
Mathematics and Visualization

Series Editors
Gerald Farin
Hans-Christian Hege
David Hoffman
Christopher R. Johnson
Konrad Polthier
Martin Rumpf

Editors

ABC

Effective Computational

Jean-Daniel Boissonnat
Monique Teillaud

With 120 Figures and 1 Table

Geometry for Curves
and Surfaces

ISBN-10
ISBN-13

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting,
reproduction on microfilm or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9,
1965, in its current version, and permission for use must always be obtained from Springer. Violations are
liable for prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

c© Springer-Verlag Berlin Heidelberg 2006

The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective laws
and regulations and therefore free for general use.

A E
Cover design: design & production GmbH, Heidelberg

Printed on acid-free paper 5 4 3 2 1 0

springer.com

Typesetting by the authors and SPi using a Springer LT X macro package

46/SPi/3100SPIN: 11732891

978-3-540-332589 Springer Berlin Heidelberg New York

Library of Congress Control Number: 2006931844

Cover Illustration:

Cover Image by Steve Oudot (INRIA, Sophia Antipolis)

[1] E. Brieskorn and H. Knörrer. Plane Algebraic Curves. Birkhäuser, Basel Boston Stuttgart, 1986.

68N30; 65D17; 57Q15; 57R05; 57Q55; 65D05; 57N05; 57N65; 58A05; 68W05; 68W20;
Mathematics Subject Classification: 68U05; 65D18; 14Q05; 14Q10; 14Q20; 68N19;

68W25; 68W40; 68W30; 33F05; 57N25; 58A10; 58A20; 58A25.

The standard left trefoil knot, represented as the intersection between two algebraic surfaces that are the
images through a stereographic projection of two submanifolds of the unit 3-sphere S3 – further details can
be found in [1, Chap. III, Section 8.5]. This picture was obtained from a 3D model generated with the
CGAL surface meshing algorithm.

3-540-33258-8 Springer Berlin Heidelberg New York

Monique Teillaud
Jean-Daniel Boissonnat

INRIA Sophia-Antipolis
2004 route des Lucioles
B.P. 93
06902 Sophia-Antipolis, France
E-mail: Jean-Daniel.Boissonnat@sophia.inria.fr

Monique.Teillaud@sophia.inria.fr

Preface

Computational geometry emerged as a discipline in the seventies and has had
considerable success in improving the asymptotic complexity of the solutions
to basic geometric problems including constructions of data structures, convex
hulls, triangulations, Voronoi diagrams and geometric arrangements as well as
geometric optimisation. However, in the mid-nineties, it was recognized that
the computational geometry techniques were far from satisfactory in practice
and a vigorous effort has been undertaken to make computational geometry
more practical. This effort led to major advances in robustness, geometric
software engineering and experimental studies, and to the development of a
large library of computational geometry algorithms, Cgal.

The goal of this book is to take into consideration the multidisciplinary
nature of the problem and to provide solid mathematical and algorithmic
foundations for effective computational geometry for curves and surfaces. This
book covers two main approaches.

In a first part, we discuss exact geometric algorithms for curves and sur-
faces. We revisit two prominent data structures of computational geometry,
namely arrangements (Chap. 1) and Voronoi diagrams (Chap. 2) in order
to understand how these structures, which are well-known for linear objects,
behave when defined on curved objects. The mathematical properties of these
structures are presented together with algorithms for their construction. To
ensure the effectiveness of our algorithms, the basic numerical computations
that need to be performed are precisely specified, and tradeoffs are considered
between the complexity of the algorithms (i.e. the number of primitive calls),
and the complexity of the primitives and their numerical stability. Chap. 3
presents recent advances on algebraic and arithmetic tools that are keys to
solve the robustness issues of geometric computations.

In a second part, we discuss mathematical and algorithmic methods for
approximating curves and surfaces. The search for approximate representa-
tions of curved objects is motivated by the fact that algorithms for curves
and surfaces are more involved, harder to ensure robustness of, and typically

VI Preface

several orders of magnitude slower than their linear counterparts. This book
provides widely applicable, fast, safe and quality-guaranteed approximations
of curves and surfaces. Although these problems have received considerable
attention in the past, the solutions previously proposed were mostly heuristics
and limited in scope. We establish theoretical foundations to the problem and
introduce two emerging new topics: discrete differential geometry (Chap. 4)
and computational topology (Chap. 7). In addition, we present certified algo-
rithms for mesh generation (Chap. 5) and surface reconstruction (Chap. 6),
two problems of great practical significance.

Each chapter refers to open source software, in particular Cgal, and
discusses potential applications of the presented techniques. In 1995, Cgal,
the Computational Geometry Algorithms Library, was founded as a research
project with the goal of making correct and efficient implementations for the
large body of geometric algorithms developed in the field of computational
geometry available for industrial applications. It has since then evolved to an
open source project [2] and now is the state-of-art implementation in many
areas. A short appendix (Chap. 8) on generic programming and the Cgal

library is included.

This book can serve as a textbook on non-linear computational geometry.
It will also be useful to engineers and researchers working in computational
geometry or other fields such as structural biology, 3-dimensional medical
imaging, CAD/CAM, robotics, graphics etc. Each chapter describes the state
of the art algorithms as well as provides a tutorial introduction to important
concepts and methods that are both well founded mathematically and efficient
in practice.

This book presents recent results of the Ecg project, a Shared-Cost RTD
(FET Open) Project of the European Union1 devoted to effective computa-
tional geometry for curves and surfaces. More information on Ecg, includ-
ing the results obtained during this project, can be found on the web site
http://www-sop.inria.fr/prisme/ECG/.

We wish to thank Franz Aurenhammer, Frédéric Chazal, Éric Colin de
Verdière, Tamal Dey, Ioannis Emiris, Andreas Fabri, Menelaos Karavelas,
John Keyser, Edgar Ramos, Fabrice Rouillier, and many other colleagues,
for their cooperation and feedback which greatly helped us to improve the
quality of this book.

1Number IST-2000-26473

List of Contributors

Jean-Daniel Boissonnat
INRIA
BP 93
06902 Sophia Antipolis cedex
France
Jean-Daniel.Boissonnat
@sophia.inria.fr

Frédéric Cazals
INRIA
BP 93
06902 Sophia Antipolis cedex
France
Frederic.Cazals@sophia.inria.fr

David Cohen-Steiner
INRIA
BP 93
06902 Sophia Antipolis cedex
France
David.Cohen-Steiner
@sophia.inria.fr

Efraim Fogel
School of Computer Science
Tel Aviv University
Tel Aviv 69978
Israel
efif@post.tau.ac.il

Joachim Giesen
ETH Zürich
CAB G33.2, ETH Zentrum
CH-8092 Zürich
Switzerland
giesen@inf.ethz.ch

Dan Halperin
School of Computer Science
Tel Aviv University
Tel Aviv 69978
Israel
danha@tau.ac.il

Lutz Kettner
Max-Planck-Institut für Informatik
Stuhlsatzenhausweg 85
66123 Saarbrücken
Germany
kettner@mpi-inf.mpg.de

Jean-Marie Morvan
Institut Camille Jordan
Université Claude Bernard Lyon 1
43 boulevard du 11 novembre 1918
69622 Villeurbanne cedex
France
morvanjeanmarie@yahoo.fr

Bernard Mourrain
INRIA

VIII List of Contributors

BP 93
06902 Sophia Antipolis cedex
France
Bernard.Mourrain@sophia.inria.fr

Sylvain Pion
INRIA
BP 93
06902 Sophia Antipolis cedex
France
Sylvain.Pion@sophia.inria.fr

Günter Rote
Freie Universität Berlin
Institut für Informatik
Takustraße 9
14195 Berlin
Germany
rote@inf.fu-berlin.de

Susanne Schmitt
Max-Planck-Institut für Informatik
Stuhlsatzenhausweg 85
66123 Saarbrücken
sschmitt@mpi-inf.mpg.de

Jean-Pierre Técourt
INRIA
BP 93
06902 Sophia Antipolis cedex
France
Jean-Pierre.Tecourt
@sophia.inria.fr

Monique Teillaud
INRIA
BP 93
06902 Sophia Antipolis cedex
France
Monique.Teillaud@sophia.inria.fr

Elias Tsigaridas
Department of Informatics and
Telecommunications
National Kapodistrian University of
Athens
Panepistimiopolis 15784
Greece
et@di.uoa.gr

Gert Vegter
Institute for Mathematics and
Computer Science
University of Groningen
P.O. Box 800
9700 AV Groningen
The Netherlands
gert@cs.rug.nl

Ron Wein
School of Computer Science
Tel Aviv University
Tel Aviv 69978
Israel
wein@post.tau.ac.il

Nicola Wolpert
Max-Planck-Institut für Informatik
Stuhlsatzenhausweg 85
66123 Saarbrücken
nicola.wolpert@hft-stuttgart.de

Camille Wormser
INRIA
BP 93
06902 Sophia Antipolis cedex
France
Camille.Wormser@sophia.inria.fr

Mariette Yvinec
INRIA
BP 93
06902 Sophia Antipolis cedex
France
Mariette.Yvinec@sophia.inria.fr

Contents

1 Arrangements
Efi Fogel, Dan Halperin�, Lutz Kettner, Monique Teillaud, Ron Wein,
Nicola Wolpert . 1
1.1 Introduction . 1
1.2 Chronicles . 3
1.3 Exact Construction of Planar Arrangements . 5

1.3.1 Construction by Sweeping . 7
1.3.2 Incremental Construction . 20

1.4 Software for Planar Arrangements . 25
1.4.1 The Cgal Arrangements Package . 26
1.4.2 Arrangements Traits . 33
1.4.3 Traits Classes from Exacus . 36
1.4.4 An Emerging Cgal Curved Kernel . 38
1.4.5 How To Speed Up Your Arrangement Computation in Cgal . . 40

1.5 Exact Construction in 3-Space . 41
1.5.1 Sweeping Arrangements of Surfaces . 41
1.5.2 Arrangements of Quadrics in 3D . 45

1.6 Controlled Perturbation: Fixed-Precision Approximation of
Arrangements . 50

1.7 Applications . 53
1.7.1 Boolean Operations on Generalized Polygons 53
1.7.2 Motion Planning for Discs . 57
1.7.3 Lower Envelopes for Path Verification in Multi-Axis

NC-Machining . 59
1.7.4 Maximal Axis-Symmetric Polygon Contained in a Simple

Polygon . 62
1.7.5 Molecular Surfaces . 63
1.7.6 Additional Applications . 64

1.8 Further Reading and Open problems . 66

X Contents

2 Curved Voronoi Diagrams
Jean-Daniel Boissonnat�, Camille Wormser, Mariette Yvinec 67
2.1 Introduction . 68
2.2 Lower Envelopes and Minimization Diagrams . 70
2.3 Affine Voronoi Diagrams . 72

2.3.1 Euclidean Voronoi Diagrams of Points . 72
2.3.2 Delaunay Triangulation . 74
2.3.3 Power Diagrams . 78

2.4 Voronoi Diagrams with Algebraic Bisectors . 81
2.4.1 Möbius Diagrams . 81
2.4.2 Anisotropic Diagrams . 86
2.4.3 Apollonius Diagrams . 88

2.5 Linearization . 92
2.5.1 Abstract Diagrams . 92
2.5.2 Inverse Problem . 97

2.6 Incremental Voronoi Algorithms . 99
2.6.1 Planar Euclidean diagrams . 101
2.6.2 Incremental Construction . 101
2.6.3 The Voronoi Hierarchy . 106

2.7 Medial Axis . 109
2.7.1 Medial Axis and Lower Envelope . 110
2.7.2 Approximation of the Medial Axis . 110

2.8 Voronoi Diagrams in Cgal . 114
2.9 Applications . 115

3 Algebraic Issues in Computational Geometry
Bernard Mourrain�, Sylvain Pion, Susanne Schmitt, Jean-Pierre
Técourt, Elias Tsigaridas, Nicola Wolpert . 117
3.1 Introduction . 117
3.2 Computers and Numbers . 118

3.2.1 Machine Floating Point Numbers: the IEEE 754 norm 119
3.2.2 Interval Arithmetic . 120
3.2.3 Filters . 121

3.3 Effective Real Numbers . 123
3.3.1 Algebraic Numbers . 124
3.3.2 Isolating Interval Representation of Real Algebraic Numbers . . 125
3.3.3 Symbolic Representation of Real Algebraic Numbers 125

3.4 Computing with Algebraic Numbers . 126
3.4.1 Resultant . 126
3.4.2 Isolation . 131
3.4.3 Algebraic Numbers of Small Degree . 136
3.4.4 Comparison . 138

3.5 Multivariate Problems . 140
3.6 Topology of Planar Implicit Curves . 142

3.6.1 The Algorithm from a Geometric Point of View 143

Contents XI

3.6.2 Algebraic Ingredients . 144
3.6.3 How to Avoid Genericity Conditions . 145

3.7 Topology of 3d Implicit Curves . 146
3.7.1 Critical Points and Generic Position . 147
3.7.2 The Projected Curves . 148
3.7.3 Lifting a Point of the Projected Curve . 149
3.7.4 Computing Points of the Curve above Critical Values 151
3.7.5 Connecting the Branches . 152
3.7.6 The Algorithm . 153

3.8 Software . 154

4 Differential Geometry on Discrete Surfaces
David Cohen-Steiner, Jean-Marie Morvan� . 157
4.1 Geometric Properties of Subsets of Points . 157
4.2 Length and Curvature of a Curve . 158

4.2.1 The Length of Curves . 158
4.2.2 The Curvature of Curves . 159

4.3 The Area of a Surface . 161
4.3.1 Definition of the Area . 161
4.3.2 An Approximation Theorem . 162

4.4 Curvatures of Surfaces . 164
4.4.1 The Smooth Case . 164
4.4.2 Pointwise Approximation of the Gaussian Curvature 165
4.4.3 From Pointwise to Local . 167
4.4.4 Anisotropic Curvature Measures . 174
4.4.5 ε-samples on a Surface . 178
4.4.6 Application . 179

5 Meshing of Surfaces
Jean-Daniel Boissonnat, David Cohen-Steiner, Bernard Mourrain,
Günter Rote�, Gert Vegter . 181
5.1 Introduction: What is Meshing? . 181

5.1.1 Overview . 187
5.2 Marching Cubes and Cube-Based Algorithms . 188

5.2.1 Criteria for a Correct Mesh Inside a Cube 190
5.2.2 Interval Arithmetic for Estimating the Range of a Function . . . 190
5.2.3 Global Parameterizability: Snyder’s Algorithm 191
5.2.4 Small Normal Variation . 196

5.3 Delaunay Refinement Algorithms . 201
5.3.1 Using the Local Feature Size . 202
5.3.2 Using Critical Points . 209

5.4 A Sweep Algorithm . 213
5.4.1 Meshing a Curve . 215
5.4.2 Meshing a Surface . 216

5.5 Obtaining a Correct Mesh by Morse Theory . 223
5.5.1 Sweeping through Parameter Space . 223

XII Contents

5.5.2 Piecewise-Linear Interpolation of the Defining Function 224
5.6 Research Problems. 227

6 Delaunay Triangulation Based Surface Reconstruction
Frédéric Cazals, Joachim Giesen . 231
6.1 Introduction . 231

6.1.1 Surface Reconstruction . 231
6.1.2 Applications . 231
6.1.3 Reconstruction Using the Delaunay Triangulation 232
6.1.4 A Classification of Delaunay Based Surface Reconstruction

Methods . 233
6.1.5 Organization of the Chapter . 234

6.2 Prerequisites . 234
6.2.1 Delaunay Triangulations, Voronoi Diagrams and Related

Concepts . 234
6.2.2 Medial Axis and Derived Concepts . 244
6.2.3 Topological and Geometric Equivalences . 249
6.2.4 Exercises . 252

6.3 Overview of the Algorithms . 253
6.3.1 Tangent Plane Based Methods . 253
6.3.2 Restricted Delaunay Based Methods . 257
6.3.3 Inside / Outside Labeling . 261
6.3.4 Empty Balls Methods . 268

6.4 Evaluating Surface Reconstruction Algorithms 271
6.5 Software . 272
6.6 Research Problems . 273

7 Computational Topology: An Introduction
Günter Rote, Gert Vegter� . 277
7.1 Introduction . 277
7.2 Simplicial complexes . 278
7.3 Simplicial homology . 282
7.4 Morse Theory . 295

7.4.1 Smooth functions and manifolds . 295
7.4.2 Basic Results from Morse Theory . 300

7.5 Exercises . 310

8 Appendix - Generic Programming and The Cgal Library
Efi Fogel, Monique Teillaud . 313
8.1 The Cgal Open Source Project . 313
8.2 Generic Programming . 314
8.3 Geometric Programming and Cgal . 316
8.4 Cgal Contents . 318

References . 321

Index . 341

1

Arrangements

Efi Fogel, Dan Halperin�, Lutz Kettner, Monique Teillaud, Ron Wein, and
Nicola Wolpert

1.1 Introduction

Arrangements of geometric objects have been intensively studied in combina-
torial and computational geometry for several decades. Given a finite collec-
tion S of geometric objects (such as lines, planes, or spheres) the arrangement
A(S) is the subdivision of the space where these objects reside into cells as
induced by the objects in S. Figure 1.1 illustrates a planar arrangement of
circles, which consists of vertices, edges, and faces: a vertex is an intersection

Fig. 1.1. An arrangement of 14 circles in the
plane, with 53 faces (one of which is unbounded),
106 edges, and 59 vertices

point of two (or more) circles,
an edge is a maximal portion
of a circle not containing any
vertex, and a face is a maximal
region of the plane not con-
taining any vertex or edge. For
convenience we also introduce
two (artificial) vertices in each
circle at the x-extreme points
splitting the circle into two x-
monotone arcs (thus each edge
of the arrangement now has
two distinct endpoints).

Arrangements are defined
and have been investigated for
general families of geometric
objects. One of the best stud-
ied type of arrangements is
that of lines in the plane.
This means that arrangements
may have unbounded edges

� Chapter coordinator

2 E. Fogel, D. Halperin, L. Kettner, M. Teillaud, R. Wein, N. Wolpert

and faces. Furthermore, arrangements are defined in any dimension. There
are, for example, naturally defined and useful arrangements of hypersurfaces
in six-dimensional space, arising in the study of rigid motion of bodies in
three-dimensional space.

Written evidence of the study of arrangements goes back to the nineteenth
century (see [249]). We notice three periods in the computational study of
arrangements. From the inception of computational geometry in the seven-
ties till the mid eighties the focus was almost exclusively on the theoretical
study of arrangements of unbounded linear objects, of hyperplanes. Many of
the results obtained during this period are summarized in the book by Edels-
brunner [130]. The central role of arrangements in computational geometry
has fortified in the following period, from the mid-eighties to the mid-nineties,
where the theoretical focus has shifted toward arrangements of curves and sur-
faces. Many of the results obtained in those years are summarized in the book
by Sharir and Agarwal [312] and in the survey papers [15] and [196]. From the
mid nineties till the time of writing this chapter, a new more practical aspect
of the study of arrangements has strengthened, emphasizing implementation
and usage. The goal of robustly implementing algorithms for arrangements
continues to raise numerous challenging technological and scientific problems.
This chapter is devoted to the developments in this applied direction, with an
emphasis on curves and surfaces. It should be noted however, that the appear-
ance of a new topic of study in arrangements never replaced previous trends,
and to this very day the theoretical study of arrangements of hyperplanes or
of arrangements of algebraic curves is a thriving and fruitful domain.

Besides being interesting in their own right, arrangements are useful in
a variety of applications. They have been used in solving problems in ro-
bot motion planning, computer vision, GIS (geographic information systems),
computer-assisted surgery, statistics, and molecular biology, to mention just a
few of the application domains. What makes arrangements such a useful struc-
ture is that they enable the accurate discretization of continuous problems,
without compromising the exactness or completeness of the solution.

When coming to solve a problem using arrangements, we first need to cast
the problem in “arrangement terms”. To this end, there is a large arsenal of
techniques, most of which are rather simple. They include duality transforms
(used to cast problems on point configurations as problems on arrangements
of hyperplanes), Plücker coordinates [287], and the so-called locus method
that analyzes criticalities in a problem and transforms the criticalities into
hypersurfaces in the space where the problem is studied.

The next stage is to understand the combinatorial complexity of the rele-
vant arrangement or of a portion thereof. Quite often, one does not need to
construct the entire arrangement in order to solve a problem, and having only
a substructure is sufficient (e.g., a single connected component of the ambient
space often suffices in solving motion planning problems). This analysis gives
a lower bound on the resources required by the algorithms and data structures
that will be used in the solution.

1 Arrangements 3

Choosing or devising efficient algorithms and data structures to build the
required (sub)arrangement is the next step of solving a problem using arrange-
ments. This and the above two steps have been studied for decades.

Then comes the stage of effective implementation of the solution, which
has various aspects to it. Sometimes asymptotically efficient algorithms are
not necessarily practically the best. Precision and robustness of the solution is
a central issue and raises questions such as: (i) how to cope with degeneracies,
which are typically ignored in theory under the general position assumption;
(ii) is the ready-made computer arithmetic sufficient or do we need to use
more sophisticated machinery? These are the topics that this chapter focuses
on.

The next section of the chapter gives a brief overview of the state-of-the-
art in constructing arrangements. In Sect. 1.3 we survey the main advances in
exact construction of planar arrangements, focusing mostly on the sweep-line
approach, but explaining also what is needed for incremental construction.
In Sect. 1.4 we review the software implementation details of these methods.
The more recent work on the three-dimensional case is discussed in Sect. 1.5.
Stepping away from exact computing is the topic of Sect. 1.6. A tour of imple-
mented applications of curves and surfaces is given in Sect. 1.7. We conclude
in Sect. 1.8 with suggestions for further reading and open problems.

1.2 Chronicles

In 1995, Cgal, the Computational Geometry Algorithms Library, was founded
as a research project with the goal of making the large body of geometric
algorithms developed in the field of computational geometry available for in-
dustrial applications with correct and efficient implementations [2, 222, 156].
It has since then evolved to an Open Source Project and is now representing
the state-of-art in implementing computational geometry software in many ar-
eas. Cgal contains an elaborate and efficient implementation of arrangements
that supports general types of curves.

The recent Ecg project, which stands for Effective Computational Geom-
etry for Curves and Surfaces, running from 2001 to 2004, extended the scope
of implementation research towards curved objects.1 Arrangements of curves
and surfaces were an important theme in this project, and several different
approaches to the topic were taken. This body of work is now collected and
presented in a uniform manner in the following sections of the current chapter.
In this brief section however, we present how the different results evolved.

The first branch of research, undertaken at Tel-Aviv University, Israel,
is founded on the Cgal arrangement computation. Originally the Cgal ar-
rangements package supported line segments, circular arcs and restricted types
of parabolas. Wein [331] extended the Cgal implementation to ellipses and

1〈http://www-sop.inria.fr/prisme/ECG/〉

4 E. Fogel, D. Halperin, L. Kettner, M. Teillaud, R. Wein, N. Wolpert

arcs of conics, where the conics can be of any type. Following the newly
emerging requirements from curves on the software, Fogel et al. [167, 166]
improved and refined the software design of the Cgal arrangement package.
This new design formed a common platform for a preliminary comparison
documented in [165] of the different arrangement computation approaches
described here. Recently the whole package has been revamped [333] leading
to more compact, easier-to-use code, which in certain cases is much faster
than the results reported in [165], sometimes by a factor of ten or more. The
description in Section 1.4 pertains to this latest design.

The second branch of research, undertaken at the Max-Planck Institute
of Computer Science in Saarbrücken, Germany, produces a set of C++ li-
braries in the project Exacus (Efficient and Exact Algorithms for Curves
and Surfaces) [4] as contribution in the Ecg project with support for the
Cgal arrangement class. The design of the Exacus libraries is described in
Berberich et al. [48]. The theory and the implementations for the different
applications behind Exacus are described in the following series of papers:
Berberich et al. [49] computed arrangements of conic arcs based on the im-
proved Leda [251] implementation of the Bentley-Ottmann sweep-line algo-
rithm [46]. Eigenwillig et al. [140] extended the sweep-line approach to cubic
curves. A generalization of Jacobi curves for locating tangential intersections
is described by Wolpert [341]. Berberich et al. [50] recently extended these
techniques to special quartic curves that are projections of spatial silhou-
ette and intersection curves of quadrics, and lifted the result back into space.
The recent extension to algebraic curves of general degree by Wolpert and
Seidel [310] exists currently only as a Maple prototype.

The third branch of research, undertaken at INRIA Sophia-Antipolis in
France and The National University of Athens in Greece, proposes a design
for a more systematic support of non-linear geometry in Cgal focusing on
arrangements of curves. This implementation was limited to circular arcs and
yielded preliminary results for conical arc, restricted to elliptic arcs [145].
More work on this kernel is in progress. Their approach is quite different from
the approach taken in the Exacus project in that it avoids the direct ma-
nipulation of algebraic numbers. Instead, by using algebraic tools like Sturm
sequences (that are statically precomputed for small degrees for increased
efficiency), they reduce operations such as comparison of algebraic numbers
to computing signs of polynomial expressions, which can be done with exact
integer arithmetic. In addition, this allows the use of efficient filtering tech-
niques [116, 144]. This method is expected to compare favorably against the
algebraic numbers used elsewhere.

Efforts towards exact and efficient implementations have been made in
the libraries Mapc [226] and Esolid [225], which deal with algebraic points
and curves and with low-degree surfaces, respectively. Both libraries are not
complete in the sense that they require surfaces to be in general position.

Computer algebra methods, based on exact arithmetic, guarantee correct-
ness of their results. A particularly powerful and complete method related to

1 Arrangements 5

our problems is cylindrical algebraic decomposition invented by Collins [101,
100] and subsequently implemented (with numerous refinements). Our ap-
proach to curve and curve pair analysis can be regarded as a form of cylindri-
cal algebraic decomposition of the plane in which the lifting phase has been
redesigned to take advantage of the specific geometric setting; in particular,
to reduce the degree of algebraic numbers in arithmetic operations.

Much of the work described in this chapter relies on having effective al-
gebraic software available, like algebraic number types (as the ones provided
by Leda and Core), or other algebraic tools. Exactness and efficiency also
require the use of adapted number types and filtering techniques. Develop-
ments in these areas, which are independent of computing arrangements, are
discussed in Chapter 3.

1.3 Exact Construction of Planar Arrangements

Implementing geometric algorithms in a robust way is known to be notori-
ously difficult. The decisions made by such algorithms are based on the re-
sults of simple geometric questions, called predicates, solved by the evaluation
of continuous functions subject to rounding errors (if we use the standard
floating-point computer arithmetic), though the algorithms are basically of
combinatorial and discrete nature. The exact evaluation of predicates has be-
come a research topic on its own in recent years, in particular for the case of
arrangements of curves.

Algorithms for computing arrangements of curves (or segments of curves)
require several operations to be performed exactly. One essential predicate,
for example, is the xy-comparison that takes two endpoints or intersection
points of two segments and compares them lexicographically. This predicate
is known to be very sensitive to numerical errors: If the relation given by the
comparison test is not transitive, due to erroneous numerical computations,
the algorithm may fail.

Let us assume that we are given a set B of planar x-monotone curves
that are pairwise disjoint in their interior — that is, two curves in B may
have a common endpoint but cannot have any other intersection points. The
doubly-connected edge list (Dcel for short) is a data structure that allows a
convenient and efficient representation of the planar subdivision A(B) induced
by B. We represent each curve using a pair of directed halfedges, one going
from the left endpoint (lexicographically smaller) of the curve to its right end-
point, and the other (its twin halfedge) going in the opposite direction. The
Dcel consists of three containers of records: vertices (associated with pla-
nar points), halfedges, and faces, where halfedges are used to separate faces
and to connect vertices. We store a pointer from each halfedge to its incident
face, which is the face lying to its left. In addition, every halfedge is followed
by another halfedge sharing the same incident face, such that the destination
vertex of the halfedge is the same as the origin vertex of its following halfedge.

6 E. Fogel, D. Halperin, L. Kettner, M. Teillaud, R. Wein, N. Wolpert

e

v1

v2

e′

f2

f̃
f1

f3

Fig. 1.2. A portion of the arrangement depicted in Fig. 1.1 with some of the Dcel

records that represent it. f̃ is the unbounded face. The halfedge e (and its twin e′)
correspond to a circular arc that connects the vertices v1 and v2 and separates the
face f1 from f2. The predecessors and successors of e and e′ are also shown — note
that e, together with its predecessor and successor halfedges form a closed chain
representing the boundary of f1 (lightly shaded). Also note that the face f3 (darkly
shaded) has a more complicated structure as it contains a hole in its interior

The halfedges are therefore connected in circular lists and form chains, such
that all halfedges of a chain are incident to the same face and wind in a coun-
terclockwise direction along its outer boundary. See Fig. 1.2 for an illustration.

The full details concerning the Dcel records are omitted here. We only
mention that the Dcel representation is very useful for algorithms that re-
quire traversal of a subdivision, or for computing the overlay of two planar
subdivisions. See [111, Sect. 2.2] for further details and examples.

In a scenario more general than above, we are given a set C of planar
curves. A curve C ∈ C may not necessarily be x-monotone and it may intersect
any other curve C ′ ∈ C in a finite number of points, or alternatively, it may
(partially) overlap it. If we wish to construct a Dcel that represents A(C), the
arrangement (or planar subdivision) induced by C, we perform the following
steps:

• Subdivide each C ∈ C into x-monotone segments. We denote the result-
ing set as Ĉ. We prefer that our Dcel contain only x-monotone curves as
this not only makes its maintenance much simpler, but also enables us to
construct a data structure on top of the Dcel, based on vertical decom-
position, that enables us to answer point-location queries efficiently (see
Sect. 1.3.2).

1 Arrangements 7

To allow for degenerate input, we only require that each curve in Ĉ is
weakly x-monotone, where vertical segments are also considered to be
weakly x-monotone.

• Compute all the intersections between the curves in Ĉ, and subdivide the
curves into subcurves that are pairwise disjoint in their interior. Let B be
the resulting set.

• Construct a Dcel representing A(B). The edges in this subdivision corre-
spond to the subcurves of C, where we can store with each edge a pointer
to the original curve C ∈ C that contributed the corresponding subcurve.
In case of an overlapping edge, we may have to store multiple pointers. It
immediately follows that A(C) = A(B).

We will discuss two different approaches for computing arrangements of
curves and the implementation of the predicates they require. In Sect. 1.3.1
we present an approach based on the Bentley and Ottmann sweep-line al-
gorithm [46]. We first describe this algorithm in its original setting for line
segments. We then show how it can be adapted to arbitrary x-monotone curves
and derive the necessary predicates. We explain in detail how these predicates
can be implemented for conics, i.e., implicit algebraic curves of degree 2.2 We
then briefly examine the case of algebraic curves of degree 3, also known as
cubic curves, and describe what difficulties emerge as the degree of the curves
increases. Our experience shows that the sweep-line approach is the fastest in
practice.

The second general approach for computing arrangements of curves, pre-
sented in Sect. 1.3.2, is an incremental one. The advantage of this method
in comparison to the sweep-line algorithm is that it is on-line. Furthermore,
as a by-product of the incremental construction one can produce an efficient
point-location structure. We first explain how the arrangement is constructed
by inserting the curves one by one. We then describe point location strategies,
and conclude by deriving the predicates needed by the incremental approach.

1.3.1 Construction by Sweeping

The Classical Sweep-Line Algorithm

The famous sweep-line algorithm of Bentley and Ottmann [46] was originally
formulated for sets of line segments. For completeness, we give a sketch of this
algorithm, with the general position assumptions that no segment is vertical,
no three segments intersect at a common point and no two segments overlap.3

2An algebraic curve of degree d is the locus of points that satisfy the equation∑d

i=0

∑d−i

j=0
cijx

iyj = 0, where cij ∈ R for all indices i and j.
3The original algorithm of Bentley and Ottmann only detects and reports the

intersection points between the input segments. However, it can be easily augmented
to compute the arrangement.

8 E. Fogel, D. Halperin, L. Kettner, M. Teillaud, R. Wein, N. Wolpert

The main idea is that the static two-dimensional problem is transformed
into a dynamic one-dimensional one. An imaginary vertical line, called the
sweep line, is swept over the plane from left to right. At each time during
the sweep a subset of the input segments intersect the sweep line in a certain
order. While moving the sweep line along the x-axis a change in the topology
of the arrangement takes place when this ordering changes. This happens at
a finite number of event-points: intersection points of two segments and left
endpoints or right endpoints of segments.

The following invariants are maintained during the sweep:

1. All event points to the left of the sweep line (more precisely, all event
points that are xy-lexicographically smaller than the current event point)
have been discovered and handled.

2. The ordered sequence of segments intersecting the sweep line is stored in
a dynamic structure called the Y-structure.

3. The event points, namely segment endpoints and all intersection points
that have already been discovered but not yet handled (that is, they are
to the right of the sweep line), are stored in a second dynamic structure,
named the X-structure, in xy-lexicographic order.

We initialize the X-structure by inserting all segment endpoints into it,
while the Y -structure is initially empty. We iteratively extract the lexico-
graphically smallest event point from the X-structure. We are done if the X-
structure is empty. Otherwise, we move the sweep line past this event point
and update the X- and Y -structures according to the following type of the
event point (in what follows, one of the segments sa or sb, or both, may not
exist):

• If the event is the left endpoint of a segment s, we insert s into the Y -
structure according to its y-order along the sweep line. Let sa and sb be
the segments above and below s after the insertion, respectively. If s and
sa intersect, we insert their intersection point into the X-structure. We do
the same for s and sb.

• If the event is the right endpoint of a segment s, we remove s from the
Y -structure. Let sa and sb be the segments above and below s immedi-
ately before the deletion, respectively. After the deletion sa and sb become
adjacent in the Y -structure. If they intersect at a point with a larger x-
coordinate than the current one, we insert their intersection point into the
X-structure (unless it already exists there).

• If the event is the intersection point of s1 and s2, we swap their position
in the Y -structure. Assume, without loss of generality, that after the swap
s2 lies above s1. Let sa be the segment above s2 and sb be the segment
below s1. If sa and s2 intersect, we insert their intersection point into the
X-structure. We do the same for s1 and sb.

The running time of this algorithm for a set of n input segments that
intersect in k points is O((n+k) log n). It is possible to guarantee O(n) space

1 Arrangements 9

complexity by removing intersection points of segments from the X-structure
as soon as the segments are no longer adjacent along the sweep line.

As we have already mentioned, the sweep-line algorithm was originally
formulated with some restrictions on the input segments. It can be modified
in a way that it can handle any set of line-segments, containing various kinds
of degeneracies — see [111, Sect. 2.1] and [251, Sect. 10.7].

Sweeping Non-Linear Curves

Already Bentley and Ottmann observed that the sweep-line algorithm can
be used to handle arbitrary x-monotone curves (or x-monotone segments of
arbitrary planar curves). Two implicit assumptions are made by the “classical”
algorithm: a pair of segments can intersect at most once, and two segments
swap their relative position when they intersect. These assumptions do not
necessarily hold for general curves, but we can easily remedy the situation:

• Instead of checking whether two curves intersect, we check whether they
have an intersection point to the right of the current event point pe. If there
are several intersection points lying to the right of pe, it is sufficient, at the
current event, to consider only the leftmost one. However, if all intersection
points are available, we can insert them all into the X-structure.

• When we deal with an intersection event of two curves, we have to con-
sider the multiplicity of the intersection point (see Chap. 3 for the exact
definition of the multiplicity of an intersection point). If the multiplicity is
odd, the two curves swap their relative vertical positions and we proceed
as in the case of line segments. If, however, the multiplicity is even, the two
curves maintain their initial positions and no new adjacencies are created
in the Y -structure.

If we drop the general position assumption and allow several curves to
intersect at a common point p, we have to be a bit more careful when the sweep
line passes over p. For straight line segments the y-order of the intersecting
segments just has to be reversed, but this, of course, is not necessarily true
for arbitrary curves. The following algorithm, taken from [49], determines the
y-order of k curves immediately to the right of p, whose order to the left of
p is C1, . . . , Ck, in time O(M · k), where M is the maximal multiplicity of a
pairwise intersection of the curves:

Lemma 1. Given the y-order of the curves C1, . . . , Ck passing through a com-
mon point p immediately to the left of p, algorithm OrderToRight correctly
computes the y-order of the curves immediately to the right of p.

Proof. Notice that as our x-monotone curves are defined to the left and to
the right of p = (px, py), we can conceptually treat them as univariate func-
tions y = Ci(x). Each Ci is developed in a Taylor series locally around p:

10 E. Fogel, D. Halperin, L. Kettner, M. Teillaud, R. Wein, N. Wolpert

Algorithm 1 OrderToRight (C1, . . . , Ck; p)
1: For each 1 ≤ i < k do:
1.1: Compute mi, the multiplicity of intersection of the curves Ci and Ci+1 at p.
2: Let M ←− max {m1, . . . , mk−1}.
3: Let m ←− M .
4: While m ≥ 1 do:
4.1: Form maximal subsequences of curves, where two curves belong to the same

subsequence, if they are not separated by a multiplicity less than m.
4.2: Reverse the order of each subsequence.
4.3: m ←− m − 1.

Ci(x) =
∑∞

ν=1 ciν(x − px)ν , with ciν = C
(ν)
i

(xp)

ν! . Two arbitrary curves Ci

and Cj intersect with multiplicity m in p iff m is the least index for which
cim �= cjm (or equivalently, C(m)

i (px) �= C
(m)
j (px)). The y-order of Ci and Cj

immediately to the left (and immediately to the right) of p is determined by
the values of cim and cjm. This is because locally around p the low-degree
terms of the Taylor expansion Ci and Cj are the dominating ones. Without
loss of generality assume cim < cjm. If m is even, the y-order to the left is
Ci ≺ Cj (Ci is below Cj), the one to the right is also Ci ≺ Cj . If m is odd,
the y-order to the left is Cj ≺ Ci, the one to the right is Ci ≺ Cj . Thus, for
m odd the two curves change their y-order at the point p.

The algorithm above only computes the intersection multiplicities for
neighboring pairs of curves with respect to their y-order to the left of p. Now
let Ci and Cj , i < j, be two arbitrary curves with intersection multiplicity m.
We claim that m = µ with µ = min{mi, . . . ,mj−1}. The inequality m ≥ µ is
trivial since all Taylor series of neighboring pairs of curves in (Ci, . . . , Cj) are
identical at least up to index µ−1, and so are the ones of Ci and Cj . Thus, we
assume that m > µ and let l, i ≤ l < j, be the least index such that µ = ml.
The Taylor series of Cl and Cl+1 differ at index µ and by the choice of l, so do
the series of Ci and Cl+1. Since Ci and Cj are identical at least up to index µ
the y-order of Ci and Cl+1 to the left of p equals the y-order of Cj and Cl+1

there. This contradicts the given y-order Ci ≺ Cl+1 ≺ Cj to the left of p, and
we conclude that m = min{mi, . . . ,mj−1}. In particular, we have proved that
the maximal multiplicity of intersection among all curves C1, . . . , Ck is given
by max {m1, . . . ,mk−1}.

The y-order to the right of p of Ci and Cj differs from their y-order to
the left of p iff m is odd. Observe that m = min{mi, . . . ,mj−1} is exactly the
number of times Ci and Cj belong to the same subsequence in the algorithm,
i.e. the number of times their order is reversed. We conclude the order of Ci

and Cj is reversed iff Ci and Cj cross at p.

We are now ready to define the set of geometric operations (predicates and
geometric constructions) needed to realize the sweep for general curves and
curve segments. The first operation that must be defined in order to make the

1 Arrangements 11

sweep applicable is the conversion of input curves, which may not necessarily
be x-monotone, to a set of x-monotone curves inducing the same arrangement:

Make x-monotone: Given a curve (or a curve segment), subdivide it into max-
imal x-monotone segments, also referred to as sweepable segments.

The geometric operations then needed by the sweep-line algorithm involve
points and x-monotone segments of curves:

Compare xy: Given two points p and q, compare them lexicographically. This
predicate is needed to sort the event points in the X-structure.

Point position: Given an x-monotone curve segment C and a point p in the
x-range of C, determine whether p is vertically above, below, or on C.
In the context of the sweep algorithm, this predicate is used to insert the
leftmost endpoint of a sweepable curve into the Y -structure by locating its
position with respect to the existing curves in the structure. The predicate
is also used by some point-location strategies (see Sect. 1.3.2).

Compare to right: Given two curves C1 and C2 that intersect at a given point
p, determine the y-order of C1 and C2 immediately to the right of p. This
predicate is used to insert new curves into the Y -structure, when their
leftmost endpoint lies on an existing curve in the structure. (It is also
used in the incremental construction algorithm to determine the location
of the inserted curve when its left endpoint lies on an existing arrangement
edge or coincides with an existing vertex.)

Intersections: Given two curves C1 and C2, compute all the intersection points
of C1 and C2 and their multiplicities. In degenerate situations, the two
curves may overlap. In this case we return the overlapping segment as
their next intersection. We omit here the technical details concerning the
handling of overlaps.

We next give an overview of the algebraic methods used to implement
the operations above for arrangements of algebraic curves of degree 2 (conic
curves), based on [49] and [331], and of curves of degree 3 (cubic curves),
based on [140].

As already mentioned, it is impossible to robustly implement the sweep-
line algorithm as-is using machine-precision floating-point arithmetic. Instead,
we should work with a number type that can carry out mathematical oper-
ations in an exact manner. Our main task is to minimize the set of oper-
ations required from the number type, and we show that it is sufficient to
use number types that enable the construction from an (unbounded) integer
and support the arithmetic operations {+,−,×,÷}, the square-root opera-
tion, and comparisons on these numbers, in an exact manner. Such number
types are provided by the Leda library [251] and by the Core library [3].4

4The work of Emiris et al. [145], which is based on different methods, reducing
the comparison of algebraic numbers to computing signs of polynomial expressions,
and thus does not require the manipulation of such number types, is not described
in this section. We refer the reader to Chap. 3.

12 E. Fogel, D. Halperin, L. Kettner, M. Teillaud, R. Wein, N. Wolpert

Another important task is to minimize the number of exact numerical opera-
tions, since these operations are typically more time consuming than machine
floating-point arithmetic.

In our analysis of the operations, we pay attention to special classes of real
numbers that we can handle using Leda or Core’s exact number types:

Definition 1. A real number α ∈ R is a one-root number if it can be expressed
as q1 + q2

√
q3 where q1, q2, q3 ∈ Q.

Any algebraic number of degree 2, namely any real-valued solution to a
quadratic equation with rational coefficients ax2 + bx + c = 0, is a one-root
number as it has the form α = − b

2a ± 1
2a

√
b2 − 4ac.

Definition 2. The field of real-root expressions (FRE), denoted IF, is the
closure of the integers under the operations

{
+,−,×,÷,√

}
.

IF is a subfield of the field of real algebraic numbers and contains the set
of one-root numbers. We also note that the solution of a quadratic equation
whose coefficients are one-root numbers can be represented using only the{

+,−,×,÷,√
}

operations, therefore it is in IF. When we use the leda real

class of Leda or the Expr class of Core as our number-type, we have the im-
portant property that we can carry out exact comparisons of any two numbers
in IF.

Conics

We now show how to realize the geometric operations needed by the sweep-
line algorithm for sets of conic curves, or segments of such curves (we use
the term conics for short). A conic curve is implicitly defined by a quadratic
polynomial:

C(x, y) = rx2 + sy2 + txy + ux+ vy + w ∈ R[x, y] .

However, in the rest of this section we will confine ourselves to deal with curves
with rational coefficients, that is, C(x, y) ∈ Q[x, y]. The conic curve consists
of all points (x, y) ∈ R

2 in the real plane for which C(x, y) = 0 holds. In what
follows we will always identify the curve and its defining polynomial. A conic
arc is a segment of a conic curve, represented by a supporting conic curve,
the two delimiting endpoints, and the orientation in which the two endpoints
are connected (clockwise or counterclockwise).

There are three types of curved conics, namely ellipses, parabolas, and
hyperbolas, where the sign of the expression ∆C = 4rs − t2 characterizes the
type of conic:

• ∆C > 0 is a necessary (but not sufficient, because of degeneracies —
see below) condition that the conic curve C is an ellipse (e.g., C(x, y) =
x2 + 2y2 − 1),

1 Arrangements 13

• ∆C = 0 is a necessary (but not sufficient) condition that the conic curve
C is a parabola (e.g., C(x, y) = x2 + 4y2 + 4xy − y),

• ∆C < 0 is a necessary (but not sufficient) condition that the conic curve
C is a hyperbola (e.g., C(x, y) = x2 − y − 1).

There also exist some non-curved forms of conic curves. If r = s = t = 0,
the conic C degenerates to a single line. In addition, we can encounter line-
pairs that can be either intersecting (e.g., C(x, y) = (x+y−1)(2x+y+1)) or
parallel (e.g., C(x, y) = (x+y−1)(x+y+1)). Conics can also be degenerate,
such as the empty set (e.g., C(x, y) = x2 + y2 + 1) or a single point (e.g.,
C(x, y) = x2 + y2). Indeed, it is important for some applications to handle
non-curved conics (see Sect. 1.7) and due to our aim of completeness we wish
to handle all types of degenerate conics. For a complete implementation that
can handle all, even all degenerate conics, consider for example Exacus [4].
However, for the sake of simplicity we will not discuss all cases in full detail
in this book but mainly focus on ellipses, parabolas, and hyperbolas. We just
mention that each kind of conic is completely characterized by the sign of ∆C

and the number of real roots of the polynomial pC(x) = (tx+ v)2 − 4s(rx2 +
ux+w).5 Extending the following details for curved conics to non-curved (and
even degenerate) conics is not too difficult and left to the reader.

Recall that we are interested in the points (x, y) ∈ R
2 with C(x, y) = 0.

Given x0, the points on C whose x-coordinates equal x0 are given by solving
the equation:

sy2 + (tx0 + v)y + (rx2
0 + ux0 + w) = 0 .

Let us assume that s �= 0, then there may be at most two such points, with
their y-coordinates given by:

y1,2(x0) =
−(tx0 + v) ±

√
(tx0 + v)2 − 4s(rx2

0 + ux0 + w)
2s

. (1.1)

We distinguish three different cases:

1. If (tx0 + v)2 − 4s(rx2
0 + ux0 + w) > 0, then y1 and y2 are real numbers

and there are two points (x0, y1), (x0, y2) ∈ R
2 that lie on the curve C.

2. For (tx0 + v)2 − 4s(rx2
0 + ux0 + w) = 0 we have y1 = y2, thus there is a

single point (x0, y1) ∈ R
2 that lies on the curve C.

3. If (tx0 + v)2 − 4s(rx2
0 + ux0 + w) < 0, then y1, y2 ∈ C \ R and there are

no points on C whose x-coordinate equals x0.

As both roots y1, y2 evolve continuously as we move x0 along the x-axis, it
follows that when case 2 above occurs, the tangent to C at (x0, y1) is vertical
(or, if we allow line-pairs, we may have a singularity caused by the intersection
point of the two lines). We are now ready to implement the first geometric
operation.

5This is the number of points on C with a vertical tangent — see below. In
degenerate cases, this is the number of singular points on C.

14 E. Fogel, D. Halperin, L. Kettner, M. Teillaud, R. Wein, N. Wolpert

Make x-monotone: We locate the points with a vertical tangent (or at which
a singularity occurs) by computing the x-values for which

(tx+ v)2 − 4s(rx2 + ux+ w) = 0 ,

which gives the following quadratic equation:

(t2 − 4rs)x2 + 2(tv − 2su) + (v2 − 4sw) = 0 . (1.2)

Let x1, x2 be the real-valued roots of this quadratic equation. (Notice that
for a parabola t2 − 4rs = 0 and we have just a single point with a vertical
tangent.) The y-coordinates are simply given by:

yi = − txi + v

2s
for i = 1, 2 .

The points pi = (xi, yi) that have vertical tangents (or at which a singular-
ity occurs) are called one-curve events.6 Having located these points, we
subdivide C into maximally connected components of { (x, y) | C(x, y) =
0 } \ {p1, p2} which are sweepable x-monotone conic arcs.

It is important to note that as the conic coefficients are all rational, the
coordinates of the one-curve events are one-root numbers. But what can we
say about two-curve events, namely the intersection points of two conics C1

and C2? Using resultant calculus (see more details in Chap. 3) we can directly
compute the polynomial ξI(x) = resy(C1, C2) ∈ Q[x] whose roots are exactly
the x-coordinates of the intersection points of C1 and C2. The degree of ξI is
at most 4. Similarly, the y-coordinates of the intersection points are the roots
of the polynomial ηI(y) = resx(C1, C2), such that deg(ηI) ≤ 4 — but we show
that we do not have to compute them exactly.

A root α of ξI with multiplicity m originates either from one intersection
point (α, β) of C1 and C2 of multiplicitym, or from two co-vertical intersection
points (α, β1) and (α, β2) of multiplicities m1 and m2 respectively, where m1+
m2 = m. This especially means that a simple root of ξI (having multiplicity
1) is always caused by one transversal intersection of the two curves. It is easy
to see that a degree-four polynomial ξI either has four simple roots, or all its
roots are one-root numbers.

The coordinates of the intersection points can thus be represented in one
of the following two ways: One-root numbers are represented explicitly, while
all the simple roots α that cannot be expressed as one-root numbers are stored
in their interval representation, namely α is represented by the tuple 〈ξ, l, r〉
where ξ is the generating polynomial (ξ(α) = 0) and [l, r] is a rational isolating
interval (l, r ∈ Q) for α. By isolating interval for α we mean that α ∈ [l, r] but
β �∈ [l, r] for any other root β of ξ. Using these two representations it is clear

6The y-coordinates of a singular point are roots of the quadratic equation (ty +
u)2 − 4r(sy2 + vy + w) = 0, so it is not difficult to distinguish between a vertical
tangency point and a singular point.

1 Arrangements 15

that all algebraic numbers we obtain as the x-coordinates of either one-curve
or of two-curve events are comparable. Whenever we have an interval repre-
sentation 〈ξ, l, r〉 of a simple root α we know that the generating polynomial ξ
is square-free. Thus, we can refine the isolating interval by iteratively halving
it and examining at the signs of ξ(l), ξ(l+r

2), and ξ(r), until we finally obtain
that α ∈ [l′, r′] ⊂ [l, r], where (r′ − l′) is arbitrarily small.

We are now ready to devise a framework for the implementation of the rest
of the sweep-line predicates and constructions. We denote by Ĉ a sweepable
x-monotone conic arc supported by the curve C, where we can write, using
the notation of Equation (1.1), that either Ĉ(x) = y1(x) or Ĉ(x) = y2(x).

Intersections: Let C1 and C2 be the supporting conics of the two given x-
monotone conic arcs Ĉ1 and Ĉ2, and let ξI(x) be the resultant of C1 and
C2 with respect to y. The only x-coordinates at which an intersection
between the supporting conic curves can take place are the real roots of
ξI . Let α be a real root of ξI . We show how to decide whether the two
arcs Ĉ1 and Ĉ2 intersect at x = α.
If α is a simple root of ξI , then the sweepable arcs Ĉ1 and Ĉ2 intersect
transversally at x = α, if they intersect there at all. Let [αl, αr] be the iso-
lating interval of α. We refine this interval until it contains no x-coordinate
of any one-curve event of the supporting conics C1 or C2. Now our two
x-monotone arcs are defined on the entire refined interval [α′

l, α
′
r] and they

intersect at most once in this interval. It is sufficient to check whether the
signs of Ĉ1(α′

l) − Ĉ2(α′
l) and Ĉ1(α′

r) − Ĉ2(α′
r) differ. We therefore need to

compute the signs of one-root numbers in this case, since α′
l, α

′
r ∈ Q . On

the other hand, if α is a one-root number, we simply have to check whether
the y-values Ĉ1(α) and Ĉ2(α) are equal (note that Ĉ1(α), Ĉ2(α) ∈ IF).
We still have to determine the multiplicity of the relevant intersection
point(s). Let α be a root of ξI of multiplicity m. The case m = 1 is easy
because we have exactly one transversal intersection point of C1 and C2

at x = α. If m > 1, then we know a one-root expression for α. We can
compute the roots of C1(α, y) = 0 and of C2(α, y) = 0 and determine
whether we have a single intersection point with multiplicity m, in which
case we are done, or if there are two co-vertical intersections (α, β1) and
(α, β2) with multiplicities m1 and m2 respectively (where m1 +m2 = m).
We assume now that we have two covertical intersection. If m = 2 then
obviouslym1 = m2 = 1 and we are done. Otherwise, we test whethermi ≥
2, by checking whether the normal vectors ∇C1(α, βi) and ∇C2(α, βi) are
parallel.7 If m1,m2 ≥ 2, then m1 = m2 = 2 as m ≤ 4. Otherwise, m1 = 1
and m2 = m− 1 (or vice versa).

Compare xy: We are given two points p and q that we wish to compare lex-
icographically. Let us assume that p lies on the sweepable conic segment
Ĉ1 and that q lies on Ĉ2.

7If f : R
2 −→ R, ∇f(x0, y0) denotes the vector

(
∂f
∂x

(x0, y0),
∂f
∂y

(x0, y0)
)
.

16 E. Fogel, D. Halperin, L. Kettner, M. Teillaud, R. Wein, N. Wolpert

We first compare the x-coordinates of p and q. If both are one-root num-
bers we can do this directly. If only one of the coordinates is a one-root
number (say px), we can check whether it lies in the isolating interval of
qx; if not, we are done. Otherwise, we should check whether px is a root of
the generating polynomial of qx. If it is, the two x-coordinates are equal,
and otherwise we can refine the isolating interval of qx until it does not
contain px.
The most interesting case occurs when the two coordinates are represented
using their generating polynomials ξ(p)

I and ξ(q)I with their isolating inter-
vals. If the intervals do not overlap, we can easily compare the two values.
Otherwise, we compute g = gcd(ξ(p)

I , ξ
(q)
I) and check whether deg(g) > 1.

If so, we check whether the gcd-polynomial has a root that equals px and
qx. To this end, we compute the intersection [l, r] of the two isolating in-
tervals of p and q and test whether g(l) · g(r) < 0. If this is the case, we
conclude that px = qx. Otherwise, we conclude that px �= qx and we refine
the isolating intervals of the two values until they do not overlap and we
can compare them unambiguously.
Let us assume that the x-coordinates of the two points both equal α
and we turn to compare the y-coordinates in this case. If we store the
y-coordinates in a similar manner to the x-coordinates, we can simply
compare py and qy as we did for the x-coordinates. However, we can
implement the predicate without having to compute the y-coordinates in
advance. If we know a one-root expression for α, we can simply compute
Ĉ1(α), Ĉ2(α) ∈ IF and compare their values — so assume otherwise. We
compute the resultant ξI of the underlying conics C1 and C2 and compare
α to its roots. If α is equal to one of the roots we proceed as described in
the Intersections procedure. Otherwise, we refine the isolating interval
of α until it contains no one-curve events of C1 or C2 and then use the
fact that the y-order of the two segments at α is the same as the y-order
at either end of the isolating interval of α.

Point position: We want to determine whether a point p in the x-range of an
x-monotone conic arc Ĉ is vertically above, below, or lies on Ĉ. Note that
the predicate Compare xy described above also resolves this predicate,
if we consider p and Ĉ(px), the point located on Ĉ having the same x-
coordinate as p.

Compare to right: Given the x-monotone conic arcs Ĉ1 and Ĉ2, along with
their intersection point p = (α, β), we wish to compute the y-order of
the arcs immediately to the right of p. Assume that we know a rational
number r > α such that both Ĉ1 and Ĉ2 are defined on [α, r] and do not
intersect in the interval (α, r], then the y-order immediately to the right
of α is the same as the y-order at r.
How can we obtain r? If α is a simple root of the resultant of C1 and C2,
we refine its isolating interval until it contains no one-curve event points
of C1 or C2 and take r as the right endpoint of the isolating interval. If

1 Arrangements 17

α is a multiple root of the resultant, we have one-root expressions for all
roots and we take a rational point to the right of α and within the x-range
of the two segments.

Cubics

(a) (b) (c)

Fig. 1.3. Special points on cubic curves: (a) The curve x = y3 has an inflection
point with a vertical tangent at the origin; (b) y2 = x3 + x2 intersects itself at the
origin; (c) The curve y2 = x3 has a cusp at the origin

What are the difficulties in proceeding from arrangements of conics further
on to arrangements of cubic curves (cubics for short), i.e., algebraic curves of
degree three? The main distinction between the cases is the field of coordi-
nates.

• As we have seen, the sweep-line algorithm works on x-monotone curve
segments. Conics need to be split at their one-curve event points, and we
have shown that their coordinates are in the field of real-root expressions
IF. For cubics, these split points are not necessarily in IF.

• The x-monotone segments of algebraic curves have parameterizations y(x),
according to the Implicit Function Theorem. In the case of conics, the y-
value can be expressed using one square root (see Equation (1.1)), which
allows for a simple comparison of the y-coordinates of different x-monotone
arcs within IF. The x-monotone segments of cubics have no parameteriza-
tion as functions of x within IF.

• Conics have some properties that make them easier to handle, namely,
they are always convex and never self-intersecting (with the exception of
the degenerate case of a pair of intersecting lines). Cubic curves, on the
other hand, can have inflection points where they change their convexity
(especially notice that a cubic curve may have a vertical tangent at its

18 E. Fogel, D. Halperin, L. Kettner, M. Teillaud, R. Wein, N. Wolpert

inflection point while still being x-monotone; see for example Fig. 1.3(a))
and singular points like self-intersections (Fig. 1.3(b)) or cusps (Fig. 1.3(c)).

• Two conics may have at most four intersection points and only the coor-
dinates of transversal intersections are not in IF. No such simplification
holds for cubic curves. Two cubics may have as many as nine intersection
points, where the coordinate of an intersection point of multiplicity 4 (or
less) is in general not in IF.

In what follows we briefly summarize the main ideas for analyzing the
behavior of one and two cubic curves at any given x-coordinate x = x0 from
which the realization of the predicates follows. For more details we refer the
reader to [140].

(a) (b)

Fig. 1.4. (a) One-curve event points, and (b) two-curve event points (the one-curve
events, only necessary for the dotted curve, are also marked). The vertical lines
denote the division of the x-axis into maximal intervals along which the order of the
branches does not change

With the goal of sweeping in mind, we have to subdivide each cubic curve
C to x-monotone branches and to maintain their ordering at any given x-
coordinate x0. Thus we need to determine the number of branches and their
relative position along the line x = x0. Algebraically, this means that we are
interested in the number and order of the real roots of C(x0, y) ∈ R[y]. As
was the case with conic curves, these real roots evolve smoothly as we vary
x0, except for some special points, the one-curve events (see Fig. 1.4(a)). We
therefore have to locate the points pi = (xi, yi) such that yi is a double root of
C(xi, y) ∈ R[y]. These points pi are exactly the intersection points of C(x, y)
and ∂C

∂y (x, y), and can thus be computed using resultant calculus. By choosing
an appropriate coordinate system, we avoid inflection points having a vertical
tangent.

1 Arrangements 19

To obtain the x-coordinates of the one-curve event points of C we compute
the roots of the resultant8 ξV = resy(C, ∂C

∂y). Due to degree reasons, a simple
root of ξV is the x-coordinate of an extreme point of C having a vertical
tangent, and a multiple root of ξV is the x-coordinate of a singular point.
In general, these x-coordinates are not one-root expressions and therefore we
represent them using their generating polynomial and an isolating interval.

We next analyze the behavior of C at any x-coordinate x0. We distinguish
three different cases:

1. x0 is not a root of the resultant ξV : Assume x0 is in the interval [αi, αi+1]
between two adjacent roots αi, αi+1 of ξV . The number of branches of C is
determined by substituting a rational a, where αi < a < αi+1, into C and
counting the number of real roots of C(a, y) ∈ Q[y] using the univariate
Sturm sequence (see Chap. 3) of C(a, y). This procedure can be carried
out using only rational arithmetic.

2. x0 is a simple root of ξV : We want to determine which branches of C
are involved in the extreme point. This can be realized using the same
idea as for computing transversal intersection points between two conics.
Let [l, r] be the isolating interval of x0. By isolating the real roots of the
univariate polynomials C(l, y), ∂C

∂y (l, y) and C(r, y), ∂C
∂y (r, y), we compute

the sequence of branches of C and ∂C
∂y along the lines x = l, slightly

to the left of x0, and along x = r, slightly to the right of x0. By comp-
aring the two sequences we can determine which branches of C are involved
in the extreme point.

3. x0 is a multiple root of ξV : In this case we handle a singular point and
we have to determine the branches involved in each singularity, as well as
the type of the singularity. In a singular point both partial derivatives of
C vanish, and it is not difficult to show that a unique singular point of
a cubic curve must have rational coefficients (recall that the coefficients
of the cubic curve are rational). We can determine the type of a rational
singularity (α, β) ∈ Q

2 by translating it to the origin and inspecting the
quadratic part ay2+bxy+cx2 of the translated polynomial C(x+α, y+β).
If a singularity is not unique, we make use of the fact that this can arise
only if C is a product of several components (say a product of three lines
or a line and a conic curve) whose intersections then are the singularities
of C (see, e.g., [182] for more details).

We now turn to analyze the behavior of a pair of cubic curves C1 and
C2. For each x0 ∈ R we want to compute a slice of the pair, that is, the
sequence of intersections of the branches of C1 and C2 along the vertical line
x = x0. This sequence only changes at one-curve events of C1 or C2 and at
intersection points of the two curves, referred to as the two-curve event points

8For conic arcs we used a slightly different technique, computing the roots of the
quadratic polynomial (1.2). However, using resultant calculus we obtain an equiva-
lent polynomial (having the same roots).

20 E. Fogel, D. Halperin, L. Kettner, M. Teillaud, R. Wein, N. Wolpert

(see Fig. 1.4(b)). The critical values of C1 and C2 are the x-coordinates of
either one-curve or two-curve event points. We choose the coordinate system
such that no one-curve event of C1 or C2 has the same x-coordinate as a
two-curve event.

For x0 from an interval between two adjacent critical points, the slice is
determined by substituting a rational a into C1 and C2, solving the univariate
polynomials C1(a, y) and C2(a, y) by root isolation, and sorting the results.
Using the analysis of a single curve, one can extend slicing to x-coordinates
at which just a one-curve event happens. The rest of this subsection describes
how to slice at the intersection points.

We use a resultant ξI = resy(C1, C2), which is a polynomial of degree at
most 9 in this case, to project the intersection points onto the x-axis. It is
possible to select the coordinate system such that no two distinct intersection
points of any pair of curves have the same x-coordinate, hence the multiplicity
of a root α of ξI is the multiplicity of the corresponding intersection point
(α, β). We next need to detect which branches of C1 and C2 intersect at α.
We assume that no singularity is involved in the intersection, so that exactly
one branch of C1 intersects one branch of C2.9 We consider the following cases:

1. If the intersection multiplicity is odd, the intersecting branches can be
determined by inspecting the branches of both curves slightly to the left
and slightly to the right of the event point, using the rational endpoints
of the interval isolating α.

2. If the intersection multiplicity is 2, there is no transposition of C1’s and
C2’s branches, so there is no use comparing the branches to the left and
to the right of α. However, we can consider an auxiliary curve of degree
4, the Jacobi curve J = ∂C1

∂x · ∂C2
∂y − ∂C1

∂y · ∂C2
∂x of C1 and C2. This reduces

the analysis of non-singular intersections of multiplicity 2 to the previous
method for transversal intersections; see [340] and [341] for more details.

3. If α is the x-coordinate of an intersection point with an even multiplicity
greater than 4, than α is a one-root number, and we can employ exact
calculations in IF to determine the branches involved in this multiple in-
tersection.

1.3.2 Incremental Construction

In the previous section we described how it is possible to construct the planar
subdivision induced by the set of arbitrary curves using the sweep-line algo-
rithm. This construction method is very efficient, especially if the arrangement
is relatively sparse (when the number of intersection points is O(n2

log n), where
n is the number of curves).10 However, if we use the sweep-line algorithm
we must have all the n input curves in advance — which is not always the

9For intersection points that involve a singular point we refer the reader to [139].
10This fact follows from theoretical considerations, as the running time of the

sweep-line algorithm over n curves with a total of k intersection points is O((n +

1 Arrangements 21

case, as we sometimes want to construct our arrangements on-line. In this
case we should employ an incremental construction approach: We insert our
curves one by one and update the arrangement accordingly. The incremental
approach can also be applied to constructing dense arrangements, say with
Θ(n2) intersection points, when it becomes asymptotically faster than the
sweep-line construction (see, e.g., [111, Chap. 8]).

The two construction approaches may be integrated: Suppose that we are
given an initial set of curves, we can construct their planar arrangement using
the sweep-line algorithm. It is then possible to insert additional curves to the
resulting arrangement using the incremental insertion method, or even insert
a set of new curves by “sweeping” them into an existing arrangement. All
these alternatives are currently supported by the Cgal arrangement pack-
age — see Sect. 1.4. There is, however, a subtlety regarding this combined
approach since, as we will describe next, incremental construction of arrange-
ments requires answering point-location queries. We discuss this issue after
presenting various point-location strategies.

The Insertion Process

Fig. 1.5. The insertion process of a new curve (dotted) into an existing arrangement
of planar curves. The zone of the new curve is lightly shaded and all the newly
introduced vertices are marked

k) log n), while the incremental construction may take O(n2) time. Moreover, this
was also verified by many experimental results.

22 E. Fogel, D. Halperin, L. Kettner, M. Teillaud, R. Wein, N. Wolpert

Suppose we wish to insert a planar curve Ci into an existing arrangement
Ai−1 of the curves C1, . . . , Ci−1. The insertion procedure of the first curve into
an empty arrangement is trivial, so we will assume that i > 1 and Ai−1 rep-
resents the arrangement of a non-empty set of curves. We will further assume
that Ci is (weakly) x-monotone — if this is not the case, we will subdivide it
into several x-monotone segments and insert each segment separately.

To insert an x-monotone curve Ci we will execute the following procedure:

1. Locate Ci’s left endpoint (and in case Ci is a vertical segment we start
from its bottom endpoint) in Ai−1 and act according to the type of the
arrangement feature containing this endpoint:
a) If the endpoint lies on an existing vertex, we have to update the data

associated with this vertex.
b) If it lies on an edge, we have to split this edge, introducing a new

arrangement vertex associated with the endpoint.
c) If the endpoint is contained in the interior of a face, we construct a

new vertex associated with the endpoint within the face.
2. Traverse the zone of Ci, the set of arrangement faces in Ai−1 that Ci

crosses (see Fig. 1.5 for an illustration). Each time we discover an inter-
section along Ci with one of the existing arrangement elements we create
a new arrangement vertex and cut Ci into two subcurves at this point.
We also have to split the edges and faces of Ai−1 that Ci crosses. We con-
tinue the process with the right subcurve of Ci until reaching Ci’s right
endpoint.

3. In case Ci’s right endpoint lies on an existing vertex, update the data
associated with this vertex. Otherwise we add a new arrangement vertex
representing this endpoint (in case the endpoint lies on an existing edge,
we will also have to split this edge).
We take special care of the case where Ci lies entirely within a face of
Ai−1 — that is, both its endpoints lie in the same face and it crosses
no existing arrangement edge — as we have to initiate a new hole in the
relevant face in this case.

Point-Location Strategies

As we have already mentioned, after constructing an arrangement we typically
want to be able to answer point-location queries relating to the arrangement:
Given a point p ∈ R

2 we wish to find the arrangement feature that contains it.
The point can be contained in a face, but it may lie on one of the arrangement
edges or coincide with an arrangement vertex. As we wish our point-location
mechanism to be exact, we have to deal with the two latter cases in a robust
manner. It should be noted that in the case of incremental construction the
usage of point-location is inherent to the construction algorithm itself, as we
start the insertion of a new curve by locating one of its endpoints in the
existing arrangement. We also have to pay special attention to the type of
arrangement feature we obtain as the query result.

1 Arrangements 23

We can benefit from refining the planar subdivision by shooting two ver-
tical rays from each arrangement vertex, going upward and downward until
hitting the next arrangement edge. In this way, we obtain a subdivision of the
arrangement into simple shapes that may be regarded as “pseudo-trapezoids”,
as two parallel segments form their left and right edges (one of these edges can
degenerate into a point), while the top and bottom edges are x-monotone seg-
ments of our input curves. It is possible to construct a search structure over
these pseudo-trapezoids such that a point-location query can be answered
in expected O(log n) time, where n is the complexity of the arrangement.
The search structure itself consumes only linear storage. See [269] and [111,
Chap. 6] for more details.

Constructing the trapezoidal-subdivision-based search structure yields ef-
ficient query times, yet the overhead involved in maintaining the search struc-
ture during the incremental construction of the arrangement may be too high
for some applications. In such cases, we may consider employing a simpler
point-location strategy in order to simplify the construction process. The walk
algorithm [164] simply simulates a reverse walk along a vertical ray emanating
from the query point, starting from the unbounded face of the arrangement
(which represents infinity in this case) and moving toward the query point.
The query time is therefore linear in the complexity of the zone of the vertical
ray, and as we have to trace the zone of the inserted curve C at any case, using
the walk algorithm for locating its endpoint does not increase the worst-case
asymptotic complexity of the insertion procedure, as we show next. The main
advantage of the walk algorithm is that it does not require any additional
data structures to answer queries.

Suppose that we have a set of m curves, where each pair of curves can have
at most s intersection points, for a constant s. In this case the zone complexity
of a single curve is O(λs+2(m)), where λσ(k) denotes the maximal length of a
Davenport-Schinzel sequence of k elements with order σ (see [312] for more
details on Davenport-Schinzel sequences; we will just mention here that for
small value of σ, λσ(k) is almost linear in k). Thus the total construction time
is O(mλs+2(m)), while the complexity of the arrangement is of course O(m2).

The trapezoidal-subdivision based point-location strategy is of course more
efficient, both from a theoretical and from a practical point of view (see [164]
for experimental results), but, as mentioned earlier, the walk strategy does not
require any auxiliary data structure on top of the arrangement. Hence, if the
application at hand involves the construction of an arrangement, followed by
a small number of point-location queries, it may be more efficient to construct
the arrangement using the sweep-line algorithm and to use the walk strategy
in order to avoid the overhead incurred by the construction of a trapezoidal-
subdivision based search structure.

Another point-location strategy uses a set of “landmark” points whose
location in the arrangement is known [201]. Given a query point, it uses a Kd-
tree [45] to find the nearest landmark and then traverses the straight line seg-
ment connecting this landmark to the query point. Usually, the arrangement

24 E. Fogel, D. Halperin, L. Kettner, M. Teillaud, R. Wein, N. Wolpert

vertices are the most convenient landmarks, but other landmark sets, such
as randomly sampled points or points on a grid, can be used as well. The
landmarks point-location strategy offers competitive query times in compari-
son with the trapezoidal-based algorithm. Its main advantage is that the time
needed to construct and maintain its auxiliary Kd-tree is relatively small in
comparison to the running-time penalty incurred by the auxiliary data struc-
tures maintained by the trapezoidal point-location strategy.

Geometric Predicates and Constructions

v

Fig. 1.6. The newly inserted curve (dashed) exits the shaded face passing through
an existing arrangement vertex v

As the incremental insertion of a curve into an existing arrangement boils
down to computing the zone of the curve, and as we proceed from the left
endpoint of the curve to its right endpoint, the geometric predicates and
constructions we use are basically the same as the ones needed in the sweep-
line algorithm. However, we should take special care of the following case:
Assume that the newly inserted curve passes through an existing arrangement
vertex v. We therefore have to determine the position of the curve, with respect
to the existing curves in the arrangement, immediately to the left of v (see
Fig. 1.6 for an illustration). Indeed, it is possible to compare the new curve
with the other curves to the right of v and then determine the order to its left
using the multiplicity of the intersection. But what if one of the curves ends
at v and is not defined to its right?

It seems that an additional predicate is required for the incremental con-
struction, that is, comparing two curves to the left of their intersection point.
However, as we strive to minimize the number of required predicates, we can
implement this predicate in terms of the basic sweep-line methods.11 Let us

11The arrangement package of Cgal lets users choose between the two alterna-
tives: (i) supplying an additional predicate, or (ii) resorting to the basic sweep-line

1 Arrangements 25

assume we are given the curves C1 and C2 and wish to compare them to the
left of their intersection point p. We can use the following procedure:

1. Compare the two left endpoints of C1 and C2 and let q be the (lexico-
graphically) rightmost of the two.

2. Start computing the next intersection of the two curves from q onward to
the right until reaching p. Let q′ be the last intersection point of C1 and
C2 we have discovered. It is now sufficient to compare the two curves to
the right of q′.

3. If there are no intersection points between q and p, we simply determine
the order of the curves by checking whether the endpoint q is above or
below the other curve.

Constructing the point-location structure does not require any additional
geometric operations, nor does the point-location query: We only have to
compare the x-coordinates of two given points and to determine the position
of a point relative to an x-monotone curve segment.

1.4 Software for Planar Arrangements

This section assumes some familiarity with advanced programming tech-
niques, generic programming, and design patterns. Readers who are not in-
terested in software issues can safely move on to the next section — the rest
of the sections of this chapter do not rely on the material described in this
section.

The implementation of the Cgal software packages for planar arrange-
ments described in this section is complete and robust, as it handles all de-
generate cases, and guarantees exact results. The software rigorously adapts,
as does Cgal in general, the generic programming paradigm, briefly reviewed
in Appendix 8. This approach allows for a convenient separation between the
topology and the geometry of arrangements, which is a key aspect of the
Cgal arrangement design, explored in Sect. 1.4.1. In this way, algorithms
and data structures for arrangements can be nicely abstracted in combinator-
ial and topological terms, regardless of the specific geometry and algebra of the
curves at hand. This abstraction constitutes the arrangement class-template.
The arrangement class-template must be instantiated with a geometric traits
class, that defines the set of geometric objects and algebraic operations on
these objects required to handle a concrete type of curves, e.g., segments,
polylines, or conics.

An immediate advantage of this separation is that users with limited ex-
pertise in computational geometry can employ the package with their own

methods (see [167] for more details). While the first option is usually more efficient,
implementing the additional predicate may be a major endeavor in some cases; see
for example Sect. 1.3.1.

26 E. Fogel, D. Halperin, L. Kettner, M. Teillaud, R. Wein, N. Wolpert

special type of curves, provided they supply the relevant geometric traits
class, which relies on (often basic) algebra. Naturally, a prospective user of
the package that develops a traits class would like to face as few requirements
as possible in terms of traits development. Indeed, a lot of effort in the past
couple of years went into streamlining the list of operations on curves that
a user has to supply as part of the traits class. The end result, the current
Cgal arrangement traits, is described in Sect. 1.4.2, with ample examples of
existing traits classes.

Alternative traits classes resulting from the Exacus project, are described
in Sect. 1.4.3. Sect. 1.4.4 describes an on-going effort to extend the existing
Cgal kernel, which mainly deals with linear objects, to deal with curved
objects. We conclude the section with notes on how to effectively use and
fine-tune software for planar arrangements.

1.4.1 The Cgal Arrangements Package

Cgal, the Computational Geometry Algorithms Library, was the natural li-
brary to host a planar-arrangements package in its basic library part. Pred-
icates and constructors from Cgal’s geometric kernels are used as building
blocks of the various traits classes that handle linear curves. All the traits-class
components based on the kernel can be extended with minimal programming
effort, as the kernel is fully adaptable and extensible [204]. The design of the
Arrangements package uses many programming techniques and abstractions
that C++ supports. The rest of this section introduces several of them. For the
complete specifications and discussions we refer the reader to [163, 167, 333];
a comprehensive documentation of the packages with a variety of examples
can be found in [2].

The Arrangement package consists of a few components. The main com-
ponent is the Arrangement 2<Traits,Dcel>12 class-template. It represents the
planar embedding of a set of x-monotone planar curves that are pairwise dis-
joint in their interiors. It provides the necessary combinatorial capabilities for
maintaining the planar graph, while associating geometric data with the ver-
tices, edges, and faces of the graph. The arrangement is represented using a
doubly-connected edge list (Dcel), a data structure that efficiently maintains
two-dimensional subdivisions; see Sect. 1.3 for details. The Arrangement 2
class-template includes a basic set of interface functions that access, modify,
and traverse planar arrangements. For example, users can iterate over all ver-
tices, edges, and faces of the arrangement, or insert new vertices and edges
into the arrangement at a specified location (see Fig. 1.9). Additional arrange-
ment operations that involve non-trivial geometric algorithms are supplied by
free (global) functions and auxiliary classes. For example, users can construct
the arrangement induced by a set of arbitrary curves from scratch, or insert
these curves into an existing arrangement.

12
Cgal prescribes the suffix 2 for all data structures of planar objects as a

convention.

1 Arrangements 27

The separation between the combinatorial and geometric aspects is achie-
ved by the decoupling of the arrangement representation from the various
geometric algorithms that operate on it. As mentioned above, the insertion of
a new arbitrary curve (a curve that may not necessarily be x-monotone, can
intersect the existing arrangement curves, and whose insertion location is not
known a-priori) into the arrangement is offered by free functions. When an
arbitrary curve is inserted into the arrangement, it is subdivided into several x-
monotone subcurves treated separately. Each x-monotone subcurve is in turn
split at its intersection points with the existing arrangement features. The
resulting subcurves are inserted into the arrangement using one of the special
insertion-methods listed in Sect. 1.4.1. The result is a set of x-monotone and
pairwise disjoint subcurves that induce a planar subdivision, equivalent to the
arrangement of the original input curves. Other free functions that operate on
arrangements or construct them, such as a function that computes the overlay
of two arrangements, are implemented as well.

Another component of the package, named Arrangement with history 2 ,
allows for the construction of an arrangement while maintaining its curve
history. The class stores the input curves that induce the arrangement, where
each arrangement edge stores a pointer to the input curve that induces it
(or a list of pointers, in case the edge represents an overlap of several input
curves). The curve history is essential in a variety of applications that use
arrangements, such as robot motion-planning.

The package supports a notification mechanism implemented via the Ob-
server design-pattern [175]. It defines a one-to-many dependency between ob-
jects so that if one object, referred to as the subject, changes its state then
all its dependents, referred to as observers, are automatically notified and can
take action accordingly. The ability to serve multiple observers plays a signifi-
cant role in the arrangement package, as it satisfies many different needs with
a single unified approach. One such need is to keep the point-location strate-
gies (see Sect. 1.3.2), which maintain auxiliary data-structures, synchronized
with the arrangement instance they relate to. Another important reason for
supporting observers of arrangements is to allow users to introduce their own
observers in order to maintain auxiliary application-specific data with the
features (vertices, edges, or faces) of their arrangements.

We proceed with some more details about each of the components above.
The Arrangement 2 class-template must be instantiated with two classes
listed below, decoupling the topological and geometric aspects of the planar
subdivision; see Fig. 1.7.

• A geometric traits class tailored to handle a specific family of curves. It de-
fines the Point 2 , X monotone curve 2 , and Curve 2 types (see the exact
details in Sect. 1.4.2) and provides a basic set of predicates and geomet-
ric constructions on objects of these types, encapsulating implementation
details, such as the number type used, the coordinate representation, and

28 E. Fogel, D. Halperin, L. Kettner, M. Teillaud, R. Wein, N. Wolpert

the geometric or algebraic computation methods involved in the imple-
mentation of the traits-class methods.

• A Dcel class, which represents the underlying topological data structure.
By default, this class is Arr default dcel , but users may extend this default
Dcel class, and attach additional data with the Dcel records, or even
supply their own Dcel written from scratch.

The Arrangement 2<Traits,Dcel> class-template defines its own vertex,
halfedge (each arrangement edge is represented by a pair of halfedges with
opposite orientations), and face types. These combinatorial entities have a
geometric mapping, e.g., a vertex of an arrangement is associated with a
Point 2 object, and each edge is associated with an X monotone curve 2 ob-
ject. The Arrangement 2 class-template maintains the incidence relation on
the vertices, halfedges, and faces of the arrangement through the Dcel it is
parameterized with. A valid arrangement has one unbounded face.13 A Con-
nected Component of the Boundary (CCB) is a cycle of at least two halfedges.
Each face, except the unbounded face, has one outer CCB. Each face has a
(possibly empty) set of holes referred to as the inner CCBs. In addition, a
face may also contain isolated vertices in its interior. An empty arrangement
has one unbounded face (and no halfedges nor vertices). The containment
relation between a face and its holes and isolated vertices distinguishes the

13Currently, only bounded curves are supported. Arrangements of bounded curves
have a single unbounded face.

Arrangement 2<Traits,Dcel> Arr default dcel<Traits> ArrDcel

Arr non caching basic segment traits 2

Arr non caching segment traits 2

Arr segment traits 2

Arr polyline traits 2

Arr conic traits 2

Arr rational arc traits 2

ArrBasicTraits 2

ArrXMonotoneTraits 2

ArrTraits 2

Fig. 1.7. The architecture diagram of the traits-related and Dcel-related compo-
nents of the Cgal-arrangement package. Dotted lines indicate an is-model-of relation
and dashed lines indicate a concept refinement or an inheritance relation. Solid lines
indicate a membership relation. If the member is a pointer, the line starts with a
small disk

1 Arrangements 29

Arrangement 2 from standard graph structures and other edge-based struc-
tures.

Arrangement 2

Arr observer

Arr naive point location

Arr walk along a line point location

Arr trapezoidal ric point location

Arr landmarks point location

ArrPointLocation 2

Fig. 1.8. The architecture diagram of the point-location related components of
the Cgal-arrangement package. Dotted lines indicate an is-model-of relation, and
dashed line indicate an inheritance relation. Solid lines indicate a membership rela-
tion. If the member is a pointer, the line starts with a small disk, and if the member
is a container of pointers, the line is made of arrowheads

The Arr observer<Arrangement> class-template must be instantiating
with an arrangement class; see Fig. 1.8. It stores a pointer to an arrange-
ment object, and is capable of receiving notifications just before a structural
change occurs in the arrangement (e.g., a new vertex is created, an existing
face is split into two following the insertion of a new edge, etc.) and immedi-
ately after such a change takes place. The Arr observer class-template serves
as a base class for other observer classes and defines a set of virtual notification
functions, giving them all a default empty implementation.

The interface of Arrangement 2 consists of various methods that enable
the traversal of the arrangement. For example, the class supplies iterators for
its vertices, halfedges, and faces. It is possible to visit all halfedges incident
to a specific vertex or to iterate over all halfedges along the boundary of a
face. The interface also supports other access methods and queries. Various
input/output operations are available as well. We restrict our focus in the
remainder of this section to insertion and point-location queries. A detailed
review of all arrangement-related operations, can be found in the complete
programming guide and reference manual [2], which also includes a large num-
ber of didactic examples.

Insertion

In geometric computing there is a major difference between algorithms that
evaluate predicates only and algorithms that, in addition, construct new geo-
metric objects. A predicate typically computes the sign of an expression used
by the program control, while a construction results with a new geometric
object, such as the intersection point of two segments. If we use an exact
number type to ensure robustness, the newly constructed objects often have a

30 E. Fogel, D. Halperin, L. Kettner, M. Teillaud, R. Wein, N. Wolpert

f

v1

v2
u

v
f ′

f

h1

h2
u1

u2

(a) (b) (c)

Fig. 1.9. The various insertion procedures. The inserted x-monotone curve is drawn
with a light dashed line, surrounded by two solid arrows that represent the pair of
twin halfedges added to the Dcel. Existing vertices are shown as black dots while
new vertices are shown as light dots. Existing halfedges that are affected by the
insertion operations are drawn as dashed arrows. (a) Inserting a subcurve as a new
hole inside the face f . (b) Inserting a subcurve from an existing vertex u that is one
of its endpoints. (c) Inserting a subcurve whose endpoints are already represented
by the vertices u1 and u2. In this particular case, the new pair of halfedges close a
new face f ′, where the hole h1, which used to belong to f , now becomes an enclave
in this new face

more complex representation in comparison with the input objects (e.g., the
bit-length needed for their representation is often larger). Unless the overall
algorithm is carefully designed to deal with these new objects, constructions
will have a severe impact on the algorithm performance. To this end, we
distinguish between two sets of free insertion functions. One set consists of
functions that insert x-monotone curves that do not intersect in their interi-
ors, while the other set consists of functions that insert arbitrary curves. An
arrangement induced by x-monotone curves that are pairwise disjoint in their
interior, can be instantiated with a limited traits class that models only a ba-
sic concept as explained in Sect. 1.4.2. Naturally, using the non-intersecting
insertion-function is more efficient, since these functions avoid unnecessary
computations.

An Arrangement 2 can be built incrementally, inserting one curve at a
time by traversing its zone (see, e.g., [196]). However, for a large number
of curves that intersect rather sparsely, it is more efficient to use one of the
aggregate insertion functions that insert a set of curves into an arrangement at
once applying a dedicated sweep-line algorithm; see Sect. 1.3. The aggregate
insertion function is more efficient in most cases, and it also requires less from
the traits class in comparison with the incremental insertion operation.

The Arrangement 2 class directly supports the basic insertion procedures
for an x-monotone curve whose interior is disjoint from all existing arrange-
ment features, where the topology information that specifies the location of
the inserted x-monotone curve is also given. Note that the endpoints of such a
curve may coincide with existing vertices. We distinguish between three cases
(see Fig. 1.9): (i) Neither endpoint coincides with an existing vertex, so the

1 Arrangements 31

inserted curve forms a hole inside an existing face. In this case, the users
should specify the face containing the curve. (ii) Exactly one endpoint coin-
cides with a given existing vertex, so the inserted curve forms an “antenna”
rooted at this vertex. (iii) Both endpoints of the inserted x-monotone curve
coincide with two given vertices.

The free insertion functions use the basic insertion functions listed above
in order to insert arbitrary curves into the arrangement. For example, the
incremental insertion function that accepts an x-monotone curve C starts
by locating C’s left endpoint in the arrangement and then traverses its zone
by detecting its intersections with the existing arrangement features. C is
subdivided at these intersection points into subcurves, where each subcurve is
inserted using one of the special insertion functions based on the topological
and geometric information available during the zone-computation algorithm.

Point Location

An important query that is often issued given an arrangement object is a
point-location query (see also Sect. 1.3.2), namely identifying the arrange-
ment cell containing a given query point q. As the arrangement representation
is decoupled from geometric algorithms that operate on it, the Arrangement
package provides answers to point-location queries through one of several ex-
ternal classes, which implement different point-location strategies available
for the user to choose from; see Fig. 1.8. New strategies, perhaps with differ-
ent running time and storage characteristics, can be implemented and easily
plugged in.

Applying the generic programming paradigm, we define a concept named
ArrPointLocation 2 that collects the requirements for a point-location class.
A model of this concept must include the definition of the locate(q) function
that accepts an input query point q and returns an object that represents
the arrangement cell that contains this point. This cell is typically a face, but
in degenerate cases a query point can lie on an edge or even coincide with a
vertex.

The following models of the ArrPointLocation 2 concept are included with
the arrangement package, each represents a different point-location strategy:

• Arr naive point location locates the query point näıvely by exhaustively
scanning all arrangement cells until the desired one is encountered.

• Arr walk along a line point location improves the above näıve approach
by “walking” in reverse order only along the zone of the upward vertical
ray emanating from the query point.

• Arr landmarks point location uses a set of “landmark” points whose lo-
cation in the arrangement is known [201]. Given a query point, it uses a
nearest-neighbor search structure to find the nearest landmark and then
traverses the straight line segment connecting this landmark with the query
point.

32 E. Fogel, D. Halperin, L. Kettner, M. Teillaud, R. Wein, N. Wolpert

• Arr trapezoidal ric point location implements the Randomized Incremen-
tal Construction (RIC) dynamic algorithm introduced by Mulmuley, which
is based on the vertical decomposition of the arrangement into pseudo-
trapezoids [270]. It requires two auxiliary data structures: a trapezoidal
decomposition (of linear size) and a directed acyclic graph (DAG) used as
a search structure (of expected linear size).

The first two strategies do not require any extra data The respective classes
only need to store a pointer to an arrangement object, and operate directly on
it when a query is issued. The remaining two strategies use an arrangement
observer to maintain their auxiliary data-structures that have to be updated
when the arrangement is modified; see Fig. 1.8. These strategies require pre-
processing and increase the memory consumption, but they can significantly
reduce the query time.

Users are free to choose the point-location strategy that best fits their ap-
plication. Note that it is also possible to attach several point-location objects
to a single Arrangement 2 instance. The point-location strategy has a signif-
icant impact not only on the performance of point-location queries, but also
on the performance of some of the operations that modify the arrangement.
For example, when inserting a curve into a non-empty arrangement, one of
the curve endpoints must be located first; see Sect. 1.3.2.

Sweep-Line Framework

The Sweep line 2<Traits,Visitor,Curve,EventPoint,Allocator> class-template
implements a generic sweep-line algorithm based on the algorithm of Bent-
ley and Ottmann; see Sect. 1.3 for more details. The original algorithm is
extended to support not only segments but also general curves as well as iso-
lated points. The implementation is complete, as it handles all generic cases,
such as vertical segments, multiple (more than two) curves intersecting at a
single point, curves intersecting at endpoints, and overlapping curves. The
class interface is carefully designed to create a general framework for imple-
menting sweep-based algorithms.

The Traits template parameter provides the geometric functionality, and
is tailored to handle a specific family of curves. The supplied geometric traits
class must model the ArrTraits 2 concept, also used for instantiating the
Arrangement 2 class.

The Visitor , Curve, and EventPoint template parameters have default val-
ues, which can be overridden to extend the sweep-line procedure. In particular,
the Visitor class adheres to the Visitor design-pattern [175] and is used to
implement distinct and unrelated operations within the sweep-line framework
without “polluting” it. The visitor receives notifications of the events handled
by the sweep-line procedure and can respond accordingly. The implementation
of many sweep-based algorithms reduces to implementing an appropriate visi-
tor class. At the same time, the sweep-line code becomes centralized, reusable

1 Arrangements 33

and easy to maintain, since the algorithm-specific code resides in the various
sweep-line visitor classes.

The arrangement package includes several sweep-line visitors, designed to
efficiently perform the following operations: computing all intersection points
induced by a set of input curves, constructing the arrangement of a set of
input curves from scratch, inserting a set of input curves into an existing
(non-empty) arrangement, performing a batched point-location operation given
a set of query points and an arrangement, and computing the overlay of two
input arrangements. Users may implement additional sweep-based algorithms
by writing their own sweep-line visitors.

1.4.2 Arrangements Traits

The Traits parameter of the Arrangement 2 class-template defines the
abstract interface between arrangements and the primitives they use. The
requirements of various components in the arrangement package create a hi-
erarchy of traits concepts. The ArrBasicTraits 2 concept comprises the minimal
set of requirements. A model of this concept must define two types of objects,
namely X monotone curve 2 and Point 2 , which is the type of the endpoints
of an X monotone curve 2 curve. In addition, the concept lists some predi-
cates on these two types — a minimal set that enables the maintenance of
arrangements of x-monotone curves that are pairwise disjoint in their inte-
riors. It is possible to instantiate the Arrangement 2 class-template with a
model of this concept and construct an arrangement instance using the mem-
ber functions of the class, which operate only on non-intersecting x-monotone
curves. It is also possible to issue point-location queries on such arrangements,
as the set of predicates the ArrBasicTraits 2 concept comprises is sufficient for
the various point-location strategies detailed in the previous section. The only
exception is the “landmarks” strategy, which requires a traits class that mod-
els the refined ArrangementLandmarkTraits 2 concept — the details of which
are omitted here.

The concept ArrXMonotoneTraits 2 refines the concept ArrBasicTraits 2 by
several construction operations, namely, computing the intersection points of
two x-monotone curves and splitting an x-monotone curve at a given point
in its interior. Given a model of this concept, it is possible to construct an
arrangement of arbitrary x-monotone curves using one of the free insertion
functions. The refined ArrTraits 2 requires the definition of the Curve 2 , a type
that represents a general curve in the plane, and the provision of a construction
operation that subdivides a given Curve 2 object into x-monotone curves.
Using a model of this concept one can construct an arrangement of arbitrary
(not necessarily x-monotone) planar curves.

This level of modularity makes the package flexible and extensible. The
user can choose the family of curves (and their representation) for the ar-
rangement to handle by injecting the appropriate geometric traits class that
models one of the concepts above. Users can also develop a new traits class

34 E. Fogel, D. Halperin, L. Kettner, M. Teillaud, R. Wein, N. Wolpert

that handles a specific family of curves of interest and a specific representation
suitable for their application, as long as it conforms to the requirements of the
appropriate concept. Even a simple family of curves, such as line segments,
may have different representations distinguished according to the coordinate
systems (e.g., Homogeneous, Cartesian), the geometric kernel (e.g., Cgal ker-
nel, Leda kernel, user defined), and the number type used by the arithmetic
operations carried out by the predicates and constructions of the traits class.
Traits classes developed for handling curves of higher degree may also dif-
fer in the underlying algebraic methods used for answering predicates and
computing intersection points.

The traits class Arr non caching segment traits 2<Kernel> handles line
segments. It is a thin layer above the parameterized kernel. It inherits the ker-
nel types and functionality and it complements it with the necessary functors
that are not directly provided by the kernel. Its implementation is simple, yet
may lead to a cascaded representation of intersection points with exponen-
tially long bit-length. The Arr segment traits 2<Kernel> traits class avoids
this cascading problem by storing extra data with each segment. It achieves
faster running times than the Arr non caching segment traits 2 traits-class,
when arrangements with relatively many intersection points are constructed.
However, it uses more space. In both cases the kernel is parameterized with a
number type, which should be exact to avoid robustness problems, although
other number types could be used at the user’s own risk.

The traits class Arr polyline traits 2<SegmentTraits> handles piecewise
linear curves, commonly referred to as polylines. Each polyline is a chain of
segments, where each two neighboring segments in the chain share a com-
mon endpoint. The traits class exploits the functionality of the parameter-
ized SegmentTraits type to handle the segments that comprise the polyline
curves. The type SegmentTraits must be instantiated with a model of the
ArrXMonotoneTraits 2 concept that handles line segments (e.g., Arr segment
traits 2<Kernel> or Arr segment cached traits 2<Kernel>), and the number
type used by the instantiated segment traits should satisfy the same conditions
listed above.

We next review the arrangement traits classes that handle non-linear
curves. The first two traits classes are included in the public distribution of
Cgal, while the others (Sect. 1.4.3) have been developed under the Exacus

project. We also review on-going work on a Cgal curved kernel (Sect. 1.4.4).

The Conic Traits-Class of Cgal

The arrangement package includes a traits class, named Arr conic traits 2 ,
that handles finite conic arcs. A finite conic arc ā may be either one of the
following: (i) A full ellipse (which is the only type of bounded conic curve), or
(ii) the 4-tuple 〈C, ps, pt, o〉 where ps and pt are the edge endpoints that must
lie on the conic C, and o indicates the orientation (clockwise or counterclock-
wise).

1 Arrangements 35

The arrangement traits-class for conic arcs included with the public release
of Cgal is based on the Core library [3].Core introduces the root operator,
where root(p, k) is the kth largest real root of the polynomial p ∈ Q[x].14

Using this operator, we obtain an explicit representation of the coordinates
of the intersection points, which are roots of resultant polynomials of degree
4 at most. The usage of Core makes the traits-class code more compact and
elegant, as it implements the various geometric predicates and constructions
in a straightforward manner.

Fig. 1.10. An arrangement
of conic arcs containing two
canonical ellipses and 16 hy-
perbolic arcs

Some previous versions of Cgal used to in-
clude a traits-class for conic arcs that was based
on the Leda library and its capability to carry
out exact computations within the field of real-
root expressions IF (see Sect. 1.3.1). For more
details on the algebraic and the numeric tech-
niques used in the implementation of these conic-
arc traits, the reader is referred to [331, 332].

Finite Arcs of Rational Functions

Another traits class that relies on the root oper-
ator of Core can deal with finite arcs of rational
functions. Such an arc ā is defined by two poly-
nomials p, q ∈ Q[x] such that deg(gcd(p, q)) = 0
(that is, p and q have no non-trivial common di-
visors), and an interval [l, r] such that q(x) �= 0 for each l ≤ x ≤ r. The arc
represents the graph of the rational function y = p(x)

q(x) defined over [l, r].
Rational functions can be used to approximate more complex planar curves

(note that in particular, every univariate polynomial is a rational function),
so arrangements of arcs of rational functions can be very useful in many
application domains.

It should be noted that an arc of a rational function is x-monotone by
definition. The implementation of the traits-class methods is straightforward.
The only methods that require some attention are listed below:

Intersections: Given two arcs ā1 = 〈p1, q1, [l1, r1]〉 and ā2 = 〈p2, q2, [l2, r2]〉,
we first have to find all x-values satisfying the equality

p1(x)
q1(x)

=
p2(x)
q2(x)

.

We extract all the roots of the univariate polynomial p1q2 − p2q1 ∈ Q[x]
and consider just those contained in the interval [l1, r1]∩ [l2, r2], which we
denote x1, . . . , xk. These roots are the x-coordinates of the intersection
points, whose corresponding y-coordinates are simply given by yi = p1(xi)

q1(xi)
.

14See [242, 285] for the theoretical background behind the implementation of the
root operator.

36 E. Fogel, D. Halperin, L. Kettner, M. Teillaud, R. Wein, N. Wolpert

Compare to right: Given two arcs ā1 and ā2 (as above) and one of their inter-
section points u, we begin by defining f (0)

1 (x) = p1(x)
q1(x) and f (0)

2 (x) = p2(x)
q2(x) .

We start with m = 1, and compute for k = 1, 2 the mth order derivative

f
(m)
k =

(
f

(m−1)
k

)′
. If f (m)

1 (ux) �= f
(m)
2 (ux), then we can determine the

comparison result. Otherwise we conclude the multiplicity of u is greater
thanm, so we incrementm and repeat the derivation process. We will need
deg(p1q2 − p2q1) iterations at most, as this is the maximal multiplicity of
an intersection point.

1.4.3 Traits Classes from Exacus

Within the recent Ecg project, the Max-Planck Institute for Computer Sci-
ence in Saarbrücken, Germany, initiated the project Exacus —Efficient and
Exact Algorithms for Curves and Surfaces [4]— where we develop several C++
software libraries for studying design and for experimenting with algorithms
for arrangements of curves and surfaces. We follow the generic programming
paradigm with C++ templates similar to the well established design principles
in the STL [38] and in Cgal [156, 70]; cf. Chap. 8.

The Exacus libraries are organized in a layered hierarchy with the ex-
ternal libraries that are (optionally) used at the bottom and the applications
libraries at the top. In between, there is a small Library Support layer: the Nu-

meriX library contains the number types, algebra, and numerical methods,
and the SweepX library contains the generic implementations of a sweep-line
algorithm and a generic generalized polygon that supports regularized Boolean
operations on regions bounded by curved arcs. In particular, the sweep-line
algorithm realizes the linear-time reordering for multiple curves intersecting in
a single common point [49]; see Sect. 1.3.1. Furthermore, the SweepX library
contains generic algebraic points and segments (Gaps), the generic and curve-
type independent part that implements the predicates and constructions for
the sweep-line algorithm based upon the one-curve and two-curves analysis,
as described in Sect. 1.3.1; see [48] for details.

Most notably in this context, the Exacus libraries provide models of traits
classes for the Cgal arrangement class, namely for the ArrangementTraits 2
concept, to work with conics and conic arcs [49], cubic curves [140], and quartic
curves as they result from projections of intersection and silhouette curves of
quadrics in space [50]. The traits classes support all operations required for
sweep and incremental construction in the Cgal arrangement. The curves and
arcs may include infinite branches; they are handled completely in the traits
classes and are therefore transparent for the Cgal arrangement algorithms.

We support full curves and, for conics, also arbitrary segments of curves,
but both will be preprocessed into potentially smaller sweepable segments
suitable for the algorithm. A sweepable segment is x-monotone, has a constant
arc number in its interior (counting without multiplicities from bottom to top),
and is free of one-curve events in its interior.

1 Arrangements 37

The implementation is not restricted to bounded arcs and curves. End-
points of unbounded curves (for example of the hyperbola xy − 1 = 0) are
handled symbolically and vertical line segments and vertical lines are sup-
ported as well. Two techniques are used: The x-coordinates are compactified
by adding symbolic values minus- and plus-infinity to the range of values.
To represent the behavior at poles, the compactified x-coordinates are then
symbolically perturbed to symbolically represent “endpoints” of curves that
approach a pole, and unbounded “endpoints” of vertical lines and rays. This
perturbation, we call it tendency, can be expressed with a symbolical infini-
tesimal ε > 0: curves left of the pole have endpoints with tendency −ε, the
lower endpoint of a vertical line has tendency −ε2, the upper endpoint of a
vertical line has tendency ε2, and curves right of the pole have endpoints with
tendency ε. The result is the desired lexicographic order of event points.

Fig. 1.11. Example arrangement of
conics featuring two highly degenerate
intersection points including tangential
intersections

Fig. 1.12. Example arrangement of cu-
bic curves featuring a degenerate triple
intersection point

The generic parts in Exacus are the design results of three main appli-
cations that we have realized so far: conics and conic arcs (Fig. 1.11), cubic
curves (Fig. 1.12), and quartic curves as they result from projections of in-
tersection and silhouette curves of quadrics in space (Sect. 1.5.2). The conics
implementation supports line segments and imposes no restrictions on the
choice of the coordinate systems. The other two applications impose restric-
tions on the coordinate system that are checked at runtime and that will lead
to a runtime exception in case of a violation. The application would then be
in charge of shearing the coordinate system and restarting the computation.

At the heart of the work is the one-curve and two-curves analysis, as de-
scribed in Sect. 1.3.1. To recall it briefly, we project event points on the x-axis

38 E. Fogel, D. Halperin, L. Kettner, M. Teillaud, R. Wein, N. Wolpert

using resultants and isolate their roots, such that the plane is decomposed
into vertical slabs with rational x-coordinates at slab boundaries. We then
compute arc numbers of all arcs, of all event points, and determine the arcs
getting in and out of the event points. In contrast to the cylindrical algebraic
decomposition, we are able to determine those almost always by examining
the intersection pattern of the curves or simple auxiliary curves at the rational
x-coordinates of the slab boundaries. This keeps the polynomial degrees low
for the root isolation.

The main algebraic tools that we use are reviewed in Chap. 3. Briefly, we
perform root isolation using the Descartes method. It requires the polyno-
mials to be square-free, which we have to ensure for the case analysis in the
algorithms anyway. For the resultant computation we can choose between the
Bézout resultant (the default) and the Sylvester matrix formulation. Argu-
ments for these choices are given in [140].

The algebraic constructions and functions tool box in NumeriX rely on
imported basic number types integer, rationals and (optionally) real expres-
sions from either Leda [251] or Gmp [6] and Core [3], or Ext [307]. We define
a rich set of number type concepts and supporting traits classes for these basic
number types that allow us to write generic and flexible code with maximal
reuse and openness towards external number type libraries. As an example, it
is worth mentioning that Exacus works transparently with polynomials inde-
pendent of their coefficient types, for example rationals, and selects internally
the necessary transformations to finally compute gcds or resultants efficiently
on polynomials with integer coefficients.

1.4.4 An Emerging Cgal Curved Kernel

Before the current release (3.2) of Cgal, the Cgal Kernel provided the user
mainly with linear objects and predicates on them. Circles and spheres were
also defined but with very few functionalities. Curves have been present in
the traits classes of certain specific packages of the Cgal Basic library for
a long time: the arrangement package provides the user with a traits class
for conic arcs (Sect. 1.4.2), the optimization package comes with conics and
basic operations on them, needed for computing minimum enclosing ellipses,
whereas the Apollonius diagram package computes the Voronoi diagram of
circles.

We started to design and implement an extension of the Cgal kernel,
devoted to curved objects. The first version of a 2D Circular kernel, defining
new classes for circular arcs and points on them, as well as some basic func-
tionalities on them, has been released in Cgal 3.2. Traits classes that serve as
an interface for the Cgal arrangement class are written, based on this kernel.

For more general curves, the effort has been focused so far on defining gen-
eral concepts (Chap. 8), so that several implementations of these concepts can
be provided by several sites, in a collaboration that will allow us to compare
the different methods on a large number of test cases.

1 Arrangements 39

Let us describe here the C++ design chosen for organizing our code, and
the kind of interface provided by our kernel. As in [284, 145], our choices have
been heavily inspired by the Cgal kernel design [204] which is extensible and
adaptable. Indeed, one of its features is the ability to apply primitives like
geometric predicates and constructions to either the geometric objects which
are provided by our kernel, or to user-defined objects.

The curved kernel is parametrized by a LinearKernel parameter and derives
from it, in order to include all needed functionality on basic geometric objects,
like points, line segments, and so on.

It is clear from Sect. 1.3 that the predicates make heavy use of algebraic
operations. We want to be as independent as possible from a particular im-
plementation of the algebraic operations, so our curved kernel is parametrized
by an AlgebraicKernel that is responsible for all algebraic computations. The
declaration is the following:

template < typename LinearKernel, typename AlgebraicKernel >

class Curved kernel;

The interface provided at the geometric level is composed of:
Types defining the objects. Some of them are inherited from the basic
kernel, namely the number type (denoted as RT in the sequel), and basic
geometric types. Some other types are inherited from the algebraic kernel.
These types are mainly types for polynomials and roots of polynomial systems.
Finally, some types are defined by the curved kernel itself, mainly types for
arcs of curves and their endpoints.
Predicates and constructions defined on the above objects, as mentioned
in Sect. 1.3.1.

Any implementation of the AlgebraicKernel template parameter of our
Curved kernel must be a model of a precise concept. The algebraic kernel
consists of several concepts, such as bivariate polynomials and roots of sys-
tems of bivariate polynomials. These concepts must provide the operations
listed below.

We only show here how the basic geometric operations for computing
arrangements of algebraic curves can be translated into basic operations on
algebraic numbers.

The first step consists of choosing a representation for the input data:
- We will consider here implicit algebraic curves, and focus more specifically
circles since this corresponds to the current Cgal release. Such a curve is
represented by a bivariate polynomial of total degree two. A circular arc is
represented by a supporting circle and its two delimiting endpoints, knowing
that the arc is oriented counterclockwise.
- Two kinds of points—intersection points and endpoints—can be considered
in the same way, thus allowing us to have a unique representation. We use

40 E. Fogel, D. Halperin, L. Kettner, M. Teillaud, R. Wein, N. Wolpert

the term arcpoint for either an endpoint of an arc or an intersection point.
An arcpoint is represented by a root of a system of two bivariate polynomial
equations. Finding this root reduces to the algebraic operation:

• solve, that computes the common roots of two given bivariate polynomi-
als.

The basic operations necessary to implement geometric predicates and
constructions are kept at a high level, not imposing any specific algebraic
tool. The main operations can then be rephrased as:

• compare, that compares two algebraic numbers,
• x critical points, that computes the critical points of a bivariate poly-

nomial,
• sign at that computes the sign of a bivariate polynomial evaluated at the

root of a system of bivariate equations.

Comparisons can be carried out exactly and efficiently using algebraic
methods adapted to algebraic numbers of low degree [116, 144]. This is ex-
plained in Chap. 3.

It is crucial to note, however, that the concepts are general enough to allow
also completely different methods, such as interval analysis, that will be used
together with exact algebraic methods, for filtering purposes.

1.4.5 How To Speed Up Your Arrangement Computation in Cgal

• When the curves to be inserted into an arrangement are x-monotone and
pairwise disjoint in their interior to start with, then it is more efficient (in
running time) and less demanding (in traits-class functionality) to use the
non-intersection insertion-functions instead of the general ones.

• The main trade-off among point-location strategies, is between time and
storage. Using the naive or walk strategies, for example, takes more query
time but saves storage space and requires less time for maintaining the
auxiliary structures.

• If point-location queries are not performed frequently, but other modifying
functions, such as removing, splitting, or merging edges are, then using a
point-location strategy that does not require the maintenance of auxiliary
structures, such as the naive or walk strategies, is preferable.

• When the curves to be inserted into an arrangement are available in ad-
vance (as opposed to supplied on-line), it is advised to use the more efficient
aggregate (sweep-based) insertion over the incremental insertion.

• The various traits classes should be instantiated with an exact number
type to ensure robustness, when the input of the operations to be carried
out might be degenerate, although inexact number types could be used at
the user’s own risk.

• Maintaining short bit-lengths of coordinate representations may drastically
decrease the time consumption of arithmetic operations on the coordinates.

1 Arrangements 41

(a) (b)

Fig. 1.13. Vertical decomposition (a) and partial decomposition (b) of an arrange-
ment of segments [315] inside a bounding rectangle

This can be achieved by caching certain information or normalization (of
rational numbers). However, both solutions should be used cautiously, as
the former may lead to an undue space consumption, and indiscriminate
normalization may considerably slow down the overall process.

• Geometric functions (e.g., traits methods) dominate the time consump-
tion of most operations. Thus, calls to such function should be avoided or
at least their number should be decreased, perhaps at the expense of in-
creased combinatorial-function calls or increased space consumption. For
example, repetition of geometric-function calls could be avoided by storing
the results obtained by the first call, and reusing them when needed.

1.5 Exact Construction in 3-Space

Moving from two-dimensional arrangements of curves to three-dimensional
arrangements of surfaces is a major endeavor. In this section we report on
progress in and plans for coping with three-dimensional arrangements. We
start with an efficient space-sweep algorithm for computing a useful refine-
ment of arrangements of surfaces, and proceed with algebraic primitives and
algorithms for the case of quadrics.

1.5.1 Sweeping Arrangements of Surfaces

We describe a method to effectively compute a representation of a three-
dimensional arrangement of well-behaved surface patches15 [315]. The method
is fairly simple and efficient and has been successfully implemented for ar-
rangements of triangles and of polyhedral surfaces. It computes the vertical

15For a detailed discussion of what constitute well-behaved surfaces or surface
patches in the context of arrangements, see [15]. These are, for example, a collec-
tion of algebraic surface patches of bounded degree each bounded by at most some
constant number of algebraic curves of bounded degree and each decomposed into
a constant number of xy-monotone patches.

42 E. Fogel, D. Halperin, L. Kettner, M. Teillaud, R. Wein, N. Wolpert

decomposition of the arrangement, which is a convenient representation break-
ing the three-dimensional cells of the arrangement into vertical prisms. It is
an extension to three-dimensional space of the well-known two-dimensional
trapezoidal decomposition (as briefly described already in Sect. 1.3); by ver-
tical we mean parallel to the z-axis.

A raw arrangement is often too complicated to handle and use as it may
have cells with many features and complex topologies. What is typically
needed is a further refinement of the arrangement into cells, each homeomor-
phic to a ball and of small combinatorial complexity (that is, a small constant
number of features). Additionally, we would like the refinement to be eco-
nomical and not to increase the complexity of the arrangement by much. A
refinement that satisfies these requirements is the so-called vertical decompo-
sition. Fig. 1.13(a) depicts an arrangement of segments (in bold lines) refined
by vertical decomposition: We extend a vertical line upwards and downwards
from every vertex of the arrangement (either a segment endpoint or the inter-
section of two segments) until it hits another segment or extends to infinity.
Vertical decompositions are defined for any dimension and for arrangements
of any collection of “well-behaved” objects [85, 196, 312].

For simplicity of exposition we describe the three-dimensional variant for
arrangements of triangles. Let T = {t1, t2, . . . , tn} be a collection of triangles
in 3-space. For a curve γ in R

3 let H(γ) denote the vertical wall through γ,
namely the union of vertical lines intersecting γ. For an edge e of the arrange-
ment we define the wall of the edge, denoted W (e), as the union of points in
H(e) that can be connected to e with a vertical segment that does not cross
any of the triangles in T . The vertical decomposition of A(T) is obtained as
follows. First we erect walls from triangle boundary edges. Second, walls are
erected from the intersection edges between pairs of triangles to produce a
finer decomposition. Finally we refine the decomposition, in a straightforward
manner, into a convex subdivision consisting of trapezoidal prisms. (See e.g.
[109] for details.) We call the refined subdivision the full (or standard) ver-
tical decomposition. An alternative decomposition, which induces fewer cells,
called the partial decomposition, has also been proposed and investigated. See
Fig. 1.13(b) for an illustration of the two-dimensional partial decomposition
of an arrangement of segments.

De Berg et al. [109]. showed that the maximum combinatorial complexity
of the vertical decomposition is the same as that of the arrangement, which
is Θ(n3), and the complexity of the vertical decomposition is sensitive to the
complexity of the underlying arrangement. They gave a bound O(n2+ε +K)
where K is the complexity of the arrangement, improved by Tagansky [326]
to O(n2α(n) log n+K), where α(n) is the extremely slowly growing inverse of
Ackermann’s function. The near-quadratic overhead term is close to optimal in
the worst case as there are arrangements with linear complexity whose vertical
decomposition has quadratic complexity. They also gave an output-sensitive
algorithm to compute the decomposition running in time O(n2 log n+V log n),
where V is the complexity of the decomposition.

1 Arrangements 43

The algorithm that we sketch here is an improvement and simplification of
the algorithm in [109]. It runs in time O(n log2 n+V log n) where V is the size
of the vertical decomposition of the arrangement of n well-behaved surfaces.
Thus, the algorithm has near-optimal running time. A detailed description of
the algorithm and its implementation can be found in [314, 315].

We assume that the input triangles in T are in general position. For conve-
nience, we also assume that the triangles in T are bounded inside a big simplex
(four extra triangles) and we are only interested in the decomposition inside
this bounding simplex. The output of the algorithm is a graph G = (U,E)
where each node in U describes one trapezoidal prism of the decomposition
and there is an edge (u1, u2) in E if the two prisms corresponding to u1 and
u2 share a vertical (artificial) wall.

The algorithm consists of one pass of a space sweep with a plane orthogonal
to the x-axis moving from x = −∞ to x = ∞. Let Px1 denote the plane x = x1.
Let Ax1 denote the partial two-dimensional decomposition of the arrangement
A(Px1 ∩ T) of segments induced on the plane Px1 by intersecting it with the
triangles in T and the bounding simplex and by adding vertical extensions
only through segment endpoints (which looks, up to the bounding simplex,
like Fig. 1.13(b)). We use Ax to denote this subdivision for an arbitrary x-
value.

Besides the graph G in which the output is constructed, the algorithm
maintains three data structures. A dynamic structure F that describes the
subdivision Ax, a standard event queue Q, which maintains the events of
the sweep ordered by their x-coordinate, and a dictionary D, which connects
between F and Q as we explain next.

The structure F supports efficient insertion or deletion of vertices, edges,
and faces of the subdivision. In addition, it efficiently answers vertical ray-
shooting queries. In order for the overall algorithm to be efficient, we wish to
refrain from point location in the subdivision Ax as much as we can, since
in the dynamic setting point location queries are costly. We achieve this by
using the dictionary D. Each feature in the current subdivision Ax is given
a unique combinatorial label (we omit the straightforward details here). We
keep a dictionary of all these features with cross pointers to their occurrence
in F . When we add an event that will occur later at x′ to Q we also insert the
combinatorial labels of features of Ax′ that are related to the event. This way,
when we come to handle the event, we could use the dictionary D (paying
O(log n) to search in the dictionary) and with the information thus obtained
we directly access F .

If we do not compute events in advance (before the sweep starts), how do
we predict all the events together with the extra labels needed? The answer
lies in the observation, which is similar to the key observation in the two-
dimensional Bentley-Ottmann sweep algorithm: Before an event, the involved
features of the arrangement must become neighbors in Ax. Thus it suffices to
predict future events by only checking a small number of neighboring features,
and repeat the test each time the neighbors of a feature change.

44 E. Fogel, D. Halperin, L. Kettner, M. Teillaud, R. Wein, N. Wolpert

A one-pass sweep with a plane suffices since almost all the events can be
predicted in this way, namely, every time we update the structure F we have
to go over a constant-length checklist involving the modified features of F .
The overall cost of the prediction is O(log n) (this is a property of F) and
at most a constant number of new events is created and inserted into the
queue. Some of these events may later turn out to be ‘false alarms.’ However,
a false event never spawns a new event, the prediction of a false event can be
charged to an actual event, and no actual event is charged for more than a
constant number of false events. The full list of events, how they are detected
and handled, is given in [314].

Most features (or events) of the arrangement A(T) can be fully predicted
during the sweep. There is only one type of events, however, for which we
cannot obtain the full event information from previous events. This is obvi-
ously the appearance of a new triangle t, namely the first time that the sweep
plane hits t. This is what determines the choice of structure for F . We use the
dynamic point location structure of Goodrich and Tamassia [187], which per-
tains to monotone subdivisions (which in the case of triangles is even convex)
and takes O(log n) per update and O(log2 n) per point location query. Aug-
menting it to support vertical ray shooting in a known face in time O(log n)
is trivial. We use the structure for point location exactly n times.

Now we can summarize the performance of the algorithm. The prediction
work, as well as handling a single event, take O(log n) time per event for a total
of O(V log n) (recall that V is the complexity of the decomposition). The extra
machinery required for handling the appearance of new triangles gives rise to
the overhead term O(n log2 n) and it incurs additional work (of the point
location structure, which, although we use scarcely, needs to be maintained)
that is absorbed in the O(V log n) term. The storage required by the algorithm
is O(V)—it is proportional to the complexity of the decomposition.

In the existing implementation of the algorithm the dynamic point-location
structure is replaced with a näıve test that goes over all triangles to find the
triangle that is immediately vertically above the query point. According to
the experimental results reported in [315], this test is fast.

In the case of triangles, as mentioned above, the subdivision Ax is convex.
The algorithm however does not rely on this fact in any way. For the algorithm
to apply, it suffices that the subdivision Ax be y-monotone (where y is the
horizontal axis on the plane Px). The structure of Goodrich and Tamassia
can handle monotone subdivisions.16 Hence we can generalize the result to
the case of well-behaved surface patches:

Theorem 1. Given a collection S of n well-behaved surface patches in gen-
eral position in three-dimensional space, the time needed to compute the full
vertical decomposition of the arrangement A(S) is O(n log2 n+V log n), where
V is the combinatorial complexity of the vertical decomposition.

16M. Goodrich, Personal communication

1 Arrangements 45

1.5.2 Arrangements of Quadrics in 3D

Quadric surfaces, or quadrics for short, are defined as the set of roots of
quadratic trivariate polynomials. For example, the ellipsoids R, G, and B in
the left picture of Fig. 1.14 are defined by the following polynomials:

R(x, y, z) = 27x2 + 62y2 + 249z2 − 10 ,

G(x, y, z) = 88x2 + 45y2 + 67z2 − 66xy − 25xz + 12yz − 24x + 2y + 29z − 5 ,

B(x, y, z) = 139x2 + 141y2 + 71z2 − 157xy + 97xz − 111yz − 3x − 6y − 17z − 7 .

On the surface of a given quadric p, the intersection curves of p with the
remaining quadrics induce a two-dimensional arrangement.17 In our example,
the ellipsoid B and the ellipsoid G intersect the ellipsoid R. This leads to
two intersection curves on the surface of R (the right-hand side pictures of
Fig. 1.14 and Fig. 1.16). Vertices of this (sub)arrangement are common points
of two intersection curves, or rather intersection points of three quadrics.

G

R

B

R

Fig. 1.14. The ellipsoid B and the ellipsoid G intersect the ellipsoid R in two spatial
curves running on the surface of R

The Sweeping Approach

Sweeping a set of n quadrics {Qi, i = 1, . . . , n} by a plane orthogonal to the x-
axis allows to compute the so-called vertical decomposition of the arrangement
of the quadrics (as described above in Sect. 1.5.1).

17Although we have only discussed arrangements in Euclidean space so far in the
chapter, arrangements are naturally defined on curved surfaces as well. For instance,
a very useful type of arrangements is defined on the surface of a sphere—see Sect. 1.7
for an application of such arrangements.

46 E. Fogel, D. Halperin, L. Kettner, M. Teillaud, R. Wein, N. Wolpert

When applying this standard sweeping technique to arrangements of
quadrics in R

3, the main issue is—as usual when applying computational
geometry techniques to curved objects—the implementation of the geometric
primitives: predicates and constructions. Therefore, it is essential to analyze
them precisely. A first study of the way the primitives needed by the sweep
can be expressed in algebraic terms was conducted in [264, 265].

Fig. 1.15. “Trapezoidal” decomposition of
conics in a plane

Let us denote by Qi both a
quadric and its equation, which is
a degree 2 polynomial in the vari-
ables x, y, z. The intersection of the
arrangement of quadrics with the
sweeping plane in a fixed position
during the sweep, gives rise to an
arrangement of conics in a (y, z)-
plane. The equation of a conic for
a given position x = x0 of the plane
is Qi(x0, y, z) = 0, which is a poly-
nomial equation in the coordinates
y, z of a point in the planar section,

denoted Qx0
i for short.

This planar arrangement of conics can be decomposed into “curved trape-
zoids” generalizing in a straightforward way the cells of a trapezoidal decom-
position of an arrangement of line segments (see Fig. 1.15): A wall parallel
to the z-axis is drawn through every intersection point between two conics
and every point where the tangent to the conic is parallel to the z-axis. A
trapezoid is described by:

• two vertical walls, one of which (or even both) may degenerate to a single
point,

• a ceiling and a floor, which are segments of evolving conics, and
• signs to determine the side (above/below) of the trapezoid with respect to

each of these two conics.

When the plane is moving, the conics are deforming. The topology of the
trapezoidal decomposition changes at events of the sweep. An event occurs
whenever one of the two following possibilities occurs:

• either a new quadric is encountered by the sweeping plane (respectively, a
quadric is left by the plane), that is, a new conic appears on (respectively,
a conic disappears from) the plane

• or the description of a trapezoid is modified
- either because its ceiling and floor intersect,
- or because its walls coincide.

Each event corresponds to the construction of a feature of the 3D vertical
decomposition.

1 Arrangements 47

The detection of events boils down to the manipulation of roots of systems
of polynomial equations. Let us briefly illustrate this by showing an example
of algebraic manipulation that is required by the algorithm.

A wall in the sweeping plane x = x0 defined by the intersection of two
conics Qx0

i and Qx0
j corresponds to a solution y of the system

{
Qi(x0, y, z) = 0
Qj(x0, y, z) = 0

The worst type (in terms of algebraic degree) of event corresponds to the
case when two such walls of the same trapezoid coincide, which occurs when
the y-coordinate of the intersection between two conics coincides with the
y-coordinate of the intersection between two other conics, which is expressed
as:

x0 such that ∃y,∃(z1, z2),
{
Qi(x0, y, z1) = 0
Qj(x0, y, z1) = 0 and

{
Qk(x0, y, z2) = 0
Ql(x0, y, z2) = 0

A solution x0 lies in an algebraic extension of degree at most 16. The
sweep requires that events be sorted, which implies that we must compare
exactly two events, or equivalently, determine the sign of the difference of the
corresponding two algebraic numbers. In the worst case, we are interested in
comparing algebraic numbers of degree 16 belonging to independent algebraic
extensions of the initial field. So, the algorithm is highly demanding in terms
of algebraic manipulations.

The solution proposed in [265] uses algebraic tools like Descartes’ rule,
Sturm sequences, and rational univariate representation, described in Chap. 3.
The practicality of this solution is yet to be proven.

Future work on replacing the vertical decomposition by a partial decom-
position is likely to improve the behavior of the algorithm:

• Whereas the complexity of the arrangement is O(n3), the complexity V
of the vertical decomposition is known to be bounded by O(n3β(n)) where
β(n) = λs(n)/n = 2α(n)16 [85]. .

Note that, though the size of this decomposition is slightly larger than the
size of the arrangement, it is much smaller than the size of Collins’ cylindrical
algebraic decomposition [101].

It is well known that in practice the number of cells in the vertical decom-
position can be much bigger than the number of cells in the arrangement. It
was shown experimentally, in the case of triangles in 3D, that the number of
cells in a partial decomposition can be smaller [315].

• Another important motivation is that it could lead to smaller degree
predicates. In fact we have seen that the highest degree predicates we get
come from the comparison of the y-coordinates of intersections of conics in
the sweeping plane. Decompositions where regions would not be defined by
intersections of conics would decrease the degree.

48 E. Fogel, D. Halperin, L. Kettner, M. Teillaud, R. Wein, N. Wolpert

The Projection Approach

An alternative approach to constructing arrangements of quadric surfaces in
three-dimensional space is based on projection [178]. We sketch the main
ideas of the approach below and refer the reader to detailed description of
theoretical and implementation aspects of the method [340], [47].

Independent of the special information about the arrangement of the
quadrics one may be interested in, for example, the topological description
of a cell or of the whole arrangement, the basic computation that has to be
carried out in nearly all cases is: For each quadric p, locate and sort all vertices
along the intersection curves on the surface of p.

Our approach for solving this problem operates similar to Collins’ cylindri-
cal algebraic decomposition. By projection, it reduces the three-dimensional
problem to the one of computing planar arrangements of algebraic curves. We
project for each quadric p all its intersection curves with the other quadrics
and additionally its silhouette onto the plane. This projection step applied to
the quadrics Fig. 1.14 results in the two-dimensional arrangement shown in
Fig. 1.16.

3

~gb
~

b
~

r~

1 2

4

2R

r

g

b
b

Fig. 1.16. Project the intersection curves b̃ and g̃ of the ellipsoid R with the ellipsoid
B and G, respectively, together with the silhouette r̃ of R into the plane. This leads
to the planar curves b, g, and r

We have to compute the planar arrangement resulting from the projection.
All curves of the planar arrangement turn out to be defined by polynomials of
degree at most 4. For example, the curve g is the set of roots of the polynomial

408332484x4 + 51939673y4 − 664779204x3y − 24101506y3x
+564185724x2y2 − 250019406x3 + 17767644y3

+221120964x2y − 123026916y2x+ 16691919x2 + 4764152y2

+14441004xy + 10482900x+ 2305740y − 1763465.

1 Arrangements 49

The reduction is algebraically optimal in the sense that it does not affect
the algebraic degree of the curves we consider. But due to the projection, the
curves in the planar arrangement can have six singular points and two curves
can intersect in up to 16 points. The most difficult problem we face stems
from the high degree of the algebraic numbers that arise in the computation.

For computing the resulting planar arrangements we again must be able
to perform the analysis of a single curve and of a pair of curves. The extreme
points of one curve f are, as in the case for cubics, computed by comparing
the order of f and fy slightly to the left and slightly to the right of the
extreme points. For locating the singular points we make use of the fact that
we consider projected quadric intersection curves. One can prove that at most
two singular points result from the projection in the sense that two non-
intersecting branches of the spatial intersection curve are projected on top of
each other. For example, the intersection curve b̃ in Fig. 1.16 consists of two
non-intersecting loops. They are projected on top of each other causing two
self-intersections. We can compute the coordinates of these singular points
as one-root numbers. In most cases one can express the coordinates of the
remaining singular points as roots of quadratic rational polynomials. Only
in the case that the spatial intersection curve consists of four lines do the
coordinates require a second square root.

As described earlier in the section about planar arrangements of conics
and cubics, transversal intersection points of two curves are easy to compute
by determining the sequence of hits slightly to the left and slightly to the
right of the intersection points. Non-singular intersections of multiplicity 2
are computed using the additional Jacobi curve already mentioned in the sec-
tion about cubics. We know that the Jacobi curve cuts transversally through
both involved curves. This fact enables us to reduce the problem of detect-
ing tangential intersections of multiplicity 2 to the one of locating transversal
intersections. For all remaining non-singular intersections of multiplicity > 2
one can prove that their coordinates are one-root numbers and can thus be
solved directly.

Parameterizing the Intersection of Two Quadrics

A parallel and complementary work was conducted outside ECG, on the con-
version of object representation from Constructive Solid Geometry (CSG) to
Boundary Representation (BRep), motivated by modeling for rendering. A
fundamental step of this conversion is the computation of the intersection of
two primitive volumes. Dupont et al presented a robust and optimal algorithm
for the computation of an exact parametric form of the intersection of two
quadrics [128]. Their method is based on the projective formalism, techniques
of linear algebra and number theory, and new theorems characterizing the
rationality of the intersection. These theoretical results are major in the sense
that the output solution is a rational parameterization whenever one exists
and the coefficients are algebraic numbers with at most one extra square root.

50 E. Fogel, D. Halperin, L. Kettner, M. Teillaud, R. Wein, N. Wolpert

Furthermore, for each geometric type of intersection, the number of square
roots in the coefficients is always minimal in the worst case. This method is
usable in practice (as opposed to the approach of Levin used before [241]).

The algorithm was improved later to minimize the size (i.e., the number of
digits) of the integer coefficients that appear in the parameterizations. It was
implemented in C++ [11] and its practical performance was analyzed [238].

1.6 Controlled Perturbation: Fixed-Precision
Approximation of Arrangements

The approaches taken in recent years to cope with precision and robustness
problems in geometric computing can be roughly categorized in one of the
following two archethemes: (i) exact computing and (ii) fixed-precision ap-
proximation. The former mimics the real RAM model for certain primitives,
whereas the latter adjusts the algorithmic solutions to the standard computer
limited-precision arithmetic.

The approach favored by the Cgal project and related projects, as re-
flected also in most of this chapter, is exact computing. Exact geometric
computing has many advantages, among them is solving the precision and
robustness problem, giving the ultimate true results, and enabling the tran-
scription of the geometric algorithms in the literature if the input is in general
position.

However, exact computing has some disadvantages. In spite of the constant
progress, it is still slower than machine arithmetic especially when the objects
are non-linear or higher dimensional (beyond curves in the plane). Also, exact
computing does not solve the degeneracy problem, and if we anticipate input
that is not in general position, as is often the case in practice, degeneracies
require special (and often very tedious) treatment.18

Here we outline a method that has been employed for the robust imple-
mentation of arrangements of curves and surfaces while using floating-point
arithmetic. The scheme seeks to perturb the input objects slightly such that
after the perturbation their arrangement is degeneracy free and all the pred-
icates that arise in the construction of the arrangement can be accurately
computed with the given machine precision. Controlled perturbation has been
successfully applied to arrangements of circles [198], spheres [200, 153, 154],
polygons [279], polyhedral surfaces [292], and more recently to Delaunay tri-
angulations [172].

One can view the goal of controlled perturbation as follows. We look to
move the input objects slightly from their original placement such that when
constructing the arrangement of the perturbed objects while using a fixed pre-
cision floating-point filter (see, e.g., [251, 346]), the filter will always succeed
and we will never need to resort to higher precision or exact computation.

18In Cgal though, the implementation of algorithms for two-dimensional arrange-
ments do not assume general position and handle degeneracies.

1 Arrangements 51

We give an overview of the controlled-perturbation scheme. Although the
ideas that we present here could have been described in a more general setting,
and have been applied more generally, we concentrate, for ease of exposition,
on arrangements of circles.

The input to the perturbation algorithm is a collection C = {C1, . . . , Cn}
of circles, each circle Ci is given by the Cartesian coordinates of its center
(xi, yi) and its radius ri; we assume that all the input parameters are repre-
sentable as floating-point numbers with a given precision. The input consists
of three additional parameters: (i) the machine precision p, namely the length
of the mantissa in the floating-point representation, (ii) an upper bound on
the absolute value of each input number xi, yi, and ri, and (iii) ∆ — the
maximum perturbation size allowed.19

For an input circle Ci, the perturbation algorithm will output a copy C ′
i

with the same radius but with its center possibly perturbed. We define Cj

as the collection of circles {C1, . . . , Cj}, and C′
j as the collection of circles

{C ′
1, . . . , C

′
j}. The perturbation scheme transforms the set C = Cn into the set

C′ = C′
n.

We carry out the perturbation in an incremental fashion, and if there is a
potential degeneracy while adding the current circle, we perturb it so that no
degeneracies occur. Once the j-th step of the procedure is completed, we do
not move the circles in C′

j again. We next describe the two key parameters that
govern the perturbation scheme—the resolution bound and the perturbation
bound.

Resolution Bound

A degeneracy occurs when a predicate evaluates to zero. The goal of the
perturbation is to cause all the values of all the predicate expressions (that
arise during the construction of the arrangement of the circles) to become
“significantly non-zero”, namely to be sufficiently far away from zero so that
our limited precision arithmetic could enable us to safely determine whether
they are positive or negative.

Fig. 1.17. Outer tangency —
two circles (bounding interior-
disjoint disks) intersect in a
single point

The degeneracies that arise in arrangements
of circles have a natural geometric characteri-
zation as incidences. For example, in outer tan-
gency (Fig. 1.17), two circles intersect in a single
point. We transform the requirement that the
predicates will evaluate to sufficiently-far-from-
zero values into a geometric distance require-
ment.

An outer tangency between C1 and C2 oc-
curs when

√
(x1 − x2)2 + (y1 − y2)2 = r1 + r2 .

19The exact size of ∆ depends on the specific application of the perturbed arrange-
ment.

52 E. Fogel, D. Halperin, L. Kettner, M. Teillaud, R. Wein, N. Wolpert

We look for a distance ε > 0 such that if we move one circle relative to the
other ε away from the degenerate configuration, we could safely determine the
sign of the predicate with our limited precision arithmetic, that is, we look
for a relocation (x′2, y

′
2) of the center of C2 such that

|
√

(x1 − x′2)2 + (y1 − y′2)2 − (r1 + r2)| ≥ ε .

This is a crucial aspect of the scheme—the transformation of the non-
degeneracy requirement into a separation distance. We call the bound on the
minimum required separation distance the resolution bound 20 and denote it by
ε. If the separation distance is less than ε, then there is a potential degeneracy.
The bound ε depends on the size of the input numbers (center coordinates
and radii) and the machine precision. It is independent of the number n of
input circles.

Deriving a good resolution bound is a non-trivial task [198]. Notice how-
ever that in order to carry out the scheme successfully, one does not need to
know the resolution bound. This bound is only needed in order to derive the
perturbation bound (see next paragraph) which gives a guarantee on the max-
imum perturbation magnitude, as may be required by some applications. It
also allows to determine what precision is necessary in order to accommodate
a given maximum on the allowed perturbation. If a user is not concerned about
the perturbation magnitude, then the scheme requires very little analysis.

Perturbation Bound

Suppose that ε is indeed the resolution bound for all the possible degenera-
cies in the case of an arrangement of circles for a given machine precision.
When we consider the current circle Ci to be added, it could induce many
degeneracies with the circles in C′

i−1. Just moving it by ε away from one de-
generacy may cause it to come closer to other degeneracies. This is why we use
a second bound δ, the perturbation bound — the maximum distance by which
we perturb the center of any of the circles away from its original placement.
The bound δ depends on ε, on the maximum radius of a circle in C, and on
a density parameter ρ. The density parameter bounds the number of circles
that are in the neighborhood of any given circle or may effect it during the
process; clearly, ρ ≤ n− 1.

We say that a point q is a valid placement for the center of the currently
handled circle Ci if, when moved to q, this circle will not induce any degeneracy
with the circles in C′

i−1. The bound δ is computed such that inside the disk
Dδ of radius δ centered at the original center of Ci, at least half the points
(constituting half of the area of Dδ) are valid placements for the circle. This
means that if we choose a point uniformly at random inside Dδ to relocate the
center of the current circle, it is a valid placement with probability at least 1

2 .

20It would have also been suitable to call it a separation bound, but we use resolu-
tion bound to avoid confusion with separation bounds of exact algebraic computing.

1 Arrangements 53

After the perturbation, the arrangement A(C′) is degeneracy free. More-
over, A(C′) can be robustly constructed with the given machine precision. The
perturbation algorithm should not be confused with the actual construction
of the arrangement. It is only a preprocessing stage. However, it is conve-
nient to combine the perturbation with an incremental construction of the
arrangement, or more generally, the scheme can be conveniently and efficiently
interwoven with geometric Randomized Incremental Construction (RIC) al-
gorithms [172]

The full technical details of the method are given for circles in [198]. In
all applications to date, even in fairly involved applications such as dynamic
maintenance of molecular surfaces under conformational changes [154], the
perturbation consumes a very small fraction of the running time of the con-
struction algorithm.

1.7 Applications

Arrangements of curved objects arise in a variety of applications from differ-
ent fields, such as robotics, computer-aided design (CAD) and computer-aided
manufacturing (CAM), graphics and molecular modeling. While textbook al-
gorithms sometimes supply elegant algorithms for solving such problems, im-
plementing reliable and efficient software solutions pose a real challenge to any
computer programmer, due to the high complexity of the algebra involved. In
this section we review some of these applications and describe the state-of-
the-art software solutions. Most of these solutions were implemented using the
geometric and the algebraic infrastructure described in the previous sections.

1.7.1 Boolean Operations on Generalized Polygons

We can describe point sets in the plane bounded by piecewise arcs of curves
with a suitably labeled arrangement of (arcs of) curves. Therefore, we extend
the arrangement data structure with a Boolean selection mark for all arrange-
ment features (vertices, edges, and faces). The selection mark is true if the
item is part of the represented point set and false otherwise.

We describe how to implement standard Boolean set-operations, such as
union, intersection, complement, and difference, as well as topological opera-
tions, such as interior, closure, and boundary. A particular relevant operation
is the regularization of a point set A, denoted A�, which is defined as the
closure of the interior of the point set A. A point set A is called regular if it is
equal to its regularization, i.e., A = A�. By regularizing the result of Boolean
set-operations we obtain the regularized Boolean set-operations. Regulariza-
tion is particularly relevant for solid modeling because regular sets are closed
under regularized Boolean operations and because regularization eliminates
lower dimensional features, thus simplifying and restricting the representation
to physically meaningful solids. A simplified representation does not have to

54 E. Fogel, D. Halperin, L. Kettner, M. Teillaud, R. Wein, N. Wolpert

(a) (b) (c)

Fig. 1.18. Two generalized polygons (a) and (b), bounded by piecewise arcs of
conic curves, and their symmetric difference (c)

store selection marks; they are implicitly always set for vertices and edges,
and for faces they are deduced from a suitably chosen orientation condition
on their boundaries.

The implementation of all operations can be broken into three distinct
steps — refinement, selection, and simplification — although in practice the
first two (if not all three) can be performed in a single step. The refinement
step is ignored for unary operations.

Refinement: Given two input arrangements, we compute an arrangement that
is a common refinement of the two, also referred to as the overlay of the
two arrangements. This is done using the sweep-line algorithm presented
in Sect. 1.3. We also take advantage of the fact that the two input arrange-
ments are represented using two Dcel structures, which contain only x-
monotone curves that do not intersect in their interior. We therefore never
have to compute intersection between two curves that originate from the
same Dcel.21

The result of the refinement is an arrangement including proper faces. For
each feature in the result, we have a unique support feature in each input
arrangement, in particular, for each result face we know the corresponding
face in each input arrangement.

Selection: We determine the value for each selection mark in the refined
arrangement:
• For binary point-set operations, we evaluate the corresponding Boolean

function on the selection marks of the two support features.
• For a complement operation, we negate all selection marks.

21A variant of this problem has been studied under the name of red-blue segment
intersection for the linear case, but we do not know of extensions for curves. For
example, the algorithm in [248] (and also others) makes explicit use of the fact that
the edges intersect at most once.

1 Arrangements 55

• For an interior operation, we set the selection marks of all edges and
vertices to false.

• For the closure operation, we set the selection mark of all edges and
vertices incident to a marked face and of all vertices incident to a
marked edge to true.

• For the boundary operation, we compute the closure and then set all
face selection marks to false.

Simplification: Refinement and selection might result in a redundant repre-
sentation of the point set. For example, the union of two half-discs still
contains the dividing diameter, which is redundant for the representation
of a full disc. Simplification is important as it enables a unique repre-
sentation of a point set and also reduces the memory requirements by
eliminating redundant features. Moreover, it simplifies the selection step;
in this step we assume that input arrangements are simplified, otherwise
the selection rules would become more involved.
The simplification applies the following three rules, in that order, until
no rule applies and the unique representation is reached. These rules are
based on a complete classification of local neighborhoods in the point set:
• If the selection marks of an edge and its two incident faces have

the same value, then the edge is redundant and is removed from the
arrangement, merging the two faces in the process.

• If a vertex is incident to exactly two edges that have the same support-
ing curve and all have the same selection-mark value, then the vertex
is redundant and is removed from the arrangement, such that the two
edges are merged to represent a single curve (an exception to this rule
are vertices that divide curves to form x-monotone sub-curves).

• If an isolated vertex has the same selection mark as its surrounding
face, then this vertex is redundant and is removed from the arrange-
ment.

Clearly, the refinement step is computationally the most demanding of
the three and it dominates the run-time of the overall algorithm. However,
when the intermediate arrangement consists of many redundant features, the
simplification step may also be non-negligible.

The representation of point sets starting from linear half-spaces as prim-
itives have been implemented in the full generality described here as Cgal

packages: Seel [308], [309] implemented the planar Nef polyhedra package while
Granados et al. [189] and Hachenberger et al. [195] describe the implementa-
tion of 3D Nef polyhedra, based on the work of [274], [53] and [297]. Regular
point sets with regularized Boolean set-operations have been implemented
under the name of generalized polygons [251, Sect. 10.8] in Leda. This imple-
mentation has been extended to handle regions bounded by conic arcs in the
Exacus project [49], see Fig. 1.18 for an example.

The Boolean set-operation package included in Cgal Version 3.2 [2] imple-
ments regularized Boolean set-operations on point sets given as collections of

56 E. Fogel, D. Halperin, L. Kettner, M. Teillaud, R. Wein, N. Wolpert

generalized polygons. A generalized polygon is defined by a circular sequence
of edges realized as arbitrary directed x-monotone curves, with the property
that the target point of each x-monotone curve equals the source point of
its successor. Each type of x-monotone curve, as defined by one of the traits
classes described in Sect. 1.4.2 (namely a conic arc, a segment of a rational
function, etc.), may be used to represent a polygon edge.

An important feature of the Boolean set-operation package is that it sup-
ports aggregated operations in an efficient manner. Suppose we are given a
set of generalized polygons P1, . . . , PN and we wish to compute

⋃N
k=1 Pk. We

do so using a divide-and-conquer approach — namely, we divide the polygon
set into two sets of approximately the same size, recursively compute the ag-
gregated union of each subset and finally compute the binary union of the two
results. Similarly, we can define and implement an aggregated intersection and
symmetric difference operations.

In the implementation of the divide-and-conquer algorithm we use the two
following observations in order to optimize the process and reduce its running
time:

• Simplifying the intermediate arrangements that represent the partial re-
sults in the various recursion steps is too costly. We therefore avoid the
simplification steps along the divide-and-conquer process. Only the final
result of the overall operation is simplified.

• At each of the recursion steps we have to compute the union of two sets
by overlaying two arrangements. This is done by the sweep-line algorithm,
whose first step is initializing its event queue (the X-structure) by sorting
all curve endpoints. We take advantage of the fact that these endpoint are
exactly the the arrangement vertices, and since each intermediate arrange-
ment has been constructed using the sweep-line algorithm in the previous
recursion steps, we know that their vertices were already created in ascend-
ing xy-lexicographic order. We can therefore apply a linear-time merger of
the two vertex lists, achieving a considerable reduction in the number of
geometric comparisons we perform, therefore reducing the running time.

Figure 1.19 shows two Vlsi models that represent electronic circuits, the
components of which have been dilated by a small radius r. The models there-
fore contain a large number of general polygons (representing dilated segments
or dilated polygons) and circles (representing dilated points or dilated circles).
We compute the union of the dilated components, using the aggregated union
operation provided by the Cgal package. We use a specialized traits class
for handling line segments and circular arc with rational coefficient [337].
This traits class uses the fact that the coordinates of all intersection points it
handles are one-root numbers (see Sect. 1.3.1) to evaluate all the predicates
involving curves and points using exact rational arithmetic. This property
makes it highly efficient. The result, which represents the forbidden locations
for a circular tool-tip of radius r within the model, can be expressed as a set

1 Arrangements 57

(a) (b)

Fig. 1.19. Computing the aggregated union of generalized polygons that originate
from industrial Vlsi models. (a) The union of a set of 2593 generalized polygons
and 645 circles, which comprises 13067 vertices, 13067 edges and 624 faces. It is
computed in less than 2 seconds on a 3 GHz Pentium IV machine with 2 Gb of
Ram. (b) The union of a set of 22406 generalized polygons and 294 circles, which
comprises 14614 vertices, 14614 edges and 357 faces and takes 20 seconds to compute

of disjoint general polygons that contain holes. Note that in both cases the
union is computed in just a few seconds in an exact manner (see Figure 1.19).

1.7.2 Motion Planning for Discs

The simplest variant of the motion-planning problem for a disc is as follows:
We are given a disc-shaped robot with radius r, moving within a bounded
polygonal region cluttered with polygonal obstacles. Given a start and a goal
configuration in the plane (specified, for example, by the coordinates of the
center of the disc) determine whether there exists a collision-free motion path
for the robot between the two end configurations, and if so, compute such a
path.

As this variant of the motion-planning problem has two degrees of freedom,
the forbidden configuration space can be explicitly constructed by computing
the union of the Minkowski sums of each obstacle with the disc (see, e.g., [40]).
Each Minkowski sum is obtained by “inflating” the corresponding polygon by
r, resulting in a shape bounded by line segments and circular arcs. The free
configuration space can then be decomposed into pseudo-trapezoidal cells, and
it is possible to define a roadmap over those cells that captures the connectivity
of the free space (see, e.g., [237]). When the start and goal configurations, both
free, are specified as a query, it suffices to locate the two corresponding cells
and check whether they can be connected in the roadmap.22

Leiserowitz and Hirsch [240] implemented the motion-planning algorithm
described above. They used Cgal’s arrangement package (Sect. 1.4.1), com-

22Another approach for solving the motion-planning problem for a disc, presented
by Ó’Dúnlaing and Yap [275], involves the construction of the Voronoi diagram of
the obstacle edges.

58 E. Fogel, D. Halperin, L. Kettner, M. Teillaud, R. Wein, N. Wolpert

bined with the conic arc traits (Sect. 1.4.2) to obtain an exact representation
of the free configuration space, to decompose it into pseudo-trapezoids, and
to answer point-location queries for the start and goal configurations in an
efficient manner.

(a) (b)

Fig. 1.20. Two scenes for motion planning of two disc robots: (a) Annulus, and (b)
Maze

Hirsch and Halperin [209] suggest an approach called hybrid motion-
planning for coordinating the motion of two disc robots D1, D2 moving in
the plane among polygonal obstacles. The configuration space in this case
is 4-dimensional and it is rather difficult to construct explicitly. Instead, the
2-dimensional free space of each robot is constructed independently and de-
composed into pseudo-trapezoidal cells using the implementation of [240].
Let c(1)1 , . . . , c

(1)
m1 and c

(2)
1 , . . . , c

(2)
m2 be the free cells obtained for the two ro-

bots respectively, then the 4-dimensional free space is clearly a subset of
⋃m1

i=1

⋃m2
j=2 c

(1)
i × c

(2)
j . We now examine the cells obtained by this Cartesian

product:

• Each 4-dimensional cell cij = c
(1)
i × c

(2)
j obtained from two 2-dimensional

cells that are sufficiently distant from one another, namely when (c(1)i ⊕
D2)∩ (c(2)j ⊕D1) = ∅, is entirely free: If we locate D1 in c(1)i and D2 in c(2)j

each robot does not collide with any obstacles and the two robots cannot
collide with one another.

• The other 4-dimensional cells may contain both free and forbidden config-
urations, which need to be distinguished. The computation of the free con-
figurations within each cell is approximated using a probabilistic roadmap
(see, e.g., [220]), whose construction relies on simple local planners.

1 Arrangements 59

The free cells and the local roadmaps are then stitched together to form a
global roadmap that captures the connectivity of the entire 4-dimensional
free space.

The hybrid motion planner, which combines exact arrangement computa-
tion with probabilistic techniques, has several advantages over the prevalent
probabilistic approaches. First, it uses exact methods wherever possible and
thus it is less sensitive to the existence of narrow (and even tight) passages.
Secondly, only a small portion of the configuration space is computed using
probabilistic methods, giving the ability to concentrate more computational
efforts on these parts and to sample them more densely.

Fig. 1.20 shows two motion-planning problems that the hybrid planner
successfully solves. In both scenes the two robots have to switch places. In the
Annulus scene one of the robots has to go all the way through the maze, while
the other should only slightly move; this solution is found deterministically,
as there is almost no need to coordinate the two robots. In the Maze scene
the two robots have to go all the way up the maze, switch places at the wide
part at the top-left corner of the maze, and then go all the way down. The
probabilistic methods are mostly used only at the top part of the maze, where
the motion of the two discs should be carefully coordinated. These examples
show that the introduction of exact two-dimensional arrangements can greatly
enhance the capabilities of practical motion planners to solve difficult (tight)
problems.

1.7.3 Lower Envelopes for Path Verification in Multi-Axis
NC-Machining

In a typical multi-axis NC-machining collision-avoidance problem we are given
a rotating milling-cutter (also called a tool), whose profile — with respect to
its axis of symmetry — is typically piecewise linear or circular, moving in
space among polyhedral solids bounded by triangular facets. These triangles
model the workpiece sculptured by the tool as well as other static parts of
the NC-machine [277]. Our goal is to verify a given motion path for the tool
between two given configurations,23 so it can move near the workpiece without
damaging it or any of the other static parts of the machine.

The path-verification problem was addressed by many researchers (see,
e.g., [348, 211]) but most proposed algorithms are based on various approxi-
mation schemes or pose certain restrictions on the shape of the tool. However,
two recent papers by the same group of authors offer a novel approach for path
verification, based on exact geometric computations. In [213] it is shown how
to answer a single tool–model interference query, when the tool remains static
at a given configuration, by computing the lower envelope of algebraic arcs

23In the NC-machining literature, a configuration is often referred to as a contact
location (CL) point, as the tool tip is typically in contact with the workpiece, and
this is the only type of contact that we allow.

60 E. Fogel, D. Halperin, L. Kettner, M. Teillaud, R. Wein, N. Wolpert

of degree 2.24 We assume, without loss of generality, that the tool tip is posi-
tioned at the origin with the z-axis being its axis of symmetry. We now wish
to locate all the closest model triangles to the z-axis. This is performed, tak-
ing advantage of the symmetry of the rotating tool, by radially projecting the
relevant model triangles around the z-axis onto the yz-plane, i.e., by applying
a transformation R : R

3 → R
2 such that (x̂, ŷ) = R(x, y, z) = (z,

√
x2 + y2).

The image of a triangle under R is the trace that the triangle etches on
the yz-plane (more precisely, on the half-plane y > 0) when rotated around
the z-axis. It is possible to show that the trace of the triangle is determined
by the projected curves that result from applying R on the triangle edges —
these are finite arcs of canonical hyperbolas — plus (possibly) an additional
line segment in the x̂ŷ-plane.

It is now possible to compute the lower envelope of the set of hyperbolic
arcs and line segments obtained from the triangles. This is carried out using
an extension of Cgal’s arrangement package (see Sect. 1.4.1) that computes
the lower envelope of any set of curves in a robust manner, using the divide-
and-conquer approach, combined with the traits class designed for conic arcs
(see Sect. 1.4.2). Finally, it is possible to perform a simultaneous traversal over
the lower envelope and the tool’s profile along the x̂-axis (which corresponds
to the original z-axis) and compare the two entities. If at some point the
profile lies above the lower envelope, we conclude that there is a collision
between the tool and the model and identify the triangles that are intersected
by the tool; see the example depicted in Fig. 1.21 for an illustration. If we
have n triangles, the total running time is O(2α(n)n log n+m) where m is the
number of segments in the tool’s profile, and α denotes the inverse Ackermann
function.

The lower envelope approach is generalized in [335], where it is used to im-
plement a continuous path verification scheme for multi-axis NC-machining,
that is, to detect collisions between the model and the tool while the latter
continuously moves along some given path. The tool-path is approximated by
a sequence of sub-paths of pure translational motions interleaved with pure
rotational motions, guaranteeing that the approximation error is bounded by
some prescribed ε. Each sub-path is separately verified.

It is possible to apply the appropriate transformation, with respect to
each sub-path, that ensures that the translation (or rotation) in the sub-path
is taking place on the xz-plane. We now assume that the tool is fixed, such
that the tip of the tool is always positioned at the origin with the z-axis
being its axis of symmetry, and the model is moving. The radial projection
of any segment (triangle edge) in the model around the z-axis is therefore
continuously changing. Thus it creates a surface patch σ of a terrain ŷ =
ŷ(x̂, τ) in the x̂ŷτ -space, where τ parametrizes the motion in the corresponding

24Given a set of planar curves, we can regard each x-monotone curve as the graph
of a continuous univariate function defined on an interval of the x-axis, such that
the lower envelope of the set is the point-wise minimum of these functions.

1 Arrangements 61

Fig. 1.21. The profile of a complex tool containing 5000 segments (drawn in a thick
dark line) as it interferes with the lower envelope of a set of about 800 hyperbolic
arcs and line segments obtained by radially projecting the model triangles around
the tool’s symmetry axis

sub-path. The key observation made here is that we are only interested in the
“lowest” points in this surface patch, the ones closest to the z-axis. To this
end, we compute the silhouette25 of the patch σ, which is a planar curve in
the x̂ŷ-plane, defined as

silσ(x̂) = inf
τ
ŷ(x̂, τ) . (1.3)

It is now possible to compute the lower envelope of the silhouette curves
of all relevant triangle edges and to proceed as we did in the discrete case.
However, we now have to inflate the profile of the tool by ε before comparing
it with the lower envelope, in order to account for the approximation error
caused by our path decomposition scheme.

In [335] it is shown that the silhouette of a line segment (representing a
triangle edge) in case of a pure translational motion is comprised of at most five
hyperbolic arcs, so in this case the continuous collision check is asymptotically
as fast as the discrete query using the exact-computation mechanisms. Things
get more complicated for rotational motions, but in this case one can obtain a
good approximation of the silhouette curves using rational arcs of a relatively
low degree.

The collision-detection algorithms were implemented in the Irit modeling
environment [7], while the lower-envelope calculations and the comparison of
the envelope with the tool profile were carried out with a recent extension to
the Cgal arrangement package [334]. It should be noted that the hyperbolic
arcs we encounter are portions of canonical hyperbolas with the x̂-axis being
their major axis. Thus, the intersection points between each pair of hyperbolic

25The silhouette is often referred to as the envelope. To avoid confusion with lower
envelopes of finite sets of curves, we stick with the term silhouette.

62 E. Fogel, D. Halperin, L. Kettner, M. Teillaud, R. Wein, N. Wolpert

arcs can actually be computed by solving only quadratic equations. This fact
not only simplifies the code that handles the geometric constructions and
predicates for our planar curves, but also helps in significantly reducing the
running time of the algorithm.

1.7.4 Maximal Axis-Symmetric Polygon Contained in a Simple
Polygon

�1

P

P�2

P�1

�2

P

Fig. 1.22. The maximal contained polygons in P with respect to two given axes �1
and �2, obtained by the intersection of P and the mirrored polygons P�1 and P�2 ,
respectively. Note that the two symmetric polygons S�1 = P ∩P�1 and S�2 = P ∩P�2

have different signatures

We are given a simple polygon P . What is the axially-symmetric polygon
with maximal area that is contained in P? Given any axis of symmetry � it
is possible to compute P	, the mirrored version of P with respect to this axis,
and obtain the maximal contained polygon S	 = P ∩ P	 with respect to the
given axis. Furthermore, the signature of S	 is defined as the order of original
polygon edges and reflected edges as they occur along S	’s boundary.

The number of possible axis positions is obviously infinite, yet the number
of distinct signatures of S	 is restricted combinatorially by the number of
intersections between edges of the original polygon and its mirrored version.
In the example shown in Fig. 1.22, S	1 and S	2 have different signatures.

Barequet and Rogol [43] use this observation to solve the optimization
problem. They find the polygon of maximum area with a given signature, for
all possible signatures, and choose the one with maximal area from this finite
set of polygons.

The problem is transformed into the dual plane, which is subdivided into
a finite number of cells, such that two points that belong to the same cell

1 Arrangements 63

correspond to lines �1 and �2 such that S	1 and S	2 have the same signature. It
turns out that such a subdivision is induced by the arrangement of a set of lines
and hyperbolic arcs. Barequet and Rogol used Cgal’s arrangement package
to compute the subdivision and then used heuristic optimization techniques
to find the polygon with maximal area within each cell. For a convex polygon,
the complexity of the arrangement is Θ(n3) in the worst case, and the total
running time of the algorithm is O(n3(log n+T (n))), where T (n) is the average
running time of a single optimization step. Further details can also be found
in [296].

1.7.5 Molecular Surfaces

Fig. 1.23. The hard-sphere model of the
molecule crambin (a protein comprised of
46 amino acids) with 327 atom spheres. The
figure was produced using the software de-
scribed in [199]

A common approach to represent-
ing the three-dimensional geomet-
ric structure of a molecule is to
represent each of its atoms by a
“hard” ball or sphere. In certain
applications it is also assumed that
the relative displacement of the
spheres is fixed. Based on the ap-
plication at hand, there are rec-
ommended values for the radius of
each atom sphere and for the dis-
tance between the centers of every
pair of spheres. In this model, the
spheres are allowed to interpene-
trate one another, therefore it is
sometimes referred to as the “fused
spheres” model (see Fig. 1.23).
The envelope surface of the fused
spheres may be regarded as a for-
mal molecular surface. It is ev-
ident that various properties of
molecules are disregarded in this simple model. However, in spite of its ap-
proximate nature, it has proved useful in many practical applications. There
are several closely related types of molecular surfaces. One is the so-called
solvent accessible surface in which each atom sphere is expanded by a fixed
radius r to reflect an approximation of a water molecule (of that radius) rolling
over the molecule. From a geometric-computing point of view, the two types
of surfaces are the same and they both amount to computing the boundary
of the union of balls. There is yet another commonly used type of surfaces,
so-called smooth molecular surfaces,26 proposed by Richards [294] and imple-
mented by Connolly [103], which can be derived from the union. For more

26The so-called smooth molecular surfaces are possibly self intersecting; see,
e.g., [303].

64 E. Fogel, D. Halperin, L. Kettner, M. Teillaud, R. Wein, N. Wolpert

background material and references, see for example the surveys [253, 104].
For a discussion of the relation between the three types of surfaces from a
computational point of view see [199].

Let M = {B1, . . . , Bn} be the balls describing the atoms of a molecule.
The goal is therefore to produce a useful representation of the boundary of the
set M, so that it can be later used to compute the surface area, to determine
which atoms contribute to the surface area and how much they contribute, to
detect voids, and more. The approach suggested in [199] and robustly imple-
mented in [200] proceeds as follows: (1) For each ball in M identify the other
balls of M intersecting it. (2) For each ball compute its (potentially null)
contribution to the union boundary. (3) Transform the local information into
global structures describing the required connected component of the union
boundary of the balls in M.

We focus here on step 2, which is carried out by computing the spheri-
cal arrangement describing the intersection of the boundary sphere Si of a
ball Bi in M with other balls in M. This is an arrangement of little circles
(namely, not necessarily great circles) on Si; see Fig. 1.24(a) for an illustration.
Attempts to compute such spherical arrangements using standard machine
floating-point arithmetic have failed. To avoid this problem, it is possible to
resort to controlled perturbation (see Sect. 1.6) [200, 152]. Molecular surfaces
are suited for controlled perturbation since the model parameters are approxi-
mated to start with and the amount of perturbation introduced by the scheme
is orders of magnitude smaller compared to variance of these parameters in
the biochemistry literature.

Another noteworthy aspect of the implementation in [200] is that it uses a
partial decomposition of the arrangement (Fig. 1.24(c)), which is an effective
coarsening of the trapezoidal decomposition (Fig. 1.24(b)) as explained in
Sect. 1.5, or more precisely of its variant on the sphere. The usage of a partial
decomposition over a full trapezoidal decomposition leads to great savings in
running time.

The underlying algorithmic ideas together with an analysis of the geo-
metric properties of the hard-sphere model of molecules appear in [199]. The
details of controlled perturbation applied to molecular surfaces are explained
in [200]. Recent improvements leading to significant speedups are reported
in [152]. The scheme has also been recently extended to the case of dynamic
maintenance of molecular surfaces when the molecules undergo conformational
changes [153, 154].

1.7.6 Additional Applications

The Pursuit-Evasion Problem

Gerkey et al. [180] studied the pursuit-evasion problem, in which one or more
searchers move in a given polygonal environment (say in one floor of a mu-
seum) and detect evaders in this environment. They give a complete algorithm

1 Arrangements 65

(a) (b) (c)

Fig. 1.24. A spherical arrangement (a), its full trapezoidal decomposition (b), and
its partial trapezoidal decomposition (c)

for the case of a single robot with a limited field of view of ϕ radians, called
a ϕ-searcher, based on the arrangement of curves that represent the visibility
constraints induced by the environment and the searchers’ field of view. Each
obstacle edge defines a critical curve that is the locus of all points that “see” it
at an angle ϕ, namely a pair of circular arcs. The algorithm for a single robot
can also be generalized for multiple searches (albeit at a loss of completeness).
See [179] for further details and on-line examples.

Shortest Path with Clearance

Wein et al. [336] devise a new structure for finding the shortest path for a
point robot moving in the plane among polygonal obstacles between a source
and a goal configuration, while trying to guarantee that the clearance between
the robot and the obstacles is at least c. The main idea is to “inflate” each
obstacle by a radius c (see also Sect. 1.7.2), and compute the visibility diagram
of the dilated obstacles. A visibility edge is a bitangent to rounded corners of
the dilated obstacle. When one encounters a region where it is impossible to
guarantee a distance of at least c from the obstacles, which is characterized by
an overlap between the dilated obstacles, the Voronoi diagram of the original
obstacles is computed and combined into the visibility diagram, representing a
path with maximal clearance in this region. The combined diagram therefore
contains line segments, circular arcs, and parabolic arcs.27 It is constructed
using the conic-arc traits of Cgal’s arrangement package.

27The Voronoi diagram of polygons is a collection of line segments and parabolic
arcs — a parabolic arc is the locus of points equidistant from a polygon vertex and
an edge of another polygon.

66 E. Fogel, D. Halperin, L. Kettner, M. Teillaud, R. Wein, N. Wolpert

1.8 Further Reading and Open problems

In this chapter we have concentrated on recent developments in the implemen-
tation of arrangements of curves and surfaces and their applications. Many
combinatorial and algorithmic results for arrangements of curves and surfaces
can be found in Sharir and Agarwal’s book [312], see also their more recent
survey [15]. Earlier combinatorial results for arrangements of hyperplanes can
be found in Edelsbrunner’s book [130]. The recent survey by Halperin [196]
summarizes combinatorial and algorithmic results as well as applications and
implementation issues. The book by Matoušek [249] has several chapters ded-
icated to arrangements of hyperplanes and of surfaces, with an emphasis on
combinatorics.

Cgal and Leda are discussed in the survey by Kettner and Näher [222].
The Cgal website www.cgal.org has a wealth of information on the library
including large-scale detailed documentation.

To conclude the chapter, we outline several open problems related to the
effective handling of arrangements.

• The chapter has largely focused on the two-dimensional case. A major
current direction is to extend the implementation to three and higher
dimensional arrangements.

• The issue of effective decompositions has been mentioned in passing in
Sect. 1.5. Devising effective decompositions for arrangement of curves and
surfaces is a problem whose good solution could have significant implica-
tions on the usefulness of arrangements in practice.

• So far, most of the effort in implementing arrangements has been car-
ried out using exact arithmetic. Fixed precision methods for arrangements
could make them more widely used. One of the most challenging problems
is to develop efficient and consistent rounding schemes for arrangements.
Such schemes are not only needed to avoid using exact computing. The
contrary is true. With the advance of exact computing we notice that
quite often the exact numerical output is too big to be useful, while in
cases involving curves and surfaces finite numerical output simply cannot
be given.

• Most of the existing implementations, with few exceptions, compute entire
arrangements. Efficiently extracting substructures (such as envelopes) in
arrangements is one of the immediate targets of the practical work on
arrangements.

2

Curved Voronoi Diagrams

Jean-Daniel Boissonnat�, Camille Wormser, and Mariette Yvinec

Abstract

Voronoi diagrams are fundamental data structures that have been extensively
studied in Computational Geometry. A Voronoi diagram can be defined as the
minimization diagram of a finite set of continuous functions. Usually, each of
those functions is interpreted as the distance function to an object. The as-
sociated Voronoi diagram subdivides the embedding space into regions, each
region consisting of the points that are closer to a given object than to the
others. We may define many variants of Voronoi diagrams depending on the
class of objects, the distance functions and the embedding space. Affine di-
agrams, i.e. diagrams whose cells are convex polytopes, are well understood.
Their properties can be deduced from the properties of polytopes and they
can be constructed efficiently. The situation is very different for Voronoi dia-
grams with curved regions. Curved Voronoi diagrams arise in various contexts
where the objects are not punctual or the distance is not the Euclidean dis-
tance. We survey the main results on curved Voronoi diagrams. We describe
in some detail two general mechanisms to obtain effective algorithms for some
classes of curved Voronoi diagrams. The first one consists in linearizing the
diagram and applies, in particular, to diagrams whose bisectors are algebraic
hypersurfaces. The second one is a randomized incremental paradigm that
can construct affine and several planar non-affine diagrams.

We finally introduce the concept of Medial Axis which generalizes the
concept of Voronoi diagram to infinite sets. Interestingly, it is possible to
efficiently construct a certified approximation of the medial axis of a bounded
set from the Voronoi diagram of a sample of points on the boundary of the
set.

� Chapter coordinator

68 J-D. Boissonnat, C. Wormser, M. Yvinec

2.1 Introduction

Voronoi diagrams are fundamental data structures that have been extensively
studied in Computational Geometry. Given n objects, the associated Voronoi
diagram subdivides R

d into regions, each region consisting of the points that
are closer to a given object than to any other object. We may define many
variants of Voronoi diagrams depending on the class of objects, the distance
function and the embedding space. Although Voronoi diagrams are most of-
ten defined in a metric setting, they can be defined in a more abstract way.
In Sect. 2.2, we define them as minimization diagrams of any finite set of
continuous functions without referring to a set of objects.

Given a finite set of objects and associated distance functions, we call bi-
sector the locus of the points that are at equal distance from two objects.
Voronoi diagrams can be classified according to the nature of the bisectors of
the pairs of objects, called the bisectors of the diagram for short. An impor-
tant class of Voronoi diagrams is the class of affine diagrams, whose bisectors
are hyperplanes. Euclidean Voronoi diagrams of finite point sets are affine
diagrams. Other examples of affine diagrams are the so-called power (or La-
guerre) diagrams, where the objects are no longer points but hyperspheres and
the Euclidean distance is replaced by the power of a point to a hypersphere.
In Sect. 2.3, we recall well-known facts about affine diagrams. In particular,
we characterize affine diagrams and establish a connection between affine dia-
grams and polytopes. As a consequence, we obtain tight combinatorial bounds
and efficient algorithms. We also obtain a dual structure that is a triangulation
under a general position assumption.

Non-affine diagrams are by far less well understood. Non-affine diagrams
are obtained if one changes the distance function: additively and multiplica-
tively weighted distances are typical examples. Such diagrams allow to model
growing processes and have important applications in biology, ecology, chem-
istry and other fields (see Sect. 2.9). Euclidean Voronoi diagrams of non-
punctual objects are also non-affine diagrams. They are of particular interest
in robotics, CAD and molecular biology. Even for the simplest diagrams, e.g.
Euclidean Voronoi diagrams of lines, triangles or spheres in 3-space, obtaining
tight combinatorial bounds, efficient algorithms and effective implementations
are difficult research questions.

A first class of non-affine diagrams to be discussed in Sect. 2.4 is the
case of diagrams whose bisectors are algebraic hypersurfaces. We first con-
sider the case of Möbius diagrams whose bisectors are hyperspheres and the
case of anisotropic diagrams whose bisectors are quadratic hypersurfaces (see
Sect. 2.4.2). The related case of Apollonius (or Johnson-Mehl) diagrams is
also described in Sect. 2.4.

The key to obtaining effective algorithms for computing those non-affine
diagrams is a linearization procedure that reduces the construction of a non-
affine diagram to intersecting an affine diagram with a manifold in some higher
dimensional space. This mechanism is studied in full generality in Sect. 2.5.

2 Curved Voronoi Diagrams 69

In this section, we introduce abstract diagrams, which are diagrams defined
in terms of their bisectors. By imposing suitable conditions on these bisectors,
any abstract diagram can be built as the minimization diagram of some dis-
tance functions, thus showing that the class of abstract diagrams is the same
as the class of Voronoi diagrams. Furthermore, the linearization technique in-
troduced in Sect. 2.5 allows to prove that if the bisectors of a diagram belong
to a certain class of bisectors, the distance functions defining the diagram can
be chosen among a precise class of functions. For instance, affine diagrams are
identified with power diagrams, spherical diagrams are identified with Möbius
diagrams, and quadratic diagrams with anisotropic diagrams.

In Sect. 2.6, we introduce the incremental paradigm for constructing var-
ious diagrams. Under some topological conditions to be satisfied by the dia-
gram, the incremental construction is efficient. The algorithm can be further
improved by using a randomized data structure called the Voronoi hierarchy
that allows fast localization of new objects. We then obtain fast randomized
incremental algorithms for affine diagrams in any dimension and several non-
affine diagrams in the plane. Going beyond those simple cases is difficult.
As mentioned above, tight combinatorial bounds and efficient algorithms are
lacking even for simple cases. Moreover, the numerical issues are delicate and
robust implementations are still far ahead of the state of the art. This moti-
vates the quest for approximate solutions.

In Sect. 2.7, we introduce the concept of Medial Axis of a bounded set Ω,
which can be seen as an extension of the notion of Voronoi diagram to infinite
sets. Interestingly, it is possible to construct certified approximations of the
medial axis of quite general sets efficiently. One approach to be described
consists in sampling the boundary of Ω and then computing an appropriate
subset of the Voronoi diagram of the sample that approximates the medial
axis. Hence the problem of approximating the medial axis of Ω boils down
to sampling the boundary of Ω, a problem that is closely related to mesh
generation (see Chap. 5).

Sect. 2.8 is devoted to the main Cgal software packages for computing
Voronoi diagrams. Sect. 2.9 discusses some applications of curved Voronoi
diagrams.

This chapter focuses on curved Voronoi diagrams defined in R
d and aims

at providing useful background and effective algorithms. Additional material
can be found in surveys on Voronoi diagrams [276, 37] and in text books on
Computational Geometry [110, 67]. This chapter does not consider Voronoi
diagrams defined in more general spaces. Voronoi diagrams can be defined in
hyperbolic geometry without much difficulty [60, 67]. In the Poincaré model of
hyperbolic geometry, the bisectors are hyperspheres and hyperbolic diagrams
of finite point sets are a special case of Möbius diagrams. Computing Voronoi
diagrams on Riemannian manifolds is much more involved and very few is
known about such diagrams and their construction [239].

70 J-D. Boissonnat, C. Wormser, M. Yvinec

Notation: We identify a point x ∈ R
d and the vector of its coordinates.

We note x · y the dot product of x and y, x2 = x · x = ‖x‖2 the squared
Euclidean norm of x, and ‖x − y‖ the Euclidean distance between points x
and y.

We call hypersurface a manifold of codimension 1. Examples to be used in
this chapter are hyperplanes, hyperspheres and quadratic hypersurfaces.

2.2 Lower Envelopes and Minimization Diagrams

Let F = {f1, . . . , fn} be a set of d-variate continuous functions defined over
R

d. The lower envelope of F is defined as

F− = min
1≤i≤n

fi.

From F and F−, we define a natural partition of R
d called the minimization

diagram of F . For a point x ∈ R
d, we define the index set I(x) of x as the set

of all indices i such that F−(x) = fi(x). An equivalence relation noted ≡ can
then be defined between two points of R

d if they have the same index set:

x ≡ y ⇔ I(x) = I(y).

The equivalence classes R
d/ ≡ are relatively open sets that cover R

d. Their
closures are called the faces of the minimization diagram of F (see Fig. 2.1).
The index set of a face is defined as the largest subset of indices common to
all the points of the face. Conversely, the face of index set I is the set of all
points x such that I ⊂ I(x).

Observe that the faces of this diagram are not necessarily contractible
nor even connected. In particular, a 0-dimensional face may consist of several
distinct points.

Lower envelopes and minimization diagrams have been well studied. We
recall an important result due to Sharir [311] which provides an almost optimal
result when the fi are supposed to be multivariate polynomials of constant
maximum degree.

Theorem 1 (Sharir). The number of faces of the minimization diagram of a
set F of n multivariate polynomials of constant maximum degree η is O(nd+ε)
for any ε > 0, where the constant of proportionality depends on ε, d and η.
The vertices, edges and 2-faces of the diagram can be computed in randomized
expected time O(nd+ε) for any ε > 0.

This general result is close to optimal in the worst-case (see Exercise 2).
It has been improved in some special cases. For more information and other
related results, one should consult the book by Sharir and Agarwal [312].

Voronoi diagrams, in their general setting, are just minimization diagrams
of a finite set of continuous functions. This general definition encompasses

2 Curved Voronoi Diagrams 71

1 2 3 4

1 2 1 3 4

Fig. 2.1. The lower envelope of a set of univariate functions. The minimization
diagram is drawn on the horizontal line with the corresponding indices. The face of
index {1} consists of two components

the more traditional definition of Voronoi diagrams where the functions are
defined as distance functions to a finite set of objects. Consider a set of objects
O = {o1, . . . , on}. To each object oi is attached a continuous function δi that
measures the distance from a point x of R

d to oi. In the simplest case, O
is a finite set of points and δi(x) is the Euclidean distance from x to oi.
The Voronoi diagram of O is defined as the minimization diagram of ∆ =
{δ1, . . . , δn}. The concept of Voronoi diagram has been generalized and various
other diagrams have been defined by considering more general objects and
other distance functions. Distance is then not to be taken with too much
rigor. The function δi is only supposed to be continuous.

Theorem 1 provides very general bounds on the complexity of Voronoi
diagrams. However, this result calls for improvement. First, in some special
cases, much better bounds can be obtained by other approaches to be dis-
cussed later in this chapter. In particular, we will see that the most popular
Euclidean Voronoi diagram of points has a much smaller combinatorial com-
plexity than the one given in the theorem.

A second issue is the algorithmic complexity. The algorithm mentioned in
the theorem fails to provide a complete description of the diagram since only
faces of dimensions up to 2 are computed.

Moreover, the implementation of such an algorithm remains a critical issue.
As evidenced in Chap. 1, computing lower envelopes of algebraic functions is a
formidable task, even in the simplest cases, e.g. quadratic bi-variate functions.
We do not know of any implementation for higher degrees and dimensions.

The main goal of the following sections is to present effective algorithms
for a variety of Voronoi diagrams for which some additional structure can be
exhibited.

72 J-D. Boissonnat, C. Wormser, M. Yvinec

Exercise 1. Show that the combinatorial complexity of the lower envelope of
n univariate functions whose graphs intersect pairwise in at most two points
is O(n). Show that the envelope can be computed in optimal time Θ(n log n).

Exercise 2. Show that the convex hull of n ellipsoids of R
d may have Ω(nd−1)

faces. Since the non-bounded faces of the Euclidean Voronoi diagram of n
objects are in 1-1 correspondence with the faces of their convex hull, we get
a lower bound on the size of the Voronoi diagram of n ellipsoids of R

d. (Hint:
consider n ellipsoids inscribed in a (d − 1)-sphere S and intersecting S along
great n (d − 2)-spheres σ1, . . . , σn. The arrangement of the σi has Θ(nd−1)
faces.)

2.3 Affine Voronoi Diagrams

We first introduce Euclidean Voronoi diagrams of points and establish a cor-
respondence between those diagrams and convex polyhedra in one dimension
higher. Polarity allows to associate to a Voronoi diagram its dual cell complex,
called a Delaunay triangulation.

Almost identical results can be obtained for power (or Laguerre) diagrams
where points are replaced by hyperspheres and the Euclidean distance by
the power of a point to a hypersphere. Power diagrams constitute a natural
extension of Euclidean Voronoi diagrams and are still affine diagrams. In fact,
we will see that any affine diagram is the power diagram of a finite set of
hyperspheres.

2.3.1 Euclidean Voronoi Diagrams of Points

Let P = {p1, . . . , pn} be a set of points of R
d. To each pi, we associate its

Voronoi region V (pi)

V (pi) = {x ∈ R
d : ‖x− pi‖ ≤ ‖x− pj‖,∀j ≤ n}.

The region V (pi) is the intersection of n− 1 half-spaces. Each such half-space
contains pi and is bounded by the bisector of pi and some other point of P.
Since the bisectors are hyperplanes, V (pi) is a convex polyhedron, possibly
unbounded.

The Euclidean Voronoi diagram of P, noted Vor(P), is the cell complex
whose cells are the Voronoi regions and their faces. Equivalently, the Euclidean
Voronoi diagram of P can be defined as the minimization diagram of the
distance functions δi, . . . , δn, where

δi(x) = ‖x− pi‖.

In other words, the Euclidean Voronoi diagram of P is the minimization di-
agram of a set of functions whose graphs are vertical1 cones of revolution of

1By vertical, we mean that the axis of revolution is perpendicular to R
d.

2 Curved Voronoi Diagrams 73

R
d+1. Since minimizing ‖x−pi‖ over i is the same as minimizing (x−pi)2, the

Euclidean Voronoi diagram of P can alternatively be defined as the mimiza-
tion diagram of the smooth functions (x − pi)2 whose graphs are translated
copies of a vertical paraboloid of revolution of R

d+1.

Fig. 2.2. The Voronoi diagram of a set of 9 points

Observing further that, for any x, arg mini(x− pi)2 = arg mini(−2pi · x+
p2

i), we obtain that the Euclidean Voronoi diagram of P is the minimization
diagram of a set of affine functions, namely the functions

di(x) = −2pi · x+ p2
i

whose graphs are hyperplanes of R
d+1. Let us call hpi

, i = 1, . . . , n, those hy-
perplanes and let h−pi

denote the half-space lying below hpi
. The minimization

diagram of the di is obtained by projecting the polyhedron

V(P) = h−p1
∩ · · · ∩ h−pn

.

vertically onto R
d. See Fig. 2.3.

We have therefore proved the following theorem:

Theorem 2. The faces of the Euclidean Voronoi diagram Vor(P) of a set
of points P are the vertical projections of the faces of the convex polyhedron
V(P).

Exercise 3. Consider the maximization diagram obtained by projecting the
faces of h+

p1
∩· · ·∩h+

pn
vertically. Characterize the points that belong to a face

of this diagram in terms of the distance to the points of P.

74 J-D. Boissonnat, C. Wormser, M. Yvinec

Fig. 2.3. The polyhedron V(P), with one of its faces projected onto R
d

2.3.2 Delaunay Triangulation

Two cell complexes V and D are said to be dual if there exists an involutive
correspondence between the faces of V and the faces of D that reverses the
inclusions, i.e. for any two faces f and g of V , their dual faces f∗ and g∗

satisfy: f ⊂ g ⇒ g∗ ⊂ f∗. We introduce now a cell complex that is dual to
the Voronoi diagram of a finite set of points P.

We assume for now that the set of points P is in general position, which
means that no subset of d+2 points of P lie on a same hypersphere. Let f be
a face of dimension k of the Voronoi diagram of P. All points in the interior
of f have the same subset Pf of closest points in P. The face dual to f is the
convex hull of Pf . The Delaunay triangulation of P, noted Del(P), is the cell
complex consisting of all the dual faces. Because points of P are assumed to be
in general position, |Pf | = d− k+ 1, all the faces of Del(P) are simplices and
Del(P) is a simplicial complex. The fact that Del(P) is indeed a triangulation,
i.e. a simplicial complex embedded in R

d and covering the convex hull of P,
will be proved now using a duality between points and hyperplanes in the
so-called space of spheres.

Polarity

Let σ be the hypersphere of R
d of equation

σ(x) = (x− c)2 − r2 = x2 − 2c · x+ s = 0,

where c is the center of σ, r its radius and s = σ(0) = c2 − r2.
We define the following bijective mapping

2 Curved Voronoi Diagrams 75

Fig. 2.4. The Delaunay triangulation of a point set (in bold) and its dual Voronoi
diagram (thin lines)

φ : σ ∈ R
d −→ φ(σ) = (c,−s) ∈ R

d+1

that maps a hypersphere of R
d to a point of R

d+1. We thus consider R
d+1

as the images by φ of the hyperspheres of R
d and call R

d+1 the space of
spheres. We note φ(p) = (p,−p2) the image by φ of a point, considered as
a hypersphere of radius 0. Observe that φ(p) is a point of the paraboloid Q
of R

d+1 of equation x2 + xd+1 = 0. The points of R
d+1 that lie above Q

are images of imaginary hyperspheres whose squared radii are negative. The
points below Q are images of real hyperspheres.

We now introduced a mapping between points and hyperplanes of the space
of spheres, known as polarity. Polarity associates to the point φ(σ) its polar
hyperplane hσ which is the hyperplane of R

d+1 of equation 2c·x+xd+1−s = 0.
Observe that the intersection of hσ with Q projects vertically onto σ, and that
hσ is the affine hull of the image by φ of the points of σ. If p is a point of R

d,
the polar hyperplane hp of φ(p) is the hyperplane tangent to Q at φ(p).

We deduce the remarkable following property: x ∈ σ if and only if φ(x) =
(x,−x2) ∈ hσ and σ encloses x if and only if φ(x) ∈ h+

σ , where h+
σ (resp. h−σ)

denotes the closed half-space above (resp. below) hσ. Indeed

σ(x) = 0 ⇐⇒ x2 − 2c · x+ s = 0 ⇐⇒ φ(x) ∈ hσ

σ(x) < 0 ⇐⇒ x2 − 2c · x+ s < 0 ⇐⇒ φ(x) ∈ inth+
σ ,

where inth+
σ denotes the open half-space above hσ.

Polarity is an involution that preserves incidences and reverses inclusions.
Indeed, if σ and σ′ are two hyperspheres, we have

76 J-D. Boissonnat, C. Wormser, M. Yvinec

σ

h(σ)

Q

Fig. 2.5. The polar hyperplane of a sphere.

φ(σ) ∈ hσ′ ⇐⇒ 2c′ · c− s− s′ = 0 ⇐⇒ φ(σ′) ∈ hσ

φ(σ) ∈ h+
σ′ ⇐⇒ 2c′ · c− s− s′ > 0 ⇐⇒ φ(σ′) ∈ inth+

σ .

Consider now a set P = {p1, . . . , pn} of n points and let V(P) denote, as
in Sect. 2.3.1, the convex polyhedron defined as the intersection of the n half-
spaces below the n polar hyperplanes hp1 , . . . , hpn

. Let f be a face of V(P)
and assume that f is contained in k+ 1 hyperplanes among the hpi

. Without
loss of generality, we denote those hyperplanes hp1 , . . . , hpk+1 . Let σ denote a
hypersphere of R

d such that φ(σ) belongs to the relative interior of f . From
the above discussion, we have

∀i, 1 ≤ i ≤ k + 1, φ(σ) ∈ hpi
⇐⇒ φ(pi) ∈ hσ (2.1)

∀i, k + 1 < i ≤ n, φ(σ) ∈ inth−pi
⇐⇒ φ(pi) ∈ inth−σ (2.2)

Given a convex polyhedron D, we say that a hyperplane h supports D if
D ∩ h is non-empty and D is included in one of the two halfspaces, h+ or h−,
bounded by h. If h is a supporting hyperplane of D, g = D ∩ h is a face of D.
If D ⊂ h−, g is called an upper face of D. The collection of all upper faces of
D constitutes the upper hull of D, which we denote by ∂+D.

Let D(P) = conv(φ(P)) be the convex hull of the set φ(P) and consider
again the face f of V(P) defined above. Write Pf = {p1, . . . , pk+1}. We deduce
from (2.1) and (2.2) that, for any φ(σ) in the relative interior of f :

2 Curved Voronoi Diagrams 77

1. The hyperplane hσ is a supporting hyperplane of D(P).
2. hσ supports D(P) along the face f∗ = hσ ∩ D(P) = conv(φ((Pf)).
3. D(P) ⊂ h−σ and f∗ is a face of ∂+D(P).

To each face f of ∂V(P), we associate the face f∗ of ∂+D obtained as de-
scribed above. This correspondence between the faces of ∂V(P) and the faces
of ∂+D(P) is bijective, preserves incidences and reverses inclusions, hence it
is a duality.

The upper hull ∂+D(P) projects vertically onto a cell complex of R
d whose

vertices are the points of P. Because the projection is 1-1, this projected cell
complex is properly embedded in R

d and, since the projection preserves con-
vexity, it covers the convex hull of P. Under the general position assumption,
the convex polyhedron D(P) is simplicial and the projected complex is a tri-
angulation of P. The duality between the faces of ∂V(P) and the faces of
∂+D(P) implies that the projection of ∂+D(P) is the Delaunay triangulation
Del(P) of P introduced at the beginning of this section. This concludes the
proof that, under the general position assumption, the Delaunay triangulation
Del(P) is a triangulation of P. We have the following diagram:

∂V(P) = ∂
(
h−p1

∩ · · · ∩ h−pn

)
←→ ∂+D(P) = ∂+ (conv(φ(P)))

� �
Voronoi Diagram Vor(P) ←→ Delaunay Triangulation Del(P)

It follows from the above correspondence that the combinatorial complex-
ity of the Delaunay triangulation of n points is the same as the combinatorial
complexity of its dual Voronoi diagram. Moreover, the Delaunay triangulation
of n points of R

d can be deduced from the dual Voronoi diagram or vice versa
in time proportional to its size. We also deduce from what precedes that com-
puting the Delaunay triangulation of n points of R

d reduces to constructing
the convex hull of n points of R

d+1. The following theorem is then a direct
consequence of known results on convex hulls [84].

Theorem 3. The combinatorial complexity of the Voronoi diagram of n points
of R

d and of their Delaunay triangulation is Θ
(
n� d+1

2 �
)
. Both structures can

be computed in optimal time Θ
(
n log n+ n� d+1

2 �
)
.

The bounds in this theorem are tight. In particular, the Voronoi diagram of
n points of R

3 may be quadratic (see Exercise 4). These bounds are worst-case
bounds. Under some assumptions on the point distribution, better bounds can
be obtained. For a set P of n points uniformly distributed in a ball of R

d,
the combinatorial complexity of the Voronoi diagram of P is O(n) where the
constant depends on the dimension d [129]. Other results are known for other
point distributions [31, 33, 151].

In the discussion above, we have assumed that the points of P were in
general position. If this is not the case, some faces of D(P) are not simplices,
and the complex ∂+D(P) projects vertically onto a cell complex, dual to the

78 J-D. Boissonnat, C. Wormser, M. Yvinec

Voronoi diagram and called the Delaunay complex. The faces of the Delau-
nay complex are convex and any triangulation obtained by triangulating those
faces is called a Delaunay triangulation. Since there are several ways of trian-
gulating the faces of the Delaunay complex, the Delaunay triangulation of P
is no longer unique.

Exercise 4. Show that if we take points on two non coplanar lines of R
3, say

n1 + 1 on one of the lines and n2 + 1 on the other, their Voronoi diagram has
n1n2 vertices.

Exercise 5. Let S be a hypersphere of R
d passing through d + 1 points

p0, . . . , pd. Show that a point pd+1 of R
d lies on S, in the interior of the

ball BS bounded by S or outside BS , depending whether the determinant of
the (d+ 2) × (d+ 2) matrix

in sphere(p0, . . . , pd+1) =

∣
∣
∣
∣
∣
∣

1 · · · 1
p0 · · · pd+1

p2
0 · · · p2

d+1

∣
∣
∣
∣
∣
∣

is 0, negative or positive. This predicate is the only numerical operation that
is required to check if a triangulation is a Delaunay triangulation.

Exercise 6. What are the preimages by φ of the points of R
d+1 that lie on a

line? (Distinguish the cases where the line intersects Q in 0, 1 or 2 points.)

Exercise 7. Project vertically the faces of the lower hull ∂−(D(P). Show
that we obtain a triangulation of the vertices of conv(P) such that each ball
circumscribing a simplex contains all the points of P. Define a dual and make
a link with Exercise 3.

Exercise 8 (Empty sphere property). Let s be any k-simplex with ver-
tices in P that can be circumscribed by a a hypersphere that does not enclose
any point of P. Show that s is a face of a Delaunay triangulation of P. More-
over, let P be a set of points and T a triangulation of P with the property
that any hypersphere circumscribing a d-simplex of T does not enclose any
point of P. Show that T is a Delaunay triangulation of P.

2.3.3 Power Diagrams

A construction similar to what we did for the Euclidean Voronoi diagrams of
points and their dual Delaunay triangulations can be done for the so-called
power or Laguerre diagrams. Here we take as our finite set of objects a set of
hyperspheres (instead of points) and consider as distance function of a point
x to a hypersphere σ the power of x to σ. As we will see, the class of power
diagrams is identical to the class of affine diagrams, i.e. the diagrams whose
bisectors are hyperplanes.

2 Curved Voronoi Diagrams 79

Definition of Power Diagrams

We call power of a point x to a hypersphere σ of center c and radius r the
real number

σ(x) = (x− c)2 − r2.

Let S = {σ1, . . . , σn} be a set of hyperspheres of R
d. We denote by ci the

center of σi, ri its radius, σi(x) = (x− ci)2 − r2i the power function to σi, and
si = c2i − r2i the power of the origin. To each σi, we associate the region L(σi)
consisting of the points of R

d whose power to σi is not larger than their power
to the other hyperspheres of S:

L(σi) = {x ∈ R
d : σi(x) ≤ σj(x), 1 ≤ j ≤ n}.

The set of points that have equal power to two hyperspheres σi and σj is a
hyperplane, noted πij , called the radical hyperplane of σi and σj . Hyperplane
πij is orthogonal to the line joining the centers of σi and σj . We denote by πi

ij

the half-space bounded by πij consisting of the points whose power to σi is
smaller than their power to σj . The region L(σi) is the intersection of all half-
spaces πi

ij , j �= i. If this intersection is not empty, it is a convex polyhedron,
possibly not bounded. We call power regions the non empty regions L(σi).

We define the power diagram of S, noted Pow(S), as the cell complex
whose cells are the power regions and their faces. When all hyperspheres have
the same radius, their power diagram is identical to the Voronoi diagram of
their centers.

Fig. 2.6. A power diagram

Equivalently, the power diagram of S can be defined as the minimization
diagram of the functions σi, . . . , σn. Observing that for any x

80 J-D. Boissonnat, C. Wormser, M. Yvinec

arg min
i
σi(x) = arg min

i
(−2ci · x+ si),

we obtain that the power diagram of S is the minimization diagram of the set
of affine functions

di(x) = −2pi · x+ si

whose graphs are hyperplanes of R
d+1. Let us call hσi

, i = 1, . . . , n, those hy-
perplanes and let h−σi

denote the half-space lying below hσi
. The minimization

diagram of the δi is obtained by projecting vertically the convex polyhedron

L(S) = h−p1
∩ · · · ∩ h−pn

.

Theorem 4. The faces of the power diagram Pow(S) of S are the vertical
projections of the faces of the convex polyhedron L(S).

Power diagrams are very similar to Voronoi diagrams: the only difference is
that the hyperplanes supporting the faces of L(S) are not necessarily tangent
to the paraboloid Q and that some hyperplane may not contribute a face. In
other words, some hypersphere σi may have an empty power region (see the
small circle in the upper left corner of Fig. 2.6).

By proceeding as in Sect. 2.3.2, we can define a convex polyhedron R(S)
whose upper hull ∂+R(S) is dual to ∂L(S). The vertical projection of the
faces of ∂+R(S) constitute the faces of a cell complex which, in general, is a
simplicial complex. We call such a complex the regular triangulation of S and
denote it by Reg(S). We have the following diagram:

∂L(S) = ∂
(
h−σ1

∩ · · · ∩ h−σn

)
←→ ∂+R(S) = ∂+conv(φ(S))

� �
Power diagram Pow(S) ←→ Regular triangulation Reg(S)

We deduce the following theorem that states that computing the power
diagram of n hyperspheres of R

d (or equivalently its dual regular triangula-
tion) has the same asymptotic complexity as computing the Euclidean Voronoi
diagram or the Delaunay triangulation of n points of R

d.

Theorem 5. The combinatorial complexity of the power diagram of n hy-
perspheres of R

d and of its dual regular triangulation are Θ
(
n� d+1

2 �
)
. Both

structures can be computed in optimal time Θ
(
n log n+ n� d+1

2 �
)
.

Affine Voronoi Diagrams

Euclidean Voronoi diagrams of points and power diagrams of hyperspheres
are two examples of minimization diagrams whose bisectors are hyperplanes.
It is interesting to classify Voronoi diagrams with respect to their bisectors. A
first important class of Voronoi diagrams is the class of affine diagrams which
consists of all Voronoi diagrams whose bisectors are hyperplanes.

2 Curved Voronoi Diagrams 81

In Sect. 2.5, we will prove that any affine Voronoi diagram of R
d is iden-

tical to the power diagram of some set of hyperspheres of R
d (Theorem 13),

therefore showing that the class of affine Voronoi diagrams is identical to the
class of power diagrams.

Exercise 9. Show that the intersection of a power diagram with an affine
subspace is still a power diagram and compute the corresponding spheres.

Exercise 10. Show that any power diagram of R
d is the intersection of a

Voronoi diagram of R
d+1 by a hyperplane.

Exercise 11. Show that the only numerical operation that is required to
check if a triangulation is the regular triangulation of a set of hyperspheres σi

is the evaluation of the sign of the determinant of the (d+2) × (d+2) matrix

power test(σ0, . . . , σd+1) =

∣
∣
∣
∣
∣
∣

1 · · · 1
c0 · · · cd+1

c20 − r20 · · · c2d+1 − r2d+1

∣
∣
∣
∣
∣
∣

where ci and ri are respectively the center and the radius of σi.

2.4 Voronoi Diagrams with Algebraic Bisectors

In this section, we introduce a first class of non-affine diagrams, namely the
class of diagrams whose bisectors are algebraic hypersurfaces. We first consider
the case of Möbius diagrams whose bisectors are hyperspheres and the case of
anisotropic diagrams whose bisectors are quadratic hypersurfaces. These dia-
grams can be computed through linearization, a technique to be described in
full generality in Sect. 2.5. Apollonius (or Johnson-Mehl) diagrams, although
semi-algebraic and not algebraic, are also described in this section since they
are closely related to Möbius diagrams and can also be linearized.

2.4.1 Möbius Diagrams

In this section, we introduce a class of non-affine Voronoi diagrams, the so-
called Möbius diagrams, introduced by Boissonnat and Karavelas [63].

The class of Möbius diagrams includes affine diagrams. In fact, as we will
see, the class of Möbius diagrams is identical to the class of diagrams whose
bisectors are hyperspheres (or hyperplanes).

Definition of Möbius Diagrams

Let ω= {ω1, . . . , ωn} be a set of so-called Möbius sites of R
d, where ωi is a

triple (pi, λi, µi) formed of a point pi of R
d, and two real numbers λi and µi.

82 J-D. Boissonnat, C. Wormser, M. Yvinec

For a point x ∈ R
d, the distance δi(x) from x to the Möbius site ωi is defined

as
δi(x) = λi(x− pi)2 − µi.

Observe that the graph of δi is a paraboloid of revolution whose axis is vertical.
The Möbius region of the Möbius site ωi, i = 1, . . . , n, is

M(ωi) = {x ∈ R
d : δi(x) ≤ δj(x), 1 ≤ j ≤ n}.

Observe that a Möbius region may be non-contractible and even disconnected.
The minimization diagram of the δi is called the Möbius diagram of ω and

noted Möb (ω) (see Fig. 2.4.1).

Fig. 2.7. A Möbius diagram

Möbius diagrams are generalizations of Euclidean Voronoi and power dia-
grams. In particular, if all λi are equal to some positive λ, the Möbius diagram
coincides with the power diagram of a set of spheres {σi, i = 1, . . . , n}, where
σi is the sphere centered at pi of squared radius µi/λ. If all µi are equal
and all λi are positive, then the Möbius diagram coincides with the so-called
multiplicatively weighted Voronoi diagram of the weighted points (pi,

√
λi).

The following lemma states that the bisector of two Möbius sites is a
hypersphere (possibly degenerated in a point or in a hyperplane). Its proof is
straightforward.

2 Curved Voronoi Diagrams 83

Lemma 1. Let ωi = {pi, λi, µi} and ωj = {pj , λj , µj}, ωi �= ωj be two Möbius
sites. The bisector σij of ωi and ωj is the empty set, a single point, a hyper-
sphere or a hyperplane.

Möbius Diagrams and Power Diagrams

We now present an equivalence between Möbius diagrams in R
d and power

diagrams in R
d+1. This result is a direct generalization of a similar result for

multiplicatively weighted diagrams [35]. Given a cell complex C covering a
subspace X, we call restriction of C to X the subdivision of X whose faces
are the intersections of the faces of C with X. The restriction of C to X is
denoted by CX . Note that the restriction CX is not, in general, a cell complex
and that its faces may be non-contractible and even non-connected.

We associate to ω= {ω1, . . . , ωn} the set of hyperspheresΣ = {Σ1, . . . , Σn}
of R

d+1 of equations

Σi(X) = X2 − 2Ci ·X + si = 0,

where Ci = (λipi,−λi

2) and si = λi p
2
i − µi. We denote by Q the paraboloid

of R
d+1 of equation xd+1 − x2 = 0 .

Theorem 6 (Linearization). The Möbius diagram Möb(ω) of ω is ob-
tained by projecting vertically the faces of the restriction PowQ(Σ) of the
power diagram of Σ to Q.

Proof. If x ∈ R
d is closer to ωi than to ωj with respect to δM , we have for all

j = 1, . . . , n,

λi(x− pi)2 − µi ≤ λj(x− pj)2 − µj

⇐⇒ λix
2 − 2λipi · x+ λip

2
i − µi ≤ λjx

2 − 2λjpj · x+ λjp
2
j − µj

⇐⇒ (x2 + λi

2)2 + (x− λipi)2 − λ2
i

4 − λ2
i p

2
i + λip

2
i − µi

≤ (x2 + λj

2)2 + (x− λjpj)2 − λ2
j

4 − λ2
jp

2
j + λjp

2
j − µj

⇐⇒ (X − Ci)2 − r2i ≤ (X − Cj)2 − r2j
⇐⇒ Σi(X) ≤ Σj(X)

where X = (x, x2) ∈ Q ⊂ R
d+1, Ci = (λipi,−λi

2) ∈ R
d+1 and r2i = λ2

i p
2
i +

λ2
i

4 − λip
2
i + µi. The above inequality shows that x is closer to ωi than to ωj

if and only if X belongs to the power region of Σi in the power diagram of
the hyperspheres Σj , j = 1, . . . , n. As X belongs to Q and projects vertically
onto x, we have proved the result.

Corollary 1. Let Σ be a finite set of hyperspheres of R
d+1, Pow(Σ) its power

diagram and PowQ(Σ) the restriction of Pow(Σ) to Q. The vertical projection
of PowQ(Σ) is the Möbius diagram Möb(ω) of a set of Möbius sites of R

d.

Easy computations give ω.

84 J-D. Boissonnat, C. Wormser, M. Yvinec

Combinatorial and Algorithmic Properties

It follows from Theorem 6 that the combinatorial complexity of the Möbius
diagram of n Möbius sites in R

d is O(n� d
2 �+1). This bound is tight since

Aurenhammer [35] has shown that it is tight for multiplicatively weighted
Voronoi diagrams.

We easily deduce from the proof of the Linearization Theorem 6 an algo-
rithm for constructing Möbius diagrams. First, we compute the power diagram
of the hyperspheres Σi of R

d+1, intersect each of the faces of this diagram with
the paraboloid Q and then project the result on R

d.

Theorem 7. Let ω be a set of n Möbius sites in R
d, d ≥ 2. The Möbius dia-

gram Möb(ω) of ω can be constructed in worst-case optimal time Θ(n log n+
n� d

2 �+1).

Another consequence of the linearization theorem is the fact that any
Möbius diagram can be represented as a simplicial complex TQ embedded in
R

d+1. TQ is a sub-complex of the regular triangulation T dual to the power
diagram Pow(Σi) of the hyperspheres Σi. Since T is embedded in R

d+1, TQ
is a simplicial complex of R

d+1. More precisely, TQ consists of the faces of T
that are dual to the faces of PowQ(Σ), i.e. the faces of the power diagram
that intersect Q. We will call TQ the dual of PowQ(Σ). Observe that since,
in general, no vertex of Pow(Σ) lies on Q, TQ is a d-dimensional simplicial
complex (embedded in R

d+1).
Moreover, if the faces of Pow(Σ) intersect Q transversally and along topo-

logical balls, then, by a result of Edelsbrunner and Shah [138], TQ is homeo-
morphic to Q and therefore to R

d. It should be noted that this result states
that the simplicial complex TQ has the topology of R

d. This result, however,
is mainly combinatorial, and does not imply that the embedding of TQ into
R

d+1 as a sub-complex of the regular triangulation T may be projected in a
1-1 manner onto R

d.

Spherical Voronoi Diagrams

Lemma 1 states that the bisectors of two Möbius sites is a hypersphere
(possibly degenerated in a hyperplane). More generally, let us consider the
Voronoi diagrams such that, for any two objects oi and oj of O, the bisector
σij = {x ∈ R

d, δi(x) = δj(x)} is a hypersphere. Such a diagram is called a
spherical Voronoi diagram.

In Sect. 2.5, we will prove that any spherical Voronoi diagram of R
d is a

Möbius diagram (Theorem 15).
Möbius transformations are the transformations that preserve hyper-

spheres. An example of a Möbius transformation is the inversion with respect
to a hypersphere. If the hypersphere is centered at c and has radius r, the
inversion associates to a point x ∈ R

d its image

2 Curved Voronoi Diagrams 85

x′ = c+
r(x− c)
(x− c)2

.

Moreover, it is known that any Möbius transformation is the composition of
up to four inversions [108]. An immediate consequence of Theorem 15 is that
the set of Möbius diagrams in R

d is stable under Möbius transformations,
hence their name.

Möbius Diagrams on Spheres

Given a set ω of n Möbius sites of R
d+1, the restriction of their Möbius

diagram to a hypersphere S
d is called a Möbius diagram on S

d. It can be shown
that such a diagram is also the restriction of a power diagram of hyperspheres
of R

d+1 to S
d (Exercise 14) .

We define spherical diagrams on S
d as the diagrams on S

d whose bisectors
are hyperspheres of S

d and that satisfy two properties detailed in Sect. 2.5.1
and 2.5.2. See Exercise 16 for more details on these conditions. This exercise
proves that the restriction of a Möbius diagram, i.e. a Möbius diagram on S

d,
is a spherical diagram.

Let us now prove the converse: any spherical diagram on S
d is a Möbius

diagram on S
d. Let h be a hyperplane of R

d+1. The stereographic projection
that maps S

d to h maps any spherical diagram D on S
d to some spherical

diagram D′ on h. Theorem 15 implies that this D′ is in fact a Möbius diagram.
Exercise 12 shows that D, which is the image of D′ by the inverse of the
stereographic projection, is the restriction of some power diagram of R

d+1 to
S

d. Exercise 14 then proves that it is indeed a Möbius diagram.

Exercise 12. Show that the linearization theorem and its corollary still hold
if one replaces the paraboloid Q by any hypersphere of R

d+1 and the vertical
projection by the corresponding stereographic projection.

Exercise 13. Show that the intersection of a Möbius diagram in R
d with a

k-flat or a k-sphere σ is a Möbius diagram in σ.

Exercise 14. Show that the restriction of a Möbius diagram of n Möbius
sites to a hypersphere Σ ⊂ R

d (i.e. a Möbius diagram on Σ) is identical to
the restriction of a power diagram of n hyperspheres of R

d with Σ, and vice
versa.

Exercise 15. The predicates needed for constructing a Möbius diagram are
those needed to construct Pow(Σ) and those that decide whether a face of
Pow(Σ) intersects Q or not. Write the corresponding algebraic expressions.

Exercise 16. Explain how the two conditions A.C. and L.C.C. presented in
Sect. 2.5.1 and 2.5.2 are to be adapted to the case of spherical diagrams on a
sphere (Hint: consider the L.C.C. condition as a pencil condition, and define

86 J-D. Boissonnat, C. Wormser, M. Yvinec

a pencil of circles on a sphere as the intersection of a pencil of hyperplanes
with this sphere).

Note that the restriction of a Voronoi diagram (affine or not) to S
d always

satisfies this adapted version of A.C. and prove that the restriction of an affine
Voronoi diagram to S

d satisfies L.C.C. so that Exercise 14 allows to conclude
that the restriction of a Möbius diagram to S

d, i.e. Möbius diagram on S
d, is

a spherical diagram.

2.4.2 Anisotropic Diagrams

The definition of anisotropic Voronoi diagrams presented in this section is a
slight extension of the definition proposed by Labelle and Shewchuk [234].
The objects are points and the distance to a point is a quadratic form with
an additive weight.

Anisotropic diagrams appear to be a natural generalization of Möbius
diagrams and reduce to Möbius diagrams when the matrices are taken to be
a scalar times the identity matrix. As will be shown, the class of anisotropic
diagrams is identical to the class of diagrams whose bisectors are quadratic
hypersurfaces.

Definition and linearization

Consider a finite set of anisotropic sites S = {s1, . . . , sn}. Each site si, i =
1, . . . , n, is a triple (pi,Mi, πi) formed by a point pi ∈ R

d, a d × d symmetric
positive definite matrix Mi and a scalar weight πi. The distance δi(x) of point
x ∈ R

d to site si is defined by

δi(x) = (x− pi)
t
Mi(x− pi) − πi.

The anisotropic Voronoi region of site s is then defined as

AV (si) = {x ∈ R
d, δi(x) ≤ δj(x),∀1 ≤ j ≤ n},

The anisotropic Voronoi diagram is the minimization diagram of the functions
δi(x).

Let D = d(d+3)
2 . To each point x = (x1, . . . , xd) ∈ R

d , we associate the
two points

φ̃(x) = (xrxi, 1 ≤ r ≤ s ≤ d) ∈ R
d(d+1)

2

φ̂(x) = (x, φ̃(x)) ∈ R
D,

and we denote by Q the d-manifold of R
D defined as

Q =
{
φ̂(x), x ∈ R

d
}
.

To each site si = (pi,Mi, πi) ∈ S, we associate:

2 Curved Voronoi Diagrams 87

1. the point m̃i ∈ R
d(d+1)

2 defined as

m̃u,u
i = −1

2
Mu,u

i , for 1 ≤ u ≤ d;

m̃u,v
i = −Mu,v

i , for 1 ≤ u < v ≤ d,

2. the point p̂i = (Mipi, m̃i),
3. the sphere σi of center p̂i and radius

√
‖p̂i‖2 − pt

iMipi − πi.

Let Π be the projection ŷ = (y, ỹ) ∈ R
D �→ y ∈ R

d and let Σ be the set
of spheres σi, i = 1, . . . , n.

Theorem 8 (Linearization). The anisotropic diagram of S is the image by
Π of the restriction of the power diagram Pow(Σ) to the d-manifold Q.

Proof. We have

δi(x) = (x− pi)tM(x− pi) − πi

= xtMix− 2pt
iMix+ pt

iMipi − πi

= −2p̂t
iφ̂(x) + pt

iMipi − πi

This implies that δi(x) < δj(x) if and only if

(φ̂(x) − p̂i)2 − (p̂2
i − pt

iMipi − πi) < (φ̂(x) − p̂j)2 − (p̂2
j − pt

jMjpj − πj)

Hence, x is closer to si than to sj if and only if the power of φ̂(x) to σi is
smaller than its power to σj . Equivalently, a point φ̂(x) ∈ Q belongs to the
power cell of σ(si) if and only if its projection x = Π(φ̂(x)) belongs to the
anisotropic Voronoi region AV (si).

We easily deduce the following theorem.

Theorem 9. The Voronoi diagram of n anisotropic sites of R
d can be com-

puted in time O(n�D+1
2 �) where D = d(d+3)

2 .

This result is to be compared to Theorem 1 which provides a better com-
binatorial bound. We let as an open question to fill the gap between those
two bounds.

Quadratic Voronoi Diagrams

The bisectors of anisotropic diagrams, as defined in the previous section, are
quadratic hypersurfaces. A minimization diagram whose bisectors are hyper-
quadrics is called a quadratic Voronoi diagram. In Sect. 2.5, we will prove that
any quadratic Voronoi diagram is the anisotropic Voronoi diagram of a set of
anisotropic sites (Theorem 16).

88 J-D. Boissonnat, C. Wormser, M. Yvinec

2.4.3 Apollonius Diagrams

In this section, we present diagrams that are closely related to Möbius dia-
grams: namely, the Euclidean Voronoi diagrams of hyperspheres, also called
Apollonius or Johnson-Mehl diagrams. Contrary to Möbius and anisotropic
diagrams, the bisectors of Apollonius diagrams are not algebraic hypersur-
faces since the bisector between two hyperspheres is only one sheet of a hy-
perboloid. As a consequence, Apollonius diagrams cannot be linearized in
the same way as Möbius and anisotropic diagrams. Nevertheless, another lin-
earization scheme can be applied, leading to interesting combinatorial and
algorithmic results.

Definition of Apollonius Diagrams

Let us consider a finite set of weighted points S = {σ0, σ1, . . . , σn} where
σi = (pi, ri), pi ∈ R

d and ri ∈ R. We define the distance from x to σi as

δi(x) = ‖x− pi‖ − ri.

This distance is also called the additively weighted distance from x to the
weighted point σi. The minimization diagram of the distance functions δi, i =
1, . . . , n, is called the additively weighted Voronoi diagram, or the Apollonius
diagram of S. We denote it by Apo(S) (see Fig. 2.8).

The Apollonius region A(σi) of σi is defined as

A(σi) = {x ∈ R
d, δi(x) ≤ δj(x)}.

It is easy to see that A(σi) is either empty or star-shaped from pi. The bound-
ary of A(σi) may have a complicated structure. In fact, as we will see, the
boundary of A(σi) has the same combinatorial structure as a Möbius diagram
in R

d−1.
Since the diagram is not changed if we replace all ri by ri+r for any r ∈ R,

we can assume, without loss of generality, that all ri are non negative. The
weighted points are then hyperspheres and the distance to a weighted point
is the signed Euclidean distance to the corresponding hypersphere, counted
positively outside the hypersphere and negatively inside the hypersphere.

Observe that, in the plane, a vertex of an Apollonius diagram is the center
of a circle tangent to three circles of S (assuming all ri non negative). Com-
puting such a point is known as Apollonius’ Tenth Problem, hence the name
of the diagram.

Apollonius Diagrams and Power Diagrams

The graph of the distance function δi(x) is the half-cone of revolution Ci of
equation

Ci : xd+1 = ‖x− pi‖ − ri, xd+1 + ri ≥ 0

2 Curved Voronoi Diagrams 89

Fig. 2.8. The Apollonius diagram of a set of circles. Compare with the power
diagram of the same set of circles in Fig. 2.6

The bisector of two hyperspheres of S is thus the projection of the intersection
of two half-cones. This intersection is a quadratic hypersurface (in fact, a sheet
of a two sheet hyperboloid) contained in a hyperplane. Indeed, we have

C1 : (xd+1 + r1)2 = (x− p1)2, xd+1 + r1 > 0,
C2 : (xd+1 + r2)2 = (x− p2)2, xd+1 + r2 > 0.

The intersection of the two half-cones is contained in the hyperplane h12 whose
equation is obtained by subtracting the two sides of the above equations:

h12 : −2(p1 − p2) · x− 2(r1 − r2)xd+1 + p2
1 − r21 − p2

2 + r22 = 0.

This shows that there exists a correspondence between the diagram Apo(S)
and the power diagram of the hyperspheres Σi in R

d+1 (i = 1, . . . , n), where
Σi is centered at (pi, ri) and has radius ri

√
2. More precisely, A(σi) is the

projection of the intersection of the half-cone Ci with the power region L(Σi).
Indeed, x is in A(σi) if and only if the projection Xi of x onto Ci has a smaller
xd+1-coordinate than the projections of x onto the other half-cones Cj , j �= i.
In other words, the coordinates (x, xd+1) of Xi must obey

(xd+1 + ri)2 = (x− pi)2

(xd+1 + rj)2 ≤ (x− pj)2 for any j �= i,

and by subtracting both sides, it follows that Σi(Xi) ≤ Σj(Xi) for all j.

90 J-D. Boissonnat, C. Wormser, M. Yvinec

Algorithm 2 Construction of Apollonius diagrams

Input: a set of hyperspheres S

1. Compute Σi, for i = 1, . . . , n;
2. Compute the power diagram of the Σi’s;
3. For all i = 1, . . . , n, project vertically the intersection of the power region L(Σi)

with the half-cone Ci.

Output: the Apollonius diagram of S.

The Apollonius diagram of S can be computed using the following algo-
rithm:

The power diagram of the Σi can be computed in time O(n� d
2 �+1 log n).

The intersection involved in Step 3 can be computed in time proportional to
the number of faces of the power diagram of the Σi’s, which is O(n� d

2 �+1).
We have thus proved the following theorem due to Aurenhammer [35]:

Theorem 10. The Apollonius diagram of a set of n hyperspheres in R
d has

complexity O(n� d
2 �+1) and can be computed in time O(n� d

2 �+1 log n).

This result is optimal in odd dimensions, since the bounds above coincide
with the corresponding bounds for the Voronoi diagram of points under the
Euclidean distance. It is not optimal in dimension 2 (see Exercise 20). We also
conjecture that it is not optimal in any even dimension.

Computing a Single Apollonius Region

We now establish a correspondence, due to Boissonnat and Karavelas [63],
between a single Apollonius region and a Möbius diagram on a hypersphere.

To give the intuition behind the result, we consider first the case where
one of the hyperspheres, say σ0, is a hyperplane, i.e. a hypersphere of infinite
radius. We take for σ0 the hyperplane xd = 0, and assume that all the other
hyperspheres lie the half-space xd > 0. The distance δ0(x) from a point x ∈ R

d

to σ0 is defined as the Euclidean distance.
The points that are at equal distance from σ0 and σi, i > 0, belong to

a paraboloid of revolution with vertical axis. Consider such a paraboloid as
the graph of a (d − 1)-variate function ϑi defined over R

d−1. If follows from
Sect. 2.4.1 that the minimization diagram of the ϑi, i = 1, . . . , n, is a Möbius
diagram (see Fig. 2.9).

Easy computations give the associated weighted points. Write pi = (p′i, p
′′
i),

p′i ∈ R
d−1, p′′i ∈ R, i > 0 and let ω= {ω1, . . . , ωn} be the set of Möbius sites

of R
d where ωi = {p′i, λi, µi}, and

λi =
1

ri + p′′i
, µi = ri − p′′i , i > 0.

2 Curved Voronoi Diagrams 91

Fig. 2.9. A cell in an Apollonius diagram of hyperspheres projects vertically onto
a Möbius diagram in σ0

We let as an exercise to verify that the vertical projection of the boundary of
the Apollonius region A(σ0) of σ0 onto σ0 is the Möbius diagram of ω.

We have assumed that one of the hyperspheres was a hyperplane. We now
consider the case of hyperspheres of finite radii. The crucial observation is
that the radial projection of A(σ0) ∩ A(σi) ∩ A(σj) onto σ0, if not empty, is
a hypersphere. It follows that the radial projection of the boundary of A(σ0)
onto σ0 is a Möbius diagram on σ0.

Such a Möbius diagram on σ0 can be computed by constructing the re-
striction of the power diagram of n hyperspheres of R

d with the hypersphere
σ0 (see Exercise 14).

Theorem 11. Let S be a set of n hyperspheres in R
d. The worst-case com-

plexity of a single Apollonius region in the diagram of n hyperspheres of R
d is

Θ(n� d+1
2 �). Such a region can be computed in optimal time Θ(n log n+n� d+1

2 �).

Exercise 17. Show that the cell of hypersphere σi in the Apollonius diagram
of S is empty if and only if σi is inside another hypersphere σj .

Exercise 18. The predicates required to construct an Apollonius region are
multivariate polynomials of degree at most 8 and 16 when d = 2 and 3 re-
spectively. Detail these predicates [62].

Exercise 19. Show that the convex hull of a finite number of hyperspheres
can be deduced from the restriction of a power diagram to a unit hypersphere
[62].

Exercise 20. Prove that the combinatorial complexity of the Apollonius di-
agram of n circles in the plane has linear size.

92 J-D. Boissonnat, C. Wormser, M. Yvinec

Exercise 21 (Open problem). Give a tight bound on the combinatorial
complexity of the Apollonius diagram of n hyperspheres of R

d when d is even.

2.5 Linearization

In this section, we introduce abstract diagrams, which are diagrams defined
in terms of their bisectors. We impose suitable conditions on these bisectors
so that any abstract diagram can be built as the minimization diagram of
some distance functions, thus showing that the class of abstract diagrams is
the same as the class of Voronoi diagrams.

Given a class of bisectors, such as affine or spherical bisectors, we then
consider the inverse problem of determining a small class of distance functions
that allows to build any diagram having such bisectors. We use a linearization
technique to study this question.

2.5.1 Abstract Diagrams

Voronoi diagrams have been defined (see Sect. 2.2) as the minimization dia-
gram of a finite set of continuous functions {δ1, . . . , δn}. It is convenient to
interpret each δi as the distance function to an abstract object oi, i = 1, . . . , n.
We define the bisector of two objects oi and oj of O = {o1, . . . , on} as

bij = {x ∈ R
d, δi(x) = δj(x)}.

The bisector bij subdivides R
d into two open regions: one, biij , consisting of the

points of R
d that are closer to oi than to oj , and the other one, bjij , consisting

of the points of R
d that are closer to oj than to oi. We can then define the

Voronoi region of oi as the intersection of the regions biij for all j �= i. The
union of the closures of these Voronoi regions covers R

d. Furthermore, if we
assume that the bisectors are (d − 1)-manifolds, the Voronoi regions then
have disjoint interiors and we can define the closed region associated to biij as
b̄iij = biij ∪ bij .

In a way similar to Klein [230], we now define diagrams in terms of bisectors
instead of distance functions. Let B = {bij , i �= j} be a set of closed (d − 1)-
manifolds without boundary. We always assume in the following that bij = bji

for all i �= j. We assume further that, for all distinct i, j, k, the following
incidence condition (I.C.) holds:

bij ∩ bjk = bjk ∩ bki (I.C.)

This incidence condition is obviously needed for B to be the set of bisectors
of some distance functions.

By Jordan’s theorem, each element of B subdivides R
d into at least two

connected components and crossing a bisector bij implies moving into another

2 Curved Voronoi Diagrams 93

connected component of R
d \ bij . Hence, once a connected component of R

d \
bij is declared to belong to i, the assignments of all the other connected
components of R

d \ bij to i or j are determined.
Given a set of bisectors B = {bij , i �= j}, an assignment on B associates

to each connected component of R
d \ bij a label i or j so that two adjacent

connected components have different labels.
Once an assignment on B is defined, the elements of B are called oriented

bisectors.
Given B, let us now consider such an assignment and study whether it

may derive from some distance functions. In other words, we want to know
whether there exists a set ∆ = {δ1, . . . , δn} of distance functions such that

1. the set of bisectors of ∆ is B;
2. for all i �= j, a connected component C of R

d \ bij is labeled by i if and
only if

∀x ∈ C, δi(x) ≤ δj(x).

We define the region of object oi as ∩j �=ib̄
i
ij .

A necessary condition for the considered assignment to derive from some
distance functions is that the regions of any subdiagram cover R

d. We call
this condition the assignment condition (A.C.):

∀I ⊂ {1, . . . , n},∪i∈I ∩j∈I\{i} b̄
i
ij = R

d (A.C.)

Given a set of bisectors B = {bij , i �= j} and an assignment satisfying I.C.
and A.C., the abstract diagram of O is the subdivision of R

d consisting of
the regions of the objects of O and of their faces. The name abstract Voronoi
diagram was coined by Klein [230], referring to similar objects in the plane.

For any set of distance functions δi, we can define the corresponding set of
oriented bisectors. Obviously, I.C. and A.C. are satisfied and the abstract dia-
gram defined by this set is exactly the minimization diagram for the distance
functions δi. Hence any Voronoi diagram allows us to define a corresponding
abstract diagram. Let us now prove the converse: any abstract diagram can
be constructed as a Voronoi diagram.

Specifically, we prove that I.C. and A.C. are sufficient conditions for an
abstract diagram to be the minimization diagram of some distance functions,
thus proving the equivalence between abstract diagrams and Voronoi dia-
grams. We need the following technical lemmas.

Lemma 2. The assignment condition implies that for any distinct i, j, k, we
have

bjij ∩ bkjk ∩ biki = ∅.

Proof. A.C. implies that R
d = ∪1≤i≤n ∩j �=i b̄

i
ij ⊂ b̄iij ∪ b̄jjk ∪ b̄kki. Hence, b̄iij ∪

b̄jjk ∪ b̄kki = R
d. Taking the complementary sets, we obtain bjij ∩ bkjk ∩ biki = ∅.

94 J-D. Boissonnat, C. Wormser, M. Yvinec

Lemma 3. For any distinct i, j, k, we have

bij ∩ bkjk ⊂ bkik and bij ∩ b̄kjk ⊂ b̄kik (2.3)

bij ∩ bjjk ⊂ biik and bij ∩ b̄jjk ⊂ b̄iik (2.4)

Proof. Let us first prove that bij ∩ bkjk ⊂ bkik:
Consider x ∈ bij ∩ bkjk. Assume, for a contradiction, that x �∈ bkik. It follows

that x ∈ b̄iik, but x cannot lie on bik, because this would imply that x ∈ bik∩bij ,
which does not intersect bkjk. Hence, x ∈ biik and therefore, x ∈ bij ∩ bkjk ∩ biik.
We can then find x′ in the neighborhood of x such that x′ ∈ bjij ∩ bkjk ∩ biki,
contradicting Lemma 2.

Let us now prove that bij ∩ b̄kjk ⊂ b̄kik. We have proved the inclusion for
bij ∩ bkjk. It remains to prove that bij ∩ bjk ⊂ b̄kik which is trivially true, by I.C.

The two other inclusions are proved in a similar way.

We can now prove a lemma stating a transitivity relation:

Lemma 4. For any distinct i, j, k, we have biij ∩ bjjk ⊂ biik.

Proof. Let x ∈ biij ∩ bjjk. Assume, for a contradiction, that x �∈ biik. If x ∈ bkik,
we have biij ∩ bjjk ∩ bkik �= ∅, contradicting Lemma 2. Therefore, x has to belong
to bik, which implies that x ∈ biij ∩ bik ⊂ bkkj by Lemma 3. This contradicts
x ∈ bjjk. We deduce that x ∈ biik, as needed.

The following lemma states that at most two assignments are likely to
derive from some Voronoi diagram.

Lemma 5. For a given set B satisfying I.C. and assuming that we never
have bij ⊂ bik for j �= k, there are at most two ways of labeling the connected
components of each R

d \ bij as biij and bjij such that A.C. is verified.

Proof. First assume that the sides b112 and b212 have been assigned. Consider
now the labeling of the sides of b1i, for some i > 2: let x be a point in the
non empty set b2i \ b12. First assume that x ∈ b112. Lemma 3 then implies that
x ∈ b11i. Conversely, if x ∈ b212, x ∈ bi1i. In both cases, the assignment of the
sides of b1i is determined.

All other assignments are determined in a similar way. One can easily see
that reversing the sides of b12 reverses all the assignments. Thus, we have at
most two possible global assignments.

Theorem 12. Given a set of bisectors B = {bij , 1 ≤ i �= j ≤ n} that satisfies
the incidence condition (I.C.) and an assignment that satisfies the assignment
condition (A.C.), there exists a set of distance functions {δi, 1 ≤ i ≤ n}
defining the same bisectors and assignments.

2 Curved Voronoi Diagrams 95

Proof. Let δ1 be any real continuous function over R
d. Let j > 1 and assume

the following induction property: for all i < j, the functions δi have already
been constructed so that

∀i, i′ < j, δi(x) ≤ δi′(x) ⇔ x ∈ b̄iii′ .

Let us build δj . We consider the arrangement of all bisectors bij , for i < j:
for each I ⊂ J = {1, . . . , j − 1}, we define VI = (∩i∈I b̄

i
ij) ∩ (∩k∈J\I b̄

j
jk). The

set VI is a non necessarily connected region of the arrangement where we
need δj > δi if i ∈ I and δj < δi if i ∈ J \ I. This leads us to the following
construction.

The interior of VI is intVI = (∩i∈Ib
i
ij) ∩ (∩k∈J\Ib

j
jk). Lemma 4 and the

induction hypothesis imply that

∀i ∈ I,∀k ∈ J \ I,∀x ∈ intVI , δi(x) < δk(x).

In particular, if we define νI = mink∈J\I δk and µI = maxi∈I δi on VI , we
have µI < νI on intVI .

Let us now consider some point x on the boundary of VI . We distinguish
two cases. We can first assume that x ∈ bij for some i ∈ I. Then, by Lemma 3,
for any i′ ∈ I \ {i}, x ∈ bij ∩ b̄i

′

i′j ⊂ b̄i
′

i′i so that δi′(x) ≤ δi(x). It follows that
µI(x) = δi(x).

Consider now the case when x ∈ ∂VI ∩ bjk with k ∈ J \ I, we have
νI(x) = δk(x). Finally, if x ∈ ∂VI ∩ bij ∩ bjk with i ∈ I and k ∈ J \ I, we have
µI(x) = δi(x) and νI(x) = δk(x). By the induction hypothesis, δi(x) = δk(x),
which implies that µI(x) = νI(x).

It follows that we can define a continuous function ρ on ∂VI in the following
way:

ρI(x) = µI(x) if ∃i ∈ I, x ∈ bij

= νI(x) if ∃k ∈ J \ I, x ∈ bjk

Furthermore, on ∂VI ∩ bij = ∂VI\{i} ∩ bij , if i ∈ I, we have

ρI(x) = µI(x) = νI\{i}(x) = ρI\{i}(x). (2.5)

The definitions of the ρI are therefore consistent, and we can now use these
functions to prove that the following definition of δj satisfies the induction
property.

Finally, we require δj to be any continuous function verifying

µI < δj < νI

on each intVI . By continuity of δj , we deduce from 2.5 that if x ∈ ∂VI ∩ bjk =
∂VI\{i} ∩ bij with k ∈ J \ I, we have ρI(x) = µI(x) = νI\{i}(x) = ρI\{i}(x) =
δj(x).

It follows that on each VI , for all i < j, δi(x) < δj(x) iff x ∈ biij and
δi(x) = δj(x) iff x ∈ bij . The induction follows.

96 J-D. Boissonnat, C. Wormser, M. Yvinec

One can prove that, in the proof of Lemma 5, the assignment we build
satisfies the consequences of A.C. stated in Lemmas 2, 3 and 4. The proof of
Theorem 12 does not need A.C. but only the consequences of A.C. stated in
those three lemmas. It follows that any of the two possible assignments deter-
mined in the proof of Lemma 5 allows the construction of distance functions,
as in Theorem 12, which implies that A.C. is indeed verified. We thus obtain
a stronger version of Lemma 5.

Lemma 6. For a given set B satisfying I.C. and assuming that we never
have bij ⊂ bik for j �= k, there are exactly two ways of labeling the connected
components of each R

d \ bij as biij and bjij such that A.C. is verified.

Theorem 12 proves the equivalence between Voronoi diagrams and abstract
diagrams by constructing a suitable set of distance functions. In the case of
affine bisectors, the following result of Aurenhammer [35] allows us to choose
the distance functions in a smaller class than the class of continuous functions.

Theorem 13. Any abstract diagram of R
d with affine bisectors is identical to

the power diagram of some set of spheres of R
d.

Proof. In this proof, we first assume that the affine bisectors are in general
position, i.e. four of them cannot have a common subspace of co-dimension 2:
the general result easily follows by passing to the limit.

Let B = {bij , 1 ≤ i �= j ≤ n} be such a set. We identify R
d with the

hyperplane xd+1 = 0 of R
d+1. Assume that we can find a set of hyperplanes

{Hi, 1 ≤ i ≤ n} of R
d+1 such that the intersection Hi ∩Hj projects onto bij .

Sect. 2.3 then shows that the power diagram of the set of spheres {σi, 1 ≤ i ≤
n} obtained by projecting the intersection of paraboloid Q with each Hi onto
R

d admits B as its set of bisectors2 (see Fig. 2.5).
Let us now construct such a set of hyperplanes, before considering the

question of the assignment condition.
Let H1 and H2 be two non-vertical hyperplanes of R

d such that H1 ∩ H2

projects vertically onto b12. We now define the Hi for i > 2: let ∆1
i be the

maximal subspace of H1 that projects onto b1i and let ∆2
i be the maximal

subspace of H2 that projects onto b2i. Both ∆1
i and ∆2

i have dimension d− 1.
I.C. implies that b12 ∩ b2i ∩ bi1 has co-dimension 2 in R

d. Thus ∆1
i ∩ ∆2

i , its
preimage on H1 (or H2) by the vertical projection, has the same dimension
d−2. This proves that ∆1

i and ∆2
i span a hyperplane Hi of R

d+1. The fact that
Hi �= H1 and Hi �= H2 easily follows from the general position assumption.

We still have to prove that Hi ∩ Hj projects onto bij for i �= j > 2. I.C.
ensures that the projection of Hi ∩Hj contains the projection of Hi ∩Hj ∩H1

and the projection of Hi∩Hj ∩H2, which are known to be bij ∩b1i and bij ∩b2i,
by construction. The general position assumption implies that there is only

2We may translate the hyperplanes vertically in order to have a non-empty in-
tersection, or we may consider imaginary spheres with negative squared radii.

2 Curved Voronoi Diagrams 97

one hyperplane of R
d, namely bij , containing both bij ∩ b1i and bij ∩ b2i. This

is the projection of Hi ∩Hj .
As we have seen, building this set of hyperplanes of R

d+1 amounts to
building a family of spheres whose power diagram admits B as its set of
bisectors. At the beginning of the construction, while choosing H1 and H2, we
may obtain any of the two possible labellings of the sides of b12. Since there
is no other degree of freedom, this choice determines all the assignments.
Lemma 5 shows that there are at most two possible assignments satisfying
A.C., which proves we can build a set of spheres satisfying any of the possible
assignments. The result follows.

Exercise 22. Consider the diagram obtained from the Euclidean Voronoi dia-
gram of n points by taking the other assignment. Characterize a region in this
diagram in terms of distances to the points and make a link with Exercise 3.

2.5.2 Inverse Problem

We now assume that each bisector is defined as the zero-set of some real-valued
function over R

d, called a bisector-function in the following. Let us denote by
B the set of bisector-functions. By convention, for any bisector-function βij ,
we assume that

biij = {x ∈ R
d : βij(x) < 0} and bjij = {x ∈ R

d : βij(x) > 0}.

We now define an algebraic equivalent of the incidence relation in terms of
pencil of functions: we say that B satisfies the linear combination condition
(L.C.C.) if, for any distinct i, j, k, βki belongs to the pencil defined by βij and
βjk, i.e.

∃(λ, µ) ∈ R
2 βki = λβij + µβjk (L.C.C.)

Note that L.C.C. implies I.C. and that in the case of affine bisectors L.C.C. is
equivalent to I.C. Furthermore, it should be noted that, in the case of Voronoi
diagrams, the bisector-functions defined as βij = δi − δj obviously satisfy
L.C.C.

We now prove that we can view diagrams satisfying L.C.C. as diagrams
that can be linearized.

Definition 1. A diagram D of n objects in some space E is said to be a
pullback of a diagram D′ of m objects in space F by a function φ : E → F if
m = n and if, for any distinct i, j, we have

biij = φ−1(ciij)

where biij denotes the set of points closer to i than to j in D and ciij denotes
the set of points closer to i than to j in D′.

98 J-D. Boissonnat, C. Wormser, M. Yvinec

Theorem 14. Let B = {βij} be a set of real-valued bisector-functions over
R

d satisfying L.C.C. and A.C. Let V be any vector space of real functions
over R

d that contains B and constant functions.
If N is the dimension of V , the diagram defined by B is the pullback by

some continuous function of an affine diagram in dimension N − 1.

More explicitly, there exist a set C = {ψij · X + cij} of oriented affine
hyperplanes of R

N−1 satisfying I.C. and A.C. and a continuous function φ:
R

d → R
N−1 such that for all i �= j,

b̄iij = {x ∈ R
d, βij(x) ≤ 0} = φ−1{y ∈ R

N−1, ψij(x) ≤ cij}.

Proof. Let (γ0, . . . , γN−1) be a basis of V such that γ0 is the constant function
equal to 1.

Consider the evaluation application,

φ : x ∈ R
d �→ (γ1(x), . . . , γN−1(x)) ∈ R

N−1.

If point x belongs to some biij , we have βij(x) < 0. Furthermore, there exists
real coefficients λ0

ij , . . . , λ
N−1
ij such that βij =

∑N−1
k=0 λk

ijγk. The image φ(x)
of x thus belongs to the affine half-space Bi

ij of R
N−1 of equation

N−1∑

k=1

λk
ijXk < −λ0

ij .

In this way, we can define all the affine half-spaces Bi
ij of R

N−1 for i �= j:
Bij is an oriented affine hyperplane with normal vector (λ1

ij , . . . , λ
N−1
ij) and

constant term λ0
ij . Plainly, L.C.C. on the βij translates into I.C. on the Bij ,

and we have

b̄iij = {x ∈ R
d, βij(x) ≤ 0} = φ−1{y ∈ R

N−1, Bij(x) ≤ −λn
ij} (2.6)

Finally, let us prove that A.C. is also satisfied. Lemma 6 states that the
Bij have exactly two inverse assignments satisfying A.C. Furthermore, Equa-
tion 2.6 implies that any of these two assignments defines an assignment for
the bij that also satisfies A.C. It follows that if the current assignment did
not satisfy A.C., there would be more than two assignments for the bij that
satisfy A.C. This proves that A.C. is also satisfied by the Bij and concludes
the proof.

We can now use Theorem 13 and specialize Theorem 14 to the specific
case of diagrams whose bisectors are hyperspheres or hyperquadrics, or, more
generally, to the case of diagrams whose class of bisectors spans a finite di-
mensional vector space.

2 Curved Voronoi Diagrams 99

Theorem 15. Any abstract diagram of R
d with spherical bisectors such that

the corresponding degree 2 polynomials satisfy L.C.C. is a Möbius diagram.

Proof. Since the spherical bisectors satisfy L.C.C., we can apply Theorem 14
and Theorem 13. Function φ of Theorem 14 is simply the lifting mapping
x �→ (x, x2), and we know from Theorem 13 that our diagram can be obtained
as a power diagram pulled-back by φ. That is to say δi(x) = Σi(φ(x)), where
Σi is a hypersphere in R

d+1.
Another way to state this transformation is to consider the diagram with

spherical bisectors in R
d as the projection by φ−1 of the restriction of the

power diagram of the hyperspheres Σi to the paraboloid φ(Rd) ⊂ R
d+1 of

equation xd+1 = x2.
Assume that the center of Σj is (uj

1, . . . , u
j
d+1), and that the squared radius

of Σj is wj . We denote by Σj the power to Σj . Distance δj can be expressed
in terms of these parameters:

δj(x) = Σj(φ(x)) =
∑

1≤i≤d

(xi − uj
i)

2 + ((
∑

1≤i≤d

x2
i) − uj

d+1)
2 − wj .

Subtracting from each δj the same term (
∑

1≤i≤D x2
i)

2 leads to a new set of
distance functions that define the same minimization diagram as the δj . In
this way, we obtain new distance functions which are exactly the ones defining
Möbius diagrams.

This proves that any diagram whose bisectors are hyperspheres can be
constructed as a Möbius diagram.

The proof of the following theorem is similar to the previous one:

Theorem 16. Any abstract diagram of R
d with quadratic bisectors such

that the corresponding degree 2 polynomials satisfy L.C.C. is an anisotropic
Voronoi diagram.

Exercise 23. Explain why, in Theorem 15, it is important to specify which
bisector-functions satisfy L.C.C. instead of mentioning only the bisectors
(Hint: Theorem 12 implies that there always exist some bisector-functions
with the same zero-sets that satisfy L.C.C.)

2.6 Incremental Voronoi Algorithms

Incremental constructions consist in adding the objects one by one in the
Voronoi diagram, updating the diagram at each insertion. Incremental algo-
rithms are well known and highly popular for constructing Euclidean Voronoi
diagrams of points and power diagrams of spheres in any dimension. Because
the whole diagram can have to be modified at each insertion, incremental al-
gorithms have a poor worst-case complexity. However most of the insertions

100 J-D. Boissonnat, C. Wormser, M. Yvinec

result only in local modifications and the worst-case complexity does not re-
flect the actual complexity of the algorithm in most practical situations. To
provide more realistic results, incremental constructions are analyzed in the
randomized framework. This framework makes no assumption on the input
object set but analyzes the expected complexity of the algorithm assuming
that the objects are inserted in random order, each ordering sequence being
equally likely. The following theorem, whose proof can be found in many text-
books (see e.g. [67]) recalls that state-of-the-art incremental constructions of
Voronoi diagrams of points and power diagrams have an optimal randomized
complexity.

Theorem 17. The Euclidean Voronoi diagram of n points in R
d and the

power diagram of n spheres in R
d can be constructed by an incremental algo-

rithm in randomized time O
(
n log n+ n� d+1

2 �
)
.

Owing to the linearization techniques of Sect. 2.5, this theorem yields com-
plexity bounds for the construction of linearizable diagrams such as Möbius,
anisotropic or Apollonius diagrams. Incremental constructions also apply to
the construction of Voronoi diagrams for which no linearization scheme ex-
ists. This is for instance the case for the 2-dimensional Euclidean Voronoi
diagrams of line segments. The efficiency of the incremental approach merely
relies on the fact that the cells of the diagram are simply connected and that
the 1-skeleton of the diagram, (i. e. the union of its edges and vertices) is a
connected set. Unfortunately, these two conditions are seldom met except for
planar Euclidean diagrams. Let us take Apollonius diagrams as an illustra-
tion. Each cell of an Apollonius diagram is star shaped with respect to the
center of the associated sphere and is thus simply connected. In the planar
case, Apollonius bisectors are unbounded hyperbolic arcs and the 1-skeleton
can easily be made connected by adding a curve at infinity. The added curve
can be seen as the bisector separating any input object from an added ficti-
tious object. In 3-dimensional space, the skeleton of Apollonius diagrams is
not connected: indeed, we know from Sect. 2.4.3 that the faces of a single cell
are in 1-1 correspondence with the faces of a 2-dimensional Möbius diagram
and therefore may include isolated loops.

As a consequence, the rest of this section focuses on planar Euclidean
diagrams. After some definitions, the section recalls the incremental construc-
tion of Voronoi diagrams, outlines the topological conditions under which this
approach is efficient and gives some examples. The efficiency of incremental
algorithms also greatly relies on the availability of some point location data
structure to answer nearest neighbor queries. A general data structure, the
Voronoi hierarchy, is described at the end of the section. The last subsection
lists the main predicates involved in the incremental construction of Voronoi
diagrams.

2 Curved Voronoi Diagrams 101

2.6.1 Planar Euclidean diagrams

To be able to handle planar objects that possibly intersect, the distance func-
tions that we consider in this section are signed Euclidean distance functions,
i.e. the distance δi(x) from a point x to an object oi is:

δi(x) =

{
miny∈ōi

‖y − x‖, if x �∈ o

− miny∈ōc
i

‖y − x‖, if x ∈ o

where ōi is the closure of oi and ōc
i the closure of the complement of oi. Note

that the distance used to define Apollonius diagrams matches this definition.
Then, given a finite set O of planar objects and oi ∈ O, we define the Voronoi
region of oi as the locus of points closer to oi than to any other object in O

V (oi) = {x ∈ R
2 : δi(x) ≤ δj(x), ∀oj ∈ O}.

Voronoi edges are defined as the locus of points equidistant to two objects O
and closer to these two objects than to any other object in O, and Voronoi
vertices are the locus of points equidistant to three or more objects and closer
to these objects than to any other object in O. The Voronoi diagram Vor(O)
is the planar subdivision induced by the Voronoi regions, edges and vertices.

The incremental construction described below relies on the three following
topological properties of the diagram that are assumed to be met for any set
of input objects:

1. The diagram is assumed to be a nice diagram, i. e. a diagram in which
edges and vertices are respectively 0 and 1-dimensional sets.

2. The cells are assumed to be simply connected.
3. The 1-skeleton of the diagram is connected.

Owing to Euler formula, Properties 1 and 2 imply that the Voronoi diagram
of n objects is a planar map of complexity O(n). Property 3 is generally not
granted for any input set. Think for example of a set of points on a line.
However, in the planar case, this condition can be easily enforced as soon as
Properties 1 and 2 are met. Indeed, if the cells are simply connected, there is
no bounded bisector and the 1-skeleton can be connected by adding a curve
at infinity. The added curve can be seen as the bisector separating any input
object from an added fictitious object. The resulting diagram is called the
compactified version of the diagram.

2.6.2 Incremental Construction

We assume that the Voronoi diagram of any input set we consider is a nice
diagram with simply connected cells and a connected 1-skeleton. Each step of
the incremental construction takes as input the Voronoi diagram Vor(Oi−1) of
a current set of objects Oi−1 and an object oi �∈ Oi−1, and aims to construct

102 J-D. Boissonnat, C. Wormser, M. Yvinec

the Voronoi diagram Vor(Oi) of the set Oi = Oi−1 ∪ {oi}. In the following,
we note V (o,Oi−1) the region of an object o in the diagram Vor(Oi−1) and
V (o,Oi) the region of o in Vor(Oi).

We note Skel(Oi−1) the 1-skeleton of Vor(Oi−1). Let x be a point of
Skel(Oi−1). We note N (x,Oi−1) the nearest neighbors of x in Oi−1, i.e. the
subset of objects of Oi−1 that are closest to x. The point x is said to be in
conflict with oi if x is closer to oi than to N (x,Oi−1). Hence, the part of the
skeleton that conflicts with oi, called the conflict skeleton for short, is exactly
the intersection of the skeleton Skel(Oi−1) with the region of oi in Vor(Oi).
See Fig. 2.11.

The conflict skeleton is a subgraph of Skel(Oi−1) and the endpoints of this
subgraph are the vertices of the region V (oi,Oi). If V (oi,Oi) is not empty,
the conflict skeleton is not empty either. Indeed, an empty conflict skeleton
would imply that V (oi,Oi) is included in a single region V (o,Oi−1) of the
diagram Vor(Oi−1) and the region V (o,Oi) would not be simply connected.
Furthermore, the following lemma, due to Klein et al. [231], proves that the
conflict skeleton is a connected subgraph of Skel(Oi−1).

Lemma 7. If, for any input set, the Voronoi diagram is a nice diagram with
simply connected regions and a connected 1-skeleton, the conflict skeleton of
an additional object is connected.

Proof. We use the above notation and assume, for a contradiction, that the
conflict skeleton of oi, which is Skel(Oi−1) ∩ V (oi,Oi), consists of several
disjoint connected components Sk1, Sk2, . . . , Sk	. Each connected component
Skj has to intersect the boundary of the new region V (oi,Oi), otherwise
Skel(Oi−1) would not be connected, a contradiction. Then, if � ≥ 2, there
exists a path C in V (oi,Oi) connecting two points x and y on the boundary
of V (oi,Oi) and separating Sk1 and Sk2, see Fig. 2.10. The path C does
not intersect Skel(Oi−1) and is therefore included in the region V (o,Oi−1) of
some object o of Oi−1. Since, points arbitrarily close to x and y but outside
V (oi,Oi) belong to V (o,Oi−1), x and y can be joined by a simple path D
in V (o,Oi) ⊂ V (o,Oi−1). The simple closed curve C ∪ D is contained in
V (o,Oi−1) and encloses Sk1 or Sk2, which contradicts the fact that Skel(Oi−1)
is connected.

Once the conflict skeleton is known, the Voronoi diagram Vor(Oi−1) can
be updated, leading to Vor(Oi). This is done by Procedure 3.

Procedure 4 describes a step of the incremental construction.
In the sequel, the incremental construction is analyzed in the randomized

setting. It is assumed that each object has constant complexity, which implies
that each operation involving a constant number of objects is performed in
constant time. Because the conflict skeleton is connected, Substep 2 can be
performed by traversing the graph Skel(Oi−1) in time proportional to the
number of edges involved in the conflict skeleton. These edges will be either
deleted or shortened in the new diagram. Substep 3 takes time proportional

2 Curved Voronoi Diagrams 103

x

y

D

C

Sk1 Sk2

Fig. 2.10. For the proof of Lemma 7

Fig. 2.11. Incremental construction of the Voronoi diagram of disjoint line segments

104 J-D. Boissonnat, C. Wormser, M. Yvinec

Procedure 3 Updating the Voronoi diagram

Input: Vor(Oi−1), Skel(Oi−1)

1. Create a new vertex at each endpoint of the conflict skeleton;
2. Remove vertices, edges and portions of edges that belong to Skel(Oi−1) ∩

V (oi,Oi);
3. Connect the new vertices s as to form the boundary of the new region.

Output: Vor(Oi)

Procedure 4 A step of the incremental algorithm

Input: Vor(Oi−1) and a new object oi

1. Find a first point x of Skel(Oi−1) in conflict with oi;
2. Compute the whole conflict skeleton;
3. Update Vor(Oi−1) into Vor(Oi) using Procedure 3;
4. Update the location data structure.

Output: Vor(Oi)

to the number of edges involved in the conflict skeleton plus the number of
edges of V (oi,Oi). The latter are the new edges. Hence Substeps 2 and 3 take
time proportional to the number of changes in the 1-skeleton. Because each
edge in the skeleton is defined by four objects and because the complexity of
the Voronoi diagram of n objects is O(n), a standard probabilistic analysis
(see e.g. [67]) shows that the expected number of changes at each step of
the incremental algorithm is O(1). The overall randomized complexity of the
algorithm is O(n).

The costs of Substeps 1 and 4 depend of course on the type of the input
objects and of the location data structure. In Sect. 2.6.3, we described a
location data structure, called the Voronoi hierarchy, that can be used in
the case of disjoint convex objects. The Voronoi hierarchy allows to detect a
first conflict in randomized time O(log2 n). At each step, the data structure is
updated in time O(m log2 n) wherem is the number of changes in the diagram.
Because the expected number of changes at each step is O(1), the expected
cost for updating the hierarchy is O(log2 n). This yields the following theorem.

Theorem 18. The incremental construction of the planar Euclidean Voronoi
diagram of n disjoint convex objects with constant complexity takes O(n log2 n)
expected time.

Note that the incremental construction described here is on-line, meaning
that the algorithm does not need to know the whole set of objects right from
the beginning. If the whole set of objects is known in advance, localization
can be made easy and the maintenance of a location data structure is no
longer required [20]. The idea consists in picking one witness point inside each
object and in building first the Voronoi diagram of witness points. In a second

2 Curved Voronoi Diagrams 105

phase, each witness point is replaced in turn by the corresponding object.
When replacing a witness point by the corresponding object, any point on
the boundary of the cell of the witness point belongs to the conflict skeleton.
The algorithm is no longer on-line but its randomized complexity is reduced
to O(n log n).

Voronoi Diagrams of Line Segments

The above incremental construction applies to the Voronoi diagram of disjoint
line segments. Indeed, in the case of disjoint line segments, the bisector curves
are unbounded simple curves, each composed of at most seven line segments
and parabolic arcs (see e.g. [67, Chap. 19]). Hence, Voronoi vertices and edges
are respectively 0 and 1-dimensional sets. Furthermore, each region in the
diagram is weakly star shaped with respect to its generating segment, meaning
that the segment joining any point in the region to its closest point on the
associated segment is included in the region. It follows that Voronoi regions
are simply connected.

If the segments are allowed to share endpoints, the Voronoi diagram ex-
hibits 2-dimensional Voronoi edges, hence violating the definition of nice
Voronoi diagrams. A way to circumvent this problem consists in considering
that each segment is composed of three distinct objects: the two endpoints
and the open segment. If the two endpoints of a segment are inserted in the
diagram prior to the open segment, the incremental construction encounters
no 2-dimensional bisecting region and the algorithm presented above can be
used.

Voronoi Diagrams of Curved Segments

Voronoi diagrams of disjoint curved segments have been studied by Alt,
Cheong and Vigneron [20]. Alt, Cheong and Vigneron introduce the notion
of harmless curved segments defined as follows. A curved segment is said to
be convex when the region bounded by the curved segment and the line seg-
ment joining its endpoints is convex. A spiral arc is a convex curved segment
with monotonously increasing curvature. A harmless curved segment is either
a line segment or a circular arc or a spiral arc. It can be shown that, if the
input curved segments are split into harmless sub-segments and if each open
curved sub-segment and its two endpoints are considered as three distinct
sites, the Voronoi diagram is a nice diagram with simply connected regions.
The incremental construction paradigm described above therefore applies.

Voronoi Diagrams of Convex Objects

The case of disjoint smooth convex objects is quite similar to the case of
disjoint segments. The bisecting curves between two such objects is a 1-
dimensional curve. Furthermore, each Voronoi region is weakly star shaped

106 J-D. Boissonnat, C. Wormser, M. Yvinec

with respect to the medial axis of its object, hence simply connected. There-
fore, the Voronoi diagram can be built using the incremental algorithm. Note
that the Voronoi diagram of disjoint smooth convex objects could also be ob-
tained by applying the incremental algorithm to the curved segments forming
the boundaries of the objects. However, this approach requires the subdivi-
sion of the boundary of each object into harmless parts and yields a Voronoi
diagram which is a refinement of the diagram of the input objects.

If we still assume the objects to be smooth and convex but allow them
to intersect, things become more difficult. Karavelas and Yvinec [217] have
shown that the Voronoi regions remain simply connected if and only if the
objects of O are pseudo-disks, meaning that the boundaries of any two objects
of O intersect in at most two points. The above incremental algorithm can be
adapted to work in this case. However, since the distance is a signed distance,
some sites may have an empty region, which makes the algorithm slightly
more complicated. Note that this may only happen when some of the objects
are included in the union of others. The algorithm has to check that the new
object has a non-empty region and must handle the case where the insertion
of a new object causes the region of some other object to vanish. Karavelas
and Yvinec [217] showed that there is no use to maintain a location data
structure in this case because each insertion takes linear time anyway.

The algorithm can be generalized to the case of convex objects with piece-
wise smooth pseudo-circular boundaries. As in the case of segments, the main
problem comes from the fact that sharp corners on the boundaries of objects
yield 2-dimensional bisectors. This problem can be handled as in the case of
line segments and planar curves by considering each corner as an object on
its own.

2.6.3 The Voronoi Hierarchy

The first step when inserting a new object oi consists in finding one point
of the current skeleton Skel(Oi−1) in conflict with oi. If the objects do not
intersect, this is done by searching the object o of Oi−1 nearest to a point
x of oi. Indeed, if the objects do not intersect, x belongs to the region of o
in Vor(Oi−1) and to the region of oi in Vor(Oi). Therefore oi has to be a
neighbor of o in Vor(Oi) and some point on the boundary of V (o,Oi−1) is in
conflict with oi. If the objects intersect, things are slightly more complicated
but nearest object queries can still be used to find out whether the new object
is hidden and, if not, to find a first conflict (see [217]).

Let us describe now how to find the object o of a set O closest to a query
point x. A simple strategy is to perform a walk in the Voronoi diagram Vor(O).
The walk starts at any region of the diagram. When the walk visits the region
V (o) of an object o it considers in turn each of the neighboring regions. If
one of the neighbors of o, say o′, is closer to x than o, the walk steps to
the region V (o′). If none of the neighbors of o in Vor(O) is closer to x than
o, then o is the object closest to x and the walk ends. Because the distance

2 Curved Voronoi Diagrams 107

between x and the objects of the visited regions is decreasing, the walk cannot
loop and is bound to end. However, the walk may visit all the regions before
ending. The Voronoi hierarchy [217] is a randomized data structure that makes
this strategy more efficient. The Voronoi hierarchy can be considered as a 2-
dimensional version of the skip lists introduced by Pugh [291] and generalizes
the Delaunay hierarchy described in [115].

For a set of objects O, the Voronoi hierarchy HV(O) is a sequence of
Voronoi diagrams Vor(Θ), � = 0, . . . , L, built for subsets of O forming a
hierarchy, i.e, O = Θ0 ⊇ Θ1 ⊇ · · · ⊇ ΘL.

The hierarchy HV(O) is built together with the Voronoi diagram Vor(O)
according to the following rules:

1. Every object of O is inserted in Vor(Θ0) = Vor(O);
2. An object o that has been inserted in Vor(Θ), is inserted in Vor(Θ	+1)

with probability β.

To answer nearest object queries, the Voronoi hierarchy works as follows.
Let us call θ	 the object of Θ	 closest to the query point x. First, a simple
walk is performed in the top-most diagram to find θL. Then, at each level
� = L − 1, . . . , 0, a simple walk is performed in Vor(Θ) from θ	+1 to θ	 (see
Fig. 2.12).

x

Fig. 2.12. Locating x using the Voronoi hierarchy

It is easy to show that the expected size of HV(O) is O(n
1−β), and that the

expected number of levels in HV(O) is O(log1/β n). Moreover, the following
lemma proves that the expected number of steps performed by the walk at
each level is constant.

108 J-D. Boissonnat, C. Wormser, M. Yvinec

Lemma 8. Let x be a point in the plane. Let θ	 (resp. θ	+1) be the object
closest to x in Θ	 (resp. Θ	+1). Then the expected number of Voronoi regions
visited during the walk in Vor(Θ) from θ	+1 to θ	 is O(1/β).

Proof. The objects whose regions are visited at level � are closer to x than
θ	+1. Consequently, if, among the objects of Θ	, θ	+1 is the k-th closest object
to x, the walk in Vor(Θ) performs at most k steps.

Let us show that θ	+1 is the k-th closest object to x in Θ	 with probability
β(1−β)k−1. Such a case occurs if and only if the two following conditions are
satisfied:

1. Object θ	+1 has been inserted in Θ	+1

2. None of the k − 1 objects of Θ	 that are closer to x than θ	+1 has been
inserted in Θ	+1.

The first condition occurs with probability β and the second with probability
(1 − β)k−1.

Let nl be the number of objects in Θ	. The expected number N	 of objects
that are visited at level � is bounded as follows:

N	 ≤
n�∑

k=1

k(1 − β)k−1β < β

∞∑

k=1

k(1 − β)k−1 =
1
β
,

We still have to bound the time spent in each of the visited regions. Let o
be the site of a visited region in Vor(Θ). It is not efficient to consider in turn
each neighbor o′ of o in Vor(Θ) and compare the distances from x to o and o′.
Indeed, since the complexity of each region in the Voronoi diagram Vor(Θ)
may be Ω(n), this would imply that the time spent at each level � of the
hierarchy is O(n), yielding a total of O(n) time per insertion. To avoid this
cost, a balanced binary tree is attached to each Voronoi region in the Voronoi
hierarchy. The tree attached to the region V	(o) of o in Vor(Θ) includes, for
each Voronoi vertex v of V	(oi), the ray [vo, v) issued from the projection of
v onto the boundary ∂o of o that passes through v. The rays are sorted by
directions. Similarly, we associate to the query point x the ray [xo, x) where
xo is the projection of x onto ∂o. When V	(o) is visited, ray [xo, x) is located
in the associated tree and we get the two rays [vo, v) and [wo, w) immediately
before and after [xo, x). Let o′ be the neighbor of o whose cell is incident to v
and w. We compare the distances from x to o and o′. If o′ is closer to x than o,
the walk steps to o′. Otherwise, we know that o is the object of Θ	 closest to x
and the walk halts (see [217] for details). Hence, visiting the Voronoi region of
oi in Vor(Θ) reduces to querying the tree and comparing the distances from
x to o and o′ which takes O(log n) time.

Lemma 9. Using a hierarchy of Voronoi diagrams, nearest neighbor queries
can be answered in expected time O(log2 n).

It has been shown [217] that the expected cost of updating the Voronoi
hierarchy when inserting an object is O(log2 n).

2 Curved Voronoi Diagrams 109

Exercise 24. Show that the planar Euclidean Voronoi diagram of n points
can be computed on line in O(n log n) time
(Hint: in the case of points, using a Delaunay hierarchy instead of the Voronoi
hierarchy, nearest neighbor queries can be answered in O(log n). Upon inser-
tion the structure is updated in randomized time O(log n). See [115])

Exercise 25. Show that the planar Euclidean Voronoi diagram of n line seg-
ments can be computed on line in O(n log n) time. See e.g.[67] for a solution.

Exercise 26. Show that the planar euclidean diagram of n disjoint convex
objects can be computed using predicates that involve only four objects.

Exercise 27. Provide a detailed description of the predicates of the incremen-
tal Voronoi diagram construction and a way to implement them efficiently for
various types of simple objects (e.g., line segments, circles). See [219, 218].

Exercise 28 (2D Abstract Voronoi diagrams). Klein et al. [231] have
defined abstract Voronoi diagrams in dimension 2 using bisecting curves. Each
bisecting curve bij is assumed to be an infinite curve separating the plane in
two regions affected respectively to oi and oj and the Voronoi regions are
defined as in Sect. 2.5.1. Klein et al. assume that the affectation fulfills the
assignment condition but they do not assume the incidence condition. Instead
they assume that each pair of bisecting curves intersect in only a finite number
of connected components and that the interior of Voronoi regions are path-
connected. Show that, under Klein et al. assumptions, the transitivity relation
of Lemma 4 is satisfied and that Voronoi regions are simply connected.

Exercise 29. Let O be a set of planar convex objects that may intersect and
may not form a pseudo-circle set. Show that the Voronoi diagram Vor(O) may
exhibit disconnected Voronoi regions. Propose an extension of the incremental
algorithm to build the restriction Vor(O)∩U c of the Voronoi diagram Vor(O)
to the region U c which is the complement of the union of the objects. The
solution can be found in [217].

Exercise 30. Describes the geometric predicates required to implement the
incremental algorithm. Provide algebraic expressions for the case of circles
and line segments [219, 146].

2.7 Medial Axis

In this section, we introduce the concept of Medial Axis of a bounded set Ω,
which can be seen as an extension of the notion of Voronoi diagram to infinite
sets. Interestingly, it is possible to construct certified approximations of the
medial axis of quite general sets efficiently. One approach to be described
consists in sampling the boundary of Ω and then computing an appropriate
subset of the Voronoi diagram of the sample which approximates the medial

110 J-D. Boissonnat, C. Wormser, M. Yvinec

axis. Hence the problem of approximating the medial axis of Ω boils down
to sampling the boundary of Ω, a problem that is closely related to mesh
generation (see Chap. 5). Other informations on the medial axis can be found
in Chap. 6.

2.7.1 Medial Axis and Lower Envelope

The medial axis of an open set Ω, denoted by M(Ω), is defined as the the
set of points of Ω that have more than one nearest neighbor on the boundary
of Ω. Nearest refers in this section to the Euclidean distance although the
results may be extended to other distance functions. A medial sphere σ is a
sphere centered at a point c of the medial axis and passing through the nearest
neighbors of c on ∂Ω. Those points where σ is tangent (in the sense that σ
does not enclose any point of ∂Ω) to ∂Ω are called the contact points of σ.

The concept of medial axis can be considered as an extension of the notion
of Voronoi diagram to infinite sets. Let o be a point of the boundary of Ω and
δo be the distance function to o defined over Ω

∀x ∈ Ω : δo(x) = ‖x− o‖.

The lower envelope of the infinite set of functions δo is defined as

∆− = inf
o∈∂Ω

δo.

Following what we did for Voronoi diagrams (Sect. 2.2), we define, for any
point x ∈ Ω, its index set I(x) as the set of all o such that ∆−(x) = δo(x).
The set of points x such that |I(x)| > 1 constitutes the medial axis of Ω.

Computing the medial axis is difficult in general. If Ω is defined as a semi-
algebraic set, i.e. a finite collection of algebraic equations and inequalities,
M(Ω) is also a semi-algebraic set that can therefore be computed using tech-
niques from real algebraic geometry [32, 44]. This general approach, however,
leads to algorithms of very high complexity. Theorem 1 can also be used but,
still, working out the algebraic issues is a formidable task. Effective imple-
mentations are currently limited to simple objects. If Ω is a planar domain
bounded by line segments and circular arcs, one can apply the results of
Sect. 2.6. Further results can be found in [159].

An alternative and more practical approach consists in departing from the
requirement to compute the medial axis exactly. In Sect. 2.7.2, we describe
a method that approximates the medial axis of an object by first sampling
its boundary, and then computing and pruning the Voronoi diagram of the
sample.

2.7.2 Approximation of the Medial Axis

Approximating the medial axis of a set is a non trivial issue since sets that are
close for the Hausdorff distance may have very different medial axes. This is

2 Curved Voronoi Diagrams 111

illustrated in Fig. 2.13. Let S be a closed curve, Ω = R
2 \S and P be a finite

set of points approximating S. As can be seen on the figure, the skeleton
of the Voronoi diagram of P is far from the medial axis of Ω since there
are many long branches with no counterpart in M(Ω). These branches are
Voronoi edges whose dual Delaunay edges are small (their lengths tend to 0
when the sampling density increases). In other words, the medial axis is not
continuous under the Hausdorff distance. Notice however that if we remove
the long branches in Fig. 2.13, we obtain a good approximation of the medial
axis of S. This observation will be made precise in Lemma 10 below. It leads to
an approximate algorithm that first sample S and extract from the Euclidean
Voronoi diagram of the sample a sub-complex that approximates the medial
axis of S.

Fig. 2.13. On the left side, a closed curve S and the medial axis of Ω = R
2 \S. On

the right side, a dense sample E of points and its Voronoi diagram. The medial axis
of R

2 \ E (which is the 1-skeleton of Vor(E)) is very different from the medial axis
of Ω

Given an open set Ω and a point x on the medial axis of Ω, we define
D(x) as the diameter of the smallest closed ball containing the contact points
of the medial sphere centered at x. We define the λ-medial axis of Ω, denoted
Mλ(Ω) as the subset of the medial axis of Ω consisting of points x such that
D(x) ≥ λ.

Let Ω and Ω′ be two open sets and let S and S′ denote their boundaries.
We assume that S and S′ are compact and that their Hausdorff distance
dH(S, S′) is at most ε: any point of S is at distance at most ε from a point
of S′ and vice versa. Notice that we do not specify S nor S′ to be finite or
infinite point sets. For convenience, we rename medial axis of S (resp. S′) and
write M(S) (resp. M(S′)) the medial axis of R

3 \ S. Similarly, we rename
medial axis of S′ and write M(S′)) the medial axis of R

3 \ S.
The following lemma says that the λ-medial axis of S is close to the medial

axis of S′, provided that λ is sufficiently large. It should be emphasized that
close here refers to the one-sided Hausdorff distance: the medial axis of S′ is
not necessarily close to the λ-medial axis of S although, by exchanging the
roles of S and S′, the lemma states that the λ′-medial axis of S′ is close to

112 J-D. Boissonnat, C. Wormser, M. Yvinec

the medial axis of S for a sufficiently large λ′. We will go back to this point
later.

We say that a ball is S-empty if its interior does not intersect S. The
sphere bounding a S-empty ball is called a S-empty sphere.

Lemma 10. Let σ be a S-empty sphere centered at c, of radius r, intersecting
S in two points x and y. If ε < r

2 and l
def= ‖x−y‖

4 ≥
√
εr(1 − ε

r), there exists
an S′-empty sphere tangent to S′ in two points whose center c′ and radius r′

are such that |1 − r′

r | and ‖c′−c‖
r are at most δ = εr

l2−εr+ε2 .

Proof. Let σ′′ be the maximal S′-empty sphere centered at c and let r′′ be
its radius (see Fig. 2.14). The Hausdorff distance between S and S′ being at
most ε, we have |r − r′′| ≤ ε. Let y′ be a point of σ′′ ∩ S′.

Let σ′ be the maximal S′-empty sphere tangent to σ′′ at y′. σ′ is tangent
to S′ at at least two points. Let c′ be its center and r′ its radius.

x

y

y′

c

c′

x′

σ

σ′

σ′′

h

r

S

S

Fig. 2.14. S is the continuous curve. x′ and y′ belong to S′

Noting h =
√
r2 − 1

4‖x− y‖2 =
√
r2 − 4l2 the distance from c to line xy,

we have

d(c′, S) ≤ min(‖c′ − x‖, ‖c′ − y‖)

≤
√

(‖c− c′‖ + h)2 +
1
4

‖x− y‖2

=
√
r2 + ‖c− c′‖2 + 2h‖c− c′‖.

On the other hand,

2 Curved Voronoi Diagrams 113

d(c′, S′) = ‖c′ − y′‖ = ‖c− c′‖ + r′′ ≥ ‖c− c′‖ + r − ε.

From these two inequalities, we deduce

‖c− c′‖ + r − ε ≤ d(c′, S′) ≤ d(c′, S) + ε ≤
√
r2 + ‖c− c′‖2 + 2h‖c− c′‖ + ε.

and, since, by assumption, r > 2ε, we get ‖c − c′‖ (r − 2ε − h) ≤ 2ε(r − ε).
Moreover, by assumption, l ≥

√
εr(1 − ε

r) which implies r − 2ε − h ≥ 0.
Indeed,

h =
√
r2 − 4l2 ≤

√
r2 − 4εr + 4ε2 = r − 2ε.

We then deduce

‖c− c′‖ ≤ 2ε(r − ε)
r − h− 2ε

≤ 2εr
r −

√
r2 − 4l2 − 2ε

.

We then get

‖c− c′‖
r

≤ 2ε(r +
√
r2 − 4l2 − 2ε)

(r − 2ε)2 − (r2 − 4l2)
≤ εr

l2 − εr + ε2
.

The same bound plainly holds for |1 − r′

r |.

We consider the case where S is a surface of R
3 and S′ is a finite set of

points on S at Hausdorff distance at most ε from S. To avoid confusion, we
rename S′ as P. As already noticed, M(P) is the 1-skeleton of the Voronoi
diagram Vor(P), called simply the Voronoi diagram of P in this section. The
set of contact points of a medial sphere centered at a point c ∈ M(P) is the
set of closest points of c in P. Any point in the relative interior of a face of
Vor(P) has the same closest points in P. It follows that the λ-medial axis of P
is the subset of the faces of Vor(P) whose contact points cannot be enclosed
in a ball of diameter λ.

Lemma 10 then says that any Delaunay sphere of Del(P) passing through
two sample points that are sufficiently far apart, is close to a medial sphere
of S (for the Hausdorff distance). We have therefore bounded the one-sided
Hausdorff distance from the λ-medial axis (Voronoi diagram) of an ε-sample
P of S to the medial axis of S, when λ is sufficiently large with respect to
ε. If we apply the lemma the other way around, we see that, for sufficiently
large λ′, Mλ′(S) is close to M(P). However, as observed above (Fig. 2.13),
we cannot hope to bound the two-sided Hausdorff distance between M(S)
and M(P).

The above lemma can be strengthened as recently shown by Chazal and
Lieutier [83, 32]. They proved that the λ-medial axis of S is close to the λ′-
medial axis of P for a sufficiently large λ and some positive λ′ that depends on
λ and ε. More precisely, let D be the diameter of S and k′′ a positive constant.
They showed that there exist three functions of ε, k(ε) = 15

√
2 4

√
D3ε, k′(ε) =

10
√

3 4
√
D3ε and k′′(ε) = k′′

4
√
D3ε, such that

114 J-D. Boissonnat, C. Wormser, M. Yvinec

Mk(ε)(S) ⊂ Mk′(ε)(P) ⊕B2
√

Dε ⊂ Mk′′(ε)(S) ⊕B4
√

Dε.

Here, Br denotes the ball centered at the origin of radius r, and ⊕ the
Minkowski sum.

Consider now a family of point sets Pε parametrized by ε such that
dH(S,Pε) ≤ ε and let ε tends to 0. Because Mη(S) tends to M(S) when
η tends to 0, we deduce from the above inequalities, that

lim
ε→0

dH(M(S),M
10

4√
9D3ε

(Pε)) = 0.

The above discussion provides an algorithm to approximate the medial
axis of S within any specified error (see Algorithm 5).

Algorithm 5 Approximation of the Medial Axis

Input: A surface S and a positive real ε

1. Sample S so as to obtain a sample P such that dH(S,P) ≤ ε;
2. Construct the Voronoi diagram of P;
3. Remove from the diagram the faces for which the diameter of the set of contact

points is smaller than 10
4
√

9D3ε.

Output: A PL approximation of M(S)

The main issue is therefore to compute a sample of points on S (step 1). If
S is a surface of R

3, one can use a surface mesh generator to mesh S and take
for P the vertices of the mesh. Various algorithms can be found in Chap. 5
and we refer to that chapter for a thorough description and analysis of these
algorithms. Especially attractive in the context of medial axis approximation,
are the algorithms that are based on the 3-dimensional Delaunay triangulation
since we get the Voronoi diagram of the sample points (step 2) at no additional
cost. An example obtained with the surface mesh generator of Boissonnat and
Oudot [65] is shown in Fig. 2.15.

Exercise 31. Let O be a bounded open set. Show that M(O) is a retract of
O (and therefore has the same homotopy type as O) [243].

2.8 Voronoi Diagrams in Cgal

The Computational Geometry Algorithms Library Cgal [2] offers severals
packages to compute Voronoi diagrams. Euclidean Voronoi diagrams of points
and power diagrams are represented through their dual Delaunay and regu-
lar triangulations. Cgal provides Delaunay and regular triangulations in R

2

and R
3. The implementation is based on a randomized incremental algorithm

2 Curved Voronoi Diagrams 115

Fig. 2.15. Two λ-medial axes of the same shape, with λ increasing from left to
right, computed as a subset of the Voronoi diagram of a sample of the boundary
(courtesy of Steve Oudot)

using a variant of the Voronoi hierarchy described in Sect. 2.6. Delaunay tri-
angulations are also provided in higher dimensions.

The library also contains packages to compute Voronoi diagrams of line
segments [215] and Apollonius diagrams in R

2 [216]. Those packages imple-
ment the incremental algorithm described in Sect. 2.6. A prototype imple-
mentation of Möbius diagrams in R

2 also exists. This prototype computes the
Möbius diagram as the projection of the intersection of a 3-dimensional power
diagram with a paraboloid, as described in Sect. 2.4.1. This prototype also
serves as the basis for the developement of a Cgal package for 3-dimensional
Apollonius diagrams, where the boundary of each cell is computed as a 2-
dimensional Möbius diagram, following the results of Sect. 2.4.3 [62]. See
Fig. 2.8.

2.9 Applications

Euclidean and affine Voronoi diagrams have numerous applications we do not
discuss here. The interested reader can consult other chapters of the book,
most notably Chap. 5 on surface meshing and Chap. 6 on reconstruction.
Other applications can be found in the surveys and the textbooks mentionned
in the introduction.

Additively and multiplicatively weighted distances arise when modeling
growing processes and have important applications in biology, ecology and
other fields. Consider a number of crystals, all growing at the same rate, and
all starting at the same time : one gets a number of growing circles. As these
circles meet, they draw a Euclidean Voronoi diagram. In reality, crystals start

116 J-D. Boissonnat, C. Wormser, M. Yvinec

Fig. 2.16. A cell in an Apollonius diagram of spheres

growing at different times. If they still grow at the same rate, they will meet
along an Apollonius diagram. This growth model is known as the Johnson-
Mehl model in cell biology. In other contexts, all the crystals start at the same
time, but grow at different rates. Now we get what is called the multiplicatively
weighted Voronoi diagram, a special case of Möbius diagrams.

Spheres are common models for a variety of objects such as particles, atoms
or beads. Hence, Apollonius diagrams have been used in physics, material
sciences, molecular biology and chemistry [245, 339, 227, 228]. They have also
been used for sphere packing [246] and shortest paths computations [256].

Euclidean Voronoi diagrams of non punctual objects find applications in
robot motion planning [237, 197]. Medial axes are used for shape analysis
[160], for computing offsets in Computer-Aided Design [118], and for mesh
generation [290, 289, 316]. Medial axes are also used in character recogni-
tion, road network detection in geographic information systems, and other
applications.

Acknowledgments

We thank D. Attali, C. Delage and M. Karavelas with whom part of the
research reported in this chapter has been conducted. We also thank F. Chazal
and A. Lieutier for fruitful discussions on the approximation of the medial
axis.

3

Algebraic Issues in Computational Geometry

Bernard Mourrain�, Sylvain Pion, Susanne Schmitt, Jean-Pierre Técourt,
Elias Tsigaridas, and Nicola Wolpert

3.1 Introduction

Geometric modeling plays an increasing role in fields at the frontier between
computer science and mathematics. This is the case for example in CAGD
(Computer-aided Geometric design, where the objects of a scene or a piece to
be built are represented by parameterized curves or surfaces such as NURBS),
robotics or molecular biology (rebuilding of a molecule starting from the ma-
trix of the distances between its atoms obtained by NMR).

The representation of shapes by piecewise-algebraic functions (such as B-
spline functions) provides models which are able to encode the geometry of
an object in a compact way. For instance, B-spline representations are heavily
used in Computed Aided Geometric Design, being now a standard for this
area. Recently, we also observe a new trend involving the use of patches of
implicit surfaces. This includes in particular the representation by quadrics,
which are more natural objects than meshes for the representation of curved
shapes.

From a practical point of view, critical operations such as computing in-
tersection curves of parameterized surfaces are performed on these geometric
models. This intersection problem, as a typical example linking together geom-
etry, algebra and numeric computation, received a lot of attention in the past
literature. See for instance [158, 280, 233]. It requires robust methods, for solv-
ing (semi)-algebraic problems. Different techniques (subdivision, lattice eval-
uation, marching methods) have been developed [278, 176, 14, 191, 190, 280].
A critical question is to certify or to control the topology of the result.

From a theoretical point of view, the study of algebraic surfaces is also a
fascinating area where important developments of mathematics such as singu-
larity theory interact with visualization problems and the rendering of math-
ematical objects. The classification of singularities [29] provides simple alge-
braic formulas for complicated shapes, which geometrically may be difficult to

� Chapter coordinator

118 B. Mourrain, S. Pion, S. Schmitt, J-P. Técourt, E. Tsigaridas, N. Wolpert

handle. Such models can be visualized through techniques such as ray-tracing1

in order to produce beautiful pictures of these singularities. Many open ques-
tions, related for instance to the topological types of real algebraic curves or
surfaces, remain to be solved in this area. Computation tools, which allow to
treat such algebraic models are thus important to understand their geometric
properties.

In this chapter, we will describe methods for the treatment of algebraic
models. We focus on the problem of computing the topology of implicit curves
or surfaces. Our objective is to devise certified and output-sensitive methods,
in order to combine control and efficiency. We distinguish two types of sub-
problems:

• the construction of new geometric objects such as points of intersection,
• predicates such as the comparison of coordinates of intersection points.

In the first case, a good approximation of the exact algebraic object, which
usually cannot be described explicitly by an analytic formula, may be enough.
On the contrary for the second subproblem, the result has to be exact in order
to avoid incoherence problems, which might be dangerous from an implemen-
tation point of view, leading to well known non-robustness issues.

These two types of geometric problems, which appear for instance in
arrangement computations (see Chapter 1) lead to the solution of algebraic
questions. In particular, the construction or the comparison of coordinates of
points of intersections of two curves or three surfaces involve computations
with algebraic numbers. In the next section, we will describe exact methods
for their treatment. Then we show how to apply these tools to compute the
topology of implicit curves. This presentation includes effective aspects and
pointers to software. It does not include proofs, which can be found in the
cited literature.

3.2 Computers and Numbers

Geometric computation is closely tied to arithmetic, as the Ancient Greeks (in
particular Pythagoras of Samos and Hippasus of Metapontum) observed a long
time ago. This has been formalized more recently by Hilbert [205], who showed
how geometric hypotheses are correlated with the arithmetic properties of
the underlying field. For instance, it is well-known that Pappus’ theorem is
equivalent to the commutativity property of the underlying arithmetic field.
When we want to do geometric computations on a computer, the situation
becomes even more intricate. First, we cannot represent all real numbers on
a computer.

Integers (even integers of unbounded size) are the basis of arithmetic on a
computer. These integers are (usually) represented in the binary system as an

1see e.g. http://www.algebraicsurface.net/

3 Algebraic Issues in Computational Geometry 119

array of bits; an integer n has (bit) size O(log |n|). Under this notion, integers
are no longer constant size objects thus arithmetic operations on them are per-
formed in non-constant time: for two integer of bit size O(log |n|) addition or
subtraction can be done in linear time with respect to their size, i.e O(log |n|)
and multiplication or division can be done inO(log |n| log log |n| log log log |n|).
Therefore, depending on the context, manipulating multi precision integers
can be expensive. Dedicated libraries such as gmp[6] however have been tuned
to treat such large integers.

Similarly, rational numbers can be manipulated as pairs of integer num-
bers. As in Pythagoras’ philosophy, these numbers can be considered as the
foundations of computer arithmetic. That is why, hereafter, we will consider
that our input (which as we will see in the next sections corresponds to the co-
efficients of a polynomial equation) will be represented with rational numbers
∈ Q. In other words, we will consider that the input data of our algorithms are
exact. From the complexity point of view, the cost of the operations on ratio-
nals is a simple consequence of the one on integers, however we can also point
out that adding rationals roughly doubles their sizes, contrary to integers, so
additional care has to be taken to get good performance with rationals.

When performing geometric computations, such as for instance computing
intersections, the values that we need to manipulate are no longer rationals.
We are facing Pythagoras’ dilemma: how to deal with non-commensurable val-
ues, when only rational arithmetic is effectively available on a computer. In
our context, these non-commensurable values are defined implicitly by equa-
tions whose coefficients are rationals. As we will see, they involve algebraic
numbers. A classical way to deal with numbers which are not representable
in the initial arithmetic model, is to approximate them. This is usually per-
formed by floating point numbers. For instance, numerical approximations
can be sufficient, for evaluation purposes, if one controls the error of approxi-
mation. And usually, computations with approximate values is much cheaper
than with the exact representation. The important problem which has to be
handled is then how to control the error.

Hereafter, we describe shortly this machine floating point arithmetic and
interval arithmetic, for their use in geometric computation.

3.2.1 Machine Floating Point Numbers: the IEEE 754 norm

Besides multiple-precision arithmetic provided by various software libraries,
modern processors directly provide in hardware some floating point arithmetic
in a way which has been standardized as the IEEE 754 norm [212]. We briefly
describe the parts of this norm which are interesting in the sequel.

The IEEE 754 norm offers several possible precisions. We are going to de-
scribe the details of the so-called double precision numbers, which correspond
to the double built-in types of the C and C++ languages. These numbers are
encoded in 64 bits: 1 bit for the sign, 11 bits for the exponent, and 52 bits for
the mantissa.

120 B. Mourrain, S. Pion, S. Schmitt, J-P. Técourt, E. Tsigaridas, N. Wolpert

For non-extreme values of the exponent, the real value corresponding to
the encoding is simply: (−1)sign ×1.mantissa×2exponent−1023. That is, there
is an implicit 1 which is not represented in front of the mantissa, and the
exponent value is shifted in order to be centered at zero.

Extreme values of the exponent are special: when it is zero, then the num-
bers are called denormalized values and the implicit 1 disappears, which
leads to a nice property called gradual underflow. This property implies
that there cannot be any underflow with the subtraction or the addition:
a − b = 0 ⇐⇒ a = b. The maximal value 2047 for the exponent is used
to represent 4 different special values: +∞, −∞, qNAN, sNAN, depending
on the sign bit and the value of the mantissa. Infinite values are generated
by overflow situations, or when dividing by zero. A NaN (not a number) ex-
ists in two variants, quiet or signaling, and is used to represent the result
of operations like ∞ − ∞, 0 × ∞, 0/0 and any operation taking a NaN as
argument.

The following arithmetic operations are specified by the IEEE 754 stan-
dard: +, −, ×, ÷, √. Their precise meaning depends on a rounding mode,
which can have 4 values: to the nearest (with the round-to-even rule in case of
a tie), towards zero, towards +∞ and towards −∞. This way, an arithmetic
operation is decomposed into its exact real counterpart, and a rounding op-
eration, which is going to choose the representable value in cases where the
real exact value is not representable in the standard format. In the sequel, the
arithmetic operations with directed rounding modes are going to be written
as + and ×, standing for addition rounded towards +∞ and multiplication
rounded towards −∞ for example.

Finally, let us mention that the IEEE 754 norm is currently under revision,
and we can expect that in the future more operations will be available in a
standardized way.

3.2.2 Interval Arithmetic

Interval arithmetic is a well known technique to control accumulated rounding
errors of floating point computations at run time. It is especially used in the
field of interval analysis [257]. We use interval arithmetic here in the following
way: we represent at run time the roundoff error associated with a variable x
by two floating point numbers x and x, such that the exact value of x lies in
the interval [x, x]. This is denoted as the inclusion property.

All arithmetic operations on these intervals preserve this property. For
example, the addition of x and y is performed by computing the interval
[x+y, x+y]. The multiplication is slightly more complicated and is specified
as

x× y = [min(x×y, x×y, x×y, x×y),max(x×y, x×y, x×y, x×y)].
The other basic arithmetic operations (−,÷,√) are defined on intervals in a
similar way. More complex functions, like the trigonometric functions, can also

3 Algebraic Issues in Computational Geometry 121

be defined over intervals on mathematical grounds. However, the IEEE 754
standard does not specify their exact behavior for floating point computations,
so it is harder to implement such interval functions in practice, although some
libraries can help here.

Comparison functions on intervals are special, and several different seman-
tics can be defined for them. What we are interested in here is to detect when
a comparison of the exact value can be guaranteed by the intervals. Therefore
looking at the intervals allows to conclude the order of the exact values in the
following cases:

x < y ⇒ x < y is true
x >= y ⇒ x < y is false

otherwise ⇒ x < y is unknown

The other comparison operators (>,≤,≥,=, �=) can be defined similarly.
From the implementation point of view, the difficulty lies in portability,

since the IEEE 754 functions for changing the rounding modes tend to vary
from system to system, and the behavior of some processors does not al-
ways match perfectly the standard. In practice, operations on intervals can
be roughly 5–10 times slower than the corresponding operations on floating
point numbers, this is what we observe on low degree geometric algorithms.

Interval arithmetic is very precise compared to other methods which con-
sist in storing a central and an error values, as the IEEE 754 norm guarantees
that, at each operation, the smallest interval is computed. It is possible to
get more precision from it by using multiple-precision bounds, or by rewriting
the expressions to improve numerical stability for some expressions [69] which
improves the sharpness of the intervals.

3.2.3 Filters

Most algebraic computations are based on evaluating numerical quantities.
Sometimes, like in geometric predicates, only signs of quantities are needed in
the end.

Computing with multiple-precision arithmetic in order to achieve exact-
ness is by nature costly, since arithmetic operations do not have unit cost,
in contrast to floating-point computations. It is also common to observe that
floating point computation almost always leads to correct results, because the
error propagation is usually small enough that sign detection is exact. Wrong
signs tend to happen when the polynomial value of which the sign is sought
is zero, or small compared to the roundoff error propagation. Geometrically,
this usually means a degenerate or nearly degenerate instance.

Arithmetic filtering techniques have been introduced in the last ten
years [168] in order to take advantage of the efficiency of floating point com-
putations, but by also providing a certificate allowing to determine whether
the sign of the approximately computed value is the same as the exact sign.

122 B. Mourrain, S. Pion, S. Schmitt, J-P. Técourt, E. Tsigaridas, N. Wolpert

In the case of filter failure, i.e., when the certificate cannot guarantee that
the sign of the approximation is exact, then another method must be used to
obtain the exact result: it can be a more precise filter, or it can be multiple-
precision arithmetic directly.

From the complexity point of view, if the filter step succeeds often—which
is expected—then the cost of the exact method will be amortized over many
calls to the predicates. The probability that the filter succeeds is linked to
two factors. The first is the shape of the predicate: how many arithmetic
operations does it contain and how do they influence the roundoff-error (the
degree of the predicate does not really matter in itself). The second factor
is the distribution of the input data of the predicates, since filter failures are
more common on degenerate or nearly degenerate cases.

There are various techniques which can be used to implement these filters.
They vary by the cost of the computation of the certificate, and by their pre-
cision, i.e. their typical failure rate. Finding the optimal filter for a problem
may not be easy, and in general, the best solution is to use a cascade of fil-
ters [74, 117]: first try the less precise and fastest one, and in case of failure,
continue with a more precise and more costly one, etc. Detailed experiments
illustrating this have been performed in the case of the 3D Delaunay triangu-
lation used in surface reconstruction in [117].

We are now going to detail two important categories of filters: dynamic
filters using interval arithmetic, and static filters based on static analysis of
the shape of predicates.

Dynamic Filters

Interval arithmetic, as we previously described it in 3.2.2, can be used to
write filters for the evaluation of signs of polynomial expressions, and even a
bit more since division and square root are also defined.

Interval arithmetic is easy to use because no analysis of a particular poly-
nomial expression is required, and it is enough to instantiate the polynomials
with a given arithmetic without changing their evaluation order. It is also
the most precise approach within the hardware precision since the IEEE 754
standard guarantees the smallest interval for each individual operation. We
are next going to present a less precise but faster approach known as static
filters.

Static Filters

Interval arithmetic computes the roundoff error at run time. Another idea
which has been initially promoted by Fortune [168] is to pull more of the
error computation off run time.

The basic idea is the following: if you know a bound b on the input vari-
ables x1, . . . , xn of the polynomial expression P (x1, . . . , xn), then it is possible

3 Algebraic Issues in Computational Geometry 123

to deduce a bound on the roundoff error εP that will occur during the evalu-
ation of P . This can be shown inductively, by considering the roundoff error
propagation bound of each operation, for example for the addition: suppose
x and y are variables you want to add, bx and by are bounds on |x| and |y|
respectively, and εx and εy bounds on the roundoff errors done so far on x and
y. Then it is easy to see that |x+y| is bounded by bx+y = bx+by, and that the
roundoff error is bounded by εx + εy +bx+y2−53, considering IEEE 754 double
precision floating point computations. Similar bounds can be computed for
subtraction and multiplication. Division does not play nicely here because the
result is not bounded.

This scheme can also be refined in several directions by:

• considering independent initial bounds on the input variables,
• computing the bounds on the input and the epsilons at run time, which

is usually still fast since the polynomial expressions we are dealing with
tend to be homogeneous due to their geometric nature [252],

• doing some caching on this last computation [117],

Such filters are very efficient when a bound on the input is known, because
the only change compared to a simple floating point evaluation is the sign
comparison which is made with a constant ε whereas it would be with 0
otherwise. Drawbacks of these methods are that they are less precise, and so
they need to be complemented by dynamic filters to be efficient in general.
They are also harder to program since they are more difficult to automatize
(the shape of the predicates needs to be analyzed). This is why some automatic
tools have been developed to generate them from the algebraic formulas of
the predicates [169, 273, 74].

3.3 Effective Real Numbers

In this section, we will consider a special type of real numbers, which we
call effective real numbers. We will be able to manipulate them effectively in
geometric computations, because the following methods are available:

• an algorithm which computes a numerical approximation of them to any
precision.

• an algorithm which compares them in an exact way.

We will see that working in this sub-class of real numbers, is enough to tackle
the geometric problems that we want to solve. Namely, we are interested by
computing intersection points of curves, arrangements of pieces of algebraic
curves and surfaces, . . . This leads to the resolution of polynomial equations.

Here are some notations. A polynomial over a ring L of coefficients is an
expression of the form

f(x) = anx
n + · · · + a1x+ a0

124 B. Mourrain, S. Pion, S. Schmitt, J-P. Técourt, E. Tsigaridas, N. Wolpert

where the coefficients an �= 0, an−1, . . . , a1, a0 are elements of L and the vari-
able x may be regarded as a formal symbol with an indeterminate meaning.
The greatest power of x appeared in f (with an non zero coefficient) is called
the degree of f , (n in our case since an �= 0). It is denoted deg(f). The degree
of the zero polynomial is equal to −∞. The coefficient an is called the leading
coefficient, and denoted ldcf(f). The ring of polynomials with coefficient in
L, is denoted L[x].

We call a polynomial g ∈ L[x] a factor of f if there exists another polyno-
mial g ∈ L[x] with f = g · h. In particular, if f = 0, then every g ∈ L[x] is a
factor of f .

In the following, we will consider polynomials with coefficient in a unitary
ring L. For instance, we can image L = Z. We denote by K a field containing
L. In the following, we work most of the time with K the field of rational
numbers or its algebraic closure (that is the smallest field containing all the
roots of polynomials with rational coefficients). In some cases, the problem
may depend on parameters u1, . . . , un and so in theses cases the field K will
be the fraction field K = Q(u1, . . . , un). The algebraic closure of the field K

is denoted K. (so image K = C).

3.3.1 Algebraic Numbers

We recall here the basic definitions on algebraic numbers. An algebraic number
over the field K is a root of a polynomial p(x) with coefficients in K (p(x) ∈
K[x]). An algebraic integer over the ring L is a root of a polynomial with
coefficients in L, where the leading coefficient is 1.

Let α be an algebraic number over K and p(x) ∈ K[x] be a polynomial of
degree d with p(α) = 0. If p(x) is irreducible over K (it cannot be written in
K[x] as the product of two polynomials which are both different from 1), it is
called the minimal polynomial of α. The other roots α2, . . . , αd of the minimal
polynomial in K are the conjugates of α. The degree of the algebraic number
α is the degree of the minimal polynomial defining α. Let α1 = α, then the
norm of α is

N(α) =
d∏

i=1

|αi|

If α, β are algebraic numbers over K, then α± β, α · β, α/β (if β �= 0) and
k
√
α are algebraic numbers over K. If α, β are algebraic integers over L, then

α ± β, α · β and k
√
α are algebraic integers over L.

For instance, γ = 7 is an algebraic integer over Q since it is the root of
x − 7 = 0. Moreover, α =

√
2 (resp. β =

√
3) is an algebraic integer over Q,

since it is the positive root of the (minimal) polynomial x2 − 2, (resp. x2 − 3)
and α + β is a root of (x2 − 5)2 − 24 = x4 − 10x2 + 1 = 0. We observe
in the last example, that the degree of the minimal polynomial of α + β is
bounded by the product of the degrees of the minimal polynomials of α and
β. This is a general result, which we deduce from the resultant properties (see

3 Algebraic Issues in Computational Geometry 125

Section 3.4.1 and [236]). The same result is valid for the operations −,×, / on
these algebraic numbers.

Let p(x) be a polynomial with algebraic number as coefficients. Then the
roots of p(x) are algebraic numbers. If the coefficients of p(x) are algebraic
integers and the leading coefficient of p(x) is 1, then the roots of p(x) are
algebraic integers.

We describe now two important methods to represent real algebraic num-
bers.

3.3.2 Isolating Interval Representation of Real Algebraic Numbers

A natural way to encode a real algebraic number α over Q is by using

• a polynomial p(x) of Q[x], which vanishes at α, and
• an isolating interval [a, b] containing α such that a, b ∈ Q and p(x) has

exactly one real root in [a, b].

This representation is not unique, since the size of the interval [a, b] can
reduce to any ε > 0 close to 0. If we assume moreover that p is a square-
free polynomial (that is gcd(p, p′) = 1 or in other words that the roots of p
are distinct), as we assume in what follows, then α is a simple root of p and
p obtains different sign when evaluated over the endpoints of the isolating
interval, i.e. p(a)p(b) < 0.

Besides isolating interval representation there are other representations of
real algebraic numbers. The most important alternative is Thom’s encoding
[44]. The basic idea behind this representation is that the signs of all the deriv-
atives of p obtained by evaluation over the real roots of p uniquely characterize
(and order) the real roots. This representation besides the uniqueness prop-
erty is also more general than the isolating interval representation. However
we are not going into the details.

For higher (arbitrary) degree, isolating intervals will be computed by uni-
variate polynomial solvers, that we will describe in Section 3.4.2. For polyno-
mials of degree up to 4, real root isolation is more effective since it can be
performed in constant time (see Section 3.4.3).

3.3.3 Symbolic Representation of Real Algebraic Numbers

The sum α+β of two algebraic numbers α, β of degree ≤ d is an algebraic num-
ber, whose minimal polynomial is of degree ≤ d2 (see Section 3.4.1 and [236]).
Instead of computing this minimal polynomial (which might be costly to per-
form), we may wonder if we can use its symbolic representation (as an arith-
metic tree) and develop methods which allow us to consider it as an effective
algebraic numbers. In other words,

• how can we approximate such a number within an arbitrary precision?
• how can we compare two such numbers?

126 B. Mourrain, S. Pion, S. Schmitt, J-P. Técourt, E. Tsigaridas, N. Wolpert

In this section, we describe the symbolic representation of such algebraic num-
bers and in the next section, we will show how to perform these operations.

A real algebraic expression is an arithmetic expression built from the inte-
gers using the operations +,−, ·, /, k

√ and !, representing a root of a univari-
ate polynomial, and which is defined as follows: The syntax for the !-operator
is !(j, Ed, . . . , E0), where Ei are real algebraic expressions and 1 ≤ j ≤ d is
an integer. It is representing the j-th real root (if it exists) of a polynomial
with coefficients (Ei)d

i=0.
The value val(E) of a real algebraic expression E is the real value given by

the expression (if this is defined). For E = !(j, Ed, . . . , E0), the value val(E)
is the j-th smallest real root of the polynomial

p(x) =
d∑

i=0

val(Ei)xi,

if it exists and if the values of all coefficients are defined.
We are representing real algebraic expressions as directed acyclic graphs.

The inner nodes are the operations and the leaves are integers. Every node
knows an interval containing the exact value represented by its subgraph.
If further accuracy is needed, the values are approximated recursively with
higher precision.

Operations are done by creating a new root node and building the graph
structure. Then a first approximating interval is computed. Comparisons are
done exactly. The algorithms involved in these comparisons will be described
in the next section.

3.4 Computing with Algebraic Numbers

In the previous section, we have described how we encode real algebraic num-
bers. We are going to describe now the main tools and algorithms, which allow
us to compute this representation, that is

• to isolate the real roots of a polynomial.

We are also going to see how to perform the main operations we are interested
in for geometric computations, namely:

• the comparison of two algebraic numbers,
• and the sign evaluation of a polynomial expression.

3.4.1 Resultant

A fundamental tool for the manipulation and construction of algebraic num-
bers is the resultant. It allows us to answer the following question; When do
two univariate polynomials f and g of positive degree have a non-constant

3 Algebraic Issues in Computational Geometry 127

common factor? Since every non-contant polynomial has a root in K, this is
equivalent to the following question: When do two univariate polynomials f
and g of positive degree have a common root in K? Here is a first answer:

Theorem 1. Let f, g ∈ K[x] be two polynomials of degrees deg(f) = n > 0
and deg(g) = m > 0. Then f and g have a non-constant common factor if
and only if there exist polynomials A ∈ K[x] and B ∈ K[x] with deg(A) < m
and deg(B) < n which are not both zero and such that Af +Bg = 0.

Now, in order to determine the existence of a common factor of

f(x) = fnx
n + fn−1x

n−1 + · · · + f0, fn �= 0, n > 0 and
g(x) = gmx

m + gm−1x
m−1 + · · · + g0, gm �= 0, m > 0

we have to decide whether two polynomials A and B with the required proper-
ties can be found. This question can be answered with the help of linear alge-
bra: A and B are polynomials of degree at most m−1 and n−1, and therefore
there are all in all m+ n unknown coefficients am−1, . . . , a0, bn−1, . . . , b0 of A
and B:

A(x) = am−1x
m−1 + · · · + a1x+ a0

B(x) = bn−1x
n−1 + · · · + b1x+ b0.

The polynomial A(x)f(x)+B(x)g(x) has degree at most n+m−1 in x. Each
of its coefficients has to be zero in order to achieve Af +Bg = 0:

fnam−1 + gmbn−1 = 0 (coefficient of xm+n−1)
fn−1am−1 + fnam−2 + gm−1bn−1 + gmbn−2 = 0 (coefficient of xm+n−2)

.
...

f0a0 + g0b0 = 0 (coefficient of x0).

We get n+m linear equations in the unknowns ai, bi with coefficients fi, gj .
Written in matrix style this system of linear equations has the form:

(am−1, . . . , a0, bn−1, . . . , b0) ·

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

fn fn−1 . . . f0
fn fn−1 . . . f0

.
fn fn−1 . . . f0

gm gm−1 . . . g0
gm gm−1 . . . g0

.
gm gm−1 . . . g0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

= (0, . . . , 0)

where the empty positions are filled with zeroes. We know from linear algebra
that this system of linear equations has a non-zero solution if and only if
the determinant of the coefficient matrix is equal to zero. This leads to the
following definition:

128 B. Mourrain, S. Pion, S. Schmitt, J-P. Técourt, E. Tsigaridas, N. Wolpert

Definition 1. The (m + n) × (m + n) coefficient matrix with m rows of f-
entries and n rows of g-entries

Syl(f, g) :=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

fn fn−1 . . . f0
fn fn−1 . . . f0

.
fn fn−1 . . . f0

gm gm−1 . . . g0
gm gm−1 . . . g0

.
gm gm−1 . . . g0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

where the empty positions are filled by zeroes is called the Sylvester matrix of
f and g. The determinant of the matrix is called the resultant of f and g:
Res(f, g) := det(Syl(f, g)).

This resultant will also be denoted Resx(f, g) if the coefficients ai, bj of f and
g are themselves polynomials of other variables and we want to denote that
we consider them as univariate polynomials with respect to x.

From the above observations we immediately obtain a criterion for testing
whether two polynomials f and g have a non-constant common factor.

Proposition 1. Given f, g ∈ K[x] of positive degree, the resultant Res(f, g) ∈
k is equal to zero if and only if f and g have a non-constant common factor.
For K = C the equality Res(f, g) = 0 holds if and only if f and g have a
common complex root.

As a direct application, we see that if α (resp. β) is a root of the polyno-
mial f (resp. g), then α+β is a root of the polynomial Resx(f(x), g(u−x)) =
R(u) = 0 where we consider g(u − x) as a polynomial in x (with coefficients
which are polynomials in u). Indeed, the two polynomials f(x) and g(α+β−x)
have a common root x = α, so that their resultant R(α + β) vanishes. Simi-
larly, for β �= 0, a defining polynomial of α

β is Resx(f(x), g(xu)) = 0. Though
the resultant yields a direct way to compute a defining polynomial of sums,
differences, products, divisions of algebraic numbers, alternative approaches,
which are more interesting from a complexity point of view, have been con-
sidered (see for instance [17]). They are based on Newton sums and series
expansions.

Properties of resultants.

We present some useful properties of the resultants.

Lemma 1. Let f, g ∈ K[x] and α ∈ K̄.

1. For deg(f) > 0 and deg(g) = m > 0 we have Res(α ·f, g) = αm ·Res(f, g).
2. If deg(g) > 0, then Res((x− α) · f, g) = g(α) · Res(f, g).

3 Algebraic Issues in Computational Geometry 129

The lemma leads to the following important characterization of resultants:

Theorem 2. Let f, g ∈ K[x], fn = ldcf(f), gm = ldcf(g), deg(f) = n > 0,
deg(g) = m > 0, with (complex) roots

α1, . . . , αn, β1 . . . , βm ∈ K.

For the resultant of f and g the following holds:

Res(f, g) = fm
n gn

m

n∏

i=1

m∏

j=1

(αi − βj) = fm
n

m∏

i=1

g(αi) = (−1)mngn
m

m∏

i=1

f(βi).

Subresultants of Univariate Polynomials

Theorem 1 of the previous section can be generalized to

Theorem 3. Let f, g ∈ K[x] be two polynomials of degrees deg(f) = n > 0
and deg(g) = m > 0. Then f and g have a common factor of degree greater
than l ≥ 0 if and only if there are polynomials A and B in K[x], with deg(A) <
m− l and deg(B) < n− l which are not both zero, and such that Af+Bg = 0.

As an immediate consequence we obtain a statement about the degree of
the greatest common divisor of f and g:

Corollary 1. The degree of the gcd of two polynomials f, g ∈ K[x] is equal
to the smallest index h such that for all polynomials A and B ∈ K[x], with
deg(A) < m− h and deg(B) < n− h: Af +Bg �= 0.

This corollary can be reformulated in the following way:

Corollary 2. The degree of the gcd of two polynomials f, g ∈ K[x] is equal
to the smallest index h such that for all rational polynomials A and B with
deg(A) < m− h and deg(B) < n− h: deg(Af +Bg) ≥ h.

We are interested in determining the degree of the greatest common divisor
of two polynomials f and g. According to Corollary 2, we have to test in
succession whether for l = 1, 2, 3, . . . there exist polynomials A and B, with
the claimed restriction of the degrees such that the degree of Af + Bg is
strictly smaller than l. The first index h, for which this test gives a negative
answer, is equal to the degree of the gcd. How can we perform such a test?
We have seen in the previous section that the test for l = 0 can be made by
testing whether the resultant of f and g is equal to zero. For l = 1, 2, 3, . . .
we proceed in a similar way. Let l be a fixed index and let

f(x) = fnx
n + fn−1x

n−1 + · · · + f0, fn �= 0, and
g(x) = gmx

m + gm−1x
m−1 + · · · + g0, gm �= 0.

We are looking for two polynomials

130 B. Mourrain, S. Pion, S. Schmitt, J-P. Técourt, E. Tsigaridas, N. Wolpert

A(x) = am−l−1x
m−l−1 + · · · + a1x+ a0,

B(x) = bn−l−1x
n−l−1 + · · · + b1x+ b0,

such that deg(Af + Bg) < l. There are m + n − 2l unknown coefficients
am−l−1, . . . , a0, bn−l−1, . . . , b0. The polynomial A(x)f(x) +B(x)g(x) has de-
gree at most n+m−l−1. The m+n−2l coefficients of xl, xl+1, . . . , xm+n−l−1

have to be zero in order to achieve deg(Af + Bg) < l. This leads to a linear
system

(am−l−1, . . . , a0, bn−l−1, . . . , b0) · Sl = (0, . . . , 0)

where Sl is the submatrix of the Sylvester matrix of f and g obtained by
deleting the last 2l columns, the last l rows of f -entries, and the last l rows of
g-entries. We call srl(f, g) = detSl the lth subresultant of f and g. For l = 0,
the equality Res(f, g) = sr0(f, g) holds. In fact, Sl is a submatrix of Si for
l > i ≥ 0. The 2 l × 2 l minors of the submatrix of the Sylvester matrix of
f and g obtained by deleting the last l rows of f -entries, can be collected in
order to construct a polynomial, which has interesting properties. To be more
specific, we need the following definition:

Definition 2 (Determinant polynomial).
Let M be a s× t matrix, s ≤ t, over an integral domain L. The determinant
polynomial of M is:

detpol(M) = |Ms|xt−s + · · · + |Mt|

where Mj denotes the submatrix of M consisting of the first s − 1 columns
followed by the jth column, for s ≤ j ≤ t.

Definition 3 (Subresultant).
Let f, g ∈ K[x], two polynomials with deg(f) = n > 0, deg(g) = m > 0. For
0 ≤ l ≤ min(f, g), we define:

Ml = mat(xn−l−1f(x), xn−l−2f(x), . . . , f(x), xm−l−1g(x), . . . , g(x))

Then the lth subresultant polynomial of f and g is Srl(f, g)(x) = detpol(Ml).

Notice that the coefficient of xl in Srl(f, g) is the lth subresultant coefficient,
denoted srl(f, g). Here is the main proposition [44, 330]:

Proposition 2. Two polynomials f and g of positive degree have a gcd of
degree h if and only if h is the least index l for which srl(f, g) �= 0. In this
case, their gcd is Srl(f, g)(x).

This yields Algorithm 6 for computing the square-free part of a polynomial. By
Hadamard’s identity (see [44]), the size of the coefficients of the subresultants
is bounded linearly (up to a logarithmic factor) in terms of the size of the
minors.

3 Algebraic Issues in Computational Geometry 131

Algorithm 6 Square free part of a univariate polynomial

Input: a polynomial f ∈ K[x].

• Compute the last non-zero subresultant Sr(x) polynomial of f(x) and f ′(x).
• Compute fr = f/Sr(x).

Output: the square-free part fr of f .

3.4.2 Isolation

We are now going to describe algorithms that compute isolating intervals for
the real roots of polynomials of arbitrary degree with rational coefficients.
In the next section we will present how isolating intervals can be computed
directly for polynomials of degree up to 4. Two families of methods will be
considered, one based on Descartes’s rule and the other on Sturm sequences.
Both produce certified isolation intervals for all the roots of a polynomial and
have interesting complexity bounds.

Descartes’ rule.

Consider a polynomial p(x) ∈ R[x], represented in the monomial basis by

p(x) = ad x
d + · · · + a0,

with ad �= 0. A simple rule to estimate the number of real roots of p is obtained
by counting the number of sign changes of its coefficients:

Definition 4 (Sign changes). The number of sign changes V (a) in a se-
quence a = {a0, . . . , ad} in R − {0} is defined, by induction on d, by:

• V (a0) = 0,
• V (a0, . . . , ad) = V (a1, . . . , ad) + 1 if a0a1 < 0,
• V (a0, . . . , ad) = V (a1, . . . , ad) if a0a1 > 0.

This definition extends to any finite sequence a of elements in R by considering
the finite sequence b obtained by dropping the zeroes in a and defining V (a) =
V (b), with the convention V (∅) = 0.

Here is a simple but interesting result, known as Descartes’ lemma [114]:

Lemma 2 (Descartes). Let p(x) = ad x
d+· · ·+a0, let V (a) be the number of

sign changes in the sequence a = {a0, a1, . . . , ad} and let N+(p) be the number
of strictly positive roots of p (counted with multiplicity). Then

N+(p) = V (a) − 2 k,

with k ∈ N.

132 B. Mourrain, S. Pion, S. Schmitt, J-P. Técourt, E. Tsigaridas, N. Wolpert

This rule can be used to isolate the roots of a polynomial p, as shown hereafter.
Let us recall that a univariate polynomial p(x) of degree d can also be

represented as:

p(x) =
d∑

i=0

bi B
i
d(x),

where Bi
d(x) = (d

i)x
i(1−x)d−i. The polynomials (Bi

d)i=0,...,d form the so-called
Bernstein basis in degree d on [0, 1]. The sequence b = [bi]i=0,...,d is called the
set of control coefficients on [0, 1]. Similarly, we will say that a sequence b
represents the polynomial function p on the interval [a, b] if:

p(x) =
d∑

i=0

bi (d
i)

1
(b− a)d

(x− a)i(b− x)d−i.

The polynomials

Bi
d(x; a, b) := (d

i)
1

(b− a)d
(x− a)i(b− x)d−i

form the Bernstein basis in degree d on [a, b]. We are going to consider the
sequence of values b together with the corresponding interval [a, b]. A first
property of this representation is that the derivative f ′ of f , is deduced easily
from the control coefficients:

d∆b := d(bi+1 − bi)0�i�d−1,

where ∆b = (∆b0, . . . ,∆bd−1) with ∆bi = bi+1 − bi. Another fundamental
algorithm that we will use is the de Casteljau algorithm [157]:

b0i = bi i = 0, . . . , d
bri = (1 − t) br−1

i + t br−1
i+1 (t) i = 0, . . . , d− r

It allows us to compute the representation of p on the subdivided intervals
[a, (1 − t)a+ tb] and [(1 − t)a+ tb, b]. For a complete list of methods on this
representation, we refer to [157].

By substituting x by x = t
1−t , the Descartes rule yields the following

proposition [157], [295]:

Proposition 3. The number of sign changes V (b) of the control coefficients
b = [bi]i=0,...,d of a univariate polynomial on [0, 1] bounds its number of real
roots in [0, 1] and is equal to it modulo 2. Thus,

• if V (b) = 0, there is no real root in [0, 1], and
• if V (b) = 1, there is exactly one real root in [0, 1].

3 Algebraic Issues in Computational Geometry 133

Sturm sequences.

Another tool which can also be used for the isolation of real roots is described
below.

Definition 5 (Sturm sequence). Let p, q be two univariate polynomials. A
polynomial sequence f0 = p, f1 = q, . . . , fs is a Sturm sequence if:

• fs divides all the fi, 0 ≤ i ≤ s. Let δi = fi/fs, 0 ≤ i ≤ s.
• If c is a real number such that δj(c) = 0, 0 < j < s, then δj−1(c)δj+1(c) <

0.
• If c is a real number such that δ0(c) = 0 then δ0(x)δ1(x) has the sign of

x− c in a neighborhood of c.

We will denote the Sturm sequence by Sturm(p, q) = (p, q, f2, . . . , fs). Such
a Sturm sequence can be computed for instance, as follows:

f0 = p, f1 = q, f2 = −rem(f0, f1), . . . fi+1 = −rem(fi−1, fi), . . .

where rem(f, g) is the reminder in the Euclidean division of the polynomial f
by the polynomial g.

For any sequence S of real polynomials and a ∈ R, we denote by V (S, a)
the number of sign variations of the values of the polynomials in S at a. Then,
we have the well-known theorem of Sturm (see for instance [44]):

Proposition 4 (Sturm theorem). Assume S = Sturm(p, p′q) and]a, b[is
an interval such that p(a)p(b) �= 0. The difference V (S, a) − V (S, b) is equal
to the difference between the number Zp(q > 0; a, b) of roots α of p in]a, b[
(without multiplicity) such that q(α) > 0 and the number Zp(q < 0; a, b) of
roots α of p in]a, b[such that q(α) < 0:

V (S, a) − V (S, b) = Zp(p; a, b) − Zp(q < 0; a, b).

If we take q = 1, then we have that V (S, a)−V (S, b) is the number of real
roots of p in]a, b[.

An efficient way to compute a Sturm sequence is to compute a Sturm-
Habicht (or Sylvester-Habicht) sequence. For that purpose, we recall here the
definition of pseudo-remainder (see for instance [44]).

Definition 6 (Pseudo-remainder). Let

f(x) = apx
p + · · · + a0

g(x) = bqx
q + · · · + b0

be two polynomials in L[x] where L is a ring. Note that the only denominators
occurring in the euclidean division of f by g are biq, i ≤ p+ q − 1.
The signed pseudo-remainder denoted prem(f, g), is the remainder in the
Euclidean division of bdqf by g, where d is the smallest even integer greater
than or equal p − q + 1. Note that the euclidean division of bdqf by g can be
performed in L and that prem(f, g) ∈ L[x].

134 B. Mourrain, S. Pion, S. Schmitt, J-P. Técourt, E. Tsigaridas, N. Wolpert

Definition 7 (Sturm-Habicht sequence). Let p and q be univariate poly-
nomials, d = max(deg(p),deg(q) + 1), coefk(p) the coefficient of xk in p, and
δk = (−1)k(k−1)/2.

The Sturm-Habicht sequence of p and q is defined inductively as follows:

• Hd = p, hd = 1.
• Hd−1 = q.

Assume that we have computed Hd, . . . , Hj−1, hd, . . . , hj with hj �= 0 and
Hj−1 �= 0. Let k = deg(Hj−1). Then:

• If k < j − 1, let Hk = δj−k
coefk(Hj−1)

j−1−k

hj−1−k
j

Hj−1, hj−1 = 1.

For l ∈ N with k < l < j − 1, let Hl = 0, hl = 0.
• Let hk = coefk(Hk), Hk−1 = δj−k+2

prem(Hj ,Hj−1)

hj−k+1
j

(where prem is the

pseudo-remainder)

The main interest of this construction is that the polynomials in the sequence
are related to the subresultants of p and q (see Section 3.4.1). Therefore, if we
are working with coefficients in a ring L, the coefficients of these subresultant
polynomials are in the ring L. If for instance L = K[u], the subresultant
polynomials are polynomials in x, which coefficients are polynomials in the
variable u. By substituting u by a value u0 ∈ K, we get by construction,
the subresultant sequence, evaluated at u = u0. In other words, subresultant
sequences behave well under specialization.

This Sturm-(Habicht) sequence can also be useful for gcd computations,
since the gcd corresponds to the last non-zero term of the sequence. In par-
ticular, it yields anotehr way to compute the square-free part p/ gcd(p, p′) of
a polynomial p ∈ Q[x] (see Algorithm 6).

Isolation algorithm.

The idea behind both approaches that we are goping to present now, is to
consider an interval that initialy contains all the real roots, and then repeat-
edly subdivide it until we obtain intervals that is guaranteed that they contain
zero or one real root.

Both Descartes’s and Sturm’s approach gives a bound on the number
of roots of a polynomial f on an interval I, that we denote hereafter by
V (f ; I). For Descartes’ approach, V (f ; I) is the number of sign changes in the
coefficients of f in the Bernstein basis on I. This bound is equal to the number
of roots modulo 2. For the Sturm approach, V (f ; I) is the difference of the
number of sign changes of the Sturm sequence of f and f ′, evaluated over
the end points of the interval. Notice that in this approach we count exactly
the number of real roots of f in the interval I.

This leads to the algorithm 7.
In the Sturm approach, we compute first the Sturm sequence of f and

f ′. Then, in order to compute V (f ; I), we evaluate the sign of the polyno-
mials of this Sturm sequence at the end points of the interval I. If we use

3 Algebraic Issues in Computational Geometry 135

Algorithm 7 Isolation of real roots

Input: A polynomial f ∈ Z[x].

• Compute the square-free part fr of f (Algorithm 6).
• Compute an interval I0 containing the roots of f and initialize a queue Q with

I0.
• While Q is not empty,

– Pop an interval I from Q and compute V (f, I).
– If V (f ; I) > 1, split the interval in two subintervals I− and I+ and add them

to Q.
– If V (f ; I) = 0, then remove the interval I.
– If V (f ; I) = 1, then output I.

Output: a list of intervals, with as many real roots of f than intervals and such
that each interval contains exactly one real root of f .

the Sturm-Habicht construction, as f ∈ Z[x] the polynomials of the Sturm-
Habicht sequence will also be in Z[x]. Moreover, if the bit size of the coefficients
of the polynomial f of degree d is bounded by τ , then the bit size of the co-
efficients of the polynomials in the Sturm sequence are bounded by O(d τ)
(using Hadamard inequality). This algorithm can be refined by restricting the
computation to the roots in a given interval.

For the Descartes’ approach, we represent the polynomial f by an interval I
and its coefficients in the Bernstein basis on I. Splitting the interval I consists
in applying the de Casteljau algorithm in order to get the representation of
f on the two subintervals I−, I+. Another variant consists in avoiding the
square-free computation and stopping the subdivision if an interval is of size
smaller than a given ε. This does not guarantees the result in the presence of
a cluster of roots, but only bounds the multiplicity of this cluster.

A first version of the Bernstein approach was described in [235]. Its com-
plexity was first analyzed in [268], and then improved in [262]. The proof of
termination of the algorithm is based on a partial inverse of Descartes’ rule,
namely the two circle theorem [102, 262], which, roughly speaking, guaran-
tees that the algorithm, after a number of steps, will produce polynomials
with zero or one sign variation. Using a refined version of this theorem, and
Davenport-Mahler bounds on the product of distances between pairs of (com-
plex) roots of f (see [232]), one can even show that the number of subdivisions
(for both approaches) is bounded by O(d τ + d log d), where d is the degree of
f and τ a bound on the size of its coefficients (see also [313, 147]).

The correspondence with another algorithm based on Descartes’ rule in
the monomial basis, known as modified Uspensky algorithm [299], has been
detailed in [262]. It is shown in particular, that de Casteljau algorithm can
be reinterpreted as a shift of a univariate polynomial. This yields a bound
O(d4τ2) on the bit complexity for the isolation algorithm, which actually

136 B. Mourrain, S. Pion, S. Schmitt, J-P. Técourt, E. Tsigaridas, N. Wolpert

holds for both approaches. In practice, Descartes’ approach is usually more
efficient than the Sturm-Sequence approach (see [147] for experimentations).

Notice that Descartes’ approach (with polynomials represented either in
monomial or Bernstein basis) can be applied with interval arithmetic, by
adapting the sign variation count [299, 262]. It also extends naturally to B-
splines which are piecewise polynomial functions [157].

3.4.3 Algebraic Numbers of Small Degree

It is known that solving a polynomial equation by radicals is always possible
for small degree (d ≤ 4). However when we want to compute the real roots
then we must do computations with complex numbers (for degrees 3 and
4). Thus even when explicit formulas are available it is not always possible
or effective to do computations with them. Thus, we are not interested by
describing the roots as explicit formulas, involving radicals for instance (since
tis is not always possible).

Instead, our goal is to describe the roots of a polynomial by using only
rational numbers. We will see that for small degree polynomials, of degree up
to 4, we can compute the isolating interval representation of the real roots
with minimal computations, while for arbitrary degree polynomials this task
requires a more involved machinery (as presented in the previous section).

The interest of such approach has already been illustrated by intensive
computations with algebraic numbers of degree 2. In this case, classical explicit
formulas (involving simple square roots) allow us to represent the real roots
and compute with them directly. Paradoxically, as it is shown in [116], it can
be more interesting to use instead isolating interval representations, from an
efficiency point of view. Such an approach has been recently extended for
polynomials up to degree 4, in [149]. It yields a way to precompute isolating
intervals offline, which proceeds as follows (see [149, 148] for more details; see
also [219]).

Since algebraic numbers of degree up to 4 appear in many problems of
computational geometry, for example arrangement of conic arcs in the plane,
Voronoi diagrams of circles, etc, we present now how to compute the isolating
interval representation of these numbers.

Given a polynomial p ∈ Q[x] of degree 4

p(x) = a x4 − 4 b x3 + 6 c x2 − 4 d x+ e

with a > 0, we define the invariants

A = ae− 4bd+ 3c2, B = ace+ 2bcd− ad2 − eb2 − c3,
∆1 = A3 − 27B2, ∆2 = b2 − ac,
∆3 = c2 − bd, ∆4 = d2 − ce,
W1 = ad− bc, W2 = be− cd,
W3 = ae− bd, R = −2b3 − a2d+ 3abc,
T = −9W 2

1 + 27∆2∆3 − 3W3∆2

3 Algebraic Issues in Computational Geometry 137

The following proposition gives the number of real roots of a quartic polyno-
mial.

Proposition 5. Let p(x) be the quartic as above. The following table gives
the numbers of real roots and their multiplicities in all cases. For example,
{1, 1, 1, 1} means four simple real roots and {2, 2} means two double real roots.

condition real roots
∆1 > 0 ∧ T > 0 ∧∆2 > 0 {1, 1, 1, 1}
∆1 > 0 ∧ (T ≤ 0 ∨∆2 ≤ 0) {}
∆1 < 0 {1, 1}
∆1 = 0 ∧ T > 0 {2, 1, 1}
∆1 = 0 ∧ T < 0 {2}
∆1 = 0 ∧ T = 0 ∧∆2 > 0 ∧R = 0 {2, 2}
∆1 = 0 ∧ T = 0 ∧∆2 > 0 ∧R �= 0 {3, 1}
∆1 = 0 ∧ T = 0 ∧∆2 < 0 {}
∆1 = 0 ∧ T = 0 ∧∆2 = 0 {4}

The next theorem provides a tool to isolate these real roots.

Theorem 4. Given a polynomial p(x) with two successive real roots γ1 and
γ2, and given two other polynomials B(x) and C(x), define

A(x) := B(x)p′(x) + C(x)p(x).

Then A(x) or B(x) has at least one real root in the closed interval [γ1, γ2].

The idea developed in [148] is to determine the number of real roots of the
polynomial p(x) using the invariants and then to find isolating numbers by
providing clever choices for the polynomials A(x) and B(x), i.e the real roots
of A(x) and B(x) are computed easily and ideally are rationals. of Theorem 4.
In the case of two simple or four simple real roots, the isolating point that we
get from the initial polynomial may not be rational. In [148] the authors show
how to get a rational isolating point in these cases. The following polynomials
are suggested:

A(x) = 3∆2x
2 + 3W1x−W3

B(x) = ax− b

C(x) = −4a.

The isolating points are then in the set of real roots of A(x) and B(x). As a
second possibility, they suggest to take the following three polynomials

A(x) = W3x
3 − 3W2x

2 − 3∆4x

B(x) = dx− e

C(x) = −4d

Note that the real roots of A(x) might be real algebraic numbers of degree 2
in both cases, thus not rational numbers in general. However it was proven

138 B. Mourrain, S. Pion, S. Schmitt, J-P. Técourt, E. Tsigaridas, N. Wolpert

[148] that using the ceiling of the real roots of A(x) suffices in all the cases to
compute isolating intervals for real roots of p(x). The case of the cubic is even
more straightforward, since only one choice of polynomials A(x) and B(x) is
needed (see [148] for more details).

3.4.4 Comparison

An important operation which needs to be performed exactly on real algebraic
numbers in geometric algorithms is the comparison. We describe here methods
to achieve this goal.

Comparison of isolated interval algebraic numbers.

Let us describe briefly how we use Sturm’s theorem to compare two algebraic
numbers α = (p,]a, b[) and β = (q,]c, d[), assuming for simplicity that α and
β are simple roots of p and q. If b < c (resp. d < a) we have α < β (resp.
β < α). Let us assume now that a < c < b < d (the other cases being
treated similarly). First we compute the sign s of p(a)p(c). If s < 0, then
we have α ∈]a, c[and α < β. If s = 0, we have α = c (since α �= a), which
implies that α < β. Otherwise s > 0, p has no root in the interval [a, c]. We
compute S = Sturm(p, p′q) and v := V (S, c) − V (S, b). Let us assume first
that q(c) > 0, q(b) < 0. Then if v = 1, by Sturm’s theorem q(α) > 0 and
α < β. If v = −1, q(α) < 0 and α > β. If v = 0, then q(α) = 0 and α = β.
If now q(c) < 0, q(b) > 0, we negate the previous output. Finally, if q(c) and
q(b) are of the same sign, then α < β.

Regarding the complexity of this method, the effective computation of
these sequences can be done using Sturm-Habicht sequences. For two poly-
nomials p and q of degree bounded by d and coefficient bit size bounded by
τ the bit size of the coefficients in the Sturm-Habicht sequence is O(dτ) and
the computation of the sequence is made with O(d2) arithmetic operations
[300, 44]. The reader may refer to [147], for a complete complexity analysis.

For algebraic numbers of small degree, these operations can even be pre-
computed, as described in [148], in order to accelerate the computation of
the Sturm sequences of specific polynomials, taking advantage of the good
specialization properties of the Sturm-Habicht sequences. Moreover, since the
isolating interval representation of algebraic numbers of degree up to 4 can
be computed in constant time we conclude that comparison of such numbers
can also be performed in constant time.

For example [148], the Sturm sequence of a quartic p(x) and its derivative
p′(x) is

S0(x) = p(x)
S1(x) = p′(x)
S2(x) = 3∆2x

2 + 3W1x−W3

S3(x) = T1x+ T2

S4(x) = −∆1

3 Algebraic Issues in Computational Geometry 139

where T1 = −W3∆2 − 3W 2
1 + 9∆2∆3 and T2 = AW1 − 9bB. The Sturm

sequences of two general quartic polynomials can be described similarly [148].
The precomputation of these Sturm sequences for polynomials of degree ≤ 4
reduces many of the algorithmic problems on small degree algebraic numbers
to the computation of signs of algebraic expressions. The degree of these
algebraic expressions is an indicator of the complexity of the approach [148]:

Theorem 5. There is an algorithm that compares any two roots of two quar-
tics using Sturm sequences and isolating intervals from above where the alge-
braic degree of the quantities involved is in the worst case at most 14.

Notice that the comparison of two algebraic numbers can also be per-
formed, using the Bernstein-basis approach. Indeed, suppose that the two
algebraic numbers α and β are defined by the polynomials p and q. Then
by computing their gcd and dividing by it, we may assume that p and q are
co-prime. In this case, we can subdivide the isolation intervals of α and β
using Algorithm 7, until say, q has a constant sign on the interval Iα defining
α. Then Iα can be set-subtracted from the interval Iβ defining β and the
comparison of α and β reduces to the easy comparison of the non-overlapping
intervals Iα and Iβ .

Comparison of symbolic expressions.

Algorithms for the comparison of symbolic expressions representing algebraic
numbers can also used. Let E be a real algebraic expression given as directed
acyclic graph (dag) (source nodes are operands and internal nodes are oper-
ators). A separation bound sep(E) is a real number sep(E) > 0, that can be
computed easily from E, such that

val(E) = 0 or | val(E)| ≥ sep(E).

Separation bounds allow us to determine the sign of an expression by
means of numerical computations. An error bound ∆ is initialized to some
positive value, say ∆ = 1, and an approximation ξ̃ of ξ = val(E) with |ξ− ξ̃| ≤
∆ is computed using approximate arithmetic, say floating point arithmetic
with arbitrary-length mantissa. If |ξ̃| > ∆, the sign of ξ is equal to the sign of
ξ̃. Otherwise, |ξ̃| ≤ ∆ and hence |ξ| < 2∆. If 2∆ ≤ sep(E), we have ξ = 0. If
2∆ > sep(E), we halve ∆ and repeat the process. The worst case complexity
of the procedure just outlined is determined by the separation bound.

The following separation bound are taken from the article [73]. We need
to define the weight D(E) of an expression, which is an upper bound on
the algebraic degree of the algebraic number defined by the expression. The
weight D(E) of an expression dag E is the product of the weights of the nodes
and leaves of the dag. Leaves and +, −, · and / operations have weight 1, a
k
√ -node has weight k, and a !(j, Ed, . . .)-operation has weight d.

Let p(x) = xd + ad−1x
d−1 + . . .+ a0 be a polynomial with real coefficients

ai. A root bound Φ(ad−1, . . . , a0) is an upper bound for the absolute value of

140 B. Mourrain, S. Pion, S. Schmitt, J-P. Técourt, E. Tsigaridas, N. Wolpert

all roots of p(x). One example for a root bound is the Lagrange-Zassenhaus
bound (see [345])

Φ(. . . , ai, . . .) = 2 max
i=0,...,d−1

{
d−i
√

|ai|
}
.

Theorem 6. Let E be a real algebraic expression with val(E) = ξ. Let u(E)
and l(E) be defined inductively on the structure of E according to the following
rules:

u(E) l(E)

integer N |N | 1
E1 ± E2 u(E1) · l(E2) + l(E1) · u(E2) l(E1) · l(E2)
E1 · E2 u(E1) · u(E2) l(E1) · l(E2)
E1/E2 u(E1) · l(E2) l(E1) · u(E2)

k
√

E1 and u(E1) = 0 0 1
k
√

E1 and u(E1) ≥ l(E1) k
√

u(E1)l(E1)k−1 l(E1)
k
√

E1 and u(E1) < l(E1) u(E1) k
√

(u(E1)k−1l(E1))

�(j, Ed, . . . , E0) Φ(. . . ,
(
l(E)d−i−1 u(Ed)

∏
k �=d

l(Ek)

u(Ei)
∏

k �=i
l(Ek)

)
, . . .)

Let D(E) be the weight of E. Then either ξ = 0 or
(
l(E)u(E)D(E)−1

)−1

≤ |ξ| ≤ u(E)l(E)D(E)−1

Separation bounds have been studied extensively in computer algebra [77,
254, 345, 304] as well as in computational geometry [75, 343, 73, 242].

The separation bounds given above can be improved using the fact that
powers of integers can be factored out from the number before computing the
separation bound [285, 306].

3.5 Multivariate Problems

Geometric problems in 3D often involve the solution of polynomial equations
in several variables. This problem can be reduced to a univariate problem
and thus to the manipulation of real algebraic numbers, as follows. We are
interested in the case of zero-dimensional systems, i.e. systems that have only
finitely many complex solutions.

We denote by f1 = 0, . . . , fm = 0 the polynomial equations in K[x] =
K[x1, . . . , xn] that we want to solve. The quotient ring K[x]/(f1, . . . , fm) of
polynomials modulo f1, . . . , fm ∈ K[x1, . . . , xn] is denoted by A. In the case
that we consider here, where the number of complex roots is finite, the quotient
algebra A is a finite-dimensional vector space over K.

We consider the operators of multiplication Mg by an element g in the
ring A:

Mg : A → A
a �→ g a

3 Algebraic Issues in Computational Geometry 141

Then, the algebraic solution of the system is performed by analyzing the
eigenvalues and eigenvectors of these operators. It is based on the next theorem
which involves the transposed of the operators M t

g. By definition, M t
g is acting

on the set of linear forms Â on A. If ζ is a root of the polynomial system
f1 = 0, . . . , fm = 0, then the map 1ζ : g �→ g(ζ) is an element Â.

Here is the main theorem from which we deduce the root computation:

Theorem 7. Assume that the set of complex solutions of f1 = 0, . . . , fs = 0
is the finite set {ζ1, . . . , ζd}.
1. Let g ∈ A. The eigenvalues of the operator Mg (and its transpose M t

g) are
g(ζ1), . . . , g(ζd).

2. The common eigenvectors of (M t
g) for g ∈ A are (up to a scalar) the eval-

uation 1ζ1 , . . . ,1ζd
.

The first point of this theorem can be found in [39] and the second in [261].
This theorems implies in particular that the common eigenvectors of the trans-
pose of the operators Mx1 , . . . ,Mxn

of multiplication by x1, . . . , xn, corre-
spond to the linear forms which evaluate a polynomial at a root. A numerical
approximation of these roots of the system can thus be obtained by comput-
ing the common eigenvectors of these operators, using standard linear algebra
tools. See [39, 105, 261, 266, 328, 107, 143, 267] for more details on this ap-
proach.

These operators can also be used to describe the solution points as the
image, by a rational map, of the roots of a univariate polynomial. In other
words, the (real) coordinates of the solutions are rational functions evaluated
at real algebraic numbers whose defining equations can be deduced explicitly
from the matrices Mxi

. It leads to Algorithm 8, which yields the so-called
Rational Univariate Representation (RUR) of the roots. For details on this

Algorithm 8 Rational Univariate Representation of the roots

Input: The tables Mx1 , . . . , Mxn of multiplication by x1, . . . , xn in A.

1. Compute the determinant ∆(u) := det(u0 I + u1 Mx1 + · · · + un Mxn) and its
square-free part d(u).

2. Choose a generic t ∈ K
n+1 and compute the n + 1 first coefficients of

d(t + u) = d0(u0) + u1 d1(u0) + · · · + un dn(u0) + · · ·

considered as a polynomial in u1, . . . , un.

Output: the roots of the system f1 = 0, . . . , fm = 0 are

ζ1 =
d1(α)

d′
0(α)

, . . . , ζn =
dn(α)

d′
0(α)

for all roots α of the univariate polynomial equation d0(α) = 0.

142 B. Mourrain, S. Pion, S. Schmitt, J-P. Técourt, E. Tsigaridas, N. Wolpert

construction, see [247, 186, 298, 44, 142].
The generic condition required in Algorithm 8 on t ∈ K

n+1 is that it
separates the roots:

∑n
i=0 ζiti �=

∑n
i=0 ζ

′
iti if ζ and ζ ′ are two distinct solutions

of the system. Methods to find a generic t are described for instance in [298].
In order to get a minimal rational univariate representation, one can fac-

torize d0(u0) and keep the irreducible factors, which divide the numerator of
the fraction obtained by substituting xi with di(u0)

d′
0(u0)

.
This Rational Univariate Representation (RUR) allows us to replace the

treatment of solutions of a multivariate system by the manipulation of alge-
braic numbers of degree bounded above by the number of complex solutions
of the system.

Another important aspect is that we can compute a RUR of a polynomial
system with coefficients in an algebraic extension Q[θ], for θ an algebraic
number, i.e with coefficients in Q[x]/(p(x)), where p is the minimal polynomial
of θ. Computing the tables of multiplication and the RUR of the roots over
Q[θ] require field arithmetic operations and equality test in Q[θ], which are
performed easily by reduction modulo p.

3.6 Topology of Planar Implicit Curves

As an application of these algebraic techniques, we detail the computation of
the topology of an implicit curve. It is a key ingredient of many geometric
problems including arrangement computation on arcs of curves, intersection
of surfaces, We consider first a curve C defined as the zero locus V(f)
of a polynomial in two variables f(x, y) ∈ Q[x, y]. We can assume that f
is square-free (otherwise, we perform Algorithm 6). In Section 3.6.1, we are
going to present from a geometric point of view the way the topology is
computed. In this computation, we need to manipulate algebraic numbers.
In Section 3.6.2, we describe different algebraic tools allowing to certify the
computation. Finally, in Section 3.6.3, we present an alternative to the first
algorithm. As the condition of genericity is costly, we propose an algorithm
partially based on subdivision which deals with algebraic curves even not in
generic position.

Before explaining how the algorithm works, we will give some definitions:

Definition 8 (Critical point). A point (α, β) of C = V(f) is x-critical if
f(α, β) = ∂f

∂y (α, β) = 0.

Definition 9 (Singular point). A point (α, β) of C = V(f) is singular if
f(α, β) = ∂f

∂y (α, β) = ∂f
∂x (α, β) = 0.

Definition 10 (Regular point). A point (α, β) of C = V(f) is regular if it
is not singular.

Definition 11 (Generic position). The curve C = V(f) is said to be in
generic position if:

3 Algebraic Issues in Computational Geometry 143

• The leading coefficient of f with respect to y (polynomial in x) has no real
roots.

• For every α in R, the number of critical points with x-coordinate α is at
most 1.

So in generic position, the curve has no vertical asymptote and its x-critical
points have different x-coordinates.

3.6.1 The Algorithm from a Geometric Point of View

In this section, we are going to present the geometric idea permitting to recover
the topology of the curve from the computation of some particular points.

Algorithm 9 Topology of an implicit planar curve

Input: a polynomial f(x, y) ∈ Q(x, y) defining a curve C ⊂ R
2 (up to a gcd-

computation and a change of variables, we can assume f is square-free and is monic
in y).

1. Compute the subresultant sequence of f(x, y) and ∂f
∂y

(x, y) viewed as polyno-
mials in y.

2. Compute the x-critical points {Pi = (αi, βi)}.
3. Check that the curve is in generic position (see Section 3.6.2) and if it is not we

perform a random change of variables and restart from step 1.
4. For each critical point Pi = (αi, βi), compute the number of regular points with

x-coordinate αi which are above and below Pi using Sturm sequences.
5. Compute the number of arcs above a value between two successive abscissas

αi, αi+1, which is constant. It can be done for example choosing a rational x-
coordinate a between αi and αi+1 and computing the number of real solutions of
f(a, y) = 0 using Sturm sequences. Then we compute numerical approximations
of those different points.

6. Construct the segments connecting the points computed before. For that pur-
pose, consider a section x = αi, i.e. all the points of the curve with abscissas αi

and the next section x = αi+1 (see Figure 3.1).
• Choose a rational point a ∈]αi, αi+1[and compute the section corresponding

to x = a.
• In the section x = αi, compute the number λi of points of C above (αi, βi)

and µi the number of points below.
• Connect the λi points above (αi, βi) with the λi points of largest y-

coordinate of the section x = a, respecting the order on the y-coordinate.
• Connect the µi points under (αi, βi) with the µi points of smaller y-

coordinate of the section x = a, respecting the order on the y-coordinate.
After that, connect the remaining points of the section x = a to the critical
point (αi, βi).

144 B. Mourrain, S. Pion, S. Schmitt, J-P. Técourt, E. Tsigaridas, N. Wolpert

Fig. 3.1. Connections

3.6.2 Algebraic Ingredients

Computing the topology will lead us to the treatment of algebraic numbers.
In this section, we come back to some delicate points of the algorithm. We
show how to use the algebraic tools presented in the previous section to certify
these steps.

Computing the critical points:

Proposition 6. Let f be a square-free polynomial in R[x, y] of degree d
in y, such that C = V(f) is in generic position.
Let Srj and srj denote the jth subresultant and subresultant coefficient of
f and ∂f

∂y (considered as polynomials in y). If (α, β) is a critical point of
C, then there exists k ∈ N

∗ such that:

sr0(α) = 0, . . . , srk−1(α) = 0, srk(α) �= 0.

Moreover, we have: β = −1
k

srk,k−1(α)
srk(α) , where srk,k−1(x) denotes the coeffi-

cient of yk−1 in Srk−1(x, y).

So, we observe that in generic position, the y-coordinate β of a critical
point (α, β) is a rational expression of α.
We define inductively a family of polynomials Γk(x):

Φ0(x) = sr0(x)
gcd(sr0(x),sr′0(x))

Φ1(x) = gcd(Φ0(x), sr1(x)) Γ1 = Φ0(x)
Φ1(x)

Φ2(x) = gcd(Φ1(x), sr2(x)) Γ2 = Φ1(x)
Φ2(x)

Φ3(x) = gcd(Φ2(x), sr3(x)) Γ3 = Φ2(x)
Φ3(x)

...
...

Φ0(x) = gcd(Φd−2(x), srd−1(x)) Γd−1 = Φd−2(x)
Φd−1(x)

3 Algebraic Issues in Computational Geometry 145

We deduce that the square-free part Φ0(x) of sr0(x) can be written as
Φ0 = Γ1(x).Γ2(x) · · ·Γd−1(x). If (α, β) is a critical point of C in generic
position, then α is a root of Φ0. It is in fact the root of one and only one of
the Γi. And if α is a root of Γk, we have that sr1(α) = 0, . . . , srk−1(α) =
0, srk(α) �= 0. Thus gcd(f(α, y), ∂f

∂y (α, y)) = Srk(α, y) and β is the only
root of Srk(α, y) (with multiplicity k).

Generic position: An important operation that we have to perform, is to check
that C is in generic position. If αi is the x-coordinate of a critical point,
αi is the root of a certain Γk and we note this root αk

i . Then:

Proposition 7. The curve C is in generic position if and only if for every
αk

i , the polynomial Srk(αk
i , y) has only one distinct root which is βk

i =
−1
k

srk,k−1(α)
srk(α) .

We have to check that Srk(αk
i , y) has only one distinct root where αk

i is
defined by a pair (Γk,]a, b[), so that αk

i is the only root of Γk in]a, b[. We
compute a Sturm sequence for Srk(αk

i , y). It is a family of polynomials
in Q[αi][y]. So to apply Sturm’s theorem, we need to compute signs of
polynomials expressions in αk

i . Such signs can be computed, using another
Sturm sequence.

Number of points above and under a critical one: Assume C is in generic po-
sition. If Pα = (α, β) is a critical point of C, then we need to compute
the number of regular points with x-coordinate α which are above and
under Pα. We can assume that α is a root of Γk. Then y-coordinates
of the regular points with abscissas α are the roots of the polynomial
Fk(α, β, y) = f(α,y)

(y−β)k . The coefficients of Fk(α, β, y) can be computed in
an inductive way [185]. So as β is a rational expression of α we obtain the
coefficients of Fk(α, β, y) as rational expressions in α. We determine the
number of roots of this polynomial such that y − β > 0 (resp. y − β < 0).
This can be computed again using Sturm sequences [106].

3.6.3 How to Avoid Genericity Conditions

We have seen that to check the genericity position of a curve, we had to com-
pute several Sturm sequences, which can be costly. An important improvement
would be able to deal with curves even not in generic position.

1. We compute the two resultants Resy(f, ∂yf) and Resx(f, ∂yf). This allows
us to compute isolating boxes, containing at most one x-critical point of
the curve. Let B =]a, b[×]c, d[be a box which contains an x-critical point
(α, β). First, we refine (or delete) the box so that there is one and only
one point with abscissa α in B. For that, we compute the Sturm sequence
of f(α, y) and compute the number of changes of sign on]c, d[. We refine
the box until the number of changes is at most one (if it is 0, the box is
empty and we delete it).

146 B. Mourrain, S. Pion, S. Schmitt, J-P. Técourt, E. Tsigaridas, N. Wolpert

2. Assume Pα,1, . . . , Pα,k are the x-critical points with abscissas α sorted
according to their y-coordinate. After the first step Pα,i is isolated in a box
]ai, bi[×]ci, di[. We compute the Sturm sequence of f(α, y) and ∂yf(α, y)
and compute the number nk of points with y-coordinate bigger than dk.
Then nk is the number of points above Pα,k, nk−1 −nk − 1 is the number
of points between Pα,k−1 and Pα,k, . . . ,n1 −n2 −1 is the number of points
between Pα,1 and Pα,2. At last we compute the number of points with
y-coordinate smaller than c1. We have a family of boxes corresponding
to x-critical points with abscissas α. Up to refinement, we assume all
the boxes have the same x-coordinates a, b (the boxes are of the type
]a, b[×]c, d[). What we want, is to refine the boxes so that if the box is
B =]a, b[×]c, d[, then the curve C does not intersect the sides [(a, c), (b, c)]
and [(a, d), (b, d)]. For that, we compute the Sturm sequences of f(x, c)
and f(x, d) and we refine the size of the box until the number of sign
changes (for the interval]a, b[) is 0.

3. The next step consists of computing the number of points of intersec-
tion of C with the side [(a, c), (a, d)] (resp. [(b, c), (b, d)]). This is done by
computing the Sturm sequences of f(a, y) and ∂yf(a, y) (resp. f(b, y) and
∂yf(b, y)) on]c, d[. We compute the number of points in an intermedi-
ate section x = a ∈ Q (using the Sturm Sequence of f(x, y), ∂yf(x, y) at
x = a.

4. The connections of the different points is made similarly as in the generic
case.

3.7 Topology of 3d Implicit Curves

We consider here an implicit curve in an affine space of dimension 3. By
definition, it is an algebraic variety CC = V(f1, . . . , fm) (fi ∈ R[x, y, z]) of
dimension 1 in C

3. We denote by I(CC) ⊂ R[x, y, z], the ideal of the curve
CC (that is the set of polynomials which vanish on CC) and by g1, . . . , gs ∈
R[x, y, z] a set of generators: I(CC) = (g1, . . . , gs). By Hilbert’s Nullstellensatz
[107, 202], we have I(V(f1, . . . , fk)) =

√
I ⊂ R[x, y, z]. It can be proved [141,

202], that 3 polynomials g1, g2, g3 ∈ R[x, y, z] are enough to generate I(CC).
For simplicity, we will consider here that the curve is described as the

intersection of two surfaces P1(x, y, z) = 0, P2(x, y, z) = 0, with P1, P2 ∈
R[x, y, z]. We assume that the gcd of P1 and P2 in R[x, y, z] is 1, so that
V(P1, P2) = CC is of dimension 1, and all its irreducible components are of
dimension 1. We are interested in describing the topology of the real part

CR = {(x, y, z) ∈ R
3, P1(x, y, z) = 0, P2(x, y, z) = 0},

that we will denote hereafter by C.
In this section, we assume moreover that I(C) = (P1, P2) or equiva-

lently that (P1, P2) is a reduced ideal, that is equal to its radical: (P1, P2) =√
(P1, P2).

3 Algebraic Issues in Computational Geometry 147

We will not consider examples such as P1 = x2+y2−1, P2 = x2+y2+z2−1,
where (P1, P2) = (x2+y2−1, z2) and I(C) = (x2+y2−1, z), so that the curve C
is defined “twice” by the equations P1 = 0, P2 = 0 (the two surfaces intersect
tangentially along C). Such a property can be tested by projecting into a
generic direction and testing if the equation computed from the resultant
of P1, P2 is square-free, or by more general methods such as computing the
radical of (P1, P2) [192].

The general idea behind the algorithm that we are going to describe is
as follows: we use a sweeping plane in a given direction (say parallel to the
(y, z) plane) to detect the critical positions where something happens. We also
compute the positions where something happens in projection on the (x, y)
and (x, z) plane. Then, we connect the points of the curve of C on these critical
planes. This yields a graph of points, connected by segments, with the same
topology as the curve C.

3.7.1 Critical Points and Generic Position

In this section, we make more precise what we mean by the points where
something happens. These points will be called hereafter critical points.

Definition 12. Let I(C) = (g1, g2, . . . , gs) and let M be the s × 3 Jacobian
matrix with rows ∂xgi, ∂ygi, ∂zgi.

• A point p ∈ C is regular (or smooth) if the rank of M evaluated at p is 2.
• A point p ∈ C which is not regular is called singular.
• A point p = (α, β, γ) ∈ C is x-critical (or critical for the projection on

the x-axis) if the curve C is tangent at this point to a plane parallel to the
(y, z)-plane i.e., the multiplicity of intersection of the plane with I(C) at p
is greater or equal to 2. The corresponding α is called an x-critical value.

A similar definition applies to the orthogonal projection onto the y and z axis
or onto any line of the space. Notice that a singular point is critical for any
direction of projection.

If I(C) = (P1, P2), then the x-critical points are the solutions of the system

P1(x, y, z) = 0, P2(x, y, z) = 0, (∂yP1∂zP2 − ∂yP2∂zP1)(x, y, z) = 0. (3.1)

In the case of a planar curve defined by P (x, y) = z = 0, with P (x, y)
square-free so that I(C) = (P (x, y), z), this yields the following definitions: a
point (α, β)

• is singular if P (α, β) = ∂xP (α, β) = ∂yP (α, β) = 0.
• is x-critical if P (α, β) = ∂yP (α, β) = 0.

This allows us to describe the genericity condition that we require for the
curve C, in order to be able to apply the algorithm:

148 B. Mourrain, S. Pion, S. Schmitt, J-P. Técourt, E. Tsigaridas, N. Wolpert

Definition 13 (Generic position). Let

Nx(α) = #{ (β, γ) ∈ R
2 | (α, β, γ) is an x-critical point of C }.

We say that C is in generic position for the x-direction, if

• ∀α ∈ R, Nx(α) � 1, and
• there is no asymptotic direction of C parallel to the (y, z)-plane.

By a random change of variables, the curve can be put in a generic position. In
practice, instead of changing the variables, we may choose a random direction
for the sweeping plane.

3.7.2 The Projected Curves

The algorithm that we are going to describe, uses the singular points of the
projection of C onto the (x, y) and (x, z)-planes. We denote by C′ (resp. C′′)
the projection of the curve C onto the (x, y) (resp. (x, z))-plane. The equation
of the curve C′ is obtained as follows. We decompose the polynomials P1, P2

in terms of the variable z:

P1(x, y, z) = ad1(x, y)z
d1 + ...+ a0(x, y)

P2(x, y, z) = bd2(x, y)z
d2 + ...+ b0(x, y)

with ad1(x, y) �= 0 and bd2(x, y) �= 0. Then, the resultant polynomial

G(x, y) = Resz(P1, P2)

vanishes on the projection of the curve C on the plane (x, y). Conversely,
by the resultant theorem [236, 142] (see also Section 3.4.1), ad1(x, y) and if
the gcd c(x, y) of ad1(x, y) and bd2(x, y) in R[x, y] is 1 then ad1(x, y) and
bd2(x, y) do not vanish simultaneously on a component of dimension 1 of the
projection C′ of the curve C. So G(x, y) = 0 defines C′ and a finite number
of additional points. If it’s not the case, G is a non-trivial multiple of the
implicit equation of C′. Such a situation can be avoided, by a linear change
of variables. Nevertheless, since the critical points of the curve defined by
G(x, y) = 0 contains the critical points of C′, we will see hereafter that this
change of variables is not necessary.

Notice, that G(x, y) is not necessarily a square-free polynomial. Consider
for instance the case P1 = x2 + y2 − 1, P2 = x2 + y2 + z2 − 2, where G(x, y) =
(x2 + y2 − 1)2. In this case, there are generically two (complex) points of C
above a point of C′.

We can easily compute the gcd of G(x, y) and ∂yG(x, y) in order to get
the square-free part g(x, y) = G(x, y)/ gcd(G(x, y), ∂yG(x, y)) of G(x, y).

Similarly, for the projection C′′ of C on the (x, z)-plane, we compute

H(x, z) = Resy(P1, P2),

3 Algebraic Issues in Computational Geometry 149

and its square-free part h(x, z) from the gcd of H(x, z) and ∂zH(x, z). The
equation h(x, z) = 0 defines a curve which is exactly C′′, if the gcd of the
leading components of P1, P2 in y is 1. Its set of singular points contains those
of C′′.

In order to analyze locally the projection of the curve C, we recall the
following definition:

Definition 14. [338] Let X be an algebraic subset of R
n and let p be a point

of X. The tangent cone at p to X is the set of points u in R
n such that there

exists a sequence of points xk of X converging to p and a sequence of real
numbers tk such that limk→+∞ tk(xk − p) = u.

Notice, that at a smooth point of C, the tangent cone is a line.

Proposition 8. Let p′ = (α, β) be an x-critical point of C′, which is not
singular. Then α is the x-coordinate of an x-critical point of C.

3.7.3 Lifting a Point of the Projected Curve

The problem we want to tackle here is the following: Assume we are given
two surfaces defined by two implicit equations P1 = 0 and P2 = 0. Let us
consider the projection of the curve of intersection of the two surfaces on the
(x, y)-plane.

Starting from a point (x0, y0) of the projected curve, how can we find
(a numerical approximation of) the z-coordinate of the point(s) above
(x0, y0)?

We note p(z) = P1(x0, y0, z), q(z) = P2(x0, y0, z) and d = deg(p), d′ = deg(q).
Consider the Sylvester submatrix Syl1(x0, y0) of the mapping

R[z]d′−2 ⊕ R[z]d−2 −→ R[z]d+d′−2

(u, v) �→ p u+ q v

If ξ is a common root of p and q then (1, ξ, . . . , ξd+d′−2) is in the kernel
of the transpose of Syl1(x0, y0). If we assume that Syl1(x0, y0) is of maxi-
mal rank, and if ∆i denotes the minor of Syl1(x0, y0) obtained by removing
the row i, then the (non-zero) vector [∆1,−∆2, . . . , (−1)d+d′−1∆d+d′−1] is
in the kernel of the transpose of Syl1(x0, y0). Thus (1, ξ, . . . , ξd+d′−2) and
[∆1,−∆2, . . . , (−1)d+d′−1∆d+d′−2] are linearly dependent. We deduce that
ξ = −∆d+d′−1

∆d+d′−2 = −S1,0(x0,y0)
S1,1(x0,y0)

.
This method allows us to lift a point on C, if there is only one point above

(x0, y0), but it can be generalized when there are several points above. This
generalization is closely related to the subresultant construction of univariate
polynomials [330]. Here we want to exploit linear algebra tools from a numer-
ical perspective. The aim is to make the matrix of multiplication by z in the
quotient algebra R[z]/(P1(x0, y0, z), P2(x0, y0, z)) appear, in order to compute
its eigenvalues which yields z-coordinate of the points above (x0, y0) [142].

150 B. Mourrain, S. Pion, S. Schmitt, J-P. Técourt, E. Tsigaridas, N. Wolpert

We proceed as follows: Given a point (x0, y0) of the projected curve C′,
we construct the Sylvester matrix associated to P (z), q(z). By construction,
the columns of this matrix are P, z P, . . . , zd′−1 P, q, z q, . . . , zp−1 q, written in
the basis 1, z, . . . , zd+d′−1. Assume that the kernel of the transposed Sylvester
matrix Syl(x0, y0) has dimension d and is generated by Λ1, . . . , Λd.
By transposition, we can interpret the Λi (i = 1 . . . d) as linear forms
over Qd+d′−1[z] vanishing on P, z P, . . . , zd′−1 p, q, z q, . . . , zd−1 q. We can ex-
tend the Λi over R[z], considering that these forms vanish over all the
ideal generated by p and q. So they can be considered as elements of the
dual of A = R[z]/(p(z), q(z)). As the linear forms Λi are independent,
they also form a basis of this dual space. The coefficients of Λi in the
dual basis (1∗, . . . , (zd−1)∗) of the monomial basis {1, z, . . . , zd−1} of A are
[Λi(1), Λi(z), . . . , Λi(zd−1)]. By definition of the transposed operator, for any
a ∈ A, M t(Λi)(a) = Λi(Mz(a)) = Λi(z a). Thus we have the relation:

⎛

⎜
⎝

Λ1(z) . . . Λd(z)
...

...
Λ1(zd) . . . Λd(zd)

⎞

⎟
⎠ = M t

z

⎛

⎜
⎝

Λ1(1) . . . Λd(1)
...

...
Λ1(zd−1) . . . Λd(zd−1)

⎞

⎟
⎠

where Mz is the operator of multiplication by z in R[z]/(p(z), q(z)). As
d = dim ker(Syl(x0, y0)) = dim A, and as (1, z, ..., zd−1) form a basis of the
quotient space, the matrix

⎛

⎜
⎝

Λ1(1) . . . Λd(1)
...

...
Λ1(zd−1) . . . Λd(zd−1)

⎞

⎟
⎠

is invertible. We deduce that computing the generalized eigenvalues of the
previous matrices yields the eigenvalues of the operator Mz of multiplication
by z in A, that is the z-coordinate of the points above (x0, y0).

We summarize the algorithm here:

Algorithm 10 Lifting the projection

• Compute the Sylvester matrix S = Syl(x0, y0).
• Compute a basis Λ1, . . . , Λd of the kernel of St.
• Extract the submatrix A0 of the coordinates of Λ1, . . . , Λd corresponding to the

evaluations in 1, . . . , zd−1.
• Extract the submatrix A1 of the coordinates of Λ1, . . . , Λd corresponding to the

evaluations in z, . . . , zd.
• Compute the generalized eigenvalues of A1 and A0 and output the corresponding

z-coordinates of the point above (x0, y0).

The last step can be replaced by the computation of det(A1−z A0) and a univariate
root finding step.

3 Algebraic Issues in Computational Geometry 151

3.7.4 Computing Points of the Curve above Critical Values

In this section, we are going to describe how we check the genericity condition
and how we compute a finite set of points, which will allow us to deduce the
topology of C.

First, we check that there is no asymptotic direction parallel to the (y, z)-
plane, by testing if the curve C has a point at infinity in the plane x = 0. This
is done by checking if the system

P�
1

∆
(0, y, z) =

P�
2

∆
(0, y, z) = 0

has a non-trivial solution, where P� is the homogeneous component of highest
degree of a polynomial P and ∆ = gcd(P�

1 , P
�
2). It reduces to computing the

projective resultant of these two homogeneous polynomials. Since the number
of asymptotic directions of C is finite, by a generic linear change of variables,
we can avoid the cases where C has an asymptotic direction parallel to the
(y, z)-plane.

Next, we compute the x-critical points of C by solving the system (3.1),
using Algorithm 8. This computation allows us to check that the system is
zero-dimensional and that the x-coordinates of the real solutions are distinct.
If this is not the case, we perform a generic change of coordinates.

The cases for which we have to do a change of coordinates are those where
a component of C is in a plane parallel to (y, z) or where a plane parallel
to (y, z) is tangent to C in two distinct points. Such cases are avoided by a
generic change of coordinates.

We denote by Σ0 = {σ0
1 , . . . , σ

0
k0

} the x-coordinates of the x-critical points:
σ0

1 < · · · < σ0
k0

.
Next, we compute the singular points of C′ as (a subset of) the real solu-

tions of the system

g(x, y) = 0, ∂xg(x, y) = 0, ∂yg(x, y) = 0, (3.2)

and of C′′, as (a subset of) the real solutions of

h(x, z) = 0, ∂xh(x, z) = 0, ∂zh(x, z) = 0. (3.3)

We denote by Σ1 = {σ1
1 , . . . , σ

1
k1

} the x-coordinates of these singular points:
σ1

1 < · · · < σ1
k1

.
An important property of the projected curves C′ and C′′, that will be used

in the algorithm, is the following:

Proposition 9. The arcs of the curve C′ (resp. C′′) above]σi, σi+1[do not
intersect.

Let k(x) be the square-free part of
Resy(g(x, y), ∂yg(x, y))∗ Resz(h(x, z), ∂zh(x, z)). We consider the zero-
dimensional system:

152 B. Mourrain, S. Pion, S. Schmitt, J-P. Técourt, E. Tsigaridas, N. Wolpert

⎧
⎨

⎩

k(x) = 0
P (x, y, z) = 0
Q(x, y, z) = 0

Computing generalized normal forms and computing a Rational Univariate
Resolution of this system (see Section 3.5), we obtain a representation of the
solutions of this system as:

⎧
⎪⎪⎨

⎪⎪⎩

f0(T) = 0
x = f1(T)
y = f2(T)
z = f3(T)

3.7.5 Connecting the Branches

The approach that we are going to describe now for the branch connection, can
be seen as an extension of the approach of [191, 185] to the three-dimensional
case.

The previous step yields a sequence of strictly increasing values

Σ = {σ1, . . . , σl},

such that above]σi, σi+1[, the branches of C are smooth and the arcs of C′, C′′

do not intersect. We will use this property to connect the points of C above
the values σi. Notice that Proposition 9 is still true if we refine the sequence
σ1, . . . , σl. In particular, it is valid if we consider the x-coordinates of the
singular points of a curve, defined by a multiple of the equation of C′ (resp.
C′′). It is also valid, if we insert new values in between these critical values:
δ0 < σ1 < µ1 < · · · < σl < δ1, where µi := σi+σi+1

2 for i = 0, . . . , l − 1, and
δ0, δ1 are any value such that]δ0, δ1[contains Σ. We denote by

α0 < · · · < αm

this new refined sequence of values and by Li, the set of points on C above
αi, for i = 0, . . . ,m. These points are computed, either

• by substituting x = αi and solving the 2-dimensional system P1(αi, y, z) =
0, P2(αi, y, z) = 0.

• or by computing the points of C′ above αi and by lifting them to C (Algo-
rithm 10).

This construction implies the following lemma, which is used in the next
theorem, in order to describe how the computed points have to be connected:

Lemma 3. Two distinct points of a regular section of C with the same y-
coordinate (resp. z-coordinate) are connected to two points of the next section,
with the same y-coordinate (resp. z-coordinate) or to a critical point.

3 Algebraic Issues in Computational Geometry 153

Theorem 8. Under the genericity condition of Definition 13, the curve C
connects the points Li to the points Li+1, only in one way.

To summarize, the connection of the branches from one plane section of C
to the next one, is performed as follows:

Algorithm 11 Connecting the branches

If there is no x-critical point in Li and possibly an x-critical point c of C in Li+1,
do the following:

1. Decompose Li+1 into the subsets V ′
1 , . . . , V ′

k of the points with the same y-
coordinate, listed by increasing y. Let sj = |V ′

j |.
2. Compute the index j0 such that c ∈ V ′

j0 . Decompose Li into the subsets
V1, . . . , Vk in the following way:
• For j > j0, Vj is the set of sj greatest points for the lexicographic order with

x > y > z, among Li − ∪l>jVl.
• For j < j0, Vj is the set of sj smallest points for the lexicographic order,

among Li − ∪l<jVl.
• Vj0 is the remaining set of points Li − ∪l�=j0Vl.

3. For j �= j0 connect the points of Vj to the points of V ′
j , according to there

z-coordinates, by segments.
4. For j = j0, let A′

j0 (resp. B′
j0) be the set of regular points of V ′

j0 , with z-
coordinate < z(c) (resp. > z(c)).

• Connect the |A′
j0 | points of smallest z-coordinates in Vj0 to the points in

A′
j0 , according to their z-coordinate, by segments.

• Connect the |B′
j0 | points of greatest z-coordinates in Vj0 to the points in

B′
j0 , according to their z-coordinate, by segments.

• Connect the remaining points in Vj0 to c, by segments.

If there is a x-critical point of C in Li, exchange the role of Li and Li+1 in the
previous steps.

Proposition 10. Assume that we are in a generic position. Then the topology
of the curve above the segment [αi, αi+1] is the same as the set of segments
produced by the Algorithm 11.

3.7.6 The Algorithm

We summarize the complete algorithm below:

Remark 1. This algorithm can be easily adapted to the computation of the
topology of C in a box (resp. bounded domain), by considering the points on
the border of the box (resp. domain) as x-critical points.

Remark 2. By a generic change of variables, the set of x-coordinates of the
x-critical points of C′ will contain those of C and the resolution of the system

154 B. Mourrain, S. Pion, S. Schmitt, J-P. Técourt, E. Tsigaridas, N. Wolpert

Algorithm 12 Topology of the curve C ⊂ R
3 defined by two polynomials

Input: polynomials P1(x, y, z), P2(x, y, z) ∈ Q[x, y, z].

• Compute the x-critical points of C and their x-coordinates Σ := {σ0
1 , . . . , σ0

k}
with σ0

1 < · · · < σ0
k.

• Check the generic position; If the curve is not in a generic position, apply a
random change of variables and restart from the first step.

• Compute the square-free part g(x, y) of Resz(P1, P2).
• Compute the square-free part h(x, z) of Resy(P1, P2).
• Compute the singular points of the curves g(x, y) = 0 and h(x, z) = 0 and insert

their x-coordinate in Σ.
• Compute the µi, δ0, δ1 and the ordered sequence α1 < · · · < αl. Above each αi

for i = 1, . . . , l, compute the set of points Li on the curve C.
• For each i = 0, . . . , l−1, connect the points Li to those of Li+1 by Algorithm 11.

Output: the graph of 3D points connected by segments, with the same topology as
the curve C.

(3.1) can be replaced by the computation of the x-critical points of C′ and by
a lifting operation on C. This allows us to treat unreduced curves, such that
I(C) �= (P1, P2), by using only the square-free part of G(x, y) and H(x, z).
However the verification, a posteriori, of the correctness of the result is more
delicate.

3.8 Software

The algebraic-geometric computation that we have seen, is based on an exact
arithmetic model, which may involve large size numbers. The library gmp

[6] provides tools for manipulating integer and rational numbers of arbitrary
size. There are also tools for manipulating floating point numbers of arbitrary
size. If control over the precision and the rounding mode of each operation
are needed, one can also use mpfr, developed in the same spirit [10].

Cgal [2] provides interval arithmetic, as well as a simple multi-precision
floating point type able to evaluate signs of polynomials over floating point
input exactly, it also interfaces with external libraries such as gmp and leda

for multi-precision computations. Cgal also provides generic mechanisms to
apply filtering techniques to its own kernel of geometric primitives as well
as user defined primitives [282, 283, 69]. Finally, Cgal provides some fine-
tuned statically filtered predicates [252] for Delaunay triangulations and other
classical geometric algorithms.

boost [1] provides a generic implementation of interval arithmetic
which can be used in many other contexts [71]. Finally, mpfi [9]
provides interval arithmetic with multiple-precision bounds based on
mpfr [10]. Other resources on interval computations can be found at

3 Algebraic Issues in Computational Geometry 155

http://www.cs.utep.edu/interval-comp/main.html, together with many
other interval arithmetic libraries.

There are several implementations of algebraic numbers which use the
separation bound approach for comparison. The leda library [76] implements
real algebraic root expressions (without the !-operator) using the bound given
above. The improved separation bound [285, 306] and the diamond operator
are implemented in [173]. They will be included in the leda library soon.

The core library [3] implements real algebraic expression using several
different separation bounds.

A package of the library synaps [13] is devoted to the treatment of alge-
braic numbers represented by an isolating interval and a square-free polyno-
mial of Z[x]. The specialization for small degree developed by E. Tsigaridas
and I. Emiris is available there. The isolation and comparison of small degree
algebraic numbers are given by precomputed formulas. For higher degrees, iso-
lation and comparison methods based on the Bernstein subdivision method
or on the Sturm-Habicht computations are also implemented.

Regarding multivariate polynomial systems solving, one can also find in
synaps [13] solvers based on normal form computation (developed by Ph.
Trébuchet) or subdivision solvers (developed by J.P. Pavone), which are very
interesting for filtering purposes. Implementation of polynomial solvers based
on Gröbner computation are also available in gbrs [5], or singular [12].

Regarding the topology of implicit curves, implementations of the sweeping
algorithm and of other methods based on subdivision techniques are available
in synaps [13].

4

Differential Geometry on Discrete Surfaces

David Cohen-Steiner and Jean-Marie Morvan�

Point clouds and meshes are ubiquitous in computational geometry and its
applications. These subsets of Euclidean space represent in general smooth
objects with or without singularities. It is then natural to study their geom-
etry by mimicking the differential geometry techniques adapted for smooth
surfaces. The aim of the following pages is to list some geometric quantities
(length, area, curvatures) classically defined on smooth curves or surfaces,
and to define their analog for discrete objects, justifying our definition by a
continuity property: if a sequence of discrete objects tends (in a certain sense)
to a smooth object, do the corresponding geometric quantities tend to the
ones of the smooth object?

4.1 Geometric Properties of Subsets of Points

Consider a subset S of points of a vector space E, and G a group acting on
E. We say that a quantity Q associated to S is geometric with respect to G
if the corresponding quantity associated to g(S) is the same, for all g ∈ G.
For instance, if E

N is the N -dimensional Euclidean space endowed with its
standard scalar product, any metric quantity associated to S is geometric
with respect to the group of rigid motions: the diameter of S, the area of
the convex hull of P are examples of geometric quantities. But the distance
from the origin O to the closest point of S is not, since it is not invariant
under translation. It is important to point out that the fact to be geometric
depends on the group. For instance, let G be the group of rigid motions of
E

N and let G1 be the group of projective transformations of E
N . Then, the

property of S being a circle is geometric for G but not for G1, while the
property of being a conic or a straight line is geometric for G and G1. In the
following, we consider only the group G of rigid motions, which seems to be
the simplest and the most useful one for our purpose. But it is clear that

� Chapter coordinator

158 D. Cohen-Steiner, J-M. Morvan

other interesting studies have been done in the past, and will be done in the
future with different groups, as affine group, projective group, quaternionic
group, etc...

We are interested in geometric quantities which are continuous in a certain
sense. Indeed, if one wants to evaluate a quantity Q(S) defined on S, but if
one can only approximate S by S ′, one would like to evaluate the quantity
Q(S ′), hoping that the result is not too far from Q(S). In other words, we
would like to have:

if lim
n→∞

Sn = S, then lim
n→∞

Q(Sn) = Q(S).

Remark that this claim is incomplete since we did not specify the topology
on the set of subsets S of E

N . The simplest one is the Hausdorff topology,
but we shall see that it not enough in general. However, if one only considers
convex subsets, then a beautiful theorem of Hadwiger [229] states that the
space of Hausdorff-continuous additive geometric quantities is spanned by
the so-called intrinsic volumes. Examples of intrinsic volumes are length for
curves, area for surfaces, but also integrals of mean and Gaussian curvature
(for smooth convex sets). These examples, which we will study in more detail
in what follows, actually exhaust all possibilities for curves and surfaces. Other
quantities than intrinsic volumes can be studied along the same lines. For
example, recent work by Hildebrandt et. al. [207], which is not covered in this
book, proves convergence results for shortest geodesics and Laplace-Beltrami
operators.

To classify geometric quantities (as we said, we only consider quantities
invariant by rigid motions), we can try to use differential geometry. In fact,
some of them can usually be defined when S is “smooth”, or at least “contin-
uous”. Involving these particular characteristics, we can try to classify them
by the order of differentiability.

Definition 1. Let Q be a geometric quantity associated to a smooth subman-
ifold M embedded in E

N . We say that the order of Q is k if Q involves the
differentials of order k of the embedding of M .

We must remark that this definition is ambiguous, since, a priori, Q can
be computed in many ways involving different degrees of differentiability.

4.2 Length and Curvature of a Curve

4.2.1 The Length of Curves

Any book of differential geometry begins with curves in E
2 or E

3, (see [51],
[112] for instance). The length of a segment is classically given by the Eu-
clidean distance between its two endpoints. The length of a polygon is the

4 Differential Geometry on Discrete Surfaces 159

sum of the length of its edges. Let us now consider the length l(C) of a C1-
curve of E

2

C : [0, 1] → E
2.

It is well known that l(C) can be computed in two different ways. Using the
differential of C, one defines l(C) by

l(C) =
∫ 1

0

‖C ′(t)‖dt. (4.1)

With the point of view of Sect. (4.1), the length appears as a quantity of order
1. Another definition uses polygons inscribed in C. Take all subdivisions s =
(0, x1, ..., xn, 1) of the segment [0, 1], and compute the length of the polygon
lines

(C(0), C(x1), ..., C(xn), C(1)).

The supremum of these numbers, when s describes the set S of all subdivisions
of [0, 1] is the length of C:

l(C) = sup
s=(0,x1,...,xn,1)∈S

l((C(0), C(x1), ..., C(xn)). (4.2)

Using the mean value theorem, it can be proved that these two definitions
are equivalent. However, the second one can be given for a more general class
of curves, (that is, the class of curves for which (4.2) is finite - the rectifiable
curves-). Remark that (4.1) and (4.2) imply immediately a convergence theo-
rem: if Pn is a sequence of polygons inscribed in C, whose Hausdorff limit is
C, then

lim
n→∞

l(Pn) = l(C). (4.3)

However, this theorem cannot be extended to polygon which are not inscribed
in C. Finally, remark that we have defined a (classical) geometric quantity -the
length- in two different contexts, (discrete and smooth) and we have studied a
continuous property as a bridge between them. This gives a general framework
to study other geometric quantities such as curvatures. We shall follow this
approach in the next sections.

4.2.2 The Curvature of Curves

The Curvature of a Planar Smooth Curve

A typical example of a geometric property of order 2 is the curvature k(p) of
a (regular) curve C at a point p. To compute it, we first need to calculate the
unit tangent vector field t, which involves a first derivative, and then take the
derivative of the result. Using the arclength s,

(
dt

ds

)

p

= k(p)n(p),

160 D. Cohen-Steiner, J-M. Morvan

where n is the normal vector field of C. If the geometric image of the curve
C is smooth enough, it can be locally represented by the graph (x, f(x)) of
a smooth function f , such that p = (0, 0), (i.e. f(0) = 0), and such that the
tangent to C at p is collinear to the x-axis, (i.e. f ′(0) = 0). Then, k(p) =
f

′′
(0). Let ν = f

′′′
(0). Near p = (0, 0) we have

f(x) =
kx2

2
+
νx3

6
+ o(x3).

The Curvature of a Polygonal Line in E
2

By analogy with the smooth case, one can define the curvature k(p) of a polyg-
onal line at one of its interior vertices p (i.e. different from the endpoints):

Definition 2. Let P be an (oriented) polygonal line of E
2 and p be one of

its interior vertices. Let ∠(p) ∈ [0, π) be the turning angle between the two
consecutive edges e1, e2 adjacent to p, of length η1, η2. The curvature k(p) of
P at p is defined by the angular defect

k(p) =
π − ∠(p)

η

where η = (η1 + η2)/2.

So, k(p) vanishes when the two edges are collinear.

An Approximation Theorem

The previous definition allows us to get an approximation theorem: one can
estimate the curvature of a curve from the angular defect α of an inscribed
polygon. See [51] and [68] for details.

Theorem 1. Let p, q and r be three consecutive vertices on C, with η the
distance from q to p and η′ the distance from q to r. Then the angular defect
k(p) and the curvature k(p) of C at p satisfy:

• if η = η′:
k(p) = k(p) + o(η),

• if η �= η′:
k(p) = k(p) + o(1).

as η and η′ go to zero.

Thus, we can conclude that the angular defect is a good approximation of
the curvature of the curve provided the edges are short enough.

4 Differential Geometry on Discrete Surfaces 161

4.3 The Area of a Surface

4.3.1 Definition of the Area

If T is a triangle, its area is given by: A(T) = 1
2bh, where b is a basis of T and h

the corresponding height. Summing the areas of all the facets of a triangulated
polyhedron, one deduces a definition of the area of any polyhedron, (after
having proved that the result does not depend on the chosen triangulation).
Let M be a parametric surface, M = x(U), where U is a domain of E

2 (with
coordinates (u, v)), and x : U → E

3 is a smooth embedding. The area A(M)
of M involves the first derivatives of x:

A(M) =
∫

U

‖xu ∧ xv‖dudv.

If T is a triangle, the previous definition is consistent with the first one. More
generally, area can be defined for a very large class of subsets of Euclidean
space, using measure theory. If S is any subset of points of E

3, the area of
S is the 2-dimensional Hausdorff measure H2(S) [258]. These definitions are
equivalent in the smooth case. An important problem is to know if one has a
continuity property similar to equation 4.3. The answer is negative in general,
as the following classical example shows. Let us build a 2-parameter family
of generalized Schwarz lanterns [51] (two of them are displayed in Fig. 4.3.1)
Let C be a cylinder of finite height H and radius r in E

3. Let P (n,m) be a
triangulation inscribed in C defined as follows: consider m+ 1 circles on the
cylinder C obtained by intersecting C by 2-planes orthogonal to the axis of
C. Inscribe on each circle a regular n-gon such that the n-gon on the slice k
is deduced from the n-gon of the slice k − 1 by a rotation of angle π

n . Then
join each vertex v of the slice k − 1 to the two vertices of the slice k which
are nearest to v. One obtains a triangulation whose vertices vi,j are defined
as follows:

∀i ∈ {0, ..n− 1},
∀j ∈ {0, ..m},

vi,j = (r cos(iα), r sin(iα), jh) if j is even,
vi,j = (r cos(iα+ α

2), r sin(iα+ α
2), jh) if j is odd,

and whose faces are:
vi,j vi+1,j vi,j+1,
vi,j vi−1,j+1 vi,j+1,

where α = 2π
n and h = H

m .

Then when n tends to infinity, a simple computation shows that

lim
n→∞

A(P (n,m)) = 2πrH

√

1 +
m2π4r2

4n4H2
.

In particular,

162 D. Cohen-Steiner, J-M. Morvan

Fig. 4.1. Examples of half Schwarz Lanterns

lim
n→∞

A(P (n, n2)) = 2πrH

√

1 +
r2π4

4H2
�= A(C),

and
lim

n→∞
A(P (n, n3)) = ∞,

although C is the Hausdorff limit of both P (n, n2) and P (n, n3). This shows
that there exists sequences of triangulations inscribed on a (smooth) surface
M whose Hausdorff limit is M , but whose area tends to infinity, or to a limit
different from the area of M .

4.3.2 An Approximation Theorem

Our purpose here is to get conditions under which two close surfaces have
close areas. This problem is studied in details in [260]. Let M be a compact
smooth surface of E

3. There exists a maximal open set Um of E
3 containing M

on which the orthogonal projection pr onto M is well defined and continuous.
We need to be more precise to state our results, and use the notion of reach
introduced by H. Federer, [161], [162]:

Definition 3. Let A be any subset of E
N and a ∈ A.

1. We denote by reach(A, a) the supremum of the real numbers r such that
every point of the ball of radius r and center a has an unique projection
on A, (realizing the distance dA(m) from m to A):

reach(A, a) = sup{r ∈ R|{p : |p− a| < r} ⊂ UA}.

4 Differential Geometry on Discrete Surfaces 163

2. The reach of A is defined as the infimum of the values of reach(A, a) for
a in A. We denote by Ur(A) the tubular neighborhood of A whose radius
is the reach r of A.

It can be shown that convex sets and C2-submanifolds are subsets with
positive reach. However non-convex polyhedra are not! In [260] is introduced
the following:

Definition 4. Let M be a smooth surface of E
3.

• The function ωM : Ur(M) → R defined by

ωM (p) = ‖pr(p) − p‖ρpr(p)

(where ρpr(p) denotes the maximum of the two principal curvatures of M
at pr(p)) is called the relative curvature function of M on Ur(M), see 4.4.1
for the definitions of the principal curvatures.

• If P is any subset lying in Ur(M) the real number

ωM (P) = sup
p∈P

ωM (p),

is called the relative curvature of P with respect to M .

Following [170] and [260], we introduce the

Definition 5. Let m be a smooth surface of E
3.

• A subset P of E
3 is nearly parallel to M if it lies in Ur(M), where r is

the reach of M and if the restriction of pr to P is one-to-one.
• A polyhedron of E

3 is closely inscribed in M if both its vertices lie in
M and it is nearly parallel to M .

If P is a surface nearly parallel to M and is differentiable almost every-
where, we define at almost every point p of P the angle αm ∈

[
0, π

2

]
between

the tangent planes TpP and Tpr(p)M and we call it the deviation at p. We put

αmax = max
p∈P

αp,

αmin = min
p∈P

αp.

Theorem 2. Let P be a surface nearly parallel to M . Then,

cosαmax

(1 + ωM (P))2
A(P) ≤ A(M) ≤ cosαmin

(1 − ωM (P))2
A(P).

If the surface M is compact, then ρ is bounded. So we deduce from the
previous theorem the following

Corollary 1. Let M be a compact orientable smooth surface in E
3. Let Pn be

a sequence of almost everywhere differentiable surfaces nearly parallel to M .
If

164 D. Cohen-Steiner, J-M. Morvan

• the Hausdorff limit of Pn is M , when n goes to infinity, and
• the angle between tangent planes TpPn and Tpr(p)M tends to 0 almost

everywhere when n goes to infinity, then:

lim
n→∞

A(Pn) = A(M).

Since we only need that the surfaces Pn are diffentiable almost everywhere,
we can apply Corollary 1 to a sequence of polyhedra:

Corollary 2. Let M be a compact orientable C2 surface in E
3. Let Pn be a

sequence of triangulated polyhedra closely inscribed in M . If both

1. the Hausdorff limit of Pn is M when n goes to infinity, and
2. cr(Pn) tends to 0 when n goes to infinity, (where cr(Pn) denotes the supre-

mum of the circumradii of the triangles of Pn), then:

lim
n→∞

A(Pn) = A(M).

Indeed, it can be proved that the angle between the tangent plane to a
triangle t inscribed in a smooth surface and the surface tangent plane at any
vertex of t is O(cr(t)) [260].

4.4 Curvatures of Surfaces

Now we deal with curvatures of surfaces. They are quantities of order 2 in
the smooth case. We first give the standard definitions of curvatures in the
smooth case. Then we give a pointwise convergence result for the (Gauss)
curvature of a sequence of polyhedra approximating a smooth surface. As we
will see, the shortcomings of this theorem lead us to adopt a different point
of view.

4.4.1 The Smooth Case

Let us first recall some basic definitions and notations in the case of a smooth
surface M bounding a compact solid V ⊂ E

3. The unit normal vector at a
point p ∈ M pointing outward V will be referred to as n(p). Note that M
is thereby oriented. Given a vector v in the tangent plane TpM to M at p,
the derivative of n(p) in the direction v is orthogonal to n(p) as n(q) has unit
length for any q ∈ M . The derivative Dpn of n at p thus defines an endomor-
phism of TpM , known as the Weingarten endomorphism, or shape operator 1.
The Weingarten endomorphism can be shown to be symmetric; the associ-
ated quadratic form is called the second fundamental form. Eigenvectors and
eigenvalues of the Weingarten endomorphism are respectively called principal

1for some reason, most authors add a minus sign in the definition of the Wein-
garten endomorphism.

4 Differential Geometry on Discrete Surfaces 165

directions and principal curvatures. Both principal curvatures can be recov-
ered from the trace and determinant of Dpn, also called mean 2and Gaussian
curvature at p, respectively denoted by H(p) and G(p). Fig. 4.4.1 shows the
geometric meaning of the second fundamental form at a point p : applied to
a unit vector v in the tangent plane at p, it yields the signed curvature of the
section of the surface by the plane spanned by n(p), v, and passing through
p. Principal directions, displayed in bold, correspond to the values of v where
the second fundamental form is maximal or minimal. According to the sign of
the Gaussian curvature, one gets three different cases, respectively depicted
in Fig. 4.4.1: elliptic (positive), parabolic (zero), and hyperbolic (negative).

p

n(p)

v

p

n(p)

v

p
n(p)

v

Fig. 4.2. The second fundamental form

4.4.2 Pointwise Approximation of the Gaussian Curvature

Gaussian Curvature of a Polyhedron

Consider now a polyhedral surface P . If p is a vertex of P (which is not on
the boundary of P), one can assign to p the angular defect 2π −

∑
i γi at p,

where the γi’s stand for the angles at p of the facets incident to p. Using these
notations, it is classical to define a notion of discrete Gauss curvature [42]:

Definition 6. Let P be a polyhedral surface and p be a vertex that is not on
the boundary. The Gauss curvature G(p) of P at p is defined by

G(p) =
2π −

∑
i γi

A
where A denotes the sum of the areas of the triangles adjacent to p.

Remark that in this formula, the Gauss curvature of a vertex of a poly-
hedron scales like the inverse of a surface area, like the Gauss curvature of a
smooth surface at one of its point.

2the mean curvature is usually defined as the half trace of the Weingarten endo-
morphism.

166 D. Cohen-Steiner, J-M. Morvan

An Approximation Theorem

We shall now compare the curvatures of a smooth surface M at a point p with
the angular defect of a polyhedron P inscribed in M having this point p as
an interior vertex. Our problem is local around p, so we consider the set of
triangles incident to p, (which we call the one ring of P). A normal section
through p is the intersection of M with a plane containing p and the normal
vector to p.

Definition 7. Let p be a point of a smooth surface M and let pi, i = 1, . . . , n
be its neighbors. Point p is called a regular vertex if

• its neighbors lie in normal sections, two consecutive of which form an angle
of θ(n) = 2π/n,

• for all i, the distance from p to pi is a constant η.

Definition 8. Let vmax and vmin be the principal directions at p. The offset
angle a is defined as the angle between the directions vmax and (pπ(p1)), where
π(p1) is the orthogonal projection of p1 onto the tangent plane.

In [68] the following is proved:

Theorem 3. Consider a regular vertex p of valence n. If γi denotes the angle
between directions (ppi) and (ppi+1):

• There exist two functions A(a, n) and B(a, n) such that

2π −
n∑

i=1

γi =
[
A(a, n)G(p) +B(a, n) (k2

max + k2
min)

]
η2 + o(η2).

• The only value of n such that the functions A(a, n) and B(a, n) depend
upon a is n = 4, and then

2π−
n∑

i=1

γi =
[
(1−2 cos2 a sin2 a)G(p)+cos2 a sin2 a (k2

max+k2
min)

]
η2+o(η2).

• If n �= 4:

2π −
n∑

i=1

γi =
n

16 sin 2π/n
[(

2 − cos
4π
n

− cos
2π
n

)
G(p)+

(
1 +

1
2

cos
4π
n

− 3
2

cos
2π
n

)
(k2

max + k2
min)

]
η2 + o(η2).

In particular, the only value of n such that B(a, n) = 0 is n = 6, and then
A(a, 6) =

√
3/2, that is

2π −
n∑

i=1

γi =
√

3
2
G(p)η2 + o(η2).

4 Differential Geometry on Discrete Surfaces 167

Remark that the principal curvatures can be estimated from two different
meshes of valences n1 and n2 such that n1 �= 4, n2 �= 4, n1 �= n2, by solving a
system of equations deduced from Theorem 3.

Finally, the previous result shows that in general, at a point p of a
smooth surface endowed with a triangulated polyhedron, the defect angle
G(p) is not a good approximation of the (pointwise) Gauss curvature at p.
The approximation is “good” in very special cases, for instance when the one
ring around p is regular and the valence is 6.

4.4.3 From Pointwise to Local

In the previous section, we have seen the difficulty of approximating the point-
wise Gaussian curvature of a smooth surface by the one of a polyhedron. As
shown in Fig. 4.3 in the case of curves, the very concept of pointwise curva-
ture does not even make sense for the class of piecewise linear objects. Indeed,
at any point lying in the interior of an edge, the curvature is 0, whereas at
a vertex, it seems infinite. This problematic situation is easily overcome by
shifting from the pointwise point of view to the measure theoretic one : in-
stead of considering curvatures at a given point, one should consider integrals
of curvature over a given region. For instance, even if the curvature at a given
point of a polygonal line is not geometrically relevant, it is intuitively clear
that the total amount of curvature in the region B (in bold in Fig. 4.3) is β,
the angle between the normals at the two endpoints of B.

00

∞

B

β

Fig. 4.3. What is the curvature of a polygonal line?

The function that associates to each region B the number β is the sim-
plest example of what are called curvature measures. We now define curvature
measures for smooth or polyhedral surfaces.

168 D. Cohen-Steiner, J-M. Morvan

Notion of Curvature Measures

We denote by B the set of Borel subsets3 of E
3. If P is a triangulated poly-

hedron, we denote by V, E, T the set of its vertices, edges, and triangles,
respectively.

Definition 9. Let M be an oriented smooth surface and P be an oriented
polyhedron of E

3. We respectively denote mean and Gaussian curvatures at a
point p ∈ M by H(p) and G(p).

• The Gaussian curvature measure of M is the map

ΦG
M : B → R,

defined by

ΦG
M (B) =

∫

B∩M

G(p)dp.

• The mean curvature measure of M is the map

ΦH
M : B → R,

defined by

ΦH
M (B) =

∫

B∩M

H(p)dp.

• The Gaussian curvature measure of P is the map

ΦG
P : B → R,

defined by
ΦG

P (B) =
∑

p∈V∩B∩P

G(p),

• The mean curvature measure of P is the map

ΦH
P : B → R,

defined by
ΦH

P (B) =
∑

e∈E

length (e ∩B)β(e),

where |β(e)| ∈ [0, π] is the angle between the normals to the triangles
incident on e. The sign of β(e) is positive if e is convex (i.e. salient)
and negative if e is concave.
3Borel subsets are the building blocks of measure theory. They include in par-

ticular all open and closed subsets.

4 Differential Geometry on Discrete Surfaces 169

Up to now, these definitions of curvature measures of polyhedra are com-
pletely arbitrary. In fact, there is a strong consistency in these definitions.
In [170], J. Fu proved a convergence theorem of curvatures. Here we mention
a convergence theorem based on homotopic deformation of integral currents
[161]. Details on the proof and extensions can be found in [97], [95], [96]:

Theorem 4. Let P be a triangulated polyhedron closely inscribed in M . Let
B be the relative interior of a union of triangles. Then, assuming P and M
are consistently oriented:

• |ΦG
P (B) − ΦG

M (pr(B))| ≤ CMKε;
• |ΦH

P (B) − ΦH
M (pr(B))| ≤ CMKε;

where pr denotes the orthogonal projection on M and

• CM is a real number depending only on the maximum curvature of M ,
• K =

∑
t∈T,t⊂B cr(t)2 +

∑
t∈T,t⊂B,t∩∂B �=∅ cr(t);

• ε = max{cr(t), t ∈ T, t ⊂ B};
where cr(t) is the circumradius of the triangle t.

We will see in Sect. 4.4.5 that in several practically important cases, the
number K can be bounded from above, implying that the curvature measures
of a sequence of increasingly fine triangulations of a smooth surface converge
to the ones of the smooth surface.

Exterior Calculus

Before we explain where these theorems come from, we need some background
on calculus on manifolds (see [80] for further information). Let S be a smooth
manifold of dimension at least two embedded in some euclidean space E

k. If
f is a vector field on S, we denote by fx ∈ TxS the vector associated with a
point x ∈ S. differential 2-forms are, in a certain sense, 2-dimensional analogs
of (co-)vector fields:

Definition 10. A differential 2-form ω on S associates with every point x ∈ S
a skew-symmetric bilinear form on TxS, denoted by ωx.

The following definition shows how a differential 2-form can be built from two
vector fields:

Definition 11. The exterior product f ∧ g of two vector fields f and g on S,
is the differential 2-form defined by:

(f ∧ g)x(u, v) = (fx ∧ gx)(u, v) =
fx.u gx.u
fx.v gx.v

for all x in S and u, v ∈ TxS. Here . is the inner product of E
k.

170 D. Cohen-Steiner, J-M. Morvan

Exterior products are special cases of differential 2-forms. However, they pro-
vide a good intuition of the general case: any 2-differential form can actually
be written as a linear combination of exterior products of vector fields. It
can be seen from the definition of an exterior product that if A is a linear
transformation of the plane P spanned by u and v, then (f ∧ g)x(Au,Av) =
det(A)(f ∧ g)x(u, v). In particular, (f ∧ g)x(u, v) = (f ∧ g)x(u′, v′) for any two
orthonormal frames (u, v) and (u′, v′) of P with the same orientation. Note
that this property extend to general differential 2-forms by linearity. Similarly,
we have fx ∧ gx(u, v) = f ′

x ∧ g′x(u, v) for any couple of orthonormal frames
(fx, gx) and (f ′

x, g
′
x) spanning the same oriented plane. Important examples of

exterior products are area forms. Area forms are a way to represent oriented
surfaces as 2-differential forms. If T ⊂ S is an oriented surface, then the area
form of T is constructed as follows: for each point x ∈ T , pick an orthonor-
mal frame of the tangent plane TxT compatible with the orientation of the
surface, say (ax, bx). We will call such frames positively oriented orthonormal
frames. For x /∈ T , set ax = bx = 0. The area form of T , denoted by aT , is
the differential 2-form a∧ b. Intuitively, area forms can be thought of as fields
of surface elements: when applied to two vectors u and v in TxS, aT x yields
the signed area of the parallelogram spanned by the projections of u and v on
TxT .

Integration.

Differential 2-forms can be integrated on oriented surfaces, in the same way
vector fields can be integrated on oriented curves. To see how, let T be an
oriented surface in S and, for each x ∈ T , let (ux, vx) be a positively oriented
orthonormal frame of the tangent plane TxT . The integral of a differential
2-form ω on T is defined to be:

∫

T
ω =

∫

T
ωx(ux, vx)dx

whenever the right-hand side is defined. For instance, one has
∫
T aT =

area(T), which is why area forms are called this way.

Change of variable.

A change of variable is merely a diffeomorphism φ : S ′ −→ S where S ′ is the
manifold where the new variables live. Using such a map, a differential 2-form
ω on S can be transformed into a differential 2-form on S ′, by a process called
pullback :

Definition 12. The pullback of ω by φ, denoted by φ∗ω is given by:

φ∗ωx(u, v) = ωφ(x)(Dxφ(u),Dxφ(v))

for all x ∈ S ′ and u, v ∈ TxS ′.

4 Differential Geometry on Discrete Surfaces 171

In a certain sense, pulling a differential 2-form back amounts to expressing
it in terms of the new variables. The change of variable formula relates the
integral of a differential 2-form with the one of its pullback. The result turns
out to be particularly simple:

∫

S′
φ∗ω =

∫

φ(S′)
ω (4.4)

For example, if S = S ′ = E
2 and h is an integrable function from S to

R, applying (4.4) to ω = haT yields φ∗ω = Jac(φ)(h ◦ φ)aT , where Jac(φ)
denotes the determinant of the Jacobian matrix of φ. Equation (4.4) thus
generalizes the classical change of variable formula. For this formula to hold,
φ need actually not be a diffeomorphism from S ′ to S; the only requirement
is that φ should be a diffeomorphism from S ′ to φ(S ′).

Integral 2-currents.

Integral 2-currents generalize oriented surfaces [258]. They can be formally
defined as linear combinations of oriented surfaces with integral coefficients. In
particular, any oriented surface T can be considered as an integral 2-current,
which we will abusively also denote T . Integration of differential 2-forms is
extended to integral 2-currents by linearity:

∫

nT +pT ′
ω = n

∫

T
ω + p

∫

T ′
ω

The surface that is setwise the same as T but with reverse orientation
thus corresponds to the current −T . Geometrically, integral 2-currents can be
thought of as oriented surfaces with multiplicities. For instance, if T and T ′

are two oriented surfaces such that orientations of T and T ′ agree on T ∩ T ′,
T + T ′ can be represented as T ∪ T ′ endowed with the same orientation as T
and T ′, points in T ∩ T ′ having a multiplicity equal to 2. If orientations of T
and T ′ do not agree, then summing T and T ′ yields a cancellation on T ∩ T ′.
Finally, integration of differential forms on integral currents is traditionally
not denoted by an integration sign, but rather by a bracket, namely one writes
〈C, ω〉 instead of

∫
C ω.

A Unified Framework, the Theory of Normal Cycles

The proof of Theorem 4 relies on the theory of the normal cycle. This theory
has been developped by P. Wintgen and M. Zähle to give a general method
to define curvatures of a large class of objects, [349], [171], [170]. The main
observation is that the curvature measures of smooth surfaces can be inter-
preted as integrals of particular differential forms on the unit normal bundle of
surfaces. So, the crucial point is to define a generalization of this unit normal
bundle for non-smooth objects, called the normal cycle. In this section, we

172 D. Cohen-Steiner, J-M. Morvan

T

T ′

T ′

T − T ′T + T ′

Fig. 4.4. Sum of integral currents

describe the differential forms ωG and ωH which induce the Gauss curvature
measure and mean curvature measure, when integrated on the normal cycles
associated to the studied object, and we shall describe the construction of the
normal cycle of a polyhedron.

Invariant 2-forms.

Now set S = E
3 × S2. S is obviously a subset of E

3 × E
3. We will call the

first factor of the latter product the point space, Ep, and the second one the
normal space, En. The reason for this is that an element of S can be thought
of as a point in space together with a unit normal vector. If u is a 3-vector, un

will denote the vector (0, u) ∈ Ep × En, and up the vector (u, 0) ∈ Ep × En.
Rigid motions of E

3 can be naturally extended to S: if g is such a motion,
one can set ĝ(p, n) = (g(p), ḡ(n)), where ḡ is the rotation associated with g.
We now define two particular differential 2-forms on S. Let (p, n) ∈ S and
x, y ∈ E

3 such that (x, y, n) is a positively oriented orthonormal frame of E
3.

We set:

ωH
(p,n) = xp ∧ yn + xn ∧ yp

ωG
(p,n) = xn ∧ yn

One can actually check that these 2-forms do not depend on the choice of
x and y. Moreover, they are invariant under rigid motions, that is satisfy
ĝ∗ω = ω for any rigid motion g.

Normal cycle of a smooth surface and a polyhedron.

Let us give a short overview of the theory of normal cycle.

• In the smooth case, the normal cycle is a generalization of the unit normal
bundle. Recall that if M is an oriented smooth surface in E

3, the unit
normal bundle of M is the manifold

ST⊥M = {(p, n(p)), p ∈ M}

4 Differential Geometry on Discrete Surfaces 173

endowed with the orientation induced by the one of M . Now if V is the
solid enclosed by a closed smooth surface in E

3, the normal cycle N(V) of
V is nothing but the current canonically associated to ST⊥∂V : If ω is any
2-differential form defined on E

3 × E
3, the duality bracket 〈, 〉 is given by

〈N(V), ω〉 =
∫

ST⊥∂V

ω.

• This definition can be easily generalized to convex bodies C of E
3: We

begin by defining the normal cone Cp(C) of a point p of C as the set of
unit vectors n such that

∀q ∈ C, −→pq.n ≤ 0.

The normal cone C(C) of C is the union of the sets {p}×Cp(C), when p runs
over C. Now the normal cycle of C is nothing but the current associated
to C(C) endowed with its canonical orientation. A crucial property of the
normal cycle is its additivity: if C1 and C2 are two convex subsets of E

3

such that C1 ∪ C2 is convex, then,

N(C1 ∪ C2) = N(C1) +N(C2) −N(C1 ∩ C2). (4.5)

• Remarking that a polyhedron is the union of (convex) tetrahedra, trian-
gles, edges and vertices, we define the normal cycle of a polyhedron by
applying (4.5) recursively. If polyhedron V is triangulated using tetrahe-
dra (ti)i=1..n, this leads to the following formula

N(V) =
∞∑

n=1

(−1)n+1
∑

1≤i1<..<in≤n

N(∩n
j=1tij

)

by inclusion-exclusion. Of course one must check that the definition is
independent of the decomposition of the polyhedron, but it is not too
difficult to prove.

Curvature measures.

To recover the curvature measures in a unified way, we use the theory of
normal cycles. If M is smooth and bounds a solid V , let i be its Gauss map:

i : M → ST⊥M

defined by
i(p) = (p, n(p)).

One has the following (we refer to [97], [95], [96]):

Theorem 5. Let V be a solid whose boundary M is either a smooth surface
or a polyhedron. If B is a Borel subset of E

3, then:

174 D. Cohen-Steiner, J-M. Morvan

• ΦG
M (B) = 〈N(V), χ(i(B ∩ V))ωG〉,

• ΦH
M (B) = 〈N(V), χ(i(B ∩ V))ωH〉

where χ denotes the characteristic function.

Let us prove this theorem for Gaussian curvature in the smooth case. By
definition we have:

∫

N(V)

ωGχ(i(B ∩M)) =
∫

i(B∩M)

ωG

The change of variable formula now states that:
∫

i(B∩M)

ωG =
∫

B∩M

i∗ωG

To prove the first claim, it is thus sufficient to show that:

i∗ωG = GaM

Let (u, v) be a positively oriented orthonormal frame of TxM , where x ∈ M .
By definition, the derivative of i is given by:

∀w ∈ TxM Dxi(w) = wp +Dxn(w)n

Expressing ωG
i(x) in the frame (un, vn, nn

x), we get

(i∗ωG)x(u, v) =
un.(up + Dxn(u)n) vn.(up + Dxn(u)n)
un.(vp + Dxn(v)n) vn.(vp + Dxn(v)n)

=
u.Dxn(u) v.Dxn(u)
u.Dxn(v) v.Dxn(v)

= G(x)

The proof of the second equality is similar.
This interpretation of curvature measures in terms of differential forms

leads to the approximation theorem 4 by applying classical results on defor-
mation of integral currents [162].

4.4.4 Anisotropic Curvature Measures

In the previous section, we have seen how to define Gauss and mean cur-
vature measures on polyhedra, which generalize Gauss and mean curvatures
on smooth surfaces. From the Gauss and mean curvature, the principal cur-
vatures are easily recovered by solving a quadratic equation. However, this
does not give any information on the principal directions. In this section, we
solve this problem by giving an extension of the concept of curvature tensor
to polyhedra, based on the normal cycle. At each point p of M , we denote by
h̃p the bilinear form

h̃p : E
3
p × E

3
p → R

4 Differential Geometry on Discrete Surfaces 175

defined as the composition of the second fundamental form at p, hp, with the
projection prTpM on TpM:

h̃p = hp ◦ (prTpM , prTpM).

h̃p is clearly null on the normal space of M at p.
We give the following [98]:

Definition 13. Let X,Y be two (constant) vectors of E
3, and (p, n) be a point

of E
3 × E

3. The 2-form

ωX,Y
(p,n) = (n×X)p ∧ Y n,

is called the anisotropic 2-form.

In this definition, × is the standard cross product in E
3. The relation between

ωX,Y and h̃p(X,Y) is given by [98]:

Theorem 6. Let M be a smooth surface bounding a solid V , and B a Borel
subset of E

3. Then,

〈N(V), χ(π−1(B ∩ V))ωX,Y 〉 =
∫

B∩M

h̃p(X,Y)dp.

We put
hM (B)(X,Y) = 〈N(V), χ(π−1(B ∩M)ωX,Y 〉. (4.6)

Remark that one could also introduce the other form

ωX,Y
(p,n) = Xp ∧ (nn × Y n)

and define
h̄M (B)(X,Y) = 〈N(V), χ(π−1(B ∩M)ω̄X,Y 〉.

This possibility leads to a similar result, namely

h̄M (B) =
∫

B∩M

(Trace(h̃p)Id− h̃p)dp

By analogy with (4.6), we define the anisotropic curvature measure hP

associated to a polyhedron of E
3:

Definition 14. Let P be a polyhedron of E
3, bounding a solid V , and B be a

Borel subset of E
3. We put

hP (B)(X,Y) = 〈N(V), χ(π−1(B ∩ V)ωX,Y 〉.

The reason why we use ω instead of ω in this definition is that it leads to
simpler expressions. Indeed, a computation gives

176 D. Cohen-Steiner, J-M. Morvan

Theorem 7. Let P be a polyhedron and B a Borel subset of E
3. Then,

hP (B)(X,Y) =
∑

e∈E

β(e) length (e ∩B)−→e ⊗ −→e .

where −→e ⊗ −→e denotes the bilinear form with matrix −→e .transpose(−→e).

Using the same techniques as in Sect. 4.4.3, we have an approximation
result similar to Theorem 4: with the same notations,

Theorem 8. Let P be a triangulated polyhedron closely inscribed in M . Let
B be the relative interior of a union of triangles. Then,

‖h̃P (B) − h̃M (B)‖ ≤ CMKε,

where CM ,K, ε are defined in Theorem 4.

Classically, ‖h̄P (B) − h̄M (B)‖ = sup‖X‖=1,‖Y ‖=1 |h̄P (B) − h̄M (B)(X,Y)|.
It must be remarked that hP (B)(X,Y) is symmetric in (X,Y). This im-

plies that one can diagonalize hP (B). One gets three eigendirections: the one
associated to the smallest eigenvalue can be called the estimated normal of
B∩P , and the two others can be called its principal directions, by analogy with
the smooth case. We note that even if the estimated curvature tensor always
converges to the actual one, it might not be the case for the eigendirections.
Indeed, on a cylinder, the curvature tensor has rank one, so the estimated
normal may lie anywhere in the plane orthogonal to the axis of the cylinder.
For that reason, this method should not be used strictly for normal estimation
purposes, for which simpler techniques exist.

In practice, one may take for B a small number of rings of triangles around
the considered vertex. Experimental results are shown in Fig. 4.5 and Fig. 4.7.

Fig. 4.5. The principal directions estimated on an ellipsoid with 1442 vertices, look
very similar to the actual ones, whose integral lines are shown in Fig. 4.6

4 Differential Geometry on Discrete Surfaces 177

Fig. 4.6. Lines of curvature of an ellipsoid [206]

Fig. 4.7. Directions of minimal curvature estimated on a mesh of Michelangelo’s
David. For each vertex, the averaging domain used for computations is the 2-ring of
that vertex

178 D. Cohen-Steiner, J-M. Morvan

4.4.5 ε-samples on a Surface

In this paragraph, assume that M bounds a solid V and is endowed with
a finite point sample S. We denote by Del(S) the Delaunay triangulation
associated to S, and by DelM (S) the restriction of Del(S) to M , that is, the
set of faces of Del(S) whose dual Voronoi face intersects M . An ε-sample S
on M is a sample such that for every point m of M , the ball B(m, εlfs(m))
encloses at least one point of S. Here, lfs(m) denotes the local feature size
of M at m, defined as follows: the medial axis of M is the center of the
maximal open balls included in E

3 \M . If m ∈ M , the local feature size of M
at m is the Euclidean distance from m to the medial axis of M . This notion,
also used in Chap. 6 Sect. 6.2.2, actually coincides with the notion of reach
introduced before (Definition 3).

In [21] and [25], N. Amenta et al. proved that if S is an ε-sampling of M
with ε < 0.06, then DelM (S) is closely inscribed in M . Moreover they proved

Lemma 1. Let S be an ε-sample on M , with ε < 0.06. If B be any Borel
subset of DelM (S), then the Hausdorff distance δB = δ(B, pr(B)) between B
and its projection onto M satisfies:

δB ≤ ε sup
m∈pr(B)

lfs(m).

Moreover,
cr(B) ≤ ε sup

m∈pr(B)

lfs(m),

where cr(B) is the maximum of the circumradius of all triangles lying in B.

When M is approximated by the restricted Delaunay triangulation of an
ε-sample, one gets a “good” approximation of the normal:

Theorem 9. Let S be an ε-sample on M , with ε < 0.06. Then, the maximum
angle between the normal of a triangle of the restricted Delaunay triangulation
and the corresponding tangent plane of M at any of the vertices of the triangle
is O(ε).

However, in general, one cannot deduce that the difference between the
curvature measures of B ∩ DelM (S) and pr(B) ∩M is O(ε). For that we need
a stronger assumption. If we assume that the ε-sample on M is κ-light [93],
namely that for every point m of M , the ball B(m, εlfs(m)) encloses at most κ
points of S, then it can be shown that the parameter K in Theorem 4 satisfies

K = O(area(M))

in Theorem 4 and Theorem 8. So one has:

4 Differential Geometry on Discrete Surfaces 179

Theorem 10. Let S be a κ-light ε-sample on M . Then,

‖ΦG
DelM (S)

− ΦG
M‖ = O(ε);

‖ΦH
DelM (S)

− ΦH
M‖ = O(ε);

‖h̃DelM (S) − h̃M‖ = O(ε).

4.4.6 Application

Estimating the curvature tensor from a triangulated approximation of a sur-
face is an important building block for several applications in geometric mod-
eling and computer graphics. To end this chapter, we briefly mention one of
them: anisotropic remeshing of surfaces [19]. The goal here is to approximate
a given triangulated surface by a surface (mostly) made of quadrilaterals, in
such a way that the approximation error is as small as possible. As shown by
approximation theory [319], in such an optimal quadrangulation, the quadri-
laterals axes should be aligned with the principal directions of the surface,
and their aspect ratio should be proportional the square root of the princi-
pal curvatures ratios. A strategy to build such a quadrangulation (see figure
4.8) is to estimate the curvature tensor at each vertex of the surface, then
numerically integrate two networks of curvature lines (one for the maximum
curvature, and one for the minimum curvature), choosing the spacing between
consecutive lines as a function of principal curvatures (left). Finally, overlaying
the two networks (center) and straightening the curves between intersection
points (right) provides the desired quadrangulation.

Fig. 4.8. Anisotropic remeshing of a hand

5

Meshing of Surfaces

Jean-Daniel Boissonnat, David Cohen-Steiner, Bernard Mourrain, Günter
Rote�, and Gert Vegter

5.1 Introduction: What is Meshing?

Meshing is the process of computing, for a given surface, a representation
consisting of pieces of simple surface patches. In the easiest case, the result
will be a triangulated polygonal surface. More general meshes also include
quadrilateral (not necessarily planar) patches or more complicated pieces,
but they will not be discussed here. For example, Fig. 5.1a shows a meshed

Fig. 5.1. (a) A meshed sphere. (b) A meshed double-cone

sphere x2 + y2 + z2 = 1. Fig. 5.1b shows a good mesh of a double-cone
x2 + y2 = z2. Note that the cone has pinching point at the apex, which
is represented correctly in this mesh. The automatic construction of good

� Chapter coordinator

182 J.-D. Boissonnat, D. Cohen-Steiner, B. Mourrain, G. Rote, G. Vegter

meshes for surfaces with singularities is still an open research area. Here we
will mainly concentrate on smooth surfaces, with the exception of Sect. 5.4,
where surfaces with singularities are also treated.

Why Meshing?

The meshing problem occurs in different settings, depending on the way how
a surface is given, and on the purpose of meshing.

Usually we assume that a surface is given implicitly, as the solution of an
equation

f(x, y, z) = 0.

The function f comes from various sources. It can be explicitly given, often as
a polynomial, like in the examples above, or as a sum of exponential “blob”
functions like exp(−‖A(x−b)‖)−1 for a matrix A and a center b, which allow
flexible modelling of shapes.

One can also try to fit data by defining an appropriate function f from the
data. For example, in scattered data interpolation, a scanned image may be
given a two-dimensional (or sometimes three-dimensional) grid of grey-level
values. If f is a function that interpolates these values on each grid square,
the equation f(x, y) = const extracts a level curve (iso-curve, or iso-surface
in higher dimensions). In the area of surface reconstruction from scattered
data points, there are procedures for defining a function f whose zero set is
an approximation of the unknown surface (natural neighbor interpolation, see
Sect. 6.3.3, p. 263.)

The implicit representation of a surface is convenient for defining the sur-
face as a mathematical object, for modeling and manipulation by the user,
but it is not very convenient for handling the surface by computer. For draw-
ing or displaying a surface (Computer Graphics), an explicit representation
as a union of polygons is easier to handle. Engineering applications that per-
form computations on the surface (and on the volume inside and outside the
surface), such as finite element analysis, also require a meshed surface.

Related Problems.

Sometimes, a surface is already given as a mesh, but one wants to construct
a different, “better” mesh. For example, one may try to improve the shape
of the triangles, eliminating long and skinny triangles or triangles that are
too large, or one may want to produce a coarser mesh, eliminating areas that
are meshed too densely, with the purpose of reducing the amount of data
for storage or transmission (data compression). These are the problems of
remeshing, mesh refinement and mesh simplification. These problems are also
applicable for plane meshes, where the given “surface” is a region of the plane
[301, 317]. Some of the methods that we will discuss below have been applied
to this setting, and to the meshing problem for polyhedral surfaces in general,
but we will only mention this briefly.

5 Meshing of Surfaces 183

As mentioned, engineering applications also require three-dimensional vol-
ume meshes or even higher-dimensional meshes. Extending a given boundary
mesh of a surface to a mesh of the enclosed volume is a difficult problem of
its own.

In this chapter, we will concentrate on surface meshing. The other prob-
lems described above are not covered in this book. For simplicity, we restrict
our attention to surfaces without boundary. Some algorithms can clip a sur-
face by some bounding box or by intersecting it with some other surface, but
we will not discuss this.

Meshing of curves, by comparison, is a much easier problem: Here we
look for a polygonal chain approximating a curve. We will often discuss curve
meshing because the main ideas of many meshing algorithms can be illustrated
in this setting.

Meshing is related to surface reconstruction, which is the subject of Chap-
ter 6: in both cases, the desired output is a meshed surface. However, surface
reconstruction starts from a set of sample points of the surface that is given
as input, and which is usually the result of some measurement process. In
meshing, one also constructs a point sample of the surface, but the selection
of these points is under the control of the algorithm.

There is some overlap in the techniques applied, in particular in the area of
Delaunay meshing (Sect. 5.3). As mentioned above, one way of reconstructing
a surface is by defining a function f whose zero set is the reconstructed surface.

Goals of Meshing Algorithms—Correctness.

There is a vast literature on meshing with many practical algorithms in the
areas of Computer-Aided Geometric Design (CAGD) and Computer Graphics.
In this book we concentrate on methods with proven correctness and quality
guarantees. Correctness means that the result should be topologically correct
and geometrically close.

The definition of what it means for a mesh to be topologically correct has
evolved over the past few years. It is not sufficient to require that a surface
S and its mesh S′ are homeomorphic. A torus and a knotted torus are home-
omorphic when viewed as surfaces in isolation, but one would certainly not
accept one as a topologically correct representation of the other, see Fig. 5.2.
The following definition combines the strongest notions of having the correct
topology with the requirement of geometric closeness.

Definition 1. An ambient isotopy between two surfaces S, S′ ⊂ R
3 is a con-

tinuous mapping
γ : R

3 × [0, 1] → R
3

which, for any fixed t ⊆ [0, 1], is a homeomorphism γ(·, t) from R
3 to itself,

and which continuously deforms S into the mesh S′: γ(S, 1) = S′.
In addition, the approximation error D is the largest distance by which a

point is moved by this homeomorphism:

184 J.-D. Boissonnat, D. Cohen-Steiner, B. Mourrain, G. Rote, G. Vegter

Fig. 5.2. Two homeomorphic surfaces which are not isotopic

‖x− γ(x, 1)‖ ≤ D for all x ∈ S

This implies that the surface S and the meshed surface S′ are homeo-
morphic to each other, and their Hausdorff distance (see the definition in
Sect. 6.2.3 on p. 251) is at most D. There is also the concept of isotopy be-
tween two surfaces, which only deforms S without deforming the ambient
space R

3, see Sect. 7.2 (p. 281):

Definition 2. An isotopy between two surfaces S, S′ ⊂ R
3 is a continuous

mapping
γ : S × [0, 1] → R

3

which, for any fixed t ⊆ [0, 1], is a homeomorphism γ(·, t) from S onto its
image, and which continuously deforms S into the mesh S′: γ(S, 1) = S′.

Formally, isotopy is weaker than ambient isotopy. However, for our purposes,
there is no difference between between isotopy and ambient isotopy: The iso-
topy extension lemma ensures that an isotopy between two smooth surfaces
(of class C1) embedded in R

3 can always be extended to an ambient isotopy
[208, Theorem 1.3 of Chapter 8, p. 180]. This does not directly apply to a
piecewise linear surface mesh S′, but it is easy to show that a piecewise linear
surface is ambient isotopic to an approximating smooth surface, to which the
theorem applies. The isotopy extension lemma cannot be used in the algo-
rithm of Sect. 5.4, which deals with singular surfaces, but in this case, the
ambient isotopy will be constructed explicitly.

Theorems in earlier papers have only made claims about the Hausdorff
distance or about the existence of a homeomorphism, but it is often not diffi-
cult to obtain also isotopy. Typically, the mapping constructed in the proofs
moves points along fibers that sweep out the space between the surface S

5 Meshing of Surfaces 185

and its approximation S′. These fibers move each point of the mesh S′ to its
closest neighbor on the surface S′, as in Fig. 5.3a. (For a curve in the plane,
one can also map each curve point to its closest neighbor on the mesh, as in
Fig. 5.3b; this does not work in higher dimensions because it may lead to a
discontinuous mapping.) Each point x on the mesh is mapped to the “correct”

(a) (b)

y

Fig. 5.3. The isotopy between a smooth curve and the approximating polygon is
indicated by fibers perpendicular to the curve (a) or to the polygon edges (b). The
curve can be continuously deformed into the polygon by moving each point along
its fiber

corresponding closest point y on the surface, if x is not too far from S, in par-
ticular, if the distance from y to x is not larger than the radius of the medial
sphere, see Fig. 5.3a, which shows the medial circle at y ∈ S. (See p. 109 in
Sect. 2.7 for the definition of medial sphere.)

A common tool for establishing isotopy is a tubular neighborhood Ŝ of a
surface S. It is a thickening of the surface such that within the volume of Ŝ,
the projection of a point x to the nearest point πS(x) on S is well-defined.
The points x which have the same nearest neighbor πS(x) = p form a segment
through p normal to the surface. These segments are called fibers of the tubular
neighborhood, and they form a partition of Ŝ.

Lemma 1 (see [302, Theorem 4.1]). Let S be a compact closed surface of
class C2 in R

3 with a tubular neighborhood Ŝ. Let T be a closed surface (not
necessarily smooth) contained in Ŝ such that every fiber intersects T in exactly
one point.

Then πS : T → S induces an ambient isotopy that maps T to S. ()

The isotopy interpolates between T and S along the fibers, and it does not
move points by more than the length of the longest fiber.

Principal Approach and Primitive Operations.

Although other approaches are conceivable, all methods basically select ver-
tices on the surface and connect them appropriately. The fundamental op-
eration is to find the intersection point of a line segment with the surface.

186 J.-D. Boissonnat, D. Cohen-Steiner, B. Mourrain, G. Rote, G. Vegter

For a few algorithms, it is sufficient to compute these intersections only ap-
proximately, and thus the mesh vertices will lie only close to the surface. (In
particular, this holds for the marching cubes algorithms in Sect. marching-
cubes and piecewise-linear interpolation in Sect. 5.5.2).

Some algorithms also compute certain critical points of the surface. All
these operations require access to the function f defining the surface and its
derivatives. Intersecting the surface with a line segment boils down to solving
a univariate equation.

In order to ensure some quality and correctness guarantees on the mesh,
some algorithms need to obtain further information about the surface, for
instance, bounds on the curvature, or in more algebraic terms, bounds on the
derivatives of the function defining the surface.

We will discuss the required primitive operations in detail with each algo-
rithm.

Other Quality Criteria.

Besides topological correctness and geometric closeness to the original surface,
we may want to achieve other criteria.

1. Normals: The normals of the mesh should not deviate too much from the
normals of the surface. Note that a “wiggly” approximation of a given
surface or a curve can be isotopic and have arbitrarily small Hausdorff
distance, but still have normals deviating very badly from the original
normals.

2. Smoothness: Adjacent facets should not form a sharp angle.
3. Desired density. We may impose an upper bound on the size of the mesh

triangles. This bound may depend on the location. For example, in fluid
mechanics calculations, a region of turbulence will require a finer mesh
than a region of smooth flow.

4. Regularity and Shape. We want to avoid skinny triangles with sharp an-
gles.

There are many other criteria for individual mesh elements. All of these cri-
teria, except the first two in the above list, also apply to plane meshes, and
they have been studied extensively in the literature. The algorithms in this
chapter concentrate on achieving correctness; geometric quality criteria are
often considered in a secondary refinement step.

Basic Assumptions about Smoothness.

The basic assumption for most part of this chapter is that f is a smooth
function and the surface has no singularities.

Assumption 1 Nonsingularity.
The function f and its gradient ∇f are never simultaneously zero.

5 Meshing of Surfaces 187

This implies that the equation f(x) = 0 defines a collection of smooth surfaces
without boundary. As mentioned in the introduction, meshing in the vicinity
of singularities is a difficult open problem and an active area of research.

Section: Algorithm Strategy Topological Correctness Scaffolding

5.2.3:
Snyder [321, 322]

refinement global
parameterizability

cubes

5.2.4: Plantinga and
Vegter [286]

refinement Small Normal Variation cubes

5.3.1: Boissonnat and
Oudot [64]

refinement sample density,
local feature size

Voronoi
diagram

5.3.2: Cheng, Dey,
Ramos and Ray [90]

refinement topological ball
property∗

Voronoi
diagram

5.4: Mourrain and
Técourt [263, 327]

space sweep,
vertical projection

treatment of
critical points

vertical
planes

5.5.1:
Stander and Hart [324]

parameter sweep Morse theory —

5.5.2: Boissonnat,
Cohen-Steiner, and
Vegter [61]

refinement (Morse theory)∗† boxes†

Table 5.1. A rough taxonomy of the meshing algorithms described in this chapter,
according to the overall strategy, the way how topological correctness is achieved,
and the kind of spatial ground structure (“scaffolding”) that is used.
∗ These two algorithms employ a hierarchy of conditions, which are successively
tested, in order to achieve correctness.
† This algorithm uses Morse theory in a more indirect way. It works with boxes
which are subdivided into tetrahedra.

5.1.1 Overview

Meshing algorithms can be roughly characterized as (i) continuation-based
methods, that grow a mesh following the surface, and (ii) mesh-based meth-
ods, which build some sort of three-dimensional scaffolding around the surface.
Although continuation-based methods are often used in practice, it is not easy
to achieve correctness guarantees for them. Thus, all algorithms discussed in
this chapter fall into the second category. There are three types of adaptive
“grid structures” which are used: axis-aligned cubes, vertical planes, and the
Voronoi diagram. The algorithms use different algorithmic strategies and a
variety of conditions to ensure topological correctness. Table 5.1 summarizes
these characteristics. One can see that the algorithms are related in various

188 J.-D. Boissonnat, D. Cohen-Steiner, B. Mourrain, G. Rote, G. Vegter

different ways. In the remainder of this chapter, we have chosen to group
the algorithms mainly by the mathematical idea that underlies their correct-
ness, but a different organization might be equally reasonable. It is perhaps
rewarding to return to Table 5.1 after reading the chapter.

5.2 Marching Cubes and Cube-Based Algorithms

The marching cubes algorithm [342, 244] conceptually covers space by a grid of
small cubes, and locally computes a mesh for each cube which is intersected
by the surface. The algorithm computes f at all grid points. The surface
must pass between the grid points with positive f and the grid points with
negative f . The algorithm computes intersection points between the surface
and the grid edges whose endpoints have opposite signs, and uses them as the
vertices of the mesh. Depending on the desired accuracy, these intersection
points can be computed by linear interpolation of f between the endpoints or
some more elaborate method, or one can simply choose the midpoints of the
edges.

⊕
⊕

Fig. 5.4. A cube intersected by the surface f(x, y, z) = 0. The sign of f at the
vertices is shown. Inside the cube, the surface will be represented by two triangles
connecting the points where the surface intersects the edges of the cube

These vertices have to be connected, inside each cube, by a triangular mesh
that separates the positive and the negative vertices, as shown in Fig. 5.4.
There are different possible patterns of positive and negative cube vertices,
and the triangulation can be chosen according to a precomputed table of cases.

5 Meshing of Surfaces 189

(In three dimensions, the 28 = 256 cases are reduced to 15 different cases by
taking into account symmetries.)

*⊕ *

*

*

*

* *

*

⊕

⊕ ⊕
⊕

?

? ?

? ??

Fig. 5.5. The intersections marked with ? are not found by checking the signs of f
at grid points. In the left picture, this leads to a curve with two components instead
of one. The right figure shows a shifted copy of the same curve. When all 4 sides of a
square are intersected, as in the square marked ??, there are two ways of connecting
them pairwise. Applying a local rule to decide between the two possibilities may not
always give the correct result. In addition, the meshed curve misses a large part of
the protrusion in the lower left corner

Problems with this method appear when the grid is not sufficiently fine to
capture the features of the surface. In some cases, the connecting triangula-
tion between the mesh vertices inside a cube is ambiguous, and some arbitrary
decision has to be made. Fig. 5.5 shows a two-dimensional instance of a curve
whose constructed mesh has an incorrect topology (2 cycles instead of a sin-
gle cycle). A slightly shifted grid leads to an ambiguous situation: the sign
pattern of f at the vertices is not sufficient to decide how the points should
be connected.

It can also happen that components of the implicit surface or curve which
are smaller than a grid cell may be completely missed.

Originally, the marching cubes algorithm was designed to find isosurfaces
of the form f(x) = const in a scalar field f resulting from medical imaging
procedures, with one data value (gray-level) f(p) for each point p in a pixel
or voxel grid. In this case, one has to live with ambiguities, trying to make
the best out of the available data. One can resolve ambiguities by any rule
which ensures that triangles in different cubes fit together to form a closed
surface. (In fact, the rules as given originally in [244] may resolve ambiguities
inconsistently, leading to meshes which are not watertight surfaces.)

In our setting, however, the function f is defined everywhere, and it is not
sufficient to achieve consistency: we want a topologically correct mesh; on the
other hand, we are free to compute additional values at any point we like.
Thus, the obvious way to solve ambiguities is to refine the grid, see Fig. 5.6.

190 J.-D. Boissonnat, D. Cohen-Steiner, B. Mourrain, G. Rote, G. Vegter

*

*

*⊕

⊕

⊕ ⊕

*

*

*

*

⊕

*

*

*

*

*⊕

⊕

⊕
⊕ ⊕

*

*

*

*

*

⊕

⊕
??

Fig. 5.6. A section from the right part of Fig. 5.5 before and after subdividing the
offending square into four subsquares. The ambiguity is resolved

5.2.1 Criteria for a Correct Mesh Inside a Cube

The basic strategy is to subdivide the cells of the grid until sufficient infor-
mation is available for forming a correct mesh. The question is now: How can
we tell that a mesh within some grid cube is correct and the cube need not
be further subdivided.

We present two criteria, an older one due to Snyder [322, 321], and a recent
one, due to Plantinga and Vegter [286].

5.2.2 Interval Arithmetic for Estimating the Range of a Function

Both methods are based on estimating the range of values of a function { g(p) |
p ∈ B } when the parameter p ranges over some domain B, which is typically
a box. In most cases, g will be the function f or one of its derivatives, and
one tries to establish that the range of g does not contain 0, i.e., g(p) �= 0 for
all p ∈ B.

For example, if B is a grid cube and f(p) �= 0 for all p ∈ B, we know
that the surface S contains no point of B, and no further processing of B is
necessary.

The standard technique for estimating the range of a function is interval
arithmetic. The idea of using interval arithmetic in connection with meshing
was pioneered by Snyder [322, 321].

Interval arithmetic has been introduced in Sect. 3.2.2 as a method to cope
with the limited precision of floating-point computation. Ideally, one would
like to have the exact result x of a computation. By interval arithmetic, one
obtains an interval [a, b] which definitely contains the correct result x. By
repeating the calculations with increased accuracy, one can decrease the size
b−a of the interval until it becomes smaller than any prespecified limit ε > 0.

Interval arithmetic is also suited to get the range of a function whose inputs
x1, x2, x3, . . . vary in some given intervals. Instead of starting with zero-length

5 Meshing of Surfaces 191

intervals for exact inputs, one takes the given starting intervals. Note that this
approach may suffer from a systematic overestimation of the resulting interval,
for example when subtracting quantities that are close, like in f(x) = x−sinx.
For x = [0, 0.3], we get the interval approximation �f([0, 0.3]) = [0, 0.3] −�
(�sin)([0, 0.3]) = [0, 0.3] −� [0, 0.2956] = [−0.2956, 0.3], whereas the true range
of f is contained in [0, 0.0045]. There are techniques such as Fast Automatic
Differentiation [193] which can circumvent this problem.

For the remainder of this chapter, we assume, for a given function g the
availability of some operation �g such that �g([a1, b1], [a2, b2], . . .) returns an
interval that contains the range { g(x1, x2, . . .) | a1 ≤ x1 ≤ b1, a2 ≤ x2 ≤
b2, . . . }. We require that the resulting interval can be made arbitrarily small
if the input intervals are small enough:

Assumption 2 Convergence (of Interval Arithmetic).
The size of the interval �g([a1, b1], [a2, b2], . . .) goes to zero if the sizes of the
parameter intervals [a1, b1], [a2, b2], . . . tend to zero.

This requirement is fulfilled for ordinary interval arithmetic in the vicinity of
every point for which g is continuous, provided that the accuracy of the calcu-
lations can be increased arbitrarily. If the computation of g does not involve
operations that may be undefined, like division by zero, and in particular, if
g is a polynomial, interval arithmetic converges.

If a continuous function g satisfies g(x) �= 0 for all x in a box B, conver-
gence implies that interval arithmetic will establish this fact by subdividing
B into sufficiently many sub-boxes.

5.2.3 Global Parameterizability: Snyder’s Algorithm

We want to compute a mesh for a surface f(x) = 0 inside some box X =
[xmin, xmax] × [ymin, ymax] × [zmin, zmax]. The method works by induction on
the dimension. Thus, as a subroutine, the algorithm will need to compute a
mesh for a curve f(x) = 0 (an approximating polygonal chain) inside some
rectangle X = [xmin, xmax] × [ymin, ymax].

Snyder’s criterion for telling when a cell need not be further subdivided is
global parameterizability of f inside a box X in two of the variables x, y, or
z. We say that { (x, y, z) ∈ X | f(x, y, z) = 0 } is globally parameterizable in
the parameters x and y, if, for each pair (x, y), the equation f(x, y, z) = 0 has
at most one solution z in the box X. One way to establish this property is to
ensure that the derivative with respect to the third variable is nowhere zero:

∂

∂z
f(x, y, z) �= 0 for all (x, y, z) ∈ X (5.1)

An analogous definition holds for a curve { (x, y) ∈ X | f(x, y) = 0 } in two
dimensions: it is globally parameterizable in the parameter x, if, for each value
x, the equation f(x, y) = 0 has at most one solution y in the box X.

192 J.-D. Boissonnat, D. Cohen-Steiner, B. Mourrain, G. Rote, G. Vegter

Global parameterizability of a curve in the parameter x means that the
solution consists of a sequence of curves which can be written in the parame-
terized form y = C(x), over sequence of disjoint intervals for the parameter x.
Similarly, global parameterizability of a surface in the parameters x and y
means that the solution consists of parameterized surface patches z = S(x, y)
over a set of disjoint domains for (x, y).

Suppose that a curve in a two-dimensional rectangle X is globally para-
meterizable in x. The curve has at most one intersection with the left and
right edge, and an arbitrary number of intersections with the bottom and top
edge. Let x1, x2, x3, . . . denote the sequence of intersections, sorted from left
to right, see Fig. 5.7a.

Between the first two successive intersections x1 and x2, there can either be
no solution inside X, or the solution can be an x-monotone curve in X. These
two possibilities can be distinguished by intersecting the curve with a vertical
line segment � half-way between x1 and x2. More precisely, we just need to
compute the signs of f at the endpoints of �. Given this information, we can
draw polygonal connections between the points xi which are a topologically
correct representation of the curve pieces inside X, as in Fig. 5.7b. To connect
two points xi and xi+1 on the same edge, we can for example draw two 45◦

segments. Points on different edges can be connected by straight lines.

x1

x2

x3 x4

x5 x6 x7

x8
�

x

y

x

y

x1

x2

x3 x4

x5 x6 x7

x8

(a) (b)

Fig. 5.7. Finding a correct mesh for a curve in a square

The following lemma summarizes this procedure, and it also formulates
the three-dimensional version.

Lemma 2. 1. If a curve f(x, y) = 0 is globally parameterizable in x in a
two-dimensional box X, and if one can find the zeros of f on the edges of
the box, then one can construct a topologically correct mesh for the curve
inside X.

5 Meshing of Surfaces 193

2. • If a surface f(x, y, z) = 0 is globally parameterizable in x and y in a
three-dimensional box X, and

• if, on the top and bottom face of X, each of the two functions
f(x, y, zmax) and f(x, y, zmin) is everywhere nonzero or globally pa-
rameterizable in x or y, (not necessarily both in the same variable)

then one can construct a topologically correct mesh for the surface in-
side X, provided that one can find the zeros of f on the edges of the box.

In each case, the only additional information required is the sign of f at a
few points on the edges of the box.

We call a function f well-behaved with respect to the box X if the conditions
of part 2 of the lemma are satisfied, possibly after permuting the coordinates
x, y, and z.

Proof (Proof of part 2). Suppose the surface intersects the bottom face as in
Fig. 5.7a and the top face as in Fig. 5.8a. Fig. 5.8b shows the overlay of the
two intersection patterns, like in a top view onto the box. By global parame-
terizability in x and y, the intersections with the top face and the bottom face
cannot cross. In each region which is delimited by these intersection curves,
there is either no intersection of the surface with X or there is a single surface
patch. These two cases can be distinguished by checking whether an appro-
priate vertical line segment in the boundary of X intersects the surface, i.e.,
whether f has opposite signs at the endpoints of this segment.

Fig. 5.8c shows the polygonal mesh for the intersection with the top face,
and Fig. 5.8d shows the overlay with Fig. 5.7b. The shaded areas in Fig. 5.8b
and 5.8d represent the existing patches of the surface in X and the corre-
sponding patches of the mesh that are to be constructed. Such a mesh can
be constructed easily: we may need to find intersection points at the vertical
edges of X, and we may need to add 45◦ segments on the vertical sides of X.
On each vertical side, the mesh edges will look exactly as the ones that would
be produced by part 1 of the lemma. This is important to ensure that the
surface patches in adjacent boxes fit together across box boundaries, even if
the adjacent box is parameterizable in y and z or in x and z.

Any triangulation of the grey polygons in Fig. 5.8d will now lead to ap-
propriate triangulated surface patches, as shown in Fig. 5.8e. We leave it as
exercise to construct an isotopy that shows topological correctness in the sense
of Definition 1.

We can now present the overall algorithm. We suppose we are given an
initial box containing the part of the surface in which we are interested.

The algorithm maintains a list of boxes that are to be processed. We
select a box X from the list and process it as follows. First we try to establish
that f(x) �= 0 in X, using interval arithmetic. If this is the case, we can
discard the box without further processing. Otherwise, we check if Lemma 2
can be applied. Using interval arithmetic, we try to show that one of the
partial derivatives is nonzero in X, see (5.1), which implies that f is globally

194 J.-D. Boissonnat, D. Cohen-Steiner, B. Mourrain, G. Rote, G. Vegter

x

y

x

y

(c) (d)

x

y

x

z
(a) (b)

(e)

y

Fig. 5.8. Finding a correct mesh for a surface in a cube

parameterizable in two of the parameters x, y, and z. We then also have to
check the “top” and “bottom” faces of X, in a completely analogous way:
Either f or one of its partial derivatives must be nonzero on the face. If
this test succeeds, we know that we can mesh the surface in X. Otherwise, we
subdivide X into smaller boxes and put them on the list for further processing.

The approximation error is trivially bounded by the diameter of the box,
regardless of how we construct the mesh in each box. Thus, if we want to
guarantee a small error, we can achieve this by subdividing boxes that are too
large, before checking global parameterizability.

In the end, we have a bunch of boxes of different sizes in which we have
to construct meshes. Cubes of different sizes may touch, and therefore the
method of Lemma 2 must be adapted: The surface is first meshed inside the
smallest boxes. The pattern of intersection with the boundary is transmitted
to larger adjacent boxes, and thus the mesh boundary on the sides of the
boxes may look more involved than in Fig. 5.8e. The largest boxes are meshed
last.

We still have to discuss the assumption of Lemma 2 that the intersections
of the surface with the cube edges can be found. Snyder [322, 321] proposed
to use interval arithmetic also for this task. In fact, this problem is just the
meshing problem in one dimension: finding zeros f(x) = 0 of a univariate
function f . (The two- and three-dimensional versions are treated in Lemma 2.)
Global parameterizability in this setting boils down to requiring f ′ �= 0.

5 Meshing of Surfaces 195

The basic algorithm successively subdivides a starting interval until f �= 0
or f ′ �= 0 can be established to hold throughout each subinterval, by inter-
val arithmetic. Then one can establish the existence of a unique zero or the
absence of a zero by computing the sign of f at all interval endpoints. The
results is a sequence of disjoint isolating intervals [u1, v1], [u2, v2], . . ., where
each interval is known to contain a unique zero (cf. Sect. 3.3.2).

Note that the sequence of points x1, x2, . . . need not be exact for the
algorithm in part 1 of the lemma to work. All that is required is that they
have the correct order. There will be a sequence of disjoint isolating intervals
for the intersections with the upper edge and another sequence of disjoint
isolating intervals for the intersections with the lower edge. If any two of these
intervals overlap, the intervals must be refined until they become disjoint.
This will eventually happen, since, by global parameterizability, the zeros on
the upper edge and on the lower edge are distinct. Then any point from the
respective interval can be used to construct the mesh.

Note however, that interval arithmetic fails to converge for zeros where the
function only touches the zero line or does not cross it transversally such as
the points x5 and x7 in Fig. 5.7a, or generally when f(x) = f ′(x) = 0 (grazing
intersections). No amount of subdivision will suffice to show the presence or
absence of a zero in this case.

Thus, to cope with these cases, one has to resort to the exact methods of
Chap. 3. In practice, one could of course simply stop the subdivision when
the size of the intervals become smaller than some threshold and “declare”
the presence of a zero in this interval, giving up any correctness claims below
the precision threshold.

Another issue is termination of Snyder’s algorithm. It turns out that this
question is closely related to the problem of grazing intersections: the algo-
rithm may fail to terminate in certain special situations.

Consider the elliptic paraboloid z = x2 − xy+ y2. In a cube X in the first
orthant with the corner at the origin, the surface is globally parameterizable
in x and y, but not in any other pair of variables. However, on the bottom
face z = 0, the partial derivatives with respect to x and to y are 2x − y and
2y−x, and neither of them has a uniform sign in X. This box will never satisfy
the condition of Lemma 2, and subdivision will produce a smaller box of the
same type. Thus the algorithm will not terminate. Note that this surface is
not in any way difficult to mesh; it presents no problems for the algorithm if
the origin is inside some (small enough) cube: the surface will simply intersect
the four vertical edges, and the mesh will consist of two triangles.

In both cases discussed above, the difficulty results from a special position
of the grid relative to the surface: The surface is tangent to an edge (in the case
of grazing intersections for the one-dimensional problem) or a face (in the case
of non-termination) of a grid cube. In fact, one can show that this is the only
source of difficulties: If no face of a cube that is created during the algorithm
is tangent to the surface, the algorithm will terminate. Thus, a translation and
rotation of the initial grid to a “generic” position guarantees termination: All

196 J.-D. Boissonnat, D. Cohen-Steiner, B. Mourrain, G. Rote, G. Vegter

cube faces are parallel to one of three given directions. A smooth surface has
only finitely many points with a specified randomly chosen normal direction,
the grid must be translated such that no grid plane will go through one of
these critical points. This is ensured, for example, if the coordinates of the
critical points are not multiplies of powers of 2, in the grid coordinate system.

In all likelihood, such a translation and rotation of the initial grid to a
generic position should also remove the problem or grazing intersections with
grid edges, but this has not been analyzed.

Exercise 1. If { (x, y, z) ∈ X | f(x, y, z) = 0 } is globally parameterizable in
the parameters x and y, then the intersection curves on the vertical sides of
X (parallel to the z-axis) are globally parameterizable in the parameters x or
y, respectively.

Exercise 2. Construct an explicit isotopy between the original curve pieces
and the polygonal approximating curve in the case of Lemma 2, part 1.
(Fig.s 5.7a and 5.7b). Assume first that the intersections x1, x2, . . . with the
boundary are given exactly. Then extend the construction to the case when
the intersections are replaced by approximate values x′1, x

′
2, . . . etc. The only

property that can be assumed is that they are ordered in the same way as the
true values x1, x2, . . .

Exercise 3. Extend the previous exercise to part 2 of Lemma 2. Assume that
an isotopy from the true intersection curves to the polygonal approximation
is given on each face of the cube X.

Exercise 4. Examine termination of Snyder’s algorithm for a parabolic cylin-
der (y − x)2 − z = 0 and for the hyperbolic paraboloids x2 − y2 − z = 0 and
xy− z = 0, starting with eight unit cubes meeting at the origin. Assume that
the range of f and its derivatives over any box (a) can be calculated exactly,
or (b) is evaluated using interval arithmetic.

5.2.4 Small Normal Variation

Plantinga and Vegter [286] used a stronger condition than global parameter-
izability to guide the subdivision process, the Small Normal Variation

condition:
〈∇f(x1),∇f(x2)〉 ≥ 0, for all x1, x2 ∈ X (5.2)

In other words, there is an upper bound of 90◦ on the angle between two
gradient vectors, and in particular, between two normal vectors of the surface.

Exercises 5–7 below explore the relation to global parameterizability and
Lemma 2. In particular, Small Normal Variation implies that the function is
monotone in some coordinate direction, and therefore the surface (or curve)
is globally parameterizable.

5 Meshing of Surfaces 197

Condition (5.2) can be checked by interval arithmetic. We compute an in-
terval representation �∇f(X) = (�∂f/∂x,�∂f/∂y,�∂f/∂z) of the gradient
and take the interval scalar product of this vector with itself. If the resulting
interval does not contain 0, we have established the Small Normal Variation
condition.

The algorithm starts with a given box and recursively subdivides it until,
in every box X, the following termination condition is satisfied:

Either f(x) �= 0 for all x ∈ X, or the Small Normal Variation condition
(5.2) holds.

Both conditions are checked with interval arithmetic.

Theorem 1. If the surface S = {x | f(x) = 0 } has no singular points and
interval arithmetic converges, this subdivision procedure terminates.

Proof. By the nonsingularity assumption and since f and ∇f are contin-
uous, there is a positive minimum distance ε between the solution sets of
f(x) = 0 and ∇f(x) = 0 inside the starting box. This means that every
box X which is smaller than ε has either f(x) �= 0 or ∇f(x) �= 0 for all
x ∈ X. Convergence implies that interval arithmetic will establish f(x) �= 0
or ‖∇f(x)‖2 �= 0, respectively, after finitely many subdivision steps. However,
the interval computation of ‖∇f(x)‖2 = 〈∇f(x),∇f(x)〉 is identical to the
calculation of 〈�∇f(X),�∇f(X)〉 that is used to check the Small Normal
Variation condition.

One can see that the granularity of the subdivision adapts to the properties
of the function f . In places where f and ∇f have a large variation and f is
close to 0, the algorithm will have to subdivide the cubes a lot, but in regions
where f is “well-behaved”, not much refinement will be necessary.

We still have to show that the signs of f at the vertices of all boxes give
sufficient information to construct a correct mesh. We first discuss the case of
a curve in the plane, for illustration. For simplicity, let us ignore the case when
f is zero at some box vertex. The algorithm will simply insert a vertex on every
edge for which f has opposite signs at the endpoints. Now, the ambiguous case
that caused so much headache in Fig. 5.5 is excluded: If the signs alternate
in the four corners, then f is neither monotone in the x-direction nor in the
y-direction, contradicting the Small Normal Variation condition, see Fig. 5.9a.

It may happen that the curve intersects an edge twice, and these inter-
sections go unnoticed, as in Fig. 5.9b. However, the Small Normal Variation
condition ensures that the curve cannot escape too far before coming back,
see Fig. 5.9c.

Before trying to mesh the curve inside the boxes, the algorithm refines the
subdivision until it becomes balanced : The size of two boxes that are adjacent
via an edge differs at most by a factor of 2. As long as two adjacent boxes
differ by a larger factor, the bigger box is subdivided into four boxes. (Boxes
in which f(x) �= 0 need not be subdivided, of course.) At this stage, we need

198 J.-D. Boissonnat, D. Cohen-Steiner, B. Mourrain, G. Rote, G. Vegter

(a) (b) (d)(c)

⊕

⊕ ⊕ ⊕

Fig. 5.9. (a) The ambiguous sign pattern cannot arise. The arrows along the sides
indicate the direction in which f cannot be increasing. The little arrows indicate two
normals of a hypothetical solution, which form an angle larger than π/2. (b) The
two intersections with the upper edge are missed, but the straight segment between
the endpoints is isotopic to the true curve. (c) In particular, the curve cannot leave
the adjacent cube without violating the Small Normal Variation condition in the
adjacent cube. Thus, the approximating segment is not only isotopic, it is even
geometrically close. (d) The connections between endpoints in a square can be chosen
by simple local rules

not worry about the termination condition inside the boxes, because they are
automatically fulfilled.

Finally, we insert a mesh vertex on every edge whose endpoints have differ-
ent signs. We have to decide how to connect these vertices inside each square.
Due to the balancing operation, there is only a small number of cases to ana-
lyze. It turns out that there can be zero, two, or four vertices on the boundary
of a square. If there are two vertices, we simply connect them by a straight
line. If there are four vertices, two of them must lie on the same side, since
the case of Fig. 5.9a is excluded. We connect each of them to one of the other
vertices, see Fig. 5.9d for an example.

Theorem 2 ([286]). The polygonal approximation constructed by the algo-
rithm is isotopic to the curve S. ()

The algorithm works similarly for surfaces in three dimensions: The refine-
ment step has the same termination criterion as in the plane. After balancing
the subdivision, a vertex is inserted at every edge with endpoints of opposite
signs. The analysis of the possible cases is now more involved. In particu-
lar, there can be an ambiguity on the face of a box without contradicting
the Small Normal Variation condition, as in Fig. 5.10a. This is because this
condition does not carry over from a cube to a face: The gradient of the re-
stricted function f(x, y, zmax) on a face of the cube is the projection of the
three-dimensional gradient vector ∇f , and two gradient vectors with angles
less than π may form a larger angle after projection.

5 Meshing of Surfaces 199

(b)(a) (c)

??

⊕

⊕

Fig. 5.10. (a) The ambiguous sign pattern can arise on a face of a cube. (b-c) The
ambiguity can be resolved in two possible ways. The two resulting meshes cross the
boundary face in different patterns, but they are isotopic to each other

However, in this case one can insert the two edges arbitrarily in the am-
biguous face. Each choice leads to a different mesh in the two boxes, see
Fig. 5.10b–c. But when the boxes are combined, the two choices lead to iso-
topic meshes.

Fig. 5.10 is representative of the different cases that can arise. One just
has to ensure that the choice of edges is done in a consistent manner for
adjacent boxes, for example, by always favoring the edges which do not cross
the diagonal in direction (1, 1, 0) (Fig. 5.10c) over the alternate choice, or by
consulting the value of f in the middle of the square. The algorithm constructs
a mesh that is isotopic to the surface S.

Comparison with Snyder’s algorithm.

Looking at Fig. 5.10, we can see why Snyder’s algorithm of Sect. 5.2.3 has a
harder time to terminate: it insists on topological correctness within each sin-
gle cube separately. The example of Fig. 5.10 shows that this is not necessary
to get the correct topology in a global level. Snyder’s algorithm may refine
the grid to some unneeded precision when surface interacts with the grid in
an unfavorable way.

Exercise 5. If all three partial derivatives are nonzero in a box X (and hence
f is globally parameterizable in each pair of parameters out of x, y, and z),
then f has Small Normal Variation.

Exercise 6. If f satisfies Small Normal Variation, then it monotone in x, y, or
z, and in particular, it is globally parameterizable in some pair of parameters
out of x, y, and z.

200 J.-D. Boissonnat, D. Cohen-Steiner, B. Mourrain, G. Rote, G. Vegter

Exercise 7. Construct a function f with Small Normal Variation which is
not well-behaved in the sense of Lemma 2, part 2. The function f should
have the property that Small Normal Variation can be established by interval
arithmetic.

Exercise 8. Construct an example of a function which is well-behaved with
respect to a cube X, but is no longer well-behaved after subdividing X into
eight equal subcubes. (For Small Normal Variation, this cannot happen: this
condition carries over to all sub-boxes.)

Exercise 9. This exercise explores the properties of interval arithmetic for
estimating the maximum angle between two gradient vectors in a box X. The
algorithm of Sect. 5.2.4 terminates as soon as the angle between two different
normals is less than 90◦. Consequently, the geometric distance between the
surface and the mesh can only be estimated very crudely; essentially it is
proportional to the size of the box. If the angle bound is smaller, one might
derive better bounds (see Research Problem 3, p. 227).

The standard way to estimate the angle is by the formula

cosα =
〈x, y〉

‖x‖ · ‖y‖

where x, y ∈ �∇f(X). If 〈�∇f(X),�∇f(X)〉 = [a, b] for some interval with
0 < a < b, the standard interval arithmetic calculation leads to a bound of
α ≤ arccos b

a . Assuming that �∇f(X) = ([a1, b1], [a2, b2], [a3, b3]), can one
derive a better bound on α by tackling the problem more directly? By how
much can one improve the crude bound α ≤ arccos b

a? Are there instances
where the crude bound cannot be improved?

Exercise 10. Suppose that f satisfies the Small Normal Variation condition.
Then there is an infinite circular double-cone C (like in Fig. 5.1b) of opening
angle α = 2arcsin

√
1/3 ≈ 70◦ with the following property: When the apex of

C is translated to any point x on the surface S, the two cones lie on different
sides of S and intersect S only in x.
(Hint: α is the opening angle of the largest cone that fits into the first orthant.
On the unit sphere S2 of directions, a set of diameter π (measured in angles)
is contained in a spherical disc of radius (π − α)/2.)

Exercise 11. Prove that the sign pattern on the vertices shown in Fig. 5.11
cannot arise, for a function with Small Normal Variation. (This pattern is
configuration 13 in [286, Fig. 5].)
(This exercise seems to require some geometric arguments which are not
straightforward. The previous exercise may be useful.)

5 Meshing of Surfaces 201

⊕

⊕

⊕

⊕

Fig. 5.11. Is this sign pattern possible when Small Normal Variation holds?

5.3 Delaunay Refinement Algorithms

The Restricted Delaunay Triangulation.

Given a set of points P and a surface S, the Delaunay triangulation restricted
by S is formed by all faces of the three-dimensional Delaunay triangulation
whose dual Voronoi faces intersect S. In particular, it consists of those trian-
gles whose dual Voronoi edges intersect S. In the applications, the points of
P will always lie on S.

Generically, Voronoi vertices will not happen to lie on S; thus, the re-
stricted Delaunay triangulation T contains no tetrahedra; it is at most two-
dimensional. If P is a sufficiently good sample of S, then T will form a surface
that is isotopic to S. A restricted Delaunay triangle xyz is characterized by
the existence of an empty ball through the vertices xyz whose center p lies on
the surface. We call this ball the surface Delaunay ball. It may happen that a
vertex p ∈ P is incident to no edge and no triangle of the restricted Delaunay
triangulation T : then p must lie on a small component of S that is completely
contained in the Voronoi cell V (p). It can also happen that p is incident to
some edges but to no triangle of T .

We will present two algorithms that use the restricted Delaunay triangula-
tion as a mesh. They start with some initial point sample and add points until
it is guaranteed that the restricted Delaunay triangulation forms a polyhedral
surface that is isotopic to the given surface. The algorithms are adaptations
of the greedy “farthest point” technique of Chew [91] in which the points that
are added are centers of surface Delaunay balls.

The algorithms differ in the way how the correct topology is ensured, and
they differ in the primitive operations that are used to obtain information
about the surface. We will present an algorithm of Boissonnat and Oudot,
which is based on the local feature size, and an algorithm of Cheng et al. that
works towards establishing the so-called topological ball property.

202 J.-D. Boissonnat, D. Cohen-Steiner, B. Mourrain, G. Rote, G. Vegter

5.3.1 Using the Local Feature Size

The generic form of Chew’s mesh refinement algorithm is as follows, for the
case of a surface without boundary.

Select some starting sample P ⊂ S, and compute its restricted De-
launay triangulation T . If T contains a “bad” triangle xyz, insert the
center of the surface Voronoi ball of this triangle into P , and update T .

Depending on the definition of “bad” triangle, the algorithm will give different
results. The algorithm can also treat surfaces (and plane regions) with bound-
ary, and in fact, this is the real challenge in the design of the algorithm. For
simplicity, we will discuss only the case of smooth surfaces without boundary.

The local feature size of a point x ∈ S, denoted by lfs(x), is the distance
from x to the closest point on the medial axis, see Fig. 5.12. (See p. 109 in
Sect. 2.7 for the definition of the medial axis; see also Sect. 6.2.2, pp. 244–247,
for a more extensive discussion about the medial axis and the local feature
size.)

In the case of a curve, the local feature size is small where the curve makes
sharp bends, as in the region C of Fig. 5.12. More generally, for a surface,
the curvature radius corresponding to the maximum principal curvature (see
Sect. 4.4.1) at x is an upper bound on lfs(x). The local feature size is also
small when a different part of the curve comes close, as in the region around
A of Fig. 5.12. It is therefore a somewhat natural measure for specifying the
necessary density of the mesh. There are however instances where the local
feature size overestimates the density: for example, two parallel flat sheets
of a surface that approach each other very closely have a small local feature
size, but they can be meshed with few vertices. The local feature size is also
related to the length of the fibers in a tubular neighborhood of the surface,
see Lemma 1, Sect. 5.1.

The local feature size is nonzero if S is smooth at x. It is zero at edges
or other singular points of S. The local feature size is a Lipschitz-continuous
function with constant 1:

lfs(x) − lfs(y) ≤ ‖x− y‖

For a smooth compact surface, the local feature size is therefore bounded from
below by a positive constant lfsmin > 0.

ε-Samples and Weak ε-Samples.

A fundamental concept is the notion of an ε-sample P ⊂ S of a surface S,
introduced by Amenta and Bern [22]. It is defined by the following condition:
For every point x ∈ S, there is a point p ∈ P , such that ‖p− x‖ ≤ ε · lfs(x).

Since lfs(x) is difficult to obtain in practice, one replaces it by some other
function ψ: A ψ-sample P ⊂ S for a function ψ : S → R

+ is a subset with the
following property: For every point x ∈ S, there is a point p ∈ P , such that

5 Meshing of Surfaces 203

A
B

C

x

lfs(x)

Fig. 5.12. A curve, its medial axis, and the local feature at a point x on the curve

‖p − x‖ ≤ ψ(x). Thus, an ε-sample is the same as an (ε · lfs)-sample. It will
always be clear from the context which definition is meant.

Both of these notions are still difficult to check because the definition
involves a condition for infinitely many points x ∈ S. The following concept
relaxes this condition to a finite set of points.

For every surface Delaunay ball with center x and radius r, r ≤ ε ·
lfs(x), or r ≤ ψ(x), respectively.

A point sample with this property is called a weak ε-sample (a weak ψ-sample,
respectively). (Originally, this was called a loose ε-sample [64].)

The difference between ε-samples and weak ε-samples is not too big, how-
ever. It can be shown that every weak ε-sample, for small enough ε is also
an ε′-sample, with ε′ = O(ε) [64, Theorem 1]. To exclude trivial counterex-
amples, one has to assume that, for each connected component C of S, the
restricted Delaunay triangulation of P has a triangle with at least one vertex
on C.

Theorem 3. If P ⊂ S is a weak ε-sample of S for ε < 0.1, and, for every
connected component C of S, the restricted Delaunay triangulation T of P
contains a triangle incident to a sample point on C, then T is ambient isotopic
to S. The isotopy moves each point x ∈ S by a distance at most O(ε2 lfs(x)).

The theorem was first formulated for ε-samples (with the same bound of
0.1) by Amenta and Bern [22], see also Theorem 6 in Chap. 6 (p. 248) for a
related theorem. The extension to weak ε-samples is due to Boissonnat and
Oudot [65].

We give a rough sketch of the proof, showing the geometric ideas, but
omitting the calculations. Let us consider a ball tangent to S in some point

204 J.-D. Boissonnat, D. Cohen-Steiner, B. Mourrain, G. Rote, G. Vegter

x ∈ S. The definition of local feature size implies that such a ball contains no
other point of S as long as its radius is smaller than lfs(x). Thus, when we
draw the two balls of radius lfs(x) tangent to S, it follows that the the surface
must pass between them, and hence, in the neighborhood of x, S must be
more or less “flat”, see Fig. 5.13. By the Lipschitz continuity of lfs, the same
property (with slightly smaller balls) must hold for all other surface points in
the vicinity of x. Consider three points a, b, c ∈ S at distance r = ε · lfs(x)
from x. Then the normal of the plane through these points differs from the
surface normal at x only by a small angle, which can be shown to be O(ε).

We now apply this observation to the situation when x is a center of
a surface Voronoi ball through the vertices a, b, c of a restricted Delaunay
triangle ∆. Since the variation of surface normals is bounded, one can show

b c

S
n

a

x
r

Fig. 5.13. The surface must squeeze between two tangent balls of radius lfs(x)

that the maximum distance from a point of ∆ to the closest point on S is
O(ε2 lfs(x)). It follows that the projection πS that maps every point of ∆ to
the closest point on S is injective: if we extend an open segment of length
lfs(y) from every surface point y to both sides of S in the direction normal
to S, these segments do not intersect, and they can be used as the fibers of
a tubular neighborhood Ŝ of S. Each point of such a segment has y as its
unique closest neighbor on S. For small enough ε, the triangle ∆ is contained
in Ŝ. Thus, the mapping πS defines an isotopy between ∆ and a corresponding
surface patch, as in Lemma 1 and Fig. 5.3a.

5 Meshing of Surfaces 205

One can show that two triangles of T that share an edge or a vertex have
normals that differ by at most O(ε), and the mapping πS extends contin-
uously across the edge or the vertex. It follows that the projection πS is a
homeomorphism that is invertible locally. (In topological terms, πS : T → S
is a covering map, if we can establish that it is surjective.) By assumption,
on every component, there is at least one vertex contained in a triangle of T .
This ensures that πS(T) contains that vertex, and since the mapping can be
continued locally, it follows that every component of S is covered at least once.
It is now still possible that some component is covered more than once by πS .
This would imply that some sample point p ∈ P is covered more than once.
However, one can show quite easily that no point of T except p itself has p as
its closest neighbor on S.

With the help of Lemma 1, one can obtain the desired ambient isotopy
between T and S. ()

The Delaunay refinement algorithm of Boissonnat and Oudot [64] applies
this theorem to obtain a topologically correct mesh. It requires some function
ψ(x) for determining the necessary degree of refinement. The function ψ must
be a lower estimate for the local feature size. To obtain a bound on the running
time, it should be a Lipschitz function with constant 1:

ψ(x) − ψ(y) ≤ ‖x− y‖

The refinement algorithm is an instance of the general Delaunay refinement
algorithm described on p. 202. A triangle with surface Delaunay ball of radius
r centered at x is declared “bad” if r > ψ(x).

Thus the main loop of the algorithm runs as follows. We have to intersect
every Voronoi edge with the surface S. If there is an intersection point x, it is
the center of a surface Delaunay ball, and it is the witness for a corresponding
triangle in the restricted Delaunay triangulation. If the radius r of the ball is
larger than ψ(x), we insert x into P and update the Voronoi diagram. It may
happen that a Voronoi edge intersects the surface more than once. Then we
carry out the test for all intersection points. If follows from the arguments in
the proof of Theorem 3 that at least one point x has r > φ(x) and can be
inserted into P .

The following lemma helps to prove termination of this algorithm.

Lemma 3. Let ψ be a Lipschitz function with 0 < ψ(x) ≤ lfs(x). Consider an
algorithm which successively inserts points into a sample P with the property
that every point p has distance at least ψ(p) from all previously inserted points.
Then the number of points is at most O(H(ψ, S)), with

H(ψ, S) :=
∫

x∈S

1
ψ(x)2

dx.

Proof. This is proved by a packing argument: Let L be the Lipschitz constant
of ψ. First we prove that

206 J.-D. Boissonnat, D. Cohen-Steiner, B. Mourrain, G. Rote, G. Vegter

1
L+ 2

ψ(p) +
1

L+ 2
ψ(q) ≤ ‖p− q‖ (5.3)

for any two points p, q ∈ P . Assume that p was inserted before q. Then, by
assumption, ‖p− q‖ ≥ ψ(q). By the Lipschitz property, we have

ψ(p) ≤ ψ(q) + L · ‖p− q‖ ≤ (L+ 1) · ‖p− q‖,

which implies ψ(p) + ψ(q) ≤ (L+ 2) · ‖p− q‖ and hence (5.3). It follows that
we can draw disjoint disks Dp of radius ψ(p)/(L+2) around all points p ∈ P .
It is not difficult to show that the integral over these disks is bounded from
below: ∫

x∈Dp

1
ψ(x)2

dx ≥ Ω
(1

(L+ 2)2
)

(5.4)

The argument is a follows. The area of Dp is Ω(ψ(p)/(L + 2))2: it can be
somewhat smaller than a plane disk of radius ψ(p)/(L + 2), since Dp lies on
the curved surface S, but since the radius is bounded in terms of the local
feature size, it cannot be smaller by more than a constant factor. By the
Lipschitz property, the integrand cannot deviate too much from the value
1/ψ(p)2 at the center of the disk. Multiplying the integrand by the area of
integration yields the lower bound (5.4). Since the disks Dp are disjoint, it
follows that the number of points is O((L+ 2)2H(ψ, S)).

In a similar way, but using a covering argument instead of a packing argu-
ment, one can prove a lower bound on the size of a weak ε-sample (an hence
on an ε-sample), cf. [150]:

Lemma 4. Let ψ be a Lipschitz function with 0 < ψ(p) ≤ lfs(p). Any ψ-
sample of S with respect to ψ must have at least Ω(H(ψ, S)) points. ()

We still have to ensure that the restricted Delaunay triangulation contains
a triangle on every component. A seed triangle is a triangle in the restricted
Delaunay triangulation with a surface Delaunay ball of radius r ≤ ψ(x)/3,
where x is the center. Since this triangle is so small, one can show that the
refinement algorithm will never insert a point in its surface Delaunay ball.

Lemma 5. If the sample P contains a seed triangle, this triangle will remain
in the restricted Delaunay triangulation. ()

The algorithm starts with sample P that consists of a seed triangle on
every component of the surface. The lemma ensures that this triangle remains
in the restricted Delaunay triangulation till the end, thus fulfilling the last
assumption of Theorem 3. Since

∫
1/ lfs(x)2 dx ≥ Ω(1) on every closed surface,

the extra seed points fall withing the asymptotic bound of Lemma 3.
The following theorem summarizes the conclusions from the above theo-

rems and lemmas about the Delaunay refinement algorithm.

Theorem 4. Let ψ be a Lipschitz-continuous function with Lipschitz con-
stant 1 and 0 < ψ(x) ≤ lfs(x). Suppose that P is initialized with seed triangle

5 Meshing of Surfaces 207

Fig. 5.14. Two meshes constructed by the Delaunay refinement algorithm of
Boissonnat and Oudot [64]

on every connected component of S. Then the Delaunay refinement algorithm
computes a sample of Θ(H(ψ, S)) points. The resulting mesh is a weak ψ-
sample. If ψ(x) ≤ ε · lfs(x) for ε ≤ 0.1, it is ambient isotopic to S. The
isotopy maps every point to a point of distance at most O(ε2 lfsmax). ()

Geometry Improvement.

After obtaining the correct topology, one can improve the geometry of the
mesh by eliminating triangles with small angles (with bad “aspect ratio”).

A triangle is declared “bad” if the minimum angle is below some bound.
This can be done concurrently with the size criterion specified by ψ. If the
bound is not too strict (less than π/6), termination of the algorithm is guar-
anteed. For further details, we refer to [64].

Primitive Operations.

The algorithm needs some lower estimate ψ on the local feature size as external
input. In some applications, such information can be known in advance. As
a heuristic without correctness guarantee, one can also use the distance to
the poles of the Voronoi diagram (roughly, the largest distance to a Voronoi
vertex in the Voronoi cell of each sample point on each side of the surface
(see the definition on p. 236 in Sect. 6.2.1). This is a suitable substitute for
the local feature size, once a reasonably fine starting mesh has been obtained
(Theorem 7 in Chap. 6, p. 249). The distance to the closest pole should be
scaled down by a constant factor, to obtain a lower bound on the local feature
size with some safety margin.

The essential primitive operation during the algorithm is the intersection
of the surface with a Voronoi edge. If the surface is given as a solution set of

208 J.-D. Boissonnat, D. Cohen-Steiner, B. Mourrain, G. Rote, G. Vegter

an equation, this can be written as an equation in one variable. Depending
on the type of the equation, it can be solved exactly with the techniques of
Chap. 3 or numerically with a bisection method or interval arithmetic.

If a Voronoi edge happens to be tangent to the surface or have a “grazing
intersection”, this causes numerical or algebraic difficulties. This is a drawback
that is shared by all algorithms that compute intersections: They may have
numerical or algebraic problems that are not inherent in the problem itself,
but are caused by the added “scaffolding” structure that the algorithm puts
around the surface (a Voronoi diagram, or a grid of cubes like in the previous
section).

On the other hand, once the mesh is sufficiently fine, Voronoi edges that in-
tersect the surface will do so transversally, and the smaller the mesh becomes,
the more perpendicular and numerically well-behaved will be the intersection.
Also, in connection with appropriate conditions like Small Normal Variation,
one can avoid attempts to compute difficult intersections.

Besides the estimate ψ and the computation of intersection points, the
algorithm requires only a small initial seed triangle on every component. One
can construct examples with some tiny components that are missed completely
unless they are specified initially. For instances which are not so complicated,
it is often sufficient to intersect a few random lines with the surface to provide
a starting sample. An alternative approach is to look for critical points on
the surface in some arbitrary direction d, by solving for points where ∇f is
parallel to d. This will insert at least two seed vertices on every component
of S. Then one can test the incidence criterion of Theorem 3 at the end,
by checking whether the seed points are incident to some triangles of the
restricted Delaunay triangulation, and if necessary, restart the algorithm after
a few additional refinements. The surface mesher of Boissonnat and Oudot is
implemented in the Cgal library. Fig. 5.14 shows meshes that were obtained
by this algorithm.

The algorithm is restricted to smooth surfaces, because the local feature
size is 0 at non-smooth points. However, by introducing a new sampling con-
dition, it has been shown recently that the algorithm also works for some
non-smooth surfaces provided that the normal deviation is not too large at
the singular points [66]. Experimental results on polyhedral surfaces, piece-
wise smooth surfaces, and algebraic surfaces with singularities can be found
in [65].

Exercise 12. Assume we know a Lipschitz continuous function φ(x) which is
a lower estimate on the local feature size lfs(x), with φ(x) ≥ φmin > 0. Refine
the analysis leading to Theorem 4 to show that an approximating mesh with
Hausdorff error O(D), for D ≤ φmin, can be obtained by running the Delaunay
refinement of Sect. 5.3 with threshold function ψ(x) :=

√
Dφ(x). Show that

ψ satisfies the assumptions of Theorem 4.

5 Meshing of Surfaces 209

Exercise 13. 1. Take a set P of at least 4 points from a sphere S, but
otherwise in general position. Show that the Delaunay triangulation of P
restricted by S is homeomorphic to S.

2. Find a point set P which lies very close to the sphere S, whose restricted
Delaunay triangulation is not homeomorphic to S.

5.3.2 Using Critical Points

Another meshing algorithm of Cheng, Dey, Ramos and Ray [90] uses a dif-
ferent criterion for topological correctness of the restricted Delaunay trian-
gulation. We say that a point set P on a surface S satisfies the topological
ball property if every Voronoi face F of dimension k in the Voronoi diagram
of P intersects S in a closed topological (k − 1)-ball or in the empty set,
for every k ≥ 0. (For example, the non-empty intersection of a 2-dimensional
Voronoi face F with the surface must be a curve segment.) Moreover, the inter-
section must be nondegenerate, in the following sense: the (relative) boundary
of the intersection must coincide with the intersection of S with the bound-
ary ∂F . (For example, it is forbidden that an interior point of the curve
segment in the above example touches the boundary of F .)

Theorem 5 ([138]). Let P be a non-empty finite point set. The Delaunay
triangulation of P restricted by a surface S is homeomorphic to S if the topo-
logical ball property is satisfied.

In the paper [138], where this property was introduced, it was called the closed
ball property, see also Theorem 1 in Chap. 6 (p. 241).

The topological ball property is by itself not restricted to smooth sur-
faces. However, the termination proof of the algorithm and the methods that
are used to establish the topological ball property are restricted to surfaces
without singularities, defined by a smooth function f .

Instead of using some quantitative argument as in Sect. 5.3.1, the algo-
rithm that we are going to describe tries to establish the topological ball prop-
erty directly. For this purpose, we need some computable conditions which
imply the topological ball property for a given surface f(x) = 0. These condi-
tions will be given in the sequel. In each case, testing the condition involves
finding a point on the surface with certain criticality properties, which reduces
to the task of solving a system of equations involving f and its derivatives.
There will be three equations in three unknowns, and thus generically a zero-
dimensional set of solutions. If f is a polynomial, the number of solutions will
be finite and the techniques of Chap. 3 can be applied to solve the problem
exactly, thereby leading to a provably correct algorithm. In this section, how-
ever, we will restrict ourselves to the task of setting up the geometric and
topological conditions and deriving the corresponding systems of equations.

The following lemma gives a sufficient condition for a two-dimensional
surface patch to be isotopic to a disk.

210 J.-D. Boissonnat, D. Cohen-Steiner, B. Mourrain, G. Rote, G. Vegter

Lemma 6 (Silhouette Lemma). Let M ⊂ S be a connected, compact 2-
manifold whose boundary is a single cycle, and let d ∈ S

2 be an arbitrary
direction. If M contains no point whose normal is perpendicular to d, then it
is a topological disk.

See Exercise 14 for a proof. The set of points whose normal is perpendicular
to d is called the silhouette of the surface S in direction d. Algebraically, it
is defined by the condition 〈∇f, d〉 = 0 (and f = 0), which specifies a one-
dimensional family of solutions. Generically, it is a set of smooth curves.

The algorithm performs a sequence of four tests to establish the topological
ball property. If any test fails, a new sample point is identified. This point is
inserted into the sample, and the restricted Delaunay triangulation is updated.
We assume throughout that no Voronoi vertex lies on S. (If this case should
happen, it can be resolved by perturbing the set P slightly, either by a small
random amount, or conceptually with symbolic perturbation [136, 344]. In
this way, one can also ensure that P contains no 5 co-spherical points, and
thus the Delaunay triangulation is indeed a proper triangulation.)

(1) For a Voronoi edge e, the topological ball property amounts to requiring
that e intersects S in at most one point (but not in one of its endpoints).

Thus, we look at each Voronoi edge e in turn, and intersect e with S.
If there is more than one intersection, then insert the intersection point p∗

which is farthest from p, where p is the sample point in any Voronoi cell to
which e belongs. (The choice of p has no influence on the distances to p∗.) The
possibility that the intersection point is an endpoint of e, and thus a Voronoi
vertex, has been excluded above.

(2) The second check is some topological consistency check for the re-
stricted Delaunay triangulation T . (The purpose of this test will become ap-
parent later.) We check if T is a two-dimensional manifold: each edge must
be shared by exactly two triangles, and the triangles incident to each vertex
p must form a single cycle around p. If this holds, these triangles form a topo-
logical disk around p. If the test fails for some vertex p or for some edge pq,
we intersect all edges of the Voronoi cell of p with S and insert into P the
intersection point p∗ which is farthest from p.

(3) Next, we look at each Voronoi facet F . The topological ball property
requires that F intersects S in a single curve connecting two boundary points.
In general, the intersection F ∩S could consist of several closed curves or open
curves that end at the boundary of F .

Suppose that F is the intersection of the Voronoi cells V (p) and V (q).
First, we exclude the possibility of some closed loop. If there is a closed loop,
then it must have an extreme point in some direction. Thus, we choose some
arbitrary direction d in F and compute the points of F ∩ S with tangent
direction d. Algebraically, this amounts to finding a point x on F ∩ S where
the surface normal ∇f is perpendicular to d in R

3. We take the line l in F
that is perpendicular to d and goes through x, and we intersect l it with S. If
x is part of a cycle, then l must intersect S in a point x∗ of F different from x.

5 Meshing of Surfaces 211

Among all such points x∗, we choose the one with largest distance from p and
insert it into P . If necessary, we have to repeat this test for each critical point
x which lies in F .

If no point p∗ is found in this way, we have excluded the possibility of a
closed cycle in F ∩ S. F ∩ S might still consist of more than one topological
interval. However, since no Voronoi edge intersects S in more than one point,
S must intersect more than two Voronoi edges of F . This means the dual
Delaunay edge pq of F is incident to more that two triangles in the restricted
Delaunay triangulation, violating the topological disk condition for p and q
that was established in (2).

Thus, we have established the topological ball property for all Voronoi
edges and for all two-dimensional Voronoi faces.

(4) Finally, we have to check that the surface forms a topological disk
in each Voronoi cell V (p). Because of the test (2), we already know that S
intersects the boundary of V (p) in a single cycle. However S could still contain
a handle or some more involved topological structure inside V (p). To exclude
this possibility, we use the Silhouette Lemma (Lemma 6). We take the normal
direction d = ∇f(p) in the point p and look at the silhouette in that direction,
defined as the set of points whose normal is perpendicular to d. Arguing in the
same was as in (3), a silhouette can either form a cycle inside V (p), or it must
intersect the boundary. We choose an arbitrary direction d′ ⊥ d, and we look
for a critical point in direction d′ on the silhouette curve; we also intersect the
silhouette with all boundary facets of V (p). If we find any point in V (p) in
this way, we insert it into the sample. (It is not necessary to choose the point
farthest from p.) Otherwise, we know that no silhouette exists in V (p), and
the surface must be a topological disk.

For intersection of the silhouette with a plane, we have the two equations
characterizing the silhouette:

f(x) = 0, 〈∇f(x), d〉 = 0,

and the plane equation, leading to a 0-dimensional solution set. The third
equation for defining the critical point in direction d′ can be worked out as
the condition that the three vectors Hf (x) · d, d′, and the gradient ∇f(x)
should be coplanar:

det(Hf (x)d, d′,∇f(x)) = 0, (5.5)
where Hf (x) is the Hessian matrix at x.

If we start the algorithm with an empty sample set P = ∅, the algorithm
will directly proceed to step (4) to find a critical point on some silhouette
(in an arbitrary direction). Any component of S without sample points has
a silhouette with critical points (for any directions d and d′) and will thus
eventually be detected. Of course, any other method to find some seed points
on the surface is also appropriate for starting the algorithm. Cheng et al. [90]
propose to initialize P with all critical points of S in the vertical direction.

Here is a summary of the Topology Refinement Algorithm to obtain a
topologically correct mesh.

212 J.-D. Boissonnat, D. Cohen-Steiner, B. Mourrain, G. Rote, G. Vegter

Check the conditions given in (1)–(4), in this order. If any condition
fails, it defines a new point. Insert it into P and update the Voronoi
diagram. Continue the process till no new point is inserted.

As discussed above, this process ensures that the topological ball property
holds when the algorithm terminates, and therefore, the restricted Delaunay
triangulation is a homeomorphic mesh for S. It is however, not known whether
the mesh is actually isotopic to S, see Research Problem 4 on p. 228.

The proof of termination assumes that f is smooth and defines a smooth
compact surface S, and it is based on the local feature size. One can show that
a new point p∗ that is inserted has distance at least k · lfs(p) from all previous
points, for k = 0.06. Therefore, Lemma 3 applies and gives the explicit bound
|P | = O(H(S, lfs)). (Note that the algorithm does not have to know the local
feature size.)

The tests in (1) and (2) insert centers of surface Delaunay balls and fall
within the framework of Delaunay refinement. The tests in (3) and (4) are
different and require more involved computations.

The above discussion has ignored a few degenerate cases which do not
happen in practice, but which need to be excluded nevertheless, to obtain
a certified method. For example, in step (3), the intersection S ∩ F with a
Voronoi face might be tangent to a third edge between its two endpoints. This
would violate the topological ball property for F because the boundary of the
intersection S ∩ F does not coincide with the intersection S ∩ ∂F with the
boundary. However, this situation would lead to an extra triangle incident
to the Delaunay edge pq and be detected in step (2). It is possible that the
intersection S ∩ F is formed by S being tangent to F from one side, either
in a point, in a curve, or even in a two-dimensional area. This would be in
violation of the topological ball property for one of the incident cells V (p)
or V (q). However, such a point of tangency is detected by the geometric
condition of having a surface normal ∇f perpendicular to d, in step (3), and
can be inserted into the sample.

Improving the Geometry.

The mesh obtained in this way has the correct topology, but it may still be
a very rough approximation. As in the Delaunay refinement algorithm of the
previous section, one can refine the mesh in order meet various geometric
quality criteria. One can eliminate triangles with small angles or edges with
sharp face angles between adjacent triangles. This refinement may destroy the
correct topology, hence it is necessary to go back to steps (1)–(4) and then
come back for another round of geometry improvement, and so on, until the
process stabilizes. It can be shown that the asymptotic upper bound |P | =
O(H(S, ψ)) from Lemma 3 still applies (with a different constant), and hence,
the method terminates, for smooth surfaces.

5 Meshing of Surfaces 213

Primitive Operations.

The only primitive operation is the solution of systems of equations involving
the function f and its derivatives, and various plane or line equations that
come from the Voronoi diagram. These equations have generically a zero-
dimensional set of solutions, and thus are amenable to techniques of Chap. 3
and to software such as Synaps, in the case of an algebraic function f . In
contrast to the Delaunay refinement algorithm of the previous section, the
equations go beyond intersecting a line segment with the surface: they involve
derivatives of f up to second order.

On the other hand, no a-priori knowledge or estimate about the local
feature size or the location of different connected components is required by
this algorithm.

Polyhedral Input.

This Delaunay refinement algorithm has been extended to the case when the
input is already a polygonal surface S whose dihedral angles are not too sharp
(bigger than π) [126]. For example, S can come from a sufficiently fine sample
of a smooth surface. Actually this falls into the area of remeshing, which is
not within the scope of this chapter, but the algorithm is based on the same
ideas as for the smooth case. It is is implemented in SurfRemesh software
by Tamal K Dey and Tathagata Ray1. Of course, for a polyhedral input
surface, some simplifications are possible. The algorithm refines the surface
with Delaunay triangles that have bounded aspect ratio, and it achieves a
small approximation error.

Exercise 14. Prove the Silhouette Lemma (Lemma 6) by projecting M in
direction d onto a plane.

Exercise 15. Prove that the points which are critical in direction d′ on the
silhouette in direction d are defined by (5.5).

5.4 A Sweep Algorithm

Mourrain and Técourt [263, 327] have proposed a meshing algorithm for al-
gebraic surfaces that is based on sweeping a vertical plane over the surface.
We have already seen in previous sections that critical points play a crucial
role in determining the topological structure of a surface. Accordingly, the
algorithm uses certain critical points to guide the sweep. In contrast to previ-
ous methods discussed in this chapter, this algorithm makes no smoothness or
regularity assumptions about the input surface (other than those which follow
from being an algebraic surface). The algorithm works for surfaces with self-
intersections, fold lines, or other singularities. On the other hand, it makes

1http://www.cse.ohio-state.edu/˜tamaldey/surfremesh.html

214 J.-D. Boissonnat, D. Cohen-Steiner, B. Mourrain, G. Rote, G. Vegter

no guarantees about the geometric accuracy of the mesh, and it cannot be
extended in a straightforward way to provide a more accurate mesh.

We first give a rough overview, concentrating on the geometric ideas. We
will then discuss the primitive geometric operations that are necessary. In the
case of algebraic surfaces, these operations can be carried out exactly.

The algorithm cuts the surface M into vertical slabs by a series of planes
parallel to the y-z-plane in such a way that, between two successive planes,
the surface has a “trivial” structure that can be constructed easily. Fig. 5.15
shows a mesh for a torus shape that is constructed in this way. Before meshing

Fig. 5.15. A triangular mesh for a torus constructed by connecting a sequence of
vertical cuts. The mesh is shown both as a surface and as a transparent skeleton.
The vertices and edges are marked according to the conventions of Fig. 5.16 and
Fig. 5.17 below

the surface between the planes, we first have to construct the intersection of M
with each plane. This is the meshing problem for a plane curve. The algorithm
solves this problem in an analogous way, cutting it by vertical lines through
certain critical points, finding the intersections with these lines, and connect-
ing the points between them. Thus, the algorithm proceeds by induction on
the dimension.

We first discuss the problem of finding a topologically correct mesh for a
planar curve C, in the form of a planar straight-line graph which is ambient
isotopic to C. This algorithm is due to González-Vega and Necula [185]. We
will assume throughout that C and M contains no straight line segment which
is vertical. (This can most conveniently be achieved by a sufficiently random
rotation of the coordinate system; alternatively, one can handle vertical parts
explicitly.) For simplicity of exposition, we will also assume that the curve or
surface is bounded. The algorithm can also deal with curves and surfaces that

5 Meshing of Surfaces 215

are clipped by a bounding box or sphere, and it can be extended to handle
algebraic surfaces with infinite parts.

5.4.1 Meshing a Curve

We want to construct an embedded planar straight-line graph which is isotopic
to the solution set of the equation f(x, y) = 0. First we compute the x-
coordinates of all potential “critical points”: points where the curve has a
vertical tangent, or where it crosses itself or has some other singularity. These
points are characterized by the equation

fy(x, y) = 0, f(x, y) = 0. (5.6)

Let X be the finite set of x-coordinates of the solutions of this system of
equations. In the x-interval between two successive critical points, the solution
consists of a constant number of x-monotone curves, since fy(x, y) �= 0, and by
the implicit function theorem, the curve can be locally written as a graph of a
function y = h(x), see Fig. 5.16. To make life easier, we insert an intermediate

Fig. 5.16. A plane curve and its critical points (full circles). The vertical lines
through the critical points and the additional lines between the critical points (dot-
ted) define the polygonal mesh. In the left part, the isotopy that maps the curve to
the meshed curve is indicated

x-value between each pair of successive values of X. Now, for each value x in
this enlarged set, we intersect the curve with the vertical line at x. (This is
nothing but the one-dimensional version of the meshing problem.) We get a
discrete set of points on each vertical line. By construction, the intersection
equation has only simple roots at each intermediate value x, whereas it has
at least one multiple root at each value of X.

Now that we have the points on each vertical line, we need to figure out
how to connect them. For each point, we need to know how many parts of

216 J.-D. Boissonnat, D. Cohen-Steiner, B. Mourrain, G. Rote, G. Vegter

the curve emanate on each side. For a simple root (including all points on the
intermediate lines) there is one piece emanating on each side. For the critical
points (multiple roots), we have to use algebraic tools to find this information.
This is described in detail in Sect. 3.6.1 and Sect. 3.6.2. In each vertical slab,
we now scan the points from bottom to top and connect them simply by a
straight segment, taking into account the multiplicity of emanating arcs, see
Fig. 5.16. By adding the intermediate lines, we have ensured that these line
segments are disjoint. (In the example of Fig. 5.16 we could not connect points
on the first and third line directly by straight segments if the second line were
not there.)

The resulting graph is ambient isotopic to the given curve. We can even
explicitly construct an isotopy of a very restricted kind, because all we have
to do is to move points vertically upward or downward from each curve piece
to the corresponding segment, as indicated in Fig. 5.16. The points on the
vertical lines remain fixed.

Finally, we summarize the geometric primitives that we need to provide
in order to make this algorithm work:

• We must be able to find all critical points by solving (5.6).
• We must find the intersection of the curve with a vertical line. (Some of

these lines are defined by going through a critical point.)
• For each point on one of the lines, we must be able to determine how many

branches of the curve emanate to the left and to the right.

For the case of an algebraic curve, Sect. 3.6.1 and Sect. 3.6.2 describe how
this can be done in an exact manner.

5.4.2 Meshing a Surface

Now that we know how to mesh a curve, let us proceed to a surface f(x, y, z) =
0 in space. Our goal is to find uniform regions in the x-y-plane where the
surface can be regarded as a family of a constant number of function graphs
of the form z = h(x, y). We therefore have to cut the surface at the points
of self-intersection and the points that have vertical tangents (the silhouette).
These points form the polar variety C, which is defined by

fz(x, y, z) = 0, f(x, y, z) = 0. (5.7)

This system of two equations in three variables will in general have a one-
dimensional solution space, consisting of curves on the surface M . (The points
of self-intersection, as well as other sorts of critical surface points, satisfy in
fact the stronger condition fx(x, y, z) = fy(x, y, z) = fz(x, y, z) = 0, and
hence they are included in the solution of (5.7).) When we cut the surface
at the polar variety, we obtain x-y-monotone surface patches that can be
parameterized in x and y.

As discussed in the beginning, we partition the surface into vertical slabs by
planes perpendicular to the x-axis, in such a way that, between two sections,

5 Meshing of Surfaces 217

the topology of the surface “does not change”. The points at which we cut
will be called slab points. These points include all x-critical points of the polar
variety, as well as all points where the projection of the polar variety on the
x-y-plane intersects itself.

The system of equations that characterize the x-critical points has been
given in (5.5) for two general directions d and d′. In our case, d is the z-
direction and d′ is the x-direction. Thus, the critical points are given by the
system

(fz · fyz − fy · fzz)(x, y, z) = 0, fz(x, y, z) = 0, f(x, y, z) = 0. (5.8)

This includes the x-critical points of the surface itself, i. e., the points where
x has a local extremum: these points have a tangent plane perpendicular to
the x-axis, and a fortiori a vertical tangent line, and therefore they lie on
the silhouette. There are cases when the system (5.8) does not have a zero-
dimensional solution set, and therefore it cannot be used to define slab points.
(The example of Fig. 5.20 below is an instance of this.) In these cases, one
must modify the system to obtain a finite set of slab points, as described
in [263, 327].

The points where the vertical projection of the polar variety onto the x-
y-plane crosses itself are the points (x, y) for which (5.7) has more than one
solution z. For a polynomial f , these points can be found by computing the
resultant of the polynomials in (5.7), see Chap. 3 for details. A slab point (x, y)
of this type will be called a multiple slab point if more than two curves of the
polar variety pass through the vertical line at (x, y) without going through
the same point in space.

We make the following important nondegeneracy assumption:

There is a finite set of slab points, there are no multiple slab points,
and no two slab points have the same x-coordinate.

This assumption excludes for example a surface which consists of two equal
spheres vertically above each other. The two silhouettes (equators) would
coincide in the projection. It also excludes a torus with a horizontal axis, or a
vertical cylinder (for which the polar variety would be two-dimensional), for
the same reason. Such cases are very special, and they can easily be avoided
by a random transformation of the coordinate system. Still, any number of
curves of the polar variety may go through the same point in space, and in
particular, the surface can have self-intersections of arbitrary order. Thus, the
nondegeneracy assumption is no restriction on the generality of the surface M .

Now we proceed as in the planar case. We take the x-coordinates of all
slab points, we add intermediate “regular” x-values between them, and we
compute all vertical cross-sections at these values, using the algorithm of
Sect. 5.4.1 for plane curve meshing. Note that the intersections of the polar
variety with the vertical planes become critical points for the two-dimensional
meshing problem. This can be seen by comparing (5.7) with (5.6), noting that
the z-coordinate of our three-dimensional problem becomes the y direction of

218 J.-D. Boissonnat, D. Cohen-Steiner, B. Mourrain, G. Rote, G. Vegter

the two-dimensional problem. The algorithm produces in each vertical plane
a planar graph that is ambient isotopic to the cross-section. The isotopy has
only deformed the curves vertically.

Now, as we look at a slab from the top, the polar variety will form x-
monotone non-crossing curves from one plane to the next, as in Fig. 5.17a.
The strip between the boundaries is divided into triangular and quadrangular
regions that are bounded by two curves of the polar variety C, and one or two
straight pieces from the boundary walls. (In addition, there are the unbounded
regions at the extremes, but by the boundedness assumption on the surfaceM ,
there cannot be any part of M in these areas.) We must find the correct
assignment between the critical points on the two planes that have to be
connected by the polar variety in the projection. By construction, one of the
planes is an “intermediate” plane without a slab point; so each critical point
is incident to one piece of C. By assumption, the other plane contains at
most one slab point, and we know which one it is. We can therefore find
the correct connections by assigning critical points in a one-to-one manner,
with the projected slab point absorbing the difference between the number of
critical points on the two sides. In the mesh, these pieces of C will be replaced
by straight line segments, see Fig. 5.17b. Fig. 5.17 shows an example where
the critical points in the regular cross-section outnumber the critical points
on the other side, and thus s has to accept two connections. A different case
arises if s is a local x-minimum of the surface, or in the situation of Fig. 5.19:
s receives no connections at all from the left.

x

y

(a)

s

x

y

(b)

s

x

y

(c)

Fig. 5.17. (a) Vertical projection of the polar variety between two planes. The
critical points in each vertical plane are marked by full circles. The plane on the
right contains a slab point s, the plane on the left is a “regular” cross-section.
(b) Vertical projection of the resulting mesh. (c) The horizontal component of the
isotopy

Now we have to construct the surface pieces. Above each region of the pro-
jected picture, the surface M consists of a constant number of x-y-monotone

5 Meshing of Surfaces 219

(a) (b)

1

2

3

1

2

3

s s

Fig. 5.18. Connecting a region in several layers: (a) A simple situation with three
layers above the projection and a one-to-one assignment between two successive
cross-sections. The pieces of the polar variety are shown in thick lines. The figure
on the left includes a piece of the surface from an adjacent region, to show how the
segment projected polar variety in the projection arises. This part of the surface will
be meshed as part of the adjacent region. (b) Four layers over a triangular region.
Three parts of the surface intersect in the point s, which is therefore a slab point

s sa b

1

2

3

1

2

3

Fig. 5.19. Connecting a quadrilateral region in several layers: The triangulation of
the region must avoid to connect the critical point s with the boundary points a
and b on the other side, because otherwise the first and second layer of the surface
would touch along this diagonal. This situation occurs for example in the second
slab for the torus of Fig. 5.15

220 J.-D. Boissonnat, D. Cohen-Steiner, B. Mourrain, G. Rote, G. Vegter

surface patches. The number of patches is determined by any point in the x-
y-plane which does not lie on the projection of C, for example, at the “inter-
mediate” vertical lines from the cross-sections (the open circles in Fig. 5.17b).
It is now a straightforward matter to connect the cross-sections above each
region. We choose some triangulation of the region (as indicated in Fig. 5.17b)
and use this triangulation to connect the pieces in all layers. Over a quadrilat-
eral region, one can simply connect the curve pieces in the two cross-sections
one by one from bottom to top, see Fig. 5.18a. The situation can be more in-
volved over a triangular region, see Fig. 5.18b for an example. However, there
is always a unique way to connect the cross-sections, if one takes into account
the information from adjacent regions. Fig. 5.19 shows a situation where the
triangulation of the region cannot be chosen arbitrarily. There are degenerate
situations which are more complicated, for example when more than three
surface patches intersect in the same point, or when an x-minimal point on
a self-intersection curve has at the same time a vertical tangent plane. Since
we know that there is only one slab point on every vertical line and we know
which point it is, these cases can also be resolved.

It is clear that the resulting triangles do not cross, and hence form a
topologically correct mesh of the surface above each region. One can even write
down the ambient isotopy between the surface and the mesh: In a first step,
one transforms only the y coordinates to deform Fig. 5.17a into Fig. 5.17b,
see Fig. 5.17c:

(x, y, z) �→ (x, g(x, y), z),

for some continuous function g : [x1, x2] × R → R that is monotone in y for
each value of x, similarly to the two-dimensional case. More explicitly, g is
defined for all points on the projection of C by the condition that they must
be mapped to the corresponding straight line segments. Between these points,
g is extended by linear interpolation in y. For x = x1 and x = x2, we have
g(x, y) = y: the two boundary planes are left unchanged.

In a second step, we only have to deform the surfaces vertically. Note that
this coincides with the isotopy that is defined for each vertical slab by the
planar curve meshing procedure. Thus, by concatenating the two isotopies
(first in the y-direction and then in the z-direction) and gluing them together
across all slabs, we get the isotopy between M and the mesh.

Theorem 6. The mesh constructed by this algorithm is ambient isotopic to
the surface M .

For an algebraic surface, one can analyze the number of solutions that the
equations arising in the course of the solution might have [263, 327]:

Theorem 7. For an algebraic surface of degree d, the algorithm constructs a
mesh with at most O(d7) vertices.

Note that the solution set M of the equation f(x, y, z) = 0 may not be a
surface at all. Of course, without any smoothness requirements whatsoever,

5 Meshing of Surfaces 221

M could be some “wild” set. But even when f is a polynomial (the case of
an algebraic “surface”), M can be a space curve or a set of isolated points. It
can even be a mixture of parts of different dimensions, for example the union
of a sphere and a line through the sphere, plus a few isolated points. The
algorithm can be extended to handle these cases.

In particular, if the set M contains a space curve C, then all points on
that curve will automatically form part of the polar variety. Figs. 5.20–5.21
show an example of a sphere and a line that are defined by the equation

(x2 + y2 + z2 − 1)
(
(x+ z)2 + (y + z)2

)
= 0.

In such cases, the connection between two vertical sections will contain edges
with no incident triangles.

x
y

z

Fig. 5.20. The union of a sphere and a line, and the first half of the vertical cross-
sections. The cross-sections in the right half are symmetric. The slab points are
marked white

In fact, when the curve meshing problem (Sect. 5.4.1) is used as a sub-
routine for the surface meshing problem, degenerate cases of this type will
occur. For example, an x-critical point p of M which is a local minimum or
maximum in the x-direction will become an isolated point in the vertical plane
through p. A saddle point in the x-direction will become a double point of the
curve.

Finally, let us recall the geometric primitive that is needed, in addition to
those that are necessary for the curves in the two-dimensional vertical cross-
sections:

• We must be able find all slab points.

222 J.-D. Boissonnat, D. Cohen-Steiner, B. Mourrain, G. Rote, G. Vegter

Fig. 5.21. The mesh for the example of Fig. 5.20. For better visibility, the vertical
sections have been separated by a large amount. Again, only the left half of the
mesh is shown

It is implicit that we can check whether a finite set of slab points exists,
whether two slab points have the same x-coordinate, or when a multiple slab
point occurs. Thus, when at any time in the algorithm, we find that our
basic assumption is violated, we can simply perform a sufficiently generic
transformation of the coordinates and start from scratch. For details about
how this primitive can be carried out for the case of an algebraic surface, we
refer to [263, 327].

The two-dimensional subproblems arise from intersectingM with a vertical
plane, i.e., by substituting the variable x by some constant (which is often the
x-coordinate of some slab point).

As a by-product, the algorithm produces a mesh of a space curve, namely
the polar variety on M , defined by two polynomial equations (5.7). The algo-
rithm can be extended to construct a topologically correct polygonal approx-
imation for a space curve that is defined by two arbitrary polynomials [177].

Finally, let us step back and look at the algorithm from a broader perspec-
tive. Some ideas recur that we have already seen in connection with Snyder’s
algorithm (Sect. 5.2.3): the algorithm proceeds by induction on the dimen-
sion, and the condition when it is safe to construct a mesh is very similar to
global parameterizability, except that there are several curve pieces (a con-
stant number of them), each of which is parameterizable.

Silhouettes and the polar variety, which play an important part in this
algorithm, are also used in the algorithm of Cheng, Dey, Ramos and Ray [90]
of Sect. 5.3.2 to avoid complicated topological situations.

Exercise 16. By applying a random transformation of coordinates, one can
assume in the meshing algorithm for an algebraic curve (Sect. 5.4.1) that no
two critical points have the same x-coordinate. Is this statement still true

5 Meshing of Surfaces 223

when the curve meshing algorithm is used as a subroutine for the vertical
sections of the surface meshing algorithm (Sect. 5.4.2)?

5.5 Obtaining a Correct Mesh by Morse Theory

5.5.1 Sweeping through Parameter Space

Stander and Hart [324] proposed a method for obtaining a topologically cor-
rect mesh that is based on sweeping through the family of surfaces f(x, y, z) =
a for varying parameters a and watching the critical points where the topology
changes. Morse theory (see Sect. 7.4.2 on p. 300) classifies these changes. This
method works theoretically, but there is no completely analyzed guaranteed
finite algorithm to implement it. We sketch the main idea of this method.

For a given parameter a, the surface f(x, y, z) = a can be interpreted as
the level set of a trivariate function f : R

3 → R. The idea is to start with a
very small (or very large) value a for which f(x, y, z) = a has no solution, and
to gradually increase a until a = 0 and the surface in which we are interested
is at hand. This is related to the space sweep method of Sect. 5.4, except that
it works in one dimension higher: It sweeps a hyperplane a = const through
the four-dimensional space of points (x, y, z, a) and maintains the intersection
with the hypersurface f(x, y, z) = a.

As a varies, the surface “expands” continuously, except when a passes a
critical value of f , where the topology changes. A critical value is the value of
f at a critical point, i. e., at a point x where ∇f(x) = 0. (These are precisely
the values that we have avoided in the discussion so far, by assuming that
the surface has no critical points.) At a non-degenerate critical point x, the
Hessian Hf has full rank, and the number of its negative eigenvalues (the
Morse index) gives information about the type of topology change. A critical
value of Morse index 0 or 3 is a local minimum or maximum of f , and it
corresponds to the situation when a small sphere-like component of the surface
appears or disappears as a increases. The more interesting cases are the saddle
points, the critical points of Morse index 1 and 2. Generically, they look like a
hyperboloid x2 +y2 −z2 = a in the vicinity of the origin, for a ≈ 0. For a > 0,
we have a hyperboloid of one sheet, and for a < 0, we have a hyperboloid of
two sheets, see Fig. 5.22. The transition occurs at a = 0, where the surface is a
cone. Depending on the Morse index (1 or 2), the transition in Fig. 5.22 takes
place from left to right or from right to left as a increases. The eigenvectors
of the Hessian give the coordinate frame for rotating and scaling the picture
such that it looks like the standard situation in Fig. 5.22.

Degenerate critical points, where the Hessian Hf does not have full rank,
would pose a difficulty for this approach. They can be avoided by multiplying
f by some suitably generic positive function g like g(x) = a+‖x−b‖ for some
arbitrarily chosen scalar point b and scalar a > 0.

The algorithm of Stander and Hart [324] proceeds as follows: First we
compute all critical points and critical values. This amounts to solving a 0-

224 J.-D. Boissonnat, D. Cohen-Steiner, B. Mourrain, G. Rote, G. Vegter

(a) (b) (c)

Fig. 5.22. The change of the surface at a saddle point of f . Two separate pieces of
the surface (a) come together in a pinching point (b) and form a tunnel (c)

dimensional system of equations. Then we let a vary from a = amin, where the
surface is empty, to a = 0 in small steps. At each step, we maintain a mesh of
the surface f(x, y, z) = a. Between critical values, we simply update the mesh.
We know that the surface has no singularities, and we know that the topology
is unchanged from the previous step. Any standard continuation method that
builds a mesh on each component of the surface, taking into account Lipschitz
constants for ∇f , can be applied.

At a critical point, we have to implement the appropriate topological
change in the surface. A critical point of index 0 is easy to handle: One just
has to generate a small spherical component of the surface. A critical point
of index 3 is even easier: a small spherical component is simply deleted.

At a critical point, we have to implement the topological change indicated
in Fig. 5.22. Going from left to right, two surface patches meet, forming a
tunnel. We shoot rays from the origin in the positive and negative z direction
(which is given by one of the eigenvectors of the Hessian), and remove the two
mesh triangles that we hit first. Connecting the two triangles by a cylindrical
ring establishes the new topology.

Going from right to left corresponds to closing a tunnel and separating
the surface into two pieces which are locally disconnected. We intersect the
x-y-plane with the surface and remove the ring of intersected triangles. By
triangulating the two polygonal boundaries that are formed in the upper and
in the lower half-plane, the two holes are closed.

To make a rigorous and robust method, one has to analyze the required
step length that makes the approximations work, but this has not been done
so far. Also, the complexity of the resulting mesh has not been analyzed.

5.5.2 Piecewise-Linear Interpolation of the Defining Function

The method of Boissonnat, Cohen-Steiner, and Vegter [61] also uses Morse
theory, but in a more indirect way. The basic idea is to output the zero-set
of a piecewise-linear interpolation of the defining function f . More precisely,

5 Meshing of Surfaces 225

let S = f−1(0) denote the surface that we want to mesh, and assume S is
contained in some bounding box. Let T denote a tetrahedral mesh of this
bounding box, f̂ be the function obtained by linear interpolation of f on T ,
and set Ŝ = f̂−1(0). The algorithm consists in building a tetrahedral mesh T
such that the output mesh Ŝ is isotopic to S.

A B

C

D
E

F
G

A BC

D

E
F

G

0

100

200

0

−100 −100

−100

0

−100

200

100

−100

0

200100

100 100

A B

C

D
E

F
G

A B
C

D

E
F

G

0

100

200

0

−100 −100

−100

0

−100

200

100

−100

0

200

100

100 100

−100

0

100

100

0

f

g

0

Fig. 5.23. Critical points do not determine the topology of level sets. The two
functions have the same critical points of the same types at the same heights, but
different level sets at level 0. Minima and maxima are indicated by empty and full
circles, and crosses denote saddle points. On the right, the corresponding contour
trees (Sect. 7.4.2) are shown

To ensure that this is the case, the mesh T must of course satisfy certain
conditions. From Morse theory, one might require that f and f̂ have the same
critical points, the same value at critical points, and the same types of critical

226 J.-D. Boissonnat, D. Cohen-Steiner, B. Mourrain, G. Rote, G. Vegter

points. Unfortunately, this is not sufficient even for implicit curves in the
plane. Indeed, the situation in figure 5.23 is a two-dimensional example of
two zero-sets S = f−1(0) and S′ = g−1(0) (boundaries of the grey regions)
which are not homeomorphic, though their defining functions have the same
critical points, with the same values and indices. In this example, g cannot be
obtained from f by piecewise-linear interpolation, but it is possible to design
examples where this is the case.

Therefore, additional conditions are required. A sufficient set of conditions
is given in the theorem below, which is the mathematical basis of the algo-
rithm. The theorem is based on Morse theory for piecewise-linear functions,
see [41, 42, 61]. We present a simplified version here. We assume that every
critical point of f is a vertex of T . The local topology at a critical point s
of f (or f̂) is characterized by the Euler characteristic of the lower link at s.
Loosely speaking, the lower link can be defined as the intersection of the lower
level set f−1((−∞, f(s)]) with a small sphere around s. The lower link is ac-
tually defined only for a piecewise linear function f̂ on a triangulation T , as
a certain subcomplex of T . If f is a Morse function and s is a critical point
with Morse index i, the Euler characteristic if the “lower link” according to
the definition above is 1 − (−1)i, see Exercise 3 in Chap. 7 (p. 311).

Theorem 8. Assume f and f̂ have the same critical points. At each critical
point s, f and f̂ have the same value, and the lower link of s for f has the same
Euler characteristic as the lower link for f̂ . Suppose there is a subcomplex W
of T satisfying the following conditions:

1. f does not vanish on ∂W .
2. W contains no critical point of f .
3. W can be subdivided into a complex that collapses onto Ŝ (see Sect. 7.3,

p. 292).

Then S and Ŝ are isotopic.

An example is shown in Fig. 5.24.
The algorithm that is based on this theorem works with an octree-like

subdivision of the bounding box into boxes, which are further subdivided into
a tetrahedral mesh T . The complex W is taken to be the “watershed” of Ŝ
in the graph of |f̂ |: W is grown outward from the set of tetrahedra which
have vertices with different signs of f . Tetrahedra are added to W in order
to fulfill Condition 1, while trying to avoid the inclusion of critical points
(Condition 2). If a set W cannot be found, the mesh T is refined. Note that
fulfilling the conditions requires to compute all critical points of f exactly,
which is difficult, in particular in the case of nearly degenerate critical points.
This is why the algorithm actually uses a relaxed (but still sufficient) set of
conditions that permits an implementation within the framework of interval
analysis. This algorithm is not meant to provide a geometrically accurate
approximation of S, but rather to build a topologically correct approximation
using as few elements as possible.

5 Meshing of Surfaces 227

(a) (b)

A

C

D

E

F

G

B

A

C

D

E

F

G

B

Fig. 5.24. (a) a triangulation T for the function f of Fig. 5.23, rotated by 90◦. The
subcomplex W is shaded. Since W must collapse to S, it must form two bands that
enclose the two components of S, without common vertices. (b) the zero-set of the
piecewise linear function f̂

5.6 Research Problems.

1. It was mentioned in Sect. 5.2.4 that the behavior of the Small Normal
Variation refinement algorithm Plantinga and Vegter [286] adapts the re-
finement to the properties of f . Estimate the number of cubes generated
by the algorithm in terms of properties of the function f , like total vari-
ation of f and ∇f , etc.

2. Can the balancing operation be eliminated in the algorithm of Sect. 5.2.4?
Try to define rules for constructing a mesh when a cube may have an
arbitrary number of small neighboring boxes.

3. The algorithm in Sect. 5.2.4 stops as soon as the angle between two surface
normals inside a cube is bounded by π/2. If we impose some smaller bound
α on the angle, what can be said about the distance between the surface
and the approximating mesh? How should the mesh be chosen to obtain
a good approximation?

The Delaunay refinement algorithm requires the knowledge of a lower es-
timate ψ(p) on the local feature size. The minimum local feature size lfsmin

228 J.-D. Boissonnat, D. Cohen-Steiner, B. Mourrain, G. Rote, G. Vegter

corresponds to points of maximum principal curvature or to medial spheres
that touch the surface in two or three points and have a locally minimum
radius. In the case of an implicit surface f(x, y, z) = 0, the points where these
extrema are attained can be found by solving appropriate systems of equa-
tions involving f and its derivatives. Generally, these systems have a finite set
of solutions, which includes all local minima and maxima. By checking and
comparing these solutions, one can compute lfsmin and use this constant as a
global lower estimate ψ(p). This yields a theoretically guaranteed and reliable
meshing algorithm for smooth surfaces, provided that the equations that are
involved can be solved (for example, when f is a polynomial).

However, in this case, the necessary mesh density is dictated by the global
minimum of the local feature size, and thus it does not adapt to different parts
of the surface. There is no reliable way to find a good individual lower esti-
mate ψ(p) on the local feature size lfs(p) beforehand, short of computing the
medial axis. The next two questions address this question from a theoretical
viewpoint.

1. The algorithm may rely on the user to specify the function ψ(p), which
can as well simply be a global constant ψmin independent of the location.
Suppose the algorithm terminates, for a given function ψ, and constructs
a mesh. Is there a way of deciding if the constructed mesh is at least
consistent, in the sense that there exists a hypothetical surface S′ for
which ψ is a lower bound on the local feature size, and for which the
same mesh would be obtained? (This idea of having a “certificate” of
consistency is similar to the approach of [127] for curve reconstruction.)
Note that in practice, one may apply the algorithm to a non-smooth sur-
face and be perfectly happy with the resulting mesh; however, the hy-
pothetical surface S′ in the above question would necessarily have to be
smooth. Otherwise it would contain points with lfs = 0.

2. For an implicit surface f(x, y, z) = 0, is there a way of estimating the local
feature size within some given range for the variables x, y, z, by looking
at the function f and its derivatives? Can one use interval arithmetic to
obtain a conservative lower bound ψ?

3. The test (5.5) for critical points in a silhouette involves second derivatives
(cf. Exercise 15). Is there a zero-dimensional system of equations for es-
tablishing the topological ball property that only involves f and its first
derivatives?

4. The topological ball property and isotopy.
The topological ball property only guarantees a homeomorphism between
the original surface and the reconstruction, it does not provide an isotopy.
In fact, Theorem 5 can be extended to manifolds in arbitrary dimension k
(and even to non-manifolds [138]): For a k-dimensional manifold M ⊂ R

n,
the topological ball property means that every Voronoi face F of dimension
d intersects M in a closed topological (d−n+k)-ball or in the empty set.

5 Meshing of Surfaces 229

For manifolds of codimension at least 2, the topological ball property
is not sufficient to establish isotopy. For example, the topological ball
property for a point sample P on a curve C in R

3 (k = 1, n = 3) will not
detect whether C is knotted inside a Voronoi cell, and thus the restricted
Delaunay will not always be isotopic to C.
a) Does the topological ball property for a surface S in R

3 (or more
generally, for an (n − 1)-manifold embedded in R

n) imply that the
restricted Delaunay triangulation is isotopic to S?

b) Find an appropriate strengthening of the topological ball property
that ensures isotopy of the restricted Delaunay triangulation.

5. For a curve f(x, y) = 0, the critical points in direction (u
v) are given by

the equation

u · fx(x, y) + v · fy(x, y) = 0, f(x, y) = 0.

If f is a polynomial of degree d, give an upper bound on the number of
directions for which two distinct critical points lie on a line parallel to (u

v).

6

Delaunay Triangulation Based Surface
Reconstruction

Frédéric Cazals and Joachim Giesen

6.1 Introduction

6.1.1 Surface Reconstruction

The surfaces considered in surface reconstruction are 2-manifolds that might
have boundaries and are embedded in some Euclidean space R

d. In the sur-
face reconstruction problem we are given only a finite sample P ⊂ R

d of an
unknown surface S. The task is to compute a model of S from P . This model
is referred to as the reconstruction of S from P . It is generally represented
as a triangulated surface that can be directly used by downstream computer
programs for further processing. The reconstruction should match the original
surface in terms of geometric and topological properties. In general surface
reconstruction is an ill-posed problem since there are several triangulated sur-
faces that might fulfill these criteria. Note, that this is in contrast to the curve
reconstruction problem where the optimal reconstruction is a polygon that
connects the sample points in exactly the same way as they are connected
along the original curve. The difficulty of meeting geometric or topological
criteria depends on properties of the sample and on properties of the sam-
pled surface. In particular, sparsity, redundancy, noisiness of the sample or
non-smoothness and boundaries of the surface make surface reconstruction a
challenging problem.

Notation. The surface that has to be reconstructed is always denoted by S
and a finite sample of S is denoted by P . The size of P is denoted by n, i.e.,
n = |P |.

6.1.2 Applications

The surface reconstruction problem naturally arises in computer aided geo-
metric design where it is often referred to as reverse engineering. Typically,
the surface of some solid, e.g., a clay mock-up of a new car, has to be turned

232 F. Cazals, J. Giesen

into a computer model. This modeling stage consists of (i) acquiring data
points on the surface of the solid using a scanner (ii) reconstructing the sur-
face from these points. Notice that the previous step is usually decomposed
into two stages. First a piece-wise linear surface is reconstructed, and second,
a piecewise-smooth surface is built upon the mesh.

Surface reconstruction is also ubiquitous in medical applications and nat-
ural sciences, e.g., geology. In most of these applications the embedding space
of the original surface is R

3. That is why we restrict ourselves in the following
to the reconstruction of surfaces embedded in R

3.

6.1.3 Reconstruction Using the Delaunay Triangulation

Because reconstruction boils down to establishing neighborhood connections
between samples, any geometric construction defining a simplicial complex on
these samples is a candidate auxiliary data structure for reconstruction. One
such data structure is the Delaunay triangulation of the sample points. The
intuition that it might be extremely well suited for reconstruction was first
raised in [54] and is illustrated in Fig. 6.1 which features a sampled curve and
the Delaunay triangulation of the samples. It seems that the Delaunay trian-
gulation explores the neighborhood of a sample point in all relevant directions
in a way that even accommodates non-uniform samples.

The Delaunay triangulation is a cell complex that subdivides the convex
hull of the sample. If the sample fulfills certain non-degeneracy conditions
then all faces in the Delaunay triangulation are simplices and the Delaunay
triangulation is unique. The combinatorial and algorithmic worst case com-
plexity of the Delaunay triangulation grow exponentially with the dimension
of the embedding space of the original surface. In R

3 the combinatorial as well
as the algorithmic complexity of the Delaunay triangulation is Θ(n2), where
n = |P | is the size of the sample. However, it has been shown [33] that the
Delaunay triangulation of points that are well distributed on a smooth sur-
face has complexity O(n log n). Robust and efficient methods to compute the
Delaunay triangulation in R

3 exist [2]. Also important for the reconstruction
problem is the Voronoi diagram which is dual to the Delaunay triangulation.
The Voronoi diagram subdivides the whole space into convex cells where each
cell is associated with exactly one sample point.

There are also approaches toward the surface reconstruction problem that
are not based on the Delaunay triangulation, e.g., level set methods [350], ra-
dial basis function based methods [79] and moving least squares methods [16].
That we do not cover these approaches in this chapter does not mean that
they are less suited or worse. On the practical side, many of them are very
successfully applied in daily practice. On the theoretical side though, these
algorithms often involve non-local constructions making a theoretical analysis
difficult. As opposed to these, algorithms elaborating upon Delaunay are more

6 Delaunay Triangulation Based Surface Reconstruction 233

Fig. 6.1. Left: a sampled curve. Right: Delaunay contains a piece-wise linear ap-
proximation of the curve. Notice the Delaunay triangulation has neighbors in all
directions, no matter how non-uniform the sample

prone to such an analysis, and one of the goals of this survey is to outline the
key geometric features involved in these analysis.

6.1.4 A Classification of Delaunay Based Surface Reconstruction
Methods

Using the Delaunay triangulation still leaves room for quite different ap-
proaches to solve the reconstruction problem. But all these approaches, that
we sketch below, benefit from the structure of the Delaunay triangulation
and the Voronoi diagram, respectively, of the sample points. We should note
already here that many of the algorithms combine features of different ap-
proaches and as such are not easy to classify. We did the classification by
what we consider the dominant idea behind a specific algorithm.

Tangent plane methods. If one considers a smooth surface with a suffi-
ciently dense sample, the neighbors of a point in the point cloud should not
deviate too much from the tangent plane of the surface at that point. It turns
out that this tangent plane can be well approximated by exploiting the fact
that under the condition of sufficiently dense sample the Voronoi cell of the
sample point is elongated in the direction of the surface normal at the sample
point. This normal or tangent plane information, respectively, can be used to
derive a local triangulation around each point.

Restricted Delaunay based methods. It is possible to define subcom-
plexes of the Delaunay triangulation by restricting it to some given subset of
R

3. Restricted Delaunay based methods compute such a subset from the De-
launay triangulation of the sample. This subset should contain the unknown
surface S provided the sample is dense enough. The reconstruction basically
is the Delaunay triangulation of P restricted to the computed subset.

Inside / outside labeling. Given a closed surface S one can attempt to clas-
sify the tetrahedra in the Delaunay triangulation as either inside or outside

234 F. Cazals, J. Giesen

with respect to S. The interface between the inside and outside tetrahedra
should provide a good reconstruction of S. Algorithms that follow the inside
/ outside labeling paradigm often shell simplices from the outside of the De-
launay triangulation of the sample points in order to discover the surface to
be reconstructed. A subclass of the shelling algorithms guide the shelling by
topological information like the critical points of some function which can be
derived from the sample.

Empty balls methods. When reconstructing a surface, the simplices re-
ported should be local according to some definition. One such definition con-
sists of requiring the existence of a sphere that circumscribes the simplex and
does not contain any sample point on its bounded side. The ball bounded
by such a sphere is called an empty ball. All Delaunay simplices are local in
this sense. This property can be used to filter simplices from the Delaunay
triangulation, e.g., by considering the radii of the empty balls.

6.1.5 Organization of the Chapter

The rest of this chapter is subdivided into two sections. Sect. 6.2 contains
mathematical pre-requisites that are necessary to understand the ideas and
guarantees behind the algorithms that are detailed in Sect. 6.3.

6.2 Prerequisites

Some prerequisites that we introduce here in order to describe the various re-
construction algorithms and the guarantees they come with are also described
in other chapters. Voronoi diagrams are introduced in much more generality
in Chap. 2, the restricted Delaunay triangulation, ε-samples and the topo-
logical concepts of homeomorphy and isotopy also play a dominant role in
Chap. 5 on meshing, most differential geometric concepts are more detailed
in Chap. 4 and all topological concepts appear in more detail in Chap. 7.
The reason for this redundancy is mostly to make this chapter self contained
and to provide a reader only interested in reconstruction with the minimally
needed background.

6.2.1 Delaunay Triangulations, Voronoi Diagrams and Related
Concepts

General Position.

The sample P is said to be in general position if there are no degeneracies
of the following kind: no three points on a common line, no four points on
a common circle or hyperplane and no five points on a common sphere. In
the following we always assume that the sample P is in general position. But

6 Delaunay Triangulation Based Surface Reconstruction 235

note that the case that P is not in general position can also be dealt with
algorithmically [136]. We make the general position assumption only to keep
the exposition simple.

Voronoi Diagram.

The Voronoi diagram V (P) of P is a cell decomposition of R
3 in convex

polyhedra. Every Voronoi cell corresponds to exactly one sample point and
contains all points of R

3 that do not have a smaller distance to any other
sample point, i.e. the Voronoi cell corresponding to p ∈ P is given as follows

Vp = {x ∈ R
3 : ∀q ∈ P ‖x− p‖ ≤ ‖x− q‖}.

Closed facets shared by two Voronoi cells are called Voronoi facets, closed
edges shared by three Voronoi cells are called Voronoi edges and the points
shared by four Voronoi cells are called Voronoi vertices. The term Voronoi face
can denote either a Voronoi cell, facet, edge or vertex. The Voronoi diagram is
the collection of all Voronoi faces. See Fig. 6.2 for a two-dimensional example
of a Voronoi diagram.

Delaunay Triangulation.

The Delaunay triangulation D(P) of P is the dual of the Voronoi diagram,
in the following sense. Whenever a collection V1, . . . , Vk of Voronoi cells cor-
responding to points p1, . . . , pk have a non-empty intersection, the simplex
whose vertices are p1, . . . , pk belongs to the Delaunay triangulation. It is a
simplicial complex that decomposes the convex hull of the points in P . That
is, the convex hull of four points in P defines a Delaunay cell (tetrahedron)
if the common intersection of the corresponding Voronoi cells is not empty.
Analogously, the convex hull of three or two points defines a Delaunay facet or
Delaunay edge, respectively, if the intersection of their corresponding Voronoi
cells is not empty. Every point in P is a Delaunay vertex. The termDelaunay
simplex can denote either a Delaunay cell, facet, edge or vertex. See Fig. 6.2
for a two-dimensional example of a Delaunay triangulation.

Flat Tetrahedra.

In surface reconstruction flat tetrahedra may cause problems for some algo-
rithms. The most notorious flat tetrahedra are slivers. These are Delaunay
tetrahedra that have a small volume but do not have a large circumscribing
ball and do not have a small edge. Here all comparisons in size are made with
respect to the length of the longest edge of the tetrahedron. See Fig. 6.3 for
an illustration of a sliver and a cap, and refer to [89] for a classification of
baldly shaped tetrahedra.

236 F. Cazals, J. Giesen

Fig. 6.2. Voronoi and Delaunay diagrams in the plane

Fig. 6.3. A nearly flat tetrahedron can be located near the equatorial plane or the
north pole of its circumscribing sphere. The tetrahedra near the poles have a large
circumscribing ball. Only the tetrahedron near the equatorial plane is a sliver (also
shown on the top right, the bottom right tetrahedron being a cap.)

Pole.

There are positive and negative poles associated with a Voronoi cell Vp. If Vp

is bounded then the positive pole is the Voronoi vertex in Vp with the largest
distance to the sample point p. Let u be the vector from p to the positive
pole. If Vp is unbounded then there is no positive pole. In this case let u be
a vector in the average direction of all unbounded Voronoi edges incident to
Vp. The negative pole is the Voronoi vertex v in Vp with the largest distance
to p such that the vector u and the vector from p to v make an angle larger
than π/2.

6 Delaunay Triangulation Based Surface Reconstruction 237

Empty-ball Property.

It follows from the definitions of Voronoi diagrams and Delaunay triangula-
tions that the relative interior of a Voronoi face of dimension k, which is dual
to a Delaunay simplex of dimension 3 − k, consists of the set of points having
exactly 3−k+1 nearest neighbors. Therefore, for any point in such a Voronoi
face, there exists a ball empty of sample points containing the vertices of the
dual simplex on its boundary. The simplex is said to have the empty ball prop-
erty. See also Fig. 6.4 for a two-dimensional example. For Delaunay tetrahedra
there is only one empty ball whereas there is a continuum of empty balls for
Delaunay triangles and edges.

The empty ball property can be used to define sub-complexes of the Delau-
nay triangulation by imposing additional constraints on the empty balls. Here
we discuss two such restrictions that lead to Gabriel simplices and α-shapes,
respectively.

Gabriel Simplex.

A simplex of dimension less then 3 is called Gabriel if its smallest circum-
scribing ball is empty. Obviously all Gabriel simplices are contained in the
Delaunay triangulation. Gabriel simplices also have a dual characterization: a
Delaunay simplex is Gabriel iff its dual Voronoi face intersects the affine hull
of the simplex.

Well known and heavily used is the Gabriel graph which is the geometric
graph that contains all one dimensional Gabriel simplices.

Fig. 6.4. Empty balls centered on Voronoi faces

238 F. Cazals, J. Giesen

d

b

c

a

m

Fig. 6.5. All edges but edge ab are Gabriel edges

Restricted Voronoi Diagram and Restricted Delaunay
Triangulation.

Given a subset X ⊂ R
3 we can restrict the Voronoi diagram of P to X

by replacing every Voronoi face with its intersection with X. The restricted
Voronoi diagram is denoted as VX(P). The Delaunay triangulation DX(P) of
P restricted to X is defined similarly as the Delaunay triangulation of P . The
only difference is that instead of taking the common intersection of Voronoi
cells now the common intersection of restricted Voronoi cells is taken. That
is, whenever a collection V1 ∩X, . . . , Vk ∩X of Voronoi cells corresponding to
points p1, . . . , pk restricted to X have a non-empty intersection, the simplex
whose vertices are p1, . . . , pk belongs to the restricted Delaunay triangulation.
The restricted Delaunay triangulation of a plane curve is illustrated in Fig. 6.6.
The restricted Delaunay triangulation is also most convenient to introduce the
so-called α-complex and α-shape of a collection of balls.

α-complex and α-shape.

Given a sample P , consider the collection of balls of square radius α centered
at these points 1. For each ball, consider the restricted ball, i.e., the intersection
of the ball with its corresponding Voronoi region. Finally, letX be the union of
these restricted regions. Using the construction from the previous paragraph,
the α-complex of the balls is the Delaunay triangulation restricted to the
domain X [131, 137]. The polytope 2 associated with the α-complex is called
the α-shape. While the α-complex consists of simplices of any dimension, i.e.,

1We present the α-complex for a collection of balls of the same radius
√

α. The
variable α stands for the square radius rather than the radius, a constraint stemming
from the construction of the α-complex for a collection a balls of different radii using
the power diagram. See [131] for the details.

2Polytope stands here for the union of the closure of the domain of the simplices,
rather then the convex hull of a set of points in R

d.

6 Delaunay Triangulation Based Surface Reconstruction 239

vertices, edges, triangles and tetrahedra, the boundary of the α-shape consists
only of vertices, edges and triangles. In surface reconstruction where one is
concerned with triangles contributing to the reconstructed surface, the focus
has mainly been on the boundary of the α-shape.

It is actually possible to assign to each simplex of the Delaunay triangula-
tion an interval specifying whether it is present in the α-complex for a given
value of α, and similarly for the simplices in the boundary of the α-shape. The
intervals for the boundary are contained in the intervals for the α-complex.

May be a more intuitive characterization of the points of appearance and
disappearance of simplices in the boundary of the α-shape is as follows: let
balls grow at the sample points with uniform speed. A simplex appears in the
boundary of the α-shape, when the balls corresponding to the vertices of the
simplex intersect for the first time. Note that this intersection takes place on
the dual Voronoi face of this simplex. It disappears when the common inter-
section of the balls corresponding to the vertices of the simplex completely
contains the dual Voronoi face of the simplex. This growing process is illus-
trated in Fig. 6.8. In terms of growing process, the differences between the
α-complex and the α-shape are twofold: first, once a simplex appears in the
α-complex, it stays forever; second, the α-complex also contains Delaunay
tetrahedra.

Note that α can be interpreted as a spatial scale parameter. If P is a uni-
form sample of the surface S then there exist α-values such that the boundaries
of the corresponding α-shapes of P provide a reasonable reconstruction of S.

Fig. 6.6. Diagrams restricted to a curve

240 F. Cazals, J. Giesen

Fig. 6.7. Triangulation restricted to a surface

(a) (b)

(c)

(a) (b)

(c)

Fig. 6.8. At two different values of α: (a)α-complex with solid triangles scaled to
avoid cluttering (b)α-shape (c)boundary of the α-shape

6 Delaunay Triangulation Based Surface Reconstruction 241

Topological Ball Property.

The restricted Voronoi diagram VS(P) of a sample P of a surface S has the
topological ball property if the intersection of S with every Voronoi face in
V (P) is homeomorphic to a closed ball whose dimension one smaller then
that of the Voronoi face. (Notice that the transverse intersection of a Voronoi
cell of dimension k with a manifold of dimension d − 1 has dimension equal
to k + (d − 1) − d = k − 1.) Edelsbrunner and Shah [138] were able to relate
the topology of the restricted Delaunay triangulation DS(P) to the topology
of S.

Theorem 1. Let S be a surface and P be a sample of S such that VS(P) has
the closed all property. Then DS(P) and S are homeomorphic.

Power Diagram and Regular Triangulation.

The concepts of Voronoi- and Delaunay diagrams are easily generalized to sets
of weighted points. A weighted point p in R

3 is a tuple (z, w) where z ∈ R
3

denotes the point itself and w ∈ R its weight. Every weighted point gives rise
to a distance function, namely the power distance function,

πp : R
3 → R, x �→ ‖x− z‖2 − w.

Let P now be a set of weighted point in R
3. The power diagram of P is a

decomposition of R
3 into the power cells of the points in P . The power cell of

p ∈ P is given as

Vp = {x ∈ R
3 : ∀q ∈ P, πp(x) ≤ πq(x)}.

The points that have the same power distance from two weighted points in P
form a hyperplane. Thus Vp is either a convex polyhedron or empty. Closed
facets shared by two power cells are called power facets, closed edges shared
by three power cells are called power edges and the points shared by four
power cells are called power vertices. The term power face can denote either
a power cell, facet, edge or vertex. The power diagram of P is the collection
of all power faces.

The dual of the power diagram of P is called the regular triangulation of
P . The duality is defined in exactly the same way as for Voronoi diagrams
and Delaunay triangulations. That is the reason why regular triangulations
are also referred to as weighted Delaunay triangulations.

Natural Neighbors.

Given a Delaunay triangulation, it is natural to define the neighborhood of
a vertex as the set of vertices this vertex is connected to. This information

242 F. Cazals, J. Giesen

is of combinatorial nature and can be made quantitative using the so-called
natural coordinates which were introduced by Sibson [318].

Given a point x ∈ R
3 which is not a sample point, define V +(P) = V (P ∪

{x}), D+(P) = D(P ∪{x}), and denote by V +
x the Voronoi cell of x in V +(P).

In addition, for any sample point p ∈ P define V(x,p) = V +
x ∩Vp and denote by

wp(x) the volume of V(x,p). The natural neighbors of a point x are the sample
points in P that are connected to x in D+(P). Equivalently, these are the
points p ∈ P for which V(x,p) �= ∅. The natural coordinate associated with a
natural neighbor is the quantity

λp(x) =
wp(x)
w(x)

, with w(x) =
∑

p∈P

wp(x). (6.1)

For an illustration of these definitions see Fig. 6.9.

Fig. 6.9. Point x has six natural neighbors

The term coordinate is clearly evocative of barycentric coordinates. Recall
that in any three-dimensional affine space, a set of four affinely independent
points pi, i = 1, . . . , 4 define a basis of the affine space. Moreover, every point
x decomposes uniquely as x =

∑
i=1,...,4 λpi

(x)pi, with λpi
(x) the barycentric

coordinate of x with respect to pi. Natural coordinates provide an elegant
extension of barycentric coordinates to the case where one has more than four
points. The following results have been proven in a number of ways [318, 36,
72, 210].

Theorem 2. The natural coordinates satisfy the requirements of a coordinate
system, namely,

(1) for any p, q ∈ P , λp(q) = δpq where δpq is the Kronecker symbol and

6 Delaunay Triangulation Based Surface Reconstruction 243

a

b

c

d

x1
x2

x3

Fig. 6.10. Critical points of the distance function. Points x1, x2 are regular, but
point x3 is critical

(2) the point x is the weighted center of mass of its neighbors. That is,

x =
∑

p∈P

λp(x) p, with
∑

p∈P

λp(x) = 1. (6.2)

Induced Distance Function.

Voronoi diagrams of a sample P are closely related to the distance function

h : R
3 → R, x �→ min

p∈P
‖x− p‖ (6.3)

induced by the set of sample points. This distance function is smooth every-
where besides at the points in P and on the lower dimensional Voronoi faces,
i.e., on the facets, edges and vertices.

At every point x inside a Voronoi region, the gradient of h is the unit
vector pointed away from the center of the region. Interestingly, for points
x on lower dimensional Voronoi faces, one can define a generalized gradient,
as depicted in Fig. 6.10. Let x be a point and denote by C(x) the set of
closest points in P to x, i.e., C(x) consists of the vertices dual to the (lowest
dimensional) Voronoi face containing x. If x does not belong to the convex
hull of C(x), then the generalized gradient at x is the unit vector that points
from the closest neighbor of x in the convex hull of C(x) to x. Otherwise, i.e.,
x is contained int eh convex hull of C(x), the point x is called a critical point.

It was was observed by Edelsbrunner [132] and later proved by Giesen
and John [184] that the critical points of the distance function, i.e., the local
extrema and the saddle points, can be characterized in terms of Delaunay
simplices and Voronoi faces.

Theorem 3. The critical points of h are the intersection points of Voronoi
faces and their dual Delaunay simplices. The local maxima are Voronoi ver-
tices contained in their dual Delaunay cell. The saddle points are intersection

244 F. Cazals, J. Giesen

points of Voronoi facets and their dual Delaunay edges and intersection points
of Voronoi edges and their dual Delaunay triangles. All sample points are min-
ima.

The index of a critical point is the dimension of the Delaunay simplex
involved in its definition. See Fig. 6.2.1 for an example in two dimensions.

Induced Flow and Stable Manifolds.

As in the case of smooth functions there is a unique direction of steepest
ascent of h at every non-critical point of h. Assigning to the critical points
of h the zero vector and to every other point in R

3 the unique unit vector of
steepest ascent defines a vector field on R

3. This vector field is not smooth
but nevertheless gives rise to a flow on R

3, i.e., a mapping

φ : [0,∞) × R
3 → R

3,

such that at every point (t, x) ∈ [0,∞) × R
3 the right derivative

lim
t←t′

φ(t, x) − φ(t′, x)
t− t′

exists and is equal to the unique unit vector of steepest ascent at x. The
flow basically tells how a point moved if it would always follow the steepest
ascent of the distance function h. The curve that a point x follows is given
by φx : R → R

3, t �→ φ(t, x) and called the orbit of x. See Fig. 6.2.1 for some
example orbits in two dimensions.

Given a critical point x of h the set of all points whose orbit ends in x,
i.e., the set of all points that flow into x, is called the stable manifold of x.
The collection of all stable manifolds forms a cell complex which is called flow
complex. See Fig. 6.2.1 for examples of stable manifolds in two dimensions.

6.2.2 Medial Axis and Derived Concepts

Medial Axis.

The medial axis M(S) of a closed subset S ⊂ R
3 consists of all points in

R
3\S having two or more nearest points on S. In a way the medial axis

generalizes the concept of the Voronoi diagram of a point set. We have seen
when discussing the empty ball property that the Voronoi faces of dimension
k with k = 0, . . . , 2 consist of all points equidistant from 3 − k + 1 sample
points.

Smooth surfaces S play a special role in reconstruction since for their
reconstruction several guarantees can be provided under a certain sampling
condition. This sampling condition is based on the medial axis of S. That is
the reason why we here provide some more details on the structure of the
medial axis of a smooth surface S.

6 Delaunay Triangulation Based Surface Reconstruction 245

Fig. 6.11. From the left: 1) The local minima �, saddle points � and local maxima
⊕ of the distance function induced by the sample points (local minima). 2) Some
orbits of the flow induced by the sample points. 3) The stable manifolds of the saddle
points. 4) The stable manifolds of the local maxima

Structure of the Medial Axis of a Smooth Surface.

The medial axis of a smooth surface S shares another structural property with
the Voronoi diagram of a finite point set, namely, it has a stratified structure.
For the Voronoi diagram this structure means that a Voronoi facet is the
common intersection of two Voronoi regions, a Voronoi edge is the common
intersection of three Voronoi facets and a Voronoi vertex is the common inter-
section of four Voronoi edges. To precisely describe the stratified structure of
M(S) one needs the notion of contact between a sphere and the surface. Infor-
mally, the contact of a sphere at a point p of S tells how much the sphere and
the surface agree at p. More precisely, an A1 contact means that the tangent
plane to the sphere and to S agree at p; an A2 contact point has the property
of an A1 point with the additional property that the radius of the sphere is
the inverse of a principal curvature of S at p; at last, an A3 contact is like
an A2 contact with the additional property that the curvature involved is an
extreme along the corresponding line of curvature. Focusing on the centers of
the contact spheres rather than the contact points themselves, and denoting
Ak

1 a set of k ≥ 1 simultaneous A1 contacts between a sphere and the surface,
the structure of the M(S) is described by the following theorem [347, 181]
which is illustrated by an example in Fig. 6.12.

Theorem 4. The medial axis of a smooth surface S in R
3 is a stratified vari-

ety containing sheets, curves and points. The sheets correspond to A2
1 contacts,

246 F. Cazals, J. Giesen

the curves to A3
1 and A3 contacts, and the points to A4

1 and A3A1 contacts.
Moreover, one has the following incidences. At an A4

1 point, six A1
2 sheets and

four A3
1 curves meet. Along an A3

1 curve, three A2
1 sheets meet. A3 curves

bound A2
1 sheets. At last, the point where an A2

1 sheet vanishes is an A3A1

point.

Fig. 6.12. The stratified structure of the medial axis of a smooth surface

Medial Axis Transform.

A concept closely related to the medial axis of a closed subset S ⊂ R
3 is the

skeleton of R
3\S, which consists of the centers of maximal spheres included

in R
3\S. Here maximal is meant with respect to inclusion among spheres.

For a smooth surface S the closure of the medial axis is actually equal to the
skeleton of R

3\S. The medial axis transform builds on the close relationship
of the skeleton and the medial axis, namely, the medial axis transform is the
collection of maximal empty balls centered at the medial axis of S. It can be

6 Delaunay Triangulation Based Surface Reconstruction 247

shown that a smooth surface S can be recovered as the envelope of its medial
axis transform.

Tubular Neighborhoods.

A natural tool involved in the analysis of several reconstruction algorithms
is that of tubular neighborhood or tube of a surface S. As indicated by the
name, a tube of a surface is a thickening of the surface such that within the
volume of the thickening, the projection of a point x to the nearest point
π(x) on S remains well defined. Following our discussion of the medial axis,
a surface can always be thickened provided the thickening avoids the medial
axis. Moreover, it is easily checked that the projection onto S proceeds along
the normal at the projection point. This property provides a way to retract
the neighborhood onto the surface.

Local Feature Size.

The local feature size is a function lfs : S → R on the surface S that assigns
to each point in S its least distance to the medial axis of S. An immediate
consequence of the triangle inequality is that the local feature size of a smooth
surface is Lipschitz continuous with Lipschitz constant 1, see Fig. 6.13 for an
illustration. The local feature size can be used to establish another quanti-
tative connection of a surface and its medial axis [59] by using the following
theorem.

Theorem 5. Let B be a ball centered at x ∈ R
3 with radius r that intersects

the surface S. If this intersection is not a topological ball then B contains a
point of the medial axis of S.

From this theorem we can conclude that any ball centered at any point
p ∈ S whose radius is smaller then the local feature size lfs(p) at p intersects
S in a topological disk.

Fig. 6.13. The local feature size is 1-Lipschitz

248 F. Cazals, J. Giesen

Fig. 6.14. For a non-smooth curve, some Voronoi centers may not converge to the
medial axis

ε-sample.

Amenta and Bern [23, 22] introduced a non-uniform measure of sampling
density using the local feature size. For ε > 0 a sample P of a surface S is
called an ε-sample of S if every point x on S has a point of P in distance at
most ε lfs(x).

We next provide three theorems that involve ε-samples. The first theorem
is concerned with the topological equivalence of the restricted Delaunay tri-
angulation DS(P) and a surface S for an ε-sample P . The second theorem
is concerned with the convergence of Voronoi vertices of the Voronoi diagram
of an ε-sample of a smooth surface S towards the medial axis M(S) of S.
The last theorem provides a good approximation of the normal of S at some
sample point in an ε-sample P .

Amenta and Bern [22] stated the following theorem, which provides a
topological guarantee for a value of ε less than ∼ 0.3. The theorem is rigorously
proven in [88]. In the context of surface reconstruction, this theorem should
be put in perspective with respect to Theorem 1:

Theorem 6. If P is an ε-sample of S such that ε satisfies

cos
(

arcsin
(

2ε
1 − ε

)

+
ε

1 − 3ε

)

>
ε

1 − ε

then VS(P) has the topological ball property.

It can be shown that the Voronoi vertices of a dense sample of a planar
smooth curve lie close to the medial axis of the curve. This result is false in
general for non smooth curves, as illustrated in Fig. 6.14. It is also false in
general for dense samples of smooth surfaces. In fact for almost any point
x ∈ R

3\S, there exists an arbitrarily dense sample P of S such that x is a
Voronoi vertex of V (P) provided some non-degeneracy holds. To see this grow
a ball around x until it touches S. Now grow it a little bit further and put four
sample points on the intersection of S with the boundary of the ball. Then x
is shared by the Voronoi cells of the four points, i.e., it is a Voronoi vertex if
the four points are in general position.

6 Delaunay Triangulation Based Surface Reconstruction 249

Fortunately, it was observed by Amenta and Bern [22] that the poles of
the Voronoi diagram of a sample of a smooth surface converge to the medial
axis.

Theorem 7. Let P be an ε-sample of a smooth surface S. The poles of the
Voronoi diagram V (P) converge to the medial axis M(S) of S as ε goes to
zero.

Fig. 6.15. In 2D, all Voronoi vertices converge to the medial axis. In 3D, some
Voronoi vertices may be far from the medial axis but poles are guaranteed to con-
verge to the medial axis

Finally, also the following theorem is due to Amenta and Bern [22]. It
follows from Theorem 7.

Theorem 8. Let P be an ε-sample of a smooth surface S. For any sample
point p ∈ P let p+ be the positive pole of the Voronoi cell Vp. The angle
between the normal of S at p and the vector p − p+ if oriented properly can
be bounded by 2 arcsin

(
ε

1−ε

)
.

6.2.3 Topological and Geometric Equivalences

To assess the quality of a reconstruction we need topological and geomet-
ric concepts. Our presentation of these concepts is informal, and the reader
is referred to [208] for an exposition involving the apparatus of differential
topology.

Topological Concepts.

Homeomorphy. Two surfaces are called homeomorphic if there is a homeo-
morphism between them. A homeomorphism is a continuous bijection of one

250 F. Cazals, J. Giesen

surface onto the other, such that the inverse is also continuous. Two home-
omorphic surfaces have the same properties regarding open and closed sets,
and also neighborhoods. Note that homeomorphy is an equivalence relation.
Surfaces that are embedded in R

3 can be completely classified with respect
to homeomorphy by their genus, i.e., the number of holes. For example the
torus of revolution, i.e., a doughnut, and a “knotted” torus are homeomorphic
since both have genus 1. This example shows that homeomorphy is a weak
concept in the sense that it does not take the ambient space (here R

3) into
account. This is done by the concept of isotopy which for example accounts
for the knottedness of a torus.

Isotopy. Two surfaces are isotopic if there exists a one-parameter family of
embeddings into R

3 that continuously deform the first surface into the second
one. Isotopy is also an equivalence relation. Note the knotted torus can not
be deformed continuously into the unknotted one. Any transformation that
deforms the knotted torus in the unknotted one has to tear the torus at some
point. Thus it cannot be continuous.

Homotopy equivalence. If we want to topologically compare the medial
axes of two surfaces even the concept of homeomorphy (which can be extended
to more complex faces than surfaces) seems too strong since the medial axis
of a surface is a more complicated object than the surface itself. For compar-
ing medial axes the concept of homotopy equivalence seems to be appropriate.
Intuitively, the homotopy type of a space encodes its system of internal closed
paths, regardless of size, shape and dimension. For example, an annulus has
the homotopy type of a circle. Two topological spaces are homotopy equiva-
lent if they have the same homotopy type. Homotopy equivalence is another
equivalence relation on topological spaces.

Fig. 6.16. Two homeomorphic topological spaces

6 Delaunay Triangulation Based Surface Reconstruction 251

Fig. 6.17. The first two figures have the same homotopy type, but are not homeo-
morphic. The third one has a different homotopy type

Geometric Concepts.

Hausdorff distance. The Hausdorff distance is a measure for the distance
of two subsets of some metric space. We are interested in the case where these
subsets are surfaces or medial axes of surfaces in R

3.
Given two closed subsets X,Y of R

3, the one-sided Hausdorff distance
h(X,Y) is defined as h(X,Y) = maxx∈X miny∈Y ‖x − y‖. The one-sided
Hausdorff distance is not a distance measure since in general it is not
symmetric. Symmetrizing h yields the Hausdorff distance as H(X,Y) =
max{h(X,Y), h(Y,X)}. See also Fig. 6.18.

Intuitively, the Hausdorff distance is the smallest thickening such that the
tubular neighborhood of X contains Y and the tubular neighborhood of Y
contains X.

Fig. 6.18. The one-sided Hausdorff distance is not symmetric

Normals and tangent planes. Given two surfaces, their Hausdorff dis-
tance just takes into account their relative positions. In the context of surface
reconstruction, we are also be interested in differential properties of the recon-
structed surface with respect to the sampled surface. At the first order, such

252 F. Cazals, J. Giesen

a measure is provided by the tangent planes (or the normals) to the surfaces,
a quantity known to play a key role in the definition of metric properties of
surfaces [259].

6.2.4 Exercises

The following exercises are meant to make sure the important notions have
been understood. We also provide selected references to further investigate
the problems addressed.

Exercise 1 (Sampling conditions and reasonable reconstructions).
Consider the one-parameter family of curves that are indicated in Fig. 6.19.
Let Cd be the curve corresponding to a value d ∈ [0,∞). For d = 0, Cd is a
single curve without boundary, and for d > 0, Cd consists of two connected
components with boundaries.

Plot the medial axis of R
2 \Cd for d = 0 and d > 0. Assume we are given

sample points equally spaced along Cd. Discuss what a reasonable reconstruc-
tion would be depending on d.

Exercise 2 (Sorting Gabriel edges). Consider a curve bounding a sta-
dium, i.e., two line-segments joined by two half-circles. Also consider a dense
sampling of the curve, that is the distance between to samples along the curve
is much smaller than the radius of the circles and the distance between the
two line-segments.

Plot the Delaunay triangulation of the samples, and report the Gabriel
edges. Explain which of the Gabriel edges are relevant for the reconstruction
of the curve, and which are not. Now, perturb slightly the boundary of the
stadium, pick samples on the new curve, and answer the same questions.

Exercise 3 (Local geometry of points on the Medial Axis). Specifying
a sphere in R

3 leaves 4 degrees of freedom. Similarly, choosing a point on
a surface or curve in R

3 leaves two or one, respectively, degrees of freedom.
Consider an A1 contact between a sphere and a smooth surface. Such a contact
fixes three degrees of freedom of the sphere. Similarly, an A3 contact fixes all
four degrees of freedom of the sphere. Explain why.

By matching the number of constraints and the number of degrees of
freedom, show that

(i) A2
1 points of the medial axis of a surface are expected to be on sheets of

the medial axis, and
(ii) A3

1 and A3 points are expected on curves of the medial axis, and
(iii) A4

1 and A3A1 points are expected at isolated points of the medial axis.

Exercise 4 (Using poles). Let S be a closed surface which is in C0 but not
in C1, that is, there are curves on S along which the normal to the surface is
not continuous. Describe the geometry of the Voronoi cell of a sample point

6 Delaunay Triangulation Based Surface Reconstruction 253

on such a curve. Which problem may arise in using the poles associated to
such a sample point? Answer the same question assuming the surface S is
smooth but has boundaries.

r
d

Fig. 6.19. A one parameter family of shapes

Further reading.

• Exercise 1. For curve reconstruction, see [24, 125, 127].
• Exercise 2. The separation of critical points of the distance functions to

an ε-sample a smooth surface is studied in [122].
• Exercise 3. An intuitive presentation of the local geometry of the medial

axis is provided in [181].
• Exercise 4. To learn more on the geometry of Voronoi cells, refer to [21]

and [120].

6.3 Overview of the Algorithms

6.3.1 Tangent Plane Based Methods

We assume the sampled surface S is smooth, i.e., there exists a well defined
tangent plane at each point of the surface. Since we only deal with surfaces
of co-dimension 1, i.e., surfaces embedded in R

3, approximating the tangent
plane at some point of the surface is equivalent to approximating the normal
at this point. Thus here tangent plane based methods include normal based
methods. The first algorithm based on the tangent planes at the sample points
is Boissonnat’s [54] algorithm. Boissonnat’s paper probably is the first refer-
ence to the surface reconstruction problem at all. Simply put, his algorithm
reduces the reconstruction problem to the computation of local reconstruc-
tions in the tangent planes at the sample points. These local reconstructions
have to be pasted together in the end.

Lower Dimensional Localized Delaunay Triangulation.

Gopi, Krishan and Silva [188] designed an algorithm that is very similar in
nature to Boissonnat’s early algorithm.

254 F. Cazals, J. Giesen

" Bottom-line. This algorithm has three major steps. First, normal and
tangent plane approximation at the sample points. Second, selection of a
neighborhood of sample points for each sample point. Third, projection of
the neighborhood of a sample point on its tangent plane and computation of
the Delaunay neighborhood of the sample point in its projected neighborhood.
Sample points p, q, r ∈ P form a triangle in the reconstruction if they all are
mutually contained in their Delaunay neighborhoods.

" Algorithm. The normal and tangent plane approximation at the sample
points is done using the eigenvectors of the covariance matrix of the k nearest
neighbors of the sample point p. The covariance matrix is the 3 × 3 matrix

C =
∑

i

(qi − p̂)(qi − p̂)T

where the sum is taken over the k nearest neighbors of p in P and p̂ is the
centroid of these neighbors. The eigenvector corresponding to the smallest
eigenvalue of the positive definite, symmetric matrix C is taken as the ap-
proximate normal at p. The remaining two eigenvectors span an approximate
tangent plane at p. The approximate normals at the sample points are con-
sistently oriented by propagating the orientation at some seed sample point
along the edges of the Euclidean minimum spanning tree of P .

From the approximated normals at the sample points the directional nor-
mal variations and even the principal curvatures at the sample points can
be estimated using again the k nearest neighbors of the sample points. The
approximated principal curvatures kmin(p) and kmax(p) at a sample point p
are used to locally approximate the unknown surface S by a height function

h(x, y) =
1
2
(kmin(p)x2θ + kmax(p)y2θ)

parameterized by Cartesian coordinates x and y over the approximated tan-
gent plane at p. The neighborhood of a sample point p contains all sample
points in P whose distance to p and whose height value are bounded by func-
tions of 2kmax(p) and kmin(p).

The neighbors of a sample point p are projected onto the approximated
tangent plane at p by rotating the all the vectors from p to its neighbors
into the tangent plane. In the tangent plane the Delaunay neighbors of p are
determined by computing a two dimensional Delaunay triangulation of p and
its projected neighbors. The output of the algorithm consists of all triangles
with vertices in P whose vertices are mutual Delaunay neighbors.

" Complexity. The complexity of the algorithm was not theoretically ana-
lyzed. But is seems reasonable to assume that the local operations at each
sample point can be done in constant time each, which would amount to a
linear time complexity in total. But there are also the global operations of
determining the neighborhoods of the sample points and of consistently ori-
enting the normals. Although the latter operation is not really needed for the
algorithm to work.

6 Delaunay Triangulation Based Surface Reconstruction 255

" Guarantees. The triangles output by the algorithm form surface homeo-
morphic to S provided a curvature based, locally uniform sampling condition
holds. This sampling condition also takes care of different parts of S coming
close together.

" Extensions. Some heuristics are given to deal with samplings that do
not fulfill the sampling condition. Especially the case of under-sampling is
dealt with, though even the extensions do not make sure that the output
is a topological surface in practice. Of course also oversampling can cause
problems since at some points of the algorithm the k nearest neighbors of a
sample point are used. This k-neighborhood can be spatially biased in the
case of oversampling. This bias can invalidate the geometric approximations
of normals, tangent planes and curvatures.

Greedy Algorithm.

The Greedy algorithm was introduced by Cohen-Steiner and Da in [94]. It
incrementally grows a surface from a seed triangle guided by the intuition
that the normals vary smoothly over the surface S.

" Bottom-line. The greedy algorithm incrementally reconstructs an oriented
surface Ŝ by selecting triangles from the Delaunay triangulation D(P) of P
and stitching them to Ŝ. The guideline for the selection is straightforward:
the incremental construction should make easy decisions first by stitching
triangles, which do not yield ambiguities.

" Algorithm. When extending the surface, a valid triangle is a triangle whose
stitching does not create a topological singularity, and admissible glue opera-
tions are of four types extension, gluing, hole filing, ear filling —See Fig. 6.20.

Let e be a boundary edge of Ŝ. Out of all the valid triangles t incident to
e, one of them is chosen as candidate for the surface extension. To define the
candidate, denote rt the radius of the smallest empty ball circumscribing a
triangle t. Among all the triangles whose dihedral angle βt across e is larger
than some threshold αs (an angle near π), the candidate is the triangle with
least rt. Since a greedy approach is used, one needs to rate the different
candidates. To do so, each triangle is assigned a score, which is 1/rt if βt is
larger than a threshold β, and −βt otherwise.
The threshold αs prevents from considering facets whose stitching would cause
a fold-over, i.e., a large dihedral angle. Notice also the scoring strategy favors
small triangles provided the dihedral angle is less than the threshold β.

Equipped with these notions, the algorithm consists of the initialization
and extension stages. First, the triangle with least circumradius is chosen as
a seed, and its edges are pushed into a priority queue Q. Next, the algorithm
iterates over Q and processes triangles in order of decreasing confidence. Once
a candidate triangle has been popped, a check is performed to see whether
a possible extension is possible. This might not be the case anymore due to

256 F. Cazals, J. Giesen

potential changes in the environment of the triangle. In any case, the priority
queue and the surface are updated.

By construction, the output of the Greedy algorithm is a triangulated and
oriented surface, which may not interpolate all the samples since the used
thresholds might leave some sample points without incident triangle.

" Complexity. The algorithm uses the Delaunay triangulation of the samples
together with a priority queue. Both data structures determine the complexity
of the algorithm.

" Guarantees. No guarantee can be provided on the quality of the recon-
struction due to the difficulty of handling clusters of flat tetrahedra. As the
surface extension is incremental, such clusters can be approached in various
manners from different directions, thus making it impossible to close the sur-
face.

" Extensions. Two heuristics are used to accommodate boundaries as well
as sharp features. For boundaries, a candidate triangle is discarded as soon
as the radius of its empty ball is significantly larger than that of the triangle
it would be stitched to. Sharp edges are detected and removed through the
removal of samples, which are not part of the output surface.

propagation.

hole filling. ear filling.

b

b

c
c

b

c

gluing.

c

b

Fig. 6.20. Glue operations of the Greegy algorithm [94]

6 Delaunay Triangulation Based Surface Reconstruction 257

6.3.2 Restricted Delaunay Based Methods

Since all Delaunay based surface reconstruction algorithms filter out a subset
of the Delaunay triangulation D(P) of the sampling P it seems natural and
very appealing to choose just these simplices from D(P) that are restricted
to some subset of R

3 that is a good approximation of the unknown surface S
and can be computed efficiently from P . This paradigm is motivated by the
fact that if we could directly compute the Delaunay triangulation DS(P) of P
restricted to S we would be done since due to the theorems of Edelsbrunner
and Shah (Theorem 1) and Amenta and Bern (Theorem 6), respectively, for
sufficiently dense ε-samples DS(P) is homeomorphic to S.

Crust.

The Crust algorithm was designed by Bern and Amenta [22] who also were
the first to provide detailed guarantees for the reconstruction provided some
ε-sampling condition is fulfilled.

" Bottom-line. The Crust is based on the Delaunay triangulation D(P ∪Q)
of P and the set Q of poles of the Voronoi diagram V (P). Let V be the union
of the Voronoi cells of the points in P in the Voronoi diagram V (P ∪ Q) of
P ∪Q. In a nutshell the Crust is the Delaunay triangulation of P restricted to
V . The rationale behind this approach is that R

3 \V should cover the medial
axis M(S) of the surface S. Thus restricting the Delaunay triangulation of P
to V should remove all simplices from D(P) that cross the medial axis M(S)
of S. On the other hand V should provide a thickened version of S and thus
the restricted Delaunay triangulation DV (P) should contain all simplices from
DS(P). See Fig. 6.21 for an illustration in two dimensions.

Fig. 6.21. The set V is a thickening of the surface S that avoids the medial axis of
S

258 F. Cazals, J. Giesen

" Algorithm. The Crust algorithm proceeds as follows: After the set Q of
poles is computed from V (P) the Delaunay triangulation D(P ∪ Q) of the
union of P andQ is constructed. From this Delaunay triangulation all triangles
that have all three vertices in P are retained. The retained triangles are called
candidate triangles. The candidate triangles not necessarily form a surface, but
they contain at least one if P is sufficiently dense. One of these surfaces is
extracted from the candidate triangles in the final step of the Crust algorithm,
which walks along the inside or outside of the candidate triangle set and
reports all triangles visited. While walking care has to be taken of dangling
triangles. These are triangles that have an edge that is incident only to this
triangle in the set of candidate triangles. The dangling triangles are recursively
removed from the set of candidate triangles before the actual walk starts.

" Guarantees. It can be shown that for a closed smooth surface S and a
sufficiently dense ε-sampling P of S the set of candidate triangles contains all
the triangles of the Delaunay triangulation DS(P) of P restricted to S. This
implies that the set of candidate triangles contains at least one surface, namely
the restricted Delaunay triangulation DS(P). Thus the manifold extraction
step of the Crust algorithm, i.e., the removal of the dangling triangles from
the set of candidate triangles and the actual walking are safe in the sense that
the reported triangles actually form a surface.

" Complexity. The worst case running time and memory consumption of
the Crust algorithm are Θ(m2), where m is the size of P ∪Q. Note, that two
Delaunay triangulations have to be computed, one from n and the other from
m points. The latter computation determines the asymptotic complexity of
the algorithm.

" Extensions. As described above the Crust algorithm only works for smooth
closed surfaces and sufficiently dense ε-samples. Main problem is the final step
of the algorithm that extracts a surfaces from the set of candidate triangles.
For practical data sets that do not fulfill the requirements of the algorithm
it can happen that this last step removes almost all candidate triangles since
dangling triangles are removed recursively. This can be prevented if the re-
moval of the dangling triangles is implemented in a more conservative fashion.
This done the Crust algorithm can also cope with surfaces with boundaries
and a “certain amount of non-smoothness” in practice.

Cocone.

The Cocone algorithm was designed by Amenta et al. [25] as a successor and
improvement of the Crust algorithm.

" Bottom-line. The Cocone algorithm builds as the Crust algorithm on the
idea of approximating the Delaunay triangulation DS(P) of P restricted to S
by computing a subset C ⊂ R

3 from P , which is a thickened version of S such
that the Delaunay triangulation DC(P) of P restricted to C can computed.

6 Delaunay Triangulation Based Surface Reconstruction 259

The subset C is defined as follows: for every sample point p ∈ P approximate
the normal of S at p using the pole of the Voronoi cell Vp in V (P), see
Theorem 8. The co-cone at p is now defined as the intersection of Vp with the
complement of a double cone with apex p and fixed opening angle around the
approximate normal at p, see Fig. 6.22 for a two dimensional example. The set
C is the union of all such co-cones. Note, that C can be computed just from
P . Theorem 7 implies that the local thickening of S using co-cones is small
compared to the local feature size and thus C is a reasonable approximation
of S.

Fig. 6.22. The co-cone of a sample on a curve together with the Voronoi cell of the
sample point and its pole

Fig. 6.23. Balls of opposite (same) color intersect shallowly (deeply)

" Algorithm. As the Crust algorithm the Cocone algorithm first computes a
subset of candidate triangles from the triangles in D(P). A triangle t in D(P)

260 F. Cazals, J. Giesen

is a candidate triangle if its dual Voronoi edge e intersects any of the co-cones.
This intersection test boils down to go through the vertices of t and check if
e intersects the co-cone of one of the vertices, which is checking the angles
the of vectors from a vertex v incident to t to the endpoints of e with the
approximate normal at v. As for the Crust algorithm the candidate triangles
form not necessarily a surface, but they contain at least one if P is sufficiently
dense. Finally, the last step of the Crust algorithm is used to extract one of
these surfaces.

" Guarantees. The same guarantees as for the Crust algorithm hold under
the same conditions. But for the Cocone algorithm it is the first time that
these guarantees were rigorously proven, especially the fact that the surface
S and its reconstruction are homeomorphic for dense enough sampling.

" Complexity. The running time and memory consumption of the Cocone
algorithm is Θ(n2) where n is the size of P . This complexity is determined by
the computation of D(P). In practice one does not observe the quadratic but
a slightly super linear behavior of the running time.

" Extensions. As described above the Cocone algorithm has the same re-
strictions as the Crust algorithm, which also can be mitigated in the same
way. But for the Cocone algorithm there exist several extensions.

In the vein of large datasets, two extensions were designed. In order to
avoid the calculation of the entire Delaunay triangulation, Dey et al. propose
to split the point cloud into chunks using an octree [121]. Cocone is then called
on each chunk, and the matching of surface pieces from adjacent octree cells
is obtained by duplicating selected sample points at the cells’ boundaries.
Alternatively, the complexity of the algorithm was reduced by Funke and
Ramos [174] to Θ(n log n) by avoiding the computation of D(P). They use a
data-structure called well separated pair decomposition that allows to compute
efficiently nearest neighbors of any sample point p ∈ P in all spatial directions.
These neighbors approximate the Voronoi neighbors of p, i.e., the sample
points connected to p with an edge in D(P). From these neighbors the normal
of S at p can be approximated, and candidate triangles incident to p and two
of the approximate Voronoi neighbors can be computed as in the Cocone
algorithm.

The output of the Cocone algorithm with robust manifold extraction step
is a surface with boundary. This surface might contain small unpleasant holes.
An extension called Tight Cocone removes these unpleasant holes provided the
surface S is closed. The Tight Cocone algorithm falls in the class of inside /
outside labeling algorithms, i.e., it removes tetrahedra from the outside of
the Delaunay triangulation D(P). The stopping criterion for the tetrahedron
removal is based on the triangles computed by the Cocone algorithm. The
latter triangles have to be contained in the reconstruction. The Tight Cocone
algorithm was designed by Dey and Goswami [123] and got its name from the
fact that its output is a watertight surface, i.e., a surface that bounds a solid,
which might be pinched together at some points.

6 Delaunay Triangulation Based Surface Reconstruction 261

The Tight Cocone algorithm was even further extended to deal with a
noisy sampling P . This extension called Robust Cocone was also developed
by Dey and Goswami [124]. The Robust Cocone algorithm employs a fact
that was first used in the Power Crust algorithm of Amenta and Choi [27,
26], namely, the balls circumscribing adjacent Delaunay tetrahedra intersect
deeply if both tetrahedra belong to the same component, i.e., either outside
or inside. The tetrahedra only have a shallow intersection if they belong to
different components. Dey and Goswami observed that this might not be true
for tetrahedra in the noisy regions around the surface S. But these tetrahedra
have comparatively small circumscribing balls and thus can be detected. In
the Robust Cocone algorithm only the sample points on the boundary of the
noise layer either facing the outside or the inside are retained. Finally the
Tight Cocone algorithm is run on the retained subset of the sample points.

6.3.3 Inside / Outside Labeling

The common ancestor of all algorithms that are based on an approximate
inside / outside labeling of the Delaunay tetrahedra with respect to the un-
known closed surface S is the algorithm by Boissonnat [54], from the same
paper that introduces the first tangent plane based surface reconstruction al-
gorithm. In this seminal paper Boissonnat describes a sculpturing technique,
i.e., removing tetrahedron from the Delaunay triangulation from the outside
in order to sculpture a solid whose boundary is the reconstruction. Boissonnat
uses a priority queue and weights on the tetrahedra still present in the shape
to decide which tetrahedron to remove next. The tetrahedron removal is con-
trolled by topological constraints, i.e., by prescribing the genus of the surface
of the resulting solid.

As depicted on 6.24, surfaces with boundary do not define an inside and
an outside, so that the methods described in this section may not work for
such surfaces.

Power Crust.

The Power Crust algorithm was introduced by Amenta et al. in [27, 26].

" Bottom-line. To put it briefly, the Power Crust algorithm is an approxi-
mate medial axis transform built from empty balls rather than maximal balls,
which is asymptotically licit by Theorem 7.

"Algorithm. Consider a solid T bounded by a closed surface S. By the medial
axis transform, the solid T can be expressed as an infinite union of spheres
centered on the inner medial axis, i.e., the medial axis of R

3\S restricted to
T . But if one has a dense point set on S and since the inner poles, i.e., the
poles contained in T , converge to the inner medial axis, the surface S can
certainly be approximated by the boundary of the union of balls centered

262 F. Cazals, J. Giesen

Fig. 6.24. Pole c lies near the medial axis, but cannot be tagged as inside or outside
.

on the inner poles, their radii being the distance to the corresponding sample
points. Similarly, the complement of the solid can be approximated by a union
of balls centered on the outer poles, i.e., the complement of the set of inner
poles. Therefore and since we have two collections of balls (inner and outer),
the surface S should also be approximated by the interface between the inner
and outer cells of the power diagram defined by the union of inner and outer
polar balls. This interface that consists of facets in a power diagram is called
the power crust. At last, the dual of the complement of the power crust in
the power diagram is called the power shape. The power shape is a subset of
the regular triangulation and is expected to approximate the medial axis of
R

3\S.
From an algorithmic standpoint, the critical part consists of tagging the

poles as inner or outer. Assuming the samples are enclosed within a bounding
box, and starting from the poles of the sample points located on the bounding
box, a greedy algorithm is developed. The strategy consists of iterating on the
poles using a priority queue, which depends on the angle defined by the two
poles of a sample, as well as the intersection angle between polar balls. The
algorithm is provably good for dense enough samples, yet may fail in case of
under-sampling, at sharp edges or in the presence of noise.

The surface reported is a watertight, i.e., a closed, piecewise linear surface
consisting of power facets, yet possibly pinched at some points. All the sample
points are interpolated, yet the result contains additional vertices.

" Complexity. Three data structures are used: the Delaunay triangulation of
the original samples, the power diagram of the poles, and the priority queue
of the tagging algorithm.

" Guarantees. It is first proved that an inner and an outer ball intersect
shallowly, see Fig. 6.23 for an illustration. This result was already present
in [30] for the two-dimensional case.

6 Delaunay Triangulation Based Surface Reconstruction 263

Denoting UI (UO) the boundary of the union of inner (outer) balls, the
following properties are proved. The one-sided Hausdorff distance between UI

and S is small, and so is the distance between UO and S, as well as between
the power-crust and S. The angle between the normal at a point of UI or
UO (where it is defined, i.e., on the interior of the spherical caps of UI and
UO) and the normal at the nearest point on S is also small. This geometric
property can be used to show that the projection of UI (or UO) to the nearest
point on S defines a homeomorphism. Using a similar construction, it is also
proved that the power crust and the surface are homeomorphic. At last, the
power shape is homotopy equivalent to the complement of the surface. Notice
that providing more accurate guarantees on the power shape is significantly
more difficult due to the intricate structure of the medial axis, and also due
to the fact that the power shape may contain flat tetrahedra.

" Extensions. Noise and under-sampling are detected by analyzing the
roundness of Voronoi cells. Badly shaped cells and the corresponding poles
are discarded. Discarding both poles of a sample that fails the skinniness test
allows to accommodate sharp edges as the intersection of two facets of the
power diagram. At last, large facets of the power crust witnessed by an inner
and an outer ball intersecting deeply can be removed, thus leaving a surface
with boundary.

Natural Neighbors.

Natural neighbors were first used for reconstruction in [56, 58].

" Bottom-line. It is well known by a theorem of Whitney that any smooth
surface occurs as the solution set f−1(0) for some smooth function f : R

3 �→ R.
The Natural Neighbors reconstruction method is based on the definition of
such a function based on two ingredients: an estimate of the tangent plane
based on the poles, and the natural coordinates defined with respect to the
Voronoi diagram of the samples.

" Algorithm. For the sake of clarity, first assume that each sample point is
given with its normal vector ni. Denoting NNs(x) the natural neighbors of a
point x and λi(x) the natural coordinate of x with respect to pi, the method
is based upon the following implicit function f : R

3 �→ R:

f(x) =
∑

pi∈NNs(x)

λi(x) 〈pix, ni〉.

The inner product 〈pix, ni〉 measures the signed distance from x to the tangent
plane at pi, and the function f therefore averages the signed distances to the
tangent planes of the natural neighbors of the point x. A direct consequence
of the properties of natural coordinates is that the function f interpolates
the point cloud, so that the reconstructed surface Ŝ is naturally defined as

264 F. Cazals, J. Giesen

f−1(0). It has been conjectured that Ŝ is a smooth surface, yet it remains to
show that 0 is a regular value of f .

Since the natural coordinates have an involved expression, a triangulated
approximation of Ŝ can be obtained as a subset of the Delaunay triangulation
of the samples, namely as the restricted Delaunay triangulation Df−1(0)(P).
This triangulation is easily computed as follows. Denote by c1c2 the dual
Voronoi edge of a triangle t. If f(c1)f(c2) < 0, then triangle t belongs to the
restricted Delaunay triangulation. Such triangles are also called bipolar in this
case.

If the normals are unknown, they can be estimated using the poles. Ori-
enting the normals is also possible using a greedy algorithm similar to the one
used in [27] for the Power-Crust algorithm.

" Complexity. Apart from the Delaunay triangulation, a priority queue is
required to sign the poles and orient the normals if the normals are not pro-
vided.

" Guarantees. It can be shown that the Hausdorff distance between f−1(0)
and S tends to zero when the sampling density goes to infinity. There is no
guarantee on the topological coherence between the bipolar facets that make
up the reconstruction since non manifold edges may be encountered in case
of boundaries, noise, or under-sampling. However, if a (strictly positive) lower
bound on the local feature size is known, the mesh obtained can be refined
using Delaunay refinement –see Chapter 5, until a mesh ambient isotopic to
the original surface is obtained.

Topologically guided methods for the inside / outside labeling make use
of the distance to the closest sample point. In Sect. 6.2 we have already sum-
marized some properties of this function. In topological guided methods one
wants to exploit the critical points of the distance function and their stable
manifolds for reconstruction.

" Extensions. An interesting extension of the above scheme, geared towards
large datasets, is developed in [55]. Starting with a subset of the point cloud to
be processed, and observing that points located near the level set f−1(0) are
redundant, the algorithm iteratively inserts points located far away from this
zero level set. Upon termination, a mesh featuring a subset of the whole point
cloud is returned, the points discarded being within a user specified tolerance
from this mesh.

Wrap.

The Wrap algorithm was designed by Edelsbrunner [132].

" Bottom-line. The Wrap algorithm is based on the concepts of flow and
stable manifolds. But instead of building directly on the flow induced by the
sample points a flow relation is defined on the set of simplices of the Delaunay

6 Delaunay Triangulation Based Surface Reconstruction 265

triangulation D(P) of the sample points P . The critical points are defined ex-
actly as for the distance function induced by P , i.e., as the intersection points
of Delaunay- and their dual Voronoi objects. But their stable manifolds are
now approximated by sub-complexes of D(P). The reconstruction produced
by the Wrap algorithm is the boundary of the union of stable manifolds of a
subset of the maxima of the flow relation. As the boundary of a solid it is a
surface.

" More details. The flow relation # ⊂ D × D on the set D of Delaunay
simplices is defined as follows: τ # ν # σ if ν is a face of τ and σ and there
exists a point x in the interior of ν such that there is an orbit φy that is
passing from the interior of τ through x to σ. τ is called a predecessor and
σ is called a successor of ν. The relation # is acyclic. A sink is a Delaunay
tetrahedron that contains a maximum of the flow, i.e., its dual Voronoi vertex.
The set of sinks is augmented by an artificial sink at infinity. The flow relation
can be used to define the ancestor and conservative ancestor sets of a set B of
sinks. These sets consist of Delaunay simplices that are linked to a tetrahedron
in B by a chain in the flow relation. The wrapping surface of the point set
P is the boundary of the union of the ancestor sets of all finite sinks or
equivalently it consists of the complement in the Delaunay triangulation D(P)
of the conservative ancestor set of the sink at infinity. The wrapping surface
is unique. It can be computed by collapsing certain simplices. The collapse
operation removes simplices that are the unique co-face of one of their faces.
A collapse does not change the homotopy type of the complex since it can
be seen as a deformation retraction, which always keeps the homotopy type.
Thus the complex bounded by the wrapping surface is homotopy equivalent
to a point, i.e., the wrapping surface cannot be a torus for example. The
latter disadvantage is bypassed by allowing a simplex removing operation that
changes the homotopy type. The deletion is similar to the original definition
of the wrapping surface. Instead of removing from the Delaunay triangulation
D(P) only the conservative ancestor set of the sink at infinity, the conservative
ancestor sets of a set of sinks is removed. Consequently the wrapping surface is
now the boundary of the union of the ancestor sets of the remaining sinks. The
latter union need not be homotopy equivalent to a point, i.e., the wrapping
surface can be topologically more complicated.

" Guarantees. No reconstruction guarantees are given besides the fact that
the wrapping surface is always the boundary of a solid.

" Complexity. The running time of the Wrap algorithm is dominated by the
time needed to compute the Delaunay triangulation D(P), i.e., it is Θ(n2)
where n is the size of P .

" Extensions. No extensions to the Wrap algorithm are known.

266 F. Cazals, J. Giesen

Flow Complex.

The flow complex is very much related to the Wrap algorithm.

" Bottom-line. It was observed by Giesen and John [183] that a reconstruc-
tion similar to the one obtained by the Wrap algorithm can be derived from
the flow complex. The flow complex has a recursive structure, i.e., the stable
manifolds of a critical point is bounded by stable manifolds of critical points
of lower index. The reconstruction is the boundary of the union of all stable
manifolds of the local maxima of the induced distance function. The stable
manifold of an index 2 saddle point can be in the boundary of either one
or two stable manifolds of local maxima. As in the Wrap algorithm one can
recursively use stable manifolds of index 2 saddles, which are in the boundary
of only one stable manifold of a local maximum to push the reconstruction
further to interior of the complex. The pushing is guided by considering the
difference in value of the height function at the local maximum and the index
2 saddle point.

" Algorithm. The flow complex is not a subcomplex of the Delaunay tri-
angulation D(P) though D(P) can be used to compute the flow complex.
This computation is quite involved and makes use of the recursive structure
of the stable manifolds. Here we want to refer the reader to [184] for a detailed
description.

" Guarantees. No reconstruction guarantees are given besides the fact that
the wrapping surface always is the boundary of a solid.

" Complexity. The combinatorial and algorithmic complexities of the flow
complex are not known yet. The reconstruction has roughly three times as
many triangles as other Delaunay based reconstruction algorithms.

" Extensions. The reconstruction algorithm of [183] is guided by the sta-
ble manifolds of index 2 saddles. An extension of this strategy is developed
in [122], where it is first observed that critical points of the distance function
to the samples are either located near the surface or near the medial axis.
This distinction is algorithmic since one can actually classify critical points as
medial axis or surface critical points using an angle-based criterion involving
the poles. Based on this classification, it is sufficient to union all the stable
manifolds of medial axis critical points, and report the boundary of this union.

Convection Algorithm.

The convection algorithm was designed by Chaine [82].

" Bottom-line. The Convection algorithm is the geometric implementation
of the convection model introduced by Zhao, Osher and Fedkiw [350]. In this

6 Delaunay Triangulation Based Surface Reconstruction 267

model it is proposed to use the surface that minimizes the following energy
functional as the reconstruction of S from P :

E(S′) =
(∫

x∈S′
hp(x) dx

)1/p

, 1 ≤ p ≤ ∞,

where the integral is taken over a closed surface S′ and h is the distance
function induced by the sampling P of the surface S. Zhao et al. propose
an evolution equation to construct the surface that minimizes the energy
functional by deforming a good initial enclosing approximation of the surface.
The evolution follows the gradient descent of the energy functional. Every
point x of the surface S′ evolves towards the interior of the surface along the
normal direction n of S′ at x with speed proportional to −∇h(x) · n + t(x),
where t(x) is the surface tension of S′ at x. In order to compute an initial
approximation of S Zhao et al. change the evolution in the sense the velocity
field at each point x ∈ S′ is replaced by −∇h(x). Chaine discretizes the
convection approach by introducing the concept of pseudo-surfaces. The facets
of a pseudo-surface are Delaunay triangles that have the oriented Gabriel
property, where the triangles are oriented such that their normal points inside
the bounded component enclosed by the pseudo-surface. A pseudo surface can
be pinched together along some of its subsets. To define the oriented Gabriel
property let t be a Delaunay triangle with oriented normal n. Let s be the
half-sphere of the minimum enclosing sphere of t that is contained in the half-
space bounded by the affine hull of t and pointed into by n. The triangle t has
the oriented Gabriel property if the half sphere s does not contain any point
from P in its interior. Chaine proves the following theorem.

Theorem 9. Given a closed surface S′ enclosing the point set P then S′

evolves under the convection −∇h(x) to a set of closed, piecewise linear
pseudo-surfaces.

Furthermore, she observed that Theorem 9 can be turned into an algorithm
based on the Delaunay triangulation D(P) of the sample points P . In this
algorithm the evolving pseudo surface is initialized with the boundary of the
convex hull of P and all the triangles on this boundary are oriented to point
inside the convex hull. The pseudo surface evolves by pushing into Delaunay
tetrahedra. The pushing operations are determined by the vector field −∇h(x)
and topological constraints.

" Algorithm. The algorithm basically works as follows: as long as there is
a facet f in the evolving, oriented, pseudo surface S′ that does not have the
oriented Gabriel property do the following. If the facet f with the inverse
orientation also belongs to S′ then remove f from S′. Otherwise replace f
by the three Delaunay facets incident to the Delaunay tetrahedron, which is
incident to f and on the positive side of f with respect to the orientation of
f . Orient the three new facets in S′ properly such that their normals point
into the interior of the evolving pseudo surface.

268 F. Cazals, J. Giesen

" Guarantees. No reconstruction guarantees are given.

" Complexity. The running time of the Convection algorithm is dominated
by the time needed to compute the Delaunay triangulation D(P), i.e., it is
Θ(n2) where n is the size of P .

" Extensions. One modification of the Convection algorithm is to keep an
oriented facet f in S′ if the same facet with the inverse orientation is also in
S′. In doing so the convection algorithm can also reconstruct surfaces with
boundaries.

Sometimes the Convection algorithm stops too early, i.e., one would like
to push the evolving surface even further. A heuristic to do so is provided.

Another extension, geared towards large datasets, is presented in [18].
Borrowing the coarse-to-fine strategy from [57], the method first extracts a
triangulated surface corresponding to a subset of the point cloud. This sur-
face can be further refined by locally updating the Delaunay triangulation,
and updating the reconstruction accordingly —a local process which does not
require running the convection algorithm from scratch.

" Comments. The Convection algorithm is dual to the Wrap algorithm (and
the Flow complex) in the sense that the direction of “flow” is reversed. The
Wrap algorithm retains the part of the Delaunay triangulation that does not
“flow” to infinity whereas the Convection algorithm lets the convex hull of P
“flow” towards the shape.

6.3.4 Empty Balls Methods

A triangle reported in a reconstructed surface should be local in some sense.
One way to specify locality is to use the empty ball property.

Ball Pivoting Algorithm.

Bernardini et al. [52]designed the ball pivoting algorithm to compute a surface
subset of an α-shape of a sampling P in linear time and space.

" Bottom-line and algorithm. Like in the definition of α-shapes a triangle
pqr with vertices p, q, r ∈ P forms a triangle in the reconstruction if there is a
ball of radius α that contains p, q and r in its boundary and no point from P
in its interior. Starting with a seed triangle in the α-shape the ball pivoting
algorithm pivots a ball around an edge of this seed triangle, i.e., it revolves
around an edge while keeping the edge’s endpoints on its boundary, until it
touches another point from P , forming another triangle in the α-shape. This
process continues until all reachable edges have been processed.

" Guarantees. No guarantees are given.

" Complexity. Time and space complexity of the ball pivoting algorithm are
linear under some assumptions, i.e., it is asymptotically faster than computing
the Delaunay triangulation D(P) of P .

6 Delaunay Triangulation Based Surface Reconstruction 269

" Extensions. If not all points of P have been processed by the algorithm
then one can restart it with a new seed triangle until all points in P have been
considered.

To accommodate non-uniform sampling the pivoting process can be re-
peated with a larger value for α.

Conformal α-shapes.

Conformal α-shapes were introduced in [81] to circumvent the uniformity
limitations inherent to α-shapes.

" Bottom-line. In the context of surface reconstruction, the size of the small-
est empty ball associated with a simplex does not have an absolute meaning:
a ball of a given radius may be associated to neighbors on the surface at
one location, but may connect points across the surface elsewhere. To get
around this difficulty, conformal α-shapes re-scale the size of balls by taking
into account the information provided by the poles.

" Algorithm. Consider the Delaunay triangulation of the sample points, and
the associated α-complex. The α values associated to the simplices incident
to a sample p span the range [0, α+

p], with α+
p the distance from p to its

pole. In contrast to α-shapes, where α spans the real numbers, consider now
a parameter α̂ ∈ [0, 1]. Placing around each sample point p a ball of radius
αp(α̂) = α+

p α̂, denote by Cα̂
p the intersection of that ball with the Voronoi cell

of p. The conformal alpha shape is the Delaunay triangulation of the sample
points P restricted to ∪p∈PC

α̂
p . Notice that the radii of the balls get scaled

by a factor equal to the distance to the poles instead of using the same radius
α for all balls.

" Guarantees. For an ε-sample of a surface, it can be shown that the con-
formal alpha shape contains the restricted Delaunay triangulation as soon as
α̂ ≥ η, with η = ε/(1 − ε). It can also be shown that the conformal alpha
shape does not contain large simplices for small values of α̂. Note that such
guarantees cannot be provided for ordinary α-shapes and are not known to
hold for any method based on weighted α-shapes (an extension of α-shapes
to weighted points, especially balls).

" Complexity. Commuting the conformal α-shapes requires to compute the
moment of appearance of the simplices as a function of α̂. This is straightfor-
ward from the α-values. Thus, the time complexity is the same as for ordinary
α-shapes.

Regular Interpolant.

The regular interpolant was introduced in [281] by Petitjean and Boyer. Their
work stresses the importance of Gabriel triangles for surface reconstruction,
an observation also raised in [34].

270 F. Cazals, J. Giesen

" Bottom-line. The framework of ε-samples might not be the definitive set-
up for solving practical problems. To bypass this difficulty, Petitjean and
Boyer address the issue of finding an interpolant encoding the properties of
the sampling P rather than those of an hypothetical smooth surface S. To see
how, we first introduce the relevant notions.

An interpolant O in R
3 is a 2-simplicial complex having P as vertex set.

The interpolant is closed if each simplex bounds two distinct connected com-
ponents of the ambient space.

Given a sample point p ∈ P , its granularity g(p) is defined as the radius
of the largest ball circumscribing a triangle incident to p.

Now, given an interpolant, its associated discrete medial axis is the Voronoi
diagram from which one removes the Voronoi cells dual to simplices of the
interpolant. Notice that the process leaves Voronoi cells of dimensions from
two to zero, and in particular all the Voronoi vertices.

The discrete local feature size or local thickness t(p) at a sample point p
is its least distance to the discrete medial axis with the convention t(p) = 0
if p is on the boundary of a connected component of R

3\O, which does not
contain any piece of the discrete medial axis.

Equipped with these notions, an interpolant is called regular is g(p) < t(p)
for all sample points p. Getting back to the point cloud, P is said to be regular
if it admits at least one regular interpolant. These notions are depicted in
Fig. 6.25.

Regular interpolants do not exist in general due to the presence of slivers,
see Fig. 6.3. When such a tetrahedron is located near its equatorial plane,
the granularity is indeed larger than the distance to the discrete medial axis,
which contains at least the circumcenter of the tetrahedron.

" Algorithm. For a regular interpolant, the triangles contributing to the
interpolant are the Gabriel triangles minimizing the granularity at the vertices.
They can be retrieved in an incremental fashion.

" Guarantees. No guarantees are given.

" Complexity. The Gabriel property must be checked for triangles incident
to an edge. Using the Delaunay triangulation this can be done in time O(n2).

" Extensions. For non-regular point-sets, triangles are first selected so as to
minimize the granularity, and are further decimated if they are not Gabriel.
The interpolant built in this way is called a minimal interpolant. It is not
manifold in general. A manifold extraction step can be applied, which consists
of reporting groups of simplices that are simply connected, i.e., contractible
to a point.

6 Delaunay Triangulation Based Surface Reconstruction 271

Fig. 6.25. A discrete version of the medial axis. Solid segments: interpolant; dotted
segments: belonging to Delaunay but not the interpolant. The medial axis consists
of the Voronoi segments dual to Delaunay edges, which do not contribute to the
interpolant. The Voronoi edges not belonging to the medial axis are dotted too

6.4 Evaluating Surface Reconstruction Algorithms

Evaluating surface reconstruction algorithms is a difficult task. Some of the
algorithms presented in this chapter come with theoretical guarantees under
certain conditions. But if these conditions are not met, their behavior is not
specified. Thus it is an interesting question how reconstruction algorithms per-
form on “real data”. In order to assess the performance of different algorithms
on real data two surface reconstruction challenges have been organized. One
challenge was organized within the Effective Computational Geometry project,
a project funded by the European Union. The other challenge was organized
within a DIMACS Workshop. For both challenges several data sets featuring
the following difficulties were selected: undersampling, sharp features, thin
parts, boundaries, high genus, noise.

The reader is referred to www-sop.inria.fr/prisme/manifestations/
ECG02/SurfReconsTestbed.html and www.cse.ohio-state.edu/
dimacs-sr-challenge where the data sets used in the challenges are
available. Some of these models are presented on Fig. 6.28, 6.29, 6.30, 6.27.

272 F. Cazals, J. Giesen

6.5 Software

In this section, we provide information on the availability of implementa-
tions of the different algorithms, and on the projects they have been used for.
Whenever the information has been provided by the authors, we indicate so.

Greedy [94].

Information provided by D. Cohen-Steiner. Algorithm Greedy has been mar-
keted by the Geometry Factory, the company selling the Computational
Geometry Algorithms Library library, and is also available through the web
site cgal.inria.fr/Reconstruction.

Cocone and variants [25, 123, 124].

Information provided by T. Dey. The suite of Cocone algorithms is available
from www.cse.ohio-state.edu/∼tamaldey/cocone.html. Depending on the
constraints, users can choose from Cocone which reconstructs with boundaries,
tight tcocone which returns a water-tight reconstruction, robust cocone which
handles noise. Current implementations are based upon version 2.3 of the
Computational Geometry Algorithms Library, www.cgal.org.

Power crust algorithm [27, 26].

Information provided by N. Amenta. The power crust software was released
in 2002 at www.cs.utexas.edu/users/amenta/powercrust/welcome.html.
The software was ported into the Visual Toolkit VTK by Tim Hutton —see
www.sq3.org.uk/powercrust. Unfortunately since powercrust was released
under the GPL licence, it cannot be officially included in the VTK distribu-
tion.

Natural Neighbors [56, 58].

Information provided by F. Cazals and A. Lieutier. The surface reconstruction
algorithm based on Natural Neighbors was purchased by Dassault Sytèmes,
the editor of CAGD system CATIA, and has been integrated into the Digital
Shape Editor of CATIA V5R6 since spring 2001.

Wrap [132].

As pointed out in [132], Algorithm Wrap has been implemented in 1996 at
Raindrop Geomagic, and successfully commercialized as geomagic Wrap. It is
also protected by the U.S patent No. 6,3777,865.

6 Delaunay Triangulation Based Surface Reconstruction 273

Ball pivoting algorithm [52].

Information provided by F. Bernardini. The algorithm is patented,
US6968299: Method and apparatus for reconstructing a surface using a ball-
pivoting algorithm. The code is copyright of IBM and not commercially
available. The Ball Pivoting Algorithm has been used in two projects spon-
sored by IBM Corporate Community Relations: Michelangelo’s Florence Pieta
www.research.ibm.com/pieta, Eternal Egypt www.eternalegypt.org. The
algorithm is part of a scanning system that IBM has made available to the
Egyptian Center for Documentation of Cultural and Natural History (CULT-
NAT)

6.6 Research Problems

Exercise 5 (Independence from the Delaunay triangulation). It has
been shown in [33] that the complexity of the Delaunay triangulation for rea-
sonable point sets sampled from a smooth generic surface is O(n log n), which
is better than the Θ(n2) worst-case bound on the complexity of the Delaunay
triangulation. Therefore, one challenge is to design a surface reconstruction
algorithm whose running time is always independent of the size of the De-
launay triangulation D(P). Even better, the running time could be output
sensitive in the size of the reconstructed surface. An example such an algo-
rithm running in time O(n log n) is the modification of the Cocone algorithm
by Funke and Ramos [174].

Exercise 6 (Boundaries). Define a meaningful sampling theory for a
smooth surface with boundaries. Design an algorithm that comes with guar-
antees in terms of your sampling theory not only for the sampled surface, but
also for its bounding curves.

Exercise 7 (ε-samples). The major drawback of the ε-sample framework is
that the sufficient conditions of algorithms developed under its auspices cannot
be checked as a pre-condition. Propose a more constructive framework.

274 F. Cazals, J. Giesen

Fig. 6.26. The evolution and progress in the Cocone family of algorithms, ilustrated
on the Stanford bunny, 36k points. From left to right: Cocone, Tight Cocone and
Robust Cocone. Triangles featuring non manifold edges and vertices are colored

Fig. 6.27. Pump, 47k points. Reconstructed with [94]

6 Delaunay Triangulation Based Surface Reconstruction 275

Fig. 6.28. Mechanical part, 12k points. Reconstructed with [56]

Fig. 6.29. Vase, 2.7k points. Reconstructed with [56]

276 F. Cazals, J. Giesen

Fig. 6.30. Plane engine, 11k points. Reconstructed with [82]

7

Computational Topology:
An Introduction

Günter Rote and Gert Vegter�

7.1 Introduction

Topology studies point sets and their invariants under continuous deforma-
tions, invariants such as the number of connected components, holes, tunnels,
or cavities. Metric properties such as the position of a point, the distance
between points, or the curvature of a surface, are irrelevant to topology. Com-
putational topology deals with the complexity of topological problems, and
with the design of efficient algorithms for their solution, in case these prob-
lems are tractable. These algorithms can deal only with spaces and maps that
have a finite representation. To this end we restrict ourselves to simplicial
complexes and maps. In particular we study algebraic invariants of topologi-
cal spaces like Euler characteristics and Betti numbers, which are in general
easier to compute than topological invariants.

Many computational problems in topology are algorithmically undecid-
able. The mathematical literature of the 20th century contains many (beauti-
ful) topological algorithms, usually reducing to decision procedures, in many
cases with exponential-time complexity. The quest for efficient algorithms for
topological problems has started rather recently. The overviews by Dey, Edels-
brunner and Guha [119], Edelsbrunner [133], Vegter [329], and the book by
Zomorodian [351] provide further background on this fascinating area.

This chapter provides a tutorial introduction to computational aspects of
algebraic topology. It introduces the language of combinatorial topology, rele-
vant for a rigorous mathematical description of geometric objects like meshes,
arrangements and subdivisions appearing in other chapters of this book, and
in the computational geometry literature in general.

Computational methods are emphasized, so the main topological objects
are simplicial complexes, combinatorial surfaces and submanifolds of some
Euclidean space. These objects are introduced in Sect. 7.2. Here we also in-
troduce the notions of homotopy and isotopy, which also feature in other

� Chapter coordinator

278 G. Rote, G. Vegter

parts of this book, like Chapter 5. Most of the computational techniques are
introduced in Sect. 7.3. Topological invariants, like Betti numbers and Euler
characteristic, are introduced and methods for computing such invariants are
presented. Morse theory plays an important role in many recent advances in
computational geometry and topology. See, e.g., Sect. 5.5.2. This theory is
introduced in Sect. 7.4.

Given our focus on computational aspects, topological invariants like Betti
numbers are defined using simplicial homology, even though a more advanced
study of deeper mathematical aspects of algebraic topology could better be
based on singular homology, introduced in most modern textbooks on alge-
braic topology. Other topological invariants, like homotopy groups, are harder
to compute in general; These are not discussed in this chapter.

The chapter is far from a complete overview of computational algebraic
topology, and it does not discuss recent advances in this field. However, reading
this chapter paves the way for studying recent books and papers on compu-
tational topology. Topological algorithms are currently being used in applied
fields, like image processing and scattered data interpolation. Most of these
applications use some of the tools presented in this chapter.

7.2 Simplicial complexes

Topological spaces.

In this chapter a topological space X (or space, for short) is a subset of some
Euclidean space R

d, endowed with the induced topology of R
d. In particular,

an ε-neighborhood (ε > 0) of a point x in X is the set of all points in X
within Euclidean distance ε from x. A subset O of X is open if every point
of O contains an ε-neighborhood contained in O, for some ε > 0. A subset of
X is closed if its complement in X is open. The interior of a set X is the set
of all points having an ε-neighborhood contained in X, for some ε > 0. The
closure of a subset X of R

d is the set of points x in R
d every ε-neigborhood

of which has non-empty intersection with X. The boundary of a subset X
is the set of points in the closure of X that are not interior points of X. In
particular, every ε-neighborhood of a point in the boundary of X has non-
empty intersection with both X and the complement of X. See [28, Sect. 2.1]
for a more complete introduction of the basic concepts and properties of point
set topology.

The space R
d is called the ambient space of X. Examples of topological

spaces are:

1. The interval [0, 1] in R;
2. The open unit d-ball: B

d = {(x1, . . . , xd) ∈ R
d | x2

1 + · · · + x2
d < 1};

3. The closed unit d-ball: B
d

= {(x1, . . . , xd) ∈ R
d | x2

1 + · · · + x2
d ≤ 1} (the

closure of B
d);

7 Computational Topology: An Introduction 279

4. The unit d-sphere S
d = {(x1, . . . , xd+1) ∈ R

d+1 | x2
1 + · · ·+x2

d+1 = 1} (the
boundary of the (d+1)-ball);

5. A d-simplex, i.e., the convex hull of d+ 1 affinely independent points in
some Euclidean space (obviously, the dimension of the Euclidean space
cannot be smaller than d). The number d is called the dimension of the
simplex. Fig. 7.1 shows simplices of dimensions up to and including three.

Fig. 7.1. Simplices of dimension zero, one, two and three

Homeomorphisms.

A homeomorphism is a 1–1 map h : X → Y from a space X to a space Y
with a continuous inverse. (In this chapter a map is always continuous by
definition.) In this case we say that X is homeomorphic to Y , or, simply, that
X and Y are homeomorphic.

1. The unit d-sphere is homeomorphic to the subset Σ of R
m defined by

Σ = {(x1, . . . , xd+1, 0, . . . , 0) ∈ R
m | x2

1+· · ·+x2
d+1 = 1} (m > d). Indeed,

the map h : S
d → Σ, defined by h(x1, . . . , xd+1) = (x1, . . . , xd+1, 0, . . . , 0),

is a homeomorphism. Loosely speaking, the ambient space does not matter
from a topological point of view.

2. The map h : R
k → R

m, m > k, defined by

h(x1, . . . , xk) = (x1, . . . , xk, 0, . . . , 0),

is not a homeomorphism.
3. Any invertible affine map between two Euclidean spaces (of necessarily

equal dimension) is a homeomorphism.
4. Any two d-simplices are homeomorphic. (If the simplices lie in the same

ambient space of dimension d − 1, there is a unique invertible affine map
sending the vertices of the first simplex to the vertices of the second sim-
plex. For other, possibly unequal dimensions of the ambient space one
can construct an invertible affine map between the affine hulls of the sim-
plices.)

5. The boundary of a d-simplex is homeomorphic to the unit d-sphere. (Con-
sider a d-simplex in R

d+1. The projection of its boundary from a fixed
point in its interior onto its circumscribed d-sphere is a homeomorphism.
See Fig. 7.2. The circumscribed d-sphere is homeomorphic to the unit
d-sphere.)

280 G. Rote, G. Vegter

p

p′

Fig. 7.2. The point p on the boundary of a 3-simplex is mapped onto the point
p′ on the 2-sphere. This mapping defines a homeomorphism between the 2-simplex
and the 2-sphere

Simplices.

Consider a k-simplex σ, which is the convex hull of a set A of k+1 independent
points a0, . . . , ak in some Euclidean space R

d (so d ≥ k). A is said to span the
simplex σ. A simplex spanned by a subset A′ of A is called a face of σ. If τ is
a face of σ we write τ . σ. The face is proper if ∅ �= A′ �= A. The dimension of
the face is |A′|−1. A 0-dimensional face is called a vertex, a 1-dimensional face
is called an edge. An orientation of σ is induced by an ordering of its vertices,
denoted by 〈a0 · · · ak〉, as follows: For any permutation π of 0, . . . , k, the ori-
entation 〈aπ(0) · · · aπ(k)〉 is equal to (−1)sign(π)〈a0 · · · ak〉, where sign(π) is the
number of transpositions of π (so each simplex has two distinct orientations).
A simplex together with a specific choice of orientation is called an oriented
simplex. If τ is a (k−1)-dimensional face of σ, obtained by omitting the vertex
ai, then the induced orientation on τ is (−1)i〈a0 · · · âi · · · ak〉, where the hat
indicates omission of ai.

Simplicial complexes.

A simplicial complex K is a finite set of simplices in some Euclidean space
R

m, such that (i) if σ is a simplex of K and τ is a face of σ, then τ is a
simplex of K, and (ii) if σ and τ are simplices of K, then σ ∩ τ is either
empty or a common face of σ and τ . The dimension of K is the maximum of
the dimensions of its simplices. The underlying space of K, denoted by |K|,
is the union of all simplices of K, endowed with the subspace topology of
R

m. The i-skeleton of K, denoted by Ki, is the union of all simplices of K of
dimension at most i. A subcomplex L of K is a subset of K that is a simplicial
complex. A triangulation of a topological space X is a pair (K,h), where K
is a simplicial complex and h is a homeomorphism from the underlying space
|K| to X. The Euler characteristic of a simplicial d-complex K, denoted by

7 Computational Topology: An Introduction 281

χ(K), is the number
∑d

i=0(−1)iαi, where αi is the number of i-simplices of
K. Examples of simplicial complexes are:

1. A graph is a 1-dimensional simplicial complex (think of a graph as being
embedded in R

3). The complete graph with n vertices is the 1-skeleton of
an (n−1)-simplex.

2. The Delaunay triangulation of a set of points in general position in R
d is

a simplicial complex.

Combinatorial surfaces.

A Combinatorial closed surface is a finite two-dimensional simplicial complex
in which each edge (1-simplex) is incident with two triangles (2-simplices), and
the set of triangles incident to a vertex can be cyclically ordered t0, t1, . . . , tk−1

so that ti has exactly one edge in common with ti+1 mod k, and these are the
only common edges. Stillwell [325, page 69 ff] contains historical background
and the basic theorem on the classification combinatorial surfaces.

Homotopy and Isotopy: Continuous Deformations.

Homotopy is a fundamental topological concept that describes equivalence
between curves, surfaces, or more general topological subspaces within a given
topological space, up to “continuous deformations”.

Technically, homotopy is defined between two maps g, h : X → Y from
a space X into a space Y . The maps g and h are homotopic if there is a
continuous map

f : X × [0, 1] → Y

such that f(x, 0) = g(x) and f(x, 1) = h(x) for all x ∈ X. The map f is then
called a homotopy between g and h. It is easy to see that homotopy is an
equivalence relation, since a homotopy can be “inverted” and two homotopies
can be “concatenated”.

When g and h are two curves in Y = R
n defined over the same inter-

val X = [a, b], the homotopy f defines, for each “time” t, 0 ≤ t ≤ 1, a
curve f(·, t) : [a, b] → R

n that interpolates smoothly between f(·, 0) = g and
f(·, 1) = h.1

To define homotopy for two surfaces or more general spaces S and T , we
start with the identity map on S and deform it into a homeomorphism from
S to T . Two topological subspaces S, T ⊆ X are called homotopic if there is
a continuous mapping

γ : S × [0, 1] → X

such that γ(·, 0) is the identity map on S and γ(·, 1) is a homeomorphism
from S to T .

1In the case of curves with the same endpoints g(a) = h(a) and g(b) = h(b),
one usually requires also that these endpoints remain fixed during the deformation:
f(a, t) = g(a) and f(b, t) = g(b) for all t.

282 G. Rote, G. Vegter

By the requirement that we have a homeomorphism at time t = 1, one can
see that this definition is symmetric in S and T . Note that we do not require
γ(·, t) to be a homeomorphism at all times t. Thus, a clockwise cycle and a
counterclockwise cycle in the plane are homotopic. In fact, all closed curves
in the plane are homotopic: every cycle can be contracted into a point (which
is a special case of a closed curve). A connected topological space with this
property is called simply connected.

Examples of spaces which are not simply connected are a plane with a
point removed, or a (solid or hollow) torus. For example, on the hollow torus
in Fig. 7.3, the closed curve in the figure is not homotopic to its inverse.

If we require that γ(·, t) is a homeomorphism at all times during the de-
formation we arrive the stronger concept of isotopy. For example, the smooth
closed curves without self-intersections in the plane fall into two isotopy
classes, according to their orientation (clockwise or counterclockwise). Iso-
topy is usually what is meant when speaking about a “topologically correct”
approximation of a given surface, as discussed in Sect. 5.1, where the stronger
concept of ambient isotopy is also defined (Definition 1, p. 183).

A map f : X → Y is a homotopy equivalence if there is a map g : Y → X
such that the composed maps gf and fg are homotopy equivalent to the
identity map (on X and Y , respectively). The map g is a homotopy inverse of
f . The spaces X and Y are called homotopy equivalent. A space is contractible
if it is homotopy equivalent to a point.

1. The unit ball in a Euclidean space is contractible. Let f : {0} → B
d be the

inclusion map. The constant map g : B
d → {0} is a homotopy inverse of f .

To see this, observe that the map fg is the identity, and gf is homotopic to
the identity map on B

d, the homotopy being the map F : B
d × [0, 1] → B

d

defined by F (x, t) = tx.
2. The solid torus is homotopy equivalent to the circle. More generally, the

cartesian product of a topological space X and a contractible space is
homotopy equivalent to X.

3. A punctured d-dimensional Euclidean space R
d \ {0} is homotopy equiv-

alent to a (d− 1)-sphere.

Note that homotopy equivalent spaces need not be homeomorphic. However,
such spaces share important topological properties, like having the same Betti
numbers (to be introduced in the next section). Section 6.2.3 (p. 250) describes
how this concept is applied in surface reconstruction.

7.3 Simplicial homology

A calculus of closed loops.

Intuitively, it is clear that the sphere and the torus have different shapes in
the sense that these surfaces are not homeomorphic. A formal proof of this

7 Computational Topology: An Introduction 283

observation could be based on the Jordan curve theorem: take a simple closed
curve on the torus that does not disconnect the torus. Such curves, the com-
plement of which is connected, do exist, as can be seen from Fig. 7.3. If there
exists a homeomorphism from the torus to the sphere, the image of the curve
on the torus would be a simple closed curve on the sphere. By the Jordan
curve theorem, the complement of this curve is disconnected. Since connect-
edness is preserved by homeomorphisms, the complements of the curves on
the torus and the sphere are not homeomorphic. This contradiction proves
that the torus and the sphere are not homeomorphic.

Fig. 7.3. Every simple closed curve on the sphere disconnects. Not every closed
curve on the torus disconnects

This proof seems rather ad hoc: it only proves that the sphere is not
homeomorphic to a closed surface with holes, but it cannot be used to show
that a surface with more than one hole is not homeomorphic to the torus.
Homology theory provides a systematic way to generalize the argument above
to more general spaces.

In this chapter we present basic concepts and properties of simplicial ho-
mology theory, closely related to simplicial complexes and suitable for compu-
tational purposes. An alternative, more abstract approach is followed in the
context of singular homology theory. This theory is more powerful when prov-
ing general results like topological invariance of homology spaces. Since we fo-
cus on basic computational techniques we will not discuss this theory here, but
refer the reader to standard textbooks on algebraic topology, like [203]. The
equivalence of Simplicial and Singular Homology is proven in [203, Sect. 2.1].

Chain spaces and simplicial homology.

Let K be a finite simplicial complex. In this chapter, an simplicial k-chain
is a formal sum of the form

∑
j ajσj over the oriented k-simplices σj in K,

with coefficients aj in the field Q of rational numbers. In other words, it can
be regarded as a rational vector whose entries are indexed by the oriented

284 G. Rote, G. Vegter

k-simplices of K. Furthermore, by definition, −σ = (−1)σ is the simplex
obtained from σ by reversing its orientation. With the obvious definition for
addition and multiplication by scalars (i.e., rational numbers), the set of all
simplicial k-chains forms a vector space Ck(K,Q), called the vector space
of simplicial k-chains of K. The dimension of this vector space is equal to
the number of k-simplices of K. Therefore, the Euler characteristic of a d-
dimensional simplicial complex K can be expressed as an alternating sum of
dimensions of the spaces of k-chains:

χ(K) =
d∑

i=0

(−1)i dimCk(K,Q). (7.1)

The boundary operator ∂k : Ck(K,Q) → Ck−1(K,Q) is defined as follows.
For a single k-simplex σ = 〈vi0 · · · vik

〉, k > 0, let

∂kσ =
k∑

h=0

(−1)h〈vi0 · · · v̂ih
· · · vik

〉,

and then let ∂k be extended linearly, viz., ∂k(
∑

j ajσj) =
∑

j aj∂kσj . For con-
sistency we define C−1(K,Q) = 0, and we let ∂0 : C0(K,Q) → C−1(K,Q) be
the zero-map. The boundary operator is a linear map between vector spaces.
It is easy to check that it verifies the relation ∂k∂k+1 = 0.

Example: One-homologous chains.

In the simplicial complex of Fig. 7.4 we consider the 2-chain γ = 〈v1v4v2〉 +
〈v2v4v5〉+ 〈v2v5v3〉+ 〈v3v5v6〉+ 〈v1v3v6〉+ 〈v1v6v4〉. Then ∂2γ = α−β, where
α = 〈v4v5〉 + 〈v5v6〉 − 〈v4v6〉 and β = 〈v1v2〉 + 〈v2v3〉 − 〈v1v3〉. Since ∂1α = 0
and ∂1β = 0, it follows that ∂1∂2γ = 0.

v1 v2

v3

v4 v5

v6

Fig. 7.4. One- and two-chains in an annulus

The vector space Zk(K,Q) = ker ∂k is called the vector space of simplicial
k-cycles. The vector space Bk(K,Q) = im ∂k+1 is called vector space of sim-

7 Computational Topology: An Introduction 285

plicial k-boundaries. Since the boundary of a boundary is 0, Bk(K,Q) is a sub-
space of Zk(K,Q). The quotient vector spaceHk(K,Q) = Zk(K,Q)/Bk(K,Q)
is the k-th homology vector space of K. In particular, two k-cycles α and β are
k-homologous if their difference is a k-boundary, i.e., if there is a k+1-chain γ
such that α− β = ∂k+1γ. The homology class of α ∈ Zk(K,Q) is denoted by
[α]. The k-th Betti number of the simplicial complex K, denoted by βk(K,Q),
is the dimension of Hk(K,Q). In particular:

βk(K,Q) = dimZk(K,Q) − dimBk(K,Q). (7.2)

Remark. In this chapter, the coefficients of simplicial chains are rational
numbers. One usually takes these coefficients in a ring, like the set of integers.
In that case one obtains homology groups in stead of homology vector spaces.
Then, the Betti numbers are the ranks of these groups.

Example: Zero-homology of a connected simplicial complex.

Consider the connected simplicial complex K of Fig. 7.5. The 0-chains α =
〈v6〉 and β = 〈v2〉 are 0-homologous since their difference is the boundary of
the 1-chain γ = −〈v1v2〉+ 〈v1v4〉+ 〈v4v6〉, since ∂1γ = −(〈v2〉−〈v1〉)+(〈v4〉−
〈v1〉)+(〈v6〉 − 〈v4〉) = α−β. In the same way one shows that every 0-chain of

v1

v2

v3

v4

v5

v6

Fig. 7.5. Zero-homology of a graph

the form 〈vi〉, 1 ≤ i ≤ 6, is homologous to α. This implies that every 0-chain
of K is of the form c〈α〉, for some c ∈ Q. Hence: H0(K,Q) = Q. It is not
hard to generalize this property to all connected simplicial complexes: if K is
a finite connected simplicial complex, then H0(K,Q) = Q.

Example: One-homologous chains.

The boundary chains of the annulus in Fig. 7.4 are one-homologous. Indeed,
the difference of the boundary chains α = 〈v4v5〉 + 〈v5v6〉 − 〈v4v6〉 and β =
〈v1v2〉+〈v2v3〉−〈v1v3〉 is the boundary of the 2-chain γ = 〈v1v4v2〉+〈v2v4v5〉+
〈v2v5v3〉 + 〈v3v5v6〉 + 〈v1v3v6〉 + 〈v1v6v4〉.

286 G. Rote, G. Vegter

Betti numbers.

We present a few examples, demonstrating the computation of Betti numbers
directly from the definition.

1. Connected simplicial complex. If K is a connected simplicial complex, then
β0(K,Q) = 1. In fact, we already did the example on 0-homologous chains of
a connected simplicial complex K, proving that H0(K,Q) = Q.

2. Betti numbers of a tree. The tree of Fig. 7.6 is a simplicial complex K with
edges oriented according to the direction of the arrows, i.e., e1 = 〈v1v2〉 and
so on. Since it is connected, we have β0(K,Q) = 1. Furthermore, the matrix

v0

v1

v2

v3

v4
v5

e1

e2

e3

e4
e5

Fig. 7.6. A tree

of the boundary operator ∂1 : C1(K,Q) → C0(K,Q) with respect to the basis
e1, e2, e3, e4, e5 of C1(K,Q) and 〈v0〉, 〈v1〉, 〈v2〉, 〈v3〉, 〈v4〉, 〈v5〉 of C0(K,Q) is

∂1 e1 e2 e3 e4 e5
〈v0〉 1 0 0 0 0
〈v1〉 −1 1 1 0 0
〈v2〉 0 −1 0 0 0
〈v3〉 0 0 −1 1 1
〈v4〉 0 0 0 −1 0
〈v5〉 0 0 0 0 −1

(E.g., ∂1(e1) = 〈v0〉−〈v1〉 = 1·〈v0〉+(−1)·〈v1〉+0·〈v2〉+0·〈v3〉+0·〈v4〉+0·〈v5〉.)
Since the columns of this matrix are independent (why?), the image of ∂1 has
dimension 5. Therefore, β1(K,Q) = dim ker ∂1 = dimC1(K,Q) − dim im ∂1 =
0.

3. Betti numbers of the 2-sphere. The simplicial complex K of Fig. 7.7 is the
boundary of a 3-simplex, consisting of four 2-simplices, six 1-simplices and four

7 Computational Topology: An Introduction 287

0-simplices. For convenience it is shown flattened on the plane, after cutting
the edges incident to 0-simplex v4. The underlying space |K| is homeomorphic
to the 2-sphere. Vertices with the same label have to be identified, like edges
between vertices with the same label. The matrix of the boundary operator

v1 v2

v3v4 v4

v4

Fig. 7.7. A 2-sphere

∂1 with respect to the canonical bases of C1(K,Q) and C0(K,Q) is

∂1 〈v1v2〉 〈v1v3〉 〈v1v4〉 〈v2v3〉 〈v2v4〉 〈v3v4〉
〈v1〉 −1 −1 −1 0 0 0
〈v2〉 1 0 0 −1 −1 0
〈v3〉 0 1 0 1 0 −1
〈v4〉 0 0 1 0 1 1

It follows that dimC0(K,Q) = 4, dim im ∂1 = 3, and dim ker ∂1 = 3. The
matrix of the boundary operator ∂2 with respect to the canonical bases of
C2(K,Q) and C1(K,Q) is

∂2 〈v1v2v3〉 〈v1v3v4〉 〈v1v4v2〉 〈v2v4v3〉
〈v1v2〉 1 0 −1 0
〈v1v3〉 −1 1 0 0
〈v1v4〉 0 −1 1 0
〈v2v3〉 1 0 0 −1
〈v2v4〉 0 0 −1 1
〈v3v4〉 0 1 0 −1

Therefore, dim im ∂2 = 3 and dim ker ∂2 = 1. Combining the previous results,
we conclude that β0(K,Q) = 1, β1(K,Q) = 0 and β2(K,Q) = 1.

4. Betti numbers of the torus. Consider the simplicial complex of Fig. 7.8,
which is a triangulation of the torus. It has 7 vertices, 21 oriented edges, and
14 oriented faces. The matrix of ∂2 with respect to the canonical bases of

288 G. Rote, G. Vegter

v 1

v 6

v 4 v 5 v 1

v 3v 7v 7

v 2

v 3

v 2

v 1v 5v 4v 1

Fig. 7.8. A triangulation of the torus

C1(K,Q) and C2(K,Q) is

∂2 142 245 253 356 165 126 276 237 173 157 475 467 134 364

12 1 0 0 0 0 1 0 0 0 0 0 0 0 0
13 0 0 0 0 0 0 0 0 −1 0 0 0 1 0
14 1 0 0 0 0 0 0 0 0 0 0 0 −1 0
15 0 0 0 0 −1 0 0 0 0 1 0 0 0 0
16 0 0 0 0 1 −1 0 0 0 0 0 0 0 0
17 0 0 0 0 0 0 0 0 1 −1 0 0 0 0
23 0 0 −1 0 0 0 0 1 0 0 0 0 0 0
24 −1 1 0 0 0 0 0 0 0 0 0 0 0 0
25 0 −1 1 0 0 0 0 0 0 0 0 0 0 0
26 0 0 0 0 0 1 −1 0 0 0 0 0 0 0
27 0 0 0 0 0 0 1 −1 0 0 0 0 0 0
34 0 0 0 0 0 0 0 0 0 0 0 0 1 −1
35 0 0 −1 1 0 0 0 0 0 0 0 0 0 0
36 0 0 0 −1 0 0 0 0 0 0 0 0 0 1
37 0 0 0 0 0 0 0 1 −1 0 0 0 0 0
45 0 1 0 0 0 0 0 0 0 0 −1 0 0 0
46 0 0 0 0 0 0 0 0 0 0 0 1 0 −1
47 0 0 0 0 0 0 0 0 0 0 1 −1 0 0
56 0 0 0 1 −1 0 0 0 0 0 0 0 0 0
57 0 0 0 0 0 0 0 0 0 1 −1 0 0 0
67 0 0 0 0 0 0 −1 0 0 0 0 1 0 0

The matrix of ∂1 with respect to the canonical bases of C0(K,Q) and C1(K,Q)
is obtained similarly (preferably using a computer algebra system). Computing
the dimensions of the kernel and image of these operators we finally get

7 Computational Topology: An Introduction 289

β0(K,Q) = 1, β1(K,Q) = 2, β2(K,Q) = 1

Euler characteristic and Betti numbers.

One of the fundamental results of simplicial homology theory states that Betti
numbers of the underlying space of finite simplicial complex does not depend
on the triangulation.

Theorem 1. Betti numbers are homotopy invariants: if K and L are sim-
plicial complexes with homotopy equivalent underlying spaces, then the i-th
homology vector spaces of K and L are isomorphic. In particular,

βi(K,Q) = βi(L,Q), for all i.

The proof of this theorem is beyond the scope of these introductory notes.
One usually introduces the more general singular homology groups for a topo-
logical space X, which are independent of any triangulation. Then one proves
that these groups are isomorphic to the simplicial homology groups, obtained
by taking simplicial chains with integer coefficients in stead of rational coef-
ficients. In particular, the corresponding Betti numbers, being the ranks of
these groups, are equal.

Theorem 2. Let K be a d-dimensional simplicial complex. Then

χ(K) =
d∑

i=0

(−1)iβi(K,Q).

Proof. Recall from (7.1) that χ(K) =
∑d

i=0 (−1)i dimCk(K,Q). Since

Hi(K,Q) =
ker ∂i

/

im ∂i+1
.

we see that

βi(K,Q) = dimHi(K,Q)
= dim ker ∂i − dim im ∂i+1

= dimCi(K,Q) − dim im ∂i − dim im ∂i+1.

Now:
d∑

i=0

(−1)i (dim im ∂i + dim im ∂i+1) = 0.

Hence:
d∑

i=0

(−1)iβi(K,Q) = χ(K,Q).

The claimed identities follow from the preceding derivation.

If X is a topological space with a simplicial complex K triangulating it, then
we define χ(X) = χ(K,Q). It follows from Theorem 1 and Theorem 2 that the
Euler characteristic does not depend on the specific choice of the triangulation
K.

290 G. Rote, G. Vegter

Incremental algorithm for computation of Betti numbers.

As can be seen in the case of a simple space like the torus, the matrices of
the boundary map become rather large, even for simple examples. Therefore
alternative approaches have been developed for special cases. We start with
an incremental approach, in which the simplical complex is constructed by
adding simplices one at a time, making sure that during the process all partial
constructs are indeed simplicial complexes. The key idea is to maintain the
Betti numbers of the partial complexes. The following result indicates how to
do this.

Proposition 1. Let K be a simplicial complex, and let K ′ be a simplicial
complex such that K ′ = K ∪ σ for some k-simplex σ. Let ∂i and ∂′i be the
boundary operators of the chain complexes associated with K and K ′, respec-
tively. Furthermore, let γ = ∂′kσ. If γ also bounds in K, i.e., ∂′kσ ∈ im ∂k,
then

βi(K ′,Q) =

{
βi(K,Q) if i �= k

βk(K,Q) + 1 if i = k

If γ does not bound in K, i.e., ∂′kσ �∈ im ∂k, then

βi(K ′,Q) =

{
βi(K,Q) if i �= k − 1
βk−1(K,Q) − 1 if i = k − 1

Proof.

· · ·
∂′

k+1−−−−→ Ck(K ′,Q)
∂′

k−−−−→ Ck−1(K ′,Q)
∂′

k−1−−−−→ · · ·
∥
∥
∥

∥
∥
∥

Ck(K,Q) ⊕ Q[σ] Ck−1(K,Q)

Case 1: ∂′kσ ∈ im ∂k. Then im ∂′i = im ∂i, for all i, so dim im ∂′i = dim im ∂i,
for all i. Therefore:

dim ker ∂′k = dimCk(K ′,Q) − dim im ∂′k
= 1 + dimCk(K,Q) − dim im ∂k

= 1 + dim ker ∂k

Furthermore, for i �= k we have dim ker ∂′i = dim ker ∂i. Hence (recall
dimHi(K ′,Q) = dim ker ∂′i − dim im ∂′i+1):

βi(K ′,Q) = dimHi(K ′,Q) =

{
dimHi(K,Q) if i �= k

1 + dimHk(K,Q) if i = k

Case 2: ∂′kσ �∈ im ∂k. Then

7 Computational Topology: An Introduction 291

dim im ∂′i =

{
dim im ∂i if i �= k

dim im ∂k + 1 if i = k.

Hence:

dim ker ∂′i = dimCi(K ′,Q) − dim im ∂′i

=

{
dimCi(K,Q) − dim im ∂i if i �= k

1 + dimCk(K,Q) − (1 + dim im ∂k) if i = k

= dim ker ∂i

This result yields an incremental algorithm for the computation of Betti num-
bers. Whether this algorithm is efficient depends on the implementation of the
test ‘∂′kσ �∈ im ∂k’. The paper [113] presents an efficient implementation of this
algorithm for subcomplexes of the three-sphere. This incremental method can
be used to compute the Betti numbers of some familiar spaces. Before show-
ing how to do this, we introduce some additional tools that are helpful in the
computation of Betti numbers.

Chain maps and chain homotopy.

Just like maps between spaces provide information about the topology of
these spaces, maps between homology spaces provide information about the
homology of these spaces. The key stepping stone towards these maps are
chain maps.

Let K and L be finite simplicial complexes. A chain map from K to L is
a sequence of linear maps fk : Ck(K,Q) → Ck(L,Q) such that ∂k+1 ◦ fk+1 =
fk ◦ ∂k+1. In other words, the sequence {fk} is a chain map if the following
diagram is commutative:

. . .
∂k+2−−−−→ Ck+1(K,Q)

∂k+1−−−−→ Ck(K,Q) ∂k−−−−→ . . .
⏐
⏐
'fk+1

⏐
⏐
'fk

. . .
∂k+2−−−−→ Ck+1(L,Q)

∂k+1−−−−→ Ck(L,Q) ∂k−−−−→ . . .

This chain map is denoted by f : C(K,Q) → C(L,Q). In fact, a chain map is
a family of maps, containing one linear map for each dimension.

Proposition 2. Let K, L and M be finite simplicial complexes.

1. The sequence of identity maps idk : Ck(K,Q) → Ck(K,Q) is a chain map.

2. The composition of a chain map from K to L and a chain map from L to
M is a chain map from K to M .

The proof of this result is straightforward and left as an exercise (Exercise 4).
Let f : C(K,Q) → C(L,Q) be a chain map. The linear map f∗ : H(K,Q) →
H(L,Q) is defined by

292 G. Rote, G. Vegter

f∗k([α]) = [fk(α)],

for α ∈ Zk(K,Q). We say that f∗ is the map induced by f at the level
of homology. Using commutativity of the diagram above, it is easy to see
that this map is well-defined, i.e., that [fk(α)] is independent of the choice of
the representative α of the homology class [α]. This map has some natural
properties, following in a straightforward way from the definition.

Proposition 3. Let K, L and M be finite simplicial complexes.

1. The identity chain map generates the identity map at the level of homology.

2. The map induced by a composition of chain maps is the composition
of the maps induced by each chain map. In other words, for chain maps
f : C(K,Q) → C(L,Q) and g : C(L,Q) → C(M,Q):

(g ◦ f)∗ = g∗ ◦ f∗.

A chain homotopy between two chain maps f, g : C(K,Q) → C(L,Q) is a
sequence {Tk} of linear maps Tk : Ck(K,Q) → Ck+1(L,Q) such that

Tk−1 ◦ ∂k + ∂k+1 ◦ Tk = fk − gk.

If such a chain homotopy exists, then f and g are called chain-homotopic. We
shall frequently use the following result, the proof of which is a simple exercise
in Linear Algebra (see Exercise 4).

Proposition 4. Chain homotopic chain maps induce the same linear map at
the level of homology.

Simplical collapse.

We now consider simplicial collapse, a very simple transformation of simpli-
cial complexes which does not alter homology in positive dimensions. This
operation allows us to compute the Betti numbers of a simplicial complex K
by simplifying K until we obtain another simplical complex L for which the
Betti numbers are known or easy to compute.

Let K be a finite simplicial complex, and let α and β be two simplices of
K such that α is a face of β, and α is not a face of any other simplex of K. Let
L be the subcomplex of K obtained by deleting the simplices α and β. The
transformation from K to L is called an elementary collapse. See Fig. 7.9.

More generally, we say that K collapses onto a subcomplex L, denoted by
K ↘ L, if there is a finite sequence of elementary collapses transforming K
into L.

Proposition 5. Let K and L be finite simplicial complexes such that K col-
lapses onto L. Then Hk(K,Q) and Hk(L,Q) are isomorphic.

7 Computational Topology: An Introduction 293

v0v0

v1v1

v2v2

v3v3

Fig. 7.9. An elementary collapse removes the simplices v0v1v2v3 and v1v2v3 from
the leftmost simplex

Proof. We give the proof for positive k, the case k = 0 being trivial. Our
strategy consists of finding a chain homotopy inverse to the inclusion chain
map ι : C(L,Q) → C(K,Q). To this end let α be a k-simplex, positively
oriented in the boundary ∂β of the k + 1-simplex β. Introduce the map
f : C(K,Q) → C(L,Q) by putting fk(α) = α − ∂β, fk+1(β) = 0, fi(σ) = σ
for every i-simplex different from α and β, and extending linearly. It is not
hard to prove that f is a chain map. Furthermore, f ◦ ι is the identity chain
map on C(L,Q).

Let the sequence of linear maps Pi : Ci(K,Q) → Ci+1(K,Q) be defined by
Pk(α) = β, and Pi(σ) = 0 for each i-simplex σ different from α. A straightfor-
ward computation shows that the sequence {Pi} is a chain homotopy between
the identity map on C(K,Q) and the chain map ι ◦ f . From this we conclude
that ιi : Hi(L,Q) → Hi(K,Q) is an isomorphism, for i > 0. In particular, K
and L have the same Betti numbers in positive dimension.

Example: Betti numbers of the projective plane.

The incremental algorithm, combined with the method of simplicial collapse,
allows for rather painless computation of Betti numbers of familiar spaces.
In this example we compute the Betti numbers of the projective plane RP2.
The simplicial complex K of Fig. 7.10 is the unique triangulation of the pro-
jective plane with a minimal number of vertices. The vertices and edges on
the boundary of the six-gon are identified in pairs, as indicated by the double
occurrence of the vertex-labels v1, v2 and v3. The arrows indicate the orien-
tation of the simplices forming the basis of the chain space C2(K). We orient
the edges of the simplex from the vertex with lower index to the vertex with
higher index.

Let L be the simplicial complex obtained from K by deleting the oriented
simplex τ = 〈v4v5v6〉. The Betti numbers of L are easy to compute, since
a sequence of simplicial collapses transforms L into the subcomplex L0 with

294 G. Rote, G. Vegter

v1 v1

v2

v2

v3

v3

v4

v5

v6

Fig. 7.10. A triangulation of the projective plane

vertices v1, v2 and v3, and oriented edges 〈v1v2〉, 〈v2v3〉 and 〈v1v3〉. The sim-
plicial complex L0 is a 1-sphere, so β0(L) = β0(L0) = 1, β1(L) = β1(L0) = 1,
and βi(L) = βi(L0) = 0 for i > 1.

To relate the Betti numbers of K with those of L, we have to determine
whether τ ′ = ∂2τ is a boundary in L. Consider the special 2-chain α, which
is the formal sum of all oriented 2-simplices in L. Taking the boundary of
α, we see that all oriented 1-simplices not in ∂2τ occur twice, those in the
interior of the six-gon in Fig. 7.10 with opposite coefficients and those in the
boundary with the same coefficient. In other words, ∂2α = 2γ − ∂2τ , where γ
is the 1-cycle 〈v1v2〉 + 〈v2v3〉 − 〈v1v3〉 of L. Therefore, [τ ′] = 2[γ] in H1(L).
Since [γ] forms a basis for H1(L), we conclude that [τ ′] �= 0 in H1(L). Hence
τ ′ is not a boundary in L. Applying the incremental algorithm we see that
β0(K) = β0(L) = 1, β1(K) = β1(L) − 1 = 0, and β2(K) = β2(L) = 0.

Example: Betti numbers depend on field of scalars.

Homology theory can be set up with coefficients in a general field. A pri-
ory, this leads to different Betti numbers. This is illustrated by revisiting
the simplicial complex K of Fig. 7.10, and applying the same procedure to
compute the Betti numbers over Z2. Using the same notation as in the pre-
ceding example, we see that [τ ′] = 2[γ] = 0 in H1(L,Z2), so τ ′ is a bound-
ary in C2(L,Z2). Applying the incremental algorithm again we conclude that
βi(K,Z) = βi(L,Z) = 1, for i = 0, 1, and β2(K,Z) = β2(L,Z) + 1 = 1. Note
that the Euler characteristic is independent of the coefficient field.

7 Computational Topology: An Introduction 295

7.4 Morse Theory

Finite dimensional Morse theory deals with the relation between the topology
of a smooth manifold and the critical points of smooth real-valued functions
on the manifold. It is the basic tool for the solution of fundamental prob-
lems in differential topology. Recently, basic notions from Morse theory have
been used in the study of the geometry and topology of large molecules. We
review some basic concepts from Morse theory, like in [329]. More elaborate
treatments are [255] and [250].

7.4.1 Smooth functions and manifolds

Differential of a smooth map.

A function f : R
n → R is called smooth if all derivatives of any order exist. A

map ϕ : R
n → R

m is called smooth if its component functions are smooth. The
differential of ϕ at a point q ∈ R

n is the linear map dϕq : R
n → R

m defined
as follows. For v ∈ R

n, let α : I → R
n, with I = (−ε, ε) for some positive

ε, be defined by α(t) = ϕ(q + tv), then dϕq(v) = α′(0). Let ϕ(x1, . . . , xn) =
(ϕ1(x1, . . . , xn), . . . , ϕm(x1, . . . , xn)). The differential dϕq is represented by
the Jacobian matrix ⎛

⎜
⎜
⎜
⎜
⎝

∂ϕ1

∂x1
(q) . . .

∂ϕ1

∂xn
(q)

...
...

∂ϕm

∂x1
(q) . . .

∂ϕm

∂xn
(q)

⎞

⎟
⎟
⎟
⎟
⎠
.

Regular surfaces in R
3.

A subset S in R
3 is a smooth surface if we can cover the surface with open

coordinate neighborhoods. More precisely, a coordinate neighborhood of a
point p on the surface is a subset of the form V ∩ S, where V is an open
subset of R

3, for which there exists a smooth map ϕ : U → R
3 defined on an

open subset U of R
2, such that where V is an open subset of R

3 containing
p, for which there exists a smooth map ϕ : U → R

3 defined on an open subset
U of R

2, such that

(i) The map ϕ is a homeomorphism from U onto V ∩ S;
(ii) If ϕ(u, v) = (x(u, v), y(u, v), z(u, v)), then the two tangent vectors

⎛

⎜
⎜
⎜
⎜
⎜
⎝

∂x

∂u
∂y

∂u
∂z

∂u

⎞

⎟
⎟
⎟
⎟
⎟
⎠

,

⎛

⎜
⎜
⎜
⎜
⎜
⎝

∂x

∂v
∂y

∂v
∂z

∂v

⎞

⎟
⎟
⎟
⎟
⎟
⎠

are non-zero and not parallel.

296 G. Rote, G. Vegter

The map ϕ is called a parametrization or a system of local coordinates in p.
The set S is a smooth surface if each point of S has a coordinate neighborhood.
Note that condition (ii) is equivalent to the fact that the differential of ϕ at
(u, v) is an injective map.

Example: spherical coordinates. Let S be a 2-sphere in R
3 with radius R and

center (0, 0, 0) ∈ R
3. Consider the set U = { (u, v) | 0 < u < 2π,−π/2 < v <

π/2 }. The map ϕ : U → S, given by

ϕ(u, v) = (R cosu cos v,R sinu cos v,R sin v).

corresponds to the well-known spherical coordinates. Note that ϕ(U) is the 2-
sphere minus a meridian. Each point of ϕ(U) has a system of local coordinates
given by ϕ.

Example: coordinates on the upper and lower hemisphere. Again, let S be the
sphere with radius R and center at the origin of R

3, and let U = { (x, y) |
x2 + y2 < R2 }. The (open) upper and lower hemispheres of the torus are the
graph of a smooth function. More precisely, each point of the upper hemisphere
has local coordinates given by the map

ϕ(x, y) = (x, y,
√
R2 − x2 − y2).

A similar expression defines local coordinates at each point of the lower hemi-
sphere. Covering the sphere by six hemispheres yields a system (at least one)
of local coordinate system for each point of the sphere. Therefore, the sphere
is a regular surface.

Example: coordinates on the torus of revolution. Let S be the torus obtained
by rotating the circle in x, y-plane with center (0, R, 0) and radius r around
the x-axis, where R > r. We show that S is a smooth surface by introducing
a system of local coordinates for all points of the torus. To this end, let
U = {(u, v) | 0 < u, v < 2π} and let ϕ : U → R

3 be the map defined by

ϕ(u, v) = (r sinu, (R − r cosu) sin v, (R − r cosu) cos v).

It is not hard to check that ϕ(U) ⊂ S. In fact, the map ϕ covers the torus
except for one meridian and one parallel circle. It is easy to find local coordi-
nates in points of these two circles by translating the parameter domain U a
little bit. Therefore, the torus is a regular surface.

Example: Local form of torus of revolution near (0, 0,±(R − r)). As in the
example of hemispheres, parts of the torus are graphs of a smooth function.
In particular, the points (0, 0,±(R − r)) have local coordinates of the form
ϕ(x, y) = (x, y, f±(x, y)), where

f±(x, y) = ±
√

R2 + r2 − x2 − y2 − 2R
√
r2 − x2.

7 Computational Topology: An Introduction 297

Submanifolds of R
n.

More generally, a subset M of R
n is an m-dimensional smooth submanifold of

R
n, m ≤ n, if for each p ∈ M , there is an open set V in R

n, containing p, and
a map ϕ : U → M ∩V from an open subset U in R

m onto V ∩M such that (i)
ϕ is a smooth homeomorphism, (ii) the differential dϕq : R

m → R
n is injective

for each q ∈ U . Again, the map ϕ is called a parametrization or a system of
local coordinates on M in p. In particular, the space R

n is a submanifold of
R

n. A subset N of a submanifold M of R
n is a submanifold of M if it is a

submanifold of R
n. The difference of the dimensions of M and N is called the

codimension of N (in M).

Example: linear subspaces are submanifolds. The Euclidean space R
m is a

smooth submanifold of R
n, for m ≤ n. For m < n, we identify R

m with the
subset {(x1, . . . , xn) ∈ R

n | xm+1 = · · · = xn = 0} of R
n.

Example: S
n−1 is a smooth submanifold of R

n. A smooth parametrization of
S

n−1 at (0, . . . , 0, 1) ∈ S
n−1 is given by ϕ : U → R

n, with

U = {(x1, . . . , xn−1) ∈ R
n−1 | x2

1 + · · · + x2
n−1 < 1},

and
ϕ(x1, . . . , xn−1) = (x1, . . . , xn−1,

√
1 − x2

1 − · · · − x2
n−1).

In fact, ϕ is a parametrization in every point of the upper hemisphere, i.e.,
the intersection of S

n−1 and the upper half space {(y1, . . . , yn) | yn > 0}.

Example: codimension one submanifolds. The equator S
1 = {(x1, x2, 0) | x2

1 +
x2

2 = 1} is a codimension one submanifold of S
2 = {(x1, x2, x3) | x2

1+x2
2+x2

3 =
1}. More generally, every intersection of the 2-sphere with a plane at distance
less than one from the origin is a codimension one submanifold.

Tangent space of a manifold.

The tangent vectors at a point p of a manifold form a vector space, called
the tangent space of the manifold at p. More formally, a tangent vector of M
at p is the tangent vector α′(0) of some smooth curve α : I → M through p.
Here a smooth curve through a point p on a smooth submanifold M of R

n

is a smooth map α : I → R
n, with I = (−ε, ε) for some positive ε, satisfying

α(t) ∈ M , for t ∈ I, and α(0) = p. The set TpM of all tangent vectors of M
at p is the tangent space of M at p.

If ϕ : U → M is a smooth parametrization of M at p, with 0 ∈ U and
ϕ(0) = p, then TpM is the m-dimensional subspace dϕ0(Rm) of R

n, which
passes through ϕ(0) = p. Let {e1, . . . , em} be the standard basis of R

m; define
the tangent vector ei ∈ TpM by ei = dϕ0(ei). Then {e1, . . . , em} is a basis of
TpM .

Example: tangent space of the sphere. The tangent space of the unit sphere
S

n−1 = {(x1, . . . , xn) | x2
1 + · · · + x2

n = 1} at a point p is the hyperplane
through p, perpendicular to the normal vector of the sphere at p.

298 G. Rote, G. Vegter

Smooth function on a submanifold.

A function f : M → R on an m-dimensional smooth submanifold M of R
n is

smooth at p ∈ M if there is a smooth parametrization ϕ : U → M ∩ V , with
U an open set in R

m and V an open set in R
n containing p, such that the

function f ◦ ϕ : U → R is smooth. A function on a manifold is called smooth
if it is smooth at every point of the manifold.

Example: height function on a surface. The height function h : S → R on a
surface S in R

3 is defined by h(x, y, z) = z, for (x, y, z) ∈ S. Let ϕ(u, v) =
(x(u, v), y(u, v), z(u, v)) be a system of local coordinates in a point of the
surface, then h ◦ϕ(u, v) = z(u, v) is smooth. Therefore, the height function is
a smooth function on S.

Regular and critical points.

A point p ∈ M is a critical point of a smooth function f : M → R if there
is a local parametrization ϕ : U → R

n of M at p, with ϕ(0) = p, such that
0 is a critical point of f ◦ ϕ : U → R (i.e., the differential of f ◦ ϕ at q is
the zero function on R

n). This condition does not depend on the particular
parametrization.
A real number c ∈ R is a regular value of f if f(p) �= c for all critical points p
of f , and a critical value otherwise.

Example: critical points of height function on the sphere. Consider the height
function on the unit sphere in R

3. Spherical coordinates define a para-
metrization ϕ(u, v) in every point, except for the poles (0, 0,±1). With
respect to this parametrization the height function h has the expression
h̃(u, v) = h(ϕ(u, v)) = sin v, so none of these points is singular (since
−π/2 < v < π/2 away from the poles). Near the poles (0, 0,±1) we consider
the sphere as the graph of a function, corresponding to the parametrization
ψ(x, y) = (x, y,

√
1 − x2 − y2). The height function is expressed in these local

coordinates as h̃(x, y) = h(ψ(x, y)) = ±
√

1 − x2 − y2, so the singular points
of h are (0, 0,−1) (minimum), and (0, 0, 1) (maximum).

Example: critical points of height function on the torus. The torus M in R
3,

obtained by rotating a circle in the x, y-plane with center (0, R, 0) and radius
r around the x-axis, is a smooth 2-manifold. Let U = {(u, v) | −π/2 < u, v <
3π/2} ⊂ R

2, and let the map ϕ : U → R
3 be defined by

ϕ(u, v) = (r sinu, (R − r cosu) sin v, (R − r cosu) cos v).

Then ϕ is a parametrization at all points of M , except for points on one lati-
tudinal and one longitudinal circle. The height function on M is the function
h : M → R defined by h̃(u, v) = h(ϕ(u, v)) = (R−r cosu) cos v, so the singular
points of h are:

7 Computational Topology: An Introduction 299

(u, v) ϕ(u, v) type of singularity
(0, 0) (0, 0, R − r) saddle point
(0, π) (0, 0,−R + r) saddle point
(π, 0) (0, 0, R + r) maximum
(π, π) (0, 0,−R − r) minimum

The type of a singular point will be introduced in Sect. 7.4.2.

Implicit surfaces and manifolds.

In many cases a set is given as the zero set of a smooth function (or a system
of functions). If this zero set contains no singular point of the function, then
it is a manifold:

Proposition 6. (Implicit Function Theorem). Let f : M → R be a
smooth function on the smooth submanifold M of R

n. If c is a regular value
of f , then the level set f−1(c) is a smooth submanifold of M of codimension
one.

A proof can be found in any book on analysis on manifolds, like [323].

Example: implicit surfaces in three-space. The unit sphere in three space is a
regular surface, since 0 is a regular value of the function f(x, y, z) = x2 +y2 +
z2 − 1. The torus of revolution is a regular surface, since 0 is a regular value
of the function g(x, y, z) = (x2 + y2 + z2 −R2 − r2)2 − 4R2(r2 − x2).

Hessian at a critical point.

Let M be a smooth submanifold of R
n, and let f : M → R be a smooth

function. The Hessian of f at a critical point p is the quadratic form Hpf on
TpM defined as follows. For v ∈ TpM , let α : (−ε, ε) → M be a curve with
α(0) = p, and α′(0) = v. Then

Hpf(v) =
d2

dt2

∣
∣
∣
∣
t=0

f(α(t)).

The right hand side does not depend on the choice of α. To see this, let
ϕ : U → M be a smooth parametrization of M at p, with 0 ∈ U and ϕ(0) = p,
and let v = v1e1 + · · · + vmem ∈ TpM , where ei = dϕ0(ei). Then

Hpf(v) =
m∑

i,j=1

∂2(f ◦ ϕ)
∂xi∂xj

(0)vivj .

In particular, the matrix of Hf (p) with respect to this basis is
⎛

⎜
⎜
⎜
⎜
⎜
⎝

∂2(f ◦ ϕ)
∂x2

1

(0) . . .
∂2(f ◦ ϕ)
∂x1∂xm

(0)

...
...

∂2(f ◦ ϕ)
∂x1∂xm

(0) . . .
∂2(f ◦ ϕ)
∂x2

m

(0)

⎞

⎟
⎟
⎟
⎟
⎟
⎠

. (7.3)

300 G. Rote, G. Vegter

It is not hard to check that the numbers of positive and negative eigenvalues
of the Hessian do not depend on the choice of ϕ, since p is a critical point
of f .

Non-degenerate critical point.

The critical point p of f : M → R is non-degenerate if the Hessian Hpf is non-
degenerate. The index of the non-degenerate critical point p is the number of
negative eigenvalues of the Hessian at p. If M is 2-dimensional, then a critical
point of index 0, 1, or 2, is called a minimum, saddle point, or maximum,
respectively.

7.4.2 Basic Results from Morse Theory

Morse function.

A smooth function on a manifold is a Morse function if all critical points
are non-degerate. The k-th Morse number of a Morse function f , denoted by
µk(f), is the number of critical points of f of index k.

Example: quadratic function on R
m. The function f : R

m → R, defined by
f(x1, . . . , xm) = −x2

1 − . . .− x2
k + x2

k+1 + . . .+ x2
m, is a Morse function, with

a single critical point (0, . . . , 0). This point is a non-degenerate critical point,
since the Hessian matrix at this point is diag(−2, . . . ,−2, 2, . . . , 2), with k
entries on the diagonal equal to −2. In particular, the index of the critical
point is k.

Example: singularities of the height function on Sm−1. The height function
on the standard unit sphere S

m−1 in R
m is a Morse function. This function is

defined by h(x1, . . . , xm) = xm for (x1, . . . , xm) ∈ S
m−1, With respect to the

parametrization ϕ(x1, . . . , xm−1) = (x1, . . . , xm−1,
√

1 − x2
1 − · · · − x2

m−1),
the expression of the height function is

h ◦ ϕ(x1, . . . , xm−1) =
√

1 − x2
1 − · · · − x2

m−1.

Therefore, the only critical point of h on the upper hemisphere is (0, . . . , 0, 1).
The Hessian matrix (7.3) is the diagonal matrix diag(−1,−1, . . . ,−1), so this
critical point has index m−1. Similarly, (0, . . . , 0,−1) is the only critical point
on the lower hemisphere. It is a critical point of index 0.

Example: singularities of the height function on the torus. The singular points
of the height function on the torus of revolution with radii R and r are
(0, 0,−R−r), (0, 0,−R+r), (0, 0, R−r), and (0, 0, R+r). See also Sect. 7.4.1.
A parametrization of this torus near the singular points ±(R− r) is ϕ(x, y) =
(x, y, f±(x, y)), where f±(x, y) = ±

√
R2 + r2 − x2 − y2 − 2R

√
r2 − x2. The

expression h(x, y) = f±(x, y) of the height function with respect to these
local coordinates at (x, y) = (0, 0) is

7 Computational Topology: An Introduction 301

h(x, y) = ±
(
R − r − 1

2r
x2 +

1
2(R − r)

y2
)

+ Higher Order Terms.

Hence the singular points corresponding to (x, y) = (0, 0), i.e., (0, 0,±(R−r)),
are saddle points, i.e., singular points of index one. Similarly, the singular point
(0, 0, R + r) is a maximum (index two), and the singular point (0, 0,−R − r)
is a minimum (index zero), and the

Regular level sets.

Let M be an m-dimensional submanifold of R
n, and let f : M → R be a

smooth function. The set f−1(h) := {q ∈ M |f(q) = h} of points where f has
a fixed value h is called a level set (at level h). If h ∈ R is a regular value of
f , then f−1(h) is a smooth (m− 1)-dimensional submanifold of R

n.
Similarly, we define the lower level set (also called excursion set) at some
level h ∈ R as Mh = { q ∈ M | f(q) ≤ h }. If f has no critical values in [a, b],
for a < b, then the subsets Ma and Mb of M are homeomorphic (and even
isotopic).

The Morse Lemma.

Let f : M → R be a smooth function on a smooth m-dimensional submanifold
M of R

n, and let p be a non-degenerate critical point of index k. Then there is
a smooth parametrization ϕ : U → M ofM at p, with U an open neighborhood
of 0 ∈ R

m and ϕ(0) = p, such that

f ◦ ϕ(x1, . . . , xm) = f(p) − x2
1 − · · · − x2

k + x2
k+1 + · · · + x2

m.

In particular, a critical point of index 0 is a local minimum of f , whereas a
critical point of index m is a local maximum of f . See Fig. 7.11.

Fig. 7.11. Passing a critical level set of a Morse function in three-space. The
critical point has index 1. A local model of the function near the critical point is
f(x1, x2, x3) = −x2

1 + x2
2 + x2

3, with the x1-axis running vertically

302 G. Rote, G. Vegter

Abundance of Morse functions.

(i) Morse functions are generic. Every smooth compact submanifold of R
n has

a Morse function. (In fact, if we endow the set C∞(M) of smooth functions
on M with the so-called Whitney topology, then the set of Morse functions
on M is an open and dense subset of C∞(M). In particular, there are Morse
functions arbitrarily close to any smooth function on M .)
(ii) Generic height functions are Morse functions. Let M be an m-dimensional
submanifold of R

m+1 (e.g., a smooth surface in R
3). For v ∈ S

m, the height-
function hv : M → R with respect to the direction v is defined by hv(p) =
〈v, p〉. The set of v for which hv is not a Morse function has measure zero in
S

m.

Passing critical levels.

One can build complicated spaces from simple ones by attaching a number of
cells. Let X and Y be topological spaces, such that X ⊂ Y . We say that Y
is obtained by attaching a k-cell to X if Y \ X is homeomorphic to an open
k-ball. More precisely, there is a map f : B

k → Y \X, such that f(Sk−1) ⊂ X
and the restriction f | B

k is a homeomorphism B
k → Y \ X. Let f : M → R

be a smooth Morse function with exactly one critical level in (a, b), and a and
b are regular values of f . Then Mb is homotopy equivalent to Ma with a cell of
dimension k attached, where k is the index of the critical point in f−1([a, b]).
See Fig. 7.12.

Fig. 7.12. Passing a critical level of index 1 corresponds to attaching a 1-cell. Here
M is the 2-torus embedded in R

3, in standard vertical position, and f is the height
function with respect to the vertical direction. Left: Ma, for a below the critical level
of the lower saddle point of f . Middle: Ma with a 1-cell attached to it. Right: Mb,
for b above the critical level of the lower saddle point of f . This set is homotopy
equivalent to the set in the middle part of the figure

Morse inequalities.

Let f be a Morse function on a compact m-dimensional smooth submanifold
of R

n. For each k, 0 ≤ k ≤ m, the k-th Morse number of f dominates the

7 Computational Topology: An Introduction 303

k-th Betti number of M :

µk(f) ≥ βk(M,Q).

An intuitive explanation is based on the observation that passing a critical
level of a critical point of index k is equivalent corresponds to the attachment
of a k-cell at the level of homotopy equivalence. Therefore, either the k-th
Betti number increases by one, or the k−1-st Betti number decreases by one,
cf the incremental algorithm for computing Betti numbers in Sect. 7.3, while
none of the other Betti numbers changes. Since only the k-th Morse number
changes, more precisely, increases by one, the Morse inequalities are invariant
upon passage of a critical level.

In the same spirit one can show that the Morse numbers of f are related to
the Betti numbers and the Euler characteristic of M by the following identity:

m∑

k=1

(−1)kµk(f) =
m∑

k=1

(−1)kβk(M,Q) = χ(M).

Gradient vector fields.

Consider a smooth function f : M → R, where M is a smooth m-dimensional
submanifold of R

n. The gradient of f is a smooth map grad f : M → R
n,

which assigns to each point p ∈ M a vector grad f(p) ∈ TpM ⊂ R
n, such that

〈grad f(p), v〉 = dfp(v), for all v ∈ TpM .

Since dfp(v) is a linear form in v, the vector grad f(p) is well defined by the
preceding identity. This definition has a few straightforward implications. The
gradient of f vanishes at a point p if and only if p is a singular point of f . If p
is not a singular point of f , then dfp(v) is maximal for a unit vector v ∈ TpM
iff v = grad f(p)/‖ grad f(p)‖. In other words, grad f(p) is the direction of
steepest ascent of f at p. Furthermore, if c ∈ R is a regular value of the
function f , then grad f is perpendicular to the level set f−1(c) at every point.

To express grad f in local coordinates, let ϕ : U → M be a system of local
coordinates at p ∈ M . Let e1, . . . , em be the basis of TpM corresponding to the
standard basis e1, . . . , em of R

m. In other words: ei = dϕq(ei), where q ∈ U
is the pre-image of p under ϕ. We denote the standard coordinates on R

m by
x1, . . . , xm. Then

grad f(p) =
m∑

i=1

ai(q)ei,

where ai : U → R is the smooth function defined by the set of linear equations

m∑

j=1

gij(q)aj(q) =
∂(f ◦ ϕ)
∂xi

(q), (1 ≤ i ≤ m),

304 G. Rote, G. Vegter

with gij(q) = 〈ei, ej〉. Since the coefficients are the entries 〈ei, ej〉 of a Gram

matrix, the system is non-singular. Note that ai =
∂(f ◦ ϕ)
∂xi

if the system of

coordinates is orthonormal at p, that is gij(q) = 1, if i = j and gij(q) = 0, if
i �= j. This holds in particular if U = M = R

n and ϕ is the identity map on
U , so the definition agrees with the usual definition in a Euclidean space.

Integral lines, and their local structure near singular points.

In the sequel M is a compact submanifold of R
n. The gradient of a smooth

function f on M is a smooth vector field on M . For every point p of M , there
is a unique curve x : R → M , such that x(0) = p and x′(t) = grad f(x(t)), for
all t ∈ R. The image x(R) is called the integral curve of the gradient vector
field through p.

Lemma 1. Let f : M → R be a smooth function on a submanifold M of R
n.

1. The integral curves of a gradient vector field of f form a partition of M .
2. The integral curve x(t) through a singular point p of f is the constant

curve x(t) = p.
3. The integral curve x(t) through a regular point p of f is injective, and both

limt→∞ x(t) and limt→−∞ x(t) exist. These limits are singular points of
f .

4. The function f is strictly increasing along the integral curve of a regular
point of f .

5. Integral curves are perpendicular to regular level sets of f .

The proof is a bit technical, so we skip it. See [194] for details. The first
property implies that the integral curves through two points of M are disjoint
or coincide. The third property implies that a gradient vector field does not
have closed integral curves. The limit limt→∞ x(t) is called the ω-limit of p,
and is denoted by ω(p). Similarly, limt→−∞ x(t) is the α-limit of p, denoted by
α(p). Note that all points on an integral curve have the same α-limit and the
same ω-limit. Therefore, it makes sense to refer to these points as the α-limit
and ω-limit of the integral curve. It follows from Lemma 1.2 that ω(p) = p
and α(p) = p for a singular point p.

Stable and unstable manifolds.

The structure of integral lines of a gradient vector field grad f near a singular
point can be quite complicated. However, for Morse functions, the situation
is simple. To gain some intuition, let us consider the simple example of the
function f(x1, x2) = x2

1−x2
2 on a neighborhood of the non-degenerate singular

point 0 ∈ R
2. The gradient vector field is 2x1e1 − 2x2e2, where e1, e2 is the

standard basis of R
2. The integral line (x1(t), x2(t)) through a point p =

(p1, p2) is determined by x1(0) = p1, x2(0) = p2, and

7 Computational Topology: An Introduction 305

{
x′1(t) = 2x1(t)
x′2(t) = −2x2(t)

Therefore, the integral curve through p is (x1(t), x2(t)) = (p1e
2t, p2e

−2t),
which is of the form x1x2 = c. See Fig. 7.13 (Left). The singular point

o

Fig. 7.13. Left: Integral curves of the gradient of f(x1, x2) = x2
1−x2

2 on a neighbor-
hood of the singular point (0, 0) ∈ R

2. Right: Integral curves of the gradient vector
field near a general saddle point of a function on R

2

o = (0, 0) is the α-limit of all points on the horizontal axis, and the ω-limit of
all points on the vertical axis. The general structure of integral curves near a
saddle point is similar, as indicated by Fig. 7.13 (Right). The stable curve of
p consists of all points with ω-limit equal to p. The unstable curve is defined
similarly. These curves intersect each other at p, and are perpendicular there.

More generally, the stable manifold of a singular point p is the set
W s(p) = {q ∈ M | ω(q) = p}. Similarly, the unstable manifold of p is the
set Wu(p) = {q ∈ M | α(q) = p}. Note that both W s(p) and Wu(p) con-
tain the singular point p itself. Furthermore, the intersection of the stable
and unstable manifolds of a singular point consists just of the singular point:
W s(p) ∩Wu(p) = {p}. Stable and unstable manifolds of gradient systems are
submanifolds [214, Chapter 6]. The dimension of W s(p) is equal to the num-
ber of negative eigenvalues of the Hessian of f at p, whereas the dimension of
Wu(p) is equal to the number of positive eigenvalues of this Hessian. Stable
and unstable manifolds of gradient systems are submanifolds [214, Chapter
6].

The Morse-Smale complex.

A Morse function on M is called a Morse-Smale function if its stable and
unstable manifolds intersect transversally, i.e., at a point of intersection the
tangent spaces of the stable and unstable manifolds together span the tangent
space of M . If p and q are distinct singular points, the intersection W s(p) ∩

306 G. Rote, G. Vegter

Wu(q) consists of all regular integral curves with ω-limit equal to p and α-
limit equal to q. In particular, a Morse-Smale function on a two-dimensional
manifold has no integral curves connecting two saddle points, since the stable
manifold of one of the saddle points and the unstable manifold of the second
saddle point would intersect non-transversally along this connecting integral
curve.

Morse-Smale functions form an open and dense subset of the space of
functions on a compact manifold [320].

The Morse-Smale complex associated with a Morse-Smale function f on
M is the subdivision of M formed by the connected components of the inter-
sections W s(p) ∩ Wu(q), where p and q range over all singular points of f ,
see Fig. 7.14. The Morse-Smale complex is a CW-complex. In geographical
literature, the Morse-Smale complex is known as the surface network.

maximumminimum saddle

Fig. 7.14. The Morse-Smale complex of a function on the plane. The stable one-
manifolds are solid, the unstable one-manifolds are dashed (Courtesy Herbert Edels-
brunner.)

The Morse-Smale complex on a two-manifold consists of cells of dimension
0, 1 and 2, called vertices, edges and regions. According to the Quadrangle
Lemma [135], each region of the Morse-Smale complex is a quadrangle with
vertices of index 0, 1, 2, 1, in this order around the region. Hence the complex is
not necessarily a regular CW-complex, since the boundary of a cell is possibly
glued to itself along vertices and arcs.

Using a paradigm called simulation of differentiability, in [135] the concept
of Morse-Smale complex is also defined for piecewise linear functions, and an
algorithm for its construction is applied to geographic terrain data. In [134]
this work is extend to piecewise linear 3-manifolds.

7 Computational Topology: An Introduction 307

Reeb graphs and contour trees.

The level sets f−1(h) of a Morse function f on a two-dimensional domain
change as h varies. At certain values of h, components of the level set may
disappear, new components may appear, or a component may split into two
components, or two components may merge. A component of a level set is
called a contour. The Reeb graph (after the American journalist John Reeb,
1887–1920 [293]) encodes the changes of contours. It is obtained by contract-
ing every contour to a single point. When f is defined on a simply connected
domain (for example, a box), the Reeb graph is a tree, and it is also referred
to as the contour tree. Fig. 7.15b shows an example of a contour tree of a
bivariate function h = f(x, y) defined on a square domain. The vertical axis

200 200

300

300

400

300

400

500 500

600

600

h

200

300

400

500

600

A
B

C

D

E

F G

H

I

J

L KM

NO
x

y

A

B

C

D

E

F

G

H

I

J

L

K

MN

O

(a) (b)

300

400400400400

400

h
A

B

C

D

E

F G

H

I

J

L KM

NO

(c)

h
A

B

C

D

E

F G

H

I

J

L
KM

NO

(d)

Fig. 7.15. (a) a contour map of level sets (isolines), (b) the corresponding contour
tree, (c) the join tree, and (d) the split tree. As in Fig. 7.14, minima and maxima
are indicated by empty and full circles, and crosses denote saddle points. The points
where a contour touches the boundary play also a role in the contour tree (for
example, they may be local minima or maxima) but they are not critical points in
the sense of having derivative 0. The level sets in (a) are labeled with the height
values, and these values are indicated in the trees of (b), (c), and (d). The critical
point F changes only the topology of a contour and not the number of contours;
when the contour tree is viewed as a discrete structure, F is not a vertex of the tree

of the contour tree represents the value h of the function. The intersection of
a horizontal line at a given value h with the contour tree yields all contours at
that level, and the merging or splitting, appearance or disappearance of con-
tours is reflected in vertices of degree 3 and 1 in the contour tree, respectively.
Saddle points become vertices of degree 3, and minima and maxima become
vertices of degree 1. A contour tree is therefore a good tool to visualize the

308 G. Rote, G. Vegter

behavior of a function on a global scale, in particular when it is a function of
more than two variables, see [224, 223]. In these applications, f is usually a
continuous piecewise linear function interpolating data at given sample points.
These functions are not smooth and therefore not Morse functions, but the
notion of level sets and Reeb graphs extends without difficulty to this class
of functions. It is not uncommon to have multiple saddle points, where more
than two contours meet at the same time. The Reeb graph has then vertices
of degree higher than three. More examples of contour trees are shown in
Fig. 5.23 of Sect. 5.5.2.

Note that the Reeb graph only regards the number of components (the
0-homology) of the level sets, it does not reflect every change of topology.
For example, in three dimensions, a contour might start as a ball, and as h
increases, it might extrude two arms that meet each other, forming a torus,
without changing the connectivity between contours. (At this point, we have
a saddle of index 1.) In two dimensions, this phenomenon happens only for
points on the boundary of the domain, such as the point F in Fig. 7.15.

Figure 7.15c displays the join tree, which is defined analogously to the
contour tree, except that it describes the evolution of the lower level sets
Mh = f−1([−∞, h]) instead of the “ordinary” level sets f−1(h). For example,
at h = 300 we have three components in the lower level set, as indicated in
Fig. 7.16. Since the lower level sets can only get bigger as h increases, they can

200 200

300

300

400

300

400

500 500

600

600

200

300

400

500

600

x

y

A

B

C

D

E

F

G

H

I

J

L

K

MN

O

(a) (b)

300

400400400400

400

h
A

B

C

D

E

F G

H

I

J

L KM

NO

Fig. 7.16. (a) the lower level set at level 300 and (b) the corresponding part in the
join tree

7 Computational Topology: An Introduction 309

only join and never split (hence the name join tree): the tree is a directed tree
with the root at the highest vertex. The split tree (Fig. 7.15d) can be defined
analogously for upper level sets. The join and the split tree are important
because it is easier to construct these trees first instead of constructing the
contour tree directly. As shown by Carr, Snoeyink, and Axen [78] the contour
tree can then be built from the join tree and the split tree in linear time.

The simplest and fastest way to construct the join (and split) tree of
a piecewise linear function is the method of monotone paths, as described
in [92]. We sketch the main idea. This method requires an initial identification
of all “critical” vertices: vertices where the topology of the level set changes
locally as the level set passes through them. This condition can be checked by
scanning the neighboring faces of each vertex independently. These vertices are
candidates for becoming vertices of the join tree. They are sorted by function
values and processed in increasing order. At each critical vertex v which is not
a minimum, we start a monotone decreasing path into each different “local
component” of the lower level set in the neighborhood of v. For example,
if we increase h in Fig. 7.16, the next critical point that is processed is J ,
see Fig. 7.17. Into each of the two shaded regions, we start a descending

200 200

300

300

400

300

400

500 500

600

600

200

300

400

500

600

x

y

A

B

C

D

E

F

G

H

I

J

L

K

MN

O

(a) (b)

300

400400400400

400

h
A

B

C

D

E

F G

H

I

J

L KM

NO

Fig. 7.17. Identifying the components that are to be merged by growing descending
paths

path. Each path is continued until it reaches a local minimum (such as the
point L) or a previously constructed path (such as the descending path from

310 G. Rote, G. Vegter

M that ends in O). If we have stored the appropriate information with each
path, we can identify the components of the lower level sets that need to be
merged (namely, the component L and the component MNO; the component
K remains separate). Since each path can only descend, it is guaranteed that
it cannot leave the lower level set into which it belongs, and therefore it
identifies the correct component. It can happen that two descending paths
reach the same component. In this case we only have a change of topology of
the contour, without changing the number of contours.

This algorithm works in any dimension. If the piecewise linear function f
is defined on a triangulated mesh with t cells and there are nc critical points,
the algorithm O(t+ nc log nc) time and O(t) space.

Note that the descending paths do not have to follow the steepest direction;
thus, unlike the integral curves of the gradient vector field, they can cross the
boundaries of the Morse-Smale complex.

With few exeptions [99], the efficient computation of Reeb graphs has been
studied mostly for functions on simply connected domains, and hence under
the heading of contour trees.

7.5 Exercises

Exercise 1 (Triangulations of surfaces). Prove that the number of ver-
tices in a finite triangulation of a boundaryless surface with Euler character-
istic χ is at least ⌈

7 +
√

49 − 24χ
2

⌉

.

(You should be able to do this exercise without any knowledge of homology
theory.)

Exercise 2 (Non-homeomorphic spaces with equal Betti numbers).
Give an example of two simplicial complexes with equal Betti numbers, but
with non-homeomorphic underlying spaces.

Exercise 3 (Homology of connected graphs). Let G be a tree. Prove
that β0(G,Q) = 1 and β1(G,Q) = 0 using the matrix of the boundary map.
(Hint: Consider an enumeration of the vertices and oriented edges such that
edge ei is directed from vertex vj to vertex vi, with j > i.)

Exercise 4 (Chain maps and chain homotopy). Prove Propositions 2, 3
and 4.

Exercise 5 (Cone construction and Betti numbers of spheres). Let L
be a finite simplicial complex in R

n, and regard R
n as the subspace of R

n+1

with final coordinate zero. Let v be a point in R
n+1 \R

n. If σ is a k-simplex of
L with vertices v0, . . . , vk, then the (k+1)-simplex with vertices v, v0, . . . , vk is
called the join of σ and v. The cone of L with apex v is the simplicial complex

7 Computational Topology: An Introduction 311

consisting of the simplices of L, the join of each of these simplices and v, and
the 0-simplex 〈v〉 itself. (One can check that these simplices form a simplicial
complex.) Let K be the cone of L.

1. Let the map Tk : Ck(K,Q) → Ck+1(K,Q) be defined as follows: Let σ =
〈v0, . . . , vk〉 be a k-simplex of K. If σ is also a k-simplex of L, then Tk(σ) =
〈v, v0, . . . , vk〉, otherwise Tk(σ) = 0. Prove that the sequence {Tk} is a
chain homotopy between the identity map and the zero map on the chain
complex C(K,Q).

2. Conclude that Hk(K,Q) = 0, for k > 0. What is H0(K,Q)?
3. Determine the Betti numbers of the d-dimensional disk, i.e., the space

B
d = {(x1, . . . , xd) ∈ R

d | x2
1 + · · · + x2

d ≤ 1}. (Hint: Note that a disk is
homeomorphic to a d-simplex.)

4. Use the previous result, and the incremental homology algorithm to de-
termine the Betti numbers of the d-sphere.

Exercise 6 (Homology of orientable surfaces).

1. Prove that β0(K) = 1 for every triangulation K of an orientable surface
of genus g (a sphere with g handles).

2. Let K be a simplicial complex whose underlying space is the torus, and
let all simplices of K be oriented compatibly. Let α =

∑
σ σ, where the

sum ranges over all (oriented) simplices of K. Prove that Z2(K,Q) = Qα,
and that β2(K,Q) = 1.

3. Use the same technique as in part 2 of this exercise to prove that
β2(K,Q) = 1 for every triangulation K of an orientable surface of genus g.

4. Let L be the subcomplex ofK obtained by deleting an arbitrary 2-simplex.
Use the incremental algorithm to prove that β2(L,Q) = β2(K,Q)−1, and
βi(L,Q) = βi(K,Q), for i = 0, 1.

5. Now let K be the simplicial complex of Fig. 7.8. Prove that L simplicially
collapses onto the subcomplex M , the subgraph of L consisting of the
vertices v1, . . . , v5 and the edges v1v2, v2v3, v3v1, v1v4, v4v5, and v5v1.
Conclude that β1(K,Q) = 2, and β0(K,Q) = 1.

6. Try to generalize this exercise to an orientable surface of genus g.

Exercise 7 (Morse Theory yields Betti numbers).

1. Use Morse theory to compute the Betti numbers of the d-sphere S
d.

2. Compute the Euler characteristic of a surface M with g handles by defin-
ing a suitable Morse function on it. Then compute the Betti numbers
of this surface. (Hint: You may want to use the first and third result of
Exercise 6).

3. For a Morse function f , let s be a critical point with Morse index i.
Consider the intersection L−(s) of the lower level set f−1((−∞, f(s)])
with a small sphere around s. Prove that the Euler characteristic of L−(s)
equals 1 − (−1)i.

312 G. Rote, G. Vegter

Exercise 8 (The mountaineer’s equation). For a smooth Morse function
on the 2-sphere S

2, the number of peaks and pits (maxima and minima)
exceeds the number of passes (saddles) by 2.

Exercise 9 (Contour trees for bivariate Morse functions). Show that,
for a smooth Morse function on the 2-sphere S

2, a saddle point will always
generate a vertex of degree three in the Reeb graph. Use this observation and
the previous exercise to prove that the Reeb graph is in fact a tree in this
case.

8

Appendix - Generic Programming
and The Cgal Library

Efi Fogel and Monique Teillaud

8.1 The Cgal Open Source Project

Several research groups in Europe had started to develop small geometry
libraries on their own in the early 1990s. A consortium of eight sites in Europe
and Israel was founded to cultivate the labour of these groups and gather their
produce in a common library called Cgal — the Computational Geometry
Algorithms Library [2].

The goal of Cgal was to promote the research in Computational Geom-
etry and translate the results into useful, reliable, and efficient programs for
industrial and academic applications, the very same goal that governs Cgal

developers to date. In fact, Cgal meets two recommendations of the Compu-
tational Geometry Impact Task Force Report [86, 87], which was published
roughly when Cgal came to existence: production and distribution of usable
(and useful) geometric software was a key recommendation, which came with
the need for creating a reward structure for implementations in academia.

An INRIA startup, Geometry Factory,1 was founded on January 2003.
The company sells Cgal commercial licenses, support for Cgal, and cus-
tomized developments based on Cgal.

In November 2003, when Version 3.0 was released, Cgal became an Open
Source Project, allowing new contributions from various resources. Common
parts of Cgal (i.e., the so-called kernel and support libraries) are now dis-
tributed under the GNU Lesser General Public License (or GNU LGPL for
short) and the remaining part (i.e., the basic library) is distributed under the
terms of the Q Public License (QPL).

The implementations of the Cgal software modules described in this book
are complete and robust, as they handle all degenerate cases. They rigor-
ously adapt the generic programming paradigm, briefly reviewed in the next
section to overcome problems encountered when effective computational ge-
ometry software is implemented. Geometric programming is discussed in the

1http://www.geometryfactory.com/.

314 E. Fogel, M. Teillaud

succeeding section. Finally, a glimpse at the structure of Cgal is given in the
concluding section.

8.2 Generic Programming

Several definitions of the term generic programming have been proposed since
it was first coined about four decades ago along with the introduction of the
LISP programming language. Since then several approaches have been put into
trial through the introduction of new features in existing computer languages,
or even new computer languages all together. Here we confine ourself to the
classic notion first described by David Musser, Alexander Stepanov, Deepak
Kapur, and collaborators, who considered generic programming as a discipline
that consists of the gradual lifting of concrete algorithms abstracting over
details, while retaining the algorithm semantics and efficiency [271].

One crucial abstraction supported by all contemporary computer lan-
guages is the subroutine (also known as procedure or function, depending
on the programming language). Another abstraction supported by C++ is
that of abstract data typing, where a new data type is defined together with
its basic operations. C++ also supports object-oriented programming, which
emphasizes on packaging data and functionality together into units within a
running program, and is manifested in hierarchies of polymorphic data types
related by inheritance. It allows referring to a value and manipulating it with-
out needing to specify its exact type. As a consequence, one can write a single
function that operates on a number of types within an inheritance hierarchy.
Generic programming identifies a more powerful abstraction (perhaps less tan-
gible than other abstractions), making extensive use of C++ class-templates
and function-templates. It is a formal hierarchy of abstract requirements on
data types referred to as concepts, and a set of classes that conform precisely
to the specified requirements, referred to as models. Models that describe be-
haviours are referred to as traits classes [272]. Traits classes typically add a
level of indirection in template instantiation to avoid accreting parameters to
templates.

A generic algorithm has two parts: the actual instructions that describe the
steps of the algorithm, and a set of requirements that specify which properties
its argument types must satisfy. The following swap function is an example
of the first part of a generic algorithm.

template <class T> void swap(T & a, T & b) {

T tmp = a; a = b; b = tmp;

}

When the function call is compiled, it is instantiated with a data type that
must have an assignment operator. A data type that fulfils this requirement

8 Appendix - Generic Programming and The Cgal Library 315

is a model of a concept commonly called Assignable [38]. The instantiated
data type must also model the concept CopyConstructible. The int data type,
for example, is a model of these two concepts associated with the template
parameter T . Thus, it can be used to instantiate the function template [38].2

There are many data types that model both concepts Assignable and Copy-
Constructible in conjunction, as they consist of only a single requirement each.
Thus, it is hard to refer to any of its models as a traits. On the other hand, con-
sider an imaginary generic implementation of a data structure that handles
geometric arrangements. Its prototype is listed below. The Arrangement 2
class must be instantiated with a class that must in turn define a type that
represents a certain family of curves, and some functions that operate on
curves of this family.

template <class Traits> class Arrangement_2 {

// the code

};

It is natural to refer to a model of this concept as a traits class. One im-
portant objective is to minimize the set of requirements the traits concept
imposes. A tight traits concept may save tremendously in analysis and pro-
gramming of classes that model the concept. Another important reason for
reaching the minimal requirements is to avoid computing the same algebraic
entity in different ways. The importance of this is amplified in the context
of computational geometry, as a non tight model that consists of duplicate,
but slightly different, implementations of the same algebraic entity, can lead
to superficial degenerate conditions, which in turn can drastically increase
running times.

An algorithm implemented according to the standard object-oriented par-
adigm alone may resort to use dynamic cast to achieve flexibility, is enforced
to have tight coupling through the inheritance relationship, may require ad-
ditional memory for each object to accommodate the virtual-function table-
pointer, and adds for each call to a virtual member function an indirection
through the virtual function table. An algorithm implemented according to
the generic programming paradigm does not suffer from these disadvantages.
The set of requirements on data types is not tied to a specific C++ language
feature. Therefore it might be more difficult to grasp. In return, a generic im-
plementation gains stronger type checking at compile time and a higher level
of flexibility, without loss of efficiency. In fact, it may expedite the compu-
tation. Many articles and a few books have been written on the subject. We
refer the reader to [38] for a complete introduction.

2See http://www.sgi.com/tech/stl/ for a complete specification of the SGI
STL.

316 E. Fogel, M. Teillaud

The prime example of generic programming was STL, the C++ Standard
Template Library, that became part of the C++ standard library in 1994. Since
then a few other generic-programming libraries emerged. The most notable
in our context were Leda (Library of Efficient Data Types and Algorithms),
a library of combinatorial and geometric data types and algorithms [8, 251],
and Cgal [2, 156], the Computational Geometry Algorithms Library. Early
development of Leda started in 1988, ten years before the first public release
of Cgal became available. While Leda is mostly a large collection of fun-
damental graph related and general purpose data structures and algorithms,
Cgal is a collection of large and complex data structures and algorithms
focusing on geometry.

A noticeable influence on generic programming is conducted by the Boost
online community, which encourages the development of free C++ software
gathered in the Boost library collection [1]. It is a large set of portable and high
quality C++ libraries that work well with, and are in the same spirit as, the C++
Standard Library. The Boost Graph Library (BGL), which consists of generic
graph algorithms, serves a particularly important role in our context. It can
be used for example to implement the underlying topological data structure
of an arrangement instance, that is, a model of the concept ArrangementDcel ;
see Sect. 1.4.1 for more details. Using some generic programming techniques,
an arrangement instance can be adapted as a BGL graph, and passed as input
to generic algorithms already implemented in the BGL, such as the Dijkstra
shortest path algorithm.

8.3 Geometric Programming and Cgal

Implementing geometric algorithms and data structures is notoriously diffi-
cult, as transforming such algorithms and data structures into effective com-
puter programs is a process full of pitfalls. However, the last decade has seen
significant progress in the development of software for computational geome-
try. The mission of such a task, which Kettner and Näher [222] call geometric
programming, is to develop software that is correct, efficient, flexible (namely
adaptable and extensible3), and easy to use.

The use of the generic programming paradigm enables a convenient separa-
tion between the topology and the geometry of data structures. This is a key
aspect, for example, of the design of Cgal polyhedra, Cgal triangulations,
and Cgal arrangements (explored in Sect. 1.4.1) .

This way algorithms and data structures can be nicely abstracted in combi-
natorial and topological terms, regardless of the specific geometry and algebra
of the objects at hand. This abstraction is realized through class and function

3Adaptability refers to the ability to incorporate existing user code, and ex-
tendibility refers to the ability to enhance the software with more code in the same
style.

8 Appendix - Generic Programming and The Cgal Library 317

templates that represent specific data structures and algorithmic frameworks,
respectively. The main class or function template that implements a data
structure or an algorithm is typically instantiated with yet another class,
referred to as a traits class, that defines the set of geometric objects and
operations on them required to handle a concrete type of objects.

Generic programming is a key ingredient of flexibility. Changing
only the traits class allows for instance to reuse the generic 2D class
Delaunay triangulation 2 to compute a terrain in 3D: the traits class
Triangulation euclidean traits xy 3 defines point sites as 3D points, and
computes the elementary predicates on the first two coordinates only.

typedef CGAL::Exact predicates inexact constructions kernel Kernel;

typedef CGAL::Delaunay triangulation 2<Kernel> Delaunay;

// the kernel Kernel defines the orientation and the in_circle

// tests on 2D points

typedef CGAL::Triangulation euclidean traits xy 3<Kernel> Traits;

typedef CGAL::Delaunay triangulation 2<Traits> Terrain;

// the traits class Traits defines the orientation and the in_circle

// tests on the 2D projections of the 3D points

An immediate advantage of the separation between the topology and the
geometry of data structures is that users with limited expertise in computa-
tional geometry can employ the data structure with their own special type
of objects. They must however supply the relevant traits class, which mainly
involve algebraic computations. A traits class also encapsulates the number
types used to represent coordinates of geometric objects and to carry out alge-
braic operations on them. It encapsulates the type of coordinate system used
(e.g., Cartesian, Homogeneous), and the geometric or algebraic computation
methods themselves. Naturally, a prospective user of the package that devel-
ops a traits class would like to face as few requirements as possible in terms
of traits development.

Another advantage gained by the use of generic programming is the conve-
nient handling of numerical issues to expedite exact geometric computation.
In the classic computational-geometry literature two assumptions are usually
made to simplify the design and analysis of geometric algorithms: First, in-
puts are in “general position”. That is, degenerate input (e.g., three curves
intersecting at a common point) is precluded. Secondly, operations on real
numbers yield accurate results (the “real Ram” model [288], which also as-
sumes that each basic operation takes constant time). Unfortunately, these
assumptions do not hold in practice, as numerical errors are inevitable. Thus,
an algorithm implemented without keeping this in mind may yield incorrect
results (see [221, 305] for examples).

318 E. Fogel, M. Teillaud

In a geometric algorithm each computational step is either a construc-
tion step or a conditional step based on the result of a predicate. The former
produces a new geometric object such as the intersection point of two seg-
ments. The latter typically computes the sign of an expression used by the
program control. Different computational paths lead to results with different
combinatorial characteristics. Although numerical errors can sometimes be
tolerated and interpreted as small perturbations in the input, they may lead
to invalid combinatorial structures or inconsistent state during a program ex-
ecution. Thus, it suffices to ensure that all predicates are evaluated correctly
to eliminate inconsistencies and guarantee combinatorially correct results.

Exact Geometric Computation (EGC), as summarized by Yap [346], sim-
ply amounts to ensuring that we never err in predicate evaluations. EGC
represents a significant relaxation from the naive concept of numerical ex-
actness. We only need to compute to sufficient precision to make the correct
predicate evaluation. This has led to the development of several techniques
such as precision-driven computation, lazy evaluation, adaptive computation,
and floating point filters, some of which are implemented in Cgal, such as
numerical filtering. Here, computation is carried out using a number type
that supports only inexact arithmetic (e.g., double floating point), while ap-
plying a filter that indicates whether the result is exact. If the filter fails, the
computation is re-done using exact arithmetic.

Switching between number types and exact computation techniques, and
choosing the appropriate components that best suit the application needs,
is conveniently enabled through the generic programming paradigm, as it
typically requires only a minor code change reflected in the instantiating of
just a few data types.

8.4 Cgal Contents

Cgal is written in C++ according to the generic programming paradigm
described above. It has a common programming style, which is very similar
to that of the STL. Its Application Programming Interface (API) is homo-
geneous, and allows for a convenient and consistent interfacing with other
software packages and applications. .

The library consists of about 500,000 lines of code divided among approx-
imately 150 classes. Cgal also comes with numerous examples and demos.
The manual has about 3,000 pages. There are roughly 50 chapters that are
grouped in several parts for a rough description.

The first part is the kernels [155], which consist of constant size non-
modifiable geometric primitive objects and operations on these objects. The
objects are represented both as stand-alone classes that are instantiated by
a kernel class, and as members of the kernel classes. The latter option allows
for more flexibility and adaptability of the kernel.

8 Appendix - Generic Programming and The Cgal Library 319

In addition, Cgal offers a collection of basic geometric data structures
and algorithms such as convex hull, polygons and polyhedra and operations
on them (Boolean operations, polygon offsetting), 2D arrangements, 2D and
3D triangulations, Voronoi diagrams, surface meshing and surface subdivi-
sion, search structures, geometric optimization, interpolation, and kinetic data
structures. These data structures and algorithms are parameterized by traits
classes, that define the interface between them and the primitives they use.
In many cases, the kernel can be used as a traits class, or the kernel classes
provided in Cgal can be used as components of traits classes for these data
structures and algorithms.

The third part of the library consists of non-geometric support facilities,
such as circulators, random generators, I/O support for debugging and for
interfacing Cgal with various visualization tools. This part also provides the
user with number type support.

Cgal kernel classes are parameterized by number types. Instantiating a
kernel with a particular number type is a trade-off between efficiency and ac-
curacy. The choice depends on the algorithm implementation and the expected
input data to be handled. Number types must fulfil certain requirements, so
that they can be successfully used by the kernel code. The list of requirements
establishes a concept of a number type. A few number-type concepts have
been introduced by Cgal, e.g., RingNumberType and FieldNumberType. Nat-
urally, number types have evident semantic constraints. That is, they should
be meaningful in the sense that they approximate some subfield of the real
numbers. Cgal provides several models of its number-type concepts, some
of them implement techniques to expedite exact computation mentioned in
the previous paragraph. Cgal also provides a glue layer that adapts number-
type classes implemented by external libraries as models of its number-type
concepts.

The above describes the accessibility model of Cgal at the time this book
was written. Constant and persistent improvement to the source code and the
didactic manuals, review of packages by the Editorial board and exhaustive
testing, through the years led to a state of excellent quality internationally
recognized as an unrivalled tool in its field. At the time these lines are writ-
ten, Cgal already has a foothold in many domains related to computational
geometry and could be found in many academic and research institutes as well
as commercial entities. Release 3.1 was downloaded more than 14.500 times,
and the public discussion list counts more than 950 subscribed users.

Acknowledgements

The development of Cgal was supported by two European Projects Cgal

and Galia during three years in total (1996–1999). Several sites have kept on
working on Cgal after the European support stopped.

320 E. Fogel, M. Teillaud

The new European project ACS (Algorithms for Complex Shapes with cer-
tified topology and numerics)4 provides again partial support for new research
and developments in Cgal.

4http://acs.cs.rug.nl/.

References

The page numbers where each reference is cited are listed in brackets at the
end of each item.

1. Boost, C++ libraries.
http://www.boost.org. [154, 316]

2. Cgal, Computational Geometry Algorithms Library.
http://www.cgal.org. [VI, 3, 26, 29, 55, 114, 154, 232, 313, 316]

3. Core number library.
http://cs.nyu.edu/exact/core pages. [11, 35, 38, 155]

4. Exacus, Efficient and exact algorithms for curves and surfaces.
http://www.mpi-inf.mpg.de/projects/EXACUS. [4, 13, 36]

5. FGB/RS.
http://fgbrs.lip6.fr. [155]

6. GMP, GNU multiple precision arithmetic library.
http://www.swox.com/gmp. [38, 119, 154]

7. Irit modeling environment.
http://www.cs.technion.ac.il/∼irit/. [61]

8. Leda, Library for efficient data types and algorithms.
http://www.algorithmic-solutions.com/enleda.htm. [316]

9. MPFI, Multiple precision interval arithmetic library.
http://perso.ens-lyon.fr/nathalie.revol/software.html. [154]

10. MPFR, Multiple-precision floating-point computations.
http://www.mpfr.org. [154]

11. QI: Quadrics intersection.
http://www.loria.fr/equipes/isa/qi. [50]

12. Singular, Computer algebra system for polynomial computations.
http://www.singular.uni-kl.de. [155]

13. Synaps, a library for symbolic and numeric computation.
http://www-sop.inria.fr/galaad/logiciels/synaps. [155]

14. K. Abdel-Malek and H.-J. Yeh. On the determination of starting points for
parametric surface intersections. Computer-Aided Design, 28:21–35, 1997. [117]

15. P. K. Agarwal and M. Sharir. Arrangements and their applications. In J.-R.
Sack and J. Urrutia, editors, Handbook of Computational Geometry, pages 49–
119. Elsevier Science Publishers B.V. North-Holland, Amsterdam, 2000. [2, 41,
66]

322 References

16. M. Alexa, J. Behr, D. Cohen-Or, S. Fleishman, D. Levin, and C. Silva. Point
set surfaces. In IEEE, editor, Visualization, pages 21–28, 2001. [232]

17. B. S. Alin Bostan, Philippe Flajolet and É. Schost. Fast computation of special
resultants. Journal of Symbolic Computation, 41(1):1–29, January 2006. [128]

18. R. Allegre, R. Chaine, and S. Akkouche. Convection-driven dynamic sur-
face reconstruction. In Proc. of Shape Modeling International, pages 33–42,
Cambridge, MA, USA, June 15–17 2005. [268]

19. P. Alliez, D. Cohen-Steiner, O. Devillers, B. Lévy, and M. Desbrun. Anisotropic
polygonal remeshing. ACM Trans. Graph., 22(3):485–493, 2003. [179]

20. H. Alt, O. Cheong, and A. Vigneron. The Voronoi diagram of curved objects.
Discrete and Computational Geometry, 34(3):439–453, 2002. [104, 105]

21. N. Amenta and M. Bern. Surface reconsruction by Voronoi filtering. In Proc.
14th Ann. Sympos. Comput. Geom., pages 39–48, 1998. [178, 253]

22. N. Amenta and M. Bern. Surface reconstruction by Voronoi filtering. Discrete
Comput. Geom., 22(4):481–504, 1999. [202, 203, 248, 249, 257]

23. N. Amenta, M. Bern, and D. Eppstein. The crust and the β-skeleton: Com-
binatorial curve reconstruction. Graphical Models and Image Processing,
60:125–135, 1998. [248]

24. N. Amenta, M. Bern, and D. Eppstein. The crust and the β-skeleton: Combi-
natorial curve reconstruction. Graphical models and image processing: GMIP,
60(2):125–135, 1998. [253]

25. N. Amenta, S. Choi, T. K. Dey, and N. Leekha. A simple algorithm for home-
omorphic surface reconstruction. In Proc. 16th Ann. Sympos. Comput. Geom.,
pages 213–222, 2000. [178, 258, 272]

26. N. Amenta, S. Choi, and R. Kolluri. The power crust. In ACM Solid Modeling,
pages 249–260, 2001. [261, 272]

27. N. Amenta, S. Choi, and R. K. Kolluri. The power crust, unions of balls, and
the medial axis transform. Comput. Geom. Theory Appl., 19:127–153, 2001.
[261, 264, 272]

28. M. Armstrong. Basic Topology. Undergraduate Texts in Mathematics.
Springer-Verlag, New York, Berlin, Heidelberg, 1983. [278]

29. V. I. Arnol’d, S. M. Gusĕın-Zade, and A. N. Varchenko. Singularities of dif-
ferentiable maps. Vol. I: The classification of critical points, caustics and wave
fronts, volume 82 of Monographs in Mathematics. Birkhäuser Boston Inc.,
Boston, MA, 1985. [117]

30. D. Attali. r-regular shape reconstruction from unorganized points. Comput.
Geom. Theory Appl., 10:239–247, 1998. [262]

31. D. Attali and J.-D. Boissonnat. A linear bound on the complexity of the
delaunay triangulation of points on polyhedral surfaces. Discrete and Comp.
Geometry, 31:369–384, 2004. [77]

32. D. Attali, J.-D. Boissonnat, and H. Edelsbrunner. Stability and computa-
tion of medial axes: a state of the art report. In T. Möller, B. Hamann,
and B. Russell, editors, Mathematical Foundations of Scientific Visualization,
Computer Graphics, and Massive Data Exploration, Mathematics and Visual-
ization. Springer-Verlag. [110, 113]

33. D. Attali, J.-D. Boissonnat, and A. Lieutier. Complexity of the Delaunay trian-
gulation of points on surfaces the smooth case. In Proc. 19th Ann. Symposium
on Computational Geometry, pages 201–210, San Diego, 2003. ACM Press. [77,
232, 273]

References 323

34. M. Attene and M. Spagnuolo. Automatic surface reconstruction from point
sets in space. In Eurographics, pages 457–465. ACM Press, 2000. [269]

35. F. Aurenhammer. Power diagrams: properties, algorithms and applications.
SIAM J. Comput., 16:78–96, 1987. [83, 84, 90, 96]

36. F. Aurenhammer. Linear combinations from power domains. Geom. Dedicata,
28:45–52, 1988. [242]

37. F. Aurenhammer and R. Klein. Voronoi diagrams. In J.-R. Sack and J. Urrutia,
editors, Handbook of Computational Geometry, pages 201–290. Elsevier Science
Publishers B.V. North-Holland, Amsterdam, 2000. [69]

38. M. H. Austern. Generic Programming and the STL. Addison Wesley, 1999.
[36, 315]

39. W. Auzinger and H. J. Stetter. An elimination algorithm for the computation
of all zeros of a system of multivariate polynomial equations. In Proc. Intern.
Conf. on Numerical Math., volume 86 of Int. Series of Numerical Math, pages
12–30. Birkhäuser Verlag, 1988. [141]

40. C. Bajaj and M.-S. Kim. Generation of configuration space obstacles: the case
of moving algebraic surfaces. Algorithmica, 4:155–172, 1989. [57]

41. T. F. Banchoff. Critical points and curvature for embedded polyhedra. J. Diff.
Geom., 1:245–256, 1967. [226]

42. T. F. Banchoff. Critical points and curvature for embedded polyhedral surfaces.
Amer. Math. Monthly, 77:475–485, 1970. [165, 226]

43. G. Barequet and V. Rogol. Maximizing the area of an axially-symmetric poly-
gon inscribed by a simple polygon. In 16th Canadian Conf. on Computational
Geometry, pages 128–131, 2004. [62]

44. S. Basu, R. Pollack, and M.-F. Roy. Algorithms in Real Algebraic Geometry.
Springer-Verlag, Berlin, 2003. ISBN 3-540-00973-6. [110, 125, 130, 133, 138,
142]

45. J. L. Bentley. Multidimensional binary search trees used for associative search-
ing. Commun. ACM, 18(9):509–517, Sept. 1975. [23]

46. J. L. Bentley and T. A. Ottmann. Algorithms for reporting and counting
geometric intersections. IEEE Trans. Comput., C-28(9):643–647, Sept. 1979.
[4, 7]

47. E. Berberich. Exact Arrangements of Quadric Intersection Curves. Universität
des Saarlandes, Saarbrücken, 2004. Master Thesis. [48]

48. E. Berberich, A. Eigenwillig, M. Hemmer, S. Hert, L. Kettner, K. Mehlhorn,
J. Reichel, S. Schmitt, E. Schömer, and N. Wolpert. EXACUS: Efficient and
exact algorithms for curves and surfaces. In Proc. 13th Annu. European Sym-
pos. Algorithms (ESA’05), volume 3669 of Lecture Notes in Computer Science,
pages 155–166, Oct. 2005. [4, 36]

49. E. Berberich, A. Eigenwillig, M. Hemmer, S. Hert, K. Mehlhorn, and
E. Schömer. A computational basis for conic arcs and Boolean operations
on conic polygons. In Proc. 10th European Symposium on Algorithms, volume
2461 of Lecture Notes in Computer Science, pages 174–186. Springer-Verlag,
2002. [4, 9, 11, 36, 55]

50. E. Berberich, M. Hemmer, L. Kettner, E. Schömer, and N. Wolpert. An exact,
complete and efficient implementation for computing planar maps of quadric
intersection curves. In Proc. 21th Annual Symposium on Computational Geom-
etry, pages 99–106, 2005. [4, 36]

324 References

51. M. Berger and B. Gostiaux. Differential Geometry: Manifolds, Curves and
Surfaces. Graduate Texts in Mathematics No. 115. Springer-Verlag, New York,
1988. (translated by S. Levy). [158, 160, 161]

52. F. Bernardini, J. Mittleman, H. Rushmeir, C. Silva, and G. Taubin. The
ball-pivoting algorithm for surface reconstruction. IEEE Transactions on Vi-
sualization and Computer Graphics, 5(4):349–359, 1999. [268, 273]

53. H. Bieri. Nef polyhedra: A brief introduction. Computing Suppl., 10:43–60,
1995. [55]

54. J.-D. Boissonnat. Geometric structures for three-dimensional shape represen-
tation. ACM Trans. Graph., 3(4):266–286, 1984. [232, 253, 261]

55. J.-D. Boissonnat and F. Cazals. Coarse-to-fine surface simplification with geo-
metric guarantees. In Eurographics, 01. [264]

56. J.-D. Boissonnat and F. Cazals. Smooth surface reconstruction via natural
neighbour interpolation of distance functions. In Proc. 16th Ann. Sympos.
Comput. Geom., pages 223–232, 2000. [263, 272, 275]

57. J.-D. Boissonnat and F. Cazals. Smooth surface reconstruction via natural
neighbour interpolation of distance functions. In Proc. 16th Ann. Symposium
on Computational Geometry, pages 223–232. ACM Press, 2000. [268]

58. J.-D. Boissonnat and F. Cazals. Coarse-to-fine surface simplification with geo-
metric guarantees. In A. Chalmers and T.-M. Rhyne, editors, Eurographics’01,
pages 490–499, Manchester, 2001. Blackwell. [263, 272]

59. J.-D. Boissonnat and F. Cazals. Natural coordinates of points on a surface.
Comput. Geom. Theory Appl., 19:155–173, 2001. [247]

60. J.-D. Boissonnat, A. Cérézo, O. Devillers, and M. Teillaud. Output-sensitive
construction of the Delaunay triangulation of points lying in two planes. In-
ternat. J. Comput. Geom. Appl., 6(1):1–14, 1996. [69]

61. J.-D. Boissonnat, D. Cohen-Steiner, and G. Vegter. Isotopic implicit surface
meshing. In Proc. 36th Ann. ACM Symposium on Theory of Computing, pages
301–309, New York, June 2004. ACM Press. [187, 224, 226]

62. J.-D. Boissonnat and C. Delage. Convex hulls and Voronoi diagrams of ad-
ditively weighted points. In Proc. 13th European Symposium on Algorithms,
Lecture Notes in Computer Science, pages 367–378. Springer, 2005. [91, 115]

63. J.-D. Boissonnat and M. Karavelas. On the combinatorial complexity of Euclid-
ean Voronoi cells and convex hulls of d-dimensional spheres. In Proc. 14th
ACM-SIAM Sympos. Discrete Algorithms (SODA), pages 305–312, 2003. [81,
90]

64. J.-D. Boissonnat and S. Oudot. Provably good surface sampling and approxi-
mation. In SGP ’03: Proceedings of the 2003 Eurographics/ACM SIGGRAPH
symposium on Geometry processing, pages 9–18, Aire-la-Ville, Switzerland,
Switzerland, 2003. Eurographics Association. [187, 203, 205, 207]

65. J.-D. Boissonnat and S. Oudot. Provably good sampling and meshing of sur-
faces. Graphical Models, 67:405–451, 2005. [114, 203, 208]

66. J.-D. Boissonnat and S. Oudot. Provably good sampling and meshing of lip-
schitz surfaces. In Proc. 22nd Ann. Sympos. Comput. Geom., 2006. [208]

67. J.-D. Boissonnat and M. Yvinec. Algorithmic Geometry. Cambridge University
Press, UK, 1998. [69, 100, 104, 105, 109]

68. V. Borrelli, F. Cazals, and J.-M. Morvan. On the angular defect of triangu-
lations and the pointwise approximation of curvatures. Comput. Aided Geom.
Design, 20:319–341, 2003. [160, 166]

References 325

69. H. Brönnimann, C. Burnikel, and S. Pion. Interval arithmetic yields efficient
dynamic filters for computational geometry. Discrete Applied Mathematics,
109:25–47, 2001. [121, 154]

70. H. Brönnimann, L. Kettner, S. Schirra, and R. Veltkamp. Applications of
the generic programming paradigm in the design of CGAL. In M. Jazayeri,
R. Loos, and D. Musser, editors, Generic Programming—Proceedings of a
Dagstuhl Seminar, volume 1766 of Lecture Notes in Computer Science, pages
206–217. Springer-Verlag, 2000. [36]

71. H. Brönnimann, G. Melquiond, and S. Pion. The Boost interval arithmetic
library. In Proc. 5th Conference on Real Numbers and Computers, pages
65–80, 2003. [154]

72. J. L. Brown. Systems of coordinates associated with points scattered in the
plane. Comput. Aided Design, 14:547–559, 1997. [242]

73. C. Burnikel, S. Funke, K. Mehlhorn, S. Schirra, and S. Schmitt. A separation
bound for real algebraic expressions. Technical Report ECG-TR-123101-02,
MPI Saarbrücken, 2002. [139, 140]

74. C. Burnikel, S. Funke, and M. Seel. Exact geometric computation using cas-
cading. Internat. J. Comput. Geom. Appl., 11:245–266, 2001. [122, 123]

75. C. Burnikel, K. Mehlhorn, and S. Schirra. How to compute the Voronoi di-
agram of line segments: Theoretical and experimental results. In Proc. 2nd
Annu. European Sympos. Algorithms, volume 855 of Lecture Notes Comput.
Sci., pages 227–239. Springer-Verlag, 1994. [140]

76. C. Burnikel, K. Mehlhorn, and S. Schirra. The LEDA class real number.
Technical Report MPI-I-96-1-001, Max-Planck Institut Inform., Saarbrücken,
Germany, Jan. 1996. [155]

77. J. Canny. The Complexity of Robot Motion Planning. ACM – MIT Press
Doctoral Dissertation Award Series. MIT Press, Cambridge, MA, 1987. [140]

78. H. Carr, J. Snoeyink, and U. Axen. Computing contour trees in all dimensions.
Computational Geometry, 24:75–94, 2003. [309]

79. J. Carr, R. Beatson, J. Cherrie, T. Mitchell, T. Fright, B. McCallum, and
T. Evans. Reconstruction and representation of 3d objects with radial basis
functions. In Siggraph, pages 67–76. ACM, 2001. [232]

80. H. Cartan. Differential Calculus. Houghton Mifflin Co, 1971. [169]
81. F. Cazals, J. Giesen, M. Pauly, and A. Zomorodian. Conformal alpha shapes.

In Symposium on Point Based Graphics, 2005. [269]
82. R. Chaine. A convection geometric-based approach to surface reconstruction.

In Symp. Geometry Processing, pages 218–229, 2003. [266, 276]
83. F. Chazal and A. Lieutier. The lambda medial axis. Graphical Models, 67:

304–331, 2005. [113]
84. B. Chazelle. An optimal convex hull algorithm in any fixed dimension. Discrete

Comput. Geom., 10:377–409, 1993. [77]
85. B. Chazelle, H. Edelsbrunner, L. J. Guibas, and M. Sharir. A singly-exponential

stratification scheme for real semi-algebraic varieties and its applications. The-
oret. Comput. Sci., 84:77–105, 1991. [42, 47]

86. B. Chazelle et al. Application challenges to computational geometry: CG im-
pact task force report. Technical Report TR-521-96, Princeton Univ., Apr.
1996. [313]

87. B. Chazelle et al. Application challenges to computational geometry: CG im-
pact task force report. In B. Chazelle, J. E. Goodman, and R. Pollack, editors,

326 References

Advances in Discrete and Computational Geometry, volume 223 of Contempo-
rary Mathematics, pages 407–463. American Mathematical Society, Providence,
1999. [313]

88. H.-L. Cheng, T. K. Dey, H. Edelsbrunner, and J. Sullivan. Dynamic skin
triangulation. Discrete Comput. Geom., 25:525–568, 2001. [248]

89. S.-W. Cheng, T. K. Dey, H. Edelsbrunner, M. A. Facello, and S.-H. Teng.
Sliver exudation. In Proc. 15th Ann. Sympos. Comput. Geom., pages 1–13,
1999. [235]

90. S.-W. Cheng, T. K. Dey, E. A. Ramos, and T. Ray. Sampling and meshing a
surface with guaranteed topology and geometry. In Proc. 20th Ann. Sympos.
Comput. Geom., pages 280–289, 2004. [187, 209, 211, 222]

91. L. P. Chew. Guaranteed-quality mesh generation for curved surfaces. In Proc.
9th Ann. Sympos. Comput. Geom., pages 274–280, 1993. [201]

92. Y.-J. Chiang, T. Lenz, X. Lu, and G. Rote. Simple and optimal output-sensitive
construction of contour trees using monotone paths. Computational Geometry,
Theory and Applications, 30:165–195, 2005. [309]

93. D. Cohen-Steiner. Topics in Surface Discretization. PhD thesis, Ecole Poly-
technique, 2004. [178]

94. D. Cohen-Steiner and F. Da. A greedy Delaunay based surface reconstruction
algorithm. The Visual Computer, 20:4–16, 2004. [255, 256, 272, 274]

95. D. Cohen-Steiner and J.-M. Morvan. Approximation of normal cycles. Research
Report 4723, INRIA, 2003. [169, 173]

96. D. Cohen-Steiner and J.-M. Morvan. Approximation of the curvature measures
of a smooth surface endowed with a mesh. Research Report 4867, INRIA, 2003.
[169, 173]

97. D. Cohen-Steiner and J.-M. Morvan. Approximation of the second fundamen-
tal form of a hypersurface of a riemannian manifold. Research Report 4868,
INRIA, 2003. [169, 173]

98. D. Cohen-Steiner and J.-M. Morvan. Restricted Delaunay triangulations and
normal cycles. In Proc. 19th Ann. Symposium on Computational Geometry,
pages 237–246, San Diego, CA, June 2003. [175]

99. K. Cole-McLaughlin, H. Edelsbrunner, J. Harer, V. Natarajan, and V. Pas-
cucci. Loops in Reeb graphs of 2-manifolds. Discrete Comput. Geom.,
32(2):231–244, 2004. [310]

100. E. Collins. Quantifier elimination by cylindrical algebraic decomposition—
twenty years of progress. In B. Caviness and J. Johnson, editors, Quanti-
fier Elimination and Cylindrical Algebraic Decomposition, pages 8–23. Springer
Verlag, 1998. [5]

101. G. E. Collins. Quantifier elimination for real closed fields by cylindrical alge-
braic decomposition. In Proc. 2nd GI Conference on Automata Theory and
Formal Languages, volume 33 of Lecture Notes Comput. Sci., pages 134–183.
Springer-Verlag, 1975. [5, 47]

102. G. E. Collins and J. R. Johnson. Quantifier elimination and the sign variation
method for real root isolation. In ISSAC ’89: Proceedings of the ACM-SIGSAM
1989 international symposium on Symbolic and algebraic computation, pages
264–271, New York, NY, USA, 1989. ACM Press. [135]

103. M. L. Connolly. Analytical molecular surface calculation. J. Appl. Cryst.,
16:548–558, 1983. [63]

104. M. L. Connolly. Molecular surfaces: A review, 1996. http://www.netsci.org/
Science/Compchem/feature14.html. [64]

References 327

105. R. Corless, P. Gianni, and B. Trager. A reordered Schur factorization method
for zero-dimensional polynomial systems with multiple roots. In Proc. Inter-
national Conference on Symbolic and Algebraic Computation, pages 133–140.
ACM Press, 1997. [141]

106. M. Coste. An introduction to semi-algebraic geometry. RAAG network school,
2002. [145]

107. D. Cox, J. Little, and D. O’Shea. Ideals, Varieties, and Algorithms: An In-
troduction to Computational Algebraic Geometry and Commutative Algebra.
Undergraduate Texts in Mathematics. Springer Verlag, New York, 1992. [141,
146]

108. H. S. M. Coxeter. Introduction to Geometry. John Wiley & Sons, New York,
2nd edition, 1969. [85]

109. M. de Berg, L. J. Guibas, and D. Halperin. Vertical decompositions for triangles
in 3-space. Discrete Comput. Geom., 15:35–61, 1996. [42, 43]

110. M. de Berg, M. van Kreveld, M. Overmars, and O. Schwarzkopf. Computational
Geometry: Algorithms and Applications. Springer-Verlag, Berlin, 1997. [69]

111. M. de Berg, M. van Kreveld, M. Overmars, and O. Schwarzkopf. Computational
Geometry: Algorithms and Applications. Springer-Verlag, Berlin, Germany, 2nd
edition, 2000. [6, 9, 21, 23]

112. M. de Carmo. Differential Geometry of Curves and Surfaces. Prentice Hall,
Englewood Cliffs, NJ, 1976. [158]

113. C. J. A. Delfinado and H. Edelsbrunner. An incremental algorithm for Betti
numbers of simplicial complexes on the 3-sphere. Comput. Aided Geom. Des.,
12(7):771–784, 1995. [291]

114. R. Descartes. Géométrie, volume 90-31 of A source book in Mathematics.
Havard University press, 1636. [131]

115. O. Devillers. The Delaunay hierarchy. Internat. J. Found. Comput. Sci.,
13:163–180, 2002. [107, 109]

116. O. Devillers, A. Fronville, B. Mourrain, and M. Teillaud. Algebraic methods
and arithmetic filtering for exact predicates on circle arcs. Comput. Geom.
Theory Appl., 22:119–142, 2002. [4, 40, 136]

117. O. Devillers and S. Pion. Efficient exact geometric predicates for Delaunay
triangulations. In Proc. 5th Workshop Algorithm Eng. Exper., pages 37–44,
2003. [122, 123]

118. T. Dey, H. Woo, and W. Zhao. Approximate medial axis for CAD models. In
Proc. 8th ACM symposium on Solid modeling and applications, pages 280–285,
2003. [116]

119. T. K. Dey, H. Edelsbrunner, and S. Guha. Computational topology. In
B. Chazelle, J. E. Goodman, and R. Pollack, editors, Advances in Discrete
and Computational Geometry - Proc. 1996 AMS-IMS-SIAM Joint Summer Re-
search Conf. Discrete and Computational Geometry: Ten Years Later, number
223 in Contemporary Mathematics, pages 109–143. American Mathematical
Society, 1999. [277]

120. T. K. Dey and J. Giesen. Detecting undersampling in surface reconstruction.
In Proc. 16th Ann. Symposium on Computational Geometry, pages 257–263.
ACM Press, 2001. [253]

121. T. K. Dey, J. Giesen, and J. Hudson. Delaunay based shape reconstruction
from large data. In IEEE Symposium in Parallel and Large Data Visualization
and Graphics, pages 19–27, 2001. [260]

328 References

122. T. K. Dey, J. Giesen, E. A. Ramos, and B. Sadri. Critical points of the dis-
tance to an epsilon-sampling on a surface and flow-complex-based surface re-
construction. In Proc. 21st Ann. Symposium on Computational Geometry,
pages 218–227. ACM Press, 2005. [253, 266]

123. T. K. Dey and S. Goswami. Tight cocone: A water-tight surface reconstruc-
tor. Journal of Computing and Information Science in Engineering, 3:302–307,
2003. [260, 272]

124. T. K. Dey and S. Goswami. Provable surface reconstruction from noisy sam-
ples. In Proc. 20th Ann. Symposium on Computational Geometry, pages 330–
339. ACM Press, 2004. [261, 272]

125. T. K. Dey and P. Kumar. A simple provable algorithm for curve reconstruction.
In SODA ’99: Proceedings of the Tenth Annual ACM-SIAM Symposium on
Discrete Algorithms, pages 893–894, Philadelphia, PA, USA, 1999. Society for
Industrial and Applied Mathematics. [253]

126. T. K. Dey, G. Li, and T. Ray. Polygonal surface remeshing with Delaunay
refinement. In Proc. 14th Internat. Meshing Roundtable, pages 343–361, 2005.
[213]

127. T. K. Dey, K. Mehlhorn, and E. A. Ramos. Curve reconstruction: Connecting
dots with good reason. Comput. Geom. Theory Appl., 15:229–244, 2000. [228,
253]

128. L. Dupont, D. Lazard, S. Lazard, and S. Petitjean. Near-optimal parameter-
ization of the intersection of quadrics. In Proc. 19th Ann. Sympos. Comput.
Geom., pages 246–255, 2003. [49]

129. R. A. Dwyer. Higher-dimensional Voronoi diagrams in linear expected time.
Discrete Comput. Geom., 6:343–367, 1991. [77]

130. H. Edelsbrunner. Algorithms in Combinatorial Geometry, volume 10 of EATCS
Monographs on Theoretical Computer Science. Springer-Verlag, Heidelberg,
West Germany, 1987. [2, 66]

131. H. Edelsbrunner. Weighted alpha shapes. Technical Report UIUCDCS-R-92-
1760, Dept. Comput. Sci., Univ. Illinois, Urbana, IL, 1992. [238]

132. H. Edelsbrunner. Surface reconstruction by wrapping finite point sets in space.
In B. Aronov, S. Basu, J. Pach, and M. Sharir, editors, Ricky Pollack and Eli
Goodman Festschrift, pages 379–404. Springer-Verlag, 2003. [243, 264, 272]

133. H. Edelsbrunner. Biological applications of computational topology. In
J. Goodman and J. O’Rourke, editors, CRC Handbook of Discrete and Compu-
tational Geometry, chapter 63, pages 1395–1412. Chapman & Hall/CRC, 2004.
[277]

134. H. Edelsbrunner, J. Harer, V. Natarajan, and V. Pascucci. Morse-Smale com-
plexes for piecewise linear 3-manifolds. In Proc. 19th Ann. Sympos. Comput.
Geom., pages 361–370, 2003. [306]

135. H. Edelsbrunner, J. Harer, and A. Zomorodian. Hierarchical Morse-Smale
complexes for piecewise linear 2-manifolds. Discrete Comput. Geom., 30(1):
87–107, 2003. [306]

136. H. Edelsbrunner and E. P. Mücke. Simulation of simplicity: A technique to
cope with degenerate cases in geometric algorithms. ACM Trans. Graph.,
9(1):66–104, 1990. [210, 235]

137. H. Edelsbrunner and E. P. Mücke. Three-dimensional alpha shapes. ACM
Trans. Graph., 13(1):43–72, Jan. 1994. [238]

138. H. Edelsbrunner and N. R. Shah. Triangulating topological spaces. Int. J. on
Comp. Geom., 7:365–378, 1997. [84, 209, 228, 241]

References 329

139. A. Eigenwillig. Exact arrangement computation for cubic curves. M.Sc. thesis,
Universität des Saarlandes, Saarbrücken, Germany, 2003. [20]

140. A. Eigenwillig, L. Kettner, E. Schömer, and N. Wolpert. Complete, exact, and
efficient computations with cubic curves. In Proc. 20th Annual Symposium on
Computational Geometry, pages 409–418, 2004. accepted for Computational
Geometry: Theory and Applications. [4, 11, 18, 36, 38]

141. D. Eisenbud. Commutative Algebra with a view toward Algebraic Geometry,
volume 150 of Graduate Texts in Math. Berlin, Springer-Verlag, 1994. [146]

142. M. Elkadi and B. Mourrain. Introduction à la résolution des systèmes
d’équations algébriques, 2003. Notes de cours, Univ. de Nice (310 p.). [142,
148, 149]

143. M. Elkadi and B. Mourrain. Symbolic-numeric tools for solving polynomial
equations and applications. In A. Dickenstein and I. Emiris, editors, Solving
Polynomial Equations: Foundations, Algorithms, and Applications., volume 14
of Algorithms and Computation in Mathematics, pages 125–168. Springer, 2005.
[141]

144. I. Emiris and E. P. Tsigaridas. Computing with real algebraic numbers of small
degree. In Proc. 12th European Symposium on Algorithms, LNCS 3221, pages
652–663. Springer-Verlag, 2004. [4, 40]

145. I. Z. Emiris, A. Kakargias, S. Pion, M. Teillaud, and E. P. Tsigaridas. Towards
an open curved kernel. In Proc. 20th Ann. Sympos. Comput. Geom., pages
438–446, 2004. [4, 11, 39]

146. I. Z. Emiris and M. I. Karavelas. The predicates of the apollonius diagram:
algorithmic analysis and implementation. Computational Geometry: Theory
and Applications, 33:18–57, 2006. [109]

147. I. Z. Emiris, B. Mourrain, and E. P. Tsigaridas. Real algebraic numbers:
Complexity analysis and experimentations. Research Report 5897, INRIA,
Avril 2006. [135, 136, 138]

148. I. Z. Emiris and E. P. Tsigaridas. Comparison of fourth-degree algebraic num-
bers and applications to geometric predicates. Technical Report ECG-TR-
302206-03, INRIA Sophia-Antipolis, 2003. [136, 137, 138, 139]

149. I. Z. Emiris and E. P. Tsigaridas. Methods to compare real roots of polyno-
mials of small degree. Technical Report ECG-TR-242200-01, INRIA Sophia-
Antipolis, 2003. [136]

150. J. Erickson. Nice point sets can have nasty Delaunay triangulations. Discrete
Comput. Geom., 30(1):109–132, 2003. [206]

151. J. Erickson. Dense point sets have sparse delaunay triangulations. Discrete
Comput. Geom., 33:85–115, 2005. [77]

152. E. Eyal and D. Halperin. Improved implementation of controlled perturbation
for arrangements of spheres. Technical Report ECG-TR-363208-01, Tel-Aviv
University, 2004. [64]

153. E. Eyal and D. Halperin. Dynamic maintenance of molecular surfaces under
conformational changes. In Proc. 21st Ann. Symposium on Computational
Geometry, pages 45–54, 2005. [50, 64]

154. E. Eyal and D. Halperin. Improved maintenance of molecular surfaces using
dynamic graph connectivity. In Proc. 5th Workshop on Algorithms in Bioinfor-
matics - WABI 2005, volume 3692 of LNCS, pages 401–413. Springer-Verlag,
2005. [50, 53, 64]

330 References

155. A. Fabri, G.-J. Giezeman, L. Kettner, S. Schirra, and S. Schönherr. The CGAL
kernel: A basis for geometric computation. In M. C. Lin and D. Manocha,
editors, Proc. 1st ACM Workshop on Appl. Comput. Geom., volume 1148 of
Lecture Notes Comput. Sci., pages 191–202. Springer-Verlag, 1996. [318]

156. A. Fabri, G.-J. Giezeman, L. Kettner, S. Schirra, and S. Schönherr. On the
design of CGAL a computational geometry algorithms library. Softw. – Pract.
Exp., 30(11):1167–1202, 2000. [3, 36, 316]

157. G. Farin. Curves and surfaces for computer aided geometric design: a practical
guide. Comp. science and sci. computing. Acad. Press, 1990. [132, 136]

158. G. Farin. An SSI bibliography. In Geometry Processing for Design and Man-
ufacturing, pages 205–207. SIAM, Philadelphia, 1992. [117]

159. R. Farouki and R. Ramamurthy. Voronoi diagram and medial axis algorithm
for planar domains with curved boundaries i. theoretical foundations. Journal
of Computational and Applied Mathematics, 102(1):119–141, 1999. [110]

160. O. Faugeras. Three-Dimensional Computer Vision: A Geometric Viewpoint.
MIT Press, Cambridge, MA, 1993. [116]

161. H. Federer. Curvature measures. Trans. Amer. Math. Soc., 93:418–491, 1959.
[162, 169]

162. H. Federer. Geometric Measure Theory. Springer-Verlag, 1970. [162, 174]
163. E. Flato, D. Halperin, I. Hanniel, and O. Nechushtan. The design and imple-

mentation of planar maps in CGAL. In Abstracts 15th European Workshop
Comput. Geom., pages 169–172. INRIA Sophia-Antipolis, 1999. [26]

164. E. Flato, D. Halperin, I. Hanniel, O. Nechushtan, and E. Ezra. The design and
implementation of planar maps in CGAL. The ACM Journal of Experimental
Algorithmics, 5:1–23, 2000. [23]

165. E. Fogel, D. Halperin, R. Wein, S. Pion, M. Teillaud, I. Emiris, A. Kakar-
gias, E. Tsigaridas, E. Berberich, A. Eigenwillig, M. Hemmer, L. Kettner,
K. Mehlhorn, E. Schomer, and N. Wolpert. An empirical comparison of
software for constructing arrangements of curved arcs (preliminary version).
Technical Report ECG-TR-361200-01, Tel-Aviv University, INRIA Sophia-
Antipolis, MPI Saarbrücken, 2004. [4]

166. E. Fogel, D. Halperin, R. Wein, M. Teillaud, E. Berberich, A. Eigenwillig,
S. Hert, and L. Kettner. Specification of the traits classes for CGAL
arrangements of curves. Technical Report ECG-TR-241200-01, INRIA Sophia-
Antipolis, 2003. [4]

167. E. Fogel, R. Wein, and D. Halperin. Code flexibility and program efficiency by
genericity: Improving CGAL’s arrangements. In Proc. 12th Annual European
Symposium on Algorithms, pages 664–676. Springer-Verlag, 2004. [4, 25, 26]

168. S. Fortune and C. J. Van Wyk. Static analysis yields efficient exact integer
arithmetic for computational geometry. ACM Trans. Graph., 15(3):223–248,
July 1996. [121, 122]

169. S. Fortune and C. V. Wyk. LN User Manual. AT&T Bell Laboratories, 1993.
[123]

170. J. Fu. Convergence of curvatures in secant approximations. Journal of Differ-
ential Geometry, 37:177–190, 1993. [163, 169, 171]

171. J. Fu. Curvature of singular spaces via the normal cycle. Amer. Math. Soc.,
116:819–880, 1994. [171]

172. S. Funke, C. Klein, K. Mehlhorn, and S. Schmitt. Controlled perturbations
for Delaunay triangulations. In Proc. 16th ACM-SIAM Sympos. Discrete Al-
gorithms (SODA), pages 1047–1056, 2005. [50, 53]

References 331

173. S. Funke, K. Mehlhorn, and S. Schmitt. The LEDA class real number – ex-
tended version. Technical Report ECG-TR-363110-01, MPI Saarbrücken, 2004.
[155]

174. S. Funke and E. A. Ramos. Smooth-surface reconstruction in near-linear time.
In ACM SODA’02, pages 781 – 790, 2002. [260, 273]

175. E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns. Addison-
Wesley, Reading, MA, 1995. [27, 32]

176. T. Garrity and J. Warren. Geometric continuity. Computer Aided Geometric
Design, 8:51–65, 1991. [117]

177. G. Gatellier, A. Labrouzy, B. Mourrain, and J.-P. Técourt. Computing the
topology of three-dimensional algebraic curves. In T. Dokken and B. Jüttler,
editors, Computational Methods for Algebraic Spline Surfaces (COMPASS),
pages 27–44. Springer-Verlag, 2005. [222]

178. N. Geismann, M. Hemmer, and E. Schömer. Computing a 3-dimensional cell in
an arrangement of quadrics: Exactly and actually! In Proc. 17th Ann. Sympos.
Comput. Geom., pages 264–273, 2001. [48]

179. B. Gerkey. Pursuit-evasion with teams of robots.
http://robotics.stanford.edu/∼gerkey/research/pe/index.html. [65]

180. B. Gerkey, S. Thrun, and G. J. Gordon. Visibility-based pursuit-evasion with
limited field of view. In Proc. National Conference on Artificial Intelligence
(AAAI), pages 20–27, 2004. [64]

181. P. Giblin and B. Kimia. A formal classification of 3d medial axis points and
their local geometry. IEEE Transations on Pattern Analysis and Machine
Intelligence, 26(2):238–251, 2004. [245, 253]

182. C. Gibson. Elementary Geometry of Algebraic Curves. Cambridge University
Press, 1998. [19]

183. J. Giesen and M. John. Surface reconstruction based on a dynamical system.
In Proceedings of the 23rd Annual Conference of the European Association
for Computer Graphics (Eurographics), Computer Graphics Forum 21, pages
363–371, 2002. [266]

184. J. Giesen and M. John. The flow complex: A data structure for geometric
modeling. In ACM SODA, pages 285 – 294, 2003. [243, 266]

185. L. González-Vega and I. Necula. Efficient topology determination of implicitly
defined algebraic plane curves. Comput. Aided Geom. Design, 19(9):719–743,
2002. [145, 152, 214]

186. L. González-Vega, F. Rouillier, and M.-F. Roy. Symbolic recipes for poly-
nomial system solving. In A. M. Cohen, H. Cuypers, and H. Sterk, editors,
Some Tapas of Computer Algebra, volume 4 of Algorithms and Computation
in Mathematics, chapter 2, pages 34–65. Springer, 1999. [142]

187. M. T. Goodrich and R. Tamassia. Dynamic trees and dynamic point location.
SIAM J. Comput., 28:612–636, 1998. [44]

188. M. Gopi, S. Krishnan, and C. Silva. Surface reconstruction based on lower
dimensional localized Delaunay triangulation. In Eurographics, 2000. [253]

189. M. Granados, P. Hachenberger, S. Hert, L. Kettner, K. Mehlhorn, and M. Seel.
Boolean operations on 3d selective nef complexes: Data structure, algorithms,
and implementation. In Proc. 11th European Symposium on Algorithms, pages
174–186, 2003. [55]

190. T. A. Grandine. Applications of contouring. SIAM Review, 42:297–316, 2000.
[117]

332 References

191. T. A. Grandine and F. W. Klein. A new approach to the surface intersection
problem. Computer Aided Geometric Design, 14:111–134, 1997. [117, 152]

192. G.-M. Greuel and G. Pfister. A Singular introduction to commutative alge-
bra. Springer-Verlag, Berlin, 2002. With contributions by Olaf Bachmann,
Christoph Lossen and Hans Schönemann. [147]

193. A. Griewank. Evaluating derivatives: principles and techniques of algorithmic
differentiation. Society for Industrial and Applied Mathematics, Philadelphia,
PA, USA, 2000. [191]

194. V. Guillemin and A. Pollack. Differential Topology. Prentice Hall, Englewood
Cliffs, NJ, 1974. [304]

195. P. Hachenberger and L. Kettner. Boolean operations on 3D selective Nef
complexes: Optimized implementation and experiments. In Proc. of 2005
ACM Symposium on Solid and Physical Modeling (SPM’05), pages 163–174,
Cambridge, MA, June 2005. [55]

196. D. Halperin. Arrangements. In J. E. Goodman and J. O’Rourke, edi-
tors, Handbook of Discrete and Computational Geometry, chapter 24, pages
529–562. Chapman & Hall/CRC, 2nd edition, 2004. [2, 30, 42, 66]

197. D. Halperin, L. E. Kavraki, and J.-C. Latombe. Robotics. In J. E. Goodman
and J. O’Rourke, editors, Handbook of Discrete and Computational Geometry,
chapter 41, pages 755–778. CRC Press LLC, Boca Raton, FL, 1997. [116]

198. D. Halperin and E. Leiserowitz. Controlled perturbation for arrangements of
circles. International Journal of Computational Geometry and Applications,
14(4 & 5):277–310, 2004. [50, 52, 53]

199. D. Halperin and M. H. Overmars. Spheres, molecules, and hidden surface
removal. Computational Geometry: Theory and Applications, 11(2):83–102,
1998. [63, 64]

200. D. Halperin and C. R. Shelton. A perturbation scheme for spherical arrange-
ments with application to molecular modeling. Comput. Geom. Theory Appl.,
10:273–287, 1998. [50, 64]

201. I. Haran and D. Halperin. An experimental study of point location in general
planar arrangements. In Proc. ALENEX 2006, 2006. To appear. [23, 31]

202. J. Harris. Algebraic Geometry, a First Course, volume 133 of Graduate Texts
in Math. New-York, Springer-Verlag, 1992. [146]

203. A. Hatcher. Algebraic Topology. Cambridge University Press, 2002. [283]
204. S. Hert, M. Hoffmann, L. Kettner, S. Pion, and M. Seel. An adaptable and

extensible geometry kernel. In Proc. Workshop on Algorithm Engineering,
volume 2141 of Lecture Notes Comput. Sci., pages 79–90. Springer-Verlag, 2001.
[26, 39]

205. D. Hilbert. Foundations of Geometry (Grundlagen der Geometrie). Open
Court, 1971. [118]

206. D. Hilbert and S. Cohn-Vossen. Geometry and the Imagination. Reprint from
the American Mathematical Society, 1999. [177]

207. K. Hildebrandt, K. Polthier, and M. Wardetzky. On the convergence of metric
and geometric properties of polyhedral surfaces. To appear in Geom. Dedicata.
[158]

208. M. W. Hirsch. Differential Topology. Springer-Verlag, New York, NY, 1976.
[184, 249]

209. S. Hirsch and D. Halperin. Hybrid motion planning: Coordinating two discs
moving among polygonal obstacles in the plane. In Proc. 5th Workshop on
Algorithmic Foundations of Robotics, pages 225–241, 2002. [58]

References 333

210. H. Hiyoshi and K. Sugihara. Improving continuity of Voronoi-based interpola-
tion over Delaunay spheres. Comput. Geom., 22(1-3), 2002. [242]

211. S. Ho, S. Sarma, and Y. Adachi. Real-time interference analysis between a tool
and an environment. Computer-Aided Design, 33(13):935–947, 2001. [59]

212. IEEE Standard for binary floating point arithmetic, ANSI/IEEE Std 754 −
1985. New York, NY, 1985. Reprinted in SIGPLAN Notices, 22(2):9–25, 1987.
[119]

213. O. Ilushin, G. Elber, D. Halperin, R. Wein, and M.-S. Kim. Precise global
collision detection in multi-axis machining. Computer-Aided Design, 37(9):
909–920, Aug 2005. [59]

214. J. Jost. Riemannian Geometry and Geometric Analysis. Universitext. Springer-
Verlag, 2002. [305]

215. M. Karavelas. A robust and efficient implementation for the segment voronoi
diagram. In Proc. International Symposium on Voronoi Diagrams in Science
and Engineering, pages 51–62, 2004. [115]

216. M. Karavelas and M. Yvinec. Dynamic additively weighted voronoi diagrams
in 2d. In Proc. 10th European Symposium on Algorithms, pages 586–598, 2002.
[115]

217. M. Karavelas and M. Yvinec. The Voronoi diagram of convex objects in the
plane. In Proc. 11th European Symposium on Algorithms, pages 337–348, 2003.
[106, 107, 108, 109]

218. M. I. Karavelas and I. Z. Emiris. Predicates for the planar additively weighted
Voronoi diagram. Technical Report ECG-TR-122201-01, INRIA Sophia-
Antipolis, 2002. [109]

219. M. I. Karavelas and I. Z. Emiris. Root comparison techniques applied to
computing the additively weighted Voronoi diagram. In Proc. 14th ACM-
SIAM Sympos. Discrete Algorithms (SODA), pages 320–329, 2003. [109, 136]

220. L. E. Kavraki, P. Švestka, J.-C. Latombe, and M. H. Overmars. Probabilistic
roadmaps for path planning in high dimensional configuration spaces. IEEE
Trans. Robot. Autom., 12:566–580, 1996. [58]

221. L. Kettner, K. Mehlhorn, S. Pion, S. Schirra, and C. Yap. Classroom examples
of robustness problems in geometric computations. In Proc. 12th European
Symposium on Algorithms, volume 3221 of Lecture Notes Comput. Sci., pages
702–713. Springer-Verlag, 2004. [317]

222. L. Kettner and S. Näher. Two computational geometry libraries: LEDA and
CGAL. In J. E. Goodman and J. O’Rourke, editors, Handbook of Discrete and
Computational Geometry, chapter 65, pages 1435–1463. CRC Press LLC, Boca
Raton, FL, second edition, 2004. [3, 66, 316]

223. L. Kettner, J. Rossignac, and J. Snoeyink. The Safari interface for visualizing
time-dependent volume data using iso-surfaces and contour spectra. Compu-
tational Geometry: Theory and Applications, 25:97–116, 2003. [308]

224. L. Kettner and J. Snoeyink. A prototype system for visualizing time-dependent
volume data. In Proc. 17th Ann. Symp. Computational Geometry, pages
327–328. ACM Press, 2001. [308]

225. J. Keyser, T. Culver, M. Foskey, S. Krishnan, and D. Manocha. ESOLID: A
system for exact boundary evaluation. Computer-Aided Design, 36(2):175–193,
2004. [4]

226. J. Keyser, T. Culver, D. Manocha, and S. Krishnan. Efficient and exact ma-
nipulation of algebraic points and curves. Computer-Aided Design, 32(11):
649–662, 2000. [4]

334 References

227. D.-S. Kim, C.-H. Cho, Y. Cho, C. I. Won, and D. Kim. Pocket recognition on a
protein using Euclidean Voronoi diagrams of atoms. In Proc. 3rd International
Conference on Computational Science and its Applications, volume 1, pages
707–715, 2005. [116]

228. D.-S. Kim, D. Kim, Y. Cho, J. Ryu, C.-H. Cho, J. Y. Park, and H.-C. Lee.
Visualization and analysis of protein structures using Euclidean Voronoi di-
agrams of atoms. In Proc. 3rd International Conference on Computational
Science and its Applications, volume 1, pages 993–1002, 2005. [116]

229. D. A. Klain and G.-C. Rota. Introduction to Geometric Probability. Cambridge
University Press, 1997. [158]

230. R. Klein. Concrete and Abstract Voronoi Diagrams, volume 400 of Lecture
Notes Comput. Sci. Springer-Verlag, 1989. [92, 93]

231. R. Klein, K. Mehlhorn, and S. Meiser. Randomized incremental construction
of abstract Voronoi diagrams. Comput. Geom. Theory Appl., 3(3):157–184,
1993. [102, 109]

232. W. Krandick and K. Mehlhorn. New bounds for the descartes method. J. of
Symb. Comp., 41(1), Jan 2006. [135]

233. S. Krishnan and D. Manocha. An efficient intersection algorithm based on
lower dimensional formulation. ACM Transactions on Computer Graphics,
16:74–106, 1997. [117]

234. F. Labelle and J. Shewchuk. Anisotropic voronoi diagrams and guaranteed-
quality anisotropic mesh generation. In Proc. 19th Ann. Symposium on Com-
putational Geometry, pages 191–200. ACM Press, 2003. [86]

235. J. M. Lane and R. F. Riesenfeld. Bounds on a polynomial. BIT, 21(1):112–117,
1981. [135]

236. S. Lang. Algebra. Addison-Wesley, 1980. [125, 148]
237. J.-C. Latombe. Robot Motion Planning. Kluwer Academic Publishers, Boston,

1991. [57, 116]
238. S. Lazard, L. M. Peñaranda, and S. Petitjean. Intersecting quadrics: An effi-

cient and exact implementation. In Proc. 20th Ann. Sympos. Comput. Geom.,
pages 419–428, 2004. [50]

239. G. Leibon and D. Letscher. Delaunay triangulations and Voronoi diagrams for
Riemannian manifolds. In Proc. 16th Ann. Sympos. Comput. Geom., pages
341–349, 2000. [69]

240. E. Leiserowitz and S. Hirsch. Exact construction of Minkowski sums of poly-
gons and a disc with application to motion planning. Technical Report ECG-
TR-181205-01, Tel-Aviv University, 2002. [57, 58]

241. J. Levin. Algorithm for drawing pictures of solid objects composed of quadratic
surfaces. Commun. ACM, 19(10):555–563, Oct. 1976. [50]

242. C. Li and C. Yap. A new constructive root bound for algebraic expressions.
In Proc. 12th ACM-SIAM Symposium on Discrete Algorithms, pages 496–505,
2001. [35, 140]

243. A. Lieutier. Any open bounded subset of ∇n has the same homotopy type
than its medial axis. Computer-Aided Design, 11(36):1029–1046, 2004. [114]

244. W. E. Lorensen and H. E. Cline. Marching cubes: A high resolution 3d surface
construction algorithm. SIGGRAPH Comput. Graph., 21(4):163–169, 1987.
[188, 189]

245. V. Luchnikov, M. Gavrilova, and N. Medvedev. A new development of the
Voronoi-Delaunay technique for analysis of pores in packings of non-spherical

References 335

objects and in packings confined in containers. In Proc. of the 21st Int. Con-
ference on Applied Physics, volume 1, pages 273–275, 2001. [116]

246. V. Luchnikov, N. Medvedev, and M. Gavrilova. The Voronoi-Delaunay ap-
proach for modeling the packing of balls in a cylindrical container. In Proc.
Int. Conf. Computational Science, volume 1 of Lecture Notes in Computer
Science, pages 748–752. Springer, 2001. [116]

247. F. S. Macaulay. On the resolution of a given modular system into primary
systems including some properties of Hilbert numbers. Math. Ann., 74(1):
66–121, 1913. [142]

248. A. Mantler and J. Snoeyink. Intersecting red and blue line segments in op-
timal time and precision. In J. Akiyama, M. Kano, and M. Urabe, editors,
Discrete and Computational Geometry, Japanese Conference, JCDCG 2000,
Tokyo, Japan, November, 22-25, 2000, Revised Papers, volume 2098 of Lecture
Notes in Computer Science, pages 244–251. Springer, 2001. [54]

249. J. Matoušek. Lectures on Discrete Geometry, volume 212 of Graduate Texts in
Mathematics. Springer-Verlag, 2002. [2, 66]

250. Y. Matsumoto. An Introduction to Morse Theory, volume 208 of Translations
of Mathematical Monographs. American Mathematical Society, 2002. [295]

251. K. Mehlhorn and S. Näher. LEDA: A Platform for Combinatorial and Geo-
metric Computing. Cambridge University Press, Cambridge, UK, 2000. [4, 9,
11, 38, 50, 55, 316]

252. G. Melquiond and S. Pion. Formally certified floating-point filters for homoge-
nous geometric predicates. Special issue on REAL NUMBERS of Theoretical
Informatics and Applications, 2006. to appear. [123, 154]

253. P. G. Mezey. Molecular surfaces. In K. B. Lipkowitz and D. B. Boyd, editors,
Reviews in Computational Chemistry, volume 1. VCH Publishers, 1990. [64]

254. M. Mignotte. Mathematics for Computer Algebra. Springer-Verlag, 1992. [140]
255. J. W. Milnor. Morse Theory. Princeton University Press, Princeton, NJ, 1963.

[295]
256. J. S. B. Mitchell. Shortest paths and networks. In J. E. Goodman and

J. O’Rourke, editors, Handbook of Discrete and Computational Geometry,
chapter 24, pages 445–466. CRC Press LLC, Boca Raton, FL, 1997. [116]

257. R. E. Moore. Interval Analysis. Prentice Hall, Englewood Cliffs, NJ, 1966.
[120]

258. F. Morgan. Minimal surfaces, crystals, and norms on Rn. In Proc. 7th Ann.
Sympos. Comput. Geom., pages 204–213, 1991. [161, 171]

259. J.-M. Morvan and B. Thibert. Smooth surface and triangular mesh: Compar-
ison of the area, the normals and the unfolding. In ACM Symposium on Solid
Modeling and Applications, pages 147–158, 2002. [252]

260. J.-M. Morvan and B. Thibert. Approximation of the normal vector field and
the area of a smooth surface. Discrete & Computational Geometry, 32(3):
383–400, 2004. [162, 163, 164]

261. B. Mourrain. Computing isolated polynomial roots by matrix methods. J. of
Symbolic Computation, Special Issue on Symbolic-Numeric Algebra for Poly-
nomials, 26(6):715–738, Dec. 1998. [141]

262. B. Mourrain, F. Rouillier, and M.-F. Roy. Bernstein’s basis and real root iso-
lation. In J. E. Goodman, J. Pach, and E. Welzl, editors, Combinatorial and
Computational Geometry, Mathematical Sciences Research Institute Publica-
tions, pages 459–478. Cambridge University Press, 2005. [135, 136]

336 References

263. B. Mourrain and J.-P. Técourt. Isotopic meshing of a real algebraic surface.
Technical Report RR-5508, INRIA-Sophia Antipolis, France, Feb. 2005. 21 pp.
[187, 213, 217, 220, 222]

264. B. Mourrain, J.-P. Técourt, and M. Teillaud. Sweeping an arrangement of
quadrics in 3d. In Proc. 19th European Workshop on Computational Geometry,
pages 31–34, 2003. [46]

265. B. Mourrain, J.-P. Técourt, and M. Teillaud. On the computation of an
arrangement of quadrics in 3d. Computational Geometry: Theory and Ap-
plications, 30:145–164, 2005. [46, 47]

266. B. Mourrain and P. Trébuchet. Algebraic methods for numerical solving. In
Proc. of the 3rd International Workshop on Symbolic and Numeric Algorithms
for Scientific Computing’01 (Timisoara, Romania), pages 42–57, 2002. [141]

267. B. Mourrain and P. Trébuchet. Generalised normal forms and polynomial
system solving. In M. Kauers, editor, Proc. Intern. Symp. on Symbolic and
Algebraic Computation, pages 253–260. New-York, ACM Press., 2005. [141]

268. B. Mourrain, M. Vrahatis, and J. Yakoubsohn. On the complexity of isolating
real roots and computing with certainty the topological degree. J. of Complex-
ity, 18(2):612–640, 2002. [135]

269. K. Mulmuley. A fast planar partition algorithm, I. J. Symbolic Comput.,
10(3-4):253–280, 1990. [23]

270. K. Mulmuley. A fast planar partition algorithm, II. J. ACM, 38:74–103, 1991.
[32]

271. D. A. Musser and A. A. Stepanov. Generic programming. In Proc. In-
tern. Symp. on Symbolic and Algebraic Computation, LNCS 358, pages 13–25.
Springer-Verlag, 1988. [314]

272. N. Myers. Traits: A new and useful template technique. C++ Report, 7(5):
32–35, 1995. [314]

273. A. Nanevski, G. Blelloch, and R. Harper. Automatic generation of staged
geometric predicates. Higher-Order and Symbolic Computation, 16(4):379–400,
Dec. 2003. [123]

274. W. Nef. Beiträge zur Theorie der Polyeder. Herbert Lang, Bern, 1978. [55]
275. C. Ó’Dúnlaing and C. K. Yap. A “retraction” method for planning the motion

of a disk. J. Algorithms, 6:104–111, 1985. [57]
276. A. Okabe, B. Boots, and K. Sugihara. Spatial Tessellations: Concepts and

Applications of Voronoi Diagrams. John Wiley & Sons, Chichester, UK, 1992.
[69]

277. G. J. Olling, B. K. Choi, and R. B. Jerard. Machining Impossible Shapes.
Kluwer Academic Publishers, 1998. [59]

278. J. Owen and A. Rockwood. Intersection of general implicit surfaces. In Geomet-
ric Modeling: Algorithms and New Trends, pages 335–345. SIAM, Philadelphia,
1987. [117]

279. E. Packer. Finite-precision approximation techniques for planar arrangements
of line segments. M.Sc. thesis, Tel Aviv University, Tel Aviv, Israel, 2002. [50]

280. M. P. Patrikalakis and T. Maekawa. Shape Interrogation for Computer Aided
Design and Manufacturing. Springer Verlag, 2002. [117]

281. S. Petitjean and E. Boyer. Regular and non-regular point sets: Properties and
reconstruction. Comput. Geom. Theory Appl., 19:101–126, 2001. [269]

282. S. Pion. De la géométrie algorithmique au calcul géométrique. Thèse de doc-
torat en sciences, Université de Nice-Sophia Antipolis, France, 1999. TU-0619
http://www.inria.fr/rrrt/tu-0619.html. [154]

References 337

283. S. Pion. Interval arithmetic: An efficient implementation and an application
to computational geometry. In Workshop on Applications of Interval Analysis
to systems and Control, pages 99–110, 1999. [154]

284. S. Pion and M. Teillaud. Towards a CGAL-like kernel for curves. Technical
Report ECG-TR-302206-01, MPI Saarbrücken, INRIA Sophia-Antipolis, 2003.
[39]

285. S. Pion and C. K. Yap. Constructive root bound for k-ary rational input
numbers. In Proc. 19th Ann. Sympos. Comput. Geom., pages 256–263, 2003.
[35, 140, 155]

286. S. Plantinga and G. Vegter. Isotopic approximation of implicit curves and
surfaces. In SGP ’04: Proceedings of the 2004 Eurographics/ACM SIGGRAPH
symposium on Geometry processing, pages 245–254, New York, NY, USA, 2004.
ACM Press. [187, 190, 196, 198, 200, 227]

287. H. Pottmann and J. Wallner. Computational Line Geometry. Springer-Verlag,
Berlin, Heidelberg, 2001. [2]

288. F. P. Preparata and M. I. Shamos. Computational Geometry: An Introduction.
Springer-Verlag, New York, NY, 1985. [317]

289. M. A. Price and C. G. Armstrong. Hexahedral mesh generation by medial
surface subdivision: Part II, solids with flat and concave edges. International
Journal for Numerical Methods in Engineering, 40:111–136, 1997. [116]

290. M. A. Price, C. G. Armstrong, and M. A. Sabin. Hexahedral mesh generation
by medial surface subdivision: Part I, solids with convex edges. International
Journal for Numerical Methods in Engineering, 38(19):3335–3359, 1995. [116]

291. W. Pugh. Skip lists: a probabilistic alternative to balanced trees. Commun.
ACM, 33(6):668–676, 1990. [107]

292. S. Raab. Controlled perturbation for arrangements of polyhedral surfaces with
application to swept volumes. In Proc. 15th Ann. Symposium on Computational
Geometry, pages 163–172, 1999. [50]

293. G. Reeb. Sur les points singuliers d’une forme de Pfaff complètement intégrable
ou d’une fonction numérique. Comptes Rendus Acad. Sciences Paris, 222:
847–849, 1946. [307]

294. F. M. Richards. Areas, volumes, packing, and protein structure. Annu. Rev.
Biophys. Bioeng., 6:151–176, 1977. [63]

295. J. Risler. Méthodes mathématiques pour la CAO. Masson, 1991. [132]
296. V. Rogol. Maximizing the area of an axially-symmetric polygon inscribed by

a simple polygon. Master’s thesis, The Technion, Haifa, Israel, 2003.
ftp://ftp.cs.technion.ac.il/pub/barequet/theses/rogol-msc-thesis.

pdf.gz. [63]
297. J. Rossignac and M. O’Connor. Sgc: A dimension-independent model for

pointsets with internal structures and incomplete boundaries. In M. Wozny,
J. Turner, and K. Preiss, editors, Geometric Modeling for Product Engineering.
North-Holland, 1989. [55]

298. F. Rouillier. Solving zero-dimensional polynomial systems throuhg Rational
Univariate Representation. App. Alg. in Eng. Com. Comp., 9(5):433–461, 1999.
[142]

299. F. Rouillier and P. Zimmermann. Efficient isolation of a polynomial real roots.
Journal of Computational and Applied Mathematics, 162(1):33–50, 2003. [135,
136]

338 References

300. M. Roy. Basic algorithms in real algebraic geometry: from Sturm theorem to
the existential theory of reals. In Lectures on Real Geometry in memoriam of
Mario Raimondo, volume 23 of Exposition in Mathematics, pages 1–67, 1996.
[138]

301. J. Ruppert. A Delaunay refinement algorithm for quality 2-dimensional mesh
generation. J. Algorithms, 18:548–585, 1995. [182]

302. T. Sakkalis and T. J. Peters. Ambient isotopic approximations for surface
reconstruction and interval solids. In SM ’03: Proceedings of the eighth ACM
symposium on Solid modeling and applications, pages 176–184, New York, NY,
USA, 2003. ACM Press. [185]

303. M. F. Sanner, A. J. Olson, and J.-C. Spehner. Fast and robust computation of
molecular surfaces. In Proc. 11th Ann. Sympos. Comput. Geom., pages C6–C7,
1995. [63]

304. E. Scheinerman. When close enough is close enough. American Mathematical
Monthly, 107:489–499, 2000. [140]

305. S. Schirra. Robustness and precision issues in geometric computation. In J.-R.
Sack and J. Urrutia, editors, Handbook of Computational Geometry, chapter 14,
pages 597–632. Elsevier Science Publishers B.V. North-Holland, Amsterdam,
2000. [317]

306. S. Schmitt. Improved separation bounds for the diamond operator. Technical
Report ECG-TR-363108-01, MPI Saarbrücken, 2004. [140, 155]

307. S. Schmitt. The diamond operator – implementation of exact real algebraic
numbers. In Proc. 8th Internat. Workshop on Computer Algebra in Sci-
ent. Comput. (CASC 2005), volume 3718 of Lecture Notes in Computer Sci-
ence, pages 355–366. Springer, 2005. http://www.mpi-sb.mpg.de/projects/

EXACUS/leda extension/. [38]
308. M. Seel. Implementation of planar Nef polyhedra. Research Report MPI-I-

2001-1-003, Max-Planck-Institut für Informatik, Stuhlsatzenhausweg 85, 66123
Saarbrücken, Germany, August 2001. [55]

309. M. Seel. Planar Nef Polyhedra and Generic High-dimensional Geometry. PhD
thesis, Universität des Saarlandes, September 2001. [55]

310. R. Seidel and N. Wolpert. On the exact computation of the topology of real al-
gebraic curves. In Proc. 21th Annual Symposium on Computational Geometry,
pages 107–115, 2005. [4]

311. M. Sharir. Almost tight upper bounds for lower envelopes in higher dimensions.
Discrete Comput. Geom., 12:327–345, 1994. [70]

312. M. Sharir and P. K. Agarwal. Davenport-Schinzel Sequences and Their Geo-
metric Applications. Cambridge University Press, New York, 1995. [2, 23, 42,
66, 70]

313. V. Sharma and C. Yap. Sharp amortized bounds for descartes and de casteljau’s
methods for real root isolation. www.cs.nyu.edu/yap/papers, Oct. 2005. [135]

314. H. Shaul. Improved output-sensitive construction of vertical decompositions of
triangles in three-dimensional space. M.Sc. thesis, School of Computer Science,
Tel Aviv University, Tel Aviv, Israel, 2001. [43, 44]

315. H. Shaul and D. Halperin. Improved construction of vertical decompositions of
three-dimensional arrangements. In Proc. 18th Ann. Sympos. Comput. Geom.,
pages 283–292, 2002. [41, 43, 44, 47]

316. A. Sheffer and M. Bercovier. Hexahedral meshing of non-linear volumes using
Voronoi faces and edges. Numerical Methods in Engineering, 49(1):329–351,
2000. [116]

References 339

317. J. R. Shewchuk. Delaunay refinement algorithms for triangular mesh genera-
tion. Computational Geometry: Theory and Applications, 22:21–74, 2002. [182]

318. R. Sibson. A brief description of natural neighbour interpolation. In V. Barnet,
editor, Interpreting Multivariate Data, pages 21–36. John Wiley & Sons, Chich-
ester, 1981. [242]

319. R. B. Simpson. Anisotropic mesh transformations and optimal error control.
In Proceedings of the third ARO workshop on Adaptive methods for partial dif-
ferential equations, pages 183–198, New York, NY, USA, 1994. Elsevier North-
Holland, Inc. [179]

320. S. Smale. On gradient dynamical systems. Ann. of Math., 74:199–206, 1961.
[306]

321. J. M. Snyder. Generative modeling for computer graphics and CAD: symbolic
shape design using interval analysis. Academic Press, 1992. [187, 190, 194]

322. J. M. Snyder. Interval analysis for computer graphics. SIGGRAPH Comput.
Graph., 26(2):121–130, 1992. [187, 190, 194]

323. M. Spivak. Analysis on Manifolds. Perseus Book Publishing, 1965. [299]
324. B. T. Stander and J. C. Hart. Guaranteeing the topology of an implicit sur-

face polygonization for interactive modeling. Computer Graphics, 31(Annual
Conference Series):279–286, 1997. [187, 223]

325. J. Stillwell. Classical Topology and Combinatorial Group Theory. Springer-
Verlag, New York, 1993. [281]

326. B. Tagansky. A new technique for analyzing substructures in arrangements of
piecewise linear surfaces. Discrete Comput. Geom., 16:455–479, 1996. [42]

327. J.-P. Técourt. Sur le calcul effectif de la topologie de courbes et surfaces im-
plicites. Thèse de doctorat en sciences, Université de Nice–Sophia Antipolis,
France, Dec. 2005. [187, 213, 217, 220, 222]

328. P. Trébuchet. Vers une résolution stable et rapide des équations algébriques.
PhD thesis, Université Pierre et Marie Curie, 2002. [141]

329. G. Vegter. Computational topology. In J. Goodman and J. O’Rourke, editors,
CRC Handbook of Discrete and Computational Geometry, chapter 32, pages
719–742. Chapman & Hall/CRC, 2004. [277, 295]

330. J. von zur Gathen and J. Gerhard. Modern computer algebra. Cambridge
University Press, New York, 1999. [130, 149]

331. R. Wein. High-level filtering for arrangements of conic arcs. In Proc. 10th
European Symposium on Algorithms, volume 2461 of Lecture Notes Comput.
Sci., pages 884–895, 2002. [3, 11, 35]

332. R. Wein. High-level filtering for arrangements of conic arcs. M.Sc. thesis,
School of Computer Science, Tel Aviv University, Tel Aviv, Israel, 2002. [35]

333. R. Wein, E. Fogel, B. Zukerman, and D. Halperin. Advanced programming
techniques applied to Cgal’s arrangements. In Proc. Workshop on Library-
Centric Software Design (LCSD 2005), at the Object-Oriented Programming,
Systems, Languages and Applications (OOPSLA) Conference., October 2005.
[4, 26]

334. R. Wein and D. Halperin. Generic implementation of the construction of lower
envelopes of planar curves. Technical Report ECG-TR-361100-01, Tel-Aviv
University, 2004. [61]

335. R. Wein, O. Ilushin, G. Elber, and D. Halperin. Continuous path verification in
multi-axis nc-machining. In Proc. 20th Annual Symposium on Computational
Geometry, pages 86–95, 2004. [60, 61]

340 References

336. R. Wein, J. P. van den Berg, and D. Halperin. The visibility–Voronoi com-
plex and its applications. In Proc. 21th Annual Symposium on Computational
Geometry, pages 63–72, 2005. [65]

337. R. Wein and B. Zukerman. Exact and efficient construction of planar arrange-
ments of circular arcs and line segments with applications. Technical report,
Tel-Aviv University, 2006. [56]

338. H. Whitney. Complex analytic varieties. Addison-Wesley Publishing Co., Read-
ing, Mass.-London-Don Mills, Ont., 1972. [149]

339. H.-M. Will. Fast and efficient computation of additively weighted Voronoi cells
for applications in molecular biology. In Proc. 6th Scand. Workshop Algorithm
Theory, volume 1432 of Lecture Notes Comput. Sci., pages 310–321. Springer-
Verlag, 1998. [116]

340. N. Wolpert. An Exact and Efficient Approach for Computing a Cell
in an Arrangement of Quadrics. Ph.D. thesis, Universität des Saarlandes,
Saarbrücken, Germany, 2002. [20, 48]

341. N. Wolpert. Jacobi curves: Computing the exact topology of non-singular
algebraic curves. In G. D. Battista and U. Zwick, editors, Proc. 11th European
Symposium on Algorithms, Lecture Notes Comput. Sci., pages 532–543, 2003.
[4, 20]

342. G. Wyvill, C. McPheeters, and B. Wyvill. Data structure for soft objects. The
Visual Computer, 2(4):227–234, February 1986. [188]

343. C. Yap. Towards exact geometric computation. Comput. Geom. Theory Appl.,
7(1):3–23, 1997. [140]

344. C. K. Yap. Symbolic treatment of geometric degeneracies. J. Symbolic Com-
put., 10:349–370, 1990. [210]

345. C. K. Yap. Fundamental Problems in Algorithmic Algebra. Princeton Univer-
sity Press, 1993. [140]

346. C. K. Yap. Robust geomtric computation. In J. E. Goodman and J. O’Rourke,
editors, Handbook of Discrete and Computational Geometry, chapter 41, pages
927–952. Chapman & Hall/CRC, 2nd edition, 2004. [50, 318]

347. Y. Yomdin. On the general structure of a generic central set. Compositio
Math., 43:225–238, 1981. [245]

348. L. Yuan-Shin and C. Tien-Chien. 2-phase approach to global tool interference
avoidance in 5-axis machining. Computer-Aided Design, 27(10):715–729, 1995.
[59]

349. M. Zähle. Integral and current representations of federer’s curvature measures.
Arch. Math. (Basel), 46:557–567, 1986. [171]

350. H. K. Zhao, S. Osher, and R. Fedkiw. Fast surface reconstruction using the level
set method. In Proc. IEEE Workshop on Variational and Level Set Methods
in Computer Vision, page 194, 2001. [232, 266]

351. A. Zomorodian. Topology for Computing, volume 16 of Cambridge Mono-
graphs on Applied and Computational Mathematics. Cambridge University
Press, 2005. [277]

Index

abstract Voronoi diagram, 92, 109
additively weighted Voronoi diagram,

88
affine diagrams, 80
algebraic numbers, 119
α-complex, 238
α-shape, 238
ambient isotopy, 184
anisotropic Voronoi diagram, 86
Apollonius diagram, 38, 88
arithmetic, 118

Bentley-Ottmann sweep, 4, 7
Betti numbers, 285

dependence on coefficient field, 294
incremental computation, 290
of a tree, 286
of the 2-sphere, 286
of the projective plane, 293
of the torus, 287
topological invariance, 289

Boolean set-operation, 55
boundary operator, 284
Boundary Representation, 49
BRep, see Boundary Representation
Bézout resultant, 38

CAD, see cylindrical algebraic
decomposition

chain homotopy, 292
chain map, 291
Chew’s algorithm for Delaunay mesh

refinement, 202

closed ball property, see topological ball
property

codimension, 297
collapse, 292

elementary, 292
simplicial, 292

complex
simplicial, 280

Constructive Solid Geometry, 49
contour, 307
contour tree, 307
contractible, 282
convergence

of interval arithmetic, 191
Core library, 35
correctness

of meshing algorithms, 183
critical point, 223, 243, 298

in a direction, 211
index, 244
maximum, 300
minimum, 300
non-degenerate, 300
saddle, 300

critical value, 223, 298
cylindrical algebraic decomposition, 5,

38, 47, 48

Davenport-Schinzel sequence, 23
Delaunay refinement

by Chew’s algorithm, 202
Delaunay triangulation, 74, 235

restricted, 201, 238

342 Index

Descartes method, 38
design pattern, 25

observer, 27
visitor, 32

differential, 295
distance function

to sample points, 243
duality, 74

Euler characteristic, 280
excursion set, see lower level set
ε-sample, 202, 248

weak ε-sample, 203

fiber, 185
filters, 121

dynamic, 122
static, 122

floating point, 119
flow, 244
functor, 34

Gabriel simplex, 237
general position, 195, 234
generalized polygons, 55
generic programming, 25, 31, 314
global parameterizability, 191
gradient vector field, 303
grazing intersections, 195

Hausdorff distance, 251
height function, 298
Hessian, 299
homeomorphism, 249, 279
homologous, 285
homology, 282
homology vector space, 285
homotopy, 250, 281
homotopy equivalence, 282
hybrid motion-planning, 58

IEEE 754 norm, 119
Implicit Function Theorem, 299
implicit surface, 182
inclusion property, 120
index

Morse index, 300
integers, 118
interpolation

scattered data interpolation, 182
interval arithmetic, 120, 190
isolating interval, 19
isosurface, 182
isotopy, 184, 250, 282

Jacobi curve, 4, 20, 49
Johnson-Mehl diagrams, 88
join tree, 308

level set, 223, 301
lower level set, 301

Lipschitz function, 205
local feature size, 202, 247
lower envelope, 70
lower level set, 301

Möbius diagram, 81
map (continuous function), 279
marching cubes, 188
maximum, 300
medial axis, 110, 244

medial axis transform, 246
minimum, 300
Morse function, 300

genericity, 302
turning a function into a Morse

function, 223
Morse inequalities, 302
Morse Lemma, 301
Morse number, 300
Morse theory, 223, 295
Morse-Smale complex, 306
Morse-Smale function, 305
multiplicatively weighted Voronoi

diagram, 82

natural neighbor interpolation, 182
natural neighbors, 241
Nef polyhedra, 55
numerical difficulty, 208

observer design pattern, 27
one-root number, 12, 14–16, 20
oriented simplex, 280

point location algorithm
landmarks, 23, 31, 33
walk, 23, 31, 40

polarity, 75

Index 343

pole (Voronoi center), 207, 236
power, 79
power diagram, 79, 241

quadratic Voronoi diagram, 87

Randomized Incremental Construction,
53

randomized incremental construction,
99

rational numbers, 119
rational univariate representation, 47
real numbers, 118
Reeb graph, 307
regular triangulation, 80, 241
regular value, 298
remeshing, 213
restricted Delaunay triangulation, 201
rounding mode, 120

saddle point, 223, 300
sample

ε-sample, 202, 248
ψ-sample, 202
weak ε-sample, 203
weak ψ-sample, 203

scattered data interpolation, 182
seed triangle, 206
silhouette, 210
simplex, 279

d-dimensional, 279
oriented, 280

simplicial k-chain, 283
simplicial k-cycle, 284
simplicial collapse, 292
simplicial complex, 280
simplicial homology, 282

simply connected, 282
sliver tetrahedron, 235
smooth surface, 295
Snyder’s meshing algorithm, 191–196
space of spheres, 75
spherical diagrams, 84
split tree, 309
stable manifold, 244, 304
Sturm sequences, 4, 19, 47
subcomplex, 280
submanifold, 297
surface

implicit, 182
smooth, 295

surface Delaunay ball, 201
surface extraction, 182
surface network, 306
Sylvester matrix formulation, 38
systems of equations

zero-dimensional, 213

tangent space, 297
tangent vector, 297
topological ball property, 209, 228, 241
topological space, 278
traits, 25–28, 30, 32–34, 40, 314, 315
triangulation, 280
tubular neighborhood, 185, 202, 247

unstable manifold, 304

vertical decomposition, 42
visitor design pattern, 32
Voronoi diagram

restricted, 238
Voronoi diagram, 72, 235
Voronoi hierarchy, 106

