seek to conduct volume exploration in a guided fashion. These users could be
scientists, medical personnel, or students. Our system provides the infrastructure to
organize features and objects extracted from a volume dataset, via segmentation or
otherwise, and provides the functionality to view these features with standard vol-
ume rendering tools. Our method does not require a separate binary tag volume to
indicate the presence of a feature (or object). Instead, we migrate the entire density
range of the feature to a private interval, including its smooth boundary. There are
several advantages to this approach. First, the aliasing problems associated with bi-
nary tag volumes are avoided, as well as the run-time costs incurred to resolve these.
In essence, we defer these costs to the density migration stage, which, however, typ-
ically runs in a matter of seconds. Since in our method the smooth boundaries of the
features are preserved, any volume renderer can be used for dataset visualization,
without modification. On the other hand, since the density statistics of the objects
are preserved as well, any sophisticated volume visualizer, such as an NPR renderer,
can be employed to enhance these small-scale fluctuations.

Another highlight of our system is the hierarchical feature map that captures and
organizes the structural knowledge that has been gathered about the dataset. While
hierarchical feature maps are also possibly used in conjunction with tag volumes, the
density migration makes it possible to use them within the familiar transfer function
interface to control color and opacity as a function of density. This enables users to
apply the typical volume rendering effects, such as smooth semi-transparencies and
gradient modulation. This luxury, however, does not come for free. In all but the sim-
plest cases, the density range provided by 8-bit datawords will not be sufficient and
longer datawords (in most cases 16-bit) will be needed to house the extended density
intervals. This, however, may not be a huge problem since even GPUs can nowadays
process volumes as large as 32 bits per voxel. On the other hand, tag volumes dou-
ble the memory consumption as well, in addition to requiring algorithmic changes
to the renderer. But in any case, future work will seek to investigate methods that
can provide a dynamic range compression of the density intervals, in order to make
the extended range fit into the 8-bit range. Another notable point is that due to the
range migration and the associated steeper density curves at boundaries, care must

Volume Exploration Made Easy Using Feature Maps 147

be taken when rendering with gradient modulation. We have resolved this issue by
using a modulation curve that saturates gradients above a certain threshold.

Acknowledgements

This work has been supported by grants from NIH #CA82402, NSF Career grant
ACI-0093157, NSF CCR-0306438, CAT Biotechnology, NYSTAR, and ONR #
N000110034. The engine dataset is courtesy of GE. The Visible Human foot dataset
is courtesy of the Visible Human project. The authors wish to thank Manjushree
Lakare and the visualization lab members for their help.

References

1. F. Dachille and A. Kaufman. Incremental Triangle Voxelization. In Proc. Graphics In-
terface, pp. 205–212, May 2000.

2. E. R. Dougherty and C. R. Giardina. Matrix Structured Image Processing, chapter Topo-
logical Operations, pp. 140–148. Prentice-Hall, 1987.

3. D. Ebert and P. Rheingans. Volume Illustration: Non-Photorealistic Rendering of Volume
Models. In Proc. IEEE Visualization, pp. 195–202, 2000.

4. S. Frisken, R. Perry, A. Rockwood, and T. Jones. Adaptively Sampled Distance Fields:
A General Representation of Shape for Computer Graphics. In Proc. SIGGRAPH, pp.
249–254, 2000.

5. S. Frisken Gibson. Using Distance Maps for Accurate Surface Representation in Sampled
Volumes. In Symposium on Volume Visualization, pp. 23–30, 1998.

6. M. Kass, A. Witkin, and D. Terzopoulos. Snakes: Active Contour Models. International
Journal of Conputer Vision, 1(4):321–331, 1988.

7. G. Kindlmann and J. Durkin. Semi-Automatic Generation of Transfer Functions for Di-
rect Volume Rendering. In Proc. of Symposium on Volume Visualization, pp. 79–86, 1998.

8. J. Kniss, G. Kindlmann, and C. Hansen. Multi-Dimensional Transfer Functions for In-
teractive Volume Rendering. IEEE Trans. on Visualization and Computer Graphics, pp.
270–285, 2002.

9. Kevin Kreeger and Arie Kaufman. Interactive Volume Segmentation with the PAVLOV
Architecture. In IEEE Parallel Visualization and Graphics Symposium, pp. 61–68, Octo-
ber 1999.

10. J. Krüger and R. Westermann. Acceleration Techniques for GPU-Based Volume Render-
ing. In Proc. IEEE Visualization, pp. 287–292, 2003.

11. S. Lakare and A. Kaufman. Anti-Aliased Volume Extraction. In Data Visualization 2003,
Proc. of Eurographics/IEEE TCVG Visualization Symposium, pp. 113–122, May 2003.

12. A. Lefohn, J. Kniss, C. Hansen, and R. Whitaker. Interactive Deformation and Visual-
ization of Level Set Surfaces Using Graphics Hardware. In Proc. IEEE Visualization, pp.
75–82, 2003.

13. J. Ming, R. Machiraju, and D. Thompson. A Novel Approach to Vortex Core Detection.
In Proc. of Euro./IEEE Visualization Symp., pp. 217–225, 2002.

14. V. Pekar, R. Wiemker, and D. Hempel. Fast Detection of Meaningful Isosurfaces for
Volume Data Visualization. In Proc. IEEE Visualization, pp. 223–230, 2001.

15. W. K. Pratt. Digital Image Processing. A Wiley-Interscience, second edition, 1991.

148 K. Mueller et al.

16. D. Prewer and L. J. Kitchen. Soft Image Segmentation by Weighted Linked Pyramid.
Pattern Recognition Letters, 22(2):123–132, 2001.

17. K.-L. Ma R. Huang, P. McCormick, and W. Ward. Visualizaing Industrial CT Volume
Data for Nondestructive Testing Applications. In Proc. IEEE Visualization, pp. 547–554,
2003.

18. C. Rezk-Salama, K. Engel, M. Bauer, G. Greiner, and T. Ertl. Interactive Volume
Rendering on Standard PC Graphics Hardware Using Multi-Textures and Multi-Stage-
Rasterization. In Proc. SIGGRAPH/Eurographics Workshop on Graphics Hardware, pp.
109–118, 2000.

19. Y. Sato, C. Westin, A. Bhalerao, S. Nakajima, N. Shiraga, S Tamura, and R. Kikinis.
Tissue Classification Based on 3D Local Intensity Structures for Volume Rendering. IEEE
Tran. on Visualization and Computer Graphics, 6(2):160–180, 2000.

20. D. Silver and X. Wang. Tracking Scalar Features in Unstructured Datasets. In Proc. IEEE
Visualization, pp. 79–86, 1998.

21. M. Sramek and A. E. Kaufman. Alias-Free Voxelization of Geometric Objects. IEEE
Trans. on Visualization and Computer Graphics, 5(3):251–267, July 1999.

22. Ikuko Takanashi, Shigeru Muraki, Akio Doi, and Arie Kaufman. 3D Active Net - 3D Vol-
ume Extraction. Journal of the Institute of Image Information and Television Engineers,
51(12):2097–2106, 1997.

23. S. Tenginakai, J. Lee, and R. Machiraju. Salient Iso-Surface Detection with Model-
Independent Statistical Signatures. In Proc. IEEE Visualization, pp. 231–238, 2001.

24. U. Tiede, T. Schiemann, and K. H. Höhne. High Quality Rendering of Attributed Volume
Data. In Proc. IEEE Visualization, pp. 255–262, 1998.

Fantastic Voyage of the Virtual Colon

Arie Kaufman and Sarang Lakare∗

Center for Visual Computing, Computer Science Department, Stony Brook University, Stony
Brook, NY 11794, USA.
{ari,lsarang}@cs.sunysb.edu

Abstract. We pioneered a visualization-based alternative to conventional optical colonoscopy,
called virtual colonoscopy (VC), for screening patients for colonic polyps, the precursor of
colon cancer. Unlike optical colonoscopy, VC is patient friendly since the patient undergoes
a less rigorous bowel preparation. VC is also a fast, non-invasive, more accurate, and cost-
effective procedure for mass screening of colon polyps. In VC, the patient’s abdomen is im-
aged by a helical or multi-slice computed tomography (CT) scanner during a 40-second single-
breath-hold. Supine and prone scans are acquired, each typically consists of 350 to 700 axial
512×512 images of sub-millimeter resolution. A 3D model of the colon is then reconstructed
from the CT scan by automatically segmenting the colon out of the rest of the abdomen and
employing an electronic cleansing algorithm for computer-based removal of the residual ma-
terial and accurate reconstruction of the soft surface behind the removed material. This is
accomplished using a novel segmentation rays algorithm. The visualization software, running
on a PC, allows the physician to interactively navigate through the colon using a physically-
based navigation system with fast volume rendering for visualization and the center line of the
colon as a guide for the navigation. An intuitive user interface with customized tools supports
measurements and virtual biopsy to inspect suspicious regions.

1 Introduction

Colorectal cancer currently ranks as the third most common human malignancy and
the second leading cause of cancer-related deaths [6]. The overall risk of devel-
oping the disease is approximately 5% over a lifetime. In both recent years there
were approximately 130,000 new cases of colorectal cancer and 57,000 deaths each
year in the US [6]. Most colon cancer arises from adenomatous polyps growing at
about 1mm a year, which can take five to fifteen years for malignant transformation.
The risk of developing carcinoma from a polyp is directly related to its size: essen-
tially 0% risk if the polyp is less than 5mm, 1% risk if size is 5–10 mm, 10% risk with
size 10–20 mm, and at least 30% risk with polyps larger than 20mm. Survival rates
from colon cancer are related directly to the pathologic staging of the disease, and

∗Currently at Siemens Medical Solutions, Malvern, PA, USA

150 A. Kaufman and S. Lakare

are over 90% when cancers are limited to the bowel wall. Whereas 75% of cancers
found by screening in asymptomatic patients are confined to the bowel wall, more
than half of those with symptoms had a more advanced stage.

The American Cancer Society recommends that screening begins at age 50 for
asymptomatic, average-risk patients. Standard optical colonoscopy employs a long
fiberoptic-based medical instrument, called endoscope, which can perform a biopsy
and/or remove detected polyps, and is generally considered the “gold standard” for
colon screening, although miss rates of 18% of adenomas larger than 6mm have been
reported on back-to-back optical colonoscopies. It is also expensive, uncomfortable,
requiring harsh colon cleansing and sedation, time consuming, and invasive, with a
small risk of perforation and death (colonic perforation in one in 500–1,000 cases and
death in one in 2,000–5,000 cases), examines only 75–80% of the colon surface, fails
to examine the entire colon in up to 10% of patients, and is ineffective in examining
areas of the colon blocked by masses or in areas of severe narrowing.

A visualization based alternative, known as virtual colonoscopy (VC) or CT
colonography (CTC), is rapidly gaining popularity. It was concurrently developed
by us at Stony Brook University [7, 8] and at a few other institutions (e.g., [16]). The
distended colon (inflated with carbon dioxide or room air through a tiny rectal tube)
is imaged by a helical or multi-slice computed tomography (CT) scanner during a
40-second single-breath-hold. Supine and prone abdominal CT scans are acquired,
each typically consists of 350–600 axial images of 512×512 sub-millimeter resolu-
tion, providing excellent contrast between the colon wall and the lumen. A 3D model
of the colon is then reconstructed from the CT scan by automatically segmenting the
colon out of the rest of the abdomen and employing an electronic cleansing algorithm
for computer-based removal of the residual material. The visualization software, run-
ning on a PC, allows the physician to interactively navigate through the colon using a
physically-based navigation system with fast volume rendering for visualization and
the centerline of the colon as a guide for the navigation. An intuitive user interface
with customized tools supports measurements and virtual biopsy to inspect suspi-
cious regions. Unlike optical colonoscopy, VC is patient friendly since the patient
undergoes a less rigorous bowel preparation consisting of a modified diet with oral
agents to “tag” the residual stool and fluid. VC is also a fast, non-invasive, more accu-
rate than optical colonoscopy [15], and cost-effective procedure for mass screening
of colon polyps.

2 Segmentation and Electronic Cleansing

An effective colonoscopy is only possible if there are no residual materials inside
the colon that could be falsely interpreted as polyps. Most current approaches, either
optical or virtual, involve complete physical bowel cleansing through either washing
the colon with large amounts of liquids and/or administrating laxative medications
and enemas to induce bowel movements. Our approach is much preferred by patients
as it replaces physical cleansing of the human bowel with virtual cleansing of the CT
scan data. This process, called electronic cleansing, relies on a new bowel preparation

Fantastic Voyage of the Virtual Colon 151

scheme which increases the density of the residual material in the CT scan followed
by automatic identification and removal of the residual material [9, 12]. As part of
the bowel preparation, the patient is asked to remain on a soft-food diet (yogurt,
cereals, mashed potatoes etc.) for an entire day preceedin the examination dat. A
bottle of “banana smoothie”, that is, density-enhancing fluid with barium is taken by
the patient with each of the three meals, resulting in tagging of residual stool and
fluid. Before administrating the CT scan, the patient’s colon is distended with carbon
dioxide (CO2 gas of approximately 1000cc) via a tiny rectal tube. Although others
use room air, we found that CO2 is more tolerated by the patients. The distention
avoids colon wall collapses and provides a good view of the colon surface.

The CT dataset obtained after scanning is very complex due to the large amounts
of residual fluid and stool inside the colon. Although these unwanted residual ma-
terials are enhanced due to our special bowel preparation, they cannot be simply
subtracted from the CT images. First, due to the partial volume effect (Fig. 1), the
voxels on the boundary of the enhanced residual material get incorrectly classified
resulting in incorrect coloring and shading during volume rendering. Second, the
enhanced material does not have uniform intensity, making it difficult to accurately
identify the residual material.

In order to solve the partial volume problem, we introduced a novel segmenta-
tion technique that is based on segmentation rays [12]. These are named so because
they assist in the segmentation. The basic idea behind our approach is that the in-
tersection of two distinct-density regions possesses a unique intensity profile as we
move in a direction normal to the intersection. When these rays traverse through the
volume, they compare their intensity profile with some pre-defined ones. If a ray
crosses an intersection between two regions in an approximately normal direction, it
finds a match and then performs certain tasks of classification and reconstruction at
the intersection. Depending on the application, the rays can be programmed to de-
tect certain specific intersections and perform certain specific tasks. This leads to a
very fast and effective segmentation approach that successfully eliminates the partial
volume effect. For our application, we program the segmentation rays to detect and
remove the partial volume at the boundary of the enhanced residual material [9].

In Fig. 2 we show a portion of an axial CT image obtained after scanning a pa-
tient who has followed our bowel preparation. It can be observed that the contrast for
the residual material varies substantially. In order to detect residual material with low
contrast, we have designed a new segmentation technique that combines classifica-
tion with thresholding [10]. Our technique has two steps. In the first step, we perform
a vector quantization based classification [3] that classifies the data voxels into dif-
ferent classes. A 23 dimensional neighborhood is used to perform the classification.
The different classes obtained are arranged in a decreasing order of average inten-
sity. All the classes with an average intensity above a certain threshold are considered
to be part of the residual material. The threshold itself is automatically detected by
analyzing the histogram of the dataset.

After detecting the enhanced material, we want to cleanse or remove it from the
dataset. However, just setting the identified residual material voxels to zero inten-
sity would produce a discontinuous intensity jump. This jump creates aliasing in

152 A. Kaufman and S. Lakare

(a) (b)

Fig. 1. The partial volume voxels between the air and fluid regions have the same intensity as
the soft tissue voxels. (a) A portion of an axial CT image with labelled material; (b) Density
profile along the veritical line shown in (a)

Fig. 2. A portion of an axial CT image showing non-uniform intensity of the enhanced residual
material

the dataset, that shows up as staircase artifacts during volume rendering [11]. Those
transition voxels contain the partial volume averaging of soft tissue and intensified
material, where in a physically-cleansed colon they would contain lower values due
to the partial volume averaging of soft tissue and air. Hence, we not only remove
high-intensity voxels, but also properly reconstruct the surrounding tissue by inver-
sion of the density profile. This transition region reconstruction allows us to render
images of the reconstructed colon wall in high quality (Fig. 3). Figure 4 shows an
axial CT image before and after electronic cleansing, which effectively turns the CT
scan model of a non-cleansed patient into a dataset of a patient with complete phys-
ical bowel cleansing.

Fantastic Voyage of the Virtual Colon 153

Fig. 3. Removing residual material without reconstruction (left) and with our reconstruction
(right)

Fig. 4. An axial CT image before (left) and after (right) electronic cleansing

3 Colon Centerline

On many VC systems the CT data is presented as a sequence of 2D axial images
or at best in its raw 3D form and the radiologist has to manually browse through
the axial images or follow the winding path of the colon in search for abnormalities.
Our system preprocesses the CT data automatically into multiple layers of meta data
to make the subsequent data analysis as convenient as possible. First, it segments
the colon lumen from the CT volume. This process includes the finding of multiple
colon segments that may be separated due to large concentration of tissues (masses)
or a colon collapse as well as automatic connection of these segments in the most
likely order. Next, our system computes potential fields, which are used for guiding
the navigation and for collision avoidance during interactive navigation inside the
colon [7, 8]. For guiding the navigation inside the colon we use the colon center-

154 A. Kaufman and S. Lakare

line. In our early work [7, 8], this centerline was computed though an onion peeling
algorithm that starts with the complete segmented object and the two endpoints of
the centerline. It then repeatedly removes the outermost layer of voxels that does not
violate topology constraints. Through these constraints it is guaranteed that the end
points do not get removed and that we always keep a singly connected component.
When no more voxels can be removed, all onion layers are peeled off and only the
centerline remains. Unfortunately, the constraint voxel removal is extremely slow
and the resulting centerline may not be intuitive in some special degenerate cases.

More recently, we devised a faster and degeneracy-free method to compute the
centerline [2]. In this approach, we first compute the gradient of the distance field for
each voxel in the colon. Next, we flag those colon voxels that are part of a 2×2×2
cell in which the distance field gradients are not uniformly pointing in a similar
direction. This is the case at local distance minima and maxima, which are good
candidates for voxels on or close to the centerline. We then start at each flagged
voxel and traverse a sequence of neighboring voxels along the local distance gradient
direction until we reach another flagged voxel. All voxels along the sequence are also
flagged. This procedure connects the local minima to the local maxima along a path
of potential centerline voxels. All future centerline computations need to consider
only the set of now flagged voxels, which are only about 20% of the total colon
voxels.

The next step is to automatically find one of the centerline endpoints. We do this
through accumulation of the piecewise Euclidian distance from one arbitrary flagged
source voxel to all other flagged voxels. A Dijkstra shortest path algorithm computes
this accumulation incrementally. The voxel with the largest piecewise Euclidian dis-
tance must be at the very extreme of the colon and is one of the two endpoints.
We could repeat this step to find the other endpoint and track back in the piecewise
Euclidian distance field to create a centerline. Unfortunately, this centerline would
scrape along the colon wall while “cutting corners” and thus not be suited as a flight
path. Instead we generate a penalized distance field that again uses the Dijkstra algo-
rithm to incrementally compute a field of minimum cost values. However, this time
the cost increment to reach a neighbor voxel is the sum of its Euclidian distance
and a penalty that is high at the colon boundary and low in the colon center. This
penalty is computed at each voxel as a function of the initial distance from boundary
volume. The farthest voxel in this penalized distance field is the other centerline end-
point. Backtracking to the source voxel in this field yields the desired well-centered
discrete centerline. A last step of constraint smoothing creates a smooth continuous
centerline that we use as the flight path for automatic navigation. This centerline is
displayed in light gray in the endoscopic view at the center of Fig. 5.

4 Virtual Navigation

Traditionally, CT scans were interpreted by the radiologist by viewing the separate
hard-copy film images in a 2D matrix against a light box mounted on a wall. More
recently, the 2D images were viewed on a computer by sequencing the images on

Fantastic Voyage of the Virtual Colon 155

Fig. 5. The user interface for the virtual colonoscopy colon module of Viatronix, Inc

the computer display. Only very recently have 3D reconstructed images begun to be
utilized to view the CT data. Researchers have shown that if the entire colon lumen
surface is seen, 3D endoscopic navigation has a higher sensitivity of polyp detection
than viewing only 2D axial images [1, 15].

Figures 5 and 6 show two different user-interfaces for virtual colonoscopy. The
one in Fig. 6 is the Vikon system that we use for our research. The interface in Fig. 5
is the commercially sold system from Viatronix Inc. Both these interactive interfaces
provides multiple views of the patient data. Specifically, in Fig. 5, 2D axial, saggital
and coronal cross sections are shown down the right hand side. An oblique refor-
matted slice perpendicular to the colon centerline is shown in the middle left hand
side. The upper left corner shows an outside 3D overview map of the patient’s colon
with indication of current virtual position and orientation and possible bookmarks of
suspicious regions. In the center is the 3D volume rendered endoscopic view using
standard perspective projection. A 10.2mm polyp is clearly seen in this view, along
with its measurement. These 2D and 3D images are all correlated and interlinked so
that a position in 3D is overlaid on the 2D images and positions of the 2D slices are
overlaid on the 3D images. This provides a quick and simple means to easily analyze
suspicious areas in both 2D and 3D.

One of the primary advantages of VC over optical colonoscopy is its ability to
interactively and freely pan and zoom the virtual camera for close examinations, and

156 A. Kaufman and S. Lakare

Fig. 6. The user interface for our virtual colonoscopy Vikon system that is used for research
purposes

further turn it around (in essence 180 degrees) to view behind folds and sharp bends.
This allows us to view a much larger percentage of the colon lumen surface compared
to optical colonoscopy. In our system, we keep track of those surfaces on the colon
wall that have been displayed to the user so far.

In fact, simulated optical colonoscopy (a flight in one direction through the colon)
viewed an average of 74% of the colon surface, primarily missing the back sides of
haustral folds and around sharp bends. VC, with non-interactive flythroughs along
the centerline, both forward (antegrade) and backward (retrograde), viewed an aver-
age of 89% of the surface. With interactive navigation, as discussed below, VC can
achieve 100% coverage [20]. For each rendered image, any voxels that contribute
sufficiently to a pixel of the image is marked as visualized. The ratio of the amount
of currently visualized voxels to total wall voxels gives an excellent quantitative
measure of the lumen surface percentage seen so far. We also can paint all previ-
ously visualized wall voxels with a unique green color in a special volume rendering

Fantastic Voyage of the Virtual Colon 157

Fig. 7. Endoscopic view of painted information after a forward (antegrade) flythrough (left);
and an example of a missed patch after both antegrade and backward (retrograde) flythroughs
(right). The dark gray areas were visualized, while the light gray areas were missed

display of visualized versus un-visualized surfaces. Example images are shown in
Fig. 7.

In our system, an automated surface area detection system is utilized. Once the
user has flown along the centerline in both directions, the visualized-marking infor-
mation is processed and a list of missed patches is created. The patches are sorted
by size (voxel count) and displayed to the user in a sorted (by size) list box allowing
the user to go through the list to view each patch. After stepping through the missed
patches, the viewer can simply and efficiently achieve 100% coverage of the colon
lumen [20].

5 Interactive Volume Rendering

A primary technological advantage of our system is that the 3D volume rendered
endoscopic views are created on the fly, while the user is interacting with the sys-
tem. This has two important consequences. First, the user does not have to wait for
a movie to be generated, which often times takes 15-30 minutes. Second, the user is
not only able to auto-fly along the centerline to get a good view of most of the colon
surface, but also interactively fly off the centerline similar to computer game navi-
gation. This allows the user to get a better view of suspicious structures, examining
and analyzing them from practically any angle. Previously, volume rendering was a
much too expensive technique to provide fast enough frame rates to allow interactive
navigation. For this reason, many early VC systems utilized a surface rendering ap-
proach for which hardware acceleration was available. It is generally accepted that
volume rendering provides a much more accurate representation of the true surface
of the colon lumen since it does not force piecewise planar approximation to the

158 A. Kaufman and S. Lakare

surface creating artifacts which are not present in the data while, at the same time,
removing small details.

Recently, interactive volume rendering can be implemented on PC class ma-
chines as well as true real-time rendering is available using the VolumePro [13]
hardware acceleration board, which is based on our Cube-4 architecture [14]. While
the VolumePro board provides 30 frames per second, it only provides parallel pro-
jection, not perspective projection as required for any virtual endoscopy application
(the newer VolumePro 1000 is supposed to have such capability). As an alternative,
we have developed a method to provide high-quality images at interactive rates for
perspective projections using a multipass approach with the VolumePro rendering
card. Now that volume rendering is available from either highly optimized PC solu-
tions or hardware acceleration add-ons, it is much preferred compared to the lower
accuracy surface rendering approach.

An important performance measure for software-based interactive navigation is
frame rate. Our system relies on years of volume rendering research at Stony Brook
University (e.g., [8, 14, 18]) to achieve at least 15 rendered frames per second. At
this rate the interactive response is perceived as natural and smooth. Previous sys-
tems only achieved between several seconds per frame to a few frames per second,
resulting in cumbersome interactivity that most users gave up using them.

One of the techniques we use for accelerating our volume rendering is empty
space leaping [19, 21]. The colonic interior is empty space or air that does not con-
tribute to the volume rendered image as air does not absorb or emit light. Our space
leaping acceleration technique is illustrated in Fig. 8. Point P1 is the camera location
inside the colon. When a ray R1 is cast from P1, we detect the distance d1 that is the
distance to the closest colon surface. The ray R1 is leaped ahead by distance d1 to its
next position P2. The point P2 is guaranteed to not cross the colon surface because d1

is the distance to the closest location on the colon surface. We repeat the leaping step
at P2 by first detecting the distance to the closest colon surface from P2 and moving
the ray ahead by that much distance. Once the distance to the closest surface goes
below the regular sampling distance, we stop the space leaping and start sampling
the ray at regular intervals. For rays that only grace the surface of the colon (ray R2

for example), the space leaping starts again as the ray moves away from the surface
inside the colon, and the distance to the nearest colon surface is larger than the sam-
pling distance. It is important to note that we pre-compute the distance to the colon
surface for every voxel inside the colon and use that distance at run-time.

Because we perform volume rendering, the user is not limited to a surface view
of the colon lumen. We provide a translucency feature, called electronic biopsy [17],
shown in Fig. 9. When the user is navigating and viewing the colon wall as an opaque
surface, only its shape can be analyzed. In essence, the user is viewing the geometry
of the colon surface and can make observations such as “here is a bump in the wall”.
The electronic biopsy allows the user to see behind the colon wall and analyze the
structure of suspected abnormalities. In this way, the user can evaluate not just shape,
but also texture, or density-make-up, of an abnormality, confirming that it is indeed
a polyp and thus reducing the number of false positives.

Fantastic Voyage of the Virtual Colon 159

Fig. 8. Fast ray traversal in the colonic interior

Fig. 9. A surface view (left) and an electronic biopsy (right) of a polyp

6 Clinical Results

Since the inception of VC about a decade ago, more than 20 clinical trials, includ-
ing one at Stony Brook University Hospital, with a total of several thousand patients
have been published in the medical literature. The performance has been very en-
couraging, with sensitivity (percentage of true polyps that were found with VC) and
specificity (percentage of cases where a polyp was detected which does not actually
exist) for polyps larger than 10mm, ranging in 75-91% and 90-93%, respectively, as
reported by per polyp comparisons [4, 5, 22]. More recently, the largest-ever multi-
center independent clinical trial was conducted in the National Naval Medical Center,
Walter Reed Army Medical Center, and the Naval Medical Center San Diego. The
1233 asymptomatic participants in the trial received a virtual colonoscopy examina-
tion followed the same day by optical colonoscopy. The results of the study [15] show
93.9% sensitivity and 96.0% specificity for polyps 8mm and larger. These results

160 A. Kaufman and S. Lakare

show that VC performance compared favorably with that of optical colonoscopy, the
accepted “gold standard”. VC is poised to become the procedure of choice for mass
screening for colon polyps, the precursor of colon cancer. If all patients 50 years of
age and older will participate in such a screening program, over 92% of colorectal
cancer will be prevented.

Acknowledgements

This work has been partially supported by NIH grant CA79180, ONR grant
N000149710402, NSF grant CCR-0306438, New York Center for Biotechnology,
New York State Strategic Partnership for Industrial Resurgence (SPIR) grants, and
Viatronix Inc. The patients’ data are courtesy of Stony Brook University Hospi-
tal. Thanks are due to numerous people who worked on the VC project: Jerome
Liang, Mark Wax, Ming Wan, Dongqing Chen, Ingmar Bitter, Frank Dachille, Kevin
Kreeger, and many others.

References

1. C. F. Beaulieu, R. B. Jeffrey, and C. Karadi. Display Modes for CT Colonography Part
II: Blinded Comparison of Axial CT and Virtual Endoscopic and Panoramic Endoscopic
Volume-Rendered Studies. Radiology, 212:203–212, 1999.

2. I. Bitter, A. Kaufman, and M. Sato. Penalized-Distance Volumetric Skeleton Algorithm.
IEEE Trans. on Visualization and Computer Graphics, 7(3):195–206, July-Sept. 2001.

3. D. Chen, Z. Liang, M. Wax, Lihong Li, B. Li, and A. Kaufman. A Novel Approach to
Extract Colon Lumen from CT Images for Virtual Colonoscopy. IEEE Transactions on
Medical Imaging, 19(12):1220–1226, Dec 2000.

4. H. M. Fenlon, D. P. Nunes, and P. C. Schroy. A Comparison of Virtual and Conventional
Colonoscopy for the Detection of Colorectal Polyps. New England J. of Med., 341:1496–
1503, 1999.

5. J. G. Fletcher, C. D. Johnson, T. J. Welch, and R. L. MacCarty. Optimization of CT
Colography Technique: Prospective Trial in 180 Patients. Radiology, 216:704–711, 2000.

6. R. T. Greenlee, R. Murray, S. Bolden, and P. A. Wingo. Cancer Statistics 2000. Ca
Cancer J Clin, 50:7–33, 2000.

7. L. Hong, A. Kaufman, Y. Wei, A. Viswambharn, M. Wax, and Z. Liang. 3D Virtual
Colonoscopy. In Proc. Symposium on Biomedical Visualization, pp. 22–32, 1995.

8. L. Hong, S. Muraki, A. Kaufman, D. Bartz, and T. He. Virtual Voyage: Interactive Navi-
gation in the Human Colon. In Proc. SIGGRAPH, pp. 27–34, 1997.

9. S. Lakare, D. Chen, L. Li, A. E. Kaufman, M. Wax, and Z. Liang. Electronic Colon
Cleansing Using Segmentation Rays for Virtual Colonoscopyy. In Proc. SPIE Medical
Imaging, Physiology and Function from Multidimensional Images, volume 4683, pp. 412–
418, Feb. 2002.

10. S. Lakare, D. Chen, L. Li, A. E. Kaufman, M. Wax, and Z. Liang. Robust Colon Residue
Detection Using Vector Quantization Based Classification for Virtual Colonoscopy. In
Proc. SPIE Medical Imaging, Physiology and Function from Multidimensional Images,
volume 5031, pp. 515–520, Feb. 2003.

Fantastic Voyage of the Virtual Colon 161

11. S. Lakare and A. Kaufman. Anti-Aliased Volume Extraction. In Data Visualization 2003,
Proc. of Eurographics/IEEE TCVG Visualization Symposium, pp. 113–122, May 2003.

12. S. Lakare, M. Wan, M. Sato, and A. Kaufman. 3D Digital Cleansing Using Segmentation
Rays. In Proc. IEEE Visualization, pp. 37–44, Oct. 2000.

13. H. Pfister, J. Hardenbergh, J. Knittel, H. Lauer, and L. Seiler. The VolumePro Real-Time
Ray-Casting System. In Proc. SIGGRAPH, pp. 251–260, Aug 1999.

14. H. Pfister and A. Kaufman. Cube-4 - A Scalable Architecture for Real-Time Volume
Rendering. In Proc. Symposium on Volume Visualization, pp. 47–ff., 1996.

15. P. J. Pickhardt, J. R. Choi, I. Hwang, J. A. Butler, M. L. Puckett, R. K. Wong H. A. Hilde-
brandt, P. A. Nugent, P. A. Mysliwiec, and W. R. Schindler. Computed Tomographic
Virtual Colonoscopy to Screen for Colorectal Neoplasia in Asymptomatic Adults. New
England Journal of Medicine, 349:2191–2200, Dec. 2003.

16. D. J. Vining, D. W. Gelfand, R. E. Bechtold, and et. al. Technical Feasibility of Colon
Imaging with Helical CT and Virtual Reality (abst.). Am. J. Roentgenol, 1994.

17. M. Wan, F. Dachille, K. Kreeger, S. Lakare, A. Kaufman, M. Wax, and J. Liang. Inter-
active Electronic Biopsy for 3D Virtual Colonscopy. In Proc. SPIE Medical Imaging,
Physiology and Function from Multidimensional Images, volume 4321, pp. 483 – 488,
Feb. 2001.

18. M. Wan, A. Kaufman, and S. Bryson. High Performance Presence-Accelerated Ray Cast-
ing. In Proc. IEEE Visualization, pp. 379–386, 1999.

19. M. Wan, Q. Tang, A. Kaufman, Z. Liang, and M. Wax. Volume Rendering Based Inter-
active Navigation within the Human Colon. In Proc. IEEE Visualization, pp. 397–400,
1999.

20. M. Wax, K. Kreeger, and J. Anderson. Endoscopic View in Virtual Colonoscopy: Achiev-
ing Complete Surface Visualization (abst.). In RSNA, page 307, Nov 2001.

21. R. Yagel and Z. Shi. Accelerating Volume Animation by Space-Leaping. In Proc. IEEE
Visualization, pp. 62–69, 1993.

22. J. Yee, G. A. Akerkar, and R. K. Hung. Colorectal Neoplasia: Performance Characteristics
of CT Colonography for Detection in 300 Patients. Radiology, 219:685–692, 2001.

Volume Denoising for Visualizing Refraction

David Rodgman1 and Min Chen2

1 ARM Ltd., 110 Fulbourn Road, Cambridge CB1 9NJ, United Kingdom
dave.rodgman@arm.com

2 University of Wales Swansea, Singleton Park, Swansea SA2 8PP, United Kingdom
m.chen@swansea.ac.uk

1 Introduction

Refraction is all around us. Without it we would not be able to see. The failure of the
lenses in our eyes to refract incoming light would render the world an indecipher-
able blur. Externally, we also see refractive objects everywhere. Our vision system is
accustomed to the visual effects caused by refraction, and is able to benefit from the
visual effects present in refractive scenes by acquiring additional visual cues from
these effects.

Figure 1 shows a volumetric refractive scene, which is rendered using ray casting
(a) without refraction, and (b) with refraction assuming uniform refractive index for
the “water” block. Although (a) may be able to fulfill a basic illustrative function
in many circumstances, it offers viewers an incorrect and unrealistic visualization.
(b) gives a typical refractive visualization which can be achieved by many surface
rendering systems, a small number of which are also able to simulate heterogeneous
refractive materials using attribute mapping techniques. It can be seen that (b) gives
greatly improved perception of depth (of the rod) and shape (of the ‘water’). In order
to keep up with the rapid advances in volumetric data capture and volumetric sci-
entific simulation, Rodgman and Chen recently proposed and studied a collection of
methods for rendering refraction in discrete ray tracing [22]. By associating a volume
object with a refractive index field, one can use discrete ray tracing to directly render
complex refractive conditions. This development is particularly important to volume
visualization where the intermixing of translucent and opaque objects is common-
place.

In order to produce high quality images featuring volume objects which are re-
fractive, we must concern ourselves with the quality of the datasets from which the
image is synthesized. For these purposes, mathematically defined scalar fields pro-
vide unsurpassed quality: they are free from both noise and discretization errors, and
therefore allow us to analytically derive precise normals. Consequently, the images
produced are of excellent quality.

The situation is somewhat different, however, with discrete datasets. Even if the
dataset has been sampled above the Nyquist limit, theoretically permitting a perfect

164 D. Rodgman and M. Chen

(a) without refraction (b) with refraction

Fig. 1. A water container and a rod, rendered using volume ray casting

reconstruction of the original signal, in practice aliasing errors are hard to avoid. This
is particularly the case where a low rendering time is desirable, since it imposes limits
on the complexity and degree of the interpolation function. Further, if the dataset
has been acquired from a real world source, such as an MRI scanner or similar, the
introduction of noise in the scanning process poses considerable problems specific
to refractive volume rendering, as discussed in [22].

As Möller et al point out in [13, 14], the quality of the normals has a greater
effect on image quality than the quality of the data itself. They were referring only to
image quality in the context of opaque, non-refractive objects, but this observation
is even more applicable to transparent, refractive objects. This is because when a ray
refracts, its direction after refraction is directly governed by the normal at the point of
refraction. Consequently, an error in the normal estimation process affects not only
the shading at that point (as is the case where refraction is not involved), but also
the location of every subsequent sample point. A means of obtaining high quality
normals is therefore critical to good image quality with refractive volume rendering.

Errors in the normals may be attributed to three main sources. Reconstruction
errors occur when a dataset is under-sampled (pre-aliasing), or when the reconstruc-
tion method used is inadequate (post-aliasing). Additionally, the scanning process
typically introduces noise into the data. Post-aliasing may be reduced to acceptable
levels by use of higher order filters; this problem has been thoroughly addressed in
the literature [12, 26] and will not be discussed further here. Pre-aliasing and noise
in the dataset, however, have been dealt with in general less satisfactorily, and not at
all in the specific context of refraction.

In addition to issues caused by pre-aliasing errors and noise in the data, an excess
of fine detail in the dataset can also reduce the effectiveness of refraction in delivering
depth cues and other information about the shape of the volume object to the viewer,
with similar results to noisy data. We demonstrate these problems with Fig. 2, where
a CT head dataset is visualized in conjunction with a brain dataset. In Fig. 2(a) which

Volume Denoising for Visualizing Refraction 165

(a) volume rendering (b) surface rendering

(c) the original CT head with refraction (d) after denoising using a diffusion method

Fig. 2. Combinational visualization of a CT head dataset and a brain dataset. (a) and (b): the
original CT head is rendered without refraction. (c): the original CT head is rendered with
refraction. (d): the CT head is rendered after denoising

was rendered using volume ray casting without refraction, the CT head has its top
part removed and is shown as a translucent object. Whilst it clearly displays the
internal structure of the brain, it offers limited depth cues, and poor information
about the spatial relationship of the brain and the skull. Figure 2(b), which results
from direct surface rendering, provides slightly better depth cues, but incorrect visual
representation of the spatial relationship.

Figure 2(c), also rendered using volume ray casting, introduces refraction into
the visualization, which permits much better depth perception and appreciation of
geometrical structure. However, it introduces at the same time several artefacts, in-
cluding scattered, noisy specular highlights, large regions of noise attributable to
incoherent refraction, and a cracking effect directly above the brain stem, all attribut-
able to ‘noisy’ refraction. In Fig. 2(d), a denoising filter is applied to the CT dataset
prior to the rendering; as a result, the smoothed head dataset facilitates a much clearer

166 D. Rodgman and M. Chen

visualization of internal structure (i.e., the brain). Moreover, it gives a considerably
less noisy impression of the neck area, it conveys a sense of curvature via the refrac-
tive patterns in the ‘glass’ which is not present in Fig. 2(c), and it correctly shows
the brain stem as an unbroken section of tissue. Artefacts such as scattered, noisy
specular highlights present in the unprocessed data are also eliminated in Fig. 2(d).

In order to address these problems, we begin by demonstrating their effects in
Sect. 3, after a brief review of related work. In Sect. 4 we propose a number of
different methods for ‘improving’ normals; specifically convolution and non-linear
diffusion, and in Sect. 5 we develop a means of measuring the effects of any dataset-
processing technique on both image quality and accuracy. The denoising methods
are tested and evaluated according to our metrics in Sect. 6; and finally, we make
some concluding remarks in Sect. 7.

2 Related Work

There are a diversity of modalities, such as CT, MRI and ultrasound, for the acqui-
sition of volume datasets. The aliasing and noise introduced during digitization is of
concern to many algorithms for processing and rendering such datasets. Much effort
has been placed on the correct reconstruction of normals; a number of normal esti-
mation methods have been studied and compared by Yagel et al [32] and Möller et
al [13]. Recent work by Möller et al [15], Neumann et al [17], Persoon et al [21]
and Rössl et al [23] represents attempts to reconstruct accurately the scalar function
associated with a volume dataset and its gradient.

In image processing and computer vision, we commonly see a different ap-
proach to the problem of noise, and a variety of filters were designed for smooth-
ing or denoising images [10, 11, 20, 28]. In recent years, some of these filters have
been successfully generalized for smoothing surfaces. For example, Peng et al em-
ployed Wiener filtering for smoothing noisy triangular meshes [19]. Desbrun et al
employed anisotropic diffusion for denoising height functions and bivariate data [6].
Tasdizen et al used an anisotropic diffusion method for smoothing surfaces via nor-
mal maps [25]. In addition, there was much other effort in surface fairing, smoothing
and denoising [4, 5, 8, 16, 18, 24, 29, 30].

In terms of volume visualization, surface denoising can be applied to a particu-
lar iso-surface contained in a volume data set, but is not suitable for direct volume
rendering. There have been some attempts in direct volume smoothing. Hilton et al
proposed two wavelet-based noise removal algorithms for denoising MRI data [9],
and Angelin et al gave a brief description of a 3D implementation of brushlet ba-
sis functions for Fourier domain denoising [2]. The former was a study based on
statistical analysis and the latter was an investigation in the context of segmentation.
Recently Bertram proposed an iterative fairing method for smoothing contours inside
volume datasets using bicubic parametric functions [3].

It is necessary to investigate the effectiveness of denoising methods in the con-
text of direct volume rendering. The successful deployment of nonlinear diffusion
methods in surface denoising offers a good starting point for volume denoising, and

Volume Denoising for Visualizing Refraction 167

the demand for smooth gradient in visualizing refraction [22] makes it a suitable case
study for evaluating the effectiveness of volume denoising methods.

3 Motivation

We demonstrate the importance of having good quality normals for refraction by
means of the following test case. Figure 3(a, b) shows an opaque sphere rendered
with analytically derived normals, and with randomly perturbed normals1. The same
experiment is repeated with a translucent sphere in Fig. 3(c, d).

It can be seen by visual inspection that image quality is better preserved in (b),
in the absence of refraction, than in (d); this observation is endorsed by a compari-
son of the root mean square (RMS) difference between the opaque image pair, and
the transparent image pair, which have RMS difference equal to 39.1% and 99.0%
respectively.

Improving dataset normals does not necessarily connote greater accuracy; rather,
our goal is to manipulate the dataset normals in such a way that we may produce
refractive visualizations of the dataset which use refraction to convey three dimen-
sional cues such as depth perception in a meaningful way, without overwhelming the
viewer with noisy, over-complicated images. In some senses, we wish to simplify the
dataset, and smooth the appearance of the object in question somewhat, in order to
improve the subjective image quality.

(a) accurate normals (b) noisy normals (c) accurate normals (d) noisy normals

Fig. 3. An opaque sphere (a, b) and a translucent sphere (c, d) rendered, respectively, with
(a, c) accurate normals, and (b, d) randomly perturbed normals

4 Denoising Methods

In this section we discuss a number of methods for denoising datasets. We consider
the dataset to have resolution R = (R1,R2,R3)∈N

3. We thus denote the unprocessed
dataset by F(x) where x = (x1,x2,x3) ∈ N

3, such that 0 ≤ xi < Ri for i = 1,2,3, and

1Each normal is perturbed by a random angle θ , selected such that θ has an average value
of 20◦ and a normal (Gaussian) distribution.

168 D. Rodgman and M. Chen

the processed dataset derived from F by F ′(x). We also define X to be the set of all
such x.

4.1 Convolution with a Gaussian Filter

A simple method for removing high frequencies in the dataset is to convolve with
an ideal low pass filter (the sinc function); that is, to remove all frequencies above a
certain threshold. This method is not realizable in practice, since the sinc function is
of infinite width; it follows that convolving the sinc function with a dataset of finite
width is equivalent to convolving with a truncated sinc function, which gives poor
performance in the stop band, and leads to ringing effects (Gibb’s phenomenon) [7].

For this reason, we do not discuss use of an ideal low pass filter further, but
instead examine a low pass filter which has better performance in the stop band.

By using a filter which has better stop-band performance, we may reduce the
artefacts noted above. The natural choice here is the Gaussian filter, Kσ (x), defined
as

kσ (y) =
1

2πσ2 · e
(
− y2

2σ2

)
(1)

Kσ (x) = kσ (x1) · kσ (x2) · kσ (x3) (2)

where σ denotes the standard deviation of the Gaussian filter; higher values cause
increased reduction of high frequencies. Whilst in theory this function has infinite
width, thus rendering it susceptible to the artefacts previously observed with the
ideal filter, in practice it closely approaches zero sufficiently quickly for this issue
not to arise. We thus define F ′(x) by convolution with Kσ :

F ′(x) = (Kσ ∗F)(x) . (3)

By selecting different values for σ , we may control the degree of smoothing, as
demonstrated in the first row of Figures 4 and 5. These images, and in particular the
opaque visualizations in Fig. 4(a)–(d), show that the Gaussian convolution approach
is unable to preserve fine detail. This is not surprising, since this operation has no
ability to locally adapt to the dataset. Consequently, there is some degradation of the
overall shape of the head, and fine structures such as the nose are especially adversely
affected.

Comparing this degradation to the improved, ‘cleaner’ appearance of the refrac-
tive visualizations in Fig. 5(a)–(d) clearly shows that this method, whilst certainly
effective at removing noise from the dataset, offers a tradeoff between noise reduc-
tion and shape preservation.

These results appear to confirm that the source of the noise in the refractive vi-
sualization is indeed mostly high frequency noise in the original dataset, since ap-
plication of a low-pass Gaussian filter is able to reduce these visualization artefacts.
However, the shape degradation present when high frequencies are filtered out indi-
cates that this approach has significant drawbacks.

Volume Denoising for Visualizing Refraction 169

Gaussian convolution

(a) σ = 0 (b) σ = 1.5 (c) σ = 3 (d) σ = 4.5

Inhomogeneous linear diffusion, λ = 60%

(e) t = 0 (f) t = 20 (g) t = 40 (h) t = 60

Anisotropic nonlinear diffusion, λ = 60%

(i) t = 0 (j) t = 20 (k) t = 40 (l) t = 60

Regularized anisotropic nonlinear diffusion, λ = 60%, σ = 1

(m) t = 0 (n) t = 20 (o) t = 40 (p) t = 60

Fig. 4. Results of applying different denoising methods to an opaque object

4.2 Inhomogeneous Linear Diffusion

A significant drawback of convolution with the Gaussian filter is that this method
does not permit any local adaption to the dataset; it is not possible to inhibit smooth-
ing in non-boundary regions, or to control the orientation or degree of smoothing at
boundaries. Inhomogeneous linear diffusion [27] offers more control in this respect.

170 D. Rodgman and M. Chen

Gaussian convolution

(a) σ = 0 (b) σ = 1.5 (c) σ = 3 (d) σ = 4.5

Inhomogeneous linear diffusion, λ = 60%

(e) t = 0 (f) t = 20 (g) t = 40 (h) t = 60

Anisotropic nonlinear diffusion, λ = 60%

(i) t = 0 (j) t = 20 (k) t = 40 (l) t = 60

Regularized anisotropic nonlinear diffusion, λ = 60%, σ = 1

(m) t = 0 (n) t = 20 (o) t = 40 (p) t = 60

Fig. 5. Results of applying different denoising methods to a translucent object

Volume Denoising for Visualizing Refraction 171

Firstly, we define the scale-space as U(x, t), where t is the time. We consider the
scale-space to be evolving such that at time t = 0, U(x, t) = F(x), and so that as t
increases, U represents a more heavily processed version of F .

We begin by defining2 the general nonlinear diffusion equation in terms of the
rate of change of U(x, t) with respect to t:

dU
dt

= ∇• (D ·∇U) . (4)

Here, D ·∇U is the flux, which is equal to the diffusion tensor D, a positive definite
symmetric matrix, multiplied by the normal of U . This flux can be thought of as
representing the flow of ‘particles’ from a region of high density to a region of low
density.

When D is a constant, this process is said to be linear and homogeneous, and is
in fact equivalent to convolution with a Gaussian filter, as discussed in Sect. 4.1. In
the inhomogeneous case, however, D is a function of x; typically, of F(x).

Here we discuss isotropic inhomogeneous linear diffusion; that is, where the flux
is always parallel to ∇F , and we therefore replace the diffusion tensor D with a
scalar-valued diffusivity function, g. There are many possible choices for g; here we
use the Perona-Malik diffusivity function,

g(|∇F |2) =
1√

1+ |∇F |2/λ 2
(λ �= 0) . (5)

This results in the following diffusion equation:

dU
dt

= ∇• (g(|∇F |2) ·∇U
)

. (6)

That is, at any given point x in the dataset, there is a flow of density along the di-
rection of the original dataset normal, ∇F , the magnitude of which is proportional to
the diffusivity, g(|∇F |2).

This diffusivity function inhibits diffusion as |∇F |2 increases. The effect is to
better maintain well-defined surfaces (by inhibiting smoothing for large values of
|∇F |2), whilst permitting smoothing in inner regions.

Some example results of applying inhomogeneous linear diffusion to the CT head
are given in the second row of Figures 4 and 5. The effectiveness of such a process
is of course strongly dependant on the value chosen for λ . Selecting suitable values
for λ is not straightforward, and is discussed in detail in Sect. 4.5.

4.3 Anisotropic Nonlinear Diffusion

In order to preserve boundaries whilst permitting smoothing in these regions, it is
necessary to use an anisotropic method [28]. This method derives its non-linearity
from the fact that g is a function of U(x, t). We therefore have the diffusion equation

2In a small abuse of notation, ∇U refers to the gradient of the scalar field U , whereas ∇•V
refers to the divergence of the vector V .

172 D. Rodgman and M. Chen

dU
dt

= ∇• (g(|∇U |2) ·∇U
)

. (7)

This has the effect of allowing the flow to increase for large values of t at the location
of small structures that have been smoothed at lower values of t. We might therefore
expect more smoothing at the location of these small structures for sufficiently large
values of t.

Some results of applying anisotropic nonlinear diffusion to the CT head are given
in the third row of Figures 4 and 5. In a similar manner to inhomogeneous linear dif-
fusion, this method preserves surfaces by inhibiting smoothing at boundaries. How-
ever, for the purposes of refraction, it is the normals at the boundaries that are most
critical, and where smoothing is required most; whilst we might expect these two
methods to preserve fine detail and overall shape better than Gaussian convolution,
the theoretical basis for improving the smoothness of normals in boundary regions is
weak.

4.4 Regularized Anisotropic Nonlinear Diffusion

A significant problem with anisotropic nonlinear diffusion is that it gives rise to so-
called staircasing artefacts, as shown in Fig. 6. These artefacts manifest themselves
as small, regularly spaced discontinuities in the processed dataset. Whilst they do not
significantly affect the overall shape of the processed dataset, they have a substantial
effect on the normals of the processed dataset, which are critical to obtaining high
quality refractive images.

In order to improve the performance of anisotropic nonlinear diffusion, we make
use of a regularization step [1] to control the diffusion process, giving rise to the
following diffusion equation:

Fig. 6. Staircasing effect with anisotropic nonlinear diffusion

Volume Denoising for Visualizing Refraction 173

dU
dt

= ∇• (g(|∇Uσ |2) ·∇U
)

(8)

where we replace U in (7) with Uσ , which is the convolution of U with a Gaussian
filter with fixed σ > 0 as discussed in Sect. 4.1. In other words, we have Uσ (x, t) =
(U ∗Kσ)(x, t).

The effect of this regularization step is to improve the stability of the diffusion
process. In particular it improves the performance of the diffusion process in the
presence of noise, and dramatically reduces staircasing artefacts. It is therefore well
suited to applications such as refractive visualization, where the smoothness of the
normals is critical. Some results of applying regularized anisotropic nonlinear diffu-
sion to the CT head are given in the fourth row of Figs. 4 and 5.

4.5 Determining a Value for Lambda

The choice of a value for λ strongly determines the effects of the diffusivity func-
tion. However, fine-tuning values for λ by hand is a time consuming trial and error
process. Specifically, very low values for λ result in smoothing being suppressed
everywhere, and the resulting images do not convey the benefits of having been
smoothed. In the case where λ is set too high, smoothing is not sufficiently inhibited
at surfaces, and the result is that the surfaces, as well as the internals of the dataset,
become blurred; distortion is therefore increased.

A useful approach for structuring the choice of λ somewhat is to compute all the
normals in the dataset, sort them (in ascending order) by magnitude, discarding all
zero-length normals, and then set λ equal to the magnitude of the normal at the nth
percentile, where n is controlled by the user3. Selecting a suitable percentile for λ is
discussed further in Sect. 6.

5 Metrics for Measuring Distortion and Smoothing Effects

In order to properly compare these different methods for improving refractive image
quality, it is necessary to devise an objective scheme for quantifying the ways in
which both the data and the images are affected. Since in each method, the smoothing
process represents a tradeoff between smoothing and volume shape degradation, we
separate this task into two separate problems: evaluating the degree to which the
overall shape of a volume is affected, and quantifying the improvement in image
quality. We address these two problems in the following two sections, and proceed
to discuss how these schemes may be used to interpret the efficacy of the various
methods in Sect. 4.

3We make use of this method in other parts of this paper where we refer to λ = n%
indicating lambda equal to the magnitude of the normal at the n’th percentile.

174 D. Rodgman and M. Chen

5.1 Distortion Metric

Geometric distortion present in a processed dataset F ′(x) is encapsulated in the
changes of its voxel values, i.e., data distortion, in relation to the original dataset
F(x). One simple measurement of data distortion is to sum the voxel differences
between F(x) and F ′(x). However, the level of data distortion does not necessarily
provide an informative representation of geometric distortion, especially in the con-
text of refraction. Such a measurement, for instance, would include data distortion in
regions of a homogenous refraction index.

In this work, we focus on geometric distortion in the context of refraction, and
hence are more interested in significant changes in the dataset by exploiting the a pri-
ori knowledge of the specification of the refraction indices, by considering a transfer
function τ , in the form of a lookup table. In principle, this transfer function defines
all the regions in the dataset where the refraction index varies. In practice, it often
corresponds to the transfer function responsible for extracting the data of interest
during visualization.

Using such a transfer function enables us to ignore small changes in the data
which do not affect our interpretation of it; for example, if F(x) �= F ′(x), but both
F(x) and F ′(x) lie in the range taken to represent air, so that τ(F(x)) = τ(F ′(x)),
no distortion is considered to have occurred at x. This allows the distortion metric to
take advantage of the a priori knowledge of the dataset encapsulated in τ .

We then define P, the set of points at which F(x) and F ′(x) are considered to
represent different features, by

P =
{
∀x ∈ X

∣∣∣ τ(F(x)
) �= τ
(
F ′(x)

)}
. (9)

We may then define md as the ratio of the number of points in P to the total number
of points occupied by F(x):

md =
|P|
|X | =

|P|
R1 ·R2 ·R3

. (10)

It follows that low values of md indicate lower distortion, and that 0 ≤ md ≤ 1 (since
P ⊆ X). The ideal smoothing method will have md close to zero, indicating no dis-
tortion.

An alternative measure of distortion might be to weight the metric, imposing a
proportionally higher penalty in regions where a point on an iso-surface of interest in
F lies further from the corresponding point in F ′; that is, in areas where the processed
dataset differs strongly from the original. A suitable metric might be based on the
following equation for md :

md =
√

∑ψF,F ′(x)2 (11)

∀x ∈ X such that x lies on the iso-surface of interest in F , and where ψF,F ′(x) repre-
sents the distance from x to the corresponding point in F ′.

However, there are some practical issues with this metric, not least the problem of
establishing the location of the corresponding point for x. Whilst nonlinear diffusion

Volume Denoising for Visualizing Refraction 175

theory guarantees continuity in the succession of datasets U(x,0) to U(x, t) (that
is, features smoothly and continuously evolve into their final state at time t), and
that in principle features may be tracked, in practice implementing this would be
considerably more complex than the previous approach. Moreover, it is not clear that
such a weighted metric is desirable: there is no obvious order of preference between
a processed dataset with a moderate level of shape degradation everywhere and one
with low degradation generally and a few areas of high degradation, given an equal
score on the first proposed metric. For these reasons we use the metric proposed in
(10) to evaluate distortion.

5.2 Coherence Improving Metric

It is harder to design a coherence metric, since the goal of this work is to some extent
subjective. However, proceeding from the stated goal that we wish to produce refrac-
tive images which are free from noise, it follows that an object-space metric might
be somewhat contrived, on the grounds that this metric aims to measure the im-
provements made in the image domain. (The previous metric for distortion measures
shape degradation, which occurs in the volume domain, and is therefore more appro-
priately measured in this domain). We will therefore consider image-space methods
of evaluating improvement.

Since object shape degradation is considered in the preceding metric, we ignore
this here and focus only on coherence. Comparing, for example, the images in Fig. 3,
we see that the images rendered with unperturbed normals contains less energy at
high frequencies than their counterparts with perturbed normals. This observation
has been observed to hold for a range of images. We may measure improvements,
therefore, by considering the frequency distribution of the image; images with a high
proportion of coherent rays (that is, rays which travel along similar paths to adjacent
rays) will tend to contain less high frequency energy.

We consider the frequency distribution by applying the discrete Fourier transform
to the images. The result is a two dimensional complex array; in order to reduce this
to a single value which can be easily compared for different images, we multiply the
magnitude of each element in the array, which corresponds to the amount of energy
present at a certain frequency, by the frequency represented by that element, and take
the average of the resulting array. The result is a number which gives an indication
of frequency distribution for the entire image, with values close to zero indicating
few high frequencies, and large values indicating a large quantity of high frequency
energy. We express this coherence metric mc mathematically in the following way,
given an image i : N

2 → N of resolution M,N:

I(u,v) =
1

MN

M−1

∑
x=0

N−1

∑
y=0

i(x,y)e−2π j(ux/M+vy/N) (12)

mc =
4

MN

M−1
2

∑
u=0

N−1
2

∑
v=0

∣∣I(u,v)
∣∣ ·√ u2

M2 +
v2

N2 . (13)

176 D. Rodgman and M. Chen

According to the periodicity property of the discrete Fourier transform (given by
(12), the discrete Fourier transform of i(x,y), denoted here by I(u,v), is symmetric
about the origin, and repeats horizontally and vertically respectively, at distances M

2
and N

2 from the origin. For this reason, in order to analyze the frequencies present in
the discrete Fourier transform we need only consider the values in the range (0,0)
to (M

2 , N
2); therefore we sum only these frequencies, and multiply the result by 4

MN ,
which is the reciprocal of the number of values considered. Note that in computing
the frequency represented by some point in I(u,v) – that is, in the last term of (13) –
we scale u,v by M,N respectively in order to ensure that the value produced by this
metric is (approximately) invariant with respect to image size and resolution, modulo
changes in precision attributable to change in resolution.

This metric measures the high frequency content of the image, and is sensitive to
edges as well as noise. In other words, it measures the smoothness of the silhouette
of the rendered volume object, as well as the level of noise, which is a noticeable
but undesirable feature in rendering volume datasets with refraction. In general, after
denoising, the number of edge pixels in the image (i.e., the silhouette of the volume
object) does not change significantly, whereas the level of noise does decrease in a
noticeable manner. Thus, the numerical difference given by this metric can reliably
be attributed to the changing levels of noise.

As will be seen in Sect. 6, this metric results in values which tend to decrease as
λ or t increase. This decrease is not exactly monotonic, since a few data points do
not fit this pattern; however, the trend is otherwise significant enough to suggest that
this metric has some correspondence with increased ray coherence in the rendered
images. Whilst it is not meaningful to use this metric to compare unrelated images, it
is nonetheless useful in comparing similar images from a series of datasets processed
with different parameters but rendered using identical parameters.

We demonstrate the validity of this metric in Fig. 7. Here, the CT Head dataset
is processed using anisotropic nonlinear diffusion (described in Sect. 4.3) with vary-
ing parameters. The parameters are selected such that mc has a similar value in each
case; it can be seen that the resulting images exhibit comparable levels of coher-
ence, especially when contrasted with the images in Fig. 5, which exhibit substantial
diversity.

(a) λ = 50%, t = 150 (b) λ = 60%, t = 50 (c) λ = 90%, t = 30
mc = 2.53 mc = 2.56 mc = 2.56

Fig. 7. Images with similar values for mc

Volume Denoising for Visualizing Refraction 177

6 Results and Remarks

Figures 4 and 5 show the results of applying the methods discussed in Sect. 4 to the
CT Head dataset, and for each method, examples of both opaque and refractive ren-
dering are given. The methods vary widely in both the degree to which image qual-
ity is improved, and in the level of distortion introduced. In the following sections,
we discuss these images subjectively, and with respect to the metrics introduced in
Sect. 5.

The CT Head dataset is a demanding test for refractive visualization, in that it
features significant levels of noise in all regions of the dataset, as a consequence
of the scanning process, and particularly high levels of noise around the teeth, at-
tributed to metal fillings in the teeth interfering with the original scanning process.
Additionally, the pockets of air in the nasal cavities cause frequent, incoherent re-
fraction in this region. There are some pre-aliasing artefacts present at the top of the
head, visible as curved bands in the images in the first row of Fig. 5. The presence of
fine structures, such as the nose and the ear pose additional problems for smoothing
algorithms which aim to preserve the overall shape.

6.1 Qualitative Analysis of Results

The opaque images in Fig. 4 demonstrate that both inhomogeneous linear diffusion
and anisotropic nonlinear diffusion are poor at preventing distortion. Inhomogeneous
linear diffusion performs particularly badly with respect to fine structures, as can
be seen in the erosion of the nose. Moreover, it fails to smooth the noise around
the teeth. Anisotropic nonlinear diffusion distorts heavily everywhere; large features
such as the dimples in the side of the face are smoothed away. Gaussian convolu-
tion and regularized anisotropic nonlinear diffusion both perform well, although the
images in the fourth column indicate that Gaussian convolution performs less well
at preserving thin structures in the data (such as the nose or the ears). For both of
these methods, the overall shape of the head is well preserved; both deal well with
the noise around the teeth.

Improvements in coherence can be observed in Fig. 5. Gaussian convolution per-
forms well; as a consequence of filtering out all high frequencies, noise is reduced,
and adjacent rays tend to travel along more closely matched paths, leading to sig-
nificant overall improvement in image quality. It is also effective at reducing pre-
aliasing artefacts. Inhomogeneous linear diffusion shows some improvements; noise
in all parts of the dataset has been significantly reduced. Some new artefacts have
been introduced, however; these may be observed in the region above the right ear.
This method also fails to smooth the pre-aliasing artefacts. Anisotropic nonlinear dif-
fusion is extremely effective at smoothing both types of artefact, even for low values
of t; however, this method also introduces the same artefacts as inhomogeneous lin-
ear diffusion. Regularized anisotropic nonlinear diffusion performs well, smoothing
both pre-aliasing artefacts and noise, without introducing new artefacts.

178 D. Rodgman and M. Chen

6.2 Hybrid Rendering Method

A possible approach for improving image quality without affecting distortion is to
use the smoothed dataset only for computation of normals. This is demonstrated in
Fig. 8, using regularized anisotropic nonlinear diffusion (λ = 60%, t = 50). Fig-
ure 8(a) shows the original (un-smoothed) dataset; Fig. 8(b) shows the hybrid ap-
proach, and Fig. 8(c) both dataset values and normals computed from the smoothed
dataset.

The benefits of this approach are clear, in that it offers a means of improving im-
age quality without distorting the original data at all. However, the smoothed dataset
may not always have appropriate normals in the location of boundaries in the orig-
inal data; this problem prevents it from being as effective in increasing coherence
as the conventional method of rendering; and in fact as F ′ diverges further from F ,
artefacts are introduced, as may be seen in Fig. 8(c).

(a) original dataset (b) hybrid rendering (c) hybrid rendering (d) Smoothed
λ = 60%, t = 50 λ = 90%, t = 100 rendering as (b)

Fig. 8. Hybrid rendering method

6.3 Quantitative Analysis of Results

The data in Table 1, which is obtained from the metrics discussed in Sect. 5, suggests
that regularized anisotropic nonlinear diffusion performs better than all other meth-
ods. Direct comparisons are difficult, since values for both md and mc do not exactly
correspond.

We therefore select values for t,λ and σ such that md remains approximately
constant in Table 2, so that we may directly compare the effectiveness of different
methods in terms of mc. When md is fixed at around 0.015 giving similar level of
distortion for all methods, the regularized anisotropic nonlinear diffusion method
(and, to a lesser extent, the anisotropic nonlinear diffusion method) offers better
improvement of smoothness as measured by the coherence metric.

Similarly, in Table 3, we select parameter values such that mc remains approx-
imately constant to enable us examine results in terms of md . It is clear that when
md is fixed at around (for instance) 15.1, regularized anisotropic nonlinear diffusion
results in much less distortion than any of the other three methods.

Volume Denoising for Visualizing Refraction 179

Table 1. Results of applying distortion and coherence metrics to datasets and refractive images
from Fig. 5

Gaussian Filter σ 0.0 1.5 3.0 4.5

Gaussian convolution
md 0 0.0027 0.0108 0.0287
mc 23.19 19.40 16.34 13.88

Diffusion Methods with λ = 60% t 0 20 40 60

Inhomogeneous linear diffusion
md 0 0.0040 0.0195 0.0365
mc 23.19 18.36 16.55 15.96

Anisotropic nonlinear diffusion
md 0 0.0122 0.0398 0.0617
mc 23.19 14.12 10.80 10.44

Regularized anisotropic nonlinear diffusion
md 0 0.0024 0.0066 0.0102
mc 23.19 17.22 14.70 13.33

Table 2. Comparison of results for different methods in a condition where parameters selected
to give similar values for md . Methods are listed in the descending order of the noise level
(i.e., incoherence) indicated by mc.

Method md mc

Inhomogeneous linear diffusion (t = 35, λ = 60%) 0.0147 16.88
Gaussian convolution (σ = 3.18) 0.0151 16.09
Anisotropic nonlinear diffusion (t = 15, λ = 70%) 0.0153 13.64
Regularized anisotropic nonlinear diffusion (t = 95, λ = 60%, σ = 1) 0.0152 12.11

Table 3. Comparison of results for different methods in a condition where parameters are
selected to give similar values for mc. Methods are listed in the descending order of the amount
of distortion indicated by md

Method md mc

Inhomogeneous linear diffusion (t = 30, λ = 70%) 0.0261 15.12
Gaussian convolution (σ = 3.75) 0.0253 15.08
Anisotropic nonlinear diffusion (t = 75, λ = 40%) 0.0204 15.13
Regularized anisotropic nonlinear diffusion (t = 135, λ = 40%, σ = 1) 0.0067 15.06

This confirms the outcome of qualitative analysis in Sect. 6.1 based on the visual
results in Figures 4 and 5. Regularized anisotropic nonlinear diffusion is clearly
most effective at improving image quality whilst preserving the shape of the original
data, whilst preserving the shape of the original data. Anisotropic nonlinear diffusion
performs less well, and Gaussian convolution and inhomogeneous linear diffusion
both perform relatively poorly.

Considering the overall ability to improve ray coherence with minimal cost of
distortion, Fig. 9 gives an intriguing illustration of the relative performance of these
methods, each depicted by a line graph with md as its x-axis. Gaussian convolution
was applied to the CT datasets with a series of σ values, σ = 0,1,2,3, . . . marked
by the corresponding data points. All three diffusion methods are computed with
λ = 40% and t = 0,20,40, . . . ,140. σ = 4 was chosen for computing the line graph

180 D. Rodgman and M. Chen

1.0

1.2

1.4

1.6

1.8

2.0

2.2

0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08

Distortion Level

 C
o

h
er

en
ce

 Im
p

ro
ve

m
en

t
L

ev
el

Gaussian IHLD ANLD R-ANLD

Fig. 9. Relative performance of four different denoising methods. The measurement of coher-
ence improvement is the result of dividing the mc value obtained from the unprocessed dataset
by the mc value obtained from the processed dataset

of regularized anisotropic nonlinear diffusion. The y-axis indicates the relative im-
provement of coherence mc in the context of a rendered refractive image with a
view similar to those in Fig. 5. For example, we compute mc(σ = 0)/mc(σ) for the
Gaussian convolution, and mc(t = 0)/mc(t) for the diffusion methods. Figure 9 sup-
ports the conclusions drawn above; in particular, the limitations of Gaussian convo-
lution are revealed, and the strong performance of regularized anisotropic nonlinear
diffusion is made apparent.

Some more detailed observations about the performance of regularized anisotropic
nonlinear diffusion may be derived from the graphs in Fig. 10. For values of λ below
roughly 50%, the rate of growth of md is low. The rate of reduction of mc, however,
with respect to λ , is fairly uniform in the range 30%− 70%. For these reasons, it
seems reasonable to suggest that suitable choices for λ typically lie around the 50th
percentile. This is borne out informally by experiences using these methods, although
this cannot be proven without further experimentation on a range of datasets.

7 Conclusions and Future Work

We have shown that it is possible to achieve good results when using refraction to
render datasets which contain noise, pre-aliasing and small features. Figure 2, which
depicts the CT head dataset both (a) unprocessed and (b) after application of regular-
ized anisotropic nonlinear diffusion, gives a compelling example of deploying such
techniques in medical visualization.

Volume Denoising for Visualizing Refraction 181

(a) Plotting md as a function (b) Plotting mc as a function
of t (x-axis) and λ (y-axis) of t (x-axis) and λ (y-axis)

Fig. 10. Metrics for regularized anisotropic nonlinear diffusion

By introducing metrics which allow us to quantify distortion and improvements
in image quality, we are able to make objective comparisons between a number of
different methods for smoothing datasets. Regularized anisotropic nonlinear diffu-
sion appears to be the most effective of the methods tested, both from a theoretical
standpoint, and in practice. We believe by using these methods for refractive visual-
izations that depth perception can be improved, and that significant improvements in
image quality may be attained, as Fig. 11 shows.

It is possible to eliminate distortion by means of the hybrid rendering method;
however, this method cannot achieve the same subjective levels of quality as directly
rendering smoothed datasets.

There exists a clear tradeoff between image quality and distortion. However,
given the large parameter space and the complex relationship between these parame-
ters and the resulting image quality (with respect to both coherence and distortion),
it is difficult to present a ‘best’ approach that is suitable for all applications.

The success of regularized anisotropic nonlinear diffusion can be attributed to
the fact that it is rather more sophisticated than the other methods considered. To
summarize the differences between the methods used, Gaussian filtering provides
a homogenous smoothing process which cannot be locally controlled. Thus, geo-
metric details of the volume object, such as the CT head in our examples, are lost.
The inhomogeneous linear diffusion method provides a simple control mechanism
(in that flow is scaled by g(|∇F |2)), but the controls are ’fixed’ according to the
original dataset; thus, as smoothing progresses, the relevance of these controls di-
minishes. As Fig. 9 illustrates, inhomogeneous linear diffusion is the only non-linear
method to experience a tapering off in performance. Anisotropic nonlinear diffu-
sion addresses this weakness by having the controls incorporate feedback from the
evolving dataset, and as a result, is able to perform better than Gaussian convolution.
Regularized anisotropic nonlinear diffusion refines the anisotropic nonlinear diffu-
sion method further, by incorporating a regularization step. This makes the controls
themselves less sensitive to noise. In the limit, as σ approaches infinity, the control
term approaches a constant, and thus the regularized anisotropic nonlinear diffusion

182 D. Rodgman and M. Chen

(a) original (b) with denoising

Fig. 11. A statue leg rendered (a) without and (b) with application of regularized anisotropic
nonlinear diffusion

process can be steered between anisotropic nonlinear diffusion and Gaussian con-
volution by selecting a suitable value for σ . The effect is to dampen the feedback
mechanism somewhat, improving the stability of the process and eliminating stair-
casing artefacts.

We aim to continue this work by focusing more strongly on regularized anisotropic
nonlinear diffusion; in particular, by examining different diffusion functions, and
considering the effects of varying σ in more detail. In addition, other methods for
denoising may be able to improve on these results.

Acknowledgments

The first author is grateful for his PhD studentship from University of Wales Swansea
for the period 1999-2003. The CT Head dataset is the courtesy of University of North
Carolina, Chapel Hill, the statue leg dataset courtesy of German Federal Institution
for Material Research and Testing, Berlin, Germany. All images in this paper are
rendered using vlib [31].

Volume Denoising for Visualizing Refraction 183

References

1. L. Alvarez, P.L. Lions, and J.M. Morel. Image selective smoothing and edge detection by
nonlinear diffusion. SIAM J. Numer. Anal., 29:845–866, 1992.

2. E. Angelini, A. Laine, S. Takuma, and S. Homma. Directional representations of 4D
echocardiography for temporal quantification of LV volume. In Proc. MICCAI’99, pages
430–440, Cambridge, 1999.

3. M. Bertram. Fairing scalar fields by variational modeling of contours. In Proc. IEEE
Visualiszation 2003, pages 387–392, Seattle, Washington, 2003.

4. U. Clarenz, U. Diewald, and M. Rumpf. Anisotropic geometric diffusion in surface
processing. In Proc. IEEE Visualization 2000, pages 397–405, Salt Lake City, Utah,
2000.

5. M. Desbrun, M. Meyer, P. Schröder, and A. Barr. Implicit fairing of irregular meshes
using diffusion and curvature flow. In Proc. SIGGRAPH 1999, pages 317–324, 1999.

6. M. Desbrun, M. Meyer, P. Schröder, and A. Barr. Anisotropic feature-preserving denois-
ing of height fields and bivariate data. In Proc. Graphics Interface 2000, pp. 145–152,
2000.

7. Josiah W. Gibbs. Fourier series. Nature, 59, 1899.
8. I. Guskov and Z. Wood. Topological noise removal. In Proc. Graphics Interface 2001,

pp. 19–26, 2001.
9. M. Hilton, T. Ogden, D. Hattery, G. F. Eden, and B. Jawerth. Wavelet denoising of func-

tional MRI data. In A. Aldroubi and M. Unser, editors, Wavelets in Biology and Medicine,
pp. 93–112. CRC Press, 1996.

10. D. T. Kuan, A. A. Sawchuk, T. C. Strand, and P. Chavel. Adaptive noise smoothing
filter for images with signal-dependent noise. IEEE Transactions on Pattern Analysis and
Machine Intelligence, PAMI-7:165–177, 1985.

11. J. S. Lee. Digital image enhancement and noise filtering by use of local statistics. IEEE
Transactions on Pattern Analysis and Machine Intelligence, PAMI-2:165–168, 1980.

12. Steve Marschner and Richard Lobb. An evaluation of reconstruction filters for volume
rendering. In R. D. Bergeron and Arie Kaufman, editors, Proc. IEEE Visualization ’94,
pp. 100–107. IEEE Computer Society Press, October 1994.

13. Torsten Möller, Raghu Machiraju, Klaus Mueller, and Roni Yagel. A comparison of
normal estimation schemes. In Proc. IEEE Visualization ’97, pp. 19–26, Phoenix, AZ,
November 1997.

14. Torsten Möller, Raghu Machiraju, Klaus Mueller, and Roni Yagel. Evaluation and de-
sign of filters using a Taylor series expansion. IEEE Transactions on Visualization and
Computer Graphics, 3(2):184–199, April - June 1997. ISSN 1077-2626.

15. Torsten Möller, Klaus Mueller, Yair Kurzion, Raghu Machiraju, and Roni Yagel. Design
of accurate and smooth filters for function and derivative reconstruction. In Proc. IEEE
Symposium on Volume Visualization, pp. 143–151, October 1998.

16. H. P. Moreton and C. H. Sequin. Functional optimization for fair surface design. In Proc.
SIGGRAPH ’92, pp. 167–176, 1992.

17. L. Neumann, B. Csébfalvi, A. König, and E. Gröller. Gradient estimation in volume data
using 4D linear regression. Computer Graphics Forum, 19(3):C351–C357, 2000.

18. Y. Ohtake, A. G. Belyaev, and I. A. Bogaevski. Polyhedral surface smoothing with si-
multaneous mesh regularization. In Proc. Geometric Modeling and Processing 2000, pp.
229–237, Hong Kong, 2000.

19. J. Peng, V. Strela, and D. Zorin. A simple algorithm for surface denoising. In Proc. IEEE
Visualiszation 2001, pp. 107–112, San Diego, California, 2001.

184 D. Rodgman and M. Chen

20. Pietro Perona and Jitendra Malik. Scale-space and edge detection using anisotropic diffu-
sion. IEEE Transactions on Pattern Analysis and Machine Intelligence, 12(7):629–639,
July 1990.

21. M. P. Persoon, I. W. O. Serlie, F. H. Post, and F. M. Vos. Visualization of noisy and
biased volume data using first and second order derivative techniques. In Proc. IEEE
Visualiszation 2003, pp. 379–385, Seattle, Washington, 2003.

22. David Rodgman and Min Chen. Refraction in discrete raytracing. In Klaus Mueller and
Arie Kaufman, editors, Proc. Volume Graphics 2001, New York, 2001. Springer. ISBN
3-211-83737-X.

23. C. Rössl, F. Zeilfelder, G. Nürnberger, and H.-P. Seidel. Visualization of volume data
with quadratic super splines. In Proc. IEEE Visualiszation 2003, pp. 393–400, Seattle,
Washington, 2003.

24. G. Sapiro. Geometric Partial Differential Equations and Image Analysis. Cambridge
University Press, 2001.

25. T. Tasdizen, R. Whitaker, P. Burchard, and S. Osher. Geometric surface smoothing
via anisotropic diffusion of normals. In Proc. IEEE Visualiszation 2002, pp. 125–132,
Boston, Massachusetts, 2002.

26. Thomas Theußl. Sampling and Reconstruction in Volume Visualization. PhD thesis,
Vienna University of Technology, 2000.

27. Joachim Weickert. A review of nonlinear diffusion filtering. In Scale-Space Theories in
Computer Vision, pp. 3–28, 1997.

28. Joachim Weickert. Anisotropic Diffusion in Image Processing. ECMI Series, Teubner,
Stuttgart, 1998.

29. W. Welch and A. Witkin. Free-form shape design using triangulated surfaces. In Proc.
SIGGRAPH ’94, pp. 247–256, 1994.

30. R. T. Whitaker. Volumetric deformable models: active blobs. In R. A. Robb, editor, Proc.
Visualization in Biomedical Computing, SPIE, 1994.

31. Andrew S. Winter and Min Chen. vlib: A volume graphics API. In Proc. Volume Graphics
2001, pp. 133–147, New York, 2001. Springer.

32. Roni Yagel, Daniel Cohen, and Arie Kaufman. Normal estimation in 3D discrete space.
The Visual Computer, pp. 278–291, 1992.

Emphasizing Isosurface Embeddings
in Direct Volume Rendering

Shigeo Takahashi1, Yuriko Takeshima2, Issei Fujishiro3, and
Gregory M. Nielson4

1 The University of Tokyo, Tokyo, 153-8902 Japan
takahashis@acm.org

2 Japan Atomic Energy Research Institute, Tokyo, 110-0015 Japan
takesima@koma.jaeri.go.jp

3 Ochanomizu University, Tokyo, 112-8610 Japan
fuji@is.ocha.ac.jp

4 Arizona State University, Tempe AZ, 85287 USA
nielson@asu.edu

1 Introduction

Providing clear insight into the inner structures involved in volume dataset has been
a challenging task in the field of volume visualization. However, due to the recent
progress in the performance of computing/measurement environments, objective vol-
ume datasets have become larger and more complicated. Such volume datasets ubiq-
uitously involve nested structures of 3D scalar fields, regardless of how they are ac-
quired. Some typical examples include biological structures, chemical interactions,
and mechanical shapes.

A volume dataset contains an infinite number of disjointed isosurfaces at different
target scalar field values, while its field structure is often characterized by spatial con-
figurations of a finite number of feature isosurfaces that segment the volume dataset
into several important components. In the volume dataset which involves nested in-
ner structures, the connected components of the feature isosurface commonly have
inclusion relationships in 3D space. Such isosurface spatial configurations are re-
ferred to as isosurface embeddings in this paper. This type of spatial configuration
reveals some meaningful structures of the objective volume, and differs from the
simple isosurface occlusions [4] in that the isosurface embeddings are independent
of the viewing direction.

Although direct volume rendering is one of the popular techniques for semi-
automatically visualizing the entire volumetric inner structures at once, it still re-
quires time-consuming human interactions for tweaking visualization parameters to
obtain comprehensible rendering results. In particular, conventional transfer func-
tions cannot fully clarify such inner structures, especially when the connected com-
ponents of an isosurface are intricately nested. This is because the conventional

186 S. Takahashi et al.

transfer functions cannot assign different optical properties to voxels of the same
scalar field value while the nested isosurfaces may also have the same scalar field
value.

Figure 11 shows such an example. This dataset is obtained by simulating two-
body distribution probability of a nucleon [20], and actually involves complicated
inclusion relationships between isosurfaces at some scalar field values. Figure 11(b)
is obtained using naive transfer functions with linear hue and flat opacity, Fig. 11(c)
is obtained using conventional transfer functions that only accentuate some feature
isosurfaces [7, 31, 33], and Fig. 11(d) is obtained using our new framework that also
emphasizes nested structures of the feature isosurfaces. Unfortunately, the first result
conveys nothing about the inner structures involved in the dataset. While the second
result accentuates the feature isosurfaces individually, the corresponding method still
misses their associated nested structures. For example, the small sphere-like isosur-
face on the top clearly appears in Fig. 11(d) while it is missing in Fig. 11(c).

This paper presents a new framework for identifying and visualizing such isosur-
face embeddings involved in the volume datasets. The contributions of this paper are
twofold. The first contribution is an algorithm for extracting the isosurface embed-
dings by tracing the topological volume skeleton delineated from the given volume
dataset. As presented in Fig. 11(a), the topological volume skeleton is a level-set
graph that represents topological transitions of isosurfaces with respect to the scalar
field, and allows us to find feature isosurfaces that have significant meaning in the
given dataset. The second is an algorithm for emphasizing such nested inner struc-
tures using multi-dimensional transfer functions so that we can render each voxel
separately according to its relative geometric position as well as its scalar field value.
The second algorithm calculates an additional dimension for the multi-dimensional
transfer functions to visualize the nested structures of the volume datasets.

This paper is organized as follows: The next section describes previous work
related to our approach. In Sect. 3, we introduce the new algorithm that identifies
isosurface embeddings through the topological volume skeletonization. Sect. 4 de-
scribes how to design the multi-dimensional transfer functions in order to emphasize
the isosurface embeddings. Sect. 5 demonstrates the feasibility of our framework
with application to several datasets. After discussing the validity of our new frame-
work in Sect. 6, we conclude this paper and refer to our future work in Sect. 7.

2 Related Work

The present framework is related to several research categories, which can be classi-
fied into the following four groups:

Level-Set Analysis

Our algorithm seeks inclusion relationships between isosurfaces by analyzing a
level-set graph that symbolizes topological isosurface transitions according to the
change of the scalar field. The contour tree is one of the common graphs that effec-
tively represent the level-set of a given volume. Van Kreveld et al. [32] developed an

Emphasizing Isosurface Embeddings in Direct Volume Rendering 187

excellent algorithm for calculating contour trees with minimal computational com-
plexity, and Bajaj et al. [1] used it to explore feature isosurface transitions for visu-
alization purposes. Carr et al. [5] extended this algorithm to handle objects of higher
dimensions. Recently, Pascucci et al. [22] developed an algorithm that identifies the
topology (i.e. genus) of a connected component of an isosurface at any point on the
contour tree.

Our level-set graph, called the volume skeleton tree [31], differs in that it can
capture the transitions of isosurface spatial configurations as well as the changes in
the number of connected isosurface components and their associated topologies (i.e.,
genera). This is enabled by identifying each type of topological isosurface transition
correctly and then traversing the entire level-set graph, as described in Sect. 3.4.

Occlusion Culling

To our knowledge, the present algorithm is the first to extract view-independent
nested structures, i.e., isosurface inclusion relationships, without multi-directional
ray intersection tests. On the other hand, several excellent algorithms have been pro-
posed to detect view-dependent features such as object occlusions. For example,
Schaufler et al. [24] proposed a method of calculating conservative volumetric vis-
ibility, while Klosowski et al. [17] presented an approximate visibility culling tech-
nique. Refer to an excellent survey of the visibility problems by Cohen-Or et al. [4]
for details.

Transfer Function Design

The appropriate design of transfer functions is crucial to direct volume rendering
in visualizing inner structures of the given volume datasets. In recent years, various
methods have been proposed to design such transfer functions that take into account
existing volumetric features.

Castro et al. [2] formalized transfer functions specific to medical applications
as the linear combinations of basis functions assigned to different tissues such as
bones, skins and muscles. Kindlmann et al. [14] proposed a method that emphasizes
boundaries between different materials in a volume using histogram volume, which
captures relationships between the scalar field and its first and second directional
derivatives throughout the volume.

Recently, multi-dimensional transfer functions, which originate from the pioneer-
ing work by Levoy [18], have received much attention because they can distinguish
between voxels according to some variables in addition to the scalar field value. For
example, Kniss et al. [15, 16] designed 3D transfer functions based on the method of
Kindlmann et al. [14]. Moreover, Hladůvka et al. [12] proposed a different approach
where they used volume curvature as an additional variable for the multi-dimensional
transfer functions.

While these methods work well, they sometimes suffer from gentle gradients of
the scalar field especially when handling simulated datasets. This is because they
only take into account local shape features such as derivatives and curvatures in
designing transfer functions, and often miss the underlying global structures in the

188 S. Takahashi et al.

input datasets. Nevertheless, our approach to transfer function design [31] makes it
possible to emphasize such global structures effectively by extracting the topological
transitions of isosurfaces from input volumes. While Fujishiro et al. [6, 7, 11] and
Weber et al. [33] presented methods for locating topological changes of isosurfaces
for this purpose, they still considered local features around the critical points only
and ignored their associated global connectivity.

Non-Photorealistic Volume Rendering

Another approach to illuminating such nested structures is non-photorealistic tech-
niques in volume rendering. Interrante [13] developed a method of mapping LIC-
based textures in order to identify each connected components in feature isosur-
faces. Treavett et al. [27] applied pen-and-ink strokes to isosurface rendering to
enhance the conventional volume rendering pipeline. While these two methods
succeeded in generating intuitive visualization results, they are rather oriented to
isosurface rendering. On the other hand, Rheingans et al. [23] succeeded in incorpo-
rating non-photorealistic techniques into direct volume rendering. Csébfalvi et al. [3]
then achieved interactive rate of such non-photorealistic volume rendering for fast
exploration of involved volume structures. Recently, Lu et al. [19] introduced stip-
pling techniques in such non-photorealistic volume rendering to accentuate object
boundaries and silhouettes. Although these non-photorealistic rendering methods are
compelling, they still miss some significant features because they extract volumetric
features without referring to the global structures of the input volume datasets.

3 Extracting Isosurface Embeddings

This section describes the first contribution of this paper, an algorithm for extracting
isosurface embeddings involved in a volume dataset. The second contribution will
be described in Sect. 4.

Actually, the algorithm has been implemented by enhancing our previous ap-
proach called topological volume skeletonization [31], which analyzes topological
transitions of isosurfaces with respect to the scalar field. The topological volume
skeletonization is originally developed for finding important scalar field values to
be emphasized in the design of transfer functions, which helps us find appropriate
visualization parameters for comprehensible volume rendering.

The key idea of our new algorithm here is to distinguish the specific type of
topological transition in isosurfaces that yields inclusion relationships between their
connected components. In the analysis, a level-set graph called a volume skeleton tree
(VST) plays a central role in extracting such isosurface transitions. Figure 1 shows a
nested isosurface structure and its corresponding VST of a volume dataset, which is
calculated from the following analytic volume function:

f (x,y,z) = (x2 + y2 + z2)(x2 + y2 + z2 −a)−bx,

where a > 0, b > 0, 8a3 > 27b2. (1)

Emphasizing Isosurface Embeddings in Direct Volume Rendering 189

p3 p2p1

p1

p2

p3
p4

scalar field
valuef

(a) (b)

Fig. 1. An example of a nested structure: (a) isosurface transitions and (b) its VST

Here, the VST node corresponds to a critical point where a topological change occurs
in isosurfaces, and its link represents an isolated interval volume [9, 10] confined by
isosurfaces associated with the two end critical points. Note that, throughout this
paper, we arrange the VST nodes pi from top to bottom according to their corre-
sponding scalar field values f (pi), as shown in Fig. 1(b). In this example, the node
p2 gives rise to the specific type of isosurface transition that results in the inclu-
sion relationships between isosurfaces within the scalar field interval [f (p3), f (p2)].
The remainder of this section describes how to capture such inclusion relationships
together with the volume skeletonization process.

3.1 Assumptions on Isosurface Transitions

First of all, we make some assumptions on topological transitions of isosurfaces. In
general, the input volume dataset can be represented as discrete grid samples of a 3D
single-valued function:

w = f (x,y,z) , (2)

where x, y, and z represent ordinary 3D coordinates and w represents its correspond-
ing scalar field value. This lets us classify evolving isosurfaces into two categories:
solid isosurfaces where their interior samples are larger in the scalar field than
those on the corresponding isosurfaces, and hollow isosurfaces where the interior
is smaller. We can also orient the w-axis in such a way that the outermost isosurfaces
become solid and thus expand as the scalar field value decreases. This implies, un-
der the assumption of single-valued volume functions, that solid isosurfaces always
expand as the scalar field value decreases while hollow isosurfaces always shrink.

3.2 Critical Points

Critical points are crucial to our algorithm for finding inclusion relationships between
feature isosurfaces because such a relationship inevitably occurs at a specific type of
critical point. Roughly speaking, a critical point is defined to be a point that activates
a topological change in isosurface evolution such as creation, merging, splitting, and

190 S. Takahashi et al.

deletion of isosurfaces. The field value associated with a critical point is called a crit-
ical scalar field value in this paper. Figure 1(a) shows three critical points, where p1

invokes isosurface creation, p2 joins two surface regions, and p3 deletes an existing
isosurface. Actually, p2 is one of the specific types of critical points that generate
nested structures of isosurfaces. Note that in Fig. 1(b) a critical point p4 is added
to the VST. This is called the virtual minimum in this paper, which is introduced to
assure the correctness of the extracted critical points, and will also serve as a clue to
our algorithm for extracting inclusion relationships between feature isosurfaces for
later use.

More formally, a critical point p of the function (2) is defined to be a point that
satisfies

∂ f
∂x

(p) =
∂ f
∂y

(p) =
∂ f
∂ z

(p) = 0 . (3)

According to the Morse lemma [8], an infinitesimal neighborhood around a critical
point of the function (2) has a local coordinate system where f has either of the
following quadratic forms:

f =

⎧⎪⎪⎨⎪⎪⎩
−x2 − y2 − z2 maximum (index 3)
−x2 − y2 + z2 saddle (index 2)
−x2 + y2 + z2 saddle (index 1)

x2 + y2 + z2 minimum (index 0).

(4)

Here, the index represents the number of negative eigenvalues of the Hessian matrix
at the critical point. This leads us to the fact that the critical points of the function (2)
are classified into four types: a maximum (index 3), a saddle (index 2), a saddle
(index 1), and a minimum (index 0). In the following, we use the symbols C3, C2,
C1, and C0 to represent the above critical points, where each subscript represents the
index of the corresponding critical point.

Figure 2 shows isosurface transitions around a maximum (C3) and a minimum
(C0). At a maximum, a new topological sphere appears in 3D space, while an existing
sphere disappears at a minimum.

At a saddle of index 2 (C2) two isosurface regions are merged, while an exist-
ing isosurface region is split into two at a saddle of index 1 (C1). Thus, the corre-
sponding topological changes become more complicated than those at maxima and
minima. Note here that some specific types of saddles definitely introduce isosurface
inclusion relationships which we are going to emphasize in our rendering process.
This requires rigorous classification of isosurface transitions at the saddles by taking

NONE
C3

C0

C3

C0

Fig. 2. Isosurface transitions at a maximum and a minimum

Emphasizing Isosurface Embeddings in Direct Volume Rendering 191

(a)
C1

C2 C2

C1

C2

C1

C2

C1

(b)

C2

C1

C2

C1

(c)

(d)
C1

C2

C1

C2

Fig. 3. Classification of isosurface transitions at saddles depending on the embedding in 3D
space. Thick arrows represent transitions of solid isosurfaces while outlined arrows represent
those of hollow isosurfaces. Isosurface inclusion relationships occur only in the transition path
(b) (outlined by broken lines)

into account their embeddings into 3D space. Figure 3 shows such a classification
result where each type of saddle possesses four different topological transitions. Fur-
thermore, the previous assumption in Sect. 3.1 restricts such isosurface transitions at
saddles as indicated by thick and outlined arrows in the figure. Here, solid isosurfaces
can follow only the two paths of C2 and the two paths of C1 indicated by the thick
arrows because they expand as the scalar field value decreases. On the other hand,
hollow isosurfaces follow only the two paths of C2 and two paths of C1 indicated by
the outlined arrows.

We can now derive that an inclusion relationship occurs through only one transi-
tion path shown in Fig. 3(b) out of four, for each type of saddle point (i.e. C2 and C1).
This enables us to locate inclusion relationships between isosurfaces at any scalar
field values by identifying transitions at saddles with their embeddings. This can be
achieved by tracing the links in the VST, which will be described later in Sect. 3.4.

As described previously, our algorithm accounts for the virtual minimum, which
is artificially added to the volume function (2) so that we can think of an input dataset
as a topological 3D sphere S3. This setting enables us to check the mathematical
consistency of the extracted critical points by consulting the Euler formula [31]:

#{C3}−#{C2}+#{C1}−#{C0} = 0, (5)

where #{Ci} represents the number of critical points of index i.

3.3 Revised Algorithm for VST Construction

For constructing a VST automatically from a given volume dataset, we use our pre-
vious algorithm described in [31], which originates from the surface analysis frame-

192 S. Takahashi et al.

work [28] used in GIS applications. However, we have inserted a new step and made
some modifications to the existing steps in the algorithm in order to extract spa-
tial configurations of isosurfaces. Consequently, the algorithm has the following five
steps:

Step 1: Extract Critical Points

This step begins with linear interpolation of the volume dataset through tetrahedral-
ization, in order to uniquely determine the isosurface evolution as the scalar field
value decreases. Here, the tetrahedralization is performed in such a way that it can
simulate the isosurface evolution extracted by using the asymptotic decider [21]
(See [31] for the details). In the tetrahedralization, each voxel has its neighboring
voxels that constitute a triangulated sphere surrounding the target voxel itself. By
comparing the scalar field values of the neighboring voxels on the sphere with that
of the target, the algorithm partitions the surrounding sphere into two types of con-
nected regions: plus regions that include points having larger scalar field values than
the target, and minus regions having smaller scalar field values. By identifying the
configuration of these plus and minus regions on the sphere, we can extract critical
points together with their types.

Step 2: Construct a VFN

Before constructing a VST from the volume dataset, our algorithm constructs a graph
called a voxel flow network (VFN) that works as an intermediate representation in
the overall process. Constructing the VFN begins with tracing voxel flows which
emanate from each saddle critical point. From each saddle, we traverse voxel flows
from its neighbors having the larger (smaller) scalar field value up to maxima (down
to minima) along the steepest ascent (descent) direction. The VFN is then introduced
to capture the scalar field configuration between the critical points, where its node
represents the critical point and its link represents the voxel flow.

Step 3: Convert the VFN into a VST

In this step, the constructed VFN is converted to a VST by fixing the links in the VST
from its ends to center. This is possible because the VST is constructed by assem-
bling the parts as shown in Fig. 4 where each part involves one critical point. Recall
that the VST node signifies the critical point and its link represents one isolated in-
terval volume swept by an evolving isosurface component. Details of the conversion
process can be found in [31]. Note that the resultant VST becomes a tree because
the input volume dataset satisfies the assumption of single-valued functions. (See
Sect. 3.1.)

Step 4: Mapping between Voxels and the VST Links

This step is newly introduced here in order to establish a mapping from each voxel
onto a VST link, which will help us generate an additional dimension for multi-
dimensional transfer functions that emphasize nested inner structures systematically.

Emphasizing Isosurface Embeddings in Direct Volume Rendering 193

C3 C2 C1 C0

C3 3-C2 2-C2 3-C1 2-C1 C0

Fig. 4. VST parts around critical points

The mapping is defined to match a voxel to the link in such a way that the interval
volume corresponding to the link involves the voxel. For example, voxels involved
in the interval volumes shaded in dark gray, light gray, and white in Fig. 1(a) are
mapped onto the links p1 p2 (in dark gray), p2 p3 (in light gray), and p2 p4 (in white)
in Fig. 1(b), respectively. In our implementation, each voxel has a pointer to its cor-
responding link while the link also has a pointer to the voxel.

The algorithm constructs the mapping without explicitly extracting isosurfaces at
every scalar field value. We can match the voxel to the corresponding link by finding
its neighboring voxels that have already been mapped to the same link of the VST in
most cases. If this is not the case, we find the local maximum and minimum reachable
from the voxel using the tracing process similar to that in Step 2. In addition, we
extract candidate links that go across the scalar field value of the current voxel, and
trace the VST from each candidate link constantly with respect to the scalar field to
collect a set of end maxima and minima. By comparing these sets with the maximum
and minimum reachable from the current voxel, the corresponding link is identified.

Suppose that we want to map a voxel that lies in the interval volume correspond-
ing the link p2 p3 in Fig. 1. In this case, the local maximum and minimum reachable
from the target voxel are p1 and p3, respectively. On the other hand, the candidate
links are p2 p3 and p2 p4 because they include the scalar field value of the target voxel.
Note here that the link p2 p3 has the corresponding maximum p1 and minimum p3

while the link p2 p4 has the maximum p1 and minimum p4. This concludes that the
target voxel corresponds to the link p2 p3 because the maximum and minimum reach-
able from the voxel is included in the sets of maxima and minima that can be reached
from the link p2 p3 on the VST. Since the VST becomes a tree under our assumption
in Sect. 3.1, this process is fully justified.

Step 5: Simplify the VST

Although the VST effectively captures the topological skeleton of a volume dataset,
it often suffers from high-frequency noise that produces a large number of minor crit-
ical points. This is why our algorithm simplifies the constructed VST by removing
minor critical points in order to distinguish the important global skeleton from the
unknown volume. Figure 5 presents three VST patterns to be removed in this sim-
plification process, where the last pattern may have other critical points between the
two nodes. In the simplification process, our algorithm computes the sum of weight
values assigned to the links between the two nodes for each pattern, and then se-
lects one pattern to be removed by finding the link having the smallest value. As

194 S. Takahashi et al.

C3–C2: C0–C1: C2–C1:

Fig. 5. VST patterns to be eliminated in the simplification process

the weight values to be assigned, we employ the volume swept by the evolving iso-
surfaces that corresponds to the links, multiplied by a difference between the end
scalar field values [29]. Here, the swept volume is estimated by counting the number
of voxels assigned to the corresponding link. Note that this is possible because we
have already established the mapping between voxels and the links of the VST in
the previous step. When eliminating a link, we transfer voxels assigned to the link
to one of its adjacent links so that the voxels still survive in the existing VST. The
number of simplification steps is controlled by a threshold that limits the acceptable
weight values to the links. Due to this simplification step, our algorithm will extract
nested volumetric structures robustly even from a dataset having a large amount of
high-frequency noise.

3.4 Extracting Isosurface Inclusions

We are now ready to introduce our new algorithm that extracts isosurface embed-
dings in 3D space from the VST. As mentioned in Sect. 3.2, an isosurface inclusion
occurs in the transition path at a saddle shown in Fig. 3(b). Here, a new inclusion re-
lationship appears when the saddle is C1 (from right to left), and an existing inclusion
relationship dissolves when the saddle is C2 (from left to right) when lowering the
corresponding scalar field value. This implies that, in order to extract the inclusion
relationships, we have to identify each VST part around a saddle point in Fig. 4, with
a topological transition of an isosurface in Fig. 3.

The assumption made in Sect. 3.1 restricts topological transitions of solid and
hollow isosurfaces at saddles as shown in Fig. 3. This enables a one-to-one corre-
spondence between the VST components (Fig. 4) and isosurface transitions (Fig. 3),
once we can identify the incident links with solid or hollow isosurface components.
Figure 6 illustrates VST parts that correspond to the four paths of isosurface transi-
tions in Fig. 3 row by row for each of C2 and C1, where each link incident to a saddle
is recognized as solid (indicated by a think arrow) or hollow (indicated by an out-
lined arrow). This allows us to identify all the links in the VST with solid or hollow
isosurfaces by consulting Fig. 6.

Our algorithm finds each link in the VST to be solid or hollow, by traversing the
links in the VST. In practice, this tracing process starts from the virtual minimum
because the link incident to the virtual minimum is known to represent an outermost
solid isosurface under the assumption in Sect. 3.1. Furthermore, the virtual minimum
can easily be distinguished from other critical points since it is artificially introduced
to the volume dataset.

Emphasizing Isosurface Embeddings in Direct Volume Rendering 195

C2 C1

(a1) solid solid

solid
(a2)

hollow

hollow hollow

(b1) solidhollow

hollow
(b2)

solid

hollowsolid

(c1)
hollow

hollow
(c2)

solid

solid

(d1)
solid

solid
(d2)

hollow

hollow

Fig. 6. Isosurface embeddings around saddles: Each row corresponds to the isosurface transi-
tion in Fig. 3, and the arrows represents the direction of tracing

In our implementation, the virtual minimum serves as a starting point for tracing
solid links of the VST in the upward direction, especially to check how outermost
isosurfaces evolve as the scalar field value increases. During the tracing process,
each critical point on the way is identified with a VST part in Fig. 6 according to the
attribute (solid or hollow) of the incoming link, and other unvisited outgoing links are
also matched with solid or hollow by consulting the corresponding part in Fig. 6. The
unvisited links are then registered to a queue Qs in the algorithm if they are solid, and
registered to another queue Qh if hollow. Note that these two queues are FIFOs. After
having examined the current critical point, the algorithm removes one solid link from
the queue Qs to process it next. Here, the queue Qs stores unvisited solid links that are
examined in the ongoing upward tracing process while the queue Qh stores hollow
links to be handled in the next downward tracing process. Consequently, this upward
tracing process ends when the queue Qs becomes empty. After that, we examine the
queue Qh and begin the tracing process in the opposite (downward) direction for
hollow links this time. The overall tracing process continues until all the links in the
VST are processed.

When identifying a saddle point in the VST with a topological transition, we
will encounter the four types of the parts around saddles as shown in Fig. 4: 3-C2,
2-C2, 3-C1, and 2-C1. The arrows in Fig. 6 show how each of the four parts is traced
in the upward and downward tracing processes depending on the attributes of its
incident links. When tracing solid links in the upward direction, the four types of
parts 3-C2, 2-C2, 3-C1, and 2-C1 in Fig. 4 correspond to those in Fig. 6(a1), (d1),
(b2), and (c2), respectively. On the other hand, these four types are matched to the
parts in Figs. 6(b1), (c1), (a2), and (d2) when tracing hollow links. Note that a new

196 S. Takahashi et al.

scalar field value

C3

C1

C0

C0

p4

p3

p1

1
0

2

1
0

2

1
0

2

f(p1)

p2 f(p2)

f(p3)

f(p4)
inclusion
level

Fig. 7. VST and its isosurface inclusion trees of the analytic function (1)

inclusion relationship only occurs in the part of Fig. 6(b2) and an existing inclusion
relationship disappears in the part of Fig. 6(b1), when reducing the scalar field value.
Figure 1(b) shows how to trace the VST links for the analytic function (1) with the
arrows indicating the tracing directions. In this case, the node p2 is identified with the
part in Fig. 6(b2), which implies the existence of isosurface inclusion relationships.

Our method stores such inclusion relationships between isosurfaces for each in-
terval between two adjacent critical scalar field values because the inclusion rela-
tionships do not change within that interval. In our implementation, we assign a
tree data representation to each interval so that the tree can represent inclusion re-
lationships between any pairs of connected components of an isosurface. Here, the
inclusion relationship is represented by the link of the tree where its parent and child
nodes correspond to the outer and inner isosurfaces, respectively. Figure 7 shows
such isosurface inclusion trees for the analytic function (1). Note that each of the
trees introduces an artificial root node (illustrated as outlined circles) because we
assume that the virtual isosurface includes all the existing isosurfaces within the in-
terval. This representation scheme comes from the previous work on designing 3D
surfaces by using their topological skeleton [25, 30]. In our framework, this data
representation plays an important role in emphasizing nested inner structures using
multi-dimensional transfer functions.

4 Emphasizing Isosurface Embeddings

While the aforementioned algorithm successfully extracts nested structures of fea-
ture isosurfaces, it is still a challenging task to effectively emphasize such nested
structures in the visualization stage because the conventional transfer functions de-
pend only on the scalar field. This means that the conventional transfer functions
cannot distinguish between nested isosurfaces if they are at the same scalar field
value. Thus, emphasizing inner and outer isosurfaces individually requires more

Emphasizing Isosurface Embeddings in Direct Volume Rendering 197

sophisticated transfer functions that depend on relative geometric positions in ad-
dition to the scalar field.

To this end, we developed a new algorithm that effectively accentuates such
nested structures using multi-dimensional transfer functions. The concept of multi-
dimensional transfer functions was originally introduced by Levoy [18], where he
employed a 2D opacity transfer function that uses gradient magnitude for the sec-
ond dimension. In our framework, we also formulate a 2D opacity transfer function
while we employ a different attribute value called an inclusion level for the second
dimension.

In the remainder of this section, we begin by designing conventional 1D transfer
functions by referring to the VST. We then define 2D transfer functions that accept
the inclusion levels as the second dimension in order to emphasize the nested struc-
tures of isosurfaces.

4.1 Design Principles of 1D Transfer Functions

Since the VST robustly extracts the global structure of a given volume dataset, it
allows us to easily identify feature isosurfaces to be emphasized in the visualization
stage. As the feature isosurfaces, our rendering framework selects significant isosur-
face components from each scalar field interval bound by adjacent critical scalar field
values. In practice, we define a representative scalar field value as the midpoint of
each scalar field interval and extract the corresponding isosurface as representative
isosurfaces to illuminate the distinctive isosurface transition in the volume. These
representative isosurfaces will be also suitable for expressing inner structures of the
given volume if we consider the nested structures there.

In our implementation, the scalar field values are mapped affinely onto an 8-bit
range [0, 255], and c1,c2, . . . ,cm represent a sequence of critical scalar field values
in descending order, where cm is the scalar field value of the virtual minimum and
set to be 0. Although there may be multiple candidates for design principles of 1D
transfer functions, we use the hue and opacity transfer functions shown in Figs. 8(a)
and (b) as the common principles.

The hue transfer function maps the scalar field onto the range [0,2π] on the top
of the HSV hexcone. Furthermore, in our design principle, each scalar field interval
[ci+1,ci] (i = 1, . . . ,m−1) has a hue range of the same interval, and it has linear de-
scent slope of the hue value as shown in Fig. 8(a). Note that the hue transfer function
is 1D and depends only on the scalar field value throughout this paper, while the
opacity transfer function may be 1D or 2D as described later.

The 1D opacity transfer function is designed to be zero except for hat-like el-
evations around representative scalar field values r1,r2, . . . ,rm−1 where ri = (ci +
ci+1)/2(i = 1, . . . ,m−1), so that it can accentuate the representative isosurfaces in-
dividually [31]. Here, the height of the elevation decreases by a constant amount from
r1 to rm−1 because the outermost solid isosurfaces expand as the scalar field value
decreases according to the assumption made in Sect. 3.1. Empirically, this principle
adequately reduces the influence of the outermost isosurfaces as they expand.

198 S. Takahashi et al.

0 255

hue

scalar field

cm

2π

c1c2c3cm-1

(a)

opacity

0 255
scalar fieldr2 r1rm-1

opacity

0 255
scalar field
solid

solid
hollow

hollow

1
2

rm-1 r2 r1

3
4

inclusion
level

(b) (c)

Fig. 8. Transfer function design principles: (a) hue, (b) 1D opacity and (c) 2D opacity

255

250

246

representative
isosurface

scalar
field value

p1

p2

p3

p4

virtual minimum

VST

253

248

123

representative
field value

r1

r2

r3

0(=c4)

c1

c2

c3

Fig. 9. Feature isosurfaces and VST of a nested sphere volume

As an example, we are going to apply our design principles to the volume dataset
generated by sampling the function (1) when a = 0.8 and b = 0.1, where its reso-
lution is 64× 64× 64. Figure 9 shows representative isosurfaces (on the left) and
the extracted VST (on the right). Here, each link of the VST is accompanied by a

Emphasizing Isosurface Embeddings in Direct Volume Rendering 199

disjoint component of the corresponding representative isosurface. In this case, the
links p1 p2 and p2 p4 are solid while the link p2 p3 is hollow. We learn from this figure
that the volume has three representative scalar field values r1 = (f (p1)+ f (p2))/2,
r2 = (f (p2)+ f (p3))/2, and r3 = (f (p3)+ f (p4))/2, where the scalar field value of
the virtual minimum f (p4) is assumed to be 0. It also turns out that any isosurface
lying within the scalar field interval [f (p3), f (p2)] has two connected components
that have an inclusion relationship, which implies that the representative isosurface
components at r2 are nested.

Figure 10(a) shows a visualization result of this dataset obtained by using the 1D
transfer functions in Figs. 8(a) and (b). Although the result seems to be effective, it
still obscures the isosurface inclusion at the representative scalar field value r2. This
motivates us to incorporate an additional attribute for the multi-dimensional transfer
functions as described below.

(a) (b)

Fig. 10. Emphasizing isosurface embeddings of a nested sphere volume: (a) with 1D transfer
functions, and (b) with 2D transfer functions

4.2 Design Principles of 2D Transfer Functions

An inclusion level is the second variable for our multi-dimensional transfer func-
tions, and represents the depth of the corresponding isosurface component in a nested
tree structure as shown in Fig. 7. Thus, it allows us to systematically locate the rel-
ative geometric position of each voxel within such a nested volumetric structure.
Moreover, the inclusion level also differs from the conventional attributes for multi-
dimensional transfer functions in that it is a topological attribute and comes from
the rigorous analysis of the global volumetric structures, while all the conventional
attributes represent local volumetric properties such as derivatives [14] and curva-
tures [12].

Actually, our algorithm will calculate this attribute value for each voxel by con-
sulting the data structure as shown in Fig. 7. Here, the VST together with its asso-
ciated trees for isosurface inclusions is embedded into 3D space. In the figure, the
vertical and depth axes represent the scalar field and inclusion level, respectively, and
the lateral lines on each horizontal plane represent the scales of the inclusion level
for each isosurface inclusion tree.

200 S. Takahashi et al.

Since we have already established the mapping between the voxels and the VST
links in Sect. 3.3, we can easily calculate the inclusion levels for all the voxels by
handling the VST links one by one. Suppose we are now looking at the link p2 p4

in Fig. 9. From the mapping, our algorithm retrieves the array of voxels that belong
to the link. Each voxel is then distributed to the corresponding scalar field interval
according to its scalar field value. For example, in this case, if the voxel has a larger
scalar field value than p3, it will be assigned to the interval [f (p3), f (p2)]. Otherwise,
it will be delivered to the interval [f (p4), f (p3)]. The inclusion level can be obtained
by evaluating the depth of its VST link in the corresponding isosurface inclusion
tree, because the tree represents isosurface spatial configurations within the scalar
field interval to which the voxel is distributed.

It should be noted that the inclusion level is intrinsically discrete and may have
gaps at some critical scalar field values because the inclusion relationships between
isosurface components suddenly change at the values. These gaps could result in un-
expected artifacts in our final visualization results. We thus avoid these artifacts by
linearly interpolating the gap so that the inclusion level becomes continuous. Figure 7
shows such an example, where the inclusion level of the link p2 p3 linearly rises from
1 to 2 while the scalar field value reduces from f (p2) to (f (p2)+ f (p3))/2. In prac-
tice, our algorithm assigns the intermediate inclusion levels to the voxels according
to their scalar field values.

Now we are ready to extend the previous 1D opacity transfer function to 2D
so that it effectively emphasizes the nested isosurfaces with the help of the inclusion
levels. As described previously, the height of the hat-like elevation for the 1D opacity
transfer function reduces by a constant amount at each representative scalar field
value as the scalar field value decreases as shown in Fig. 8(b). This is because solid
isosurfaces expand while the corresponding scalar field value decreases as described
in Sect. 3.1. However, hollow isosurfaces have the reverse behavior, i.e., they shrink
as the scalar field value decreases. This lets us raise the height of hat-like elevation
for hollow isosurfaces to clarify their topological changes in deeper positions.

By taking these points into account, we design the 2D opacity transfer function
as shown in Fig. 8(c). Here, at each discrete inclusion level, the hat-like elevation de-
creases if the corresponding isosurface is solid and increases if hollow as the scalar
field value goes down. We then define the opacity for intermediate non-integer in-
clusion levels by interpolating between those on integer inclusion levels. This means
that the opacity transfer function around the representative scalar field values has a
form of hyperbolic paraboloid. Note that the opacity transfer function is defined to
increase as the inclusion level becomes larger. This is achieved by ensuring that the
maximum opacity value at the inclusion level l does not exceed the minimum opacity
of the inclusion level l +1.

Our experiments show that this design principle makes the inner isosurface com-
ponents clearly visible through the outer ones, and avoids obscuring the nested inner
structures. Figure 10(b) shows such an example where the nested structure of the
isosurface components at (f (p2) + f (p3))/2 is effectively emphasized. The previ-
ous 1D color transfer function is used for these visualization results.

Emphasizing Isosurface Embeddings in Direct Volume Rendering 201

5 Application to Real Datasets

In this section, we apply the present framework to two datasets in order to demon-
strate its applicability to real datasets. In all of these datasets, the scalar field values
were normalized to an 8-bit range [0,255]. In our experiments, the present algorithms
are implemented on an ordinary PC environment (CPU: Pentium IV, 2.4GHz, RAM:
1GB).

5.1 Nucleon

The first example is a “nucleon” dataset presented in Fig. 11. This dataset is obtained
by simulating two-body distribution probability of a nucleon in the atomic nucleus
16O [20], and its resolution here is 41× 41× 41. From the dataset, our algorithm
extracted a VST as shown in Fig. 11(a), which shows that the dataset actually in-
volves isosurface inclusions within the scalar field interval [0,161]. Note that a link
for a solid isosurface is in blue while that for a hollow isosurface is in orange in this
figure.

As described in Sect. 1, Fig. 11(b) obscures the inner structures and provides
no useful information because it is generated using naive transfer functions. While
Fig. 11(c) accentuates representative isosurfaces individually using the conventional
1D transfer functions [7, 31, 33], it still misses the nested inner structures which we
are interested in, unfortunately. On the other hand, Fig. 11(d) effectively emphasizes

247

scalar field

249

193
189
187
161
103
13
0

virtual minimum

p1

p2

p3

p4

p5

p6

p7

p8
p9

(a) (b) (c)

(d) (e)

Fig. 11. Inner structure of the “nucleon” dataset [20]: (a) The VST. Visualization results
(b) with naive (linear hue and flat opacity) 1D transfer functions, (c) with topologically-
accentuated 1D transfer functions, (d) with 2D transfer functions, and (e) generated using
emission-only optical model

202 S. Takahashi et al.

the inner isosurface components due to the use of 2D transfer functions with the
inclusion levels.

5.2 Antiproton-Hydrogen Atom Collision

As the second example, we consider the antiproton-hydrogen atom collision at inter-
mediate collision energy below 50keV. In the antiproton-hydrogen collision system,
a single antiproton comes into collision with a single hydrogen atom. The details of
the formulation and established numerical schemes can be found in [26].

Here, we applied our framework to the dataset with a resolution of 64×64×64.
Figure 12(a) shows the VST extracted from this dataset. When exploring isosurface
transitions as the scalar field value reduces, we can see that the isosurface compo-
nent of the link p2 p5 splits into nested isosurface components of the links p5 p7 and
p5 p10 at the scalar field value 118, and simultaneously encloses another isosurface
component of the link p4 p6. After that, the enclosed isosurface of the link p4 p6 also
divides itself into the nested surface components of the links p6 p7 and p6 p8 at 112.
This means that we have fourfold nested structures in the scalar field interval [98,
112].

Figures 12(b) and (c) show rendered images of the antiproton-hydrogen atom
collision volume dataset. Figure 12(b) shows a rendered image generated using the
conventional 1D transfer functions, where representative isosurfaces are accentuated
while ignoring their accompanying nested structures. As shown in the figure, the
nested structure lying in the scalar field interval [98,112] was densely occluded by
the outermost isosurface component. On the other hand, our new algorithm clearly
emphasizes the nested structures as shown in Fig. 12(c) where 2D opacity transfer
function is applied. Note here that our algorithm controls voxel opacities by taking
into account isosurface embeddings using the multi-dimensional transfer functions.
These results suggest that our present framework can explicitly extract significant
volumetric structures that may be missed by using the conventional methods.

198
132

118

98

5

virtual minimum

123
128

112

38

scalar field

p1

p3

p2

p5

p4

p6

p8

p7

p9
p10

(a) (b) (c)

Fig. 12. Antiproton-hydrogen atom collision volume dataset: (a) the VST. Visualization results
(b) with 1D transfer functions, and (c) with 2D transfer functions

Emphasizing Isosurface Embeddings in Direct Volume Rendering 203

6 Discussion

This section discusses the validity of the present framework for emphasizing isosur-
face embeddings in direct volume rendering.

6.1 Comparison with an Emission-Only Optical Model

The present framework effectively emphasizes isosurface embeddings in volume ren-
dering because it can extract inclusion relationships between isosurfaces by tracing
their global transitions in a given volume. On the other hand, another promising
approach may be an emission-only optical model where all the feature isosurface
components equally contribute to the final image and none is attenuated by the sur-
rounding components. Figure 11(e) is an image generated by using this model. How-
ever, when compared with Fig. 11(d) that is generated by our new framework, this
model cannot suppress the opacity of outer isosurfaces while emphasizing inner ones
because it lacks the ability to distinguish between outer and inner isosurfaces. This
shows that the present framework provides more sophisticated visualization tech-
niques than the simple emission-only optical model.

6.2 Computational Cost

The computational cost is another issue to be considered since the present frame-
work requires more computational time for the rigorous analysis of a given volume.
In practice, our algorithm extracted nested isosurface structures in 4 minutes for
the “nucleon” dataset (Fig. 11(d)) and 30 minutes for the antiproton-hydrogen atom
collision dataset (Fig. 12(c)). However, these computational costs can be reduced
remarkably by introducing adaptive tetrahedralization for the interpolation of the
given scalar field without sacrificing the accuracy of the analysis [29]. According to
the results in [29], it took only 25 seconds for the “nucleon” dataset, and 60 seconds
even for the high-resolution version (129× 129× 129) of the antiproton-hydrogen
atom collision dataset. This concludes that the present framework will be a more
promising approach for comprehensible volume rendering as the computational per-
formance becomes better in future.

7 Conclusion

This paper has presented a new rendering framework that clearly emphasizes nested
isosurface structures embedded in the given volume datasets. The key to the present
framework is the use of multi-dimensional transfer functions that assign different
optical properties to each voxel. This is achieved by using the inclusion level as well
as the conventional scalar field. In order to calculate such an additional attribute,
we developed a new algorithm that extracts inclusion relationships between feature
isosurfaces by tracing the topological skeleton delineated from the given dataset.
Several experimental results demonstrated the feasibility of the present method.

204 S. Takahashi et al.

As a future research theme, we plan to take into account psychological factors
of color science so that we can accommodate the inclusion level as a new dimen-
sion when designing color transfer functions. Furthermore, our framework may also
provide the basis for future research on incorporating textures and lighting proper-
ties because such properties may provide significant landmarks on the visualization
results.

Acknowledgements

We wish to acknowledge the support of the Japan Society of the Promotion of
Science under Grants-in-Aid for Young Scientists (B) (No. 14780189), the Okawa
Foundation for Information and Telecommunications, the Office of Naval Research
(N00014-02-1-0287), the National Science Foundation (NSF IIS-9980166 & ACI-
0083609), and DARPA (MDA972-00-1-0027).

References

1. C. L. Bajaj, V. Pascucci, and D. R. Schikore. The contour spectrum. In Proc. of IEEE
Visualzation ’97, pp. 167–173, 1997.

2. S. Castro, A. König, H. Löffelmann, and E. Gröller. Transfer function specification
for the visualization of medical data. Technical Report TR–186–2–98–12, Vienna Uni-
versity of Technology, 1998. [http://www.cg.tuwien.ac.at/research/TR/98/TR-186-2-98-
12Abstract.html].

3. B. Csébfalvi, L. Mroz, H. Hauser, A. König, and E. Gröller. Fast visualization of object
contours by non-photorealistic volume rendering. Computer Graphics Forum, 20(3):452–
460, 2001.

4. D. Cohen-Or, Y. Chrysanthou, C. Silva, and G. Drettakis. Visibility, problems, techniques
and applications. Siggraph ’00 Course Notes, 2000.

5. H. Carr, J. Snoeyink, and U. Axen. Computing contour trees in all dimensions. Compu-
tational Geometry, 24(2):75–94, 2003.

6. I. Fujishiro, T. Azuma, and Y. Takeshima. Automating transfer function design for com-
prehensive rendering based on 3D field topology analysis. In Proc. of IEEE Visualization
’99, pp. 467–470, 563, 1999.

7. I. Fujishiro, T. Azuma, Y. Takeshima, and S. Takahashi. Volume data mining using 3D
field topology analysis. IEEE Computer Graphics & Applications, 20(5):46–51, 2000.

8. A. T. Fomenko and T. L. Kunii. Topological Modeling for Visualization, chapter 6, pp.
105–125. Springer-Verlag, 1997.

9. I. Fujishiro, Y. Maeda, and H. Sato. Interval volume: A solid fitting technique for volu-
metric data display and analysis. In Proc. of IEEE Visualization ’95, pp. 151–158, CP–18,
1995.

10. I. Fujishiro, Y. Maeda, H. Sato, and Y. Takeshima. Volumetric data exploration using
interval volume. IEEE Transactions on Visualization and Computer Graphics, 2(2):144–
155, 1996.

11. I. Fujishiro, Y. Takeshima, S. Takahashi, and Y. Yamaguchi. Topologically-accentuated
volume rendering. In F. H. Post, G. M. Nielson, and G.-P. Bonneau, editors, Data Visual-
ization: The State of the Art, pp. 95–108. Kluwer Academic Publishes, 2002.

Emphasizing Isosurface Embeddings in Direct Volume Rendering 205

12. J. Hladůvka, A. König, and E. Gröller. Curvature-based transfer functions for direct
volume rendering. In Proc. of Spring Conference on Computer Graphics 2000, pp. 58–
65, 2000.

13. V. L. Interrante. Illustrating surface shape in volume data via principal direction-driven
3D line integral convolution. In Computer Graphics (Proc. of Siggraph ’97), pp. 109–116,
1997.

14. G. Kindlmann and J. W. Durkin. Semi-automatic generation of transfer functions for
direct volume rendering. In Proc. of IEEE Symposium on Volume Visualization, pp. 79–
86, 1998.

15. J. Kniss, G. Kindlmann, and C. Hansen. Interactive volume rendering using multi-
dimensional transfer functions and direct manipulation widgets. In Proc. of IEEE Vi-
sualization 2001, pp. 255–262, 2001.

16. J. Kniss, G. Kindlmann, and C. Hansen. Multidimensional transfer functions for inter-
active volume rendering. IEEE Transactions on Visualization and Computer Graphics,
8(3):270–285, 2002.

17. J. T. Klosowski and C. T. Silva. The prioritized-layered projection algorithm for visible
set estimation. IEEE Transactions on Visualization and Computer Graphics, 6(2):108–
123, 2000.

18. M. Levoy. Display of surfaces form volume data. IEEE Computer Graphics & Applica-
tions, 8(5):29–27, 1988.

19. A. Lu, C. J. Morris, D. S. Ebert, P. Rheingans, and C. Hansen. Non-photorealistic volume
rendering using stippling techniques. In Proc. of IEEE Visualization 2002, pp. 211–218,
2002.

20. M. Meißner. Web Page [http://www.volvis.org/].
21. G. M. Nielson and B. Hamann. The asymptotic decider: Removing the ambiguity in

marching cubes. In Proc. of IEEE Visualization ’91, pp. 83–91, 1991.
22. V. Pascucci and K. Cole-McLaughlin. Efficient computation of the topology of level sets.

In Proc. of IEEE Visualization 2002, pp. 187–194, 2002.
23. P. Rheingans and D. Ebert. Volume illustration: Nonphotorealistic rendering of volume

models. IEEE Transactions on Visualization and Computer Graphics, 7(3):253–264,
2001.

24. G. Schaufler, J. Dorsey, X. Decoret, and F. X. Sillion. Conservative volumetric visibility
with occluder fusion. In Computer Graphics (Proc. of Siggraph ’00), pp. 229–238, 2000.

25. Y. Shinagawa, Y. L. Kergosien, and T. L. Kunii. Surface coding based on morse theory.
IEEE Computer Graphics & Applications, 11(5):66–78, 1991.

26. R. Suzuki, H. Sato, and M. Kimura. Antiproton-Hydrogen atom collision at intermediate
energy. IEEE Computing in Science and Engineering, 4(6):24–33, 2002.

27. S. Treavett and M. Chen. Pen-and-ink rendering in volume visualization. In Proc. of
IEEE Visualization 2000, pp. 203–210, 2000.

28. S. Takahashi, T. Ikeda, Y. Shinagawa, T. L. Kunii, and M. Ueda. Algorithms for extract-
ing correct critical points and constructing topological graphs from discrete geographical
elevation data. Computer Graphics Forum, 14(3):181–192, 1995.

29. S. Takahashi, G. M. Nielson, Y. Takeshima, and I. Fujishiro. Topological volume skele-
tonization using adaptive tetrahedralization. In Proc. of Geometric Modeling and Process-
ing 2004, pp. 227–236, 2004.

30. S. Takahashi, Y. Shinagawa, and T. L. Kunii. A feature-based approach for smooth sur-
faces. In Proc. of the ACM 4th Symposium on Solid Modeling and Applications, pp.
97–110, 1997.

31. S. Takahashi, Y. Takeshima, and I. Fujishiro. Topological volume skeletonization and its
application to transfer function design. Graphical Models, 66(1):24–49, 2004.

206 S. Takahashi et al.

32. M. van Kreveld, R. van Oostrum, C. Bajaj, V. Pascucci, and D. Schikore. Contour trees
and small seed sets for isosurface traversal. In Proc. of the 13th ACM Symposium on
Computational Geometry, pp. 212–220, 1997.

33. G. H. Weber, G. Scheuermann, H. Hagen, and B. Hamann. Exploring scalar fields using
critical isovalues. In Proc. of IEEE Visualization 2002, pp. 171–178, 2002.

Diagnostic Relevant Visualization
of Vascular Structures

Armin Kanitsar1, Dominik Fleischmann2, Rainer Wegenkittl3, and
Meister Eduard Gröller1

1 Institute of Computer Graphics and Algorithms,
Vienna University of Technology, Vienna, Austria,
{kanitsar,meister}@cg.tuwien.ac.at

2 Department of Radiology, Stanford University, US,
dominik.fleischmann@univie.ac.at

3 TIANI Medgraph, Austria,
rainer.wegenkittl@tiani.com

Summary. Traditional volume visualization techniques sometimes provide incomplete clin-
ical information needed for applications in medical visualization. In the area of vascular vi-
sualization important features such as the lumen of a diseased vessel segment may not be
visible. One way to display vascular structures for diagnostic purposes is to generate longi-
tudinal cross-sections in order to show their lumen, wall, and surrounding tissue in a curved
plane. Curved planar reformation (CPR) has proven to be an acceptable practical solution.
We discuss four different methods to generate CPR images from single vessel segments: Pro-
jected CPR, stretched CPR, straightened CPR, and helical CPR. Furthermore we investigate
three different methods for displaying vascular trees: Multi-path projected CPR, multi-path
stretched CPR, and untangled CPR. The principle concept of each method is discussed and
detailed information for the realization is given. In addition the properties, advantages and
disadvantages of each method are summarized.

1 Introduction

Non-invasive imaging of the vascular system with computed tomography (CT) and
magnetic resonance imaging (MRI) has become a well established alternative to inva-
sive intraarterial angiography. CT and MRI provide high-resolution volumetric data
sets of the human body. These data, however, may contain many objects of less or
no diagnostic interest. This makes volume-rendering (i.e., maximum intensity pro-
jection (MIP), ray casting, shaded surface display) without preprocessing often im-
possible or inaccurate. In addition to that pathological features may superimpose
diagnostically relevant information. In the case of a circular vessel wall calcification
the true vessel lumen can not be determined by conventional volume rendering.

CPR - Curved Planar Reformation is a way to visualize vascular structures with
small diameters. High level information as the vessel’s centerline is used to re-sample

208 A. Kanitsar et al.

and visualize the data. By this technique the entire tubular structure is displayed
within a single image. Vascular abnormalities, i.e., stenoses, occlusions, aneurysms
and vessel wall calcifications, are then investigated by physicians. This process is
sometimes referred to as Multi Planar Reformation (MPR). However the term MPR
is not precise enough, as it is commonly used for planar cross-sections re-sampled
from volumetric data. Another known synonym for curved planar reformation is me-
dial axis reformation (MAR).

Even though CPR is an established technique in the medical community, the
visual properties, advantages, and disadvantages of different types of CPRs have not
been specifically addressed in the literature. Understanding this features is essential
for the accurate interpretation of the resulting images. One issue of this work is the
generation and discussion of properties of different CPR methods.

Traditional CPR techniques allow the investigation of the vessel lumen in a lon-
gitudinal section through the central axis of the vessel. However, vascular abnor-
malities might not be touched by this plane and therefore they do not appear in the
generated image. One way to overcome this problem is to rotate the re-sampled plane
around the central axis. This results in a set of images to be interpreted by the radi-
ologist. A more comprehensive display of the entire vascular lumen in one repre-
sentative image is highly desirable. A new visualization method was developed to
overcome this limitation.

Another important aspect in computed tomography angiography (CTA) is the
efficient visualization of treelike vascular structures using CPR display techniques.
Multi-path CPR techniques based on a projective combination of vessel segments
provide a spatially coherent display of the vascular anatomy. However, depending on
the intersecting plane, parts of the arteries might be superimposed by other arteries.
For a detailed inspection of the entire vascular tree different sections through the
vessel’s central axis have to be re-sampled. In order to have diagnostically valuable
results the vessel lumen should be visible within each image. Thus a new technique
for unobstructed displaying of an arterial tree is proposed.

Section 2 describes related work in this area. In Sect. 3 four methods for visualiz-
ing vascular segments are presented. Techniques for displaying entire vascular trees
are presented in Sect. 4. Finally the proposed methods are summarized and compared
in Sect. 5.

2 Related Work

The most important prerequisite for CPR visualization is an appropriate estimation
of the vessel centerline. Latest CT technology, such as multiple detector-array CT,
provide high resolution volumetric data sets. Due to the large size of these data sets
(up to 1500 transverse cross-sectional images of the abdomen and entire legs), the
manual definition of the vessel centerline is no longer an option. In this respect sev-
eral algorithms [8, 13, 14] have been developed with different properties concerning
reliability, speed and accuracy.

Visualization of Vascular Structures 209

Avants and Williams [3] present a vessel tracking method consisting of two parts.
From user defined seed points a surface expansion is computed based on the eikonal
partial differential equation. A minimal cost path is calculated from these regions.
From this path a cross-sectional area/radius profile is generated.

He et al. [6] proposed a path extraction method based on a two-dimensional
region-growing algorithm with a subsequent shortest path algorithm. The resulting
path is refined using the multi-scale medial response. The vascular tree is flattened
in a semiautomatic method called Medial Axis Reformation.

Some authors propose to take the central axis as an input for the generation of
an abstract vessel model. Abstract vessel models allow fast rendering, as polygonal
meshes of low complexity are generated [4]. Furthermore non-photorealistic render-
ing provides the possibility to emphasize global properties of the vascular tree [5].

Kanitsar et al. [7] compared three methods for CPR generation: Projected CPR,
stretched CPR and straightened CPR with respect to three extensions. These exten-
sions have been proposed to overcome the most relevant clinical limitations, i.e.,
thick CPR, rotating CPR and multi-path CPR.

A comparison of this technique with conventional volume visualization tech-
niques is not the topic of this paper, as such comparisons are already available [2].
Further information about the clinical relevance of the CPR visualization technique
can be found in [1, 11, 12].

3 Single Vessel CPR Methods

The goal of CPR visualization is to make a tubular structure visible in its entire
length within one single image. To accomplish this goal a-priori information about
the tubular structure, notably the object’s central axis, is required. Without loss of
generality the object’s central axis is assumed to be a sequence of points at sub voxel
resolution.

In general the spatial position and shape of the central axis determines which
parts of 3D space are visualized. On the left side of Fig. 1 the central axis is shown.
The re-sampled surface is shown on the right side of Fig. 1. As the surface is not
well defined by just one curve in 3D, an additional vector vi (vector-of-interest) is
introduced. Together with a point from the central axis, the vector-of-interest defines
a straight line li (line-of-interest). All voxels touched by this line are taken to re-
sample the volume along the line-of-interest.

Figure 2 illustrates the different CPR methods. The horizontal plane represents
the image and the image y-axis as horizontal blue arrow. Corresponding to this axis,
the curve in the volumetric data set is sketched by the vertical blue arrow.

3.1 Projected CPR

The projected CPR can be seen as a parallel projection of a data set, taking into
account only a thin slice of voxels (see Fig. 2a). This slice is defined by the central

210 A. Kanitsar et al.

Fig. 1. Principle of the CPR visualization: The vector-of-interest (vi) and the line-of-interest
(li) define the re-sampling plane

Fig. 2. CPR generation methods: (a) projected, (b) stretched, (c) straightened, (d) helical CPR

axis of the tubular structure and the vector-of-interest. We assume the vector-of-
interest to be colinear with thy y-axis and apply a parallel projection to a free-form
surface along the y-axis.

In particular, for each point of the central axis the line-of-interest is projected
to the corresponding line of the image. This relationship is defined by the camera’s
coordinate system (i.e., the up-vector). If the up-vector of the camera is parallel to
the z-axis, the z-coordinate of the line-of-interest is mapped directly to the image.
If multiple lines-of-interest project onto the same image area compositing is done
using maximum intensity projection (MIP), minimum intensity projection (MinIP),
or averaging (AVG). Due to parallel projection the spatial relations are maintained
by this method. This helps the observer to perceive the spatial arrangement of the
vessels.

The first disadvantage of this method is that structures of higher intensity (i.e.,
bony structures) still may obscure the structures of interest (i.e., vessels). This sit-
uation arises, if parts of the line-of-interest associated with a certain point of the
central axis contains bony structures and these parts are projected to an image region
containing vascular structures from another line-of-interest. The occurrence of such
situations heavily depends on the application area. In the case of peripheral vascular

Visualization of Vascular Structures 211

structures this case hardly ever arises. However, the visualization of the carotid artery
at the level of the skull-base often leads to such situations.

Another disadvantage of the projected CPR method is the distortion of the central
axis’ length due to parallel projection. Therefore isometry is not preserved.

3.2 Stretched CPR

The surface defined by the vessel central axis and the vector-of-interest is curved
in one dimension and planar in the other one. Stretching the curved dimension re-
sults in a plane showing the tubular structure in it’s entirety without overlapping (see
Fig. 2b). This type of CPR is referred to as stretched CPR.

Processing all points of the central axis successively, the corresponding lines-of-
interest are mapped to the image. This is done by rotating the consecutive point of
the central axis around the current line-of-interest. The point is rotated in a way that
the resulting plane is coplanar to the viewing plane. Isometry is maintained by this
operation as the distance between the two consecutive points is preserved in image
space.

Especially we are only interested in the image y-coordinates of the lines-of-
interest. Let’s assume point Pi to be the last processed point and point Pi+1 the
currently processed point of the central axis. The vector di =

−−−→
PiPi+1 represents the

path direction at position i. Furthermore l is the normalized direction of the line-of-
interest. According to formula (1) the offset ∆i in image space is.

∆i =
√

|di|2 − (l ·di)2 (1)

The image position yi+1 of the line-of-interest related to point Pi+1 is given by yi+1 =
yi +∆i where y0 = 0.

The central axis is assumed to be sampled with sub-voxel resolution. Therefore
all rows of the image are filled. Introducing a zooming capability requires to inter-
polate between the lines-of-interest, if necessary.

The generation process of a stretched CPR ensures that other objects do not cover
vascular structures. This is one of the key requirements in vessel visualization. The
curvature of the tubular structure is still largely maintained by this kind of visualiza-
tion, thus spatial orientation is still possible for the user.

The main advantage of this CPR type is the preserved isometry. This is impor-
tant for accurate preoperative planning of endovascular stent-graft treatment of aortic
aneurysms. The lengths of normal and abnormal vascular segments need to be deter-
mined accurately for sizing an endovascular prosthesis.

3.3 Straightened CPR

The third type of curved planar reformation fully straightens the tubular structure
(see Fig. 2c). This CPR method generates a linear representation of the vessel with
varying diameter.

212 A. Kanitsar et al.

At each point Pi of the central axis the tangent vector ti is calculated. The plane
εi (cross-section) is defined by Pi and ti. A local coordinate system is defined by
two generating vectors of the plane εi:

−→ui and −→vi whereby −→ui ⊥ −→vi . The line-of-
interest is defined within the plane εi by an angle within the unit circle: the angle-of-
interest ϕ .

As either −→u or −→v is mapped to the local coordinate system’s x-axis, excessive
rotation along the central axis may cause undesired artifacts. Methods exist to mini-
mize this effect [10].

In particular it is not necessary to re-sample the entire cross-section from the
data set. It is more efficient to do a transformation from the local coordinate system
to the global coordinate system. The direction of the line-of-interest li is given by
formula (2):

li = cosϕ ·ui + sinϕ ·vi (2)

The image offset ∆i for the line-of-interest corresponding to point Pi+1 equals to the
distance from point Pi to Pi+1:

∆i = |−−−→PiPi+1| (3)

The most obvious disadvantage is the lack of spatial orientation. Only short segments
of visible side branches of the parent vessels indicate the topographic position of a
given arterial segment.

One advantage of this method is the preserved isometry. Furthermore the direct
relation between image height and central axis length makes it easy to create linked
displays. Whenever the user points to a certain position of the image, the correspond-
ing cross-section is displayed in a separate view. This feature improves on the lack
of spatial orientation.

Another advantage is the easy perception of diameter variations. Due to the elim-
ination of the curvature of the central axis the only varying property along the central
axis is the diameter.

3.4 Helical CPR

The basic idea of helical CPR visualization is to display the volumetric interior of a
vessel within one image. To accomplish this, a re-sampling strategy different from
the previously discussed CPR methods is introduced. All previous mentioned meth-
ods re-sample the data in a linear way defined by the vector vi. The vector-of-interest
describes the re-sampling direction which is orthogonal to the viewing direction.

The helical CPR method is based on a non-linear re-sampling of the data. The
vector-of-interest as generating element for the surface is replaced by a spiral-of-
interest (si) (see Fig. 2d). This results in a convoluted surface around the central
axis. With a sufficiently small distance between each winding the vessel is intersected
several times. Stenoses, calcifications, and occlusions are included in the computed
surface. The helical surface is flattened and displayed.

Visualization of Vascular Structures 213

�

�

�r

r

s2

s1

s2

s1

s2

s1

(a) (b) (c)

Fig. 3. Spiral-of-interest (a), constant angle sampling (b), constant arc-length sampling (c)

Method Description

Along the central axis of the vessel cross-sections are calculated at an appropriate
sampling distance. Within each section a local 2D coordinate system is defined. The
center of the cross-section represents the estimated center of the vessel lumen at
the corresponding centerline position. Starting from this center point two interleaved
spirals s1 and s2 are computed (see Fig. 3a). In order to maintain a uniform sampling
of the vessel cross-sections a spiral with constant inter-winding distance is selected.
This requirement is satisfied by the Archimedean spiral which can be expressed in a
simple equation using polar coordinates r and θ :

r = aθ (4)

The transformation of points on the spiral into Cartesian coordinates is straightfor-
ward. Thus the computation of a point Xs1 on s1 and a point Xs2 on s2 is performed
as follows:

Xs1 = aθ
(

cosθ
sinθ

)
Xs2 = aθ

(
cosθ ′

sinθ ′

)
where θ ′ = θ +π (5)

For an appropriate sampling of the vessel lumen the parameter a was set to 1/π .
This assures a constant distance of one between the windings of the two interleaved
spirals. The computed points Xs1 and Xs2 on the spirals are transformed back into
volume space and re-sampled.

The center of each scanline in the final CPR image corresponds to the center of
the vessel cross-section. Starting from this reference point the image space to the left
is filled with data re-sampled by s1 and to the right with data from s2.

Sampling Strategy

The current implementation of the helical CPR technique supports two sampling
strategies for computing points from the spirals. In the case of constant angle sam-
pling (see Fig. 3b) the angle θ is increased by a constant angle ω for each point.
If constant arc-length sampling is applied (see Fig. 3c) for each sampling step a
constant distance ∆ on the arc-length of the spiral is covered.

214 A. Kanitsar et al.

Constant Angle

For each point re-sampled from the spiral the generating angle θ is incremented by
a fixed angle ω . Each winding is rendered into an equal sized area in the final image.
Therefore the comparably dense sampled area in close vicinity of the vessel center
is amplified in image space. The resulting fish-eye zooming effect is achieved at the
cost of an increased distortion.

Constant Arc-Length

Given a fixed sampling distance ∆ between two adjacent points on the spiral the
increment ω of the angle θ is approximated. The increment ω is defined by the ratio
of ∆ and the circumference calculated from the most recent radius. As usually small
sampling distances are used the error introduced by this approximation is negligible.
The extent of the vessel in the CPR image is directly proportional to the volume
of the vessel lumen. Thus large vessels occupy superproportional large parts of the
image space.

4 Vessel Tree CPR Methods

One substantial disadvantage of CPR visualization for diagnostic purposes is the
restriction to only one tubular element. Most clinically relevant “tubes” are part of a
branching, anatomic structure. For instance the peripheral arterial tree begins at the
abdominal aorta and branches into the left and right common iliac artery which again
branches into internal and external iliac arteries and so on. A comprehensive display
of all clinically relevant vessels in one image is highly desirable.

The straight forward approach of simply compositing all calculated CPRs does
not produce the desired result. No matter which re-sampling strategy is applied arti-
facts are always introduced in the generated image. Vascular structures are obscured
by bones from other layers. Therefore we propose a new image space driven method
for compositing projected or stretched CPRs from multiple central axes.

4.1 Multi-Path CPR

The tree of central axes and the volumetric data set is taken as input for the algorithm
(Fig. 4a). An enhanced z-buffer b of the same size as the image provides space for
information entries containing a reference to a path, a reference to a point of this path
(point), and depth information. Furthermore each entry contains information about
an associated span begin and end. A span represents the part of an image scanline
belonging to a certain path segment.

Tree Projection

The tree (see Fig. 4b) is mapped to the buffer b according to the applied CPR method.
Figure 4c shows the entries of the buffer after the CPR projection process. If points
of different paths are mapped to the same image position, the one spatially closer to
the observer is taken.

Visualization of Vascular Structures 215

(a) (b) (c) (d) (e)

Fig. 4. Generation of multi-path CPRs

Buffer Traversal

In a second step two buffer traversals are needed to determine the length of a span. A
span is computed so that the space between neighboring paths within a line is equally
divided. The scanline portions at the border of the image are assigned to the leftmost
or rightmost path segment respectively (see Fig. 4d).

Data Re-Sampling

In the final step the buffer is traversed again. Each filled entry b[x,y] is processed so
that the image line y is filled from position b[x,y].begin to b[x,y].end with the data
values associated with point b[x,y].point.

This results in a composited CPR through multiple vessel centerlines without
overlapping structures, as each tree segment is drawn in a separate image region (see
Fig. 4e).

A projected multi-path CPR is generated by using the projected CPR method for
each vessel segment in the tree projection step. The properties of the projected CPR
method also hold true for the projected multi-path CPR.

Similar to the previously mentioned multi-path CPR method the stretched multi-
path CPR method is generated by using the stretched CPR method for tree projec-
tion. In the recursive tree traversal the image position y0 of the vessel segment’s first
line-of-interest has to be handled correctly.

216 A. Kanitsar et al.

4.2 Untangled CPR

The aim of untangled CPR visualization is to display a vascular tree without over-
lapping arteries [9]. In order to accomplish this requirement the spatial relations of
the projected vessels have to be relaxed. Branching points of the vessel tree are
used as pivot points. Rotating the corresponding vessels around these pivot points
in image space eliminates vessel overlaps. Keeping the introduced distortions small
maintains fast perception and reduces the impact of re-sampling artifacts in the fi-
nal image. Thus the applied transformations are restricted to the branching points
(bifurcations) of the arterial tree only. Additionally these transformations should be
appropriate in terms of changing the tree layout and appearance without violating
the non-intersection criterion. The non-intersection criterion is defined in a way that
two vessel hulls must not intersect at any time.

The input of the algorithm is a tree graph representing the topology of the vas-
cular structure. For each vessel segment the centerline of the vessel is stored as a set
of adjacent points at an appropriate sampling distance. In practice it turned out that
diameter estimations of vessels are not reliable enough in certain cases. Therefore
for the purpose of generality the algorithm does not take diameter information into
account. However, the adaptation to this additional information would be straightfor-
ward.

Method Outline

The untangled CPR method consists of four main steps. As all untangling calcula-
tions are performed in image space the tree graph is first mapped to image space
using a stretched CPR projection. In a consecutive step a rotation of each subtree
with respect to the non-intersection criterion is performed. Afterwards the image
space is partitioned in a way that each vessel obtains those parts of the image space
which are closest in scan-line direction. Finally the image is rendered.

Tree Projection

The vascular tree is mapped to a projection plane parallel to the viewing plane. For
two successive points on a vessel path the subsequent point is rotated around an axis
defined by the previous point and the vector-of-interest. The rotation is carried out
for each point starting from the root of the vascular tree. The result is a stretched
vascular tree.

Untangling Operation

From the projected tree graph in image space the necessary transformations for each
node are calculated. This is done by recursively circumscribing the subtrees with
vessel hulls. The first pass is bottom up maintaining only the correct transformation
of the largest enclosing vessel hull. In a second pass the final transformation for each
vessel hull is accumulated top down.

Visualization of Vascular Structures 217

Image Space Partitioning

Before rendering the final image the extent of each vessel segment is cropped in a
way that no overlapping image areas remain. This process determines the starting
point and the end point of each scanline for rendering.

Rendering

Each vessel segment is rendered separately. Conceptually the vessel strip is first
extracted from the dataset using a stretched CPR mapping. Afterwards the strip is
transformed to the position defined by the untangling process. In a further step the
strip is clipped according to the space partitioning information. Finally each cropped
scanline is rendered into the image.

The Vessel Hull Primitive

The vessel hull is the basic primitive for further intersection tests. It encloses the
vessel’s centerline in image space as shown in Fig. 5. The centerline is given as a set
of points P = {P0..Pn−1}. A vessel hull is a sector of a circle. The root of a vascular
subtree defines the center point Hc. A matrix ℜHc associated with each center point
describes a rotational transformation of the subsequent tree. The points H ′

r and H ′
l

result from a conservative estimation of the leftmost and rightmost extent of the
enclosing subtree seen from the center point.

The vessel hull encloses the centerline of the vessel thus two neighboring vessels
touching each other is not prevented by this primitive. To overcome this situation the
vessel hull is enlarged by a small angle ε as depicted in Fig. 5. Depending on the
size of the inspected vessels this ε may be adjusted by the user on the fly. However
an ε ≤ 2◦ was found to be appropriate for most tested datasets. If the vessel diam-
eter is known at the extremal points Pi and Pj then ε can be easily calculated more
accurately. The points comprising the ε-tolerance are referred to as Hr and Hl .

P0

Pi

Pj

Pn-1

= Hc

H r’ H l’

Hr Hl

vr v r’
vlv l’

� �

Fig. 5. The vessel hull primitive

218 A. Kanitsar et al.

Each vessel hull primitive can be described as a tuple of V = {Hc, Hl , Hr, ℜHc}
where vl =

−−→
HcHl and vr =

−−−→
HcHr.

Putting Things Together

A rule based approach is applied for combining vessel hulls from various parts of
the vascular tree (see Fig. 6). The projected vessel tree is approximated by an enclos-
ing hierarchy of vessel hulls. Constructing the vessel hull hierarchy involves several
cases which are discussed in the following. A vessel hull created from the vessel cen-
terline is based on case 1. Neighboring vessel hulls are combined according to case 2.
An enclosing vessel hull from two consecutive vessel hulls is created in case 3. The
assembling process is done bottom up. This results in a binary tree where each node
is represented by a vessel hull circumscribing all subjacent vessel hulls.

Case 1

The center point Hc is defined by the first point P0 of the vessel segment (Fig. 6a).
The first point on the convex hull of the vessel segment in clockwise orientation is
denominated as point Pi and in counterclockwise direction as point Pj. Because of
the stretched CPR mapping from volume to image space, point Pn−1 is the point
with maximum distance from P0. Thus the radius of the vessel hull is computed
as |Pn−1 −P0|. The vectors vl and vr represent the directions from Hc to Pi and Pj

respectively. These vectors are scaled according to the radius of the vessel hull. The
tolerance angle ε is incorporated by a rotation with ℜε and ℜ−ε . Finally Hr and Hl

are computed.

Case 2

For the case of two adjacent vessel hull primitives V 1 and V 2 (see Fig. 6b) the or-
dering has to be determined. The left vessel hull with respect to Hc = H1

c = H2
c is

denominated as V l and the right one as V r. If the vessel hull primitives overlap, an
untangling angle γ is computed from vr

l and vl
r (see Fig. 9). From this angle the rota-

tional matrices ℜHr
c

and ℜHl
c

are calculated. These matrices define a transformation

of the vessel hull primitives V r and V l in a way that the primitives do not over-
lap anymore. This implies a transformation of the associated vascular subtree (see
Fig. 9).

The vectors vl and vr of the combined vessel hull are computed from the trans-
formed vectors vl

l and vr
r. The radius of the enclosing vessel hull is defined by the

maximum radius of V 1 and V 2. From this information Hl and Hr is computed. The
newly generated vessel hull encloses the non-overlapping underlying vessel hulls.

Case 3

The combination of two successive vessel hulls is straightforward. V 1 is considered
to be the predecessor of V 2 as depicted in Fig. 6c. H1

c is taken as the new center point

Visualization of Vascular Structures 219

H = H
1 2

c c

H
1

r H
1

l

H
2

r

H
2

l

P0

Pi

Pj

Pn-1

H
1

c

H
1

r H
1

l

H
2

r

H
2

l

H
2

c

Case I Case II Case III
(a) (b) (c)

Fig. 6. The three vessel hull combination cases

Hc of the enclosing vessel hull. The direction to the rightmost point of H1
r and H2

r
with respect to Hc is considered to be vr. Vector vl is calculated likewise. The radius
of the new vessel hull V is defined by the maximum distance from Hc to H1

r , H1
l , H2

r ,
and H2

l .

All treelike vascular structures can be processed using this set of rules. The recursive
algorithm finishes with a hierarchy of enclosing vessel hulls where the root hull con-
tains the entire vessel tree. A detailed description of each assembling case in abstract
notation is given in Fig. 7.

Layout Definition

The decision of the vessel hull ordering in case 2 has a significant impact on the
layout of the displayed vascular tree. Two different approaches have been investi-
gated (see Fig. 8). The adaptive layout is a left-to-right ordering based on the spatial
relations of the vascular tree according to the currently used viewing direction. This
results in less distortion at the cost of discontinuities during rotational interaction.
In contrast to that a fixed layout is independent of the viewing direction. For clinical
routine a standardized ordering of the blood vessels might be a reasonable solution.

Image Space Partitioning

Bevor rendering the final image the image space has to be partitioned into frag-
ments for each vascular structure. A principle drawing direction is associated with

220 A. Kanitsar et al.

Case 1:
Hc ← P0

vr ← Pj −Hc,{Pj|Pj, � ∈ P∧∀�(� left of
−−→
HcPj)}

vl ← Pi −Hc,{Pi|Pi, � ∈ P∧∀�(� right of
−−→
HcPi)}

rad ← |Pn−1 −P0|
Hr ← Hc + rad · (ℜε �vr/|vr|)
Hl ← Hc + rad · (ℜ−ε �vl/|vl |)

Case 2:
Hc ← H1

c
(V l ,V r) ← if (changeOrder) then (V 2,V 1) else (V 1,V 2)
ℜHr

c
← RotationMatrix(Hc, –0.5 max(�(vr

l ,v
l
r),0))

ℜHl
c

← RotationMatrix(Hc, +0.5 max(�(vr
l ,v

l
r),0))

vr ← vr
r

vl ← vl
l

rad ← max(radl ,radr)
Hr ← Hc + rad · (ℜHr �vr/|vr|)
Hl ← Hc + rad · (ℜHle f t �vle f t/|vl |)

Case 3:
Hc ← H1

c

vr ← if (H2
r left of

−−−→
HcH1

r) then H1
r −Hc else H2

r −Hc

vl ← if (H2
l right of

−−−→
HcH1

l) then H1
l −Hc else H2

l −Hc

rad ← max(rad1, |Hc −H2
r |, |Hc −H2

l |)
Hr ← Hc + rad ·vr/|vr|
Hl ← Hc + rad ·vl/|vl |

Fig. 7. Assembling of vessel hulls

0°
coronal

100°
rotated

viewing direction

fixed layout

adaptive layout

V
1

V
2

V
1

V
2

V
1

V
2

V
1

V
2

Fig. 8. Different layout definition

Visualization of Vascular Structures 221

each vessel segment. Each point of the projected vessel centerline maintains a scan-
line deduced from this principal drawing direction. These scanlines are transformed
according to the rotational matrix ℜHc (see Fig. 9). The scanlines represent those
parts of the image into which the corresponding re-sampled data from the dataset are
rendered.

�

scanlines

�!"�!"

Fig. 9. Image space partitioning

In order to avoid overlapping areas an appropriate start and endpoint for each
scanline has to be determined. A directional distance map is defined by the projected
centerlines of the vessel tree and its scanlines. In contrast to the traditional distance
map the distance metric is not defined by an Euclidean distance but by a distance
along scanlines. The result of this operation is a fragmented image space where each
vessel segment is assigned a maximal image area.

5 Results

Table 1 summarizes the introduced methods: projected CPR (Proj.), stretched CPR
(Stre.), straightened CPR (Stra.), and helical CPR (Helical.), multi-path projected
CPR (M-Proj.), multi-path stretched CPR (M-Stre.), and untangled CPR (Untang.).
The methods are grouped according to wether displaying a whole vessel tree is pos-
sible or not (Vessel tree). The criterion Spatial Perception indicates how radiologists
judge the spatial expressiveness (i.e. the easiness to map positions within the CPR to
locations in the volumetric dataset without computational aid). Wether the method
preserves true distances in close vicinity of the computed centerline is depicted by the
field Isometry. The possible occurrence of bones superimposing the tracked vessel
is expressed by Occlusions (bone). The criterion Occlusions (artery) shows wether
arteries may cross in image space and consequently overlap each other. Finally Rota-
tion needed indicates if multiple viewing directions are needed in order to investigate
the total vessel lumen.

222 A. Kanitsar et al.

Table 1. Comparison of CPR methods

Proj. Stre. Stra. Helical M-Proj. M-Stre. Untang.
Vessel tree no no no no yes yes yes
Spatial Perception high med low low high med med
Isometry no yes yes yes no yes yes
Occlusions of bones poss. no no no poss. no no
Occlusions of arteries poss. no no no poss. poss. no
Rotation needed yes yes yes no yes yes yes

5.1 Single Vessel CPR Methods

A summary of the four different CPR methods displaying single vessel segments is
presented in this Section. The comparison is performed on a dataset of the abdominal
area (see Fig. 10) as well as from peripheral arteries (see Fig. 11 and Fig. 12).

(a) (b) (c) (d) (e) (f) (g)

Fig. 10. Comparison of CPR methods: A coronal and sagittal display of a projected CPR (a,b),
stretched CPR (c,d), and straightened CPR (e,f). A helical CPR (g)

Fig. 11. Rotating stretched CPR: 0◦, 30◦, 60◦, 90◦, 120◦, 150◦, 180◦

Visualization of Vascular Structures 223

(a) (b) (c)

Fig. 12. A helical CPR with constant angle sampling (a), a straightened CPR (b), and constant
arc-length sampled helical CPR (c)

Projected CPR

In Fig. 10a,b a projected CPR from coronal and sagittal view is displayed. Projection
artifacts arise whenever the vessel is in plane with the viewing direction.

Stretched CPR

Accordingly Fig. 10c,d presents a stretched CPR. The vessel’s isometry is preserved
in the image.

Straightened CPR

In the case of a straightened CPR the vessel is straightened to a line centered in the
image space (see Figure 10e,f).

Helical CPR

The application of a helical CPR technique is presented in Fig. 10. A dataset with
more anatomical features is presented in Fig. 12. A constant angle and constant arc-
length sampled helical CPR is compared to a straightened CPR image. The white
arrows illustrate an example where the helical CPR outperforms a traditional CPR.
The small flow-channel of the stenosis is not touched by the displayed longitudinal
section of the straightened CPR and therefore not visible. However in both helical
images this flow-channel is displayed. As eccentric lesions cause repetitive patterns
in image space, the attention of the observer is immediately drawn to those areas
even if a lesion is not visible in a standard CPR display.

224 A. Kanitsar et al.

5.2 Vessel Tree CPR Methods

This section presents the application of the introduced CPR methods. Vessel trees
from a real world data set with a scanned resolution of 512× 512× 988 are visual-
ized.

Projected Multi-Path CPR

A projected multi-path CPR is presented in Fig. 13. The projected multi-path CPR
on the left provides an overview of the processed data set. A close-up of the upper
image region is shown from different viewing directions.

Fig. 13. Overview of a projected multi-path CPR at 0◦. Enlargement of the projected multi-
path CPRs at 30◦, 60◦, 90◦, 120◦, 150◦, 180◦

Stretched Multi-Path CPR

If the vessel tree is mapped into the image space according to the stretched CPR
method a combination of isometry preserving vessel segments is displayed. In Fig. 14
the corresponding area was processed using the stretched multi-path CPR method.

Fig. 14. Overview of a stretched multi-path CPR at 0◦. Enlargements of the stretched multi-
path CPRs at 30◦, 60◦, 90◦, 120◦, 150◦, 180◦

Visualization of Vascular Structures 225

Untangled CPR

A comparison of a stretched multi-path CPR and an untangled CPR is presented in
Fig. 15. In the case of a lateral view the multi-path CPR display provides hardly any
diagnostically relevant information. Many superimposed arteries obscure each other.
In comparison to that the untangled CPR still provides an unobstructed view of the
entire vascular tree. Each vessel segment is displayed in diagnostic quality.

The examination is intended to be done on just a small set of pre-computed im-
ages, the performance of the algorithm is acceptable for applications in the clinical
workflow. The displayed untangled CPR image in Fig. 15 was calculated with an
original image size of 1164×1097 pixels. The average rendering time per image of
the current Java based implementation on a PC workstation with an Intel PIII 1GHz
main processor takes 2.3 seconds.

(a) (b) (c) (d)

Fig. 15. A peripheral CTA dataset rendered from coronal and sagittal view using stretched
multi-path CPR (a, c) and untangled CPR (b, d) respectively (fixed layout)

Figure 16 presents a sequence of untangled CPR images from an abdominal CT-
angiographic dataset. A fixed layout was used. A 1D transfer function was applied
to the re-sampled data approximating the tissue color of the anatomical structures.

6 Conclusions

In this paper methods for the generation of Curved Planar Reformation (CPR) im-
ages have been presented. This method allows the visualization of entire tubular
structures with minimal modification of the original data. The main application of
this visualization method is Computed Tomography Angiography (CTA). With vol-
ume rendering even mild vessel wall calcifications may obscure the true vessel lumen

226 A. Kanitsar et al.

Fig. 16. A colored sequence of untangled CPR images from different viewing directions

(flow channel), which is the clinically relevant information. CPR displays the vessel
lumen also in the presence of vessel wall calcifications.

Four different methods (i.e., projected, stretched, straightened, and helical CPR)
have been demonstrated. A comparison of the three methods with respect to spa-
tial perception, isometry, and possible occlusions has shown that the stretched CPR
is the preferred method for many applications. With the helical CPR the dataset is
re-sampled in a spiral manner making the entire vessel visible. The motivation for
this visualization technique was not an imitation of the natural appearance of the ob-
ject but the revelation of diseased vessel segments. An explorative study has shown
that the detection of vessel abnormalities is possible from such visualizations which
literally peel-off the vessel volume.

As fewer images have to be generated and as the spatial relationships of the vas-
cular tree are well preserved, we believe that multi-path CPRs are not only very well
suited for diagnostic purposes, but also for the documentation and for communicat-
ing the extent of diseases to the treating physician. However, this method suffers from
arteries possibly crossing each other in image space and thus reduce the diagnostic
value of the image.

Small distortions of the vascular tree prevent self-intersections in the case of the
untangled CPR. The untangled CPR has significant advantages over existing multi-
path CPR techniques. This new technique produces an unobscured display of a vas-
cular tree, independent of the viewing direction. Small rotations around the branch-
ing points of a vessel tree eliminate occlusions. Therefore the size of the introduced
distortion is kept small.

Even though the use of image space is not optimal, the main requirement of
unobscured display of vessels from any viewing direction is fulfilled. In addition,

Visualization of Vascular Structures 227

untangled CPR preserves isometry which is an important requirement for vascular
lesion assessment. The potential for clinical application of this technique is obvious.
The untangled CPR provides a more efficient way to assess any complex arterial trees
for the presence and extent of vascular disease. Clinical validity and applicability to
other vascular territories are currently investigated.

Acknowledgements

The work presented in this publication has been funded by the ADAPT project (FFF-
804544). ADAPT is supported by Tiani Medgraph, Vienna (http://www.tiani.com), and
the Forschungsförderungsfonds für die gewerbliche Wirtschaft, Austria.
See http://www.cg.tuwien.ac.at/research/vis/adapt for further informa-
tion on this project. qu

References

1. S. Achenbach, W. Moshage, D. Ropers, and K. Bachmann. Curved Multiplanar Recon-
structions for the Evaluation of Contrast-Enhanced Electron-Beam CT of the Coronary
Arteries. In Am. J. Roentgenol., pp. 895–899, 1998.

2. K. Addis, K. Hopper, T. Iyriboz, Y. Liu, S. Wise, C. Kasales, J. Blebea, and D. Mauger.
CT Angiography: In Vitro Comparison of Five Reconstruction Methods. In Am. J.
Roentgenol., pp. 177:1171–1176, 2001.

3. B. Avants and J. Williams. An Adaptive Minimal Path Generation Technique for Vessel
Tracking in CTA/CE-MRA Volume Images. In MICCAI 2001, pp. 707–716, 2000.

4. P. Felkel, A. Fuhrmann, A. Kanitsar, and R. Wegenkittl. Surface Reconstruction Of The
Branching Vessels For Augmented Reality Aided Surgery. In BIOSIGNAL 2002, pp.
252–254, June 2002.

5. H. Hahn, B. Preim, D. Selle, and H.-O. Peitgen. Visualization and Interaction Techniques
for the Exploration of Vascular Structures. In IEEE Visualization 2001, pp. 395–402.
ACM, October 2001.

6. S. He, R. Dai, B. Lu, C. Cao, H. Bai, and B. Jing. Medial Axis Reformation: A New
Visualization Method for CT Angiography. Academic Radiology, 8:726–733, 2001.

7. A. Kanitsar, D. Fleischmann, R. Wegenkittl, P. Felkel, and M. E. Gröller. CPR - Curved
Planar Reformation. In IEEE Visualization 2002, pp. 37–44, October 2002.

8. A. Kanitsar, R. Wegenkittl, P. Felkel, D. Fleischmann, D. Sandner, and E. Gröller. Com-
puted Tomography Angiography: A Case Study of Peripheral Vessel Investigation. In
IEEE Visualization 2001, pp. 477–480, October 2001.

9. A. Kanitsar, R. Wegenkittl, D. Fleischmann, and M. E. Gröller. Advanced Curved Planar
Reformation: Flattening of Vascular Structures. In IEEE Visualization 2003, pp. 43–50,
October 2003.

10. F. Klok. Two Moving Coordinate Frames for Sweeping along a 3D Trajectory. In Com-
puter Aided Geometry Design, pp. 3:217–229, 1986.

11. A. Koechl, A. Kanitsar, F. Lomoschitz, E. Groeller, and D. Fleischmann. Comprehensive
Assessment of Peripheral Arteries using Multi-path Curved Planar Reformation of CTA
Datasets. In Europ. Rad., volume 13, pp. 268–269, 2003.

228 A. Kanitsar et al.

12. G. D. Rubin, A. Schmidt, L. Logan, and M. Sofilos. Multi-Detector Row CT Angiography
of Lower Extremity Arterial Inflow and Runoff: Initial Experience. In Radiology 2001,
pp. 146–158, 2001.

13. O. Wink, W. Niessen, and M. Viergever. Fast Delineation and Visualization of Vessels in
3-d Angiographic Images. IEEE Transactions on Medical Imaging, 19:337–346, 2000.

14. C. Zahlten, H. Juergens, and H.-O. Peitgen. Reconstruction of Branching Blood Ves-
sels from CT-Data. In Eurographics Workshop on Visualization in Scientific Computing,
pp. 161–168, 1994.

Part III

Vector Field Visualization

Clifford Convolution and Pattern Matching
on Irregular Grids

Julia Ebling and Gerik Scheuermann

Department of Computer Science
University of Leipzig
PF 920
D-04109 Leipzig
{ebling|scheuer}@informatik.uni-leipzig.de

Summary. Flow features are the essence of fluid flow data and their extraction and analysis
is a major goal of most flow visualizations. Unfortunately, most techniques are sensitive to
noise and limited to a certain class of features like vortices. Excellent general feature detec-
tion methods for scalar fields can be found in image processing. Many of these methods use
convolution filters. In an earlier paper, we showed that the convolution operator can be ex-
tended to vector fields using Clifford algebra, but the approach is limited to uniform grids. In
this article, we extend this approach to irregular grids by examining three different methods.
Results on several CFD data sets clearly favor a local resampling of the flow field.

1 Introduction and Related Work

Most flow simulations and measurements want to study overall structure and specific
features, i.e. pattern of streamlines with conspicuous behavior. Flow visualization
intends to help the user to find and analyze features and structures. Direct visual-
ization methods like hedgehogs do not reveal features like vortices, sinks, sources,
separation and attachment. Even streamline based methods may lead to missing fea-
tures, especially without knowing the right starting points. Texture based methods
like LIC [1, 12] do a quite good job in 2D, but a convincing solution in 3D is still
missing. Topology [5, 15, 16], on the other hand, is directed to the overall structure
since not all features are easily connected to it. Furthermore, the presentation of 3D
topology produces visibility problems.

Thus, an automatic approach for feature extraction and visualization is needed,
allowing the detection of every kind of important pattern in flows. Streamlines can
be used in a second step to study the features. Earlier attempts usually try to give
an analytic model of a feature and create an algorithm for feature detection from
there. Besides the limitations of the model, most approaches have severe robustness
problems.

In an earlier paper [2], we proposed to transfer image processing methods, es-
pecially convolution filters, to flow feature detection. Unfortunately, the method was

232 J. Ebling and G. Scheuermann

Fig. 1. (Top) The 3D delta wing data set. This is a study of vortex break down. The pressure
on the surface is color coded. The results of the algorithm of Sujudi-Haimes basically depict
two vortices. Some streamlines are drawn to enhance the understanding of the flow. (Bottom)
The flattened surface of the delta wing with the wall shear stress vectors. (Bottom left) Pattern
matching of a 2D vector field with a 5×5 divergence filter mask. Adaptive color coding of the
results. Light areas corresponds to the highest similarity and to convergence and dark areas to
high negative similarity values and divergence. (Bottom right) LIC of the original vector field

limited to uniform grids. In practice, many data sets are defined on unstructured
grids. Thus the grid can be dense in interesting regions where the flow behavior is
complex and sparse in regions where the flow is more simple. Thus the size of the
data sets is reduced considerably in comparison to those on regular or uniform grids
while still fulfilling the sampling theorem which states how often a certain frequency
has to be sampled in order to allow a complete reconstruction of the signal.

2 Related Work

Pagendarm and Walters [11] and Walsum et al. [17] were the first to shape the term
“features” for flow fields. A feature is simply a region of interest in the dataset. It
can be extracted using a feature criterion evaluation function. This function can be

Clifford Convolution and Pattern Matching on Irregular Grids 233

a logical combination of several scalar thresholds using boolean algebra. Often, the
scalar thresholds are not only applied to the data values but to derived values as well.

An example for model based feature extraction is due to Kenwright [10], for sep-
aration and attachment line detection. These lines show where the flow attaches itself
to or separates from a surface. Kenwright gives two algorithms based on eigenvector
analysis of the velocity gradient tensor to extract separation and attachment lines.

The most prominent feature class in flows are vortices. There are region and
line based vortex definitions and corresponding algorithms in the literature. A good
overview can be found in the thesis of Roth [13].

Image processing [8, 9] provides a lot of robust and useful tools for feature de-
tection. It seems to be a good idea to transfer them to flow visualization. The first
idea regarding image processing on vector fields is to simply treat a vector field as
several scalar fields. Thus, the Fourier transformation can be used. Granlund and
Knutson [3] have investigated this approach in 2D. They define lines and edges by a
simple neighborhood. This means that the neighborhood can be modeled by a func-
tion that varies only in one direction. This function is called simple function. When
the points are in a simple neighborhood, they can estimate local orientation, sym-
metries and curvature. They use these methods to extract texture borders that can be
described as a sudden change in a feature vector descriptor field.

Another approach is to define a multiplication of vectors and thus convey the
convolution to vector fields. Heiberg et al. [4] define convolution on vector fields
with the scalar product of two vectors:

(h∗ f)s(x) =
∫

IRd
< h(x′), f(x−x′) > dx′

where sn is the filter response, f is the normalized vector field and hn the filter mask
with direction n. This convolution is referred to as scalar convolution in the follow-
ing. As the scalar product is used, it gives an approximation of the cosine of the angle
between the structure in the vector field and the direction of the filter mask. Thus it
results in a similarity measure.

Furthermore, Heiberg et al. [4] give an algorithm to compute a similarity measure
in 3D independent of the direction of the filters. The vector field is normalized and the
filter mask weighted with a rotational symmetric function. The filter mask is rotated
in six directions evenly distributed over a hemisphere. The six rotated filters form a
filter set. Next, the convolutions of the six filters and the field are computed. Then,
with help of a tensor, direction and similarity are calculated out of the squared filter
responses and the directions of the six filter masks. The drawback of this algorithm
is that it assumes the masks to describe a simple neighborhood. Furthermore, the
filter directions are only within one hemisphere. Due to annihilation effects, directed
patterns are only recognized well when they are also directed in this hemisphere. The
algorithm works well with straight vortices but a structure like the one in Fig. 2 is
not recognized when rotated disadvantageous.

Clifford convolution is an extension of the classical convolution from image
processing to multivector fields. A multivector in 3D consists of the sum of a scalar,
a 3D vector, a 3D bivector and a trivector. Scalar and vector are as usual. Bivectors

234 J. Ebling and G. Scheuermann

Fig. 2. A convergent flow. The algorithm of Heiberg et al. [4] does not recognize this structure
if it is rotated disadvantageous

can be identified with a planar direction and a limited oriented area. The unit trivec-
tor gives the volume spanned by three orthogonal unit vectors building a right hand
system (Fig. 3). Thus, Clifford convolution is a unified notation for the convolution
of scalar, vector and multivector valued field and filter. That means scalar filters like
gradient or smoothing filters from image processing can be applied just like vector
filters for pattern matching.

Convolution and correlation are closely related. One can be computed from the
other by just permuting the mask accordingly. Thus, correlation between vector fields
can be computed for pattern matching. As Clifford convolution is based on the Clif-
ford product, convolution of vector valued field and mask results in an approxima-
tion of the relative geometric position between the structures in the filter mask and
the vector field. This is a property which will be used for pattern matching. The idea
is to rotate the mask in the direction of the structure in the field which is computed
from the results of a Clifford convolution. A scalar convolution of the rotated mask
and the vector field is computed as a similarity measure. In practice, the algorithm is
a little bit more difficult.

So far the Clifford convolution and the other approaches for transferring image
processing to vector fields have only been defined for continuous or uniform grids
and can not be directly transferred to unstructured grids. In this paper, we discuss
and compare several approaches for the extension of Clifford convolution to irregular

Fig. 3. Unit vectors, bivectors and trivector in G3

Clifford Convolution and Pattern Matching on Irregular Grids 235

grids. Thus, the pattern matching algorithm can be applied to irregular grids, too. An
example is pattern matching on a flattened surface of the delta wing in Fig. 1.

The extensions to irregular grids are all based on some sort of local resampling.
First, the mask is aligned to a grid point and scaled accordingly to the local grid.
The first idea is to resample the vector field at the nodes of the aligned mask. For
acceleration, we also discuss some different methods of resampling the mask. We
resample at all points of the vector field which lie in the box defined by the aligned
and scaled mask. Another approach which has been tried is to use only those points
which are in a n-neighborhood of the point where the convolution is computed.

3 Clifford Algebra

Clifford algebra [6, 7, 15] extends the classical description of an Euclidean n-space,
which is a real n-dimensional vector space with scalar product, to a real algebra.
Thus, a multiplication of vectors is defined. Furthermore, a geometric interpretation
of the product of two vectors is given. This product contains sine and cosine of the
angle between the two vectors and the plane in which the angle is measured. Rotation
of vectors can be easily described and calculated within Clifford algebra, too [6]. The
Clifford product is used for the definition of the Clifford convolution.

3.1 Clifford Algebra in 3D

For the 3-dimensional Euclidean vector space E3, we get a 8-dimensional IR-algebra
G3 with the basis 1,e1,e2,e3,e1e2,e2e3,e3e1,e1e2e3 as a real vector space. The el-
ements of the algebra are called multivectors. The multiplication of multivectors is
defined as associative, bilinear and by the equations

1e j = e j, j = 1,2,3

e je j = 1, j = 1,2,3

e jek = −eke j, j,k = 1,2,3, j �= k

Thus, a multiplication of vectors is described, too. The usual vectors (x,y,z) ∈ IR3

are identified with
xe1 + ye2 + ze3 ∈ E3 ⊂ G3.

An arbitrary multivector A can be written as

A = α +a+ I3(b+β)

with α,β ∈ IR, a,b ∈ E3, I3 = e1e2e3, (I3)2 = −1. α is the scalar part, a the vector,
I3b the bivector and I3β the trivector.

The grade projectors <> j: G3 → G3 are the maps

< A >0= α, < A >1= a,

236 J. Ebling and G. Scheuermann

< A >2= I3b, < A >3= I3β .

The Clifford multiplication of two vectors a,b ∈ E3 results in

ab =< a,b > +a∧b,

where <,> is the inner product and ∧ the outer product. Furthermore, we have

< ab >0=< a,b >= ‖a‖‖b‖cosω

‖< ab >2‖ = ‖a∧b‖ = ‖a‖‖b‖sinω

where ω is the angle between a and b. < ab >2 corresponds to the the plane through
a and b as it is the corresponding bivector.

The 2D Clifford algebra is defined analog, see [6, 7, 15].

3.2 Integral and Derivative

Let F be a multivector valued function of a vector variable x defined on some region
of the Euclidean space IRd . This function can also be called field. If the function is
only scalar or vector valued, we will call it scalar or vector field, but we will always
regard it as a special multivector valued function within Clifford algebra.

The Riemann integral of a multivector valued function F is defined as∫
IRd

F(x)|dx| = lim
|∆x j | → 0

n → ∞

n

∑
i=1

F(x j)|∆x j|.

This integral is grade preserving and can be discretized into sums using quadrature
formulas. The directional derivative of F in direction r is

Fr(x) = lim
s→0

[F(x+ sr)−F(x)]
h

with s ∈ IR. With the gradient

∇ =
d

∑
j=1

e j
∂

∂x j
,

the total derivative of F can be defined as

∇F(x) =
d

∑
j=1

e jFe j(x).

Curl and divergence of a vector valued function f can be computed as:

curl f = ∇∧ f =
(∇f− f∇)

2

div f =< ∇, f >=
(∇f+ f∇)

2

Clifford Convolution and Pattern Matching on Irregular Grids 237

4 Clifford Convolution

Clifford convolution gives a unified notation for the convolution of scalar, vector and
multivector valued field and mask. It is an extension of the classical convolution on
scalar fields.

Clifford multiplication can be regarded as a correlation of a point in the vector
field with a 1 × 1 filter mask. Thus, Clifford correlation with larger masks is an
averaging of the geometric relations of the single vectors. The direction of a structure
in the field can be computed out of this correlation and the direction of the filter
mask. This property is used for the pattern matching presented in this paper. As
every correlation can be described by a convolution with a suitably adjusted filter
mask, we will often interchange convolution and correlation. Figure 4 presents some
typical vector masks.

Fig. 4. Some filter masks. (Top left) 2D convergence; (top right) 2D rotation; (bottom left)
rotation in one coordinate plane in 3D; (bottom right) potential vortex in 3D

4.1 Convolution in Scalar Fields

For a continuous signal f : IRd → C, the convolution with the filter h : IRd → C is
defined by

(h∗ f)(x) =
∫

IRd
h(x′) f (x−x′)dx′.

The spatial correlation is defined by

(h� f)(x) =
∫

IRd
h(x′) f (x+x′)dx′.

238 J. Ebling and G. Scheuermann

Thus, it is just a convolution with a filter that has been reflected at its center.
Every linear and shift invariant filter (LSI filter) can be described by a convolu-

tion with a filter mask. A lot of filters for smoothing images and for edge detection
are LSI filter. Thus, convolution is an important operation in image processing [8, 9].

4.2 Convolution in Vector Fields

Now let F be a multivector field and H a multivector valued filter. The Clifford con-
volution is defined as

(H∗F)(x) =
∫

IRd
H(x′)F(x−x′)|dx′|

using the Clifford product of multivectors. The spatial Clifford correlation is defined
analog:

(H�F)(x) =
∫

IRd
H(x′)F(x+x′)|dx′|

For discrete multivector fields, convolution and correlation have to be discretized.
For 3D uniform grids, the discretizations are

(H∗F) j,k,l =
r

∑
s=−r

r

∑
t=−r

r

∑
u=−r

Hs,t,uF j−s,k−t,l−u

and

(H�F) j,k,l =
r

∑
s=−r

r

∑
t=−r

r

∑
u=−r

Hs,t,uF j+s,k+t,l+u

with j,k, l,s, t,u ∈ Z. r3 is the dimension of the grid of the filter mask and the (j,k, l)
are grid nodes. The Clifford convolution is an extension of the scalar convolution of
Heiberg et al. [4] as

(h∗ f)s =< (h∗ f) >0

for vector valued h and f.
The convolution has to be computed at every point of the grid. But at the border

of the vector field, the convolution needs values outside the vector field. So, similar
to image processing, there is the problem of boundary values. The solutions for this
problem are the same as in image processing with all their advantages and disadvan-
tages [8, 9]. The values can be chosen as follows:

1. Zero. Thus, artificial edges at the border are created.
2. Extrapolated. At the simplest case, one can take the values at the boundary. All

extrapolations lay too much stress on the border values.
3. Cyclic convolution. This is much dependent on the chosen display window as

most images and vector fields are not periodic as assumed here.
4. Window function. The values are gradually reduced to zero near the boundary.

Some values at the border are lost but otherwise this is the preferred approach in
image processing.

Clifford Convolution and Pattern Matching on Irregular Grids 239

4.3 Vector Derivative as Convolution

In image processing, it is well known that the derivative operation is a convolution.
The vector derivative ∂ as described in Sect. 3.2 can be discretized using many dif-
ferent approaches. One example are central differences. This is discussed now in
relation to convolution and correlation.

Discretizing the derivative using central differences yields

∂ f =
d

∑
j=1

e jfe j(x) =
d

∑
j=1

e j
f(x+ se j)− f(x− se j)

2h
.

When f is defined on a uniform 2D grid, it can be written as f(x) = fm,n at the grid
nodes. Setting s = 1 results in

∂ f =
e1fm+1,n − e1fm−1,n + e2fm,n+1 − e2fm,n−1

2
.

Now the masks for the derivative operation using central differences can be com-
puted. They are shown in Fig. 5 for convolution in 2D and 3D and correlation in 2D.
As

curl f = ∇∧ f

div f =< ∇, f >,

we can extract curl and divergence out of the results of the computation of the deriv-
ative using Clifford convolution. We get:

curl f =< (∇∗ f) >2

div f =< (∇∗ f) >0

Thus, the divergence is the scalar part and the curl the bivector part of the result of
the derivative computation. This curl operator gives the bivector describing the plane
of strongest rotation. The classical curl operator gives the corresponding normal
vector. The computation of the divergence becomes clear when looking at the central
difference derivative masks as they depict divergence of local flow for correlation
and convolution, respectively.

Fig. 5. Central difference derivative masks. (Left) mask for 2D convolution; (middle) mask
for 2D correlation; (right) mask for 3D convolution

240 J. Ebling and G. Scheuermann

4.4 Pattern Matching in Vector Fields

In flow visualization, it is important to find vortices as they use a lot of energy. Some-
times, many vortices are desired if for example two gases shall be mixed or if lift of
an airplane is to be supported. Sometimes, vortices are not welcome as they slow the
flow and put a lot of stress on the surrounding material. Other interesting features
are shock waves, separation lines and attachment lines. Regions with divergence and
convergence in the flow are of interest, too. Features like these can be described by
small filter masks. Thus, they can be found with pattern matching based on Clifford
correlation as described here. Some 3D vector filter masks are given in Fig. 2 and 4.

The similarity measure should be independent of the direction of the structure
within the vector field and the mask. Otherwise, one has to rotate the filter mask
many times and compute the similarities for all the rotated masks. In a last step, it
would be necessary to compute the maximum similarity and take the corresponding
direction as the direction of the structure. The Clifford correlation gives the direction
of the structure in the field directly.

In a first step, the vector field is normalized. As streamlines are everywhere tan-
gent to the vector field, one can regard pattern matching of a normalized vector field
as pattern matching of streamlines. The normalization is not necessary for the algo-
rithm itself, it just makes the computation a little easier to understand. If field and
mask are not normalized, one has to regard the different vector length and account
for them in the computation of the angles. Furthermore, the length of the vectors can
be dominant in the correlation and thus pattern matching becomes more difficult.

Clifford correlation gives an approximation of the relative geometric position of
the structures in field and mask. Field and mask being normalized, we get:

1. (2D)
a) < (h∗ f)(x) >0≈ γ cosαx
b) < (h∗ f)(x) >2≈ γ sinαx

2. (3D)
a) < (h∗ f)(x) >0≈ γ cosαx
b) ‖< (h∗ f)(x) >2‖ ≈ γ sinαx
c) < (h∗ f)(x) >2 is the normal vector of the plane of the angle αx

αx is the angle between filter mask h and structure in field f at point x. γ is the
absolute value of the mask and gained by summing the absolute values of all entries
of the mask. Now the direction of the structure can be computed. The mask is then
rotated in this direction and one scalar convolution is computed for the similarity.
When filter mask and structure are equal, the similarity is 1.

The equations are only approximations. First, sine and cosine of the angle are
summed in the convolution instead of the angle itself. The approximation of the angle
between the directions of mask and structure gets more imprecise when the angle is
bigger. Then, in the correlation the approximations for the angle are summed and
thus they can annihilate each other. This is demonstrated in Fig. 6. Thus it is not
enough to compute one Clifford convolution for the approximation of the direction
of the structure.

Clifford Convolution and Pattern Matching on Irregular Grids 241

Fig. 6. Correlation of the mask (left) and a rotated copy (middle) results in a zero multivector
as the approximations for the angles annihilate each other (right)

So, additional masks with different directions have to be used. We decided to
use 3 mask directions in 2D and 6 in 3D in order to get a stable and robust pattern
matching algorithm. Further detail of the algorithm can be found in [2].

5 Convolution on Irregular Grids

Most often data sets from flow visualization are defined on irregular grids. The cell
sizes differ greatly in size as they are very small in regions of interest and pretty large
in regions where the flow is mostly homogeneous. This is illustrated in Fig. 7. The
Clifford convolution described so far only works on vector fields defined on uniform
grids. Simple regridding of irregular grids results in a high number of grid points and
oversampling in most parts of the vector field.

Fig. 7. Grid of the flattened surface of the delta wing

242 J. Ebling and G. Scheuermann

Here we discuss several approaches of local resampling of field and mask in order
to extend Clifford convolution and correlation to irregular grids.

5.1 Scaling the Mask

As the cells differ greatly in size, the mask is scaled according to some measure of the
cell sizes of the cells surrounding grid point P. Coping with all kinds of different cell
types like tetrahedron, prism, cube and hexahedron, we decided to take the longest
edge connected to P for the scaling. Let s be the length of this edge. Then the mask
defined on a uniform grid is scaled with s. That means that every edge of the mask
has length s now. Then the mask can be used for the convolution at P.

The techniques for Clifford convolution on irregular grids based on local resam-
pling of field or mask all use this scaling. Therefore we will not mention it every
time. From now on we assume that the mask is scaled properly. Some vector field
might require another scaling measure like the shortest edge length or an averaged
length. All these measures will have some degenerated fields where they will not
work well.

Before we discuss the actual sampling strategies, let’s have a look at how this
scaling affects the pattern matching. As the mask is scaled differently at grid points
with different maximal edge length s, features of different scales are found with the
same mask (Fig. 8).

If this is not intended, some multiscale approach has to be applied to the field
first. When the cells all have a similar size it assures that the mask is scaled only in
a certain range and thus only detects features of this scale. A multiscale approach
results in a set of vector fields of different scales. Using this approach means that
only a small mask has to be used on the fields to get features of the corresponding
scales. This is advantageous as it is not computationally efficient to use large masks.
Furthermore, an equal mask size can be chosen once for all positions, accelerating the
computation and easing the interpretation. Mostly the scaling poses no disadvantage
as the cells are already scaled to the size of the feature that is expected.

Fig. 8. Swirling jet entering a fluid at rest, 3D simulation. Pattern matching with a 5×5×5
rotational mask. As the cells differ greatly in size, features of different scales are detected

Clifford Convolution and Pattern Matching on Irregular Grids 243

5.2 Local Resampling

Local Resampling of the Field

The first idea is to “lay” the mask down on the field, the center of the mask aligned
with the grid point P to be convolved. Then the field is sampled on those points where
the grid points of the mask “lie” on the field. These values are then multiplied with
the corresponding values of the mask. This approach is analog for correlation.

Local Resampling of the Mask I

Most of the computational cost of the previous approach comes from point location
for the sampling. This leads to the next idea. First, the mask is permuted according to
the conversion from convolution to correlation. Then the field is “laid” on the mask.
The center of the mask is again aligned with the grid point P to be convolved. The
vector field is cut off at the border of the mask. Then the mask is sampled on those
points where the grid points of the vector field “lie” on the mask. The sampled values
are then multiplied with the values of the vector field that “lie” on the same spot.

This time the computation is even more expensive, as all grid points of the vector
field in a bounding box have to be found.

Local Resampling of the Mask II

To avoid this overhead, we tried to use only the points in the n-neighborhood where
(2n + 1)2 or (2n + 1)3 is the size of the mask. Again the mask is permuted first.
Then, the n-neighborhood of P is computed, that is the set of all grid points which
are connected to P by n edges at most. All points of the n-neighborhood are projected
on the mask, the mask is sampled there and the sampled values are multiplied with
the values of the field.

Another possibility is to use only the 1-neighborhood. This corresponds to con-
volution of a mask with size 32 or 33.

Fig. 9. (Left) Local resampling of the field; (middle) local resampling of the mask; (right)
local resampling of the mask, only 1-neigbourhood

244 J. Ebling and G. Scheuermann

5.3 Pattern Matching on Arbitrary Surfaces

The algorithms described so far do not work for arbitrary surfaces. The 2D algorithm
assumes a planar grid and the 3D algorithm only works for grids describing volumes.
When the surface can be projected onto a planar grid like the delta wing in Fig. 1,
the 2D algorithm can be applied. It is also possible to project the surface only locally
onto a planar grid, which is a lesser constrain. Another approach is to use geodesics
on the surface to determine the resampling locations of the mask. But geodesics are
not always distinct and a small error can result in quite a different position. However,
regardless of the approach, the mask has to be assumed small enough and the field
well behaved. Otherwise, the mask can be distorted so much at different positions
that the interpretation of the matching results is lost.

6 Results

We have chosen two test data sets from real applications. The first data set is a turbu-
lent swirling jet entering a fluid at rest (Fig. 8). The simulation considers a cylinder.
Since a lot of small and large scale vortices are present in the flow, a discrete numer-
ical simulation (DNS) using a higher order finite difference scheme is used to solve
the incompressible Navier-Stokes equations. A planar cut along the axis of the cylin-
der is used as domain and is discretized by a 124×101 rectilinear grid with smaller
rectangles towards the axis of the cylinder. Results of using the different approaches
of extending Clifford convolution to irregular grids on this dataset are shown in Fig.
10. This is only an academic example as the grid is regular. The effects of the de-
scribed scaling method are shown for the original irregular 3D data set in Fig. 8.
There, matching based on Clifford convolution with a 5×5×5 rotational mask (Fig.
4, bottom left) is computed and the results are visualized using marching cubes. The
different cell sizes result in the detection of features of different sizes when matching.

The next data set is the delta wing (Fig. 1, 11). This is a vortex break down study.
We took the surface of the delta wing and flattened it to get a planar 2D data set. This
flattened delta wing is defined on an irregular grid with 25800 grid points and 49898
cells.

On uniform grids, all approaches reduce to the Clifford convolution as defined
before. On irregular grids, the approach using the n-neighborhood is the fastest one.
Local resampling of the field corresponds to using zero values outside the vector
field in the convolution. Using resampling of the mask seems to result in no bound-
ary problem as no values outside the field have to be used. But it corresponds to
extending the vector field in an ideal way. Pattern matching thus assumes that the
pattern are ideal outside the field and the similarity values near the border are often
too high. This can be seen in Fig. 10.

Looking at Fig. 11, the images of the results of resampling the mask seem to be
splotchy. This has a couple of reasons. First, the data set has some cells of size zero
which distorts the results of the convolution. This is an extreme example of distor-
tion which different cell sizes introduce into the convolution. Using n-neighborhood

Clifford Convolution and Pattern Matching on Irregular Grids 245

Fig. 10. Pattern matching of a 2D vector field with a 5×5 rotation filter mask. The grid is regu-
lar. The similarity values are normalized. Light areas corresponds to the highest similarity and
to a righthanded rotation in the field and dark areas to a lefthanded rotation, as a righthanded
rotation mask is changed into a lefthanded by multiplication with -1. (Top left) local resam-
pling of the field; (top right) local resampling of the mask; (bottom left) n-neighborhood;
(bottom right) 1-neighborhood

or 1-neighborhood, the distortions get worse. Cells which have large aspect ratios
cause the same problem. Another reason for the differences is the resampling process
which is based on interpolation of the grid points. Thus the first two approaches show
different results although in the continuous case they would have exactly the same
results. Note that using the convergence mask corresponds to computing a derivative.
The errors seen in Fig. 11 are typical for a discrete derivative computation.

The approach based on the n-neighborhood is sensitive in terms of noise. We
recommend the first approach of local resampling of the field. This is not the fastest
but the most robust approach. Further analysis of the resampling strategies should be
done in frequency domain with the help of a Fourier transformation on multivector
fields. Then, the resampling could also be done in frequency domain.

In Tables 1 and 2, we give the timings of Clifford convolution and pattern match-
ing on two different data sets. The swirling jet is defined on a regular grid, thus
local resampling of the field is faster than local resampling of the mask as the point

246 J. Ebling and G. Scheuermann

Fig. 11. Regions of convergence (light areas) and divergence (dark areas) on the wing. Adap-
tive color coding of the results of pattern matching with a 5× 5 convergence mask. The grid
is irregular. (Top left) local resampling of the field; (top right) local resampling of the mask;
(bottom left) n-neighborhood; (bottom left) 1-neighborhood

Table 1. Timings for computing one convolution on two data sets on a 1,3 Ghz computer

dataset size of resampling resampling n-neigh-
mask of field of mask borhood

swirl. jet 3×3 4 s 75 s 5 s
(12524 p) 5×5 6 s 314 s 24 s

delta wing 3×3 33 s 88 s 10 s
(25800 p) 5×5 90 s 390 s 40 s

location is not as expensive as on irregular grids. The delta wing is defined on an
irregular grid. Both are 2D datasets.

Clifford Convolution and Pattern Matching on Irregular Grids 247

Table 2. Timings for complete pattern matching on the same data sets as in Table 1

dataset size of resampling resampling n-neigh-
mask of field of mask borhood

swirl. jet 3×3 8 s 88 s 10 s
(12524 p) 5×5 16 s 352 s 40 s

delta wing 3×3 65 s 103 s 21 s
(25800 p) 5×5 183 s 441 s 66 s

7 Conclusion and Future Work

We have presented several approaches for local resampling of field or mask in order
to extend Clifford convolution and pattern matching to datasets defined on irregular
grids. The approach based on local resampling of the field is robust and works well.

The other approaches of accelerating the computation do not work well on irregu-
lar grids. Especially the results of the fastest algorithm resampling the mask at points
of the field in a n-neighborhood were quite distorted. This approach was sensitive to
noise, too. Further analysis will need the definition of a Fourier transformation on
multivector fields. There, new strategies of extending the convolution may become
obvious, too.

Future work will therefore include the definition of a Fourier transformation on
multivector fields. Then, the local resampling will be evaluated again in frequency
domain. Approaches for resampling with the help of a Fourier transformation will be
discussed, too.

Scale spaces and multiresolution pyramids will be investigated in more detail
with regard to convolution and pattern matching operations. There, the definition of
a Fourier transformation would also be an asset. The acceleration of the presented
method is clearly another topic for further work, too.

Acknowledgments

First of all, we like to thank the members of the FAnToM development team at Uni-
versity of Kaiserslautern, especially Tom Bobach, Christoph Garth, David Gruys,
Kai Hergenröther, Max Langbein and Xavier Tricoche, for their help with program-
ming and production of the pictures. We further acknowledge the fruitful discussions
in the whole computer graphics group at Kaiserslautern. We thank Prof. Kollmann,
MAE department, University of California at Davis, for producing the swirling jet
data set. Further thanks go to Markus Rütten, DLR Göttingen, for providing the delta
wing data set.

References

1. Cabral, B., Leedom, L.C.: Imaging Vector Fields Using Line Integral Convolution. Pro-
ceedings of SIGGRAPH ’93. New York, 263–270 (1993).

248 J. Ebling and G. Scheuermann

2. Ebling, J., Scheuermann, G.: Clifford Convolution And Pattern Matching On Vector
Fields. Proceedings of IEEE Visualization ’03. IEEE Computer Society, Los Alamitos,
CA, 193–200 (2003).

3. Granlund G.H., Knutsson, H.: Signal Processing For Computer Vision. Kluwer Academic
Publishers, Dordrecht, The Netherlands (1995)

4. Heiberg, E.B., Ebbers, T., Wigstroem, L., Karlsson, M.: Three Dimensional Flow Charac-
terization Using Vector Pattern Matching. IEEE Transactions on Visualization and Com-
puter Graphics, 9 (3), IEEE Computer Society Press, Los Alamitos CA, 313–319 (2003)

5. Helman, J.L., Hesselink, L.: Visualizing vector field topology in fluid flows. IEEE Com-
puter Graphics and Applications, 11 (3), 36–46 (1991)

6. Hestenes, D.: New Foundations For Classical Mechanics. Kluwer Academic Publishers,
Dordrecht, The Netherlands (1986)

7. Hestenes, D.: Clifford Algebra to Geometric Calculus. Kluwer Academic Publishers, Dor-
drecht, The Netherlands (1997)

8. Jain, A.K.: Fundamentals Of Digital Image Processing. Prentice Hall, Englewoods Cliffs,
NJ, USA (1989)

9. Jaehne, B.: Digital Image Processing. Springer Verlag, Berlin, Germany (2002)
10. Kenwright, D.N., Henze, C., Levit, C.: Feature Extraction Of Separation And Attatchment

Lines. IEEE Transactions on Visualization and Computer Graphics, 5 (2), IEEE Computer
Society Press, Los Alamitos CA, 151–158 (1999)

11. Pagendarm, H.G., Walter, B.: Feature Detection from Vector Quantities in a Numerically
Simulated Hypersonic Flow Field in Combination with Experimental Flow Visualization.
Proceedings of IEEE Visualization ’94. IEEE Computer Society Press, Los Alamitos, CA,
117–123 (1994)

12. Post, F.H., Vrolijk, B., Hauser, H., Laramee, R.S., Doleisch, H.: Feature Extraction And
Visualization Of Flow Fields. Eurographics 2002 State of the Art Reports, The Euro-
graphics Association, Saarbrücken, Germany, 69–100 (2002)

13. Roth, M.: Automatic Extraction Of Vortex Core Lines And Other Line Type Features For
Scientific Visualization. PhD. Thesis, ETH, Hartung-Gorre Verlag Konstanz (2000)

14. Scheuermann, G., Hagen, H., Krueger, H., Menzel, M., Rockwood, A.: Visualization of
Higher Order Singularities in Vector Fields. Proceedings of IEEE Visualization, IEEE
Computer Society Press, Los Alamitos, CA, 67–74 (1997)

15. Scheuermann, G.: Topological Vector Field Visualization With Clifford Algebra. PhD.
Thesis, University of Kaiserslautern, Germany (1999)

16. Tricoche, X., Scheuermann, G. Hagen, H.: A Topology Simplification Method For 2D
Vector Fields. Proceedings of IEEE Visualization 2000. IEEE Computer Society Press,
Los Alamitos CA, 359–366 (2000)

17. Van Walsum, T. Post, F.H., Silver, D., Post, F.J.: Feature Extraction And Iconic Visualiza-
tion. IEEE Transactions on Visualization and Computer Graphics, 2 (2). IEEE Computer
Society Press, Los Alamitos CA, 151–158 (1996)

Fast and Robust Extraction
of Separation Line Features

Xavier Tricoche1, Christoph Garth2, and Gerik Scheuermann3

1 Scientific Computing and Imaging Institute, University of Utah
tricoche@sci.utah.edu

2 Department of Computer Science, University of Kaiserslautern
garth@rhrk.uni-kl.de

3 Institute of Computer Science, University of Leipzig
scheuermann@informatik.uni-leipzig.de

The visualization of a three-dimensional viscous flow around an embedded object
is typically based on the analysis of its wall shear stress. This vector field defined
over the object body exhibits structures that are key to the qualitative evaluation of
the surrounding flow. Open separation and attachment lines are of essential interest
in aerodynamics due to their adverse effects on the object motion and their impli-
cation in vortex genesis. The paper presents a new method for the efficient analysis
and visualization of separation and attachment lines on polyhedral surfaces in three-
space. It combines local prediction and global feature extraction to yield a scheme
that is both efficient and accurate. In particular, it does not suffer from the restrictions
induced by assumptions of local linearity and is able to detect features where exist-
ing techniques fail. The algorithm is built upon an efficient streamline integration
scheme on polyhedral surfaces. The latter is also employed to develop a variation of
the LIC scheme. Results are proposed on CFD data sets that demonstrate the ability
of the new technique to precisely identify and depict interesting structures in practi-
cal applications.

1 Introduction

Modern numerical simulations in Computational Fluid Dynamics (CFD) generate
large scale datasets that must undergo qualitative and quantitative evaluation for in-
terpretation. Typically, the analysis relies on the extraction and identification of struc-
tures of interest that are used to gain insight into essential properties of the flow for
the considered application. In the field of aircraft design in particular, huge amounts
of flow data are computed and processed to better understand the properties of de-
sign prototypes or to look for optimal configurations, especially during critical flight
situations. The usual approach to this analysis is to study the interaction between
the three-dimensional air flow around the body and the so-called shear stress vector

250 X. Tricoche et al.

field. The latter is tangential to the surface and induces the oil-flow patterns tradi-
tionally observed during wind tunnel experiments. Separation and attachment lines
are features of key interest in this context. They correspond to one-dimensional loci
where the flow leaves or converges toward the body. For aeronautical design this phe-
nomenon is accompanied by adverse effects on lift and drag behavior, in particular
during takeoff and landing phases. In automotive engineering flow separation results
in a drop in pressure that has negative impact on driving stability. More generally,
separation and attachment lines are essential structural features involved in flow par-
tition and vortex genesis. Their automatic extraction and depiction is therefore an
important and challenging task for scientific visualization.

In general, the intrinsic limitation of most feature extraction methods is their
attempt to extract global structures by means of local analysis. This approach is
induced by the need to efficiently address the visualization of very large datasets.
Hence, the analysis is aimed at identifying a similarity with some predefined model
of the structure of interest. The principal contribution so far to the visualization of
separation and attachment lines is the work by Kenwright et al. [5, 6]. Based on con-
siderations inspired by the study of linear vector fields, these authors came up with
a simple criterion for local feature identification. Unfortunately, their simple method
shows several strong shortcomings, especially in the processing of CFD data sets
defined over unstructured grids.

The paper presents a new method for the efficient extraction and visualization of
separation and attachment lines in two-dimensional flows defined over arbitrary sur-
faces in 3D space. The basic idea behind this scheme is to combine local flow probes
and global structural information to drive feature search and obtain accurate results
fast, even for very large datasets. As a matter of fact, the detection of global features
requires the analysis to take global information into account. Since starting a dense
set of streamlines over the whole surface to observe and measure their convergence
would require a huge computational effort, it is infeasible on typical datasets. How-
ever, streamlines are the most natural way to characterize separation and attachment
lines. As these lack a formal definition, streamlines are constitutive elements of their
empirical characterization. In practice one monitors the flow convergence (resp. di-
vergence) within regions of interest. Concerning our implementation, these regions
are characterized by large values of the point-wise divergence operator and are then
abstracted to a skeleton of one-dimensional edges by ridge and valley line extrac-
tion. The lines obtained can then serve as start positions for streamline integration.
To make streamline computation efficient on polygonal surfaces we consider cell-
wise constant vector values, resulting in a stable integration scheme that emphasizes
attachment and separation behavior.

The paper is organized as follows. Related work is presented in Sect. 2. The
technique used for fast streamline integration is introduced in Sect. 3. In particular
we discuss integration through so-called singular edges. Additionally, we consider
the application of our scheme for fast LIC computation over simplicial surfaces. As
mentioned previously, our local feature predictor is the point-wise value of the di-
vergence operator. Its computation is explained in Sect. 4. Section 5 describes the
simple though robust algorithm we use to extract ridge and valley lines from the

Fast and Robust Extraction of Separation Line Features 251

resulting scalar field. This provides the starting locations required for streamline in-
tegration which permits to monitor flow convergence as shown in Sect. 6. Finally,
we show some results on two CFD data sets from aerodynamics and comment on the
application of our technique.

2 Related Work

In flow visualization, the extraction and visualization of line type features has re-
ceived much attention in recent years. Besides vortex cores (see [13] for a bibliog-
raphy), researchers have tried to detect and show separation and attachment lines
on bodies immersed in three-dimensional flow. Kenwright [5] made the first major
contribution in this area. He proposed a simple and fast method that is suitable for
large data sets. A triangular grid and a linear field in each triangle are assumed. The
basic idea is that separation and attachment lines can be found in two linear patterns,
namely saddle points and proper nodes, where they are aligned with an eigenvector
of the Jacobian. Therefore, his method works cell-wise and looks in the correspond-
ing piece-wise linear vector field for the intersection of such lines with the grid cells.
The discontinuity of the Jacobian results in disconnected line segments in general.
However, inspired by the Parallel Operator of Peikert and Roth [10], Kenwright
proposed a modified version of his algorithm [6]. It is based on the point-wise eval-
uation of streamline curvature at the grid vertices. It follows that the extraction of
separation and attachment lines reduces to the computation of zero-isolines of the
curvature field. As a result one usually obtains connected segments. They must be
filtered in a post-processing step to discard false positives [13]. Moreover, depen-
dence on the point-wise computation of the Jacobian introduces a problematic high
sensitivity to noise, especially in the case of unstructured data sets. Another approach
was used by Okada and Kao [9]. They improve on the classical Line Integral Con-
volution technique (LIC) [1, 2] by first applying a second LIC iteration to sharpen
the paths of individual streamlines, and then using histogram equalization to increase
contrast. Additionally, they color-code the flow direction which they use to highlight
the converging/diverging behavior observed along separation and attachment lines.
This method is computationally intensive due to the required LIC processing. Fur-
thermore it does not provide the exact geometry of the feature lines but rather puts
emphasis on regions where they are likely to be found. Nevertheless, our method
shows in some extent similarities to the ideas used by these authors.

Another aspect directly related to our method is the computation of streamlines
constrained to the surface of an object in three-space. This is a classical problem in
visualization and many approaches can be found in the literature. Globus et al. [4]
mention a simple scheme to keep the streamlines close to the wall along their path.
This is done by starting streamlines close to the wall and re-projecting the successive
streamline points obtained by integration in 3D onto the object. Max et al. [7] use
an Euler method with projection to integrate streamlines on implicit surfaces. Since
the surfaces are defined by an implicit function, they can use the function’s gradi-
ent to define the surface for the projection. Forssell [3] applies LIC to curvilinear

252 X. Tricoche et al.

surfaces and gives a corresponding integration scheme. For this, she uses the global
parameterization of curvilinear surfaces for her calculation. Battke et al. [1] carry
out integration directly on arbitrary surfaces by combining Runge-Kutta with adap-
tive step-size and linear extrapolation over each triangular cell. Nielson and Jung [8]
proposed a computational framework for streamline integration over simplicial grids.
Their work is based on the existence of a closed formula for streamlines in linear vec-
tor fields. Applied on a cell-wise basis, this permits an exact computation in each cell,
reconnected to curves over the whole grid. Unfortunately this technique is quite slow
for very large grids. Another mathematical treatment of streamlines on simplicial
surfaces is given by Polthier and Schmies [12]. Their method is based on geodesics
in accordance with concepts from differential geometry, leading to an adaptation of
various numerical integration schemes of varying order for smooth surfaces. We use
this technique in the course of our method to obtain smooth and accurate feature
lines. Nevertheless, for efficiency reason we adopt an alternative streamline compu-
tation scheme to monitor flow convergence as described next.

3 Wall Streamlines over a Simplicial Surface

Before discussing the integration scheme used in our implementation, we briefly
introduce the shear stress vector field that is the basic setting in further computations.

3.1 Shear Stress Vector Field

We are concerned with three-dimensional flows that have so-called no-slip bound-
ary condition. This condition is encountered in CFD simulations of viscous flows. It
forces the velocity to zero as the body of an embedded object is approached along
the surface normal. Therefore, flow analysis around the object deals with the struc-
ture of its shear stress field [6]. It is a tangential vector field defined over the surface
and corresponds to the derivative of the velocity vector field normal to the surface:
v = Jn, where J is the 3× 3 Jacobian matrix of the velocity field and n is the local
surface normal. Hence it describes how the three-dimensional flow behaves close to
the body. Streamlines in the shear stress field are called wall streamlines. This defin-
ition implies that the integration of wall streamlines takes place in the tangent bundle
of the surface. In practice, object boundaries are defined as polygonal surfaces. They
are not smooth manifolds since the tangent plane is piecewise constant in each cell
but discontinuities occur across edges. Therefore, efficient and reliable techniques
to handle numerical streamline integration are needed in this case. In the following
we do not assume a particular structure or global parameterization for the surface.
Consequently, integration cannot be carried out in a two-dimensional computational
space and the results mapped back onto the surface. All things considered the prob-
lem to solve is that of streamline integration directly on the surface regardless of its
embedding. Furthermore we require computation to be fast enough to be efficiently
included in the method presented in Sect. 6. These requirements motivate the scheme
discussed next.

Fast and Robust Extraction of Separation Line Features 253

3.2 Streamline Integration in Piecewise Constant Vector Fields

Practically, we transform the original shear stress field with vertex-based 3D vector
values into a cell-wise constant vector field in which the vectors lie in the tangen-
tial plane of the corresponding cells (i.e. resampling to the dual grid and projection
into the tangent planes). This choice of procedure comes along with several desir-
able properties for our purpose. First, we are no longer concerned with the problem
induced by the tangent plane indeterminacy at each grid vertex: point-wise 3D vec-
tor values lead to different 2D projections onto the tangent planes of incident cells,
whereas the tangent plane is well defined for any particular cell. Second, a first-order
Euler integration provides the exact solution of the corresponding differential equa-
tion. Although a loss of accuracy seems inevitable, the resolution of typical grids
provided by CFD simulations allows us to satisfyingly approximate the real path of
streamlines in this way. Remark that potential integration instability caused by flow
divergence is properly handled in our technique as explained in Sect. 6. The usual
requirements on smoothness of a vector field to ensure existence and uniqueness of
integral curves are not fulfilled here but separation and attachment patterns extend
in this particular setting, as we show next. Moreover, since the path of streamlines
is independent of the norm of the underlying vector field (e.g. normalizing a vector
field corresponds to a re-parameterization of streamlines by arc length) we normalize
the cell-wise vectors for numerical stability concerns in further processing. Now, the
integral curve in each cell is a straight line segment connecting two edges. Hence,
integrating a curve over the surface corresponds to a cell-wise line clipping, directed
by the corresponding vector value. This way of computing streamline was already
used in the original LIC technique [2] where the vector information is constant over
each rectangular pixel. We consider here a more general problem since we process
arbitrary triangles. Nevertheless, provided the connectivity information of the grid,
the implementation can be made very efficient.

3.3 The Role of Singular Edges

Since streamlines remain parallel inside each cell, all structural properties of the flow
are observed either on the edges or vertices of the grid. We call an edge singular if
the vector values associated with the cells lying on both sides have opposite normal
components with respect to the edge. This means that streamlines reach the edge
from both sides but cannot pass through it. If, furthermore, the vectors’ components
parallel to the edge have opposite directions, no consistent orientation can be decided
for further integration and the edge is called degenerate. It plays the role of a 1D-
singularity since streamlines end there. Refer to Fig. 1(a). If the directions parallel
to the edge are consistent, integration can proceed along the edge. This quality of
cell-based streamlines is illustrated in comparison to the equivalent situation in the
continuous case. The edge corresponds to a contraction (resp. dilation) of the flow
(cf. Fig. 1(b)). This property enables streamline integration over piecewise constant
vector fields to characterize both separation and attachment in particular cases. As
a matter of fact, convergence and divergence are no longer restricted to asymptotic

254 X. Tricoche et al.

n n

(a) Singular (left) and degenerate (right) edges (b) Continuous / discrete attachment

Fig. 1. Discrete vector field and singular edges

behavior, but correspond also to the “interception” of streamlines by singular edges,
leading in further integration to a one-dimensional flow of all intercepted streamlines
from the vertex reached. Of course, the occurrence of this configuration depends on
the relative orientation of flow and grid edges. Nevertheless, this interesting attribute
plays an important role in the method presented in Sect. 6. Now, once a vertex has
been reached along a singular edge, integration must proceed from this position in
one of the triangles in its one-neighborhood. Obviously, there is a direction indeter-
minacy. We first exclude both triangles sharing the considered singular edge. Now,
each of the remaining triangles incident to the vertex is a potential candidate to pro-
ceed if its vector value lies within the angular domain bounded by both of its edges
incident to the vertex, see left configuration in Fig. 2. Both triangles marked W are

singular edge
outgoing

incoming

W

W

R

R
W

W
W

W

outgoing
triangle

singular edgesingular edge

Fig. 2. Streamline integration through a vertex

discarded because their vector values lie outside the angular domain as opposed to
the triangles marked “R” that allow for further integration. Practically, we solve the
remaining indeterminacy problem by always taking in first place the sector pointed
by the vector value originally assigned to the vertex (dashed arrow in Fig. 2). If this
sector does not satisfy the angle criterion, we select one of the satisfying neighbors
closest to this direction. If no such neighbor exists, we have either reached a singular
vertex (in which case integration is terminated) or integration has to proceed along
an additional singular edge which is, as well, selected closest to current direction.
Refer to right configuration in Fig. 2.

Fast and Robust Extraction of Separation Line Features 255

3.4 An Alternative Approach to Line Integral Convolution
on Simplicial Surfaces

The streamline integrator on simplicial surfaces derived above is straightforward
and computationally cheap. It can thus serve as a building block for the adaption of
streamline-based visualization schemes that are usually applied to two-dimensional
planar fields. As an example, we consider Line Integral Convolution. Since this tech-
nique requires the computation of a great number of streamlines, a fast scheme for
streamline integration is mandatory.

In the following, we describe an application of the basic LIC idea [2] to the
wall shear stress vector fields, with some modifications. In the common variants of
LIC algorithms that deal with non-planar surface grids, a texture is mapped onto
the grid to achieve a resolution high enough to recreate the visual impression of
oil droplet smearing. In most cases, the grid resolution is not sufficient to convey
this effect. However, texture mapping on surface grids is only simple in the case
of curvilinear grids. There have been approaches that divide arbitrary surfaces into
rectangular parameter domains, e.g. [14], but they are tedious and do not work in all
cases. Furthermore, computational effort is large.

We propose a simple yet effective adaption of the original LIC algorithm in the
form of three modifications:

• We abandon the idea of mapping a texture on the grid and instead employ a cell-
based scalar field over the original grid that carries the scalar values used for
convolution.

• Convolution is carried out directly on this field using our streamline integration
scheme. Since the visited cells are naturally obtained from the algorithm, it is
straightforward to implement the convolution. Furthermore, arbitrary grids are
tractable.

• By subsequent subdivision of the cells the grid is refined until the visual rep-
resentation of the triangles is small enough to give a sufficient resolution. By
imposing an upper bound on the area of triangles, the subdivision is adaptive and
results in nearly uniform resolution over the whole surface. This constraint can
be chosen in such a way that individual triangles encompass only a small number
of pixels (ideally one pixel), so that the rendering of the refined scalar field over
the surface results in a LIC-like image.

As usual, the initial scalar field is seeded with white noise. The common improve-
ments (e.g. the Festals technique [15]) are easily applied in this context. Although it
might seem a disadvantage to create surface triangulations of large size, in practice
the size of individual triangles is limited by the fact that the maximum resolution
required is somewhat lower than the screen resolution of a typical monitor. Thus
the number of triangles is on the order of 106, a number well within reach of any
algorithm and modern graphics hardware. Remark that streamline integration is not
slowed down much by the increased grid size, since no cell location is performed
and connectivity information is used instead.

256 X. Tricoche et al.

4 Local Predictor

As mentioned previously, the basic idea behind our method is to build feature line ex-
traction on top of a convergence monitoring of the flow. Now, for such an approach
to be feasible at all, we need a way to restrict computation to regions of interest,
i.e. those regions that lie close to the separation and attachment lines contained in
the data set. Hence we need a reliable local predictor that indicates where stream-
lines might show converging behavior and decreases complexity by several orders
of magnitude. More precisely, by predictor we imply a scalar field defined over the
whole domain that indicates (either for separation or attachment) which regions are
most likely to lie close to line features.

In fact, implicit in the definition of separation or attachment behavior is the no-
tion of contraction and dilation of the flow that occurs normal to the flow direction.
This effect is responsible for the convergence of neighboring streamlines. A standard
operator to measure flow contraction (resp. dilation) is the divergence. For continu-
ous vector fields, it is defined at each position P as the amount of flow generated in
an infinitesimal region around P. In a Cartesian basis of the plane, it is given by the
expression

(div v)(P) =
∂
∂x

vx +
∂
∂y

vy

To express divergence in the neighborhood of each vertex of a simplicial surface S,
the local geometry around the point must be taken into account. In our implementa-
tion we use the formula proposed by Polthier et al. [11] that is expressed as follows
for a given position pi:

(divS v)(pi) =
1
2 ∑

e j∈∂∗(pi)

∫
e j

< v,n j > ds,

where ∂∗(pi) is the oriented set of edges e j opposite to pi in its incident triangles,
and n j is the outward pointing normal of edge e j. Since vector values are provided
cell-wise, the computation is straightforward.

5 Ridge and Valley Lines Extraction

Divergence computation results in a scalar distribution over the grid. We saw previ-
ously that these values are related to the converging (resp. diverging) behavior of the
flow. Now we need to deduce from this scalar field which regions are most interest-
ing for further processing. Since we want to lower the complexity of our convergence
monitoring, we choose to extract the so-called ridge and valley lines and to focus on
them in the following.

For a scalar field interpreted as a height field, a ridge or valley line is defined as
the set of points where the slope is locally minimal compared to points of the same
elevation. Ridge and valley line extraction is a classical task in image processing.
They are interpreted as edges in a scalar picture. The existing method in that context

Fast and Robust Extraction of Separation Line Features 257

are however of little help for our problem since they typically assume structured
grids and require first and second order derivative computation [13]. This cannot be
achieved numerically in a satisfactory way on a scalar field obtained itself by local
estimation of a derivative. For this reason, we adopted an alternative, much easier
approach that is fast and gives satisfying results.

We reformulate the definition of ridge and valley lines as follows. Ridge (resp.
valley) lines are curves through the domain of definition of a scalar field. They start
at local maxima (resp. minima) and minimize descent (resp. ascent) along the curve.
In our discrete setting over triangular grids, the corresponding algorithm starts at
vertices corresponding to local maxima (resp. minima) and proceeds the ridge (resp.
valley) line extraction towards the direct neighbor with maximum (resp. minimum)
value. The resulting line connects vertices via the edge segments of the given trian-
gulation.

Since the data at hand is typically noisy (see above), some improvements are
necessary to use this method in practice.

• First, we want to restrict ridge line extraction to major features and discard minor
ones, hence we must not take into account local extrema due to high frequency
oscillations. In practice, we restrict the starting points of line extraction to ver-
tices that are extrema within a large neighborhood surrounding them.

• Second, we want the extracted feature lines to be as straight as possible and to
avoid u-turns and self-intersections. Therefore we impose an angle criterion for
the acceptance of new segments, given by the mean direction followed during the
last few steps. Moreover, we exclude from further processing every vertex that is
a direct neighbor of a vertex selected previously.

Modified in this way, the algorithm is very fast, straightforward to implement and
robust to noise.

6 Accumulation Monitoring

Once regions of interest have been determined, streamlines are started there. Our
scheme then monitors 1D flow convergence resp. divergence through streamlet in-
tegration. What is meant here corresponds to the usual empirical characterization
of separation and attachment lines as asymptotic limits of streamline accumulation
represented by the paths of limit streamlines. Our method consists of two successive
steps, as described next.

Cell-wise Accumulation

Practically, we assume that the ridge and valley lines of the divergence provide a
coarse approximation of the actual feature lines. Hence, a correction that provides
the actual line position is needed. Motivated by the previous remark we choose to
measure the flow convergence from the ridge and valley lines on a cell-wise basis.

258 X. Tricoche et al.

Observe that ridge lines (positive values of the divergence) are associated with back-
ward convergence (attachment) whereas valley lines (negative values) are related
to forward convergence (separation). Practically a cell-wise scalar field accounts in
each cell for the number of streamlines that were integrated through it. Each hit corre-
sponds to a ‘+1’ or ‘–1’ value, depending on the sign of the divergence at the starting
position. Since we expect the starting locations to lie close to the search region, we
only integrate streamlines along a short arc length to highlight the converging behav-
ior. The cell-wise scalar field obtained is converted to a point-wise field using a basic
mean value computation.

Feature Line Extraction

A simple idea to obtain the feature lines from the resulting accumulation scalar field
would be to apply again the algorithm for ridge and valley line extraction previously
discussed in Sect. 5. However, this choice of procedure has two shortcomings. The
first one is that the lines obtained in that way provide no guarantee to follow the flow
direction as required by our definition. The second one is a direct consequence of
our definition of ridge and valley lines: they are constrained to follow the edges of
the triangulation which is a coarse approximation of a streamline.

Flow-driven Ridge and Valley Lines

We solve the first problem with a slight modification of the scheme of Sect. 5. We
obtain a flow-driven ridge/valley line extraction by processing as follows. Starting
at local maxima of the point-wise accumulation field we iteratively move along the
grid edges by taking both the values of the 1-neighbors (like before) and the local
flow direction into account. The principle is explained in Fig. 3. To obtain a balance

mean direction
flow direction

potential
next vertices

edgelast

Fig. 3. Flow-driven ridge/valley line extraction

of both scalar value and flow parallelism we perform a simple angular weighting by
multiplying the scalar values defined at the vertices of the 1-neighborhood by the
cosine of the angles between corresponding edges and local flow direction. Remark
that the mean direction of the last few steps is still used to discard vertices inducing
a u-turn as shown by the dashed line.

Fast and Robust Extraction of Separation Line Features 259

Final Extraction

Given the polyline description of the flow-driven ridge and valley lines, we obtain the
actual path of separation and attachment lines by integrating streamlines starting at
the upstream (separation) resp. downstream (attachment) end of the ridge and valley
lines, and directed toward the converging direction. Integration is terminated when
the streamline reaches the vicinity of the other end. This is valid since, according
to previous processing, ridge and valley lines are expected to lie at most one cell
away from the actual feature line position. Remark that numerical integration in this
case is carried out using the geodesic-based technique of Polthier and Schmies [12].
In that way final results are both smooth and very accurate, due to the underlying
fourth-order Runge-Kutta scheme with adaptive step size control.

7 Results

To demonstrate the ability of our method to properly extract separation and attach-
ment lines for practical applications we consider in the following two CFD data sets.
In both cases we propose a comparison of our results with those obtained using Ken-
wright’s method.

7.1 Delta Wing

The first data set is a steady simulation of airflow around a delta wing at 25 degrees
angle of attack. The grid consists of 1.9 million unstructured points forming 6.3 mil-
lion unstructured elements, 3.9 million tetrahedra and 2.4 million prisms. The delta
wing itself is made up of about 81k triangles. We focus on the shear stress vector
field defined over the wing that we compute according to the formula mentioned in
Sect. 3. Applying Kenwright’s method, we get the results shown in Fig. 8, left pic-
ture. Observe that a strong pre-smoothing step was necessary to permit a satisfying
Jacobian computation. However the results have poor quality due to disconnected
segments, shifted features and numerous false positives. The successive steps of our
method are shown in Fig. 4. The upper left picture illustrates ridge and valley line
extraction from the divergence scalar field. It can be seen that the local divergence
computation leads to noisy values. This induces zigzag paths for the lines obtained.
However their global aspect provides a satisfying approximation of the features’ po-
sition as shown in the upper right picture: streamline integration is carried out (ei-
ther forward or backward) starting along ridge and valley lines until convergence
is reached. The resulting cell-wise scalar field accounts for streamline accumula-
tion and is next submitted to flow-driven ridge line extraction, see lower left picture.
Smooth streamline integration along the corresponding ridge and valley lines finally
gives the exact position of separation and attachment lines. These results are shown
again in Fig. 6 together with a LIC texture of the shear stress computed with the
technique presented in Sect. 3.4.

260 X. Tricoche et al.

Fig. 4. Delta wing dataset. Upper left: Colormap of flow divergence and corresponding ridge
lines. Upper right: Divergence ridge lines and streamlines started from ridge line points.
Lower left: Colormap of streamline accumulation scalar field (only cells with hits drawn) and
corresponding flow driven ridge lines. Lower right: Streamline accumulation and flow driven
ridge lines together with final results

Fig. 5. ICE train dataset. Upper left: Colormap of flow divergence and corresponding ridge
lines Upper right: Colormap of streamline accumulation (only cells with hits drawn), flow
driven ridge lines. Lower left: Colormap of streamline accumulation. Note the widely spread
accumulation on the train side indicating slow convergence and hence a weak feature. Lower
right: Zoom of train nose, streamline accumulation, flow driven ridge lines and resulting fea-
ture lines

Fast and Robust Extraction of Separation Line Features 261

7.2 High Speed Train

The second data set corresponds to a single time step of an unsteady simulation of
the German train ICE. In this case, the train travels at a velocity of about 250 km/h
with wind blowing from the side at an angle of 30 degrees. The wind causes vortices
to form on the lee side of the train, creating a drop in pressure that has adverse ef-
fects on the train’s track holding. The original grid consists of 2.6 million elements.
We restrict our considerations to the front wagon that contains 53k triangles. For
comparison, the results of Kenwright’s method are shown in Fig. 8, right picture.
Previous remarks related to pre-smoothing apply here too. In this case, the results
are even worse than for the delta wing. We obtain a lot of disconnected segments and
most of them would have been filtered out by a simple check on flow parallelism.
Moreover the feature line lying on the nose of the train is significantly shifted to-
ward the middle. Again, the successive steps of our method can be seen in Fig. 5.
The main difference with previous data set is the presence of weak features on both
sides of the wagon that correspond to slow flow divergence. Practically we obtain
for these features ridge and valley lines of the divergence that lie fairly far away
from their actual position. This implies that the correction step associated with flow
monitoring must follow streamlines along a longer path to detect the converging be-
havior. Another consequence is the fuzzy resulting accumulation scalar field around
the features. Nevertheless, our flow driven ridge line extraction is able to properly
track their path as illustrated in the upper and lower right pictures. Final results are
shown along with a LIC texture in Fig. 7.

8 Conclusion

We have presented a new method for efficient and robust extraction of separation
and attachment lines on arbitrary simplicial surfaces embedded in three-dimensional

Fig. 6. Resulting features on the delta wing over LIC texture

262 X. Tricoche et al.

Fig. 7. Resulting features on the ICE train over LIC texture

Fig. 8. Results of Kenwright’s method, delta wing (left) and ICE train (right).

space. Our approach combines a local predictor and a global correction step. We use
fast streamline integration to efficiently monitor flow convergence resp. divergence.
The original point-wise vector field is transformed into a cell-wise one which both
speeds up computation and permits to characterize separation and attachment be-
havior locally. We show how to use this technique to produce fast LIC textures on
arbitrary surfaces. Applied to two realistic CFD data sets, our new method proved
able to precisely detect interesting features, even in cases where flow convergence
occurs weakly, on large scales. Such structures are missed by existing techniques, as
shown by our comparison with Kenwright’s standard scheme, which has difficulties
on unstructured grids. This is most likely due to the more difficult Jacobian compu-
tation in physical space. Apparently this limitation was not foreseen in the original
presentation of the algorithm. Overall, the added robustness makes our method a
convenient tool for the structural exploration of large, practical CFD data sets.

Acknowledgments

The authors wish to thank Markus Rütten from German Aerospace Center in Göttingen for
providing the delta wing and ICE train datasets. Further we thank the members of the FAnToM
team at the University of Kaiserslautern and the University of Leipzig for their implementation
effort.

References

1. H. Battke, D. Stalling, and H.-C. Hege. Fast line integral convolution for arbitrary surfaces
in 3d. In Springer Berlin, editor, Visualization and Mathematics, pp. 181–195, 1997.

2. B. Cabral and L. Leedom. Imaging vector fields using line integral convolution. Computer
Graphics (SIGGRAPH ’93 Proceedings), 27(4):263–272, 1993.

3. l. Forssell. Visualizing flow over curvilinear grid surfaces using line integral convolution.
In IEEE Computer Society Press, editor, IEEE Visualization Proceedings, pp. 240–247,
Los Alamitos, CA, 1994.

4. A. Globus, C. Levit, and T. Lasinski. A tool for visualizing the topology if three-
dimensional vector fields. In IEEE Visualization Proceedings, pp. 33 – 40, October 1991.

5. D. N. Kenwright. Automatic detection of open and closed separation and attachment lines.
In IEEE Computer Society Press, editor, IEEE Visualization Proceedings, pp. 151–158,
Los Alamitos, CA, 1998.

6. D. N. Kenwright, C. Henze, and C. Levit. Features extraction of separation and attachment
lines. IEEE Transactions on Visualization and Computer Graphics, 5(2):135–144, 1999.

7. N. Max, R. Crawfis, and C. Grant. Visualizing 3d velocity fields near contour surfaces.
In IEEE Computer Society Press, editor, IEEE Visualization Proceedings, Los Alamitos,
CA, 1994.

8. G. M. Nielson and I.-H. Jung. Tools for computing tangent curves for linearly varying
vector fields over tetrahedral domains. IEEE Transactions on Visualization and Computer
Graphics, 5(4):360–372, 1999.

9. A. Okada and D. L. Kao. Enhanced line integral convolution with flow feature detection.
In Proceedings of IS&T/SPIE Electronic Imaging, 1997.

10. R. Peikert and M. Roth. The ”parallel vectors” operator - a vector field visualization
primitive. In IEEE Visualization Proceedings ’00, pp. 263 – 270, 2000.

11. K. Polthier and E. Preuss. Variational approach to vector field decomposition. In Eu-
rographics Workshop on Scientific Visualization - Preprint No. 448 TU-Berlin, SFB 288,
2000.

12. K. Polthier and M. Schmies. Straightest geodesics on polyhedral surfaces. pp. 391–408,
1998.

13. M. Roth. Automatic Extraction of Vortex Core Lines and Other Line-Type Features for
Scientific Visualization. PhD thesis, ETH Zürich, 2000.

14. A. Sheffer and J. C. Hart. Seamster: Inconspicuous low-distortion texture seam layout. In
IEEE Computer Society Press, editor, IEEE Visualization Proceedings, pp. 291–298, Los
Alamitos, CA, 2002.

15. D. Stalling and H.-C. Hege. Fast and resolution independent line integral comvolution.
In ACM SIGGRAPH, editor, Proceedings of SIGGRAPH, Computer Graphics Annual
Conference Series, pp. 249–256, 1995.

Fast Vortex Axis Calculation Using Vortex Features
and Identification Algorithms

Markus Rütten1 and Hans-Georg Pagendarm2

1 German Aerospace Center (DLR), Institute of Aerodynamics and Flow Technology,
Bunsenstraße 10, 37073 Göttingen, Germany
markus.rütten@dlr.de

2 German Dutch Windtunnel (DNW), Business Unit GuK, Bunsenstrasse 10, 37073
Göttingen, Germany
pagendarm@dnw-germany.aero

Summary. Knowledge about the vortical flow over delta wings, its structure and behavior is
an essential issue for the development of highly maneuverable aircraft and high angle of attack
flight. Vortex breakdown is one of the limiting factors of extreme maneuvers in flight and poses
a difficulty for flight control. The demand of simulating the vortical flow behavior has pushed
the limits of current CFD Codes, but also the requirements for advanced post processing tools.
From the analysis point of view, an important requirement is the capability to identify vortical
flow patterns such as the vortex axis lines, vortex hull surfaces, and vortex-vortex interactions.
This information is significant for a deeper physical understanding of various vortical flow
phenomena and for flight control of aircrafts.

One goal of this paper is to compare various typical vortex identification methods, applied
to the vortical flow over a generic 65◦ swept delta wing. Another goal is to apply those methods
as elements of a construction kit, which defines a fast algorithm to detect and calculate vortex
axes.

1 Introduction

The flow field of a symmetric delta wing is dominated by large scale vortical struc-
tures on its lee side. Typically, there are two dominant primary vortices and smaller
secondary, tertiary as well as other subtype vortices. Although the term vortex is of-
ten used by the fluid dynamic scientists in a common sense, a precise mathematical
description is difficult and not complete in the sense of describing all features of
such a rotational fluid. Lugt [10] mentioned the dilemma of defining a vortex, but
nevertheless proposed the following definition of a vortex: A vortex is the rotating
motion of a magnitude of material particles around a common center. This intuitive
definition, which describes the visual observations in nature, is incomplete because
it is not Galilean invariant to moving reference frames. Robinson [13] extended the
definition introducing a concrete observation time and the general moving reference
frame: A vortex exists when instantaneous streamlines mapped onto a plane normal

266 M. Rütten and H.-G. Pagendarm

to the vortex core exhibit a roughly circular or spiral pattern, when viewed from a
reference frame moving with the center of the vortex core. In a mathematical sense
this introduces a new problem, namely, that the vortex core and its motion, which is
one of the major patterns of the vortex itself, has to be known beforehand. From a
post processing point of view, i.e. analyzing CFD data sets, this definition has two
further shortcomings: First, there is not a precise definition of the vortex core. Is it a
region or is it a line? Second this definition is not a local one. Here, local means ana-
lyzing the properties of “atomic” fluid elements. In contrary to a local approach this
definition needs a set of seeding points for particle tracing or streamline calculation,
whereby the start positions are selected while referring to a known common center.

Although there is no general vortex definition, various vortex identification meth-
ods have been developed and are rather succesful in practical use. Some definitions
and methods are presented here to cover the relevant issues of vortices without try-
ing to provide a complete coverage of existing methods. At first some clarifications
about used terms will be given, because different definitions and detection methods
often have a diverging interpretation of similar terms. Therefore, we will give a short
overview about analytical vortices and their features, followed by more general vor-
tex definitions. Later we will consider well known vortex axis detection algorithms.
At last our approach will be presented and examples will be shown.

2 Analytical Vortices and Their Features

Any motion of a Newtonian fluid can be described by the Navier-Stokes equations.
In a coordinate invariant form without considering external forces and concentrating
on incompressible effects one gets:

∇−→v = 0 . (1)
∂−→v
∂ t

+(−→v ·∇)−→v = − 1
ρ

∇p+ν∇2−→v , (2)

where v is the velocity, p the pressure and ν the dynamic viscosity. With regard
to the various intuitive impressions and definitions of a vortex, the main feature is
the rotation around a common center, thus, suggesting to use cylindrical coordinates
as natural coordinate system, leads the thought to for description of such motions
and related forces. Therefore, it is common use to express the underlying Navier-
Stokes equations in cylindrical form (r,ϕ,z). Without an axial velocity component
the vortex is reduced to a motion in the two-dimensional (r,ϕ)- plane. In most cases
analytical solutions of this type of Navier-Stokes equations are describing a vortical
motion of fluid particles. Therefore, these solutions are called analytical vortices.

If axial symmetry is the only simplification, then radial and axial flow will be
possible. Furthermore the solution of the simplified Navier-Stokes equations is sym-
metric. Imposing more problem specific simplifications, one distinguishes between
two types of vortices, the universal solutions and similarity solutions. Often these
vortices are of a very special type and purely academic, but they show the basic

Fast Vortex Axis Calculation Using Vortex Featuresand Identification Algorithms 267

common features of vortices. Therefore, a brief look to these solutions of the Navier-
Stokes equations will illustrate the specific features of a vortex.

The universal solutions have to fulfill the following boundary condition:

∂−→ω
∂ t

+ curl
(−→ω ×−→v)= 0 (3)

curl curl−→ω = 0 , (4)

with ω as vorticity. This means that the viscous parts are vanishing without the con-
dition that the viscosity ν itself has to be identical to zero. A further simplification is
to excluded time dependency. This leads to an unchangeable vortex and in this sense
the vortex is universal.

For a planar flow the axial velocity vanishes, and the radial velocity is set to zero.
Then the Navier-Stokes equation reduces to following simple form:

∂ 2vϕ

∂ r2 +
1
r

∂vϕ

∂ r
− vϕ

r2 = 0 , (5)

v2
ϕ

r
=

1
ρ

∂ p
∂ r

(6)

To solve these equations, the following expression can be derived for the primitive
variables:

∂−→v
∂ t

= (−→v ·∇)−→v − 1
ρ

∇p = ν∇2−→v ≡ 0 (7)

The general solution for the velocity is:

vϕ =
a
r

+br , (8)

whereby the integration constants a and b are fixed by the boundary conditions. The
pressure can be calculated using following equation:

p− pc = ρ
[

a2

2
·
(

1
r2

c
− 1

r2

)
+2ab · log

(
r
rc

)
+

b2

2

(
r2 − r2

c

)]
. (9)

The subscript c denotes the vortex core. This class of solutions contains simple vor-
tices like the potential vortex, the Couette flow, the rigid body rotation or the Rankine
vortex.

Equation (6) describes the equilibrium between the pressure gradient and the
centripetal acceleration on the circular flow, hence the centrifugal force, which is the
cause for the minimum of static pressure in the center of the vortex and thus at the
vortex axis. Therefore, (6) describes a main vortex feature, which is often used for a
vortex detection and visualization.

To study the chronological development the time derivative of the velocity has
to be considered as well. To do this, the equation is extended by this term. With a
vortex axis still fixed in time and place, the solutions of following equation and (6)
are known as similarity solutions.

268 M. Rütten and H.-G. Pagendarm

∂vϕ

∂ t
= ν
(

∂ 2vϕ

∂ r2 +
1
r

∂vϕ

∂ r
− vϕ

r2

)
=

∂ω
∂ t

(10)

In their simplest form similarity solutions are describing the diffusive transport of
vorticity:

∂vϕ

∂ t
= ν

∂ωz

∂ r
, (11)

which is a main feature of instationary vortical flow. The circumferential velocity
may be solved using a separation approach:

vϕ = f (r)h(t) , (12)

which leads to:
vϕ = (c1J1 (λ r)+ c2Y2 (λ r)) · e−λ 2νt . (13)

J1and Y1are first order Bessel and Weber functions, c1 and c2 are integration constants
defined by adequate boundary conditions. A well known example of this type of
vortex is the Hamel-Oseen respectively Lamb-Oseen vortex, which can be destinated
by using the similarity variable:

λ =
r2

4νt
. (14)

This leads to following solution:

vϕ =
κ0

r

(
1− e−

r2
4νt

)
, vr = vz = 0 . (15)

Here κ0 denotes the vortex strength. The interpretation shows the next interesting
main feature of complex analytical vortices: There is a maximum of circumferential
velocity, which decreases with time and moves radially outwards away from the vor-
tex axis. Considering these strict relations a vortex core is a region and can not be a
line. This term describes a region in the center of a vortex, where the absolute value
of circumferential velocity grows from the vortex axis to the limiting hull surface of
the vortex core. Within the outer part of the vortex outside the core the circumferen-
tial velocity decreases again. The formal definition is given in Lugt [11]. Therefore,
a vortex core can not be the same as the vortex axis. The latter one is a line feature.
This maximum of the circumferential velocity can be used to visualize the vortex
core as the region with the surface of maximal circumferential velocity as a hull.
The terms vortex core and vortex axis will be used in this sense. Another term is the
vortex core line and is still for discussion. In our opinion, the term vortex core line
should be used if a physical variable other than the velocity is used to calculate the
common center line of rotating fluid particles. For example this line is described by
a pressure minimum or a maximum of vorticity feature. Thus, it is used in a more
general sense than the vortex axis term.

Back to the Lamb-Oseen vortex: the overall behavior of the vorticity, which is
indeed maximal at the vortex axis but also decreases exponentially in time, is similar
to the velocity:

Fast Vortex Axis Calculation Using Vortex Featuresand Identification Algorithms 269

ωz =
κ0

2νt
e−

r2
4νt , ωr = ωϕ = 0 (16)

Therewith a next extremal feature of an idealized vortex, the maximum of vorticity
at the vortex axis, is identified, which is also a point of vortex core line detection.

From this it may be derived that for a small radius next to the vortex axis the vor-
tex behaves like a rigid body rotation with the angular velocity Ω . A series expansion
of (15) at r = 0 leads to following approximation:

vϕ =
κ0

4νt
r = Ω · r . (17)

And this is an interesting feature as well as a crucial problem for vortex axis detec-
tion, as we will show later.

One main flow feature, not contained in the idealized vortices considered before,
is convection. To describe more realistic flows the equations have to be extended,
allowing for axial and radial velocity components. From the first simplifications,
only axial symmetry is left. Now the Navier-Stokes equation looks like:

∂vr

∂ r
+

v
r

+
∂vz

∂ z
= 0 (18)

∂vr

∂ t
+ vr

∂vr

∂ r
− v2

ϕ

r
+ vz

∂vr

∂ z
= − 1

ρ
∂ p
∂ r

+ν
(

∂ 2vr

∂ r2 +
1
r

∂vr

∂ r
− vr

r2 +
∂ 2vr

∂ z2

)
, (19)

∂vϕ

∂ t
+ vr

∂vϕ

∂ r
+

vrvϕ

r
+ vz

∂vϕ

∂ z
= ν
(

∂ 2vϕ

∂ r2 +
1
r

∂vϕ

∂ r
− vϕ

r2 +
∂ 2vϕ

∂ z2

)
, (20)

∂vz

∂ t
+ vr

∂vz

∂ r
+ vz

∂vz

∂ z
= − 1

ρ
∂ p
∂ z

+ν
(

∂ 2vz

∂ z2 +
1
r

∂vz

∂ r
− vϕ

r2 +
∂ 2vz

∂ z2

)
. (21)

One of the most famous solutions is the Burgers vortex:

vϕ =
κ0

r

(
1− e

−ar2
2ν

)
, a > 0 (22)

vr = −ar, vz = 2az, a > 0 (23)

which is often used in analytical studies of vortex breakdown. The vorticity equation
holds

ωz =
aκ0

ν
e
−ar2

2ν
, ωr = ωϕ = 0, (24)

for any arbitrary constant a. The so called Q-vortex has the same structure, whose
circumferential velocity is:

vϕ = q |∆vz| δ
r

(
1− e

− r2

δ2

)
(25)

and its axial velocity is

270 M. Rütten and H.-G. Pagendarm

vz = ∆vze
− r2

δ2 , (26)

with q = Γ∞
2πδ∆vz

and δ as vortex core radius and ∆vz as difference of the velocity
magnitude at the vortex axis to the velocity magnitude at the core border. Here Γ∞
is the circulation. This difference acts like a scaling function and makes the vortex
Galilean invariant.

The last two vortices are time-independent, but to allow for such a quasi-constant
solution there must be an equilibrium between diffusion and convection of the an-
gular momentum. If this balance is destroyed, for example if the diffusion is bigger
than the convection, the axial velocity has to be decreased. This has a crucial impact
on the pressure on the axis. The gradient and therefore the pressure will increase.
This is an important point of vortex axis detection, because in this case a pressure
gradient method will become more sensitive against overlaying pressure changing.

3 Regions Containing Vortices

Here in this paper a vortex is understood as a limited regional flow pattern of a more
realistic three-dimensional flow beyond mentioned simplifications. Due to this it is
possible to define a hull surface limiting this region in the sense of including a vor-
tex or vortical structure. In contrary analytical vortices with circumferential velocity
equations can have an exponential character gradually fading away. Some definitions
will be presented promoting this conception and from the visualization point of view
they will be used to encapsulate and show a vortex and vortical structures. This may
well be more than one vortex, i.e. vortex – vortex interactions or a spiraling vortex
breakdown flow.

An obvious feature of a free vortex is the pressure minimum. As mentioned, it
is needed as radial force to provide the centripetal acceleration that keeps a particle
rotating around an axis.

ar =
v2

ϕ

r
=

∂ p
∂ r

(27)

Therefore, a pressure minimum can be used to identify a region containing a vor-
tex. Robinson [13] used this method thereby accepting that a pressure minimum does
not contain any information about the sense of rotation and it is not robust against
other flow patterns with inherent pressure minima. Accordingly an a priori knowl-
edge about the flow is necessary to use a certain pressure value as an indicator for a
vortex. Furthermore, from the visualization point of view a user defined iso-surface
value of a scalar field weakens the mathematically objectivity and elegance and has
the great disadvantage not to consider the gradual decrease of the vortex strength,
which is accompanied by a decreasing pressure minimum. Thus a specified iso-value
could suppress weak vortices. But in practical use a pressure minimum criterion can
be very successful, to get a quick overview about the main flow structures, in particu-
lar once the underlying geometrical configuration, i.e. a delta wing, is simple enough
to allow for use of such rough criterion.

Fast Vortex Axis Calculation Using Vortex Featuresand Identification Algorithms 271

An extension of the pure pressure criterion is the total pressure loss criterion,
which sums up the loss of total pressure by viscous forces. This has the same dis-
advantages in principle but it is more successful especially for delta wing flows or
vortex wake flows.

∆ p′loss = 1− pi + 1
2 ρi |−→v i|2

p∞ + 1
2 ρ∞ |−→v ∞|2

(28)

Similar problems as with a pressure or total pressure loss criterion are occurring
when considering another main feature of a vortex, a growing vorticity value inside
a vortex region until it reaches the maximum value of vorticity at the vortex axis. It
can be used to identify the vortex axis just as a vortex region itself. Again, this is not
a robust criterion because the vorticity is strongly coupled with planar shear as well
as to rotational shear. So it may be happen that higher values of vorticity occur in a
boundary layer than in a free vortex.

A validation of both approaches, using pressure or vorticity, showed that they are
not valid enough to give the right vortical information for further analysis.

To overcome these shortcomings Levy et al. [9] introduced the normalized helic-
ity, often called stream vorticity:

Hn =
−→v ·−→ω

|−→v | · ∣∣−→ω ∣∣ . (29)

Geometrically interpreted this represents the cosine between the velocity vector and
the vorticity vector. A vortex can be defined as a region with cosine values exceed-
ing a certain limit. This approach has two further advantages: first the rotation sense
of a vortex is determined by the sign of the helicity, so it is possible to differenti-
ate between counter-rotating vortices, especially to separate primary from secondary
vortices and so on. The second important point is, that the vortex axis can be found at
the extremal helicity values. This can be used to set a start point for a segment wise
streamline integration, following the extremum of helicity. The algorithm is fast and
easy to implement, but Roth [14] showed that the resulting line considerably differs
from the vortex axis, which is analytically known. Roth mentioned that the curvature
of a vortex is the main reason for such failure.

As mentioned before this methods all have one problem in common. Analogously
to analytical vortices they do not deliver a sharp limiting border, between where a
vortex exists and where not. This is achieved by more general vortex definitions and
identification schemes presented now.

Looking for a pointwise local vortex criterion one main feature of a rotational
fluid is the complexity of eigenvalues of the velocity gradient tensor. This means
that any fluid element with a self rotation has such eigenvalues, which can be used
to define a vortex. Dallmann and Vollmers [3, 18] described this, calculating the
discriminant D of the velocity gradient tensor.

D = 27R2 +(4P3 −18PQ)R+
(
4Q3 −P2Q2)> 0 , (30)

with the three invariants of the velocity gradient tensor P, Q, R. A positive value of the
discriminant denotes a vortex, so an epsilon above zero can be used as a satisfactory

272 M. Rütten and H.-G. Pagendarm

value to visualize the vortex’s limiting iso-surface. But this approach has the short-
coming to deliver signals in the immediate neighborhood of curved walls. Therefore,
in technical applications a wall distance parameter is often accounted for excluding
these false signals.

One extension of the idea is suggested by Dallmann [2] and Hunt et al. [4]. In-
stead of using the discriminant the second invariant of the velocity gradient tensor,
the invariant Q, has to be calculated. The invariant Q balances the influence of pure
shear against the influence of fluid element rotation:

Q =
1
2

(
v2

ii − vi jv ji
)

= −1
2

vi jv ji =
1
2

(∥∥∥Ω̃∥∥∥2 −
∥∥∥S̃∥∥∥2
)

> 0 (31)

In this case an epsilon above zero is also used for visualization, but here it is impor-
tant to distinguish to regions without flow. Because similar problems to the discrim-
inant criterion are occurring at curved walls Hunt additionally introduced a limiting
pressure to cut off signals with the help of this user defined value. This has nearly
the same effect as using a certain wall distance.

The balancing between the rotational and the shear part of the fluid element mo-
tion of the invariant Q method will be obvious considering the kinematic vorticity
number N introduced by Truesdell [17] in comparison. The condition for a point
belonging to a vortex region is, that the rotational part out balances the shear part:

N =

∥∥Ω̃∥∥∥∥S̃∥∥ > 1 (32)

Here Ω̃ denotes the rotational part, S̃ the deformation part of the velocity gradient
tensor. This equation can be deduced from the invariant Q equation:

2Q = Ωi jΩ ji −Si jS ji (33)

and

1+
2Q

Si jS ji
=

Ωi jΩ ji

Si jS ji
= N2

k . (34)

Here the indices are used to show the multiplication of the components. Looking
to (34) is is obvious that for an invariant Q larger than zero the kinematic vorticity
number will be larger than one. Therefore these are two expressions of the same
contents and the balancing character becomes clear.

One of the most famous vortex detection methods is the lambda2 criterion, in-
troduced by Jeong and Hussain [5]. They define a vortex based on the symmetric
deformation tensor S and the antisymmetric spin tensor Ω . They derive the follow-
ing equation:

ΩikΩki +SikSki =
(
− 1

ρ
p,i j

)
. (35)

This can be interpreted in a way, that a vortex exists, where only the tensor
ΩikΩki + SikSki would produce a pressure minimum. The sum of the norm of the

Fast Vortex Axis Calculation Using Vortex Featuresand Identification Algorithms 273

deformation and the norm of the rotation tensor is symmetric and has three real
eigenvalues. In order to fulfill the condition of a pressure minimum two eigenvalues
have to be less than zero. This is used as a definition equation for a vortex:

λ2 < 0 ∧ λ2 ∈ {λi (ΩikΩki +SikSki)} . (36)

Equation (36) means that a point is contained within a vortex, if the second largest
eigenvalue, called lambda2, is negative. After this, the vortex hull surface can be
visualized by an isosurface with an iso-value of lambda2, an epsilon less than zero.

Fig. 1. Lambda2 isosurface as vortex hull

Furthermore, Jeong and Hussain showed that a stronger vortical region is distin-
guished by a more negative value of lambda2, which means less pressure as well.
This makes the strength of two vortices comparable.

Unfortunately, there is again the fundamental problem of this approach, which
is the loss of information about the rotational sense due to the norming calculation
process. Another problem of the last methods is, that in the immediate neighborhood

274 M. Rütten and H.-G. Pagendarm

of the vortex axis the vortex can behave like a rotating rigid body. In this case the
rotation tensor will become constant and the shear vanishes. Then the distinguishing
features becomes less precise.

4 The Problem of Defining a Vortex Axis

The interesting feature of a vortex is the vortex axis or in other term vortex core line.
There are as many definitions and detection algorithms as vortex definitions.

Banks and Singer [1] proposed a so called predictor-corrector method, using a
vector field as predictor field and a scalar field as corrector field. They demonstrated
it as a vorticity-predictor, pressure-corrector implementation to find the vortex axis.
Based on the observation, that a high vorticity magnitude indicates a vortex and a
strong pressure gradient towards the pressure minimum at the vortex axis is given,
they suggest the following algorithm: Starting at a minimum pressure grid point with
highest vorticity magnitude one step of a vorticity line integration has to be done
to get the next point. At this predicted point a plane with the local vorticity vector
as normal vector is build. On this plane the point with minimum pressure will be
calculated. If this new point is inside a threshold radius of the predicted point, the line
segment will be corrected with the new plane point. Then the integration proceeds.
One problem of this approach is to find the right starting points. Banks and Singer
pointed out, that a seed point point may lay outside of a vortex region for instance
considering accelerated shear flow. Furthermore using grid points can lead to more
than one calculated skeleton for the same vortex core line. But in many cases Banks
and Singer’s approach shows good results.

Sujudi and Haimes [16] developed a vortex axis detection algorithm based on the
eigenvectors of the velocity gradient tensor. A three dimensional region of complex
eigenvalues contains one real eigenvector and a conjugate complex pair of eigen-
vectors. The real eigenvector represents the rotation axis of the local fluid element.
Sujudi and Haimes consider a tetrahedral grid domain, in which the velocity gradi-
ent tensor is calculated for all tetrahedrons. This tensor is considered to be constant
within the complete tetrahedron. Then, inside the region of complex eigenvalues,
they destinate the real eigenvector for all tetrahedrons. Now for each corner point
of a tetrahedron a new reduced velocity vector is calculated by subtracting the com-
ponent of the velocity vector projected onto the real eigenvector. After this it will
look for points with a vanishing reduced velocity on each face of the tetrahedron.
This point has the feature, that the velocity is parallel to the real eigenvector, so the
reduced velocity vanishes. Or in other words the local vortical axis has the same
direction as the velocity vector. In the case in which the vortex axis crosses this vol-
ume element, there are two faces with such points. Following Sujudi and Haimes’s
approach the connection between these points builds a line segment of the vortex
axis. In ideal cases the neighboring elements have such vortex axis line segments
as well. So a complete vortex axis can be reconstructed. Because line segments are
calculated element wise only, numerical errors or a bad grid resolution leads to gaps

Fast Vortex Axis Calculation Using Vortex Featuresand Identification Algorithms 275

Fig. 2. Unfiltered line segments calculated by applying the parallel operator

or jumps in the vortex axis. This needs to involve filter functions to fill the gaps and
to suppress false signals, see Fig. 2.

But for many technical applications it is a very successful algorithm showing
impressive results (Fig. 3).

In the sense of a local analysis this cell averaged approach has the disadvantage
of the eigenvector not being calculated at the points of the velocity information, here

Fig. 3. Vortex axis identification by Kenwright and Haimes [7]

276 M. Rütten and H.-G. Pagendarm

the corner points of the tetrahedron. Only under the condition of the grid cell being
treated as a fluid element this analysis can be considered as a local one.

An answer to these shortcomings is the parallel operator by Roth and Peick-
ert [12, 14]. They improved Sujudi and Haimes approach introducing a cell face
based algorithm. At all corner point of a cell face the real eigenvectors are calculated
instead of considering one eigenvector for the complete cell. Then on the face they
again look for points, at which the velocity vector is parallel to the real eigenvec-
tor. Both vectors have to be interpolated by the original vector at the corner points.
Again the connection of two such cell face points builds a line segment as part of the
vortex axis. One advantage of this cell face approach is that neighboring cells have a
common cell face, therefore jumps at cell borders are avoided.

Furthermore, Roth can show that it is possible to use the acceleration field instead
of the real eigenvector field:

v ‖ e, and J̃e = λe . (37)

If parallelism is present, the eigenvector equals the velocity vector, which leads to:

J̃v = λv . (38)

The left side is the acceleration, which leads to:

v ‖ (∇v)v or v ‖ a . (39)

Using the acceleration instead of the eigenvector has a strong positive effect on
computational time and calculation accuracy. Again the method has problems with
curved vortices. Therefore Roth extended and generalized his parallel operator using
the higher derived vector field curvature of the velocity field instead of the acceler-
ation or the real eigenvector. But from CFD point of view, higher derivatives often
have not the sufficient accuracy, in particular using modern industrial unstructured
methods for complex realistic configurations. However, Roth showed impressive re-
sults for hydraulic turbines and draft tube applications using structured grids, see
Fig. 4.

But these are comparably simple to modern aircraft applications.
Summing up the cited methods for vortex features, hull surface and vortex axis,

one main result is that the local velocity gradient tensor contains all information for
a visualization of a steady vortex. Therefore in our approach this information will be
used.

5 A Fast Vortex Axis Detection Combination Approach

All presented algorithms have one overall problem for technical applications. They
have to deal with large amounts of data. For example modern CFD calculations of
delta wing with detached eddy turbulence models require a grid resolution, which
leads to grids with more than 10 millions of cells already for such a simple configu-
ration like the prismatic delta wing. In future the requirements will be certainly more

Fast Vortex Axis Calculation Using Vortex Featuresand Identification Algorithms 277

Fig. 4. Application of parallel operator by Roth [14]

than a magnitude higher when taking the step to large eddy simulations (LES). This
generates a demand for faster feature and particularly vortex analyzing algorithms.
However, fast can not mean to analyze all elements of a given grid. In principal two
ways are imaginable: to reduce the region to be analyzed or to find seed points for a
streamline respectively vortex line integration.

One approach to find a feasible seed point can be to use knowledge about features
of the geometry of the model, which has been calculated before: Looking at the
simple prismatic delta wing with its sharp edges and sharp peaks it seems to be
easy to use the front tip for starting a streamline integration to get the vortex axes.
But especially there, where three edges merge, the discretization error is high and
therefore the solution vector has a loss of accuracy. This excludes an integration of
a vortex axis and leads to the conclusion that “a priori” approaches are not the right
answer.

The approach presented here is to combine existing methods to a system, which
allows to get a fast impression of the vortical flow behavior even for complex cases:

The first step is to reduce the domain, which has to be considered, by using an
advanced vortex criterion. Because pressure or vorticity information alone are not
suitable, the complexity of eigenvalues, the invariant Q or the lambda2 criterion can
be used to flag the interesting region. For example, if the velocity gradient field and
its eigenvalues field are calculated, then only this region with complex eigenvalues
will be considered. In Fig. 5 such a vortex hull surface is shown.

278 M. Rütten and H.-G. Pagendarm

Fig. 5. Invariant Q of velocity gradient tensor with secondary vortices spiraling around primary
vortices. Side edge vortices are visible as well.

The next reducing step in the already reduced domain is a search for grid points
with a certain extremal vortex feature. In general, this could be a feature such as
a minimum of pressure, or maximum of total pressure losses, or a most negative
lambda2 value. In other words grid points will be searched for, where one of these
features is extremal compared to the same feature at the neighboring points, see
Fig. 7. To find fully developed vortices it can be useful to exclude wall or border
points. For example the vorticity production in the boundary layer can be a mag-
nitude higher than in the free vortex. Considering that we flag our grid points with
a viscous wall distance. That allows us to exclude especially near wall points and
reduces false signals.

Fast Vortex Axis Calculation Using Vortex Featuresand Identification Algorithms 279

Fig. 6. Vortex axis detection regions and analyzing sheet (up scaled for illustration purpose).

In the third step there is the possibility to flag the neighboring elements of these
“extremal” points to create a small region for a next analyzing step. Figure 6 and
Fig. 10 are illustrating the results. Another possibility is to introduce a small radial
sheet with a plane normal vector in direction of the local velocity vector. This sheet
extends radially over the next couples of elements and has only a small number of
surface elements. For both approaches only a small number of cell faces have to
be considered in the next analyzing step. To prepare this, the real eigenvectors or
acceleration vectors have to be calculated at the corner points of the remaining cells.
In the case of the analysis sheet the real eigenvectors or acceleration vectors and the
velocity vectors have to be mapped onto this sheet.

In a fourth step the parallel operator of Roth is applied to get that cell face point,
where the vortex axis passes through. In case of the analysis sheet there should be
only one point, the neighbor element approach will almost always deliver several
points and the user has to decide, which is the correct one for further proceeding, or
he has to implement a checking algorithm.

The fifth step uses these detected points as starting points for a streamline in-
tegration to get the vortex axis. There is a discussion about the problem whether a
vortex axis is a streamline or not. Therefore, Roth constructs an academic case for
which he shows that the vortex axis seems not to be a streamline, but in our opin-
ion his example has a problem: it does not fulfill the basic law of motion, therefore
Roth’s argument against vortex axis integration in the sense of streamline integration

280 M. Rütten and H.-G. Pagendarm

Fig. 7. Primary vortex axes, color coded value of invariant Q of the velocity gradient tensor
(left wing side) and color coded value of lambda2 criterion (right wing side respectively)

is weak. For all known solutions of the Navier-Stokes equations the vortex axis is a
streamline. Thus it seems to be meaningful to integrate the vortex axis.

To provide a better result, one main idea is to extend the normal line integration
algorithm by a self proving part. Again the parallel operator is applied, here each
time the integration reaches a new cell face, then the new “parallel “ point is the next
starting point for the following element. This fulfills the demand of local analysis and
prevents accumulation of integration errors. This turns out to be highly advantageous
and makes the algorithm robust. Additionally, a smoothing algorithm can be used to
get a nicer axis, especially to suppress jumps at cell faces. Note, that the parallel
points need to be held fixed. To get a complete vortex axis, the integration has to be
done in both directions, upstream and downstream. Both parts will be connected to
one line. For comparison see Fig. 8 without correction and Fig. 9 with correction.

The vortex axis integration stops, if the domain border is reached or the stream-
line reaches a critical point. Furthermore it can happen that the spatial resolution of
the grid exceeds a certain limit downstream, or the diffusion of the vortex is so high,
that a vortex can not be detected unambiguously. Then the integration has to stop.

Fast Vortex Axis Calculation Using Vortex Featuresand Identification Algorithms 281

Fig. 8. Integrated vortex axes without parallel operator correction. Note the wiggles of the
secondary vortex axes in red. Behind the wing the green vortex axis completely leaves the true
path, which should spiral around the yellow vortex axis, see Fig. 1

Our streamline integration extension also delivers a stopping criterion: If the parallel
operator has failed within a certain number of cell faces crossed, and these cells are
adjacent, then the integration stops and the last steps will be deleted. In this sense the
algorithm is self validating.

As mentioned above, more start points are often found than needed or expected.
This is a tribute to the accuracy of the data set or in case of the neighbor cell approach
it is inherent to the methodology. Therefore, the integration has to stop, if a cell face,
crossed by a streamline calculated before, is reached. This newly calculated line
segment will not be considered any more to prevent double calculation of one vortex
axis. Considering this point the analysis sheet shows the advantage of minimizing
such double integration.

282 M. Rütten and H.-G. Pagendarm

Fig. 9. Integrated vortex axes with parallel operator correction. This improves the accuracy
sufficiently. The stopping criterion terminates the vortex line integration upstream of the wing

After all these steps, all vortex axes should be detected and calculated. Further-
more, enough information to visualize hull surfaces of the vortical structure should
be present, so it should be possible to get an impression of the overall vortical flow
structure.

6 Implementation

The presented algorithm is implemented within a object oriented scientific post-
processing code written in C++. Today this code is a brute force implementation and
probably has vast potential for optimization. Still it is useful in practise for typical
datasets of 400 Gb in size. The graphics make use of the VTK library. The code has
been applied to a variety of different dataset. For this paper two delta wing datasets

Fast Vortex Axis Calculation Using Vortex Featuresand Identification Algorithms 283

Fig. 10. Detailed view on detected seed point regions (blue) with integrated primary vortex
axes (yellow and green)

were used. Each of them has approximately 3 million vertices, 12 million cells of
which are 9 million tetrahedrons and 3 million prisms in 20 layers.

7 Conclusions

Although there are a lot of vortex axis detection methods with different advantages
and disadvantages, there is no model, that fulfills all requirements for a fast analysis
of growing CFD data sets. There is still a need for faster and accurate algorithms.

The approach presented here is designed for reducing the overall computational
costs of detection vortex axes. The main idea is to reduce the region to be analyzed
using vortex features and identification methods. The complexity of eigenvalues or
analogous the lambda2 criterion can be used to shrink the region. Further reduction
is done by a local extremum search of a valid scalar flow variable like total pressure
losses or lambda2. As result one gets specified grid points inside the vortex with the
explicit feature of such extremum. Afterwards an analysis sheet is placed at these
locations orientated by the velocity vector as the plane normal vector. After interpo-
lation of velocity and real eigenvector onto the plane the parallel operator of Roth
is applied to find valid seed point for a streamline integration, which represents the

284 M. Rütten and H.-G. Pagendarm

vortex axis. An advanced integration control algorithm is implemented to validate
the vortex axis while calculation.

Still, the presented algorithm has problems with noisy data, because the parallel
operator is sensitive against grid resolution. Therefore, advanced feature or pattern
matching algorithm have to be developed. In the near future it will be one of the
major challenges in flow pattern detection to develop efficient and fast vortex axes
tracking algorithms especially for unsteady flow fields and huge amount of data.

References

1. Banks, D., Singer, B.: Vortex tubes in turbulent flows: Identification, representation, re-
construction. Proceedings of IEEE Visualization ’94, Oct. 1994, pp. 132-139

2. Dallmann, U.: Topological Structures of Three-Dimensional Flow Separation. DFVLR-
IB 221-82 A 07, 1983

3. Dallmann, U., Vollmers, H., Su, W.H.: Flow Topology and Tomography for Vortex iden-
tification in Unsteady and Three-Dimensional Flows. In ”Simulation and Identification of
Organized Structures in Flow”, Proceedings IUTAM Symposium, Technical University
of Denmark, Lyngby, May 25-29,1997, J.N. Sorensen (ed.), Kluwer

4. Hunt, J.R.C., Wray, A.A., Moin, P.: Eddies, streams and convergence zones in turbulent
flows. In Center of Turbulence Research Report CTR-S88, S.193-208, 1988

5. Jeong, J., Hussain, F.: On the identification of a vortex. J. Fluid Mech. (1995), vol. 285,
pp. 69-94

6. Jiang, M., Machiraju, R., Thompson, D.: Detection and Visualization of Vortices, in IEEE
Visualization 2002, October 2002

7. Kenwright,D. N., Haimes, R.: Vortex Identification - applications in aerodynamics: A
Case study. Proceedings of IEEE Visualization ’97, Oct. 1997, pp. 413-416

8. Kenwright, D. N., Henze, C., Levit, C.: Feature Extraction of Separation and Attachment
Lines. IEEE Transactions on Visualization and Computer Graphics, vol. 5, no. 2, April
1999

9. Levy, Y., Degani, D., Seginer, A.: Graphical visualization of vortical flows by means of
helicity. AIAA Journal, vol. 28, no. 8, Aug. 1990, pp 1347-1352

10. Lugt, H. J.: The dilemma of defining a vortex. In U. Müller, K.G. Roesner,
B.Schmidt(eds.), Theoretical and Experimental Fluid Mechanics, pp. 309-321, Springer-
Verlag, 1979

11. Lugt, H. J.: Introduction to Vortex Theory. Vortex Flow Press, Inc., Maryland, 1996
12. Peickert, R., Roth, M.: The ”parallel vectors” operator - a vector field primitive. Proceed-

ings of IEEE Visualization ’99, San Francisco, CA, Oct. 1999
13. Robinson, S. K.: Coherent motions in the turbulent boundary layer. Ann. Rev. Fluid

Mech., vol. 23, 1991, pp. 601-639
14. Roth, M.: Automatic Extraction of Vortex Core Lines and Other Line-Type Features for

Scientific Visualization. PhD thesis, Swiss Federal Institute of Technology Zürich, 2000
15. Singer, B., Banks, D.: A predictor-Corrector Scheme for Vortex Identification. NASA

Contractor Report 194882, ICASE Report No. 94-11, NASA Langley Research Center,
Hampton, VA, Mar. 1994

16. Sujudi, D., Haimes, R.: Identification of swirling flow in 3D vector fields. AIAA Paper
95-1715, 12th AIAA CFD Conference, San Diego, CA, Jun. 1995

Fast Vortex Axis Calculation Using Vortex Featuresand Identification Algorithms 285

17. Truesdell, C.: The Kinematics of Vorticity. Indiana University, 1953
18. Vollmers, H.: Separation and vortical-type flow around a prolate spheroid. Evaluation of

relevant parameters. AGARD-Symposium on Aerodynamics of Vortical Type Flows in
Three Dimensions, Rotterdam, 1983

Topological Features in Vector Fields

Thomas Wischgoll and Joerg Meyer

Electrical Engineering and Computer Science, University of California, Irvine
[twischgo|jmeyer]@uci.edu

Summary. Vector fields occur in many application domains in science and engineering. In
combustion processes, for instance, vector fields describe the flow of gases. This process can
be enhanced using vector field visualization techniques. Also, wind tunnel experiments can
be analyzed. An example is the design of an air wing. The wing can be optimized to create a
smoother flow around it. Vector field visualization methods help the engineer to detect critical
features of the flow. Consequently, feature detection methods gained great importance during
the last years.

Methods based on topological features are often used to visualize vector fields because
they clearly depict the structure of the vector field. Most algorithms basically focus on singu-
larities as topological features. But singularities are not the only features that typically occur
in vector fields. To integrate other features as well, this paper defines a topological feature for
vector fields based upon the asymptotic behavior of the flow. This article discusses techniques
that are able to detect this feature.

Key words: Topological analysis, Vector field visualization, Flow visualization, Closed
streamlines, Feature detection.

1 Introduction

Many of the problems in natural science and engineering involve vector fields. Fluid
flows, electric and magnetic fields are nearly everywhere, therefore measurements
and simulations of vector fields are increasing dramatically. As with other data,
analysis is much slower and still needs improvement. Mathematical methods together
with visualization can provide help in this situation. In most cases, the scientist or
engineer is interested in integral curves of the vector field such as streamlines in fluid
flows or magnetic field lines. The qualitative nature of these curves can be studied
with topological methods developed originally for dynamical systems. Especially in
the area of fluid mechanics, topological analysis and visualization have been used
successfully [9, 13, 18, 25].

But often, topological methods cover only a few topological features that can
occur in vector fields. Basically, only the singularities of a flow are considered in

288 T. Wischgoll and J. Meyer

most algorithms. For instance, a sink is not the only topological feature that is able
to attract the surrounding flow. This becomes quite evident when thinking about bi-
furcation. Consider the Hopf bifurcation as an example. There, a closed streamline
may arise from a sink. This closed streamline then has the same properties as the sink
it originated from: it attracts the flow in exactly the same way. Based on this moti-
vation, this paper defines a general topological feature that covers singularities such
as sources and sinks but also other features depending on their attracting or repelling
property.

First, an introduction of existing vector field visualization methods is given in-
cluding topological techniques. Then, topological features are discussed and a clear
definition of a topological feature based on asymptotic behavior of the flow is given.
Subsequently, algorithms are described that are able to detect this kind of feature.
Finally, results are shown and future work is discussed.

2 Related Works

Several visualization methods for vector fields are available at present. Here, the
focus is on describing those methods that are useful in this application area. An
overview over the various visualization methods can also be found in other publica-
tions [10] and PhD theses [20, 28].

Topological methods depict the structure of the flow by connecting sources,
sinks, and saddle singularities with separatrices. Critical points were first investi-
gated by Perry [22], Dallmann [5], Chong [4] and others. The method itself was first
introduced in visualization for two-dimensional flows by Helman and Hesselink [12].
Several extensions to this method exist. Scheuermann et al [25] extended this method
to work on a bounded region. To get the whole topological skeleton of the vector
field, points on the boundary have to be taken into account also. These points are
called boundary saddles. To create a time dependent topology for two-dimensional
vector fields, Helman and Hesselink [13] use the third coordinate to represent time.
This results in surfaces representing the evolution of the separatrices. A similar
method is proposed by Tricoche et al. [26, 27] but this work focuses on tracking
singularities through time. Although closed streamlines can act in the same way as
sources or sinks, they are ignored in the considerations of Helman and Hesselink and
others.

To extend this method to three-dimensional vector fields, Globus et al. [9] present
a software system that is able to extract and visualize some topological aspects of
three-dimensional vector fields. The various critical points are characterized using
the eigenvalues of the Jacobian. This technique was also suggested by Helman and
Hesselink [13]. But the whole topology of a three-dimensional flow is not yet avail-
able. There, stream-surfaces are required to represent separatrices. A few algorithms
for computing stream-surfaces exist [16, 24] but are not yet integrated in a topologi-
cal algorithm.

There are a few algorithms that are capable of finding closed streamlines in dy-
namical systems that can be found in the numerical literature. Aprille and Trick [2]

Topological Features in Vector Fields 289

propose a so called shooting method. There, the fixed point of the Poincaré map is
found using a numerical algorithm like Newton-Raphson. Dellnitz et al. [7] detect
almost cyclic behavior. It is a stochastic approach where the Frobenius-Perron oper-
ator is discretized. This stochastic measure identifies regions where trajectories stay
very long. But these mathematical methods typically depend on continuous dynam-
ical systems where a closed form description of the vector field is available. This is
usually not the case in visualization and simulation where the data is given on a grid
and interpolated inside the cells. Van Veldhuizen [29] uses the Poincaré map to cre-
ate a series of polygons approximating an attracting closed streamline. The algorithm
starts with a rough approximation of the closed streamline. Every vertex is mapped
by the Poincaré map iteratively to get a finer approximation. Then, this series con-
verges to the closed streamline. De Leeuw et al. [6] present a simplification method
based on the Poincaré index to simplify two-dimensional vector fields. An exam-
ple is shown where a closed streamline is simplified to a single critical point. Even
though the method might be able to detect closed streamlines in a two-dimensional
flow based on the Poincaré index, it is hardly extendable to 3-D.

To get a hierarchical approach for the visualization of invariant sets, and therefore
of closed streamlines as well, Bürkle et al. [3] enclose the invariant set by a set of
boxes. They start with a box that surrounds the invariant set completely which then
is successively bisected in cycling directions. The publication of Guckenheimer [11]
gives a detailed overview concerning invariant sets in dynamical systems.

Some publications deal with the analysis of the behavior of dynamical systems.
Schematic drawings showing the various kinds of closed streamlines can be found in
the books of Abraham and Shaw [1]. Fischel et al. [8] presented a case study where
they applied different visualization methods to dynamical systems. In their appli-
cations also strange attractors, such as the Lorentz attractor, and closed streamlines
occur.

Wegenkittl et al. [30] visualize higher dimensional dynamical systems. To dis-
play trajectories, parallel coordinates [17] are used. A trajectory is sampled at vari-
ous points in time. Then, these points are displayed in the parallel coordinate system
and a surface is extruded to connect these points. Hepting et al. [14] study invariant
tori in four dimensional dynamical systems by using suitable projections into three
dimensions to enable detailed visual analysis of the tori.

Löffelmann [19, 20] uses Poincaré sections to visualize closed streamlines and
strange attractors. Poincaré sections define a discrete dynamical system of lower
dimension which is easier to understand. The Poincaré section which is transverse
to the closed streamline is visualized as a disk. On the disk, spot noise is used to
depict the vector field projected onto that disk. Using this method, it can be clearly
recognized whether the flow, for instance, spirals around the closed streamline and is
attracted or repelled or if it is a rotating saddle. Additionally, streamlines and stream-
surfaces show the vector field in the vicinity of the closed streamline.

290 T. Wischgoll and J. Meyer

3 Theory

This chapter introduces the fundamental theory which is needed for the following
sections. The description mainly follows the book of Hirsch and Smale [15].

3.1 Data Structures

In most applications in scientific visualization the data is not given as a closed form
solution. The same holds for vector fields. Often, a vector field results from a simu-
lation or an experiment where the vectors are measured. In such a case, the vectors
are given at only some points of the domain of the Euclidean space. These points are
then connected by a grid. A special interpolation computes the vectors inside each
cell of that grid. In this paper, we restrict ourselves to a few types of grids, basi-
cally triangular and tetrahedral grids. Using barycentric coordinates, vectors inside
the cells can be interpolated linearly from the vectors given at the vertices [28, 31].

3.2 Vector Field Features

From a topological point of view critical points are an important part of vector fields.
This special feature is described in more detail in this section. We start with the
definition of critical points in the general case and then classify different types of
singularities.

Definition 3.1 (Critical point)
Let v : W → R

n be a vector field which is continuously differentiable. Let further
x0 ∈ W be a point where v(x) = 0. Then x0 is called a critical point, singularity,
singular point, zero, or equilibrium of the vector field.

Critical points can be classified using the eigenvalues of the derivation of the
vector field. For instance, we can identify sinks that purely attract the flow in the
vicinity while sources repel it purely. A proof for this attracting respectively repelling
behavior can be found in [15].

Definition 3.2 (Sink and Source)
Let v be a vector field which is continuously differentiable and x0 a critical point of
v. Let further Dv(x0) be the derivation of the vector field v at x0. If all eigenvalues of
Dv(x0) have negative real parts, x0 is called a sink. If all eigenvalues of Dv(x0) have
positive real parts, x0 is called a source.

Streamlines are a very intuitive way to depict the behavior of the flow. But when
computing such a streamline it may occur that the streamline computation does not
terminate. This mostly is due to closed streamlines where the streamline ends up in a
loop that cannot be left. These closed streamlines are introduced and explained in this
section. More about the theoretical background can be found in several books [23,
34].

Topological Features in Vector Fields 291

Definition 3.3 (Closed streamline)
Let v be a vector field. A closed streamline γ : R → R

n, t �→ γ(t) is a streamline of
a vector field v such that there is a t0 ∈ R with γ(t + nt0) = γ(t) ∀n ∈ N and γ not
constant.

3.3 General Features in Vector Fields

The topological analysis of vector fields considers the asymptotic behavior of stream-
lines. To describe this asymptotic behavior we have two different kinds of so called
limit sets, the origin set or α-limit set of a streamline and the end set or ω-limit set.

Definition 3.4 (α- and ω-limit set)
Let s be a streamline in a given vector field v. Then we define the α-limit set as the
following set: {p ∈ R

n|∃(tn)∞
n=0 ⊂ R, tn → −∞, limn→∞ s(tn) → p}, while the ω-

limit set is defined as follows: {p ∈ R
n|∃(tn)∞

n=0 ⊂ R, tn → ∞, limn→∞ s(tn) → p}.
We speak of an α- or ω-limit set L of v if there exists a streamline s in the vector field
v that has L as α- or ω-limit set.

If the α- or ω-limit set of a streamline consists of only one point, this point is
a critical point. The most common case of a α- or ω-limit set in a planar vector
field containing more than one inner point of the domain is a closed streamline.
Figure 1 shows an example for α- and ω-limit sets. There is one critical point and one
closed streamline contained in the vector field. Both, the critical point and the closed
streamline are their own α- and ω-limit set. For every other streamline the closed
streamline is the ω-limit set. If the streamline starts inside the closed streamline,
the critical point is the α-limit set. Otherwise the α-limit set is empty. With these
explanations, we can give a precise definition of a topological feature of a vector
field.

Fig. 1. Example for α- and ω-limit sets.

Definition 3.5 (Topological feature)
Let v be a vector field. Then, a topological feature of v is an α- or ω-limit set of the
vector field v describing the asymptotic behavior of the flow.

As motivated in the previous example, sources, sinks, and most closed stream-
lines are considered such a topological feature.

292 T. Wischgoll and J. Meyer

4 Detection in Planar Flows

As can be seen from the definition of sinks and sources, these topological features
are relatively easy to determine by calculating the eigenvalues of the flow. Unfortu-
nately, it is not as easy to find the closed streamlines of a flow. Therefore, this chapter
describes an algorithm that detects if an arbitrary streamline c converges to a closed
curve, also called a limit cycle. This means that c has γ as α- or ω-limit set depending
on the orientation of integration. We do not assume any knowledge on the existence
or location of the closed curve. We exploit the fact that we use linear interpolation in-
side the cells for the proof of our algorithm. But the principle of the algorithm works
on any piecewise defined planar vector field where one can determine the topology
inside the pieces.

4.1 Detection of Closed Streamlines

In a precomputational step every singularity of the vector field is determined. To
find all stable closed streamlines we mainly compute the topological skeleton of the
vector field. We use an ordinary streamline integrator, such as an ODE solver using
Runge-Kutta, as a basis for our algorithm. In addition, this streamline integrator is
extended so that it is able to detect closed streamlines. In order to find all closed
streamlines that reside inside another closed streamline we have to continue integra-
tion after we found a closed streamline inside that region.

The basic idea of our streamline integrator is to determine a region of the vec-
tor field that is never left by the streamline. According to the Poincaré-Bendixson-
Theorem, a streamline approaches a closed streamline if no singularity exists in
that region. To reduce computational cost we first integrate the streamline using a
Runge-Kutta-method of fifth order with an adaptive stepsize control. Every cell that
is crossed by the streamline is stored during the computation. If a streamline ap-
proaches a limit cycle it has to reenter the same cell again. This results in a cell
cycle.

Definition 4.1 (Cell cycle)
Let s be a streamline in a given vector field v. Further, let G be a set of cells rep-
resenting an arbitrary rectangular or triangular grid without any holes. Let C ⊂ G
be a finite sequence c0, . . . ,cn of neighboring cells where each cell is crossed by the
streamline s in exactly that order and c0 = cn. If s crosses every cell in C in this order
again while continuing, C is called a cell cycle.

This cell cycle identifies the previously mentioned region. To check if this region
can be left we could integrate backwards starting at every point on the boundary of
the cell cycle. If there is one point converging to the currently investigated streamline
we know for sure that the streamline will leave the cell cycle. If not, the currently
investigated streamline will never leave the cell cycle. Since there are infinitely many
points on the boundary this, of course, results in a non-terminating algorithm. To
solve this problem we have to reduce the number of points that need to be checked.
Therefore we define potential exit points:

Topological Features in Vector Fields 293

Definition 4.2 (Potential exit points)
Let C be a cell cycle in a given grid G as in definition 4.1. Then there are two kinds
of potential exit points. First, every vertex of the cell cycle C is a potential exit
point. Second, every point on an edge at the boundary of C where the vector field is
tangential to the edge is also a potential exit point. Here, only edges that are part
of the boundary of the cell cycle are considered. Additionally, only the potential exit
points in the spiraling direction of the streamline need to be taken into account.

To determine if the streamline leaves the cell cycle, a backward integrated stream-
line is started to see where a streamline has to enter the cell cycle in order to leave
at that exit. We will show later that it is sufficient to only check these potential exit
points to test if the streamline can leave the cell cycle.

Definition 4.3 (Real exit points)
Let P be a potential exit point of a given cell cycle C as in definition 4.2. If the
backward integrated streamline starting at P does not leave the cell cycle after one
full turn through the cell cycle, the potential exit point is called a real exit point.

Since a streamline cannot cross itself, the backward integration starting at a real
exit point converges to the currently investigated streamline. Consequently, the cur-
rently investigated streamline leaves the cell cycle near that real exit point. Fig-
ure 2(a) shows an example for such a real exit point.

If on the other hand no real exit point exists we can determine for every potential
exit point where there is a region with an inflow that leaves at that potential exit.
Consequently, the currently investigated streamline cannot leave near that potential
exit point as shown in Fig. 2(b).

exit

(a)

exit

exit

entry

(b)

Fig. 2. If a real exit point can be reached, the streamline will leave the cell cycle (a); if no real
exit point can be reached, the streamline will approach a limit cycle (b)

With these definitions we can formulate the main theorem for the algorithm:

Theorem 4.4
Let C be a cell cycle with no singularity inside and E the set of potential exit points. If
there is no real exit point among the potential exit points E or there are no potential
exit points at all then there exists a closed streamline inside the cell cycle.

294 T. Wischgoll and J. Meyer

backward integration

1 2V VE

leaves cell cycle

current streamline

(a)

1 2V VT E

current streamline

backward integration

leaves cell cycle

(b)

backward integration

1 2V VE

current streamline

(c)

backward integration

1 2V VT E

current streamline

(d)

Fig. 3. Different cases of potential exits. (a) and (b) is impossible because streamlines cannot
cross each other, (c) contradicts the linear interpolation on an edge, in (d) backward integra-
tions converge to the current streamline so that the point E is a real exit.

Proof: (Sketch)
Let C be the cell cycle. It is obvious that the streamline cannot leave the cell cycle
C if all backward integrated streamlines started at every point on the boundary of C
leave the cell cycle C. According to the Poincaré-Bendixson-theorem, there exists a
closed streamline inside the cell cycle in that case.

We will show now that it is sufficient to only consider the potential exit points.
If the backward integrated streamlines starting at all these potential exit points leave
the cell cycle the backward integration of any point on an edge will also do.

Figure 3 shows the different configurations of potential exits. Let E be an arbi-
trary point on an edge between two potential exit points. In part (a) both backward
integrated streamlines starting at the vertices V1 and V2 leave the cell cycle. Con-
sequently, E cannot be an exit. It would need to cross one of the other backward
integrated streamlines which is not possible.

Part (b) of Fig. 3 shows the case where the vector at a point on the edge is tan-
gential to the edge. Obviously, if E lies between V1 and T the backward integrated
streamline will leave the cell cycle immediately. If it lies between T and V2 and con-
verges to the currently investigated streamline it has to cross the backward integrated
streamline started at T . This contradicts the fact that streamlines cannot cross each
other. Because of the linear interpolation at the edge, part (c) is also impossible.

We have shown that the currently investigated streamline cannot leave the cell
cycle if there are only real exits. Consequently, there exists a closed streamline inside
the cell cycle C since there is no singularity inside C. ❏

Topological Features in Vector Fields 295

With theorem 4.4 it is possible to describe the algorithm in detail. It mainly con-
sists of three different stages: first a streamline is integrated and one cell change after
the other is identified. At each cell the algorithm checks if a cell cycle is completed.
In case of a cell cycle it looks for exits by going backwards through the crossed
cells and looking for potential exit points. Finally, the exits that were found are val-
idated. Therefore, a streamline starting at the potential exit is integrated backwards
through the whole cell cycle. If it is not possible to integrate backwards one full turn
throughout the cell cycle for at least one backward integration a closed streamline
resides in this cell cycle. Otherwise the forward integration of the original streamline
is continued. The algorithm exits if no real exit points are found among all of the po-
tential exit points or if a critical point or the boundary of the vector field is reached.
Theorem 4.4 guarantees that the algorithm then detects closed streamlines if every
potential exit point [32] is checked.

5 Detection of Features in 3-D Vector Fields

Closed streamlines can be found in three-dimensional vector fields as well. For in-
stance, the Terrestrial Planet Finder Mission of NASA [21] deals with stable mani-
folds where 3-D periodic halo orbits play an important role. These orbits are nothing
else than closed streamlines in a three-dimensional vector field.

This section describes how to detect closed streamlines in three-dimensional vec-
tor fields. Although the principle to detect closed streamlines in a three-dimensional
vector field is similar to the two-dimensional case, there are some differences. The
following subsections explain the theoretical and algorithmic differences and simi-
larities.

5.1 Theory

It is assumed that the data is given on a tetrahedral grid, but the principle would work
on other cell types as well. The detection of a cell cycle works in the same way as
in definition 4.1. Of course, the cells are three-dimensional in this case. To check if
we can leave the cell cycle we have to consider every backward integrated streamline
starting at an arbitrary point on a face of the boundary of the cell cycle. Looking at the
edges of a face we can see directly that it is not sufficient to just integrate streamlines
backwards. It is necessary to integrate a stream-surface backwards starting at an edge
of the cell cycle. The streamlines starting at the vertices of that edge may leave the
cell cycle earlier than the complete surface. In fact, it often occurs that one of these
streamlines exit the cell cycle directly while parts of the stream surface itself may
stay inside. Consequently, a different definition for exits is required.

Definition 5.1 (Potential Exit Edges)
Let C be a cell cycle in a given tetrahedral grid G as in Definition 4.1. Then we call
every edge at the boundary of the cell cycle a potential exit edge. Analogue to the
two-dimensional case we define a line on a boundary face where the vector field is
tangential to the face as a potential exit edge also.

296 T. Wischgoll and J. Meyer

Due to the fact that we use linear interpolation inside the tetrahedrons it can be
shown that there will be at least a straight line on the face where the vector field is
tangential to the face or the whole face is tangential to the vector field [33]. There-
fore, isolated points on a face where the vector field is tangential to the face do not
need to be considered. When dealing with edges as exits, stream-surfaces need to be
computed in order to validate these exits. Analogue to definition 4.3 we define real
exit edges.

Definition 5.2 (Real exit edge)
Let E be a potential exit edge of a given cell cycle C as in definition 5.1. If the
backward integrated stream-surface does not completely leave the cell cycle after
one full turn through C then this edge is called a real exit edge.

For the backward integrated stream-surface a simplified version of the stream-
surface algorithm introduced by Hultquist [16] is used. Since there is no triangulation
of the surface required, only the integration step of that algorithm needs to be exe-
cuted. Initially, we start the backward integration at the vertices of the edge. If the
distance between two neighboring backward integrations is greater than a specific
error limit a new backward integration is started in-between. This continues until
an approximation of the stream-surface that respects the given error limit has been
reached.

The integration stops when the whole stream-surface leaves the cell cycle or
when one full turn through the cell cycle is completed. To construct the surface
properly it may be necessary to continue a backward integration process across the
boundary of the cell cycle. This is due to the fact that parts of the stream-surface
are still inside the cell but the backward integrated streamlines have already left it.
With these definitions and motivations we can formulate the main theorem for the
algorithm:

Theorem 5.3
Let C be a cell cycle as in definition 4.1 with no singularities inside and E the set of
potential exit edges. If there is no real exit edge among the potential exit edges E or
there are no potential exit edges at all then there exists a closed streamline inside the
cell cycle.

Proof: (Sketch)
Let C be a cell cycle with no real exit edge. Every backward integrated stream-surface
leaves the cell cycle C completely. As in the 2-D case it is obvious that the cell cycle
cannot be left if every backward integration starting at an arbitrary point on a face
of the boundary of the cell cycle C leaves that cell cycle. Let Q be an arbitrary point
on a face F of the boundary of the cell cycle C. Let us assume that the backward
integrated streamline starting at Q converges to the currently investigated streamline.
We will show that this is a contradiction.

First case: The edges of face F are exit edges and there is no point on F where
the vector field is tangential to F.

Topological Features in Vector Fields 297

From a topological point of view the stream-surfaces starting at all
edges of F form a tube that leaves the cell cycle. Since the backward
integrated streamline starting at Q converges to the currently investi-
gated streamline it does not leave the cell cycle. Consequently, it has
to cross the tube formed by the stream-surfaces. This is not possible
because streamlines cannot cross each other and therefore a stream-
line cannot cross a stream-surface either.

Second case: There is a potential exit edge e on the face F that is not part of the
boundary of F.
Obviously, the potential exit edge e divides the face F into two parts.
In one part there is outflow out of the cell cycle C while at the other
part there is inflow into C because the flow is tangential at e. We do
not need to consider the part with outflow any further because every
backward integrated streamline starting at a point of that part imme-
diately leaves the cell cycle C.
The backward integrated surface starting at the potential exit edge e
and parts of the backward integrated stream-surfaces starting at the
boundary edges of the face F again form a tube from a topological
point of view. Consequently, the backward integrated streamline start-
ing at Q has to leave the cell cycle C.

We have shown that the backward integrated streamline starting at the point Q
has to leave the cell cycle also. Since there is no backward integrated streamline
converging to the currently investigated streamline at all, the streamline will never
leave the cell cycle. ❏

5.2 Algorithm

With theorem 5.3 it is possible to describe the algorithm in detail. Similar to the two-
dimensional case, a streamline is integrated while every cell change is memorized
to detect cell cycles. If a cell cycle was found the algorithm looks for potential exits
by going backwards through the cell cycle and validating these using backward in-
tegrated stream-surfaces. According to theorem 5.3, there exists a closed streamline
inside this cell cycle if all backward integrated stream-surfaces leave the cell cycle.
In that case, we can find the exact location by continuing the integration process of
the streamline that we currently investigate until the difference between two subse-
quent turns is small enough. This numerical criterion is sufficient in this case since
the streamline will never leave the cell cycle.

6 Results

The first example is a simulation of a swirling jet with an inflow into a steady
medium. The simulation originally resulted in a three-dimensional vector field but

298 T. Wischgoll and J. Meyer

Fig. 4. Vorticity vector field of a turbulent flow – limit cycles.

we used a cutting plane and projected the vectors onto this plane to get a two-
dimensional field. In this application one is interested in investigating the turbulence
of the vector field and in regions where the fluid stays for a very long time. This is
necessary because some chemical reactions need a special amount of time. These
regions can be located by finding closed streamlines. Figure 4 shows some of the
closed streamlines detected by our algorithm in detail. In addition, a hedgehog rep-
resentation of the vector field is given. All these limit cycles are located in the upper
region of the vector field. Figure 5 shows all closed streamlines of this vector field
including the topological skeleton.

Fig. 5. Vorticity vector field visualized by the topological skeleton including closed stream-
lines.

Topological Features in Vector Fields 299

Fig. 6. Limit cycle in a 3-D vector field with stream-surfaces.

To test our 3-D detection, a synthetically created dataset which includes one
closed streamline is used. We first created a two-dimensional vector field. The vec-
tor field contains a saddle singularity in the center and two symmetrical sinks. To
get a three-dimensional flow we rotated the two-dimensional vector field around the
axis of symmetry. Due to the symmetrical arrangement of the sinks this vector field
includes exactly one closed streamline. Figure 6 shows the result of the algorithm in-
cluding two stream-surfaces to depict the surrounding flow. Since the closed stream-
line is attracting, the stream-surfaces approaches the closed streamline. The stream-
surface gets smaller and smaller while spiraling around the closed streamline. After
a few turns around the closed streamline, it is only slightly wider than a streamline
and finally it totally merges with the closed streamline. A random color scheme for
the surface is used to enhance the three-dimensional effect. Overall, it is shown that
the algorithms discussed in this paper are capable of detecting most of the previously
defined features.

7 Impending Challenges

If more than one closed streamline crosses the same cell, the algorithm may fail to
detect these closed streamlines, for instance, if there is a structural unstable configu-
ration with one closed streamline inside the other both located in the same cell cycle.
One closed streamline acts like a source, lets say the inner one, while the other one
behaves like a sink. Therefore, the flow originates at the first one and is attracted by
the second one. Since there is an outflow from the cell cycle the algorithm cannot
distinguish between a regular outflow and this configuration. A solution for such a
situation could be to use a subdivision of the grid for the detection of cell cycles only

300 T. Wischgoll and J. Meyer

to avoid the presence of two closed streamlines in the same cell cycle. In addition, the
algorithm for finding closed streamlines in 3-D needs to be applied to more realistic
datasets. Also, there exist more closed structures in 3-D such as a torus for instance.
Therefore, the algorithm could be extended to find these structures as well.

8 Conclusion

In order to complete the topological analysis of vector fields, this article defined
topological features solely based on the asymptotic behavior of the flow. Since sin-
gularities are not the only features inside a vector field that can attract or repel the
surrounding flow, this is an important extension to topological analyses. Algorithms
were presented that are capable of successfully detecting these topological features
both in two- and three-dimensional vector fields.

Acknowledgments

We would like to thank the graphics group at the University of Technology at Kaiser-
slautern, Germany, especially Hans Hagen, Gerik Scheuermann, Xavier Tricoche,
and all the students working in this group. Part of this work was funded by DFG
(Deutsche Forschungsgemeinschaft) and Land Rheinland-Pfalz, Germany. Wolfgang
Kollmann, Mechanical and Aeronautical Engineering Department of the University
of California at Davis, provided us with the vorticity dataset. We are very grateful
for this and several helpful hints and discussions.

References

1. Ralph H. Abraham and Christopher D. Shaw. Dynamics – The Geometry of Behaviour:
Bifurcation Behaviour. Aerial Press, Inc., Santa Cruz, 1982.

2. T. J. Aprille and T. N. Trick. A computer algorithm to determine the steady-state response
of nonlinear oscillators. IEEE Transactions on Circuit Theory, CT-19(4), July 1972.

3. D. Bürkle, M. Dellnitz, O. Junge, M. Rumpf, and M. Spielberg. Visualizing complicated
dynamics. In A. Varshney, C. M. Wittenbrink, and H. Hagen, editors, IEEE Visualization
’99 Late Breaking Hot Topics, pp. 33 – 36, San Francisco, 1999.

4. M. S. Chong, A. E. Perry, and B. J. Cantwell. A General Classification of Three-
Dimensional Flow Fields. Physics of Fluids, A2(5):765–777, 1990.

5. U. Dallmann. Topological Structures of Three-Dimensional Flow Separations. Technical
Report DFVLR-AVA Bericht Nr. 221-82 A 07, Deutsche Forschungs- und Versuchsanstalt
für Luft- und Raumfahrt e.V., April 1983.

6. W. de Leeuw and R. van Liere. Collapsing flow topology using area metrics. In D. Ebert,
M. Gross, and B. Hamann, editors, IEEE Visualization ’99, pp. 349–354, San Francisco,
1999.

7. M. Dellnitz and O. Junge. On the Approximation of Complicated Dynamical Behavior.
SIAM Journal on Numerical Analysis, 36(2):491 – 515, 1999.

Topological Features in Vector Fields 301

8. Georg Fischel, Helmut Doleisch, Lukas Mroz, Helwig Löffelmann, and Eduard Gröller.
Case study: visualizing various properties of dynamical systems. In Proceedings of the
Sixth International Workshop on Digital Image Processing and Computer Graphics (SPIE
DIP-97), pp. 146–154, Vienna, Austria, October 1997.

9. A. Globus, C. Levit, and T. Lasinski. A Tool for Visualizing the Topology of Three-
Dimensional Vector Fields. In G. M. Nielson and L. Rosenblum, editors, IEEE Visualiza-
tion ‘91, pp. 33 – 40, San Diego, 1991.

10. Eduard Gröller, Helwig Löffelmann, and Rainer Wegenkittl. Visualization of Analytically
Defined Dynamical Systems. In Proceedings of Dagstuhl ’97, pp. 71–82. IEEE Scientific
Visualization, 1997.

11. John Guckenheimer. Numerical analysis of dynamical systems, 2000.
12. J. L. Helman and L. Hesselink. Automated analysis of fluid flow topology. In Three-

Dimensional Visualization and Display Techniques, SPIE Proceedings Vol. 1083, pp.
144–152, 1989.

13. J. L. Helman and L. Hesselink. Visualizing Vector Field Topology in Fluid Flows. IEEE
Computer Graphics and Applications, 11(3):36–46, May 1991.

14. D. H. Hepting, G. Derks, D. Edoh, and R. D. Russel. Qualitative analysis of invariant tori
in a dynamical system. In G. M. Nielson and D. Silver, editors, IEEE Visualization ’95,
pp. 342 – 345, Atlanta, GA, 1995.

15. M. W. Hirsch and S. Smale. Differential Equations, Dynamical Systems and Linear Al-
gebra. Academic Press, New York, 1974.

16. J. P. M. Hultquist. Constructing Stream Surface in Steady 3D Vector Fields. In Proceed-
ings IEEE Visualization ’92, pp. 171–177. IEEE Computer Society Press, Los Alamitos
CA, 1992.

17. A Inselberg and B. Dimsdale. Parallel Coordinates: a Tool for Visualizing Multidimen-
sional Geometry. In IEEE Visualization ’90 Proceedings, pp. 361–378, Los Alamitos,
1990. IEEE Computer Society.

18. D. N. Kenwright. Automatic Detection of Open and Closed Separation and Attachment
Lines. In D. Ebert, H. Rushmeier, and H. Hagen, editors, IEEE Visualization ’98, pp.
151–158, Research Triangle Park, NC, 1998.

19. H. Löffelmann, T. Kučera, and E. Gröller. Visualizing Poincaré Maps Together with the
Underlying Flow. In H.-C. Hege and K. Polthier, editors, Mathematical Visualization,
Algorithms, Applications, and Numerics, pp. 315–328. Springer, 1997.

20. Helwig Löffelmann. Visualizing Local Properties and Characteristic Structures of Dy-
namical Systems. PhD thesis, Technische Universität Wien, 1998.

21. Ken Museth, Alan Barr, and Martin W. Lo. Semi-Immersive Space Mission Design and
Visualization: Case Study of the ”Terrestrial Planet Finder” Mission. In Proceedings
IEEE Visualization 2001, pp. 501–504. IEEE Computer Society Press, Los Alamitos CA,
2001.

22. A. E. Perry and B. D. Fairly. Critical Points in Flow Patterns. Advances in Geophysics,
18B:299–315, 1974.

23. Robert Roussarie. Bifurcations of Planar Vector Fields and Hilbert’s Sixteenth Problem.
Birkhäuser, Basel, Switzerland, 1998.

24. G. Scheuermann, T. Bobach, H. Hagen, K. Mahrous, B. Hahmann, K. I. Joy, and W. Koll-
mann. A Tetrahedra-Based Stream Surface Algorithm. In IEEE Visualization ’01 Pro-
ceedings, Los Alamitos, 2001. IEEE Computer Society.

25. G. Scheuermann, B. Hamann, K. I. Joy, and W. Kollmann. Visualizing local Vetor Field
Topology. Journal of Electronic Imaging, 9(4), 2000.

302 T. Wischgoll and J. Meyer

26. X. Tricoche, G. Scheuermann, and H. Hagen. Topology-Based Visualization of Time-
Dependent 2D Vector Fields. In R. Peikert D. Ebert, J. M. Favre, editor, Proceedings of
the Joint Eurographics–IEEE TCVG Symposium on Visualization, pp. 117–126, Ascona,
Switzerland, 2001. Springer.

27. X. Tricoche, T. Wischgoll, G. Scheuermann, and H. Hagen. Topology Tracking for the
Visualization of Time-Dependent Two-Dimensional Flows. Computer & Graphics, pp.
249–257, 2002.

28. Xavier Tricoche. Vector and Tensor Field Topology Simplification, Tracking and Visual-
ization. PhD thesis, University of Kaiserslautern, 2002.

29. M. van Veldhuizen. A New Algorithm for the Numerical Approximation of an Invariant
Curve. SIAM Journal on Scientific and Statistical Computing, 8(6):951 – 962, 1987.

30. R. Wegenkittl, H. Löffelmann, and E. Gröller. Visualizing the Behavior of Higher Di-
mensional Dynamical Systems. In R. Yagel and H. Hagen, editors, IEEE Visualization
‘97 Proceedings, pp. 119 – 125, Phoenix, AZ, 1997.

31. Thomas Wischgoll. Closed Streamlines in Flow Visualization. PhD thesis, Universität
Kaiserslautern, Germany, 2002.

32. Thomas Wischgoll and Gerik Scheuermann. Detection and Visualization of Closed
Streamlines in Planar Flows. IEEE Transactions on Visualization and Computer Graph-
ics, 7(2), 2001.

33. Thomas Wischgoll and Gerik Scheuermann. Locating Closed Streamlines in 3D Vector
Fields. In Joint Eurographics–IEEE TCVG Symposium on Data Visualization 2002, pp.
227–232, Barcelona, Spain, 2002.

34. Ye Yan-qian, Cai Sui-lin, Chen Lan-sun, Huang Ke-cheng, Luo Ding-jun, Ma Zhi-en,
Wang Er-nian, Wang Ming-shu, and Yang Xin-an. Theory of Limit Cycles. American
Mathematical Society, Providence - Rhode Island, 1986.

Part IV

Visualization Systems

Generalizing Focus+Context Visualization

Helwig Hauser

VRVis Research Center in Vienna, Austria
http://www.VRVis.at/, Hauser@VRVis.at

Focus+context visualization is well-known from information visualization: certain
data subsets of special interest are shown in more detail (locally enlarged) whereas
the rest of the data is provided as context (in reduced space) to support user orienta-
tion and navigation.

The key point of this work is a generalized definition of focus+context visual-
ization which extends its applicability also to scientific visualization. We show how
different graphics resources such as space, opacity, color, etc., can be used to vi-
sually discriminate between data subsets in focus and their respective context. To
furthermore demonstrate its general use, we discuss several quite different examples
of focus+context visualization with respect to our generalized definition. Finally, we
also discuss the very important interaction aspect of focus+context visualization.

1 Introduction

For a long time already, modern society is greatly influenced by computers. Mainly,
computers are used to process data of various kind. Additionally, computers are
also used to support the acquisition of data, for example, through measurements
or computational simulation. Due to a steadily increasing performance of comput-
ers (Moore’s law), year by year more data is processed. Since users do not extend
their capabilities in data-processing at a comparable rate, there is an increasing need
for efficient tools to support the processing of large amounts of data.

One very useful opportunity for accessing large amounts of data is visualization.
Data is communicated to the user in a visual form to ease processing. Instead of deal-
ing with loads of numbers, the user accesses the data through pictures and a graphical
user interface. This approach is especially useful when the data has at least some spa-
tial form inherently associated with it. In many scientific applications, for example,
data is tightly related to concrete parts of our real world, e.g., a 3D computer tomog-
raphy scan of a human body in a medical application or the 3D simulation of air flow
around the computer model of a new aircraft.

The main advantage of visualization is that it uses the great bandwidth of the
human visual system for visualization. However, also for visualization the amount

306 H. Hauser

of data to be shown at once is limited. For very large data sets, details cannot be
shown for all of the data at the same time. In this case, the user usually is offered the
opportunity to either get an overview of the data (no details), or zoom into specific
parts of the data and get all of the details there.

While scientific visualization (SciVis, the visualization of scientific data) has
been researched for dozens of years already, more recently also the visualization
of non-scientific, abstract data (InfoVis, information visualization) such as bank ac-
count data or census data has become popular. In InfoVis, an additional step is re-
quired in the visualization process, i.e., the mapping of non-spatial data to a visual
form. As the user has to learn this additional mapping to effectively use the visualiza-
tion (and to successfully build up a mental map of the data–form relation), more care
is required to support the user with orientation in the visualization. Careless zooming
across multiple levels of details can easily cause an effect like being lost in too many
details. Thus, advanced solutions have been developed in this field to supply users
with both overview and details of the data at the same time.

2 Focus+Context Visualization

In information visualization, an approach called focus+context visualization (F+C vi-
sualization) has been developed which realizes the combination of both a general
overview as well as a detailed depiction within one view of the data at the same point
in time. Traditionally, focus+context visualization refers to an uneven distortion of
visualization space such that relatively more space is provided for a certain subset of
the data (data in focus). At the same time the rest of the visualization is compressed
to still show the rest of the data as a context for improved user orientation.

The idea of using different magnification factors for different parts of the visu-
alization (in one image) to display information in a F+C style already dates back to
the ’70s of the 20th century [9, 22]. Furnas’ work on the fisheye view [10] in 1981
often is accepted as the historical start into computer-based F+C visualization. In
this work, Furnas describes how information is selected for display depending on
an a-priori importance and the distance of each data item to the current focus of the
visualization. Also in the early 1980s, Spence and Apperley presented the bifocal
display as a one-dimensional distortion technique [43] to provide a shrinked context
on both the left and the right side of an undistorted focal region in the middle of the
visualization.

During the 1980s, both approaches have been generalized and extended [11, 32].
In 1992, Sarkar and Brown presented the graphical fisheye view [41], based on Fur-
nas’ work, but more focused on the graphical appearance of the F+C visualization
(comparable to a real fisheye lens). One year later, Sarkar et al. discussed two tech-
niques (orthogonal and polygonal stretching) for F+C visualization based on the
concept of a stretchable rubber sheet [42]. In 1994, Leung and Apperley already
presented a review of distortion-oriented F+C visualization, including additional ap-
proaches such as the perspective wall [36] (see also later), and providing a respective

Generalizing Focus+Context Visualization 307

taxonomy [33]. They describe techniques of F+C visualization by the characteris-
tics of the magnification function (being the derivative of the tranformation function
from the undistorted view to the F+C view). Doing so, three classes of techniques are
differentiated: (1) approaches with a continuous magnification function (such as the
graphical fisheye [41]), (2) techniques with piece-wise constant magnification fac-
tors (the bifocal display [43], for example), and (3) others (the perspective wall [36],
for example).

The perspective wall, presented by Mackinlay et al. in 1991 [36], is based on the
concept of “bending backwards” parts of the display on both the left and the right
side of the focus region in the center of the screen (similar to the bifocal display [43]).
Perspective projection is used to achieve a variation in magnification factors within
this kind of F+C visualization. In 1993, this approach was extended to the so-called
document lens [40] – also parts above and below the focal region are used for context
visualization.

In the domain of distortion techniques with continuous magnification functions,
further extensions have been presented after the first half of the 1990s. In 1995, the
three-dimensional pliable surface was presented by Carpendale et al. [3], also using
perspective projection to achieve different magnification factors in different parts
of the display. Gaussian profiles are used to generate magnification (and thus yield
to a continuous magnification) and multiple foci are possbile in one view. In 1996,
Keahey and Robertson presented non-linear magnification fields as a technique inde-
pendent from perspective projection and with direct control over the magnification
function on every point of a grid over the display [23, 24]. The transformation func-
tion is computed in an iterative process, locally optimizing on the difference between
the discrete derivative of the transformation field and the input (magnification field).

In 1995, the mapping of hyperbolic space to the plane was used by Lamping et
al. [29–31] to achieve F+C visualization, enabling the visualization of infinite space
on a limited screen space (at least in principle). In a similar fashion, Kreuseler et
al. used the mapping from spherical space to the plane for F+C visualization [28],
allowing to move the focal center around the sphere.

The large amount of work on distortion techniques for F+C visualization doc-
uments the relevance of this approach, especially in the domain of information vi-
sualization. But instead of discussing more details about distortion techniques for
F+C visualization or other approaches in this field, we restrict this overview to the
above mentioned examples and proceed towards our generalization of F+C visual-
ization. First, however, we briefly discuss how focus is separated from context, an
inherently necessary part of every focus+context visualization.

3 Separating Focus from Context

When dealing with focus+context visualization, it is inherently necessary to have a
notion of which parts of the data are (at least at one point in time) considered to be
“in focus” and what others are not (context part of the data). In the course of this
work, we use a so-called degree-of-interest function (DOI function), doi(), which

308 H. Hauser

describes for every item of the data whether (or not) it belongs to the focus (similar
to Furnas’ definition [10], but normalized to the unit interval [0,1]):

doibin(data[i]) =
{

1 if data[i] is part of the focus
0 if data[i] is part of the context

In many application scenarios, a binary discrimination between focus and context (as
formulated above) is appropriate, i.e., to assume a sharp boundary between the data
items in focus and all the others. In many other cases, however, it is more appropriate
to allow a smooth change of doi()-values between the data items in focus and their
context (resulting in a smooth degree of interest [6]). In other words, the question of
whether a data item belongs to the focus (or not) also can be answered by the use of
a fuzzy attribute doi():

doi(data[i]) =

⎧⎪⎨⎪⎩
1 if data[i] is part of the focus

if data[i] is part of the smoothdoi ∈]0,1[boundary between focus and context
0 if data[i] is part of the context

(1)

Accordingly, a fractional value of doi is interpreted as a percentage of being in focus
(or interest). A fractional doi()-value can be the result of a multi-valued definition
with multiple (still discrete) levels of interest, e.g., doi ∈ {0,25%,50%,75%,1}, a
non-sharp definition of what is interesting (e.g., through a definition which is based
on continuous spatial distances), or a probabilistic definition (e.g., through a defini-
tion incorporating a certain amount of uncertainty).

Usually, the specification of the doi()-function is tightly coupled with the user
interface. Different approaches are used to let the user specify which parts of the
data (at one point in time) are of special interest (explicit vs. implicit specification,
for example). In Sect. 5 we discuss the interaction aspect of F+C visualization in
more detail.

In traditional F+C visualization (space-distortion techniques), the degree of in-
terest doi(data[i]) is directly related to the local magnification used to depict a data
item data[i] (this 1:1–relation only holds to a certain extent of accuracy – in general
it is not possible to translate every DOI/magnification function into a corresponding
transformation function [23, 33]): the larger the doi()-value is, the more screen space
is used for visualization, at least locally.

4 Generalized Focus–Context Discrimination

Although the vast majority of research work on F+C visualization has been devoted
to space-distortion techniques, the idea of visually discriminating the parts of the
data in focus from all the rest, i.e., the context, is more general. In addition to using
more space for showing the focus in more detail, other visual dimensions can be
used in a similar way. In volume rendering, for example, usually more opacity is
used for parts of the data in focus [34], whereas a greater amount of transparency

Generalizing Focus+Context Visualization 309

Table 1. Realizing (generalized) F+C visualization by the uneven use of graphics resources
(space, opacity, color, etc.) to discriminate parts of the data in focus from the rest (context) –
more details in Sect. 4

graphics
resource approaches sample technique(s)

space more space (magnification) graphical fisheye view [41], . . .
for data in focus F+C process visualization [37]*

opacity focus rather opaque, direct volume rendering [34], . . .
context rather transparent RTVR [38]*

color colored focus in gray context WEAVE [12], SimVis [5, 6, 8]*
focus: saturated/light colors Geospace [35], RTVR [38]*

frequency sharp focus, blurred context semantic depth of field [25, 26]*
style context in reduced style two-level volume rendering [17, 18]*

(non-photorealistic rendering) NPR-contours [4]*

*. . . techniques which are described in more detail in Sect. 4

Table 2. Sample images of five different F+C visualization techniques (from left to right):
RTVR-based volume rendering, two-level volume rendering, F+C visualization of simulation
data, semantic depth of field, F+C process visualization

sample
image

graphics opacity style color frequency spaceresource
section 4.1 4.2 4.3 4.4 4.5
related [38] [4, 17, 18] [5, 6, 8] [25, 26] [37]paper(s)

is used for context visualization. Additionally, also color can be effectively used to
visually discriminate different parts of the data. In a system called WEAVE [12],
for example, those parts of the data which positively respond to a certain user query
(i.e., the current focus) are shown in color, whereas the rest of the data (the context)
is shown in gray-scale.

Similarly, other visual dimensions, such as image frequencies, rendering style,
etc., can be used to achieve focus–context discrimination (see below for examples).
We therefore propose to generalized the definition of focus+context visualization
in the following way: focus+context visualization is the uneven use of graphics re-
sources (space, opacity, color, etc.) for visualization with the purpose to visually
discriminate data-parts in focus from their context, i.e., the rest of the data. In Ta-
ble 1, we give several examples of F+C visualization which are quite different from
each other but which all match the above definition and thereby demonstrate its gen-
eral character. The examples differ from each other with respect to which graphics
resource is (unevenly) used to achieve F+C visualization. Below we discuss some of

310 H. Hauser

Fig. 1. A simple “window” often is sufficient to map
doi-values to α-values: doi-values up to a certain min-
imum are mapped to a minimal value of opacity (usu-
ally 0), whereas doi-values above a certain maximum
are mapped to 1 (completely opaque). In between, a
linear map from doi-values to α-values is used

these examples in more detail (those marked with an asterix in Table 1). In Table 2
we provide a side-by-side comparison of five sample techniques (one sample image
each) with pointers to other parts of this document with more detail as well as also
to other pieces of related literature.

4.1 More Opacity for Visualization in Focus

One alternative style of F+C visualization (alternative to space-distortion techniques)
is identified in a domain where usually other objectives, slightly different from
focus–context discrimination, actually govern the development of new techniques.
In volume rendering, all from the beginning on [34], a so-called opacity transfer
function (OTF) α() is used to deal with the fact that usually not all of the 3D data
can be shown simultaneously at full intensity – OTF α() is used to map the data
domain to the unit interval (1 ↔ opaque, 0 ↔ completely transparent). Using an
OTF, different values of opacity/transparency are assigned to different parts of the
data. This causes that some parts of the data become more prominently visible in the
rendered image while others are not (or only hardly) visible.

Originally, the use of an opacity transfer function was not argued with the need
to discriminate parts of the data “in focus” from their “context”. However, the goal
to visually bring out certain parts of the data in the visualization while reducing the
visual appearance of all the rest very well matches the principal idea of F+C visual-
ization. On the basis of a degree-of-interest function, an OTF can be specified by

α(data[i]) = a(doi(data[i]))

with a() being the identity map (a(x)=x), a simple windowing function (see Fig. 1),
or any other (potentially simple) monotonic map from [0,1] to [0,1]. When doi(),
for example, is defined on the basis of a scaled distance from a pre-defined iso-
value – doi(data[i]) = max{1− s |data[i]−viso | ,0} –, then one of Levoy’s OTF is
regenerated with a() being the identity map (or a simple window).

From many years of work on the question of how to specify an optimal opac-
ity transfer function [39] we know that one simple data-dependent function doi()
(or α()) often is not sufficient to optimally discriminate focus from context in a visu-
alization of 3D data, e.g., 3D medical data or 3D data from computational simulation.

Generalizing Focus+Context Visualization 311

Fig. 2. A segmented CT-
dataset of a chest, visualized
using two-level volume
rendering. Different values
of overall opacity have been
used for lung (completely
opaque), bones (semi-
transparent), and skin (very
transparent)

Instead, often sophisticated segmentation algorithms are used to do a proper focus–
context discrimination before the actual visualization. The result of a segmentation
algorithm usually is an n-valued object map object(), telling for each and every data
item data[i] which object it belongs to.

In two-level volume rendering (2lVR) [13, 17, 18], such an object map is used to
improve the F+C visualization of 3D data: instead of directly deriving doi() from the
data, the degree of interest is defined on the basis of object(), i.e., for all the objects
in the data (and not the singular data items) it is determined how interesting they
are. This is done, because in many applications the 3D data anyhow is assumed to
be composed of objects (in medical applications, for example, a dataset is assumed
to be composed of bones, tissue, etc.). Therefore, the user automatically tends to for-
mulate the focus–context discrimination in terms of the data objects (like “I’d like to
see the bones and the blood vessels in the context of the skin.”). For rendering, two
values of opacity are used in two-level volume rendering: in addition to the object()-
based (global) opacity αglobal = aglobal(doi(object)), which yields the overall opacity
for an object (depending on its degree of interest), a local (object-wise specified)
OTF αlocal(data[i],object(data[i])) is used to individually steer the visual appear-
ance of every object.

For example, assuming αlocal(.,1) to be a relatively sharp Levoy-OTF (compa-
rably large s) and aglobal to be the identity map, object 1 would be rendered like an
iso-surface with its importance doi(1) directly relating to its opacity. Through this
separation of αglobal and αlocal the task of emphasizing certain parts of the data (se-
mantical question) is separated from the question of how to render the different parts
of the data (syntactical question). Accordingly, the parameterization of two-level vol-
ume rendering (adjustment of opacities) is much more intuitive (when compared to

312 H. Hauser

Fig. 3. 9-dimensional data from computational flow simulation (values from 5400 cells of a
T-junction grid), visualized with parallel coordinates

Fig. 4. DOI-based opacity used to visually separate some parts of the data “in focus” (charac-
terized through rather large values of “T.K.Energy”) from all the rest (context)

the use of a standard OTF only) and thus it is possible to achieve better results in
shorter time. See Fig. 2 for a sample visualization of segmented 3D chest data with
the focus on the lung-object.

In addition to opacity variations, two-level volume rendering also offers alter-
ative ways to achieve a visual focus–context discrimination, for example, by varying
the rendering style. But before we futhermore discuss 2lVR, another example for
opacity-based F+C visualization is briefly described, which comes from the field of
information visualization. Parallel coordinates [19–21] are a well-established tech-
nique for the visualization of high-dimensional data. Every n-dimensional data item
is plotted as a polyline across n parallel axes in screen space such that a data item’s
polyline intersects the axes exactly at those points which relate to the data item’s
n attributes (see Fig. 3 for a sample image).

When many data items have to be shown simultaneously (tens of thousands or
more), problems with overdraw easily occur: many pixels are covered by several (or
even many) polylines. The resulting effect is that the visualization looses effectivness
due to visual clutter – a classical scenario where F+C visualization can help. Using
a DOI-based opacity to draw semi-transparent polylines over each other [15], an im-
proved display is gained which allows for interactive analysis of the n-dimensional
data (see Fig. 4). Note that the ability to interactively focus in such a F+C appli-
cation is essential here to effectively exploit the visual superiority of this kind of
visualization.

4.2 Reduced Style for Context Visualization

Another option of visually distinguishing between objects in focus and their context
is to use different rendering styles. In two-level volume rendering, for example, it
is possible to use different rendering techniques for different objects in the data. On
the global level, the different representations of the data objects are combined using

Generalizing Focus+Context Visualization 313

Table 3. Visualization properties of different rendering styles for 3D visualization together
with a rough assessment of how they can be used for F+C visualization. Depending on whether
the focus is inside the context (or outside), or if the context is of complex shape (or a rather
coherent object), different combinations of rendering styles yield good results for F+C visual-
ization (details in Sect. 4.2)

rendering style visualization properties

α-compositing conveys appearance of semi-transparent 3D medium (F),
opacity difficult to control

shaded surface display well conveys 3D form (F), good transparency control (C)
max. intensity proj. good for complex forms (F), limited 3D appearance,

good transparency control (C)
x-ray rendering good for overview (C), complex opacity distribution

contour rendering reduced appearance (C), little problems with occlusion

F . . . good for focus visualization,
C . . . good for context visualization

standard compositing (α-blending) to achieve the final image. In addition to standard
volume rendering, shaded surface rendering, maximum intensity projection (MIP),
x-ray rendering, and non-photorealistic contour rendering can be used to depict an
object. In Table 3 some visualization properties are listed for different rendering
styles in 3D visualization. A good opacity control, for example, favors the visual-
ization as part of the context, because occlusion is easier controlled. The ability to
visualize 3D form well, as another example, favors the visualization of data parts in
focus. In the following we discuss several useful combinations of different rendering
styles for F+C visualization.

Shaded surface display very well acts as visualization of objects in focus, espe-
cially if the object(s) in focus are inside the context and, consequently, an opaque
surface is used for visualization. This way, usually a strong and sharp appearance of
the objects in focus is possible with a good communication of 3D shape. For con-
text visualization, in such a case, the use of contour rendering and/or MIP is very
interesting. Contour rendering works fine, because of its reduced appearance (lots of
object parts are left away whereas only their contours are shown) and the fact that
usually the middle parts of the visualization (where the objects in focus are shown) is
rarly occluded (see Fig. 5, right image). Additionally, also MIP usually is useful for
context visualization because of its easy-to-control opacity – only one data value per
viewing ray is chosen for display, all object representatives share the same opacity
(see Fig. 5, left image).

In case of context which is inside the objects in focus, like the bones acting as
context to blood vessels (as the objects of interest in angiography), for example,
shaded surfaces are doing a good job of focus visualization. The surfaces, however,
need to be rendered semi-transparent (at least to some extent) to allow the user to peer
inside and get visual access to the otherwise occluded context. MIP again is useful
for the depiction of the context objects (good transparency control) – see Fig. 6 (left
image) for a sample rendering of such a situation. Similarily, an x-ray simulation

314 H. Hauser

Fig. 5. MIP is useful for context visualization (skin on left side) because of its easy-to-trim
opacity. Contour rendering works very well for context visualization (skin on the right) be-
cause of its reduced appearance (little problems with occlusion)

Fig. 6. F+C visualization of CT data of a human hand (left side): the objects of interest (blood
vessels) are drawn as semi-transparent surfaces, whereas the bones are rendered using MIP.
Contour rendering has been used to depict the skin. An x-ray simulation has been used to depit
the dentine of the tooth on the right side (semi-transparent surface rendering of the adamantine
and contour rendering of surrounding material)

sometimes is useful for context visualization within objects of interest (see Fig. 6,
right image, for an example).

In addition to context rendering, MIP is also useful for depicting objects in focus,
especially is they are of complex shape (like an entire system of blood vessels or a
chaotic attractor in a dynamical system [1]). In Fig. 7 two examples of such a visu-

Generalizing Focus+Context Visualization 315

Fig. 7. Two examples of using MIP for complex objects in focus: the system of blood vessels
in the CT hand data (left side) and a chaotic attractor within its basin of attraction on the right
side (parts of the basin are shown as shaded surface whereas the rest of the basin is shown
using contour rendering to minimize occlusion)

alization are given. On the left side MIP is used to show the blood vessels within the
CT hand data. On the right side a complex attractor with fractal shape is visualized
using MIP. The context (the basin of attraction, in this case) is shown in two ways:
whereas the lower parts are shown as a shaded surface, the upper parts are provided
using contour rendering only (to reduce problems with occlusion).

4.3 Eye-catching Colors for Focus Visualization

In addition to opacity and style as discussed in the previous two sections, also color
is effectively used to focus within a visualization. From perseptual research on preat-
tentive vision [44, 45] we know, for example, that human observers can very quickly
“find” colored parts in a visualization of otherwise gray-scale representations – the
“search” succeeds even before the observer actually starts searching in an active
manner, i.e., in a time usually shorter than 200 ms from stimulus. Accordingly, col-
oring some parts of a visualization (which are in focus) and showing all the rest in a
gray-scale way, also works fine as a F+C visualization technique.

Gresh et al. presented a system called WEAVE [12] which uses this style of F+C
visualization for the display of complex simulation data of a beating human heart.
Different views of different types of visualization (a scatterplot, a 3D view, etc.)
are used to depict and analyse the multi-dimensional simulation data. To assess the
large amount of data, the user is able to select certain data subsets of special interest.
These parts of the data are then drawn in color whereas all the rest is displayed in
gray-scale style. First of all, the colored parts of the visualization immediately stand
out of every view where this kind of focus–context discrimination is used. Secondly,

316 H. Hauser

the coloring is done consistently across all the views, so visual linking is established
between the views. The same color always indicates the same selection of the data
(focus), just visualized differently according to the different views (thereby different
characteristics/dimensions of the same data are visualized in the different views).
In information visualization this approach is called linking and brushing (L&B) –
“brushing”, because the process of selecting a data subset of interest usually is done
directly on one of the linked views, similar as in a drawing program.

In a system called SimVis [5–8], we use this approach to visualize data from com-
putational simulation of processes in the automotive industry. An extended brush-
ing technique called smooth brushing [6] allows for a gradual transition of the doi-
function from the subset of interest (focus, doi=1) to the rest (context, doi=0). For
visualization, a gradual reduction of color saturation is used to reflect the continu-
ously diminuishing degree of interest. See Fig. 8 for a sample result of this kind of
visualization, where a data subset of high pressure and high velocity was selected us-
ing smooth brushing in the scatterplot on the right. On the left, a visually linked 3D
view shows where those areas of high pressure and high velocity lie in the 3D flow
domain (a model of a catalytic converter). In addition to the DOI-based variations of
color saturation also the glyph size is varied according to the data item’s degree of
interest (the more interesting the bigger the glyphs used).

In Fig. 9 volume rendering on the basis of α-compositing [16] was used to depict
a subset of a flow through an extended T-junction (characterized through values of
high temperature and high turbolent kinetic energy, see scatterplot on the right). In
Fig. 10 another sample snapshot from an interactive visual analysis session (using
SimVis) is shown [8]. A scatterplot (on the lower left) and a histogram (in the middle)
are used to focus on the oxidation front within a diesel particle filter (characterized
by lots of carbon oxides, i.e., oxidation products, and high temperatures). The linked
3D view shows the spatial location of the oxidation front at a certain point in time
(35 secs. after the simulation start). In the upper left a tree view is visible which
provides direct access to the focussing information, i.e., the doi attributions of the
data as related to the current analysis step.

In a system called GeoSpace [35], user queries are answered visually through
high-lighting the data parts in focus, i.e., those data items which positively respond to
the user query. High-lighting is done, for example, by increasing the color lightness.
Thereby the selected data subsets visually stand out from the rest of the depiction.
In two-level volume rendering, this approach is used to provide feedback to the user
during object selection in the 3D domain. For a short time after the selection of
an object in the scene, the selected object is shown with a different transfer function
(increased color lightness, increased opacity). Thereby a clear visual linking between
an object’s name or ID and its visual representation as part of the visualization is
established (see Fig. 11).

This is especially useful, when volume visualization is performed in a virtual
environment. In this case, especially when 3D objects have to be selected directly
through 3D user interaction (for example, by the use of a 3D pointing device), object
high-lighting greatly supports the interactive placement of the 3D pointing device.
While moving the pointing device, the user immediately gets feedback on which

Generalizing Focus+Context Visualization 317

Fig. 8. F+C visualization of CFD data (flow through a catalytic converter). A data subset,
represented by values of high pressure and high velocity, has been selected by smooth brushing
on the scatterplot on the right. Gradual changes of color saturation on the left (in the 3D view)
represent the smooth degree of interest

Fig. 9. Visualization of flow through a T-junction. The visualization focuses on a flow subset
which is characterized by high temperature and high turbulent kinetic energy. The junction-
geometry is added as context (contour rendering)

Fig. 10. Flow through a diesel particle filter: a scatterplot and a histogram are used to focus
on hot flow which also exhibits large amounts of carbon-oxides (oxidation products CO &
CO2). The 3D view shows the spatial location of the oxidation front at time 35 secs. after the
simulation start (color shows velocity magnitudes)

318 H. Hauser

Fig. 11. Object high-lighting in the course of object selection: before the selection (t = t0, left
image), right after the selection of the chaotic attractor (t = t0+≈ 1

2 sec., middle image), and a
little later after high-lighting (t = t0+≈1sec., right image)

— bones liver kidneys —

Fig. 12. Several snapshots from a video which was taken through a session where the user
moved a 3D pointing device across a 3D dataset of a human chest in a virtual environment.
Visual object high-lighting reflects the current 3D position of the 3D pointing device which is
very useful to efficiently position the device in 3D space during object selection

object the pointer currently is pointing towards. Thereby, the user is easily able to
efficiently select the one object of special interest without a lot of trial and error
(which otherwise is quite normal for 3D direct selection). Figure 12 gives a number
of snapshots of a video which was taken during a session where the user moved a 3D
pointing device around a 3D dataset of a human chest with different segmented parts
of the data. Whenever the 3D pointing device enters another object in the scene,
the respective object is rendered in a high-lighted fashion according to the above
mentioned transfer function alternation.

4.4 Band-limited Context

Before we come back to the traditional way of F+C visualization (Sect. 4.5), we fur-
thermore describe one additional way of visually discriminate the visualization of
data parts in focus from all the rest (context). Again (as compared to the use of eye-
catching colors for focus visualization, see Sect. 4.3) it is an argument from percep-
tual psychology which motivates this alternative approach: the difference between a
sharp and blurred object depiction efficiently can be used for visual focus–context
discrimination [25, 26], a technique we call semantic depth of field (SDOF). In a
user study we could prove that the perceptual identification of sharp objects among

Generalizing Focus+Context Visualization 319

Fig. 13. The basic idea of SDOF
for 2D visualization: assuming
a lens-based camera model for
rendering, the visualization ob-
jects are virtually moved back or
forth along the viewing direction
to achieve a blurred and sharp
depiction for irrelevant and rel-
evant data items, respectively

Fig. 14. Two examples of an SDOF visualization: streets standing out of an SDOF map visu-
alization on the left (other parts of the map blurred) and a scatterplot with SDOF effect on the
right

blurred others indeed is preattentive [27], i.e., is performed by the human perceptual
system within a very short time (<≈200ms).

In 2D, the basic idea of SDOF (semantic depth of field) is (a) to assume a camera
model with a depth-of-field effect in rendering and (b) to virtually displace parts of
the visualization along the viewing axis to achieve a blurred or sharp depiction of
irrelevant and relevant parts of the data, respectively (see Fig. 13). With a lens-based
camera, objects are only displayed sharply if they are located at the focal distance
from the lens. Object which are displaced along the viewing axis are blurred accord-
ing to their distance from the lens. Therefore, the displacement in the depth direction
is done according to the degree-of-interest values which are associated to all the data
elements (and not as a spatial function of the data as it is in real-world photography).
For 3D visualization, a similar SDOF model exists [25, 26].

Confronted with the result of such a SDOF visualization (see Fig. 14), the user
can immediately identify the data subsets in focus (similar to photography where
sharpness also directly correlates to the fact of being in focus). Therefore, this kind
of F+C visualization becomes especially useful when the DOI assignement is done
implicitly, e.g., through brushing of invisible dimensions (with a range slider, for
example) or through defining the DOI value by how well a data item matches a
certain user query [2]. In all these cases the first task a user usually performs is

320 H. Hauser

to identify which data items actually have been assigned a high DOI value (and
which not). With SDOF this is easily possible as the sharp parts of the visualization,
representing the relevant data items, stand out of the depiction automatically.

4.5 More Space for Details

After discussing four alternative ways of realizing focus–context discrimination in
visualization (based on the variation of opacities, styles, colors, and frequencies),
we come back to the traditional way of F+C visualization, i.e., to the variation of
magnification factors within a single image. This kind of completes the picture of
our generalization. In Sect. 2 we already discussed the extensive block of literature
on this kind of F+C visualization. In our case, we have applied this classic principle
to process visualization [37] where this has not been done before.

In process visualization, data which is streaming in from a larger number of
processes has to be presented to a user such that process surveillance as well as
interactive analysis is possible. In analogy to traditional process visualization, where
processes are visualized with analog instruments like gauges or other display devices,
programs for process visualization (at least partially) mimic this kind of visualiza-
tion with virtual instruments. One disadvantage of virtual instruments is that they
take up quite a lot of screen space. When multiple streams of process data have to be
shown simultaneously, not enough screen space is available to show all the data with
regularily sized instruments. In such a situation, distortion-based F+C visualization
becomes useful.

To achieve F+C visualization of process data, several levels of detail have been
designed for the different virtual instruments in use. The different levels of detail
use different amounts of screen space, ranging from a small lamp, color-coding the
process data, up to a fully fletched virtual instrument, using a hundred times the
amount of screen space as compared to the lamp. If not all of the data can be shown
at the highest level of detail simultaneously (due to lack of screen space), differ-
ent levels of detail can be combined according to DOI values of the different data
items. See Fig. 15 for an example, where three streams of process data are visualized.
DOI values inversely correlate to the distance between the respective virtual instru-
ment and the pointer which is interactively moved by the user (from left to right).
Thereby, those virtual instruments which are nearest to the pointer are displayed at
the highest level of detail whereas with increasing distance from the pointer lower
levels of detail are used.

In process visualization, data usually originates at concrete 3D locations like a
sensor at a certain place or a simulation output with a specific 3D position. Accord-
ingly, the visualization of process data can be organized on the screen such that this
relation between the virtual instruments and the related 3D model becomes obvi-
ous. In a prototype implementation of F+C process visualization, we first draw the
underlying 3D model as a wire-frame rendering. Then, the virtual instruments are
shown on top of the wire-frame model at those screen coordinates which correlate
to the screen-projection of the corresponding 3D locations of the data sources (see
Fig. 16).

Generalizing Focus+Context Visualization 321

Fig. 15. F+C process visualization: depending on where the user points, the virtual instruments
are drawn at a smaller or larger level of detail (from left to right: the pointer is moved from
left to right)

Fig. 16. 3D anchoring and collision avoidance in F+C process visualization: virtual instru-
ments are placed at the screen-projection of that 3D point which is related to the data origin,
for example, a sensor (3D anchoring); to avoid cluttering due to overlapping dials a physically-
based spring model is used to relocate instruments such that they do not overlap (collision
avoidance)

With such a layout strategy (called 3D anchoring – the virtual instruments are
“anchored” at their respective 3D source locations), it can easily happen that screen
projections of sensor locations lie near each other such that a naı̈ve implementa-
tion of 3D anchoring would cause overlapping virtual instruments. In our prototype
implementation we therefore use a physically-based spring model to resolve for non-
overlapping instruments (collision avoidance). See Fig. 16 for three snapshots of this
prototype which were taken while the user rotated the 3D model (the black dots,
which are connected to the centers of the instruments with black lines, mark the
screen-projections of the 3D anchors, i.e., the 2D locations where in the optimal case
the virtual instrument should be displayed).

5 Interaction

Focus+context visualization requires interaction. Most important, the user needs to
have interactive means to focus in a F+C visualization, i.e., he or she needs to steer
which parts of the data have to be shown in focus. Accordingly, focussing also in-
cludes interactive means to navigate in the visualization, i.e., to change from the vi-
sualization of one part of the data (in focus) to another. For applications of F+C visu-
alization, different approaches to focussing are available (see Table 4 for an overview
of some of them), which can be classified with respect to several different aspects.
One question is of whether focussing is done directly on the visualization (or not).
Another quesion is of whether focussing is done explicitly, i.e., by either directly
brushing the data items of interest or naming them explicitly. Thirdly, the question
of whether the user actively performs the focussing (or the system does it for the
user) also classifies the different approaches to focussing.

322 H. Hauser

Table 4. Different approaches to focussing – techniques can be classified according to whether
they act directly on the view (or not), their definition is explicit (or implicit), or whether they
are triggered by the user (or not). This differentiation is discussed in more detail in Sect. 5

focussing action selection user sample applications

brushing on the view explicit active SimVis [5–8], parallel coordinates [15]
pointing RTVR [38], process visualization [37]
selection off-view SDOF [25, 26], RTVR [38]

range slider implicit SimVis [5–8], SDOF [25, 26]
querying SimVis [5–8]

plot-based both passive SDOF [25, 26]
alerting process visualization [37]

Most intuitive, explicit selection of especially interesting data subsets directly
on the view results in a (new) specification of the current focus. Prominent exam-
ples of this kind of focussing are brushing on the one side (as used, for example,
in the previously described SimVis system) and pointing on the other side (used in
F+C process visualization as well as in 3D visualization using RTVR). Similarily,
the user can explicitly focus by selecting objects through an off-view list of objects
(as used in volume visualization using RTVR, for example, and the SDOF-visualized
map viewer where layers can be selected off-view).

More complex, and a little less intuitive, implicit selection also serves for fo-
cussing. In the simpler case, selections on invisible axes can be used to describe
what currently is most interesting (as also used in SimVis, for example). Alterna-
tively, also complex queries can be used to achieve implicit focussing. Again SimVis
is an example: a so-called feature definition language has been developed for the
purpose of formally describing what actually is of greatest interest to the user [5].

In addition to methods where the user actively steers which parts of the data are
to be visualized in focus, there are other cases, where the system has this role. In
a tutoring system, for example, a predefined plot describes which parts of the visu-
alization are in focus at which point in time. This kind of focussing was used in a
chess tutoring system with the purpose of showing historic competitions to moder-
ately experienced users (see Fig. 17). In F+C process visualization it is possible to
let the system assign DOI values according to whether (or not) the values of a certain
sensor lie inside (or outside) a certain safety interval. In case of an alert (value out
of range) the user immediately is confronted with a F+C display where most visual
emphasis is put on the values in question.

6 Summary and Conclusions

Taking a step back, we can try to round up the matters discussed up to now and
to summarize the most imporant points addressed. In the beginning we started out
with a discussion of the well-established approach of focus+context visualization

Generalizing Focus+Context Visualization 323

Fig. 17. SDOF-visualized chess tutoring system: through selective sharpness the system shows
which pieces threaten (left image) or cover (right image) the white horse on E3

(F+C visualization) as known from information visualization. It is usually associated
with the process of providing more space in a visualization for the detailed depiction
of some selected parts of the data (those in focus) while still showing the rest of
the data in reduced size to provide context information for better orientation and
navigation.

This idea of integrating data subsets in focus with their respective context within
one visualization also can be found in other fields, especially in scientific visualiza-
tion. There, however, usually other means than space distortion are used to achieve
F+C visualization. In scientific visualization the spatial arrangement of a visualiza-
tion is tightly coupled with the spatial arrangement of the data origin, e.g., the 3D
layout of patients in medical applications or the 3D setup of a flow simulation, and
therefore usually resists uneven distortions. In volume visualization, for example,
the use of opacity is varied to achieve F+C visualization of 3D data. In the 3D vi-
sualization of segmented data (two-level volume rendering, 2lVR), different styles
are used to graphically distinguish between objects in focus and their context. Non-
photorealistic contour rendering, for example, is very useful for context visualiza-
tion. In the visualization of data from computational simulation (WEAVE, SimVis),
the use of eye-catching colors (within a gray-scale context) also very well serves for
F+C visualization. Similarily, the differentiation between a sharp and blurred depic-
tion can yield to F+C visualization (SDOF). All this variety of possible realizations
of focus+context visualization yields to a more general definition of F+C visualiza-
tion: focus+context visualization is the uneven use of graphics resources, such as
space, opacity, color, frequencies, and style, for visualization with the purpose to
visually discriminate those parts of the data in focus from all the rest.

A discussion of several concrete examples of different types of F+C visualization
shows that often several graphics resources are used to do the focus–context discrim-
ination. In F+C volume visualization by the use of RTVR and 2lVR, for example, in
some cases all three of opacity, rendering styles, and coloring are varied to achieve
F+C visualization (see Fig. 5, left side, for a sample image). In F+C visualization
of 3D data from computational flow visualization (SimVis), coloring, opacity, and
glyph size are adjusted according to the DOI values of the data to achieve the desired

324 H. Hauser

visual discrimination (see Fig. 8, left side, for a sample image). Looking through the
glasses of our generalized definition of focus+context visualization at the very broad
field of applications shows how useful this approach of graphically integrating data
subsets in focus and their respective context within a visualization actually is and
how general its applicability is.

In addition to the discussion about different ways to graphically discriminate
focus from context, also the interactive aspect of F+C visualization is discussed.
Once, focus+context visualization is established, it immediately becomes essential
to provide sufficient interactive means for focussing, i.e., to select which parts of the
data actually are to be drawn in focus or to navigate through a F+C display. Different
options of how to categorize focussing with respect to how it is done (on the view vs.
off-view focussing; explicit vs. implicit selection; active/passive user) help to give an
overview about available strategies. Another way of looking at focussing, however, is
to differentiate user goals: whereas in one case the user wants to see more (details) of
certain data subsets (→ space distortion, style variations), in other cases the user just
wants to visually emphasize the graphical depiction of certain parts (→ opacity, color
variations). In again other cases, the visualization goal is to visually attract the user
towards a certain subset of the visualization (→ SDOF, coloring, space distortion).
Sometimes, these goals do overlap in an application or are followed upon each other
during analysis (first the user needs to be attracted, for example, to a sensor out of
range, then the user wants to investigate this sensor data in more detail).

Despite the main result that focus+context visualization indeed is in general ap-
plicable and useful (almost regardless of the application field), another conclusion
of this work is that scientific visualization and information visualization do not lie
far apart from each other, but can mutually support each other. There are very good
ideas on both sides and visualization systems which integrate approaches from both
fields can gain superb advantages over pure SciVis- or InfoVis-solutions [14].

Acknowledgments

This work is based on a lot of related work which would have been impossible with-
out the great contributions of many. To name just a few of them, grateful thanks go
to Lukas Mroz, Csébfalvi Balázs, Gian-Italo Bischi, Berk Özer, Anton Fuhrmann,
Helmut Doleisch, Martin Gasser, Matej Mlejnek, Markus Hadwiger, Florian Leder-
mann, Robert Kosara, Silvia Miksch, Krešimir Matković, Wolfgang Rieger, Wolf-
gang Meyer, and especially to M. Eduard Gröller and Werner Purgathofer for their
patient advice throughout all the years which have been related to this work. For
funding, thanks go to K plus, an Austrian governmental funding program, which
is supporting VRVis since year 2000 and thus also is responsible that most of the
work discussed here actually could be done. For more information, see related pa-
pers [4–6, 8, 15–18, 25–27, 37, 38] and http://www.VRVis.at/vis/.

Generalizing Focus+Context Visualization 325

References

1. Hamdy Agiza, Gian-Italo Bischi, and Michael Kopel. Multistability in a dynamic Cournot
game with three oligopolists. Mathematics and Computers in Simulation, 51:63–90, 1999.

2. Christopher Ahlberg and Ben Shneiderman. Visual information seeking: Tight coupling
of dynamic query filters with Starfield displays. In Proc. of ACM CHI’94 Conf. on Human
Factors in Computing Systems, pp. 313–317, 1994.

3. M. Sheelagh Carpendale, David Cowperthwaite, and David Fracchia. 3-dimensional pli-
able surfaces: For the effective presentation of visual information. In Proc. of the ACM
Symp. on User Interface Software and Technology, Information Navigation, pp. 217–226,
1995.

4. Balázs Csébfalvi, Lukas Mroz, Helwig Hauser, Andreas König, and Eduard Gröller.
Fast visualization of object contours by non-photorealistic volume rendering. Computer
Graphics Forum, 20(3):C 452–C 460, 2001.

5. Helmut Doleisch, Martin Gasser, and Helwig Hauser. Interactive feature specification
for focus+context visualization of complex simulation data. In Proc. of the Joint IEEE

TCVG – EG Symp. on Visualization, pp. 239–248, 2003.
6. Helmut Doleisch and Helwig Hauser. Smooth brushing for focus+context visualization

of simulation data in 3D. Journal of WSCG, 10(1):147–154, 2002.
7. Helmut Doleisch, Michael Mayer, Martin Gasser, Peter Priesching, and Helwig Hauser.

Interactive feature specification for simulation data on time-varying grids. In Proc. of
Conf. Simulation and Visualization, pp. 291–304, 2005.

8. Helmut Doleisch, Michael Mayer, Martin Gasser, Roland Wanker, and Helwig Hauser.
Case study: Visual analysis of complex, time-dependent simulation results of a diesel
exhaust system. In Proc. of the Joint IEEE TCVG – EG Symp. on Visualization, pp. 91–
96, Konstanz, Germany, May 2004.

9. William Augustus Farrand. Information Display in Interactive Design. PhD thesis, Uni-
versity of California, Los Angeles, CA, 1973.

10. George Furnas. The Fisheye view: A new look at structured files. Technical Memoran-
dum #81-11221-9, Bell Labs, 1981. Reprinted in Card et al., Readings in Information
Visualization: Using Vision to Think.

11. George Furnas. Generalized Fisheye views. In Marilyn M. Mantei and Peter Orbeton, ed-
itors, Proc. of the ACM Conf. on Human Factors in Computer Systems, SIGCHI Bulletin,
pp. 16–23, 1986.

12. Donna Gresh, Bernice Rogowitz, Raimond Winslow, David Scollan, and Christina Yung.
WEAVE: A system for visually linking 3-D and statistical visualizations, applied to car-
diac simulation and measurement data. In IEEE Visualization 2000, pp. 489–492, 2000.

13. Markus Hadwiger, Christoph Berger, and Helwig Hauser. High-quality two-level vol-
ume rendering of segmented data sets on consumer graphics hardware. In Proc. of IEEE
Visualization 2003, pp. 301–308, 2003.

14. Helwig Hauser. Towards new grounds in visualization. ACM SIGGRAPH Computer
Graphics, 39(2), 2005.

15. Helwig Hauser, Florian Ledermann, and Helmut Doleisch. Angular brushing for extended
parallel coordinates. In 2002 IEEE Symp. on Information Visualization (InfoVis ’02), pp.
127–130. IEEE, October 2002.

16. Helwig Hauser and Matej Mlejnek. Interactive volume visualization of complex flow
semantics. In Proc. of the 8th Fall Workshop on Vision, Modeling, and Visualization, pp.
191–198, München, Germany, November 2003.

326 H. Hauser

17. Helwig Hauser, Lukas Mroz, Gian-Italo Bischi, and Eduard Gröller. Two-level volume
rendering - fusing MIP and DVR. In Proc. of IEEE Visualization 2000, pp. 211–218,
2000.

18. Helwig Hauser, Lukas Mroz, Gian-Italo Bischi, and Eduard Gröller. Two-level volume
rendering. IEEE Transactions on Visualization and Computer Graphics, 7(3):242–252,
2001.

19. Alfred Inselberg. The plane with parallel coordinates. The Visual Computer, 1(2):69–92,
1985.

20. Alfred Inselberg. A survey of parallel coordinates. In Hans-Christian Hege and Konrad
Polthier, editors, Mathematical Visualization, pp. 167–179. Springer Verlag, Heidelberg,
1998.

21. Alfred Inselberg and Bernard Dimsdale. Parallel coordinates: a tool for visualizing mul-
tidimensional geometry. In Proc. of IEEE Visualization ’90, pp. 361–378, 1990.

22. Naftali Kadmon and Eli Shlomi. A polyfocal projection for statistical surfaces. The
Cartography Journal, 15(1):36–41, 1978.

23. T. Alan Keahey and Edward Robertson. Techniques for non-linear magnification trans-
formations. In 1996 IEEE Symp. on Information Visualization (InfoVis ’96), pp. 38–45.
IEEE, 1996.

24. T. Alan Keahey and Edward Robertson. Nonlinear magnification fields. In IEEE Symp.
on Information Visualization (InfoVis ’97), pp. 51–58. IEEE, October 1997.

25. Robert Kosara, Silvia Miksch, and Helwig Hauser. Semantic depth of field. In Proc.
of the 2001 IEEE Symp. on Information Visualization (InfoVis 2001), pp. 97–104. IEEE
Computer Society Press, 2001.

26. Robert Kosara, Silvia Miksch, and Helwig Hauser. Focus + context taken literally. IEEE
Computer Graphics and Applications, 22(1):22–29, 2002.

27. Robert Kosara, Silvia Miksch, Helwig Hauser, Johann Schrammel, Verena Giller, and
Manfred Tscheligi. Useful properties of semantic depth of field for better F+C visual-
ization. In Proc. of the Joint IEEE TCVG – EG Symp. on Visualization, pp. 205–210,
2003.

28. Matthias Kreuseler, Norma López, and Heidrun Schumann. A scalable framework for
information visualization. In Proc. Information Vizualization, pp. 27–36, Salt Lake City,
USA, October 2000. IEEE.

29. John Lamping and Ramana Rao. The hyperbolic browser: A focus + context technique for
visualizing large hierarchies. Journal of Visual Languages and Computing, 7(1):33–35,
1996.

30. John Lamping and Ramana Rao. Visualizing large trees using the hyperbolic browser.
In Michael J. Tauber, editor, Proc. of the 1996 Conf. on Human Factors in Computing
Systems, CHI 96: April 13–18, 1996, Vancouver, BC, Canada, pp. 388–389, New York,
NY 10036, USA, April 1996. ACM Press.

31. John Lamping, Ramana Rao, and Peter Pirolli. A focus+context technique based on
hyperbolic geometry for visualizing large hierarchies. In Proc. CHI’95. ACM, 1995.

32. Ying Leung. Human-computer interface techniques for map based diagrams. In Proc. of
the Third International Conf. on Human-Computer Interaction, volume 2 of Designing
and Using Human-Computer Interfaces and Knowledge Based Systems; Graphics, pp.
361–368, 1989.

33. Ying Leung and Mark Apperley. A review and taxonomy of distortion-oriented presenta-
tion techniques. ACM Transactions on Computer-Human Interaction, 1(2):126–160, June
1994.

34. Marc Levoy. Display of surfaces from volume data. IEEE Computer Graphics & Appli-
cations, 8(5):29–37, 1988.

Generalizing Focus+Context Visualization 327

35. Ishantha Lokuge and Suguru Ishizaki. Geospace: An interactive visualization system for
exploring complex information spaces. In Proc. of the ACM CHI ’95 Conf. on Human
Factors in Computing Systems, 1995.

36. Jock Mackinlay, George Robertson, and Stuart Card. The perspective wall: Detail and
context smoothly integrated. In Proc. of ACM CHI Conf. on Human Factors in Computing
Systems, Information Visualization, pp. 173–179, 1991.

37. Krešimir Matković, Helwig Hauser, Reinhard Sainitzer, and Eduard Gröller. Process
visualization with levels of detail. In Pak Chung Wong and Keith Andrews, editors, Proc.
IEEE Symp. Information Visualization, InfoVis, pp. 67–70. IEEE Computer Society, 28–
29 October 2002.

38. Lukas Mroz and Helwig Hauser. RTVR - a flexible java library for interactive volume
rendering. In IEEE Visualization 2001, pp. 279–286, October 2001.

39. Hans-Peter Pfister, Bill Lorensen, Chandrajit Bajaj, Gordon Kindlmann, William
Schroeder, Lisa Sobierajski-Avila, Ken Martin, Raghu Machiraju, and Jinho Lee. Vi-
sualization viewpoints: The transfer function bake-off. IEEE Computer Graphics and
Applications, 21(3):16–23, 2001.

40. George Robertson and Jock Mackinlay. The document lens. In Proc. of the ACM Symp.
on User Interface Software and Technology, Visualizing Information, pp. 101–108, 1993.

41. Manojit Sarkar and Marc Brown. Graphical fisheye views of graphs. In Proc. of ACM
CHI’92 Conf. on Human Factors in Computing Systems, Visualizing Objects, Graphs, and
Video, pp. 83–91, 1992.

42. Manojit Sarkar, Scott Snibbe, Oren Tversky, and Steven Reiss. Stretching the rubber
sheet: A metaphor for visualizing large layouts on small screens. In Proc. of the ACM
Symp. on User Interface Software and Technology, Visualizing Information, pp. 81–91,
1993.

43. Robert Spence and Mark Apperley. Data base navigation: An office environment for the
professional. Behaviour and Information Technology, 1(1):43–54, 1982.

44. Anne Treisman. Preattentive processing in vision. Computer Vision, Graphics, and Image
Processing, 31:156–177, 1985.

45. Colin Ware. Information Visualization: Perception for Design. Morgan Kaufmann Pub-
lishers, 2000.

Rule-based Morphing Techniques
for Interactive Clothing Catalogs

Achim Ebert1, Ingo Ginkel2, and Hans Hagen1

1 German Research Center for Artificial Intelligence (DFKI) GmbH, Kaiserslautern,
Germany
{ebert|hagen}@dfki.de

2 University of Kaiserslautern, Kaiserslautern, Germany
ginkel@informatik.uni-kl.de

Summary. In this paper we present the design and the conception of an individual online
clothing catalog based on interactive virtual try-on techniques. Our goal is to build a realistic
interactive virtual catalog embedded in a web-shop application, which allows customers to
view the selected garments fitted onto their own virtual bodies. After the body has been mea-
sured in a 3D laser scanning process, the customers can select and combine different garments
as well as various colors and patterns. In order to give them the ability to leaf through the of-
fers at an ”interactive speed” we avoid time-consuming physically-based simulation methods.
Instead, we apply an innovative rule-based morphing technique to generate the different sizes
of a garment from one single 3D scan in a given size. Our approach considers standard-sized
clothing as well as tailor-made suits, which is an important step towards making made-to-
measure clothing affordable for the average customer.

1 Introduction

The clothing industry and clothing stores constitute a very large portion of the vol-
ume of sales in the consumer goods market. With the current pricing we are used to
in this sector, tracing back to the use of mass production techniques, up to the present
customers with individual demands have to put up with disproportional surcharges.
These circumstances build the starting point of the project Virtual Try-On, which
deals with the effective coverage of the business segment tailor-made suit under the
boundary condition of affordability for the average consumer.

A subtask of the project is the development of an interactive individual clothing
catalog, particularly consisting of the development of a new innovative rule-based
morphing technique which has essential features concerning cloth morphing as its
major field of application. The proposed method is making use of agent technology
and is linked with a flexible component-based visualization system architecture. It is
utilized to efficiently assist a virtual dress fitting process with the target of achieving
affordable tailor-made suits for the average customer. The two fundamental inputs
for the presented morphing technique are:

330 A. Ebert et al.

• a unique 3D body scan of the customer and an association of the acquired data to
suitable clothing measurements.

• 3D reference data by scanning articles of clothing with well-known measure-
ments on a dressmaker’s dummy.

The customers are able to choose and combine individual articles of clothing (type of
model, cloth, color, pattern and configuration) via a web portal interface at home the
same way they could in a store. At this time our system generates an individual 3D
model of a dressed figurine, which can be interactively viewed from any perspective.

We are starting this paper with an overview on related work done in this area.
Therefore, we examined existing online shops and methods for simulating cloth as
well as relevant morphing techniques. In Chap. 3 we are presenting the core elements
of our work by describing our morphing techniques for the online clothing catalog.
Chapter 4 is addressing the overall system design, the way the virtual dressing is done
as well as the implementation details. After presenting our online store prototype and
the resulting virtual dressing abilities in Chap. 5 we are closing the paper with the
conclusion and future work.

2 Related Work

2.1 Online Shops

Today, most online stores offer virtual fitting rooms based on 2D pictures of gar-
ments. In order to present a more interactive and individual way of ordering, some
e-tailors have integrated extended functionalities like selecting different sizes, com-
bining several items, changing colors and textures. A good example for an online
store based on 2D pictures is the German mail-order firm “Otto Versand” [17]. Here,
people have to send in a picture of themselves, which has to fulfill some requirements
defined by the “Otto Versand”. As an alternative, a customer can select out of a small
number of male or female models that differ in height and stature. The results cre-
ated by the applied pure 2D algorithms are very unrealistic, especially if the offered
zooming is used by the customer. Furthermore, any information about the realistic
falling of the clothing is lost by cutting/pasting the design onto the exact body forms
of the persons. Figure 1 shows the results of such a virtual dressing.

It is easy to see that the loosely falling blouse in a conventional catalog (2nd
picture from the left) is represented as a skin-tight shirt when combined with the
model’s body (3rd & 4th picture from the left), resulting in a totally false impres-
sion presented to the observer. In addition, different sizes aren’t handled correctly,
making the waist measurement of trousers fitting for every size. In this approach,
detailed modifications, such as an individual leg length of trousers, aren’t possible.
In contrast to this 2D approach, a number of shops are also making use of 3D tech-
nologies, e.g. Land’s End [12] and Lane Bryant [13] (see Fig. 1 right). Even if the
3D representations are more convincing than a pure 2D visualization, the used 3D
avatars only display a poor resemblance to the user. Furthermore, the clothing will

Rule-based Morphing Techniques for Interactive Clothing Catalogs 331

Fig. 1. 2D (left) and 3D (right) approach for a virtual dressing room

always fit, resulting in hardly any benefit for the average customer apart from playing
around a little bit.

2.2 Cloth Simulation

Physical techniques applied in the dynamic simulation of cloth represent the cloth
as triangular or rectangular meshes of points with finite mass. They can be classified
into energy-minimization and force calculation techniques. The energy minimization
techniques consider the energy of the cloth as a whole and achieve a local minimum
energy state by moving the discrete mass points of the mesh. The force-based tech-
niques calculate the forces acting between the discrete points and integrate over the
resulting differential equations using numerical methods to calculate the new posi-
tion of each point.

The first work on energy minimization techniques was presented by Feynman
[5]. His method was extended with a multigrid method by Ng [15], because coarse
features are best represented by coarser meshes, whereas smaller ones need finer
meshes. Another work on the field of energy minimization techniques was presented
by Breen. He derived the energy equations from the Kawabata-measurement System
[2]. Besides the simple mass-spring models which have been implemented by various
researchers, for example by Howlett [7], the starting point for force-based techniques
was the model for elastic deformations by Terzopoulos [19] which is the basis for
the work of the Thalmann team and others. A different approach for force-based
techniques is to derive the differential equation system from energy formulas like
those presented by Breen. Eberhardt [3] took this approach and also added wind
and friction between the cloth and rigid objects to the model. There are many more
different models which can’t be discussed here, a good survey can be found in [16].

The main challenge for a physically-based model of cloth is the construction of
an accurate model as well as the calculation of the final shape with fast numerical
methods. It is hard to achieve high accuracy together with small computation times.
In addition to solving the differential equations, a time-consuming part of the simu-
lation consists of collision detection and collision avoidance. This includes collisions
with rigid objects as well as self collisions of the cloth. As there is always a tradeoff

332 A. Ebert et al.

between accuracy and computation time, highly accurate models cannot be com-
puted interactively on consumer hardware. Therefore physically-based simulation is
not suitable for our purposes.

2.3 Morphing

Morphing techniques have achieved widespread use in the entertainment industry.
2D image processing techniques have been presented as well as 3D shape transfor-
mation algorithms.

Beier and Neely [1] present a morphing algorithm for the metamorphosis of
one digital image into another in order to provide a high-level control of the vi-
sual effect using natural feature-based specification and interaction. The introduced
technique (called field morphing) is based upon fields of influence surrounding two-
dimensional control primitives. Compared to other methods, this method is more
expressive, but also slower.

The main advantage of 3D morphing techniques over 2D approaches is that ob-
jects can be animated independent of the transformation. The 3D methods can be
classified into boundary and volumetric approaches, according to the type of infor-
mation used to calculate the intermediate shapes.

In volumetric approaches, only volumetric information is used to compute the
shape transformation of objects. There is no restriction on the topological corre-
spondence between the initial and the final shape. Kaul and Rossignac [10] used
a so called Parameterized Interpolating Polyhedron defined by initial and final
shapes. The intermediate objects are generated using linear interpolation based on
Minkowski sums of the internal points of the two original polyhedra. The technique
used by Huges [8] is based on interpolating smoothly between the Fourier trans-
forms of two volumetric models and then transforming the results back. Since linear
interpolation between the transformed datasets yields unsatisfactory results in some
cases the processing of high and low frequencies are separated during the interpo-
lation process. The most interesting point in this approach is the underlying idea of
dissociating the general shape and the details during the transformation. In general
these volumetric approaches are robust, but provide no control over the intermediate
shapes.

Boundary approaches are applied to polyhedral objects and decompose the shape
transformation process into a correspondence problem and an interpolation problem.
Since the objects are polyhedral, the solution of the correspondence problem is to
compute a correspondence between the topological structures of the two objects.
A common technique in all approaches is to build a vertex/face/edge network con-
taining the topological structures of the initial and final shapes. The solution of the
correspondence problem provides pairs of vertices, so that intermediate shapes can
be produced by simultaneously interpolating between each pair of vertices. The in-
terpolation process can be either performed linearly or for example can use a spline
interpolating curve. Both problems are interrelated since the method used to solve
the interpolation problem is dependent on the manner in which the correspondences
are established.

Rule-based Morphing Techniques for Interactive Clothing Catalogs 333

Kent, Carlson and Parent [11] present an algorithm that, given two 3D polyhe-
dral objects, generates two new models that have the same shape and topology as the
original ones, so that the transformation for intermediate shapes can be easily com-
puted. Lazarus and Verroust [14] solve the correspondence problem by sampling the
initial and final object. The sampling of the objects is computed using the respec-
tively most suitable parameterization. The correspondence problem is automatically
solved by taking the same discretization in the parameter space of the two corre-
sponding parameterizations of the objects. Boundary approaches require significant
expense of the solution of the correspondence problem, but allow better control over
the intermediate shapes.

Both volumetric and boundary approaches address the transformation of a shape
in a global manner. Therefore there is no control over local occurrences in the inter-
mediate shapes. As we want to handle the sleeves of the garments independently of
the body, local control is extremely important. In addition, we need to comply with
exact measurement specifications, which the intermediate shapes generated by exist-
ing morphing techniques cannot provide. Therefore those techniques are not suitable
for our purposes.

3 Rule-based Morphing

As we mentioned earlier our goal is to produce virtual humans dressed with realistic
garments without making use of physically-based simulation. Our idea is to derive
a set of rules that give us absolute and local control over the intermediate shapes in
an advanced morphing technique. So we are able to produce every desired size for
a given garment model. After the requirements for the derivation of the rules have
been formulated in Sect. 3.1 we describe a first basic technique in 3.2 which will be
extended and improved in Sect. 3.3.

3.1 Requirements

Instead of applying a cloth simulation the basic clothing model can be generated by
draping real clothing over a dressmaker’s dummy and to gain the model through a
3D laser scanning process. This produces a model of the cloth with absolute real-
istic wrinkles. The main disadvantage of this technique is the necessity to produce
every garment in every size by laser scanning. To avoid this impracticable time and
memory wasting pre-processing process we are proposing an innovative morphing
approach to transform the shape of a laser-scanned garment in order to gain models
for the different sizes. Here, the desired garments must be scanned in only one basic
size and all other sizes will be calculated in the morphing process.

In contrast to existing morphing techniques we must have absolute control over
the intermediate shapes as we want to be sure to pass size L when we transform the
shape from S to XXL. It must be assured that the intermediate shape that represents
size L has the exact associated measures of this cloth-size and not something that
just looks similar. Therefore it is necessary to scrutinize the differences between two

334 A. Ebert et al.

Table 1. Example measurements for a shirt (in cm)

S M L XL XXL XXXL

collar size 37/38 39/40 41/42 43/44 45/46 47/48
waist 110 116 124 134 144 154
sleeve length 88 89 90 91 92 93
torso length 82 82 82 85 90 90

sizes (for example between L and XL) in detail. Cloth sizes are usually defined by in-
dividual measures like collar size, sleeve length, back width or sleeve circumference
(see Table 1). Considering the example of the shirt the sleeve length has to change
from 89 cm to 90 cm but the torso length has to stay at 82 cm if the site changes from
M to L. Our goal is to derive a set of rules which describe the individual changes that
have to be made by the morphing algorithm when we travel from one size to another.
Even the simple example of a shirt makes it clear that this is much more complicated
than just zooming in and out.

As mentioned before only one piece of real garment will be needed for the scan
process. So how can we apply a morphing technique as we would need an initial
and a final shape? Our idea is to apply deformation techniques to the shape so that
a new size with corresponding measurements is produced. So our approach deforms
a shape but morphs between the sizes. A major advantage of this approach over in-
terpolating between two shapes (one of a small size and one of a big size) is that
we do not produce additional wrinkles for intermediate shapes if the wrinkles occur
at different positions in the initial and final shape. Therefore the computed new size
of the garment looks much more realistic than one which would be produced with
ordinary morphing techniques. Furthermore, our approach is very flexible and ex-
tensible: by adding additional scans of the same garment in other sizes, during the
import process the representation which has the most minimal distance regarding
the individual measurements can be chosen. Hereby the accuracy is improved going
along with higher but tolerable storage requirements.

3.2 Basic Technique

As pointed out in 3.1 individual measures must be changed independently. Thus a
morphing technique must provide local control over individual parts of the garment
(for example a change at the sleeve must not affect the waist circumference). Ad-
ditionally it must be possible to obey real sizes. That means if the sleeve has to be
made 3 cm longer, the change induced by the morphing process has to be exactly
3 cm.

The morphing technique introduced in this paper is based on a segmentation of
a garment, i.e. into upper sleeve, lower sleeve, body front, body back etc. Once this
segmentation is calculated we compute a suitable parameterization for each part (see
Fig. 2 left). For example, spherical coordinates adapted to the shoulder region and

Rule-based Morphing Techniques for Interactive Clothing Catalogs 335

cylindrical coordinates adapted to the sleeve area are a very reasonable approach. If
we allow a polygonal curve instead of a straight line describing the cylinder axis,
it can be assured that the axis will be completely inside the sleeve. Changes for
the sleeve length can be made by changing the length of the cylinder axis, a new
width can be computed by increasing the distance of the sleeve vertices in relation
to the axis. Applying this method to every part, the complete morph for a garment
is achieved by additive local deformations, what gives us the first formulation of a
morphing rule:

Mtot = Msl +Msw +Mww + . . .+Mtl

Here, Msl is the morph for sleeve length, Msw is the morph for sleeve width, Mww is
the morph for waist width, and Mtl is the morph for torso length. In principle it is
possible to calculate as many different local morphs as needed and combining them
for the whole morph between two sizes.

Fig. 2. Basic technique: parameterization, correction terms

A problem that occurs during this process is that smooth transitions between
neighboring parts have to be calculated. This is achieved by correcting terms which
are added into the morphing process (see Fig. 2 right). For example if the sleeve
width is increased we have to apply changes to the shoulder width and to the upper
torso part. In addition, we have to translate the whole sleeve to avoid self collisions
of the garment at the armpit. The total morph for the change of the sleeve width is:

Msw total = Mswu +Mswl +Cshw +Cutw +Ts

Here, Mswu is the morph for width change at upper sleeve, Mswl is the morph for
width change at lower sleeve, Cshw is the correction of the shoulder width, Cutw is the
corrections at the upper torso, and Ts is the translation of the whole sleeve.

A similar addition has to be made if for example the length of the upper sleeve
is changed. Then a translation of the lower sleeve is necessary. For our purposes
linear blending of the correction terms between neighboring parts turned out to be
sufficient.

336 A. Ebert et al.

3.3 Extended Technique

In the previous section the core technique for changing the size of garments was
presented. To make this approach applicable for practical purposes, sophisticated
measures have to be integrated into the morphing process. Furthermore complex
coherences that can’t be directly derived from the size table have to be considered.

The first extension for integrating sophisticated measures is derived from the fol-
lowing observation: The sleeve circumference is not changed continuously over the
whole sleeve by the same amount. Instead, individual measures for the circumfer-
ence at the shoulder, the elbow and the wrist are given. To interpolate these measures
our morphing rule for the Mswu and the Mswl has to be extended. Linear interpola-
tion between the shoulder measure and the elbow measure for the upper arm is used
(elbow and wrist for the lower arm respectively). If we consider the old rule Mswu

as a function Mswu(x) of the amount for the change x it now turns to be a function
Mswu(y,z) of the the two amounts y and z for the circumferences at the upper and
the lower bound. The correction for the shoulder area is carried out as before, now
depending on the change that was made at the upper bound of the upper arm.

Fig. 3. Extensions: arm width, body width

The second extension is made to the calculation of the body width. The informa-
tion used here can not be derived from the size tables directly. Instead tailors told us
that when the body width is increased this is not done continuously around the gar-
ment. The back part stays nearly the same whereas the front part widens up to have a
bellied shape. As we have cylindrical parameterization for the points in this area the
deformation for the corresponding morphing rule is now dependent on the angle for
the individual point in the parameterization. So the deformation is only carried out
for those points with an angle that implies a position at the front.

The third extension concerns the change of the body length. Tailors also told us
that the changes for the length of the body are only applied to the areas that lie below
the armpit. This is due to the fact that we would have unwanted effects in the shoulder
area, for example changing the circular appearance of the upper bound of the arm to
oval while changing the body in this area. The conversion of this observation into
the morphing rule is very easy: As we can find the parameter value x that represents
the horizontal plane at the armpits, we apply the change only to points that lie below
(see Fig. 4 left).

The forth extension to our set of morphing rules deals with the appearance of
the wrinkles. If we change the length of an arm by stretching over the complete

Rule-based Morphing Techniques for Interactive Clothing Catalogs 337

Fig. 4. Extensions: body length, parameterization

parameter space, we would flatten the wrinkles as shown in the upper right part of
Fig. 4 (right). If we restrict the stretch to those intervals in the parameter space where
no wrinkles occur, or wrinkles are less likely to occur (like at the lower sleeve), we
can avoid the flattening effect and the wrinkles are more realistic after the size change
(see Fig. 4, lower right part).

The last optimization that we want to present here differs a little from the pre-
vious ones. In our morphing approach garments with multiple cloth layers are not
considered. This lack of accuracy appears if we have a closer look on attached pock-
ets. In real garment manufacturing they are sewed onto the jacket after the main parts
have been assembled. In other words: the size of a pocket does not differ if the jacket
size is changed. But this is exactly what happens during the morphing algorithm,
because we treat the pocket as a part of the jacket. The pocket would have to be de-
tected as a feature of the shape if we wanted to address this problem geometrically.
We prefer to transfer the solution to the texturing calculations, in which the texture
coordinates for the pocket are modified, so that the size remains fixed.

To summarize, these extensions to the basic morphing rules denote a significant
enhancement of accuracy. Therefore the appearance of the garments is much more
realistic. Furthermore the morphing rule can be extended and modified nearly arbi-
trarily to model different designs of garments. That means if the size changes induced
by the size tables are altered, the morphing rules can be adjusted to model the new
settings as accurate as possible.

4 System Overview

In Chap. 3, we have presented the core technique that gives us the ability to pro-
duce the desired sizes for the garments. We now turn our focus to the overall system
design: At first we take a closer look at generating the models of the body by laser
scanning. After that, we discuss the virtual dressing process in detail and conclude
the chapter with remarks on the implementation.

4.1 System Design

The first step in the described process is the generation of a unique 3D body scan
of the customer. We are making use of a VITUS 3D body scanner [20], which is a

338 A. Ebert et al.

Fig. 5. 3D body scanning

three-dimensional scanner for human beings and other objects. VITUS scans objects
within 10 to 20 seconds with a resolution of 1 to 2 mm and provides color textures.
Body scanners can be used in many applications, e.g. in the production of customized
clothing, in ergonomic research and design or in anthropometric research. In the
next step, the individual clothing measurements of the customer are obtained by the
ScanWorX tool [9] and stored in a customer database. The scan object together with
its measures embodies builds up the virtual customer.

A parallel task is the retrieval of 3D clothing reference data by scanning articles
of clothing with well-known measurements on a dressmaker’s dummy. The match of
the customer’s individual choice of clothing to his individual 3D model is achieved
by applying our intelligent 3D morphing technique described above.

The customer is now able to mix and match individual articles of clothing (type of
model, cloth, color, pattern and configuration) via a web portal interface at home the
same way they could in a store. At this time our system generates an individual 3D
model of a dressed figurine, which can be interactively viewed from any perspective.
Additionally the figurine and the selected clothing can be textured to generate a very
realistic representation (see Chap. 5). The graphical output of our system currently
supports, but is not limited to Java3D and VRML.

4.2 Virtual Dressing

After computing the different sizes of a garment a couple of problems still remain.
First, we have to determine the correct clothing size of the virtual human body and
second, we have to dress the figurine virtually. The assignment of correct clothing
sizes is done by Human Solutions [9], one of our industrial partners. Their measure-
ment tool is able to automatically analyze the virtual body and to generate various
measures (like waist-width, leg length etc.) as well as feature points (like position
of the elbows, shoulder, neck and others – all together over 50 feature points). The
correct clothing size can now be determined by merging the gathered measurement
data. Together with similar feature points for the garments this information is also
used for the positioning of the garments around the body - a jacket, for example, is
fixed at the shoulder area. However, finding the correct position around the shoulders
does not necessarily imply a correct positioning of the clothing around the arms (see

Rule-based Morphing Techniques for Interactive Clothing Catalogs 339

Fig. 6. Virtual dressing

Fig. 6, second from left). This is due to the fact that people will always differ a little
in their posture during the scan process. After the jacket has been positioned around
the shoulder area, we have to correct the posture of the virtual human’s arms. First,
we move the visible lower arms into a position where they fit inside the sleeve (rota-
tion and translation process). This is done by calculating an axis for the arm similar
to the one we already have for the sleeve and matching them together. Depending on
the jacket’s size a slightly wrong arm length is obtained by this process, that means
the arm may be too long or to short afterwards. In order to resolve this problem, a
correction operation is applied: since the correct total length of the upper and lower
arm is a known parameter, the lower arm can proportionately be moved in axis direc-
tion. This results in a new position of the lower arm, but simultaneously maintains
the total length of the arm.

The reason why we do not modify the garment but the body is that otherwise
the appearance of the wrinkles in the cloth would change significantly. The used
deformation technique that is responsible for increasing/decreasing the size of the
garment, already produces a little mistake (for example the wrinkles are slightly
enlarged when increasing the size of the garment). Therefore, increasing this error
factor by applying further deformations is undesirable in our application scenario.
Obviously, this is an incorrect mapping of the real world configuration (the body
influences the shape of the garment) to our virtual scene, in which the garment in-
fluences the body shape. But, for preview purposes our technique clearly reveals the
main fitting aspects, namely if for example the sleeve is too short, if it fits or if it
is too long (see Fig. 7). A topic that has not been mentioned so far are the possible
intersections of the body and the garment due to the fact that no physical simula-
tion was applied in order to avoid time-consuming intersection detections during the
try-on process. From observing real life configurations it is clear that there are body
parts which are totally hidden by the garment (for example the upper arm is totally
hidden if the virtual person is wearing a jacket). Consequently, these parts can be
blended out by just making them invisible during the rendering process (see Fig. 6
on the right). The segments that are only partly visible (like the lower arm) are more
complicated to handle. Here, we apply standard intersection detection algorithms

340 A. Ebert et al.

Fig. 7. Visual fitting control: different sleeve lengths

together with standard optimizations like bounding volumes, octrees etc. If a body
area is lying outside the garment, the corresponding triangles are made invisible dur-
ing the rendering process.

But what happens if the virtual human has to try on garments that are by far too
small? Our clipping algorithms would just blend out the parts of the body that are
outside the garment, presenting the customer a wrong impression: the smaller sizes
also seem to fit. Therefore, in our application the sizes selectable by the user are
restricted to a predefined range around the calculated optimum size. The customer is
still able to see the effect of changing the size, if he/she for example likes a looser
fit, but unrealistic degenerated cases which do not give useful information to the user
are excluded. It must be stressed out that displaying garments that in fact are too
small, is a general problem of virtual try-on applications. Even if a physically-based
simulation would be applied, it would be possible do dress a virtual human with
too small garments. The real life process of getting dressed also is not simulated –
instead, the cloth patches are placed around the body and then sewed together. The
way the simulation process is carried out results in too high spring forces in the
model that further lead to unrealistic stretching effects. To summarize, it is obvious
that a configuration that is impossible in real life should not be feasible in a virtual
try-on application.

4.3 Implementation

The complexity of present-day software development cannot be satisfactorily re-
duced by the concept of object-orientation because of the constraints imposed by
particular programming languages and operating systems. Therefore, we are using
component-based development technologies, in which a component typically has all
the properties of an ordinary object, but in addition can be deployed in different
operating environments without change or recompilation. By the use of component
technology the strict separation between implementation and provided functionality
supports the development of independent and reusable software components, which
leads to advantages like dynamic linking, faster application development, smaller de-
velopment costs, high reliability as well as extremely flexible system architectures.

To benefit from these advantages in our approach we are using our multi agent-
and component-based visualization system MacVis [4] as the base development

Rule-based Morphing Techniques for Interactive Clothing Catalogs 341

platform on which the visualization modules are implemented as reusable software
components. The MacVis system supports the development of new visualization
modules without being tailored to the used visual prototyping environment, includ-
ing an intelligent control unit capable of automatically supervising and tuning system
components during runtime. It uses Sun’s Java Beans component technology and re-
quires hardly any extra effort for transferring a Java class into a Java Beans compo-
nent. In order to offer an easy way for building new applications, a component-based
visual prototyping system is integrated, taking advantage of the dynamic linking
properties component technology offers. The implemented visualization components
are based on Java3D [18], while VRML [22] is used for data exchange.

5 Results

Figure 8 shows the prototypical implementation of our individual clothing catalog
environment. The window is divided into four frames. The left frame gives the user
the ability to pick the clothing category as well as the favored piece of clothing, while
in the middle frame he/she can select out of the possible sizes and patterns. After
having selected the garments, the virtual try-on is displayed and can be controlled in
the right frame.

The following snapshots show the resulting virtual try-on for a customer wearing
different virtual jackets and trousers together with a selection of patterns in different
views.

Fig. 8. Individual clothing catalog prototype

342 A. Ebert et al.

Fig. 9. Virtual try-on results

6 Conclusion and Future Work

In this paper we proposed a new rule-based 3D morphing technique which has es-
sential features concerning cloth morphing as its major field of application. In order
to be able to independently change individual measures, our approach provides local
control over individual parts of the garment. The algorithms have been integrated in
a prototypical implementation of an individual clothing catalog. Moreover, the pro-
posed system architecture is flexible enough to be adapted to all kinds of software,
hardware and user conditions.

Our future work includes the integration of more garment types as well as opti-
mizations of the used technique. Up to now our shop environment is settled in the
area of men’s ready-to-wear clothes but should be extended to ladies’ wear.

Acknowledgements

This research is supported by the German Federal Ministry of Education and Re-
search (BMBF) and is part of the project Virtual Try-On (#01IRA01A). We like to
thank Human Solutions GmbH for providing us with the scan data sets as well as the
Hohenstein Institute for intensive discussions with respect to clothing technology
and providing us with appropriate size table sets.

References

1. Beier, T., Neely, S. Feature-based image metamorphosis, SIGGRAPH Computer Graph-
ics, 26(2) (1992)

2. Breen, D.E., House, D.H., Wozny, M.J.: A Particle-Based Model for Simulating the Drap-
ing Behavior of Wovel Cloth. European Computer-Industry Research Centre, ECRC-94-
19 (1994)

Rule-based Morphing Techniques for Interactive Clothing Catalogs 343

3. Eberhardt, B., Weber, A.,Strasser, W.: A Fast, Flexible, Particle-System Model for Cloth
Draping. IEEE Computer Graphics and Applications (1996).

4. Ebert, A., Divivier, A., Barthel, H., Bender, M., Hagen, H. Improving Development and
Usage of Visualization Applications. In: IASTED International Conference on Visualiza-
tion, Imaging and Image Processing (VIIP 2001), Marbella, Spain (2001)

5. Feynman, C.: Modelling the Appearance of Cloth. MA Thesis, Dept. of EECS, Institute
of Technology, Cambridge, Massachusetts (1986)

6. Hohenstein Institute: http://www.hohenstein.de/englisch/
7. Howlett, P.: Cloth Simulation Using Mass-Spring Networks. MA Thesis, Faculty of Sci-

ence and Engineering, University of Manchester (1997)
8. Huges, J.F.: Scheduled fourier volume morphing. In: Proceedings of the 19th International

Conference on Computer Graphics and Interactive Techniques (1992)
9. Human Solutions GmbH: http://www.human-solutions.de/

10. Kaul, A., Rossignac, J.: Solid-interpolating deformation: Construction and animation of
pips. In: Post, F.H. and Barth, W. (ed) Eurographics ’91 (1991)

11. Kent, J.R., Carlson, W.E., Parent, R.E.: Shape transformations for polyhedral objects. In:
ACM SIGGRAPH Computer Graphics (1992)

12. Land’s End: http://www.landsend.com/
13. Lane Bryant: http://lanebryant.charmingshoppes.com/
14. Lazarus, F., Verroust, A.: Feature-based shape transformation for polyhedral objects. In:

Fifth Eurographics Workshop on Animation and Simulation, Oslo, Norway (1994)
15. Ng, H.: Fast Techniques for the Modelling and Visualization of Cloth. PhD Thesis, Centre

for VLSI and Computer Graphics, University of Sussex (1996)
16. Ng, H., Grimsdale, R.L.: Computer Graphics Techniques for Modeling Cloth. In: IEEE

Computer Graphics and Applications (1996)
17. Otto Versand: http://www.otto.de/
18. Sun Microsystems Inc.: Java3D:

http://java.sun.com/products/java-media/3D/
19. Terzopoulos, D.: Elastically Deformable Models. In: Computer Graphics, 21(4) (1987)
20. Vitronic Bildverarbeitungssysteme GmbH: http://www.vitronic.com
21. Volino, P., Courchsene, M., Magnenat-Thalmann, N.: Versatile and Efficient Techniques

for Simulating Cloth and Other Deformable Objects, MIRAlab, University of Geneva
(1997)

22. VRML: http://astronomy.swin.edu.au/ pbourke/3dformats/vrml1/

A Practical System for Constrained Interactive
Walkthroughs of Arbitrarily Complex Scenes

Lining Yang1 and Roger Crawfis2

1 Siemens Medical Solutions
lining.yang@siemens.com

2 The Ohio State University
crawfis@cis.ohio-state.edu

Abstract. Complex renderings of synthetic scenes or virtual environments, once deemed im-
possible for consumer rendering, are becoming available for modern computer architecture.
These renderings, due to their high-quality image synthesis, can take minutes to hours to
render. Our work focuses on using Image-Based Rendering (IBR) techniques to manage and
explore large and complex datasets and virtual scenes. The key idea for this research is to
pre-process the scene and render key viewpoints on pre-selected paths inside the scene. We
present new techniques to reconstruct approximations to any view along the path, which al-
lows the user to roam around inside the virtual environments with interactive frame rates.
We have implemented a pipeline for generating the sampled key viewpoints and reconstruct-
ing panoramic-based IBR models. Our implementation includes efficient two-step caching
and pre-fetching algorithms, mesh simplification schemes and texture removal and database
compression techniques. The system has been successfully tested on several scenes and satis-
factory results have been obtained. An analysis and comparison of errors is also presented.

1 Introduction

High-quality renderings of synthetic scenes or virtual environment, due to their com-
plex image synthesis, can take minutes to hours to render. Ray-tracing or global
illumination using a tool such as POVRAY [28] and Radiance [25] are very time
consuming. An interactive virtual walkthrough of these large and complex scenes is
almost impossible on a low to mid-end system using traditional rendering techniques.

Our goal is to allow the user to examine and walkthrough the scene from an
internal vantage point on a relatively high-resolution display. To achieve this goal,
we decided to apply Image-Based Rendering (IBR) techniques as a post-processing
tool for any traditional high-quality renderer.

IBR is a new research area in the computer graphics community, and offers ad-
vantages over the traditional rendering techniques. It can utilize real life images and
illumination for photo-realistic rendering. It requires a fixed or limited amount of
work, regardless of the view or data context. However, this amount of work is pro-
portional to the input image size. Many IBR techniques [2, 13, 14, 21] use the entire

346 L. Yang and R. Crawfis

set of input images and therefore can only focus on accurate renderings of relatively
low-resolution imagery. Here we explore techniques for large displays having a res-
olution from 1k×1k to 8k×3k, as in our new parabolic video wall.

Our objectives are: (1) Accurate results at many pre-selected viewpoints. (2)
Smoothly move from one accurate view to another with minimal ren-dering errors
and no disruptive artifacts or popping. (3) Support for extremely high-resolution im-
agery in the interactive IBR framework. (4) A decoupling of the pre-computed im-
agery from the resulting viewing platform over high-speed networks. (5) Support for
many different rendering tools as a front end. (6) Guaranteed frame-rates regardless
of the data size, rendering complexity or display configuration.

Our work can be viewed as an extension to QuickTime VR [3] or other panoramic
representations [24]. Panoramic imagery allows one to spin around at their cur-
rent viewing position, but does not allow the user to move forward or backward.
We developed a system to allow movement along a piecewise linear path in three-
dimensions. At any position on this curve, the user can interact with the scene as
in a panoramic viewer. We termed this type of viewing a rail-track view, in that the
user can move forward and backward along the “track”, while viewing the outside
scenery in any direction. Darsa, et al [7] investigated techniques to incorporate in-
formation about the depth of the image into the panoramic scene. Depth allows for
proper re-projection of the pixels from different viewpoints and provides a sense of
motion parallax to give a true three-dimensional sense to the imagery. For efficient
rendering, we apply mesh simplification methods to simplify the depth image from
every pixel to a more manageable geometric quad-mesh. The pre-rendered imagery
is then projected to the depth mesh as a texture map. Texture data management and
an intelligent caching and pre-fetching scheme are employed to further improve the
rendering speed.

Our contributions include: (1) A texture streaming client/server architecture for
panoramic walkthrough (2) View-dependent layers to better address occlusion and
dis-occlusion problems. (3) Incorporation of mesh simplification and texture map-
ping hardware for high-quality and high-resolution renderings. (4) Intelligent Data
Management, Caching and Pre-fetching schemes. (5) View-dependent IBR texture
removal and database compression, considering possible occlusion/dis-occlusion
along the track segments.

The paper is organized as follows: First we discuss relevant background and pre-
vious work in the IBR area. We then present an overview followed by implementa-
tion details of our system. Next we discuss the pre-processing and data organization
scheme for efficient rendering. A two-phase caching and pre-fetching technique is
also presented in this section. It is then followed by a track dependent occlusion-
culling scheme. We will then provide a quantitative measurement of the errors. Fi-
nally we conclude with some test results and ideas for future work.

A Practical IBR Walkthrough System 347

2 Related Work

A lot of effort has been put into designing more accurate IBR systems. This is be-
cause IBR has a very important advantage over the traditional geometry-based ren-
dering systems in that it has a bounded computational cost according to the input
image resolution.

QuickTime VR [3] is probably the earliest effort of IBR research. It has the ability
to allow the user to look around horizontally and vertically (QuickTime VR only al-
lows 360 degrees in horizontal directions and spherical panoramic systems [24] allow
for both horizontal and vertical directions). A QuickTime VR system is simple and
very efficient because it only uses implicit geometry relationships to reconstruct the
scene. However, it also restricts the user to sit at the pre-defined viewpoint. It projects
everything to the same radius cylinder. Darsa et al [7] suggests a way to introduce
depth information into the cubical panoramic system to allow for a walkthrough.
They use three blending methods to reconstruct the views between two pre-defined
viewpoints. Cohen-Or et al [5] introduces the idea of pre-defining a path and pre-
computing the geometry and textures for the sampled viewpoints on the path. They
use the texture mapping hardware to reconstruct the novel views in between. Both of
these systems do not address the occlusion and dis-occlusion problems as described
in the Layered Depth Image paper [21]. That is, when the user moves away from
the pre-selected viewpoints, some features that were previously occluded in the orig-
inal viewpoint can become visible. Without multiple layers of depth [9, 21], these
systems require several viewpoints to fill in the holes. A dense sampling is needed
for this purpose, which increases the database size and puts more burden on storage
and network transmissions and loading time. By utilizing multiple layers and culling
away unnecessary information, our system can achieve more efficiency in this sense.

Most of the previously introduced IBR systems concentrate on accurate render-
ings of relatively low-resolution imageries. These systems use per-pixel warping, as
described in [13, 14, 19, 21]. Hardware texture mapping is not utilized and therefore
the performance is not very fast for larger image resolutions. They are not suitable
for our purpose, which is interactive management and walkthroughs of large datasets
and complex scenes on a high-resolution (over 1k×1k) display. Examples such as the
LumiGraph [11] and Light-field Rendering systems [12] usually sample the viewing
parameters very densely, requiring large storage spaces. There are some systems that
utilize the texture hardware to accelerate the rendering performance, such as the pre-
viously mentioned Darsa et al [7] and Cohen-Or [5]’s work. The View Dependent
Texture Mapping (VDTM) [8] is a typical example of using 2D texture hardware to
accelerate the renderings. However, they do not sample the viewing direction ade-
quately to allow for panoramic viewing. Our system [26] on the other hand, allows
the user to move back and forth on a pre-defined track, with full rotational viewing
directions.

348 L. Yang and R. Crawfis

3 Overview

The goal of this research is to interactively manage complex, time-consuming ren-
derings of large scenes. We concentrated our efforts to allow a user to roam interac-
tively inside a scene, exploring interesting features with the ability to look around at
the same time. We achieve this by restricting the user’s movement on a pre-selected
path and allow him or her to look around at any point in both the vertical and hor-
izontal directions. Figure 1. illustrates the idea of moving on a pre-selected path. It
shows one of the POVRAY dataset: the Nature dataset. The black arrowed curves
represent the track and the red dots represent the pre-selected reference view-points
which will be pre-rendered and saved into a database. The users are allowed to move
back and forth along the tracks and change their viewing directions freely. Although
some software packages allow discrete jumps from one viewpoint to another, this dis-
turbing teleportation requires a re-orientation of the user and invalidates any sense of
a virtual environment.

Figure 2 illustrates the framework of our IBR system. The system consists of a
two-step pipeline. The first step extracts partial renderings for the selected reference
views of the scene. The resulting geometry and imagery is pre-processed to a more
manageable format and stored on the disk of the server. In the second step, whenever
the client needs the data, it sends the necessary request across the network to the
server and the server retrieves the related data from the database and sends it down
the network to the client. Both the server and the client maintain their own cache for
fast data access. In the next several sections we will discuss how to reconstruct the
novel views efficiently and smoothly with minimal errors.

4 Visibility Polyhedrons

Moving from one viewpoint in a complex scene to another, with the freedom of
looking around, is a challenging problem. Let’s assume that we want to move from
a view, V1, to a view, V2, in a complex scene. Consider the following definitions
extended from those on polygons [17].

Definition 1. The visibility polyhedron of a viewpoint is the locus of points visible
from the viewpoint.

Definition 2. A polyhedron P is said to be star-shaped if there exists a point z,
not external to P, such that for all points p ∈ P, the line segment zp lies entirely
within P.

Definition 3. The locus of the points, z, having the above property is called the kernel
of P.

Theorem 1. The visibility polyhedron of a viewpoint is a star-shaped polyhedron
and has a kernel that contains at least the viewpoint.

A Practical IBR Walkthrough System 349

Fig. 1. One pre-selected path for our internal viewer through a model of the Nature scene. The
black curve represents our pre-selected path in the dataset. Red dots represent viewpoints on
the path where the plenoptic function is sampled. Users can move along the curve and look
around

From these definitions, we can see that any two points inside the kernel of a polygon
or polyhedron see exactly the same scene and since all the points on the line connect-
ing these two points are also in the kernel, they likewise see exactly the same scene.
Let’s assume that the kernel of V1’s visibility polyhedron contains V2 and likewise
for V2. The visibility polyhedrons of the two viewpoints are therefore identical. Any
new views, V ∗, rendered along the line segment connecting the two points are also
inside that kernel, due to above definitions. Therefore, the visibility polyhedron of V ∗
is the same as V1 and V2. If we define PVi as the visibility polyhedron of the reference
viewpoint Vi and PV ∗ as the visibility polyhedron of the new view V ∗, we can write
the equivalence relationship as:

350 L. Yang and R. Crawfis

Pre−renderer and
Pre−processor

POVRAY
VTK
RADIANCE
AVS ...

Server−side

Caching

Pre−fetching

IBR Database

Client Display Reconstruction

Interpolation

Using Java 3D

Client−side

Caching

Pre−fetching

Network

I

II

Fig. 2. System diagram – a two-step pipeline is used. The first step uses different rendering
engines to pre-render the datasets. The resulting geometries and imageries are pre-processed
to a more manageable format and stored on a server. Whenever the client needs the data, it
sends a request to the server, the server retrieves the related data from the database and sends
it down the network to the client. Both the server and the client maintain their own cache for
fast data access

PV ∗ = PV1 = PV2 (1)

We can use V1’s or V2’s visibility polyhedrons PV1 and PV2 to reconstruct the new
view V*’s visibility polyhedron PV ∗ .

Note that PVi assumes a continuous representation of the visibility polyhedrons
of the viewpoints and usually are not achievable for current computers system. In
practice, we use a pre-renderer to generate the imagery and the associated depth
information. The depth values are obtained either from the z-buffer or the first inter-
section point with each viewing ray, depending on what software package is used. In
either case, we connect the depth values to form an approximated polyhedron ZPVi ,
which is a discrete representation of the visibility polyhedron PVi . We texture-map
ZPVi with the pre-rendered imagery and use this as the reconstructed scene for the
reference viewpoint. Having the approximations of visibility polyhedrons for all the
reference viewpoints, we investigate techniques to reconstruct the information of the
in-between novel viewpoints. From (1) we see that we can use the two visibility
polyhedrons of the close-by reference views to reconstruct the new view. One way
to move from one reference view to another smoothly is to throw the two reference
view’s polyhedrons ZPV1 and ZPV2 into the z-buffer and perform a simple z-buffer

A Practical IBR Walkthrough System 351

comparison. The z-buffer comparison chooses the closest z value seen in the novel
view. This results in an approximation for the visibility polyhedron of V ∗, called
ZPV ∗ , which is actually an intersection operation.

ZPV ∗ = ZPV1

⋂
ZPV2 (2)

When the two viewpoints lie inside each other’s kernel, the two polyhedrons ZPV1

and ZPV2 are identical. z-buffer comparison therefore will not introduce any artifacts.
Actually in this case the z-buffer comparison (the intersection operation) is equivalent
to using the polyhedron of either reference view to represent that of the new view.
This relationship is shown in (3).

ZPV ∗ = ZPV1

⋂
ZPV2 = PV1 = PV2 (3)

However when the viewpoints are not within each other’s kernel, the two visibil-
ity polyhedrons are not the same and therefore visibility discrepancy occurs for the
two reference viewpoints. If we still use the z-buffer comparison, errors will occur.
Consider the example in Fig. 3.

In Fig. 3 (a) we have two viewpoints V1 and V2 and two objects O1 and O2. We can
see that in Figure 3 (b), V1 and V2 are not within each other’s kernel and therefore the
visibility polyhedrons are not the same. For this example, if we still approximate the
in between view, V ∗’s visibility polyhedron, by using z-buffer comparison between
V1 and V2’s visibility polyhedrons, we have problems with some viewing rays. For
example, for point p in the figure, p1 is the depth value in V1’s polyhedron and p2 is
the depth value in V2’s polyhedron. If we use z-buffer comparison, p2 is apparently
closer than p1. Therefore the depth and color value of p2 are used for V ∗. This is
obviously incorrect. The more serious problem of using z-buffer comparison is that:
even at the reference view, we may get incorrect results. For the same point p, if z-
buffer comparison is used, even at reference viewpoint V1, we would use p2’s value
since it is closer and wins the z-buffer fight. Recall that one of our purposes of this
research is to guarantee accurate results at reference viewpoints and therefore this is
not acceptable.

Another disadvantage of using z-buffer comparison is the popping effect when
changing reference views. This is shown in Fig. 3 (c). In this figure, we are moving
from V2 to V1 then to V0. We have the track segments s0 and s1. As discussed before,
when the user moves from V2 to V1, p2 is used to represent p, which is of course
incorrect. Immediately after the user moves out of s1 and into s0, p1 appears in the
scene. Recall again that one of our goals is to allow the user move on the rail-track
smoothly. This popping effect can seriously distract the user’s attention and therefore
is not desired.

An alternative way to reconstruct the visibility polyhedron ZPV ∗ for V ∗ using
the close by reference viewpoints V1 and V2’s polyhedrons and is to blend the two
polyhedrons. This cannot completely eliminate the errors mentioned before. How-
ever it can mitigate the problem and make the transition between the track segments
smoother. Again, consider the examples shown in Fig. 3. For the problem shown in

352 L. Yang and R. Crawfis

Fig. 3. (a) shows two viewpoints V1 and V2 and two objects O1 and O2 and the visibility
polyhedra. (b) V1 and V2 are not within each other’s kernel and therefore their visibility poly-
hedrons are not the same. By z-buffer comparison p2 is used for V ∗, which is incorrect. (c)
When user moves from track segment s1 to s0, p2 suddenly changes to p1 to represent p
which causes the popping effect. By using two slabs to separate the two objects, p is rendered
to the second slab of both the viewpoint. Therefore, z-buffer comparison or blending will yield
correct result

Fig. 3 (b), instead of using z-buffer comparison to determine whether we use p1 or
p2, we blend p1 and p2’s information. The blending weight is determined by the
distance between V ∗ and V1, V2. In this case, since V ∗ is closer to V1, the blending
weight for p1 is heavier. Although this does not give us the correct value, it at least
mitigates the problem. Most importantly, when we are at V1, the blending weight
for p2 is zero and therefore, we only use p1. This makes sure that at the reference
viewpoints, we don’t have the reconstruction (visibility) errors and meets our goal of
guaranteed lossless or near-lossless representation at the reference views. Moreover,

A Practical IBR Walkthrough System 353

it reduces the popping effects and lets the user move on the track smoothly. Consider
the example in Fig. 3 (c). At the moment we move out of track s1 into s0, the weights
for V2 and V0 are zero and therefore, only p1 is used. This is consistent and allows
smooth movement along the track.

In summary, computing the correct visibility polyhedron is not feasible without
the full geometric scene description. Therefore our choices for merging the views are
limited. By taking correctness and smoothness into account, we decide to use blend-
ing between the two reference views, instead of a z-buffer comparison to reconstruct
the novel views along the rail-track.

5 Depth Meshes and Geometric Simplification

5.1 Slab Representation

As described before, with only one depth value per pixel stored in the IBR database,
when the user moves away from the reference viewpoint, previously occluded objects
can appear to be visible. However, if no information is stored for these objects, holes
and cracks can appear. In order to allow for occluded information at a view to be
retained Mark et al’s post rendering 3D warping system [15] used more than one ref-
erence view to fill the holes. Their heuristics of deciding which pixel from which ref-
erence view is used is a per-pixel operation in software. Layered Depth Images [21],
on the other hand, stores more than one layer of depth for each pixel to avoid the oc-
clusion and dis-occlusion problems. Again, their system is a per-pixel based system.
Although they can achieve relatively accurate results on a low-resolution display,
they are not suitable for our purpose of rendering high-resolution imageries interac-
tively. We hope to utilize the graphics hardware to accelerate our renderings. There-
fore we introduce our slab representation to reduce the occlusion and dis-occlusion
problems.

We divide the viewing frustum into several depth ranges, by setting the near and
far clipping planes. We render the part of the scene in each range and obtain the
imagery and depth polyhedron. We denote each polyhedron for a reference view
Vi and jth slab (the jth polyhedron for viewpoint Vi). We call the corresponding
imagery as a slab image. A binary opacity map is assigned to the slab image so that
the background (empty) pixels are transparent. We texture map the slab image onto
the slab polyhedron and composite the slabs (image and polyhedron) in a front to
back order. This way, if at a certain viewpoint a pixel from the front slab has the
non-background value, it blocks the pixel from the later slab, which can achieve the
correct scene. The relationship of a polyhedron PVi , its discretized version ZPVi and
the slab polyhedron ZPVi j is shown in (4).

discretize(PVi) = ZPVi = ZPVi1 +ZPVi2 + · · ·+ZPVin (4)

By using slabs, we can reduce the occlusion and dis-occlusion problems. Compared
to Mark et al’s Post Rendering 3D Warping [15] and Layered Depth Images [21] sys-

354 L. Yang and R. Crawfis

tems, our slab-based representation uses 2D texture mapping hardware to accelerate
the renderings and therefore is much more efficient during rendering.

Let’s examine how we can use a slab representation to further reduce the visi-
bility errors mentioned in the previous section. Recall that errors occur when two
close-by viewpoints used for reconstruction are not within each other’s kernel. Let’s
consider the same example as in Fig. 3 (d). Here we use two slabs to separate the
two objects. Object O1 is rendered to Slab1, while object O2 is rendered to Slab2.
In this case, for point p, the rendered values p1 and p2 for both viewpoints fall into
the second slab. Essentially p1 and p2 are of the same value and therefore, using a
z-buffer comparison or blending them will not produce any errors. We can see from
the figure that by using slabs, we can achieve more accurate results. Since we cannot
use infinite number of slabs in our system, because of the efficiency issues, there are
still possibilities of occlusion and dis-occlusion problems within one slab and we
still suffer errors which will be discussed in a later section.

5.2 Depth Mesh Simplification

A slab polyhedron ZPVi j is obtained by connecting the depth value for each pixel.
This is essentially a model in which each pixel is a polygon itself, which is way too
complex for interactive rendering on large displays. We can reduce the geometric
complexity by down-sampling the depth buffer of each slab into a lower resolution
grid or quad-mesh. The vertices of the quad-mesh retain the calculated depth values
resulting from the pre-rendering phase. For the interior points, a linear interpolation
function is assumed by the graphics hardware. Figures 4 (a) and (b) show the depth
images rendered before and after down-sampling. We call this simplified slab mesh
for the reference viewpoint Vi QZPVi . By compositing all the simplified slab meshes
together we get the following formula as our complete scene.

discretize(PVi) = ZPVi ≈ QZPVi
= QZPVi1 +ZPVi2 + · · ·+ZPVin (5)

As discussed before, a binary opacity mask is assigned to enable per-pixel occlu-
sion for each slab so that if both the front and back slab have information from the
current viewpoint, the front slab will correctly occlude the back slab. This per pixel
opacity mask can also eliminate some blocky (blurring) effects resulting from the
down-sampling. This is known as α-clipping or silhouette–clipping [20]. Figure 4
(c) illustrates the depth image after α-clipping without using any slabs. Figure 4 (d)
and (e) represent the depth images of the first and second slabs after α-clipping. All
the images here are obtained from the Castle [31] dataset.

6 Data Management

In Sect. 5, we discussed depth mesh simplification and slab representation schemes.
In this section, we will concentrate on algorithms of managing IBR imagery data to
further improve the storage and rendering efficiency of our system. The IBR imagery

A Practical IBR Walkthrough System 355

Fig. 4. (a) The original depth image. (b) The depth image after down-sampling. (c) The α-
clipped depth image and (d) (e) Two slab depth images after α-clipping. This is for the Castle
[31] dataset

356 L. Yang and R. Crawfis

data is mapped to the textures. The texture information is much larger and more
time consuming to load and render. Consider the pre-rendered results for Nature [29]
scene with 1k×4k for each slab with 3 slabs for one viewpoint, which is 48MB. For
smooth navigation, we need to pre-fetch the textures and load them into the graphics
hardware. For 1000 reference views on our track, we quickly amass the data in the
10-100 GB range. Without proper management and reduction, our system would be
overwhelmed with this texture data.

6.1 Empty Texture Tiles Removal

The images resulting from the pre-rendering can contain parts that don’t have any
useful information. Keeping them is a waste of resources. To get rid of them, we
break the resulting image into fixed size tiles according to the down-sampled quad-
mesh. We detect and label them as empty tiles and remove them from the database.
Treating each image tile as a distinct texture map easily allows for removal of these
empty tiles.

Even with the empty tiles removed, we can still have lots of tiles, especially when
the resulting image is very large for high-resolution display. Also remember that for
reconstructing a new viewpoint, we need the information from the neighboring two
viewpoints and each viewpoint may have several layers of images. This further in-
creases the number of individual texture maps. Different systems can support only
limited number of texture binding units, for example, 216 = 64k units (Please remem-
ber that the current Java3D engine supports even fewer). For a pre-rendered image
with a resolution of 1k×4k, 4 slabs for each viewpoint and a tile size of 16×16 for
two viewpoints, we have 128K individual texture maps which exceeds the number of
texture binding units available in the system. In this case, texture thrashing can occur
which slows down the performance significantly.

To alleviate this problem we group individual image tiles into larger texture units
for rendering. Consider a full image of size W by H, we divide the image into equally
sized small tiles, w by h, according to the down-sampled quad-mesh. This results in
each row having W/w tiles and each column having H/h tiles. We remove the empty
tiles and merge the remaining tiles into a larger texture map. We accomplish this by
squeezing each column, removing the empty tiles, and linking the resulting columns
of tiles into a one-dimensional tile array. This is used as a single texture unit. Due
to the fact that OpenGL/Java3D engine can only handle textures with the size in the
power of 2, we split this 1-D array into several arrays and pad the last one. The reason
why we split the array is for the consideration of our novel pre-fetching scheme. We
want to make the indexing and loading of part of the panorama faster and easier. This
will be discussed in more detail in the next section. A header file is constructed which
contains pointers to where the beginning of each column in the 1-D array and how
many non-empty tiles there are in each column. During run-time, this header file is
first loaded into memory and it is fairly easy to keep track of which tile corresponds
to which quad. Therefore the corresponding texture coordinates can be generated for
appropriate texture mapping. By using this mechanism, we deal with much fewer
texture bindings and therefore can avoid potential texture thrashing problems.

A Practical IBR Walkthrough System 357

6.2 Caching and Pre-fetching

To reconstruct the new viewpoints on the track, the information from the two neigh-
boring viewpoints is needed. The IBR rendering engine determines the closest two
reference viewpoints on the path. When the user moves to a new path segment, re-
quiring a new reference view, a severe latency occurs while the needed geometry
and textures are read into memory. Therefore, instead of loading just two sampled
views, the system needs to load several views into the memory and store them into
a cache. The pre-fetching engine, which is implemented as a separate thread, con-
tinually requests texture data as the user moves along the track and stores it into the
cache. The maximum number of views allowed in the cache is determined by the
available memory size and the texture or panoramic image size. Our first experiment
treated the whole panorama as a caching unit. It alleviates, but does not eliminate,
the latency problem. When the user moves too quickly along the track, noticeable
latency still occurs as the server strives to push the data to the client because loading
the whole panoramic image is quite time-consuming.

Keeping the whole panorama texture in the memory allows the user to smoothly
look around in all directions, but requires substantial memory and network burden.
By examining the minimal information needed to reconstruct a novel view, we can
reduce these demands and increase our pre-fetching length. We consider two sce-
narios. The first case is when the user moves along the track while keeping their
orientation fixed. In this case, only the information within the user’s viewing direc-
tion is needed. The second case is when the user stops on the track while examining
the virtual environment. This requires more of the panoramic for the current two
closest reference views. Therefore, we have the choice of pre-fetching more of each
panoramic or pre-fetching partial view of more viewpoints along the track. We han-
dle this using an adaptive two-part pre-fetching scheme - one part along the track and
the other part along the viewing direction.

The algorithm works as follows. At the time the system starts up, we first load
in the first and second viewpoints on the track. While the system is performing other
tasks, like rendering and blending the scene, the pre-fetching thread tries to pre-fetch
the information of the next few viewpoints along the track. We adaptively reduce
the amount of the panoramic we pre-fetch for views that are farther down the track.
This means that as we pre-fetch the information of the view points farther away, we
pre-fetch less and less of the information into the cache. If at this time the user stops
and looks around, we have enough information (the whole panorama for the first two
viewpoints) to reconstruct the information for him/her. Or if the user decides to go
along the track, we also have the information he or she needs. When the user moves
out of the first track segment to the next one, the pre-fetching engine tries to load
the information of the viewpoints even farther away. In the meantime, another thread
tries to load in the remaining part of the panorama for the viewpoints that are already
in the cache.

This algorithm can balance the user’s need for walking down the track or looking
around. Which pre-fetching thread should have higher priority should be determined

358 L. Yang and R. Crawfis

by the preference of the user: whether he or she wants to move along the track or
spin around fast.

6.3 Texture Removal Using a Conservative Track-Dependent Occlusion
Culling Algorithm

The slab representation is used to better address the occlusion and dis-occlusion
problems. As the user moves away from the reference viewpoint, previously oc-
cluded information can be rendered using later slabs. However, the problem with
partitioning and pre-rendering scenes into several slabs is that it produces unneces-
sary information. Consider the example in Fig. 5. In this example, we have three
reference viewpoints on the track segment: V1, V2 and V3. Objects O2, O3 and O4

are occluded by Object O1 for V1 but are rendered and stored in slab2. O2 is visible
for V2 and O4 is visible for V3. Hence, when the user moves away from V1 towards
V2, the information stored in slab2 of V1 is used to represent O2. Likewise for O4.
However in this example, O3 is never visible from any viewpoints along the track
segments. Without occlusion culling we would still render O3 and store the result
in slab2 as part of the texture map, which is unnecessary. This unnecessary data af-
fects the storage cost, network transmission time and the rendering performance. A
conservative track dependent occlusion-culling scheme is adopted to remove these
occluded textures.

We call this algorithm track dependent occlusion-culling because we need to con-
sider current and neighboring viewpoints for the algorithm. How much information
is occluded depends on the sampling rate of the reference views on the pre-selected
track. Durand et al [10] introduced an algorithm that combines multiple viewpoints
into one cell. Occlusions of the objects are calculated for the whole cell. They intro-
duced the extended projection operators. The extended projection for the occluder
is the intersection of the views within the cell while the extended projection for the

V
V V

O

O O
O2

3 4

2

1

3

1

Slab
Slab

1

2

Fig. 5. Objects O2, O3 and O4 are occluded by Object O1 for V1 and therefore are rendered
and stored in the slab2. O2 is visible for V2 and O4 is visible for V3. However O3 is not visible
from any of the viewpoints along these track segments

A Practical IBR Walkthrough System 359

occludee is the union of the views within the cell. To calculate the occlusion, they
just need to compare the extended projections of the occluders and occludees.

We want to determine whether texture tiles in the later slabs are occluded by
those in the previous slabs for both the current and the neighboring two viewpoints.
Therefore in our algorithm, we consider current and neighboring viewpoints as a cell
and texture tiles of the early slabs to be occluders and texture tiles of the later slabs
to be occludees. The algorithm works as follows. For each reference viewpoint, we
first build an occlusion map and fill the map with the opacity values of the projected
first slab texture tiles. We treat the following slab textures in a front to back order,
considering each tile in each slab to see whether it is occluded. The occlusion is
performed by comparing the extended projections of the occluders: texture tiles from
the previous slab and the extended projections of the occludees: texture tiles from the
later slab. Figure 6 (a) and (b) show the extended projections of occluder tiles and
occludee tiles, with regard to the current viewpoint V1 and its neighboring viewpoints
V2 and V3. If the extended projection of the occludee falls in that of the occluder, the
occludee is occluded. In practice, we first project all the occluder tiles and form an
occlusion map and then convolve (average) the window in the occlusion map with
the size of extended projection of the occludee. If the result is 1, the occludee tile
is occluded. For easier calculation, we make several conservative simplifications.
According to [10], for non-flat tiles, the depth of the occluder is the maximum depth
of the tile and the depth of the occludee is the minimum depth of the tile. For all
the occluder tiles, we chose the slab depth which is larger than any maximum tile
depth as another conservative simplification. By taking the minimum depth of the
occludee tile and the slab depth, we can consider them as flat tiles and therefore we
have a setup as in Fig. 6 (c).

Each tile in our system has a width of w. By considering the viewing angle of V2

and V3, we need to convolve (average) an extended area with a width of w + s1 + s2

in the opacity map to see if the result equals 1. Considering the 2D case, s1 can be
calculated using the following equation.

s1 =
h2 −h1

h2
∗d21 (6)

In which h1 is the distance from the viewpoint to slab1 and h2 is the minimum depth
of the occludee tile. To calculate d21, consider Fig. 6 (d).

|d21| = |l|− |l‘| (7)

|l| = (Q−V1)•x (8)

|l‘| = |h|
tanβ

(9)

tanβ =
(Q−V2)•x
|Q−V2| (10)

360 L. Yang and R. Crawfis

V

V
V V

1

1
23

w h

h

s s

d

d

1

12

21

13

2

(d)

(a) (b)

(c)

Tile to be tested
P Q

V3 V2 V2
V1V3

Tile

Tile

Projection

Projection

h

V1

d 21

Q

x

l’
l

V2

α β

β

Fig. 6. (a) and (b) the extended projections for occluder and occludee tile respectively, with
regard to three viewpoints on the track. (c) The occlusion culling setup after conservative
simplification of depth. h1 is the distance from the viewpoint to slab1 and h2 is the largest
depth of the occludee tile. (d) how to calculate d21

A similar equation can be used to calculate s2. We then convolve (average) the
extended area with a width of w+ s1 + s2 in the opacity map. If the averaged opacity
value of the enlarged window is one, we mark the tile as an empty tile and do not
store its textures. If the value is less than one, the tile is not occluded and we add
the opacity values of this tile to the opacity map. We treat all the tiles in one slab
and continue to the next one until all the slabs are processed. As pointed out in [6]
[16, 27], we can use a method similar to α-acceleration, which lowers the opacity
threshold to less than one and cull the tiles more efficiently, with minimal degradation
to the quality of the rendering result.

Using 3 slabs on the Castle [31] dataset reduces the storage for the second slab by
77% from 1.7 MB to 390 KB. The storage requirement for the third slab is reduced
by 80% from 1.3 MB to 261 KB. This is without the α-acceleration. The rendering
quality is identical to the one without the occlusion culling.

The results show that the track dependent occlusion culling is quite efficient for
this dataset. It can reduce the storage requirement, decrease the network transmission

A Practical IBR Walkthrough System 361

time and increase the pre-fetching efficiency and improve the rendering performance.
Another benefit is that it can reduce the rendering cost/overhead that results from
increasing the number of slabs. More slabs can address the occlusion/dis-occlusion
problem better. Using the occlusion culling technique, less information will be left
for later slabs after culling. Therefore, increasing the number of slabs does not affect
the rendering speed too much.

The efficiency of the algorithm is highly dataset-dependent. For the Nature
dataset [29] we tested in which the scene is more open and therefore our slab repre-
sentation does not have too much unecesssary information in the first place, we can
only cull about 5-10 percent without α-acceleration.

7 Error Analysis

7.1 Depth-Mesh Errors

We consider two sources of errors after down-sampling and merging two reference
views for any novel view. The first source of errors results from the linear inter-
polation of the down-sampled depth-meshes. As we discussed before, after down-
sampling, only the vertices of the quad-mesh have the actual depth values obtained
from the pre-rendering (z buffer or intersections). The depth values for the interior
points of the quad-mesh are calculated using a bi-linear interpolation function. For
regions having high curvature (in depth), the linear interpolation introduces errors.
We also break up the pre-rendered image into fixed sized and treat each tile as a
texture map. Mapping the textures to a linearly interpolated quad is different from
mapping them to a highly curved surface. The errors appear when we reconstruct
either the reference views or the novel views. The down-sampling error can be re-
duced by using a finer quad-mesh (smaller tile size). However, decreasing the tile
size increases the rendering time, loading time and storage requirements. Figure 7
(a) shows the experiments that we performed using different sizes of a quad-mesh
for one POVRAY [28] rendered view of the Nature [29] dataset with 1k×1k output
resolution on our Sun Blade 1000 system. Here we compare the change of Mean
Squared Error (MSE), the loading time, the rendering time and the storage require-
ment with different tile sizes. From Figure we can see that, the MSE decreases al-
most linearly when we decrease the tile size. However, the loading time increases
quite dramatically with smaller tile sizes. The rendering time also increases with de-
creased tile size. As tile size increases, the storage first decreases, and then increases.
The decrease (from right to left in the Figure) at first is due to the fact that we need
to store fewer depth values when we have fewer tiles. The later increase occurs since
there are fewer empty tiles to remove, that is, tiles which do not have any informa-
tion. This is also why the rendering speed levels off when the tile size increases –
we have more empty space to rasterize. We should choose a tile size that can achieve
proper frame rates and good image quality. Please note that loading time is also a
very important factor because it affects the pre-fetching performance. Therefore, we
have chosen a tile size of 32×32 in practice.

362 L. Yang and R. Crawfis

Fig. 7. (a) Shows the Mean Squared Error (MSE), the loading time, rendering time and the
storage requirement for different tile sizes for one single view. (b) MSE of interpolated views
against actual rendered views. Interpolated views have a tile size of 32×32

7.2 Visibility Errors

Another source of errors result from reconstructing the novel view when we blend
two close-by reference views. As described previously, if the reference views are
within each other’s kernel of the visibility polyhedrons, the actual polyhedrons of
the two reference views coincide with each other perfectly and therefore no visibility
errors should occur. However in real situations this is seldom true and these visi-
bility errors are inevitable. Figure 7 (b) shows the Mean-Squared Errors (MSE) of
the resulting images for interpolated views against Povray rendered views at corre-
sponding positions along our path. As we can easily discover, the closer the sampled
viewpoints are, the smaller the visibility errors will be. We performed an experiment
using three different sampling rates along the rail-track. To maintain the same down-
sampling error for all the cases, we use the image resolution of 1k×1k as before and
keep the tile size constant at 32× 32. We can see that the curve using only 2 refer-
ence viewpoints has the highest Mean-Squared Errors (MSE). This is as expected.
The peak errors occur somewhere close to the middle of the two sampled viewpoints
for all three cases. The peak MSE is about 17 out of 256, or approximately 6.7%.
The curve which uses 5 views has the finest sampling rate and peaks out with MSE
of about 14–15. From the figure, we can also see that the MSE drops dramatically
at the reference viewpoints. This is due to the fact that at the reference viewpoints,
there are no visibility errors and the errors solely come from down-sampling and the
bi-linear interpolation that we discussed in the previous section.

A Practical IBR Walkthrough System 363

8 Results and Discussions

Our front end rail-track viewer was implemented in Java/Java3D. We ran our IBR
framework on 4 datasets. The first one is a virtual scene called Nature [29] rendered
using Povray [28]. The scene is moderately complex, containing trees, bushes, rocks
and birds. It takes about 20 minutes to render one frame on our 2GHZ Dell Precision
530 workstation using POVRAY. One path was chosen for this scene with 20 sampled
viewpoints along the track. Three panoramic layers with a resolution of 1024×4096
per layer were pre-computed for each view sample. The total size for the database
after pre-processing is 220MB. Without empty tile removal and track-dependent oc-
clusion culling it would require over 1.2GB. The geometry and imagery was broken
up into 32×32 quads. Our second dataset is a LOX post dataset which Visualization
Toolkit (VTK) [32] provides. This dataset simulates the flow of liquid oxygen across
a flat plate with a cylindrical post perpendicular to the flow. It contains both scalar
and vector fields in the data. A rendering was chosen with the post, a slice plane and
several stream-polygons. One path was pre-selected going into the stream-polygon
region with 23 view samples. Four panoramic layers with a resolution of 512x2048
per layer were pre-computed for each view sample. The reference image database
was pre-rendered using VTK and the total size for the image database was reduced
to 138MB. The geometry and imagery was broken up into 16x16 quads. This data-
base required 9.2 hours to pre-render. We also tested our system on two other Povray
scenes, namely the Castle [31] and the Night [30] datasets obtained from the web.
For each one, we chose 15 viewpoints on a path and each viewpoint has 3 layers with
a resolution of 1024×4096 per layer.

We have tested our IBR viewer on two platforms. On the Sun Blade 1000 work-
station with dual Ultra-Sparc III 750MHZ, 1 GB of memory and Elite 3D graphics
card, we achieve 15 frames per second for the 3 povray scenes at a 1k×1k rendering
resolution and 20 frames per second for the LOX dataset with a 512×512 rendering
resolution. On our Dell Precision 530 workstation with a 2 GHZ Xeon processor and
2 GB of memory, 128 MB Nvidia Geforce4 Titanium 4600 video card, we achieve
above 30 frames per second for all four datasets. Figure 8 shows a resulting image
for each of the four datasets.

9 Conclusions and Future Work

This paper presents our framework for allowing the user to examine and walkthrough
any scene using a relatively high-resolution display. We achieved this goal by lim-
iting the user’s movement to lie on a track and utilizing pre-computed IBR data
and rendering techniques. Intelligent data organization, track-dependent occlusion
culling for texture removal, novel caching and pre-fetching scheme makes our sys-
tem more efficient. Application of our system to several complex scenes illustrates
that our system is suitable for exploring complex virtual environments and large
datasets with reasonably small errors and visual coherency.

364 L. Yang and R. Crawfis

Fig. 8. Rendering results for (a) Nature dataset, (b) LOX dataset, (c) Castle dataset and (d)
Night dataset

With our new data management techniques, our database still tends to be very
large, especially with larger resolution and finer sampling. However, this was ex-
pected. We trade storage for rendering efficiency and low-cost texture streaming.
This allows us to render at an extremely large resolution and offers an advantage
over other high-quality IBR techniques.

Our contributions to this research have been: We have built a texture stream-
ing client/server architecture for panoramic walkthroughs inside the scene and use
view-dependent layers to better address occlusion and dis-occlusion problems. We
also implemented an intelligent caching and pre-fetching scheme for the efficient
data management. A track-dependent texture removal algorithm, considering possi-
ble occlusion/dis-occlusion along the track segments, is designed to remove unnec-
essary data and compress the database. Finally we incorporate mesh simplification

A Practical IBR Walkthrough System 365

and texture mapping hardware for interactive high-quality and high-resolution ren-
derings.

We are considering ways to replace textures with average color for the highly-
occluded regions, as described in Zhang’s paper [27]. For example, when α = 0.9
for a specific tile, instead of throwing away the tile or rendering the whole tile as a
texture map with full resolution, we can use the average color of the tile to represent
it. This way, we can reduce the visual artifacts introduced by alpha-acceleration while
keeping a minimum amount of information. Another future work involves how to
sample the track. One approach would be to sample the pre-selected track densely
and let the user specify an error metric that he/she can tolerate. We can then use this
error metric to determine the actual samples that are needed.

References

1. Andelson, E. H., Bergen, J. R.: The plenoptic Function and the Elements of Early Vision.
In: Landy, M., Movshon, A. (ed) Computational Models of Visual Processing. The MIT
Press, Cambridge Massachusetts (1991)

2. Chang, C., Bishop, G., Lastra, A.: LDI Tree: A Hierarchical Representation for Image-
Based Rendering. Proc. SIGGRAPH, 291-298 (1999)

3. Chen, S.: QuickTime VR – An Image-Based Approach to Virtual Environment Naviga-
tion. Proc. SIGGRAPH, 29-38 (1995)

4. Choi, J., Shin, Y.: Efficient Image-Based Rendering of Volume Data. Proc. Pacific Graph-
ics, 70-78 (1998)

5. Cohen-Or, D., Mann, Y., Fleishman, S.: Deep Compression for Streaming Texture Inten-
sive Animations. Proc. SIGGRAPH, 261-268 (1999)

6. Danskin, J., Hanrahan, P.: Fast Algorithms for Volume Raytracing. Proc. Workshop Vol-
ume Visualization, 91-98 (1992)

7. Darsa, L., Costa, B., Varshney, A.: Navigating Static Environments Using Image-Space
Simplification and Morphing. Symposium on Interactive 3D Graphics, 25-34 (1997)

8. Debevee, P., Yu, Y., Borshukov, G.: Efficient View Dependent Image-Based Rendering
with Projective Texture Mapping. In 9th Eurographics Rendering Workshop, (1998)

9. Decoret, X., Schaufler, G., Sillion, F., Dorsey, J.: Multilayered Imposters for Accelerated
Rendering. Proc. Eurographics, 145-156 (1999)

10. Durand, F., Drettakis, G., Thollot, J., Puech, C.: Conservative Visibility Pre-processing
Using Extended Projections. Proc. SIGGRAPH, 239 - 248 (2000)

11. Gortler, S., Grzeszczuk, R., Szeliski, R., Cohen, M.: The Lumigraph. Proc SIGGRAPH,
43-54 (1996)

12. Levoy, M., Hanrahan, P.: Light Field Rendering. Proc. SIGGRAPH, 54-61 (1996)
13. Mark, W., McMillan, L., Bishop, G.: Post-Rendering 3D Warping. Symposium on Inter-

active 3D Graphics, 7-16 (1997)
14. McMillan, L., Bishop, G.: Plenoptic Modeling: An Image-Based Rendering System. Proc.

SIGGRAPH, 39-46 (1995)
15. Mueller, K., Shareef, N., Huang, J., Crawfis, R.: IBR-Assisted Volume Rendering. Late

Breaking Hot Topic IEEE Visualization, 5-8 (1999)
16. Mueller, K., Shareef, N., Huang, J., Crawfis, R.: High-quality Splatting on Rectilinear

Grids With Efficient Culling of Occluded Voxels. IEEE Transactions on Visualization
and Computer Graphics, 5, 2, 116-134 (1999)

366 L. Yang and R. Crawfis

17. Preparata, F., Shamos, M.: Computational Geometry, An Introduction. Springer-Verlag
New York Inc (1985)

18. Qu, H., Wan, M., Qin, J., Kaufman, A.: Image Based Rendering With Stable Frame Rates.
Proc. IEEE Visualization, 251-258 (2000)

19. Rademacher, P., Bishop, G., Multiple-Center-of-Projection Images. Proc. SIGGRAPH,
199-206 (1998)

20. Sander, P., Gu, X., Gortler, S., Hoppe, H., Snyder, J., Silhouette Clipping. Proc. SIG-
GRAPH, 327-334 (2000)

21. Shade, J., Gortler, S., He, L., Szeliski, R., Layered Depth Images. Proc. SIGGRAPH,
231-242 (1998)

22. Schroeder, W., Zarge, J., Lorensen, W.: Decimation of Triangle Meshes In: Computer
Graphics, 26, 2, 65-70 (1992)

23. Shum, H., He, L., Rendering With Concentric Mosaics. Proc. SIGGRAPH, 299-306
(1999)

24. Szeliski, R., Shum, H., Creating Full View Panoramic image Mosaics and Texture-
Mapped Models. Proc. SIGGRAPH, 251-258 (1997)

25. Ward, G., The RADIANCE Lighting Simulation and Rendering System. Proc. SIG-
GRAPH, 459-72 (1994)

26. Yang, L., Crawfis, R., Rail-Track Viewer, an Image Based Virtual Walkthrough System.
Eurographics Workshop on Virtual Environment, 37-46 (2002)

27. Zhang, H., Manocha, D., Hudson, T., Hoff, K., Visibility culling using hierarchical occlu-
sion maps. Proc. SIGGRAPH, 77-88 (1997)

28. http://www.povray.org
29. http://www.irtc.org/stills/1998-06-30.html
30. http://www.irtc.org/stills/1998-04-30.html
31. http://www.irtc.org/stills/1999-02-28.html
32. http://www.kitware.com/vtk

Component Based Visualisation
of DIET Applications

Rolf Hendrik van Lengen1, Paul Marrow2, Thies Bähr1, Hans Hagen1,
Erwin Bonsma2, and Cefn Hoile2

1 German Research Centre for Artificial Intelligence
Intelligent Visualisation and Simulation
Erwin-Schrödinger-Strasse, 67663 Kaiserslautern, Germany
[lengen|baehr|hagen]@dfki.uni-kl.de

2 BT Exact
Intelligent Systems Laboratory
Adastral Park, Ipswich IP5 3RE, United Kingdom
[paul.marrow|erwin.bonsma|cefn.hoile]@bt.com

Summary. Controlling distributed information in a complex information infrastructure re-
quires novel and innovative information processing and management techniques. The Decen-
tralised Information Ecosystem Technologies (hereafter, DIET) approach provides a software
platform based on a lightweight, robust, adaptable, and scalable multi-agent system. DIET uses
implicit forms of communication found in natural ecosystems as an analogy for computer-
based distributed information management systems. The platform can be used to tackle a
variety of information management applications in distributed and open real-world scenarios.

However, the development, debugging, and monitoring of distributed applications is a
complex task. Adequate visualisation techniques and tools are required to assist the software
developer. This paper describes the visualisation platform developed on top of the DIET frame-
work. The main purpose of the visualisation platform is the inspection and manipulation of
ecosystem inspired applications built upon DIET. The platform provides fundamental visual-
isation components that can be easily linked together to build up a visual network in order to
formulate complex visualisation tasks. Possible tasks can range from monitoring an individual
agent to visualising the overall system behaviour. Due to this component based approach the
effort for monitoring and debugging agent applications is considerably reduced.

Key words: Intelligent Agents, Information Visualisation, Multi-Agent Systems

1 Introduction

The Decentralised Information Ecosystem Technologies project is a European col-
laborative research project, part of the Universal Information Ecosystems initiative.
The initiative is centred around the information ecosystem concept, that relates trans-
actions in the information infrastructure to the dynamics of natural ecosystems.

368 R.H. van Lengen et al.

The term information ecosystem is used by analogy with natural ecosystems.
Similarly to a natural ecosystem it is dynamic, noisy, to some extent unpredictable,
and decentralised [9]. The information ecosystem includes all those individuals and
units involved in creating, managing, using, and adaptively re-using information
sources where information is interpreted in its widest sense. In an effective infor-
mation ecosystem data, information, and knowledge are all viewed as organisational
resources.

Accordingly the DIET project is concerned with the construction of a multi-agent
development toolkit to support complex information manipulation applications us-
ing nature-inspired computing techniques. The development, debugging, and moni-
toring of ecosystem inspired applications is a complex task. Adequate visualisation
techniques and tools are required to assist the application developer.

The paper is structured as follows: In the first session the main components of
the DIET software platform are described. We then illustrate the outline of our vi-
sualisation architecture that extends the platform by supplying visual and interactive
components. Finally, we present a simple DIET example application and demonstrate
how the visualisation platform can be used to monitor it.

2 DIET Software Platform

The DIET platform has been designed drawing upon the information ecosystem phi-
losophy introduced in the Universal Information Ecosystems initiative [2]. Accord-
ingly it follows a bottom-up design approach, and is robust, adaptive, and scalable.

The bottom-up design approach means that intelligent behaviour can emerge
from the interactions between large numbers of agents, each of which is very small
and simple, and does not need to have a high level of individual intelligence.

The DIET platform kernel itself is robust to network failure and/or system over-
load. It is designed such that the effects of such failures are localised, and the kernel
provides feedback when failure occurs allowing applications to adapt accordingly.
The decentralised nature of DIET also makes the platform less susceptible to overall
failure.

It supports adaptive applications in that many lightweight DIET agents can inter-
act to produce adaptive responses to changing application circumstances. The sim-
plicity of agents means that they can easily be deleted or created as applications
require.

It is scalable at a local and at a global level. Local scalability is achieved because
DIET agents can be very lightweight. This makes it possible to run large numbers of
agents, up to several hundred thousands, in a single machine. DIET is also globally
scalable, because the architecture is such that it does not impose any constraints
on the size of distributed DIET applications. This is mainly achieved because the
architecture is fully decentralised, thus not imposing any centralised bottlenecks due
to centralisation of the information flow management.

For more details about the ”DIET approach” in agent system design, see Marrow
et al. [8] and Hoile et al. [3]. The DIET platform is available as Open Source [1].

Component Based Visualisation of DIET Applications 369

2.1 Layered Architecture

The DIET system is designed as a three-layer architecture (see Fig. 1). The core layer
is the lowest layer. It provides the minimal software needed to implement multi-agent
functionality on top of the DIET framework. This is through the DIET platform ker-
nel, which provides the underlying “physics” of the DIET ecosystem. It also includes
basic support for debugging and visualisation.

Application
components

Application
Layer

Application
reusable
components

Application
Reusable Component
Layer

DIET platform kernel
Core
Layer

Fig. 1. The three layer architecture of the DIET platform

The Application Reusable Component (or ARC) layer contains components that
are not essential for the core layer, but can be shared among different applications.
These components include

• various schemes for remote communication,
• a framework for pluggable agent behaviours and
• support for scheduling events for execution at a later time.

The application layer contains code specific to particular applications. This is
where code that extends the DIET platform in diverse application directions resides.
The platform by default includes a number of sample applications, which demon-
strate specific features of the platform.

2.2 DIET Elements

The basic classes and interfaces in the DIET platform kernel define five fundamental
elements. These elements are arranged in the following hierarchy:

• worlds,
• environments,

370 R.H. van Lengen et al.

• infohabitants,
• connections, and
• messages.

The world is a placeholder for environments in a JVM (Java Virtual Machine).
Environments are where the infohabitants reside. Infohabitants are the agents in the
DIET platform. Infohabitants can communicate by forming connections and sending
messages via these connections.

The world manages functionality that can be shared by environments, such as
infohabitant migration to other worlds. A world is also the access point for attaching
debugging and visualisation components to the DIET platform.

Environments implement the DIET “physics”, enabling infohabitant creation, de-
struction, communication, and migration. An environment can host large numbers of
infohabitants. An infohabitant can migrate from the environment it currently resides
in to any other environment, providing that it knows the address of the destination
environment. Environments can have one or more neighbourhood links, which are
addresses of other neighbouring environments. Infohabitants can use these neigh-
bourhood addresses to explore the DIET universe without any a-priori knowledge of
existing environments.

The infohabitants are at the heart of this conceptual hierarchy. They are the agents
within the DIET multi-agent platform, and each one executes autonomously using an
assigned execution thread. Infohabitants in the core are designed to be very light-
weight. An infohabitant only has minimal capabilities to execute and to communi-
cate. Furthermore, an infohabitant can give up its execution thread when it temporar-
ily does not need it. The kernel attempts to give the infohabitant a thread again when
it requires one, e.g. to handle an incoming message.

Infohabitants can communicate with other infohabitants in the same environment
by creating connections. A connection is a bi-directional communication channel
between a pair of infohabitants.

After a connection has been set up, infohabitants can use it to pass messages. The
DIET platform does not enforce a particular communication protocol. It provides in-
fohabitants with the ability to exchange text messages and optionally objects. This
allows each infohabitant to use a protocol most suited to its functionality and capa-
bilities.

2.3 Infohabitant Actions

Infohabitants can carry out four different actions:

• creation (an infohabitant can create other infohabitants),
• destruction (an infohabitant can destroy itself),
• communication (an infohabitant can send messages to other infohabitants), and
• migration (an infohabitant can move to a different environment).

The actions are implemented in the DIET platform kernel such that their exe-
cution time does not go up when the number of infohabitants increases but stays

Component Based Visualisation of DIET Applications 371

constant. Furthermore, they are implemented in a resource constrained and fail-fast
manner.

These actions are resource constrained because there are explicit limits on the re-
sources that they can use. For example, execution threads are a constrained resource.
The number of threads that are used by infohabitants in a DIET world is limited (to a
number specified by the user when the world is created). The kernel actions are fail-
fast because when an action cannot be executed instantaneously, it fails immediately.
This failure does not prevent the execution of other actions. The kernel does not retry
the actions later or block execution until it has successfully executed the action.

The fail-fast, resource constrained implementation of the kernel actions protects
the system against overload. Each infohabitant receives incoming messages through
a buffer of limited size. When an infohabitant attempts to send a message to an info-
habitant whose message buffer is already full, the message is rejected. If this did not
happen, there would for instance be problems when an infohabitant processes mes-
sages more slowly than the rate at which they arrive. Its buffer of incoming messages
would constantly grow, and eventually the JVM would run out of memory (although
this might take a while). A more immediate effect is that as the number of pending
messages grows, the time it takes before a reply is received to each message goes
up as well. This means that the reply may be too late and obsolete by the time it is
received. Limiting the size of the infohabitant event buffers is a simple yet effective
way to cope with overload. As long as the system load is low, the size of the buffer
does not matter, as the buffer limits will never be reached. When the system becomes
overloaded, this mechanism offers basic protection and allows infohabitants to adapt
their behaviour rapidly.

2.4 Event Generation

The DIET platform uses the Observer design pattern [4], also known as Publish-
Subscribe, to support visualisation. Visualisation components can observe applica-
tions by registering as an observer, also called listener, with the objects that they are
interested in. They will then receive notifications when specific events occur. More
specifically, the following events can be monitored:

• Environments: added and removed.
• Neighbourhood links: created and destroyed.
• Infohabitants: created, creation failed, arrived, arrival failed, departed, departure

failed, and destroyed.
• Infohabitant run state: started, suspended, resumed, resume failed, terminated,

and crashed.
• Infohabitant property: changed.
• Connections: created, rejected, and destroyed.
• Messages: sent, received, accepted, and rejected.

All these events, except infohabitant property changes, are generated by the DIET

kernel. This means that no extra code is required in applications to generate these

372 R.H. van Lengen et al.

events. They are generated automatically as and when needed. It also means that
infohabitants cannot suppress event notifications or fire spurious events. This is im-
portant for reasons of security as well as visualisation. For instance, it allows the
event listening infrastructure to be used to implement resource accounting as well.

The infohabitant property event notifications can be used to visualise the internal
state of infohabitants. For example, some infohabitants may have an internal activity
level associated with them, which affects their behaviour. The infohabitant can fire a
property change event whenever the value of its activity level changes. If it does so,
this property can be monitored and displayed by visualisation components. Different
infohabitants may support different properties, and this can be application-specific.
Therefore, property events are the only ones that are not generated by the DIET

kernel, but by user code instead.
All of the events listed above are generated at the level where they occur. For

instance, an environment created event is generated by a DIET world. However, a
message sent event is generated by the connection along which the message was
sent. Furthermore, events are generated lazily. If there are no observers registered
with a specific object, it will not generate event notifications. This makes it possible
to efficiently visualise simulations. For instance, infohabitants that are not being vi-
sualised do not generate any connection events, property events and run state events.

3 Visualisation Platform

In recent years, the development of agent-building toolkits has created the need for
efficient software visualisation tools. These tools assist the programmer in individual
application development stages.

Toolkits like e.g. DCM [10], ZEUS [5], and AMS [11] have provided agent devel-
opment environments together with basic visualisation support. These agent-building
frameworks have substantially improved the study and development of collaborative
multi-agent systems. However, the provided visualisation components have several
limitations that make them not suitable for the DIET approach. In order to work prop-
erly, the visualisation components are realised as agent systems themselves using a
certain message protocol to communicate with a heavyweight multi-agent system to
be monitored and manipulated.

The DIET approach favours the design of lightweight agents that lack the im-
plementation of a special message protocol for the sake of openness as well as a
minimal core implementation allowing the creation of a large number of agents with
very little overhead. The design philosophy of the DIET approach entails a variety of
general requirements to the visualisation architecture.

Non-intrusive: The visualisation architecture should have minimal effect on the
observed application to prevent different behaviour with or without the visualisa-
tion running. Many real-time visualisation tools are intrusive; they inject wait states,
add special code, or interrupt real-time operations. This can cause unwanted side-
effects between concurrently running processes that are hard to discover because the

Component Based Visualisation of DIET Applications 373

co-occurrence may appear only sometimes and is hardly predictable so that error sit-
uations are not reproducible for debugging purposes. Furthermore, the design of the
architecture should enable the introspection of DIET applications without the need
for changing any application code.

Scalable: The visualisation architecture has to be scalable to support varying op-
erational scenarios ranging from environments that contain only a few infohabitants
up to environments that contain several thousands. After a simulation it might be
helpful to repeat it offline with a different time scale or even in single step execution
to investigate conditions and behaviour in detail without the need of cooling down
the real-time application. Therefore the visualisation must also support the display
of logged events and properties.

Flexible: There are many possible applications so the architecture has to con-
sist of a set of components which can be combined to build task- and application-
specific visualisation and debugging tools. The components themselves should be
highly flexible and adjust themselves automatically to specialised core elements.

Interactive: Nevertheless, debugging complex systems demands a high degree
of steering and control functionality which should be supported by the architecture.
Possible features for example could be the manipulation of properties or resources,
the creation of new infohabitants, their cloning or even killing as well as the possi-
bility to cool down the whole world or parts of it for further investigations.

3.1 Particular Visualisation Challenges

In addition to these more general requirements the visualisation of DIET applications
is especially challenging because of features offered by the platform that are usually
not provided by common multi-agent systems.

• There can be large numbers of agents. The light-weight nature of agents means
that an ordinary desktop machine1 may host over 100,000 agents. To maintain
scalability, the memory that the visualiser associates with each agent should be
low. Also, the execution overhead should be independent of the number of agents.

• The frequency of events can be high. For example, in some applications more
than 1000 messages are sent per second. This means that events must be processed
rapidly, with minimal delay and overhead.

• The data generated by the kernel is low-level. The kernel generates event notifica-
tions but even basic information, such as the number of infohabitants in a given
environment, is not directly available. So, for users to understand what is hap-
pening, the visualiser may need to combine multiple low-level events to generate
higher level information. For instance, the number of infohabitants in an environ-
ment can be determined by continuously observing the events generated by the
environment. Visualisation of some applications may also require synthesising
application-specific, high-level properties.

1e. g. 32bit Intel CPU, 1.4 GHz, 1 GB RAM

374 R.H. van Lengen et al.

• The execution of DIET applications is multi-threaded. Each agent executes us-
ing a dedicated execution thread. This affects visualisation because it limits the
ability to pause applications or to slow them down in a controlled manner.

• Agents execute in real-time. The behaviour of many agents is controlled by the
system clock. For instance, if an agent does not receive an acknowledgement
message within x milliseconds, it may retry sending the message or try elsewhere.
The visualiser inevitably incurs some execution overhead. If CPU usage is close
to maximal, this may slow down agent execution and thus affect their behaviour.

• The kernel actions are fail-fast and resource constrained. This is therefore an-
other way that heavy CPU utilisation can affect an application. When the CPU
is heavily used, some infohabitant actions may fail. The infohabitants may adapt
their behaviour in response, but this in itself affects the application. The overhead
introduced by the visualiser must therefore be minimal, to minimise the effect on
the observed applications.

3.2 Visualisation Architecture

DIET agents have no complex communication protocols that can be analysed and
used for visualisation purposes. Instead, the DIET core software provides only a basic
event protocol. Events relate to the creation and destruction of elements, modification
of element state, and interactions between elements in the DIET application.

As an attempt to address some of the limitations in recent agent-building frame-
works, the visualisation architecture is designed as a separate platform.

Instead of providing a series of visualisation tools for a fixed set of different
applications the visualisation and debugging of a range of tasks within the DIET

environment is supported. The platform offers specific visualisation categories (see
section 3.3). Within each category a diversity of visualisation components are pro-
vided, each of them pervading a particular task.

Visualisation components can be combined by the user to create so-called visual
networks (see Sect. 3.4). A visual network formulates a particular visualisation task
to observe and to interact with the application. There is no need for changing any
code in the DIET application. Networks can be connected to or disconnected from
the application at any time.

The visualisation process comprises three stages: (1) data acquisition, (2) data
analysis, and (3) data presentation. In order to improve the visualisation performance
and to minimize side effects the DIET visualisation platform is constructed as a lay-
ered architecture according to the visualisation flow (see Fig. 2).

A graphical user and programming interface supports the creation of user de-
fined visualisation networks. In the following sections the visualisation categories
provided by the platform are discussed.

3.3 Visualisation Categories

Currently the platform offers six different visualisation categories: (1) Application,
(2) Filter, (3) Compute, (4) Control, (5) Interactor, and (6) View category.

Component Based Visualisation of DIET Applications 375

DIET Application

Translator

State Tracker

Filter/Compute

View

G
ra

p
h

ic
a

l
U

s
e

r
In

te
rf

a
c
e

A
cq

ui
si

tio
n

A
na

ly
si

s
Pr

es
en

ta
tio

n

Visualisation Platform

Fig. 2. The DIET visualisation platform. Events (arrows) are created by the DIET application
and processed by the visualisation platform in order to analyse the application

The visualisation process itself is accomplished in a Publish-Subscribe manner,
which allows the subscribed visualisation components (observer) to keep track of the
internal state of DIET objects (environments, infohabitants, connections, messages).
In order to improve the event processing speed and to achieve a flexible event dis-
tribution throughout the visualisation architecture we have incorporated the use of
proxies into the visualisation platform as denoted in Fig. 3.

W

E E

I II I I

W W

E

W

E

I I

DIET application Translator Environment
filter

Infohabitant
filter

View

: DIET platform objects (Worlds, Environments and Infohabitants)

: Visualisation proxies

: Publish-Subscribe (observer) relation

Fig. 3. An example visualisation configuration. A DIET application is visualised in a view,
after applying an Environment filter and an Infohabitant filter

The visualisation architecture uses particular proxies: WorldProxy, Environment-
Proxy, InfohabitantProxy, and ConnectionProxy. Each of those corresponds to one
of the fundamental DIET elements in the DIET application. Each proxy instance is

376 R.H. van Lengen et al.

associated with a specific DIET core object. It generates events that can be used by
subsequent visualisation components. In addition, further proxies exist that have no
corresponding objects in the DIET application. These special proxies generate events
that are not provided by the application (e.g. PropertyProxy).

With respect to the visualisation requirements stated in Sect. 3.1 the use of prox-
ies has several reasons. Proxies are necessary to enable filtering of events. If the user
wants to use a filter for family tags, there is an EnvironmentProxy that only passes
events related to infohabitants with the proper family tag. All other events are sup-
pressed so that subsequent views and other visualisation components in the chain are
entirely unaware of the existence of these infohabitants.

Proxies make it possible to attach views to an application during run-time. The
objects in the DIET platform do not maintain state that is required to do so. How-
ever, some of the additional proxies (e.g. Intermediate) can. This enables efficient
visualisation of an application, as events are only generated and extra state is only
maintained where this is needed.

Proxies make GUI components such as views independent of the DIET platform.
Views are never observing DIET core objects directly. They are only attached to one
or more visualisation proxies.

Proxies also enable the logging of events to a file (see next section). DIET objects
such as infohabitants cannot be serialised, but their corresponding proxies can.

Figure 3 shows an example that illustrates how the visualisation architecture
works. On the left, it shows the current state of a DIET application. It consists of
two environments, containing five infohabitants in total. The first visualisation com-
ponent is the Translator. It translates DIET platform events into visualisation proxy
events. It also ensures that there is a visualisation proxy component for each ele-
ment in the DIET application that is being visualised. Attached to the Translator is
an Environment filter. It only passes through the events generated by the Translator’s
WorldProxy that are about a specific environment, e.g. Environment 1. Connected to
the Environment filter is an Infohabitant filter. The specific filter here only passes
through events about infohabitants with a specific family tag. Connected to this filter
is a view, which displays all DIET elements that it is notified about. In this case, it is
showing a single environment containing two infohabitants.

The figure demonstrates some of the advantages of the visualisation architecture
that is used. First of all, visualisation proxy objects and events are only generated
where they are needed. In the figure, one of the environments and its two infohabi-
tants do not generate any events at all, because there are no observers registered with
them. Furthermore, the use of generic proxy interfaces and generic proxy events
enables the connection of visualisation components in a very flexible manner. For
example, filtering of events and offline visualisation are both possible without any
support in the views at all.

In the following sections the different visualisation categories and a selection of
their components are discussed.

Component Based Visualisation of DIET Applications 377

Application Category

The application category provides visualisation components which determine the
application to be observed. In addition, this category provides services for offline
visualisation.

Translator

The Translator component is the first visualisation component to be placed on the
workbench as part of a visual network (see Sect. 3.4). The user can select a particular
DIET application to be visualised by choosing the application name in a context
menu. The Translator component translates received DIET events to visualisation
proxy events.

This ensures a clear separation between the DIET core platform and the visuali-
sation platform. In this way any event based multi-agent platform can be visualised
only by adapting the Translator component.

Intermediate

The main purpose of the Intermediate is to observe the DIET application. The In-
termediate component keeps track of received and propagated visualisation proxy
events. It serves as an anchor and can be placed at any position within a visualisation
network.

Other visualisation components can be attached to the Intermediate component
during runtime. This property, for example, is useful, if the user is interested only
from time to time in a particular view that visualises certain aspects of the applica-
tion. Several Intermediate components can be placed on the workbench.

Recorder

The Recorder component dumps visualisation events to a file. As soon as the
Recorder is placed on the workbench a file name is requested by the user. For offline
visualisation purpose this file can be reloaded by the Player component to replay all
recorded events. The component is attached to an Intermediate component and stores
the following information:

• a timestamp,
• an event identification number
• an event object.

The recording can be started and stopped by the user by using the context menu
of the component. An arbitrary number of Recorders can be placed within the visual
network.

378 R.H. van Lengen et al.

Player

The Player component enables offline visualisation by replaying a file previously
dumped by a Recorder component. Basically, the component reads events one by
one from a file. The event is interpreted and the corresponding DIET objects and
their events are simulated by the component.

The playing can be started, paused, resumed, stopped, and executed stepwise by
using the context menu of the component. Only one Player component can be placed
on the workbench.

Filter Category

In order to improve the visualisation performance the user can determine which
events are passed from one component to other components of the visualisation ar-
chitecture. This task is the main purpose of the filter component. Through combina-
tion of different filter components more complex filter tasks can be achieved.

In general filters are parameterised; as an example the so-called Environment
filter is parameterised by a name string. The name string defines the environment
whose events are passed to the following component.

Compute Category

The data generated by the DIET kernel is very low level. Even basic information, like
the population size of a particular environment, is not directly available for visuali-
sation purposes.

In general, compute components calculate new visualisation properties by ob-
serving the events generated by DIET core components. The Population component
for example processes environment events in order to count the infohabitant popula-
tion within an environment.

Interactor Category

An interactor component enables the user to interact with the running DIET appli-
cation. For security reasons the use of interactor components is restricted. Interactor
components can only be applied if the developer of the application has explicitly
granted access to DIET objects. Otherwise interactor components could be misused,
e.g. a user could cheat the application by adding money resources to infohabitants of
his own.

The Connection interactor, for instance, can be attached to a view (see Sect. 3.3).
Two infohabitants can be selected in the view. This selection is passed to the in-
teractor. On this basis, the component builds up a DIET connection between these
infohabitants. Afterwards the user can send a text message from one infohabitant to
the other one.

Component Based Visualisation of DIET Applications 379

View Category

A view basically is a window that contains a collection of various graphical objects.
Different views are provided by the platform, e.g. tables and bar charts. Each view
contains graphical objects representing DIET entities or properties, respectively (see
Fig. 4).

Simple graphical objects comprise icons, charts, or textual information. The ap-
pearance of a graphical object can be customized to increase its visual perception
or to meet special visualisation requirements. A variety of attributes (e.g. colour,
size, shape, etc.) can be changed by the Mapper component (see below). A selection
mechanism is integrated in the view component as well; see the following section for
details.

Fig. 4. The so-called WorldView visualises all infohabitants in a single view. This view helps
to get an overall impression of the application

Control Category

The control category provides services to manipulate the graphical objects represent-
ing the different DIET core objects.

Group

The Group component makes basically two services available: selection and group-
ing. Within a view component each DIET entity can be selected by clicking the left
mouse button. Selected entities can be grouped together by assigning a common
group number. This group can be visualised in another view component.

380 R.H. van Lengen et al.

For instance, the WorldView component shows all infohabitants in a world, but
without much detail about each of them. The Group component allows the user to
select a few infohabitants, and get detailed information about these in a separate
view. A suitable view component for example could be the TableView that visualises
the values of all their properties.

Mapper

DIET entities or properties are visualised by graphical objects in different view com-
ponents. The Mapper component allows the mapping between DIET entities and
properties on the one hand and graphical objects on the other.

The Mapper component allows the customisation of the appearance of each
graphical object during runtime. For this purpose all incoming visualisation proxy
events are processed and presented to the user in a dialog window.

3.4 Visual Programming Interface

The visual programming interface supports the creation of user defined visualisation
networks. Visual networks are created on the workbench that appears as soon as the
visualisation platform is started.

As part of the workbench a toolbox is displayed that allows the selection of indi-
vidual visualisation categories. Within each category different visualisation compo-
nents are accessible. Visualisation components developed by the user can be accessed
by clicking with the right mouse button in the component list of the particular cat-
egory (see Fig. 5). Visualisation components are placed on the workbench by drag
and drop using the mouse.

Fig. 5. The graphical user interface. As part of the workbench a toolbox is displayed that
allows the selection of individual visualisation categories. The toolbox contains six categories.
Each category offers different visualisation components

Component Based Visualisation of DIET Applications 381

As soon as a visualisation component is placed on the workbench the component
is represented by a graphical icon. The input and output ports displayed on the left
and the right hand side of the icon indicate the components to which this component
can be registered and to which components it can pass the processed events. Different
components within the same category may have different ports associated with them.

Fig. 6. A view icon representing the WorldView. The view is connected to a Translator com-
ponent

Each visualisation component can be connected to one or more components by
clicking the component with the left mouse button and dragging a connecting line
to the other component while the left mouse and the SHIFT key is pressed. After
releasing the mouse button a connection will be drawn, if a suitable port is available.
In this way a visual network can be defined in a very efficient way. Visual networks
can be saved in XML format for later use.

The following section introduces a simple DIET application and demonstrates
the use of visual networks to gather particular information.

4 Example

The so-called Migrate application is provided as an example application by the DIET

platform. The application demonstrates how infohabitants can move from one envi-
ronment to another. The application creates Migrator infohabitants, each with its own
different sleep interval. The sleep interval determines the time step each infohabi-
tant waits before it migrates to another region. After instantiation of the application
the infohabitants start moving randomly between the various neighbouring environ-
ments. The Migrate application creates three environments (Env0, Env1, Env2) that
are populated by ten infohabitants in total.

The user may be interested in the individual number of infohabitants that popu-
late a particular environment. How can we visualise this information with the com-
ponents provided by the visualisation platform?

Figure 7 shows the visualisation network that visualises the infohabitant pop-
ulation in a particular environment. An Environment filter selects all events (e.g.
from Env0) and passes them to a Population component. Based on the creation, the

382 R.H. van Lengen et al.

Fig. 7. A visualisation network that visualizes the infohabitant population of a particular en-
vironment in a MultiBarChart view

destruction, and the migration events this compute component calculates the actual
population of the environment. The outcome of this calculation is visualised by a
MultiBarChart view that is connected to the compute component.

By defining similar networks for the remaining environments (Env1, Env2) and
passing the results of the compute components to the view we get the network illus-
trated in Figure 8. The corresponding graphical output is shown in Fig. 9.

Fig. 8. The complete visualisation network that visualises the infohabitant population of each
environment within the migration application

This simple example shows how efficient the visualisation components can be
used to gather information that is not provided by the application itself. More com-
plex information can be derived by combining different components. Due to the use
of basic components, it is not necessary to develop overloaded single-use visual-
isation modules anymore. Furthermore, the design of the architecture enables the
introspection of DIET applications without the need for changing any application
code or even some knowledge about the code.

5 Conclusion

The multi-agent software platform DIET provides components to implement decen-
tralised, open, robust, adaptive, and scalable ecosystem inspired applications. The

Component Based Visualisation of DIET Applications 383

Fig. 9. The output of the MultiBarChart view. Currently Env0 is populated by five infohab-
itants, Env1 by three infohabitants, and Env2 by two infohabitants. The all-time maximum
population in one of the environments is equal to six infohabitants

development, debugging and monitoring of decentralised systems is a complex task.
Visualisation can be an effective way to support the developer in the design and
analysis of multi-agent systems. However, the dynamic visualisation of multi-agent
systems for this purpose is largely ignored.

Some related work can be found in [7]. Schroeder and Noy visualised a post
mortem set of call data derived from agent systems. Their work focuses on the aspect
of showing the relations between agents in contrast to the visualisation of a single
agent. Schroeder worked on the visualisation of arguing agents as well. In [6] the in-
ternal reasoning and the external argumentation of agents is examined. Both aspects
are visualised as avatars, Chernoff faces or distance graphs as proposed in [6].

In this paper we have described our approach to visualise agent systems build
upon the DIET software platform in a more general way. The visualiser provides
fundamental components and functions extending the DIET core layer by visual
and interactive components. These allow for the introspection and manipulation of
DIET applications without the need of changing any application code. The integrated
graphical user interface is intuitive to learn and easy to use. Visualisation tasks can
be formulated by building visual networks.

Acknowledgements

This work was carried out as part of the DIET project (IST-1999-10088), within the
Universal Information Ecosystems initiative of the Information Society Technology
Programme of the European Union. We thank the other participants in the DIET

project, from the Departmento de Teoria de Señal y Comunicaciones, Universidad
Carlos III de Madrid and the Department of Electronic and Computer Engineering,
Technical University of Crete, for their comments and contributions.

References

1. DIET open source project. http://diet-agents.sourceforge.net.

384 R.H. van Lengen et al.

2. Universal information ecosystems initiative. http://www.cordis.lu/fetuie.htm.
3. Hoile C, Bonsma B, Wang F, and Marrow P. Core specification and experiments in DIET:

a decentralised ecosystem-inspired mobile agent system. In Autonomous Agents and
Multi-Agent Systems (AAMAS2002), Bologna, Italy, 2002.

4. Gamma E, Helm R, Johnson R, and Vlissides J. Design Patterns: Elements of Reusable
Object-Oriented Software. Addison Wesley, Massachusetts, 1995.

5. Nwana HS, Ndumu DT, Lee L, and Collis JC. ZEUS: A toolkit and approach for building
distributed multi-agent systems. In Oren Etzioni, Jörg P. Müller, and Jeffrey M. Bradshaw,
editors, Proceedings of the Third Annual Conference on Autonomous Agents (AGENTS-
99), pp. 360–361, New York, May 1–5 1999. ACM Press.

6. Schroeder M. Towards a visualization of arguing agents. Future Generation Computer
Systems, 17(1):15–26, September 2000.

7. Schroeder M and Noy P. Multi-agent visualisation based on multivariate data. In Jörg P.
Müller, Elisabeth Andre, Sandip Sen, and Claude Frasson, editors, Proceedings of the
Fifth International Conference on Autonomous Agents, pp. 85–91, Montreal, Canada,
May 2001. ACM Press.

8. Marrow P, Koubarakis M, van Lengen RH, Valverde-Albacete F, Bonsma E, and et al.
Agents in decentralised information ecosystems: the DIET approach. In Artificial Intelli-
gence and Simulation of Behaviour Convention 2001 (AISB01). Symposium on Intelligent
Agents and E-commerce, pp. 623–630, University of York, United Kingdom, 2001.

9. Waring RH. Ecosystems: fluxes of matter and energy. In Cherrett JM, editor, Ecological
Concepts. Blackwell Scientific, 1989.

10. van Liedekerke MH and Avouris NM. Information and software technology 1995 37 (2)
103-112, July 11 2002.

11. Cui Z, Odgers B, and Schroeder M. An in-service agent monitoring and analysis sys-
tem. In Proceedings of the 11th IEEE International Conference on Tools with Artificial
Intelligence, pp. 237–244, Chicago, USA, 1999. IEEE Press.

Facilitating the Visual Analysis of Large-Scale
Unsteady Computational Fluid Dynamics Simulations

Kelly Gaither1 and David S. Ebert2

1 The University of Texas at Austin
kelly@tacc.utexas.edu

2 Purdue University
ebertd@purdue.edu

1 Introduction

Computational power has increased dramatically over the past decade and has al-
lowed computational fluid dynamics (CFD) researchers to more accurately simulate
many types of flow with more detailed computational meshes. This increase has
supported the calculation of highly detailed unsteady simulations that model real
world conditions. However, this new power has yielded terabytes of data, and CFD
researchers now face the very difficult task of trying to find, extract, and analyze im-
portant flow features buried within these monstrous data sets. Although being able
to accurately model these problems is a major accomplishment in the world of CFD,
it comes with the caveat that the amount of information that must be sifted through
has now grown to enormous proportions that overwhelm investigators.

Unlike the explosive growth in computational power, visualization tools for these
very large data sets have experienced a more modest evolution, and are not yet suf-
ficiently developed to significantly aid the feature detection, extraction and analysis
process. Most visualization tools require the user to work at a very cumbersome, low
level with the data. Users are required to dice their data sets into appropriate data
parameter ranges to search for the features of interest, since detailed visualization
of such large data sets is impractical. Additionally, current visualization tools do not
have the necessary capabilities to allow high-level exploration and analysis of these
enormous datasets on desktop PCs, thus limiting their widespread use by scientists
and designers. Previously developed systems for the interactive visualization of large
CFD simulations [1, 2, 4], either work at a low-level with the data [1] or require high-
speed network connections between the CFD simulation and the desktop visualiza-
tion system and only work with a fixed set of basic features [2, 4].

The typical approach for visualizing large-scale CFD simulations is to pre-
compute offline the visual representations that might be of relevance during the
analysis process. This stage brings with it the hazard that often occurs when sub-
sampling data. If the sample rate is not chosen with care, relevant features may be
missed and the analysis to the solution may provide incorrect or misleading results.

386 K. Gaither and D.S. Ebert

This process can also be very time consuming and tedious requiring multiple passes
into large stores of data without automatic methods for guiding placement and loca-
tion of visualization samples.

CFD researchers desperately need new techniques that simplify and automate the
iterative search and extraction process of finding the vital information in their data
set. Improved visualization tools for CFD researchers could have a drastic impact on
the design and safety of vehicles such as aircraft, ships, submarines, spacecraft, and
automobiles. This community needs a new system that allows the users to articulate
appropriate features of interest, provides a compact representation of these features
which preserves their intrinsic qualities, and allows users to interactively visualize
the feature information on a desktop computer. Such a system would also have to
overcome the additional challenges of loading a sufficient portion of the data set into
the available memory on a modest desktop machine, transferring these data sets over
a network connection between the archive and local machine, mapping the entire
data set to a visual representation in a reasonable amount of time, and rendering the
results at interactive rates.

Therefore, we believe that a new visualization pipeline is needed for large-scale
CFD visualization. As described in the following sections, our new system allows re-
searchers to work at an intuitive, perceptually meaningful level with their data at their
desktop. This new pipeline incorporates a flexible domain knowledge interface and a
compact procedural encapsulation of large unstructured datasets to allow interactive
exploration and analysis of CFD data.

2 Relevant Issues

Improving the current process for visualizing large-scale unsteady CFD data sets
requires an understanding of the problematic issues that have dominated the current
techniques.

2.1 Large Scale Data

The issue that gets the most attention is the size of the data sets. Often, a single time
step can be larger than the memory capabilities of modern hardware. This is further
complicated when the time dimension is being explored as well. It would be difficult
to determine an average data size since this is entirely dependent on the resolution of
the discretized volume in which the geometry is modeled and the solution computed.
It would be fair to say that the size of the data set and the resolution with which
it needs to be visualized increases with the complexity of the underlying physical
problem being modeled.

2.2 Computational Grid Structures

The discretization, commonly called a computational grid can be generated in a va-
riety of manners. The simplest of these cases is a voxelized grid that contains three-
dimensional elements, or voxels, that are all the same shape and size. There is no

Visual Analysis of Large-Scale Unsteady CFD Simulations 387

need for additional adjacency information, as this is implied in the way the grid is
stored. Another method for generating a computational grid is curvilinear, a grid
generated in the dimensions I, J, and K holding six sided cells that have a non-linear
shape function applied to the faces. This grid structure also has implied adjacency
information, but the interpolation functions are more complex inside the cells and
on the faces. A third type of grid structure that is commonly found in the computa-
tional simulation domain is the unstructured grid, typically a collection of tetrahedra,
prisms, pyramids, and hexahedra that match at the faces. Because this structure is not
stored with any adjacency information, this structure requires the explicit calculation
of neighbor information when necessary.

2.3 Multivariate Data

The CFD domain has a base set of variables that are typically stored, from which all
other parameters can be derived. Although the solutions are typically computed cell-
centered, the solution parameters are often stored at the nodes of the computational
grid. The solution values that are stored are the Q values: density, u component of
velocity, v component of velocity, w component of velocity and energy. Additional
variables such as pressure, temperature, and helicity can be derived from this base
set of stored quantities.

2.4 Regions of Interest

Efficiently navigating and querying through these vast amounts of data requires some
way of determining what is important and what is not. These regions of interest can
be further refined into specific structures that the analyst would like to isolate and
query. Current methods for detecting and tracking features are discussed in the next
section.

2.5 Visualizing at Interactive Frame Rates

Interacting with the data is a key component to successful analysis. Prior to the intro-
duction of a sophisticated Graphics Processing Unit (GPU V a single chip processor
with integrated transform, lighting, triangle setup/clipping, and rendering engines
capable of processing a minimum of 10 million polygons per second) [5], methods
for displaying large-scale data at interactive frame rates required a sub-sampling of
the data that was amenable for interactive display. With the maturation of highly
parallel graphics hardware, we can now handle more complex computations that op-
erate locally on the graphics chip. Additionally, combining compactly represented
procedural encoding techniques to compress the data and the graphics processing
unit to uncompress and visualize the results gives us much more flexibility in the
sophistication of the displays.

388 K. Gaither and D.S. Ebert

3 Feature Detection and Feature Tracking

Current feature detection techniques consist primarily of analytical methods for iden-
tifying cells within the computational grid that meet some functional criteria and
methods that track the formation and dissipation of cells that have been pre-defined
to contain feature characteristics.

Analytical feature detection began as early as 1875 when Poincare made the con-
nections between differential equations and the topology of vector fields. A historical
survey can be found in [6]. One of the first applications of Poincare’s theory of dif-
ferential equations to three dimensional fluid flows was done by Lighthill [7]. In [8],
this approach was extended to include a more general class of flows. Automatic tech-
niques for identifying the topology in simulated flow fields was first introduced by
Helman and Hesselink [10–12] and Shirayama and Kuwahara [9]. Visualizing this
topology to understand the underlying physical flow structure was introduced by
Globus, Levit and Lasinski [13]. They presented methods for calculating and classi-
fying three dimensional flow structures such as sources, sinks, and saddles by com-
puting the eigenvalues of the Jacobian matrix. Since then, analytical methods have
been used to detect structures such as vortices [14, 15], shocks [3, 16], wakes [17],
and recirculation regions [18]. The current techniques allow little if any flexibility
for defining features through a higher level language, and these methods give little
insight into the behavior of features over a period of time. Examples of these kinds
of analytically described features can be seen in Figs. 1–4.

Figure 1: Vortices Over X38 Figure 2: Shock Rings Around DeltaII

Figure 3: Wake from Propellers Figure 4: Recirculation Region

Visual Analysis of Large-Scale Unsteady CFD Simulations 389

Figure 1 illustrates a vortex tube that forms from the air flow over an X38 crew
recovery configuration computed at a 30 degree angle of attack. This figure displays
the most common method for displaying vortices–particle traces. The traces in Fig. 1
are colored with pressure values.

Shown in Fig. 2 is an example of shock rings that form around a Delta II con-
figuration during the transition from subsonic transport to hypersonic transport. The
shock rings are shown by isolating density values contoured on cutting planes com-
puted orthogonal to the body. These values are highlighted by blending out all other
values with the use of transparency.

Figure 3 displays the wake region that forms during a hydrodynamic simulation
of a submarine during a stopping and turning maneuver. This wake region is gen-
erated from the turbulence shed off of the propeller and has been found to be the
primary cause of noise and drag during live maneuvers.

A recirculation region generated from flow around the rudder and fins of a sub-
marine is shown in Fig. 4. This region can result in an area of suction and cavitations
causing significant drag on the body during maneuvers.

Understanding the added time dimension as it relates to the physical problem is
a crucial part of analyzing the solution, both for verification and for integration into
complex physical design. Work has been done to develop a full 3D volume feature
extraction and tracking algorithm that tracks thresholded, connected regions [19, 20].
This work is responsible for an initial classification of events: Continuation (an object
continues, it may shrink or grow), Creation (a new object appears), Dissipation (an
object dies), Bifurcation (an object splits into two or more objects), and Amalgama-
tion (two or more objects merge). These features are classified by tracking properties
of connected regions such as mass, moment and volume changes. This method looks
at the next time step as an indicator of what type of event is occurring. This method,
however, suffers in practice because it has no method for handling the periodic Dissi-
pation and Creation of events such as tip vortices that are created and die in periodic
intervals. Additionally, there is no scheme for giving the complete information for
features that behave non- deterministically.

An example of the types of composite features that are of interest is shown in
Fig. 5. This figure (courtesy of David Marcum, Mississippi State University) shows
a set of potential features that exist on a finned missile configuration. In viscous sim-
ulations, the boundary layer contains a significant amount of important information
and is the primary indicator for transition from laminar to turbulent flow. The shock
wave is found as a connected or nearly connected set of cells containing a discontinu-
ity. The expansion fan gives an indication of an expansion shock that occurs because
of the movement of the fin. The wake sheet is of critical importance when studying
both noise and vibration as both can result in an unstable transition. Finally, vortices
are of critical importance when studying noise and instability.

Although each of these features can be individually identified by analytical tech-
niques, we are often interested in the relationships between features and the given
geometries and between features of similar and differing types. To properly iden-
tify this behavior, we must turn to a combination of analytical techniques, statistical
properties of the volumetric domain, and heuristics applied during the analysis. This

390 K. Gaither and D.S. Ebert

allows us to work at a higher level, producing a hierarchy of decisions that together
form the conclusions about features, such as existence, persistence, coherence, and
correlation to other features.

Working at this higher level is critical to the ability to identify features that are
neither well understood nor well defined through analytical descriptions. For exam-
ple, lambda shocks (Fig. 6) are well understood in theoretical aerodynamics, but
are not well described analytically. The general shape is known, but the orienta-
tion, strength and persistence of this type of feature requires a significant amount of
heuristics to properly identify. The lambda shock in Fig. 6 was captured through a
series of shaded cutting planes sliced orthogonal to the wing. This lambda shock is
shown using density to contour the cutting planes. Thresholding was used to make
uninteresting regions transparent.

Understanding the correlation and intermingling of features is necessary to prop-
erly study events such as mixing. Figure 7 illustrates one time step in a sequence of
time steps that demonstrate one solute being mixed over time with another.

Turbulent flow presents unique challenges. The scale of features in a turbulent
boundary layer is at a very fine scale, typically orders of magnitude more precise than
laminar boundary layers. This precision is necessary to capture all of the small scale
features that contribute to turbulent behavior. Additionally, we face the problem that
the features that occur in a turbulent boundary layer are not all well defined. Given
the proper scale, we can easily find vortical structures or eddies. It is significantly
harder to analytically describe seemingly random behavior such as that shown in
Fig. 8, showing turbulent channel flow. We can easily see that features of interest
exist in the flow by looking at cutting planes contoured with velocity magnitude.
However, these features are very difficult to describe analytically. Therefore, it is
critical to add statistically based information and heuristics to properly identify the
features of interest.

The issue becomes even more complex when trying to understand and analyze
the features present in complex flow of complex geometries, such as those attempting
to simulate real-world conditions. Figure 9 shows four views of a Delta II configura-
tion with strap on boosters. These boosters are used to propel the Delta II into space,
but drop off shortly after. It is the peeling off of these boosters that can cause very
complex structures and instabilities to form that can affect the viability of the Delta
II in flight. Understanding these structures is the key to being able to compensate
and adjust for them. However, this is a process that is not well understood at all
from the feature detection community. It is here that we must implement and deploy
our hierarchy of features, giving us the ability to detect features that we suspect are
present and those that we do not know are present. Additionally, understanding the
interplay of these features allows us to understand the causal relationship of possible
instabilities, thus reducing the possibility of vehicular failure.

Visual Analysis of Large-Scale Unsteady CFD Simulations 391

Figure 5: Finned Missile Features Figure 6: Lambda Shock

Figure 7: Mixing Solutes Figure 8: Turbulent Channel Flow

Figure 9: DeltaII Features

4 A New Visualization Pipeline for Large-Scale CFD Simulations

It is clear that the existing methods for visualizing these large-scale data sets need
improvement. To this end, we are solving these CFD Visualization problems by de-
veloping techniques for creating a procedural abstraction for very large data sets, de-
veloping effective and efficient methods for mapping from the procedural to visual
representation, and applying these techniques to the problem of visualizing large
CFD simulations. Our new methods provide interactive visualization of very large
data sets on a desktop computer, and will scale gracefully across a range of com-
puter power and bandwidth situations. These new methods can be summarized in
a new pipeline for visualizing large-scale CFD data sets. This new pipeline can be
adapted easily to any sequences of large data sets whether measured or simulated.
This pipeline operates in the following manner:

392 K. Gaither and D.S. Ebert

4.1 Detect Candidate Features

General characteristics of a given data set can be found by applying a set of statisti-
cally based methods. This gives the opportunity to find properties such as connected
cells, including 1 nearest neighbor, 2 nearest neighbor, etc, persistence, energy, en-
tropy, and area. These are useful in determining areas of potential features or to
detect candidate cells that may contain features that can be found by a combination
of analytical techniques and domain dependent heuristics.

4.2 Further Refine Features

These candidate cells can be further refined by applying a combination of analytical
techniques with procedural descriptions of domain-dependent heuristics. For exam-
ple, we consider every feature to be a reaction to an action. If the problem that is
being solved is the physics surrounding a geometric body, then a feature cannot exist
without having some causal relationship to either the geometry or to other features.

4.3 Procedurally Encode Features

To facilitate the visualization of these features on a desktop PC, we represent these
features using a procedural representation of implicit models based on radial basis
functions.

4.4 Apply Multiresolution Techniques

We can then adapt the procedural representation to the appropriate level of detail
using multi-resolution techniques.

4.5 Incorporate Knowledge Gained into Metadata

The feature information is encapsulated as domain specific knowledge in the meta-
data. This allows us to explore these extremely large data sets both at the feature level
and, more importantly, at the higher level of relationships among features, including
feature to feature relationships and feature to geometry relationships.

4.6 Visualize Directly From the Procedural Representation
Using the GPU When Possible

We then visualize the data directly from the procedural representation, using and
extending numerous familiar CFD visualization techniques (e.g. cutting planes, iso-
surfaces, volume splatting, direct volume rendering, particle clouds, streams, rakes,
line-integral convolutions, and glyphs).

Visual Analysis of Large-Scale Unsteady CFD Simulations 393

4.7 Verify Accuracy

Accuracy is a key component to the viability of this pipeline. Although it is not
currently standard practice to measure the accuracy of the CFD simulations, it is
necessary to ensure that the procedural is accurate to some pre- define threshold.
For our work, we have defined an acceptable tolerance to be 5communicating with
researchers in the CFD domain. We are facilitating this by careful tracking of ap-
proximation error throughout the entire process, including scanning, modeling, re-
construction and visualization.

5 Conclusion

Our system containing the new visualization pipeline will allow CFD researchers
to work more effectively by interactively exploring their data to pinpoint the fea-
tures of interest. This will facilitate and allow them to adaptively refine their solution
grids within those areas, and iteratively compute solutions on these adapted grids to
improve their simulation and solve the underlying flow problem more quickly. More-
over, the results of this project will provide solutions not only for CFD researchers,
but also for a wide variety of visualization challenges and applications. Our main
goal is to develop techniques that allow visualization exploration, feature detection,
extraction and analysis at a higher, more effective level through the use of procedural
data abstraction and representation.

Acknowledgements

This work is supported by the National Science Foundation under grant NSF ACI-
0121288. The authors would like to thank and acknowledge those responsible for
computing the simulations that produced the data in the Figs. 1–9. The data for
Figs. 1–6 and Fig. 9 was generated at the Simulation and Design Center, Missis-
sippi State University. The data for Fig. 7 was generated at the Computational Fluid
Dynamics Laboratory at The University of Texas at Austin. The data for Fig. 8 was
generated by Dr. David Goldstein’s laboratory at The University of Texas at Austin.

References

1. Freitag, L., Loy, R.: Using Desktop Graphics Workstations for Interactive Remote Explo-
ration of Large Data Sets. Proceedings Using Desktop Graphics Workstations for Interac-
tive Remote Exploration of Large Data Sets, (2000)

2. Haimes, R.: Pv3: A Distributed System for Large-Scale Unsteady CFD Visualization,
AIAA 94-0321, (1994)

3. Lovely, D., Haimes, R.: Shock Detection from Computational Fluid Dynamics Results,
AIAA 99-3285, (1999)

394 K. Gaither and D.S. Ebert

4. Haimes, R., Kenwright, D.: On the Velocity Gradient Tensor and Fluid Feature Extraction,
AIAA 99-3289, (1999)

5. NVIDIA: Graphics Processing Unit (GPU) at http://www.nvidia.com/object/gpu.html
(1999)

6. Abraham, R. Shaw, C.: Dynamics: The Geometry of Behavior, parts 1-4, Ariel Press,
Santa Cruz, CA, (1984)

7. Lighthill, M.: Attachment and Separation in Three Dimensional Flow, Laminar Boundary
Layers II, ed. L. Rosenhead, pp. 72-82, Oxford University Press (1963)

8. Perry, A. Fairly, B.: Critical Points in Flow Patterns, Advances in Geophysics, 18(B), pp.
299- 315, (1974)

9. Shirayama, S. Kuwahara, K.: Flow Past a Sphere: Topological Transitions of the Vorticity
Field, AIAA-90-3105-CP (1990)

10. Hesselink, L., Helman, J.: Evaluation of Flow Topology from Numerical Data, AIAA-87-
1181 (1987)

11. Helman, J., Hesselink, L.: Representation and Display of Vector Field Topology in Fluid
Flow Data Sets, IEEE Computer, pp. 27-36 (1989)

12. Helman, J., Hesselink, L.: Surface Representation of Two- and Three-Dimensional Fluid
Flow Topology, Proceedings of IEEE Visualization 1990 (1990)

13. Globus, A., Levit, C., Lasinski, T.: A Tool for Visualizing the Topology of Three-
Dimensional Vector Fields, Proceedings of IEEE Visualization 1991 (1991)

14. Banks, D., Singer, B.: Extracting Vortices From an Unsteady Flow, Proceedings of IEEE
Visualization 1994 (1994)

15. Sujudi, D., Haimes, R.: Identification of Swirling Flow in 3-D Vector Fields, AIAA 95-
1715, (1995)

16. Sobieczky, H., Hannemann, M.: Computational Shock and Mach Waves Visualization
Aiding the Development of Aerodynamic Design Techniques, Proceedings of the 21st
International Symposium on Shock Waves, (1997)

17. Haimes, R.: Automated Feature Extraction from Transient CFD Simulations, Proceedings
of the 7th Annual Conference of the CFD Society of Canada, Keynote Address. Halifax,
NS, May (1999)

18. Haimes, R.: Using Residence Time for the Extraction of Recirculation Regions, AIAA
99-3291 (1999)

19. Silver, D. Wang, X.: Volume Tracking, IEEE Transactions on Visualization and Computer
Graphics, 3(2), June (1997)

20. Silver, D., Wang, X.: Tracking Scalar Features in Unstructured Datasets, Proceedings of
IEEE Visualization 1998 (1998)

Evolving Dataflow Visualization Environments
to Grid Computing

Ken Brodlie, Sally Mason, Martin Thompson, Mark Walkley and Jason Wood

School of Computing, University of Leeds, Leeds LS2 9JT, UK

1 Introduction

A major new development in computing in the past few years has been the emergence
of Grid computing, where applications can exploit in a secure manner substantial re-
mote computing resources. This offers new opportunities to scientists and engineers.
Very large simulations can now be performed, almost routinely, by reserving a dis-
tributed set of resources in advance. A key difference from traditional distributed
computing is that the resources may span multiple institutions, and so issues of trust
become much more significant. In a crisis situation, resources not normally required
can be commandeered and dedicated to a crucial simulation or analysis task. In these
situations the importance of visualization to gain rapid understanding of the results
is well established.

As these new computing technologies emerge, so the challenge for visualization
system designers is to evolve existing systems to take advantage of these new tech-
nology developments – rather than re-design from scratch on every occasion. The
dataflow visualization environment, pioneered over a decade ago, has proved partic-
ularly flexible and resilient, and has successfully adapted to the many recent changes
in computing.

In this paper, we explain how the dataflow visualization environment can exploit
the arrival of Grid computing to provide a desktop interface for remote computational
steering. This is by no means the only approach to visualization in Grid computing,
and so we begin in Sect. 2 with a brief review of other work. Section 3 traces the
development of dataflow systems, showing how they quickly emerged as environ-
ments for computational steering as well as data visualization; and how they evolved
to encompass collaborative visualization, supporting the activities of geographically
dispersed research teams. This sets the context for our work, as we proceed to show
how earlier reference models for dataflow visualization can extend to Grid-based
visualization. Our research is driven by what can be seen as a typical Grid applica-
tion: a crisis scenario in which a pollutant escapes from a chemical factory and its
dispersion under different wind directions must be predicted with maximum speed
and accuracy in order to plan evacuation. Section 4 describes this application, with

396 K. Brodlie et al

Sect. 5 detailing the simulation process we used. Section 6 explains how we evolve
the model for dataflow systems to enable computational steering and visualization
on the Grid; and in Sect. 7 we describe a demonstrator built from the model, and ad-
dressing the pollution application. In Sect. 8, we show how the work can be extended
to allow several collaborators to take part in the analysis process.

2 Visualization and Grid Computing

Grid computing is defined as the provision of flexible, secure, coordinated resource
sharing among dynamic collections of individuals, institutions and resources [8].
Regardless of their heterogeneous nature and geographic location, access to these
resources should appear simple and seamless. Only recently, with the advent of high-
speed wide area networks, has this ambition become a practical reality. Examples of
this can be seen in national-scale computational grid efforts such as the NSF-funded
TeraGrid in the US [22], linking nine major computing centres, and the UK National
Grid Service [16].

Visualization is key to understanding the “tidal wave” of data that is being gen-
erated by scientific applications running on the Grid. In an early paper, Foster et
al. [7] put forward their vision of distance visualization where the computation and
visualization are decomposed into steps that may be located on different resources.
An application to tomographic reconstruction is described. However they choose to
develop their own visualization architecture. This is the approach put forward also
by Shalf and Bethel [21]. They argue that existing systems such as VTK, AVS and
OpenDX are attractive in their flexibility and extensibility, but were designed pri-
marily for a single machine (or at most a limited number of machines). They go on
to claim

But deploying such systems onto the grid requires consideration of new
conditions not likely anticipated during their initial design and implemen-
tation. A distributed visualization architecture – a framework suitable for
component-based, grid-enabled visualization – can best meet these addi-
tional design considerations.

Their vision is of a world where distributed, heterogeneous components are avail-
able as building blocks to allow application builders to create optimum tools for the
task. Our position in this paper is rather different. While the Foster and Shalf-Bethel
vision may be a holy grail, there is much we can do right now by a small evolution
of existing systems. The reward of our approach is a solution for Grid-based visual-
ization that is available now, and exploits the years of development effort which has
been invested in these systems. A particular feature of our approach is that we are
able to quite naturally extend from single-user to multi-user working.

Before we introduce our approach, we mention some other instances of using
visualization in Grid computing. Computational steering on the Grid has been dis-
cussed by Engquist [6]. He uses the VTK software to construct a steering application,
but without the ability to collaborate in controlling the simulation. The UK e-Science

Evolving Dataflow Visualization Environments to Grid Computing 397

RealityGrid project has also used VTK, and has developed an API for computational
steering [4]. Recently this project has carried out a highly impressive demonstration
of Grid-based visualization and computational steering at Supercomputing 2003, in
collaboration with the USA TeraGrid – one of the largest ever lattice-Boltzmann
simulations was carried out. Data visualization (as opposed to simulation visualiza-
tion) is also benefitting from Grid computing – Norton and Rockwood [17] describe
a progressive approach to view dependent volume visualization. This addresses the
important topic of compression – a vital aspect in distributed visualization. Jankun-
Kelly et al. [12] show how existing web-based visualization tools can be deployed
through Grid portals – with particular emphasis on spreadsheet-based visualization.
Finally, Bethel and Shalf [2] discuss the importance of network efficiency in dis-
tributed visualization on the Grid, with experience from Visapult (a parallel volume
renderer) and Cactus (a framework for high performance simulation and visualiza-
tion that has been used for a number of Grid applications).

Our contribution in this paper is to return to the fundamental reference model
for dataflow visualization, and show how this model can be extended to include a
link to a remote, Grid-based simulation. In this way we provide a blueprint for how
to extend the several modular visualization environments which are based on this
fundamental model. Therefore in the next section we trace the evolution of dataflow
visualization systems, so that we can set the scene for our extension.

3 Dataflow Visualization Environments

Many see the NSF Report of McCormack, de Fanti and Brown [15] as marking the
beginning of the modern visualization era. This report sparked the development of a
number of dataflow visualization systems, such as AVS [1], IRIS Explorer [26] and
IBM Open Visualization Data Explorer [18] – all three of which are still in active
use today. These systems were based on a pipeline model of visualization, elegantly
presented by Haber and McNabb [11] and shown in simplified form in Fig. 1. Data
is read in; it is converted to some abstract geometric representation; and this is then
rendered as an image on the display.

Fig. 1. Basic Visualization Pipeline

From the outset, the systems were used both for visualization of data acquired by
observation or measurement, and also for visualization of the results of simulations.
In the latter case, three models quickly emerged and were nicely characterised by
Marshall et al. [14]. The simplest model is to use visualization as a post-processing

398 K. Brodlie et al

step: the simulation is executed, the results written to storage, and then visualized in
a separate step using the pipeline of Fig. 1. This has the advantage of allowing the
scientist to analyse the results at their own pace, and share the results with others,
but it has some major limitations. Errors in simulations cannot be detected until the
simulation completes, making mistakes expensive, and there is no opportunity to
interact with a simulation on the basis of the intermediate results.

Fortunately a key feature of all the dataflow visualization systems is their ex-
tensibility. In addition to the set of modules provided with the system, users can
embed their own simulation code as a module. This enables a different model for
linking simulation and visualization, termed tracking by Marshall et al.. Essentially
the process marked “data” in Fig. 1 is replaced by a “simulate” process. Now the
results can be viewed as they are computed and any errant simulations immediately
halted. However even greater flexibility is provided in the third model, termed steer-
ing, in which control parameters of the simulation can be modified as it proceeds –
schematically, this gives a basic pipeline as shown Fig. 2. In the pollution application
we shall use as demonstrator in this paper, the ability to change wind direction as the
simulation executes will be vital.

Fig. 2. Steering

The early visualization systems mentioned above (IRIS Explorer, IBM Open Vi-
sualization Data Explorer and AVS) can all be used for computational steering in
these ways. Moreover a number of newer systems have emerged – such as SCIRun
[13, 19] for example – which aim to provide special support for close coupling of
simulation and visualization. Toolkits such as VTK [20, 25] can also be used, through
the application developer incorporating toolkit components within their simulation
code. In all cases however the underlying conceptual model is as in Fig. 2.

As the use of the Internet expanded, and more and more research was carried
out by geographically separate research teams, so the push came for visualization
systems to be collaborative. Again the dataflow systems were able to evolve, allowing
users at different locations to link their pipelines across the Internet – thus enabling
exchange of raw data, geometry or images, as well as shared control of parameter
settings on modules. This was realised first as COVISA [28], then an extension to
IRIS Explorer but now an integral part; and also later as extensions to AVS in the
MANICORAL project [5] and in the cAVS project [3]. The model is shown in Fig. 3:
a collaborative server process links the sessions allowing data from one pipeline to
be transmitted to a collaborator’s pipeline. Here the data is passed to the collaborator
to visualize as they want, but equally the sharing could be programmed to take place
further down the pipeline, after the “visualize” step. This programmability allows

Evolving Dataflow Visualization Environments to Grid Computing 399

the collaborative application to exploit different bandwidths between the locations of
the research team. For example, in a low-bandwidth situation, a group might choose
to share data at the start of a collaboration, with only parameters being exchanged
during the session. Alternatively, with high-bandwidth connections, geometry and
image data might be exchanged as the session proceeds.

Fig. 3. Collaborative Visualization Pipeline

Our concern in this paper is to evolve the dataflow model one step further, to
encompass Grid computing. Rather than immediately describe the extended model
in the abstract form of Figures 1 to 3, we shall first motivate the work by describing
a typical application of Grid computing where visualization, computational steering
and collaboration are all important ingredients. We do this in the next two sections.

4 An Environmental Crisis – Pollution Alert

Imagine this: a dangerous pollutant escapes from a chemical factory – where is it
headed? We need to know the answer faster than real-time, so that people can be
safely evacuated. This calls for immediate access to powerful Grid compute facili-
ties in order to run a numerical simulation with a desktop interface for the scientist
to adjust simulation parameters and to visualize the results. Additional expertise is
needed, such as meteorological information concerning likely wind velocities – this
is needed instantly, yet the meteorologist will be located elsewhere. Electronic col-
laboration is absolutely essential to allow the meteorologist to share their knowledge

400 K. Brodlie et al

of the problem, a computational steering approach allows them direct control of the
relevant simulation parameters – to address questions such as “what happens if the
wind changes to this direction?” – and to share visualization of the resulting effect.
Once the scientists have reached an understanding, this needs to be communicated
to the political decision maker in a clear and effective manner (the Challenger space
shuttle disaster in 1986 is recognised now as a failure of scientists to present an effec-
tive visualization to launch decision makers [24]). The decision maker also needs to
collaborate over the Internet, with the ability to propose further “what if” scenarios,
but perhaps using a simplified interface to the underlying software. Indeed the actual
way the data is visualized will vary according to the different people involved, and
the information they need to understand.

The project team will typically have different skills and motivations: the numer-
ical analyst will be more interested in the performance of the algorithms and, for
example, the error in the computed solution; the chemist will be interested in the
chemical concentrations and details of the physical processes occuring; the decision
maker will be interested in regions where the concentrations exceed safe levels and
the potential risk to populated areas. The collaborative model allows separate users
to analyse a set of data in a completely independent fashion, as shown schematically
in Fig. 3. Additionally the researchers may work at geographically remote locations.
The collaborative model will facilitate the dissemination and discussion of the work
by allowing problem parameters, computed data and rendered images to be processed
and shared between the researchers. With that motivation in mind, we now describe
the simulation involved in our application.

5 Simulating the Dispersal of the Pollutant

Computational models describing the evolution and reaction of chemical species in
the atmosphere are an important tool in understanding the formation of hazardous
pollutants such as greenhouse gases and acid rain. Such problems are typically mod-
elled with a system of partial differential equations describing the transport of the
chemical species through space and the chemical reactions between the species
present. The modelled processes can occur on widely disparate time scales, hence the
most effective numerical methods make use of adaptivity both in space and time [23].
The high spatial and temporal accuracy required, coupled with long simulation times,
make this an intensive computation. The full model is a major computational chal-
lenge, for which Grid computing can provide the resources necessary for its solution.
Our simple prototype allows us to explore the sort of problem-solving environment
needed to allow interaction with code during the long simulation, to visualize the
solution as it evolves and to interactively steer the computation when required. The
simulation considered here is a prototype of the full scenario, in which a single com-
ponent of pollution is emitted from a source and transported through the spatial do-
main. Figure 4 shows: on the left the scenario of the real-life problem being studied;
in the centre, the model used as basis for the simulation, with the computational
mesh; and on the right, the visualization of the solution at a particular time-step. The

Evolving Dataflow Visualization Environments to Grid Computing 401

Fig. 4. The Reality and the Model

simple visualization shown here, such as may be required by the decision maker, is
to select a threshold value for the concentration and render the cells that exceed that
threshold.

The mathematical model is an advection equation for a scalar quantity c(x, t)
(the concentration of the pollutant) in a spatial domain Ω with boundary Γ and time
domain [0,T]

∂c
∂ t

+a ·∇c = f (x)

where the spatial distribution of the scalar c is driven by an advection velocity a(t).
Note that a is spatially uniform but can vary in time allowing the convection direc-
tion to change. The source function f (x) is used to simulate the production of the
scalar c inside the domain, such as from the chimney of the chemical factory in our
application. A cell-centred finite volume method is used to approximate the govern-
ing partial differential equation with an unstructured tetrahedral grid representing the
spatial domain. The results are returned as the concentration of pollutant within each
cell, at each time step of the simulation.

6 Computational Steering
in a Grid Environment – Reference Model

Our aim here is to illustrate through the example of the environmental crisis, that
the traditional dataflow visualization system is perfectly well suited to Grid Com-
puting. We aim to provide an easy access to important aspects of Grid computing:
authentication, via single log-on; resource discovery, via enquiry of Grid information
services; and resource access, via remote launching of simulations from the desktop.

We assume the authentication step is performed before commencing the visual-
ization processing, but we need additional modules that will support resource discov-
ery and resource access. The “discover” module queries the Grid information service
for available resources, allowing the user to select a specific resource to be used for
the simulation. The “link” module receives the detail of the selected resource, and

402 K. Brodlie et al

Fig. 5. Grid-based Computational Steering

uses that information to initiate a simulation on the Grid and receive results from it.
Figure 5 shows a schematic view.

7 Computational Steering
in a Grid Environment – Demonstrator

As a validation of the model, we have implemented a demonstrator that tackles the
pollution problem of Sect. 4, using the simulation described in Sect. 5.

Our Grid computing environment was the White Rose Grid [27]. The White Rose
Grid is a regional-scale Grid environment that incorporates four major high perfor-
mance computing resources distributed between the universities of Leeds, Sheffield
and York in the UK. It has been constructed to explore the potential for optimis-
ing resource usage between institutions and for supporting scientific collaboration
between academics and also their industrial partners.

The Grid middleware used within the White Rose Grid is Globus Toolkit v2.4 [9].
Key components of the Globus Toolkit include: the Grid Security Infrastructure
(GSI), the Globus Resource Allocation Manager (GRAM) and the Monitoring and
Discovery Service (MDS). These have all been used in the demonstrator. It is impor-
tant to realise that Grid computing is a young and evolving subject, and the concepts
and technology have still to mature. We believe the abstract model of Sect. 6 will
remain applicable as this evolution occurs, but the Globus technologies used in the
demonstrator will be replaced by new developments, as increased focus is placed by
the Grid community on Web services.

We have used IRIS Explorer, a long established visualization system, as the basic
visualization environment for our demonstrator. Figure 7 shows the system in use.

Evolving Dataflow Visualization Environments to Grid Computing 403

The “GlobusSearch” module queries the MDS, the Globus information service.
Each Grid resource maintains a catalogue of information that describes various sta-
tic and dynamic features of that resource. For example, information recorded for a
computational resource would include number of CPUs, size of memory and current
workload. The Grid Resource Information Service (GRIS) is the Globus component
responsible for maintaining this metadata for an individual resource. The Grid Infor-
mation Index Server (GIIS) pools together the information from each GRIS and thus
provides a convenient single point of reference for information about all resources
within a single Grid. The “GlobusSearch” module therefore connects to the GIIS,
making an LDAP query to discover the details of the Grid resources. The module
displays, for each host, the machine name, its operating system, memory size, num-
ber of processors and current load. From this information the scientist can select
the most appropriate host on which to run the simulation. The host name is output
from the module, and wired to the GLSSpawn module which links the desktop to the
simulation running on the Grid.

The GLSSpawn module initiates the specified executable on the selected host,
using the globus-job-run command. In this example, the executable code is trans-
ferred from the desktop to the selected host prior to execution, using Globus. The
simulation is compiled for IRIX, Solaris and Linux OS’s so any of these platforms
may be targeted. Our experimental Grid offers a “fork” job manager allowing our
simulation to start immediately upon submission. Once started, the simulation con-
nects back to the module by means of sockets and then will lie dormant, polling the
desktop for a “run” flag. On receipt of this, the simulation is triggered and executes
on the Grid, returning results to the GLSSpawn module. The frequency of reporting
data from remote host to desktop is controlled by settings on the module interface,
as is the frequency with which steering parameters are requested. The simulation can
be paused at any time to allow time to make steering decisions, or equally parame-
ters may be changed while it executes which the simulation will pick up at the next
update point. The interface panel contains generic parameters such as time stepping,
pause/run controls and grid size. An application-specific module is used to steer the
simulation, by direct manipulation of a 3D arrow widget that controls the wind ve-
locity.

8 Collaborative Computational Steering – Reference Model
and Demonstrator

The final step is to allow a research team to handle the simulation. Here we com-
bine the Grid approach of the previous section with the collaborative visualization
approach of Wood et al. [28] – giving the schematic model of Fig. 6.

This model has been realised in terms of IRIS Explorer and the COVISA col-
laborative toolkit. In Fig. 8 we see a collaborative computational steering session
in progress. The facility of IRIS Explorer to deliver end-user applications with the
underlying pipeline hidden, has been used to create interfaces for the researcher and
collaborator. Each user shares control of the wind velocity, the output and update

404 K. Brodlie et al

Fig. 6. Grid-based Collaborative Computational Steering

Fig. 7. Grid-based Computational Steering with IRIS Explorer

time steps, the grid size for the simulation and pause/run/reset control of the simula-
tion. In this example, simulation data is being shared between both parties with joint
control over the value of the concentration level parameter for visualization. Also the
collaborator is using a different visualization technique (a slice plane) to visualize an
estimate of the error associated with the solution.

Note that the COVISA toolkit is cross-platform, and so the researcher and col-
laborator can be using different hardware and operating system.

Evolving Dataflow Visualization Environments to Grid Computing 405

COVISAServer

Data/
Control

Data/
Control

Fig. 8. Grid-based Collaborative Computational Steering Application with IRIS Explorer

We have run the application in a number of different scenarios

• in the simple environment of a LAN at the University of Leeds, with the simula-
tion running on the White Rose Grid

• in a transatlantic collaboration with colleagues at CACR, Caltech in Pasadena
• in a trans-hemisphere collaboration, in which the simulation and one researcher

were based at Leeds, UK in the northern hemisphere, and a collaborator was
based in Christchurch, New Zealand in the southern hemisphere.

9 Conclusions and Future Work

This work has shown that the dataflow visualization environment can provide an
important tool for Grid computing. Its original open and flexible design have allowed
it to grow with computing technology over the last fifteen years, and it sits quite
happily with the new Grid software infrastructure.

The work was implemented in IRIS Explorer, but it should be straightforward
to take the same ideas and implement for AVS, or IBM Open Visualization Data
Explorer.

In our experimental Grid, we take advantage of the fact that our simulations start
immediately on submission. In reality a variety of job managers and queuing systems
would be found in use on the Grid and work needs to be done to manage access to
simulations that are scheduled for execution at a later time.

406 K. Brodlie et al

We continue to explore further ways of integrating dataflow visualization systems
with Grid computing environments. In particular we are studying how pipelines can
be distributed across several host machines, each running an instance of the visual-
ization system. This was an integral part of the early design of these systems, but
the original authentication mechanism has been deprecated as being insecure and so
this feature is generally no longer available. We are investigating whether this can be
revived in a secure manner using Globus middleware.

There are two difficulties with our current approach:

• the simulation has to regularly poll the visualization system on the desktop to
check whether any parameters have changed – this is a major overhead and slows
down the simulation

• the simulation only runs as long as the visualization system is kept running on
the desktop – for a long running simulation one wants to be able to have the
simulation running with a life of its own, and allow the visualization system to
“check in” periodically to monitor progress

We are aiming to address these limitations in a further development cycle.
An important issue yet to be addressed in this work is data management for asyn-

chronous collaboration. It is envisaged that users may wish to review a time-history
of the computed solution together with the related steering options that were cho-
sen at that time. The current user can then restart the simulation at a particular time
and study the effects of varying some parameters of the model in detail from that
point. Some of the data management issues are addressed by the Hyperscribe system
already incorporated into IRIS Explorer.

The case study considered here was based around a prototype application but
the developed environment is intended for generic scientific computing models. A
companion demonstrator has been built, extending its use to the far more challenging
simulation of elastohyrodynamic lubrication [10].

Grid-enabled visualization is an extremely important research area. Our aim in
this paper has been to question the need to start afresh and develop new visualization
systems for Grid computing ab initio – existing dataflow systems have sufficient
flexibility and extensibility for them to evolve into this exciting new world.

References

1. AVS/Express website, 2004. http://www.avs.com.
2. E. W. Bethel and J. Shalf. Grid-distributed visualizations using connectionless protocols.

IEEE Computer Graphics and Applications, 23(2):51–59, March/April 2003.
3. cAVS website, 2004. http://cavs.sdsc.edu.
4. J. Chin, J. Harting, S. Jha, P.V. Coveney, A.R. Porter, and S. Pickles. Steering in computa-

tional science: mesoscale modelling and simulation. Contemporary Physics, 44:417–434,
2003.

5. D.A. Duce, J.R. Gallop, I.J. Johnson, K. Robinson, C.D. Seelig, and C.S. Cooper. Distrib-
uted Cooperative Visualization - Experiences and Issues from MANICORAL Project. In
EG Workshop on Visualization in Scientific Computing. Eurographics Association, 1998.

Evolving Dataflow Visualization Environments to Grid Computing 407

6. E. Engquist. Steering and visualization of electromagnetic simulations using Globus. In
Simulation and Visualization on the Grid, pages 82–97. Springer Series LNCSE, 2000.

7. I. Foster, J. Insley, G. von Lasewski, C. Kesselman, and M. Thiebaux. Distance visual-
ization: Data exploration on the Grid. IEEE Computer, December:36 – 43, 1999.

8. I. Foster, C. Kesselman, and S. Tuecke. The anatomy of the Grid: Enabling scalable vir-
tual organisations. International Journal of High Performance Computing Applications,
15(3):200 – 222, 2001.

9. Globus website, 2004. http://www.globus.org.
10. C. Goodyer, J. Wood, and M. Berzins. A parallel grid based PSE for EHL problems. In

J. Fagerholm, J. Haataja, J. Jarvinen, M. Lyly, M. Raback, and V. Savolainen, editors, Ap-
plied Parallel Computing Advanced Scientific Computing 6th International Conference,
PARA 2002, pp. 521–530. Springer-Verlag, 2002.

11. R. B. Haber and D. A. McNabb. Visualization Idioms: A Conceptual Model for Scien-
tific Visualization Systems. In B. Shriver, G. M. Neilson, and L. J. Rosenblum, editors,
Visualization In Scientific Computing, pp. 74–93. IEEE Computer Society Press, 1990.

12. T.J. Jankun-Kelly, O. Kreylos, K. Ma, B. Hamann, K.I. Joy, J. Shalf, and E.W. Bethel.
Deploying web-based visual exploration tools on the grid. IEEE Computer Graphics and
Applications, 23(2):40–50, March/April 2003.

13. C.R. Johnson, S. Parker, D. Weinstein, and S. Heffernan. Component-based problem
solving environments for large-scale scientific computing. Journal on Concurrency and
Computation: Practice and Experience, (14):1337–1349, 2002.

14. R. Marshall, J. Kempf, S. Dyer, and C. Yen. Visualization methods and computational
steering for a 3d turbulence model for Lake Erie. ACM SIGGRAPH Computer Graphics,
24(2), 1990.

15. B. H. McCormick, T. A. DeFanti, and M. D. Brown. Visualization in scientific computing.
Computer Graphics, 21(6), 1987.

16. National Grid Service website, 2004. http://www.ngs.ac.uk.
17. A. Norton and A. Rockwood. Enabling view-dependent progressive volume visualization

on the grid. IEEE Computer Graphics and Applications, 23(2):22–31, March/April 2003.
18. 2004. http://www.opendx.org.
19. S. G. Parker and C. R. Johnson. SCIRun: A scientific programming environment for

computational steering. In H. W. Meuer, editor, Proceedings of Supercomputer ’95, New
York, 1995. Springer-Verlag.

20. W. J. Schroeder, K. M. Martin, and W. E. Lorensen. The Visualization Toolkit: An Object
Oriented Approach to 3D Graphics. Kitware, Inc., 3rd edition, 2003.

21. J. Shalf and E. W. Bethel. The Grid and future visualization system architectures. IEEE
Computer Graphics and Applications, 23(2):6–9, March/April 2003.

22. TeraGrid website, 2004. http://www.teragrid.org.
23. A Tomlin, M. Berzins, J. Ware, and M.J. Pilling. On the use of adaptive gridding methods

for modelling chemical transport from multi-scale sources. Atmospheric Environment,
31(18):2945–2959, 1997.

24. Edward R. Tufte. Visual Explanations: Images and Quantities, Evidence and Narrative.
Graphics Press, 1997.

25. VTK website, 2004. http://public.kitware.com/VTK/.
26. J. P. R. B. Walton. NAG’s IRIS Explorer. In C. R. Johnson and C. D. Hansen,

editors, Visualization Handbook. Academic Press, 2003, in press. Available from
http://www.nag.co.uk/doc/TechRep/Pdf/tr2 03.pdf.

27. White Rose Grid website, 2004. http://www.wrg.org.uk.
28. J. D. Wood, H. Wright, and K. W. Brodlie. Collaborative visualization. In R. Yagel and

H. Hagen, editors, Proceedings of IEEE Visualization ’97, pp. 253–259, 1997.

Earthquake Visualization Using Large-scale Ground
Motion and Structural Response Simulations

Joerg Meyer and Thomas Wischgoll

University of California, Irvine, Department of Electrical Engineering and Computer
Science, 644E Engineering Tower, Irvine, CA 92697-2625
{jmeyer|twischgo}@uci.edu

Summary. Earthquakes are not predictable with current technology. However, it is possible
to simulate different scenarios by making certain assumptions, such as the location of the epi-
center, the type and magnitude of the eruption, and the location of a fault line with respect to
buildings of a particular type. The effects of various earthquakes can be studied, and the after-
math of the simulation can be used by first responders and emergency management agencies
to better prepare and plan for future disasters.

This article describes methods for visualizing large-scale, finite element simulations of
ground motion based on time-varying tetrahedral meshes, and explains how such a simulated
earthquake scenario can be visually combined with a simulation of the structural response.
The building response is based on a simulation of single-degree-of-freedom (SDOF) structural
models.

The amount of data generated in these simulations is quite substantial (greater than 100
gigabytes per scenario). Real-time, interactive visualization and navigation in a 3-D virtual
environment is still challenging. For the building simulation, a number of structural proto-
types that represent a typical urban building infrastructure is selected. For the ground motion
simulation, an efficient, topology-sensitive tetrahedral mesh decimation algorithm suitable for
time-varying grids and based on a feature-preserving quadric error metric is used. The al-
gorithms presented in this chapter have the potential for being applied to other scienctific
domains where time-varying, tetrahedral meshes are used.

Key words: finite element simulation, tetrahedral mesh simplification, level-of-
detail, mesh reduction, hybrid rendering, earthquake simulation, ground motion,
structural response, scientific visualization

1 Introduction

According to the National Earthquake Information Center (NEIC), millions of earth-
quakes occur every year. The majority of events are insignificant microquakes (less
than 2.2 on the logarithmic Richter scale), but on average approximately 7,000 earth-
quakes occur annually with a potential for a significant impact on the infrastructure
in an urban setting (Richter magnitude greater than 4.5).

410 J. Meyer and T. Wischgoll

In the United States and in many other countries, the Richter scale is used to mea-
sure energy released during an earthquake. On the Richter scale, intensity increases
in geometric ratio (Table 1). An increase of one number means the energy released is
ten times greater. Thus an earthquake of 4.0 on the Richter scale is ten times stronger
than an earthquake of 3.0 on the Richter scale [20]. Significant earthquakes (Richter
magnitude greater than 4.5) are characterized by the potential to destroy or to cause
considerable damage to buildings, bridges, dams, power and gas lines, etc.

Table 1. Richter scale and potential damage/loss

Richter Scale Type of damage in a populated area
< 2.2 Microquake

2.2 Most people aware that an earthquake has occurred
3.5 Slight damage
4.0 Moderate damage
5.0 Considerable damage
6.0 Severe damage
7.0 Major earthquake, capable of widespread heavy damage
8.0 Great earthquake, capable of total damage/loss

According to the Southern California Earthquake Center (SCEC), a large number
of significant earthquakes occurred over the past few decades (Fig. 1), many of them
close to known fault lines (Fig. 2).

The data structure for the ground motion simulation is a large-scale, deformable
tetrahedral grid. This time-varying grid represents a layered soil model, as it is typ-
ical for sedimentary basins, such as the one that we have chosen for our simula-
tion (Fig. 3). The basin is modelled as a three-dimensional isotropic, heterogeneous
anelastic medium. The domain is limited by absorbing boundaries that restrict the

Fig. 1. Earthquake magnitudes greater than 4.5 (1932–1997)

Earthquake Visualization 411

Fig. 2. Southern California earthquake fault lines and locations

Fig. 3. Layered half-space with extended source fault

amount and magnitude of spurious reflections. Different configurations can be tested
by varying the size and the layer composition of the volume represented by the grid.

A finite element simulation is performed over the idealized model shown in
Fig. 3. Idealized models are essential to understand physical phenomena such as
seismic wave propagation, and to verify calculation methodologies. The model in-
corporates an idealized extended strike-slip fault aligned with the coordinate system.
The shaded area in Fig. 3 represents such a fault.

The tetrahedral mesh generated in this simulation consists of approximately 12
million nodes. For every node, a maximum velocity vector for 800 time steps is
computed, representing a time history of the node for a time period of eight seconds
in 10 milliseconds increments. The total amount of data generated by this simulation
is approximately 130 GB. This is a typical size for a ground motion simulation of
the given size and complexity.

412 J. Meyer and T. Wischgoll

This chapter describes a complete, self-contained method for efficient, topology-
sensitive time-varying tetrahedral mesh decimation based on a feature- and boundary-
preserving quadric error metric. The goal is to visualize such a large-scale dataset in-
teractively, and to enable the user to navigate the space defined by the grid both from
an external point of view as well as from a view point within the volume (immersive
visualization). This type of visualization enables an interactive analysis of the data,
which is essential for an in-depth understanding of the complex processes of ground
motion and structural response.

2 Related Work

In earthquake-related ground motion simulations, volumes are typically represented
as large-scale, time-varying tetrahedral meshes. The resulting datasets are usually
large, and datasets that exceed the size of the processor’s main memory are diffi-
cult to store, and in the case of remote visualization require significant amounts of
time for data transfer over the Internet. The amount of geometry data generated from
such simulations is usually too complex for rendering in an interactive display envi-
ronment. The complexity of those meshes mainly results from the large number of
nodes considered in the simulation, from the significant number of time steps nec-
essary to capture various earthquake frequencies, and from the actual vector data
(usually displacement or velocity data) associated with the nodes [1, 4, 19].

For interactive visualization, it is critical to reduce the geometric complexity of
such large, time-varying meshes with minimal loss of detail in the spatial and in the
temporal domain. The algorithm should be scalable, so that an arbitrary number of
time steps can be processed and visualized.

In the past, a significant number of algorithms have been developed to address
aspects of this complex problem. Tetrahedral meshes have been established as a stan-
dard to represent large finite element meshes. Most other data structures, such as
voxel grids or scattered data fields can be either broken down or tessellated into tetra-
hedral meshes. Tetrahedral meshes are preferred for discrete volume representations
because of the simplicity of the primitives (tetrahedra).

We distinguish between surface and volume mesh simplification techniques.
Most volume decimation algorithms evolved from surface or polygon mesh sim-
plification algorithms [10, 13, 14, 16, 24–27, 32], and most algorithms provide solu-
tions for topological inconsistencies that may occur during or after the mesh simpli-
fication. Hierarchical representations are important for interactive rendering of large
tetrahedral meshes. Zhou et al. [33], Gerstner et al. [11], and Ohlberger et al. [21]
present frameworks for hierarchical representations of tetrahedral meshes. However,
none of the described methods are applicable to time-varying data without modifica-
tions.

After an initial overview of surface decimation algorithms (section 2.1) and vol-
ume decimation algorithms (Sect. 2.2), we discuss a new method called TetFusion [2]
and some of its properties and limitations (Sect. 2.3). Specific results for this method
are presented in Sect. 2.4. Section 3 explains the error metric, and Sect. 4 addresses

Earthquake Visualization 413

time-varying data sets. Section 5 finally gives some results for the new method and
explains how it can be used for the given application domain (ground motion and
structural response simulation).

2.1 Surface Mesh Simplification

Some ideas that were developed for surface mesh simplification can also be applied
to volume meshes. Therefore, we provide a short overview of existing surface mesh
simplification methods.

Surface or polygon mesh simplification algorithms are either based on geometry
reduction or iterative refinement. Since we are mostly interested in a direct reduction
rather than the creation of a new mesh using refinement which usually requires global
or local access to the reference mesh making the algorithm less scalable, we focus
primarily on the first technique, i.e., geometry reduction. Most methods represent
the mesh with a smaller number of nodes that are taken from the original mesh or by
calculating new nodes that represent several nodes in the original mesh.

Schroeder et al. [26, 27] propose a method for decimation of triangle meshes.
Turk [32] uses a set of new points to re-tile a polygonal mesh. Hoppe [14] takes a
different approach and introduces progressive meshes that can be used for streaming
data (level-of-detail representation). This method was considered a major milestone
in polygon mesh simplification. For further study, Garland [9] provides a compre-
hensive overview of other mesh simplification techniques.

Garland and Heckbert [10] introduce a quadric metric as an error metric for
polygonal mesh simplification. A detailed discussion of the application of this metric
to volume meshes is given in Sect. 3.

2.2 Volume Mesh Simplification

Trotts et al. [30] were amongst the first to implement a tetrahedral volume mesh
decimation algorithm. In their work, they extend a polygonal geometry reduction
technique to tetrahedral meshes. They define a tetrahedral collapse operation as a
sequence of three edge collapses, while keeping the overall geometric error within a
certain tolerance range. The error metric is based on a spline segment representation
of the tetrahedra. Since an edge collapse is used as the atomic decimation operation,
several topological problems, such as volume flipping, are addressed and discussed.
The algorithm suffers from overwhelming overhead for storing and updating the con-
nectivity information (edge list).

Staadt and Gross [28] also discuss an extension of the edge collapse algorithm
for polygonal meshes to tetrahedral meshes. They interpret tetrahedra as a special-
ized class of simplicial complexes [24] and extend Hoppe’s work on progressive
meshes [14] to tetrahedral meshes. The article offers solutions to the previously men-
tioned problem of volume flipping (negative volume), and other topological changes
that might occur, such as self-intersection, and tetrahedra intersecting the boundary
regions. Kraus et al. [17] use a similar approach and also address the specific case of
non-convex tetrahedral meshes.

414 J. Meyer and T. Wischgoll

Trotts et al. [31], in an extension to their earlier work [30], incorporate an er-
ror metric that not only incorporates modifications to the geometry, but also to the
scalar attributes associated with the vertices. These attributes are usually interpolated
between the two nodes that constitute the collapsing edge.

Cignoni et al. [5] use the same idea and apply it to tetrahedral meshes by present-
ing a framework for integrated error evaluation for both domain and field approx-
imation during simplification. The article elaborately explores local accumulation,
gradient difference, and brute force strategies to evaluate and predict domain errors
while incrementally simplifying a mesh. The algorithm also uses a quadric error
metric, which is compared to other metrics in this article [5].

Topology preservation is the main topic of the work published by Edelsbrun-
ner [8]. He provides an extensive algorithmic background for ensuring topological
correctness during edge-collapse-based mesh simplification. Dey et al. [7] provide
detailed criteria for topological correctness, which can be generalized to polyhedral
meshes.

In the next section, we present a computationally efficient tetrahedral volume
mesh simplification method that combines metrics for accurate field (attribute) data
representation with techniques for restraining volumetric topology.

2.3 A Combined Mesh Decimation Technique: TetFusion

Recently, an efficient volume mesh decimation algorithm, TetFusion, was published
[2]. It addresses both geometry and attribute data preservation. We summarize the
properties and limitations of this algorithm, which lead to the development of an
improved method, QTetFusion, which uses a different error metric and addresses
problems such as volume flipping, boundary intersection, and other critical changes
in the topology (Sect. 3).

The TetFusion algorithm employs a tetrahedral collapse as an atomic operation
(TetFuse) for mesh decimation. The idea is simple and intuitive: take all four vertices
of a tetrahedron, and fuse them onto the barycenter (the geometric center) of the
tetrahedron (Fig. 4).

Fig. 4. An illustration of an instance of the TetFuse operation

Earthquake Visualization 415

The center tetrahedron is the target object that is supposed to be collapsed onto
its barycenter. The four other tetrahedra are affected by this change and stretch in the
direction of the target tetrahedron’s barycenter. Note that for any affected tetrahe-
dron, the vertex it shares with the target tetrahedron moves away from the base plane
formed by its other three vertices. In a fully connected mesh, at least eleven tetrahe-
dra collapse as a result of TetFuse applied to an interior tetrahedron. This includes
the target tetrahedron, the four tetrahedra sharing one of the four faces with the tar-
get tetrahedron, and at least six more tetrahedra that share one of the six edges with
the target tetrahedron. This means that each instance of an application of TetFuse
causes an efficient decimation of the mesh.

The TetFusion algorithm is based on multiple, error-controlled executions of a
primitive operation called TetFuse. The following paragraphs summarize the inher-
ent properties and limitations of TetFusion.

Symmetry: The volume of the collapsed tetrahedron is distributed symmetrically with
respect to the barycenter between the affected tetrahedra in the local neighborhood.

Efficient decimation: Each instance of TetFuse causes at least eleven tetrahedra to
collapse for a non-boundary target tetrahedron, as explained in one of the previous
paragraphs. This results in a much higher mesh decimation rate per atomic operation
than in the case of an edge-collapse-based algorithm.

Avoiding Flipping: Because of the symmetry of the decimation operation, the ver-
tex that an affected tetrahedron shares with the target tetrahedron (shared vertex)
tends to move away from its base plane (the plane formed by the other three ver-
tices of the affected tetrahedron, see Fig. 4). Hence, most of the time the ordering of
vertices in an affected tetrahedron does not get changed from the original configura-
tion, and the volume is represented correctly. However, if the barycenter of the target
tetrahedron is located on the other side of the base plane of an affected tetrahedron,
flipping is possible (Fig. 5). Such special cases can be avoided simply by checking

Fig. 5. Flipping may occur if the barycenter is on the other side of the base plane

416 J. Meyer and T. Wischgoll

if the point has moved to the other side of the base plane of the affected tetrahedron,
which would result in a rejection of the current instance of TetFuse.

Prohibiting Self-Intersections of the Boundary: TetFusion does not allow any
boundary tetrahedra to be affected. It has been verified that self-intersections of
boundaries occur only at sharp edges and corners [28], when an affected tetrahe-
dron pierces through one or more of the boundary faces of a boundary tetrahedron.
However, this is a serious limitation of the algorithm that drastically affects the dec-
imation ratio. An improved solution is discussed in Sect. 3.

Prohibiting Boundary Intersections at Concave Boundary Regions: Cases of bound-
ary intersection occur when an interior tetrahedron stretches through and over a con-
cave boundary region. Such cases cannot be avoided completely by employing the
given error metric. TetFusion addresses this problem by limiting the expansion of an
affected tetrahedron, and by not allowing tetrahedra in the vicinity of the boundary
surface to stretch as a result of the collapse of a target tetrahedron. This is also a
limitation, which is address in Sect. 3.

Locking the Aspect Ratio: Tetrahedra that exceed a pre-specified threshold of the
edge aspect ratio (long, skinny tetrahedra) are usually difficult to render and there-
fore trigger an early rejection of the execution of TetFuse.

2.4 Example and Results

Figure 6 shows an example of a decimated mesh. The 1,499,160 element blunt-fin
dataset was decimated using TetFusion in 187.2 seconds, and rendered on an SGI
R10000 194MHz with 2048 MB RAM, running Irix 6.52. The boundary is perfectly
preserved, while some of the data attribute values appear to be slightly blurred due
to repeated interpolation in the reduction step.

In summary, the original TetFusion algorithm [2] was limited to interior tetra-
hedra, thus leaving the surface intact, but at the same time unfortunately also limit-
ing the decimation ratio. The next section discusses an extension of this algorithm,

Fig. 6. Original (100%) and decimated mesh (36.21%) of the blunt-fin dataset

Earthquake Visualization 417

called QTetFusion (Quadrics-guided Tetrahedron Fusion) [3]. It is a volume mesh
simplification algorithm that employs a planar quadric error metric to guarantee
minimum geometric and attribute error upon each instance of TetFuse. We show
how this atomic tetrahedral collapse operation, along with an efficient geometric er-
ror metric, can take care of complex mesh inconsistency problems with minimal
additional computational overhead. The algorithm ensures that a mesh stays within
(and infinitesimally close to) its boundary envelope at all levels of resolution during
simplification.

Almost all of the existing work addressing volume mesh simplification evolved
from edge-collapse-based decimation strategies that were originally proposed for
polygonal meshes. However, surface mesh simplification algorithms cannot simply
be scaled up to handle higher order simplicial complexes because of additional geo-
metric and topological constraints. Cases like degenerate simplices, violation of De-
launay tessellation, loss of topological genus (undesired closing of holes or creation
of new ones), violations of the convex hull and boundary preservation properties,
etc., must be specially taken care of during volume mesh simplification. Such cases
have already been identified and can be avoided with special computational meth-
ods [7, 8]. However, algorithms that present computationally less expensive simpli-
fication schemes either do not handle all of these cases, or are spatially selective
during decimation and hence are limited in the achieved decimation ratio [2].

3 Tetrahedral Fusion with Quadric Error Metrics

To overcome the shortcomings listed in the previous section, we use QTetFuse as
a reversible atomic decimation operation for tetrahedral meshes [3]. The algorithm
operates on a list of nodes with associated attribute data, and a separate array that
contains the connectivity information for every tetrahedron. Both the point list and
the list of tetrahedra are updated in the decimation process. This is necessary be-
cause both tetrahedra are collapsed and new points are generated by fusing some of
the tetrahedra to a single point. For a better understanding of the algorithm, we sum-
marize the most important definitions (Sect. 3.1) that are needed for describing the
algorithm (Sect. 3.2), analyze the properties (Sect. 3.3) of the algorithm, and provide
some details on the derivation of the employed planar quadric error metric (PQEM)
from previous polygonal methods (Sect. 3.4) [10]. Finally, we explain how the fusion
point is calculated (Sect. 3.5), and provide an example of the results of the algorithm
(Sect. 3.6).

3.1 Definitions

In this section, we summarize notations and definitions that are necessary for under-
standing the algorithm.
a) Target Tetrahedron: A tetrahedron that is selected for decimation.

b) Boundary Tetrahedron: A tetrahedron with one or more of its vertices lying on

418 J. Meyer and T. Wischgoll

the boundary surface. All other tetrahedra that are not on the boundary are called
interior tetrahedra.

c) Boundary Face: Triangle face of a boundary tetrahedron where all three vertices
lie on the boundary surface.

d) Fusion Point: Point of collapse of the four vertices of a target tetrahedron. One
target tetrahedron may have more than one valid fusion point depending on the spec-
ified planar quadric error tolerance value.

e) Affected Tetrahedron: A tetrahedron that shares exactly one vertex with a tar-
get tetrahedron. This shared vertex (target vertex) stretches the affected tetrahedron
towards and onto the fusion point of the target tetrahedron as a result of QTetFuse.

f) Target Vertex: The vertex of an affected tetrahedron that it shares with a target
tetrahedron.

g) Base Triangle: A triangle formed by the vertices of an affected tetrahedron, ex-
cluding the target vertex.

h) Deleted Tetrahedron: A tetrahedron that shares two or more vertices with a target
tetrahedron, which collapses as a result of the collapse of the target tetrahedron.

3.2 Algorithm

The basic idea is to fuse the four vertices of a tetrahedron into a point (the fusion
point, see definitions in Sect. 3.1). The fusion point (Fig. 7) is computed so that min-
imum geometric error is introduced during decimation. We employ a planar quadric
error metric (PQEM) to measure and restrict this error (see Sect. 3.4).

The algorithm is driven by an efficient space redistribution strategy, handles cases
of mesh-inconsistency, while preserving the boundary envelope of the mesh, and em-
ploys a PQEM to guarantee minimum error in the geometric domain when collaps-
ing the tetrahedral elements. It maintains the input mesh’s topological genus in the
geometry domain at low computational costs.

In Fig. 7, the upper-left target tetrahedron collapses onto its fusion point. The
upper-right tetrahedron degenerates to an edge, which is consequently removed
(deleted tetrahedron). The lower affected tetrahedron stretches in the direction of
the corresponding fusion point. Note that for the affected tetrahedron, the vertex it
shares with the target tetrahedron tends to move away from the base plane formed
by its other three vertices. If the shown target tetrahedron is an interior one, at least
eleven tetrahedra collapse as a result of this operation (see Sect. 2.3).

The following section describes the main algorithm. QTetFusion is a locally
greedy algorithm. It features a pre-processing phase that evaluates PQEMs for all
the tetrahedra in the input mesh, and stores them in a heap data structure. We em-
ploy a Fibonacci heap (because of its better amortized time complexity compared to

Earthquake Visualization 419

(a) Before collapse (b) After collapse

Fig. 7. An illustration of one instance of the QTetFuse operation

a simple binomial heap) to maintain the priority queue of tetrahedral elements ad-
dressed by their PQEM keys [3]. In fact, both a binomial and a Fibonacci heap have
a worst-case time complexity of O(m+n log n), where m is the number of edges, and
n is the number of nodes. However, in a Fibonacci heap the insert operation is more
efficient: O(1) vs. O(log n), while the delete operation remains the same: O(log n).
The main algorithm is outlined below:

while heap is not empty
extract T with minimum ∆(T) from the heap
if none of adjacentTetrahedra(T) would flip as a result of T ’s collapse,

QTetFuse (T)
update heap

The procedure adjacentTetrahedra(T) returns a list of all the tetrahedra adjacent to
T . The geometric error ∆(T) is explained in Sect. 3.4.

3.3 Properties

This section discusses the inherent properties of QTetFusion as a volume mesh deci-
mation algorithm for tetrahedral meshes.

Efficient decimation: similar to TetFusion (Sect. 2.3).

Avoiding flipping: similar to TetFusion (Sect. 2.3).

Simplified mesh restricted to the inside of (and infinitesimally close to) the boundary
envelope of the source mesh: Self-intersections of boundary elements might occur
when an affected tetrahedron pierces through one or more of the boundary faces of
a boundary tetrahedron. We prevent such cases by restricting the simplified mesh to

420 J. Meyer and T. Wischgoll

remain inside its boundary envelope.

Avoiding changes of the topological genus of a mesh: The boundary envelope of
a polyhedral mesh defines its topological genus. Consequently, if the topological
genus of the envelope is preserved, topology preservation for the enclosed volume
is guaranteed. As a result, the algorithm guarantees that the simplified mesh remains
confined to its boundary envelope. Therefore, the algorithm cannot change the topol-
ogy of the mesh, i.e., it is prevented from closing any existing holes or from creating
new ones. The latter is an inherent problem of all edge-collapse-based decimation al-
gorithms and usually requires complex consistency checking. The proposed method
requires only local testing of the affected and deleted tetrahedra and is therefore
relatively efficient.

3.4 Planar Quadric Error Metric (PQEM)

This section describes the error metric we employ to control the domain errors dur-
ing simplification. Garland and Heckbert [10] developed a computationally efficient
and intuitive algorithm employing a Quadric Error Metric (QEM) for efficient pro-
gressive simplification of polygonal meshes. The algorithm produces high quality
approximations and can even handle 2-manifold surface meshes.

To obtain an error minimizing sequence of QTetFuse operations, we first need to
associate a cost of collapse with each tetrahedron in the mesh. As described in [10],
we first associate a quadric error measure (a 4× 4 symmetric matrix Q) with every
vertex ν of a tetrahedron that indicates the error that would be introduced if the
tetrahedron were to collapse. For each vertex ν of a tetrahedron, the measure of its
squared distance with respect to all incident triangle faces (planes) is given by:

∆(ν) = ∆(
[
νx νy νz 1

]T) = ∑
p= f aces(ν)

(ap pT ν)2 (1)

where p =
[
px py pz d

]T
represents the equation of a plane incident on ν such that

the weight ap represents the area of the triangle defining p. Further, if n represents
the normal vector of p, then d is given by

d = −nνT (2)

Equation (1) can be rewritten as a quadric:

∆(ν) = ∑
p= f aces(ν)

νT (a2
p ppT)ν

= νT

(
∑

p= f aces(ν)
(a2

p ppT)

)
ν

= νT

(
∑

p= f aces(ν)
(Qp)

)
ν

(3)

Earthquake Visualization 421

where Qp is the area-weighted error quadric for ν corresponding to the incident
plane p.

Once we have error quadrics Qp(i) for all the four vertices of the tetrahedron T
in consideration, we simply add them to obtain a single PQEM as follows:

PQEM(T) =
4

∑
i=1

QP(i) (4)

If T were to collapse to a point νc, the total geometric error (for T) as approximated
by this metric would be:

∆(T) = νT
c PQEM(T)νc (5)

3.5 Computing the Fusion Point

Consider a tetrahedron T = {ν1,ν2,ν3,ν4}. We compute a point of collapse (fusion
point ν) for T that minimizes the total associated PQEM as defined in (5). According
to [10], this can be done by computing the partial derivatives of ∆(T), and solving
them for 0. The result is of the form

−
ν = Q−1

1 [0 0 0 1]T (6)

where

Q1 =

⎡⎢⎢⎣
q11 q12 q13 q14

q12 q22 q23 q24

q13 q23 q33 q34

0 0 0 1

⎤⎥⎥⎦ (7)

Note that the terms qi j are coefficients of the respective PQEM. There might be cases
when the quadric matrix used in the equation is not invertible. In that case, we settle
on the barycenter of T as the fusion point.

Note that the central ellipsoid in Fig. 8b) represents a level-set surface for the
Planar Quadric Error for the target tetrahedron shown. This quadric error is the sum
of quadric errors of the four constituent vertices of the tetrahedron.

3.6 Example

Figure 9 shows an example of a decimated mesh. The 12,936 element super phoenix
dataset was decimated using QTetFusion in 31.174 seconds, and rendered on an SGI
R12000 400MHz with 2048 MB RAM, running Irix 6.52. The increase of computing
time over the standard TetFusion algorithm is significant (for instance, a factor of 61
for the super phoenix dataset, and 46 for the combustion chamber; see Table 2 and
compare with [2]). However, the decimation rate in most cases was either slightly
increased or at least preserved (+12.46% for the super phoenix dataset, and −2%
for the combustion chamber. This is a good result, as the new QTetFusion algorithm
has significant topological advantages over the standard TetFusion method. Diagram
10 and Tables 2 and 3 provide some additional statistics for other datasets.

422 J. Meyer and T. Wischgoll

(a) Polygonal mesh (b) Polyhedral mesh

Fig. 8. Error ellipsoids for affected vertices when the primitive to be decimated is (a) an edge
and (b) a tetrahedron

Fig. 9. (a) Original (100%) and (b) decimated mesh (46.58%) of the super phoenix dataset

Fig. 10. CPU time in seconds (vertical axis) vs. number of QTetFuse operations (tetrahedral
collapses) performed (horizontal axis)

Earthquake Visualization 423

Table 2. Number of tetrahedra, decimation ratio and CPU time for various datasets (QTetFu-
sion)

mesh n dec. rat. QTetFusion (s)
1. super phoenix 12,936 53.6% 31.174
2. blunt fin 187,395 49.3% 715.074
3. comb chamber 215,040 47.0% 976.603
4. oxygen post 513,375 46.0% 2,803.575

Table 3. Number of tetrahedra, number of decimated tetrahedra, number of QTetFuse opera-
tions required, average number of decimated tetrahedra for a single QTetFuse operation

mesh n ndecim # QTetFuse Avg. ndecim

1. super phoenix 12,936 6,940 501 13.852
2. blunt fin 187,395 92,375 6,081 15.684
3. comb chamber 215,040 101,502 6,588 15.407
4. oxygen post 513,375 238,527 14,830 16.084

4 Time-varying Tetrahedral Mesh Decimation

Extremely high decimation rates can be obtained by taking the temporal domain into
account. Instead of tetrahedra, we consider a mesh of hypertetrahedra that consists
of tetrahedra that are connected across the temporal domain (Fig. 11). We define a
hypertetrahedron as a set of at least two (possibly more) tetrahedra where all four
vertices are connected in the time domain. Intuitively, a hypertetrahedron represents
a tetrahedron that changes shape over time. Every time step represents a snapshot of
the current shape. Without loss of generality, we can assume that the time domain
is a linear extension of a three-dimensional cartesian coordinate system. As a con-
sequence, we connect corresponding vertices with linear, i.e. straight, line segments
that indicate the motion of a vertex between two or more discrete time steps. Since
many tetrahedra do not change significantly over time, hypertetrahedra can be col-
lapsed both in the temporal domain as well as in the spatial domain. This results in
hypertetrahedra that are either stretched in space or in time. Mesh decimation in time

Fig. 11. Hypertetrahedron

424 J. Meyer and T. Wischgoll

means that a hypertetrahedron (4-D) that does not change over time can be repre-
sented by a simple tetrahedron (3-D), just like a tetrahedron can be represented by a
single point. The opposite direction (expansion of a tetrahedron to a hypertetrahedron
over time) is not necessary, because a hypertetrahedron is collapsed only if it does
not change significantly in a later time step.

The latter of the previously mentioned cases turns out to restrict the decimation
ratio significantly. In the given example of earthquake simulations, many tetrahedra
in the peripheral regions do not change at the beginning and towards the end of the
simulation, but they are affected during the peak time of the earthquake. Since we
do not allow hypertetrahedron expansion from a tetrahedron (split in the temporal
domain), a large potential for decimation is wasted. Also, for practical purposes the
given approach is not very suitable, because we need to be able to access the position
of each vertex in the mesh at every time step if we want to navigate in both directions
in the temporal domain. The reconstruction of this information and navigation in time
with VCR-like controls requires a global view of the data. This means that the data
cannot be processed sequentially for an infinite number of time steps. Consequently,
the algorithm is not scalable.

Figure 12 shows an example where one node is affected by a velocity vector. The
velocity is proportional to the displacement, because all time steps have the same
temporal distance. Therefore, the arrow indicates the position of the node in the next
time step. Two tetrahedra are affected by this displacement and change over time.
In this example, it would be sufficient to store the time history of the affected node
(solid line) or the affected tetrahedra (dotted lines). In order to reconstruct the mesh,
it would be necessary to search for the most recent change in the time history of each
node, which would require keeping all time histories of all nodes in memory during
playback. This becomes particularly obvious if forward and backward navigation in
time is considered. Even though this method offers a very compact representation of
a time-varying tetrahedral mesh, we propose a different approach that enables easier
playback (forward and backward) of all the time steps in a simulation.

The standard method would be to decimate the mesh for each time step separately
by applying QTetFusion or some other mesh decimation technique, resulting in very
high decimation rates in the initial time steps (regular, undistorted grid, no disruption
due to earthquake), and moderate decimation of the later time steps where more
information needs to be preserved. However, this approach would result in different
meshes for every time step, leading to “jumps” and flicker in the visualization. This
would be very disrupting in an animation or on a virtual reality display (Sect. 5).

Therefore, we use a different approach. The idea is to preserve every time step,
which is necessary for playback as an animation and for navigation in time. The
mesh that has the greatest distortion due to the earthquake (the velocity vector values
associated with each grid node) is identified, and then decimated. All the decimation
steps that were necessary to reduce the complexity of this mesh are recorded. For
the record, it is sufficient to store the IDs of the affected tetrahedra in a list, because
for the given application the IDs of the tetrahedra are identical in all time steps.
Since tetrahedra are only removed but never added, the IDs are always unique. These
recorded steps are then used to guide the decimation of the remaining meshes, i.e.,

Earthquake Visualization 425

Fig. 12. One affected node, two affected tetrahedra

the meshes of the other time steps are decimated in the exact same manner as the one
whose features are supposed to be preserved.

Figure 13 shows that the decimation of t0 and t1 is guided by t2, because t2 is
more distorted than any of the others. The decimated mesh should represent all dis-
placed nodes in the most accurate way, because these are the ones that represent the
significant features in the given application. Isotropic regions, i.e., areas that are not
affected by the earthquake, such as the three tetrahedra at the top that are simplified
into a single tetrahedron, expose only little variance in the data attributes, and conse-
quently do not need to be represented as accurately, i.e., with the same error margin,
as the significantly changing feature nodes in the other time steps. Comparing the top
scenario (before decimation) and the bottom scenario (after decimation), the image
shows that the tetrahedra on the top that were simplified in the selected t2 time step
are also simplified in the other two time steps (t0 and t1).

The question that remains is how to identify this “most distorted” mesh. Instead
of using complex criteria, such as curvature (topology preservation) and vector gra-
dients (node value preservation), we simply divide the length of the displacement
vector for each node by the average displacement of that node, calculate the sum of
all these ratios, and find the mesh that has the maximum sum, i.e., the maximum
activity. If there is more than one mesh with this property, we use the one with the
smallest time index. The average activity of a node is the sum of all displacement

426 J. Meyer and T. Wischgoll

Fig. 13. Preservation of temporal resolution, decimation guided by t2

vector lengths for all time steps divided by the number of time steps. This means that
we consider those nodes in the mesh that expose a lot of activity, and try to repre-
sent the mesh that contains these active nodes in the best possible way. The mesh
decimation algorithm is applied only to this one mesh. All other meshes are deci-
mated according to this guiding mesh, using the same node indices for the collapse
sequence.

The index meshguide of the mesh that guides the decimation can be calculated in
linear time using the following equation:

meshguide = min{i ∈ N0| f (i) = max{ f (i)|i ∈ N0}}

f (i) =
n−1

∑
k=0

∣∣∣−→d k,i

∣∣∣
n−1
∑

l=0

∣∣∣−→d l,i

∣∣∣
n number of nodes

−→
d k,i displacement vector k in mesh i.

Earthquake Visualization 427

One drawback of this method is the search for the most active mesh nodes. However,
the search is performed in linear time, and the extra time for the search is more than
compensated for by the fact that all the other time steps do not need to be decimated
by a complex decimation algorithm. Instead, the same list of collapse operations is
applied to each time step, resulting in a fast and efficient decimation of the entire
data set. This method is scalable, as it does not require loading of more than one
time step into memory at one time. It works for an arbitrarily large number of time
steps. Also, the algorithm is not restricted to the QTetFusion method. It should also
work with other decimation algorithms (see Sect. 2).

5 Results from Ground Motion
and Structural Response Simulation

The simulation of the effect of an earthquake on a set of buildings was performed
using the OpenSees simulation software [22].

A map of the surface (Fig. 15) was used to place a group of buildings along
the projected fault line. Two different heights of buildings were used (3 story and
16 story structures, Fig. 14) to simulate various building types in an urban setting.
A structural response simulation was calculated for this scenario and then combined
with the visualization of the ground motion. The buildings were represented as boxes
that resemble the frame structure that was simulated using a SDOF model.

Fig. 14. 3 story vs. 16 story building (story drift horizontally exaggerated)

The scenario can be easily changed by selecting a different set of buildings and
different locations on the surface map. The placement of the buildings and the selec-
tion of building types could be refined, based on real structural inventory data.

The finite element ground motion simulation was performed on a Cray T3E par-
allel computer at the Pittsburgh Supercomputer Center. A total of 128 processors
took almost 24 hours to calculate and store an 8 second velocity history of an ap-
proximately 12 million-node, three-dimensional grid. The required amount of disk
space for this problem was approximately 130 GB. Figure 15 shows a 2-D surface
plot of the simulation in two coordinate directions.

428 J. Meyer and T. Wischgoll

(a) Fault parallel (b) Fault normal

Fig. 15. Velocity plot

Figure 16a shows a 3-D rendering of the surface mesh combined with the struc-
tural response simulation. The various intensities (colors) on the buildings indicate
the maximum story drift for each floor. Figure 16b shows a hybrid rendering of
ground motion and structural response. Textures have been added for a more pho-
torealistic representation of the buildings and the environment.

It turns out that some buildings experience more stress than others, even if they
are in close proximity or in the same distance from the fault line as their neighbors.
The determining factors are building height, orientation of the frame structure, and
building mass.

(a) Ground motion and structural re-
sponse simulation,

(b) with textures.

Fig. 16. (a) Ground motion and structural response simulation, (b) with textures

Earthquake Visualization 429

Figure 17 shows a scenario in a CAVETM-like virtual environment (four stereo-
scopic rear-projection screens with LC shutter glasses and electro-magnetic head and
hand tracking system) [18]. The user is fully immersed in the visualization and gets
both visual and audio feedback while the shockwave approaches and the buildings
start to collapse [4].

Fig. 17. Virtual environment visualization

6 Conclusions

We presented an integrated framework for domain- and field-error controlled mesh
decimation. The original tetrahedral fusion algorithm (TetFusion) was extended by
employing a planar quadric error metric (PQEM). The additional computational
overhead introduced by this error metric is justified by added features, such as topol-
ogy preservation, and a better decimation ratio. The trade-off between time com-
plexity of QTetFusion and the error in either the vertex domain or the attribute field
introduced as a result of tetrahedral fusion needs to be investigated in more detail.

The atomic decimation operation employed (TetFuse) is symmetric, and better
suited for 3-D volumetric meshes than edge-collapse-based methods, because it gen-
erates less topological inconsistencies (tetrahedra are usually stretched away from
their base plane). Remaining cases of negative volumes are solved by an early re-
jection test for tetrahedral flipping. In QTetFuse, the barycenter as the center of the
tetrahedral collapse has been replaced by a general fusion point that minimizes the
PQEM. This improves mesh consistency and reduces the overall error of the deci-
mated mesh.

A control parameter can be used to provide a smooth and controlled transition
from one step to the next. Therefore, the method can be employed to implement a
hierarchical level-of-detail set that can be used in multi-resolution rendering algo-
rithms allowing for a smooth transition between multiple levels of detail (hierarchi-
cal refinement). One could also think of a view-dependent, localized refinement for
applications such as flight simulation.

430 J. Meyer and T. Wischgoll

Our future work includes offline compression of the datasets, as suggested by
Alliez et al. [1] and Isenburg et al. [15], and similar to the schemes suggested by
Gumhold et al. [12], Pajarola et al. [23], or Szymczak et al. [29]. This would enable
dynamic (on the fly) level-of-detail management for volume meshes similar to those
methods that currently exist for polygonal meshes [6].

In this chapter, we presented a general method for decimation of time-varying
tetrahedral meshes. The algorithm preserves the discrete time steps in the temporal
domain, which is critical for interactive navigation in both directions in the time do-
main. It also represents an intuitive method for consistent mesh generation across the
temporal domain that produces topologically and structurally similar meshes for each
pair of adjacent time steps. The algorithm presented in this chapter is not restricted
to a particular mesh decimation technique. It is an efficient method that exploits and
preserves mesh consistency over time, and most importantly, is scalable.

Acknowledgements

This work was supported by the National Science Foundation under contract
6066047–0121989 and through the National Partnership for Advanced Computa-
tional Infrastructure (NPACI) under contract 10195430 00120410. We would like to
acknowledge Gregory L. Fenves and Bozidar Stojadinovic, Department of Civil and
Environmental Engineering, University of California at Berkeley, for providing us
with the Structural Response Simulation and the OpenSeesTM simulation software,
Jacobo Bielak and Antonio Fernández, Department of Civil and Environmental En-
gineering, Carnegie Mellon University, Pittsburgh, MA, for providing us with the
ground motion simulation data, and Prashant Chopra, Z-KAT, Hollywood, Florida,
for the software implementation. We would like to thank Peter Williams, Lawrence
Livermore National Laboratory, for the super phoenix dataset. We would also like
to thank Roger L. King and his colleagues at the Engineering Research Center at
Mississippi State University for their support of this research contract. Finally, we
would like to thank Elke Moritz and the members of the Center of Graphics, Visual-
ization and Imaging Technology (GRAVITY) at the University of California, Irvine,
for their help and cooperation.

References

1. Pierre Alliez and Mathieu Desbrun. Progressive Compression for Lossless Transmission
of Triangle Meshes. In Proceedings of SIGGRAPH 2001, Los Angeles, CA, Computer
Graphics Proceedings, Annual Conference Series, pp. 198–205. ACM SIGGRAPH, ACM
Press, August 2001.

2. Prashant Chopra and Joerg Meyer. Tetfusion: An Algorithm for Rapid Tetrahedral Mesh
Simplification. In Proceedings of IEEE Visualization 2002, Boston, MA, pp. 133–140.
IEEE Computer Society, October 2002.

Earthquake Visualization 431

3. Prashant Chopra and Joerg Meyer. Topology Sensitive Volume Mesh Simplification
with Planar Quadric Error Metrics. In IASTED International Conference on Visualiza-
tion, Imaging, and Image Processing (VIIP 2003), Benalmadena, Spain, pp. 908–913.
IASTED, September 2003.

4. Prashant Chopra, Joerg Meyer, and Michael L. Stokes. Immersive Visualization of a
Very Large Scale Seismic Model. In Sketches and Applications of SIGGRAPH’01 (Los
Angeles, California, August 2001), page 107. ACM SIGGRAPH, ACM Press, August
2001.

5. P. Cignoni, D. Costanza, C. Montani, C. Rocchini, and R. Scopigno. Simplification of
Tetrahedral Meshes with Accurate Error Evaluation. In Thomas Ertl, Bernd Hamann,
and Amitabh Varshney, editors, Proceedings of IEEE Visualization 2000, Salt Lake City,
Utah, pp. 85–92. IEEE Computer Society, October 2000.

6. C. DeCoro and R. Pajarola. XFastMesh: Fast View-dependent Meshing from External
Memory. In Proceedings of IEEE Visualization 2002, Boston, MA, pp. 363–370. IEEE
Computer Society, October 2002.

7. T. K. Dey, H. Edelsbrunner, S. Guha, and D. V. Nekhayev. Topology Preserving Edge
Contraction. Publications de l’Institut Mathematique (Beograd), 60(80):23–45, 1999.

8. H. Edelsbrunner. Geometry and Topology for Mesh Generation. Cambridge University
Press, 2001.

9. M. Garland. Multi-resolution Modeling: Survey & Future Opportunities. In EURO-
GRAPHICS 1999, State of the Art Report (STAR) (Aire-la-Ville, CH, 1999), pp. 111–131.
Eurographics Association, 1999.

10. M. Garland and P. Heckbert. Surface Simplification Using Quadric Error Metrics. In
Proceedings of SIGGRAPH 1997, Los Angeles, CA, pp. 115–122. ACM SIGGRAPH,
ACM Press, 1997.

11. T. Gerstner and M. Rumpf. Multiresolutional Parallel Isosurface Extraction Based on
Tetrahedral Bisection. In Proceedings 1999 Symposium on Volume Visualization. IEEE
Computer Society, 1999.

12. S. Gumhold, S. Guthe, and W. Strasser. Tetrahedral Mesh Compression with the Cut-
Border Machine. In Proceedings of IEEE Visualization 1999, San Francisco, CA, pp.
51–59. IEEE Computer Society, October 1999.

13. I. Guskov, K. Vidimce, W. Sweldens, and P. Schroeder. Normal Meshes. In Proceedings
of SIGGRAPH 2000, New Orleans, LA, pp. 95–102. ACM SIGGRAPH, ACM Press, July
2000.

14. H. Hoppe. Progressive Meshes. In Proceedings of SIGGRAPH 1996, New Orleans, LA,
pp. 99–108. ACM SIGGRAPH, ACM Press, August 1996.

15. M. Isenburg and J. Snoeyink. Face Fixer: Compressing Polygon Meshes with Properties.
In Proceedings of SIGGRAPH 2000, New Orleans, LA, pp. 263–270. ACM SIGGRAPH,
ACM Press, July 2000.

16. A. D. Kalvin and R. H. Taylor. Superfaces: Polygonal Mesh Simplification with Bounded
Error. IEEE Computer Graphics and Applications, 16(3):64–77, 1996.

17. M. Kraus and T. Ertl. Simplification of Nonconvex Tetrahedral Mmeshes. Electronic
Proceedings of the NSF/DoE Lake Tahoe Workshop for Scientific Visualization, pp. 1–4,
2000.

18. Joerg Meyer and Prashant Chopra. Building Shaker: Earthquake Simulation in a
CAVETM. In Proceedings of IEEE Visualization 2001, San Diego, CA, page 3, Octo-
ber 2001.

19. Joerg Meyer and Prashant Chopra. Strategies for Rendering Large-Scale Tetrahedral
Meshes for Earthquake Simulation. In SIAM/GD 2001, Sacramento, CA, page 30, No-
vember 2001.

432 J. Meyer and T. Wischgoll

20. B. Munz. The Earthquake Guide. University of California at San Diego.
http://help.sandiego.edu/help/info/Quake/ (accessed November 26, 2003).

21. M. Ohlberger and M. Rumpf. Adaptive projection operators in multiresolution scientific
visualization. IEEE Transactions on Visualization and Computer Graphics, 5(1):74–93,
1999.

22. OpenSees. Open System for Earthquake Engineering Simulation. Pacific
Earthquake Engineering Research Center, University of California at Berkeley.
http://opensees.berkeley.edu (accessed November 28, 2003).

23. R. Pajarola, J. Rossignac, and A. Szymczak. Implant Sprays: Compression of Progres-
sive Tetrahedral Mesh Connectivity. In Proceedings of IEEE Visualization 1999, San
Francisco, CA, pp. 299–305. IEEE Computer Society, 1999.

24. J. Popovic and H. Hoppe. Progressive Simplicial Complexes. In Proceedings of SIG-
GRAPH 1997, Los Angeles, CA, pp. 217–224. ACM SIGGRAPH, ACM Press, 1997.

25. K. J. Renze and J. H. Oliver. Generalized Unstructured Decimation. IEEE Computer
Graphics and Applications, 16(6):24–32, 1996.

26. W. J. Schroeder. A Topology Modifying Progressive Decimation Algorithm. In Proceed-
ings of IEEE Visualization 1997, Phoenix, AZ, pp. 205–212. IEEE Computer Society,
1997.

27. W. J. Schroeder, J. A. Zarge, and W. E. Lorensen. Decimation of Triangle Meshes. Com-
puter Graphics, 26(2):65–70, 1992.

28. O. G. Staadt and M. H. Gross. Progressive Tetrahedralizations. In Proceedings of IEEE
Visualization 1998, Research Triangle Park, NC, pp. 397–402. IEEE Computer Society,
October 1998.

29. A. Szymczak and J. Rossignac. Grow Fold: Compression of Tetrahedral Meshes. In
Proceedings of the Fifth Symposium on Solid Modeling and Applications, Ann Arbor,
Michigan, pp. 54–64. ACM, ACM Press, June 1999.

30. I. J. Trotts, B. Hamann, and K. I. Joy. Simplification of Tetrahedral Meshes. In Pro-
ceedings of IEEE Visualization 1998, Research Triangle Park, NC, pp. 287–296. IEEE
Computer Society, October 1998.

31. I. J. Trotts, B. Hamann, and K. I. Joy. Simplification of Tetrahedral Meshes with Error
Bounds. IEEE Transactions on Visualization and Computer Graphics, 5(3):224–237,
1999.

32. G. Turk. Re-tiling Polygonal Surfaces. Computer Graphics, 26(2):55–64, 1992.
33. Y. Zhou, B. Chen, and A. Kaufman. Multiresolution Tetrahedral Framework for Visu-

alizing Regular Volume Data. In R. Yagel and H. Hagen, editors, Proceedings of IEEE
Visualization 1997, pp. 135–142, Phoenix, AZ, 1997.

Author Index

Bähr 367
Bonsma 367
Brodlie 395

Chen 162
Childs 3
Comba 16
Crawfis 344

Danovaro 78
De Floriani 78

Ebert (Achim) 328
Ebert (David S.) 385
Ebling 231
Ertl 115

Fleischmann 207

Gaither 385
Garth 249
Gröller 207
Gregorski 3
Guthe 115

Hagen 97, 328, 367

Hamann 3, 35
Hauser 305
Hoile 367
Huang 97

Joy 3, 35

Kanitsar 207
Kaufman 131, 149
Kraus 115

Lakare 131, 149
Lee 49, 97
Linsen 35

Marrow 367
Mason 395
Meister 207
Meyer 286, 408
Mitchell 16
Mueller 131

Nielson 97

Olshausen 35

Pagendarm 264
Peikert 65

Rütten 264
Rodgman 162

Scheuermann 231, 249
Sigg 65
Silva 16
Straßer 115

Thompson 395
Tricoche 249

van Lengen 367
Varshney 49
Vivodtzev 35

Walkley 395
Wegenkittl 207
Weiler 115
Wiley 3
Wischgoll 286, 408
Wood 395

Yang 344

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e00640065002f007000640066002f000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

