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What if you slept? And what if, in your sleep, you dreamed?
And what if, in your dream, you went to heaven

and there plucked a strange and beautiful flower?
And what if, when you awoke, you had the flower in your hand?

Ah, what then?

Samuel Taylor Coleridge (1772–1834)

“A little lowly hermitage it was,
Down in a dale, hard by a forest’s side,
Far from resort of people, that did pass

In travel to and fro: a little wide
There was an holy chapel edifyde,

Wherein the Hermit duly wont to say
His holy things each morn and eventide:
Thereby a crystal stream did gently play,

Which from a sacred foundation welled forth alway”.

Edmund Spenser (c1522–1599),
‘The Faerie Queene’
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Preface

‘. . . a fierce delight in the soft glow of
leaves, in the white birch stems and
tracery of sparse twigs against blue
sky, in the scents of sap and grass
and gum and heather flowers; stivers
the hair on him with keenness for
interpreting each sound, and fills
the very fern or moss he kneels on,
the very trunk he leans against, with
strange vibration.’

This book is designed to be a course text for students studying computer graphics and related
subjects at the introductory level within the context of an undergraduate or graduate degree
programme. The content is presented in such a way as to ensure that it is accessible to the
widest possible audience and wherever feasible a trans-disciplinary approach is adopted, thereby
making the subject matter accessible to students of both the traditional Arts and Sciences. The
book is designed to support the infusion of research content within the course curriculum.
Coverage includes:

1. An introduction to computer graphics – both two and three-dimensional image depiction.
Here we primarily focus on fundamental techniques and methodologies that underpin the
formation and manipulation of image scenes.

2. Basic mathematical techniques employed in computer graphics. Only an elementary knowl-
edge of maths is assumed – our primary objective is to ensure that the contents are accessible
to students with diverse backgrounds. At the same time, the introductory coverage of maths
is structured in a way that enables students who have previously studied this material to eas-
ily verify their skills and, if appropriate, skip material with which they are already familiar.

3. Discussion in relation to key aspects of the human visual system and the suitability of the
traditional computer display to optimally interface with our complex sense of sight. In this
context we consider a range of pictorial, oculomotor, and parallax depth cues and discuss
facets of 3-D image depiction.

4. Computer graphics provides the primary means by which we visualise the results of the
computational process and also underpins our interaction with the digital domain. With
this in mind, we consider aspects of the human-computer interaction process and the
synergy that exists between the visual image and interaction tools. This includes discussion
of haptic technologies and bi-manual interaction.

xiii
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5. Various ‘creative’ 3-D display system technologies (including stereoscopic, multi-view,
volumetric, varifocal and holographic techniques) are introduced. Here, we consider
characteristics of the displayed image, discuss interaction opportunities, and highlight key
strengths and weaknesses.

Anaglyph, stereo, and Pulfrich viewing glasses are supplied with this book. These are intended
to provide the reader with the opportunity to experiment with 3-D images. The anaglyph glasses
can be used to view images reproduced in the text. A number of stereograms are also provided
and these can be easily viewed using the stereo glasses or, after a little practice, they can be fused
directly. The Pulfrich glasses provide an interesting insight into characteristics of the human
visual system and can be used when viewing dynamic computer generated images or television
scenes – enabling a scene to appear to reside within a 3-D space rather than within the confines
of the 2-D screen on which it is actually displayed. In addition, if you are interested in obtaining
a simple interactive program that will enable you to create line drawings in stereo form (and so
experiment with 3-D image formation) please contact the author directly at the e-mail address
given below.

The book has been designed to enable some flexibility in the order in which content is studied.
For example, Chapter 5 (Interfacing with the Visual System), Chapter 9 (Creative 3-D Display
Systems) and Chapter 10 (Interaction and Haptic Feedback) are, in the main, independent of
the other chapters and can therefore be read out of sequence.

To aid the learning process a number of ‘Over to You’ (OTU) exercises are presented within
the body of each chapter. These are designed to reinforce and/or extend discussion. Feedback
on selected exercises is provided towards the end of the book. In addition, chapters are accom-
panied by review questions (and possible solutions) which are intended to give an opportunity
for revision.

At the beginning of each chapter a fragment of text and an image are presented. These are
reproduced from the outstanding book, ‘Memories’ by John Galsworthy, the illustrations being
created by Maud Earl (see also Figure 1.8). This book was first published in 1911 and provides
an excellent example of the synergy that can exist between two mediums of expression – both of
which impinge on our imagination and equally support a ‘suspension of disbelief ’ (see related
discussion in Chapter 1). In fact, as the reader will note, the images created by Maud Earl have
a number of remarkable attributes – not the least of which is their ‘kinetic’ form. Although we
are presented with a single static image (corresponding to an image frame) we can anticipate
the dog’s (Chris’s) motion.

Despite the care that has been taken in the preparation of this book, errors and omissions will
undoubtedly have occurred. The author would very much appreciate feedback from readers,
especially concerning ways in which future editions could be improved, and in relation to any
work that has been omitted or incorrectly attributed. It has been a privilege to have had the
opportunity to write this book. It is hoped that you will enjoy perusing its contents and that
having done so you will feel encouraged to study computer graphics (and related subjects) at a
more advanced level.

Barry G. Blundell
Barry.blundell@physics.org
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Setting the Scene 1
‘Then the train ran in.
“Have you got a dog for us?”
“That’s right. From Salisbury.
Here’s your wild beast Sir!”
From behind a wooden crate we saw a long
black nose poking round at us, and heard
a faint hoarse whimpering.’

1.1 Introduction

In this chapter, we provide general background discussion and introduce various concepts
relating to computer graphics techniques. Not only does computer graphics provide us with
a window onto the digital world by which we are able to intuitively view the results of
computational processes but it also underpins interaction activities. Consequently, we begin
by considering the crucial role played by computer graphics in the implementation of the
modern interactive computer interface. To highlight the diverse demands that we place upon
computer graphics systems, we briefly consider three indicative areas of application. These are
flight simulation/entertainment (for which realism is a vital concern), medical diagnosis (in
which facilitating the process of accurate information extraction is paramount) and electronic
computer aided design (where attention is especially directed towards accuracy and support for
simple and intuitive interaction).

Over the centuries, techniques have been developed that make it possible for us to accurately
render views of 3-D objects and scenes on 2-D media (such as the artists canvas, paper or, in
more recent times, the flat screen computer display). In Section 1.3, we turn our attention to
aspects of this evolutionary process and begin by describing important advances made during
the Renaissance period that flourished in Italy between the 14th and 16th centuries. It was
during this time that the techniques needed to permit a 3-D space to be geometrically mapped
onto a 2-D surface were derived and disseminated. Our account includes a brief description

1
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of a demonstration of accurate mathematically based perspective techniques in painting. It
is generally believed that Filippo Brunelleschi was the first to make such a demonstration
(in the early 15th century) – but as we will see, there is some mystery overshadowing this
event . . . Indeed, more than 1000 years earlier artists proved themselves to be able to craft
superbly realistic images on 2-D media but to what extent they understood and utilized
geometric constructs or simply relied on their own, often remarkable talents, is a matter for
debate.

Because of the spatial separation of our two eyes, each receives a slightly different view
of our surroundings. Differences (disparities) in these views are identified by the visual
system and are used to provide a strong sense of three-dimensionality. This cue to depth
is known as binocular parallax (or stereopsis). Unfortunately, when we view an image
that is depicted in a conventional manner on a 2-D medium, the two eyes are presented
with identical views and so binocular parallax is absent. As we discuss, in the first half
of the 19th century, Charles Wheatstone and David Brewster made great progress in har-
nessing this cue and developed stereoscopic techniques able to effectively support binocular
parallax.

In Section 1.3 we describe several milestones in the development of electronic displays
able to depict perspective views and this paves the way for a discussion of general princi-
ples that underpin the modern computer display. In Section 1.4 we briefly consider the vec-
tor graphics and bitmapped (pixmapped) display paradigms. During the 1960s and 1970s,
the former approach played a dominant role in computer graphics applications. However,
advances in technologies resulted in a transition to the generally superior bitmapped tech-
nique. Although vector graphics displays are no longer in use, we include coverage of this
display modality to highlight (by way of comparison) the advantageous characteristics offered
by the bitmapped approach. Additionally, bear in mind that the underlying principle of
operation of the vector display is used (in modified form) by some emerging ‘creative’1

3-D systems.
The implementation of the traditional Cathode Ray Tube display together with thin panel

technologies based on plasma, liquid crystal and field emission techniques are outlined in
Section 1.5. Finally, in Section 1.6 we introduce several techniques that may be used to encode
binocular content within images depicted on a 2-D tableau thus enabling the visual system to
effectively extract this information and so support a strong sensation of 3-D relief. In this section
we focus on general issues and provide a number of exemplar images that can be viewed using
the simple glasses included with this book.

Here, and in other chapters, you will find a number of ‘Over To You’ (OTU) exercises. These
are placed within the body of the chapter to most readily link to local content and will assist
in reinforcing subject matter. For some OTU exercises feedback is provided towards the end
of the book so enabling you to conveniently verify your responses. Additionally, at the end of
each chapter you will find a number of ‘Review’ questions intended to assist in revision and
self-assessment. These are accompanied by brief summaries of possible responses – but these
should not be viewed as representing ‘model’ answers!

1 For the present we will use this term loosely and simply say that it refers to 3-D display technologies that
may more naturally interface with the human visual system than does the widely used conventional flat
screen computer display. It embraces forms of virtual reality systems, multi-view, holographic, volumetric
and stereoscopic systems.
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Key Learning Outcomes: At the end of this chapter you should be able to:

� Discuss the pivotal role played by interactive computer graphics in modern computing
and appreciate that different types of application place different demands on computer
graphics systems.

� Discuss milestones in the evolution of modern computer graphics that enable 3-D
images to be accurately portrayed on a 2-D screen.

� Describe several characteristics of the flat-screen display, and contrast the vector
graphics and bit-mapped (pixmapped) graphics approaches.

� Discuss technologies used in the implementation of flat-screen displays.

� Delineate various techniques that may be used to support the binocular parallax depth
cue and which therefore enable images to appear to exist in 3-D space.

1.2 The Nature of Computer Graphics

‘I think there is a world market
for maybe five computers.’2

Computer graphics techniques provide the primary means by which we are able to view the
results of wide ranging computational processes. Additionally, these techniques play a pivotal
role in our interaction with the digital word. As indicated in Figure 1.1, computer graphics
underpins the modern human-computer interface. Here, we indicate a collection of hardware
and software (which we loosely refer to as ‘graphics elements’) that provide a vital interface
between underlying digital data and the human operator. These elements support the synthesis
and depiction of pictorial imagery that is presented to the complex human visual system.
Although visual stimuli provide an extremely powerful means by which we visualise our sur-
roundings (i.e. gain insight and understanding), other senses also play a crucial role. With this in
mind, in Figure 1.1 we indicate that human visualisation processes may take input not only from
the computer display but also from other interface mechanisms (such as the generation of sound
and in the case of a growing number of applications, haptic feedback3). These sources of input
to the human sensory systems are used to support the cognitive process of visualisation whereby
we are able to form some type of mental image and thereby extract information, understand,
and decide upon any appropriate responses that should be made.

2 Attributed to Thomas J. Watson (1874–1956) former chairman of IBM.
3 Haptic feedback is discussed in Chapter 10 and for the present we will simply note that it encompasses
both touch and force feedback.
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Computer graphics –
hardware and software 

systems
(Graphics elements)

Human visualisation Human interaction

Underlying digital data

Other output 
mechanisms

Various
interaction
mechanisms

The Human
Computer
Interface

Figure 1.1 Aspects of the human-computer interface. Computer graphics techniques play a vital role in providing a window onto the digital
world and in supporting interaction.

Real time interaction is critical to modern computing. For example, in the case of a video
game, flight simulator or the like, we anticipate true real time performance and perceptible
delays (latencies) that may occur as a result of the computational tasks that must be performed
in order to execute an interactive operation, detract from the sense of immersion and are likely
to negatively impact on the experience. Consequently, we cannot simply consider computer
graphics software in isolation but must also bear in mind the architecture of the underlying
hardware and interactions that occur between the graphics software and other elements within
the system.

In other situations small delays that follow the initiation of an interactive operation and the
system’s response to it may be more readily tolerated. For example, when presented with some
form of image (perhaps a graph indicating the change of one or more quantities with time),
we may zoom on a feature of particular interest or manipulate image characteristics so as to
facilitate the extraction of information. Here, slight pauses that can occur between the initiation
of an operation and its completion may be deemed tolerable.

For the purposes of this book we will coin the following general description in relation
to the scope of computer graphics (here, we use the word ‘pictorial’ in its widest possible
sense):

Computer graphics embraces all aspects of the synthesis, depiction and
manipulation of pictorial representations by computational machines
together with their presentation to the human visual system.

In Figure 1.2, we indicate some of the areas which (to a greater or lesser extent) influence the
design and implementation of graphics systems and which must therefore be embraced by the
computer graphics developer.
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Computer Graphics: 
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Figure 1.2 Seldom can the computer graphics system be considered in isolation – it usually forms part of a highly integrated and often complex
environment. Here, we indicate some areas which are likely to influence the implementation of such a system and that must therefore considered
by the designer.

The underlying purpose and demands placed on a graphics system vary greatly according to
the nature of the application. In the subsections that follow we briefly consider three applica-
tions in which computer graphics plays a pivotal role.

1.2.1 Flight Simulation and Computer Games Applications

Such applications seek to immerse the user within a synthetic computer generated environment
and so place stringent demands on the graphics system. In this context:

‘ . . . we rely on the recipient entering willingly into the experience and augmenting synthetic images with their
imagination, which can lead to the viewer becoming completely absorbed or immersed . . .’ [Blundell and
Schwarz 2006].

Within this context the expression ‘suspension of disbelief ’ is often used and refers to the
presentation of content in such a manner that the participant(s) become immersed within the
synthetic world. It is often incorrectly claimed that this term was first coined in Hollywood
in the 1930s. In fact, it actually dates back to the late 18th century and appears to have been
first employed by the English poet Samuel Taylor Coleridge in the context of poetry4. Certainly

4 ‘During the first year that Mr. Wordsworth and I were neighbours, our conversations turned frequently on
the two cardinal points of poetry, the power of exciting the sympathy of the reader by a faithful adherence to
the truth of nature, and the power of giving the interest of novelty by the modifying colours of imagination.
The sudden charm, which accidents of light and shade, which moon-light or sun-set diffused over a known and
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poets such as Coleridge, William Wordsworth and many others have succeeded in creating verse
that is able to directly impinge on the ‘minds eye’ or rather that intangible part of the mind
in which our imagination enables us to visualise tantalising ephemeral images. For example, in
1804 Wordsworth wrote ‘Daffodils’ a part of which is reproduced in Figure 1.3(a). The Rime of
the ‘Ancient Mariner’ was written by Wordsworth’s fellow poet Samuel Taylor Coleridge – see
Figure 1.3(b).

Such verse is extremely evocative – although it may appear to be far removed from today’s
state of the art computer games and flight simulators. However, a key point to note is that
the actual medium via which synthetic content is conveyed is often of secondary importance –
as long as it does not act in a manner that is contrary to a suspension of disbelief5 – and
so enables us to become engrossed in a synthetic world created by others (provided that
the medium of expression does not act as an obtrusive interface). Certainly, the tremendous
benefits that are derived from expensive flight simulation systems would be greatly eroded if
participants were unable to become engrossed simply as a result of obtrusive cues that provide
continuous reminders that the experience is wholly artificial. In this respect computer graphics
and associated display system technologies play a pivotal role by presenting to the human visual
system images which ‘augment realism’6 and do not break the thread of mental immersion. In
this respect, image quality and real time response to interactive operations are critical concerns.

As a further example of evocative verse which transcends the medium of expression it is
appropriate to quote the Rev. George Gilfillan (1813–1878) who when discussing the work of
Edmund Spenser (1552–1599) – the author of ‘The Faerie Queene’ writes:

‘Whereas to Spenser was given all power over the fairy lands of imagination – to satisfy that ‘thirst for a wilder
beauty than earth supplies’, which has been called the essence of poetry – to ‘lay us on the lap of a lovelier
nature, by stiller streams and greener meadows’ – to change all substances into shadows, and all realities into
dreams – to create, by the sheer force of his fancy, ideal wildernesses and worlds grander and richer than all the

familiar landscape, appeared to represent the practicability of combining both. These are the poetry of nature.
The thought suggested itself (to which of us I do not recollect) that a series of poems might be composed of two
sorts. In the one, the incidents and agents were to be, in part at least, supernatural; and the excellence aimed
at was to consist in the interesting of the affections by the dramatic truth of such emotions as would naturally
accompany such situations, supposing them real. And real in this sense they have been to every human being
who, from whatever source of delusion, has at any time believed himself under supernatural agency. For the
second class, subjects were to be chosen from ordinary life; the characters and incidents were to be such, as will
be found in every village and its vicinity, where there is a meditative and feeling mind to seek after them, or to
notice them, when they present themselves.

In this idea originated the plan of the ‘Lyrical Ballads’; in which it was agreed, that my endeavours should
be directed to persons and characters supernatural, or at least romantic, yet so as to transfer from our inward
nature a human interest and a semblance of truth sufficient to procure for these shadows of imagination that
willing suspension of disbelief for the moment, which constitutes poetic faith. Mr. Wordsworth on the other
hand was to propose to himself as his object, to give the charm of novelty to things of every day, and to excite
a feeling analogous to the supernatural, by awakening the mind’s attention from the lethargy of custom, and
directing it to the loveliness and the wonders of the world before us; an inexhaustible treasure, but for which
in consequence of the film of familiarity and selfish solicitude we have eyes, yet see not, ears that hear not, and
hearts that neither feel nor understand. With this view I wrote the ‘Ancient Mariner,” Biographia Literaria
(first published in 1817 – see Coleridge [1985]).
5 In the next section we will refer to related discussion that took place some 750 years ago concerning the
creation of pictorial images.
6 Within this context realism does not necessarily refer to photorealistic images – visual content may take
the form of any abstraction that we may wish to consider.
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(a)

(b)

I WANDER�D lonely as a cloud

That floats on high o�er vales and hills,
When all at once I saw a crowd,

A host, of golden daffodils;
Beside the lake, beneath the trees,

Fluttering and dancing in the breeze.

Continuous as the stars that shine

And twinkle on the Milky Way,
They stretch�d in never-ending line

Along the margin of a bay:
Ten thousand saw I at a glance,

Tossing their heads in sprightly dance…

Down dropt the breeze, the sails dropt down,
�Twas sad as sad could be;

And we did speak only to break
The silence of the sea!

All in a hot and copper sky,
The bloody Sun, at noon,

Right up above the mast did stand,
No bigger than the Moon.

Day after day, day after day,
We stuck, nor breath nor motion;

As idle as a painted ship
Upon a painted ocean.

Water, water, every where,
And all the boards did shrink;

Water, water, every where,
Nor any drop to drink.

(c)

The Jabberwocky

�Twas brillig, and the slithy toves
Did gyre and gimble in the wabe:

All mimsy were the borogoves,
And the mome raths outgrabe.

�Beware the Jabberwock, my son!
The jaws that bite, the claws that catch!

Beware the Jubjub bird, and shun
The frumious Bandersnatch! �

He took his vorpal sword in hand:
Long time the manxome foe he sought-

So rested he by the Tumtum tree,
And stood awhile in thought.

And, as in uffish thought he stood,
The Jabberwock, with eyes of flame,

Came whiffing through the tugey wood,
And burbled as it came!

One, two! One, two! And through and through
The vorpal blade went snicker-snack!

He left it dead, and with its head
He went galumphing back.

�And hast thou slain the Jaberwock?
Come to my arms, my beamish boy!
O frabjous day! Callooh! Callay! �

He chortled in his joy.

�Twas brillig, and the slithy toves
Did gyre and gimble in the wabe:

All mimsy were the borogoves,
And the mome raths outgrabe

(d)

Figure 1.3 In (a) an extract from ‘Daffodils’ – written by William Wordsworth and in (b) verse from ‘The Rime of the Ancient Mariner’ by Samuel
Taylor Coleridge. As with other mediums of expression, poetry is able to catalise vivid ephemeral images within the ‘mind’s eye’. Also see Footnote 4.
In (c) we reproduce Lewis Carroll’s remarkable poem ‘The Jabberwocky’. This is best understood when read out loud! The image depicted in (d)
provides us with one person’s perception of the poem’s content. See text for discussion. (Image (d) is reproduced from Lewis Carroll’s ‘Alice Through
the Looking Glass’.)
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mythologies of the past, or than all the fantasies of the combined Arabian genius in the ‘Thousand and One
Nights’ – to plant and nourish to maturity a great forest of poetry, in which all men have since delighted to lose
themselves, and as they plunged into its divine darkness, chequered with gleams of intense light, have forgot
earth, their own identity, everything, wandering on in sweet bewilderment, and wishing everything, that they
might awake and return to common life no more for ever! ‘Shak[e]speare in his “Tempest” and “Midsummer-
Night’s Dream”, and Milton in his ‘Comus’, have performed feats of creative fancy similar in kind, and equally
beautiful; but, while their structures are comparatively small, Spenser’s is vast – theirs are but turrets, while
‘The Faerie Queene’ is a ‘castle in the clouds’, complete in every part of its aerial architecture, with drawbridge,
battlements, moat, arches, court-yard, and all – complete, we mean, so far as plan is concerned, for, owing to
its author’s premature death, it is in point of execution a great fragment.’7

In Figure 1.3(c), we reproduce Lewis Carroll’s remarkable verse ‘Jabberwocky’ (which appears
in the well known story ‘Through the Looking-Glass’). Here, you will notice that Carroll
uses a range of verbs, adjective and nouns not normally encountered in an English language
dictionary. These are often referred to as ‘nonsense words’ – which is indeed an odd title as
the words directly inpinge on our sense of imagination and stimulate vivid, although perhaps
fleeting images. Certainly, from the perspective of our imagination, the words generally make
sense and therefore for the purposes of this book we will avoid refering to them as nonsense
words but will coin the term ‘intangibles’.

The action of such ‘intangibles’ is perhaps best understood by quoting Alice’s8 reaction to
this verse:

‘ . . . “It seems very pretty,” she said when she had finished reading it, “but rather hard to understand!” (You
see she couldn’t confess, even to herself, that she couldn’t make it out at all.) “Somehow it seems to fill my head
with ideas – only I don’t exactly know what they are!”. . .’

Intangibles act directly on the imagination and individually they have no singularly defined
form. For example, neither a Jabberwocky nor a Bandersnatch can be assigned a single repre-
sentation – each reader is left to visualise these surreal, dreamscape creatures, within the limitless
bounds of their own imagination – see Figure 1.3(d). (Nonetheless, perhaps we would all agree
that it would be inadvisable to poke either creature with a stick . . .)

By weaving together ‘intangibles’, Lewis Carroll employs a powerful tool able to directly
impinge on the imagination, and which strongly promotes a suspension of disbelief. Many
artists who seek to create works that convey feelings and stimulate human emotions use the
same type of approach – often such images do not make recourse to the confines of a perspective
framework.

Where possible, the content and interaction opportunities should
transcend the medium of expression.

1.2.2 Medical Applications

In the case of the flight simulation and computer games applications referred to above, it is
vitally important that the computer graphics and display system technologies support a strong

7 Reverence George Gilfillan, from ‘The Genius and Poetry of Spenser’, in The Poetical Works of Edmund
Spenser, Vol. III, James Nichol, Edinburgh (1859).
8 Alice is best known within the context of Lewis Carroll’s famous work ‘Alice in Wonderland’. She plays a
similar role in ‘Through the Looking-Glass’, from which the above quotation is taken.
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sense of realism. In contrast, systems developed for medical applications are generally intended
to facilitate the extraction of information. For example, a clinician undertaking treatment
planning may wish to view the form and extent of a cancerous tumour and accurately determine
its position. In this case, the graphics system will usually be responsible for processing very
large data sets and for supporting interactive operations so that images may be presented to the
operator in a way that facilitates the information extraction process. Although delays (latencies)
that occur between the initiation of an interactive operation and the system’s response may be
frustrating, these are unlikely to be as critical as similar latencies that may occur in applications
of the type referred to in the previous subsection.

1.2.3 Electronic Computer Aided Design (ECAD)

Computers play a pivotal role in all aspects of the engineering design and manufacturing
processes. Users can perform highly interactive operations by means of the graphics oriented
interface:

‘ . . . the emphasis is on interacting with a computer-based model of the component or system being designed
in order to test, for example, its structural, electrical or thermal properties. Often the model is interpreted by a
simulator that feeds back the behaviour of the system to the user for further interactive design and test cycles.’
[Foley et al. 1990]

Basic elements within a simple and traditional ECAD system used for the development of digital
circuits are summarised in Figure 1.4. Here, schematic capture software provides an interactive
graphical interface by means of which a user is able to design circuits. Such an environment will
enable the user to undertake various important tasks. For example:

Schematic capture

Generation of
formal circuit 

description (netlist)

Post-processing

Circuit simulation

Circuit modification 

To IC layout or 
printed circuit 
design software

Figure 1.4 Basic elements within a traditional ECAD system intended for use in the development of electronic circuits.
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A Inverter

B Inverter

Not A

0

1

2

3

Not B

Buf En

Input A
Output 0

Output 1

Output 2

Output 3

Input B

Enable

Enable Buf

Figure 1.5 The circuit for a simple decoder. A formal description of this circuit (and of far more complex circuits) may be readily formed by means
of graphical schematic capture software. (Reproduced from Blundell et al. [1987].)

1. To select components (such as logic gates) from a library and place these within a
design space.

2. To enable the user to specify additional components (including behavioural models).
3. To enable the user to connect components in the required manner.
4. To enable components and connections to be labelled.
5. To support hierarchical design techniques so that a circuit may be presented at different

levels of abstraction. Thus, for example, at the highest level the circuit may simply be
represented as a rectangular box with various labelled inputs and outputs.

Once a circuit has been designed, the schematic capture software enables a formal description
of the circuit to be generated. By way of an example, consider the simple circuit depicted in
Figure 1.5 which represents a decoder with two inputs (A and B), an ‘enable’ input and four
outputs (0–3). A ‘gate level’ description of the circuit would have the general form illustrated in
Figure 1.6.

The decoder circuit illustrated in Figure 1.5 comprises only seven logic gates and provides a
trivial example of the sort of circuit that we may wish to simulate during a training exercise.
For actual applications, circuits that are designed using ECAD software are usually far more
complex. Manually creating circuit descriptions for complex circuits is not a trivial undertaking
and is prone to error. The use of a graphical environment for the design of circuits and the
production of a formal circuit description can greatly facilitate aspects of the design process.9

As indicated in Figure 1.4, once a netlist has been generated, the circuit may be simulated and
a post-processor used to show its response to both static and time varying input signals. Here
again, through the adoption of an interactive graphics environment the process of interpreting
electrical waveforms is greatly facilitated.

This simple ECAD design example is based on the use of 2-D graphics. However, there are
many situations in which CAD applications demand the depiction of images that span (or

9 When dealing with complex circuits, mechanical designs etc. the somewhat restricted area of the display
screen that is available for interactive design can negatively impact on the design activity. Generally only
parts of a circuit can be displayed on the screen at any one time.
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** Circuit Header
CCT <Logic type>
Decoder
(Output0, Output1,
Output2, Output3, 
InputA, InputB, Enable)

** Specification of logic family
** Name of circuit
** Identify the inputs and outputs

** Declaration of Circuit Elements
NOT (5,5)
AInverter (NotA,InputA)
BInverter (NotB,InputB)
;
BUF (5:6:8,3:5:8)
EnableBuffer
(BufEn,Enable)
;
NAND (5,5)
Gate0 (Output0,NotA,NotB,BufEn)
Gate1 (Output1,InputA,NotB,BufEn)
Gate2 (Output2,NotA,InputB,BufEn)
Gate3 (Output3,InputA,InputB,BufEn)
;
WIRE

** Gate Propagation delays
** Instance of inverter
** Instance of inverter

NotA NotB
Output0 Output1Output2 Output3
;
INPUT
InputA InputB Enable
.

 BufEn

**End of circuit description

Figure 1.6 A gate level description of the circuit illustrated in Figure 1.5.

at least appear to span) three dimensions (see related discussion in Section 7.7 concerning
constructive solid geometry techniques). In the next section we briefly outline aspects of the
evolutionary process that has culminated in modern computer graphics, and emphasise issues
relating to the techniques employed to enable 3-D scenes to be depicted on a 2-D tableau such
as the flat screen display.

1.3 The Evolution of Computer Graphics

‘Bees . . . by virtue of a certain geometrical forethought . . .
know that the hexagon is greater than the square and the triangle
and will hold more honey for the same expenditure of material.’10

Since the earliest times people have sought to use pictorial images as a means of communication,
as an aid to scientific understanding and as an outlet for creative expression. However, many of

10 Attributed to Pappus of Alexandria ∼320 AD. Quoted in Boyer [1991].
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Figure 1.7 This fresco fragment was uncovered in Pompeii and dates back to the 1st Century AD (the eruption of Mount Vesuvius which caused
the destruction of Pompeii occurred in 79 AD). The artist demonstrates the ability to capture detailed imagery and realistic perspective upon a 2-D
tableau. The facial expressions are captivating and transcend the passage of time.

the works created prior to the period of the Renaissance (which flourished in Italy between
the 14th and 16th centuries) fail to accurately convey the inherent three-dimensionality that we
associate with our view of the physical world – although there are many remarkable exceptions
(see, for example, the image depicted in Figure 1.7). In the case of such images, the incorpora-
tion of natural ‘perspective’ and other cues that provide a sense of depth (see Chapter 5) may
well have been achieved by highly gifted individuals working on the basis of intuition rather
than by conscious consideration of the physical and geometrical processes that give rise to the
visible image scene.

The Renaissance (rebirth) denotes a period of great intellectual and cultural enlightenment –
a time when artistic, scientific and mathematical thinking appears to have coalesced and so
fuelled rapid progress. It is a period renowned for remarkable artistic works which possess,
surpass and even transcend photorealism.

Surviving images rendered on two-dimensional (2-D) surfaces during the European Dark
Ages tend to lack realism – the natural perspective that we perceive when viewing our sur-
roundings is often distorted, objects (such as figures) are twisted in unnatural ways and angles
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often seem to be somewhat peculiar – see, for example Figure 1.8(a). However, during the
Renaissance period the techniques needed to enable images to exhibit a natural sense of realism
were derived and disseminated. To what extent the great pioneers of the Renaissance discovered
or re-discovered these techniques is a matter of debate.

OTU Exercise 1.1: Realism in Early Painting

Using library or Internet facilities, locate early (pre-Renaissance) images rendered on 2-D
tableaux. Discuss ways in which these images convey a natural sense of three-dimensionality.
To what extent do the artists manage to capture facial expressions and so convey an individ-
ual’s character or the events taking place? Additionally, examine images which originate from
other cultures during the same period.

In literature, it is generally recognised that an architect named Filippo Brunelleschi (1377–1446)
provided the first demonstration of the use of mathematically based geometrical techniques
to capture a 3-D scene on a 2-D medium. This belief is based on two demonstrations that
he gave early in the 15th century concerning the use of mathematical techniques for the pro-
duction of painted works. Unfortunately, neither of these paintings appears to have survived –
although one of the demonstrations is described in some detail by Brunelleschi’s biographer
(Antonio de Manetti) – apparently from first hand knowledge. However, this account leaves
a number of questions unanswered and the demonstration given by Brunelleschi has an air
of mystery – especially when we consider the technique employed for viewing the completed
work.

The demonstration described by de Manetti concerns the creation of a painting of a Floren-
tine Baptistery in relation to which he writes:11

‘The necessary conditions for viewing were that the spectator should peep from the back of the panel through a
small hole at a mirror, in such a way that the painted surface was visible in reflection . . . The peep-show system
was used because the painter needs to presuppose a single place from which the painting must be viewed . . .’

The panel referred to is the tableau on which the painted work was created and the general
viewing arrangement is summarised in Figure 1.9. Before proceeding, it is instructive to briefly
consider the manner in which a simple perspective projection of a 3-D scene onto a 2-D tableau
is achieved. As we know from our everyday experience, as an object is moved so as to become
more distant from the eye, it appears to become smaller (see Figure 1.10). Two examples of
this illusion are shown in Figure 1.11 and it arises because of the finite separation of the eye’s
focusing system and the retina onto which the image is cast. Let us suppose that, as depicted
in Figure 1.10, an object of height ho lies at a distance u from the eye. Given that the focusing
system of the eye and retina are separated by a distance v, then on the basis of similar triangles,
we can write:

hi

v
=

ho

u

Thus the size of the image formed on the surface of the retina (hi ) depends on the height of
the object and its distance from the eye (we can assume that v is the same for all observers).

11 Quoted in Kemp [1978].
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Mirror

Painting

Viewing
location

Mirror
Plan
view

Figure 1.9 The arrangement described by di Manetti that was used by Brunelleschi when allowing his painting to be viewed. A hole is cut
through the centre of the painted tableau. The observer places an eye to this hole and so is able to see the painted image reflected by the mirror.

Consider the case that we have a collection of objects in a 3-D space and that we wish to
depict them on a 2-D tableau in a natural perspective framework. The relative size that we
assign to each of the objects will be determined by their actual physical size and their relative
depths within the scene. In Figure 1.12 we illustrate a single object and locate a ‘projection

(a)

(b)

ho

hi

ho

u+x

Retina

u

Retina

Object

Object

v

Image cast onto retina
is of a reduced size

v

Figure 1.10 In (a) we illustrate an object of height h o that is located at a distance u from the eye and which casts an image of height h i on the
retina. In (b) the same object is moved to a distance u + x and this results in the formation of a smaller retinal image.
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Figure 1.11 The linear perspective cue to depth. As a result of the finite separation of the focusing system within the eye and the retina onto
which images are cast, parallel objects appear to converge in the distance. Additionally, at a greater distance, objects appear to be of a reduced
size.

plane’ (‘view plane’) between the object and the observer. This plane represents the tableau
(e.g. artist’s canvas or computer display) on which we wish to depict the object. To determine
the size at which the object should be displayed on the tableau, we simply draw construction
lines from the two endpoints of the object to the viewing location. The points at which

Eye (centre of 
projection
(COP) – view 
point)

Projection Plane

Object in 3-D 
space

Size of object depicted in the 
projection plane

Figure 1.12 A simple perspective projection. The size of an object that resides within a 3-D space and which is to be depicted on a 2-D surface
can be readily determined by locating a ‘projection plane’ between the object and the observer. Construction lines are then projected from the
object’s end points to the chosen viewing location. The points at which the two lines intersect the projection plane denote the size at which the
object should be represented. The process is repeated for all the lines that comprise the scene. Interesting results can be obtained by employing a
non-planar projection surface.
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these lines pass through the projection plane indicate the size at which the object should be
drawn.12

If the image scene comprises a set of objects, then we can obtain the perspective projection by
repeating this process for each object. Naturally, the size that we assign to each will depend on:

1. The depth of the object behind the projection plane.
2. The location of the selected viewpoint relative to the projection plane.
3. The physical size of each object.

It is important to note that a perspective projection of a set of objects
in a 3-D space onto a 2-D surface assumes a certain viewing location.

Let us now return to that day in the early 15th century when Filippo Brunelleschi is said to
have demonstrated his ability to depict a Florentine Baptistery within a geometrically accurate
framework. Recall the ‘peep hole’ method which he employed for viewing the completed work –
as summarised in Figure 1.9. By providing a single hole through which the completed painting
was to be viewed, Brunelleschi (deliberately or otherwise) achieved three important goals:

1. He constrained (defined) the viewpoint from which the completed work was to be observed
and as we have seen this is an important consideration in the production of accurate
perspective.

2. He ensured that the observer could only view the painting with a single eye – thereby
eliminating binocular input to the visual system.13

3. By judicious choice of the diameter of the viewing hole, Brunelleschi could have ensured
that only the painting was visible to the observer – all peripheral scenery could have been
occluded. This would have provided a greater sense of immersion.

The indirect viewing technique employed by Brunelleschi (whereby the observer viewed the
painting’s reflection in a mirror) is somewhat puzzling. The image produced by such an arrange-
ment would have been laterally inverted, thus anybody viewing the painting via Brunelleschi’s
apparatus and comparing this view with the actual scene would have been likely to have
immediately identified differences between the two. However, as suggested by Lynes [1980]
Brunelleschi may have judiciously selected a viewpoint from which the Baptistery exhibited
considerable symmetry. Alternative suggestions are:

1. Brunelleschi may have created his picture by viewing the reflection of the Baptistery in a
mirror (rather than by viewing the building directly). The painting would therefore have
been laterally inverted and the system devised for viewing the completed work would
have cancelled out this effect. Additionally, although creating the painting using the image

12 A straight line segment is fully described by the position of its two endpoints. Therefore determining
the location of these two points defines the location of the entire line.
13 This is an important consideration and appears to be something that even very young children instinc-
tively make use of. For example, when at play with a model train set, children will often view the advancing
or receding train from a vantage point that is close to the track. Invariably, they will close one eye.
Should they use both eyes, the binocular parallax cue will strongly suggest the actual distance of the
train. On the other hand, by employing only a single eye, the powerful binocular cue is disabled and
it is therefore more difficult for the visual system to judge actual distances – models take on greater
realism!



Chapter 1 . Setting the Scene 19

Vanishing point

Figure 1.13 A perspective view of a cube using a single vanishing point. Compare this with the view depicted in Figure 1.14.

depicted in the mirror would not have been easy (see, for example, Kemp [1978]) this may
have facilitated the process of obtaining an accurate perspective view.

2. There is the possibility that Brunelleschi created his painting directly on the mirror’s surface
(see Lynes [1980] for interesting discussion). If this were the case, then it would undermine
the widespread belief that Brunelleschi was the first to demonstrate the use of an accurate
mathematically based perspective technique.

Edgerton [1976] provides an alternative suggestion:

‘The shrewd master may have realised something which has received attention from perceptual psychologists
in recent times: that perspective illusion is strong only when the observer’s awareness of the painted picture
surface is dispelled. When the viewer loses his “subsidiary awareness” as the phenomenon is now called,
he tends to believe the picture surface does not exist and that the illusionary space depicted is actually
three-dimensional.’

In this respect the use of a mirror by means of which the completed painting was viewed (and
here it is important to realise that 15th century mirrors were of poor quality) may well have
enhanced the observer’s sense of realism and perhaps the mirror’s reflection characteristics
would have also caused some mild blurring of the image thereby reducing the visibility of defects
in the painting!

Subsequent to Brunelleschi’s demonstration, Leon Battista Alberti played an important role
in the development and dissemination of perspective techniques. In a book produced in ∼1435
(‘Della Pittura’),14 Alberti outlines a methodology to be used in the production of geometrically
accurate images. Discussion centres on the use of a single point perspective technique in which,
as indicated in Figure 1.13, there is one ‘vanishing point’. This contrasts with the two and three
point perspective techniques – an example of the former is provided in Figure 1.14.

14 Della Pittura (‘On Painting’) is the title of the Italian version of this book. It was also produced in Latin
(De Pictura). Some small differences in content exist.
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Vanishing point
Vanishing point

Figure 1.14 A perspective view of a cube using two vanishing points.

Piero della Francesca (∼1410–1492) also played a key role in the development of perspective
techniques15 (one of his works is illustrated in Figure 1.8(b)). Contrasting the contribution of
Alberti with that of Piero, Boyer [1991] writes:

‘ . . . Piero handled the more complicated problem of depicting on the picture plane objects in three dimensions
as seen from a given station point [viewing location].’

OTU Exercise 1.2: The Three Point Perspective Technique

Re-draw the cube illustrated in Figure 1.14 to produce a view that employs three vanishing
points.

Over the subsequent years, techniques such as those described by Alberti coupled with an
understanding of ways in which shading and colour can be effectively employed ultimately
enabled photorealistic renditions of 3-D scenes to be created on the 2-D tableau. By drawing
on the techniques that have evolved, the artist can transcend and surpass photorealism – the
world created by the artist embracing both imagination and emotion:

‘The artist is responsible for every detail depicted on the canvas – the finished work represents the coalescence
of the artist’s ability to accurately observe a 3-D scene and to properly map these observations onto a
2-D space. Indeed the window created by the artist has a profundity that surpasses photographic recording,
for the artist depicts a perspective corresponding to the scene as it is perceived after being processed by the
human visual system – as it appears in the ‘mind’s eye’. The rendered scene therefore not only encodes
imagery within a perspective framework but is also likely to contain detail of the artist’s cognitive processes.’
[Blundell 2007]

15 He wrote several books including De Prospective Pingendi (∼1478).
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(a)  (b)

Figure 1.15 In (a) early medieval drawings of a cylindrical object are illustrated. In this context Edgerton [1991] writes: ‘. . . early geometers
could signify three-dimensional forms only by drawing them “squashed”. . . Readers. . . were expected not to visualise the cylinder empirically but
rather to reason it intellectually. Sicut haec figura docet.’16 In (b) a portrait of the author drawn by a four year old – again Sicut haec figura docet!

OTU Exercise 1.3: Capturing 3-D Images on a 2-D Tableau

Consider the two images depicted in Figure 1.15. Discuss their form and content. Do you
consider that the use of a perspective framework within which we are able to enhance the
realism of 3-D images that are rendered on a 2-D surface always provides us with a natural
and intuitive means of creative expression?

Computer graphics extends the creative opportunities that can be
derived from traditional image rendering techniques enabling the
production of animated image content and support for interactive
operations.

A further important landmark in the use of the 2-D tableau for the depiction of 3-D objects
relates to the work of Gaspard Monge (1746–1818) who developed drafting techniques that play
a vital role in engineering design. In support of teaching students ‘descriptive geometry’ (which
would have considered many of the 3-D geometrical issues that are of importance in today’s
computer graphics) he produced a book – ‘Geometrie Descriptive’ – in which he describes the
use of a double orthographic projection technique enabling 3-D objects to be depicted by means

16 Sicut haec figura docet: As this figure teaches.
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Elevation views

Plan view

Figure 1.16 Orthogonal views of a hollow cylinder. From these views we are able to reconstruct the 3-D shape. However, the reconstruction
process can be greatly assisted by the inclusion of a 3-D rendition of the object. In fact the orthogonal and 3-D views are complementary. The former
provides a convenient means of including quantitative information (such as component dimensions) whilst the latter assists in the visualisation
(reconstruction) process.

of elevation and plan views.17 A simple example showing the use of front, side and plan views
to depict a hollow cylinder is provided in Figure 1.16.

This approach is based on the parallel projection technique in which a 3-D object is mapped
onto a 2-D plane by means of a series of parallel lines. In the general case, (referred to as
the ‘oblique parallel projection’ technique) the projection lines are not perpendicular to the
surface (a traditional tableau or computer screen) onto which the projection is being made.
However, in a more restricted scenario, the parallel projection lines lie perpendicular to the
surface and this is referred to as orthographic projection – the approach pioneered by Gaspard
Monge.

In the 19th century a number of important developments took place and these continue to
have a profound effect on the way in which we depict and visualise information. One major
milestone was the development of the stereoscope by Charles Wheatstone and David Brewster.

17 This book was produced a time when France was in a state of great social and political turmoil and the
techniques that he describes were viewed as having considerable military significance. As a result, for a
time the book was ‘classified’. Following the restoration of the French monarchy, Monge – a remarkable
mathematician and superb teacher – was stripped of all his titles and banished. ‘ . . . it broke the spirit of
Monge, who died shortly afterwards’. [Boyer 1991].
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These two great scientists (working independently of each other) made this breakthrough:
the former first demonstrating a stereoscope in 1838 and the latter in 1849. Subsequently,
there was considerable and rather heated debate as to the actual inventor – see, for exam-
ple, Wade [1983] and Blundell [2006]. The operation of the stereoscope is outlined in Sec-
tions 1.6 and 9.3 – for the present it is sufficient to note that stereoscopic images incorporate
the powerful depth cue of binocular parallax and so images possess a remarkable sense of
relief – appearing to exist within three spatial dimensions. (By way of example, try viewing
the stereoscopic images presented in Figures 1.32 and 9.8 using the simple stereoscopic viewing
glasses that are provided with this book.) Since the pioneering work of Wheatstone and Brew-
ster, numerous display technologies able to support binocular parallax have been proposed,
prototyped and developed (see Chapter 9) and we will refer to these as ‘creative’ display
paradigms.

The invention of photographic techniques greatly advanced the accuracy and ease with which
images could recorded. Unfortunately, as with the artist’s canvas, the conventional photographic
image presents each of the two eyes with an identical view and therefore the binocular disparities
that occur when we directly view a physical 3-D scene are absent. This can make it difficult to
accurately determine absolute and relative distances (and in the cases of images depicted on
the conventional computer display can limit interaction opportunities). However, this difficulty
can be greatly ameliorated through the use of stereo photography, stereo computer graphics etc.
As we discuss in Section 1.6, the creation of a photographic stereo image involves taking two
separate photographs of an image scene – each from a slightly different vantage point. When
correctly viewed such a pair of images (called a stereopair) can be fused and the visual system
interprets slight differences (disparities) in the two images as providing a powerful cue to depth.
This has three key advantages:

1. As noted above, the image appears to reside in three spatial dimensions and this enhances
the realism of an image scene.

2. Absolute and relative distances can be judged more accurately.
3. The extraction of information from the scene under observation is often greatly

facilitated.

The enhanced realism offered by stereo photographs led to the stereoscope becoming widely
popular as a source of entertainment. Additionally (on the basis of (2) and (3) above), the
stereoscope became an important tool in scientific and military applications.

Throughout the second half of the 19th century, the stereoscope (and associated stereo
photographic techniques) gained great popularity. It was during this period that the quest for
television began to gain attention. At that time, highly creative individuals sought techniques
that would enable the development of an electronic (or electromechanical) ‘telescope’ via which
audiences would be able to view distant events – in real time. A broad range of techniques were
proposed and a variety of wonderful names were coined for these largely impractical devices
(e.g. Phantascope, Phoroscope and Telectroscope).18 However, it appears that it was not until
1911 that a reasonably feasible fully electronic television system was proposed. This system
was mooted by Alan Archibald Campbell Swinton in a speech to the Röntgen Society and
interestingly this included the suggestion that a Cathode Ray Tube (CRT – see Section 1.5.1)

18 It appears that the term ‘television’ was first publicly used by Constantin Perskyi at the International
Electricity Conference (25th August 1900) [Abramson 1987].
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(a)

(c) (d)

(b)

Figure 1.17 In the 1930s television developed rapidly. In (a) John Logie Baird demonstrates TV at Selfridges in April 1925. In (b) a 1938
demonstration by the Baird Company of a TV (the screen is reported as measuring 8 by 6 feet!). Illustration (c) shows a 1938 marketing poster
advertising large screen projection TV developed by Scophony employing the remarkable Jeffree supersonic light control. A TV developed by
Philips in the late 1930s is depicted in (d). (Images reproduced from Geddes and Bussey [1991].)
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be used for the depiction of images. In fact, some 20 years were to pass before an all electronic
television system was implemented and in the intervening years, that remarkable individualist
and pioneer John Logie Baird was able to develop and demonstrate practical television using
an electromechanical image capture and display system. This demonstration took place in
January 1926 (for interesting discussion, see Kamm and Baird [2002]). During the next two
decades Baird demonstrated high resolution colour television, a colour television system able
to support the binocular parallax depth cue (without any need for viewing glasses/viewing
apparatus) and pioneered the volumetric display technique (see Section 9.5) whereby 3-D
images are depicted within a transparent volume so enabling them to naturally occupy a
3-D space.

Developments in the late 1920s and 1930s led to television broadcasting (although range
was somewhat restricted) and so enabled the depiction of physically remote events in real-
time – the ‘electronic telescope’ that had been sought for so long – see Figure 1.17. In contrast
traditional cinema does not support simultaneity – events are recorded and played back at a
later time.

The next, rather natural development was the production of hardware systems enabling user
interaction with electronically processed images. Work in this area was given impetus by the
urgent and ever increasing needs of the military in WWII, and in the UK, the Royal Signals
and Radar Establishment (RSRE) which was then based in Malvern played an important role.
In an extensive publication (which continues to retain much of its relevance) Parker and Wallis
[1948] discuss the use of an analog calculation system able to map radar data onto a flat screen
display to create a perspective view – see Figure 1.18. In this illustration the perspective view of
a volume corresponds to the region that is swept-out using a rectangular scan. Two reference
planes are added to provide greater clarity in relation to the location of points representing
airborne objects within the volume, and two cross-wires may be seen. The inclusion of cross-
wires suggests their use for interactive operations within the image scene – although this is not
explicitly discussed in the publication. However, the authors do refer to a system that permitted
an operator to interact with the overall image. This was accomplished by means of controls
supported by the analogue calculation system and which allowed the displayed volume to be
rotated on the screen (in real time) – so enabling it to be viewed from any vantage point. This
is the earliest electronic display system the author has located to date that is able to generate
a perspective view on a 3-D scene and moreover, which permits operator interaction with the
displayed image.

It is interesting to note that to enhance the apparent three-dimensionality of the displayed
image, Parker and Wallis also employed shading. They write:

‘In addition to perspective, the brilliance of the display can be modulated according to Z [meaning depth], so
that the nearer portions of the volume are always brighter. This will be called ‘perspective shading’.’ [Parker
and Wallis 1948]

In this context it is perhaps an opportune moment to mention the ‘spontaneous reversal’
in spatial orientation that can occur when viewing wire-frame images. Consider the cube
illustrated in Figure 1.19(a). When viewed for a little time, the spatial orientation of the cube
is seen to switch – it will appear as either projecting upwards or downwards in depth. This
same effect occurs with the staircase depicted in Figure 1.19(b). This arises because the depth
cue information included in the drawing suggests two possible spatial orientations – we need
to provide additional information to reinforce one particular state and this may be achieved
through the incorporation of the ‘perspective shading’ referred to above.



26 An Introduction to Computer Graphics and Creative 3-D Environments

Figure 1.18 The formation of a perspective view as described by Parker and Wallis in their 1948 publication (it appears that this work was
carried out several years before their paper was published). Despite the poor quality of the photograph, the volume indicated (which corresponds
the region swept-out by a ‘rectangular’ radar scan) may be seen together with two reference planes and a pair of cross-wires. By means of controls
provided within the analogue calculation system (used to form the perspective view) the image depicted on the screen could be rotated and so
the volume could be observed from different vantage points. This is perhaps the earliest example of an interactive graphics display system. (Image
reproduced by kind permission from Parker and Wallis [1948] © IET (formerly IEE).)

(a) (b)

Figure 1.19 In (a) when the wire-frame drawing of a cube is viewed for a brief time, its spatial orientation will appear to switch. This is
because the drawing suggests two possible orientations – additional depth cue information needs to be included in order to define which of
these orientations is actually intended. This is commonly referred to as the Necker cube (after L.A. Necker 1832). Similarly, in (b) the staircase will
switch to become an overhanging cornice (attributed to H. Schroder 1858). For further discussion see, for example, Schiffman [1990].
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OTU Exercise 1.4: Figure Stability

By means of either reinforcing the lines drawn in the illustrations presented in Figure 1.19,
or through the inclusion of shading, ensure that each of the drawings has only one sta-
ble orientation. Additionally, using one point or two point perspective diagrams, redraw
the illustration presented in Figure 1.19(b) and observe the stability of the perspective
rendition.

During the 1940s several other researchers published descriptions of displays able to produce
perspective views of 3-D image data on flat screen electronic (CRT based) displays (see, for
example, Berkley [1948], MacKay [1949] and summary discussion presented in Blundell [2006,
2007]). Researchers achieved the mapping between a 3-D image space and the 2-D screen using
fairly complex analogue calculation systems. Such circuits were somewhat difficult to design and
could not be reprogrammed. Naturally, the development of programmable digital technologies
greatly facilitated the development of graphics engine hardware and during the 1950s basic
graphics displays were produced for use with computer systems.

As far as the development of the principles and applications of computer graphics is con-
cerned, the 1960s denoted a period in which great progress was made. In 1962 Morton Heilig
[Heilig 1962] filed a patent describing an immersive virtual reality system known as the Sen-
sorama. Through the use of an immersive graphical display coupled with stereo sound and
airflow/vibrational stimuli, this provided a ‘virtual theatre’ experience. At about the same
time, Ivan Sutherland developed a graphics based computer interface called ‘Sketchpad’. This
is described in the following way:

‘The Sketchpad system makes it possible for a man and a computer to converse rapidly through the medium of
line drawings. Heretofore, most interaction between man and computer has been slowed down by the need to
reduce all communications to written statements that can be typed; in the past we have been writing letters to
rather than conferring with our computers.’ [Sutherland 1963]

Sutherland goes on to describe the operation of his display system through the use of various
examples that show how image primitives may be directly manipulated. For example:

‘If we point the light pen at the display system and press a button called “draw”, the computer will construct
a straight line segment which stretches like a rubber band from the initial to the present location of the
pen . . .’

This system therefore supported a high degree of interaction and enabled the user to directly
manipulate graphics components by means of devices such as the light pen.

Throughout the 1960s and early 1970s, the electronic display system used for image depiction
was largely based on the ‘vector graphics’ technique. Eventually, this was superseded by the
bitmap approach which forms the basis for the modern computer display paradigm. In the
next section we briefly discuss aspects of these two techniques and thereby provide an insight
into various display characteristics that are of importance in the design and development of
computer graphics applications.
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(a) (b)

(c)

Figure 1.20 Which of these three diagrams represent cross-sections of physical objects? See OTU Exercise 1.5.

OTU Exercise 1.5: Cross-Sections

In the design and depiction of 3-D objects, cross-sectional drawings are often used. Consider
the three diagrams presented in Figure 1.20. Identify which of these drawings could represent
a cross-section. For each of the diagrams that you believe could correspond to a cross-section,
suggest a physical object that it may represent.

1.4 Vector and Bitmapped Graphics: Image Refresh

In the last section we presented background discussion in relation to several events and mile-
stones that have influenced the evolution of modern computer graphics. Our brief chronology
ran as far as the early 1960s when Ivan Sutherland demonstrated the placement and manip-
ulation of image primitives by means of an intuitive graphical user interface. Although, the
1960s and 70s denote a period of rapid advance in computer graphics, systems were expensive
(in terms of both hardware and applications software) and this tended to limit their general
proliferation. Consequently, high performance interactive graphics systems were mainly limited
to more specialised applications such as areas of computer aided design, simulation etc. In this
context, Herbert Freeman writing in Boff et al. [1986] explains:

‘Not until the late 1970s did all these barriers suddenly break away and permit computer graphics to expand
into one of the largest and most rapidly growing fields of computer technology. Of course, time was also in
its [interactive computer graphics] favour as year after year the cost of graphics equipment kept dropping
and the cost of human labour kept increasing. Computer graphics offers enormous possibilities for increased
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productivity in every activity in which a picture can facilitate understanding, be it the creation of a design, the
monitoring of a manufacturing process, or the display of scientific or business data.’

One of the major advances that enabled the widespread proliferation of affordable computer
graphics systems was the transition from the vector graphics approach to the bitmapped tech-
nique. In this section we briefly described aspects of these two display modalities. However,
before examining their underlying principles of operation, it is necessary to briefly refer to
several issues relating to the refresh of images depicted on some forms of display and to
introduce a little associated terminology.

Consider an image that is output to a display – we will refer to this as an ‘image frame’. The
characteristics of the display hardware may be such that once the image is ‘written’ to the display
screen it will continue to remain visible (without any diminution of brightness) until a new
image scene is output. We will refer to such a display system as offering ‘steady state light output’
(SSLO). Alternatively, in the case of, for example, displays based on the traditional Cathode Ray
Tube technology, once the image has been written to the screen, light output rapidly decays and
such a display is said to demonstrate ‘transient light output’ (TLO).

In the case that a system exhibits TLO, it is necessary to continually refresh the display at a
rate that is sufficient as to ensure that the image does not appear to flicker. Thus, even if we do
not wish to make any modification to the content of the displayed image, identical frames must
still be continually re-written to the display.

A display that exhibits TLO must be refreshed at a frequency of at least 30 Hz. However,
although when we view a display that is refreshed at this frequency, we may not be conscious of
flicker, the transient nature of the light output may still be subliminally evident. When such
a display is used for long periods of time, this can be problematic and cause headaches or
other discomfort. As a result, when designing a TLO computer display, it is highly desirable
to considerably increase the refresh frequency. In fact, higher-end CRT based displays now
commonly employ a 120 Hz refresh frequency. Additionally, it is important to note that flicker
becomes increasingly evident as image brightness is increased (even when refreshed at 60 Hz,
flicker may still be apparent in a highly illuminated image).

Critical Flicker Frequency (CFF): The minimum temporal refresh fre-
quency at which an image that is subject to rapid TLO is consciously
perceived as being free from flicker. This is also referred to as the ‘flicker
fusion frequency’.

The dependence of CFF on image illumination (more correctly termed ‘luminance’ (L )) is given
by the empirically determined Ferry-Porter Law:

CFF = a + b log L

where a and b are constants. This relationship has been shown to be valid over a wide range of
image ‘brightness’.

Even in the case of systems that exhibit SSLO (and that are to be used for the depiction of
animated image scenes), it is necessary to update the display at regular intervals. In this context,
changes in an image scene (corresponding to, for example, a person walking or an aircraft flying
over a landscape) must be output with sufficient regularity as to ensure that the animation
appears to progress smoothly. This can be supported by a refresh (update) frequency ∼10 Hz
i.e. somewhat lower than the demands placed on the graphics engine by the need to ensure
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that images depicted on a display that exhibits TLO are both consciously and subconsciously
perceived as being flicker free. We will use the terms ‘image refresh frequency’ and ‘image update
frequency’ as follows:

Image Refresh Frequency (fr): The frequency at which images must
be written to a display that exhibits TLO so as to ensure that both
conscious and subliminal flicker are avoided.

Image Update Frequency (fu): The frequency at which images must be
written to a display so as to permit smooth image animation.

For the reasons given above, in the case of a display that exhibits TLO, fr > fu, whereas for
displays exhibiting SSLO image refresh may be avoided.

From the perspective of the designer who is involved in the development of computer graph-
ics applications, the image update frequency is of particular importance. This is because, in the
case of real time applications, the image update period (Tu = 1/ fu) determines the time that is
available to compute an image frame and pass this to the hardware responsible for interfacing
with the display (video memory).

1.4.1 The Vector Display

Although it is most unlikely that you will actually encounter a vector graphics display (outside a
technology museum . . .), it is instructive to consider their general principle of operation. Such
a discussion not only provides an additional insight into the evolution of modern computer
graphics but also (and perhaps more importantly) provides additional understanding of the
strengths and weaknesses of the bitmapped graphics technique that almost universally under-
pins the operation of today’s computer display.

In the case of the vector graphics technique, objects depicted on the display are represented
as a series of lines or polylines. Each line segment is referred to as a vector.

The Vector: A vector has both magnitude and direction. Thus a line
segment that is drawn from one spatial location to another has not only
a magnitude (indicated by the length of the line) but also a direction –
which is determined by the relative location of its two endpoints and
our choice of the endpoint from which we start to draw the line. In
contrast a scalar quantity has only an associated magnitude.

OTU Exercise 1.6: Vector and Scalar Quantities

For each of the following, indicate whether it is regarded as a scalar or vector quantity:

Mass, Velocity, Distance, Density, Time, Temperature, Acceleration, Force.

In the case of an image component comprising a single line (vector), it is necessary to define
both the start and end coordinates – see Figure 1.21(a). Alternatively, in the case of an image
component that takes the form of a polyline, the endpoints of all vectors (other than the last
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(a)  (b)

Coordinate
from which 
the line 
segment is to 
be created

Coordinate of 
the end of the 
line segment

Coordinate
from which 
the first line 
segment is to 
be created

The endpoint of 
the first line 
segment is defined 
by the starting 
position of the 
next line segment

Coordinate
of the end 
of the last 
line
segment

Figure 1.21 In (a) we indicate the depiction of a single line (vector) and in (b) a polyline comprising four line segments (vectors).

one to be drawn) are defined by the starting point of the next vector that is to be created (see
Figure 1.21(b)).

An image to be drawn on a vector graphics display is stored in a computer’s memory as
a ‘display list’. For each polyline, the starting coordinates of each line segment (vector) are
specified – the end coordinates of each line segment being defined by the starting coordi-
nates of the next line segment which is to be drawn. In the case of the last line segment
that is drawn when creating the polyline, both its start and end coordinates are defined.
Additional information associated with each polyline are the level of illumination and colour
(although traditional vector graphics displays had only limited colour capability). A dis-
play list together with a simplified model of the graphics engine hardware is illustrated in
Figure 1.22.

Vector graphics displays were based on Cathode Ray Tube technology, and here a focused
electron beam is directed towards a phosphor-coated screen. When the electron beam impinges
upon the phosphor, visible light is produced (as a consequence of a process known as ‘cathodo-
luminescence’). Using magnetic or electrostatic deflection (in fact vector graphics displays
employed the latter), the electron beam can be directed to any location on the screen. By way of
a simple example, consider the creation of the single line segment illustrated in Figure 1.21(a).
Here, the electrostatic deflection signals would be set up in such a way that when the electron
beam is turned on, it will be directed to the starting location of the line segment. Subsequently,
the electrostatic deflection signals are modified to direct the beam to the end point of the line.
The beam will therefore rapidly move from its starting location to this new position. Whilst
moving it will excite the phosphor coating on which it impinges, thus giving rise to a visible line.
In the case of the polyline illustrated in Figure 1.21(b), the process that we have just outlined
would in essence be repeated for each line segment.

Key points to note about the vector graphics method are as follows:

1. The time taken to output a complete image is determined by the complexity of the image.
The more line segments (vectors) that are to be drawn, the longer the process will take.
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Figure 1.22 Conceptualised diagram showing key elements in a vector graphics display system. The display list stores the coordinate values that
are needed to create the lines and polylines on the display screen together with illumination and colour information (not indicated in the illustra-
tion). As may be seen, the starting coordinates of the first line within a polyline are supplied and the end coordinates for all other line segments
(other than the last in the polyline) can be deduced. An additional final entry for each polyline (x end,y end) indicates the end coordinates of the
last vector to be drawn. Additional processing may be performed – for example to remove the bright spots that can occur when two vectors cross.

2. The time taken to output a complete image is also dependent on the order in which
lines and polylines are drawn on the screen. In principle, therefore, the time taken to
output an entire image can be reduced by drawing the lines and polylines in an optimal
order. Unfortunately, obtaining the optimal order is a computationally expensive process
and rapidly becomes impractical as image complexity is increased. However, approximate
solutions may be adopted and can improve display performance (for related discussion see
Schwarz and Blundell [1997]).

3. The screen is not exhaustively scanned. The electron beam simply draws lines in accordance
with the contents of the display list (a process which resembles completing the dot-to-dot
drawings found in puzzle and activity books for children). As we will see in the next sub-
section, this represents a major difference between the vector and bit-mapped approaches.

So far we have considered only the depiction of a series of lines and polylines on a vector graphics
display. Very frequently we wish to draw ‘solid’ shapes such as, for example, a filled rectangle.
The filling of shapes to give them a solid appearance is, in the case of the vector graphics display,
achieved by using a set of lines/polylines to illuminate the region occupied by the shape. The
filling process can be very demanding in terms of the number of lines and polylines which
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Portion of the display 
screen

In this illustration pixels are 
assumed to be located at the 
intersection of the lines

Portion of video 
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Each location in video memory maps to a 
corresponding pixel
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Figure 1.23 The display screen comprises an array of individually addressable ‘dots’ (pixels). There is a one-to-one mapping between locations
in video memory and screen pixels. Thus changing the value stored in a memory location will result in a change in the colour/illumination of a
corresponding pixel. All screen pixels are identical in size and shape.

must be drawn to give the impression of uniform illumination. Vector graphics displays were
therefore best suited to the depiction of wireframe images in which there was no necessity to
depict filled geometric shapes.

1.4.2 The Bitmapped Approach

‘There is no reason anyone would want a computer in their home.’19

In the case of this technique, the screen comprises a 2-D array of image elements (these can be
treated as small dots – each dot being referred to as a pixel (short form of ‘picture element’)) –
see Figure 1.23. There is a one-to-one mapping between screen pixels and video memory (RAM)
and by changing the contents of a memory location, an appropriate visible change can be
produced in the corresponding pixel. Thus, referring to Figure 1.23 (in which for convenience
we conceptualise the video memory as a 2-D array) modifying the contents of memory location
‘A’ will, when the display is refreshed, directly impact on the visual properties of pixel ‘A’ – and
will effect no other pixels.

Key points to note in connection with this approach are as follows:

1. During a screen refresh or update, each and every pixel is addressed. This contrasts with the
vector graphics approach in which the time taken to depict an image (frame) is determined
by the number of vectors, the order in which they are drawn and their spatial distribution.
In this sense the bitmapped approach is predictable – during an image refresh or update, all
screen pixels are written to – and therefore the time taken to refresh or update the image is
independent of image content/complexity.

19 Attributed to Ken Olson founder and president of Digital equipment Corporation (DEC). Quoted in
Eberly [2004].
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2. A display screen may comprise, for example ∼1280 pixels horizontally and 1024 pixels
vertically. A corresponding number of memory locations are required for the storage of
an image frame. If we assume a screen that measures 40cm horizontally, then the inter pixel
spacing is ∼0.3 mm.

3. The term ‘bitmapped display’ specifically refers to display technologies in which each
pixel is represented by a single bit in video memory. Thus the pixel may be turned on
(illuminated) or otherwise. Such a system does not support grey scale (levels of pixel illu-
mination) or mixtures of colour. Today’s displays provide support for these vital attributes
by representing each pixel by, for example, 24 bits. Displays that support grey scale and
colour are generally referred to as pixmapped (rather than bitmapped) displays. However,
in practise, the two terms are often used interchangeably. Additionally, it should be noted
that video memory is often referred to as the ‘frame buffer’.

Although the pixmapped approach denotes an elegant and straightforward technique, it was not
widely adopted until the early 1980s. A major issue was the high cost and relatively low storage
capacity of suitable memory devices (RAM chips). Additionally, the bitmapped/pixmapped
approach requires rapid memory access times. Consider a display that supports the depiction
of nh (horizontal) by nv (vertical) pixels and for which the refresh frequency is fr . Then (in the
case that pixel values are read directly from the video memory one at a time (sequentially), the
system must support a memory access time (Ta ) given by:

Ta =
Tr

nh · nv

, (1.1)

where Tr denotes the refresh period and Tr = 1/ fr .

OTU Exercise 1.7: Video Memory Access Time

Suppose that we assume the use of a bitmapped display comprising 1000 by 800 pixels and
exhibiting TLO. Assuming a refresh frequency of 70 Hz and that pixel values stored in the frame
buffer are read sequentially, calculate the time available for accessing each pixel value from
memory.

1.5 Display Hardware

‘Nothing exists in the intellect before it is in the sense . . .
and of our senses, as the wise men conclude,

that of seeing is the most noble.
Hence, [it] is commonly said not without reason

that the eye is the entrance portal
through which intellect perceives . . .’20

In the main, computer graphics applications are designed to operate upon fairly standard
computer platforms. These systems have well-defined characteristics and there is often no

20 Attributed to Fra Luca Pacioli from Divina proportione. Quoted in Edgerton [1991].
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requirement for those involved in the development of applications programs to have an in-depth
understanding of the architecture of either the graphics hardware, or the display. Normally it is
sufficient to simply be able to interpret the parameters by which the graphics systems are char-
acterised. For example, in the case of the display we may consider the refresh/update frequency,
the total number of display pixels (both vertically and horizontally) and characteristics relating
to the depiction of colour.

However, there is a growing interest in the development of 3-D display technologies which
have the ability to support alternative (and perhaps more natural/synergistic) interaction tools
and that interface more naturally with the human visual system. Clearly, in order for the
designer to be able to accurately assess the potential of such systems, architectural issues must
be well understood. In turn, this enables computer graphics applications to be developed in
such a way that they can utilise the display technology in an optimal manner. In Section 1.6, we
briefly introduce several general techniques that can be used to enable displays to support the
binocular parallax depth cue (also see Chapter 9). It is likely that in the short to medium term
future, there will be greater scope for developing computer graphics applications for use with
emerging ‘creative’ 3-D display systems. In this case it is important to have a clear understanding
of key issues relating to hardware operation and in turn, this provides the opportunity to see
how such display modalities can be improved and further developed. With this in mind, in
this section we briefly summarise the operation of the conventional flat-screen display par-
adigm – this provides us with a convenient basis on which we can assess alternative display
modalities.

Traditionally the computer display has been almost exclusively based upon Cathode Ray Tube
(CRT) technology. In recent years, however, we have seen the rapid proliferation of thin panel
displays and these are now rapidly taking over from the CRT. In the subsections that follow, we
briefly review the operation of CRT, gas plasma, liquid crystal and field emission displays. In
addition we provide historical discussion concerning the so-called ‘direct view storage device’.

For additional discussion see, for example, Sherr [1998] and also MacDonald and Lowe
[1997]. Although these books are a little dated, they remain excellent sources and contain much
useful information.

1.5.1 Cathode Ray Tube Based Displays

There is a tendency to assume that displays based upon the Cathode Ray Tube (CRT) are
archaic – a technology that is soon to be extinct. However, an understanding of the CRT can
be helpful in several respects:

1. The operating principles are perhaps a little more intuitive to grasp than those of the thin-
panel display that is able to support full colour image depiction.

2. To a certain extent, both field emission and gas plasma displays can be regarded as thin
panel renditions of the CRT – they share key operating principles.

3. The visual characteristics of thin-panel displays were derived from those supported by the
CRT. In this sense, the visual characteristics of the CRT retain their relevance.

4. From a cost-performance perspective, CRT-based displays remain very competitive and,
whilst undoubtedly they will be superseded, it is unlikely that they will move into extinction
for some time to come.

It is for these reasons that brief discussion of CRT-based displays is included in this book.
The principles that underpin the operation of the CRT date back to the late 19th century.

As mentioned in Section 1.3, in 1911 Archibald Campbell Swinton proposed the use of the
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CRT for television [Campbell Swinton 1912] and by the 1930s this technology was pivotal
in the implementation of wholly electronic television systems. In the 1940s, the CRT was
not only playing a role in the depiction of electronically processed data, but also hybrid
technologies were providing a means of storing and rapidly switching electronic signals (for
discussion on the latter, see Blundell and Schwarz [2000]). Given the proven record of the CRT,
it was quite natural that it would become the standard computer display. After all, the CRT
industry was well established and displays of this type could be produced in a cost-effective
manner.

The modern computer display based upon CRT technology employs the ‘raster’ scanning of
electron beams. For a moment, we will put to one side the issue of generating colour images and
simply consider the monochrome (single colour) display. In this case, the raster scan works in
the following manner:

1. The electron beam is initially directed towards the top left-hand corner of the display screen.
2. Electro-magnets are used to move the electron beam horizontally across the screen. As

the electron beam travels from the left to the right-hand side of the screen, it excites the
phosphor coating (which is bonded to the rear of the screen) and this gives rise to the
production of a visible line.

3. The electron beam is rapidly moved back to the left-hand side of the screen – to a position
slightly below its original location indicated in (1) above. Since the electron beam is moved
so quickly to this position, it does not have the chance to significantly excite the phosphor,
and therefore does not give rise to a visible line.

4. From this new position the electron beam is again swept horizontally across the screen. This
gives rise to another visible line, which is slightly below the first line referred to above.

5. The process is repeated and as indicated in Figure 1.24, this gives rise to a set of horizontal
lines drawn on the display screen.

6. When the electron beam finally reaches the bottom right-hand corner of the screen, it is
rapidly returned to the top left-hand corner. This is known as the ‘vertical flyback’. If the
deflection occurs quickly enough then this vertical flyback does not give rise to a visible
diagonal line across the screen.

7. The technique outlined above enables the entire screen to be scanned, and a set of horizontal
scan lines are produced. The light output from the excited phosphor rapidly decays and
therefore so as to avoid the flicker problems discussed in the previous section, the display
must be regularly refreshed (this involves rapidly repeating steps (1) to (6)). In terms
of the terminology used in the last section, the display is said to exhibit ‘transient light
output’ (TLO). To generate an image, it is necessary to modulate the beam as it travels
across the screen. In Figure 1.25 we illustrate (in a simplified way) the manner in which
a rectangle can be produced by turning the electron beam on and off at the appropriate
times.

The generation of colour images is somewhat more complex and is underpinned by the fact
that we can generate any colour within the visible spectrum by mixing together sources of
red, green, and blue light in appropriate proportions. The colour CRT employs three electron
beams that are simultaneously scanned across the surface of the screen in the manner outlined
in points 1 to 7 above. Three different types of phosphor are deposited on the surface of the
screen. One of these gives rise to the emission of red light, the second green, and the third blue.
We can consider each pixel to comprise three sub-pixels – each of a particular primary colour.
Complexity in the implementation of the colour CRT arises when we consider how we can lay
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Figure 1.24 A simple raster scan – see text for details (the separation of the scan lines is exaggerated for clarity). Note: this scan is non-interlaced.
In the case of the interlaced scan, the electron beam moves down the screen drawing, for example lines, A, C, E etc. Subsequently it is returned
to the upper left of the screen and sweeps out lines B, D etc. This interlaced approach is well suited for use in television. For discussion on the
interlaced scan technique see, for example, Clements [2006].

CRT Screen

Within this rectangular region, the electron beam is modulated

Scan lines

Figure 1.25 The production of an image is achieved by modulating the electron beam in accordance with its instantaneous screen location. Here,
we illustrate the production of a rectangle. As the beam travels across the region in which the rectangle is to be depicted it is either turned off (to
produce a black rectangle) or simply reduced in strength to generate a rectangle with shading.
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Figure 1.26 A simplified plan view of a part of the Trinitron tube (distances and slit sizes have been greatly exaggerated for clarity). The three
beams cross in the region of the slits and subsequently impinge on the CRT screen. On the inner face of the CRT, the red, green and blue phosphors
are arranged in strips – each group of three strips being aligned with a slit in the metallic plate.

out these three phosphors on the screen’s surface and ensure that each can only be ‘addressed’
by a single electron beam (e.g. the electron beam responsible for the production of red light
should only be able to address the red phosphor). This is achieved by inserting a thin sheet
of metal which lies just below the CRT screen. As depicted in Figure 1.26, in the case of the
Trinitron tube, this sheet of metal comprises a set of narrow, vertical strips, and the phosphors
deposited on the inner face of the CRT are arranged as a series of vertical stripes. The trajectory
of the electron beams is such that they intersect and cross over in the region of the slits and
subsequently impinge on the screen. By accurately aligning the location of the slits with the
stripes of the three phosphors it is possible to ensure that each electron beam is only able to
‘write’ to a phosphor of a certain colour.

The three electron beams are individually modulated and this permits different proportions
of red, green and blue light to be mixed – enabling the production of colours throughout the
visible spectrum. Unfortunately, the insertion of the metallic sheet results in a significant loss of
beam current (electrons that strike the sheet cannot reach the screen and are therefore unable
to contribute to the production of light output).21

21 The use of a sheet comprising a set of slits superseded a previous technique employing a ‘shadow mask’.
The shadow mask again took the form of a metallic sheet located just behind the face of the CRT. However,
rather than employing a set of slits, the shadow mask comprised a set of holes and the phosphor coatings
were deposited as dots rather than stripes. Each pixel was generated using three phosphor dots – one
for the production of red light, another for green and a third for blue. The slit approach is superior to the
shadow mask technique since it significantly reduces the amount of beam current that is lost. Additionally,
the Trinitron tube can be produced at lower cost.
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1.5.2 The Direct View Storage Device (DVSD)

‘You couldn’t see it in a brightly lit room.
You couldn’t selectively erase lines that had been drawn on it.

In fact, it had all the disadvantages in the world except one:
It was cheap.’22

As we have discussed, the CRT exhibits TLO and so even static (non-animated) images have to
be continually refreshed. Additionally, in Section 1.4.1 we explained that in the case of the vector
graphics approach, the time needed to depict an image frame is dependent on the content of the
image. Thus in the case of more complex images, the image refresh period would be greater
and ultimately this may exceed the refresh requirements that must be met in order to ensure
the production of a flicker-free image. Alternatively, our wish to avoid image flicker determines
the number (and spatial distribution) of vectors that can comprise an image scene. During the
1960s and 1970s memory devices offered quite low performance (in terms of access speed) and
this also limited the number of vectors that could be drawn within the refresh period.

So as to overcome these difficulties the ‘Direct View Storage Device’ (DVSD) was developed
and played a dominant role in the implementation of vector graphics displays. This represented
a specialised form of CRT and its principle of operation is outlined in a number of text dealing
with computer graphics (see, for example, Freeman writing in Boff et al. [1986]). Here, it is
sufficient to note that this type of display exhibited SSLO over a considerable period. Thus
images created on such a display would remain visible (without diminution of light output)
for a significant time after their formation and this circumvented the need for regular image
refresh (at least from the perspective of offering flicker-free image depiction).

This device had several weaknesses and by today’s standards was relatively expensive to
manufacture. Weaknesses included limited colour capability. Additionally, vectors within an
image scene could not be individually erased. Consequently, to modify an image it was first
necessary to erase the image in its entirety and subsequently output the modified image.

1.5.3 Plasma Thin Panel Displays

The operation of the thin panel plasma display is underpinned by the production of a gaseous
discharge – a physical process that was extensively researched in the 19th century. Interestingly,
the generation of a gas discharge using an appropriate electric field pre-dates the discovery
of cathode rays and the subsequent development of early forms of CRT. Although we may
view plasma display panels as representing state-of-the-art technologies, it is amusing to note
that they actually operate according to a physical process that was researched even before the
discovery of cathode rays!

In Figure 1.27(a), we illustrate a sealed glass tube containing an inert gas such as neon whose
pressure is somewhat less than that of the surrounding atmosphere. An electrode is located at
either end of the tube and a voltage (v) is applied between these electrodes. This creates an
electric field within the gas – the field strength (E ) being given by:

E =
v

d
,

22 Attributed to Carl Machover (who was a manufacturer of these displays) – quoted in Rivlin [1986].
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Figure 1.27 In (a) we illustrate a discharge tube. This contains a gas that is at a reduced pressure. Two electrodes (separated by a distance d )
are used to create an electric field. The results of this field are indicated in (b) – positive ions are attracted towards the negative electrode (the
cathode) and electrons towards the positive electrode (the anode). Collisions with gas atoms results in the formation of other ion-electron pairs or
atomic excitation. In this latter case subsequent decay to the ‘ground state’ results in the emission of electromagnetic radiation.

where d denotes the separation of the electrodes. Thus increasing the voltage or reducing the
separation of the electrodes will increase the strength of the field. In the absence of any electric
field or other stimulus, the gas within the tube will contain a number of positive ions (atoms that
have lost electrons) and free electrons. Under the influence of the electric field, the positive ions
will be attracted towards the negative electrode and the free electrons to the positive electrode.

As they gravitate towards the respective electrodes, the ions and electrons accelerate (thereby
gaining kinetic energy) and will be in continuous collision with non-ionised atoms of the
gas. During such collisions, the charged particles may impart energy to atoms such that the
following occur:

(a) Excitation: A ground state electron will be excited to a higher energy level.
(b) Ionisation: In the case that enough energy is transferred, an electron may gain sufficient

energy to escape from the atom – thus forming a further ion-electron pair.

These two scenarios are summarised in Figure 1.28 where we also indicate the result of each
process. In the case that an electron is excited from a lower to a higher energy level, the atom
will subsequently return to the ground state and when this happens electromagnetic radiation
is released. A simplified model of this process is provided in Figure 1.29. Here, a ground state
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Figure 1.28 Summary of the basic physical processes that result in a discharge within a gaseous media – these underpin the operation of thin
panel plasma displays.
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Figure 1.29 Here we provide a simple model illustrating three electronic energy levels. We assume that a collision causes the excitation of an
electron from the ground state < E 0 > to energy level < E 2 >. Subsequently the atom decays – firstly to a metastable state < E 1 > and
then to the ground state. We assume that the first of these decays results in the emission of a visible photon and the second the emission of a
non-visible photon (in the ultraviolet part of the electromagnetic spectrum).
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electron (with energy E 0) is excited to the energy level E 2. Subsequently, we assume that a decay
occurs to a metastable state (energy level E 1) and a photon is released with energy E 2 − E 1

such that:

E 2 − E 1 =
hc

λ
,

where h denotes Planck’s constant, c the speed of light in a vacuum (free space) and λ the
wavelength of the emitted radiation. This wavelength may, for example, be in the visible portion
of the electromagnetic spectrum (see Figure 5.5). A further radiative decay is also indicated
in Figure 1.29 and this may result in the emission of visible or non-visible (e.g. ultraviolet)
radiation. In summary, the excitation process may give rise to the emission of visible light, non-
visible radiation – or both.

In the case that the collision imparts sufficient energy to ionise the atom, an electron-ion pair
are formed. These then contribute to the current flowing in the discharge tube – the electron
moving towards the anode and the positive ion to the cathode. In turn, these particles are likely
to excite or ionise other atoms.

The ‘cathode’ is the name of the negative electrode.
The ‘anode’ is the name of the positive electrode.

Back in the 19th century, research pioneers found the discharge process both fascinating and
intriguing. Returning to Figure 1.27(a) let us suppose that we begin with a glass tube filled with
air and connected to this tube is a pipe attached to some form of vacuum pump. We apply a
voltage between the two electrodes, darken the room and begin the pumping process. Gradually
as the pressure is reduced, thin streamers (‘wisps’) of light appear in the tube. As the pressure
is further reduced, a glow begins to extend throughout the tube – although, most intriguingly,
close to the cathode and some way along the tube there are regions of darkness (which are
respectively called ‘Crookes’ dark space’ and the ‘Faraday dark space’). Gradually, as the pressure
falls further, the extent of the dark spaces increases until we reach a point at which the gas no
longer glows and, if the voltage difference between the electrodes is sufficient, the walls of the
glass tube begin to fluoresce. It was this fluorescence that directly led to the discovery of cathode
rays and the subsequent development of the Cathode Ray Tube.

So much for our brief review of the basic physics associated with the process of gaseous
discharge. Let us now turn our attention to the use of this process in the implementation of
display technologies. One of the first and certainly the most well known devices able to provide
a numeric readout was known as the ‘Nixie tube’ – a special form of valve which, through until
the early 1970s, was widely used as an alpha-numeric display. In addition the gas discharge
process underpins the operation of neon signs and fluorescent lights.

Central to the development of thin panel displays is support for full colour image depiction.
The colour of light emanating from a gaseous discharge relates to the gas (or mixture of
gases) that are employed – for example, neon (the gas most widely used in neon advertising
signs) gives (under appropriate conditions) a strong orange discharge. By judiciously selecting
appropriate gases, it is possible to generate the three primary colours and so form a display
comprising a 2-D matrix of cells with triads of cells operating together to generate the red,
green and blue colours that comprise a pixel. Unfortunately, this would make the fabrication
process extremely difficult – adjacent cells would need to be filled with a different gas or
gas mixture (and sealed from each other to prevent gas mixing). Researchers have therefore
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Figure 1.30 A simplified cross-sectional view of a cell used in a plasma panel. Here, the gaseous discharge is initiated by applying a voltage
(alternating current (AC)) between the two electrodes. The gas mixture is designed to maximise the production of non-visible (ultraviolet)
radiation. This stimulates the emission of visible light from the phosphor and this light radiates from the cell.

sought and implemented the thin panel plasma display using alternative techniques. In essence
the gas discharge gives rise to non-visible (ultraviolet) radiation and phosphor materials are
then used to convert from ultraviolet to visible light. A simplified diagram showing the basic
components that comprise a cell is illustrated in Figure 1.30 – its operation is summarised
below:

1. As with the CRT, each pixel comprises three sub-pixels – one red, one green and one blue.
By controlling the level to which each triad of sub-pixels are activated, each overall pixel
is perceived as being able to demonstrate a ‘full colour’ capability. In the case of a plasma
screen, each sub-pixel has an associated cell – the light output from which can be controlled.

2. Through the application of a voltage between the rear and front electrodes shown in
Figure 1.30, a gaseous discharge occurs. The low pressure gas mixture is designed to
maximise the emission of non-visible ultraviolet radiation (with a wavelength of ∼
147 nm). A mixture of helium and xenon or neon and xenon may be used for this
purpose.

3. The ultraviolet radiation impinges on the phosphor (which is deposited towards the rear
of each cell). This causes the phosphor to emit visible radiation and this emerges from the
front of each cell. Each of the three sub-pixels within a group employs a different phosphor
and this supports the production of red, green and blue light.

4. The arrangement illustrated in Figure 1.30 represents a cell driven by an alternating voltage
(AC). An essential difference between the AC and DC (direct current) approaches con-
cerns the location of the electrodes. In the case of the former, the electrodes are insulated
from the gas whereas in the case of the latter, the electrodes are in direct contact with
the gas.
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1.5.4 Liquid Crystal Thin Panel Displays

As their name implies, liquid materials exhibit characteristics that are common to both the
liquid and solid states. As with a liquid, the molecules are able to move freely (as long as they
remain in close proximity to each other). However, in addition, there is a strong degree of
molecular alignment. Liquid crystal molecules are rod-like in shape and so we can envisage a
collection of molecules that have no defined position but which exhibit some form of preferred
alignment.23 This alignment may be influenced by the application of an electric field or by the
physical nature of the surfaces with which the liquid crystal material is in contact.

Suppose that we sandwich a thin layer of liquid crystal material between two glass plates
which have been specially prepared as follows:

1. We score a set of fine parallel ridges onto the inner surface of each plate. The direction of
ridges on one plate is orthogonal to those on the other. Thus we can consider one set of
ridges to be horizontal and the other set to be vertical. The rod-like liquid crystal molecules
that are directly in contact with the two plates will tend to line up with the adjacent ridges.
As the set of ridges in the two plates are orthogonal, this means that at one boundary
the molecules will be aligned in a ‘horizontal’ direction and at the other boundary in a
‘vertical’ direction. This will influence the orientation of the molecules within the bulk of
the material – from one surface to the other. Here we can conceptualise a stack of ‘sheets’
of molecules whose orientation will gradually rotate through 90◦ (provided that the two
surfaces are in close proximity).

2. We coat both glass plates with a transparent conductive material (using for example, indium
oxide). These coatings form electrodes and enable us to apply an electric field across the
liquid crystal material. When an appropriate field is applied, the molecules align themselves
in the direction of the field – no longer does their orientation gradually spiral from one
glass plate to the other – see Figure 1.31.

As may be seen from the illustration, we add two polarizing filters and illuminate the arrange-
ment from the rear. When the unpolarized (randomly polarized) light impinges on the first
filter only light polarized in a certain direction is able to emerge. This then passes through the
liquid crystal material – which acts as an optical waveguide. In the case that no field is applied,
the gradually twisting molecules rotate the plane of the lights polarization through 90◦. The
light then encounters the second polarizing filter and if we have arranged that the planes of
polarization of the two filters are crossed (orthogonal to one another), then the light will emerge
and be visible to the observer. However, if we now apply an electric field across the liquid crystal
material, the molecules are rearranged and no longer rotate the light’s plane of polarization by
90◦. The second filter now prevents the light from emerging.

In short, this display technique is based on our ability to control the orientation of the liquid
crystal molecules and hence the polarization of light passing through the material. Note that the
CRT and plasma displays (together with the field emission approach – see the next subsection)
are fundamentally based upon the controlled production of light (e.g. by electrons impinging
on a phosphor) whereas the liquid crystal approach is based on the controlled modulation of
incident light.

A liquid crystal flat panel display provides a rectangular array of pixels. Generation of colour
images is made possible by forming each pixel from three subpixels (one being responsible for

23 In this discussion we assume the use of nematic liquid crystal material and confine ourselves to a simple
display embodiment.
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Figure 1.31 An electric field is applied between the glass plates and the rod-like molecules align themselves with this field. This is a cross-
sectional view of the display panel.

the generation of red content, one the generation of green content, and the other, blue content).
Colour emission is achieved by equipping each subpixel with a filter of a suitable colour. Given a
display comprising 106 or more pixels, individually addressing each pixel via its own dedicated
electrical connection is impractical24 and a row and column addressing technique is used.
In this case a display comprising n by n pixels can be addressed using only 2n connections
(these being vertical and horizontal strips of the transparent electrode coating). Thus 106 pixels
can be addressed by 2000 connections. In the case of a so-called ‘passive matrix’ display we
address a particular pixel by applying a voltage difference to the appropriate row and column
connections – when we remove the signal, the pixel reverts to its ‘natural state’. Such an approach
necessitates the regular refreshing of each pixel and parallels the TLO characteristic of the CRT.
Overall, liquid crystal displays of this type offer limited performance, have a limited viewing
angle and are likely to exhibit a poor contrast ratio.

An alternative ‘active matrix’ approach provides superior characteristics. Here, an individual
transistor is associated with each pixel/subpixel. This transistor can serve several purposes – for
example it can be used to define a clear threshold in relation to changes in the characteristics
of the pixel and to maintain the drive signal to a pixel so that regularly refreshing the display
(to avoid image flicker) is unnecessary (the SSLO paradigm). The transistors are fabricated
directly on the display structure and must not block the transmission of the light through
the panel. Their fabrication is by no means a simple task! Also note that since all thin panel

24 This also applies to the plasma display panel.
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display technologies employ individually addressable pixels display hardware failure can result
in irritating ‘dead pixels’.

1.5.5 Field Emission Thin Panel Displays

The field emission approach closely mimics the CRT – visible light output is achieved by means
of electrons that are accelerated towards a phosphor coated display screen. However, these
electrons are generated using ‘cold cathodes’ which emit electrons as a consequence of the high
fields produced at their sharp tips. These electrons are accelerated towards the phosphor coated
screen with one or more cold cathode electron sources being responsible for the production of
each pixel/subpixel (recall that the CRT employs electron beam scanning techniques whereas
in the case of the field emission approach each pixel is formed via its own dedicated electron
beam). This technique offers to combine the high performance characteristics of the CRT with
the benefits of the thin panel display paradigm. However, the extent to which this technique
will succeed will ultimately be governed by commercial considerations – manufacturing costs,
strength of competitive approaches etc.

1.6 Encoding the Third Dimension

‘Somewhere he remembered the soft glow of candlelight,
The scratching quill.

Resolutely he put them aside for security;
Bright screen fluorescent lights

Words marched before him, orderly and presentable.
But once, the screen went down and they streamed from his fingers,

Flickered and danced like ancient promises,
Half forgotten light.’25

In section 1.3 we briefly referred to the binocular parallax depth cue and its critical role in pro-
viding a strong sense of 3-D relief. In this section we extend this discussion and provide several
exemplar images that contain binocular information. Subsequently, we briefly introduce four
techniques that may be used to encode binocular information within images (e.g. photographs,
drawings and computer graphics scenes) in such a way as to enable this information to be made
available to the visual system in an appropriate manner.

Here, we confine our discussion to techniques that are underpinned by the general stereo-
scopic approach and postpone until Chapter 9 consideration of the volumetric, varifocal and
holographic paradigms.

1.6.1 Exemplar 3-D Images

As previously mentioned, when we view our surroundings our two eyes each receive a slightly
different view on the scene under observation. This is caused by their physical separation and
is particularly apparent when we view scenes that are in fairly close proximity and where there
is considerable spatial separation of components within the scene. This effect may be readily

25 Patricia Blundell (1959–).
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observed by looking at our surroundings and closing one eye and then the other. As you will
note, the two images that we see are a little different. The differences (disparities) in the two
views obtained by the eyes are interpreted by the visual system as providing a sensation of three-
dimensionality.26

Before we begin to consider ways in which we can encode this information in images that are
portrayed on a flat surface, it is instructive and interesting to take a look at a few examples. Using
the viewing glasses provided with this book and which comprise two different coloured filters,
take a look at the section of ‘anaglyph images’. When correctly viewed these images exhibit
a remarkable three-dimensionality – the figures no longer appear to reside on the page, but
instead stand out from it. Here, the left and right hand views of the stereopair are printed using
different colours and with the help of the filtered glasses, one view may be seen by the left eye
and the other view by the right eye. This is commonly known as the ‘anaglyph technique’.

In section 1.3 we briefly mentioned the pioneering research of Charles Wheatstone and David
Brewster in the 19th century and their work on the development of the stereoscope. Figure 1.32
depicts several stereopairs (generally referred to as stereograms) and in each case an image scene
is photographed from two slightly different locations. To observe the three-dimensionality that
can be derived from stereopairs, it is necessary to fuse the two images. With a little practice
this can be achieved by converging the eyes, and in fact the use of a stereoscope to view such
images is not a requirement. However, in the case that you have not previously practiced directly
fusing stereo images, stereo viewing glasses are provided with this book (these are the glasses
comprising 2 transparent eye pieces). You may need to move them either closer to the page or a
little further away from it in order to properly observe the three-dimensionality of each image
scene. These viewing glasses simply assist in the process of fusing the images comprising each
pair. Once you have practiced viewing the images using the glasses, it is likely that you will find
it quite easy to view the images directly simply by converging your eyes. Additional stereograms
are included elsewhere in this book – see for example Figure 9.8.

In the next subsection, we briefly outline four basic methods by which stereo images can be
encoded and correctly presented to the visual system.

1.6.2 Coding Techniques

In this sub-section, we briefly introduce four general techniques that can be used in the imple-
mentation of flat-screen display systems able to support the binocular parallax depth cue. These
four techniques are summarised in Figure 1.33 and are outlined below:

1. Chromatically Coded Images

This is the technique used in the formation of the anaglyph27 images referred to above. Here,
the left and right views which form the stereo pair are each depicted in a different colour (for
example, green and red). Filter glasses are used to present each eye with a different view. Thus,
for example, the left eye may be presented with a view depicted in red, and the right eye with a
view depicted in green – only one view being seen by each eye.

26 Note the images cast onto the retinae of the eyes contain both vertical and horizontal disparities.
27 Anaglyph – from the Greek: ‘To carve in relief ’.
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Non-Coded
images

Chromatically
coded images

Temporally
coded images

Spatially coded 
images

Images depicted on a flat screen display 
and that incorporate the binocular parallax 

depth cue

Figure 1.33 Four general techniques that may be used to encode stereoscopic views within an image depicted upon a screen or other 2-D
tableau. The terminology used here is taken from Blundell [2007].

This represents a very simple but effective technique and the viewing glasses are inexpensive.
Unfortunately as with all 3-D display paradigms, it does not provide a Utopian solution and has
several weaknesses:

(a) It is important to ensure that ‘cross-talk’ is avoided/minimised. In this context, cross-
talk occurs when the left eye is presented with content intended for the right eye, and
vice versa. In the case of the anaglyph display we can avoid cross-talk by ensuring that
the optical characteristics of the filters used in the viewing glass are sufficiently well-
defined so that the red light is not transmitted through the green filter, and the green
light is not transmitted through the red filter. Additionally, we can select colours that are
well separated in wavelength – thereby facilitating the decoding of the two colours. Most
commonly, red and green or red and blue are used.

(b) By employing chromatic (colour) coding our ability to depict images comprising multiple
colours is somewhat restricted. That is not to say that this technique is limited solely to
the depiction of two-colour images, although there are restrictions on the range of colours
that can be accommodated – for interesting discussion see Girling [1990].

The anaglyph technique dates back to the mid 19th century and is generally attributed to Joseph
D’Almeida and Louis Du Hauron who employed this approach for ‘magic lantern’ slide shows.
The technique gained popularity in the 1950s for 3-D cinema and is frequently used in both
advertising and comics.

2. Non-Coded Images

As we have seen, in the case of the stereoscopic technique, invented by Charles Wheatstone
and David Brewster, the left and right views of the stereo pair are depicted side by side (recall
Figure 1.32). Each image is then directed to the appropriate eye. In this scenario, coding of the
images is unnecessary because they are kept apart and presented to the visual system separately.
This technique underpins immersive virtual reality headsets. Here, two separate display screens
are employed: one for the left eye, and one for the right. Thus the left and right views of the stereo
pair are fed directly to the two eyes. Cross talk is avoided because each eye can only see a single
screen. In the case of a head-mounted display of the type used in immersive virtual reality, a
lightweight and physically compact form of headgear is required. However, if the display screens
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are located in close proximity to the eyes it is not possible to focus on the images that they depict.
In fact, as you will observe by moving a finger, pen, or the like – held vertically – towards one
eye it is possible to readily identify the least distance of distinct vision. This is known as the
‘near point’, and is ∼25 cm for the emmetropic (‘normal’) eye. In implementing a virtual reality
headset, it is therefore necessary to interpose an optical arrangement between each eye and the
corresponding display screen. This allows the eyes to focus on the display screens despite their
close proximity and the image is able to occupy a wide field of view (100 to 140◦ horizontally
and 40 to 60◦ vertically).

We tend to think of immersive virtual reality as a state-of-the-art technology, but it is
interesting to note that from a visual perspective the basic idea has been around for some
time. In 1930, Joseph Bayer filed a patent [US Patent Number 1,876,272] concerning a system
intended to act as an aid to aircraft flying in conditions of poor visibility (he named this
system ‘A Fog Penetrating Televisor’). This purported to capture stereo images using a pair
of infrared detectors. These images were then depicted on a stereoscopic display by means
of which each eye was presented with the appropriate image. Although the underlying tech-
niques used for data collection were somewhat flawed, the inventor appears to have had a
sound understanding of the benefits to be derived through the use of stereoscopic imaging
techniques. A similar stereoscopic display is described by Otto Schmitt [1947]. More recently,
in the 1960s, Ivan Sutherland (who we have already mentioned in relation to the develop-
ment of an interactive computer graphics interface) developed a head-mounted display that
employed two miniature Cathode Ray Tubes and an associated optical arrangement. These
two CRT’s were located just above either ear and pointed forwards. An optical arrangement
was then used to direct the images depicted on the CRT’s into the eyes [Sutherland 1968,
Blundell 2007].

3. Temporal Coding

Here, the left and right-hand views of the stereo pair are depicted as alternate frames on a flat
screen display. Thus, for example, the first, third, and fifth frames etc. depict one of the images
of the stereo pair, and the second, fourth, and sixth etc. frames correspond to the other. In
this way a stereopair is temporally coded (i.e. coded in time). In order to correctly perceive the
stereo content, a user must wear special purpose viewing glasses which may be either ‘active’ or
‘passive’. These two forms of glasses are summarised below:

(a) Active Glasses: Active glasses receive a synchronisation signal from the computer which
controls the optical properties of the two eye-pieces. Typically these comprise liquid crystal-
based shutters and can be switched between transparent and opaque states. When, for example,
a frame intended for the left eye is depicted on the display, the eyepiece for this eye would
be transparent, while the other would be opaque. When the next image refresh occurs, the
optical states of the two eye-pieces switch. In short, only one eyepiece is transparent at any
one time, and this ensures that the alternate images depicted on the display screen can only be
seen by the appropriate eye. Traditionally, active glasses were linked to a computer via a cable;
the modern rendition typically employs an ultrasound link and therefore a physical connection
is unnecessary.

(b) Passive Glasses: Typically, these employ polarising filters and are used in conjunction
with an active polarising filter that is fitted to the front of the display screen. As with (a)
above, the objective is to ensure that each of the two images of a stereopair is directed to the
appropriate eye – and cannot be seen by the other eye. In the simplest case, the active linearly
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Display screen

Alternate image 
frames are 
orthogonally
polarized

Viewing glasses

Plane of 
polarization of 
left eye-piece

Plane of 
polarization of 
right eye-piece

Figure 1.34 The use of passive glasses for viewing images depicted using the temporal coding technique. See text for discussion.

polarising filter fitted to the display screen is able to switch between two orthogonal29 planes of
polarisation – as illustrated in Figure 1.34. The filters fitted to the viewing glasses are arranged
so that, for example, the right eye filter will pass only the vertically polarised light and the left
eye filter only the light polarised in the horizontal direction.

OTU Exercise 1.8: Passive Polarizing Glasses

Identify one problem associated with the approach described above in which linearly
polarising filters are employed in the implementation of a temporally multiplexed display.

No 3-D display provides a perfect solution – and the temporally coded approach is no
exception. Problematic areas that need careful considerations are as follows:

� Alternate frames are presented to each eye. Therefore if, for example, we were to use a
display that is refreshed at (say) 50 Hz, then the frequency at which images are presented
to each eye would be 25 Hz. This exacerbates the problem of image flicker and so this
technique should only be used with display hardware able to operate at a high update
frequency (i.e. ≥100 Hz).

29 That is, the planes of polarization are at 90◦ to each other.
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� When this approach is implemented with a CRT-based display, it is important to remember
that the light output following a frame refresh or update from the three phosphor materials
responsible for generating the red, green, and blue light, does not decay at the same rate
(this is also the case with plasma and field emission based displays). When active viewing
glasses are employed, this can lead to undesirable cross-talk (recall from above that in this
context cross-talk refers to the left or right-hand views of the stereo pair being partially
visible to the unintended eye (i.e. ‘ghosting’)).

� As with the anaglyph technique, this approach necessitates the use of viewing glasses.
Although in some situations the need to wear these may be tolerable, in other applications
this may not be appropriate.

4. Spatial Coding

This technique can be implemented in various ways but is essentially based on the projection
of the left and right images that form the stereopair into two separate regions such that when
an observer is correctly positioned, each eye is presented with one of these views. Perhaps the
simplest approach to the implementation of such a display is the ‘parallax stereogram’ technique
proposed by F.E. Ives in 1903. This method is illustrated in Figure 1.35(a). Here, the left and right

(a)

Strip of the
left stereo

view

Strip of the
right stereo

view

Display screen or
suitably prepared

photograph
Plate containing slits 

Right Eye

Left Eye

Plan View

Figure 1.35 In (a) we illustrate the general arrangement used in the implementation of a Parallax Stereogram. Here, a small section of
the screen and slit plate are shown and sizes have been exaggerated for clarity. In (b) and (c) overleaf, we illustrate the preparation of the
interleaved stereogram. As indicated in (b) the two stereo images are divided into a set of vertical strips and these are then interleaved – as
shown in (c).
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(b)

Stereopair

A,B,C,D etc. L,M,N,O etc.

(c) A, L, B, M, etc.

Interleaved stereopair

Figure 1.35 Continued
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views on the stereopair are each divided into a set of vertical strips and these are displayed in an
interleaved manner – see Figures 1.35(b) and (c). A plate comprising a set of vertical slits lies
between the displayed image and the viewer. The pitch of the slits (i.e. the distance between the
centres of adjacent slits) is arranged to be approximately the same as the pitch of the interleaved
image strips and so when an observer is correctly positioned, the right eye is able to see only one
set of strips and the left eye the other set.

This approach is advantageous in as much as the observer does not need to don any viewing
glasses – however, there are several weaknesses. For example:

� An appreciable amount of the light output by the display is lost – its passage being blocked
by the opaque portions of the slit plate. However, this problem can be addressed in a
number of ways such as through the use of a lenticular sheet.

� Freedom in viewing position is somewhat restricted.

In Chapter 9, we further discuss the above display techniques and introduce several other
approaches.

1.7 Discussion

‘The sleep of reason brings forth monsters.’30

In this chapter, we have introduced a broad range of background material and have emphasised
the pivotal role played by computer graphics in the implementation of the human-computer
interface. As discussed, different types of application impose different demands on graphics
hardware and software systems. Furthermore, computer graphics techniques can seldom be
implemented in isolation and so it is desirable to consider their operation within highly inte-
grated environments.

We have identified a number of important milestones in the development of geomet-
rical techniques that enable a 3-D scene to be accurately rendered on a 2-D tableau. As
we have seen, great progress was made in this area during the Italian Renaissance – con-
cepts that were discovered and re-discovered during this period play a vital role in the
depiction of 3-D images on the conventional computer display. For convenience, in Fig-
ure 1.36 we summarise some of the historical events referred to in this chapter (see also
Blundell [2006]).

Finally, we have considered various display system techniques. Here, we distinguished
between the vector and bitmapped (pixmapped) approaches used in the implementation of the
conventional flat screen computer display and have commented on the lack of support that this
display modality provides for the binocular parallax depth cue (stereopsis). We have also briefly
outlined several ‘creative’ display techniques that advance the flat screen display and enable the
inclusion of binocular parallax.

30 Attributed to Goya. Quoted in Taylor, F., ‘Dresden, Tuesday 13 February 1945’, Bloomsbury Publishing,
(2004).
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Filippo Brunelleschi: Generally considered to have provided the first
demonstration of an accurate mathematically based perspective technique

Leon Battista Alberti: Della Pittura

Piero della Francesca: De prospective pingendi

Samuel Taylor Coleridge: Biographia Literaria (the concept of ‘suspension
of disbelief ’)

~1415

~1435

~1478

1817

Gaspard Monge: Geometrie Descriptive (publication delayed) ~1795

Joseph D’Almeida and Louis Du Hauron: The Anaglyph technique

Charles Wheatstone: Demonstration of the Stereoscope

David Brewster: Demonstration of the Stereoscope

1838

1849

~1850

John Logie Baird: First demonstration of practical TV (electro-mechanical)

Alan Archibald Campbell Swinton: Proposal for all-electronic TV –
employing the CRT

F.E. Ives
Invention of the Parallax Stereogram

1926

1911

1903

Joseph Bayer: Electro-mechanical stereoscopic display
1930

1947

1948

Otto Schmitt: Electronic Stereoscopic Display (immersive using CRT’s)

Parker and Wallis: Seminal publication on perspective displays and 3-D
paradigms. Also around this time – Carl Berkley and Otto Schmitt 

Morton Heilig: Sensorama – an immersive virtual reality environment 1962

Ivan Sutherland
Sketchpad – an interactive graphics system

1963

Figure 1.36 A summary of some early events that have influenced the evolution of modern computer graphics. Note that events listed here are
limited to those specifically referred to in this chapter.



Chapter 1 . Setting the Scene 65

1.8 Review Questions

1. Distinguish between screen update frequency and screen refresh frequency.
2. Distinguish between the terms ‘bitmapped’ and ‘pixmapped’ as used in the context of a

display.
3. What is a pixel?
4. State one important depth cue that is absent from images depicted on a conventional flat

screen display.
5. Consider the use of a perspective projection technique that enables a 3-D scene to be

projected onto a 2-D tableau. State one critical assumption that is made.
6. State one major weakness of the vector graphics approach.
7. In the context of flat screen display techniques, name four general techniques that may be

used for the encapsulation (and presentation to the visual system) of the binocular parallax
depth cue.

8. Briefly describe the source of binocular parallax.
9. State your understanding of the scope of modern computer graphics.

10. What is meant by the term ‘critical flicker frequency’?

1.9 Investigations

1. In Section 1.2 we outlined three general areas of application and identified different
demands that they impose on computer graphics based applications software. Identify
two other exemplar areas where computer graphics plays an important role. In each case,
compare and contrast the demands that are place on the graphics hardware and software
systems.

2. Investigate and discuss the contribution made by Leonardo da Vinci to the development of
techniques that enabled the creation of photorealistic images.

3. When stereopairs such as those depicted in Figure 1.32 are correctly viewed (either by
means of a stereoscope or by slightly crossing the eyes), the two images are fused into
a single image. In this situation, comment on the positioning of the two views on the
retinae – what, for example, is the result of crossing the eyes as far as the positioning of the
retinal images is concerned?

4. Obtain a copy of the seminal paper published by Parker and Wallis [1948]. Examine and dis-
cuss the descriptions that are provided of 3-D display techniques. Identify techniques that
you feel could be of use today within the context of the modern human-computer interface.

5. Discuss how you could use two digital cameras to produce stereopairs (of the type
illustrated in Figure 1.32). You are encouraged to put your ideas into practice!

6. In Section 1.2 we indicate that ‘Where possible, the content and interaction opportunities
should transcend the medium of expression’. Discuss this notion.

1.10 Feedback to Review Questions

1. In the case that a display screen exhibits transient light output then, so as to avoid image
flicker, it must be refreshed at regular intervals. The minimum frequency at which it must
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be refreshed is referred to as the screen refresh frequency. The screen update frequency
corresponds to the minimum frequency that a sequence of image frames must be depicted
in order to provide the sense of smooth animation.

2. In the case of a bitmapped display each pixel is represented by single bit in memory. The
pixmapped approach allows the state of each pixel to be represented by a plurality of bits.
A pixmapped display is able to support both grey scale and multi-colour image depiction.

3. A pixel is the fundamental element from via which computer processed images are formed.
The word ‘pixel’ is derived from the term ‘picture element’.

4. Binocular parallax – also referred to as stereopsis.
5. The location of the viewpoint is assumed.
6. The time needed to output an image frame depends on the number of vectors within the

frame, their spatial distribution and the order in which they are drawn.
7. Chromatic coding, temporal coding, spatial coding and non-coded images.
8. Because the two eyes are physically separated (by a distance of ∼6.5 cm), when we view

a 3-D scene each eye is presented with a slightly different view. Small differences between
these views (disparities) are interpreted by the visual system as providing a strong sense of
depth. However, if the disparities are too great, a double image is perceived.

9. For the purposes of this book, the following description is assumed: Computer graphics
embraces all aspects of the synthesis, depiction and manipulation of pictorial represen-
tations by computational machines together with their presentation to the human visual
system.

10. This is the minimum frequency at which image frames that are subject to transient light
output (TLO) must be refreshed so that a flicker free image is perceived. This frequency is
influenced by various factors such as image illumination. Furthermore, although an image
may be consciously perceived as being free of flicker, subliminal perception of flicker may
still be a problem.



A Maths Primer 2
‘We took him out – soft, wobbly, tearful;
set him down on his four, as yet not quite
simultaneous legs, and regarded him.’

2.1 Introduction

In this chapter, we introduce some of the basic mathematical techniques that underpin aspects of
modern computer graphics. We focus on practical issues and for a more rigorous treatment sev-
eral textbooks are recommended. Students entering introductory courses in computer graphics
often have wide-ranging mathematical backgrounds. Consequently, although some readers will
already be familiar with the material presented here, others may not have previously studied
some or all of the topics. In order to ascertain your degree of familiarity with the chapter
contents, and so determine sections that should be studied, we suggest that you attempt the
OTU Exercises within the chapter and also the Review Questions (located at the end of the
chapter).

This chapter largely focuses on the basic maths which underpins the representation and
manipulation of images within a 2-D space. In other parts of this book we extend this discussion
to embrace three spatial dimensions. In the next section, we briefly introduce Cartesian, Polar
and Homogeneous coordinate systems. This leads on to discussion in Section 2.3 about the
representation of a line using Cartesian and parametric equations. Section 2.4 focuses on
vectors – these play a key role in computer graphics and it is therefore important that you have a
basic understanding of techniques that can be employed in their manipulation and of the ways

67
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in which they can be used in defining points lines and curves. Subsequently, in Section 2.5 we
turn our attention to matrices and describe various operations that can be performed upon
them. In Section 2.6 we consider the parabola, circle, spiral and ellipse. Finally, in Section 2.7
we outline the de Casteljau Algorithm which enables us to create a parabola using three ‘control’
points.

Key Learning Outcomes: At the end of this chapter you should be able to:

� Discuss the use of Cartesian, Polar and Homogeneous coordinate systems and convert
between these systems.

� Describe a line in terms of either the Cartesian and parametric forms of representation.

� Use and manipulate vectors. This includes the description of a line using a vector
equation and the use of the scalar(dot) product.

� Perform basic operations on matrices. This includes the multiplication of matrices and
the calculation of the inverse matrix.

� Discuss characteristics of the parabola, circle, rose curve, Archimedes spiral and
ellipse.

� Outline the operation of the de Casteljau Algorithm for the creation of a parabola.

2.2 Cartesian, Polar and Homogeneous Coordinate Systems

‘I read that when archaeologists dug down into the ancient cemetery,
they found fragments of human bones!

What kind of barbarians were these people, anyway?’1

In order to place and manipulate image components (such as points, lines and geometrical
shapes), it is necessary to have a means of specifying (in an unambiguous manner) their location
relative to some point of reference. In this section we review the use of rectangular and polar
coordinate systems for defining the location of a point on a plane. Additionally we briefly
describe homogeneous coordinates.

2.2.1 The Cartesian Plane

By means of a vertical and a horizontal line, we are able to develop a ‘Cartesian plane’. The two
lines are called axes (the vertical line is often referred to as the y-axis and the horizontal line as
the x-axis) and divide the plane into four quadrants. This enables us to establish a ‘rectangular

1 Attributed to Jack Handey (1949–).
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x-axis

y-axis

Origin with coordinates (0,0)

1 2 3 4−4 −3 −2 −1

1

2

3

−2

−1

−3

Quadrant 1

Quadrant III

Quadrant II

Quadrant IV

P

Figure 2.1 A rectangular coordinate system. This divides the Cartesian plane into four quadrants. Notice the arrows on the horizontal and vertical
axes denote increasingly positive directions.

coordinate system’ by means of which the location of any point on the plane can be specified.2

The point at which the lines intersect is referred to as the ‘origin’ and it is from this location that
the horizontal and vertical distances of points on the plane are measured – see Figure 2.1. As
may be seen from this illustration, both axes are provided with a linear scale where both positive
x and y values increase in the direction indicated by the arrows located on the two axes (i.e.
positive x values increase to the right and positive y values increase vertically).

In Figure 2.1, a point (P ) is indicated and its location can be defined by measuring its
horizontal and vertical displacement from the origin (in this case 4 units horizontally and 3
units vertically). These distances are expressed as an ordered pair. Here, the horizontal distance
is, by convention, assumed to be the first member of the pair and the vertical distance comes
second:

(horizontal distance, vertical distance).

Which is usually written as (x, y). The x coordinate is referred to as the abscissa and the y
coordinate as the ordinate. Returning to the point P indicated in Figure 2.1, its location may be
specified as (4,3).

2.2.2 Polar Coordinates

Consider point P indicated in Figure 2.2. Rather than specifying the location of this point
according to its horizontal and vertical displacement from the origin, we now specify:

2 For the moment, we confine our discussion to a plane or 2-D space. See Section 6.2 for reference to a
3-D space and Figure 5.25 which illustrates left and right-handed coordinate systems.
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x-axis

y-axis

−4 −3 −2 −1 1 2 3 4

1

2origin (O)

3

−2

−1

−3

P

θ

r

Figure 2.2 The use of polar coordinates to represent the location of a point.

� The magnitude of the point’s displacement from the origin (O) i.e. the distance OP. We will
denote this distance as r .

� The angle of the line OP as measured from the positive x-axis in an anticlockwise (counter
clockwise) direction. We will denote this angle as θ .

Thus in the case of point P , the magnitude of its distance (r ) from the origin is given by
Pythagoras’ Theorem such that

√
42 + 32 = 5 units and the angle is calculated by:

tan θ =
y

x
,

thus,

ϑ = arctan
( y

x

)
, (2.1)

which for point P is: arctan( 3
4 ) ∼ 37◦.

Polar coordinates are represented in the form (r, θ) and so point P could be represented as
(5, 37◦). Each and every point on the Cartesian plane may be defined by a single and unique
pair of coordinate values (x, y). In contrast, when polar coordinates are used, different values of
θ may be used to define the location of a particular point. For example, in the case of the point
P referred to above we have determined that θ ∼ 37◦. However, as indicated in Figure 2.3, if we
add 360◦ to this value we will still define the location of point P . In fact, adding (or subtracting)
any integer multiple of 360◦ to θ (whilst at the same time not making any change to r ) will
continue to define the location of point P .
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The addition of 360°
to q

θ

Figure 2.3 Adding (or subtracting) any integer multiple of 360◦ to θ (whilst at the same time not making any change to r) will continue to
define the location of the point P. (An integer is a positive or negative whole number.)

OTU Exercise 2.1: Conversion from Rectangular to Polar Coordinates

Convert the following rectangular coordinates for a point P to polar coordinates:

a. (3,3)
b. (−3,3)

Hint: recall that θ is measured in the anticlockwise direction from the positive x-axis.

2.2.3 Homogeneous Coordinates

Homogeneous coordinates are frequently used in computer graphics and greatly facilitate vari-
ous geometrical operations (see, for example, Section 3.5). In essence homogeneous coordinates
are based on rectangular Cartesian coordinates and a point (x, y) located in a 2-D space is
represented in homogeneous form by a triple:

[wx wy w].

Where w is a non-zero value and is referred to as the scale factor or the ‘homogeneous coordi-
nate’. For example, consider a point P whose rectangular coordinates in a 2-D space are (2,6).
To represent this point in homogeneous form we simply select a value for w (let us arbitrarily
use the value of 4) and can then express the point P as:

[8 24 4]

In fact, we can select any (nonzero) value for w. For example, the point P could also be
expressed as [2 6 1] (w = 1), [4 12 2] (w = 2) etc. Thus it follows that a point in 2-D space
can be represented by an infinite set of homogeneous coordinates – there is no single (unique)
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representation. However, we recognise that two sets of homogeneous coordinates represent the
same point if (and only if) one is a multiple of the other.

A homogeneous point [a b w] can be converted back to Cartesian coordinates by simply
dividing the first two terms by w. Thus [a b w] → (a/w, b/w).

In this book we will employ homogeneous coordinate representations as a convenient means
of supporting various geometrical operations and will not overly concern ourselves with under-
lying theory. However, it is interesting to note that by taking a pair of Cartesian coordinates
corresponding to the location of a point in 2-D space and representing these as a triple, we are
effectively adding another dimension – the point in 2-D space being represented as a point on
an associated line in 3-D space.

2.3 The Line

‘The greatest task before civilization at present
is to make machines what they ought to be,

the slaves, instead of the masters.’3

Recall from elementary coordinate geometry that an infinite straight line located on a 2-D plane
may be defined in terms of its gradient (m) and the point (c) at which it crosses the y-axis (the
‘y-intercept’)4:

y = mx + c . (2.2)

Verifying this equation provides us with a convenient opportunity to undertake a brief ‘workout’
with simple algebra (what joy . . . ).5 Consider the line depicted in Figure 2.4(a) which passes
through the point A located at (x, y) and the point B at (x1, y1). On the basis of similar triangles
we can write:

y1 − y

x1 − x
=

y − c

x
.

The gradient (m) of a straight line is given by:

m =
y1 − y

x1 − x
. (2.3)

Thus:

m =
y − c

x
,

and so:

mx = y − c .

Hence:

y = mx + c .

3 Attributed to Havelock Ellis (1859–1939).
4 In the case of a line which is parallel to the y-axis (and which therefore has an infinite gradient) it is
represented by x = a where a denotes the point at which the line crosses the x-axis.
5 This is an ‘explicit’ form of equation in that given a value for x , the value of y may be directly calculated.
In contrast, an ‘implicit’ form of equation equals zero – e.g. y − mx − c = o
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(b)

y
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B

y-intercept at c

x
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x
1

y
1

Positive
gradient

Negative
gradient

Figure 2.4 In (a) the equation for a straight line may be obtained by considering similar triangles that are indicated in red. See text for discussion.
In (b) we illustrate lines with positive and negative gradients.

OTU Exercise 2.2: The Equation of a Line

Determine the equation of an infinite straight line that passes through the points (2,1)
and (3,2).

Hint: It is helpful to begin by sketching the line.

2.3.1 A Finite Line: The Parametric Description

The above discussion enables us to describe the location of an infinite line in a 2-D space.
However, we are often concerned with finite lines – that is, line segments that are of a certain
length. Here, it is convenient to employ parametric equations in which, rather than providing
a single expression that relates x and y (as is the case in Eq. 2.2), we express x and y separately
in terms of a third independent variable. For example, consider the line segment illustrated
in Figure 2.5 which connects points P1 (located at (x1, y1)) and P2 (at (x2, y2)). We define a
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P1=(x1,y1)

P2=(x2,y2)

P=(x,y)

x

y

y1

y

y2

x1 x x2

Figure 2.5 The location of a point P = (x , y ) on a line segment can be conveniently expressed using parametric equations – see text for
details.

parameter (t) that represents the fractional distance that we have moved along the line (i.e. t
varies between 0 and 1). From inspection of Figure 2.5 it is apparent that the coordinates of an
arbitrary point (x, y) which is located on the line segment may be expressed by:

x = x1 + (x2 − x1) t (2.4)

y = y1 + (y2 − y1) t (2.5)

In the case that t = 0, then x = x1 and y = y1 – in which case, the point (x, y) is located at P1.
Alternatively when t = 1, x = x2 and y = y2 in which case (x, y) is located at the other end of
the line segment (i.e. at P2). For other values of t, we can reach any point on the line. Eq.’s 2.4
and 2.5 are known as parametric equations and the variable t is referred to as the ‘parameter’

OTU Exercise 2.3: The Parametric Form

Show that the two parametric equations given above for a straight line may be used to obtain
Eq. 2.3.

As indicated in the above OTU Exercise, converting the parametric representation of a line
(or curve) into an expression that directly relates the x and y variables is readily achieved by
eliminating the parameter (t). By way of a simple example, consider the parametric equations
x = 2t and y = t + 4. From the first equation, we can write t = x/2. Substituting this into the
second equation for t gives: y = x/2 + 4. By comparison with Eq. 2.2, it is apparent that this
represents a straight-line graph with a gradient of 0.5 and with a y intercept of 4.
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Figure 2.6 A line segment PQ and its perpendicular bisector. See text for discussion.

OTU Exercise 2.4: Parametric Form and Mid-Point of a Line Segment

Consider a line segment whose end points are at (1,2) and (3,4). Represent this line segment in
parametric form. Using the parametric equations, determine the coordinates of the mid-point
of the line.

2.3.2 The Perpendicular Bisector

Consider the line segment illustrated in Figure 2.6 with end-points P (located at (x1, y1)) and Q
(at (x2, y2)). In this diagram we also illustrate the perpendicular bisector of PQ.6

In the case of two orthogonal lines, the product of their gradients is
equal to −1.

Thus, if, for example, the line segment PQ has a gradient of 4, then a line that is perpendicular
has a gradient of −1/4.

The coordinates of the mid-point of the line segment PQ may, for example, be found as
follows:

1. In the case that PQ is expressed using parametric equations, we simply insert the values of
the line’s endpoints into Eq. 2.4 and 2.5 and set t to 0.5.

2. Alternatively we can intuitively write:

(xmid , ymid ) =
( x2 + x1

2
,

y2 + y1

2

)
.

Here, we are calculating the average of the end-point coordinate values.

6 The perpendicular bisector is a line that crosses the mid-point of PQ – the angle between the two lines is
90◦.
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OTU Exercise 2.5: The Perpendicular Bisector

Consider a line segment whose end-points are located at (1,1) and (4,3). Obtain an equation
for the perpendicular bisector to this line.

2.4 Vectors in a 2-D Space

‘O sleep! O gentle sleep!
Nature’s soft nurse, how have I frighted thee,

That thou no more wilt weigh my eyelids down
And steep my senses in forgetfulness.’7

In Section 1.4.1 we briefly distinguished between scalar and vector quantities (recall that a
scalar quantity (such as mass) has only an associated magnitude (size) whereas a vector quan-
tity (such as velocity) has both magnitude and direction). As we will see, vectors are widely
used in computer graphics and in this section we briefly overview some elementary vector
techniques.

Since vectors have both magnitude and direction, they are represented graphically by means
of ‘directed line segments’ – the length of a line providing the magnitude representation and
the orientation (coupled with the direction of the arrow that is drawn on the line) indicating
the vector’s direction. In Figure 2.7 three vectors are illustrated. The vectors shown in (a) and
(b) are of the same size and are parallel – thus they are equal in both magnitude and direction.
However, although the vector illustrated in (c) is equal in magnitude to the vectors in (a) and
(b) it is not parallel to them. Thus the vector in (c) is not equal to vectors depicted in (a)
and (b).

2.4.1 Vector Notation

Vector quantities are usually denoted by underlining the symbol used to represent the vector
(e.g. ‘a’), by the use of an overhead arrow (e.g.

→
op) or by means of bold typeface. In this book we

will use the latter approach. A vector from point A to point B will be indicated as ‘AB’ or may,
simply be labelled as, for example, a. The vectors AB and BA (see Figure 2.8(a)) are of the same
magnitude. However, they point in opposite directions and are therefore not equal.

2.4.2 ‘Free’ and ‘Position’ Vectors

A ‘free’ vector is simply indicated by a directed line segment (as in Figure 2.7) and is not
‘anchored’ to any particular location. Consequently, its absolute position is not defined. In
contrast, a position vector is ‘anchored’ in as much as it has a fixed starting point – see
Figure 2.8(b) where a position vector is indicated. This shows the absolute location of point
P relative to the origin (O) – the vector is denoted OP.

7 From ‘Henry IV’ by William Shakespeare. The reader is left to judge whether or not he may have been
referring to the after effects of mathematics . . .
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(a) (b) (c)

Figure 2.7 Three vectors in 2-D space. Here, the vectors illustrated in (a) and (b) have the same magnitude and direction and are therefore said
to be equal. However, although the length of the vector depicted in (c) is the same as those shown in (a) and (b) (i.e. they are equal in magnitude),
the vector in (c) has a different orientation. Therefore, this vector does not equal the other two.

2.4.3 Specifying Vectors

An arbitrary vector in 2-D space may be defined by means of two orthogonal ‘unit’ vectors (a
unit vector is one unit in length (i.e. has a magnitude of unity)). As indicated in Figure 2.9(a),
one of these vectors is oriented parallel to the x-axis and the other parallel to the y-axis. The
former is commonly assigned the symbol ‘i’ and the latter the symbol ‘j’ (note the use of
bold typeface to indicate that both are vector quantities). Consider the vector OP illustrated
in Figure 2.9(b). We may ‘travel’ from O to P by moving 3 units along the x-axis and 2 units
along the y-axis. This corresponds to placing 3 instances of the vector i and 2 instances of the
vector j end to end. Thus, we can express the vector OP as:

OP = 3i + 2j.

OTU Exercise 2.6: Expressing a Vector in Terms of Orthogonal
Unit Vectors

Consider a point Q that is located at (6,9). Express the position vector OQ in terms of unit
vectors i and j.

(a) (b)

B

A

B

A

P

O

Figure 2.8 In (a): a vector from point A to point B is not equal from one that ‘travels’ from B to A. Diagram (b) shows a position vector that
identifies the distance and location of a point P measured from the origin (O ).
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(a) (b)

Unit vector j

Unit
vectors j

Unit vector i

x

y

P

3

2

x

y

Unit vectors i

O

Unit vectors j

Figure 2.9 In (a) we illustrate the two unit vectors i and j. The former lies parallel to the x -axis and the latter is parallel to the y -axis. In (b) we
demonstrate that the vector OP can be represented by placing three instances of i and two instances of j end to end.

Many texts denote a unit vector by placing a ‘hat’ above the symbol used to represent the vector.
Thus the unit vectors i and j could be represented as î and ĵ. However, when referring to these
standard unit vectors, we will simply use the symbols i and j.8 In the case of other unit vectors,
we will include the ‘hat’ symbol.

Note: The representation of a vector by means of unit vectors i and j (e.g. a = 4i + 2j), is
commonly referred to as the ‘component form’. Alternatively we can describe the vector in row
or column form. In row vector notation the vector a would be given by a = [4 2]. Using this
notation, we can express the unit vectors i as [1 0] and j as [0 1].

2.4.4 The Magnitude (Modulus) of a Vector

We can use Pythagoras’ Theorem to find the magnitude (length (also referred to as the modu-
lus)) of a vector. Consider the vector OP illustrated in Figure 2.9(b). The length of this vector is
given by:

|OP| =
√

32 + 22 =
√

13.

Notice the use of the two vertical line segments that are placed on either side of OP. These
indicate that we are referring to the magnitude of the vector OP.

2.4.5 Addition of Vectors

The process of adding two vectors may be most readily understood by reference to a simple
example. Suppose that we wish to add together the vectors p and q indicated in Figure 2.10(a).
The process may be accomplished in the manner used above in connection with the unit vectors
i and j – we simply relocate either p or q so that ‘tail’ of one vector is placed at the ‘head’ of the
other – see Figure 2.10(b) where we have relocated q.

8 When we extend our discussion to a 3-D space, we will use the symbols i, j and k to denote the standard
unit vectors. Thus for vectors within a 2-D space we employ two unit vectors and for 3-D we include an
additional unit vector.
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(a) (b)

p

q

p

q

Resultant 
(sum)

x

y y

x

Figure 2.10 The addition of vectors p and q. In (a) the two vectors are depicted. So as to find their sum (p + q) we relocate one of the vectors
(ensuring that we do not change either its length or direction) and place the ‘tail’ of this vector on the ‘head’ of the other. The sum (resultant) is
indicated in (b).

When vectors are specified in terms of the orthogonal unit vectors (i and j), their addition
is a simple process. For example, suppose that we want to add two vectors – p and q where
p = 3i + 4j and q = 2i + 6j. We simply add together each pair of orthogonal components. Thus
we add 3i and 2i (giving 5i) and 4j and 6j (giving 10j). Hence, p + q = 5i + 10j.

By way of a further example, suppose that we wish to add together a and b: where a = i + 2j
and b = 2i + j. Adding the two orthogonal pairs gives us: a + b = 3i + 3j. This process is illus-
trated in Figure 2.11.

OTU Exercise 2.7: Addition and Subtraction of Vectors

Assume that p = 2i + 9j and q = 4i + 5j.

1. Calculate p + q.
2. Calculate p − q.

Note: The process of subtraction is carried out by subtracting each of the two orthogo-
nal pairs.

(a) (b)

a

b

Resultant

1 2

1

2

x

y

1 2 3

1

2

3

x

y

b

a

Figure 2.11 The addition of two vectors: a = i + 2j and b = 2i + j. As can be seen from (b) the resultant (sum) is found by adding the two
pairs of orthogonal components. As indicated, this gives 3i + 3j.
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2.4.6 Reversing the Direction of a Vector

In Figure 2.12 we illustrate the vector a = 2i + 3j. If we wish to create a vector that has equal
magnitude but that points in the opposite direction, we simply change the sign of both orthog-
onal components. In the case of vector a, this will produce a new vector (we will refer to this as
b (where b = −a)). The vector b is given by: b = −2i − 3j – see Figure 2.12.

OTU Exercise 2.8: Reversing the Direction of a Vector

Consider the vector c that is shown in Figure 2.12: where c = −4i + 2j. On the diagram draw
the vector d (where d = −c). Express this vector in terms of i and j.

2.4.7 Changing the Magnitude of a Vector

We can increase or decrease the magnitude (length) of a vector (i.e. scale the vector) by multi-
plying the vector by a positive number – a positive scalar value. For example, consider the vector
a = 2i + 3j. To increase the length of this vector by a factor of three, we simply multiply by 3 –
i.e. 3a = 6i + 9j. However, as indicated in Section 2.4.6, changing the sign of the two orthogonal
components reverses the direction of the vector. This is equivalent to multiplication by −1.
Hence, if we multiply a vector by any negative number we will not only reverse the direction
of the vector but also (in the case of all negative numbers other than −1) increase or decrease
the vector’s magnitude. For example, if we multiply a vector by −2, we will create a new vector
which points in the oppose direction and is twice the length of the original.

a

b

c

1 2 3−4 −3 −2 −1
−1

−2

1

2

3

−3

x

y

Figure 2.12 Here, we depict a vector a = 2i + 3j. To create a vector which has the same magnitude but that points in the opposite direction,
we change the sign of the two orthogonal components that define the vector. This results in a vector that is given by −2i − 3j. This vector is
labelled b (where b = −a). Note: changing the sign of the two components is the same as multiplying by −1. Regarding vector c – see OTU
Exercise 2.8.
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2.4.8 The Unit Vector

Consider a vector a. If we wish to produce a unit vector (recall this is a vector of unit length)
which points in the same direction as a, then we determine the magnitude of a and divide the
two orthogonal components that define a by this value. In short:

â =
a

|a| .

Recall that the ‘hat’ symbol is used to indicate a unit vector and that |a| denotes the magnitude
of a. For example, consider the vector a = 3i + 4j. The magnitude of this vector is found
using Pythagoras’ Theorem – see Section 2.4.4: |a| =

√
32 + 42 = 5. Thus the unit vector â is

given by:

â =
3i + 4j

5
=

3i

5
+

4j

5
.

2.4.9 The Scalar Product

The scalar product provides us with a convenient way of determining the angle between two
vectors. Consider the vectors a and b where a = a1i + a2j and b = b1i + b2j (here, a1, a2, b1 and
b2 represent real numbers). The scalar product of these two vectors is given by:

a·b = (a1i + a2j)·(b1i + b2j).

Notice the use of the period to denote the scalar product (because of this, it is also commonly
referred to as the ‘dot’ product). To increase clarity, when indicating a scalar product we will
use a period in bold typeface – a non-bold period between two terms will signify conventional
multiplication. To calculate the scalar product, we multiply the terms in the brackets:

a·b = (a1i + a2j)·(b1i + b2j) = (a1b1)i·i + (a2b2)j·j + (a1b2)i·j + (a2b1)j·i . (2.6)

This expression may easily be simplified. However, before we can do so we need to introduce
a further result which relates the scalar product to the angle between the associated vectors.
Consider the two vectors a and b in a 2-D space as depicted in Figure 2.13. Assuming that θ is
the angle between the vectors such that 0 ≤ θ ≤ 180◦, we can write:

a·b = |a||b| cos θ. (2.7)

A derivation of this equation is provided in Appendix C. Now consider the scalar product of the
unit vectors i and j (specifically i·i, j·j, i·j and j·i). For i·i, using Eq. 2.7 we can write:

i·i = |i||i| cos θ.

In this case we know that |i| = 1 (i is a vector of unit length) and also that the angle (θ) referred
to here is zero (hence cos θ = 1). Thus i·i = 1 and similarly j·j = 1 Now consider the scalar
product of two orthogonal unit vectors9 (θ = 90◦ and so cos θ = 0):

i·j = |i||j| cos 90 = 0.

9 The terms ‘orthogonal’, ‘perpendicular’ and ‘normal’ all refer to entities that meet at right-angles. In
mathematics, when dealing exclusively with vectors we tend to use the term ‘orthogonal’ to signify an
angle of 90◦ between two vectors.
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a

b

i

j
θ

y

x

Figure 2.13 The angle θ between the two vectors a and b may be readily determined by use of the scalar (dot) product. See text for discussion.

When two vectors are orthogonal, their scalar product is zero.

We can now use these results to simplify Eq. 2.6 and so:

a·b = (a1i + a2j)·(b1i + b2j) = (a1b1)i·i + (a2b2)j·j + (a1b2)i.j + (a2b1)j·i = a1b1 + a2b2. (2.8)

Equating Eq.’s 2.7 and 2.8 gives the following important result:

a·b = a1b1 + a2b2 = |a||b| cos θ (2.9)

To illustrate a use of this result consider two vectors a and b in a 2-D space where a = i + 3j and
b = 4i + 6j and let us calculate the angle between these vectors. We begin by calculating their
magnitudes: |a| =

√
12 + 32 =

√
10 and |b| =

√
42 + 62 =

√
52. We also calculate a·b and find

this to equal 22. On the basis of Eq. 2.9 we can write:

a·b = 22 =
√

10
√

52 cos θ,

and so,

cos θ =
22√

10·√52
.

Hence θ ∼ 15◦.

Note that the scalar product gives a result that is a scalar rather than
a vector quantity. This is in contrast to the ‘vector product’ (see Sec-
tion 6.3) which (as the name implies) produces a result that is a vector
quantity.
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Figure 2.14 The direction cosines are given by cos α and cos β . See text for discussion.

OTU Exercise 2.9: Using the Scalar Product

1. Find the angle between the vectors a = 2i + 3j and b = 4i + j.
2. Determine whether or not the vectors p = 2i + j and q = −i + 2j are orthogonal.

2.4.10 Direction Cosines

‘Writers seldom choose as friends those self-contained characters
who are never in trouble, never unhappy or ill,

never make mistakes and always
count their change when it is handed to them.’10

Consider the vector a = 4i + 3j depicted in Figure 2.14. The symbols α and β respectively denote
the angles between this vector and the positive x and y axes. The cosines of these angles (cos α
and cos β) are referred to as the vectors ‘direction cosines’. These can be easily determined:

cos α =
4

|a| , and cos β =
3

|a| .

Since |a| =
√

42 + 32 = 5 it follows that cos α = 4/5 and cos β = 3/5. In the case that two vectors
are parallel, they will have the same direction cosines.

2.4.11 The Vector Equation of a Line

Vectors provide a means of unambiguously defining the location of a point on a 2-D plane
relative to some fixed location. For example, the position vector 3i + 4j (which we assume is
‘anchored’ to the origin) defines a point that is 5 units in distance from the origin and which is
located in a specific direction.

10 Attributed to Catherine Drinker Bowen (1897–1973).
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Table 2.1 Exemplar values of t are
used to create the line depicted in
Figure 2.15.

t a

0 2j
1 i + 3j
2 2i + 4j
3 3i + 5j

A straight line may be defined by specifying the location of two points through which the
line passes. In fact, it is convenient to view a line as comprising a locus of points – indeed a
line or other graphics primitive that is depicted on a bitmapped (pixmapped) display is formed
from a set of illuminated points (pixels)) and vectors can be used to define the location of each
of these points. In the previous subsections we have considered vectors to have the general
form a1i + a2j – both a1 and a2 representing real numbers that, for a particular vector, have
a fixed value. However, we can represent a vector in a more general way by allowing both
a1 and a2 to vary in some related manner. For example, consider the vector a which we will
express as:

a = xi + yj, (2.10)

where, for example, x and y are related by: y = x + 2 (recall that this is a particular instance of
the general equation for a straight line that we provided in Eq. 2.2 and has a gradient of unity and
y intercept of 2). Following previous discussion in Section 2.3.1, it is often convenient to express
x and y in terms of an independent variable (which for the present we will represent using the
symbol t) and so, we can specify our exemplar line by the parametric equations x = t, y = t + 2.
Thus we can write Eq. 2.10 as:

a = ti + (t + 2)j.

By inserting values for t, we can generate a set of vectors that define points that lie on
the line given by the Cartesian equation y = x + 2. This is demonstrated in Table 2.1 and
Figure 2.15. In the table we use four exemplar values for t (0, 1, 2, 3) and for each, we
determine a using the above expression. In the illustration, we plot these vectors and as can
be seen, the points that they specify lie on a straight line that has a gradient of unity and a y
intercept of 2.

Note: Different parametric equations can give rise to the same graph. By way of an example,
consider the Cartesian equation for a line y = 4x + 3. We may assign the parameter (t) to
form the parametric equations x = t, y = 4t + 3. Substituting these parametric equations into
Eq. 2.10. we obtain:

a = ti + (4t + 3)j.

Alternatively, we could assign t so that x = t/4 in which case, y would simply equal t + 3.
Substituting these parametric equations into Eq. 2.10, we obtain:

a = (t/4)i + (3 + t)j.
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Line with gradient of 
unity and y intercept of 2

Figure 2.15 The use of a vector equation for plotting a line. The four vectors given in Table 2.1 are plotted and give rise to a set of points that lie
on a line which has a gradient of unity and a y intercept of 2.

OTU Exercise 2.10: Plotting Lines Using the Vector Equation

In relation to the two vector equations presented above (i.e. a = ti + (4t + 3)j and a = (t/4)i +
(3 + t)j) show that when plotted they both give rise to the same line.

So far we have considered the use of a vector equation to enable us to determine the location of
points that form a line. However, we can also specify a line using an alternative vector technique.
Consider the scenario illustrated in Figure 2.16.

Arbitrary line

a

A

r

d

P

b

B

y

x

Position vector to 
the arbitrary point P

Figure 2.16 An alternative approach to the vector representation of a line. Here, we specify a vector a that defines a point on the line together
with a second vector (d) that gives the direction of the line (slope).
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x
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1

4

3

2 A

B

Figure 2.17 A line that passes through the points (1,2) and (2,3). See text for discussion concerning the representation of this line by means of
a vector equation.

Here, we can define all points on the line by means of two vectors. Firstly we employ a vector
that defines the location of a point on the line (in the illustration we employ a vector labelled
a). Secondly, we use a vector that defines the direction (gradient) of the line – this is labelled
vector d in the diagram. The position vector (r) of any arbitrary point (P ) on the line may then
be expressed as:

r = a + ud, (2.11)

where u is a real number (positive or negative) which scales the vector d and therefore enables
us to reach any point on the line. For example, in Figure 2.16, the position vector to the point P
would be given by: r = a + 3d. The vector r is commonly written as r(u) – so indicating that r
is a vector that is a function of a parameter (u). In Figure 2.16, we also indicate a vector b such
that d = −a + b. Consequently we can rewrite Eq. 2.11 as:

r(u) = a + u(b − a). (2.12)

In the case that 0 < u < 1, then P lies between points A and B . If u > 1 then P lies to the right
of B and if u is negative then P lies to the left of A.11

To further illustrate this general approach, consider the line depicted in Figure 2.17 which
passes through the points (1,2) and (2,3). In this case the vector a may be expressed as a = i + 2j
and the vector b as b = 2i + 3j. Thus using Eq. 2.12 we obtain:

r(u) = (i + 2j) + u((2i + 3j) − (i + 2j)).

This can be simplified to give:

r(u) = (1 + u)i + (2 + u)j.

11 Recall that multiplying a vector by a negative number will not only scale the vector’s magnitude, but
will also reverse its direction.
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As we know, a vector in 2-D space can be represented as r = xi + yj and by comparison, in
the case of our exemplar line x = 1 + u and y = 2 + u. Eliminating the parameter u, we obtain
y = x + 1 which is the Cartesian equation for this line.

OTU Exercise 2.11: Locating the Point at which Two Lines Intersect

Consider two lines that are given by the vector equations: r1(t) = i + 3j + t(−i + 2j) and r2(s) =
i − 2j + s(2i + j). Note that here, we have used the letters t and s to represent the two parame-
ters.

1. Show that these two lines are not parallel.
2. Obtain the position vector to the point of their intersection.

Note: We have not explicitly considered these two issues – a little lateral thinking is needed
(perhaps supported by coffee)!

2.5 Matrices

‘Taking mathematics from the beginning of the world
to the time of Newton,

what he has done is much the better half.’12

In this section, we take a break from our discussion of vectors and introduce some elementary
concepts in relation to matrices. A matrix takes the form of a rectangular array of elements and
by convention these are placed within ‘square’ brackets. Thus a matrix A may be given by:

A =

[
1 2 3
5 9 3
7 2 4

]
.

This would be referred to as a 3 × 3 matrix13 (comprising 3 rows and 3 columns of ele-
ments). A matrix that comprises the same number of rows and columns is referred to as a
‘square’ matrix whereas if the number of rows and columns are not equal, the matrix is said
to be rectangular. In generalised form, a matrix comprising m rows and n columns may be
represented as:

A =

⎡
⎢⎣

a11 a12 . . . a1n

a21 a22 . . . a2n

. . . .
am1 am2 . . . amn

⎤
⎥⎦ . (2.13)

12 Attributed to Gottfried Wilhelm Leibniz (1646–1716).
13 This is commonly referred to as the ‘dimensions’ or ‘order’ of the matrix.
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In an excellent book devoted to matrices Bickley and Thompson [1964], write:

‘Mathematical notation is a language: it conveys information by means of symbols used in accordance with
certain conventions. In it brevity is a virtue, provided it is not achieved at the expense of doubt or ambiguity.
But if the notation were no more than a shorthand, its usefulness would be very limited.’

As we shall see here and in subsequent chapters, matrices provide us with a powerful tool
and are an excellent example of a mathematical notation that facilitate the representation
and efficient manipulation of numerical values. In fact operations on matrices underpin the
depiction of both static and dynamic image scenes and also our interaction with computer
graphics applications. In the following subsections, we briefly summarise various operations
that can be performed on matrices.

2.5.1 Addition and Subtraction of Matrices

We can add and subtract matrices that are of the same order (dimensions). For example consider
the following example: [

2 3
1 4

]
+

[
5 1
2 4

]
=

[
7 4
3 8

]
.

As may be seen, addition is carried out by summing corresponding elements within the two
matrices. Thus, for example, we add the top left most elements in the two matrices (2 and 5)
and place the result (7) in a corresponding position within the matrix which represents the sum.
Subtraction is carried out using the same approach:[

2 3
1 4

]
−

[
5 1
2 4

]
=

[−3 2
−1 0

]
.

However, we cannot perform the following addition and subtraction operations – the matrices
are not of the same order: [

1
2

]
+

[
1 3
4 5

] [
1 7
5 2

]
− [

1 3
]

Note that the addition of two matrices is commutative (A + B = B + A) whereas subtraction is
not commutative (A − B �= B − A).

2.5.2 Multiplication of Matrices

The multiplication of two matrices is not quite as simple as the addition and subtraction
processes described above. Here, each element within the matrix that represents the result is not
obtained by multiplication of corresponding elements. Furthermore in order that two matrices
can be multiplied, it is not necessary for them to have the same dimensions:

Two matrices can be multiplied if the number of columns in the first
matrix equals the number of rows in the second.
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Thus, for example the following two matrices can be multiplied:

[
1 2 3
2 5 4

]
×

[
1 2 3
3 1 5
2 −1 4

]
,

whereas the following two matrices cannot be multiplied:

[
2 1
1 6

]
×

[
2 3
1 2
6 4

]
.

To illustrate the way in which matrices are multiplied, let us consider a simple example:[
1 2
3 4

] [
5 6
7 8

]
.

Notice that it is usual to omit the multiplication sign – the lack of a sign between two matrices is
assumed to indicate multiplication. Consider the diagram presented in Figure 2.18. In order to
obtain element a in the result matrix, we use the first row of the first matrix and the first column
of the second matrix (the latter is shown as being arranged as a row and placed above the first
matrix). We then multiply the two pairs of elements and add the result (so obtaining 19). This
result provides us with element a in the solution matrix.

We then repeat this process using the second row of the first matrix and the first column of
the second. Thus we calculate 3 × 5 + 4 × 7 = 43 and this provides element c in the solution
matrix.

Having operated on both rows of the first matrix using the first column of the second, we now
repeat the process – but this time we make use of the second column in the second matrix. In
Figure 2.19, we show the generation of element b in the solution matrix. Element d is obtained
by using the second column of the second matrix and the second row of the first.

When first encountered, the multiplication process can seem complicated and perhaps con-
fusing. However, the key is to remember that we take each of the columns of the second matrix
and use these to operate in turn on each row of the first. Returning to the above example, the

87

65

43

21

5  7

=
dc

ba

1x5+2x7

Figure 2.18 To multiply matrices we bring together columns of the second matrix with rows of the first. Here, we illustrate the operation
performed using the top row of the first matrix with the first column of the second. This provides element a in the solution matrix.
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87

65

43

21

6   8

=
dc

ba

1x6+2x8

Figure 2.19 Continuing with the example depicted in Figure 2.18, here we generate element b in the solution matrix using the top row of the
first matrix and the second column of the second matrix.

actual operation that are performed are as follows:[
1 2
3 4

] [
5 6
7 8

]
=

[
1 × 5 + 2 × 7 1 × 6 + 2 × 8
3 × 5 + 4 × 7 3 × 6 + 4 × 8

]
=

[
19 22
43 50

]
.

OTU Exercise 2.12: The Multiplication of Matrices

Undertake the following multiplications (in the case of (3), what do you notice):

1.

[
1 2
2 3

] [
1 1
3 2

]
.

2.

[
2 1
3 2

] [
2
1

]
.

3.

[
1 2
3 4

] [
1 0
0 1

]
.

The multiplication of larger matrices is achieved in a similar manner – although as the size
(order) of the matrices increase, the manual multiplication process becomes increasingly labo-
rious. By way of a simple example, let’s consider the multiplication of two 3 by 3 matrices:[

1 2 3
2 1 2
3 1 0

][
2 0 1
1 3 2
0 1 1

]
.

We begin by using the top row of the first matrix and the first (left most) column of the second
and calculate (1 × 2) + (2 × 1) + (3 × 0). The result (4) is the top left most element in the result
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matrix. We then repeat this process – the pattern can be seen in the calculation that follows:[
1 2 3
2 1 2
3 1 0

][
2 0 1
1 3 2
0 1 1

]

=

[
(1 × 2) + (2 × 1) + (3 × 0) (1 × 0) + (2 × 3) + (3 × 1) (1 × 1) + (2 × 2) + (3 × 1)
(2 × 2) + (1 × 1) + (2 × 0) (2 × 0) + (1 × 3) + (2 × 1) (2 × 1) + (1 × 2) + (2 × 1)
(3 × 2) + (1 × 1) + (0 × 0) (3 × 0) + (1 × 3) + (0 × 1) (3 × 1) + (1 × 2) + (0 × 1)

]

=

[
4 9 8
5 5 6
7 3 5

]
.

In computer graphics, we sometimes encounter situations in which we need to multiply three
matrices. By way of a simple example, let’s consider the multiplication of three 2 by 2 matrices
denoted A, B and C where:

A =

[
2 3
0 1

]
, B =

[
1 4
0 2

]
and C =

[
4 1
0 2

]
.

We assume that we wish to calculate the product A·B ·C – that is:[
2 3
0 1

] [
1 4
0 2

] [
4 1
0 2

]
.

To calculate this product, we need to decide which pair of matrices we will initially multiply. Do
we begin by multiplying A and B or do we first multiply B and C ? The former will lead to our
calculating (A·B)·C and the latter A·(B ·C ). Below we illustrate both of these scenarios:

� Determining (A·B)· C:
We begin by multiplying A and B :

A·B =

[
2 3
0 1

] [
1 4
0 2

]
=

[
2 14
0 2

]
,

and now perform the multiplication with C :[
2 14
0 2

] [
4 1
0 2

]
=

[
8 30
0 4

]
.

Thus:

(A·B)·C =

[
8 30
0 4

]
.

� Determining A·(B)· C):
In this case we begin by multiplying B and C :

B ·C =

[
1 4
0 2

] [
4 1
0 2

]
=

[
4 9
0 4

]
.
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We now multiply this result with matrix A:[
2 3
0 1

] [
4 9
0 4

]
=

[
8 30
0 4

]
.

Thus:

A·(B ·C ) =

[
8 30
0 4

]
.

Hence both approaches give the same answer. This is a general property of matrices, and we
would say that the multiplication of three matrices is ‘associative’. However, it is important to
note that matrix multiplication is not ‘commutative’ – that is:

A·B �= B ·A.

Therefore, although in determining A·B ·C , we can first multiply A and B , and subsequently
perform the multiplication with C or multiply B and C and then perform the multiplication
with A, we must not change the order of the matrices within the individual multiplications. For
example:

A·(B ·C ) �= A·(C ·B) �= (B ·C )·A �= (C ·B)·A

2.5.3 The Inverse of a Matrix

In OTU Exercise 2.12, you will have noticed that in the case of (3), multiplication by
[

1 0
0 1

]
has

no effect – it does not change the ‘identity’ of the matrix on which it operates. For this reason,
it is referred to as the ‘identity matrix’ for multiplication of 2 by 2 matrices. Consider the case
that two 3 by 3 matrices are multiplied. Here, the identity matrix is:[

1 0 0
0 1 0
0 0 1

]
. (2.14)

OTU Exercise 2.13: An Identity Matrix

Perform the following multiplication and hence verify that the second (right hand) matrix acts
as an identity matrix. ⎡

⎣1 2 1
2 1 0
2 0 3

⎤
⎦

⎡
⎣1 0 0

0 1 0
0 0 1

⎤
⎦ .

In the case that we perform simple numerical multiplications, the identity element is 1 (multi-
plication by 1 has no effect). Furthermore we know that:

a × a−1 = I.
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Here a represents any number, a−1 is the inverse of a and I is the identity element (which in
this case is unity). For example, consider the case that a = 3, the inverse is 1/3 and the result of
their multiplication is 1. Similarly, multiplying a matrix by its inverse gives the identity matrix.

In order to find the inverse of a matrix, we must first find the ‘determinant’ – this is often
simply abbreviated to ‘det’. Below we briefly consider this process for both 2 by 2 and 3 by 3
matrices:

1. The Determinant of a 2 by 2 Matrix: Consider a matrix A given by:

A =

[
a b
c d

]
.

The determinant of A (det A) is given by ad-bc. For example, consider the following case:

A =

[
2 4
3 1

]
.

Then:

det A =

∣∣∣∣2 4
3 1

∣∣∣∣ = (2) · (1) − (4) · (3) = −10.

Notice the use of two parallel lines to signify the determinant.

2. The Determinant of a 3 by 3 Matrix: Finding the determinant of a 3 by 3 matrix is a little
more complicated. Consider the matrix A given by:

A =

[
a11 a12 a13

a21 a22 a23

a31 a32 a33

]
.

The determinant of A is given by:

det A = a11(a22a33 − a23a32) − a12(a21a33 − a23a31) + a13(a21a32 − a22a31).

A brief inspection of this equation reveals that the bracketed terms are in fact 2 by 2 determi-
nants. Thus we can re-write this in a more convenient way:

det A = a11

∣∣∣∣a22 a23

a32 a33

∣∣∣∣ − a12

∣∣∣∣a21 a23

a31 a33

∣∣∣∣ + a13

∣∣∣∣a21 a22

a31 a32

∣∣∣∣ (2.15)

Returning to the issue of finding the inverse of a matrix. Here, we simply consider the case of a
2 by 2 matrix. The general technique is illustrated in Figure 2.20.

In this example, the value of the determinant (ad − bc) is 11. We now draw a diagonal line
as indicated in the illustration. The elements on either side of this line are swapped and the sign
of the two elements that lie on the diagonal are changed. Finally we divide each element by the
determinant.

Recall our previous comment that when we multiply a matrix by its inverse, we obtain the
identity matrix. This provides us with a convenient way of checking the calculated inverse.
Continuing with the example used in Figure 2.20 – let’s verify the inverse that we calculated:[

1 4
−2 3

] [
3/11 −4/11
2/11 1/11

]
=

[
3/11 + 8/11 −4/11 + 4/11

−6/11 + 6/11 8/11 + 3/11

]
=

[
1 0
0 1

]
.
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Figure 2.20 Finding the inverse of a matrix. We begin by calculating the determinant which, in this example, is 11. The elements on either side
of the diagonal of the original matrix are swapped and the signs of the two elements on the diagonal are changed. We then divide each element
in this new matrix by the determinant.

OTU Exercise 2.14: Calculating an Inverse Matrix

Find the inverse of the following matrix: [
2 4
3 1

]
.

Verify that the identity matrix is obtained when you multiply the above matrix by the calcu-
lated inverse.

2.5.4 Multiplication by a Constant

We can multiply a matrix by a constant (scalar) value. Consider a matrix A that we wish to
multiply by a constant k. Then:

kA =

[
ka11 ka12

ka21 ka22

]
. (2.16)

For example, suppose that k = 3 and A is given by:

A =

[
1 2

−4 3

]
,

then:

kA = 3A =

[
3 6

−12 9

]
.
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2.5.5 Concerning Row and Column Vectors

In Section 2.4 we considered issues relating to the manipulation and use of vectors and as dis-
cussed, a point in a 2-D space may be represented by ai + bj where i and j represent orthogonal
unit vectors that are aligned with the horizontal and vertical axes.

As mentioned previously, it is often convenient to employ a notation for the representation
of such vectors and in this respect we can use either column or row vectors. Thus, for example,
we can represent the vector 3i + 4j in the following ways:

3i + 4j =

[
3
4

]
,

which is referred to as a column vector. Alternatively we can use a row vector representation:

3i + 4j =
[
3 4

]
.

As we will discuss in Chapter 3, matrices are used for geometric operations such as scaling
(enlargement or reduction in size) and for the rotation of graphics elements. In this context
we employ matrices that act on vectors and here it is instructive to consider a simple example.
Suppose that we have a point P in 2-D space whose location is defined by the vector 3i + 4j and
that we want to apply a scaling factor such that both the horizontal and vertical components of
the vector are scaled by the same amount – lets assume a factor of 2 – so giving rise to a vector
P ′. We can achieve this goal by representing the point P as either a row or column vector. Below
we briefly examine these two approaches:

1. The Use of a Row Vector: Here, we could multiply the horizontal and vertical components
of P by a matrix S where S is given by:

S =

[
2 0
0 2

]
.

Thus:

[
3 4

] [
2 0
0 2

]
=

[
6 8

]
.

The points P and P ′ are illustrated in Figure 2.21.

2. The Use of a Column Vector: In this case, we change the order of multiplication – the
matrix S being located to the left of the column vector:[

2 0
0 2

] [
3
4

]
=

[
6
8

]
.

As can be seen from this simple example, in (1) the matrix responsible for the transfor-
mation acts on the point P to produce the scaled result. On the other hand, when we
use a column vector, the point acts on the transformation matrix – a scenario that is
somewhat less intuitive. For simplicity, in this book we will usually employ the row vector
approach.
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Figure 2.21 The use of a scaling factor whereby both the horizontal and vertical components are scaled by the same amount. Here, a scaling
factor of 2 is used on the position vector that defines the location of a point P.

2.5.6 Using Matrices to Solve Equations

Let us suppose that we have two unknown quantities (which we will denote as x and y) that are
related by a single equation. For example:

2x + y = 10.

We can determine solutions to this equation by ‘inspection’ – simply a process of trial and error.
For example x = 1 and y = 8 satisfies the equation, x = 2, y = 6 provides another solution etc.
Depending on the significance of x and y, we are not necessarily restricted to integer values and
so there are an infinite number of possible solutions. However, if we have a second equation that
provides us with an alternative way of relating x and y, then we can employ the two equations
‘simultaneously’ and thereby determine a unique solution (recall from elementary maths that
these are commonly referred to as ‘simultaneous equations’).

For example, consider the two simultaneous equations:

2x +y = 10

3x +2y = 17

Here, we can use one equation to eliminate an ‘unknown’ from the other. For example, we know
from the first equation that:

y = 10 − 2x.

We can now insert this into the second equation and so write:

3x + 2(10 − 2x) = 17.

From which it follows that x = 3. Inserting this into either of the above equations yields y: in
this case y = 4. We often encounter situations in which we have more than two unknown quan-
tities – for example, we may have three ‘unknowns’ whose values are related by three equations.
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Indeed, in scientific problem solving and in engineering, we commonly face situations in which
there are a large number of unknown quantities which are related by an equally large set of
equations. Finding solutions by means of the algebraic approach used above rapidly becomes
time consuming and tedious. Fortunately, we can employ matrices in solving such equations
and the technique may be readily implemented in software. Below we briefly describe the use
of matrices to solve the pair of simultaneous equations presented above and in Section 7.4.1
extend this discussion to determining three quantities by means of three equations.

We can re-write the pair of simultaneous equations using matrix notation:[
2 1
3 2

] [
x
y

]
=

[
10
17

]
.

This can be easily verified – simply multiply the two left-hand matrices. If we denote the left
most matrix as K, the central matrix as L and the right-hand matrix as M then we can represent
this equation as:

K ·L = M.

If we now multiply through by the inverse of K (K −1), we obtain:

L = K −1·M.

This is because when we multiply K by its inverse, we obtain the identity matrix (recall
Section 2.5.3) and the multiplication of L by the identity matrix leaves L unchanged. To solve
the simultaneous equations, we must simply determine the inverse matrix (K −1) and multiply
by M. In Section 2.5.3 we outlined the technique used to obtain the inverse matrix – in the
case of the example that we are using, the determinant is unity and so the inverse of K is
given by: [

2 −1
−3 2

]
.

Thus: [
x
y

]
=

[
2 −1

−3 2

] [
10
17

]
=

[
3
4

]
.

This agrees with the result that we previously obtained. The key advantage to the matrix
technique is that it is readily extensible to solving for a larger set of unknown quantities.

2.6 Concerning Curves

‘Willingly would I burn to death like Phaeton,
were this the price for reaching the sun

and learning its shape, its size and its substance.’14

In this section we briefly turn our attention to curves and begin our discussion by considering
the parabola. Subsequently we review the circle and ellipse. These are examples of conic sections
(or simply ‘conics’) and in Section 2.6.3 we consider the so called rose curves and Archimedes’
Spiral.

14 Eudoxus of Cnidus.
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OTU Exercise 2.15: Conic Sections

As their name implies, conic sections represent the family of the cross-sections of a cone. Draw
a cone and indicate on your diagram a cross-section that is circular, one that is elliptical and
one that is parabolic.

2.6.1 The Parabola

Consider the development of a simulator or game in which a pictorial representation is used to
show the path followed by a projectile such as a heavy calibre shell fired from a gun or a cricket
ball in flight. Discounting any secondary influences (e.g. air turbulence), such objects follow a
‘parabolic’ trajectory. A parabola may be defined as:

‘. . . the set of points (x,y) that are equidistant from a fixed line (directrix) and a fixed point (focus) not on the
line. The midpoint between the focus and the directrix is the vertex.’ [Larson et al. 1998]

Consider a simple parabola given by the explicit Cartesian equation y = x2. This curve is
illustrated in Figure 2.22. The focus is located at (0,0.25) and the directrix is 0.25 units below
the x-axis. Thus, if we consider an exemplar point on the curve (2,4), it is apparent that this
point is 4.25 units above the directrix and its distance from the focus is

√
22 + 3.752 = 4.25.

y

x1 2 3
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4

1

−3 −2 −1

2

8
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Figure 2.22 A parabola – each point on the curve lies at an equal distance from the focus and from the directrix. This parabola is symmetrical
about a vertical axis. The vertex lies midway between the directrix and the focus. In the case of the parabola that is given by y = x 2, the focus is
at (0,0.25).
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The general equation for a parabola is of the form:

(x − h)2 = 4 p (y − k) , (2.17)

where the vertex is located at (h, k) and p denotes the vertical distance of the focus from the
vertex. The reader may be unfamiliar with this equation and if so, it is sufficient to note that a
parabola is created when we graph an equation of the form:

y = ax2 + bx + c ,

where a, b and c are real numbers and a �= 0. Recall from elementary maths that the right-hand
side of this equation is a quadratic function.

Considering the parabola given by y = x2, we can represent this by means of a vector equa-
tion. Using the parametric equations x = u and so y = u2, we can express the position of a point
on the curve by the position vector r(u) as:

r(u) = ui + u2j.

Substituting values for u into this equation enables us to obtain a set of vectors which define
points on the parabola.

Consider the case that a parabola is symmetrical about a horizontal axis (as opposed to the
situation depicted in Figure 2.22 in which the parabola is symmetrical about a vertical axis). The
general equation is:

(y − k)2 = 4 p (x − h) . (2.18)

Again, (h, k) denotes the location of the vertex and the focus is p units from this point in a
horizontal direction.

OTU Exercise 2.16: The Parabola

The explicit Cartesian equation for a parabola that is symmetrical about the x-axis, whose
vertex lies on the origin and that has a focus at (0.25,0) is given by:

y2 = x . (2.19)

Here, we assume that the parabola lies to the right of the y-axis (i.e. positive x ). Obtain an
expression for the position vector r(u) to points on this curve. By selecting suitable values for
the parameter (u), draw vectors to points on the curve and so sketch its shape.

2.6.2 The Circle

A circle is defined as a locus (collection) of points that are equidistant from a fixed point. The
general explicit Cartesian equation for a circle of radius R and which is centred on the point
(a, b) is:

(x − a)2 + (y − b)2 = R2. (2.20)
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P

Figure 2.23 A circle of radius R that is centred on the origin. The point P with coordinates (x , y ) lies on the circle as shown. As discussed in
Section 2.2.2, such a point may be represented in polar coordinates. See text for discussion.

For example, consider a circle of radius 3 units and that is centred on the origin. The Cartesian
equation for this circle would be:

x2 + y2 = 9. (2.21)

OTU Exercise 2.17: The Circle

Draw a graph of a circle with a radius 3 units and that is centred on the origin. (Hint: Perhaps
begin by rearranging Eq. 2.21 so as to obtain an expression for y.)

We can represent a circle using a vector equation and, as we will see, this has certain advantages.
Consider a circle of radius R and that for simplicity we assume is centred on the origin – see
Figure 2.23.The angle between a line connecting a point P with coordinates (x, y) to the origin
and the x-axis is denoted by θ .

From the illustration it is apparent that:

cos θ =
x

R
, and sin θ =

y

R
.

Thus:

x = R cos θ, and y = R sin θ.

We can use these two parametric equations to represent points on the circle by means of a
position vector r(θ). (Notice that here we express r as a function of the parameter θ (previously
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we have expressed r as a function of a parameter u)). Thus:

r(θ) = R((cos θ)i + (sin θ)j).

2.6.3 The Archimedes’ Spiral and Rose Curves

It is instructive to briefly digress and consider the generation of the two curves that are com-
monly referred to as the ‘Archimedes’ spiral’ and the ‘Rose curve’. As its name suggests, the
former takes the form of a line that spirals around a fixed point (in a manner akin to the track
of a vinyl record or CD). Such a curve may be represented by the parametric equations:

x = kθ cos θ

y = kθ sin θ.

Here, k is a positive number that determines the size of the spiral and θ the angle relative to, for
example, the x-axis. The spiral may also be represented by the equation:

r = b − a

2π
θ.

In this case, b and a respectively denote the outer and inner radii and h the track width. Thus
(b − a)/h represents the number of revolutions of the spiral (N). The angle θ is measured from
a reference position and runs from 0◦ to 2Nπ .

A Rose curve may be generated using parametric equations of the form:

x = k cos(nθ) cos θ

y = k cos(nθ) sin θ

OTU Exercise 2.18: Archimedes Spiral and the Rose Curve

Using graphing software, a graphing calculator or by manual calculation, generate an
Archimedes spiral and also a Rose curve. The more adventurous reader may choose to write a
simple graphics program that is able to do this!

2.6.4 The Ellipse

Consider a coffee cup. When we look directly down on the cup, the shape of its rim is correctly
perceived as being circular. However if we now look at the cup from a more oblique location,
the rim no longer appears to be circular but is elliptical (why?). In fact, when viewing our
surroundings, we often look at circular objects from off-axis locations and are adept at judging
(usually subconsciously) whether an object that has an elliptical outline is in fact elliptical in
shape or rather corresponds to a distorted view of a circular object.

An ellipse that is centred on the origin is represented by the Cartesian equation:

x2

a2
+

y2

b2
= 1. (2.22)



102 An Introduction to Computer Graphics and Creative 3-D Environments
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Figure 2.24 An ellipse centred on the origin. Consider a point (x,y) whose distance from F1 is d 1 and from F2 is d 2. Let L = d 1 + d 2. An ellipse
comprises the set of points for which L is constant. An ellipse has a major axis (AB) and a minor axis (CD).

An ellipse is illustrated in Figure 2.24 and is defined as the locus of points the sum of whose
individual distances from two fixed points (called foci) is constant. A line passing through the
foci is said to intersect the ellipse at its two vertices (denoted as A and B in the illustration) and
a line (cord) connecting these vertices is referred to as the major axis (the major axis denotes the
greatest extent of the ellipse). The mid-point of this line is the centre of the ellipse and a cord
that passes through this centre and that is perpendicular to the major axis is referred to as the
minor axis.

The Cartesian equations for an ellipse with a centre at (h, k) and with major and minor axes
of lengths 2a and 2b are given below:15

1. In the case that the major axis is horizontal:

(x − h)2

a2
+

(y − k)2

b2
= 1. (2.23)

2. In the case that the major axis is vertical:

(x − h)2

b2
+

(y − k)2

a2
= 1. (2.24)

The vector equation for an ellipse that is centred on the origin is given by:

r(θ) = (a cos θ)i + (b sin θ)j. (2.25)

This indicates the use of the parametric equations:

x = a cos θ

y = b sin θ

15 Larson et al. [1998].
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Thus:

cos θ =
x

a
, and sin θ =

y

b
.

We can obtain the Cartesian equation for an ellipse (as given in Eq. 2.22) by squaring and adding
these two equations:16

( x

a

)2
+

( y

b

)2
= cos2 θ + sin2 θ = 1

2.7 Forming a Parabola Using Three Points: de Casteljau Algorithm

In this section we briefly outline a simple technique that enables a parabola to be generated using
three ‘control points’. Before considering the underlying maths, it is instructive to manually
construct a parabola using this technique. The approach is outlined in the following OTU
Exercise.

OTU Exercise 2.19: Forming a Curve using Three Control Points

In Figure 2.25, we indicate three ‘control’ points that are labelled A, B and C. These are arbi-
trarily positioned. A line connects points A and B and a second line connects points B and
C. In this example, we begin by marking the mid-points of lines AB and AC. We then draw a
line between these two points (labelled m and n in the diagram) and mark the mid-point of
this line.

We now mark a point on the lines AB and BC that lies at, say, one-quarter way along each
line (these points are marked in the illustration). Connect these two points together with a
line segment and mark a point that lies one quarter way along this line. Repeat this process
for other fractional values. (For example, mark a point that lies three-quarters the way along AB
and one that lies three-quarters along BC. Draw a line that connects these two points together
and mark a point that lies three-quarters the way along this line.)

Finally, draw a curve that connects the points that you have indicated on the various line
segments that you have drawn (this curve should also pass through points A and C).

Recall that in Section 2.3.1 we considered an arbitrary point on a line segment (see Figure 2.5)
and expressed the location of this point by means of two parametric equations (see Eq.’s 2.4
and 2.5). Here, the parameter t denotes the fractional distance of the point along the line
segment. With reference to Figure 2.26, we can easily write an equivalent vector equation that
defines the location (p(t)) of any point P on the line segment:

p(t) = (1 − t) p0 + tp1. (2.26)

Consider now the three points indicated in Figure 2.27 and that are located in a 2-D space. We
will assume that the location of the points are respectively given by the vectors pA, pB and pC.

16 Here we use: cos2 θ + sin2 θ = 1.
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Figure 2.25 Constructing a curve using three control points (A, B and C). See text for discussion.

From Eq. 2.26, we can express the location of a point on the line AB as:

pB
A(t) = (1 − t) pA + tpB. (2.27)

Similarly, the location of a point on the line connecting B and C may be expressed as:

pC
B(t) = (1 − t) pB + tpC. (2.28)

If, as in Figure 2.25, we now connect these two points by a line segment, then a point (q) lying
the same fractional distance along this new line segment will be at a position (q(t)) given by:

q(t) = (1 − t) pB
A + tpC

B. (2.29)

p1

p0

Arbitrary point P
t=1

t=0

y

x

Figure 2.26 An arbitrary point P lies on the line segment illustrated. The location of this point can conveniently be expressed as a vector
equation – see Eq. 2.26. When t = 0, this equation places the point at one end of the line segment and when t = 1, at the other end.
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Figure 2.27 The location of the three points A, B, and C are defined respectively by the vectors pA, pB and pC. See text for discussion.

To obtain a vector equation that shows how the point q moves as we vary the parameter t, we
simply substitute Eq.’s 2.27 and 2.28 into Eq. 2.29 for pB

A and pC
B . This gives:

q(t) = (1 − t) ((1 − t) pA + tpB) + t ((1 − t) pB + tpC) = (1 − t)2 pA + 2t (1 − t) pB + t2pC.

This is a quadratic equation in t and hence corresponds to a parabolic curve. The approach is
generally referred to as the de Casteljau algorithm. Certainly the use of control points provides
a convenient technique for the creation of curves and also for their manipulation – a key issue
in interactive design – simply changing the location of a control point changes the shape of the
curve. Unfortunately, curves generated using three control points are of little practical value in
creative design – however this technique is interesting because it provides a simple introduction
to curve formation by means of control points. In Chapter 4 we consider alternative approaches
which extend this discussion.

2.8 Discussion

‘In times of change, the learner will inherit the earth
while the learned are beautifully equipped

for a world that no longer exists.’17

A broad range of mathematical tools and techniques underpin the development of computer
graphics applications. In this chapter we have laid various foundations and in subsequent
sections we will build on this material to provide a stronger basis for working within the
graphical world. In the next chapter we turn our attention to techniques used in the formation
of 2-D images and particularly demonstrate the application of both vectors and matrices.

17 Attributed to Eric Hoffer (1902–1983).
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2.9 Review Questions

The questions that follow are intended to provide the opportunity to revise the material covered
in this chapter. Some questions relate to content directly covered in this chapter – others require
the application of material to slightly new situations.

2.9.1 Coordinate Systems

1. Express the Cartesian coordinates (1,2) in polar form.
2. Express the Homogeneous coordinates [2, 6, 2] as rectangular Cartesian coordinates.
3. Express the polar coordinates (5, 60◦) as rectangular Cartesian coordinates.

2.9.2 The Line

1. Consider the line given by y = 4x + 3. State the gradient (slope) and the coordinates of the
y intercept.

2. Give an example of an ‘explicit’ equation and also of an ‘implicit’ equation.
3. Express the equation stated in (1) above in parametric form.
4. State the gradient of the line which is perpendicular to y = 5x − 6.
5. A line passes through the points (2,3) and (4,6). Determine the Cartesian equation for

this line.
6. Determine the coordinates of the point at which the line y = 3x + 6 crosses the x-axis.

2.9.3 Vectors

1. Find the magnitude of the vector 4i + 6j.
2. Find the angle between the vectors 2i + 3j and i + 4j.
3. Consider a line that passes through the points (1,2) and (5,6). Represent this line using a

vector equation.
4. What is the scalar product of two orthogonal vectors?

2.9.4 Matrices

1. The matrices A and B are given by:

A =

[
1 3
4 2

]
, and B =

[
2 1
1 0

]
.

Determine: A + B, A − B and AB.
2. State the identity matrix for multiplication of (a) a 2 by 2 matrix (b) a 3 by 3 matrix.
3. The matrix A is given by:

A =

[
1 3
4 2

]
.

Find det A.
4. Multiply the row vector [3 2] by the matrix A (as given in Question 3).
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2.9.5 Curves

1. A parabola has a Cartesian equation y = 2x2 + 1. Express this in parametric form.
2. State the Cartesian equation for a circle that is centred on the origin and that has a radius

of 9 units.
3. Find the coordinates of the points at which the parabola y = 2x2 − 3 crosses the x-axis.
4. Find the coordinates of the points at which the line y = x + 2 intersects with the parabola

y = x2.

2.10 Feedback to Review Questions

2.10.1 Coordinate Systems

1. Magnitude=
√

12 + 22 =
√

5. The angle relative to the x-axis is given by
θ = arctan ( 2

1 ) ≈ 63◦. Thus the point may be represented as (
√

5, 63◦).
2. Here, the scale factor (homogeneous coordinate) is 2. Thus the Cartesian coordinates are

(2/2,6/2) = (1,3).
3. Using Figure 2.28, cos 60◦ = x

5 . Thus x = 2.5 units. Also, sin 60◦ = y
5 , and so y ∼ 4.3 units.

Thus the Cartesian coordinates are (2.5,4.3).

2.10.2 The Line

1. Compare the equation with Eq. 2.2. The gradient= 4 and the y intercept is 3.
2. An explicit equation is one in which, for example y is expressed in terms of x (e.g. Eq. 2.2).

An example of an implicit equation is y + x − 3 = 0.
3. x = u/4, y = u + 3.
4. In the case of two orthogonal lines, the product of their gradients is equal to −1. The line

given has a gradient of 5, consequently the orthogonal line must have a gradient of −1/5.

60°

x

y

y

x

5

Figure 2.28 See Feedback to Review Question 2.10.1(3).
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5. Substituting these two pairs of coordinates into Eq. 2.2 we obtain:

3 = 2m + c and 6 = 4m + c .

Solving for m and c , we obtain m = 3/2 and c = 0. Thus the Cartesian equation is:

y =
3

2
x.

6. At the point at which a line crosses the x-axis, y = 0. Substituting this into the Cartesian
equation, we obtain x = −2. Thus the line crosses the x-axis at (−2, 0).

2.10.3 Vectors

1. Magnitude=
√

42 + 62 =
√

52 ≈ 7.2.
2. Here, we use the scalar product. Firstly calculate the magnitude of each vector. We obtain

magnitudes of
√

13 ≈ 3.6 and
√

17 ≈ 4.1. Using Eq. 2.9:

2 × 1 + 3 × 4 = 3.6 × 4.1 × cos θ.

Thus:

θ ≈ cos−1

(
14

14.76

)
≈ 18◦.

3. These two points may be represented by the vectors i + 2j and 5i + 6j. We can now use
Eq. 2.12 such that:

r(u) = (i + 2j) + u((5i + 6j) − (i + 2j)).

Thus:

r(u) = (1 + 4u) i + (2 + 4u) j.

4. The scalar product of two orthogonal vectors is zero.

2.10.4 Matrices

1. A + B =
[3 4

5 2

]
, A − B =

[−1 2
3 2

]
, AB =

[ 5 1
10 4

]
.

2. For a 2 by 2 matrix:
[1 0

0 1

]
. For a 3 by 3 matrix:

[
1 0 0
0 1 0
0 0 1

]
.

3. Det A = ad − bc = −10.
4. As follows: [

3 2
] [

1 3
4 2

]
=

[
11 13

]
.

2.10.5 Curves

1. Use, for example, 2x2 = u and y = u + 1.
2. Equation of the circle is given by:

x2 + y2 = 81.
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3. At the point(s) at which the parabola crosses the x-axis, y = 0. Thus:

0 = 2x2 − 3.

Hence x ≈ ±1.2. The coordinates of the point of intersection are (1.2,0) and (−1.2,0).
4. At the points of intersection both equations have the same x and y values. Thus

we can equate the equations and so: x2 = x + 2. Rearranging and factorising, gives:
(x − 2) (x + 1) = 0. Thus x = 2 or x = −1. Substituting these values into either of the orig-
inal Cartesian equations enables us to determine the y values. Thus when x = 2, y = 4 and
when x = −1, y = 1. The coordinates of the points of intersection are: (2,4) and (−1,1).



Images in a 2-D Space 3
‘Keeping me too warm down my back,
and waking me now and then with
quaint sleepy whimperings.’

3.1 Introduction

Having briefly reviewed some key mathematics, we now turn our attention to issues that arise
when we create and manipulate 2-D images. As with other chapters in this book, we place
particular emphasis on basic principles and lay important foundations on which the reader
will be able to build. We begin by making some general remarks in relation to the formation
of 2-D images and introduce the concepts of a ‘viewport’ and screen addressing. Subsequently,
in Sections 3.3 and 3.4 we describe the use of 2 by 2 matrices for the manipulation of image
components. Here, we demonstrate that we can encapsulate multiple transformations within
a single matrix operator. In Section 3.5 we consider the application of Homogeneous trans-
formations but as with other sections in the chapter confine our discussion to their use in a
2-D space.

In Section 3.6 we make some introductory remarks in relation to ‘graph theory’ in which rep-
resentations take the form of a set of nodes connected by edges. Within this context we discuss
two simple ways in which we can identify the location of a point relative to an object’s boundary.
The remainder of the chapter focuses on the process of clipping – particularly the clipping of line
segments and polygons relative to a rectangular window or clipping boundary. We introduce
several clipping algorithms: the Cohen-Sutherland and Liang-Barsky Algorithms which enable
a collection of line segments to be individually clipped together with the Sutherland-Hodgman

111
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algorithm that enables both concave and convex polygons to be clipped against a convex clipping
boundary.

Key Learning Outcomes: At the end of this chapter you should be able to:

� Understand the nature of a viewport and basic issues relating to screen addressing.

� Employ and understand the limitations of using 2 by 2 matrices for effecting transfor-
mations.

� Employ homogeneous matrices for effecting transformations.

� Encapsulate several transformations within a single matrix.

� Determine the location of a point relative to an object’s boundary.

� Understand several techniques that can be employed in the clipping of line segments
and polygons.

3.2 Some Basic Considerations

‘It is not the result of scientific research
that ennobles humans and enriches their nature,
but the struggle to understand while performing

creative and open-minded intellectual work.’1

In computer graphics a view of a 2-D scene may be constructed using image primitives such
as lines, curves, rectangles, circles and the like. These may be amalgamated with other content
such as the output from some form of medical scanner, digitised images or data that is generated
by some computational process (e.g. the results of a simulation). Consequently, we commonly
encounter situations in which image primitives and point form data coexist within the image
scene that we wish to display. Naturally, the use of high-level primitives is advantageous as they
may be efficiently and readily manipulated. For example, to change the size of a circle we simply
define a new radius whereas if the circle were specified in terms of a set of discrete points then
a change in radius would require computational operations to be carried out on each and every
point. As discussed in Chapter 1, the computer display supports a rectangular 2-D array of
picture elements (pixels) each of which can be individually addressed. Therefore, before an
image can be depicted it is necessary to decompose it into point form data – each data element
being mapped to an appropriate pixel. However, because of the efficiency with which we are
able to manipulate higher-level image primitives, it is desirable that image decomposition into
a point form representation is deferred as long as possible.

1 Attributed to Albert Einstein (1879–1955).
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The scaling and 
location of the image 

to fit the viewport

Overall extent of the 
image scene as defined 
in the geometric model

The size and location 
of the ‘viewport’

Definition of the 
image primitives that 
will be used to form 

the image scene

Specification of the 
size, location and 

orientation of the set 
of image primitives

Formation of the
geometric model

Figure 3.1 Key issues that may arise in the formation of a simple 2-D image that comprises a set of high-level graphics primitives.

In constructing an image scene, we must define the size and location of image primitives.
Moreover, we need to consider changes that are to occur in the scene with time (so supporting
animation) and the way in which the scene is to react to interactive operations. In terms of
animation we may, for example wish to depict a bouncing ball. Here, a circle could be used
to depict the ball, a line to depict the ground and equations of motion used to compute the
location of the circle over time.

In Figure 3.1 we summarise several key tasks that must in some way be dealt with during the
creation of a computer graphics scene. These are briefly discussed in the following subsections.

3.2.1 Model Formation

Languages used for the creation of computer graphics images provide primitives that may be
used to specify components within an image scene. Thus, for example, if we wish to draw
a circle, it is not necessary to become involved in the algorithm needed to accomplish this
goal – we can simply specify that we wish to create a circle with a certain radius at a particular
location. Additionally, we can indicate that the circle is to be filled (thereby forming a ‘solid’
circle of a certain colour or containing a certain pattern) – or otherwise. As indicated above,
using primitives that enable us to specify image components at a high level greatly facilitates the
creation of image scenes.

3.2.2 The Extent of the Image scene and its Relation to the Viewport

Typically, we define the image scene within a 2-D Cartesian space. The location and orientation
of points and objects within this space are defined numerically and here, we are able to use both
integer and non-integer values. Additionally, we must define a ‘viewport’ – this being the region
of the display screen into which we are to map the image.

In the simplest case, we may choose to allow the whole image scene to exclusively occupy the
entire screen. Alternatively, we may wish to limit the extent of the viewport to part of the display
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 Model

Window

Viewport

Figure 3.2 The relation between the model, the window onto this model and the screen viewport.

screen (for example, the viewport may be restricted to a portion of a ‘window’) or depict only a
portion of the geometric model within the viewport. Additionally, it is important to remember
that interaction is a vital ingredient in modern computer graphics and we frequently encounter
situations in which we wish to carry out interactive operations such as ‘pan’ and ‘zoom’. This
necessitates adjusting both the location of the viewport relative to the Cartesian space via which
we have defined a scene and the extent of this space that is depicted within the viewport.

In Figure 3.2, we provide a simple illustration showing the positioning of the viewport relative
to the overall model. On the left-hand side of this illustration we show a simple line drawing that
represents the image defined by the geometric model and specify a ‘window’ which indicates
the portion of the modelled image that we wish to display. This content is then mapped to the
viewport and depicted on the screen. Naturally, mapping all or part of the model to the viewport
will require scaling and here the choice of scaling factors used in both the horizontal and vertical
directions should ensure that unwanted image distortion is avoided.

Let us assume that the 2-D space in which the image is located is described by a rectangular
Cartesian coordinate system – with a horizontal axis (labelled x) and vertical axis (labelled
y) – as indicated in Figure 3.3(a). By convention, the location of pixels on the display screen is
defined in terms of their horizontal and vertical distances from the screen’s top left-hand corner.
Thus if we assume that the screen comprises an array of m pixels horizontally and n pixels
vertically (i.e. a total of mn pixels), then the top left most pixel would be indexed as (0,0) and
the bottom right hand pixel as (m − 1, n − 1) – see Figure 3.3(b). More generally, we can index
any screen pixel as (ph, pv) where 0 ≤ ph ≤ m − 1 and 0 ≤ pv ≤ n − 1. Here, it is important
to note that in defining the location of points and components that are contained in the image
scene, we can (and usually do) employ non-integer coordinates. However, the actual values of
ph and pv which are used to index (address) individual pixels are positive integers.

It is instructive to consider a simple example in which we take an image component (in
this case our model will be a square constructed from four line segments) and map this into
a viewport – which, for the sake of simplicity will be assumed to occupy the full extent of
the computer screen. In Figure 3.4(a), we assign some arbitrary Cartesian coordinates to the
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(a) (b)

x

y

(0,0)

(m−1,n−1)

Display screen

Arbitrary pixel
(ph,pv)

m

n

Figure 3.3 In (a) we assign a rectangular Cartesian coordinate system to the 2-D space in which the image is represented. In terms of the display
screen, pixels are traditionally indexed from their location relative to the top left hand corner This is indicated in (b). Here, the top left most pixel
is denoted as (0,0) and the bottom right most pixel as (m − 1, n − 1). An arbitrary pixel is indexed as ( p h , p v ) – where p h and p v are
measured from the upper left hand side of the screen. Note that whereas the points and components that represent the 2-D image scene may be
assigned non-integer coordinates, the values of p h and p v are positive integers

(a)

(b)

Display screen

7.5

3.5

1 5

y

x

Figure 3.4 In (a) we depict a square comprising four line segments – this represents a simple model that is to be displayed. We assume that the
viewport corresponds to the entire screen and that we wish to display the square so that it is located centrally and that its horizontal extent is 50%
of the screen width. See text for discussion.
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endpoints of the four line segments that form a square. Let us suppose that we wish this square
to be depicted centrally on the display screen (Figure 3.4(b)) and to occupy 50% of the screen
width. Furthermore, we will assume that the display comprises an array of 1024 pixels in the
horizontal direction and 768 pixels vertically.

(a) In this simple example, we require the square to be depicted centrally on the screen – and
its horizontal extent is to occupy 50% of the screen width. Thus the left and right-hand
sides of the square should be drawn one-quarter and three-quarters of the way across the
screen respectively. This corresponds to one quarter of 1024 (=256) and three-quarters
of 1024 (=768). Since we have assumed that the first (left-hand) column of pixels has a
horiziontal address of zero (rather than one), it follows that in order to correctly specify
the horizontal address, we must subtract one from both of these numbers – giving 255
and 767.

(b) Horizontal pixel addresses ( ph) are related to the x coordinates of the model by a linear
relationship in which we employ a scaling factor (S) and position shift (offset) ( p):

Ph = Sx + p.

(c) We know that the x coordinates of the model (which are 1 and 5) respectively map to pixel
columns 255 and 767. By inserting these pairs of values into the above equation we can
form simultaneous equations and so determine S and p:

255 = S + p

767 = 5S + p

Thus S = 128 and p = 127, and we can now write down an equation that will map any
other x coordinates associated with the model into the appropriate pixel columns:

Ph = 128x + 127.

(d) For simplicity, we assume that the application of the same scaling factor in the vertical and
horizontal directions will result in the depiction of a square rather than a rectangle. In this
case we can write an expression that relates y coordinates in the model to the pixel row
addresses:

Pv = −128y + p′.

Notice the inclusion of a negative sign – this takes into account that screen coordinates
increase with their position relative to the top, rather than the bottom, of the screen.

(e) Our original brief was to depict the model so that it lies in the centre of the screen –
consequently, it follows that the average y coordinate (given by ymax + ymin divided by two
(which equals 5.5)) should be placed in pixel row 383 (remember that the pixels must be
referenced by integer values). Hence we can write:

383 = −704 + p′,

where 704 is the product of 128 and 5.5. Thus p′ equals 1087 and so:

Pv = −128y + 1087.

(f) In summary we have established that:

Ph = 128x + 127 and Pv = −128y + 1087.
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We could now use these equations to map any other points comprising the model into pixel
addresses. However, as mentioned above, all pixel addresses are integer values and this
results in the approximation of ideal point locations to the closest physical pixel position.
For further related discussion see Section 8.5.

A developer may choose not to directly map the image coordinates to pixel locations but may
employ an intermediate stage. In this case ‘normalised device coordinates’ (NDC) may be
specified. Here, as the name implies, image coordinates are mapped into a normalised system
comprising a square with sides of unit length. Thus the minimum coordinates are (0,0) and the
maximum (1,1). This coordinate system provides a simple standard to which manufacturers can
readily interface their hardware and software systems.

3.3 Transformations Using 2 by 2 Matrices

‘I detest the man who hides one thing in the depths of his heart
and speaks forth another.’2

Motion is often a vital aspect of an image scene. It may be an inherent attribute (e.g. the
depiction of a ball bounding) or may arise in response to user input (e.g. in the case of a flight
simulator, video game or creative design exercise). Consequently, the designer must not only
focus on issues such as the form and placement of objects that comprise the scene but also on
the ways in which these objects interact and may be manipulated. This demands the regular
use of techniques that allow objects to be efficiently re-sized and relocated. In this section, we
consider the application of 2 by 2 matrices for effecting object scaling, object rotation and object
reflection about some axis. Additionally, we examine the issue of object relocation. This leads
on (in Section 3.4) to discussion concerning combining such ‘transformations’. As with other
sections of this chapter, we confine ourselves to objects within a 2-D space – see Chapter 6 for
related discussion concerning objects that are defined within three spatial dimensions.

3.3.1 Scaling an Image Component

In Section 2.4.7 we indicated that the magnitude of a vector may be changed by multiplying
its vertical and horizontal components by an appropriate value. For example, to increase the
magnitude of the vector 2i + 3j by a factor of four, we simply calculate 4(2i + 3j) = 8i + 12j.
Since both components are multiplied by the same value, only the vector magnitude has been
changed – there is no alteration in vector direction. As we noted in Section 2.5.5, matrices
can be used to manipulate vectors and this includes scaling. In the case that position vectors
are used to define the vertices of an object (e.g. a triangle or rectangle), then matrices can
be used to change the magnitude of these vectors and so enlarge or reduce the extent of the
shape.

By way of a simple example, consider the vector a = 2i + 3j and let us suppose that we want
to increase the vector’s magnitude by a factor of four. This may be accomplished as follows:

[
2 3

] [
4 0
0 4

]
=

[
8 12

]
.

2 Attributed to Homer (∼800–850 BC).
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Figure 3.5 Here, we apply a scaling factor of two to the smaller rectangle and so achieve enlargement. Note that this also results in a change in
location.

Here, we have expressed a as a row vector and the scaling factor is encapsulated in the top left
and bottom right elements of the 2 by 2 matrix. Now consider the smaller of the two rectangles
illustrated in Figure 3.5. and let us suppose that we wish to apply a scaling factor of 2. We simply,
operate on the position vectors that define the location of each vertex using the matrix

[2 0
0 2

]

OTU Exercise 3.1: Scaling the Dimensions of a Shape

Determine the effect of applying the scaling matrix
[2 0

0 3

]
to the rectangle depicted in

Figure 3.5.

3.3.2 Object Rotation

Consider the position vector a indicated in Figure 3.6 that lies at an angle φ with respect
to the x-axis. We will assume that this vector is given by a = xi + yj. Suppose that we now
operate on this vector so as to produce a second vector b which has the same magnitude as
a but is rotated by an angle θ (where, as usual, θ is measured in an anti-clockwise direc-
tion). This vector is also illustrated in Figure 3.5 and we will assume that it is given by
b = x ′i + y ′j. We can write:

x = |a| cos φ (3.1)

x ′ = |a| cos (θ + φ) = |a| [cos θ cos φ − sin θ sin φ] (3.2)

y = |a| cos (90 − φ) = |a| sin φ (3.3)
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Figure 3.6 The rotation of a vector about the origin. See text for discussion.

y ′ = |a| cos (90 − (θ + φ)) = |a| sin (θ + φ) = |a| [sin θ cos φ + cos θ sin φ] . (3.4)

Here, we are making use of the so-called ‘sum and difference’ formulas (i.e. for sin(θ +
φ), cos(θ + φ), cos(90◦ − θ) and cos(90◦ − (θ + φ))) – see Appendix A for a summary of
these equations. In addition, we know that |a| = |b| – the vectors differ only in their orientation.
Through the use of Eqs. 3.1 and 3.3, we can now eliminate φ from Eqs. 3.2 and 3.4. Therefore,
we can write the following simultaneous equations:

x cos θ − y sin θ = x ′

x sin θ + y cos θ = y ′

We can express these in matrix form:

[
x y

] [
cos θ sin θ

− sin θ cos θ

]
=

[
x ′ y ′] . (3.5)

By way of an example, suppose that we wish to rotate the vector a = 3i + 2j through an angle of
30◦ thereby giving a vector b. Then:

[
3 2

] [
cos 30 sin 30

− sin 30 cos 30

]
= b.

Thus

[
3 2

] [
0.87 0.5

−0.5 0.87

]
= b.

And so the vector b is approximately equal to 1.6i + 3.2j.
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OTU Exercise 3.2: Rotation About the Origin

1. Write down the 2 by 2 matrix that will give a 90◦ rotation of a vector about the origin. You
should assume that the angle is measured in an anti-clockwise direction.

2. Write down the 2 by 2 matrix that will give a 180◦ rotation of a vector about the origin.

3.3.3 Object Reflection

In Figure 3.7 we illustrate a vector labelled a together with its reflection in the x-axis – this
is denoted as vector b. Vector c represents the reflection of vector a in the y-axis. Addi-
tionally, we depict vector d that corresponds to the reflection of vector a in both the x and
y-axis.

Consider the case that vector a is reflected in the x-axis. This causes no change to the vector’s
horizontal component – the vertical component simply changes in sign. For example, if vector
a = 3i + 2j, then vector b would be given by b = 3i − 2j. Similarly, if the vector a is reflected in
the y-axis, then the sign of the vector’s horizontal component would change – and the vertical
component would not be effected (vector c being given by c = −3i + 2j). Finally, if vector a
is ‘simultaneously’ reflected in both axes, then the signs of both the horizontal and vertical
components are changed (giving d = −3i − 2j). These reflections can be achieved using a 2 by
2 matrix such that:

[
x y

] [
+1 or −1 0

0 +1 or −1

]
=

[
x ′ y ′] . (3.6)

a

d

c

b

x

y

Figure 3.7 Here, we depict the reflection of vector a in the x-axis (giving vector b), in the y-axis (giving vector c) and its ‘simultaneous’ reflection
in both the x and y -axes (vector d).
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Figure 3.8 Here the lower rectangle is shifted (a translation operation) six units horizontally and five units vertically. This type of operation
cannot be achieved through multiplication with a 2 by 2 matrix operator.

For example, in the case that the vector 4i + 3j is reflected in the y-axis, the resulting vector
would be given by:

[
4 3

] [−1 0
0 1

]
=

[−4 3
]
.

3.3.4 Object Translation

The location of a point defined by a vector can be readily shifted using vector addition. For
example, consider the rectangle depicted in Figure 3.8. Suppose that we wish to relocate this
shape by 6 units in the horizontal direction and 5 units vertically. We simply add [6 5] to
the vectors that define the locations of the vertices. Unfortunately, we cannot achieve object
translation using a 2 by 2 matrix multiplication operation. This causes difficulty when we seek
to combine transformations.

3.4 Combined Transformations Using 2 by 2 Matrices

We frequently encounter situations in which we wish to ‘simultaneously’ perform more than a
single transformation on a point or object. The implementation of transformations by means of
matrix multiplication operations enables multiple transformations to be encapsulated within a
single matrix operator and this increases efficiency. However, as we indicated above, translation
cannot be accomplished though multiplication with a 2 by 2 matrix operator and so for
the present we will put translation to one side and focus on scaling, rotation and reflection
operations.

When we apply two or more dissimilar transformations (e.g. a reflection and a rotation
operation), the order in which they are applied usually determines the result that is obtained.
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Figure 3.9 Here, we reflect the rectangle ABCD in the y-axis and then apply a rotation through 90◦ about the origin. This rotation is in the
anticlockwise direction.

By way of an example, consider the rectangle ABCD depicted in Figure 3.9 where we illustrate
the effect of first reflecting this rectangle in the y-axis and subsequently performing an anti-
clockwise rotation through 90◦ about the origin.

OTU Exercise 3.3: Order of Transformation Application

Re-draw Figure 3.9 so as to show the effect of first rotating the rectangle through 90◦ about
the origin and then reflecting this rectangle in the y-axis (i.e. reverse the order in which the
transformations are applied). Does this impact on the final result?

As may be seen by comparing Figure 3.9 with the result obtained in the above OTU Exercise,
changing the order in which the two dissimilar transformations are applied leads to different
results.3 We can combine transformations within a single matrix operator and so in effect
‘simultaneously’ apply more than one transformation. This is a point that can cause confusion
and the issue is summarised in Figure 3.10. Here, we indicate that when forming a matrix able
to apply two or more dissimilar transformations (such as reflection and rotation), we embed
within the matrix a transformation order (even though the transformations will be carried out
via a single matrix operation). Thus, the matrix operator is created so that it achieves the overall
transformation that we would associate with carrying out first one of the transformations, and
then the other.

By way of example, let’s consider the creation of a matrix operator that achieves a reflection
in the y-axis followed by a rotation of 90◦ about the origin (i.e. we follow the order used in

3 In short – the multiplication of matrices is not commutative.



Chapter 3 . Images in a 2-D Space 123

Position Vector
Matrix operator combining two 

dissimilar transformations (A and B)

Transformation A followed by 
transformation B

Transformation B followed by 
transformation A

Matrix operates 
upon position 

vectors

Figure 3.10 Several transformations may be carried out by a single matrix operator. In this way transformations may be accomplished ‘simulta-
neously’. However, in defining the elements within the operator we must encapsulate the overall result that we wish to obtain – i.e. the result of
applying transformation A followed by transformation B or vice versa.

Figure 3.9). From Section 3.3.3, we know that the 2 by 2 operator able to achieve reflection in
the y-axis is given by: [−1 0

0 1

]
.

Further, using Eq. 3.5, a rotation through 90◦ about the origin can be achieved with the 2 by 2
matrix: [

0 1
−1 0

]
.

We now combine these matrices (by multiplication) – placing the first operation before the
second. In this case we wish to achieve the result of a reflection followed by a rotation and so the
reflection matrix comes first: [−1 0

0 1

] [
0 1

−1 0

]
=

[
0 −1

−1 0

]
. (3.7)

If we now apply this matrix to the four position vectors defining the vertices of rectangle ABCD
illustrated in Figure 3.9, it is apparent that we obtain rectangle A′B′C′D′.

OTU Exercise 3.4: Combining Transformations

Obtain a single 2 by 2 matrix operator that will give the overall result of firstly a rotation
through 90◦ followed by a reflection in the y-axis. Verify your answer by applying the operator
to the position vectors that define the vertices of rectangle ABCD illustrated in Figure 3.9 and
demonstrate that you obtain the same result as given in your response to OTU Exercise 3.3.
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3.4.1 Combining Three or More Transformations

Suppose that we wish to obtain a 2 by 2 matrix operator able to achieve the overall result of
firstly a rotation through an angle θ about the origin, followed by a reflection in the y-axis and
finally a further rotation by an angle φ (again about the origin). Drawing on Eq.’s 3.5 and 3.6
we would determine the operator by the following multiplication:[

cos θ sin θ
− sin θ cos θ

] [−1 0
0 1

] [
cos φ sin φ

− sin φ cos φ

]
.

If we now multiply the two right most matrices, we obtain:[
cos θ sin θ

− sin θ cos θ

] [− cos φ − sin φ
− sin φ cos φ

]
.

We now multiply these two matrices:[− cos (θ − φ) sin (θ − φ)
sin (θ − φ) cos (θ − φ)

]
.

Here, we have made use of the ‘sum and difference’ formulas (see Appendix A). Consider
the case in which θ = φ, then the matrix reduces to

[−1 0
0 1

]
– recall that this corresponds to a

reflection in the y-axis. Thus the initial and final rotations have cancelled each other out. This
can be readily confirmed by drawing an appropriate diagram in which the transformations are
applied to an arbitrary vector.

3.5 Homogeneous Transformations in a 2-D Space

As discussed in the previous section, a series of rotation, reflection and scaling operations
can be readily combined within a single 2 by 2 matrix. However, translation requires a
matrix addition (rather than a multiplication) operation. This prevents a translation oper-
ation being encapsulated with other transformations within a single 2 by 2 matrix opera-
tor. Fortunately, this problem can be readily resolved by expressing vectors in a homoge-
neous coordinate system (recall Section 2.2) and using 3 by 3 (rather than 2 by 2) matrix
operators.

Before we consider encapsulating a series of transformations into a single matrix operator, it
is helpful to consider the way in which 3 by 3 matrices can be applied to ‘homogeneous vectors’
to effect single transformations:

1. Rotation: In order to achieve a rotation through an angle θ about the origin, we use a matrix
of the form: [

cos θ sin θ 0
− sin θ cos θ 0

0 0 1

]
. (3.8)

Notice that the four elements on the upper left side are the same as those used in the
equivalent 2 by 2 matrix (see Eq. 3.5). To demonstrate the use of this matrix, let us suppose
that we wish to rotate the position vector 2i + 3j through an angle of 30◦ about the origin.
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We can express the coordinates (2,3) in homogeneous form as [2 3 1] (recall that a point
in 2-D space is not represented by a unique homogeneous coordinate value – for example,
(2,3) could also be represented as [4 6 2], [6 9 3] etc.). The transformation is achieved as
follows:

[
2 3 1

] [
cos 30 sin 30 0

− sin 30 cos 30 0
0 0 1

]
≈ [

0.23 3.6 1
]
.

Thus following the rotation operation the vector 0.23i + 3.6j is formed.

2. Reflection in the x and y axes: Reflection in the x-axis may be achieved using the matrix
operator: [

1 0 0
0 −1 0
0 0 1

]
, (3.9)

and for reflection in the y-axis we use: [−1 0 0
0 1 0
0 0 1

]
. (3.10)

Note that the upper left hand four elements of these two matrices are those used in the
equivalent 2 by 2 matrix (see Eq. 3.6).

3. Scaling: To enlarge or reduce the size of a vector we can employ the matrix operator:[
k 0 0
0 l 0
0 0 1

]
. (3.11)

Here, the value of k determines the scaling applied in the x direction and l in the y direction.
For example, consider the position vector 2i + 3j and suppose that we wish to scale this by a
factor of 2 in both the horizontal and vertical directions. We simply form the homogeneous
vector (see (1) above) and multiply by the matrix operator:

[
2 3 1

] [
2 0 0
0 2 0
0 0 1

]
=

[
4 6 1

]
.

Thus the result of the enlargement is the vector 4i + 6j.
When the scaling factors applied in the x and y directions are the same (k = l), it is
convenient to define an overall scaling parameter s – such that s = 1/k = 1/ l . We can then
multiply Eq. 3.11 by s , and so:

s

[
k 0 0
0 l 0
0 0 1

]
=

[
1 0 0
0 1 0
0 0 s

]
. (3.12)

This provides a convenient matrix operator for scaling. However, it is important to note
that when s is greater than 1, the application of the matrix operator causes a reduction in
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size and when s is less than 1 the operator will provide enlargement. This is in contrast to
the use of k and l in Eq. 3.11. Here, when k, l > 1 enlargement occurs and when k, l < 1
size reduction takes place.
By way of an example consider the application of a matrix operator as given in Eq. 3.12
where s = 2 to the position vector 2i + 3j. Thus:

[
2 3 1

] [
1 0 0
0 1 0
0 0 2

]
=

[
2 3 2

]
.

To convert to Cartesian coordinates we must divide by two (recall Section 2.2.3). Thus,
[2 3 2] corresponds to the Cartesian coordinates (1, 1.5) which is defined by the position
vector i + 1.5j. Hence when s = 2, the magnitude of the vector is reduced by a factor
of 0.5.

4. Translation: By multiplying homogeneous vectors by an appropriate 3 by 3 matrix, we can
perform translation operations in a 2-D space (recall this is not possible when 2 by 2 matrix
operators are employed). The matrix operator has the form:[

1 0 0
0 1 0

Dx Dy 1

]
. (3.13)

Where, Dx denotes the shift in the x direction and Dy the shift in the y direction.

OTU Exercise 3.5: A Translation Operation

Consider the line segment PQ that is illustrated in Figure 3.11. Express vectors p and q in
homogeneous form and apply a suitable 3 by 3 matrix operator to shift line segment PQ by 4
units horizontally and 2 units vertically thus obtaining P′Q′.

P

Q
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P’

Q’

1

6

5
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3
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1 2 3 4 5 6 7 8 9 10

y

x

Figure 3.11 A translation operation using a 3 by 3 matrix operator. See OTU Exercise 3.5.
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3.5.1 Incorporating Multiple Transformations in a Single Matrix

Suppose that we need to perform a rotation operation followed by a translation (shift) and
finally a scaling. We can combine Eq.’s 3.8, 3.11 and 3.13 but must do so in a way that matches
the transformation sequence that we wish to apply. Hence we obtain the single matrix operator
as follows: [

cos θ sin θ 0
− sin θ cos θ 0

0 0 1

] [
1 0 0
0 1 0

Dx Dy 1

] [
k 0 0
0 l 0
0 0 1

]
=

[
k cos θ l sin θ 0

−k sin θ l cos θ 0
k Dx l Dy 1

]
.

In the case that the scaling factors k and l are identical (we denote this overall scaling factor as
s – recall previous discussion), then this result may be re-written:

[
cos θ sin θ 0

− sin θ cos θ 0
Dx Dy s

]
. (3.14)

However, if we change the order in which the rotation, translation and scaling operations are
applied, the form of the resulting matrix operator is not quite as simple. For example, consider
the case in which we apply the transformations in the order translation, scaling and then
rotation. Here we have:[

1 0 0
0 1 0

Dx Dy 1

] [
k 0 0
0 l 0
0 0 1

] [
cos θ sin θ 0

− sin θ cos θ 0
0 0 1

]
=

[
k cos θ k sin θ 0
−l sin θ l cos θ 0

Dx k cos θ − Dyl sin θ Dx k sin θ + Dyl cos θ 1

]

3.5.2 Rotation about any Point

So far we have limited our discussion to situations in which we wish to rotate a vector about
the origin. However, in many situations (e.g. when animating an image scene or performing
interactive operations) we may need to effect rotation about an arbitrary point. We may easily
determine a matrix operator able to achieve this goal by employing the standard transforma-
tions that we have already discussed. Specifically, we use two translation operations and one
rotation about the origin operation. This process may be most easily understood by means of
a simple example. Consider the point P illustrated in Figure 3.12(a) and let us suppose that we
wish to rotate this about the point A through an angle θ so obtaining point Q. In Figure 3.12(b)
we indicate the order of the three standard transformations that we must carry out to achieve
this goal. The overall matrix operator is therefore obtained as follows:

[
1 0 0
0 1 0

−Dx −Dy 1

] [
cos θ sin θ 0

− sin θ cos θ 0
0 0 1

] [
1 0 0
0 1 0

Dx Dy 1

]
=

[
cos θ sin θ 0

− sin θ cos θ 0
α β 1

]
,

where:

α = Dx (1 − cos θ) + Dy sin θ

β = Dy (1 − cos θ) − Dx sin θ.



128 An Introduction to Computer Graphics and Creative 3-D Environments
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(b)
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Centre of rotation (A)
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Figure 3.12 Rotation about an arbitrary point. In (a) we indicate point P that is to be rotated through and angle θ about point A. In (b) we
summarise the order of the three transformations that are applied.

3.6 Concerning Graph Theory

‘Passed years seem safe ones, vanquished ones,
while the future lives in a cloud, formidable from a distance.

The cloud clears as you enter it.
I have learned this, but like everyone, I learned it late.’4

The graphs that we briefly consider in this section are not ones that depict the relationship
between two or more variables (so illustrating a mathematical function) but rather comprise
a set of points (called ‘nodes’ or vertices) that are connected by lines (generally referred to as
‘edges’ or arcs). An example of a simple graph of this type is given in Figure 3.13. Such a graph
can be defined thus:

‘Formally, a graph G is defined to be a pair [N(G), E(G)], where N(G) is a non-empty finite set of elements
called nodes, and E(G) is a finite family of unordered pairs of elements of N(G) called edges.’ [Cooley,
2001]

The degree of a node (vertex) is given by the number of edges that meet at the node. In
Figure 3.13, there are nodes at which one, two and three edges meet. A node at which three
edges meet is said to have a degree of three (a ‘3-node’). The set of nodes is generally referred to
as the ‘node set’ or ‘node list’ and the set of edges as the ‘edge list’. The sequence of edges that
are traversed in getting from one node to another is called a ‘path’ and if the starting and ending
nodes of a path are the same then this is referred to as a ‘circuit’.

4 Attributed to Beryl Markham.
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Node

Edge

Figure 3.13 A simple graph comprising a set of points (nodes) and lines (edges) that in some way connect these nodes.

Consider the graph depicted in Figure 3.14(a) comprising two disjoint circuits (with nodes
denoted ABCD and EFGH) We may describe this in terms of a connectivity list – as depicted in
Figure 3.14(b).

A matrix can be used to indicate connectivity (adjacency) and in the case of the elementary
example illustrated in Figure 3.14(a), this would have the form:

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

01010000

10100000

01010000

10100000

00000101

00001010

00000101

00001010A
B
C
D
E
F
G
H

A B C D E F G H

Here, a single bit is used to indicate the presence (or otherwise) of an edge between nodes in
the graph. In computer graphics it is convenient to employ graphs to represent objects and,
we may assign coordinates to the nodes thereby representing a physical shape (for example, see
Figure 3.14(c)).

We may assign to each edge a direction (such directed edges are referred to as ‘di-edges’ and
the overall graph a ‘di-graph’) – see for example Figure 3.15.

The approach of treating edges as vectors enables us to use the vector directions of circuits
to define the inside and outside of an object. For example, we may use the convention that
when we are pointing in the direction of the vector, the left hand side denotes the inside of an
object and so the outside is to the right – or vice-versa. This may be readily understood from
the simple example provided in Figure 3.15. Let us suppose that this represents a rectangular
object (ABCD) within which a square hole (EFGH) has been cut. As may be seen from the
illustration the direction of the di-edges connecting nodes A, B, C and D is such that when
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(a)
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Edge Node Node
1 A B
2 B C
3 C D
4 D A
5 E F
6 F G
7 G H
8 H E

Node x-coordinate y-coordinate
A 1 5
B 8 5
C 8 1
D 1 1
E 5 4
F 7 4
G 7 2
H 5 2

A

Figure 3.14 In (a) we show a simple graph comprising 2 disjoint circuits. In (b) a connectivity list is presented which summarises the intercon-
nection of nodes. It is often convenient to assign coordinates to the locations of nodes and thereby represent the geometrical shape of objects –
as illustrated in (c).

looking along each, the interior of the rectangle lies to the left. Similarly, in the case of the hole,
the vectors are arranged so that again the interior of the rectangle is to the left of each vector.
Alternatively we can adopt the opposite convention – all that matters is that we should exercise
consistency.
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Hole

Figure 3.15 A simple example of a di-graph. Here, a direction is associated with each edge. This can be used to indicate the location of a surface
and any holes.
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Note that when a di-graph is used, this changes the entries within the connectivity matrix.
For example in the case of the di-graph presented in Figure 3.15, the connectivity matrix is as
follows:

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

00010000

10000000

01000000

00100000

00000100

00000010

00000001

00001000A
B
C
D
E
F
G
H

A B C D E F G H

3.6.1 The Location of a Point Relative to a Boundary

Referring to Figure 3.14, let us suppose that we wish to determine if a point P lies inside the
rectangle ABCD, inside the hole EFGH or is elsewhere. We can adopt two simple approaches to
this problem – the first of which is based on the use of directed edges (vectors). These approaches
are outlined below:

(1) The use of Vectors: This technique assumes that all edges are straight lines and are repre-
sented as vectors. To demonstrate the method, we will consider the three cases indicated
in Figure 3.16:

� Here, we assume the situation illustrated in Figure 3.16(a) in which point P lies outside
the rectangle ABCD and for the moment we will ignore the hole EFGH. We begin by
drawing a line from the point P to a node (vertex). Suppose that we choose node A (an
arbitrary choice). We then draw a line from P to the next node in the circuit (following
the direction indicated by the vector). Thus we connect P with node D and measure
the angle between the two lines that we have drawn. Next we connect P with node C
and add the angle between lines PD and PC to the angle already measured (between
lines PA and PD). We now connect P with the next node in the circuit – node B. Again
we measure the angle between the last line drawn and the line just created (PB). In
this case we note that the angle turns in the opposite direction and so we subtract this
angle from that previously accrued. Finally we complete the circuit by measuring the
angle between lines PB and PA. We add this to the total In the case that the point P lies
outside the boundary of a shape, the total accrued angle will be zero.

� Turning to the scenario indicated in Figure 3.16(b) in which P lies within the boundary
of the rectangle ABCD. Here, we follow the same technique that was used above. We
connect P to one of the nodes (here we have chosen node A – as indicated by the
broken line). We then follow the direction of the circuit as shown by the vectors and
accrue the angle turned through until we return to the starting point. In the case that
the point lies within the circuit, the total angle turned through will be +360◦.
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Figure 3.16 In (a) and (b) we test the location of point P relative to a rectangular shape. In (c) P lies within a hole cut into the rectangle.

� Finally, consider the case depicted in Figure 3.16(c). As may be seen from the illus-
tration the direction of circuit ABCD and circuit EFGH lie in opposite directions and
so when we repeat the process outlined above, we will turn through a total angle of
−360◦.

The technique outlined above is quite straightforward and the total angle turned
through provides us with a simple means of finding whether a point lies inside or
outside a shape. In the OTU Exercise that follows we provide a further example.
Remember that at each stage we are measuring the angle turned through – which may
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Figure 3.17 Verification of a technique for determining if a point lies within or outside a shape. See OTU Exercise 3.6.

be either positive or negative (hence we may need to add or subtract each new angle
from the total previously accrued).

OTU Exercise 3.6: Identifying the Location of a Point Relative to a Shape

Consider the polygon indicated in Figure 3.17. Using the convention that the region to the left
of a vector is within the boundary of the shape, draw arrows on each edge to signify vector
direction. Using the approach described above verify that the angle turned through as each
node is connected to point A is +360◦ (indicating that A is within the boundary of the shape).
Using a protractor, repeat the exercise for point B (for which the total angle turned through
should be zero).

The above approach requires that all edges are straight lines. Additionally, before this method
can be put into practice, the data must have been sorted so as to delineate a series of sepa-
rate circuits with contiguous edges. The test is then carried out on one or more circuits as
required.

(2) The Half-Line Test: To demonstrate this approach we will continue to employ the simple
example used above – a rectangle ABCD within which there is a square hole (EFGH). In
Figure 3.18, we illustrate this shape and indicate three points denoted K, L and M. Point K
is located within the rectangular shape, point L lies in the hole and point M is outside and
to the left of the rectangle.
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E

L

K

M

‘Half - lines’

Figure 3.18 Testing if a point resides within the boundary of a shape. See text for discussion.
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From each of these points we draw a line that extends horizontally to the right (in the
positive x direction) and count the number of times that each of these lines crosses an edge.
Thus the ‘half line’ from point K crosses one edge, the line from point L crosses two edges
and the one from point M crosses four edges. In the simplest case (i.e. ignoring various
exceptional situations) if the half line from a point crosses an odd number of edges, then it
lies within a boundary. This test can be employed even when the edges are not necessarily
straight lines and unlike the vector-based approach discussed above, the data does not have
to be sorted to delineate a series of separate circuits with contiguous edges.

3.7 Clipping Points and Lines

‘Dreamers can find their way by moonlight
and their only punishment

is that they see the dawn
before the rest of the world.’5

As discussed in Section 3.2, we may define a ‘viewing window’ that specifies the portion of
an image scene which is to be depicted. Image entities that lie outside this window are then
discarded. This process may be compared to the use of scissors to cut out a rectangular or
circular portion of a photograph (e.g. the view of a person’s face for insertion into a small frame
or locket). In the context of computer graphics, the elimination of image components that lie
outside the viewing window is referred to as ‘clipping’. Comninos [2006] describes clipping in
the following, more general, way:

‘Clipping is a process that subdivides each element of a picture to be displayed into its visible and invisible
parts, thus allowing us to discard the invisible parts of the picture. In 2-D, the clipping process can be applied
to a variety of graphics primitives . . . Clipping can be performed with respect to a clipping boundary, which
may be a convex or concave polygonal boundary.’

In the subsections that follow we confine our discussion to the basic techniques that can be used
in clipping points, lines and objects that are located within a 2-D image scene to a rectangular
viewing window (rectangular clipping boundary) and in Chapter 8, consider clipping in the
context of a 3-D image scene.

3.7.1 Clipping Image Points

Determining whether or not points within a 2-D image scene lie inside or outside a rectangular
viewing window represents a trivial task. Consider the viewing window depicted in Figure 3.19
with sides located at xmin, xmax, ymin and ymax. In the illustration, two arbitrary points (denoted
P1 and P2) are indicated. We assume that the function of the clipping algorithm is to determine
whether or not these points lie within or outside the viewing window. In the case that either
point lies within this window then it will be depicted in the display screen viewport – otherwise
it will not form part of the displayed image.

5 Attributed to Oscar Wilde (1854–1900).
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Figure 3.19 A rectangular viewing window has sides at x min, x max, y min and y max. Two points – P1 and P2 are defined. The clipping algorithm
must determine whether or not these points lie within the viewing window – see text for discussion.

From Figure 3.19, it is readily apparent that for a point to lie within the viewing window, its x
coordinate must lie between the x coordinates of the two vertical sides of the rectangle and its y
coordinate must lie between the y coordinates of the two horizontal sides of the rectangle. Thus
a point’s x coordinate must be between xmin and xmax and the y coordinate between ymin and
ymax. We can express this using the inequalities:

xmin ≤ x ≤ xmax, ymin ≤ y ≤ ymax.

If a point with coordinates (x, y) satisfies both of these inequalities, then it is inside the clipping
boundary – otherwise it is eliminated from the displayed scene.

3.7.2 Clipping Line Segments: The Cohen Sutherland Algorithm

As we have seen, determining whether or not a point lies within the viewing window is a trivial
undertaking – dealing with lines is slightly more complicated. Consider the four line segments
illustrated in Figure 3.20. It is apparent that segment S1 lies entirely within the viewing window
and will therefore not affected by the clipping process. On the other hand, since segment S2 is
completely outside the viewing window, it will be culled. In the case of segment S3, a portion
of the line is within the viewing window. The clipping algorithm will retain this part of the line
and cull the remainder. Finally, in the case of segment S4, as this crosses the clipping window
it is necessary to cull both ends of the line – leaving only the part that is entirely within the
window. In fact, in the case that lines are completely inside or outside the clipping window
(as is the case with S1 and S2) the clipping process is readily undertaken – we need only check
the end points of each line segment in relation to the coordinates of the clipping boundary.
Even when a line segment crosses one clipping boundary (as is the case with S3) the process is
again straightforward – the point at which the line intersects the boundary becomes the new
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Figure 3.20 Here, we illustrate four line segments and their positions relative to the clipping boundary. During the clipping process, line segment
S1 remains wholly intact, S2 is culled and both S3 and S4 are partially clipped.

endpoint for the line segment. However, for a rectangular viewing window, we must also cater
for the possibility that a line crosses two clipping boundaries (naturally, in the case of curves,
they may in principle cross clipping boundaries any number of times).6

The Cohen Sutherland algorithm provides one approach to the clipping of line segments
relative to a rectangular viewing window. This algorithm provides a rapid means by which we
can deal with lines that lie entirely within the window (such as S1 which is accepted without
modification) or some of the lines which lie entirely outside the window (such as S2 which is
to be culled). Hence we are able to quickly deal with various lines within the image scene and
those remaining are subjected to further tests which may result in line segments being wholly or
partially culled.

The operation of the algorithm is underpinned by extending the sides of the viewing window
to create a number of regions within the 2-D image plane – see Figure 3.21. The location of
each of the nine regions that are now formed is defined by a 4-bit binary code – the meaning
attributed to each of the bits is indicated in Figure 3.22. As may be seen from the example
provided in this illustration, setting a bit to one is used to define region placement. By way of
a further example, consider the code 0101. The two bits that are set to a value of one indicate
that the region lies below and to the left of the viewing window. The region within the viewing
window is assigned the code 0000.

In terms of the operation of the Cohen Sutherland algorithm, we begin by assigning region
codes to the end-points of line segments. This is easily achieved by comparing the end-point
coordinates to the locations of the extended sides of the viewing window. We can now easily
deal with two specific classes of line:

1. In the case that the two endpoints of a line have region codes 0000, we know that the line lies
entirely within the viewing window (e.g. the case of line segment S1 in Figure 3.20). The line
is therefore not clipped but is left fully intact. This is known as the ‘trivial acceptance’ case.

6 Naturally, the shape of the window against which we are clipping will also determine the maximum
number of times that a line segment can potentially cross a boundary.
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Figure 3.21 The operation of the Cohen Sutherland algorithm is underpinned by extending the sides of the viewing window across the plane
that contains the image scene. This results in the formation of nine regions. Each region is identified by means of a 4-bit binary code. The values
of individual bits within each code specifies the location of the region relative to the viewing window (above, below, to the right and to the left).
The viewing window itself is assigned the code 0000.

2. For each of the remaining line segments, we perform a bit-wise logical ‘and’ operation on
their endpoint region codes. For example consider a line segment that has one endpoint
in region 0101 and for which the other endpoint is in region 1001 (see Figure 3.21 for the
location of these two regions). If we perform an ‘and’ operation7 on the corresponding bits
in these region codes, we obtain 0001. Since the result is not 0000, we conclude that the line
segment is completely outside the viewing window and so the line is culled. This is referred
to as the ‘trivial rejection’ case. By way of a further example consider a line segment that
has endpoints in regions 0101 and 1010. The logical ‘and’ operation of the corresponding
bits in these two codes yields 0000. When this result is obtained (i.e. all bits are zero), we
conclude that the line cannot be ‘trivially rejected’ and must be considered further.

The ‘trivial rejection’ case that we have just described does not identify all lines that lie com-
pletely outside the viewing window. For example, consider the line segment S5 indicated in
Figure 3.23. This line has endpoints in regions 0100 and 0010 and is entirely outside the viewing
window. If we perform a bit-wise logical ‘and’ operation on these two codes, we obtain 0000.
This indicates that the line cannot be trivially rejected. This is indeed a prudent decision for as
may be seen in Figure 3.23 line S6, which has the same endpoint region codes, passes through
the viewing window. Thus without more definite information concerning the location of the
endpoints, we cannot be sure whether or not the line passes through the window.

Having dealt with the cases of ‘trivial acceptance’ and ‘trivial rejection’ we can now consider
dealing with two exemplar lines indicated in Figure 3.24. As may be seen from the illustration,
one of these (S7) has endpoint region codes that correspond to those of the line segment
discussed in the previous paragraph. We will label these endpoints as P1 and P2. Beginning
at point P1, we locate the point at which the line intersects one of the region boundaries – in

7 In the case of this operation, if either of the bits are zero, then this results in a zero.
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Figure 3.22 The use of region codes by the Cohen Sutherland algorithm. By setting individual bits to one, we are able to define the locations of
regions relative to the viewing window. Note that the code 0000 is used to define the region within the viewing window.

Figure 3.24 this point is labelled Pi. We can now cull the part of the line between P1 and Pi.
Examination of the region codes for the remaining part of the line segment (i.e. undertaking
the bit-wise logical ‘and’ operation) results in the value 0010 – a non-zero value indicating that
the remainder of the line may be culled.

Let us now consider the line segment S8 depicted in Figure 3.24. Beginning with endpoint P3,
and knowing that this point lies outside the viewing window, we identify the first intersection
of the line with a region boundary. In Figure 3.24, this is labelled Pj. We cull this portion of
the line and then perform the bit-wise ‘and’ operation on the region codes of the endpoints
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regions 0010 and 
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Line segment S6

Figure 3.23 Here we illustrate two line segments – both of which have identical endpoint region codes (0100 and 0010). However although line
S5 is completely outside the viewing window, line S6 passes through the window. Such line segments cannot therefore be ‘trivially rejected’.
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Figure 3.24 Two exemplar line segments. Here, we indicate the labels used in the text for their endpoints and for the points at which the lines
intersect region boundaries.

of the remaining portion of the line segment. These are 0000 and 1000 – and so we obtain
a result in which all bits are zero. This indicates that we cannot assume that the remainder
of the line can be culled. We then turn our attention to the line’s other endpoint – P4. Again
we determine that this lies outside the viewing window and identify the point at which the
line crosses a region boundary (point Pk in Figure 3.24). We cull the portion of the line
between P4 and Pk. Examination of the region codes for the endpoints of the remainder of
the line indicates that they are both 0000 and so the remainder of the line is within the viewing
window.

Finally in relation to this clipping algorithm, it is instructive to consider the manner in which
we may determine the coordinates of the point at which a line intersects a region boundary.
Consider the line segment S9 that is illustrated in Figure 3.25 and which has endpoint coordi-
nates (x1, y1) and (x2, y2). In this diagram we also show the left hand boundary of the viewing
window which is given by x = xmin and assume that the line segment intersects the boundary at
(xmin, yi ). For our current purposes, we assume that the length of the line segment is such that
it does cross the boundary and therefore we will overlook its finite length. Recall Eq. 2.2 – in
which the general equation for a line is given by:

y = mx + c ,

where m denotes the gradient and c the intercept with the y-axis. For the line shown in
Figure 3.25, the gradient is given by:

m =
y2 − y1

x2 − x1
.

Thus:

y =

[
y2 − y1

x2 − x1

]
x + c . (3.15)
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Figure 3.25 Here, we consider a line segment with end-points (x 1, y 1) and (x 2, y 2). We assume that the line intersects the left-hand side of
the viewing boundary window at (x min, y i ).

We now determine the y intercept (c) by making use of coordinates through which the line
passes (e.g. (x1, y1)) – so that we can write:

y1 =

[
y2 − y1

x2 − x1

]
x1 + c .

Consequently:

c = y1 −
[

y2 − y1

x2 − x1

]
x1.

Inserting this into Eq. 3.15 and simplifying the expression we obtain:

y = y1 +

[
y2 − y1

x2 − x1

]
(x − x1) . (3.16)

Having obtained the equation for the line passing through (x1, y1) and (x2, y2), we determine
the intersection of this line with the left-hand boundary by simply equating x to xmin. Thus the
y coordinate of the point of intersection (yi ) is given by:

yi = y1 +

[
y2 − y1

x2 − x1

]
(xmin − x1) .

Naturally, if we are interested in determining the coordinates of the point of intersection with the
right-hand boundary, we simply insert x = xmax into Eq. 3.16 (where xmax denotes the location
of this boundary in the horizontal direction). Similarly, when dealing with the upper and lower
boundaries, we substitute for y in Eq. 3.16 (e.g. for the lower boundary y = ymin).

3.7.3 The Liang and Barsky Algorithm

The Cohen Sutherland algorithm for line clipping represents only one of a number of possible
techniques that, over the years, have been developed. It is instructive to briefly consider one
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of the alternative approaches. Here, we have chosen to summarise aspects of a technique
developed by Liang and Barsky [1984] and which operates on lines represented in parametric
form.

As we have seen, an arbitrary point (x, y) located on a line segment with endpoints (x1, y1)
and (x2, y2) can be represented by the following parametric equations8:

x = x1 + (x2 − x1) u
y = y1 + (y2 − y1) u

where the parameter u has values in the range 0 ≤ u ≤ 1. Thus when u = 0, the point (x, y)
is located at (x1, y1) and when u = 1, it lies at (x2, y2). These represent the two extreme
positions and for intermediate values of u, the point (x, y) will be at other locations on the line
segment.

It is convenient to let x2 − x1 = ∆x and y2 − y1 = ∆y. Thus we can re-write the above
parametric equations as:

x = x1 + ∆x · u (3.17)y = y1 + ∆y · u

Recall Figure 3.19 in which we defined the location of the clipping boundaries for a rectangular
region. As we indicated in Section 3.7.1, for a point (x, y) to lie within the rectangular viewing
window, it must satisfy the following inequalities:

xmin ≤ x ≤ xmax

ymin ≤ y ≤ ymax

If we substitute Eq. 3.17 into these inequalities, we obtain:

xmin ≤ x1 + ∆x · u ≤ xmax

ymin ≤ y1 + ∆y · u ≤ ymax

It is instructive to split these into four separate equations:

xmin ≤ x1 + ∆x · u
xmax ≥ x1 + ∆x · u
ymin ≤ y1 + ∆y · u
ymax ≥ y1 + ∆y · u

It is evident that each of these inequalities corresponds to the limits set by each particular
clipping boundary (i.e. the first equation corresponds to the left hand boundary, the second
to the right, the third to the lower boundary and the fourth to the upper). We can express these
four inequalities as:

pku ≤ qk, (3.18)

where k is an integer such that 1 ≤ k ≤ 4. We define pk and qk as indicated in Table 3.1.

8 For summary discussion on parametric equations see Section 2.3.1.
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Table 3.1 Defined values of p k and q k for 1 ≤ k ≤ 4

k = 1 p 1 = −	x q 1 = x 1 − x min

k = 2 p 2 = 	x q 2 = x max − x 1

k = 3 p 3 = −	y q 3 = y 1 − y min

k = 4 p 4 = 	y q 4 = y max − y 1

If we take each pair of values given in this table, insert them into Eq. 3.18 and slightly rearrange
the result, we obtain the four inequalities listed above. For example consider k = 1. In this case,
by our definition:

p1 = −∆x
q1 = x1 − xmin

Inserting these into Eq. 3.18, we obtain:

−∆x · u ≤ x1 − xmin.

Rearranging this gives:

xmin ≤ x1 + ∆x · u.

This is identical to the first of the four inequalities listed above and corresponds to the limits set
by the left-hand clipping boundary.

OTU Exercise 3.7: Verifying the Values Presented in Table 3.1

Insert each of the lower three pairs of values provided in Table 3.1 into Eq. 3.18 and hence
confirm that these give the lower three inequalities presented in the above text.

From the above discussion it is apparent that k = 1 corresponds to the contribution made by
the left hand boundary, k = 2 to that of the right hand boundary, k = 3 to the lower boundary
and k = 4 to the upper. Let us now consider the case of a vertical line segment (i.e. a line that
lies parallel to the pair of boundaries denoted by k = 1 and k = 2). For such a line x1 = x2 and
so ∆x = 0. Hence, p1,2 = 0. Similarly for a horizontal line y1 = y2 and so 	y = 0. Consequently
in this case p3,4 = 0.

Consider the horizontal line S9 depicted in Figure 3.26. In relation to the lower boundary
(k = 3), p3 = 0 and furthermore q3 is negative (this indicates that the line is on the outside of
the boundary). Conversely, in the case of S10, again p3 = 0 but now q3 is positive – indicating
that the line is on the inside of the boundary.
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Figure 3.26 Two horizontal line segments. For these lines, and in relation to the lower clipping boundary (k = 3), p 3 = 0. In addition, for
S9, q3 is negative – indicating that the line is completely outside the boundary. On the other hand, for line S10, q 3 is positive indicating that the
line is on the inside of the lower boundary.

Let us now turn our attention to considering the intersection of a line segment with a boundary.
Here we distinguish between a line segment that goes from the outside to the inside of a
boundary and the converse. These two cases are illustrated in Figure 3.27. In this diagram we
have extended the left and right hand clipping boundaries and line S11 crosses the left-hand
boundary just above the clipping rectangle.
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Line
segment
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Figure 3.27 Here we extend the left and right-hand boundaries. Line S11 is shown crossing from the outside to the inside of the left-hand
boundary whereas line S12 crosses from the inside to the outside of the right-hand boundary. See text for discussion.
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The parameter u is zero at the end point whose coordinates are (x1, y1) and unity at the
other endpoint and so, for increasing u, the line passes from the outside to the inside of the
extended boundary. In the case of line segment S12, u is zero at the end-point with coordinates
(x3, y3) and so, for increasing u, the line passes from the inside to the outside of the right-
hand boundary. Recall from Table 3.1, that for the two vertical sides of the clipping boundary
(corresponding to k = 1 and k = 2), p1 = −∆x and p2 = ∆x (where ∆x = x2 − x1). For line
S11, the difference between the x coordinates of the endpoints is positive and hence p1 is negative
and for S12, p2 is positive.

In general if pk is positive, a line progresses from the inside to the
outside of the associated boundary (i.e. the boundary associated with
the particular value of k being used). Conversely a negative value
of pk indicates that the line progresses from the outside to the
inside of the associated boundary. This provides a convenient means
of determining whether or not a portion of a line should be culled or
retained.

Determining the point at which a line intersects with a boundary is quite simple. Consider the
intersection of the line segment S11 with the left-hand boundary – as illustrated in Figure 3.27.
For this boundary k = 1 and at the point of intersection both the line and the boundary have
the same x and y coordinates. We know that for this boundary the x coordinate is equal to xmin.
Substituting this value into the parametric equation for x given in Eq. 3.17, we can write:

xmin = x1 + ∆x · u.

Hence:

xmin − x1

∆x
= u.

Recall from Table 3.1 that for k = 1, by our definition, p1 = −∆x and q1 = x1 − xmin. Hence we
can write:

xmin − x1

∆x
=

−q1

−p1
=

q1

p1
= u.

In general:

u =
qk

pk
. (3.19)

To see how the above ideas can be effectively used, let us turn to Figure 3.28 in which we
illustrate a line segment S13 and a rectangular clipping window. The clipping boundaries that
comprise this window are extended (to ‘infinity’). We assume that we have confirmed that this
line does not lie parallel to any of these boundaries and so cannot be most readily dealt with.
Consequently, we identify whether the line crosses each boundary in order to progress from the
outside of the boundary to the inside or vice-versa. As discussed above, this is based on the sign
of each calculated value of pk .

We compute pk for each value of k. Although this would normally be done in numerical
order, it is instructive for us to use the order in which the line shown in the illustration is seen to
cross the various boundaries. As may be seen, the line first crosses the lower boundary (k = 3).
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Figure 3.28 Here, we have extended the bounding sides of the rectangle to which a line segment S13 is to be clipped. In relation to line segment
S14 see OTU Exercise 3.8.

From Table 3.1 we know that in relation to this boundary, p3 = −∆y, where ∆y = y2 − y1.
Thus p3 is negative indicating passage from the outside to the inside of the boundary (this is
readily confirmed from the illustration). The line subsequently crosses the left hand boundary
(k = 1) for which p1 = −∆x = −(x2 − x1). Hence, at this boundary p1 is again negative and so
once more the line is passing from the outside to the inside of the boundary.

The line next crosses the top boundary (k = 4) and here we find that p4 is positive – indicating
a transition from the inside to the outside of the boundary. Finally, the line crosses the right-
hand boundary (k = 2): for which p2 is also positive.

For each of the above intersections, we now compute the parameter u – using Eq. 3.19 –
and so we have two values of u for outside to inside intersections and two values of u for the
converse.

In the case of the set of values of the parameter u calculated for inter-
sections from the outside of boundaries to their inner sides, we take
the highest value (let’s call this ua) as corresponding to the point at
which the line enters the clipping window. Conversely, in the case
of the set of values of u calculated for intersections from the inner
sides of boundaries to their outer sides we take the smallest value
(ub) as indicating the point at which the line emerges from the
clipping window.

In the case that ua > ub , the line segment lies completely outside the clipping window and
can be culled. Alternatively, if ua < ub , we simply substitute these two parameters into the
parametric equations for the line (Eq. 3.17) and so find the actual coordinates of the endpoints
of the clipped line segment.
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OTU Exercise 3.8: Other Line Segment Positions

Consider line segment S14 that is depicted in Figure 3.28 and that is partially inside (but which
does not completely traverse) the clipping window. By making small changes to the above
discussion relating to line segment S13, show how this line segment may be readily embraced
within the clipping process.

For further details relating to this line clipping algorithm see Liang and Barsky [1984]. Also see
the work undertaken by Cyrus and Beck [1978].

3.8 Clipping Polygons

‘There is a thin line between genius and insanity.
I have erased this line.’9

Consider the polygon depicted in Figure 3.29(a) whose shape is defined by a set of line segments.
This is clipped against the rectangular window shown in the illustration – the result is indicated
in Figure 3.29(b). In this case, clipping can be carried out by processing each individual line
segment in the manner described in the previous section. The result of this process is to generate
a series of disconnected edges which no longer form a closed polygon. However, when dealing
with a polygon that defines a fill area (a region comprising a certain colour or texture) we need
to employ a closed polygon and so it is necessary to piece together the disconnected edges
generated by the line segment clipping program or adopt an alternative strategy. In the next
subsection we outline the Sutherland-Hodgman algorithm which provides a means of clipping
a concave or convex polygon against a convex clipping polygon (such as a rectangular viewing
window). This algorithm avoids the formation of disjoint edges and ensures the retention of the
closed polygon.

3.8.1 The Sutherland-Hodgman Polygon Clipping Algorithm

This algorithm can be used to clip both concave and convex polygons against a convex clipping
polygon. As with the Liang-Barsky algorithm introduced in the previous section, use is made
of the ‘inside-outside test’. Within this context, we infinitely extend each edge of the clipping
polygon – each edge then defining an ‘inside’ and an ‘outside’ half-space. The manner in which
each vertex (comprising the polygon that is being clipped) is treated is determined according
to the half-space in which it resides (i.e. inside or outside) or according to any transition in
half space that occurs during the processing of adjacent vertices. This can be readily clarified by
considering a simple example – as indicated in Figure 3.30. Here we show a rectangular clipping
window the four sides (edges) of which are extended. Each edge therefore defines an inside and
an outside half-space and the region in which the four inside half-spaces coincide defines the
clipping rectangle. A point P survives the clipping process as it lies within the inside half-spaces
of all four edges. In contrast, point Q lies within the inside half-spaces of the left, right and

9 Attributed to Oscar Levant (1906–1972).
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(a) (b)

Clipping window

Polygon

Polygon clipped to 
window

Figure 3.29 In (a) we depict a rectangular clipping window and a polygon (indicated by the broken line) that is to be clipped to the window. In
(b) we illustrate the results of the clipping process.

upper edges of the rectangle but is in the outside half space of the lower edge. Consequently it is
culled.

The shape of a convex polygon can be defined as being the region in which the inside half-
spaces of the edges from which the polygon is formed coincide. This is an important aspect of
the Sutherland-Hodgman polygon clipping algorithm and it is for this reason that the algorithm
is limited to use with a convex (rather than concave) clipping polygon.

O I OI

O

O

I

I

Point P

Point Q

Extended clipping 
boundaries

Figure 3.30 Here, we define a rectangular clipping window and extend its four sides. Each of these sides (edges) defines an inside and an outside
half-space. In the diagram these are denoted by ‘I’ and ‘O’ respectively. The clipping rectangle corresponds to the region in which the four inside
half-spaces coincide. During the clipping process a point P which is located within all four inside half-spaces is retained whereas point Q is culled
(it is within three inside half-spaces but is in the outside half-space of the lower horizontal edge).
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Figure 3.31 Illustrating the operation of the Sutherland-Hodgman polygon clipping algorithm. Here, we employ a simple example – a quadri-
lateral is clipped to a rectangular window. In (f) we assign symbols to the vertices of the quadrilateral and to the points at which it crosses the
extended clipping boundaries. See text for discussion.

Let us now turn our attention to the basic technique employed by this algorithm and here,
we will make use of the simple example depicted in Figure 3.31. In (a) we show a rectangular
clipping window whose edges have been extended to ‘infinity’ – and so each edge has associated
inside and outside half-spaces. A quadrilateral is also shown – this is to be clipped to the window.
As may be seen in Figures 3.31(b)–(e) the quadrilateral is clipped in turn against each edge of the
clipping window – for example in (b) it is clipped against the left hand edge – only the portion
of the quadrilateral lying within the inside half-space of this edge is retained.
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Move from one vertex to 
the next (‘first’ to 

‘second’)

Both vertices 
are in the inside 

half - space

Both vertices 
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outside half-
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clipping edge 
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to the outside 
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extended
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Record the 
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Do not record 
vertex

Determine the 
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intersection and 
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Determine the 
point of 

intersection and 
record this and 
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vertex

Figure 3.32 The four possibilities and the actions associated with each when clipping a polygon using the Sutherland-Hodgman polygon
algorithm. See text for discussion.

To readily understand the operation of this algorithm, we can consider that we ‘walk’ around
the edges of the polygon to be clipped and as we travel from one vertex to the next, we act on
one of four possibilities. These are:

� The last vertex and the next vertex are both within the inside half-space of a clipping
boundary.

� The last vertex and the next vertex are both within the outside half-space of a clipping
boundary.

� We have moved across a clipping boundary – the last vertex being in the inside half-space and
the next vertex in the outside half space.

� We have moved across a clipping boundary – the last vertex being in the outside half-space and
the next vertex in the inside half space.

In the case of Figure 3.31(b) in which we are clipping against the left had edge, we make a circuit
of the polygon and the actions we take are summarised in Figure 3.32. Having completed our
circuit of the polygon, we then repeat the process for another clipping edge – and so the process
continues until we have clipped to all edges of the clipping window.

In Figure 3.31(f) we label the four vertices of the quadrilateral as a to d and the points
at which this object crosses the clipping boundaries as 1 to 8. Thus the unclipped polygon
has a vertex list a, b, c, d. Let us (arbitrarily) suppose that we start our first circuit by trav-
elling from d to a and that we are clipping against the left-hand clipping edge (again this is
an arbitrary choice). As we ‘walk’ around the quadrilateral we keep notes in relation to the
clipping process – these ‘notes’ represent a new vertex list that ultimately defines the clipped
polygon.
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Bear in mind that on this first circuit we are clipping against the left-hand edge (for the
moment we may ignore all other clipping boundaries).

� The first point of interest that we encounter relates to our crossing the left-hand boundary
(point 1 in Figure 3.31(f)). This corresponds to our crossing from an outside to an inside
half-space. As indicated in Figure 3.32, we determine the location of point 1 – make a note
of this and also note the location of the next vertex −a.10

� Moving from vertex a to vertex b – both are in the inside half space of the left-hand edge and
so, in accordance with Figure 3.32, we simply add vertex b to the list. So far, this list will
read 1, a, b.

� Continuing with our scenic tour – this time along the edge connecting vertices b and c .
Thus we simply add vertex c to our list.

� Finally, we ‘walk’ along the edge connecting vertices d and a . At the point denoted as 8 in
Figure 3.31(f) we cross the left-hand clipping boundary – from the inside to the outside
half-space. As indicated in Figure 3.32, we determine the location of this point and add it
to our list.

Our first tour (which relates only to the left-hand clipping boundary) is now complete and we
have created a new vertex list which reads 1, a, b, c , 8. The above process is then repeated for
the top, right-hand and bottom clipping boundaries – each time we use the vertex list that was
created during the previous tour as the input.

OTU Exercise 3.9: The Sutherland-Hodgman Polygon Clipping Algorithm

Continue the above discussion by undertaking a second, third and fourth ‘tour’ of the
polygon illustrated in Figure 3.31 so clipping against the top, right-hand and bottom clip-
ping edges. Hence confirm that this results in the formation of a polygon with vertices
1,2,3,4,5,6,7,8.

As illustrated in Figure 3.33, the clipping of a concave polygon may result in the production
of two or more polygon ‘fragments’. In the case of the Sutherland-Hodgman algorithm these
fragments are in fact not isolated, but are connected by ‘extraneous’ edges (also referred to as
‘bridging’ edges). This can be easily verified by applying the algorithm to the polygon depicted
in Figure 3.33.

For further discussion on this algorithm see, for example, Sutherland and Hodgman [1974],
Comninos [2006], Hill [1990], Hearn and Baker [1986] and most standard computer graphics
texts. It is recommended that the interested reader also examine the operation of the Weiler-
Atherton clipping algorithm. This is somewhat more powerful – both concave and convex
polygons can be clipped against concave and convex clipping boundaries – even when one or
other contains holes. For details see, for example, Comninos [2006], Weiler and Atherton [1977]
and most standard computer graphics texts.

10 As we proceed to a , we also cross the top clipping boundary – however, for the moment we ignore this
boundary – we are only concerned with the left-hand boundary.
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(a) (b)Clipping polygon

Polygon to 
be clipped

Figure 3.33 In (a) we show a concave polygon and its location relative to a rectangular clipping boundary. The result of the clipping process
is depicted in (b). Here, we appear to have generated two disconnected polygon fragments. However, in the case that the Sutherland-Hodgman
algorithm is employed, these two fragments are actually connected together via extraneous ‘bridging’ edges that lie along the clipping window
boundary.

3.9 Discussion

‘Concern for man and his fate
must always form the chief interest of all technical endeavours.

Never forget this in the midst of your diagrams and equations.’11

In this chapter we have introduced some of the basic techniques associated with the creation
of simple computer graphics images. In this context we have introduced the use of a viewport
and screen coordinate system. Subsequently we considered transformations for manipulating
points and vectors within a 2-D space. Here, we demonstrated that several transformations
can be encapsulated within a single matrix operator and in this context identified a difficulty
associated with 2 by 2 matrices – specifically in relation to translation operations. This led to
discussion concerning the use of homogeneous transformations.

The second part of the chapter introduced some simple ideas concerning the use of graphs
and di-graphs (comprising a set of nodes and edges) for the representation of 2-D objects. The
determination of the location of a point relative to an object boundary has been briefly outlined
and we have reviewed some basic issues relating to clipping.

Throughout this chapter our focus has been upon the manipulation of points, straight line
segments and polygons. In the chapter that follows we turn our attention to the formation and
manipulation of curves within a 2-D space.

3.10 Review Questions

1. As far as the display screen is concerned, from what point are the locations of pixels usually
referenced?

2. State a 2 by 2 matrix that causes an anticlockwise rotation through an angle of θ degrees.

11 Attributed to Albert Einstein (1879–1955).
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3. State a transformation that cannot be accomplished through multiplication with a 2 by 2
matrix operator.

4. State a homogeneous transformation matrix that will cause an anticlockwise rotation
through an angle of θ degrees.

5. State a homogeneous transformation matrix that will cause a reflection in the x-axis.
6. What is a ‘di-edge’?
7. State the parametric equations that define the location of a point (x ,y) on a line segment.
8. The Sutherland-Hodgman polygon clipping algorithm can be used to clip both _____ and

_____ polygons against a _____ clipping polygon.
9. What does the acronym NDC stand for?

10. Suppose that we wish to effect rotation about an arbitrarily positioned point. What basic
transformations would you combine to achieve this goal?

3.11 Feedback to Review Questions

1. From the upper left-hand corner.

2.

[
cos θ sin θ

− sin θ cos θ

]
.

3. Translation.

4.

[
cos θ sin θ 0

− sin θ cos θ 0
0 0 1

]
.

5.

[
1 0 0
0 −1 0
0 0 1

]
.

6. The term ‘di-edge’ refers to directed edges that are used to form ‘di-graphs’. Here each
edge has an associated direction and this can be used to, for example, define the inside and
outside of a polygon.

7.
x = x1 + (x2 − x1) u
y = y1 + (y2 − y1) u

8. The Sutherland-Hodgman polygon clipping algorithm can be used to clip both concave
and convex polygons against a convex clipping polygon.

9. NDC is an acronym for ‘normalised device coordinates’.
10. Translation – move the centre of rotation to the origin, rotation through the required

angle, translation – thereby ‘undoing’ the previous translation operation.



Curves in 2-D Space 4
‘. . . he cherished the hope that he would reach the
cat, but never did; and if he had, we knew that he
would only have stood and wagged his tail . . .’

4.1 Introduction

We now turn our attention to the formation of curves within a 2-D space and begin by reviewing
aspects of elementary Calculus – specifically in relation to differentiation. Here, we do not
introduce differentiation techniques from first principles but rather outline procedures that
may be adopted in order to achieve certain goals. As in other chapters, a number of ‘OTU’
exercises are presented and provide the opportunity of gaining some experience in applying the
techniques which are discussed.

In Section 4.3 we introduce ‘interpolation’ – a set of methods that are frequently used in
the formation of both static and dynamic images. For example, in the case of the former,
interpolation enables us to connect together two or more points using either straight line
segments or curves and in the case of dynamic scenes, these techniques enable us to create a
set of image frames that ‘interpolate’ between initial and final states. Thus we can interpolate
(‘fill in the gaps’) either spatially or temporally.

Bézier curves are briefly introduced in Section 4.4. This approach was pioneered by Paul de
Faget de Casteljau working for the French car manufacturer Citroën in 1959 and independently
by Pierre Bézier (at Rénault) in ∼1962. However, it appears that as a result of Citroën’s com-
mercial confidentiality policy, some years passed before de Casteljau’s activities in the area were

153
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published and in the interim Bézier’s work had become well known. As a result the technique is
almost universally associated with Bézier rather than with de Casteljau.

Having identified key strengths and weaknesses of the Bézier curve generation technique,
in Section 4.5 we consider uniform and non-uniform B-splines for curve formation. As we
will see, B-splines offer a powerful method for creating and manipulating curves and permit
curve segments to be seamlessly connected together. Finally in Section 4.6 we discuss issues
relating to the smooth and seamless connection of curve segments and introduce ‘orders of
continuity’. As we will discuss, zero-order continuity ensures that two curve segments actually
join – the coordinates of the end-point of one curve segment coinciding with the coordinates
of the starting point of another. First-order continuity ensures that the gradients of two curve
segments are, at the point at which the curves connect, identical. Second-order continuity relates
to the rate of change of gradient at the point at which two curve segments meet (this is often of
importance when dealing with animation).

Although this chapter deals with curve formation in a 2-D space, many of the techniques that
are introduced can be extended to support 3-D curve generation.

Key Learning Outcomes: At the end of this chapter you should be able to:

� Use differentiation techniques to find the gradient and turning points of curves repre-
sented in Cartesian and parametric forms.

� Understand basic interpolation techniques and distinguish between linear and non-
linear forms.

� Discuss the characteristics of Bézier curves and obtain the equation for a Bézier curve
based on the location of a set of control points.

� Describe the use of uniform and non-uniform B-splines for curve formation and manip-
ulation.

� Discuss key issues in relation to the seamless interconnection of curve segments and
distinguish between different ‘orders of continuity’.

4.2 A Little Calculus

‘It is a miracle that curiosity survives a formal education.’1

In this section we summarise some mathematical tools and methods that are directly relevant to
our subsequent discussions. For students who have studied Calculus it is likely that you will be
already familiar with the material outlined here and can therefore skip this section. However,
before doing so it may be a good idea to look at the associated OTU Exercises and check

1 Attributed to Albert Einstein (1879–1955).
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Figure 4.1 A line has constant gradient (m). In the case of this example, the gradient is calculated using Eq. 4.1 and equals 2/3.

that you are in fact able to undertake the calculations. In the case of students who have not
previously studied Calculus, the methods described here are presented without derivation and
it is suggested that you augment this chapter with a standard maths text such as Larson et al.
[1998].

Often, we encounter situations in which we are interested in finding the gradient (slope) of
a line or curve. In the case of the former and as indicated in Section 2.3, the gradient (m) is
given by:

Gradient =
y2 − y1

x2 − x1
, (4.1)

and is easily remembered as the ‘change in y divided by the change in x’. For example in the case
of the line illustrated in Figure 4.1, the gradient is calculated as shown. As is apparent from the
diagram, in the positive x direction, the line goes ‘uphill’ – and so by definition is said to have a
positive gradient (recall Figure 2.4(b)). On the other hand, if as x increases, a line or curve goes
‘downhill’ then it is said to have a negative gradient.

A straight line has constant gradient – however, in the case of a curve, the gradient is
continually changing. For example, consider the parabola illustrated in Figure 4.2. Here, the
gradient is given by the slope of the tangent to the curve at the point of interest. One simple
approach to finding the gradient of a curve at a particular point is to plot the curve, draw the
tangent to the curve at the point of interest and measure the slope of the tangent using Eq. 4.1.
Unfortunately, it is not possible for us to visually estimate the exact tangent and so the value that
we obtain for the gradient will be subject to error.

Fortunately, the process of differentiation provides a technique by which we can determine
the exact gradient2 of a curve at any point.

2 This is also referred to as a functions ‘rate of change’. For example, suppose that we have a function
that indicates an object’s speed (velocity) with respect to time. The differential of this function yields an
equation that indicates the rate of change of speed with respect to time – and of course, the rate of change
of speed with respect to time corresponds to an object’s acceleration.
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Figure 4.2 Here, we illustrate the curve y = x 2. The gradient at A (2,4) may be found by estimating the slope of the tangent to the curve at this
point. However, this will only provide an approximate value. In contrast, differentiation provides an exact value.

The derivative of a function gives an expression for the function’s
gradient – its ‘rate of change’.

Below we consider by means of several examples the way in which the derivatives of various
functions are obtained. In Section 4.2.2, we extend this discussion to show how we can obtain
the gradient of a curve (specified by a Cartesian equation) at a specific location. Subsequently,
we turn our attention to dealing with parametric equations.

4.2.1 The Differentiation Process

In this subsection we discuss the process of differentiation and provide a number of examples
that demonstrate how the derivatives of various exemplar functions are obtained.

1. Notation: Suppose that we have a function f (x) and that we differentiate this function
with respect to the variable x . The derivative is then generally indicated as f ′(x). This is
referred to as the ‘first derivative’ of the function. If we were then to differentiate f ′(x),
we would indicate this ‘second derivative’ as f ′′(x). Alternatively, consider a function such
as y = 3x + 4. In this case the first derivative of this function with respect to x would be
indicated by: dy

dx . This reads ‘the derivative of y with respect to x’. The second derivative would
be indicated by: d2 y

dx2 .
In summary two general forms of notation can be used:

f (x) → f ′(x) → f ′′(x)

y → dy

dx
→ d2 y

dx2
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2. Differentiating Simple Functions: Consider the function f (x) = axn where a and n are
constants. The differential of this function is given by:

f ′(x) = anxn−1. (4.2)

This process can easily be remembered as:

Multiply by the power and decrement the power.

Let us consider some examples:

� The first differential of the function f (x) = 3x5 is given by:

f ′(x) = 15x4.

� The first differential of the function f (x) = 3x may be obtained following the same
procedure (but recall that x0 = 1):

f ′(x) = 3x0 = 3.

� The differential of any constant is zero.

Bringing together these procedures, we can find the first and second differentials of slightly
more complex equations. For example, consider the quadratic equation:

f (x) = 3x2 + 4x + 6.

The first and second derivatives are given by:

f ′(x) = 6x1 + 4x0 + 0 = 6x + 4, f ′′(x) = 6x0 + 0 = 6.

Similarly, consider the equation:

y = 5x2 + 9x + 4.

The first and second differentials are:

dy

dx
= 10x + 9,

d2 y

dx2
= 10.

OTU Exercise 4.1: Derivatives

Find the first and second derivatives of the following:

1. f (x ) = 3x 3 + 6x 2 − 4x + 7.
2. y = 9x 4 − 4x 3 + 2x 2 + 5x − 8.
3. y = x (4x + 3).
4. y =

√
x . Hint:

√
x = x 1/2.
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3. Differentiating a Function of the Form (ax + b)n: Consider a function that has the gen-
eral form:

(ax + b)n , (4.3)

where a, b and n are constants. We may find the differential by expanding this equation
and then apply the procedures used above. For example, given the equation y = (3x + 4)2.
Expanding this equation we obtain:

y = 9x2 + 24x + 16,

and so the first derivative is given by:

dy

dx
= 18x + 24.

However, expanding brackets that are raised to higher powers is tedious (e.g. consider the
case of y = (4x + 3)20) and fortunately, the derivative can be obtained without the need for
expansion. Here, we adopt the following procedure:

Multiply by the power, decrement the power and then multiply by the
differential of the contents of the bracket.

Although at first sight this may sound confusing (!), in practise the process is quite straight-
forward. For example, consider the equation y = (3x + 4)2 (which we differentiated above).
Following the above procedure, we begin by multiplying by the power (2) and decrement
the power (this gives y = 2 (3x + 4)1). We then find the differential of the contents of the
bracket (which is 3) and multiply by this value. Thus:

dy

dx
= 6 (3x + 4) = 18x + 24.

Note that this is the same result as the one obtained above and that was determined by
expanding the bracket prior to differentiating. By way of a further example, consider the
equation y = (4x + 3)20. The first differential of this equation is:

dy

dx
= 80 (4x + 3)19 .

4. The Product Rule: Consider the case that we wish to differentiate an equation that com-
prises the product of two functions that we will refer to as u and v. For example:

y = 3x3 (1 + x)10

Here, we could represent 3x3 as u and (1 + x)10 as v. We can directly differentiate such an
equation by using the ‘Product Rule’ which indicates that:

dy

dx
= u

dv

dx
+ v

du

dx
(4.4)
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In the case of the above example, we would obtain:

dy

dx
= 3x3 · d

dx
(1 + x)10 + (1 + x)10 · d

dx
3x3 = 30x3 (1 + x)9 + 9x2 (1 + x)10

OTU Exercise 4.2: Further Derivatives

Find the first differential of each of the following:

1. y = (6x + 3)5.
2. y = 3 (1 − 3x )2.
3. y = 3x (1 − x )2.

4.2.2 Finding the Gradient of a Curve Described by a Cartesian Equation

The approach that we adopt in order to determine the gradient of a curve at a particular point is
summarised in Figure 4.3. We begin by obtaining the first derivative – this equation gives us the
rate of change of, for example, y with respect to the variable x . (This corresponds to the gradient
of the curve). To find the gradient at a particular point, we simply insert the x-coordinate of the
point of interest into the equation (for the first derivative). For example consider the curve
depicted in Figure 4.2 and whose Cartesian equation is: y = x2.

The point A (with Cartesian coordinates (2,4)) indicated on this parabola has a gradient that
corresponds to that of the tangent to the curve at this point. Following Figure 4.3 we first obtain

Find the first derivative of the 
Cartesian equation for the curve

This provides us with an expression 
for the gradient of the curve

Insert into the equation the 
coordinate of the point at which we 

wish to determine the gradient

Note: the gradient of a 
curve continually changes

Figure 4.3 Finding the gradient of a curve at a particular point. See text for discussion.
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an expression for the gradient of the curve. Thus:

dy

dx
= 2x = gradient.

We substitute the x-coordinate of the point of interest (point A) into this equation and so the
gradient at A is 4. Below we provide an additional example to illustrate the use of this general
approach:

Example: Find the coordinates of the turning point of the curve y = 3x2 + 4x + 2. Note that at
a turning point, the gradient is zero3. We begin by finding the first derivative:

dy

dx
= 6x + 4 = gradient.

At the turning point this equation equates to zero. Thus 6x + 4 = 0 and rearranging, we obtain
x = −2/3. To find the y coordinate of the turning point, we substitute this x value into the
Cartesian equation for the curve – that is:

y = 3x2 + 4x + 2 = 3

(−2

3

)2

+ 4

(−2

3

)
+ 2 =

2

3
.

Thus the turning point has Cartesian coordinates (−2/3, 2/3).

OTU Exercise 4.3: Determining the Coordinates of a Turning Point

Consider the curve whose Cartesian equation is given by: y = 6x 2 − 6x − 2. Determine the
coordinates of the turning point.

4.2.3 Dealing with Parametric Equations

Consider a curve represented by the following parametric equations:

y = t + 4

x =
√

t

Let us suppose that we are asked to find the gradient of this curve at a point A with coordinates
(2,8). Here, we are faced with a slight difficulty as neither one of the two equations provides
us with a relationship showing how x and y are related. Therefore we cannot ‘differentiate y
with respect to x’ – x and y are not contained within the same equation. One obvious approach
to dealing with this situation is to eliminate the parameter t and so obtain an equation that
directly relates y and x (in this case: y = x2 + 4). We could then use the approach described
above – namely determine dy/dx and insert into this equation the x coordinate of point A.
An alternative approach is to differentiate the two parametric equations with respect to the
parameter (t). Thus using the first of the two parametric equations we can differentiate y with

3 For example, in the case of the curve illustrated in Figure 4.2, the turning point is at (0,0).
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respect to t ( dy
dt ) and in the case of the second equation we can differentiate x with respect to

t ( dx
dt ) – as follows:

y = t + 4,
dy

dt
= 1.

x =
√

t = t1/2,
dx

dt
=

1

2
t−1/2 =

1

2t1/2
.

To bring these two equations together and obtain an expression for dy/dx , we make use of the
‘Chain Rule’. In the problem that we are discussing, y is a function of t and since t = x2, we can
also say that t is a function of x . The Chain Rule indicates that:

dy

dx
=

dy

dt
· dt

dx
. (4.5)

Thus, we can write:

dy

dx
= (1) · (2)t1/2 = 2

√
t.

Since x =
√

t, we can re-write this as dy/dx = 2x . Recall, that the original Cartesian equation
was y = x2 + 4 and if we differentiate this we obtain dy/dx = 2x . Hence the two approaches
yield the same result.

4.3 Interpolation

‘We shall not cease from exploration, and
the end of all our exploring

will be to arrive where we started and
know the place for the first time.’4

Interpolation techniques are frequently used in computer graphics and enable the calculation of
intermediate values (spatially or temporally) between two or more defined states. This is readily
understood by considering example situations:

1. Dynamic Scenes: Here, for example, we may wish to depict changes in an object’s shape
with time (e.g. a square that gets progressively larger or smaller), the trajectory of an object
(e.g. projectile fired from a cannon), changes in an object’s position (e.g. a car travelling
along a straight road) or changes in object attributes with time (such as the transition across
a range of shades of colour). Typically, we may start by defining two or more key states (e.g.
the starting and ending positions of a car). Subsequently, to achieve a smooth animation
we need to interpolate between these key states and generate a number of image frames
which, when depicted in sequence, will provide the visual system with a sense of smooth and
continuous dynamics. We may, for example, decide to generate these ‘interpolated frames’
in such a manner that they represent (capture) the state of the system at regular intervals in
time or alternatively at intervals that reflect the extent of the changes that have taken place
within the scene (e.g. in the case that a car moves with a non-uniform velocity profile).

4 T. S. Eliot.
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Figure 4.4 The use of interpolation to generate a set of points that lie on the straight line between points p 0 and p 1.

2. Connecting Points: Suppose that we have a collection of points that define the geometry of
an object (e.g. the vertices of a box). The process of interpolation can be used to fill in the
gaps between these points (and so generate the edges of the box). Creating a set of points
that lie on a straight line between two defined locations is a straightforward undertaking.
However, we are often faced with the more demanding task of connecting points by means
of some form of curve (or by using a set of curve segments which are joined together). This
facilitates the production of realistic and aesthetic shapes.

In this section, we briefly outline some of the basic principles used in interpolation and begin by
considering the generation of a set of uniformly spaced points that lie on a straight line between
two defined end-points.

4.3.1 Linear Interpolation

Here, we introduce the use of ‘linear interpolation’ (this is also referred to by the more imagina-
tive title of ‘Lerping’5). Consider the elementary example depicted in Figure 4.4 where we have
defined two ‘key’ end-points (p0 and p1) that are located at (1,2) and (2,4).

Let us suppose that we wish to generate a set of points that lie on the straight line connecting
p0 and p1. The simplest case is the point whose x coordinate lies mid-way between those of the
end-points (i.e. at x = 1.5). Clearly, the y coordinate of this point will lie mid-way between the
y coordinates of the end-points (i.e. at y = 3). We can use the same approach to determine the
y coordinates for each chosen value of x . If we assign to point p0 the coordinates (x1, y1) and to
point p1 the coordinates (x2, y2), then:(

xn − x1

x2 − x1

)
(y2 − y1) + y1 = yn, (4.6)

where (xn, yn) denotes the coordinates of an arbitrary point on the straight line connecting
p0 and p1. For example, in the case of the end points indicated in Figure 4.4, we can generate

5 Lerping: Linear intERPolation.
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Table 4.1 Interpolated values for the line segment illustrated in Figure 4.4.

xn 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0
yn 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 4.0

values on the line connecting p0 and p1 at increments of 0.1 units in xn. These values are given
in Table 4.1.

Notice that we have made uniform changes to xn (in this case increasing the value in steps
of 0.1 units) and this has resulted in uniform spacing of the points generated along the straight
line connecting p0 and p1. This process is known as ‘linear interpolation’.

It is convenient to express the interpolation process using the parametric form of equation:

xn = x1 (1 − t) + x2t, yn = y1 (1 − t) + y2t. (4.7)

Here, the parameter t varies between zero (at x1) and unity (at x2). For convenience, we will let
1 − t = f1 and t = f2. Therefore Eq. 4.7 becomes:

xn = f1x1 + f2x2, yn = f1 y1 + f2 y2. (4.8)

The functions f1 and f2 are illustrated in Figure 4.5. For each value of the parameter t, the
relative values (strengths) of these two functions define the influence that the two key points ( p0

and p1) have in determining the location of points (xn, yn). As a consequence functions f1 and
f2 are referred to as ‘blending functions’ (we will be talking about blending functions quite a lot
in this chapter and so it is important to understand this simple description of their action). As
can be seen from the illustration, at t = 0 only function f1 is non-zero (it has a value of unity)
and so from Eq. 4.8 it is clear that (xn, yn) lies at p0: point p1 has no influence. At the other
extreme (t = 1) the situation is reversed – only function f2 is non-zero and so it is apparent that
(xn, yn) will lie at p1. Now consider the position mid-way between the two key points (t = 0.5).
Here both f1 and f2 have the same value (0.5) and make an equal contribution to determining
the location of (xn, yn). Here, we can imagine that points p0 and p1 exert an attraction – each
‘pulling’ in an opposite direction – the strength of the ‘attraction’ decreasing with distance from
each of the two key points. Thus at the half-way position they both exert an equal ‘pull’ and

0.5 1.0 t

1.0

f1=1−t
0.5 f2=t

The sum of 
the two 
functions

Figure 4.5 The two ‘blending’ functions f 1 and f 2 used in Eq. 4.8. Note that these sum to unity.
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at other positions one key point will exert a larger attraction than will the other. This analogy
provides a useful way of conceptualising the way in which blending functions operate.

To gain a further insight into the way in which blending functions operate, recall from
elementary maths the ‘weighted average’. Here for example, suppose that we need to find the
average weight of a collection of objects. Let us assume that in a collection of 20 objects, 2 weigh
1kg, 10 weigh 2kg and the remaining 8 weigh 3kg. Then the average weight would be:

Average =
(2) · (1) + (10) · (2) + (8) · (3)

20
= 2.3kg.

This is known as a weighted average calculation and in general terms:

Average =
K · a + L · b + M · c + · · ·

K + L + M + · · · . (4.9)

Here, K, L and M represent the weights that we ascribe to the quantities a, b, c etc. However, if
we are only dealing with two quantities and if their weights sum to unity, this equation becomes:

Average = K · a + L · b.

This has the same form as Eq. 4.8 and so it is apparent that (xn, yn) is simply a weighted average
of (x1, y1) and (x2, y2)! It is useful to note that Eq. 4.8 can be expressed in a more compact form:

xn = f1x1 + f2x2 =
2∑

i=1

fi xi , yn = f1 y1 + f2 y2 =
2∑

i=1

fi yi . (4.10)

Here, ‘
’ indicates a summation operation and the values appearing below and above this sign
define the range over which this summation is to be carried out. In the above case, ‘i ’ can take on
the values 1 and 2 (integer values are used). These two values are inserted into the subscripts of
the terms appearing within the summation. By way of a further example, consider the following:

x =
5∑

i=1

(i + 2).

In this case the information provided above and below the summation symbol indicates that i
can have the values 1, 2, 3, 4, 5. We then insert these values and add the terms:

x =
5∑

i=1

(i + 2) = (1 + 2) + (2 + 2) + (3 + 2) + (4 + 2) + (5 + 2) = 25.

Although there is little to be gained in expressing an equation as simple as Eq. 4.8 in this compact
form, we will see in subsequent sections that this type of notation can be very useful.

Note that we can express Eq. 4.7 in matrix form:

[
(1 − t) t

] [
x1

x2

]
= xn,

[
(1 − t) t

] [
y1

y2

]
= yn. (4.11)
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Figure 4.6 Interpolating points (k(t )) along the vector PQ. See text for discussion.

OTU Exercise 4.4: Summation Notation

Evaluate the following expression:

x =
6∑

j =2

2 j

Let us now briefly extend the above ideas to encompass vectors. Consider the diagram presented
in Figure 4.6. Here, we have two vectors p and q that define the location of key points P and Q.
As we have seen, the vector PQ may be represented as −p + q and so a fractional distance along
this vector is given by t(q − p), where the parameter t has values in the range 0 ≤ t ≤ 1. Thus
the position vector k(t) to any point on the line connecting P and Q is:

k(t) = p + t (q − p) .

We can rearrange this equation so that:

k(t) = p (1 − t) + tq. (4.12)

This is the vector form of Eq. 4.7. In the case that, for example, t = 0.5, then k(t) =
0.5p + 0.5q.

4.3.2 Non-Linear Blending Functions

The blending functions employed in the previous subsection (denoted by f1 and f2) ensured
that uniform changes in the parameter t give rise to uniformly spaced interpolated values.
Within the context of computer graphics this is known as ‘linear interpolation’. In many sit-
uations this is highly desirable and in other cases the generation of interpolated values that are
not uniformly spaced can be advantageous. By way of a simple example suppose that we wish
to generate a series of image frames that show an object (e.g. a rectangle) moving in a straight
line across the computer screen. We may have defined two key points corresponding to the
initial and final positions of the object and we now need to interpolate frames between these
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two extreme positions. In the case that the object is to travel with constant speed (velocity), we
would simply create a series of frames using the linear interpolation technique outlined above
and depict these frames at an appropriate rate on the display. Alternatively, let us suppose that
the object’s velocity is non-uniform – perhaps the object moves slowly at first and subsequently
accelerates. In this case, we may use non-linear interpolation – generating a series of frames
whose temporal spacing is a function of the object’s velocity.

OTU Exercise 4.5: Linear and Non-Linear Interpolation

(a) Consider that we wish to depict the motion of a projectile fired from a cannon. We may
define three key points – the initial location of the projectile as it emerges from the can-
non, the point at which it returns to the ground and the point of maximum height. In this
scenario, what form of interpolation would you employ for the capture of intermediate
positions. Discuss your answer.

(b) Discuss situations in which you would employ non-linear interpolation.

Non-linear interpolation involves the use of non-linear blending functions. By way of a simple
example, we may define blending functions f1 and f2 as:

f1 = sin2 t, f2 = cos2 t. (4.13)

As with the two blending functions used in the previous subsection, they sum to unity (recall
that cos2 θ + sin2 θ = 1). The parameter t is now expressed in degrees (0 ≤ t ≤ 90◦) or in
radians such that 0 ≤ t ≤ π/2.

Concerning Radians: Angles are generally expressed in terms of
degrees (including fractions of a degree (minutes and seconds)) or in
radians. An angle of 360◦ is equivalent to 2π radians. Therefore, π

radians is equivalent to 180◦ and π/2 radians to 90◦ etc.

1. Conversion of degrees to radians: Suppose that we wish to
convert 30◦ to radians. 360◦ ≡ 2π radians. Therefore 1◦ is
equivalent to 2π/360 radians and so 30◦ is equivalent to
30 × 2π/360 = π/6 radians.

2. Conversion of radians to degrees: Suppose that we wish to con-
vert π/8 radians to degrees. 360◦ ≡ 2π radians. Hence 1 radian
is equivalent to 360/2π degrees. Thus π/8 radians ≡ 22.5◦.

Note the use of the symbol ‘≡’. This indicates that one quantity
is equivalent to another – radians and degrees are different units and
are therefore not equal to each other. However, they are equivalent.
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Table 4.2 Here we assume that the two key-points are located at (1,2) and (2,4). Non-linear blending functions are used (see
Eq. 4.14) and (x n , y n ) coordinates are calculated for different values of t .

t (degrees) 0 10 20 30 40 50 60 70 80 90

xn 2 1.97 1.88 1.75 1.59 1.41 1.25 1.12 1.03 1
yn 4 3.94 3.77 3.50 3.17 2.83 2.50 2.23 2.06 2

If we assume the use of these blending functions, Eq. 4.8 can now becomes:

xn = x1 sin2 t + x2 cos2 t, yn = y1 sin2 t + y2 cos2 t. (4.14)

Assuming by way of an example that two key points (p0 and p1) are located at the positions
indicated in Figure 4.4, we can tabulate (xn, yn) coordinates for different values of t – see
Table 4.2.

OTU Exercise 4.6: Non-Linear Interpolation

By drawing a graph, determine whether or not the (xn, yn) coordinates presented in Table 4.2
lie on the straight line connecting the two key-points. Note that although these points are
calculated using regular steps of t, on your graph they are not uniformly spaced, thereby
providing us with an example of non-linear interpolation.

In computer graphics we frequently encounter situations in which we wish to interpolate
between two or more points that are located in a 2-D or 3-D space. As illustrated in Figure 4.7,
connecting points using a series of straight-line segments does not yield pleasing and smooth
contours. The alternative and generally desirable approach is to connect the points using a
smooth curve. Here, a curve may interpolate the points (meaning that it passes through the
points) or otherwise. In the following sections we discuss issues relating to the generation of
curves the shape of which is defined by the location of a set of ‘control points’. Typically, these
curves do not interpolate all of these points.

Figure 4.7 Here, a set of points are connected using a series of straight-line segments. A more pleasing effect can be achieved by using one or
more curve segments. Try sketching a smooth curve that interpolates these points. In this context, a curve which interpolates the set of points
passes through all points.
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P0

P3

P1 P2

Figure 4.8 An example of a Bézier curve. Note the end-points P0 and P3 and also the control points P1 and P2.

4.4 Bézier Curves

‘A rock pile ceases to be a rock pile
the moment a single man contemplates it,

bearing within him the image of a cathedral.’6

Bézier curves were developed by Paul de Faget de Casteljau working for the French car manu-
facturer Citroën in 1959 and independently by Pierre Bézier (at Rénault) in ∼1962. However,
it appears that as a result of Citroën’s corporate confidentiality policy, some years passed
before de Casteljau’s work became widely known and, as a result, this important technique is
attributed to Bézier. In this section we briefly consider Bézier curves within the context of a
2-D space.

A Bézier curve is formed using control points – the location of these points relative to the two
end-points defines the shape of the curve and so they support interaction – moving a control
point changes the shape of the curve. An example of a Bézier curve is provided in Figure 4.8
and as may be seen, the curve passes through points P0 and P3 (the ‘end points’) but does not
pass through the other two (P1 and P2) – these being known as the ‘control points’. It is as if the
control points exert a force on the curve – drawing it towards them and so changing its shape in
a predictable and well-defined manner.

In the text that follows, we aim to provide an insight into Bézier curves and indicate key
strengths and weaknesses of this technique.

Let’s begin by assigning to each point Cartesian coordinates such that P0 is located
at (x0, y0), P1 at (x1, y1), P2 at (x2, y2) and P3 is at (x3, y3). In this case the location
of an arbitrary point (x, y) on the Bézier curve may be expressed using the following

6 Attributed to Antoine de Saint-Exupery (1900–1944).
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parametric equations:

x = x0 (1 − t)3 + 3x1 (1 − t)2 t + 3x2 (1 − t) t2 + x3t3

(4.15)
y = y0 (1 − t)3 + 3y1 (1 − t)2 t + 3y2 (1 − t) t2 + y3t3

where the parameter t varies between 0 and 1. As we would expect, substituting t = 0, into this
pair of equations gives x = x0 and y = y0 and substituting t = 1 results in x = x3, y = y3 – thus
indicating the coordinates of the endpoints of the curve correspond to the location of points P0

and P3. Hence the curve interpolates the endpoints.
Let us now determine the gradient of the curve at the two endpoints. We begin by differenti-

ating the above pair of parametric equations with respect to t:

dx

dt
= −3x0 (1 − t)2 + 3x1

[
(1 − t)2 − 2t (1 − t)

]
+ 3x2

[
2t (1 − t) − t2

]
+ 3x3t2

(4.16)
dy

dt
= −3y0 (1 − t)2 + 3y1

[
(1 − t)2 − 2t (1 − t)

]
+ 3y2

[
2t (1 − t) − t2

]
+ 3y3t2

Note that in differentiating the middle two terms of each equation we have used the ‘Product
Rule’ that was summarised in Section 4.2. Thus, for example, in the case of the second term of
the first equation, u = (1 − t)2 and v = t, and so the differential is given by:

3x1

[
u

dv

dt
+ v

du

dt

]
= 3x1

[
(1 − t)2 dt

dt
+ t

d

dt
(1 − t)2

]
= 3x1

[
(1 − t)2 − 2t (1 − t)

]
.

Returning now to the parametric expressions for the gradient of the Bézier curve given by
Eq. 4.16. We can determine the gradient at the start and end-points of the curve (P0 and P3)
by setting the parameter t to zero for the former and t to one for the latter. Thus for control
point P0 we obtain:

dx

dt
= −3x0 + 3x1,

dy

dt
= −3y0 + 3y1.

Using the Chain Rule that was summarised in Section 4.2.3, we can write:

dy

dx
=

dy

dt
· dt

dx
= (−3y0 + 3y1) · 1

(−3x0 + 3x1)
=

y1 − y0

x1 − x0
. (4.17)

Similarly, for point P3 we can write:

dy

dx
=

y3 − y2

x3 − x2
. (4.18)

Referring to Figure 4.9, the gradient of the line connecting P0 and P1 is given by:

Gradient =
y1 − y0

x1 − x0
.

By comparison with Eq. 4.17, it is apparent that the gradient of the Bézier curve at control
point P0 is equal to the gradient of the line connecting control points P0 and P1. Similarly, from
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Figure 4.9 The location of the four control points (P0 − P3). See text for discussion.

Figure 4.9, we can confirm that the gradient of the line connecting points P2 and P3 equates to
the gradient of the curve at P3 (see Eq. 4.18).

In summary, the shape of the Bézier curve obtained though the use of the four points
indicated in Figure 4.9 is determined by the gradient of the lines connecting each end-point
with its adjacent control point. As we interact with the control points and change their location,
we change the gradient of these connecting lines and so vary the shape of the curve.

In fact, we are not limited to the use of two control points – additional ones can be added.
In this case, the parametric equations for the overall curve follow an easily recognisable pattern.
For example, in the case of five points (including the two end-points) we obtain:

x = x0 (1 − t)4 + 4x1 (1 − t)3 t + 6x2 (1 − t)2 t2 + 4x3 (1 − t) t3 + x4t4

(4.19)
y = y0 (1 − t)4 + 4y1 (1 − t)3 t + 6y2 (1 − t)2 t2 + 4y3 (1 − t) t3 + y4t4

And for six points:

x = x0 (1 − t)5 + 5x1 (1 − t)4 t + 10x2 (1 − t)3 t2 + 10x3 (1 − t)2 t3 + 5x4 (1 − t) t4 + x5t5

y = y0 (1 − t)5 + 5y1 (1 − t)4 t + 10y2 (1 − t)3 t2 + 10y3 (1 − t)2 t3 + 5y4 (1 − t) t4 + y5t5

(4.20)

Thus, the number of terms equals the total number of points that are used (this includes the end-
points). Additionally the coefficients of each term follow the pattern of binomial coefficients that
are given in the famous triangle that bears the name of that well-known French mathematician
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Blaise Pascal (1623–1662).7 The first few rows of Pascal’s triangle are given in Appendix A and a
brief inspection of these numbers will reveal that the fourth row provides the coefficients used
in Eq. 4.15, the fifth row the coefficients used in Eq. 4.19 and the sixth row those appearing in
Eq. 4.20.

The values within each row of the triangle (and hence the coefficients within the equations
that describe Bézier curves) may be calculated using the equation:

Bk =
(n − k)

k
Bk−1. (4.21)

Here, n denotes the total number of points that are to be used and k is a pointer to the term
in the equation (the first term corresponding to k = 0). Thus if, for example we use a total of 5
points (n = 5) and assuming that the first term in each row of Pascal’s triangle is unity, then the
coefficient of the second term (k = 1) is B1 = ((5 − 1)/1)1 = 4. The next coefficient would be
given by, B2 = ((5 − 2)/2)4 = 6 etc.

On the basis of Eq.’s 4.15, 4.19 and 4.20, we can provide a compact vector expression for
defining points p(t) on the curve. Assuming the use of a total of n points, we can write:

p(t) =
n−1∑
k=0

pk Bk (1 − t)n−k−1 tk (4.22)

Note: Here we assume that by definition B0 = 1 and Pk is the position vector to the kth point.

OTU Exercise 4.7: Bézier Curves

Using Eq.’s 4.21 and 4.22, and assuming the use of a total of 4 points, write down the terms of
the vector equation for a Bézier curve.

The functions Bk (1 − t)n−k−1 tk are referred to as the Bernstein Polynomials (or blending
functions). Table 4.3 summarises the polynomial terms for values of n between 3 and 6. These
and subsequent terms can be readily obtained by the expansion of:

((1 − t) + t)n−1 . (4.23)

When used in this context, these polynomials are often referred to as ‘blending functions’. This
is because the curve is a blend of the vectors (p0, p1 etc.) – recall previous discussion presented
in Section 4.3. Thus for any particular value of t, the terms in the Bernstein Polynomial have
certain values. These values are each applied to one of the vectors (p0, p1 etc.) and so scale
the contribution that the vector makes in defining the shape of the overall curve. In short a
weighted sum is calculated in which weightings are applied to the contribution made by each

7 In fact, this pattern of numbers has a much longer history and is recorded in the Chinese work ‘Precious
Mirror’ by Chu Shih-chieh which dates back to the early 14th century [Boyer 1991]. In addition, Cooke
[2005] reports knowledge of this pattern of numbers in India some 700 years prior to the efforts of Pascal.
Its Sanskrit name is ‘Meru Prastara’ meaning ‘staircase of Mount Meru’.
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Table 4.3 The Bernstein polynomial terms (commonly referred to as ‘blending functions’). Here, n denotes the number of points used
and k provides an index to terms within each polynomial. Note that the coefficients follow the pattern of entries in Pascal’s triangle
(see Appendix A) and that the terms in each row when added together equal unity.

n k = 0 k = 1 k = 2 k = 3 k = 4 k = 5

3 (1 − t )2 2t (1 − t ) t 2

4 (1 − t )3 3t (1 − t )2 3t 2(1 − t ) t 3

5 (1 − t )4 4t (1 − t )3 6t 2(1 − t )2 4t 3(1 − t ) t 4

6 (1 − t )5 5t (1 − t )4 10t 2(1 − t )3 10t 3(1 − t )2 5t 4(1 − t ) t 5

control point. Thus we can express Eq. 4.22 as:

p(t) =
n−1∑
k=0

pkhk(t). (4.24)

Where hk(t) represents the Bernstein polynomials (blending functions).

OTU Exercise 4.8: Bernstein Polynomials

Using Eq. 4.23, or otherwise, obtain the Bernstein Polynomial corresponding to the case that
a total of seven points are used (n = 7).

4.4.1 Characteristics of Bézier Curves

In this section we briefly consider some of the characteristics of Bézier curves.

1. The Endpoints: As may be seen from Eq.’s 4.15, 4.19 and 4.20, all terms (other than the first
and last) contain factors in both t and in (1 − t). Consequently, at either endpoint (when
the parameter t equals either 0 or 1), these terms equate to zero and so make no contribution
to the start and end location of the curve. Thus increasing the number of control points or
changing their location does not impact on the coordinates of the curves initial and final
coordinates – these are firmly anchored – the curve interpolates the endpoints.

2. Application of Transformations: In the case that we wish to translate (shift), rotate or scale
a Bézier curve, we do not need to operate upon each point comprising the curve but simply
on the end and control points. Once the new locations of these points are found, the curve
can be recreated. In this sense Bézier curves are said to exhibit ‘affine invariance’ – the form
of the curve is not changed by affine transformations.

3. The Convex Hull: Imagine for a moment that the location of each control point is modelled
by a nail that sticks out from a board – as illustrated in Figure 4.10(a). If we then use an
elastic band (of appropriate size), and place this around our entire set of pins or nails, it
will snap to a shape that is determined by the location of some or all of the pins. This shape
defines the ‘convex hull’ and clearly, the elastic band will not snap to a shape that has ‘inward
facing’ corners.
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(a)

(b)

A

B

Figure 4.10 The photograph presented in (a) shows the locations of 16 points – each point being represented using a nail that stands out from
a surface. An elastic band has been stretched to encompass this set of points (nails) and when tension is released, the elastic band snaps to a
polygon with vertices that are defined by the location of some of the nails. This forms a convex hull. In (b) we illustrate a non-convex set – this has
an ‘inward facing’ corner and so, a line connecting points A and B passes through a region that is outside the set.

Below we briefly define the terms ‘convex set’ and ‘convex hull’.8

1. A convex set of points is a collection of points in which a line
connecting any pair in the set lies entirely within the set.

2. Given a collection of points, the convex hull is the smallest
convex set that contains the points.

Thus, for example, points within the region that is defined by the elastic band in Fig-
ure 4.10(a) form a convex set. However in the case of the polygon that is depicted in
Figure 4.10(b) this does not encompass a convex set – because as may be seen, a line
connecting points A and B passes through a region that is external to the polygon.

A Bézier curve lies within the polygon boundary (convex hull) that is defined by the end
and control points. Thus, even though the control points may not be positioned in a smooth
order (see Figure 4.11), the Bézier curve will remain confined to the convex hull region and
of course will always be anchored to the endpoints.

8 Source: Hill [1990].
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Control points

Endpoints

Convex Hull

Figure 4.11 Despite the ‘jagged’ positioning of the control points, the Bézier curve will remain within the convex hull.

4. Exercising Local Control: We can form more complex curves by increasing the number
of control points. However, consider a situation in which we are interactively creating a
curve and that for the most part, the curve has the desired shape. Only in one relatively
small region are we not quite happy with its profile and so we modify the location of the
nearby control point in an effort to obtain our ‘perfect curve’. Unfortunately, movement
of this control point will impact on the entire shape of the curve – changing not only the
imperfect part on which we are working but also the part that exhibits the desired curvature
(recall that all terms within the equation for the Bézier curve are active for all values of the
parameter t (other than at the endpoints where t equals zero and one)).

The control points are not limited in their scope of effect and this can
exacerbate the difficulty of forming more complicated curves via a sin-
gle set of control points.

One solution to this problem is to create more complex curves by piecing together separate
Bézier curve sections. This process is facilitated by two characteristics:

1. As we have seen Bézier curves pass through the two endpoints and so to connect two such
curves, we simply ensure that the location of the endpoint of one section corresponds with
the location of the starting point of the next.

2. Matching the starting point of one Bézier curve with the end-point of another will ensure
continuity (i.e. no break in the line), but this does not ensure that at the point at which the
curves meet there is not an abrupt change in slope. However, recall that at the ends of a
Bézier curve, the gradient is equal to that of the line connecting the endpoint with the adja-
cent control point. Therefore as indicated in Figure 4.12, we can ensure a smooth joining
of two curves by arranging that the two intersecting endpoints and their respective adjacent
control points lie on a straight line. Thus at the point at which the two sections meet, both
will have the same gradient. We discuss this matter in greater detail in Section 4.6.
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P0

P�0

P�1

P1

Bézier Section 1 Bézier Section 2

Figure 4.12 Forming a curve by piecing together two Bézier sections. Here we illustrate the control polygons. The starting point of Section 2
coincides with the end-point of Section 1. Additionally so as to ensure a smooth transition in gradient between the two sections, we arrange that
points P0, P1, P′

0 and P′
1 lie on a straight line. As a result, at the point of intersection the two Bézier curves have the same gradient.

In Chapter 7 we continue our discussion of Bézier curves and show how they can be used to
form smoothly curving surfaces.

4.5 Spline Functions and B-Splines

‘If you want to build a ship,
do not send your men out to get wood and tools . . .

but teach them a longing for the wide open sea.’9

In this section we provide a very brief introduction to ‘B-Splines’ which are widely used for
the formation of curves. Before we begin, it is useful to briefly summarise aspects of the above
discussion concerning Bézier curves.

Consider the case of a Bézier curve that employs a single control point (thus a total of three
points are used). Referring to Table 4.3, we can write the parametric equations for the curve:

x = x0 (1 − t)2 + 2x1t (1 − t) + x2t2

y = y0 (1 − t)2 + 2y1t (1 − t) + y2t2

This denotes the quadratic form of Bézier curve. The coordinates of the end-points are given by
(x0, y0) and (x2, y2) and we will arbitrarily locate these at (1, 1) and (10, 1). The above equations
then become:

x = (1 − t)2 + 2x1t (1 − t) + 10t2

(4.25)
y = (1 − t)2 + 2y1t (1 − t) + t2

As can be seen, each equation contains three blending functions.

9 Attributed to Antoine de Saint-Exupery (1900–1944).



176 An Introduction to Computer Graphics and Creative 3-D Environments

OTU Exercise 4.9: Blending Functions

Using a single set of axes, sketch graphs of the three blending functions indicated in Eq. 4.25.

From the graph drawn for the above OTU Exercise, it is apparent that the central term in Eq. 4.25
is non-zero for all values of t (other than 0 and 1 – the end-points) and so contributes to defining
the shape of the entire curve. As a result, when we relocate the control point (whose coordinates
are given by (x1, y1)), we change the shape of the overall curve – although the end-points remain
undisturbed. In the case that we increase the number of control points, each influences the
profile of the curve – the ‘scope of effect’ exercised by each control point is not limited. As we
have discussed, this can cause problems during an interactive curve creation process.

OTU Exercise 4.10: Sketching a Bézier Curve

Consider the case of a quadratic Bézier curve with end-points at (1, 1) and (10, 1) – as indicated
in Eq. 4.25. Assuming that the control point is located at (8, 8), sketch the curve.

Now let us turn our attention to the B-spline approach which enables us to restrict the ‘scope
of effect’ that a control point has in defining the entire shape of the curve. Such curves may be
referred to as ‘piecewise polynomials’ – the overall curve being formed from a series of curve
segments that are pieced together in a seamless manner. In the text that follows we loosely follow
discussion in Hill [1990].

OTU Exercise 4.11: Sketching a Piecewise Polynomial

Consider the three equations presented below:

a(t) =
t2

2

b(t) = 0.75 − (t − 1.5)2

c(t) = 0.5 (3 − t)2

Sketch the continuous piecewise polynomial that can be constructed using these three
equations. Note: For a(t) use values of t in the range 0 ≤ t ≤ 1, for b(t) 1 ≤ t ≤ 2, and for
c(t) 2 ≤ t ≤ 3.

The bell shaped curve created in the above exercise is a piecewise function – being formed from
separate curve sections. The curve is continuous in the sense that the three sections join together
without any breaks. In addition, and at the points of intersection, the segments have the same
gradient. This piecewise polynomial is an example of a ‘spline function’.
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P0

P2

P1

The curve passes 
through these two 
exemplar points

Figure 4.13 Here, we have three points located as shown. We employ a replicated version of the spline function that was considered in OTU
Exercises 4.11 and 4.12 to create a curve defined by these points. See text for discussion.

OTU Exercise 4.12: A Spline Function

Referring to the spline function employed in OTU Exercise 4.11:

(a) Show that at the points at which the curves intersect, they have the same gradient.
(b) Determine whether or not, at the points at which the curves meet they have the same

rate of change of gradient.

We can replicate this spline function and form a series of blending functions and through the use
of a number of control points, we are able to create interesting curves. Recall from our previous
discussion that we can represent a Bézier curve using the following notation:

p(t) =
n−1∑
k=0

pkhk(t). (4.26)

Here, we assume the use of n points, k acts as an index, pk is the position vector to the kth point
and hk(t) represents the blending functions. Consider the case that we have three points (n = 3)
as indicated in Figure 4.13.

Suppose that we form blending functions by replicating the spline function as shown in
Figure 4.14. Assuming the use of three control points, we create three instances of the function.
Using Eq. 4.26, we can now apply these blending functions to the three control points indicated
in Figure 4.13. To provide a better insight into the way in which this approach works, it is useful
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t1 2 3 4 5
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0.75

0.25

h0 h1 h2

Figure 4.14 Here, three instances of a spline function are shown. These three blending functions are used in conjunction with the three control
points depicted in Figure 4.13.

to express Eq. 4.26 in expanded form:

p(t) = p0h0(t) + p1h1(t) + p2h2(t). (4.27)

Below we insert some values of t:

� At t = 1: From Figure 4.14, we see that only the curve h0(t) is non-zero and at this point it
has an amplitude of 0.5.

p(1) = p0h0(1) = 0.5p0.

Thus the curve passes through a point mid-way between p0 and the origin. This point is
indicated in Figure 4.13.

� At t = 2: Now two of the functions are non-zero – both h0(t) and h1(t) are active and
influence the location of the curve. As may be seen from Figure 4.14, at this point, the
functions each have an amplitude of 0.5. Thus we can write:

p(2) = p0h0(2) + p1h1(2) = 0.5p0 + 0.5p1.

Hence at t = 2, both control points exercise an equal influence on the curve. As a result, the
curve passes through a point that is mid-way between the two control points. This point is
indicated in Figure 4.13.

� At t = 3: As may be seen from Figure 4.14 h0(t) has now decayed to zero and so plays no
role in influencing the shape of the remainder of the curve. However, h1(t) and h2(t) are
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non-zero – both have amplitudes of 0.5 and exert an equal influence on the location of the
curve. Thus at this point, the curve lies mid-way between control points P1 and P2. Mark
this point in Figure 4.13.

� At t = 4: Referring to Figure 4.14 we can see that at t = 4 only h3(t) is active and has an
amplitude of 0.5.

p(4) = p2h3(4) = 0.5p2.

Consequently, at t = 4, the curve passes through a point that is mid-way between the control
point and the origin. Mark this point in Figure 4.13.

� At t = 0 and t = 5: As may be seen from Figure 4.14, at both of these points the set of
blending functions are zero. Consequently, for example:

p(0) = p0 · 0 + p1 · 0 + p2 · 0 = 0.

Thus, the curve passes through (0,0) and is therefore ‘anchored’ to the origin.

OTU Exercise 4.13: Creating a Curve

Using the control points indicated in Figure 4.13 (and the points that you have noted during
the above discussion through which the curve passes), sketch the form of curve created by
means of the blending functions depicted in Figure 4.14.

The set of blending functions indicated in Figure 4.14 have several key weaknesses. These
include:

1. The curve is anchored to the origin.
2. The curve does not pass through (interpolate) the first and last control points and so the

coordinates of these points do not correspond to the starting and ending coordinates of
the curve.

3. As can be seen from Figure 4.14, for the range of values of t, the blending functions do
not sum to unity. For example, at t = 0, all blending functions are zero, at t = 1, the total
amplitude is 0.5 (in fact this is the amplitude of h0(t) – all other functions are zero).
For mid-range values of t, we achieve a constant sum and subsequently, the sum again
gradually diminishes until, when t = 5, it again returns to zero. As a result, the first and
last control points are given a lower weighting and so have less influence on the shape of
the curve.

4.5.1 Generating B-Spline Blending Functions

In the example used above, we employed a set of blending functions – each being identical
in shape – but shifted from its neighbour by a fixed value. These blending functions ensure
that individual control points have only limited influence on the shape of a curve (thus we
have addressed the difficulty associated with Bézier curves whereby movement of any control
point impacts on the shape of the curve as a whole). On the other hand, as indicated in (1)–
(3) above, the approach introduces other difficulties. One way to ameliorate these problems
would be to use only a limited portion of the curve – corresponding to mid-range values of t.
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Alternatively, we can extend this general technique and thereby create a powerful tool in support
of interactive curve design. In this subsection we briefly discuss B-spline functions in general
and in Section 4.5.2 comment on the use of a standard ‘knot vector’ which enables us to create
open curves that interpolate the first and last points.

B-spline functions may be generated using a recursive formula [Hill 1990]:

Nk,m(t) =

(
t − tk

tk+m−1 − tk

)
Nk,m−1(t) +

(
tk+m − t

tk+m − tk+1

)
Nk+1,m−1(t). (4.28)

This formula (which is in fact much simpler to understand than it may initially appear to be . . . )
generates the kth B-spline function of order m. Here, we need to distinguish between the terms
‘order’ and ‘degree’. The order of a polynomial is one greater than a polynomial’s degree. For
example, consider the polynomial:

7x3 + 4x2 + 5x + 9.

This polynomial is of degree three (corresponding to the highest power to which x is raised)
and has an order of four (corresponding to the number of terms). A polynomial with a degree
of three is referred to as a cubic equation and in the case that the degree is two, the equation is
called a quadratic.

OTU Exercise 4.14: Polynomials – Order and Degree

State the order and degree of the following polynomial:

6x 5 + 9x 4 + 8x 3 + 3x 2 + 2x + 6.

Returning to Eq. 4.28, Nk,m(t) represents the kth B-spline blending function of order m and as
may be seen, this is obtained using two blending functions of lower order (denoted as Nk,m−1(t)
and Nk+1,m−1(t)). Thus, for example the kth blending function of order 4, is obtained using the
kth and k + 1th blending functions of order 3 which have been previously calculated.

The simplest way of understanding how this process works is by example and so, in the
remainder of this subsection we will briefly use Eq. 4.28 to generate several blending functions.
In Section 4.5.2 we continue with general discussion on B-splines and their use in curve
generation.

As indicated above, Eq. 4.28 allows us to generate a B-spline function of order m using two
functions of order m − 1. For such a process to operate we must define the starting point –
i.e. the function with order of unity (Nk,1(t)). (By analogy recall Eq. 4.21 that enables the
generation of terms within Pascal’s triangle – this also required an initial ‘seed’ value.) We define
our starting value as unity across a fixed range – and as zero elsewhere. Thus:

Nk,1(t) = 1 for tk < t ≤ tk+1

Nk,1(t) = 0 elsewhere.

For example, if we are dealing with the first (k = 0), first order function, then we can write:

N0,1(t) = 1 for t0 < t ≤ t1

N0,1(t) = 0 elsewhere.
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tk tk+1 t

1

Nk,1(t)

Figure 4.15 Eq. 4.28 is a recursive function by means of which we can generate a B-spline function of order m using two functions of order
m − 1. Here we indicate the form of the initial function with order of unity (N k ,1(t )). Note that the actual location of the non-zero portion of
this function is determined by the value of k . For example if k = 1 then the non-zero portion would occur between t1 and t2.

However in the case that we are dealing with the second, first order function, N1,1(t) equals 1
between t1 and t2 – and is zero elsewhere. This may appear confusing when encountered for
the first time and so in Figure 4.15 we provide further clarification. By using this function in
association with Eq. 4.28, we can immediately generate the first (k = 0), second-order (m = 2)
B-spline function. In this subsection, we assume that t0 = 0, t1 = 1, t2 = 2 etc. Thus Eq. 4.28
becomes:

N0,2(t) =

(
t − t0

t1 − t0

)
N0,1(t) +

(
t2 − t

t2 − t1

)
N1,1(t) = t N0,1(t) + (2 − t) N1,1(t). (4.29)

However, we know that N0,1(t) = 1 for 0 < t ≤ 1 (and is zero elsewhere). Similarly, N1,1(t) = 1
for 1 < t ≤ 2 (and is zero elsewhere). Thus the first term in the above equation defines the shape
of the function between t = 0 and t = 1 and then the second term contributes the remainder of
the function (for t = 1 to t = 2). The result is the ramp shape depicted in Figure 4.16.

N0,2(t)∝t N0,2(t)∝−t

1 2 t

N0,2(t)

1

Figure 4.16 The generation of the first (k = 0), second-order (m = 2) B-spline function.
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It is instructive to pause for a moment and consider the form of Eq. 4.29 – which indi-
cates that:

N0,2(t) = t N0,1(t) + (2 − t) N1,1(t).

The first term increases directly in proportion to t. If we were to plot this relationship we
would obtain a straight-line which passes through the origin. By multiplying by N0,1(t) we
generate a line segment – when N0,1(t) = 1, the multiplication has no effect and elsewhere
(where N0,1(t) = 0) the graph is eliminated. Similarly, in the case of the second term – although
a plot would now reveal a straight-line with a negative gradient and y intercept of 2. Thus we
have generated the ‘up-ramp’ and ‘down-ramp’ illustrated in Figure 4.16.

Let’s continue with the second order function and generate equations for k = 1 and k = 2.
Using Eq. 4.28, we can write for k = 1:

N1,2(t) =

(
t − t1

t2 − t1

)
N1,1(t) +

(
t3 − t

t3 − t2

)
N2,1(t) = (t − 1) N1,1(t) + (3 − t) N2,1(t). (4.30)

Similarly for k = 2:

N2,2(t) =

(
t − t2

t3 − t2

)
N2,1(t) +

(
t4 − t

t4 − t3

)
N3,1(t) = (t − 2) N2,1(t) + (4 − t) N3,1(t). (4.31)

As we can see both of these equations draw upon our definition of the first order function. And
we know that:

N1,1(t) = 1 for t1 < t ≤ t2

N1,1(t) = 0 elsewhere.

N2,1(t) = 1 for t2 < t ≤ t3

N2,1(t) = 0 elsewhere.

N3,1(t) = 1 for t3 < t ≤ t4

N3,1(t) = 0 elsewhere.

In Figure 4.17 we illustrate the functions for k = 0, k = 1 and k = 2. As can be seen, changing
the value of k does not impact on the shape of the spline generated – it simply produces a shift
in location. This is the case for splines of any order – as long as tk = k (although splines that are
of different orders have a different shape).

Let us now turn our attention to the first, third order function. Using Eq. 4.28 we can write:

N0,3(t) =

(
t − t0

t2 − t0

)
N0,2(t) +

(
t3 − t

t3 − t1

)
N1,2(t).

Which gives:

N0,3(t) =

(
t

2

)
N0,2(t) +

(
3 − t

2

)
N1,2(t).

This can be expressed as:

N0,3(t) =
t

2

[
t N0,1(t) + (2 − t)N1,1(t)

]
+

(3 − t)

2

[
(t − 1)N1,1(t) + (3 − t)N2,1(t)

]
.

As we know, the first order values (N0,1(t), N1,1(t) and N2,1(t)) define the range over which
individual terms in this expression are non-zero. Thus, for example, t · N0,1(t) is non-zero in
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Figure 4.17 The formation of the second-order B-spline functions for k = 0, 1 and 2. As may be seen, the functions are identical in shape but
each is shifted relative to its neighbours.

the range t0 < t ≤ t1. With this in mind we can write the above expression in terms of a series
of piecewise functions:

N0,3(t) =
t2

2
for t0 ≤ t ≤ t1,

N0,3(t) =
t

2
(2 − t) +

(
3 − t

2

)
(t − 1) for t1 ≤ t ≤ t2,

N0,3(t) =
(3 − t)2

2
for t2 ≤ t ≤ t3,

and N0,3(t) equals zero elsewhere.

OTU Exercise 4.15: Sketching the First, Third Order Function

By means of the above piecewise expressions, sketch the first, third order function. You should
assume that t0 = 0, t1 = 1, etc.

Hint: A sense of déjà vu may save time . . .

And so we have turned full circle and have returned to an earlier point in our discussion!
However, we are now able to appreciate the way in which B-spline blending functions may be
formed. In order to have a powerful tool for interactive curve design, a further ingredient must
be added. This is briefly discussed in the next subsection.
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OTU Exercise 4.16: Obtaining the First, Fourth Order B-Spline Function

On the basis of the above discussion, obtain piecewise functions that describe the first (k = 0),
fourth order B-spline function (N0,4(t)). You should assume that t0 = 0, t1 = 1, etc. (The cubic
B-spline is widely used in computer graphics.)

4.5.2 Non-Uniform B-Splines

In the previous subsection, we outlined the way in which B-spline functions can be generated
and following earlier discussion concerning Bézier curves, it is apparent that we can use such
blending functions in association with a set of control points to generate a curve whose shape
can be readily manipulated. We can express the curve in vector form:

p(t) =
n−1∑
k=0

pk Nk,m(t).

In the case of the B-splines described in the previous subsection, we arranged for values of tk to
increase in steps of unity – these are referred to as uniform B-splines. However, when we remove
the requirement for uniformity, really interesting things happen!

The sequence of values used for tk is referred to as the ‘knot vector’. As we have seen, blending
functions comprise a collection of polynomials that form a continuous curve. The point at
which two polynomials connect is referred to as a ‘joint’ and a ‘knot’ is the value of t at which this
happens. Thus, a ‘knot vector’ denotes the location of joints within a set of blending functions.
A ‘standard’ form of knot vector is used in the formation of B-splines and can ensure that the
curve created by using these blending functions in connection with a set of control points will
interpolate the first and last points.

The approach adopted is to employ non-uniform knot spacing and this results in the produc-
tion of sets of non-identical blending functions. Furthermore, we reduce some of the intervals
between successive knot values to zero and this is achieved by defining multiple identical knots
(the number of identical knot values is referred to as the ‘multiplicity’). This can result in
discontinuities such that at a particular point all (but one) blending functions are zero. As a
result, the curve that is formed can be forced to interpolate control or end points. For example,
assuming the use of eight control points, the standard knot vector for a B-spline of order four is:

0,0,0,0,1,2,3,4,5,5,5,5

Application of this vector results in the formation of a set of blending functions that can be
used to create curves that interpolate the first and last control points. Assuming that we have
n control points and are employing blending functions of order m, then the entries within the
standard knot vector are determined as follows:

1. The number of elements (knots) within the knot vector equals the sum of the number of
control points (n) and the order of the B-spline functions to be used. Thus the number of
elements equals n + m.

2. From left to right elements within the knot vector do not decrease in value. Consequently,
tk ≤ tk+1.

3. For the generation of B-splines of order m, the first m elements within the knot vector
are zero.
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4. Subsequent to (3), the next n − m elements increase in size in steps of unity. The first of
these elements is 1.

5. The last m elements have the same value – this value being n − m + 1.

Below we apply these rules so as to form the knot vectors for second, third and fourth order
B-splines – we will assume the use of 6 control points:

� Second-order: From (1) above the number of elements within the knot vector equals n +
m = 8. From (3) the first two elements equal zero. In line with (4), the next 4 elements have
values 1, 2, 3 and 4 respectively. Finally, from (5), the last two elements each have a value of
n − m + 1 = 5. Therefore the knot vector is:

0, 0, 1, 2, 3, 4, 5, 5

� Third Order (Quadratic): Following the approach adopted for the second-order case, the
knot vector is given by:

0, 0, 0, 1, 2, 3, 4, 4, 4

� Fourth Order (Cubic): Following the same approach as used above, we obtain:

0, 0, 0, 0, 1, 2, 3, 3, 3, 3

For discussion concerning both uniform and non-uniform B-splines see texts such as Watt
[2000], Foley et al. [1990] and Jones [2001].

4.6 Continuity

Let us suppose that we wish to connect together two Bézier curves to create a single smooth
curve. Naturally, we must ensure that there is no break between curves – the ending point of one
curve must coincide with the starting point of the other. Since Bézier curves interpolate their
endpoints, we can achieve this goal by simply ensuring that the coordinates of the endpoint
of one curve coincide with those of the other curve. However, as we have seen, this does not
guarantee that the two curves will seamlessly (smoothly) connect – at the point of intersection,
the gradient of one curve may be quite different to that of the other. Recall that at the endpoint,
the line connecting the endpoint to the adjacent control point forms the tangent to the curve.
Therefore, we can ensure that the two curve segments have the same gradient at the point at
which they meet by arranging for the endpoint and adjacent control point of each curve to lie
on a straight line – recall Figure 4.12.

In the case that the endpoint of one curve segment is coincident with the endpoint of another
curve segment, the curves are said to exhibit ‘zero-order’ continuity (denoted C 0). When two
curve segments share a common tangent at the point at which they meet, they are said to
exhibit ‘first-order’ continuity (C 1). Additionally, in the case that at the point at which two
curve segments meet their respective rate of change of gradient (curvature) is the same, they are
said to exhibit ‘second-order’ continuity (C 2).

As indicated above, in the case of compound Bézier curves, attaining C 0 and C 1 continuity is
straightforward. However, C 2 continuity is more difficult. In this respect, Newman and Sproull
[1981] write:

‘Higher-order continuity [beyond C1] can also be ensured by geometric constraints on control points, but
beyond first-order constructions become complex.’
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On the same matter, Mortenson [1985] writes:

‘. . . the advantage of higher order Bézier curves is that they can achieve correspondingly higher orders of
continuity between segments of compound curves. For example, a fifth-order, or quintic, Bézier polynomial
permits us to specify end-points, end tangents, and curvature at each end. But how do higher degree polynomial
functions affect the computation of geometric properties and relationships?’

Second-order continuity can be particularly important when we are dealing with motion. For
example:

� When we wish a fluid to pass smoothly over a surface formed from compound curves.
� In the case that we wish to set up some form of ‘virtual camera’ which is to travel along a

curved path (that is created using compound curves).

Suppose that we have an equation that defines the position(s) of a
moving object with time. We now differentiate this equation with
respect to time (i.e. determine ds/dt). This new equation defines the
rate of change of position – which corresponds to the object’s speed
(when speed is represented as a vector quantity, it is referred to as
‘velocity’). If we now differentiate the equation that we have obtained
for the object’s speed – again with respect to time, we obtain an equa-
tion for the rate of change of speed (how quickly the object’s speed
is changing with time). This second differential (denoted d2s/dt2) indi-
cates the object’s acceleration.

OTU Exercise 4.17: Second-order Continuity

Consider the diagram depicted in Figure 4.18 which shows a road formed from two curve
segments. As indicated, the two segments each have a different radius of curvature. Let us
suppose that a car travelling at a speed of 140km/h passes through the point at which the two
road segments join (labelled A) – how will the dynamics of the car be affected?

Hint: Consider the orders of continuity supported at the point at which the two curves join.

Figure 4.18 Two road segments are indicated. These each have a different radius of curvature and join at point A. See OTU Exercise 4.17
(Reproduced by permission of Professor Rüdiger Hartwig.)
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As we have seen, B-splines are formed by connecting piecewise polynomials and below we
consider the continuity at the points at which one section ‘takes over’ from another. Let us
briefly consider the piecewise functions given in OTU Exercise 4.11 – these are:

a(t) = 0.5t2 0 < t ≤ 1,

b(t) = 0.75 − [t − 1.5]2 1 < t ≤ 2,

c(t) = 0.5 [3 − t]2 2 < t ≤ 3.

1. Zero-Order Continuity: To determine if the endpoint of one curve segment is coincident
with the endpoint of the next segment, we need to establish the values of a(1) and b(1) and
also b(2) and c(2). From the above equations, we obtain:

a(1) 0.5
b(1) 0.5
b(2) 0.5
c(2) 0.5

Thus a(t) and b(t) join at (1,0.5) and b(t) and c(t) at (2,0.5). Hence these three curve
segments exhibit zero-order continuity.10

2. First-Order Continuity: To determine first-order continuity, we must first differentiate
the above equations and hence obtain expressions for the gradient of each curve segment.
This gives:

da

dt
= t,

db

dt
= 3 − 2t,

dc

dt
= t − 3. (4.32)

At t = 1,
da

dt
=

db

dt
= 1.

At t = 2,
db

dt
=

dc

dt
= −1.

Thus at t = 1, a(t) and b(t) share a common tangent. Similarly at t = 2. The overall curve
therefore demonstrates first-order continuity.

3. Second-Order Continuity: Here, we need to obtain expressions for the rate of change of
gradient of the three curve segments. Hence we differentiate the three equations given in
Eq. 4.32. This gives:

d2a

dt2
= 1,

d2b

dt2
= −2,

d2c

dt2
= 1.

Clearly, the rate of change of gradient of the three curve segments is not equal at the points
at which the curves join and so these piecewise functions do not exhibit second-order
continuity.

The piecewise curve considered above is a third order (quadratic) B-spline in which the knots are
uniformly spaced. It is instructive to briefly consider the continuity demonstrated by the widely

10 Note: Here we are assuming that each of the curve segments is itself continuous. Since the functions are
polynomials, this is a valid assumption and so we need only consider possible discontinuities at the knots.
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Figure 4.19 The basis functions that are used in the formation of a cubic (m = 4) B-spline. See text for discussion. (Reproduced with permission
from Vince [2006].)

used cubic B-spline (m = 4). Here, the ‘basis functions’ may be expressed as [Vince 2005]:

a(t) =
t3

6

b(t) =
−3t3 + 3t2 + 3t + 1

6

c(t) =
3t3 − 6t2 + 4

6

d(t) =
(1 − t)3

6

In each case we assume that 0 ≤ t ≤ 1. The form of these functions is illustrated in Figure 4.19.
Below we briefly consider the orders of continuity that are associated with a cubic B-spline:

1. Zero-Order Continuity: We anticipate that a(t) joins b(t). Subsequently, b(t) joins c(t) and
finally c(t) connects to d(t). For each curve segment, t lies between zero and one. Thus, a(1)
should be coincident with b(0), b(1) with c(0) and c(1) with d(0). Inserting these values
for t into the above equations we obtain:

a(1) 0.167
b(0) 0.167
b(1) 0.667
c(0) 0.667
c(1) 0.167
d(0) 0.167

Thus, the curves connect with zero-order continuity.

2. First-Order Continuity: Following the approach used above in connection with the
quadratic B-spline, by differentiating the basis functions we are able to determine the
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gradients of the curve segments at the points at which they connect. Hence, we obtain:

da

dt
=

t2

2
.

db

dt
= −1.5t2 + t + 0.5.

dc

dt
= 1.5t2 − 2t.

dd

dt
=

− (1 − t)2

2
.

Inserting the points at which the curve segments intersect enables us to verify C 1 continuity.
At the point at which a(t) joins b(t), both curves have a gradient of 0.5. At the point where
b(t) meets c(t), both curves have a gradient of 0. Finally at the point at which c(t) and d(t)
join, the gradient of both curves equals −0.5. Consequently at the points at which the pairs
of curves, they share common gradients and so they demonstrate C 1 continuity.

4. Second-Order Continuity: Following the approach used in connection with the quadratic
B-spline, we obtain expressions for the rate of change of gradient by determining the second
derivatives. Differentiating the above equations gives:

d2a

dt2
= t,

d2b

dt2
= −3t + 1,

d2c

dt2
= 3t − 2,

d2d

dt2
= 1 − t.

Inserting t = 1 into the first of these equations and t = 0 into the second, we obtain the rate
of change of gradient at the point at which they join. Here, both equations indicate a rate of
change of gradient of 1. Similarly, if we insert t = 1 into the second equation and t = 0 into
the third, we obtain the rate of change of gradient at the point where b(t) and c(t) meet. In
both cases the rate of change of gradient is −2. To obtain the rate of change of gradient of the
curve segments at the point at which c(t) and d(t), we insert t = 1 into the third equation
and t = 0 into the forth. This indicates that at this point both of these basis functions have
the same rate of change of gradient (which is unity). Consequently, at the points at which
the curve segments connect, they exhibit second-order continuity. The support provided by
cubic B-splines for three orders of continuity ensures that joints are smooth and seamless.

4.7 Discussion

‘The best artist has that thought alone
Which is contained within the marble shell;
The sculptor’s hand can only break the spell

To free the figures slumbering in the stone.’11

In this chapter we have covered some important topics relating to the formation of curves within
a 2-D space. In Section 4.3 we focused on interpolation techniques and distinguished between

11 Attributed to Michelangelo di Lodovico Buonarroti Simoni (1475–1564).
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linear and non-linear forms. The use of Bézier and B-spline techniques enables a number of
control points to be used for the manipulation of curve shape. Interaction is a pivotal part of
computer graphics and the use of control points provides an intuitive way of forming curves.
However, as discussed in the case of Bézier curves, the movement of one control point impacts
on the shape of the entire curve. In contrast, the B-spline approach enables us to limit the scope
of effect which the manipulation of individual control points will have on the overall shape of
a curve.

As we have discussed, it is often desirable to form more complex curves by piecing together
smaller curve segments. This process is facilitated if each individual curve segment interpolates
its end-points. Towards the end of the chapter, we have emphasised issues relating to the smooth
and seamless joining of curve segments. In this context we introduced zero, first and second
orders of continuity.

4.8 Review Questions

1. Differentiate the following expression with respect to the variable x :

y = 5 (2x − 7)8 .

2. What is the order of the following polynomial:

3x4 + 2x3 − 5x2 + 2x + 1.

3. What is the degree of the polynomial given in (2) above?
4. What is a convex hull?
5. Convert 5π radians to degrees.
6. Indicate one weakness of the Bézier curve drawing technique.
7. Suppose that we have an equation that indicates the distance travelled by an object over

time. What is the result of differentiating this equation twice (with respect to time)?
8. When two or more Bézier curves are joined, how do we ensure first order continuity (C1)?
9. What do you understand by C2 continuity?

10. Within the context of splines, what is do you understand by the terms ‘joint’ and
‘knot’?

4.9 Feedback to Review Questions

1. The differential is:

dy

dx
= 80 (2x − 7)7 .

2. The order of the polynomial is 5.
3. The polynomial has a degree of 4.
4. For a given set of points, the convex hull is the smallest convex set that contains the points.
5. This can be converted as follows: 2π radians ≡ 360◦. Therefore 1 radian ≡ 360/2π degrees.

Hence 5π radians ≡ (360/2π)5π = 900 degrees.
6. Several possible responses. For example, changes in the location of one control point will

impact on the shape of the entire curve.
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7. We obtain an expression for the rate of change of velocity. This represents the object’s
acceleration.

8. By ensuring that at the point at which two curves meet, they share a common tangent.
9. When at the point at which two curves meet, their respective rate of change of gradient is

the same, they are said to exhibit C2 (second order) continuity.
10. A joint refers to the point at which two piecewise polynomials connect. A knot is the value

of the parameter t at which this happens.



Interfacing with the
Visual System 5

‘He would never let the harmless creatures
pass without religious barks.’

5.1 Introduction

In this chapter we briefly discuss aspects of the human visual system and the cues by which
we perceive the three-dimensionality of our surroundings. A number of useful references are
supplied and these are strongly recommended to readers interested in gaining a greater under-
standing of the vitally important processes via which we obtain a visual impression of, and
interact with, our surroundings. Unfortunately, computer generated images are often created
on the basis of intuition and in many situations such an approach may not yield optimal
results (especially when we consider the pivotal role that computer graphics plays in supporting
visualisation and in defining interaction opportunities).

Clearly, in order to design a safe and efficient aircraft, designers must have a sound knowledge
of the physical characteristics of the atmosphere through which the plane will fly and the
conditions that the plane may encounter. Similarly, the design of a ship cannot be undertaken
without an in-depth knowledge of the behaviour of the oceans through which the ship will
travel. On a more mundane level, the design of a seat which is to offer sustained comfort
requires that issues relating to human form and posture be taken into account. Certainly, seating
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designed without a true appreciation of the human frame is unlikely to offer optimal and/or
sustained comfort.1

These simple examples are intended to demonstrate that the design and engineering of a
product cannot (or rather should not) be carried out with reference only to the product itself –
many other issues must be considered and, in the case of computer graphics, these include facets
of the visual system, cognitive processes, proprioception and the like. In short, in developing
high quality interactive computer graphics applications, we should not focus solely on tech-
nology but must also consider human attributes and sensory systems. These are increasingly
important considerations – particularly when we move to display systems able to effectively
support ‘true’ 3-D imaging, new interaction modalities (including bi-manual interaction) and
haptic feedback.

It is interesting to consider the typical interfaces provided by leading commercial vendors. In
this context Blundell and Schwarz [2006] write:

‘. . . it is interesting to stand back for a moment and speculate on the number of hours per week that we now
spend bound to our computers, attempting to convey our emotionally driven thought processes via imprecise
communication skills to machines that operate solely on logic and that are utterly oblivious to the richness of
human dialogue.’

In the next section we open this discussion by summarising some key characteristics and features
of the eye along with issues relating to our perception of ‘visible’ radiation. In Section 5.3 we
introduce depth cues via which we perceive the three-dimensionality of our surroundings and
outline a simple classification scheme. This is used in the following three sections where we
consider pictorial, oculomotor and parallax cues.

Key Learning Outcomes: At the end of this chapter you should be able to:

� Describe the eye in terms of a high performance optical instrument.

� Delineate various characteristics and performance metrics of the human visual system.

� Understand issues relating to our perception of ‘visible’ radiation.

� Describe a range of pictorial, oculomotor and parallax depth cues.

� Appreciate the benefits that can be derived (in terms of our ability to visualise and
interact with 3-D data) by properly supporting parallax depth cues.

1 Aircraft seating perhaps provides an example of seats optimally designed for sustained human discom-
fort . . .
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Figure 5.1 The form and major constituents of the human eye. See text for discussion. (Reproduced from 9th edition of the Encyclopaedia
Britannica [1879].)

5.2 The Eye

Any fool can make things bigger,
more complex, and more violent.

It takes a touch of genius – and a lot of courage –
to move in the opposite direction.2

In this section, we briefly review various characteristics of the human eye which, even when
considered in isolation, is a truly remarkable optical instrument. Figure 5.1 illustrates the form
and main constituents of the eye and in Table 5.1 we summarise some key characteristics. These
are discussed in more detail in the subsections that follow.

5.2.1 Photoreceptors

The human eye contains ∼126 × 106 photoreceptors. These are responsible for the conversion
of electromagnetic energy into signals that are passed along the optic nerves. Photoreceptors
known as ‘cones’ operate most efficiently under daylight illumination and support colour

2 Attributed to Albert Einstein (1879–1955).
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Table 5.1 Some key characteristics of the eye – see text for discussion.

Characteristic Description

Number of photoreceptors ∼126,000,000
Density of photoreceptors in the fovea ∼150,000 mm−2

Spectral response ∼400–∼700 nm
Detection acuity ∼0.5′′ 3

Near Point ∼25 cm
Peak sensitivity (cones) ∼555 nm
Peak sensitivity (rods) ∼505 nm

vision.4 A second type of photoreceptor (‘rods’) exhibit greater sensitivity and therefore play
a greater role under more subdued levels of illumination. Rods and cones have different peak
wavelength sensitivities – the former have a peak response at ∼500–510 nm and the latter at
∼555 nm.

The Purkinje Shift: Johannes Purkinje noticed that at dusk, the appar-
ent brightness of different coloured objects changes. For example,
blue objects appear to become brighter and red objects darker. This
is caused by the increased reliance placed on the rods at lower levels of
illumination (coupled with the corresponding decrease in reliance that
is placed on cones). Thus the eye becomes more responsive to shorter
wavelengths hence blue objects appearing to become brighter and red
objects darker.

The retina (labelled ‘R’ in Figure 5.1) comprises the vast array of photodetectors together with
interconnections that enable the initial processing of detector signals. The distribution of rods
and cones on the retina is far from uniform. In fact, the density of rods gradually increases
towards the optical axis (the horizontal line indicated in Figure 5.1) and then rapidly falls away.
This sudden decrease in the number of rods is accompanied by a very large increase in the
number of cones such that the region around the optical axis (the central region of vision)
in essence comprises only cones. This region is known as the fovea and supports super-high
resolution colour imaging (in this region the density of cones is ∼150,000 mm−2). The central
part of an image scene (corresponding to our area of fixation) is cast onto the fovea and this
enables the part of the image scene that is of greatest interest to be captured at tremendous
resolution. Here, there is little point in attempting to improve on the remark made by Hermann
Ludwig Helmholtz (1821–1894) in 1873:

‘So that the image that we receive by the eye is like a picture, minutely and elaborately finished in the centre
but only roughly sketched at the borders.’ [Helmholtz 1873]

3 Note: 1/60◦ is referred to as ‘1 minute’ (denoted 1′) and 1/3600◦ is referred to a ‘1 second’ (denoted 1′′).
4 Colour vision is supported through the use of three classes of cone – each of which have different peak
wavelength sensitivities.
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Figure 5.2 The presence of the ‘blind spot’ can be readily confirmed by means of this simple diagram. Close your left eye and look at the ‘X’ with
your right eye. Adjust the distance of the diagram from the eye until the circle disappears. When this occurs, the circle is being projected onto
the blind spot region of the retina. Continue to gaze at the ‘X’ and note that although the circle cannot be seen, the horizontal line appears to be
unbroken. This can take a few moments’ practice – as it is important that the ‘X’ continues to denote the point of fixation. In this situation, the
visual system is extrapolating the line across the unseen space.

OTU Exercise 5.1: The Density of Pixels on a Standard Computer Display

(a) As indicated above in the fovea, the density of photoreceptors in the region of the fovea
is ∼150,000 mm−2. Compare this to the density of pixels (picture elements) employed in
a typical computer monitor.

(b) Does the fovea represent the part of the retina that is best able to support night-time
vision? Explain your answer.

The web of photoreceptor connections and interconnections lie in the path of the incoming
light – such that the light must pass through these prior to reaching the photodetectors. Fur-
thermore, and perhaps somewhat surprisingly, the photoreceptors do not point to the incoming
light but rather towards the back of the eye. Neither of these features would appear optimal –
but they do not negatively impact on the eye’s performance as an optical instrument!

There is one region of the retina in which neither rods nor cones are present. This is the area
in which the connections from the network of photoreceptors leave the eye and is referred to as
the ‘blind spot’.

OTU Exercise 5.2: Verifying the Existence of the Blind Spot

Consider the diagram presented in Figure 5.2. Following the instructions given in the figure
caption, verify the presence of a blind spot region on your retina. Discuss why, when we view
our surroundings, the blind spot is not apparent (even when we use only one eye).

5.2.2 The Focusing System

Two mechanisms are used to bring light that enters the eye to focus on the retina.5 Firstly,
light entering the eye is refracted at the interface between the eye and the cornea (labelled ‘A’ in
Figure 5.1). The focusing action that takes place at this interface is dependent on the difference
in refractive index between the surrounding air and the cornea and also on the curvature of
this boundary. Approximately two-thirds of the focusing action of the eye is achieved at this

5 The image cast onto the retina is inverted.
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interface.6 However, this represents non-adjustable focusing – adjustments in focal length are
the responsibility of the crystalline lens. This comprises layers of crystalline tissue and its shape
is controlled by surrounding ciliary muscles (denoted ‘M’ in Figure 5.1). In the absence of
any force, the lens is approximately spherical in shape and as the muscles exert more tension,
its thickness (and hence its curvature) decreases. The overall focusing action of the lens is
determined by the curvature of its two surfaces and the difference in refractive index between
these surfaces and the materials in contact with them. In fact, the region in front of the lens is
filled with an aqueous humor (this liquid is used to support the internal pressure of the eye and
so maintain its shape and is denoted as ‘HA’ in Figure 5.1). To the rear of the lens, the eye is
filled with a vitreous (‘jelly like’) humor (‘HV’ in Figure 5.1) through which light passes before
impinging on the retina.

Focusing action (accommodation) is not controlled from within the eye but rather represents
a response generated through the processing of an image scene. As we would expect, this
occupies a finite time – the reaction time to a stimulus is reported as being ∼0.3 seconds with the
focusing action being completed in ∼0.9 seconds [Boff et al. 1986]. However, this time period
is influenced by factors such as the target distance and level of illumination.

The term ‘near point’ is used to indicate the least distance of distinct vision – i.e. the
minimum distance at which an object can be brought to focus. For a ‘normal’ eye this is ∼25 cm.

OTU Exercise 5.3: The Near Point

Cover one eye. Hold a pointer such as a pen or pencil vertically at arm’s length and gradually
bring this pointer closer to the open eye. Note the least distance at which the pointer remains
sharply in focus (you will need to ask somebody to measure this for you). Repeat the process
for the other eye.

5.2.3 Perception of Colour

As indicated previously, the human eye is able to detect electromagnetic radiation in the range
∼400 to 700 nm – this defines the energy range of photons that may be detected by the visual
system. Recall from basic physics the equation:

E = hv, (5.1)

where E represents the photon energy, v the frequency of the radiation and h Planck’s constant.7

Furthermore, frequency (v) and wavelength (λ) are related by:

c = vλ. (5.2)

Here, c represents the speed of propagation of the radiation, which within a vacuum (‘free
space’) ∼3 × 108 ms−1.

OTU Exercise 5.4: Photon Energy

Consider light of wavelength 550 nm. Calculate the photon energy (assume the speed of light
(c) is ∼3 × 108 ms−1 and Planck’s constant (h) is ∼6.6 × 10−34 J.s).

6 Naturally, when the eye is immersed in water, the focusing action that normally occurs at this boundary
no longer takes place.
7 Planck’s constant ∼6.626 × 10−34 J.s.
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Colour is an attribute ascribed by the visual system and enables us to distinguish between dif-
ferent photon energies.8 As a result, colour is not a characteristic of light per se but is a property
that is conceptualised by the visual system and can therefore be regarded as a remarkable form
of illusion. In this context Schiffman [1982] writes:

‘Colour or hue is the psychological correlate to wavelength.’

The eye is not uniformly sensitive to all wavelengths – the cones (which, as we have already
mentioned, operate most efficiently in day light conditions) have a peak sensitivity at ∼555 nm
(yellow/green) and the rods (operating most efficiently under subdued lighting conditions) have
a peak sensitivity at ∼505 nm (blue/green). Our perception of the ‘brightness’ of a light source is
therefore determined not only by its light output (indicated by the number of photons entering
the eye per unit time interval) but also by the wavelength of the radiation being emitted (which
as we have indicated relates to photon energy). In short, a source of radiation that exhibits a
high level of light output may not be visible (as the wavelength of the source may lie outside the
operating limits of the visual system) or may be only dimly perceived.

When considering the light entering the eye from a source, we can consider the radiative
energy per unit time as measured in Watts (1 W = 1 J.s). However, this does not provide us with
an indication of the perceived ‘brightness’ of the source (here for the moment we use the word
‘brightness’ loosely) – the essential issue is the response of the photodetectors to the radiation. In
photometry, measurements are made in terms of the response of the eye to a source of radiation
and this takes into account the spectral response profiles of the rods and cones – see Figure 5.3.
Note that the response profiles shown in this diagram are normalised and so, although rods and
cones are equally sensitive to red light (∼650 nm), this is not evident from the diagram.

In considering the response of the eye to incident radiation, photometric units are employed
(e.g. the lumen). By definition, 1W of radiative energy at a wavelength of 555 nm corresponds
to 680 lumens. Below an example is provided showing the conversion of radiative power output
(measured in Watts) to photometric units (measured in lumens).

Conversion of Watts to Lumens: Consider a 200 mW helium-neon laser
that emits radiation at a wavelength of 633 nm. Determine the photo-
metric power output in lumens.

By definition, 1 Watt of radiant energy at 555 nm corresponds to 680
lumens. However, the laser is emitting radiation at 633 nm. Conse-
quently, we employ the spectral luminous efficiency curves (see Fig-
ure 5.3) and find that at 633 nm, the photopic curve has a value
of ∼0.25. This value provides the scaling factor that represents the
response of the cones to this particular wavelength. Thus the laser has
a photometric power output of 200 × 10−3 × 680 × 0.25 = 34 lumens

In describing colour, three important parameters are used – brightness,9 saturation (purity of
colour) and hue (colour). These parameters are brought together in the ‘colour spindle’ – as
shown in Figure 5.4. As may be seen from this illustration brightness increases vertically, satura-
tion with distance from the central axis and hue is a function of location on the circumference.

8 The sensation of colour can also be induced by means of a flickering light source.
9 For the moment we continue to use the term ‘brightness’ loosely.
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Figure 5.3 Spectral luminous efficiency curves for the human eye. Wavelength is indicated on the horizontal axis and the normalised10

response of rods and cones is depicted on the vertical axis. The rods (which support ‘night’ vision) exhibit a peak sensitivity at a wavelength
of ∼500–510 nm (perceived as blue/green) and the cones which are dominant in ‘daylight’ vision have a peak sensitivity 555 nm (perceived as
yellow/green). The curve relating detection efficiency to wavelength for the rods is known as the ‘scotopic curve’ and that associated with the
cones is the ‘photopic curve’.

The shape of the spindle indicates that the highest degree of saturation (corresponding to rich,
vibrant colours) can only be achieved at levels of moderate ‘brightness’.

OTU Exercise 5.5: Seeing Beyond the ‘Visible’ Spectrum

As we have indicated, the human eye is sensitive to wavelengths of ∼400 to 700 nm. This is
referred to as the visible portion of the electromagnetic spectrum. Suppose that this operating
range was broader, spanning the ultraviolet and infrared portions of the electromagnetic
spectrum (see Figure 5.5). Discuss ways in which this would impact on our perception of our
surroundings. In what ways would this assist with, or detract from, our ability to judge spatial
relationships and the shape of objects within a scene? In your discussion you may wish to con-
sider ways in which a honey bee’s perception of the colour of flowers differs from our own11.

10 Note that for convenience both curves have been ‘normalised’ – the peak sensitivity of either curve being
indicated as equalling unity. Clearly, in practice rods and cones do not exhibit the same peak sensitivity.
11 A honey bee is also able to detect the polarisation of light and local magnetic field. Since we have no
equivalent senses it is extremely difficult for us to appreciate the sensation that bees experience in respect
of these sensory systems.



Chapter 5 . Interfacing with the Visual System 201

Figure 5.4 The colour spindle that relates ‘brightness’, saturation and hue. From this diagram it is apparent that the achievable level of saturation
is a function of ‘brightness’. (Reproduced from Troland [1930].)

5.2.4 The Dynamic Range

As we will discuss shortly, the eye is able to operate across a tremendous range of lighting
conditions. In everyday life we frequently refer to the ‘brightness’ of a light source – the
greater the brightness, the greater the light output. However, it is important to remember
that the process of gauging ‘brightness’ is underpinned by the interaction occurring between
photons and the photodetectors in the eye. As indicated above, even though a source may emit

Frequency Increasing

Wavelength Increasing

1m 1cm 1µm 1nm    1Å

Infrared Ultra-
violet

Visible ‘light’

Figure 5.5 A portion of the electromagnetic spectrum – see OTU Exercise 5.5.



202 An Introduction to Computer Graphics and Creative 3-D Environments

Illuminance

Luminance

Retinal Illuminance

Retina

Pupil

Reflectance
Surface

Figure 5.6 Light falling on and being reflected by a surface. The light energy incident on the surface is referred to as the ‘illuminance’, and that
reflected by the surface as the ‘luminance’. The retinal illuminance takes into account the restriction that the pupil imposes on the light which
reaches the retina.

a high radiant energy, we may perceive the output only dimly (and in fact, if the source is emit-
ting only in the infrared or ultraviolet regions of the electromagnetic spectrum, the perceived
source output will be zero). Thus our perception of ‘brightness’ does not necessarily relate to
the absolute magnitude of the light output from a source but can be used in a more meaningful
way when we compare the appearance of two or more objects or surfaces that are each emitting
light of the same wavelength. In short, ‘brightness’ is a facet of our visual awareness and is
therefore not an absolute measurement.

However, it is possible to devise experiments that enable us to gauge how perceived brightness
(B) varies as a function of the actual light output (I ) by a source. This leads to the approximate
relationship:12

B ∝ I 0.33 (5.3)

When referring to the light energy incident on a surface, we will use the term ‘illuminance’
which may be expressed in units of lumens/m2. Generally, when we view our surroundings, we
do not look directly at light sources but rather at light reflected by surfaces and in this context,
we use the term ‘luminance’.13 The illuminance and the luminance are related by the surface
‘reflectance’ such that:

Reflectance(%) =
Luminace

Illuminace
· 100. (5.4)

These various terms are summarised in Figure 5.6 where we illustrate light falling on and being
reflected by a surface.

12 The validity of this relationship is governed by various conditions.
13 The term ‘retinal illuminance’ is used to refer to the light energy incident on the retina and is measured
in ‘trolands’ where 1 troland corresponds to 1 cd/m2 viewed through a pupil with an area of 1 mm2. See,
for example, O’Shea [1985] and Blundell and Schwarz [2006].
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Figure 5.7 The human eye is able to operate across a tremendous range of lighting conditions. Here, the luminance of a sheet of white paper
under different lighting conditions is indicated on a logarithmic scale. As may be seen, between starlight and sunlight, the luminance changes by
approximately eight orders of magnitude. However, neither of these settings represent extremes of the eyes operating range. In the lower part of
the diagram, we indicate the approximate operating range of the rods and cones. Here, it is important to note that neither rod or cone function
abruptly ceases but rather that increased reliance is placed on one and less reliance on the other – until ultimately only one form of photoreceptor
is in operation.

OTU Exercise 5.6: Perceived ‘Brightness’

Suppose that a room is illuminated by means of two lamps and that we wish to double the
perceived ambient ’brightness‘. How many additional lamps would be needed? You should
assume that all lamps have the same light output.

Turning now to the range of luminance over which the eye is able to operate. The photon flux
under the night time stars is ∼1012 photons m2s

−1
and on a sunny day is ∼1020 photons m2s

−1
.

Between these two situations the photon flux varies by some eight orders of magnitude – but the
human visual system has no difficulty in coping with such conditions. In Figure 5.7 we illustrate
the luminance (on a logarithmic scale) of a sheet of white paper under various conditions. The
rods represent the ultimate photoreceptor – a rod can be activated by a single photon – although
as a consequence of retinal noise (which is represented by photodetectors randomly ‘firing’) we
cannot perceive the incidence of a single photon.14

14 Experiments relating to the ultimate sensitivity of the human eye were carried out in the 1940’s and the
interested reader is referred to Hecht et al. [1942].
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The iris (denoted ‘I’ in Figure 5.1) controls the size of the pupil – the pupil being the hole in
the iris through which light enters the eye. The size of the pupil varies with lighting conditions
and so this provides a mechanism whereby the eye is able to adapt to different levels of lumi-
nance. However, the action of the pupil does not in itself explain the ability of the eye to operate
across such a wide range of lighting conditions. Here we need to bear in mind two points:

1. Reaction Time: The reaction time of the pupil to changes in luminance is relatively slow.
For example, when there is a strong reduction in the level of illumination, it takes ∼10 s for
the pupil to dilate to 2/3 of its maximum size and up to five minutes for it to fully open.
Conversely, when there is a sudden increase in illumination, it takes ∼5 s for the pupil to
fully contract [Lindsay and Norman 1972].

2. Change in Size: In sunlight the diameter of the pupil as ∼2 mm and in starlight ∼6 mm
[Boff et al. 1986]. The area of the pupil therefore changes by a factor of:

π ·32

π ·12
= 9.

Thus the pupil can only change the level of retinal illumination by a factor of ∼9 which
is very little when considered within the context of the range of lighting conditions
across which the eye is able to operate (see Figure 5.7). It is therefore evident that the
photoreceptors must be adaptive to the wide-ranging lighting conditions under which
the eye can operate efficiently. As for the actual function of the pupil, Blundell and Schwarz
[2006] write:

‘. . . it seems that the principle reason for the changing size of the human pupil is not to finely control
the amount of light entering the eye, but rather to achieve the best compromise between resolution and
sensitivity under different lighting conditions.’

Although the eye is able to operate across a wide range of lighting conditions, within a typical
image scene differences in luminance are quite small. In this context, we often consider the
image contrast ratio (C ) which may be expressed in terms of the maximum and minimum
luminance in an image scene (L max and L min respectively) such that:

C =
L max − L min

L max + L min
. (5.5)

Thus the contrast ratio is dependent on the extremes of luminance contained within a scene
and is independent of changes in the overall illuminance.

When we talk of the tremendous sensitivity of the human eye it is important to bear in mind
that this assumes that the eye has adapted to the conditions under which it is to operate. For
example, in order to exhibit maximum sensitivity, the eye must undergo ‘dark adaptation’ which
involves ‘immersion’ in darkness for a period of ∼30 minutes.

5.2.5 Acuities

Measurements in relation to the resolution characteristics of the eye are commonly referred to
as acuities. Below, several of these are briefly summarised:

(1) Vernier Acuity: Consider two line segments that are drawn end to end (Figure 5.8(a)).
Vernier acuity refers to our ability to determine misalignment of one line relative to the
other. Detecting the alignment and misalignment of line segments is crucial in accurately
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Figure 5.8 In (a) two line segments are shown. Vernier acuity relates to the minimum perceivable misalignment – naturally, this is a function
of viewing distance. Grating acuity relates to our ability to resolve discrete elements in a pattern. In (b) a simple grating is illustrated: this type
of pattern may be used to measure grating acuity. Diagram (c) shows a plan view of a grating that is located 1 m from the eye. Under suitable
conditions the eye is able to resolve lines that have a pitch of ∼0.145 mm and that are at a distance of 1 m.

reading measurements indicated by a ‘vernier scale’ (traditionally used, for example, by
microscopes, micrometers, vernier callipers etc) hence the name of this acuity.15

(2) Grating Acuity: This refers to our ability to resolve discrete elements within a pattern. In
Figure 5.8(b) a simple grating comprising a series of light and dark strips is shown. This
type of pattern may be used to measure grating acuity – although as with other acuities,
measurements are strongly influenced by viewing conditions such as the contrast ratio of
the grating, level of illuminance etc. However, under appropriately favourable conditions,
the minimum line spacing that can be detected in a grating is ∼30′′. Consider a grating in
which lines are separated by a distance x and that lies at a distance of 1m from the eye (see
Figure 5.8(c)). It is apparent that:

x = 1· tan 30′′ = tan

(
1

120

)
≈ 0.145 mm.

Thus under appropriate conditions we are able (in principle) to resolve lines that are
separated by ∼0.2 mm when located at a distance of 1m from the eye.

(3) Detection Acuity: Consider, for example, a length of wire that lies at 90◦ to the visual axis.
As this wire is moved further away, the angle that it subtends at the eye will gradually

15 It also referred to as the ‘Localisation Acuity’.
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decrease, Detection acuity refers to the minimum angle that we are able to detect and
typically, we have little difficulty perceiving objects that subtend an angle of ∼1′ [Coren
et al. 1994].

OTU Exercise 5.7: Detection Acuity

(a) Consider a straight piece of wire that is held vertically, which lies at 90◦ to the visual
axis and that is 2m from the eye. Assuming that the horizontal angle subtended at
the eye is 1’, determine the thickness of the wire. Further, if we assume that a distance
of 20 mm separates the eye lens and retina, state the horizontal extent of the retinal
image.

(b) Estimate the angle subtended at the eye by an image pixel depicted on a conventional flat
screen display. You should estimate the diameter of the pixels depicted on your computer
monitor and also the typical viewing distance.

(c) View an overhead cable (such as power transmission line or telephone cable) from a
distance. Choose a cable that can be seen against the skyline. By changing your location,
estimate the maximum distance at which the cable remains visible. On the basis of this,
and any other relevant information, determine the approximate angle that the diameter of
the cable subtends at the eye. Is the clarity of the cable increased or decreased by viewing
it (a) against a blue sky, (b) against a cloudy sky?

(d) Under good lighting conditions, what is the maximum distance at which you are able to
perceive a thread supporting a spider’s web? Estimate the angle that this thread subtends
at the eye and the size of the retinal image formed.

Pioneering experimental work was carried out in the 1930s in order to determine the highest
detection acuity achievable (under optimal conditions). Hecht and Mintz [1939] report a value
of 0.5′′ corresponding to a retinal image of ∼0.04 µm – this being smaller than the diameter of
individual cones! The publication by Hecht and Mintz is well worth reading. See also summary
discussion in Boff et al. [1986] and Blundell and Schwarz [2006].

5.3 Cues to Depth

‘How far that little candle throws his beams!
So shines a good deed in a weary world.’16

Here, and in subsequent sections of this chapter, we briefly discuss various ‘depth cues’ by
means of which we are able to judge spatial relationships within the physical world and that are
employed when we create 3-D images using either the traditional flat screen display or emerging
creative display technologies.

In our everyday lives we are remarkably adept at judging spatial relationships and in the main
we achieve this complex feat without conscious effort. This applies to both static and dynamic
scenes. We briefly consider these two scenarios in the subsections that follow.

16 ‘The Merchant of Venice’ Act V, Scene I. William Shakespeare (1564–1616).
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5.3.1 Static Scenes

We can readily determine the relative location of objects in, for example, a room. It is apparent
(perhaps we should say obvious) to us that one chair is closer to us than is another and that the
remote control for the TV lies within our reach. In this latter context we are often able to make
accurate judgements as to the absolute location of objects. Consider reaching out for that cup
of tea or glass of wine while preoccupied by other tasks. These are not processes that involve us
in conscious effort – with little (if any) hesitation the hand connects with the handle of the cup
or the stem of the glass – seldom do we make an error of subconscious judgement and knock
over the cup or glass (unless, of course they are resting on vital papers or in the case that we
have recently purchased a new white carpet and are drinking red wine – in which case errors of
judgement invariably occur . . . ).

The process of reaching out for and interacting with objects within an environment is not
only underpinned by visual cues but also by our awareness of the position and orientation of our
limbs – these are key aspects of ‘proprioception’. As indicated in Blundell and Schwarz [2006]:

‘To enable us to interact effectively with our surroundings . . . it is necessary for the CNS [central nervous
system] to have an accurate knowledge of the position and orientation of our limbs within 3-D space, together
with relevant information concerning their motion and the forces that we exert (or that are exerted on us)
during any interaction process. In this context, the terms ‘Proprioception’ (proprius from the Latin ‘own’) and
‘Kinesthesis’ (kine from the Greek ‘movement’) are both commonly employed.’

Facets of proprioception are summarised in Figure 5.9 (see also Section 10.2). It is important
to note that our sense of sight coupled with the intuitive knowledge that we possess in relation
to the position and orientation of our limbs, provides an incredibly powerful mechanism for
interaction with our surroundings. Since computer graphics techniques provide the primary
means by which we visualise and interact with computer-processed data, it is apparent that
issues relating to proprioception should be considered when developing computer graphics
based applications.

OTU Exercise 5.8: Bi-manual Interaction

Although human dexterity is greatly enhanced through the use of synergistic bi-manual inter-
action, conventional computer interaction techniques (typically based on the keyboard and
mouse) and computer graphics applications, generally support only uni-manual interaction.
The task of threading cotton through the ‘eye’ of a sewing needle provides a simple example
of an interaction task that draws on not only our sense of sight but also on the use of two
hands working synergistically. This can be readily demonstrated as follows:

(a) Hold a needle in the non-preferred hand (i.e. if you are right-handed, hold the needle in
the left hand) and thread the cotton through the eye of the needle.

(b) Attach the needle to a fixed object (e.g. hold the needle in a vice) and without using the
non-preferred hand in any way, again thread the cotton (i.e. use only the preferred hand
for the task).

Compare the relative difficulty of these two approaches.
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PROPRIOCEPTION

Awareness of movement

Awareness of the rate of 
movement of limbs

Awareness of the relative
 position of different parts 

of the body

Awareness of the direction of
movement of limbs

Awareness of the effort
required in contracting muscles

Awareness of the weight
supported by a limb

Awareness of whether
a movement is generated 
internally or externally

Figure 5.9 Some facets of proprioception. From our current perspective, it is important to note that aspects of proprioception play a vital role in
our interaction with computer systems. (Diagram © 2005 Q. S. Blundell.)

5.3.2 Dynamic Scenes

In the context of driving a car, consider the type of judgements that we make in relation to
gauging relative and absolute distances and also relative speeds (after a little practice, such
judgements are generally made without conscious effort). Perhaps we are driving at speed along
a busy motorway and decide to overtake a truck that is in front of us. With only a glance in the
rear view mirror we rapidly determine the relative distance and speed of a vehicle approaching
in the outside lane. On the basis of this information, we change lanes, accelerate and overtake.
Seemingly without effort we again change lanes – a task that relies on our accurate judgement
of both the speed and the separation of the vehicles between which we reposition our car. All
of these judgements must be made in real time and our visual system must take into account
ever-changing geometry – the position of traffic is continually varying with respect to our own
coordinate system(s).

When driving a car, we seldom consciously reflect on the nature of information presented to
the visual system and upon which often critical decisions are based. Nor (even when first learn-
ing to drive) are we consciously selective of the cues that we employ in carrying out manoeuvres.
In contrast, when learning to land a light aircraft, there is a need to make a conscious effort –
in those final moments before touch-down, our centre of attention should be directed towards
the horizon – although instinctively, there is perhaps a feeling that we should be focusing on the
ground immediately below the plane and with which we wish to make gentle contact! In this
situation, we must consciously adapt and develop our everyday use of depth cue information.
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In the next three sections, we briefly outline a range of depth cues that play a pivotal role in
our judgement of spatial and absolute distances and of relative speed. Although for convenience,
we review each of these cues separately, it is important to note that in practice we seldom
employ them in isolation – usually information that we derive in relation to the 3-D nature of
our surroundings (and indeed the three-dimensionality of objects depicted within a computer
generated scene) is based on our interpretation of a plurality of cues. Furthermore, the relative
emphasis and range of effectiveness of cues varies with distance. By way of a simple example
consider an aircraft flight. When we look out of the window from an altitude of say 30,000 feet,
it seems that we are hardly moving in relation to the terrain far below. As the plane descends,
motion eventually becomes more apparent. Perhaps just prior to landing we pass over a city
at an altitude of a few thousand feet. From our window, we certainly gain a greater sense of
motion – although the buildings and cars over which we pass still appear to be remote and
divorced from us. However, once over the runway threshold and moments before touchdown,
our considerable speed suddenly becomes apparent and the ground begins to race by (even
though we are now travelling more slowly that when in the cruise). In those last moments before
wheels meet runway and the reverse thrust is applied our perception of speed is augmented by
depth cues that are most effective at short-range distances – these depth cues were unable to
assist (or had less value) with our judgement of speed when the ground was further away.17

In brief:
1. Depth cues provide the basis by which our visual system makes

judgements of absolute distances, relative distances and relative
speeds.

2. Judgements are usually made on the basis of a range of depth cue
information. Seldom in our everyday lives do we rely on only a
single cue.

3. Different depth cues are effective over different distances – some
cues are able to provide useful long-range information, whilst oth-
ers are limited to shorter viewing distances.

OTU Exercise 5.9: Perception of Motion

Determine the minimum speed of motion that you are able to continuously perceive. You may,
for example, choose to write a simple program that enables an object such as a rectangle to
move across a computer screen. In this case, your program should permit the user to vary the
speed of movement (and perhaps provide a readout of speed).

Depth cues may be grouped in various ways and in the discussions that follow we adopt an
approach that is most relevant to conventional computer graphics and creative 3-D environ-
ments. As indicated in Figure 5.10, cues are grouped into to three possible categories – pictorial,
oculomotor and binocular.

17 Here, the speed at which components within the image scene move across the retina plays a major role.
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Pictorial Cues
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Figure 5.10 A classification scheme for various depth cues – see text for discussion.

In the next section we briefly review a number of pictorial cues, in Section 5.5 we consider the
oculomotor cues of accommodation and convergence and in Section 5.6 we turn our attention
to binocular cues.

5.4 An Overview of Various Pictorial Depth Cues

As their name implies, these cues underpin the depiction of pictorial images of 3-D scenes
rendered on a 2-D tableau (such as artist’s canvas or computer display). Consequently this set
of cues play a pivotal role in the formation of computer generated 3-D images and in the case of
the traditional flat screen display, oculomotor and parallax cues are absent. In the subsections
that follow, we briefly discuss cues in this category.

5.4.1 Occlusion

One or more opaque objects within an image scene may wholly or partially obscure (occlude)
our view of others that lie at greater distances. For example, in Figure 5.11(a) we are likely to
assume (in the absence of additional information) that two rectangles are illustrated. Since our
view of one of these rectangles is partially obstructed, this indicates that the rectangle on the
left is the closer. However, this may be a false assumption – one of the rectangles may have
been cut away – as indicated in the right-hand illustration. In (b) we illustrate a more complex
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(a)

(b)

Figure 5.11 The depth cue of occlusion. In (a), we assume that one rectangle is partially occluding our view of another and from this we may
conclude that the left hand rectangle is the closer of the two. However, this may not be correct – the diagram may not be showing two complete
rectangles – one may have been cut away as indicated in the right-hand diagram. Thus the occlusion cue is underpinned by assumptions that
we make about the shape of objects within the visual scene. In the photograph reproduced in (b), one car partially occludes another, a person
partially occludes our view of one of the cars, the cars partially occlude our view of the lawn and a shrub on the left hand side partially occludes our
view of one of the cars. This provides us with key information concerning the location of objects with the scene – but as with the simple diagram
presented in (a) we make assumptions about the shape and completeness of objects within the image scene. These are usually based on prior
experience and image context. Furthermore, additional cues will be available and will assist in (and reinforce) our understanding of the 3-D space.
(Photograph © P.J. Blundell (2007).)

scene. Here, occlusion provides us with various information concerning the relative positions of
objects within the scene – however, as with the diagram in (a) we must make assumptions as to
the shape and completeness of each object. Fortunately, other depth cues are likely to be present
and these will help to resolve ambiguities.

5.4.2 Height in the Visual Field

This cue is illustrated in Figure 5.12. As may be seen, the sea appears to ascend towards the
horizon and the sky descends until they ultimately meet and so define the position of the
horizon. Consequently, for an object located below the horizon, the more distant the object,
the higher it appears to lie within the visual field. In contrast for objects that are located above
the horizon, the more distant the object, the lower it appears to lie within the visual field.
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Figure 5.12 The ‘height in the visual field’ cue. Here, it appears that the sky descends and the sea ascends until they meet at the horizon. Consider
objects that are below the horizon. The more distant the object, the higher it appears to lie in the visual field. In contrast, in the case of objects
that are located above the horizon, the more distant they are, the lower they appear to lie in the visual field. (Photograph (South Pacific) © P.J.
Blundell (2007).)

OTU Exercise 5.10: Height in the Visual Field

(a) Assume that the two rectangles illustrated in Figure 5.11(a) are located below the horizon.
Re-draw this diagram so that the information that we derive from the occlusion cue is
reinforced by the cue of height in the visual field.

(b) Add to Figure 5.12, two boats/ships and two birds/planes. Incorporate the height in the
visual field cue so as to indicate that each boat and each bird is at a different distance.
What other cues could you incorporate so as to reinforce the impression of relative
distance?

5.4.3 Aerial Perspective

As light passes through the atmosphere, it impinges upon, and is scattered by, small particles
such as dust and water vapour – see Figure 5.13. As a result distant objects appear to be less
well defined. In addition, more distant objects take on a bluish hue. This is as a result of the
relationship between the extent to which light is scattered by small particles and the wavelength
of the light. In this respect:

I ∝ 1

λ4
. (5.6)

This is referred to as Rayleigh scattering and as can be seen from this relationship, the shorter
the wavelength (λ), the greater is the degree of scattering (I ). Thus blue light is scattered more
than red light and it is as a result of this scattering process that the sky appears blue.
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Figure 5.13 In (a) we indicate the scattering of light by a small particle – this process is referred to as Rayleigh scattering. As indicated by Eq. 5.6
the extent to which light is scattered is strongly influenced by wavelength – blue light is more strongly scattered than red light and it is for this
reason that the sky is blue (is the sky on Mars blue?). In (b) we illustrate enrichment of visual content as a result of scattering. The image shows
Rangitoto Island in the Hauraki Gulf. Notice a ridge in the foreground. This is visible because light emanating from the more distant background is
subjected to a greater amount of scattering. Compare this image to (c) which was taken on another day when scattering was less apparent and, as
a consequence of the texture and colour of the foliage, the ridge is not so readily discerned. (Photographs © A.R. Blundell (2007).)
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On the basis of aerial perspective, objects (such as mountains) which appear to be less distinct
or which have a bluish tint, are perceived as lying at greater distances. In this context, Coren
[2004] writes:

‘In some geographic regions (such as the prairies of the United States and Canada), this can lead to considerable
errors of judgement because the clear, dry air reduces aerial perspective. Thus a plateau that appears to be 1 or
2 miles away on a clear dry day, when looking across a dry sector of Wyoming, may be actually 20 or 30 miles
from the observer.’

He goes on to add:

‘The scattering of light may also cause an overall reduction in the relative contrast [recall Eq. 5.5]. In the
absence of any other cues, you will tend to see the brighter of two identical objects as closer, and even when
other cues are present, reduced contrast is associated with seeing objects as more distant.’

In fact during the Lunar expeditions in the early 1970s, astronauts reported difficulty in estimat-
ing the distance of rock formations. Naturally as the moon possesses no atmosphere, scattering
is absent and so even distant objects appear to be bright, exhibit a high relative contrast and do
not take on the bluish tint that is the norm here on Earth.

As with other pictorial cues, scattering can be synthetically introduced into graphics images
so reinforcing the impression that objects such as mountains lie at different distances.

5.4.4 Familiar Size

We are well aware of the physical size of objects that we encounter in our everyday lives and
as a consequence of linear perspective (see below) we know that as an object is placed at a
greater distance, it will appear to be of diminished size. Consequently, the perceived size of
objects within an image scene provides us with an indication of their distance (both absolute
and relative) – for example the two cars depicted in Figure 5.11(b). The significance of this cue
can be readily demonstrated by using models of objects (such as playing cards) which are not
of the standard size. When these are viewed (within an environment in which other cues are
absent), observers usually gauge their distance incorrectly.

5.4.5 Shadows and Shading

Consider the image reproduced in Figure 5.11(b). The shadows cast by the cars, the figure and
the trees in the background greatly assist in our interpretation of the layout of the 3-D scene. In
addition, smooth and abrupt changes in the luminance provide us with important indications
of the shape of objects (see, for example, the rear portion of the car that lies in the foreground
in Figure 5.11(b)). Our interpretation of shadows and shading involves an assumption as to
the location of the light source – which is generally assumed to lie overhead (see below). By
way of a simple example, consider the illustration presented in Figure 5.14. The shading that
is associated with each circle provides us with an immediate sensation of 3-D relief – circles
appear as domed regions that either stand out from, or are indented into the page. Turning the
diagram through 180◦ reverses the perceived orientation of each dome. Interestingly, rotating
the diagram through 90◦ leads to a less stable condition – and in this case, we are interpreting
the effect of shading caused by two light sources – one lying to the left and the other to the right.

As mentioned above, we generally assume that a light source is positioned overhead –
specifically above the head – the light source location being assumed relative to a head-centred
coordinate system. This is perhaps a little surprising since in our every-day lives, the location
of light sources is usually defined relative to our physical surroundings and, as we move the
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Figure 5.14 We generally assume that the source of illumination is from overhead – relative to a ‘head-centred’ coordinate system. In this
diagram, the use of shading leads to the circles appearing as domed regions – lying out of, or being impressed into, the page. Rotation of the
diagram through 180◦ causes the perceived orientation of each domed circle to reverse (the visual system has responded by continuing to assume
an overhead source of lighting and interprets the image scene accordingly). Finally, rotation of the diagram by 90◦ leads to instability – the
shading is no longer consistent with overhead illumination – it now appears that two light sources are present – one to the left-hand side and
the other to the right.

location of the head, light source locations continually vary in position relative to the head-
centred coordinate system.18

Turning to Figure 5.15, we can identify two forms of shadow. Firstly, as indicated in Fig-
ure 5.15(a), shading and shadowing may be distributed over the surfaces of an object. Such
‘attached shadows’ provide information as to the shape of an object. Alternatively, as indicated in
Figure 5.15(b), an object may occlude the passage of light and therefore generate a ‘cast shadow’.
The shape of this shadow generally provides a distorted silhouette of the object from which
the shadow is cast. Consequently, in determining the shape of an object, we usually place less
reliance on the cast shadow. However, this form of shadow can provide a useful cue as to the
distance between the object responsible for shadow formation and the surface on which the
shadow lies.

The reflection process underpins the formation of shadows and shading. Below we briefly
summarise two forms of reflection – ‘diffuse’ and ‘specular’.

5.4.5.1 Diffuse Reflection – Lambert’s Law

A diffuse (scattering) reflector (e.g. chalk) possesses a ‘rough’19 surface – as indicated in Fig-
ure 5.16(a). As may be seen from this illustration, reflected rays travel in random directions and

18 There are occasional exceptions such as the miner’s helmet that is equipped with a torch. In this case,
the location of the light source is fixed relative to a head-centred coordinate system.
19 Within this context, a smooth surface is one in which the surface variations are small compared to the
wavelength of incident light.
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Attached shadow

Cast shadow

Rectangular object

(a) (b)

Figure 5.15 In (a) we indicate an attached shadow associated with a cube. This form of shading assists in our interpretation of the shape of
3-D objects. In (b) a shadow is cast by a rectangular surface. Cast shadows can provide us with an insight into the distance between an object (or
collection of objects) and the surface on which shadows lie. For (b), indicate the location of the point light source. What would be the effect of
replacing the idealised ‘point’ light source with a real source that has a finite extent?

as a result, in the case of perfectly diffuse surface, light is reflected uniformly (see Figure 5.16(b)).
A reflectance model that assumes that there is no angular variation in the strength of the
reflected light is generally referred to as ‘Lambertian shading’ and provides a simple way of
representing surface shape and shading.

Let us assume that a ray emanating from a point light source impinges on the surface at an
angle φ (measured relative to the surface normal). Further, we assume that the viewing location
(again relative to the surface normal) is denoted by θ – as indicated in Figure 5.16(c). Since
we have recognised that light is uniformly reflected by the surface, it follows that changes in θ
(corresponding to changes in viewing location – or surface orientation relative to the observer)
will not impact on luminance. On the other hand, changes in φ (corresponding to a change in
the position of the point light source or to a change in the orientation of the surface relative to
the source) do impact on luminance.

Consider the situation indicated in Figure 5.17 in which a light source Q illuminates the
small region of a diffuse surface that is located around a point P. For simplicity, the illustra-
tion provides a cross-sectional view – however, in reality, a cone of light emanates from the
source and when the axis of the cone lies at right-angles to the surface, a circular region will
be illuminated. As the angle between the axis of the cone and the surface normal increases,
the extent of the region that is illuminated will increase and will take the form of a section
through the cone. Let us suppose that the luminous flux incident on an area A is denoted as F ,
then:

E =
F

A
, (5.7)

where E represents the illuminance (measured in lumens per square metre). We can express F
in terms of the emission from the source such that:

F = Iω. (5.8)



Chapter 5 . Interfacing with the Visual System 217

(a)

(b)

View
point

θ
φ

(c)

Incident ray

Isotropic reflection

Figure 5.16 In (a) we provide a magnified and conceptualised impression (in cross-section) of the nature of a diffuse surface. The rough (mat)
surface causes rays to be reflected in random directions. As a result, a perfectly diffuse surface reflects isotropically – light output does not vary
with direction – see (b). In (c) an incident ray impinges on a surface at an angle φ to the surface normal. The viewpoint lies at an angle θ to the
normal – see text for discussion.

Here, I denotes the luminous intensity of the source in the direction QP and ω the solid angle
of the cone of light that illuminates the surface and that is measured at the light source. Thus
the luminous intensity is a measure of the ‘luminous flux density’ in a particular direction.20

Combining the above two equations we obtain:

E =
Iω

A
. (5.9)

The solid angle (ω) of a cone is defined by the ratio:

ω =
S

r 2
. (5.10)

20 Naturally, we cannot necessarily assume that the luminous flux emitted by a source is the same in all
directions.
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Source Q
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Portion of the
surface

Axis of cone

Solid angle ω

θ

P

Figure 5.17 A cone of light illuminates a screen within a small region around the point P. The area of the screen that is illuminated corresponds
to a section through the cone. In our discussions, we assume that this area is denoted by A and that the area of the circular ‘base’ of the cone that
lies at 90◦ to the cone axis is given by S.

This is illustrated in Figure 5.18 in which Q denotes the centre of a sphere of radius r . A cone
drawn from the centre of the sphere intersects its surface and defines the extent of a circular
region of area S. In the case that, for example, the sphere has a radius of 1 m and the area of S
is 1 m2, then ω is unity and this is defined as 1 steradian (sr). The total solid angle all around a

Q

r

Area S

ω

Figure 5.18 Here, Q denotes the centre of a sphere of radius r. A cone drawn from this centre intersects the surface of the sphere and defines the
extent of a circular region of area S. In the case that, for example, the sphere has a radius of 1 m and the area of S is 1 m2, then ω is unity and this
is defined as 1 steradian (sr).
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point (within three dimensions) is given by the area of the surrounding sphere divided by r 2:

ω =
4πr 2

r 2
= 4π, steradians.

Substituting Eq. 5.10 into Eq. 5.9, we obtain:

E =
I S

Ar 2
.

The areas S (which lies at right-angles to the axis of the cone) and A (which is the area
illuminated on the surface) are related by:

S = A cos θ,

where θ represents the angle between the cone axis and the surface normal. (If, for example, the
beam axis is at right-angles to the surface, θ = 0 and therefore S and A are equal.) We can write:

E =
I cos θ

r 2
. (5.11)

This equation can also be expressed as:

E =
I n̂·ŝ
r 2

. (5.12)

Where n̂·ŝ represents the scalar product of two unit vectors: n̂ being the unit vector normal to
the surface and ŝ the unit vector in the direction of the source of illumination. Recall Eq. 5.4 in
which the illuminance and luminance are related by the surface reflectance. Since we are dealing
specifically with a diffuse surface, the reflectance characteristic of the surface is usually referred
to as the ‘coefficient of diffuse reflectance’ (kd ) and has a value between zero and unity. Using
Eq. 5.4 and Eq. 5.12, we can express the luminance (l) (light flux emanating from the surface) as:

l =
I Kd n̂·ŝ

r 2
. (5.13)

This is generally referred to as Lambert’s Law after Johann Heinrich Lambert (1728–1777).21 In
our model, we have employed a point light source and have quite rightly assumed that in this
case, the amount of light incident on the illuminated region of the surface decreases with the
inverse square of the distance between the light source and the surface. From the perspective of
the graphics developer, the inverse square dependence indicated in Eq 5.13 can be problematic
as at times, it may be desirable to place the lighting source at ‘infinity’. In this case, the level
of illumination cast by the source on the surface would be zero (see, for example Eq. 5.11).
Additionally, as Hill [1990] comments:

‘. . . experiments have shown that the use of this law directly yields pictures with exaggerated depth effects . . .
The problem is thought to be the model . . . We model light sources as point sources for simplicity, but most
real [physical world] scenes are actually illuminated by additional reflections from the surroundings which
are difficult to model.’

21 Speaking of Lambert, Boyer [1991] writes: ‘It is said that when Fredrick the Great asked him in which
science he was the most proficient, Lambert curtly replied, “All.” ’!!
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One approach to this problem is to adopt a workable solution which provides an appropriate
visual effect. In this case we set to one side the physical model (i.e. the inverse square law) and
re-cast Eq. 5.13 as:

l =
I Kd n̂·ŝ
d + η

. (5.14)

Here, d represents the distance of an object from the centre of projection (recall Figure 1.12)
and η is an arbitrary constant.22 In this way, points within an image scene that are closer to the
eye appear to be brighter than those that lie at a greater distance. In this context, Salmon and
Slater [1987] write:

‘This is very important since surfaces at different distances that have the same colour but which overlay from
the viewpoint of the COP [centre of projection] would be otherwise indistinguishable.’

Although this approach provides us with a workable solution, it is important to bear in mind
that such a model is not based on the actual physical process.

Typically, a light source such as the one employed above will directly illuminate parts of an
object. In addition, ambient (background) light will be present and will add to the amount of
light incident on part (if not all) of the object. We can represent this additional illumination
(Ia ) by including in Eq. 5.14 a term Ia Ka – where Ka represents the proportion of the incident
ambient light that is reflected by the surface. In the physical world (e.g. in a room), the level
of ambient lighting is not uniform – although for expediency, such an assumption is generally
made when creating a 3-D scene. In this context, Ware [2000] writes:

‘One of the consequences of modelling ambient light as a constant is that no shape-from-shading information
is available in terms of cast shadows.’

5.4.5.2 Specular Reflection

Having briefly considered reflection by rough (mat) surfaces (diffuse reflection), we now turn
our attention to reflection from smooth surfaces (of which an optically perfect mirror provides
us with the ultimate example). Such surfaces exhibit angular directionality in their reflectance
of incident light and this process is generally referred to as ‘specular reflection’. Consider the
diagram presented in Figure 5.19(a) in which a ray of light impinges on a smooth mirrored
surface at an angle i with respect to the surface normal. In the case of a true mirror, the
reflected light follows the path indicated – such that the angle of incidence (i) equals the angle
of reflection (r ). However, in the case of other forms of ‘shiny’ surface that are non-perfect
reflectors, not all of the reflected light will follow this exact path. This situation is illustrated in
Figure 5.19(b).

Consider, for example a billiard ball or waxed apple that is illuminated with white light. A
highlighted region will be seen on the surface of the object – its location being determined by
the position of both the light source and viewpoint relative to the object. This highlight occurs
due to specular reflection. Note that the colour of this region is not determined by the colour
of the object that is being illuminated but rather by the colour of the light source (thus, for
example, a white highlight can be produced on the surface of a shiny red apple).

Phong Bui-Tuong developed an illumination model for specular reflection. As indicated
above, a ray of light impinging on the surface of an ideal reflector (e.g. a smooth mirrored

22 Alternatively, d can represent the distance from the COP to the source of illumination.
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Figure 5.19 Specular reflection. In (a), a ray impinges on a mirrored surface. The angle between this ray and the surface normal is denoted by
i and the reflected ray emerges at an angle r (again measured relative to the normal). In the case of a mirror, i = r . In (b) a ray impinges on a
shiny (non-perfect reflector). Here, the direction of maximum reflection occurs at an angle r – although in the case of the smooth non-perfect
reflector, not all of the reflected light will follow this exact path. The viewing direction is assumed to lie at an angle β relative to this path. When
β = 0◦ the level of reflected light is greatest. As |β| increases, the level of reflected light diminishes. In (c) an example of specular reflection is
presented. (Photograph © A.R. Blundell (2007).)
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surface) at an angle i relative to the surface normal, will give rise to a reflected ray that lies at an
angle r (again measured relative to the normal) such that the angles of incidence and reflection
are the same. However, in the case of specular reflection, all the reflected light does not follow
this exact path and we can write:

i = r ± φ, (5.15)

where φ denotes a deflection range. Typically, very shiny surfaces will exhibit a narrow deflection
range whereas in the case of duller surfaces, the reflection range will be wider. A specular
reflection model should ensure that the greatest amount of reflected light emerges along the
path that we associate with the ideal reflector – such that the angles of incidence and reflection
are equal. In addition, the reflection model should take into account the emergence of light
within a cone surrounding this path in such a way that as |φ| increases, the light strength
diminishes.

OTU Exercise 5.11: Clouds, Sunsets and Reflection

1. Discuss the underlying reason(s) for the colour of the clouds.
2. Carefully observe and account for the changing colours of the sky around the time at

which the sun sets. The book by James Elkins [2000] is recommended to the interested
reader. The early riser is also encouraged to consider the dawn sky. . .

3. Examine the highlights that occur on the surfaces of everyday objects as a result of specu-
lar reflection. Note that these highlights take on the colour of the source of illumination –
rather than the colour of an objects surface. Also notice the effect of varying the location
of the source of illumination and/or the viewing location relative to a surface.

To model the strength of reflected light across the deflection range, the Phong model employs a
cosine function such that:

Strength of specular reflection ∝ cosn φ.

Where n denotes the specular reflection exponent for the surface. Although Eq. 5.14 was devel-
oped in relation to our previous discussion concerning diffuse reflection, it can be employed to
model the situation indicated in Figure 5.19(b) – specifically expressing the light output along
the ‘direction of maximum reflection’ as a function of the angle of incidence of a point source
of illumination. We can write:

l = Ia Ka +
I

d + η
[Kd (n̂·ŝ) + ω(θ) cosn φ] . (5.16)

The first term in this equation relates to the reflection of ambient light (see previous discussion
concerning diffuse reflection). Here, Ia denotes the illumination provided by the ambient light
and Ka the proportion of the incident light that is reflected. Expanding the square bracket yields
two terms. The first of these takes the form of the Eq. 5.14 and the second term accommodates
light emerging within the cone surrounding the ‘direction of maximum reflection’. In the
case that, for example, we are dealing with an optically perfect mirror, the specular reflection
exponent (n) tends to infinity and, since the cosine of any angle lies between 1 and −1, this term
tends to zero. Hence, the reflected light emerges along a path such that the angles of incidence
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and reflection are equal. In the case that we are dealing with a very shiny surface n may take on
a value of 200 (or greater) and for a dull surface may be close to unity.

The degree of specular reflection is also influenced by the angle of incidence and this is
taken into account in Eq. 5.16 through the inclusion of the reflection function ω(θ). In the
case of glass, the degree of specular reflection varies considerably with the angle at which the
incident light strikes the surface and so the function ω(θ) provides us with a means by which
we can accommodate this behaviour. Alternatively, for many materials we may assume that ω
is essentially independent of θ . In this case, for a particular surface, we employ a fixed value
of ω (in the range 0 to 1) – the value being selected to give the most visually satisfactory
result.

Eq. 5.16 may be re-written as:

l = Ia Ka +
I

d + η
[Kd (n̂·ŝ) + ω(θ)(V·R)n] (5.17)

where vectors V and R are assumed to have a magnitude of unity. The former is assumed to
point in the direction of the viewer and the latter in the direction of specular reflection.

Hearn and Baker [1986] briefly summarise an alternative approach to modelling light reflec-
tion. In this context they write:

‘One technique, developed by Torrance and Sparrow [1967] and adapted to graphics applications by Blinn,
divides each surface in a scene into a set of tiny planes. Each of the small planes is assumed to be an ideal
reflector, and the planes are oriented randomly over the total surface. A Gaussian distribution function is used
to set the orientation of each plane. The specular reflection for the surface is calculated as the total contribution
from the small planes as a function of the intensity from a distant point source. . .’

5.4.6 Texture

Surface texture and texture gradients strongly support our perception of 3-D space and provide
an important mechanism by which we determine the shape of 3-D objects. Furthermore, the
judicious use of textures plays a critical role in the formation of realistic and photorealistic
images. Below we briefly summarise the use of textures within each of these contexts:

1. Perception of a 3-D Space: Consider the simple illustration provided in Figures 5.20(a)
and (b). In (a) a set of equally spaced horizontal lines are shown and we can consider
this to represent a very simple uniform pattern texture. In contrast, in (b), the horizontal
lines gradually become closer and this ‘texture gradient’ immediately gives an impression
of depth. In this context, it is important to note that when we view our surroundings, as
distance increases, elements that comprise a texture gradually become smaller and more
densely spaced thus a repetitive texture pattern should conform to the linear perspective
cue. In fact, J.J. Gibson who was a pioneering researcher in the area of depth perception
suggested the use of the texture gradient as a cue able to incorporate both linear perspective
and relative size.

2. Perception of Shape: Both gradual and abrupt changes (discontinuities) in texture gradient
provide a means of gaining information about the shape and orientation of objects within
a scene. This is illustrated in an elementary manner in Figure 5.21.

3. Computer Graphics: In the physical world, surfaces are often not smooth and to create
realistic and photorealistic images, it is often desirable to model different forms of surface
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(a) (b)

Figure 5.20 In (a) we depict a simple uniform texture that provides no indication of depth. By contrast, in (b) a ‘texture gradient’ is employed.
The elements that comprise the texture gradually become more densely spaced and this provides us with an impression of depth. This impression
can be reinforced by making the elements gradually decrease in length (whilst retaining a central vertical axis of symmetry). J.J. Gibson (1904–
1977) who was a pioneering leader in the area of depth perception viewed the texture gradient cue as providing a means of combining the linear
perspective and relative size cues.

texture. Here, for example we may wish to represent the rough bark of a tree, grass, fur,
different forms of fabric or the pile of a carpet. Additionally, in some cases (such as a carpet)
we may not only wish to represent the actual texture of the material but also some form of
repetitive pattern.

One simple approach to the formation of an irregular surface texture (such as that of
a raisin) is to employ a shading model (such as we have outlined above) and allow the
surface normal to randomly vary in direction with location on the surface. Texture mapping
methods can also be used. In this context Sherman and Craig [2003] write:

‘Simply put, the technique of texture mapping allows one to paste a texture onto a polygon. Textures add
the appearance of detail and gradient cues onto what are otherwise simple, flat surfaces. When viewed
close up, and especially when viewed stereoscopically, texture-mapped objects begin to reveal their secret
of being little more than cardboard cut-outs or the facades of a theatrical set.’

Figure 5.21 Here, abrupt changes in a simple pattern texture can be used to indicate shape – in this case the corner of a room or box.
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5.4.7 Linear Perspective

‘If the world should blow itself up,
the last audible voice would be that of an expert

saying it can’t be done.’23

In Section 1.3 we introduced linear perspective and briefly summarised the demonstration of
Filippo Brunelleschi who, in the early 15th century, is said to have provided the first demon-
stration of an accurate mathematical based perspective technique for the capture of a 3-D scene
on a 2-D tableau. As indicated in Figure 1.10, linear perspective (by which an object appears to
diminish in size as it is moved further away from an observer) occurs as a result of the finite
separation between the focusing elements of the eye and the photo-receptors that are located on
the retina. It is because of this geometry that the size of the image cast onto the retina depends on
the angle it subtends at the eye and in turn this depends on both image size and image distance.

Let us now turn our attention to the perspective projection of an object located within a
3-D space onto a 2-D surface. In undertaking such a projection, we endeavour to create an
image on the surface that appears to be three-dimensional and within the context of our current
discussion, we are particularly interested in forming a 2-D rendition of a 3-D object that satisfies
the linear perspective cue. Here, we note that in the physical world, when the distance between
an observer and an object varies, the visual angle subtended by the object at the eye changes as
a direct result of the change in object distance. However, in the case of a perspective projection,
when we wish to provide an impression of a change in object distance, we produce a change in
the visual angle subtended by the object by manipulating the actual size of the object.

As indicated in Figure 1.12, the surface on which a 3-D image is projected (the projection
plane) is assumed to lie between the object and the observer. In this illustration the object is
simply represented as an arrow. Lines drawn from the top and bottom of this arrow pass through
the projection plane and meet at the centre of projection (COP) – which corresponds to the
assumed viewing location. The points at which these two lines intersect the projection plane
defines the size of the projection of the object. Consider now the inclusion of a second arrow that
is the same size as the original but which lies at a greater distance from the projection plane. If
we draw lines from the top and bottom of this arrow to the COP, then at the point at which they
intersect the projection plane they will be more closely spaced than were the lines emanating
from the original object. This is in line with our desire to incorporate linear perspective within
the projected image – the more distant an object, the smaller is the projected rendition.

In Section 1.3 we introduced the use of vanishing points and in Figure 1.13 illustrated the
formation of a perspective view of a cube using a single vanishing point (VP). In terms of our
current discussion, it is useful to consider the roles played by both the COP and VP and to
simplify matters we will limit this discussion to a 2-D model (which may be readily extended
to deal with a 3-D space). In Figure 5.22(a), we depict vertical and horizontal axes together
with a line segment located on the y-axis that represents the projection (viewing) plane. To the
right of the projection plane we show a line segment AB that lies parallel to the horizontal axis
and on the other side of the projection plane indicate the position of the COP which is at an
arbitrary location on the x-axis. We extend a line from each end of the line segment to the COP
and the location at which these lines cut the projection plane indicates the end points of the
projection of the line segment AB. In Figure 5.22(b) we alter the location of the line segment –
whilst remaining parallel to the x-axis, end point A is now in contact with the projection plane.

23 Attributed to Peter Ustinov (1921–2004).
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Figure 5.22 In (a) we illustrate a line segment AB that lies parallel to the horizontal axis and is therefore normal to the projection (viewing)
plane. Two lines of projection connect the ends of this line to the centre of projection (COP). The perspective projection of AB is therefore a line
in the projection plane that spans the gap between the lines of projection. In (b), the line segment is moved so that end-point A touches the
projection plane. Here, we note that all points located in the projection plane (such as point A) remain unaltered by the projection. See text for
discussion.

As may be seen from this illustration, the projection of point A does not give rise to a new point
in the projection plane – in fact in the more general case, all points lying in the projection plane
remain unaltered by the projection. In the illustration, we denote the length of the line segment
AB as a , the distance of this line from the horizontal axis as h. The distance of the projection
of point B (as measured from the origin) is h1, and we assume that the COP lies at a distance c
from the origin. On the basis of similar triangles, we can now write:

h

c + a
=

h1

c
, (5.18)

and so:

h1 =
ch

c + a
. (5.19)

Now consider the diagram presented in Figure 5.23(a) and that is based on Figure 5.22(b).
Here, two horizontal line segments are equally spaced from the horizontal axis and we indicate
equidistant points along the two segments by means of a number of vertical lines. This diagram
could, for example represent a non-perspective plan view of a railway track (the horizontal lines
representing the rails and the vertical lines the wooden or concrete ‘sleepers’). This diagram
is redrawn in (b) so as to show only three ‘sleepers’ and the symbols assigned to various
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Figure 5.23 In (a) two lines that are parallel to and equidistant from the horizontal axis are shown. Between these a number of equally spaced
line segments are indicated. The end points of each of these vertical lines are connected to the COP by means of lines of projection. We can
conceptualise this diagram as representing a plan view of a section of a railway track. Here, the two horizontal lines represent the steel rails, and
the vertical lines the wooden or concrete ‘sleepers’. In (b), the top diagram is simplified to show only three ‘sleepers’ and the symbols used in the
text to represent various distances are indicated.

distances are indicated. Lines of projection are included from the ends of each ‘sleeper’ and the
distance between the two projection lines from each sleeper as they intersect the projection plane
provides us with each sleeper’s perspective projection. In fact, we note that such a perspective
projection would be of little value – from this particular orientation the projections for all of
the ‘sleepers’ would be overlayed and so we would not be able to distinguish between them (this
being equivalent to looking down a railway track from the absolute ground level – only the
nearest sleeper would be visible).

Turning now to Figure 5.24, in which we use the projections in the projection plane of each
of the ‘sleepers’ obtained in Figure 5.23(b) to recreate a perspective view with a single vanishing
point. As may be seen from this diagram, the vanishing point (VP) is indicated on the horizontal
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Figure 5.24 Re-creating a perspective view by means of the projections obtained in Figure 5.23. Here, a vanishing point (VP) is indicated and
is located at an arbitrary distance along the horizontal axis. In the perspective view, the two horizontal lines depicted in Figure 5.23 merge at the
vanishing point. See text for discussion.

axis at an arbitrary distance from the projection plane. (Recall from discussion in Chapter 1
that in the case of this simple projection, lines in the non-perspective view that are parallel to
the horizontal axis will merge at the vanishing point.) Thus, in the perspective view, the two
horizontal lines (which we conceptualise as representing railway tracks) meet at the VP – as
indicated in the illustration. Furthermore, the endpoints of each of the vertical line segments
(the ‘sleepers’) will be located on these lines. In the diagram, we have therefore taken each of the
projections of the ‘sleepers’ and have placed these at locations at which they span the triangle.
As may be seen, the three vertical line segments shown in the illustration are no longer equally
spaced – as distance from the viewpoint increases, the sleepers become more closely spaced.

By referring to Figure 5.24, we can write an expression for the distance of each vertical line
from the origin. For the second line which lies at a distance a1 from the projection plane, it is
apparent (on the basis of similar triangles) that:

h

v
=

h1

v − a1
.

Similarly for the next vertical line:

h

v
=

h2

v − a2
.

Thus for the nth line (where n = 0, 1, 2 . . .) we can write:

h

v
=

hn

v − an
. (5.20)
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On the basis of Figure 5.23, we can write:

hn =
ch

c + na
. (5.21)

Substituting this into Eq. 5.20 and rearranging gives:

an = v
[

1 − c

c + na

]
, (5.22)

and so, the spacing between vertical lines is given by:

an − an−1 = vc

[
1

c + (n − 1) a
− 1

c + na

]
. (5.23)

OTU Exercise 5.12: A Perspective View

Consider a simple numerical example in which the parameters indicated in Figures 5.23(b)
and 5.24 have the following values: c = 10 cm, a = 2 cm, h = 6 cm, v = 10 cm. Using Eq. 5.21,
determine the lengths of the projections of the first five vertical lines (illustrated in Fig-
ure 5.23(a)) and also calculate the distance of each from the origin when arranged to give
a perspective view (as illustrated in Figure 5.24). Using your calculated values, draw a graph
(indicate distance from the origin on the x-axis and line length on the y-axis). Confirm that
the set of points that you have plotted lie on the line y = −h

v
x + h.

From the above discission, it is apparent that we create the projections of objects in the projec-
tion plane on the basis of a certain COP or viewpoint. As a result, a 3-D image that is projected
onto a 2-D surface will be geometrically optimal when viewed from this location. This applies
not only to perspective images created by artists on a canvas but also to 3-D images depicted on
the conventional computer display.

When we view our physical surroundings, the optical components
within the eye create a 2-D projection of the 3-D scene on the retina.
Naturally, the geometrical content of this projection changes as we
adjust our viewing location. In contrast, when we view a 3-D scene
depicted on a conventional computer display or artist’s tableau the
image cast onto the retina is (to a first approximation) a replica of
the scene under observation. Changing our viewpoint will result in
changes to the retinal image that do not correspond to the changes
that would occur if we were looking directly onto an equivalent
and physical 3-D scene. As we have seen, in order to create such
an image the computer graphics designer or artist must form the
perspective projection on the basis of a certain assumed viewpoint.
When viewed from other locations the retinal image will be distorted
and will not correspond to the image that would be seen if the
2-D rendition were replaced by the equivalent physical 3-D scene.
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However, in this context, Ware [2000] writes:

‘It is an obvious fact that most pictures are not viewed from their correct centres of perspective. In a movie
theatre, only one person can occupy this optimal viewpoint . . . When a picture is viewed from an incorrect
viewpoint, the laws of geometry suggest that significant distortion should occur . . . However, while people
report seeing some distortion initially when looking at moving pictures from the wrong viewpoint, they become
unaware of the distortion after a few minutes . . . Apparently the human visual system overrides some aspects
of perspective in constructing the 3-D world that we perceive . . . ’24

Our ability to adapt to (or perhaps ignore) aspects of incorrect perspective provides yet another
example of the remarkable capabilities of the human visual system. Within this context it is
perhaps worth a brief aside and a return to previous discussion in Section 5.2 concerning the
blind spot (recall this arises as a consequence of the absence of photoreceptors in the region
in which the connections from the photoreceptive array leave the eye). From our everyday
experience, we know that we are not aware of the presence of this blind spot – there is no ‘black
hole’ in the images that we observe. Perhaps we might suppose that this is due to our binocular
vision – the part of an image scene that is lost because of the blind spot in one eye is captured
by the other eye and vice versa. However, closing one eye can immediately dispel this notion –
the blind spot remains invisible to us. An alternative scenario is that the blind spot is very small
in extent and therefore has an insignificant impact on the image captured by the eye. However,
in relation to the size of the blind spot, Helmholtz [1873] writes:

‘. . . it covers an angle equal to 11 full moons placed side by side in the sky.’

Clearly, the extent of the blind spot is by no means insignificant and the ability of the visual
system to compensate for its presence is yet another example of the remarkable characteristics
of our imaging system!

Finally in this section, we turn our attention to a little mathematics relating to the projection
of image components onto the projection plane. We begin by assigning a rectangular coordinate
system that is able to represent points within a 3-D space. Here, we make use of three mutually
orthogonal axes (labelled x, y and z) as illustrated in Figure 5.25.

The use of a right-handed coordinate system (as in Figure 5.25(a)) can be readily confirmed
by employing the thumb together with the first and second fingers of the right hand. Arrange
these orthogonally and then align the thumb with the x-axis and the first finger with the y-axis.
In the case that a right-handed coordinate system is employed, the second finger should point
in the positive z direction.25 Adopting the same approach (but with the left hand) confirms the
use of a left-handed coordinate system – try this out using Figure 5.25(b)).

OTU Exercise 5.13: Left and Right Handed Coordinate Systems

Consider the diagram presented in Figure 5.26. Does this represent a left handed or right
handed coordinate system?

24 For related discussion see Kubovy [1986].
25 This can require a little practice and may remind readers of high-school physics lessons in which a sim-
ilar approach is adopted for Fleming’s Left and Right Hand Rules in connection with electromagnetism.
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z

y y

x zx(a) (b)

Figure 5.25 In (a) we represent a right-handed rectangular coordinate system and in (b) a left-handed system. To avoid ambiguity that can arise
when simple line drawings of 3-D objects are depicted on a 2-D surface, it is convenient to imagine the three lines as representing the corner
of a room (e.g. in (a) the x and z axis represent the boundaries between the floor and two walls and the y axis the line along which the two
walls meet).

In our previous discussions, we have defined the location of a point on the x–y plane using
an ordered pair of the form (x, y). When wishing to represent the location of a point within
a 3-D rectangular coordinate system, we extend the 2-D approach and specify a third mea-
surement corresponding to the distance in the ‘z’ direction – that is we specify a triple
(x, y, z).

Let us now turn to the projection illustrated in Figure 5.27. Here, a triangle (with ver-
tices labelled KLM) in 3-D space is projected onto the projection plane. This is achieved
by drawing lines from each vertex to the COP – the vertices of the projection of the tri-
angle (labelled K′L′M′ in the diagram) are defined by the points at which the lines of pro-
jection intersect with the projection plane. Consider vertex K and let us suppose that the
coordinates of this point (in 3-D space) are given by (Kx , K y, Kz). The coordinates of a
point Q (given by (Qx, Qy, Qz)) on the line connecting K to the COP may be expressed in

z

y
x

Figure 5.26 Is this a left handed or right handed coordinate system?



232 An Introduction to Computer Graphics and Creative 3-D Environments

z

COP
(C)

x

y

K

L

Projection plane
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c

M

Figure 5.27 The projection of an arbitrary object (in this case a triangle KLM) in 3-D space onto the projection plane. For convenience we define
the projection plane as being located in the z = 0 plane and assume that the centre of projection (COP) is located on the z -axis. See text for
discussion.

parametric form as:

Qx = Cx + u [Kx − Cx ]

Qy = Cy + u
[
K y − Cy

]
Qz = Cz + u [Kz − Cz] ,

where (Cx , Cy, Cz) denotes the coordinates of the COP and the parameter u represents the
fractional distance of the point Q along the line CK (0 ≤ u ≤ 1). Thus, for example, if u = 0
then Q lies at the COP and in the case that u = 1, then the three equations show that Q is at the
point K .

Our current objective is to determine the coordinates of the vertices of the triangle that is
projected onto the projection plane. For the moment we will focus on the projection of vertex
K (which is denoted as K ′ in the diagram). The coordinates of K ′ are given by:

K ′
x = Cx + u [Kx − Cx ]

K ′
y = Cy + u

[
K y − Cy

]
K ′

z = Cz + u [Kz − Cz] .

As may be seen from Figure 5.27, for convenience, we have arranged for the projection plane to
coincide with the plane z = 0 (i.e. the projection plane lies in the x–y plane). Consequently, the
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z coordinate of K ′ (Kz
′) must be zero. Thus:

Cz + u [Kz − Cz] = 0,

and so at K ′, the parameter u is given by:

u =
Cz

Cz − Kz
.

We can now substitute this value for u into the equations for Kx
′ and K y

′ and so obtain:

K ′
x = Cx +

Cz [Kx − Cx ]

Cz − Kz
, K ′

y = Cy +
Cz

[
K y − Cy

]
Cz − Kz

, K ′
z = 0.

Because we have arranged for the COP to lie on the z-axis, both Cx and Cy equal zero and so
the above expressions may be simplified:

K ′
x =

Cz Kx

Cz − Kz
, K ′

y =
Cz K y

Cz − Kz
, K ′

z = 0. (5.24)

Similarly we can represent the coordinates of the projection of vertex L in the projection
plane as:

L ′
x =

Cz L x

Cz − L z
, L ′

y =
Cz L y

Cz − L z
, L ′

z = 0, (5.25)

and for vertex M:

M′
x =

Cz Mx

Cz − Mz
, M′

y =
Cz My

Cz − Mz
, M′

z = 0.

In each case we see that the projection of a point onto the projection plane is affected by the
distance of the point from the COP and this confirms our previous discussions. Also we note
that by locating the coordinates of the projection of each of the triangle’s vertices, we are able to
completely describe the geometry of the projected shape (each side of the triangle is completely
defined by the location of its endpoints). In Section 6.5 we return to discussion on projection
and in the next section turn our attention to the oculomotor cues.

5.5 Oculomotor Depth Cues

‘Real seriousness in regard to writing
is one of two absolute necessities.

The other, unfortunately, is talent.’26

When we view our immediate surroundings, the focal length of the crystalline lens within each
eye is continually modified to ensure that each object within the visual field to which we direct or
re-direct our attention is sharply focused on the retina.27 At the same time the eyes are oriented
so that their visual axes meet at the point of fixation thus ensuring that the area of particular

26 Attributed to Ernest Miller Hemingway (1899–1961).
27 When we view objects that are at a distance of ∼3 m or greater, the curvature of the lens does not vary.
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Left eye Right eye

Interocular Distance
(I )

Point of fixation

d

β/2

β/2

Figure 5.28 By means of triangulation, convergence may (in principle) provide us with information concerning the distance of an object that is
the focus of our attention. The angle β is referred to as the angle of convergence.

interest within the visual field is cast onto the fovea of each eye. The former action is referred to
as accommodation (see also Section 5.2.2) and the latter as convergence.28 When we view a 3-D
image scene depicted on a conventional computer screen, the focal length of the eyes and the
point of convergence are defined by the distance between the display screen and the observer. In
this sense, although various pictorial cues employed in the depiction of the scene may provide
us with a sense of depth, the focusing and convergence actions of the eyes do not re-adjust – as
indeed they would if we were looking at an image that actually occupies a 3-D space.

The lack of support for the oculomotor and binocular cues denotes
a fundamental difference in 3-D images depicted on the conven-
tional flat screen display and their physical counterpart. The extent to
which this negatively impacts on the visual system and on our abil-
ity to visualise and interact with complex 3-D scenes is a matter of
ongoing debate.

Convergence enables us to obtain (at least in principle) distance information on the basis of
triangulation. As indicated in Figure 5.28 if in some way the visual system is able to measure
the degree of convergence of the eyes, then this information coupled with their finite separation
provides a mechanism for measuring the distance of an image component that is the focus of
our attention.

28 More accurately, convergence denotes the rotation of the eyes towards the nose and divergence is used
when referring to the opposite motion.
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On the basis of the diagram we can write:

tan

(
β

2

)
=

I

2d
. (5.26)

Assuming that the angle β is measured in radians, we can use the small angle approximation
tan β/2 ≈ β/2 and so:29

β ≈ I

d
.

We can now determine how β varies with changes in d . Recall our earlier discussion in relation
to differentiation – the differential dβ/dd gives us the rate of change of β with respect to changes
in d . The differential of the above expression with respect to d is obtained as follows:

β ≈ I

d
= I d−1.

Thus:

dβ

dd
≈ −I d−2 =

−I

d2
,

and so: ∣∣∣∣dβ

dd

∣∣∣∣ ≈ I

d2
≈ 6.3

d2
,

where || denotes the magnitude and we assume an interocular distance of ≈6.3 cm. This
equation confirms our intuitive understanding that for more distance objects, the triangulation
process rapidly becomes less sensitive to changes in d .

OTU Exercise 5.14: Convergence Angle

Consider an object that is initially at a distance of 4m from the eyes and which is moved to a
distance of 5m. On the basis of Eq. 5.26, calculate the change in the convergence angle (β).
Now suppose that an object is initially at a distance of 20 cm. What increase in the object’s
distance would give the same change in the convergence angle? (Assume an interocular
distance of 6.3 cm.)

Unfortunately, in the case of the conventional flat screen display, this discussion has little
relevance as changes in convergence angles cannot be used to determine the depth of image
components within a scene and so this cue cannot be used to support interaction. As we will
discuss in Chapter 9, some creative 3-D display technologies support both accommodation and
convergence in a natural manner and so this cue is potentially of value. However there is some
uncertainty as to the extent to which accommodation and convergence reliably contribute to

29 You may wish to verify this approximation. For example, set your calculator to radians mode and enter
a small angle such as π/36 (which corresponds to 5◦). You should find that π/36∼0.0873. Taking the tan
of this angle, we obtain a result of ∼0.0875. But be sure that your calculator is set to work with radians
rather than degrees!!
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our overall perception of relative and absolute distance – see Blundell [2007] for summary
discussion.

When we view our physical surroundings, the focusing and convergence actions of the eyes
operate in harmony – the eyes focusing on, and their visual axes converging upon the point of
fixation. The optical system exhibits a focal length f such that:

1

u
+

1

v
=

1

f
.

Here, u denotes the distance of the point of fixation from the eye (the object distance) and v the
distance between the eye’s optical system and the retina (the image distance).

In the case that we are viewing images depicted on the conventional flat screen display, u
denotes the distance between the screen and the eye and of course v is defined by internal
dimensions within the eye. In addition the convergence distance of the eyes is also u. In short,
the accommodation and convergence of the eyes remain synchronised (although they do not
adjust to image content). In contrast, in the case of displays that operate on the principle of the
stereoscope (see Sections 9.3 and 9.4) accommodation and convergence become decoupled –
this is known as accommodation/convergence (A/C) breakdown. When such displays are con-
tinuously viewed for extensive periods of time, this can have negative consequences for the visual
system.

Although accommodation and convergence depth cues are often defined in terms of the
focusing and convergence actions of the eyes, it is important to note that this is not strictly
accurate. When the thickness of the eyes’ crystalline lens changes or when the eyes slightly rotate
so as to bring together at a certain distance their optical axes, these actions are either consciously
triggered or are a result of the conscious (or often subconscious) selection of a point of fixation
within a scene. Putting to one side the case in which, for example, we deliberately ‘cross’ or
de-focus the eyes, it is apparent that physical changes in the eyes represent the observable
and measurable result of the processing of the image scene coupled with our conscious or
subconscious selection of a point of fixation. This leads naturally to the question of how we
derive depth information from such stimuli and there are in fact a number of interesting
possibilities. In this context Clark and Horch writing in Boff et al. [1986] (and quoting the
ideas of Helmholtz) write:

‘Helmhotz concluded that our perception of eye movement and of the direction of gaze came not from sensory
receptors that monitor the position of the eyeballs or the contractions of muscles but from the effort of willing
the eyes to move (a sense of “innervation”).’

The sense of innervation was considered to underpin not only accommodation and convergence
but also many aspects of proprioception. However, with the discovery of the abundance of sen-
sory receptors in muscles, joints and beneath the skin, ‘innervationists’ gradually lost ground.
For summary discussion see Blundell and Schwarz [2006].

5.6 Binocular Cues

Finally in this chapter, we turn our attention to the cues of binocular and motion parallax.
By definition binocular cues arise because we are equipped with two spatially separated eyes.
In fact, convergence can also be considered to be a binocular cue. However, as discussed in the
previous section, when we view our physical surroundings the accommodation and convergence
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of the eyes operate in harmony and so it is more meaningful (certainly in terms of our current
discussions) to consider these two cues alongside each other.

As we have discussed, the conventional flat screen display supports only the pictorial cues. It
is inherently unable to satisfy the oculomotor cues but can be modified to support binocular
and motion parallax (see Chapter 9). When we are considering standard (traditional) computer
graphics, binocular cues usually have little relevance but are pivotal to discussions concerning
various forms of creative 3-D display.

Let us begin by briefly returning to Chapter 1 and specifically the stereograms depicted in
Figure 1.32. By using the viewing glasses supplied with this book or by consciously ‘crossing’
the eyes (to change the distance at which their visual axes meet), we can merge the image pairs
to form 3-D images that no longer appear to lie in the plane of the page. Such images convey
a remarkable sense of relief (three-dimensionality) which arises due to the ability of the visual
system to process and capitalise on the disparities contained within the image pairs. However,
before we proceed, it is instructive to examine an alternative technique that yields (under certain
conditions) a similar result.

OTU Exercise 5.15: The Pulfrich Effect

Here is an OTU exercise that everyone is likely to enjoy – it simply involves relaxing and
watching one of your favourite films on the TV. The only requirement is that you select a film
containing scenes in which there is lots of relative motion. (such as the scenes in ‘Dumbo’ in
which the train is depicted or in ‘Armageddon’ prior to the landing on the asteroid). Don the
Pulfrich glasses that are supplied with this book (these are the cardboard glasses comprising
transparent and darkened30 eyepieces).

After a time you should perceive a strong sense of image three-dimensionality (the relief
associated with stereoscopic images). In case this doesn’t work for you, try changing the
ambient level of lighting in the room (dimmed lighting works best for the author) and/or
reverse the viewing glasses so that the darkened filter is placed over the other eye. In addition
whilst watching the TV, it is best if you do not make a conscious effort to see this effect – just
let the visual system relax!

The objective of the above OTU Exercise is to observe the ‘Pulfrich Effect’ – a visual illusion that
is underpinned by reducing the level of light entering one eye relative to the other. Unfortu-
nately, Pulfrich became blind in 1905 – some 22 years before he actually published details of his
earlier observations. He attributed this effect to the ability of the visual system to respond more
rapidly to brighter input. Thus the darkened filter reduces the level of light entering one eye
and so the output from this eye is processed more slowly than the output from the other. This
leads to a temporal disparity which is interpreted as providing a strong sense of image depth.31

However, this denotes only one of several explanations – see Blundell and Schwarz [2006] for
summary discussion, or Howard and Rogers [2002] for more in-depth treatment.

30 A neutral density filter.
31 The classic demonstration of the Pulfrich Effect involves the use of a pendulum. When viewed through
‘Pulfrich glasses’, the pendulum bob no longer appears to move in a plane but rather seems to follow an
elliptical path.
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In the next subsection we briefly summarise aspects of the binocular parallax depth cue and
in Section 5.6.2 we turn our attention to motion parallax.

5.6.1 Binocular Parallax (Stereopsis)

‘Perhaps some day we shall know how to heighten creativity.
Until then, one of the best things we can do

for creative men and women
is to stand out of their light.’32

Binocular parallax (stereopsis) provides a remarkably powerful cue to depth and is underpinned
by the spatial separation of the two eyes. When we view our physical surroundings, the images
cast onto the two retinae contain small differences. We may readily observe differences in the
images captured by the two eyes by looking onto a 3-D scene and alternating the closure of the
eyes. It is also important to note that when we view our immediate surroundings, the images
cast onto the retinae usually contain disparities in both the horizontal and vertical directions.

In the text that follows, we briefly review aspects of the geometry of stereopsis (confining our-
selves to the issue of horizontal disparity) and provide references for more in-depth discussion.
Consider the diagram presented in Figure 5.29 which shows (in plan view) the optical axes of
the two eyes converging at point labelled O . The circle is assumed to pass through the optical
node of each eye. A second point (P ) is also illustrated and from this point a line is drawn to
each of the eyes. Without recourse to geometrical proof, it is apparent from the illustration that
the angles α and β (which denote the angles between each of the lines drawn from P and the
optical axis of the corresponding eye) are not equal in size.

Putting this another way, the angle which point P subtends at each eye is different. As a
consequence, when light from point P is projected onto the retinae, a disparity will exist between
the two retinal images. This leads to an obvious question – does a locus (collection) of points
exist in 3-D space that will cast identical images onto each of the retina? This question has
attracted interest for many centuries (as has binocular vision in general) and in 1613 Father
Franciscus Aguilonius33 coined the term ‘horopter’ to describe a set of points in 3-D space that
produce retinal images in the two eyes which contain no disparity.34 Below we briefly discuss a
theoretical form of horizontal horopter that is known as the Vieth-Müller circle.

In relation to the discussion that follows, it is important to bear in mind
that the theoretical horopter comprises a set of points – each of which
subtends the same angle at both eyes.

Let us begin with a little geometry. Consider the diagram presented in Figure 5.30. Here,
three points labelled O, x and y are indicated. These lie on the circumference of a circle and
each is connected by two lines to a cord (with end points m and n). Recall from elementary
geometry that:

32 Attributed to John William Gardner (1912–2002).
33 Father Franciscus Aguilonius (1567–1617).
34 There is some confusion in literature concerning the precise definition of the horopter. This arises
because we can consider disparity in a number of ways (for related discussion see Blundell and Schwarz
[2006]).
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Optical axes
converge at point O

Optical axes of the 
two eyes

A point (P) at an 
arbitrary
location

Left eye

Right eye

α
β

Figure 5.29 Here, we illustrate in plan view the two eyes with their optical axes meeting at point O. A second point (P) is also indicated. It is
evident that this point subtends a different angle at either eye – i.e. angle α �= β .

O

y

m n

x

β

α

γ

Figure 5.30 A simple rule of geometry – angles on the circumference of the same circle and that are erected on the same cord (in this case the
line mn) are equal. Thus angles α, β and γ are equal in size. We apply this same rule to the diagram presented in Figure 5.31.
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Figure 5.31 Here we extend the diagram presented in Figure 5.29. Points m and n are located at the optical nodes of the two eyes and the circle
passes through these points. Label O represents the point of fixation and hence the lines connecting m and n with O correspond to the optical axes
of the two eyes. On the basis of the rule summarised in Figure 5.30, it is apparent that angles P and Q are equal. Similarly angles R and S are also
equal. As a result, it follows that point x subtends the same angle at each eye. The same is true for point y. In fact all points on the circle subtend
equal angles at the two eyes. The circle represents a theoretical horopter known as the Vieth-Müller circle.

Angles at the circumference of a circle and that are erected on the same
cord are equal in size.

As may be seen from the illustration, angles α, β and γ lie on the circumference of the circle
and are erected on the same cord (with end points m and n). Thus these angles are equal in
size. Let us now turn to the diagram presented in Figure 5.31. As was the case with Figure 5.29,
the circle passes through the optical nodes of the two eyes and point O represents the point of
fixation (i.e. the lines connecting points m and n to O represent the optical axes of the eyes).
Bearing in mind the geometry that we have just summarised, it is apparent that angles P and Q
are equal in size (they are both on the circumference of the circle and are erected from the cord
with end points x and O . Similarly angles S and R are also equal in size (being erected on the
cord with end points y and O).

Bearing in mind that the lines connecting points m and n to the point of fixation (O)
represent the optical axes of the two eyes, it is apparent that angles P and Q represent the
angles subtended at each eye by point x and similarly angles S and R represent the angles that
point y subtends at the two eyes. Thus point x subtends the same angle at each eye and for point
y, this too subtends the same angle at each eye.

In fact, any point on the circle will subtend an equal angle at the two eyes. The circle
therefore represents a theoretical horizontal horopter and this is known as the Vieth-Müller
circle. However, it is important to note that we have only considered the horopter in cross
section35 and a full treatment would require us to consider disparities in both the horizontal
and vertical directions.

35 That is, a cross section of the horopter in the ‘equatorial’ plane.
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Figure 5.32 In this diagram, the optical nodes of the eyes are at points a and b . When the point of fixation lies at position 1, the theoretical
horopter (the Vieth-Müller circle) is represented (in the horizontal equatorial plane) by circle c . Changing the point of fixation to positions 2 and 3
results in horopters d and e respectively. (Reproduced from Encyclopaedia Britannica, Adam and Charles Black, Edinburgh [1879].)

Given a certain point of fixation, we have now identified a locus of points that will (at least
in theory) give rise to retinal images that do not contain disparities and as we change the
fixation distance, this set of points also changes – see Figure 5.32. Points on either side of
the horopter and which are close to it will give rise to retinal images containing small dis-
parities and these can be fused by the visual system into a single stereoscopic image. Such
points are said to lie in ‘Panum’s area’ – the size and shape of which changes with fixation
distance. Points that lie outside this region are not fused into a single image – giving rise to
double vision. Remarkably, in our everyday lives we are usually unaware of this double vision
effect.

OTU Exercise 5.16: Fusing the Content of the Visual Field

Hold a pen or pencil vertically some 20 cm from your nose. Now hold another pen in your
other hand, align it with the first and position it ∼10 cm further away from you (for best results
you may need to adjust these distances). Fixate on the pen that is closest and at the same time
note your view of the second. (Initially this may prove to be a little difficult as it is important
that you do not change your point of fixation when attempting to ‘notice’ what is happening
with the second pen.) Now reverse the process, fixate on the pen that is the furthest away
and note your view of the one that is closest (again remember not to change your point of
fixation).

The above OTU Exercise is intended to demonstrate that we receive a fused view of the pen
upon which we fixate and in the case of the other pen we see a ‘double’ image. In this context
Aries Arditi writing in Boff et al. [1986] indicates:
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Figure 5.33 Here, we depict the visual field of the two eyes. The central region corresponds to the area in which the visual fields of both eyes
overlap and so represents the region where binocular vision is supported. This has implications in, for example, the design of immersive virtual
reality (IVR) headsets. (Reproduced by permission from Gibson [1950]: © 1950 Houghton Mifflin.)

‘Although geometrically double images abound in our visual worlds, we seldom notice them, even when
the disparity between them is enormous . . . our failure to be confused by this conflicting information can be
explained by the same mechanisms that underlie binocular suppression and rivalry and by our bias to judge
the world as single.’

In short, when we view our surroundings, a great deal of the visual field contains unfused
(disparate) content – and yet we are generally unaware of this and seldom perceive double
vision.

In the above discussion, we have referred to the ‘theoretical horopter’ and although as we
have seen the Vieth-Müller circle defines (for a certain fixation distance) a set of points that
each subtend the same angle at the two eyes, this does not guarantee that the retinal images
will not contain disparities. In fact, horopters measured by experimental means differ from the
theoretical form. One issue is how we define points of correspondence in the retinal image. For
interesting discussion in this area see Howard and Rogers [2002] who, for example, describe
physiological and geometrical corresponding points. The former are defined as projecting onto
‘corresponding’ binocular cells in the visual cortex and the latter as being located at congruent
geometrical locations in the two eyes.

Finally in this brief discussion of binocular parallax, it is important to note that stereopsis
is not supported across the entire visual field. By maintaining a constant point of fixation, and
alternately closing one eye and then the other, we can readily confirm that parts of the visual field
seen by one eye cannot be seen by the other. In Figure 5.33 we illustrate the visual field of the
two eyes – the central region of this diagram corresponds to the region in which the visual field
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of each eye overlaps with the other and so corresponds to the region in which binocular parallax
is supported. Outside this area (towards the periphery of our vision), we obtain a monocular
view – however this is not usually apparent.

5.6.2 Motion Parallax

‘And our knowledge will, we are easily persuaded,
appear in turn the merest ignorance to those who come after us.’36

The stereoscope that was invented in the 19th century by Charles Wheatstone and David Brew-
ster (see Chapter 1) enables images depicted on a 2-D surface to appear to reside within a 3-D
space. As we have seen, similar results may be achieved using the anaglyph technique. However,
in their basic form, these methods provide us with only a single view onto an image scene,
we cannot move our head from side to side and see the scene from a different viewpoint. In
contrast when we view our surroundings and change our viewpoint, not only do we obtain
a different view onto the scene under observation, but also objects appear to move relative
to each other. (By way of example, as I look through a nearby open door, I am presented
with a view of many trees – some very close and others more distant. Slight changes in head
position result in apparent relative motion of the trees – both with respect to each other and
with respect to the door frame through which I am looking). In more general terms, if the
head is moved to the left, then objects that are closer than the point of fixation will appear to
move to the right – and those that lie beyond the point of fixation will appear to move to the
left.

OTU Exercise 5.17: Motion Parallax

Arrange three pens on a table so that they stand upright and lie in a straight line. Fix-
ate on the middle pen and move the head slightly to the left. Note the apparent relative
motion of the other two pens (remember to continue to fixate on the central pen). Repeat
the exercise but fixate firstly on the closest pen and secondly on the pen that is furthest
away.

In our everyday lives, such relative motion of objects within a 3-D space plays a critical role in
depth perception. However, as with binocular parallax, motion parallax is not supported by the
conventional computer flat screen display and this can negatively impact on our ability not only
to accurately judge spatial relationships but also on the accuracy and ease with which we can
perform interactive operations.

There are various forms of motion parallax – absolute parallax, linear parallax, looming and
the kinetic depth effect (see Blundell [2007] for summary discussion or Howard and Rogers
[2002] for a more detailed overview).

36 A Popular History of Astronomy During the Nineteenth Century, by Agnes M. Clerke, Edinburgh: Adam
& Charles Black (1887).
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OTU Exercise 5.18: Use of Pictorial Cues

Consider the paintings that are reproduced in Figures 5.34–5.42. Discuss ways in which the
artists have advantageously employed pictorial depth cues, textures etc. within their works.
Here, you should consider the use of depth cues in combination and identify any inconsisten-
cies.

5.7 Discussion

‘A creative man is motivated by the desire to achieve,
not by the desire to beat others.’37

In this chapter we have introduced various facets of the human visual system and have high-
lighted important issues that should be considered when developing computer graphics and
display technologies/techniques able to capitalise upon (rather than hamper) our remarkably
powerful sense of sight. Unfortunately, limited space precludes more in-depth discussion and
the interested reader is encouraged to peruse more specialised works. The books by Coren et al.
[2004], Schiffman [1982], Purves and Lotto [2003] and Bruce et al. [2003] provide excellent
starting points. In addition, the book by Boff et al. [1986] is a tour de force and is a vital source
of essential information. Unfortunately, it is becoming increasingly difficult to buy copies of this
book although it is still available in many libraries (Volume I focuses on the visual system).

Finally, it is important to bear in mind that nature has developed a diverse range of visual
techniques of which the human eye represents only one particular instance. Further insight into
the visual process can be obtained by examining other approaches and here, the fascinating
book by Land and Nilsson [2002] is highly recommended38.

5.8 Review Questions

1. Do changes in the size of the pupil account for the range of lighting conditions across
which the human visual system is able to operate?

2. State the three categories of depth cues discussed in this chapter.
3. In the case of specular reflection, what determines the colour of the ‘highlight’?
4. Approximately how many photoreceptors are located within the human eye?
5. The fovea is the region of the retina that supports super high resolution imaging. State the

approximate density of photoreceptors in this region.
6. State three key parameters that are used in describing colour.
7. Distinguish between illuminance and luminance.

37 Attributed to Ayn Rand (1905–1982) author of ‘The Fountainhead’.
38 Also see Cronly-Dillon and Gregory (Eds.) [1991] who refer to the copepod Copilia quadrate- ‘a
beautiful highly transparent pin-head size creature’. It appears that rather than employ a retinal array of
sensors, this creature has a single optic nerve for each eye. Incoming light is then scanned across the nerve
(in a manner akin to a raster scan employed by CRT based displays)! Such is the diversity of the sense
of sight.
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‘The heroine of Keats’s poem is here seen contemplating the empty stand from which her brothers have taken the
pot of sweet basil wherein she had placed the head of her murdered lover, Lorenzo. They are seen through the
casement window bearing it away. In their hasty flight, scattered pieces of the plant have been dropped upon the
marble floor.

‘Piteous she looked on dead and senseless things,
Asking for her lost Basic amorously;
And with melodious chuckle in the strings
Of her torn voice, she oftentimes would cry
After the pilgrim in his wanderings,
To ask him where her Basil was; and why
‘Twas hid from her. ‘For cruel ‘tis,’ said she,
To steal my Basil-pot away from me.”

Figure 5.34 ‘Isabella’ by J.M. Strudwick (1849–1937). See OTU Exercise 5.18. (Image reproduced and description quoted from GPIPG [1905].)
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‘This careful student of Nature, who each year displays some truthful interpretation of English scenery, pays
small regard to seasons in his choice of work, the leafy and the leafless tree being approached by him with equal
devotion. Here it is the leafless tree, and in the amber glow of the wintry day there occur aspects and touches of
Nature which strike us instantly as very true; such as the hard, frost-bound roadway, the bare and studiously
drawn boughs and branches, the cold earth, unwarmed by the sky’s glow, and the distant ridge, which will soon
be merged into the winter dusk.’

Figure 5.35 ‘New Year’s Eve’ by Frank Walton (1840–1928). See OTU Exercise 5.18. (Image reproduced and description quoted from
GPIPG [1905].)



Chapter 5 . Interfacing with the Visual System 247

‘The picture is in illustration of Keat’s poem of ‘Endymion’, and the painter has seized the moment when,
at the conclusion of the poem, Endymion leaves his sister Peona, and vanishes far away with Cynthia,
with the parting words:

‘Peona, we shall range
These forests, and to thee they safe shall be
As was thy cradle; hither shalt thou flee
To meet us many a time”.

The wonderment which the poet speaks of is still on the lovely face as she takes her way into the gloomy wood.
With all his characteristic exactitude in every detail, the painter has made a beautiful interpretation of the
mythological verse. It is one of his earlier works, but it differs in no respect in its general feeling and execution
from his works of the present day, the utmost care being bestowed upon every part of the canvas.’

Figure 5.36 ‘Peona’ by J.M. Strudwick (1849–1937). See OTU Exercise 5.18. (Image reproduced and description quoted from GPIPG [1905].)
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‘The time of rest is at hand, and in the dim light cast by the low full moon the sheep have wended home to the
comfortable enclosure where they will be in safety for the night. The old shepherd and his dog have seen that none
are missing.

It is the artist’s aim in these pleasant English pastoral scenes to achieve the difficult task of obtaining absolute
truthfulness of tone and colour in each object he introduces in its relationship to every other part of his picture.
It will be observed in the present example that the eye rests, in the detection of this truth, with equal satisfaction
on every object presented, whether it be the long, low roofing of the barns which come nearest to the nightly
luminary, or the figures and sheep which are more or less shadowed, but which bring the charm of animation
into the picture. One discordant note on such a sensitive canvas would take from the scene the solemnity of
approaching night, given here with such fullness and accuracy.’

Figure 5.37 ‘Folding-Time’ by Edward Stott (1859–1918). See OTU Exercise 5.18. (Image reproduced and description quoted from GPIPG [1905].)



‘In the city of Verona in the sixteenth century there was a law that a man convicted of adultery should lose his
head. Claudio, a youth of gentle birth, was convicted of the crime and condemned to death. His sister Isabella,
virtuous and beautiful, begs his life of the Lord Deputy Angelo, who demands the forfeit of her honour as the price
of Claudio’s release. Abhorring both him and his suit, by no persuasion would she entertain this condition, and
the execution is ordered. The picture represents the interview of Isabella with her imprisoned brother, to whom
she is recounting the proposal made to her by Angelo. Claudio at first applauds her conduct, but, overcome by the
fear of death, endeavours to persuade her towards dishonour.

‘Claudio: “Ay! But to die, and go we know not where;
To lie in cold obstruction, and to rot.
This sensible warm motion to become
A kneaded cold. . .

Sweet sister, let me live”.

Claudio’s right hand catches absently at the iron fetter which chains him to the wall. His shoes are the long
pointed ones of the period. Isabella’s two hands are pressed to his heart in sisterly distress, and her right wrist is
grasped tightly by Claudio. Her nun’s apparel denotes the peaceful seclusion of the convent she has just left in the
hope of saving her brother’s life.’

Figure 5.38 ‘Claudio and Isabella’ by W. Holman Hunt (1827–1910). See OTU Exercise 5.18. (Image reproduced and description quoted from
GPIPG [1905].)
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‘No mere topographical transcript of the city’s appearances is here, but the very spirit of the place, in the lurid
light of those skies which, in the East, illuminate the land with fire and gold. Outside the city, the bare, unfruitful
soil, scorched by the sun’s heat, is formed into shallow hollows or ravines, where the sense of solitude is lightened
only by the flocks of birds which here and there descend to find some prey.

This ancient city, so solemnly portrayed, is in the North-West Provinces of India, on a bend of the River Jumna,
about 300 miles from its confluence with the Ganges, and 850 from Calcutta. It is a great grain market, but
to Europeans its main speciality is its inlaid mosaic work, which is still as finely fabricated as in the time of
the Munghal Emperors. Like Delhi and other cities in this part of India, Agra was the scene of much bloodshed
at the time of the Indian Mutiny in 1857. The edifice in the distance, on the Delhi road, is the tomb of the
Emperor Akbar.’

Figure 5.39 ‘Indian After-Glow, Agra’ by Albert Goodwin (1845–1932). See OTU Exercise 5.18. (Image reproduced and description quoted from
GPIPG [1905].)
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‘No home or resting place is found in the sea, even for the vessel it has wrecked, and it is tossed back on to the
land. There the waves wash idly round it. Signs of the storm which has done its work are not wanting in the
dark masses of angry cloud hurrying towards the right, or in the still agitated water and wind-blow sea-gulls
that hover round. On such a scene the vivid lights disclosed in the sky by the departing clouds shed a sinister
illumination.

It is the spirit of the sea in its vexed and destructive mood which the painter has so ably caught in this picture, and
in interpreting it he has had the skill to import into the picture nothing which would have the effect of lessening
the cheerless aspect, the loneliness, the immensity of the waste of waters.’

Figure 5.40 ‘The Homeless Sea’, by Leslie Thomson (1851–1929). See OTU Exercise 5.18. (Image reproduced and description quoted from
GPIPG [1905].)
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‘This is another of this notable painter’s pieces of Welsh scenery; and the quick dexterity with which his practised
hand deals with the masses of foliage, and the water which reflects them, can be plainly seen by the faithfulness
of the brush and the manner of his working. No living painter has so entirely at his command these well-known
mountain effects, where foliage softens the rugged hillsides, and the winding stream keeps ever fresh the meadows
at their base.

In the present work the glimpse of high ground he gives us beyond the trees is suggestive of the lofty mountains of
Moel Siabod or of the Snowdon Range being not far distant.’

Figure 5.41 ‘Near Capel Curig’ by B.W. Leader (1831–1923). See OTU Exercise 5.18. (Image reproduced and description quoted from
GPIPG [1905].)
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‘Lucrezia is in the act of cleansing her hands of the poison she has been mixing with the wine of which one of
the many victims of the Borgia family has just partaken. He is seen in the mirror in green, staggering up and
down the room in company with her father, Pope Alexander VI, who is, undoubtedly, the main instigator of the
crime. She turns and watches him. By the side of the decanter of poisoned wine lies a poppy, the emblem of sleep;
and a rich blue vase to the right, with dark red ornamentation, and containing an orange tree laden with fruit,
completes the rich harmony of this dramatic work.’

Figure 5.42 ‘Lucrezia Borgia’ by D.G. Rossetti (1828–1882). See OTU Exercise 5.18. (Image reproduced and description quoted from
GPIPG [1905].)
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8. What do you understand by the term ‘grating acuity’?
9. Consider three orthogonal axes. Assume that the x and y axes lie in the plane of the page –

with the positive x axis increasing to the right and the positive y axis increasing vertically.
In the case of a right hand coordinate system, state the direction in which the positive z
axis would increase.

10. Name four pictorial depth cues.

5.9 Feedback to Review Questions

1. No – under different lighting conditions, the area of the pupil only changes by a factor
of ∼9. However, between conditions of starlight and a bright sunny day, the photon flux
changes by some eight orders of magnitude.

2. Pictorial, oculomotor and parallax cues.
3. This is determined by the colour of the light source – rather than the colour of the surface

upon which the light impinges.
4. The human eye contains approximately 126 million photoreceptors.
5. The density of photoreceptors in the fovea is approximately 150, 000 mm−2!
6. Brightness, saturation and hue.
7. Illuminance relates to light energy incident on a surface whereas luminance denotes light

energy reflected by a surface.
8. Consider two line segments that are drawn end to end but which are misaligned. Grating

acuity refers to the minimum misalignment that we are able to detect.
9. The positive z axis would increase ‘out of the page’ – i.e. towards the viewer.

10. Linear perspective, aerial perspective, height in the visual field and occlusion.



Into the Third Dimension:
Transformations 6

‘He never complained in words of our shifting
habits, but curled his head round over his left
paw and pressed his chin very hard against
the ground whenever he smelled packing.’

6.1 Introduction

In Chapter 3 we considered the placement and manipulation of objects within a 2-D space
and now extend these concepts to permit their application to three dimensions. We begin by
introducing several 4 by 4 matrices that act on coordinates expressed in homogeneous form
and achieve basic transformations (specifically, translation, scaling, reflection and rotation). In
Section 6.3 we take a brief mathematical interlude . . . and introduce the vector (cross) product
which will be used here and in the following chapters. Subsequently, we show how transfor-
mations may be concatenated to allow more complex operations to be encapsulated within
a single transformation matrix. This discussion is reinforced by means of two examples – in
Section 6.4.1 we consider the rotation of an object about an axis that lies parallel to one of
the axes of the coordinate system and in Section 6.4.2 we examine the slightly more complex
situation in which an object is rotated about an arbitrarily positioned axis.

In Section 6.5 we revisit the formation of the perspective projection and show how this
may be achieved by setting the values of certain elements within the transformation matrix.
In previous sections of this book, we have highlighted the use of one or more vanishing points
in the formation of a perspective representation and the projection of such a view onto a 2-D
surface. In Section 6.5.2 we employ a simple example to demonstrate that the use of perspective

255
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projection does not, in itself, guarantee that the resulting image will exhibit visual clarity.
Within this context we emphasise the importance of judiciously defining object position and
orientation with respect to the viewing location. Section 6.5.3 provides further discussion in
relation to the centre of projection (COP) and vanishing point (VP). Here we consider the
location of these two points relative to the projection plane.

Finally, in Section 6.6, we discuss the use of a virtual (synthetic) camera via which we can
observe a selected portion of an image scene. Items comprising this scene are located within
a ‘world’ coordinate system and the virtual camera is assigned its own ‘viewing’ coordinate
system. To create a view from a certain vantage point it is necessary to map coordinates from
the former coordinate system to the latter. The manner in which this transformation can be
achieved is outlined in this section. This is intended to pave the way for more detailed discussion
that is presented in Chapter 8.

Key Learning Outcomes: At the end of this chapter you should be able to:

� Describe the use of 4 by 4 matrices for implementing basic transformations in 3-D –
specifically translation, reflection, scaling and rotation.

� Concatenate a series of basic transformation matrices to encapsulate more
complex transformations within a single matrix.

� Achieve perspective projection using a 4 by 4 matrix.

� Undertake basic operations using the vector (cross) product.

� Describe the relationship that exists between the location of the centre of
projection (COP) and the vanishing point (VP).

� Discuss the use of a virtual (synthetic) camera for defining a vantage point onto a
scene and transform between world and viewing coordinate systems.

6.2 Basic Transformations in 3-D

‘Take your life in your own hands, and what happens?
A terrible thing: no one to blame!’1

In Chapter 3 we described the use of matrices for effecting 2-D transformations and here we
extend this discussion and consider the application of matrices to transformations within a 3-
D space. As we have seen, multiple transformation can be encapsulated within a single matrix

1 Attributed to Erica Jong (1942–).
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Figure 6.1 The groups of elements responsible for translation, rotation and scaling (see Section 3.5 for discussion).

comprising 3 rows and 3 columns. Such a matrix can act on points and vectors represented in
homogeneous form.

Recall that any point within a 2-D space does not have a single (unique)
homogeneous representation. For example, consider a point with posi-
tion vector (3 4). This can be represented in homogeneous form as [3 4
1], [6 8 2], [12 16 4] etc. In general a point (x,y) may be represented in
homogeneous form as [wx wy w] where w �= 0.

Let us begin by briefly reviewing the form of the basic 3 by 3 matrices responsible for
performing rotation, translation and scaling within a 2-D space. These are summarised in
Figure 6.1.

As discussed in Chapter 3, when we carry out a sequence of different transformations on
an object, the overall result is generally decided by the order in which the transformations
are applied. Furthermore, we can combine the three transformation matrices illustrated in
Figure 6.1 into a single matrix (commonly referred to as concatenation). When these are
combined in the order of rotation, followed by translation and then scaling, the resulting
(composite) matrix operator retains the easily recognisable characteristics of the matrices from
which it is formed. That is:
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However, if we change the order in which the operations are performed, then the result is not
quite so well organised. For example, consider translation, followed by rotation, followed by
scaling – that is:
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OTU Exercise 6.1: Combining Transformations

Determine a single matrix that corresponds to scaling, followed by rotation, followed by
translation.

Let us now turn our attention to the use of transformations within a 3-D space. As we will see,
this involves a simple extension of the techniques used for the manipulation of points on a 2-D
plane. In Section 5.4.7, we outlined the representation of points within a 3-D space through
the inclusion of a third axis which is orthogonal to both the x and y-axes. This is commonly
referred to as the z-axis and as illustrated in Figure 5.25, we may adopt either a left-handed or
right-handed coordinate system. Through until Section 6.5, we will make use of a right-handed
coordinate system.

The location of a point may be specified by measuring its displacement in the x, y and z
directions – thus the location of the point P illustrated in Figure 6.2 may be defined by the triple
(3, 4, 5) and the length of the line segment from the origin to P is given by:

|OP| =
√

32 + 42 + 52 =
√

50.
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P
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3 units

5 units
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The Origin (O)

Figure 6.2 Representing a point in 3-D space. Here the position of the point P is given by the triple (3, 4, 5).

The vector from O to P may be represented in terms of three unit vectors: i, j and k where (as in
the 2-D case) i and j are aligned with respect to the x and y axes and the additional unit vector
(k) with the z-axis. Thus we would express the vector OP as:

OP = 3i + 4j + 5k.

OTU Exercise 6.2: Representing Points within a 3-D Space

Re-draw the three axes depicted in Figure 6.2. (Does this represent a left-handed or right-
handed coordinate system?) Assign a scale to each axis and clearly show the location of a
point P at (2, 0, 4) and a point Q at (1, 3, 2). Calculate the length of a line segment connecting
these two points. If this is a type of calculation that you have not previously undertaken, note
that the key issue in finding the solution is usually associated with the difficulty of visualising
even a very simple 3-D geometry!!

As in the 2-D case, in order to readily accomplish transformations in 3-D, we make use of
homogeneous coordinates. Conversion of Cartesian coordinates into homogeneous form is
accomplished in the manner outlined in Section 2.2 although we now include the location of
a point within the third dimension. For example, consider a point located at (3, 4, 5). We may
represent this point in homogeneous form as [3 4 5 1], [6 8 10 2] etc (as with the 2-D case, a
point in space can be represented by an infinite number of homogeneous coordinates – there is
no unique representation).
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Transformations in 3-D may be readily accomplished by means of 4 by 4 matrices acting on
points or vectors that are represented in homogeneous form. In the subsections that follow we
briefly summarise several transformations.

6.2.1 Translation

In order to achieve a translation operation within a 3-D space we make use of a matrix of
the form:

T(x, y, z) =

⎡
⎢⎣

1 0 0 0
0 1 0 0
0 0 1 0

Dx Dy Dz 1

⎤
⎥⎦ .

Notice the use of the symbol T followed by (x, y, z) to denote a matrix responsible for translation
(in the x, y and z directions). This provides a concise way of referring to a matrix of this form.
By way of a simple example in connection with the use of this matrix, consider a point P that
is located at (3, 4, 5) – (this is the point depicted in Figure 6.2). Let us suppose that we wish
to move this point 2, 4 units and 6 units in the x , y and z directions respectively. Firstly we
represent P in homogeneous form – as, for example [3 4 5 1] and then use the transformation
matrix with Dx = 2, Dy = 4 and Dz = 6:

[
3 4 5 1

] ⎡
⎢⎣

1 0 0 0
0 1 0 0
0 0 1 0
2 4 6 1

⎤
⎥⎦ =

[
3 + 2 4 + 4 5 + 6 1

]
=

[
5 8 11 1

]
.

Thus, in line with our objective, the x coordinate has been shifted by 2 units, the y coordinate
by 4 units and z by 6 units.

6.2.2 Scaling

We can achieve scaling in the x, y and z directions using a matrix of the form:

S(k, l , m) =

⎡
⎢⎣

k 0 0 0
0 l 0 0
0 0 m 0
0 0 0 1

⎤
⎥⎦ .

Here, k, l and m represent the scaling factors applied respectively in the x, y and z directions and
the letter S is used to denote the basic scaling matrix. As in the 2-D case, it is often convenient
to apply the same scaling factor in each of the three orthogonal directions. In this case we define
a single scaling parameter (s ) such that s = 1/k = 1/ l = 1/m. The above matrix may then be
re-written as:

S =

⎡
⎢⎣

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 s

⎤
⎥⎦ .
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However, as with the 2-D case, it is important to bear in mind that when s < 1 enlargement
occurs and when s > 1 the result is a reduction in size. By way of a simple example, let us apply
scaling to the vector OP (see Figure 6.2) so as to double its length (s = 0.5):

[
3 4 5 1

] ⎡
⎢⎣

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0.5

⎤
⎥⎦ =

[
3 4 5 0.5

]
.

To find the Cartesian coordinates of this point, we simply divide through by 0.5 – thereby
obtaining (6, 8, 10).

6.2.3 Rotation About a Coordinate Axis

Consider the point P illustrated in Figure 6.2 and let us suppose that we wish to rotate it
about either the x, y or z axes. If, for example, the point is rotated about the x-axis, then it is
apparent from the illustration that the x coordinate of the point will not be changed. Similarly,
when rotated about the y-axis the y coordinate will not be altered, and when the z-axis is the
chosen axis of rotation the point’s z coordinate will not be affected. Let us now consider the
case that the point P is rotated through an angle α about the x-axis and for generality, we will
assume that P is an arbitrary point with coordinates (x, y, z). Since the point’s x-coordinate
remains unaltered by the rotation, we can redraw Figure 6.2 as a view in the y-z plane (see
Figure 6.3).

z

y

P�

P

z�

y� y

α
θ

z

Direction of rotation

Figure 6.3 The point P is rotated through an angle α about the x-axis to position P′ (the positive x-axis is assumed to be out of the page).
The coordinates of P are given by (x, y, z) and those of P′ are (x ′, y ′, z ′). Note that the angle of rotation is assumed to be anti-clockwise (when
considered from a perspective in which the rotation is viewed down the x-axis (from the positive end) – looking towards the origin).



262 An Introduction to Computer Graphics and Creative 3-D Environments

The rotation matrix can be obtained by adopting the same approach as that used in
Chapter 3 – and to recap, we can write:

cos θ =
y

|OP| , sin θ = z
|OP| ,

cos (θ + α) =
y ′

|OP| , sin (θ + α) = z′
|OP| .

Using the sum and difference formulae (see Appendix A), we can expand the second pair of
equations and then use the first two equations to eliminate θ . Thus we obtain:

y cos α − z sin α = y ′ (6.1)

z cos α + y sin α = z′. (6.2)

Bearing in mind that a rotation about the x-axis does not change a point’s x coordinate, we can
incorporate these equations within the 4 by 4 matrix as follows:

[
x y z 1

]⎡
⎢⎣

1 0 0 0
0 cos α sin α 0
0 − sin α cos α 0
0 0 0 1

⎤
⎥⎦ =

[
x ′ y ′ z′ 1

]
.

We can use the same technique to produce rotations about the y and z-axes. For example,
to obtain equations for rotation about the z-axis, we can use Eq.’s 6.1 and 6.2 and substitute
x in place of y and y in place of z (in this case x ′ replaces y ′ and y ′ replaces z′). Thus we
obtain:

x cos α − y sin α = x ′ (6.3)

y cos α + x sin α = y ′. (6.4)

For rotation about the y-axis, we again use the ‘cyclic substitution’ approach and obtain:

z cos α − x sin α = z′ (6.5)

x cos α + z sin α = x ′. (6.6)

In Figure 6.4 we summarise the resulting matrices.
The terms roll, pitch and yaw are commonly used when referring to the three orthogonal

directions in which an object can be rotated. For example, consider an aircraft in level flight.
Roll corresponds to a rotation about a central axis running the length of the fuselage and results
in one wing tip rising and the other falling. Pitch corresponds to a rotation about a horizontal
axis that is at right-angles to the fuselage and causes the nose of the plane to rise or fall in height
relative to the tail. Finally, yaw relates to rotation about a vertical axis that is again at right-angles
to the fuselage. These three forms of rotation are illustrated in Figure 6.5(a). It is convenient to
apply these terms to the rotation of any object about the three orthogonal axes and we will
assume that as illustrated in Figure 6.5(b):

� Pitch corresponds to a rotation about the x-axis.
� Yaw corresponds to a rotation about the y-axis.
� Roll corresponds to a rotation about the z-axis.
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Rotation about the x-axis:

− sin α
1000
0cos α0
0sin αcos α0
0001

Rx (a) =

Ry (a) =

Rz (a) =

Rotation about the y-axis:

− sin α

1000
0cos α0sin α
0010
00cos α

Rotation about the z-axis:

− sin α

1000
0 0 01

00 cos α
00sin αcos α

Figure 6.4 Matrices for achieving rotation about the x, y or z coordinate axes. Here, α denotes the angle of rotation.

6.2.4 Reflection in a Coordinate Plane

‘. . . the superman made the first aeroplane and the ape has got hold of it.’2

Consider a point that is reflected in, for example, the x–y plane. This reflection will have no effect
on the point’s x or y coordinates and will simply result in a change of sign in the z coordinate.
Thus, if the point with coordinates (3, 4, 5) is reflected in this plane, a new point located at (3,
4, −5) will be obtained. Similarly, if a point is reflected in the y–z plane, the sign of the point’s
x coordinate will change and for a reflection in the x–z plane, the sign of the y coordinate will
be flipped.

OTU Exercise 6.3: Matrices for Reflection

Write down the 4 by 4 matrices that will result in (a) reflection in the x–y plane, (b) reflection in
the y–z plane and (c) reflection in the x–z plane.

2 Attributed to Professor C.E.M. Joad, quoted in The World of Wings and Things, by Alliott Verdon-Roe.
Originally published c.1938.
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(a)

(b)

y

x

z

Pitch

Pitch

Yaw

Yaw

Roll

Roll

Figure 6.5 In (a) the use of the terms pitch, yaw and roll is illustrated in the context of an aircraft in flight3. In (b), we indicate a right-handed
coordinate system and show the relation that we will assume between these axis and the terms pitch, yaw and roll.

3 Hand-written comment added by A.V. Roe – aviation pioneer and aircraft engineer – a prophesy that
was not fulfilled . . .
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6.3 The Vector Product

‘O! that a man might know
The end of this day’s business, ere it come;

But it sufficeth that the day will end,
And then the end is known.’4

In this section we take the opportunity to introduce the ‘vector product’. This is frequently used
in computer graphics and we will be making use of this product in subsequent sections. The
vector product is defined for vectors in a 3-D space. Consequently, it was not introduced in
Chapter 2, where for simplicity, we confined our discussion to 2-D vectors. However, it is now
appropriate to briefly introduce this powerful tool.

Recall that the ‘scalar product’ (discussed in Section 2.4.9 and Appendix C) is also referred to
as the ‘dot product’. This alternative name is commonly used because the product is indicated
by a period between two vectors (e.g. a · b). Similarly, the vector product is often referred to as
the ‘cross product’ – a cross (‘×’) being used to denote the product (e.g. a × b).

Consider two vectors a and b in 3-D space where a = a1i + a2j + a3k and b = b1i + b2j + b3k
(here, as usual, i, j and k denote the standard unit vectors that respectively lie along the x, y and
z axes. Then the vector product of a and b is defined as:

a × b = (a2b3 − a3b2) i − (a1b3 − a3b1) j + (a1b2 − a2b1) k. (6.7)

Note that when we calculate the vector product, the result is a vector quantity (this is in contrast
to the scalar product). This equation can be easily forgotten and so texts frequently provide an
alternative form in which a 3 by 3 determinant representation is employed. In this case:

a × b =

∣∣∣∣∣
i j k

a1 a2 a3

b1 b2 b3

∣∣∣∣∣ . (6.8)

Eq. 2.15 in Section 2.5.3 provides the means by which the determinant of a 3 by 3 matrix is
calculated. Re-writing this equation in terms of the symbols used in Eq. 6.8 we obtain:

a × b =

∣∣∣∣∣
i j k

a1 a2 a3

b1 b2 b3

∣∣∣∣∣ =

∣∣∣∣a2 a3

b2 b3

∣∣∣∣ i −
∣∣∣∣a1 a3

b1 b3

∣∣∣∣ j +

∣∣∣∣a1 a2

b1 b2

∣∣∣∣ k. (6.9)

Recall from Section 2.5.3, that the determinant of a 2 by 2 matrix A which has the form:

A =

[
a b
c d

]
,

is obtained by calculating ad–bc. Thus Eq 6.9 can be re-written as:

a × b =

∣∣∣∣∣
i j k

a1 a2 a3

b1 b2 b3

∣∣∣∣∣ = (a2b3 − a3b2) i − (a1b3 − a3b1) j + (a1b2 − a2b1) k.

This is the same as Eq. 6.7 and so expressing the vector product in determinant form provides
us with a convenient and simple way of remembering the manner in which the product is

4 From ‘Julius Caesar’ (Shakespeare).
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a

b The angle from a to b is
positive

Two vectors a and b

Figure 6.6 Here, we have two arbitrary vectors a and b arranged so that the angle from a to b is positive. In this case, the vector product a ×
b gives rise to a vector that points out of the page. Thus a, b and a × b form a right-handed set (cf Figure 5.25(a)). Contrawise, a, b and b ×
a form a left-handed set.

evaluated(but naturally necessitates remembering how the determinants of both 3 by 3 and
2 by 2 matrices are calculated!).

OTU Exercise 6.4: Calculating the Vector Product

Given the vectors a and b where a = i + 2j + 3k and b = 2i + j − k calculate:

1. a × b
2. b × a

On the basis of your answers, do you conclude that the vector product is commutative? If not,
how are a × b and b × a related?

Let us suppose that we have two vectors, a and b, and that we calculate their vector product. The
result is a vector that lies perpendicular to both a and b. This can be demonstrated by means of a
simple example. We will assume that the vector a lies along the x-axis and arbitrarily suppose the
vector to have a magnitude of 2 units. Thus it is given by a = 2i + 0j + 0k. Similarly, we assume
the vector b lies along the y-axis and again is 2 units in length – therefore b = 0i + 2j + 0k. Using
Eq. 6.7, the vector product of a and b is given by:

a × b = (0 − 0) i − (0 − 0) j + (4 − 0) k = 4k.

Hence, we have generated a vector that lies along the z-axis and so it is at right-angles to both a
and b (i.e. it lies at right-angles to the plane defined by a and b). The direction of this resulting
vector is indicated in Figure 6.6.

In the case that we wish to calculate a unit vector that lies at right-angles to a plane, we simply
calculate the vector product of the two vectors that define the orientation of the plane and divide
the result by the vector product’s magnitude. Thus the unit vector (which we will denote as n̂)
is given by:

n̂ =
a × b∣∣a × b

∣∣ . (6.10)
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The magnitude of the vector product may be expressed as follows:

|a × b| = |a||b| sin θ,

where θ denotes the angle between vectors a and b. It is instructive to spend a few moments
justifying this useful expression.

Recall that:

cos2 θ + sin2 θ = 1,

Hence:

sin θ =
√

1 − cos2 θ.

Thus for two vectors a and b we can write that:

|a||b| sin θ = |a||b|
√

1 − cos2 θ, (6.11)

where θ , denotes that angle between the vectors. Recall discussion presented in Chapter 2 (and in
Appendix C) in relation to the scalar product and particularly Eq. 2.9. Re-writing this equation
for vectors within a 3-D space:

a · b = a1b1 + a2b2 + a3b3 = |a||b| cos θ,

and so:

cos θ =
a · b

|a||b| .

Inserting this into Eq. 6.11, we obtain:

|a||b| sin θ = |a||b|
√

1 −
[

a · b

|a||b|
]2

=
√

(|a||b|)2 − (a · b)2
. (6.12)

However, from the above equation for the scalar product, we know that:

a · b = a1b1 + a2b2 + a3b3,

and also the magnitude of the vectors a and b are given by:

|a| =
√

a2
1 + a2

2 + a2
3, |b| =

√
b2

1 + b2
2 + b2

3,

Inserting these results into Eq. 6.12, we can write:

|a||b| sin θ =
√

(|a||b|)2 − (a · b)2 =
√(

a2
1 + a2

2 + a2
3

) (
b2

1 + b2
2 + b2

3

) − (a1b1 + a2b2 + a3b3)2.

If we now expand these brackets, several terms cancel and subsequently, we can factorise – so
obtaining:

|a||b| sin θ =
√

(a2b3 − a3b2)2 + (a1b3 − a3b1)2 + (a1b2 − a2b1)2. (6.13)

In Eq. 6.7 we defined the vector product as:

a × b = (a2b3 − a3b2) i − (a1b3 − a3b1) j + (a1b2 − a2b1) k.



268 An Introduction to Computer Graphics and Creative 3-D Environments

a × b = (a2b3 − a3b2) i − (a1b3 − a3b1) j + (a1b2 − a2b1) k = (| |a||b sinq

sinq

) n̂

a × b =
i j k

a1 a2 a3

b1 b2 b3

=
a2 a3

b2 b3
i − a1 a3

b1 b3
j +

a1 a2

b1 b2
k

|a × b| = |a||b| = (a2b3 − a3b2)2 + (a1b3 − a3b1)2 + (a1b2 − a2b1)2

n̂ =
a × b

|a × b|

Figure 6.7 A summary of several of the key equations introduced in relation to the vector (cross) product. See text for discussion.

Using Pythagoras’ theorem, we can write down an expression for the magnitude of the vector
product:

|a × b| =
√

(a2b3 − a3b2)2 + (a1b3 − a3b1)2 + (a1b2 − a2b1)2.

The right hand sides of this equation and Eq. 6.13 are identical and so we can write:

|a × b| = |a||b| sin θ

If we define a unit vector (n̂) which lies normal to the plane defined by the vectors a and b such
that a, b and n̂ form a right handed set (recall Figures 5.25(a) and 6.6), then we can write:

a × b = (|a||b| sin θ) n̂. (6.14)

Including our previous definition for the vector product (Eq. 6.7), we can therefore write:

a × b = (a2b3 − a3b2) i − (a1b3 − a3b1) j + (a1b2 − a2b1) k = (|a||b| sin θ) n̂. (6.15)

OTU Exercise 6.5: The Vector Product of Parallel Vectors

1. On the basis of Eq. 6.14, state the value of the vector product of two parallel vectors.
2. Consider the two vectors a and b where a = 2i + 5j − 3k and b = 4i + 10j − 6k. Using

Eq. 6.7, calculate |a × b| and so confirm your answer to the previous question.

For convenience, Figure 6.7 provides a summary of several of the equations introduced in this
section and in Figure 6.8 various properties of the vector product are indicated.
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The vector given by a×b is perpendicular to both a and b.

The vector product is not commutative: a×b = b×a. In fact a×b= −(b×a).

The vector product of two parallel vectors (i.e. two vectors which are scalar
multiples of each other) is zero. For example, a×a = 0.

For three vectors a, b and c: a×(b + c) = (a × b) + (a × c).

Given s represents a scalar value: s(a × b) = (sa)×b = a×(sb).

The quantity |a×b| equals the area of a parallelogram with sides given by
the vectors a and b.

Figure 6.8 A summary of some facets of the vector product.

OTU Exercise 6.6: Determination of the Surface Normal

The vector product provides a convenient way of determining the vector that is normal (lies at
right angles) to a plane and in computer graphics, is commonly used for this purpose. Consider
the plane whose orientation is defined by the vectors a and b, where a = 2i + 6j + 2k and
b = 3i + 8j + 7k. Determine the unit vector (n̂) that is normal to this plane.

6.4 Combining Transformations

Here, we provide two examples demonstrating ways in which we can combine the basic trans-
formations introduced in Section 6.2 thereby encapsulating more complex operations within a
single matrix. In Figure 6.9(a) we summarise (in general terms) the role played by elements
within the 4 by 4 matrix in achieving the basic transformations discussed previously. It is
important to note that (as in the 2-D case), in order to achieve a specific result through the
concatenation of basic transforms, we must carefully consider the order in which they are
employed.

OTU Exercise 6.7: The Application of a 4 by 4 Matrix

Consider the position vector 3i + 4j + 5k to a point P in 3-D space – the location of this point is
depicted in Figure 6.2. Apply the matrix indicated in Figure 6.9(b) and determine the location
of the resulting vector.

6.4.1 Rotation about an Axis Parallel to a Coordinate Axis

In Section 6.2.3 we considered rotation about one of the three coordinate axes. In this subsection
we describe the use of combined transformations so as to achieve rotation about an axis that lies
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(a)
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reflection in a plane

Overall scalingTranslation

See Section 6.5

Figure 6.9 In (a), we summarise the role played by elements within 4 by 4 matrices in achieving basic transformations. In connection with (b)
see OTU Exercise 6.7.

parallel to a coordinate axis – see Figure 6.10. By way of an example we will assume, as indicated
in the illustration, the chosen axis lies parallel to the x-axis.

To achieve our objective, we can first perform a translation operation to relocate the axis
about which the rotation is to be performed so that it lies on the x-axis. We then carry out the
rotation operation and finally reverse (undo) the previous translation operation. This sequence
can be encapsulated using the following symbolic representation:

R(α) = T(y, z) · Rx (α) · T−1(y, z).

Where T−1(y, z) represents the inverse of the previous translation matrix. We will talk about
the inverse matrix again shortly and for the moment we need simply remember that its purpose
is to ‘undo’ the previous translation operation.

This series of operations may be achieved by concatenating the following three 4 by 4
matrices:

[
x y z 1

] ⎡
⎢⎣

1 0 0 0
0 1 0 0
0 0 1 0
0 −Dy −Dz 1

⎤
⎥⎦

⎡
⎢⎣

1 0 0 0
0 cos α sin α 0
0 − sin α cos α 0
0 0 0 1

⎤
⎥⎦

⎡
⎢⎣

1 0 0 0
0 1 0 0
0 0 1 0
0 Dy Dz 1

⎤
⎥⎦ =

[
x ′ y ′ z′ 1

]
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x

y

z

Axis of rotation

Dz

Dy

Figure 6.10 The rotation of an object about an axis that lies parallel to the x-axis. This is achieved by combining basic transforms – see text for
discussion.

and so:

[
x y z 1

] ⎡
⎢⎣

1 0 0 0
0 cos α sin α 0
0 − sin α cos α 0
0 Dy (1 − cos α) + Dz sin α Dz (1 − cos α) − Dy sin α 1

⎤
⎥⎦ =

[
x ′ y ′ z′ 1

]

6.4.2 Rotation about an Arbitrary Axis

We now turn our attention to a more interesting and slightly more challenging problem – the
rotation of an object about an arbitrarily positioned axis (see Figure 6.11) and achieve this goal
using the basic transformations previously introduced. The rotation may be achieved using five
basic steps:

1. Relocation: Perform a translation operation so that the axis of rotation passes through the
origin of the coordinate system. Thus, for example we could translate the axis so that the
point (x1, y1, z1) is shifted to the origin.

2. Re-orientation: Perform rotation operations so that the axis of rotation is coincident with
one of the coordinate system’s axes. Typically this involves two steps:
(a) Alignment with a Plane: We perform a rotation operation so as to bring the axis of

rotation into, for example, the x–z plane. This involves a rotation about the x-axis.
(Equally we could use the y–z or x–y planes.)

(b) Alignment with Coordinate System Axis: We perform a second rotation operation to
align the axis of rotation with a particular axis of the coordinate system In the discus-
sion that follows, we will assume that we align the axis of rotation so that it is coinci-
dent with the z-axis (an arbitrary choice). This involves a rotation about the y-axis.
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x

z

y

(x1,y1,z1)
(x2,y2,z2)

Axis of rotation

Figure 6.11 The rotation of an object about an arbitrarily positioned axis. We will define the location and orientation of this axis by assuming
that it has end-points with coordinates (x 1, y 1, z 1) and (x 2, y 2, z 2).

3. Rotation: Perform the desired rotation operation (through an angle θ).

4. ‘Undo’ Re-orientation: Perform rotation operations and so ‘undo’ step (2) thereby return-
ing the axis of rotation to its original orientation.

5. ‘Undo’ Relocation: Perform a translation operation to ‘undo’ step (1) and thereby return
the axis of rotation to the original location.

In summary we can write:

R(θ) = T(x, y, z) · Rx (β) · Ry(χ) · Rz(θ) · R−1
y (χ) · R−1

x (β) · T−1(x, y, z).

Below we outline how each of these steps may be achieved:

1. Relocation: In line with the above discussion we undertake a translation operation so
that the point (x1, y1, z1) on the axis of rotation is coincident with the coordinate system
origin. Here, we simply use the basic translation matrix:

T(x, y, z) =

⎡
⎢⎣

1 0 0 0
0 1 0 0
0 0 1 0

−x1 −y1 −z1 1

⎤
⎥⎦ .

2(a) Re-orientation (Alignment with a Plane): Here, we determine the angle (β) through
which the line segment must be rotated so that it lies in the x–z plane. It is instructive to
consider two approaches that may be adopted in order to achieve this goal. We begin by
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rotation (length l )

y2-y1

z2-z1

Side viewAngle β

β

Figure 6.12 A segment of the axis of rotation of length l . On the right we depict the end elevation – such that the segment of the axis of rotation
is projected onto the y–z plane. The projection of the line segment has a length l ′.

considering the use of simple trigonometry and subsequently obtain the same result by
means of a little vector algebra.

Method 1: In Figure 6.11 we indicate two points ((x1, y1, z1) and (x2, y2, z2)) that lie on
the axis of rotation. Let us suppose that the distance between these points is l . Following
Step (1), we will now project this line onto the y–z plane (see Figure 6.12). To determine
the length of the projected line segment (l ′) we use Pythagoras’ Theorem on the triangle
shown in the side elevation view:

l ′ =
√

(z2 − z1)2 + (y2 − y1)2.

We can now rotate this projected line segment about the x-axis so that it lies in the x–z
plane. This involves a rotation through an angle β (see diagram) – where:

cos β =
z2 − z1

l ′
, and sin β =

y2 − y1

l ′
.

Thus:

cos β =
z2 − z1√

(z2 − z1)2 + (y2 − y1)2
, (6.16)

and

sin β =
y2 − y1√

(z2 − z1)2 + (y2 − y1)2
. (6.17)

We can insert these values into the basic transformation matrix for rotation about the
x-axis. However, before forming this matrix operator, we turn our attention to a second
approach by which we can determine sin β and cos β.
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plane. We 
denote this 
vector as R’

Figure 6.13 The unit vector
�

R is projected onto the y–z plane giving a vector denoted as R′.

Method 2: Here, we use a similar approach to that outlined above but now make
use of a little vector algebra.5 Let us denote the axis of rotation by a vector R in
which case we can define a unit vector in the direction of this rotational axis such
that:

R̂ =
R

|R| = ai + bj + ck.

To determine the angle (β) through which we must rotate the axis of rotation to cause it
to lie in the x–z plane (this corresponds to a rotation about the x-axis), we first project
�

R onto the y–z plane – see Figure 6.13. As indicated in this illustration we denote the
vector produced by this projection as R′ where:

R′ = bj + ck.

The angle of rotation (β) may now be obtained using the scalar product (recall Sec-
tion 2.4.9) such that:

R′ · k = |R′||k| cos β = |R′| cos β =
√

b2 + c 2 cos β.

In addition, we can obtain the scalar product by multiplication of the vector compo-
nents. The components of the vector k in the x or y directions are zero and so its
scalar product with R′ simply equals c . Thus we obtain the following expression for
cos β:

cos β =
c√

b2 + c 2
. (6.18)

Recall that (as with Method (1) above) our objective is to find values for sin β and cos β
that can be inserted into the basic rotation matrix. This equation provides an expression

5 In the text that follows we loosely follow Hearn and Baker [1986].
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for cos β which in turn allows us to determine the angle β and so compute sin β. Thus
we have – at least in principle attained our goal On the other hand we may seek a more
computationally efficient solution – having obtained a simple expression for cos β, can
we employ a similar process and determine sin β? In fact, this is easily achieved, and here
it is convenient to employ the vector (cross) product – see Section 6.3. Below we briefly
summarise the way in which we may obtain an expression for sin β.
If we take the vector product of the vectors, R′ and k, then on the basis of Eq. 6.14, we
obtain:

R′ × k = i|R′||k| sin β = i
√

b2 + c 2. sin β

Where, as usual, i represents a unit vector in the x-direction. On the basis of Eq. 6.7 we
can write:

R′ × k = (b − 0) i + 0 · j + 0 · k = bi.

Thus:

sin β =
b√

b2 + c 2
. (6.19)

We can now insert Eq.’s 6.18 and 6.19 into the appropriate rotation matrix (for rotation
about the x-axis) so obtaining:⎡

⎢⎢⎢⎢⎢⎣

1 0 0 0

0
c√

b2 + c 2

b√
b2 + c 2

0

0
−b√

b2 + c 2

c√
b2 + c 2

0

0 0 0 1

⎤
⎥⎥⎥⎥⎥⎦ . (6.20)

Recall Eq.’s 6.16 and 6.17 which were obtained using Method (1). Bearing in mind dif-
ferences in symbols used, it is apparent that the results provided by these two approaches
are identical. Although in the first instance, the vector technique may appear to be
a little more complicated, the use of vectors often provides a way in which we may
more readily tackle problems of greater complexity and in which more flexibility is
required.

2(b) Re-orientation (Alignment with Coordinate System Axis): Here, we need to perform
a rotation about the y-axis to make the axis of rotation coincident with the z-axis.
Again we can use elementary trigonometry or the vector based approach. These are
summarised below:

Method 1: In Figure 6.14(a), we provide a plane view onto Figure 6.12 and indicate the
angle −χ that we wish to ascertain and which corresponds to the angle of rotation about
the y-axis. For convenience we will assume a line segment that is located between points
(x1, y1, z1) and (x2, y2, z2) and which is of unit length (this is the line segment that is
depicted in bold within the illustration) and these coordinates correspond to points on
the axis prior to Step (2). Here, an important point to note is that the previous rotation
about the x-axis did not change the length of this line segment – nor does the rotation
that we are now to perform about the y-axis.
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As indicated in the illustration the x coordinate of the endpoint of the line segment is
given by x2 − x1. The y coordinate of the endpoint is zero (as the line segment lies in the
x–z plane) and the z coordinate is given by:√

(y2 − y1)2 + (z2 − z1)2.

Thus we can write:

cos(−χ) =

√
(y2 − y1)2 + (z2 − z1)2

1
,

and

sin(−χ) =
x2 − x1

1
.

Therefore:

sin χ = − (x2 − x1) , and cos χ =
√

(y2 − y1)2 + (z2 − z1)2. (6.21)

Method 2: Here we make use of Figure 6.14(b). Taking the scalar product of vectors k
and R′′, we obtain:

k · R′′ = |R′′| cos(−χ),

and since the end points of k and R′′ are respectively given by (0, 0, 1) and
(a, 0,

√
(y2 − y1)2 + (z2 − z1)2), it is apparent that:

k · R′′ =
√

(y2 − y1)2 + (z2 − z1)2.

Combining these equations we obtain:

cos χ =
√

(y2 − y1)2 + (z2 − z1)2. (6.22)

To obtain an expression for sin χ , we can make use of the vector product (see
Section 6.3). We can write:

R′′ × k = j|R′′||k| sin(−χ) = j sin(−χ),

Inserting the components for vectors k and R′′ into Eq. 6.7, we obtain:

R′′ × k = aj.

Combining these two equations we obtain:

sin χ = −a. (6.23)

Eq.’s 6.22 and 6.23 therefore correspond to those obtained using Method (1) – see
Eq.’s 6.21. Inserting the values for sin χ and cos χ into the basic transformation matrix
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(a)(y2−y1)2 + (z2−z1)2

(y2−y1)2 + (z2−z1)2 (b)

-χ

-χ

z

x

Axis of rotation - this line 
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of unit length.

x2-x1

Plane view based on Figure 6.12

z

x
Unit vector k

Plane view based on Figure 6.13

a

Vector R'' (of unit
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Figure 6.14 The angle −χ denotes the angle of rotation about the y-axis. The inclusion of the negative sign follows the conven-
tion previously adopted in which a positive rotational angle corresponds to an anti-clockwise rotation when we look along an axis (from
the positive end) towards the origin. The diagram presented in (a) relates to ‘Method 1’ and diagram (b) to ‘Method 2’. See text for
discussion.

for rotation about the y-axis we obtain:

⎡
⎢⎢⎣

√
(y2 − y1)2 + (z2 − z1)2 0 a 0

0 1 0 0

−a 0
√

(y2 − y1)2 + (z2 − z1)2 0
0 0 0 1

⎤
⎥⎥⎦ . (6.24)

3. Rotation: The more taxing stage of this exercise is now behind us! Having made the axis
of rotation coincident with one of the coordinate axes (we have arbitrarily chosen the
z-axis), we now perform the desired rotation and simply use the basic transformation
matrix that causes a rotation about this axis.
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4. ‘Undo’ Re-orientation: Here, we ‘undo’ the previous rotations about the y and x axes.
This involves using the inverse matrices. Finding the inverse of a matrix can be a tedious
operation. However in the case of the affine transformation matrices that we are using
here, determining the inverse is extremely simple. We simply need to remember that the
purpose of the inverse matrix is to ‘undo’ a previous operation. Thus, for example if
one matrix performs a rotation about the x-axis through an angle β, the inverse matrix
must perform a rotation about the same axis through an angle −β. Hence to ‘undo’ the
rotation about the y-axis (which was through an angle χ), we use the following matrix
(which represents the inverse of the original):⎡

⎢⎢⎣
√

(y2 − y1)2 + (z2 − z1)2 0 −a 0
0 1 0 0

a 0
√

(y2 − y1)2 + (z2 − z1)2 0
0 0 0 1

⎤
⎥⎥⎦ . (6.25)

OTU Exercise 6.8: The Inverse of a Matrix

(a) Write down the inverse (R−1
z (α)) of the matrix Rz(α) which is given by:

Rz(α) =

⎡
⎢⎢⎣

cos α sin α 0 0
− sin α cos α 0 0

0 0 1 0
0 0 0 1

⎤
⎥⎥⎦ .

Recall from Section 2.5.3 that the result of multiplying a matrix by its inverse, is to generate
the identity matrix. Show that Rz(α) · R−1

z (α) equals the identity matrix and hence confirm
your result. Hint: cos(−α) = cos α and sin(−α) = −sin α.

(b) Multiply Eq. 6.24 by 6.25 and hence confirm that Eq. 6.25 is the inverse of Eq. 6.24. (To
simplify the multiplication process you may wish to substitute a single symbol in place of√

(y2 − y1)2 + (z2 − z1)2.

5. ‘Undo’ Relocation: Finally, we must ‘undo’ the translation that was previously carried
out in Step (1). This simply necessitates the application of the inverse translation matrix:

T−1(x, y, z) =

⎡
⎢⎣

1 0 0 0
0 1 0 0
0 0 1 0
x1 y1 z1 1

⎤
⎥⎦ .

From the above discussion, it may appear that achieving the continuous rotation of an
object about a fixed (but arbitrarily positioned) axis is, in terms of the number of steps
involved, a little complex. However, from a computational point of view, the process is
straight forward and the computational cost is quite low (recall that we have even avoided
the need to calculate sines and cosines).
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6.5 Perspective Revisited

‘As far as the laws of mathematics refer to reality,
they are not certain, and as far as they are certain,

they do not refer to reality.’6

In Section 5.4.7 we discussed some issues relating to the formation of a perspective view and
the projection of such a view onto a 2-D surface – the viewing/projection plane. Here, we
extend this discussion and in the next subsection describe the way in which matrices can
be used for perspective and projection operations. Subsequently, in Section 6.5.2, we briefly
outline ways in which we can employ perspective drawing in a manner that more effectively
conveys three-dimensionality. Finally, in Section 6.5.3 we briefly consider the significance of the
vanishing point.

6.5.1 Perspective and Projection Operations

Recall Eq. 5.25 – which, for convenience, is given below:

L ′
x =

Cz L x

Cz − L z
, L ′

y =
Cz L y

Cz − L z
, L ′

z = 0.

This refers to a point (L ) located at coordinates (L x , L y, L z) – as illustrated in Figure 6.15. The
centre of projection (COP) is assumed to be located on the z-axis (at 0, 0, Cz) and a projection
plane is positioned in the plane z = 0. A line drawn from the point L to the COP intersects
the projection plane at a point L ′ with coordinates (L ′

x , L ′
y, L ′

z). The above equations can be
re-written as:

L ′
x =

L x

1 − L z

Cz

, L ′
y =

L y

1 − L z

Cz

, L ′
z = 0. (6.26)

In the previous sections of this chapter, we have made no use of the upper three elements in
final column of the 4 by 4 transformation matrix (see, for example, Figure 6.9). However, as
we will now see these elements are able to play a key role in the production of a perspective
view. For example, consider the following matrix acting on the point L (expressed in homoge-
neous form):

[
L x L y L z 1

] ⎡
⎢⎣

1 0 0 0
0 1 0 0
0 0 1 −1/Cz

0 0 0 1

⎤
⎥⎦ =

[
L x L y L z 1 − L z

Cz

]
.

Dividing through by 1 − L z

Cz
, we can obtain the Cartesian coordinates of the transformed point:(

L x

1 − L z

Cz

,
L y

1 − L z

Cz

,
L z

1 − L z

Cz

)
. (6.27)

6 Attributed to Albert Einstein (1879–1955).
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(L'x, L'y, L'z).
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Point L – located at
(Lx, Ly, Lz)

Figure 6.15 A line drawn from point L to the COP intersects the projection plane at L’. See text for discussion.

Recall that we have assumed that the projection plane is in the x–y plane (for which the z is zero).
In this case, Eq. 6.27 gives the coordinates for L′ indicated in Eq. 6.26. In fact, the following
matrix will map any point onto the x–y plane:⎡

⎢⎣
1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 1

⎤
⎥⎦ . (6.28)

It is convenient to combine this matrix with the perspective transformation7 given above. Thus:⎡
⎢⎣

1 0 0 0
0 1 0 0
0 0 1 −1/Cz

0 0 0 1

⎤
⎥⎦

⎡
⎢⎣

1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 1

⎤
⎥⎦ =

⎡
⎢⎣

1 0 0 0
0 1 0 0
0 0 0 −1/Cz

0 0 0 1

⎤
⎥⎦ . (6.29)

OTU Exercise 6.9: Example Calculation

Consider a point L with Cartesian coordinates (2, 2,−4) and let us suppose that we define a
COP at (0, 0, 10). Using Eq. 6.29, determine the location of the point L′ which represents the
perspective projection in the plane z = 0.

7 Note: When we perform a perspective projection, lines that were previously parallel are made to con-
verge to the vanishing point. Affine transformations retain parallel lines and so a perspective projection
represents a non-affine operation.
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z

y

x

Figure 6.16 A cube located so that one face (for clarity, the edges of this face are depicted in bold) lies on the x–y plane (i.e. is coincident with
the projection plane). The z-axis passes through the centre of the cube. See OTU Exercise 6.11.

OTU Exercise 6.10: The Perspective-Projection Matrix

Consider the perspective-projection matrix given in Eq. 6.29. Suppose that this matrix acts on
a set of points (P) to produce a new set of points (P′). By generating the inverse of the matrix
given in Eq. 6.29, can we subsequently apply this to the set of points denoted as P′ and so
produce the original set (P) – i.e. can we ‘undo’ the original perspective projection? If not,
why not?

6.5.2 Object Orientation and Location

The formation of a perspective projection does not in itself necessarily guarantee that an
arbitrary 3-D object will appear to be three-dimensional. In fact, when working with wire-frame
models the clarity of the perspective projection is strongly influenced by object orientation. This
is illustrated in the following simple OTU Exercise.

OTU Exercise 6.11: The Perspective Projection – Object Orientation

Consider the formation of a perspective projection of a wire frame model of a cube. We assume
that the cube is initially positioned as illustrated in Figure 6.16. As may be seen, one face of the
cube is located in the x–y plane (i.e. in the projection plane) and the z-axis passes through
the cubes centre. Assuming that the COP is located on the z-axis, draw a diagram showing the
perspective projection of the cube that would be formed on the projection plane (i.e. the view
seen when looking into the projection plane).
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Figure 6.17 In (a) a cube with sides of length 2 units is depicted. One face is in the plane z = 0 (coincident with the projection plane). The cube
is rotated and shifted prior to the formation of the perspective projection. Complete diagram (b): see OTU Exercise 6.12.

Clearly, the perspective projection of the cube referred to in the above OTU Exercise lacks
clarity – and provides a sense of ‘tunnel vision’. To obtain a better perspective view of the cube,
we need to change the viewing geometry. Here, for example, we could move the cube so that it
is no longer centred on the z-axis and also rotate it to ensure that none of its faces lie parallel to
the projection plane. This will improve the visibility of all faces and give a better impression of
the cube’s three-dimensionality.

By way of an example suppose that we have a cube with edges of length 2 units that is
positioned as indicated in Figure 6.17(a). We will assume that the projection plane is in the
plane z = 0 and that the COP is located at (0, 0, 10). To enhance the 3-D appearance of the
projected perspective view we will undertake the following steps:
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Table 6.1 The creation of a perspective projection of a cube. The
cube is rotated about the y-axis and shifted (in the y-direction).

Coordinates of vertices
(original cube)

Coordinates of vertices
(perspective projection)

(0, 0, 0) (0, 4, 0)
(2, 0, 0) (0.9, 3.4, 0)
(2, 2, 0) (0.9, 5.1, 0)
(0, 2, 0) (0, 6, 0)
(0, 0, −2) (−1.6, 3.6, 0)
(2, 0, −2) (−0.6, 3.1, 0)
(2, 2, −2) (−0.6, 4.7, 0)
(0, 2, −2) (−1.6, 5.5, 0)

1. Rotate the cube through an angle of 60◦ about the y-axis.
2. Translate the cube by 4 units in the y-direction.
3. Perform the perspective projection.

Using the basic transformations introduced previously in this chapter, we can form a single
matrix that combines these operations:⎡
⎢⎣

cos 60◦ 0 − sin 60◦ 0
0 1 0 0

sin 60◦ 0 cos 60◦ 0
0 0 0 1

⎤
⎥⎦

⎡
⎢⎣

1 0 0 0
0 1 0 0
0 0 1 0
0 4 0 1

⎤
⎥⎦

⎡
⎢⎣

1 0 0 0
0 1 0 0
0 0 0 −1/10
0 0 0 1

⎤
⎥⎦ ≈

⎡
⎢⎣

0.5 0 0 0.09
0 1 0 0

0.87 0 0 −0.05
0 4 0 1

⎤
⎥⎦ . (6.30)

We can now apply this result to each of the original cube’s vertices and so obtain the coordinates
of each vertex of the perspective projection – see Table 6.1.

OTU Exercise 6.12: The Perspective Projection

Use the axes presented in Figure 6.17(b) (or re-draw these axes) and depict the locations of
each of the vertices of the cube’s perspective projection. Vertex coordinates are provided in
Table 6.1. Connect these vertices in the appropriate manner to depict the projection of the
perspective view of the cube.

6.5.3 The Vanishing Point Revisited

In Section 1.3 we introduced vanishing points and briefly referred to the formation of diagrams
using of one, two and three such points. In Section 5.4.7 we discussed linear perspective and
our perception (arising as a direct consequence of the finite separation of the focusing system
within the eye and the retina) that parallel lines appear to converge – to a distant vanishing
point. Here it is appropriate to briefly consider the relationship between the location of the
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Figure 6.18 In (a) we illustrate two lines that lie parallel to the z-axis and that are located in the y–z plane. In (b) we indicate that when the
perspective view is created, these lines converge on the z-axis at the vanishing point (VP). See the text for discussion.

centre of projection (COP) and the vanishing point (VP). We will examine this relationship on
the basis of a simple numerical example.

In Figure 6.18(a) we indicate two lines that lie parallel to the z-axis and which are located in
the y–z plane (x = 0). As usual, we will assume that the projection plane lies in the x–y plane
and define the COP on the z-axis at a distance of 20 units from the origin. As we know, when
we create the perspective view, these parallel lines will converge at the vanishing point – as
illustrated in Figure 6.18(b). Here, we simply provide a 2-D view – which is appropriate since
we are confining ourselves to lines within the y–z plane.

As indicated in the illustration, we assume that one of the parallel lines (denoted as line A)
has a height above the z-axis of 20 units, and the second line (line B) a height of 10 units. As
we have seen, when we form the perspective projection, the location of points that lie on the
projection plane does not change. For example consider line A. The coordinates of the point at
which this line meets the projection plane are (0, 20, 0). Expressing this in homogeneous form
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Figure 6.19 The location of points on the lines parallel to the z-axis and the perspective rendition of these lines – which converge at the vanishing
point (VP). See the text for discussion.

and applying the perspective matrix, we obtain the following result:

[
0 20 0 1

] ⎡
⎢⎣

1 0 0 0
0 1 0 0
0 0 1 −1/20
0 0 0 1

⎤
⎥⎦ =

[
0 20 0 1

]
.

Thus the perspective matrix does not affect the location of this point and so line A passes
through (0, 20, 0) and line B through (0, 10, 0). We can readily obtain equations for these
two lines – we need to simply determine for each line a second point through which each
passes. For example, suppose that we consider the point (0, 20, −5) on line A and (0, 10, −5)
on line B. We now apply the perspective transformation matrix to these coordinates (expressed
in homogeneous form). For line A:

[
0 20 −5 1

]
⎡
⎢⎣

1 0 0 0
0 1 0 0
0 0 1 −1/20
0 0 0 1

⎤
⎥⎦ =

[
0 20 −5 1.25

]
.

Similarly for line B, we obtain
[
0 10 0 1.25

]
. Dividing through by 1.25, we obtain the location

of these two points in 3-D space. For line A we have (0, 16, −4) and for line B (0, 8, −4). These
points are indicated in Figure 6.19.

We can obtain the point at which the two lines converge on the z-axis – either on the basis
of similar triangles or by determining the equation for each. In the latter case, we can use the
general equation for the straight line. Using Eq. 2.2, we obtain for line A:

y = z + 20,

and for line B:

y = 0.5z + 10.
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Table 6.2 For various exemplar points located on
the z-axis (at distance Lz from the origin), we indi-
cate their individual locations (L ′

z ) after a perspec-
tive transformation. We assume that the COP is
located at (0, 0, 20).

Lz L′
z

0 0
−10 −6.7
−20 −10
−30 −12
−40 −13.3
−50 −14.3

−100 −16.7
−1000 −19.6

Substituting into each y = 0, we obtain the point on the z-axis at which the two lines meet:
z = −20. Thus the VP has coordinates (0, 0, −20). Recall that the COP has coordinates (0, 0,
20). Thus the VP is as far behind the projection plane as the COP is in front of it! Although we
have shown this using a single numerical example, it is not a fluke – as we change the location
of the COP, the VP will also change accordingly.

Let us now turn to a slightly different issue – although one that still relates to the VP. Suppose
that the VP lies on the z-axis some 20 units behind the projection plane (with a corresponding
COP at the same distance in front of the projection plane) and for a number of indicative points
located along the z-axis, we calculate their location after the perspective transformation. Here,
we make use of Eq. 6.27 – specifically:

L ′
z =

L z

1 − L z

Cz

, (6.31)

where L ′
z represents the transformed coordinate along the z-axis.

As may be seen from Table 6.2, as the z coordinate values become larger, the transformed
points get ever closer to the VP and as L z → ∞ (which reads as L z ‘tends to’ (approaches)
infinity), L ′

Z → VP. This is readily apparent when we examine Eq. 6.31. As L z becomes
increasingly negative, L z/Cz also becomes more negative. Ultimately, the addition of 1 (which
occurs in the denominator of Eq. 6.31 can be ignored – it has little effect on the overall value.
Thus we can re-write the expression as:

L ′
z → L z

L z

Cz

=
Cz L z

L z
= Cz

We have seen that the COP is as far in front of the projection plane as the VP is behind this
plane. Thus, L ′

Z → VP.
One final point that should be noted. We have seen that three elements in the 4 by 4

transformation matrix play a key role in the creation of the perspective view. In this context,
it is important to realise that when one of these elements is non-zero, we obtain a single point
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perspective and when two elements are non-zero, a two point perspective view is generated.
Furthermore if all three elements are non-zero we can form a three-point perspective view.

6.6 Frames of Reference and the Virtual Camera

‘Gentleman, much as we would like to help you by placing orders,
we cannot do this, as we are trustees of the public purse,

and we do not consider that aeroplanes
will be of any possible purposes for war purposes.’8

In the previous sections of this chapter, we have assumed that the plane onto which an image is
projected lies in the x–y plane and that the COP is located on the z-axis. Thus we have anchored
the projection plane to the coordinate system in which the locations of image components
are defined. Consequently, when in Section 6.5.2 we sought to view an image component (in
this case a cube) from a different vantage point, it was necessary to relocate and rotate the
cube with respect to the ‘world’ coordinate system within which its position was defined. By
way of analogy, this can be compared to a photographer who uses a fixed camera location
to take photos of, for example, a group of people (e.g. traditional wedding photographs).
Here, the people (representing the collection of objects within a space defined by a ‘world’
coordinate system) are positioned under the photographer’s direction so as to be captured most
advantageously on film. An alternative and more flexible approach is to move the position of
the camera (this may be complemented by relocation of objects within the scene) to obtain the
best possible vantage point. In computer graphics, we can achieve the same result by making use
of a ‘virtual’ (synthetic) camera whose position and orientation can be changed relative to the
world coordinate system. This technique has various advantages and permits a virtual camera
to ‘fly through’ a scene (along a pre-defined track) capturing the image scene in a manner akin
to the way in which we would employ a video camera when filming.

To employ a virtual camera we must define a viewing plane, a viewing window, a viewpoint
and a coordinate system. Here, the coordinate system defines the location of the viewing plane,
the viewing window and the viewpoint and is referenced to the origin of the world coordinate
system. Below we summarise these key ingredients:

6.6.1 The Viewing Plane

This constitutes the plane onto which the image is projected and is equivalent to the projection
plane that we have employed in our previous discussions. However, the key difference is that this
plane is no longer anchored to a specific location within the world coordinate system – both its
location and orientation can be changed.

6.6.2 Viewing Window

This defines the extent of the viewing plane onto which images are projected and by way of
analogy can be thought of as a physical window casement or picture frame through which the

8 Colonel F.E. Seely speaking on behalf of the Secretary of State for War in the UK in 1912. Quoted in The
World of Wings and Things, by Alliott Verdon-Roe. Originally published c1938.
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Figure 6.20 Here, we illustrate a rectangular ‘viewing window’ which lies in the viewing plane. The extent of this window coupled with the
location of the COP defines four sides of a viewing volume (as indicated by the dashed lines). Image components within this ‘viewing pyramid’
may be projected onto the viewing plane. Any components within the image scene that lie outside of this region will not be visible at the viewpoint
and ‘clipping techniques’ are used to clip the scene to the viewing pyramid. Note that the axes drawn here are associated with the virtual camera
and are denoted x v , y v and z v . This distinguishes this coordinate system from the world coordinate system whose axes will be labelled x w , y w

and z w . As may be seen from the illustration, for convenience we have adopted a left-hand coordinate system. See Chapter 8 for further discussion.

viewer looks onto a scene. In the case of a perspective projection, the dimensions of a rectangular
viewing window coupled with the relative location of the COP define four sides of a ‘viewing
volume’ – see Figure 6.20. As indicated in this illustration the location of the viewing window
is typically centred about the origin of the viewing coordinate system – however, this is not a
requirement (nor is there a requirement for the COP to be located on the zv axis). The locations
of both the viewing window and the COP are referenced with respect to the viewing coordinate
system.

6.6.3 Viewing Coordinate System

In previous sections of this chapter we have consistently employed a right-handed coordinate
system. However, in relation to the virtual camera, it is convenient to employ a left-handed
coordinate system with the viewing plane lying within the x–y plane and positive z increasing
with distance behind this plane (this provides an intuitive approach – the greater the depth of
an object within the scene, the greater is its z coordinate value).9 In the text that follows we
shall denote the three axes of the viewing coordinate system as xv, yv and zv . This allows us to

9 The world coordinate system will continue to be treated as right-handed.
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Figure 6.21 Here, the vector r denotes the locations of the viewing and world coordinate system. However, this vector does not give any
information concerning the relative orientation of these two sets of axes.

readily distinguish this system from the axes employed in the world coordinate system that will
be denoted xw, yw and zw.10

As indicated in Figure 6.21 we can use a vector r = (r1, r2, r3) to define the relative locations
of the viewing and world coordinate systems. However, this vector does not give us any infor-
mation concerning the orientation of the former relative to the latter. For this, we need to define
other vectors – see Figure 6.22.

As may be seen from this illustration we define a unit vector n whose components are
specified relative to the world coordinate system. This vector lies normal to the viewing window
and defines the location of the z-axis (denoted zv) of the viewing coordinate system. Although
this vector defines the orientation of the zv-axis, it does not provide a complete definition of the
orientation of the viewing coordinate system (the xv and yv axes may rotate about the zv axis).
The locations of the remaining axes are therefore defined by means of two more vectors labelled
u and v in Figure 6.22. These vectors lie at right-angles to the vector n, their components are
specified with respect to the world coordinate system, and they lie in the viewing plane. Since all
three vectors lie at right-angles to each other, once two of them are defined, the third (e.g. the
vector u) has only two possible orientations. The choice of direction is determined by whether
we adopt a left-handed or right-hand coordinate system. In the case that we employ the former,
then the direction of u is given by the vector product (see Section 6.3) of n and v:

u = n × v.

10 In some texts, the axes associated with the viewing coordinate system are labelled U, V and N. In this
case the viewing coordinate system is referred to as the ‘UVN system’. We adopt these labels for the three
vectors that we will use to describe the orientation of the viewing coordinate system relative to the world
coordinate system.
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Figure 6.22 The location and orientation of the viewing coordinate system relative to the world coordinate system is described using the vectors
r, u, v and n. We assume that the viewing plane is located in the plane z v = 0.

Let us now suppose that for a given arbitrary location and orientation of the virtual camera
we wish to generate the appropriate view of an image scene. The locations of all components
within the scene are defined (in some way) relative to the world coordinate system. To create,
for example, a perspective projection of various components within the scene in the viewing
plane, we must define their location relative to the viewing coordinate system. In short, we
must map world coordinates into viewing coordinates and this can be readily achieved by
the concatenation of a series of basic transformations. Ultimately, we obtain a single trans-
formation matrix that will map the axes used in relation to the viewing coordinate system
onto those of the world coordinate system – aligning the two and making them coincident.
Once we have obtained the values of the elements within the transformation matrix that are
needed to achieve this objective, we can apply the same matrix to points specified within the
world coordinate system and map them into the coordinate system employed by the virtual
camera.
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Steps used in this process are briefly summarised below:

Step 1: Reflection in the zv = 0 plane: Recall that the world coordinate system is right-handed
and the viewing coordinate system is left-handed. This is a somewhat arbitrary choice and,
for example, we could have defined both as right-hand systems. However, transforming
between the two systems is a trivial task requiring a single reflection operation – a reflection
in x–y (zv = 0) plane. Thus positive values of zv become negative and visa versa.

Step 2: A Translation Operation: We now make the origins of the two coordinate systems
coincident. This involves a translation operation – the shift applied being defined by the
vector r and being indicated symbolically as T(−r1, −r2, −r3).

Step 3: Rotation about the xw Axis: Once the origins of the two coordinate systems are
coincident, we now perform a rotation about, for example, the xw axis so as to bring the zv

axis onto the x–z plane of the world coordinate system.

Step 4: Rotation about the yw Axis: Following on from Step 3, we perform a rotation about the
yw axis so aligning the z-axes of the world and viewing coordinate systems.

Step 5: Rotation about the zw Axis: Here, a rotation about the zw axis is used to align the
remaining axes.

Step 6: Scaling: Scaling may be used to adjust between the scales assigned to the world and
viewing coordinate systems.

OTU Exercise 6.13: Transforming Between Coordinate Systems

(a) Draw two sets of axes the origins of which should be offset from each other and the
axes arbitrarily oriented. One set of axis corresponds to the world coordinate system
and the other to the viewing coordinate system. Appropriately label each axis. Using this
diagram as a basis, draw separate sketches illustrating the progressive effect of each of
the transformations undertaken in the six steps listed above.

(b) Determine a single transformation matrix that implements the six steps listed above.

6.7 Discussion

As we have seen, matrices provide a simple and logical tool by means of which we are able to per-
form transformations within both 2-D and 3-D space. The techniques outlined in this chapter
are readily extended to the implementation of more complex operations in which, for example,
we may wish to operate on a set of connected entities such as the limbs of an animated figure
or the segments of a robotic arm. In addition, we have re-visited linear perspective and have
discussed the use of matrices for the implementation of perspective transformations. Finally,
we have introduced the concept of a virtual (synthetic) camera and the viewing coordinate
system. Having laid these foundations, we are now able to consider other aspects of 3-D image
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formation and in the next chapter primarily focus on the modelling process whereby we describe
the geometrical and spatial characteristics of objects that we wish to depict. This leads on to
discussion in Chapter 8 in relation to the rendering process.

6.8 Review Questions

1. Consider two parallel vectors. What result do we obtain when we calculate their vector
(cross) product?

2. In the case of non-parallel vectors, is the vector product commutative?
3. Suppose that we calculate the vector product of two vectors. What is the direction of the

resulting vector?
4. What is the effect of the following matrix when it is applied to a point represented in

homogeneous form: ⎡
⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 1 0

Dx Dy Dz 1

⎤
⎥⎥⎦ .

5. What is the effect of the following matrix when it is applied to a point represented in
homogeneous form: ⎡

⎢⎢⎣
1 0 0 0
0 cos α sin α 0
0 − sin α cos α 0
0 0 0 1

⎤
⎥⎥⎦ .

6. A vector is used to define the location of the origin of one coordinate system rela-
tive to another. Does this fully describe the relative relationships of the two coordinate
systems?

7. State the underlying cause of our perception of linear perspective.
8. State the function of the viewing plane.
9. Discuss the replacement of the viewing plane by a non-planar viewing surface (e.g. a

concave or convex surface).
10. Briefly describe the formation of a viewing volume.

6.9 Feedback to Review Questions

1. Their vector product will be zero.
2. Their vector product is not commutative – in fact a × b = −(b × a).
3. The resulting vector is orthogonal to the plane containing the original two vectors.
4. This matrix will give rise to a translation operation.
5. This matrix will give rise to a rotation about the x-axis – the angle of rotation is denoted

by α.
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6. Additional vectors should be used – so enabling us to describe the relative orientations of
the two coordinate systems.

7. Our perception of linear perspective arises as a result of the finite separation of the retina
and the focusing system within the eye.

8. This represents the surface onto which the 3-D image is projected.
9. No feedback to this discussion question.

10. This may be formed by defining a viewing window. The extent of this window coupled
with the location of the COP defines the four sides of the viewing volume. Any image
components that lie outside this volume will not be visible from the COP.



3-D Graphics: Representation 7
‘. . . and now and then heaving a great sigh.’

7.1 Introduction

In this chapter we primarily focus on the geometrical representation of objects. We begin by
introducing the polygonal approach to object modelling via which objects are represented by
means of a polygon mesh. Thus, for example, a sphere is modelled using a set of interconnected
polygons so creating a multi-faceted (rather than a continuously smooth) approximation. Ini-
tially we consider the creation of wireframe models in which we form a skeletal outline of an
object using a set of suitably interconnected line segments. In its most basic form, this provides
us with a way of displaying an object’s geometric and spatial form. Subsequently, we describe in
general terms the ‘boundary representation’ (B-rep) approach via which we model an object in
such a way as to embrace polygon surfaces so enabling objects to exhibit a ‘solid’ form.

In Section 7.4 we provide a review of some basic mathematics relating to the representation
of a planar surface. The maths presented in this section is intended to give additional practice
in the use and application of vectors. In Appendix D we provide related discussion and consider
the intersection of a line with a plane of infinite extent and also with a triangular region.
Additionally in this Appendix we discuss the intersection of two planes.

Various techniques may be used to define the geometrical form of objects and each approach
has associated strengths and weaknesses. In Section 7.5 we briefly discuss some of the weak-
nesses of the polygonal approach and in Section 7.6 turn our attention to the formation of

295
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smoothly curving surfaces. Here, we confine ourselves to the production of Bézier surfaces and
build on previous discussion provided in Section 4.4 relating to Bézier curves. In addition, we
consider the formation of composite surfaces comprising a set of Bézier patches and explain the
requirements for C0 and C1 continuity.

Finally, in Section 7.7 we briefly outline the Constructive Solid Geometry (CSG) approach
where models are constructed using a set of basic object primitives. Whereas other techniques
described in this chapter focus on the representation of an object’s surface characteristics, the
CSG approach treats objects as volumes – the objects comprising a set of points within a 3-D
space. This approach is well suited to interactive design and for the production of models which
are to be turned into physical entities using forms of automatic prototyping/manufacturing
techniques.

Key Learning Outcomes: At the end of this chapter you should be able to:

� Understand basic techniques used in the formation of polygonal meshes for model
representation together with the strengths and weaknesses of this general approach.

� Describe a planar surface in mathematical terms and determine the surface normal
vector.

� Form Bézier and composite surfaces comprising Bézier patches.

� Understand the requirements for C 0 and C 1 continuity in joining two or more Bézier
patches.

� Outline the nature of the constructive solid geometry technique and identify key
strengths and weaknesses.

7.2 Polygonal Models

‘How far that little candle throws his beams!
So shines a good deed in a weary world.’1

Suppose that you were asked to create a physical model of a cube or tetrahedron. Two general
approaches may be adopted – one giving rise to a ‘solid’ cube (with each face comprising a
planar surface formed using a piece of paper, card or the like), and the other representing the
geometric outline of the cube. In this latter case we could join together pieces of rigid wire,
rod etc. In computer graphics the depiction of the geometric and spatial outline of a shape (the
shape’s ‘skeleton’) using straight line segments is generally referred to as the generation of a
‘wireframe model’.

1 William Shakespeare (1564–1616).
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Figure 7.1 Here, we illustrate a cube with sides of unit length. Three edges of the cube each coincide with a coordinate axis. Each vertex is
assigned a label and these labels are used in Table 7.1.

To produce such a model, we must specify the location in a 3-D space of each of the vertices
(corners) – this takes the form of a vertex list. For example, consider a cube with edges of
unit length and whose position and orientation relative to a right-hand coordinate system is
as shown in Figure 7.1. The ‘vertex list’ for this cube is presented in Table 7.1(a). However,
simply specifying within the model the location of the vertices for an object provides no
indication as to which of these vertices should be directly connected via an edge. As indicated

Table 7.1 In (a), the vertex list for the cube illustrated in Figure 7.1 and in (b) a list indicating vertex
connectivity. The labels assigned to the edges are shown in Figure 7.3.

Vertex x y z

1

2

3

4

5

6
7

8

1

1

1

1

0

0
0

0

0

1

1

0

0

1
1

0

1

1

0

0

1

1
0

0

(a) (b)

Vertex(b) Vertex(a)Edge

1 1 2

2 2 3

3 3 4

4 4 1

5 3 7

6 4 8

7 1 5

8 2 6

9 5 6

10 6 7

11 7 8

12 8 5
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All vertices are connected to all other vertices

Figure 7.2 In order to generate a simple wireframe cube, we must not only define the location of each of the eight vertices but also specify their
interconnectivity. In this diagram we illustrate the effect of simply allowing all vertices to be interconnected!

in Figure 7.2, simply connecting all vertices does not necessarily lead to the desired result! We
must therefore provide connectivity information – an ‘edge list’ – as indicated in Table 7.1(b).
Here, we reference each of the cube’s edges using the labels assigned in Figure 7.3.

Equipped with information defining the location of the vertices and their interconnectivity,
we have formed a wireframe model. In the case that we are employing a volumetric form of
display (see Section 9.5), the perspective view is created automatically for us within the image
space. Alternatively, in the more usual event that we are using a flat screen display, we may
now wish to create a perspective view in which case, for a particular (desired) orientation
of the cube, we project the coordinates of each of the vertices onto the viewing plane (see
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6
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11

12

Figure 7.3 In this illustration we reproduce the cube depicted in Figure 7.1 and add labels to each of the twelve edges. These labels are used in
Table 7.1.
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Section 6.6). Straight line segments are created between the projected vertices in accordance
with the connectivity information that we provide.

Wireframe models are often used to create polyhedra which are formed from a set of planar
polygons. Although in general terms there is no restriction on polygon geometry, triangles
are often employed (a shape defined by three vertices which are interconnected by straight
line segments is inherently planar). This enables performance benefits to be derived from
special purpose hardware and graphics accelerator cards. Although in some cases the wireframe
technique will faithfully provide a true geometric representation of an object (e.g. in the case
of the cube, tetrahedron and dodecahedron – whose faces are planar), curved surfaces can
only be approximated (e.g. a sphere whose geometrical form is defined by a set of planar
polygons).

Naturally, in the case that we are dealing with simple objects, it is very easy for us to manually
define the locations of the various vertices and their interconnectivity. However, as we move to
more complex objects (including the case that we wish to increase the accuracy with which we
are to depict the geometry of curved surfaces), the manual approach becomes impractical. In
the following two subsections, we consider the use of algorithmically based techniques via which
wireframe models may be formed by computational means, and in Section 7.2.3 we briefly
discuss the production of this type of model by means of a laser based scanning system.

7.2.1 An Extrusion Approach

Consider the formation of a wireframe model of a shape that has a uniform cross-section in
at least one dimension (e.g. a prism2 or cylinder). Such an object is illustrated in Figure 7.4 –
where we arbitrarily locate the triangular ‘base’ in the x–z plane and assume that the direction
of uniform cross-section lies in the y direction. Let us also assume that we wish to form a prism
of length L . We begin the modelling process by defining the wireframe representation of the
object’s cross-section (which in this trivial example is a triangle) and locate this in the x–z plane.
We then, in effect, ‘extrude’ this triangle in the y direction. This requires the determination of
the coordinates of a triangle that lies at a distance L from the base triangle (we simply add L
to the y coordinate of each vertex). In this way we have defined the location of the prism’s
six vertices. Finally, we generate the connectivity list which comprises the edges of the base
triangle, the edges of the upper triangle and edges that connect corresponding vertices of the
two triangles.

Naturally, this process can be applied to objects that have more complex cross-sections and
in addition, the cross-section can vary during the extrusion process. In this latter case we begin
by defining an initial cross-section (e.g. a circle) and as we perform the extrusion process we
gradually vary the size of the cross-section (e.g. reduce the circle’s radius – thereby forming a
cone). The same general technique can be used to develop polygonal representations of more
complex objects such as a wine bottle. Taking the technique one step further, we note that we
are not limited to performing this so called extrusion process along a straight path but may do
so along a curved track thereby forming representations of bananas, brief case carrying handles
and the like. For related discussion see Watt [2000].

2 A polyhedron having two congruent bases in the form of parallel polygons – all other faces being
parallelograms.
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Triangular base

‘Extrusion’

Upper
triangle

x

z

y

Figure 7.4 The formation of a model of a prism in which the vertices of the upper triangle are computed and edges are added that link these
vertices with the corresponding vertices in the lower triangle.

7.2.2 Surface of Revolution

‘Now here is the lake,
and I still haven’t changed.’3

Unlike the approach outlined above, this technique is limited to the creation of models of objects
that have a circular cross-section – although the cross-sectional radius need not be uniform
throughout the length of the object. Thus it may be used to generate a cylinder, cone or more
complex object: a wine bottle and glass provide classic examples. Suppose that we wish to
produce a model of a funnel (that is, the type of funnel used to assist pouring a liquid into
a container which has a narrow opening). We begin by defining the contour of the funnel – as
shown in Figure 7.5(a). The profile is then rotated about an axis of symmetry (in the case of the
example shown in the illustration – rotation is about the y axis).

We define the number of discrete steps that we wish to employ (n) during the rotation – as
the number of steps is increased, the closer our wire frame model will come to approximating
the geometrical curvature of the physical funnel. At each step we calculate the coordinates of the
three points that are denoted as a, b and c in the illustration. These are given by:

a =

(
r1 cos

(
360

n

)
, 0, r1 sin

(
360

n

))
, b =

(
r1 cos

(
360

n

)
, y1, r1 sin

(
360

n

))
,

c =

(
r2 cos

(
360

n

)
, y2, r2 sin

(
360

n

))
.

3 From ‘The Life and Death of Colonel Blimp’ (1942), Powell and Pressburger.
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Figure 7.5 In (a) we define the profile of a funnel which is assume to comprise a cylinder joined to a truncated cone. The model is generated by
rotating this profile about the y -axis. This results in the production of three circles – one defining the location of the top of the funnel (into which
liquid is poured), a circle corresponding to the joining of the cone and cylinder) and a circle at the bottom of this cylinder. In (b) we illustrate a
further profile – see text for discussion.

Where the integer n /= 0 and r1 denotes the radius of the cylinder and r2 the maximum
radius of the cone. In this way we are able to determine the coordinates of each vertex
of our wireframe model. In addition, we must also generate the connectivity list and here,
we specify the rules to be followed. For example, as we move between steps, current and
previous vertices which have the same y-coordinate must be connected by an edge. Fur-
thermore, at each of the step locations, the vertices a, b and c must be connected in the
same way that they were connected in the original profile. Note that although we may
obtain the vertical edges by connecting adjacent vertices (as defined by their y-coordinates)
this may be undesirable as it would prevent the generation of certain models – such as
the one arising from the rotation of the profile given in Figure 7.5(b) in which there is a
‘cavity’.

The volume of revolution approach is not limited to the formation of wireframe mod-
els (in which vertices are interconnected via straight edges) – curves can be accom-
modated. In this case, we define the profile using a mathematical expression or set of
expressions.4

Finally, in connection with the model of the funnel, we may enhance its visual appearance by
increasing the number of points on the profile whose location we calculate during the rotation.
Each of these will give rise to a horizontal polygon which connects the vertical lines within the
wireframe mesh. However, as we will discuss later in this chapter, increasing the number of
polygons that comprise a model is not necessarily advantageous.

4 For example, if we were to model a parabolic dish (such as is used for satellite TV receivers), a single
expression would be used. Alternatively, the modelling of more complex shapes would be most readily
achieved using piecewise functions.
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7.2.3 A Laser Based Scanning System

A number of techniques may be used for the capture of 3-D data relating to the geometric
shape, spatial separation and motion of physical objects. This data may represent an object’s
surface characteristics, or may characterise the object throughout the volume in which it resides
(e.g. data captured by means of various forms of medical scanner). In this latter case, the data
is generally referred to as ‘volumetric’ or ‘volume’ data and takes the form of a set of points
distributed within a 3-D space. Each point (‘voxel’) has associated x, y and z coordinates and
may be assigned additional attributes – see Chapter 9.

Data relating to surface characteristics and to the spatial separation of a collection of objects
may be obtained via a range of techniques. For example, it can be encapsulated within the
disparities of two images comprising a stereopair. Alternatively, specialised hardware may be
used – such as a laser based range measuring system. In one form, the object whose geometric
shape is to be measured is placed on a rotating table. During each rotation, a laser beam is used
to obtain a contour of the surface at a certain height above the rotating table. At the end of
each rotation, the height of the object relative to the laser beam is changed. The result is a set
of closely spaced horizontal contour scans (‘slices’). A ‘skinning’ algorithm may then be used to
create a polygon mesh of triangles between adjacent slices.

The selection of the technique used for the acquisition of 3-D data is often scene dependent –
there is no single universal approach that will operate satisfactorily under all circumstances. For
example in the case that we infer 3-D data from stereopairs, we are limited to a certain vantage
point. Thus important data may not be available as, for example, objects within a scene may
wholly or partially occlude one another. In the form outlined above, the laser range finding
technique is most suited for operation with convex objects – data content relating to concave
regions may not be easily acquired as the laser may fail to impinge on, and so be reflected by,
such surfaces.

7.2.4 Interactive Formation

A polygonal mesh may be created using interactive design software. This enables designers to
form and manipulate polygon meshes, add textures, establish lighting conditions and define
object animation – without recourse to the underlying mathematics! Consequently, through the
use of quite simple interactive operations, it is possible to build rich virtual scenes containing
both static and animated objects. For further discussion see, for example, Gauthier [2005].5

7.3 The B-Rep Approach

‘We do not remember days, we remember moments.’6

As we have discussed, in its most basic form, a wireframe (polygonal) model provides us with a
skeletal outline of an object or structure. Although from a computational point of view such
models can be efficiently displayed, the lack of object solidity negatively impacts on visual
appearance (particularly when such images are presented on a conventional flat screen display).
On the other hand, even in their simplest form such models can be extremely helpful and,

5 This book includes a CD containing creative design software.
6 Attributed to Cesare Pavese (1908–50).
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Figure 7.6 A cube with labels assigned to the vertices, edges and faces. The vertices are labelled 1–8 and edges K–V. To improve clarity, the
diagram on the right shows the labels assigned to the faces: a–f.

for example, assist an animator wishing to interactively generate or fine-tune an animation
sequence or during the interactive placement of objects within a scene. Such activities are not
underpinned by surface realism/detail. Simple wire-frame images can also be used advanta-
geously by several forms of creative 3-D display (e.g. the varifocal, volumetric and holographic
approaches – see Chapter 9).

In addition to defining vertices and edges that comprise a model, we can supply addi-
tional information that will enable us to embrace and model surface characteristics thereby
enhancing the visual appearance of the displayed image. Here, our focus is upon describing
the boundary surfaces of objects – a boundary representation (B-rep) approach. This enables
us to define the surface characteristics in such a way that we are able to generate models
that appear to be solid and which can take on many of the visual characteristics of physical
objects.

Recall that the wireframe technique described above employs a vertex list (in which the
coordinates of vertices are defined) and an edge list (indicating their connectivity). In the case
of the B-rep approach a polygon mesh is used to describe an objects surface or ‘skin’ and
here, we include information (in the form of a ‘face list’) indicating the groups of vertices
that define each polygon face. By way of a simple example, consider the cube illustrated in
Figure 7.6.

The face list for this cube is presented in Table 7.2. We can distinguish between the inside
and outside of a face by adopting a convention that relates to the order in which we list the
vertices that define each face. For example, when we are looking onto a face from the outside,
we list the vertices in an anticlockwise direction. Thus in the case of face a, since we are looking
at the face from the outside, we list the vertices in an anticlockwise direction. The order in
which we list vertices to define the ‘sidedness’ is arbitrary – although within an application we
must be consistent. Alternatively, we can denote each circuit using edge vectors (recall previous
discussion in Section 3.6) and adopt the convention that when we view a face from the outside,
the face lies to the left of each bounding vector – which again corresponds to traversing the face
in an anticlockwise direction.
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Table 7.2 A ‘face list’ for the cube depicted
in Figure 7.6. Thus face a is defined by the
location of the vertices 1, 2, 3 and 4.

Face Vertices

a 1 2 3 4
b 1 8 7 2
c 5 6 7 8
d 3 6 5 4
e 3 2 7 6
f 5 8 1 4

In Figure 7.7 we use a link list to represent the relationship between the vertices, edges
and faces of the cube depicted in Figure 7.6 (pointers between elements in the list show the
topological relationships). In the Activity that follows you are asked to complete the diagram.

OTU Exercise 7.1: Representation of Vertex, Edge and Face Lists

1. Complete the diagram presented in Figure 7.7 to show the relationship between the
vertices, edges and faces of the cube depicted in Figure 7.6.

2. Draw a similar diagram for a tetrahedron.7

a b

K L M N O P Q R S T U V

c d e fFace List

Edge
List

Vertex
List

1 2 3 4 5 6 7 8

Figure 7.7 A partially completed diagram showing the relationship between vertices, edges and faces for the cube depicted in Figure 7.6. See
OTU Exercise 7.1.
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The scheme illustrated in Figure 7.7 can be extended by, for example, maintaining pointers
from the edge list to the face list and from the vertex list to the edge list. Whilst this can
improve flexibility, it also increases complexity. The Winged Edge data structure [Baumgart
1975] provides us with a further example of a representation scheme for polyhedra. This data
structure is intended to provide a complete description via which reasonable queries may
be supported. In this context Slater et al. [2002] provide a succinct summary of exemplar
queries:

� ‘For any face, find all of the edges, traversed in (counter)clockwise order.
� For any face, traverse all of the vertices.
� For any vertex, find all of the faces that meet at that vertex.
� For any vertex, find the edges that meet at that vertex.
� For any edge, find its two vertices.
� For any edge, find its two faces.
� For any edge, find the next edge on a face in a certain order (clockwise or counterclockwise).’

For an introduction to this approach see, for example, Slater et al. [2002]. As we have indicated,
a polyhedron is formed using an arrangement of polygons. In this context Mortenson [1985]
writes:

‘Polyhedron . . . an arrangement of polygons such that two and only two polygons meet at an edge, and it is
possible to traverse the surface of the polyhedron by crossing its edges and moving from one polygonal face to
another until all the polygons have been traversed by this continuous path.’

This may be readily understood by considering, for example, a cube or tetrahedron. These are
examples of ‘simple polyhedra’ which, unlike ‘non-simple polyhedra’ have no holes. A toroidal
polygon (doughnut) is an example of the latter. In fact, every convex polyhedron is classified as
‘simple’.

The number of vertices, edges and faces that comprise a simple polyhedron are related
according to an invariant relationship called ‘Euler’s formula for polyhedra’8 such that:

V − E + S = 2, (7.1)

where V represents the number of vertices, E the number of edges and S the number of surfaces.
For example, in the case of a cube, there are 8 vertices, 12 edges and 6 surfaces – which is in
agreement with the above equation. Similarly, for a tetrahedron, for which there are 4 vertices, 6
edges and 4 faces. ‘Regular polyhedra’ represent a particular form of simple polyhedra in which:

1. All faces have the same number of edges (e.g. a cube).
2. Every vertex has the same number of edges emanating from it (e.g. a cube).
3. Every edge has the same length.

7 A tetrahedron comprises four triangular faces.
8 Leonhard Euler: This remarkable and prolific mathematician was born in Basel, Switzerland in 1703 and
published more than 500 books and papers. Writing about his later life, Boyer [1991] writes: ‘. . . Euler
spent almost all of the last seventeen years of his life in total darkness [cataract condition]. Even this
tragedy failed to stem the flood of his research and publications, which continued unabated until 1783,
at the age of seventy-six, he suddenly died while sipping tea and enjoying the company of one of his
grandchildren.’
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Figure 7.8 A non-simple polyhedron. This comprises a cube into which a ‘blind’ hole has been cut. Euler’s ‘formula for polyhedra’ as given in
Eq. 7.1 is not valid for such objects. Instead we can use Poincaré’s generalised version of Euler’s equation. See text for details.

OTU Exercise 7.2: Regular Polyhedra

This exercise is an aside but can give useful insight into the form of regular polyhedra. Using
Euler’s formula for polyhedra (Eq. 7.1) and the first two characteristics of regular polyhedra
that are given above, show that there are five regular polyhedra – state the characteristics of
each in terms of the number of edges per face (e), the total number of edges emanating from
each vertex (v) and the total number of edges (E ) comprising the polyhedron. In each case
state the name of the polyhedron.

As indicated above, Eq. 7.1 applies to ‘simple polyhedra’ – which contain no holes. By way of an
example, consider the object depicted in Figure 7.8 comprising a cube into which a rectangular
‘blind’ hole has been machined (i.e. the hole does not pass all the way through the cube).
This object has a total of 16 vertices, 24 edges and 11 faces. (Don’t forget to count the face
at the bottom of the blind hole!) Thus V − E + S = 3 – this does not agree with Euler’s simple
formula.

Poincaré9 extended Euler’s formula to take into account both holes that pass completely
through an object and those that are of a limited depth:

V − E + S = 2 (P − H) + HB , (7.2)

where H denotes the number of holes (which pass through the object), HB the number of holes
in faces and P the separate parts that comprise the object. Let us try this out on the object
depicted in Figure 7.8. As indicated above, V = 16, E = 24 and S = 11. The object comprises a
single part (P = 1), there are no holes passing completely through the object (H = 0) and there
is a single blind hole (HB = 1). Thus V − E + S = 3 and 2(P − H) + HB = 2(1 − 0) + 1 = 3.
Thus the above equation is valid for this object.

9 Jules Henri Poincaré (1854–1912).
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Rectangular hole 
that passes through 
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Figure 7.9 A ‘non-simple’ polyhedron which includes a rectangular hole that passes through to the rear surface. See OTU Exercise 7.3 for
discussion.

OTU Exercise 7.3: The Euler – Poincaré Equation

Consider the object illustrated in Figure 7.9 and that includes a hole that passes from one side
to the other. Verify that the Euler – Poincaré equation applies to this object.

B-rep models are often difficult to generate and care has to be taken in order to avoid the creation
of invalid models. Equations 7.1 and 7.2 provide us with a means of gaining confidence in a
model. However, although these equations provide us with necessary conditions, they do not in
themselves guarantee validity. Thus, for example, Eq. 7.1 provides us with a necessary condition
that must be met in order for a model to represent a simple polyhedron. However, consider the
object depicted in Figure 7.10 comprising a cube together with an extra surface that is sticking
out from it (akin to a flap of a box). This object has 10 vertices, 15 edges and 7 surfaces. Inserting
these values into Eq. 7.1 indicates that this is a valid ‘simple polyhedron’. On the other hand,
because of the presence of the additional surface, the overall set of surfaces do not bound a
volume. Since a bounding volume is a characteristic of simple polyhedra, we need to include
additional checks that will confirm validity (or otherwise). In this context Foley et al. [1990]
indicate:

1. Each edge must connect two vertices.
2. Each edge must be shared by exactly two faces.
3. At least three edges must meet at each vertex
4. Faces must not interpenetrate.

The object shown in Figure 7.10 violates the second and third of these constraints. In the case
of ‘non-simple’ polyhedra, Eq. 7.2 is also a necessary condition to validity – but it is not a
guarantee – additional constraints must be applied.
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Figure 7.10 A solid cube with an extra surface that sticks out from it. Does ‘Euler’s formula for polyhedra’ validate this as a simple polyhedron?
See text for discussion.

7.4 A Little Maths: The Plane

‘When you have flown halfway across a desert,
you experience the desperation of a sleepless man

waiting for dawn which only comes when
the importance of its coming is lost.’10

In previous chapters, we have discussed the representation and manipulation of points and
lines in both 2-D and 3-D space. In this section we turn our attention to the representation
of a plane within a 3-D space. We begin by considering the ‘general form’ of the equation for a
plane based on the location of three ‘non-collinear’ points that lie on the plane. Subsequently,
in Section 7.4.2, we represent a plane by considering a point on the plane and a vector that
lies at right-angles to the plane (the ‘surface normal’). In Section 7.4.3 we revisit the discussion
presented in Section 7.4.1 – but adopt a vector based approach. Subsequently in Section 7.4.4
and 7.4.5 we represent a plane in parametric form and by means of a scalar product. For further
related discussion see Appendix D.

7.4.1 Plane Representation Based on Three Points

Consider three points that are located within a 3-D space and which are not collinear (i.e. they
do not lie on a straight line but rather represent the vertices of a triangle). Using three such
points we are able to define the location and orientation of a plane – each point lying on the
plane. Here, it is important to note that a triangle is by definition planar whereas polygons with
a greater number of vertices can be either planar or non-planar. Consequently, if a B-rep model

10 Beryl Markham, ‘West With The Night’, 1942.
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comprises only triangular faces, we are able to guarantee that each of these faces will be planar –
whereas in the case of other forms of face, errors may result in the unintentional generation of
non-planar faces.

The general form of the equation for a plane (based on the location of three points that lie
within the plane) may be written as:

Ax + B y + C z + D = 0, (7.3)

where A, B, C and D are constants relating to the particular plane under consideration (we
discuss there significance in the next sub-section). Their values may be found by considering the
three points (mentioned above) which lie within the plane and may, for example correspond
to three of the vertices of a face within a B-rep model. Let us suppose that these points have
the following coordinates: (x1, y1, z1), (x2, y2, z2), (x3, y3, z3). We can insert these coordinates
into Eq. 7.3 and this results in the production of three equations as indicated below (in each
case we have divided through by D):(

A

D

)
x1 +

(
B

D

)
y1 +

(
C

D

)
z1 = −1

(
A

D

)
x2 +

(
B

D

)
y2 +

(
C

D

)
z2 = −1

(
A

D

)
x3 +

(
B

D

)
y3 +

(
C

D

)
z3 = −1.

We can represent these three equations in matrix form:[
x1 y1 z1

x2 y2 z2

x3 y3 z3

][
A/D
B/D
C/D

]
=

[−1
−1
−1

]
. (7.4)

Recall summary discussion in Section 2.5.6 concerning the use of matrices for solving simul-
taneous equations. If we represent the left most matrix in the above expression as K , the
column matrix on the left-hand side as L and the right-hand matrix as M, then we can express
Eq. 7.4 as:

K · L = M.

When we multiply through by the inverse of K (K −1), we obtain:

L = K −1 M. (7.5)

Consequently, we can readily solve Eq. 7.4 and so find the values A, B , C and D by obtaining
the inverse matrix (K −1). In Chapter 2 we limited discussion to the determination of the inverse
of a 2 by 2 matrix. In the case of a 3 by 3 matrix, the process is a little more complicated and
is briefly summarised below (for more detailed discussion see, for example, Jordan and Smith
[2002] or Jeffrey [2002].
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Suppose that we have a matrix Q with the following elements (recall the use of two subscripts
to denote the row and column positions of each element):

Q =

[
a11 a12 a13

a21 a22 a23

a31 a32 a33

]
.

In order to obtain the inverse matrix (Q−1) we undertake the following steps.11

1. Find the Determinant of the Matrix: The determinant of a matrix Q is generally referred
to as detQ. In the case of a 3 by 3 matrix, the determinant is obtained using Eq. 2.15.

2. Find the Adjoint12 of the Matrix: The ‘adjoint’ of a matrix is generally abbreviated to ‘adj’
(e.g. adjQ). This is achieved by calculating:

adjQ =

[
a22a33 − a32a23 −(a12a33 − a32a13) a12a23 − a22a13

−(a21a33 − a31a23) a11a33 − a31a13 −(a11a23 − a21a13)
a21a32 − a31a22 −(a11a32 − a31a12) a11a22 − a21a12

]
. (7.6)

3. Calculate the Inverse Matrix: We now determine the inverse matrix (Q−1) by calculating:

Q−1 =

(
1

det Q

)
.adjQ. (7.7)

Returning to the problem in hand, we need to calculate the inverse of the left-most matrix in
Eq. 7.4 (in keeping with the above, we will denote this matrix as Q). Following the process
outlined above, we begin by finding the determinant. Using Eq. 2.15, we can write:

det Q = x1(y2z3 − z2 y3) − y1(x2z3 − z2x3) + z1(x2 y3 − y2x3).

Using Eq. 7.6 we can find adjQ:

adjQ =

[
y2z3 − z2 y3 −(y1z3 − y3z1) y1z2 − y2z1

−(x2z3 − x3z2) x1z3 − x3z1 −(x1z2 − x2z1)
x2 y3 − x3 y2 −(x1 y3 − x3 y1) x1 y2 − x2 y1

]
.

We can now re-write Eq. 7.5 as: [
A/D
B/D
C/D

]
= Q−1

[−1
−1
−1

]
, (7.8)

where Q−1 is given by Eq. 7.7. If we now multiply the first row of elements in Q−1 by −1, we
obtain an expression for A/D. Thus:

A

D
=

− (y2z3 − z2 y3) + (y1z3 − y3z1) − (y1z2 − y2z1)

x1(y2z3 − z2 y3) − y1(x2z3 − z2x3) + z1(x2 y3 − y2x3)
.

11 Here, we assume that the matrix that we are dealing with does indeed have an inverse. Such a matrix is
said to be ‘nonsingular’.
12 Also referred to as the ‘adjugate’.
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Finally, we can rearrange this equation to give:

A

D
=

y1 (z2 − z3) + y2 (z3 − z1) + y3 (z1 − z2)

−x1(y2z3 − z2 y3) − x2 (z1 y3 − y1z3) − x3 (y1z2 − y2z1)
.

Thus the top line (numerator) of this equation gives us an expression for A and the bottom
line (denominator) an expression for D. So as to obtain expressions for B and C we repeat this
process – using the second and third rows of elements in the inverse matrix (Q−1) in accordance
with Eq. 7.8. In the next subsection, we consider the connection between these values and the
components of the vector that lies at right-angles to a surface (the ‘surface normal’ vector).

7.4.2 The Normal Vector

‘I’ve had a wonderful evening, but this wasn’t it.’13

Consider a plane within a 3-D space which contains a point P whose location relative to the
origin is given by the vector p such that p = x1i + y1j + z1k. Let us also define a vector n that
lies at right-angles to the plane. This vector is called the ‘surface normal’ and is orthogonal to
any vector contained within the plane – such as a vector drawn from P to an arbitrary point, in
the plane, Q (where the location of Q is defined by the position vector q = xi + yj + zk). These
vectors are illustrated in Figure 7.11.

We will denote the surface normal vector as n = ai + bj + ck. A vector from P to Q (and
which lies within the plane) can be expressed as −p + q which equals:

−p + q = −(x1i + y1j + z1k) + (xi + yj + zk) = (x − x1)i + (y − y1)j + (z − z1)k.

Since this vector is at right-angles to the surface normal, it follows that the scalar product of the
two vectors is zero. That is:

n · (−p + q) = (ai + bj + ck) · ((x − x1)i + (y − y1)j + (z − z1)k) = 0.

Thus:

a(x − x1) + b(y − y1) + c(z − z1) = 0. (7.9)

This equation is generally referred to as the ‘standard form’ of expression for a plane in 3-D
space. Expanding the terms in this equation gives:

ax + by + c z + (−ax1 − by1 − c z1) = 0. (7.10)

This is known as the ‘general form’ of equation for a plane in a 3-D space. This is equivalent to
Eq. 7.3.

Given the ‘general form’ of equation for a plane, the coefficients of x,
y and z correspond to the components of the vector that lies at right-
angles to plane.

13 Attributed to Groucho Marx (1890–1977).
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p

Surface normal (n)

q

Plane

x

z

y

P

Q

Figure 7.11 A plane in a 3-D space. P and Q are two points that are located on the plane and their respective position vectors are denoted by
p and q. The broken arrowed line represents a vector drawn from P to Q. This vector lies in the plane and so lies at right-angles to the ‘surface
normal’ vector (n). See text for discussion.

OTU Exercise 7.4: The Normal Vector

Determine the unit vector that lies at right-angles to the surface of the plane which is given by:

3x + 2y + 4z − 12 = 0.

7.4.3 Plane Representation Using Three Vectors

Recall that in Section 7.4.1 we developed an equation for a plane based on three non-collinear
points. It is instructive to re-visit this discussion – but this time we will adopt a vector-based
approach. This will lead us to the same result but will provide additional experience in vector
operations.

Consider three points P, Q and R with respective position vectors p, q and r. We assume that
these points lie on the plane whose equation we wish to determine. As indicated in Figure 7.12,
we draw two vectors: one from P to Q and the other from P to R. We will denote these vectors
as e and f. Recall discussion in Section 6.3 concerning the vector product – particularly OTU
Exercise 6.6. In summary when we calculate the vector product of two vectors that lie in a plane,
we obtain a new vector that lies at right-angles to the original pair. This provides us with a
convenient means of determining the ‘normal vector’ to a plane. Thus if we calculate the vector
product of e and f we obtain a vector that is orthogonal to both of them – as indicated in
Figure 7.12, we denote this vector as n.

Therefore, assuming that vector e has components xe i + ye j + ze k and those of vector f are
x f i + y f j + z f k, we can write:

n = e × f = (xe i + ye j + ze k) × (x f i + y f j + z f k).
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xz

y

P
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Q

Surface normal n

Plane – on 
which lie points
P, Q and R

Vector p

Vector f
Vector e

Figure 7.12 Points P, Q and R lie on the plane whose equation we wish to determine. We draw a vector from P to Q (labelled e) and a vector
from P to R (labelled f). These two vectors lie in the plane. The vector n which lies at right-angles to the plane is determined by taking the vector
(cross) product of vectors e and f. On the basis of discussion in Section 6.3, confirm the direction of vector n.

And on the basis of Eq. 6.15:

n = (ye z f − ze y f )i − (xe z f − ze x f )j + (xe y f − ye x f )k. (7.11)

As an aside, recall that we can also write this in a more compact form – using Eq. 6.8:

n =

∣∣∣∣∣
i j k

xe ye ze

x f y f z f

∣∣∣∣∣ .
In turn this can be written as:

n =

∣∣∣∣ ye ze

y f z f

∣∣∣∣ i −
∣∣∣∣xe ze

x f z f

∣∣∣∣ j +

∣∣∣∣xe ye

x f y f

∣∣∣∣ k. (7.12)

Continuing with our derivation, let us introduce another point (S) that is positioned at an
arbitrary location within the 3-D space with coordinates (xs , ys , zs ). If this point lies within the
plane illustrated in Figure 7.12, then it follows that a vector drawn between S and any other point
within the plane will lie at right-angles to the surface normal vector (n). Let us therefore suppose
that we draw a vector from S to P – thereby generating a vector which we will denote t. We will
assume that this vector has components given by t = xi + yj + zk. From previous discussion
of the scalar product (Section 2.4.9) we know that when any two vectors are orthogonal, their
scalar product is zero. Thus:

t · n = 0,

and so:

t · n = (xi + yj + zk) · ((ye z f − ze y f )i − (xe z f − ze x f )j + (xe y f − ye x f )k) = 0,
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– if, and only if, the point S lies on the plane defined by points P, Q and R. Consequently, this
equation defines all points in the plane – i.e. the plane itself. Calculating this scalar product, we
obtain:

t · n = x(ye z f − ze y f ) − y(xe z f − ze x f ) + z(xe y f − ye x f ) = 0.

We can write this in a more compact form using three, 2 by 2 determinants:

t · n = x

∣∣∣∣ ye ze

y f z f

∣∣∣∣ − y

∣∣∣∣xe ze

x f z f

∣∣∣∣ + z

∣∣∣∣xe ye

x f y f

∣∣∣∣ = 0.

Consider the middle determinant which equals xe z f − ze x f . We can re-write this as −(ze x f −
xe z f ). This enables us to change the sign of this central term – in which case the equation
becomes:

t · n = x

∣∣∣∣ ye ze

y f z f

∣∣∣∣ + y

∣∣∣∣ze xe

z f x f

∣∣∣∣ + z

∣∣∣∣xe ye

x f y f

∣∣∣∣ = 0.

So far we have not assigned to points P, Q and R actual coordinates (thereby specifying their
locations relative to the origin) – we assume these are (xp, yp, z p), (xq , yq , zq ) and (xr , yr , zr )
respectively. Consider x, y and z in the above equation. These values correspond to the respective
magnitudes of the x, y and z components of the vector t. Therefore, since this vector has end
points at xs and xp , we can write x = xs − xp . We can do likewise for y and z and for all the other
vector component magnitudes appearing in the above equation. Consequently, the equation for
the scalar product of t and n becomes:

(xs − xp)

∣∣∣∣yq − yp zq − z p

yr − yp zr − z p

∣∣∣∣+(ys − yp)

∣∣∣∣zq − z p xq − xp

zr − z p xr − xp

∣∣∣∣+(zs − z p)

∣∣∣∣xq − xp yq − yp

xr − xp yr − yp

∣∣∣∣ = 0

By expanding the brackets, we can re-arrange this equation:

xs

∣∣∣∣yq − yp zq − z p

yr − yp zr − z p

∣∣∣∣ + ys

∣∣∣∣zq − z p xq − xp

zr − z p xr − xp

∣∣∣∣ + z p

∣∣∣∣xq − xp yq − yp

xr − xp yr − yp

∣∣∣∣ + D = 0, (7.13)

where D is given by:

D = −xp

∣∣∣∣yq − yp zq − z p

yr − yp zr − z p

∣∣∣∣ − yp

∣∣∣∣zq − z p xq − xp

zr − z p xr − xp

∣∣∣∣ − z p

∣∣∣∣xq − xp yq − yp

xr − xp yr − yp

∣∣∣∣ .
Notice that Eq. 7.13 has the same form as Eq. 7.3 (the general form of equation for a plane in a
3-D space):

Ax + B y + C z + D = 0.

Consequently, we can relate each of the three determinants given above to the corresponding
coefficients – A, B and C . For example, A is given by:

A =

∣∣∣∣yq − yp zq − z p

yr − yp zr − z p

∣∣∣∣ = (yq − yp)(zr − z p) − (zq − z p)(yr − yp).

Multiplying the brackets and simplifying we obtain:

A = yq zr − yq z p − yp zr − zq yr + zq yp + z p yr .
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Factorising this expression yields:

A = yp(zq − zr ) + yq (zr − z p) + yr (z p − zq ).

Disregarding the different symbols that are used, this equation is identical to the equation for
A that is presented at the end of Section 7.4.1. Similarly, and as we would expect, the two
approaches are in agreement in the equations that they give for B, C and D.

7.4.4 Plane Representation: Parametric Form

We can represent a plane by specifying the location of a point on the plane and two non-collinear
vectors which lie in the plane – see Figure 7.13. Here, we define the location of a point C (with
position vector c) which lies on the plane. In addition, two vectors (denoted a and b) are also
specified. Clearly, we can reach any point on the plane by adding to the vector c (which takes us
to the plane) certain proportions of vectors a and b. If we denote the ‘amounts’ of the vectors
a and b needed to reach an arbitrary point P (with position vector p and vector components
xi + yj + zk) on the plane by λ and ε respectively, then we can write:

p = c + λa + εb. (7.14)

Thus λ and ε are scalar quantities which are used to provide a linear combination of vectors a
and b. Note that if we fix one of these values (e.g. λ = 1) then we obtain:

p = (c + a) + εb.

Point C

Vector c

Vector a

Vector b
y

z

x

Plane

Figure 7.13 Here we represent a plane using a point on the plane (C) and two non-collinear vectors (a and b) which lie in the plane. We can
reach any point on the plane by adding to vector c appropriate proportions of vectors a and b. This allows us to represent the plane using a
parametric equation.
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b

Point C
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A rectangle is 
produced
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produced

Figure 7.14 The generation of two different shapes. In (a) the two vectors are orthogonal and in (b) the angle between them is ≈60◦.

This represents the parametric equation for a straight line (recall Section 2.3.1) with ε repre-
senting the ‘parameter’.

Frequently, we need to specify not only the plane’s location and orientation but also its actual
extent. In the case that −∞ ≤ λ ≤ ∞ and −∞ ≤ ε ≤ ∞, then the plane has no boundaries –
it has an infinite extent. On the other hand, we can restrict the extent of the plane by placing
limitations on the range of values that may be assigned to these two parameters. By way of
example, suppose that the vectors a and b have the same magnitude and are arranged to lie at
right-angles to each other. If we now limit the parameters to 0 ≤ λ ≤ 1, 0 ≤ ε ≤ 2 a rectangle
will be produced – see Figure 7.14(a). In the case that we change the angle between the vectors
(e.g. to 60◦) and maintain the same range of values for the parameters, a parallelogram will be
formed (Figure 7.14(b)).

OTU Exercise 7.5: A Triangular Surface

On the basis of the above discussion how would you arrange vectors a and b and define the
values of parameters λ and ε to generate a right-angle triangle?

Hint: Would the values of the parameters be related in some way?

7.4.5 Plane Representation: Scalar Product Form

Recall from Section 7.4.1 that the general form of the equation for a plane is given by:

Ax + B y + C z + D = 0.

Here, x, y and z represent the coordinates of an arbitrary point on the plane. Let us denote
this point as P and represent its location by the position vector p where p = xi + yj + zk.
In Section 7.4.2, we demonstrated that the coefficients of x, y and z in the above equation
correspond to the components of the vector that lies at right-angles to the plane – i.e. the surface
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normal vector (n). Thus:

n = Ai + B j + C k.

Recall from Section 2.4.9 that the scalar product of two vectors (say, a = ax i + ay j + azk and
b = bx i + by j + bzk) is given by:

a · b = ax bx + ayby + azbz = |a||b| cos θ,

where θ denotes the angle between the two vectors (0 ≤ θ ≤ 180◦). Thus we can re-write the
general equation for a plane in terms of the scalar product of the surface normal vector and the
position vector to point P:

Ax + B y + C z + D = n · p + D = 0.

Thus we can represent the plane in terms of a scalar product:

n·p + D = 0. (7.15)

In addition, from the above expression for the scalar product we can write:

Ax + B y + C z + D = |n||p| cos θ + D = 0.

If we divide all the terms in this equation by |n| we obtain:

Ax

|n| +
B y

|n| +
C z

|n| +
D

|n| = |p| cos θ +
D

|n| = 0.

In the case that |n| = 1 (i.e. that we are dealing with a unit vector – in which case√
A2 + B2 + C 2 = 1) then we can re-write the right-hand part of the above equation as:∣∣p∣∣ cos θ = −D. (7.16)

In the case that the angle (θ) between vectors n and p is zero then this equation becomes:∣∣p∣∣ cos 0◦ =
∣∣p∣∣ = −D

Thus, under these circumstances, the magnitude of the vector p equals the magnitude of D.
Since the angle between the vectors p and n is zero, it follows that both vectors lie at 90◦ to the
surface of the plane. This situation is illustrated in Figure 7.15 – where for clarity we illustrate
the plane in cross-section.

The magnitude of the term D in the general equation for a plane cor-
responds to the length of the line drawn from the origin to a point
on the plane such that it meets the plane at 90◦. This is referred to as
the perpendicular distance of the plane from the origin. This applies as
long as the coefficients A, B and C in the general equation for the plane
represent the components of a surface normal of unit length.
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p
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length
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Figure 7.15 Here, for clarity, a plane is drawn in cross-section. By definition the surface normal vector (n) lies at right-angles to the plane. Since
in the situation shown here, the angle between the normal vector and the position vector (p) is zero, it follows that the vector p is also orthogonal
to the plane. See text for discussion.

OTU Exercise 7.6: Determining the Plane Equation and Perpendicular
Distance

Consider a plane for which the normal vector is given by n = i + j + k and on which a point P
is located. The location of this point is given by the position vector p = 2j + k. Determine an
equation for this plane and the perpendicular distance of the plane from the origin.

7.5 Polygonal Representation: Some General Remarks

‘If we knew what it was we were doing,
it would not be called research, would it?’14

In this section we briefly discuss issues concerning the use of a mesh of polygons for object
representation and aspects of the modelling process in general.

7.5.1 Purpose

In previous sections we have considered the production of the visible image to be the raison
d’etre for the creation of the model describing an object’s basic geometry. Indeed the overall
modelling process provides the fundamental spatial, geometric and surface characteristics upon
which we draw when generating an image for depiction on some form of display. However, this
often represents only one aspect of the model’s purpose. For example, in the case of computer-
aided design (CAD), an operator may interact with the system to construct the model of a

14 Attributed to Albert Einstein (1879–1955).
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component that is to be turned into a physical entity using an automated or semi-automated
process. Thus, for example output from a computer system may be applied to a ‘numerically
controlled’ machine via which a physical rendition of the object is created. In this case, when
considering the level of accuracy needed to describe an object, we cannot simply concern
ourselves with the level of accuracy required to produce a visually satisfactory image but must
also consider the accuracy demanded in the fabrication process. By way of a simple example,
consider the production of a crankshaft. Here, the machined bearing surfaces must exhibit a
smooth (continuous) curvature and must have dimensions within required tolerance. Although
from a visualisation point of view, a polygonal representation of the bearing surfaces may be
satisfactory, the use of a physical multi-faceted surface would in practice be disastrous!

In many situations an image scene does not comprise a collection of static entities – but
rather objects that move, and with which the operator can interact. In this context, object
collision is of vital interest and we must not only be able to detect when collisions take place
but also, for example, determine the trajectories of objects following a collision. The inclusion
of haptic feedback (see Chapter 10) places additional demands on the overall representation
process. For example, we may wish to assign to different objects (or to different regions of an
object) specific frictional properties and thereby enable a user employing a haptic probe to ‘feel’
different forms of surface. Furthermore, although the approximation of a curve by a mesh of
planar surfaces may be satisfactory from a visual perspective, it may negatively impact on the
haptic experience – geometrical discontinuities being revealed through our sense of touch.

In summary, the information that must be included in the representation of object geometry
and the scene as a whole is not solely governed by our wish to generate a visually acceptable
image but also by issues such as the ways in which we may wish to interact with the image scene,
animation and the ultimate purpose of the system – e.g. the production of a design that can be
directly manufactured by automated machinery.

7.5.2 Interaction

Consider that we use a mesh of polygons to represent an object comprising several planar and
curved surfaces. We could define each planar surface by a single polygon. If we assume that in
our representation we use triangles, then each rectangular surface could be formed using two
triangles. Here, we note that the number of triangles needed is not necessarily defined by the size
of each surface. On the other hand, in the case of the curved surfaces, the number of triangles
required relates (or should relate) to the degree of surface curvature – the greater the curvature,
the larger is the number of triangles that are needed to produce a smooth representation. The use
of polygons for the modelling of curved surfaces represents a ‘piecewise linear approximation’.
Consequently, should we attempt to represent a highly curved surface using only a small number
of polygons, we can expect there to be a lack of accuracy – the polygonal representation of the
surface differing significantly from the continuously curving surface that we are modelling. On
the other hand if we use a larger number of smaller polygons then the accuracy of the piecewise
linear approximation is improved. However, as discussed in Section 8.7, shading techniques
are available via which we can reduce the visibility of the geometrical discontinuities that exist
between adjacent polygons – hence we can in effect blend polygons thereby reducing the visible
impact of the discrete nature of the polygonal representation.

Suppose that we wish to create and display a model of a rectangular block. As indicated above,
we could represent each face using a single rectangle or, for example, two triangles. We now
interact with this block in such a way as to deform its shape. For example, we could apply a
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force between two opposite surfaces so as to compress the block (and so cause the other four
surfaces to ‘bulge’) or apply a torque so as to twist the block. If we wish to realistically depict the
resulting deformation, it is clear that we now need to display an object that no longer comprises
six planar faces – we have introduced a curved geometry – but will the polygons used in defining
the initial geometrical shape of the block accommodate the depiction of curved surfaces?

In fact even changing the location of a single vertex within a polygon mesh can cause
difficulty. For example, suppose that we have a curved surface represented by polygons and
that via an interaction process we are able to increase its curvature (by selecting and dragging
an appropriate vertex). Although we are able in this way to change the curvature, the visual
result may be far from satisfactory – the ‘polygon resolution’ may no longer properly support
the degree of curvature of the manipulated surface.

7.5.3 Number of Polygons

It is by no means unusual for the polygonal representation of an object to comprise hundreds
of thousands of polygons. The larger the number of polygons employed, the larger is the data
structure used to store the geometric model and the greater the time required to render the
object and produce each different frame of the visible image (in the case of animated image
sequences and real-time interaction scenarios this can be particularly important). Consequently
increasing the number of polygons used to enhance the geometric accuracy of the polygonal
model (in as much as it matches the ‘true’ representation) is not necessarily desirable. In fact, it
may be a pointless undertaking as we need to also consider the actual size at which an object is to
be displayed. By way of a simple example consider a bird in flight. At a distance the bird is simply
perceived as a dark dot or a very small and indistinct entity. It is only as the bird gets closer
that we are able to perceive its form in greater detail. This type of situation applies in computer
graphics – there is little point in rendering large numbers of polygons if the results of this process
are to be displayed by only a small number of screen pixels. Conversely, when initially defining
an object’s geometric model, we will often not know the actual size at which it is to be displayed
(and hence the number of pixels that will be devoted to its depiction). Furthermore, in the case
that an operator has the ability to interactively zoom, display size cannot be pre-defined.

This type of problem occurs in various applications such as computer games, flight simulators
and the like. Consider the case of a commercial flight simulator. As with the bird mentioned
above, an approaching aircraft may when represented at a distance via an (electronic) cockpit
window, simply appear as a dark dot against a blue or white background. Creating a model
to represent this distant view is therefore trivial. However, as the aircraft moves closer, it will
occupy a greater portion of the cockpit window and we expect a gradual increase in the level
of visible detail. In the extreme situation (corresponding to a near collision!), we would expect
the approaching aircraft to be represented in great detail – its representation filling the window.
Given that the simulator must operate in real time and that increasing the number of polygons
used to represent an object increases the rendering time (needed to create the visible image),
we are left with a dilemma – how do we best match the changing level of visible image content
to make most efficient use of processing resources? One approach is to use several different
geometrical models to describe an object – each comprising a different number of polygons and
thereby a different level of detail. In this way we can ensure that the number of polygons is not
overly excessive – especially when considered in terms of the actual visible image size and hence
the number of pixels that will be employed in its depiction. However, this approach may result
in visible image disturbance as we simply switch from one model to another. This is obviously
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undesirable as it may interrupt an operator’s concentration and hence the sense of immersion.
In short, this simple approach fails to encourage (and is in fact contrary to) the ‘suspension of
disbelief ’ (recall Section 1.2). Clearly, it is preferable to arrange for a non-abrupt transition such
that one model gradually ‘blends’ into another.

7.6 Surface Construction Using Bézier Patches

In this section we briefly consider the formation of space curves using ‘Bézier patches’. Recall
previous discussion in Section 4.4 in relation to the formation of Bézier curves in which they
are described using the following compact expression:

p(t) =
n−1∑
k=0

pkhk(t). (7.17)

Here, p(t) represents a position vector to points on the curve and n the number of points that
we are employing to define the curve. Thus if we employ four points, their respective position
vectors are given by p0, p1, p2 and p3. The ‘blending functions’ are represented by hk(t) and as
we previously explained, these functions scale the contribution that the position vectors (p0 to
p3) make in defining the overall shape of the curve. For example, in the case that n = 4, p(t) is
given by:

p(t) = (1 − t)3 p0 + 3t (1 − t)2 p1 + 3t2 (1 − t) p2 + t3p3.

We can readily use Bézier curves to form smoothly curving surfaces whose 3-D shape can be
adjusted by the manipulation of control points. To provide an insight into how this can be
achieved, it is convenient to employ a simple analogy. Let us suppose that we take a number of
strips of elastic material and lay these out to form a regular mesh. At each point at which one
elastic strip crosses another we apply some glue and in addition, we attach the ends of the strips
to a rigid frame (see Figure 7.16). Thus the mesh is initially planar. In this analogy, each place
at which one strip crosses another is intended to represent some form of ‘control point’ and by
pushing or pulling at these points, we can create a space curve. A key point is that as we move
the position of a control point we modify the curvature of the entire mesh – each point acts on
the mesh as a whole.

In a similar way (although it is important not to take our analogy too far), we can create a
complex smoothly curving surface patch using two sets of Bézier curves (cubic Bézier curves
are commonly employed (recall these are defined by two end points and two additional control
points)) – one set being equivalent to the horizontal lengths of elastic material indicated in
Figure 7.16 and the other corresponding to the vertical strips. The two sets of curves are not
independent of each other and the location of a point on a bi-cubic15 Bézier surface is defined
by the parametric vector function:

p(u, v) =
3∑

j =0

3∑
k=0

p j,kh j (v)hk(u). (7.18)

15 Bi-cubic indicates that cubic Bézier curves are used for both sets of curves.
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Rigid frameElastic
strips

Strips glued 
together at 
crossing
points

Figure 7.16 A simple analogy in which a mesh is formed using lengths of an elastic material. We consider each place at which these strips cross
to represent some form of control point. By pushing or pulling at these points (i.e. by applying a force that is at right-angles to the surface of the
planar mesh), we can change the shape of the mesh and so create a curved surface. Note that the applied force has an effect across the entire mesh.

At first glance this equation may appear a little complicated (!) and so it is worth briefly
examining its foundations and significance. Let us consider that we have a set of cubic Bézier
curves (returning to our analogy, we will assume that these loosely correspond to the vertical
strips of elastic material depicted in Figure 7.16). We denote the locations of the control points
on the first of these curves by the position vectors p0,0, p0,1, p0,2, and p0,3 (thus, for example,
the position vector p0,0 defines the location of the control point P0,0 shown in Figure 7.17). The
position vector defining the location of an arbitrary control point may be denoted pj,k. where j
denotes a particular Bézier curve and k the actual control point on the curve.

P0,0

P0,3

P0,2

P0,1

P3,3

P3,2

P3,1

P3,0

P2,3 P1,3

P1,0P2,0

u

v

Figure 7.17 Here, we show the control points for a set of four cubic Bézier curves. The four control points corresponding to each individual curve
are connected by the lines denoted in bold typeface. For clarity, we have only labelled the control points that lie on the periphery of the patch. In
general terms we denote an arbitrary control point as Pj,k (with position vector p j ,k ) where in this example j and k may have the values 0, 1, 2,
3. Each of these curves is a function of the parameter u .
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We assume that the set of Bézier curves referred to in Figure 7.17 are each a function of the
parameter u and so on the basis of Eq. 7.17, we can express the location of points on this set of
curves in the following way:

pj(u) =
3∑

k=0
p j,khk(u), where j = 0, 1, 2, 3 and 0 ≤ u ≤ 1 (7.19)

If, for example, we are referring to the curve created by the right-hand set of control points
indicated in Figure 7.17, we would set j to zero and would therefore obtain:

p(u) = p0,0h0(u) + p0,1h1(u) + p0,2h2(u) + p0,3h3(u).

The values of the blending functions (hk(u)) are given in Table 4.3.
In order to create a surface, we could use an interpolation technique to define the surface

profile between the set of Bézier curves that we have formed. By way of an analogy consider the
construction of the wing of a model aeroplane. The set of Bézier curves could represent the wing
ribs and we may use a covering of tissue, fabric etc. to form the actual wing surface. In this case,
we are effectively interpolating the curvature of the wing on the basis of the shape and relative
locations of the set of wing ribs that are in place. However, in the case of a Bézier surface, the
initial set of Bézier curves is used to define the location of the control points of a Bézier curve
(which lies at right-angles to the initial set of curves) and this curve is used to sweep-out and so
define the surface.

When encountered for the first time, this can sound a little confusing so let’s take a simple
example of how this process may work. Assuming that we know the position vectors that define
the location of the control points illustrated in Figure 7.17, we can select a particular value for
the parameter u (remember that this parameter is in the range 0 ≤ u ≤ 1) and calculate the
location of a ‘corresponding’ point on each of the Bézier curves. These four points are then
used as control points for a new Bézier curve. If we repeat this process for different values of
u, we can create a set of such curves. Looking at this from another viewpoint, we take a single
Bézier curve and sweep out the profile of the surface. During the sweep process, the shape of this
curve is likely to continuously change – it being determined by the instantaneous position of its
control points (which are defined by the original set of curves!). Slater et al. [2002] describe this
succinctly:

‘Hence the Bézier surface may be thought of as a Bézier curve of Bézier curves.’

If we assume that the swept curve is a function of a parameter v (see Figure 7.17), then the
location (p′(v)) of the set of points which comprise this curve is given by:

p′(v) =
3∑

j =0

p j h j (v).

Inserting Eq. 7.19 into this equation allows us to eliminate p j :

p′(u, v) =
3∑

j =0

h j (v)
3∑

k=0

p j,khk(u).

By making one small adjustment to the equation, we obtain Eq. 7.18. Notice that h j (v) is not
effected by the right-hand summation operation (which operates on different vales of k and not
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on values of j ). Consequently, we can re-write this equation as:

p′(u, v) =
3∑

j =0

3∑
k=0

p j,kh j (v)hk(u),

which corresponds to Eq. 7.18. The depiction of a Bézier surface using a mesh is quite a
straightforward undertaking and is based on the judicious use of the two parameters u and
v. Referring to Figure 7.17, in order to create curved mesh lines in the direction of the original
set of Bézier curves we know that each line will have a certain (constant) value of v. In short,
for this set of lines v determines the location of the curve and u defines points on the curve.
Similarly in the case of mesh curves that are to run in the direction of the ‘swept’ Bézier curve,
the location of each is determined by the parameter u and v defines points on a particular
curve.

Finally, note that in order to create a bi-cubic Bézier surface, we have employed 16 control
points (if we were to form a bi-quadratic surface, nine control points would be needed). In
addition, we can employ curves of different order in the two directions (e.g. a set of cubic curves
and a forth order ‘swept’ curve). The above equation can readily handle changes in the order of
the curves used – we simply need to alter the limits in of the summations.

7.6.1 Using Matrices to Represent Bézier Curves and Surfaces

‘Many people hear voices when no-one is there.
Some of them are called mad and are shut up in rooms

where they stare at the walls all day.
Others are called writers and they do pretty much the same thing.’16

It is often convenient to describe Bézier curves and surfaces using a matrix notation. Consider
the case of a cubic curve. As indicated at the beginning of this section the position vector p(t)
to points on a cubic Bézier curve is given by:

p(t) = (1 − t)3 p0 + 3t (1 − t)2 p1 + 3t2 (1 − t) p2 + t3p3,

where t denotes the parameter. If we expand each of these terms, we obtain:

p(t) =
(−t3 + 3t2 − 3t + 1

)
p0 +

(
3t3 − 6t2 + 3t

)
p1 +

(−3t3 + 3t2
)

p2 + t3p3.

We can express these four terms as the product of three matrices:

[
t3 t2 t 1

]
⎡
⎢⎣

−1 3 −3 1
3 −6 3 0

−3 3 0 0
1 0 0 0

⎤
⎥⎦

⎡
⎢⎣

p0

p1

p2

p3

⎤
⎥⎦ .

This provides us with a compact expression for the terms used to describe the curve.

16 Attributed to Meg Chittenden.
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OTU Exercise 7.7: Matrix Representation of a Quadratic Bézier Curve

Produce a matrix expression for the terms that describe the position vector to points on a
quadratic Bézier curve.

Hint: You may wish to look back to Section 4.4.

We can also use matrices to describe a Bézier surface. For example in the case of a bi-cubic Bézier
surface we could use the following expression:

[
v3 v2 v 1

]⎡
⎢⎣

−1 3 −3 1
3 −6 3 0

−3 3 0 0
1 0 0 0

⎤
⎥⎦

⎡
⎢⎣

p0,0 p0,1 p0,2 p0,3

p1,0 p1,1 p1,2 p1,3

p2,0 p2,1 p2,2 p2,3

p3.0 p3,1 p3,2 p3,3

⎤
⎥⎦

⎡
⎢⎣

−1 3 −3 1
3 −6 3 0

−3 3 0 0
1 0 0 0

⎤
⎥⎦

⎡
⎢⎣

u3

u2

u
1

⎤
⎥⎦

Notice that when multiplied, the two right-hand matrices provide us with the terms in the
Bernstein Polynomial relating to curves with the parameter u – in Eq. 7.18 these terms are
denoted hk(u) Similarly the two left-hand matrices generate the terms in a Bernstein Polynomial
(denoted h j (v)) relating to the parameter v. The central matrix represents position vectors pj,k

in Eq. 7.18.
This matrix form of representation is convenient and given position vectors to the 16 control

points we can readily determine the position vector to any point on the Bézier surface. For
related discussion see Mortenson [1985].

7.6.2 Joining Bézier Surfaces

Complex surface geometries may be formed by joining together a number of Bézier patches.
Recall previous discussion concerning connecting Bézier curves (Section 4.6). As we indicated,
when two curves are joined we usually require a smooth (seamless) transition from one to the
other. This is achieved by ensuring that the end point of one curve coincides with the end point
of the second curve (thus there is no sudden break in the composite curve (C0 continuity)) and
by arranging that the endpoint and adjacent control point of each of the two curves lie on a
straight line (C1 continuity). As we have seen, these requirements arise because:

1. A Bézier curve passes through the two endpoints.
2. At the endpoint, the line connecting the endpoint to the adjacent control point forms a

tangent to the curve.

We can apply similar conditions to two Bézier patches that are to be joined and so ensure C0

and C1 continuity. Specifically:

1. Zero Order Continuity: This is achieved by ensuring that the control points located along
the joining boundaries are coincident – see Figure 7.18.

2. First Order Continuity: Here, a sufficient condition is that at the joint, the lines connecting
the endpoints with the adjacent control points are collinear.

This second requirement imposes quite a severe constraint and may negatively impacts on the
designer’s freedom to manipulate surfaces. In this context Watt [2000] writes:
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Patch 2 (control polygon)
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Figure 7.18 The joining of two Bézier patches. In order to obtain C0 and C1 continuity we ensure that the control points along the joining
boundary (denoted by the bold line segments) are coincident and that at the joint, the lines connecting the endpoints to the adjacent control
points (these are indicated by the broken lines) are collinear.

‘Faux, in 1979, pointed out that in CAD contexts, this constraint is severe, if a composite surface is constructed
from a set of Bézier patches. For example, a composite surface might be designed by constructing a single patch
and working outwards from it. Joining two patches along a common boundary implies that eight of the control
points for the second patch are already fixed, and joining a patch to two existing patches implies that 12 of the
control points are fixed.

A slightly less restrictive joining condition was developed by Bézier in 1972. In this patch, corners have
positional but not gradient continuity. However, tangent vectors of edges meeting at a corner must be co-
planar. Even with this marginally greater flexibility, there are still problems with the design of composite
surfaces.’

Surface patches may also be formed using B-splines – see, for example, texts such as Watt [2000],
Hill [1990], Newman and Sproull [1981], Slater et al. [2002] – this latter book provides an
interesting discussion concerning the formation of triangular Bézier patches.

7.7 Constructive Solid Geometry

‘I shall be telling this with a sigh somewhere ages and ages hence:
Two roads diverged in a wood, and I –

I took the one less travelled by, and that has made all the difference.’17

In the case of ‘constructive solid geometry’ (CSG), an operator is provided with a set of primitive
components (such as a cube, cylinder, cone, sphere etc.) from which more complex objects
may be formed. An important difference between the B-rep approach and the CSG technique
is that in the case of the former we model only surface characteristics whereas in the case of
CSG we consider objects as volumes – each object comprises a set of points within a 3-D space.
Consequently, in the case that we wish to bring together a number of primitives, we simply unite
the points used in their representation.

17 Robert Lee Frost (1874–1963).
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Figure 7.19 The formation of an object by bringing together two primitive elements. In this simple case we amalgamate two rectangular blocks.
This is referred to as a Boolean ‘union’ operation.

For example, consider a trivial situation in which we wish to create a model of an object
comprising two rectangular blocks – as shown in Figure 7.19. By means of an interactive design
interface we can specify the dimensions of these two blocks together with their relative position
and orientation. Once we have defined these parameters, we can employ Boolean operations to
create the set of points that represent the overall object.

Let us briefly consider the nature of such operations. Suppose that we have two sets of
elements that we will refer to as set A and set B. We will assume that set A has three members –
the numbers 1, 2 and 3 and that set B has 4 members: 3, 4, 5 and 6. We can represent these
sets as:

A = {1, 2, 3} , B = {3, 4, 5, 6} .

Of course these two sets can comprise anything – types of car, types of fruit, points in a 3-D
space – the members of a set need not be numerical elements. If we now wish to form a new set
(let’s denote this as set C) which represents the set of elements that belong to either set A or set
B, we undertake a Boolean ‘union’ operation. This is generally denoted by means of the symbol
‘∪’ and we would therefore represent this operation by:

A ∪ B = C .

Note that when we perform this operation we are creating a set that comprises the members of
A and the members of B – but elements that are common to both sets are included only one.
Thus in case of this example:

C = {1, 2, 3, 4, 5, 6} .

In the case of CSG, the union operation enables us to join together object primitives and so
construct more complex objects.

When machining physical objects, we often need to cut away bulk material, create holes –
and the like. In Figure 7.20 we illustrate a scenario in which we wish to cut a rectangular hole
within a rectangular block. In CSG this can be achieved by taking the Boolean difference between
two primitives. The difference between two sets is generally indicated using ‘−’ symbol. If we
introduce set D which is given by D = {4, 5}, the difference between sets B and D could be
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Figure 7.20 The formation of an object by means of two primitive elements. In this simple case we use the smaller of the blocks to define the
shape and extent of a region that is to be cut out of the larger block. This is referred to as a Boolean ‘difference’ operation.

expressed as:

B − D = C .

In this case set C would be given by: C = {3, 6}. By way of a further example, we may wish to
create a length of tube with a certain diameter and wall thickness. This can be easily achieved
by using a cylindrical object primitive. We simply specify two cylinders of different radii, locate
these about a common central axis and perform a Boolean difference operation!

Another Boolean operation is referred to as the ‘intersection’ of two sets (denoted ‘∩’). In this
case we identify the elements that are common to the sets. For example, A ∩ B = {3} – as this is
the only element contained in both sets.

In the above discussion we have overlooked a problem that can occur when we apply basic
mathematical set operators. Consider the situation indicated in Figure 7.21 in which we wish
to determine the intersection of two shapes – which, for simplicity we will assume are two-
dimensional. On the left hand side we depict the two shapes (labelled A and B) separately and
in the central illustration we show their position relative to one another. Here, for clarity, shape
B is depicted with a stronger outline. On the right of the illustration we show the results of
the Boolean intersection operation. As may be seen, an unexpected ‘dangling edge’ has been
generated. This sort of problem can occur when all or part of the boundary of one object
coincides with all or part of the boundary of another object. For related discussion see, for
example, Slater et al. [2002].

Clearly the CSG approach strongly supports important aspects of interactive design. In
addition, this technique enables us to not only define the geometric shape and form of an object
but also to create a modelling history containing the sequence of tasks that we have employed
during the process. This may relate to the sequence of operations that must be performed when
producing the physical entity.

As indicated above, the CSG approach represents objects as points within a 3-D space.
Consequently each object is defined in terms of its spatial occupancy. For example, consider
the case of a sphere (which is likely to be available to the designer as an object primitive). Its
spatial occupancy may be defined using a single inequality:

x2 + y2 + z2 ≤ r 2.
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Figure 7.21 Here, we depict two simple objects labelled A and B. In the central illustration we show their relative positions and on the right-hand
side indicate the result of performing a Boolean intersection operation. This leads to the formation of an undesirable ‘dangling edge’.

Where r denotes the radius and the sphere is centred on the origin. Thus given an arbitrary point
with coordinates (x1, y1, z1), we can readily determine whether or not the point lies within or
outside the volume occupied by the sphere.

Below we present inequalities that describe the spatial occupancy of some other simple
objects:

1. A Cylinder: Consider the case of a cylinder that is centred about the y-axis (an arbitrary
choice) and whose base is located in the x–z plane. Given that the cylinder has a height h
and a radius r , we can represent its spatial occupancy using three inequalities:

y ≥ 0, y ≤ h, x2 + z2 ≤ r 2.

If a point satisfies all three of these inequalities then it lies within the volume occupied by
the cylinder.

2. A Cube: We can define a cube in terms of the region that is enclosed by six planes. Consider
the case of a cube whose base lies in the x–z plane and for which three edges coincide
with the positive x, y and z axes. Six inequalities can be used to specify the region occupied
by the cube (to lie within or on the surface of the cube, the coordinates of a point must
satisfy all these inequalities). Assuming that the sides of the cube are of unit length, these
inequalities are:

x ≥ 0, x ≤ 1, y ≥ 0, y ≤ 1, z ≥ 0, z ≤ 1.

which can be presented as:

0 ≤ x ≤ 1, 0 ≤ y ≤ 1, 0 ≤ z ≤ 1.

Note that given a primitive element in the form of a cube, we can represent any rectangular
block. This is achieved by applying different scaling factors along each of the cubes three
dimensions. Similarly in the case of a sphere: by applying different scaling factors along
three orthogonal directions, we are able to generate an ellipsoid.
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OTU Exercise 7.8: The Spatial Occupancy of a Cone

Consider a cone whose radius and height are of unit length and whose base lies in the x − z
plane. Assuming that the y axis forms the central axis of the cone, use three inequalities to
define its spatial occupancy.

A binary tree structure may be used to represent an object formed by means of a number of
primitive elements. Consider the elementary example depicted in Figure 7.19 in which two
rectangular blocks are joined together. A binary tree representation is presented in Figure 7.22.
Here, the root represents the object model and the leaf nodes detail the primitives that have
been used together with parameters concerning their size, location and orientation. The internal
nodes detail the Boolean operations that are carried out between primitives. In the case of this
particular example, the leaf nodes define two rectangular blocks and the internal node indicates
a union operation.

By interrogating the data structure we can easily determine whether or not a particular point
lies within or outside an object. To do this we begin with the leaf nodes and establish if the point
lies within any of the primitives used in the formation of the object. Here, for example, we can
signify that a point lies within a primitive by setting a flag to a binary 1 – otherwise the flag is
a zero. We then pass these values up to the appropriate internal nodes and apply the specified
Boolean operations. The final binary value that we obtain when we reach the root node indicates
the presence (or otherwise) of the point within the object. Note that simply determining that
a point lies within the volume encompassed by one of the primitive elements does not in itself
indicate that the point lies within the overall object formed from the primitives. This is because
a primitive may, for example not be used to add to the volume occupied by the object but may
be used to remove ‘material’ from the object (via, for example, a Boolean difference operation).

Object that is 
formed

Block (A) Block (B)

Union

Leaf nodes

Root

Internal nodes

Figure 7.22 Here, a binary tree structure is used to represent the formation of the simple model depicted in Figure 7.19. The root indicates the
object that is modelled, the leaf nodes define the primitives that are used together with parameters indicating their size, location and orientation.
Internal nodes define the Boolean operations that are carried out between primitives.
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To illustrate the basic application of this process let us consider the elementary example
depicted in Figure 7.20. If we replace the internal node indicated in Figure 7.22 with a Boolean
difference operation then this provides us with the binary tree describing the model. Let us
suppose that the rectangular block denoted as A is the larger of the two and we begin by
assuming that we wish to determine if an arbitrary point P lies within the overall object formed
from the two blocks. Below we examine two possible scenarios:

1. P lies in block A and not in block B: Thus for the leaf corresponding to block A we set
a flag to a binary 1 and for the other leaf we set a flag to zero. These values are passed to
the internal node and the Boolean operation is performed. This results in a binary 1. If at
the top of the hierarchy we obtain a binary 1, this is assumed to indicate that the point lies
within the volume occupied by the object.

2. P lies in block A and also in block B: Here for both leaf nodes a binary 1 is generated. These
values are passed to the internal node and the Boolean difference is determined. The result
is not a binary 1 and therefore the point is assumed to lie outside the volume occupied by
the object. Indeed, this is the case as the point P lies in the hole that we have created in the
larger block!

Although this is a very simple example, these ideas can be readily applied to more complex
binary tree structures.

OTU Exercise 7.9: Modelling a Simple Object

Suppose that we are to use the CSG approach to model a simple object. This consists of a
sphere through which three orthogonally positioned holes (circular) are to be machined. Thus
one hole passes from the front to the back of the sphere, another from the top to the bottom,
and a third between the left and right hand sides (these holes all meet at the centre of the
sphere).

1. On the basis of sphere and cylinder primitives, write an expression indicating the Boolean
operations that you would perform to form a model of this object.

2. Describe this process using a binary tree structure.

As we have previously mentioned there is no modelling process that provides a Utopian
technique – each has associated strengths and weaknesses and CSG is no exception. The ability to
accommodate intuitive user interaction within the design process represents a key advantage of
this general technique. Here, as we have seen, we are able to use a set of basic primitives for object
formation and each primitive may be used to add or remove material. We can therefore view
CSG as a user centred design technique although, when it comes to creating complex objects
the design process is generally far from simple (but this is true of all modelling techniques).

A further advantage of CSG is its suitability for use with automated prototyping/
manufacturing equipment. The shapes of all surfaces are exactly defined through the mathe-
matical equations that are employed within the modelling process and inherently associated
with each of the primitive elements used in the formation of a model. On the other hand,
the depiction of CSG models can be computationally expensive. As indicated earlier in this
section, a CSG model represents an object in terms of its occupancy of space – i.e. a volume
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representation is used. This contrasts with the B-rep approach – in the case of CSG there is no
explicit information stored in the data structure relating to an object’s surfaces. As we generally
depict opaque objects, the visible image is formed by consideration of the size, form, orientation,
location and visible properties of surfaces – because the interior of an opaque solid is not visible,
it is not directly relevant to the rendering process. Two effective strategies for creating an image
of a CSG model are:

1. Ray Casting: See Section 8.8 for brief discussion of this approach.

2. Conversion to B-rep Form: In this case, once the model has been converted, it may be
rendered using standard techniques. In addition the CSG model remains available for use
in the production of the physical artefact.

7.8 Discussion

‘How is it that little children are so intelligent and men so stupid?
It must be education that does it.’18

In this chapter we have briefly introduced several techniques that may be used to represent an
objects geometrical form. No single approach provides a Utopian solution – all have associated
strengths and weaknesses. The boundary representation technique is the approach most com-
monly used for the production of high quality images. However, as we have seen, this modelling
technique has associated weaknesses and these can lead to implementation issues.

In the next chapter we turn our attention to outlining rendering techniques used in gener-
ating the visual image of an object or collection of objects represented within the computer
system. Here, we limit discussion to applications in which the conventional flat screen display is
employed.

7.9 Review Questions

1. State three key characteristics of ‘regular polyhedra’.
2. State Euler’s formula for simple polyhedra.
3. State the general form of equation for a plane.
4. Indicate the significance of the coefficients employed in the general form of equation for

a plane.
5. State the significance of the fourth term in the general equation for a plane (i.e. the term

which does not include x, y or z – and to which in the text we have assigned the symbol D).
6. In the case that we join Bézier surfaces, how do we ensure C0 and C1 continuity?
7. State one key difference between the B-rep and CSG approaches.
8. Give an equation that describes the spatial occupancy of a sphere of radius r .
9. Given the determinant of a matrix Q and its adjoint, how would you determine the inverse

of Q?
10. State one restriction associated with the basic surface of revolution approach to object

representation.

18 Attributed to Alexandre Dumas (1802–1870).
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7.10 Feedback to Review Questions

1. ‘Regular polyhedra’ represent a particular form of simple polyhedra in which:
a. All faces have the same number of edges (e.g. a cube).
b. Every vertex has the same number of edges emanating from it (e.g. a cube).
c. Every edge has the same length.

2. V − E + S = 2.
Where V represents the number of vertices, E the number of edges and S the number of
surfaces.

3. Ax + B y + C z + D = 0.
4. Given the ‘general form’ of equation for a plane, the coefficients of x, y and z correspond to

the components of the vector that lies at right-angles to plane – the ‘surface normal vector’.
5. The magnitude of this term in the general equation for a plane corresponds to the length

of the line drawn from the origin to a point on the plane such that it meets the plane at 90◦.
This is referred to as the perpendicular distance of the plane from the origin. This applies
as long as the coefficients A, B and C in the general equation for the plane represent the
components of a surface normal of unit length.

6. C0: This is achieved by ensuring that the control points located along the joining bound-
aries are coincident.
C1: A sufficient condition is that at the joint, the lines connecting the endpoints with the
adjacent control points are collinear.

7. In the case of the B-rep approach surface properties are represented. In contrast, in the case
of CSG objects are modelled as volumes (they are described by a set of points occupying a
3-D space).

8. x2 + y2 + z2 ≤ r 2.
9. Simply multiply the adjoint by the reciprocal of the determinant – that is:

Q−1 =

(
1

det Q

)
· adjQ.

10. The model that is formed should have a circular cross-section.
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‘It was high autumn; there had been
frost already, for the ground was fine
with red and yellow leaves; and
presently we saw himself coming,
professionally questing
among those leaves.’

8.1 Introduction

In the previous chapter we outlined several techniques that may be used in the modelling
process and here we turn our attention to steps that may be followed in forming a visible image
comprising one or more of the entities that we have modelled. Figure 8.1 summarises some of
the stages that we will consider.

In the next section we discuss the placement of objects within a common framework and
defining their spatial relationships etc. Subsequently we consider setting up a virtual camera in
order that we can specify the viewpoint from which the scene will be observed (Section 8.3).
This leads on to discussion concerning clipping and culling together with further examination
of perspective projection. In Section 8.7 we consider how the sources of illumination will impact
on our view of the various objects that comprise the scene.

The processes that we outline are entirely logical and easily understood – it is as if we are
managing a film set – placing props and people in appropriate positions, managing the lighting,
and ensuring that the camera will capture the scene from an optimal viewing position. Although
this is a meaningful and valid way to describe the stages that we may work through in order to
successfully create a 3-D computer graphics image, it is important to remember that within
the computer we are simply manipulating data structures and carrying out mathematical and
geometric operations.

335
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Unification of object 
coordinate systems: 

placement of all objects 
comprising the scene

Object models etc.

World coordinate 
system

Local coordinate 
system

Homogeneous
transformations

Establish placement of 
virtual camera

Map to viewing coordinate 
system

Back face culling

Clip to frustum

Perspective projection

Perspective projection

Clip to view window

Map to Viewport

Figure 8.1 From the model to the image. A conceptualised outline of some of the key steps that may be followed in depicting an image scene.
These processes are outlined in Sections 8.2 to 8.5. Subsequently we briefly consider clipping, shading and colour.
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As discussed in the previous chapter, objects are represented using data structures and when
we place objects within a scene we are inter-relating key information contained in separate
object data structures – such as the relative location of vertices. In establishing the location
of the virtual camera we are defining the relationship of objects relative to the virtual camera’s
frame of reference. In short, whilst it is extremely convenient to use the analogy of establishing
a film set, adjusting the illumination, camera position and the like, within the digital world the
processes occurring are rather complex.

Within the available space, we can do little more than provide an insight into some of the
techniques that may be employed. For brevity, we confine our discussion to static images and
the formation of a perspective view. Additionally, we generally assume the use of B-rep models.

Key Learning Outcomes: At the end of this chapter you should be able to:

� Outline key steps needed to transform a collection of object representations into a visual
image.

� Understand the use of a world coordinate system.

� Discuss the use of culling and clipping processes.

� Discuss features of the view volume including the use of back and front clipping planes.

� Describe features of the Gouraud and Phong interpolative shading techniques.

� Describe the synthesis of shadows.

� Outline aspects of ray tracing and ray casting techniques.

8.2 Unification: The World Coordinate System

‘From the solemn gloom of the temple children run out to sit in the dust,
God watches them play and forgets the priest.’1

Typically a computer graphics scene will comprise a collection of objects, each of which may
have been formed using the techniques outlined in the previous chapter. Individually, objects
will often be represented in terms of ‘local’ coordinate systems. For example, we may have
conveniently positioned a cube so that one of its vertices is coincident with the origin of a local
coordinate system, and a cylinder may be located so that its central axis is coincident with one
of the axes of another local coordinate system. In this way we may more readily (and intuitively)
support local transformations.

To construct the computer graphics scene we must place the constituent objects within a
unified coordinate system, so enabling their relative locations to be defined within a common

1 Attributed to Rabindranath Tagore (1861–1941).
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framework (a world coordinate system). Here, we make use of the homogeneous transformation
matrices outlined in Chapter 6 which enable us to map between two arbitrarily positioned sets
of coordinate axes. In addition to placing object components within a scene, we must also define
the location of ‘light sources’ that will be used to simulate illumination.

During this process, we essentially define the objects that comprise the scene and their spatial
relationships. Some volumetric display technologies (see Chapter 9) permit 3-D images to be
depicted within a transparent cylinder or sphere. In principle, such systems impose very little
restriction on viewing freedom and an observer can move around the display vessel and view the
scene from practically any orientation. However, in the case that we employ a more conventional
form of display it is necessary to define the location of a 2-D ‘viewing window’ via which the
scene will ultimately be viewed and by means of which we can define the part of a scene that is
to be depicted. This denotes the next key task to be carried out.

8.3 The Viewing Volume

Recall previous discussion presented in Section 6.6 in which we introduced the virtual camera,
view plane, viewing window and viewpoint (centre of projection (COP)). These are associated
with a viewing coordinate system which is referenced to the world coordinate system. The
location and orientation of former may be freely changed relative to the latter and this enables
us to define any desired vantage point onto a scene. In Figure 8.2 we summarise key elements
used to define a ‘viewing volume’.

As may be seen, this diagram builds on Figure 6.20 and indicates a viewing volume that is a
‘frustum’ (a truncated pyramid). Here, we have added front and back clipping planes (these are
also referred to by the much more pleasing titles of ‘hither’ and ‘yon’ planes). Both planes are
parallel to the view plane and their presence enables the elimination (on the basis of depth) of
unnecessary/unwanted scene content:

1. Back Clipping Plane: In the case of a perspective projection, the more distant an object
is from the observer (centre of projection (COP)), the smaller it appears to be. Thus an
object within the scene that is at a great distance may ultimately project onto only a single
display pixel. By means of the back clipping plane we can eliminate such objects from
the scene thereby saving processing time and avoiding cluttering the displayed image with
undistinguishable background content.

2. Front Clipping Plane: Similarly, as objects get closer to the COP, they may take on huge pro-
portions thereby either dominating the scene and so obscuring other objects of interest, or
even extending far beyond the bounds of the displayed image. In this latter case, the observer
would only see a part of such an object and this may make the object unrecognisable.

From the above, it is apparent that the inclusion of back and front clipping planes increases our
control of what is displayed and in addition can reduce computational cost.

OTU Exercise 8.1: The Location of the View Plane

What is the effect of moving the location of the view plane – away from, or towards the centre
of projection?
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 Back clipping plane

View window

Front clipping 
plane

Viewpoint
(COP)

xvv

yvzv

Figure 8.2 The view volume may be defined by six planes. Here we illustrate the front and back clipping planes. The viewing coordinate system
(a left handed coordinate system) has axes denoted x v, y v and z v . Objects or parts of objects that lie outside this view volume are not visible
from the COP.

As discussed, the image scene is defined in terms of a world coordinate system and we now need
to map between this system and that of the viewing coordinate system. The individual sequence
of steps involved in this process was outlined in Section 6.6 and will not be described further
here (for further details of the maths, see texts such as Jones et al. [2001], and Hill [1990]).

8.4 Culling, Clipping and the Perspective Projection

Once the image scene is described in terms of the viewing coordinate system, we are in a position
to form the 2-D rendition of the 3-D scene. This involves projecting the scene content onto
the viewing window – a process that was outlined in general terms in Section 6.5. However,
before we undertake the projection operation, we need to consider whether or not it should be
carried out on all content comprising the image scene – can we improve efficiency be eliminating
portions of the scene that will not be visible from our defined vantage point.

By way of example, let’s consider so-called ‘back face culling’ which is used to remove
polygons that are directed away from the view point. Here it is important to distinguish between
two terms:

1. Culling: This refers to removing non-visible polygons in their entirety and is particularly
effective when working with convex polygonal representations.

2. Clipping: This refers to the removal of non-visible portions of polygons and can be non-
trivial.
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Angle less than 90°
therefore potentially visible surface

Angle greater
than 90°
therefore non-
visible surface

Direction of 
viewpoint
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Figure 8.3 A simple example of back face culling. If the angle between the surface normal vector and a vector from the surface to the view point
is greater than 90◦ then the surface is not visible. However, if the angle is less than 90◦ then the surface may be visible (actual visibility may be
defined by other factors – see text for discussion).

Recall from the previous chapter that in a B-rep model we included surface normal vectors (n̂)
for each polygon – each vector being oriented to point outwards from the object. To implement
back face culling we may create a vector n′ from the polygon under consideration to the
viewpoint – see Figure 8.3. In the case that the angle between this vector and the surface normal
vector is greater than 90◦, the entire polygon is invisible to the observer. However, if the angle
is less than 90◦, the polygon may be visible. If we are dealing with a scene comprising a single
convex polyhedron, then back face culling will eliminate the hidden faces and providing the
object lies completely within the viewing frustum, the remaining faces will be entirely visible. If
a scene comprises several objects, then one object may obscure a part of another and in the case
that we are dealing with a non-convex polyhedron, one portion of an object may be partially
occluded by another part – see Figure 8.4. These are not situations that can be dealt with by
means of back face culling.

In order to carry out back face culling, we simply calculate the scalar product of the unit nor-
mal surface vector and the unit vector from the surface to the viewpoint. Since both vectors have

This face is 
partially
occluded

Figure 8.4 In the case that we are dealing with a non-convex polyhedron, one portion of the object may be partially occluded by the object itself.
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a magnitude of unity, the scalar product equals the cosine of the angle (θ) between the vectors:

n̂ · n̂′
= cos θ.

Hence if the scalar product is positive this must indicate that θ is less than 90◦, otherwise it is
greater than 90◦. As indicated above, in the case of the former the surface may be visible and
in the case of the latter the surface is not visible and can therefore be culled. By means of this
technique, we can reduce the number of polygons that must be considered further.

One of the next tasks to be performed is to determine the parts of the image scene that
will lie within the view window. Here, we may consider the use of two approaches – the first
involves clipping/culling before undertaking the perspective projection (whereby the 3-D scene
is mapped onto the 2-D view plane) whereas in the case of the second method clipping/culling
occurs during or subsequent to the projection process. In the subsections that follow, we briefly
introduce these two approaches.

Clipping/culling techniques are commonly classified according to
whether they act directly on data pertaining to each object or on the
image formed when objects are projected onto a 2-D surface. Within
this context the terms ‘object space’ and ‘image space’ are often used:

An object space technique: Here the clipping/culling technique acts
directly on objects contained within the 3-D scene. Back face culling is
an example of an object space technique.

An image space technique: In this case, the clipping/culling technique
acts on the planar rendition of the objects that comprise a scene. The
z-buffer technique that will be described shortly (see Section 8.6.1) is
an example of an image space technique.

8.4.1 Clipping to the View Frustum

The viewing frustum may contain the entire collection of objects that we have previously placed
within the image scene, or may contain only a part of the scene. In this latter case, it is possible
that only a very small portion of the overall image scene will ultimately be displayed and
so projecting all scene content onto the view plane will not make efficient use of computer
resources. In short it may be desirable to identify and discard those parts of the scene that do
not lie within the frustum prior to undertaking the projection of the scene onto the view plane.
This requires us to carry out operations on the objects themselves and consequently, in line with
the terminology introduced above, this is referred to as an object space technique.

The view frustum comprises six planes (recall Figure 8.2) and by inserting the coordinates
of the endpoints of each line segment comprising the scene into the equation for each of these
planes, we can readily determine if the point lies within or outside the frustum. Consider, for
example, the left and right hand walls of the frustum. If a point lies to the left of the left-hand
wall or to the right of the right-hand wall, then it lies outside the view frustum. Conversely if the
point lies to the right of the left-hand wall and to the left of the right-hand wall it may lie within
the frustum (the final decision depends on the point’s location relative to the other four walls).
However, this procedure is not quite as straightforward as it may initially appear. For example,
if both the end-points of a line lie outside the frustum, this does not necessarily mean that the
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entire line segment lies outside the frustum – a part of the line may pass through the frustum!
Recall previous discussion (relating to the 2-D case) presented in Section 3.7. For details of
algorithmic techniques see texts such as Watt and Watt [1992] and Foley et al. [1990] and for
our purposes, it is sufficient to note that once we have determined the image scene content that
lies within the view frustum, we can perform the perspective projection2 thus mapping this
content onto the view window.

8.4.2 Clipping to the View Window

In the case that most of the overall image scene is located within the view frustum, performing
the perspective projection on the scene as a whole (and subsequently clipping against the
view window) is likely to be more efficient than clipping against the view frustum and then
performing the perspective projection. These two scenarios are summarised in Figure 8.1. To
determine the most efficient approach we need to consider the cost associated with clipping to
the view frustum and balance this against the cost of the projection calculations and the number
of these calculations that will simply be discarded (in the event that they produce results that lie
outside the view window).

Assuming that we decide to project the overall image scene onto the view plane, we need
to examine the results of the projection operations and deal with content that can be culled
(because it lies completely outside the view window) or that must be clipped (in the case that it
lies partially within the view window).

8.5 Mapping to a Viewport

Once the image scene has been projected onto the view window we are, in principle, in a position
to undertake the mapping of the scene onto the viewport of the display. In short, we now need to
determine correspondence between the spatial content of the view window and the 2-D array of
pixels that will be used for image depiction. Here, we may transform view window coordinates
into intermediate normalised device coordinated (NDC) and subsequently transform these to
viewport (pixel based) coordinates. Alternatively we may carry out the process directly and omit
the NDC step. The use of NDC is outlined in Section 3.2.

Consider the view window and viewport illustrated in Figure 8.5. In this diagram we indicate
a point P with view window coordinates (x, y) which we wish to map onto the viewport
(point P′ which we assume has coordinates (x ′, y ′)). Consider the mapping of the x coordinate.
The ratio of the size of the two ports (in the x direction) is given by:

x ′
max − x ′

min

xmax − xmin
.

This represents the factor that is used to scale the x coordinate of the point P. The distance of
this point from the left-hand boundary of the view window is x − xmin. In the viewport, this
distance is scaled to:

(x − xmin)
(
x ′

max − x ′
min

)
xmax − xmin

.

2 Or parallel projection.
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Figure 8.5 Mapping between the view window and viewport. See text for discussion.

Hence the absolute location of the point in the viewport (relative to the origin) is given by:

x ′ = x ′
min +

(x − xmin)
(
x ′

max − x ′
min

)
xmax − xmin

.

Similarly, the mapping for the y coordinate of P is given by:

y ′ = y ′
min +

(y − ymin)
(

y ′
max − y ′

min

)
ymax − ymin

.

8.6 Clipping for Opacity

‘The true harvest of my life is intangible –
a little star dust caught,

a portion of the rainbow I have clutched.’3

In the above sections we have outlined some of the key steps that may be used in the depiction
of polygonal representations. As you may have noticed, our overview is far from complete. In
the case that we omit back face culling then our discussion embraces the majority of the tasks
needed to depict wireframe images (recall Section 7.2 – a wireframe representation depicts
the geometric and spatial outline of a shape (the shape’s ‘skeleton’)). However, even in the
case of wireframe image depiction, there are additional problems that must be addressed. For
example – consider the issue of aliasing which can occur when we employ a display comprising
a matrix of discrete elements. As indicated in Figure 8.6, this can result in the depiction of

3 Attributed to Henry David Thoreau (1817–1862).
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The orientation of a line that we wish 
to depict

Pixels

Figure 8.6 A simple example of aliasing in relation to the depiction of a line. Here we greatly magnify the size of pixels and assume that in each
column of pixel elements, the pixel closest to the line is illuminated. These selected pixels are indicated by shading. As can be seen this will lead to
the production of a jagged line – often referred to as a ‘staircase’ effect.

lines that comprise a series of jagged steps. Anti-aliasing techniques are used to ameliorate this
effect – see for example discussion of the Bresenham line drawing algorithm, the Pitteway-
Watkinson algorithm etc in texts such as Hill [1990], Hearn and Baker [1986] and Foley et al.
[1990].

With the exception of back face culling, the stages that we have described so far do not
accommodate image opacity – hence they are appropriate to basic wire frame image depiction.
In this section we briefly turn our attention to exemplar techniques that can be used for clipping
(commonly referred to as ‘hidden line/surface removal’) thereby enabling components within
the image scene to obscure or partially obscure others. In this way an image scene is able to
provide an impression of object solidity. Within this context we outline the z-buffer and the
so-called painter’s techniques.

8.6.1 The Z-Buffer Technique

This approach is also referred to as the ‘depth buffer’ technique and represents an image space
method (recall summary of image and object space methods provided in Section 8.4). Consider
the diagram presented in Figure 8.7 in which we show two surfaces located at different depths
within the image scene. The dashed line can be thought of as denoting the ‘line of sight’ of a pixel
into the image scene and passes through these two surfaces (thus along this ‘line of sight’ one
surface lies behind the other). The pixel should depict an element of the surface that lies closest
the view plane – i.e. the surface that has (along the line of sight) the smallest z coordinate.

We assume the use of two memory arrays – as depicted schematically in Figure 8.8. The first
array acts as the frame buffer and stores the colour/grey scale of each pixel and the second
(the z-buffer) stores the z-coordinate of the point within the image scene that each individual
the pixel represents. Let us begin by setting the frame buffer contents to represent the scene
background (e.g. in the simplest case a single colour) and set all the values in the z-buffer to
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Figure 8.7 Two surfaces and a pixel ‘line of sight’. The pixel should represent an element on the surface which lies closest to the view plane. See
text for discussion.

the maximum depth of the scene content. For each pixel, we then examine all polygons that lie
along its direct ‘line of sight’ and determine the polygon with the smallest z-coordinate (each
time a smaller intersection value is identified the appropriate entry in the z-buffer is updated).
The corresponding location in the frame buffer will then be set to represent the colour of this
polygon at the point at which it intersects the line of sight. For further introductory discussion
see Hill [1990].

8.6.2 The Painter’s Technique

This approach broadly mimics a technique that may be used by artists in painting a scene. Here,
the artist begins by applying a background colour to a canvas. The most distant objects within
the scene are then added. The process continues with addition of objects that are less distant –
and as these object are included, parts of more distant objects may be over-painted and hence
obscured.

Screen pixel

Frame bufferz-buffer Screen

What How

Figure 8.8 Correspondence between a screen pixel and entries in the z and frame buffers. The former denotes the z coordinate defining what is
displayed by a pixel and the latter defines how items are to be displayed (e.g. colour).
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Figure 8.9 The use of the painter’s technique. In (a) we illustrate (in plan view) two surfaces. As can be seen from (b), the surfaces are not
horizontal but slope ‘uphill’ with distance from the view plane. Surface 1 is assumed to have a vertex with the greatest z value. The Painter’s
technique is used to perform hidden surface removal. See OTU Exercise 8.2 for details.

To apply this approach to computer graphics it is necessary to order polygon surfaces (according
to depth within the scene) – once the most distant surface has been identified it may be ‘painted’
into the appropriate area of the frame buffer. Gradually other less distant surfaces are identified
and added – and where there are areas of overlap, a new surface will overwrite a part of a surface
that has already been added.

The decision on the most distance surface is based on the surface which has the vertex with the
greatest z coordinate. Although this may appear to be a safe approach, in the case of overlapping
surfaces it can lead to unexpected results.
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OTU Exercise 8.2: The Painter’s Technique

Consider the scenario indicated in Figure 8.9. In (a) we show (in plan view) two surfaces of
differing size. The surfaces are not horizontal – as indicated in (b) they slope ‘uphill’ with
distance from the view plane (and hence distance from the viewer). Here, it is helpful to
envisage the situation using two pieces of paper or two books that may be to hand. As can
be seen Surface 1 is furthest away from the view plane and so has the vertex with the greatest
z coordinate.

Consider the use of the Painter’s technique for hidden surface removal. Would this lead to the
expected occlusion? If not – what would be indicated?

Now let us suppose that we adjust the placement of the surfaces so that Surface 2 now has
a vertex with the greatest z coordinate. How would this effect the result derived from the
Painter’s technique?

For further introductory discussion in relation to the Painter’s algorithm and other hidden
surface techniques, see texts such as Hearn and Baker [1986], Foley et al. [1990] and Cooley
[2001].

8.7 Shading and Colour

‘ “Our second experiment. “The Professor announced . . . ”
is the production of that seldom-seen-but-greatly-to-be-admired phenomenon,

Black Light! . . . This box . . . is quite full of it. The way I made it was this –
I took a lighted candle into a dark cupboard and shut the door.

Of course the cupboard was then full of Yellow Light.
Then I took a bottle of Black Ink, and poured it over the candle:

and, to my delight, every atom of the Yellow Light turned Black!” ’4

Having created a perspective projection of the part of the scene that is to be viewed and having
removed hidden surfaces, thereby introducing a sense of object solidity, we move on to consider
the way we are going to illuminate the scene and the manner in which we wish to synthesise
the interaction between objects and light. A simple approach is to employ constant intensity
shading (also referred to as ‘flat shading’). In this case a uniform luminance is assigned to each
face of a polygonal representation. This is a computationally undemanding approach and so
yields rapid results. Naturally, this technique results in the geometrical discontinuities between
adjacent polygons being visible. However, when rapid results are needed or in the case that we
are not attempting to depict a continuously curving surface, this flat shading technique may
well be satisfactory.

In the next subsection we briefly summarise previous discussion presented in Section 5.4
concerning aspects of diffuse and specular reflection. Subsequently we consider the Gouraud
and Phong interpolative shading techniques and the formation of shadows within a scene.

4 Lewis Carroll, Sylvie and Bruno. Dover Publications, 1988.
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8.7.1 Diffuse and Specular Reflection

In the case of a matte surface, light is scattered equally in all directions and so luminance
(brightness) does not vary with viewing angle. However, as we discussed in Section 5.4.5,
consider the case that a surface is illuminated with a point source. The luminance (l) of the
surface will then vary as we change the angle of the source relative to the surface. This leads to
Lambert’s Law:

l =
IKd

r 2
n̂·ŝ,

where, I denotes the luminous intensity of a source at a distance r, kd the coefficient of diffuse
reflectance (a property of the surface), ŝ a unit vector in the direction of the light source and n̂
the surface normal. Since we are dealing with unit vectors, the scalar product n̂ · ŝ provides us
with the cosine of the angle between the surface normal (this vector being included within the
B-rep model (or being derived from other information within the model)) and the unit vector
in the direction of the source of illumination. As mentioned previously, this shading model does
not provide optimal results and typically the denominator is replaced with a distance term (d)
that may for example represent the distance of a surface from the COP – so that:

l =
IKd

d + η
n̂·ŝ.

Here, η is assigned an arbitrary value and ensures that the denominator cannot approach zero
as the value of d is reduced. Of course, the location of the lighting source may be such that
portions of an object that are within an observer’s line of sight receive no illumination and so
are, in fact invisible. To avoid this situation we need to include ambient lighting that illuminates
the scene as a whole. In this case the luminance of a surface will be given by:

l =
IKd

d + η
n̂·ŝ + Ia Kd ,

where, Ia represents the level of ambient lighting. So far we have made no allowance for the
colour spectrum of the lighting source(s) or for the colour of the surface. For example, if we
illuminate a red surface using green light, then the surface will appear to be black – irrespective
of the level of illuminance (assuming no specular reflection). This increases the complexity of
the model and we must now consider the reflectance characteristics of the surface with reference
to the red, green and blue content represented within the lighting source.

As discussed in Section 5.4.5 specular reflection relates to smooth surfaces which exhibit
angular directionality in their reflection of incident light. The classic Phong reflection model
accounts for both diffuse and specular reflection and is widely used in computer graphics. In
the next subsection we consider the Gouraud and Phong interpolative shading schemes which
are able to reduce/eliminate the multifaceted appearance of polygonal object representations.

8.7.2 Gouraud and Phong Interpolative Shading

As discussed in the previous chapter, the geometrical discontinuities that exist between adjacent
polygons in a polygonal representation can have a significant (and usually undesirable) visual
impact. Fortunately, this problem may be greatly ameliorated by using Gouraud and Phong
interpolative shading techniques. Below we begin by outlining the former approach which is
less computationally demanding than the Phong scheme but yields lower quality results.
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Vertex A

Surface
normalSurface

normal

Surface
normal

Figure 8.10 The vertex normal is calculated by averaging the orientation of the adjacent surface normal vectors. Here, the three surface normal
vectors that are adjacent to the vertex are indicated. The resulting vertex normal vector is out of the page.

1. Gouraud Interpolative Shading

This approach requires the determination of the vertex normal vector for each vertex in our
polygonal model. These vectors are readily found by calculating the average of the surface
normal vectors for all surfaces that share a common vertex. This is perhaps most easily explained
by referring to a simple example. Consider the cube depicted in Figure 8.10. In the case of
vertex A, we determine the vertex normal vector by averaging the three surface normal vectors
indicated in the diagram.

We can represent this process by means of the following equation:

n̂v =

k∑
s =1

n̂s∣∣∣∣ k∑
s =1

n̂s

∣∣∣∣
.

Here, we assume that k surfaces share a common vertex, that the surface normal for the s th

surface is denoted n̂s and the unit vertex normal vector is n̂v. Using a shading model we can
now calculate the luminance at each vertex. Recall from the summary discussion provided in
the previous section, the use of the scalar product between a unit vector in the direction of the
light source and the unit surface normal vector (for which we now use the unit vertex normal
vector). It is important to note that all polygons sharing a vertex will be assigned the same level
of luminance at the vertex. We now use a linear interpolation technique which interpolates the
luminance along each edge of each polygon and determines the luminance of points within
each polygon. For example, consider the square depicted in Figure 8.11 that represents one of
the faces of the cube shown in Figure 8.10. The luminance at each of the four vertices (labelled
Ia to Id ) having been determined, we now find luminance values at points on the left and right-
hand edges. In the illustration we have included a ‘scan line’ with vertical coordinate ys . Thus
the luminance at the point at which this line intersects the left edge of the square (Im) is given by:

Im =
y2 − ys

y2 − y1
Id +

ys − y1

y2 − y1
Ia . (8.1)
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Figure 8.11 Here we illustrate one of the faces of the cube depicted in Figure 8.10. The luminance of each vertex has been determined (these are
denoted I a through to I d ). In addition we show a horizontal ‘scan line’ and begin the linear interpolation process by determining the luminance at
the two points at which the scan line intersects the edges of the square. Subsequently we repeat this process for scan lines positioned at different
vertical heights (by analogy, the positioning of the scan line is akin to the raster scan employed by a Cathode Ray Tube (see Chapter 1)).

We can readily verify this equation. In the case that the y coordinate of the scan line equals
y2, the first term is zero and Im = Ia . Similarly if the scan line has a y coordinate of y1, the
second term becomes zero and Im = Id . If the line is equidistant from the two vertices, then as
we would expect, Im = Ia/2 + Id/2. We can write a similar equation for the luminance (In) at
the point at which the scan line meets the right hand edge. Subsequently, we can again use linear
interpolation to determine the luminance at points along the scan line – i.e. within the square.
Thus for a point with coordinates (xs , ys ) we can express the luminance (Ip) as:

Ip =
xs − x1

x2 − x1
In +

x2 − xs

x2 − x1
Im. (8.2)

In fact we can simplify matters by determining the edge luminance values for one scan line on
the basis of those obtained for the previous scan line. By way of a simple example suppose that
over the height of the square depicted in Figure 8.11 we space scan lines at a distance d . Thus
if one scan line has a y coordinate of ys , the next line is at ys + d . Substituting this into Eq. 8.1
and re-arranging the expression, we obtain:

I ′
m = Im +

d [Ia − Id ]

y2 − y1
.

Similarly we can calculate the luminance of points along each scan line by basing our calculation
for the next point on the luminance of the previous point.

In connection with the Gouraud interpolative shading technique, we note the following:

1. Adjacent (shared) polygon edges are merged – they share the same luminance and colour.
As a result, the visual impact of the geometric discontinuities that exist between adjacent
polygons over the surface of a polyhedron are removed In the case of colour shading, the
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levels of each of the colour components are calculated at the vertices and interpolated across
the surfaces.

2. This approach can give rise to the illusionary appearance of undesirable ‘Mach bands’5 – of
which Foley et al. [1990] write:

‘At the border between two facets, the darker facet looks darker and the lighter facet looks lighter.’

In relation to this, Watt and Watt [1992] write:

‘If we consider the intensity change across a boundary between polygons, this will exhibit a piecewise
linear profile – there is no first order continuity.6 The human visual system enhances the second derivative
of intensity changes – reputedly of our need to detect and enhance edges – and the discontinuity at the
shared edges of polygons results in these apparent bands.’

OTU Exercise 8.3: Interpolative Shading

Consider the interpolative shading technique discussed above. To what extent do you believe
that this approach will ameliorate the geometric discontinuities between adjacent polygons
around the silhouette of a polygonal representation?

2. Phong Interpolative Shading

As we have seen, in the case of Gouraud interpolative shading, a local reflection model is
employed at the vertices of each polygon and the results obtained are linearly interpolated across
the polygons surface. In contrast, in the case of the Phong7 technique the vertex normal vectors
themselves are interpolated across the surface of each polygon and for each pixel, the shading
model is applied in such a way that it operates with the local interpolated vertex normal vector.

The Phong technique greatly reduces the Mach band effect mentioned above – but there is
a penalty in terms of the computational overhead – as compared to the Gouraud approach.
However, there are various ways in which the processing requirements may be reduced – for
example, instead of applying the shading model to each pixel, it can be applied to every other
pixel. In this case the intermediate pixels are set by taking the average of the values assigned to
immediate neighbours. Watt and Watt [1992] provide interesting discussion on techniques that
can be used to reduce the overheads associated with the Phong technique and also highlight a
number of weaknesses of this approach.

OTU Exercise 8.4: Interpolation of Vertex Normal Vectors

Consider the cube depicted in Figure 8.10. If the vertex normal vectors are interpolated across
a face of this cube, what would be the orientation of the interpolated vector at the centre of
a face?

5 Named after their discoverer Ernst Mach who uncovered this effect in ∼1865.
6 Recall previous discussion concerning orders of continuity in relation to Bézier curves and splines.
7 Developed by Phong Bui Tuong.
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Figure 8.12 The passage of light from an extended source is obstructed. This leads to the formation of a shadow on the screen. The shadow
comprised a penumbra and umbra. The broken line denotes a ray whose passage is blocked and which cannot reach the region between points a
and b .

8.7.3 A World Without Shadows

In computer graphics we are given great freedom – we can develop scenes in which the
fundamental laws of physics that we associate with our surroundings are followed or we
can adjust, change and even disregard such laws. For example, in the case of animated
images we need not adhere to Newton’s Laws of motion – we can create scenes in which
action and reaction are not equal and opposite (however, the repercussions may be somewhat
surprising . . .).

The formation of scenes in which the fundamental laws of physics apply can be a very
challenging and computationally expensive task. Furthermore, as we have seen (in the case
of Lambert’s Law) the direct application of equations that model real world behaviour to
the graphics domain may not lead to optimal results. Consider the case of shadows. Under
natural conditions, shadows do not usually have sharply defined edges and we associate with
them umbra and penumbra regions that directly arise as a consequence of the finite extent
of sources of illumination – see Figure 8.12. Here, an opaque object blocks the passage of
light from the source. From the construction rays indicated in the illustration, it is apparent
that light emanating from any part of the source may reach points on the screen that are
beyond a and d . However, between points a and b and between c and d the obstruction
partially blocks the passage of light. This is illustrated by the ray which is denoted by a broken
line and which cannot reach the region of the screen between points a and b. Consequently
these two regions are partially shadowed – penumbra. No light can pass directly from the
source to the region between points b and c and in the case that we employ only the sin-
gle source and there is no ambient illumination, this region will lie in total darkness – the
umbra.

Thus real world shadows formed by extended light sources or, for example, by diffuse lighting
that enters via a window do not have sharply defined edges.
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Figure 8.13 Here, a point light source is employed and a shadow is cast by the rectangular obstruction. The extent of the shadow can be
determined by tracing lines (construction rays) from the source to the vertices of the obstruction. By extending these lines to the point at which
each intersects objects in the scene, we can determine the size and shape of the shadow cast by the rectangle. In this diagram the construction
rays are assumed to intersect with a plane whose orientation is slightly inclined from the vertical.

It is important to bear in mind that the texture of the surface onto
which a shadow is cast can also play a pivotal role in defining shadow
sharpness. Consider, for example a shadow cast onto a gravel path
or onto mown grass. In both cases, texture is the predominant factor
that determines the nature of the shadows silhouette.

In fact, when the source of illumination is direct sunlight, the sharpness of the silhouette is
largely determined by the texture of the surface on which the shadow is cast – possibly coupled
with the texture of the object responsible for the formation of the shadow.8 In this latter respect,
consider the shadow cast by a furry creature such as a dog. Here, the texture of the fur is likely
to play a major role in defining the sharpness of the shadow formed.

For simplicity, in computer graphics, we often assume the illumination of a scene by means
of a point source. In the case that the viewpoint and location of the point source coincide, no
shadows would be visible (here we assume the use of a single source). This is because all points
within the scene that can be illuminated are the very same points that are visible from this
vantage point. Thus visible shadows occur when the location of the lighting source does not
correspond to the location of the view point.

We can locate the position of shadows by extending lines from the point light source through
the scene such that these lines intersect with and extend beyond vertices of objects comprising
the scene. Take the simple case of a rectangular surface – as illustrated in Figure 8.13. In

8 Colour and degree of opacity may also be considerations.
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this example we draw lines from the source to each vertex of the rectangular obstruction.
The lines are then extended and are assumed to intersect with a plane which is slightly
inclined from the vertical position. In this way we determine both the size and shape of the
shadow. Since we have made use of a point light source, there is no penumbra and a shadow
with a sharp silhouette is formed. By using an array of closely spaced light sources we can
attempt to simulate an extended light source – although this will in effect simply create a
set of overlaid shadows and of course the computational overheads increase as we add more
sources.

Recall that hidden surface removal allows us to eliminate parts of a scene that should not
be visible to an observer from the chosen viewpoint. We can employ a similar technique to
determine the shadows that are created by a point source – after all, these shadows represent
scene content that cannot be ‘seen’ by the light. Of course some or all of these shadows may not
be visible from the observer’s vantage point.

In the case of conventional computer graphics, shadows are synthesised by geometric cal-
culations. An alternative approach is to use a volumetric display system (see Chapter 9) which
supports image opacity. This may permit shadows to be inherently (and automatically) asso-
ciated with the image scene. For further details see Blundell and Schwarz [2000] and Blundell
[2007].

8.8 Ray Casting and Ray Tracing

In this section we briefly outline the ray casting and ray tracing techniques and provide refer-
ences for additional reading. We begin with the simpler of the two – ray casting:

1. Ray Casting: This name is commonly used in relation to a ray tracing technique in which
we wish to determine visible surfaces. Let us suppose that we cast a ray from the centre
of projection through a particular pixel location and identify the closest object within the
scene with which the ray impinges. The colour of the pixel may then simply be set to
the defined surface colour of the object at the point of intersection – or an appropriate
illumination model may be applied. Naturally, we repeat this process for all pixel positions
and in each case fire rays from the COP through the centre of the appropriate pixel. Notice
that it is as if we are firing rays from the eye into the scene and for each ray the visible surface
is the one which intersects the ray at the least distance.

2. Ray Tracing: This is more correctly referred to as ‘recursive ray tracing’ and is able to
embrace hidden surface removal, shadow formation, refraction, reflection, etc. As with
ray casting, rays are fired from the COP into the image scene – each ray passing through
the centre of a pixel – i.e. the number of rays corresponds to the number of pixels. We
identify the intersection of rays with objects in the scene – the shortest intersection distance
indicating the point within the image scene that is to be depicted by the pixel. However,
depending on the location of the light source, the point may be in a shadowed region.
To test for this, secondary rays are spawned to each of the point sources illuminating
the scene. If any of these rays intersect an opaque object, then we know that the light
source with which they are associated cannot directly illuminate the point on the original
object.
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Various forms of secondary rays are employed. For example, in the case of a perfectly
mirrored surface, a secondary ray is spawned in such a way that the angle of incidence and
the angle of reflection are equal. In the case of a refractive surface then we spawn both
reflected and refracted rays. In turn, each of these secondary rays may spawn other rays and
so the process continues with each level making an ever-diminishing contribution to the
colour of the associated pixel. The number of levels of contribution that we employ can
be determined by various factors – such as when a set of secondary rays fail to reach some
defined contribution threshold.

OTU Exercise 8.5: Ray Tracing

As indicated above, conventional ray tracing follows the paths of rays in a direction that
is opposite to the propagation of light – it is as if rays travel from the eye into the scene.
What key problem would you associate with the opposite technique – tracing the paths
of rays from the point light sources through the image scene and ultimately to display
pixels?

Ray tracing may give rise to glossy – perhaps overly shiny – images with very sharp
shadow silhouettes. One potential difficulty concerns the treatment of diffuse surfaces –
which, as we have seen scatter incident light in all directions. Thus the intersection of a ray
with a diffuse surface can result in spawning a large number of rays and naturally, this can
lead to a rapid growth in computational cost.

Interestingly, ray tracing is by no means a recently discovered technique – in the 17th

century this approach was employed by René Descartes to model the refraction of light in
rain droplets and this allowed him to explain the shape of the rainbow.9 General aspects of
ray tracing are discussed in most introductory computer graphics texts – such as Hill [1990].
See also Watt and Watt [1992]. Whitted [1980] describes pioneering work in relation to
recursive ray tracing – see also Cook, Porter and Carpenter [1984].

8.9 Discussion

‘I have learned that if you must leave a place that you have lived in and loved
and where all your yesterdays are buried deep –

leave it any way except a slow way,
leave it the fastest way you can.’10

In this chapter we have introduced a few of the underlying techniques that are used in
transforming object representations into the visible image. In many respects we have done

9 In this context, Watt and Watt [1992] write: ‘An observer looking away from the sun sees a rainbow formed
by ‘42◦’ rays from the sun. The paths of such rays form a 42◦ ‘hemicone’ centred on the observer’s eye. (An
interesting consequence of this model is that each observer has his own personal rainbow.)’
10 Beryl Markham, ‘West With The Night’, 1942.
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little more than scratch the surface of this fascinating area of activity and hopefully the
reader will feel encouraged to study these topics further. Texts such as Watt and Watt [1992],
Watt [2000] and Foley et al. [1990] provide more advanced coverage whilst Hearn and
Baker [1986], Hill [1990] and Jones [2001] are invaluable resources at the more introductory
level.

8.10 Review Questions

1. Distinguish between clipping and culling.
2. Explain issues that may influence/determine the sharpness of a shadows silhouette.
3. Explain one potential weakness associated with Gouraud’s interpolative shading tech-

nique.
4. What is the underlying approach adopted in Phong’s interpolative shading technique?
5. Distinguish between object space and image space techniques.
6. How does back plane clipping increase efficiency?
7. State one way of reducing the computational cost associated with Phong’s interpolative

shading technique.
8. Investigate the use of Radiosity techniques within the context of computer graphics.

Identify key strengths and weaknesses.
9. Investigate the use of texture mapping. Include so-called ‘bump mapping’ within your

study – how can this be readily incorporated within the Phong shading process?
10. Use software such as Maya to create 3-D scenes. This will give you a sound insight into the

application of some of the techniques that we have briefly considered here and in previous
chapters.

8.11 Feedback to Review Questions

1. Culling refers to removing non-visible polygons in their entirety and is particularly
effective when working with convex polygonal representations. Clipping refers to the
removal of non-visible portions of polygons and can be non-trivial.

2. The nature of the illumination – e.g. the use of a point source or extended source (in the
case of the latter we may also consider its distance). In addition sharpness is influenced
by the texture of the surface onto which the shadow is cast and perhaps even by the
texture of the source of the shadow.

3. The undesirable appearance of Mach bands.
4. The vertex normal vectors are interpolated across the surface of each polygon. The

shading model is applied so that it operates with these interpolated vectors.
5. In the case of an object space technique the clipping/culling processes act directly on

objects contained within the 3-D scene – e.g. back face culling. In contrast, in the case
of an image space technique, the clipping/culling processes act on the planar rendition
of the objects that comprise a scene. The z-buffer technique is an example of an image
space technique.
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6. As a consequence of linear perspective, an object within the scene that is at a great
distance may ultimately project onto only a single display pixel. By means of the back
clipping plane we can eliminate such objects from the scene thereby saving processing
time and avoiding cluttering the displayed image with undistinguishable background
content.

7. Various approaches may be adopted. For example, instead of applying the shading
model to each pixel, it can be applied to every other pixel. In this case the intermediate
pixels are set by calculating the average of the values assigned to immediate neighbours.

8–10. No feedback to these Review Questions.



Creative 3-D Display
Techniques 9

‘. . . we heard a bark which meant:
“Here is a door I cannot open!”.’

9.1 Introduction

In this chapter we provide a brief introduction to a range of emerging 3-D display techniques
that are not only able to support various pictorial depth cues but in addition the parallax and, in
some instances, oculomotor cues. In line with previous works (e.g. Blundell and Schwarz [2006],
Blundell [2007]), we will refer to these systems as ‘creative 3-D displays’. For current purposes,
it is sufficient to assume that such displays possess one or more of the following characteristics:

� The ability to satisfy a range of pictorial depth cues, binocular and motion parallax and in
some instances the oculomotor cues (recall previous discussion concerning depth cues –
see Chapter 5).

� There is some degree of uncertainty about the technologies and techniques that are best
employed in their implementation.

� There is some uncertainty as to the optimal form of the 3-D tableau in which images reside
or appear to reside (we will discuss various forms of 3-D tableaux shortly).

� Such displays offer to support alternative and more intuitive interaction techniques. This
may include bi-manual interaction and/or haptic feedback (see Chapter 10).

� There is uncertainty as to the optimal ways of using these systems and their ultimate impact
on working practices.

359
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In short, there is a great deal of scope for creativity in the design, implementation and applica-
tion of such systems. Creative 3-D display systems have been the subject of on-going research
for many decades and various commercial systems are currently available. One difficulty that
researchers have faced (and continue to face) relates to the diversity of approaches that may be
adopted in their implementation coupled with the lack of standard metrics by which display
performance can be measured (so enabling different display techniques to be compared in a
meaningful and non-subjective manner).

In this chapter, we can do little more than provide a brief insight into creative 3-D techniques.
However, where appropriate we provide details of references that contain additional and useful
information. In the next section, we present a simple scheme for the characterisation of different
forms of creative 3-D displays in accordance with their ability to support different types of depth
cue. This leads on to discussion concerning different forms of image space (display tableaux)
within which images may be placed. Here, we identify the planar image space that is associated
with the conventional flat screen display, together with the physical, free, virtual and apparent
forms which are supported by the various creative display technologies.

In Section 9.3, we focus on creative 3-D display systems whose principle of operation
is fundamentally based on that of the stereoscope (recall that this was pioneered by both
Charles Wheatstone and David Brewster in the 19th century). Here, we introduce four general
approaches that may be used for the inclusion of the binocular parallax cue – specifically: the
non-coded, chromatically coded, temporally coded and spatially coded techniques. This leads
on to discussion in Section 9.4 of ways in which we can incorporate support for motion parallax
and so enable a user to move from side to side (or up and down) to see an image from a different
vantage point. Within this context we briefly consider issues relating to head tracking.

Volumetric display systems are introduced in Section 9.5. This class of display enables 3-D
images to be depicted within a physical transparent volume. Since images may occupy three
physical dimensions, a range of depth cues (including the oculomotor cues) are satisfied in a
natural manner. Our discussion involves both swept volume and static volume systems and we
highlight a number of strengths and weaknesses of this general technique by introducing several
exemplar technologies.

In Section 9.6 we describe the varifocal display technique (which also supports the oculomo-
tor cues) and finally, in Section 9.7, outline aspects of the holographic approach.

Key Learning Outcomes: At the end of this chapter you should be able to:

� Identify the general characteristics of creative 3-D display systems.

� Discuss the classification of a range of creative 3-D display system technologies and
the characteristics of five key forms of image space in which images may be depicted.

� Describe techniques that are used in the implementation of display systems that are
based on the principle of the stereoscope and discuss the extension of this technique in
support of motion parallax.

� Discuss the volumetric, varifocal and computational holography approaches.

� Describe the strengths and weaknesses of various forms of stereoscopic and autostereo-
scopic display systems.
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9.2 Creative 3-D Display Systems: General Characteristics

‘Great spirits have always encountered violent opposition
from mediocre minds.’1

Many methods and techniques may be applied to the implementation of creative 3-D display
systems and these often give rise to systems that exhibit markedly different characteristics.
To most readily compare and contrast such systems, it is useful to develop a classification or
categorisation scheme whereby displays may be grouped according to one or more criteria.
Unfortunately, the development of precise schemes is by no means a trivial undertaking –
displays can differ in so many ways and there are many ‘maverick’ displays that represent excep-
tional cases and cannot easily be encompassed within a simple and straightforward classification
framework. Even agreeing upon the criteria on which a categorisation system should be based is
by no means a simple task. For example, should we adopt a ‘bottom up’ approach – so focusing
on the fundamental principles of operation and the technologies employed in display system
implementation? Alternatively, should we adopt a ‘top down’ scheme thereby classifying systems
according visual image attributes (if so, which attributes do we deem to be of the greatest
importance)? Furthermore, since the display forms a focal point for interactive operations,
should we not embrace issues that relate to a display’s ability to support different forms of
interaction device?

In the next subsection we present a rudimentary scheme which focuses on the ability of
display technologies to present to the human visual system pictorial, oculomotor and binocular
depth cues. Although this scheme focuses almost exclusively on one aspect of display system
performance, it does provide a simple and useful framework. Subsequently, in Section 9.2.2 we
turn our attention to the different forms of image space that may be produced by creative 3-D
display systems, and here we identify five key types of image space. This discussion draws on a
previous work (Blundell [2007]) and provides us with a useful insight into the nature and char-
acteristics of the different types of image that can be formed through the use of creative display
systems.

9.2.1 A General Classification

Creative 3-D display systems can be categorised in a number of ways. For example, they may
be distinguished and grouped according to the technologies used in their implementation; in
accordance with inherent attributes of the visible image; or on the basis of the characteristics
of the region in which the image resides (the ‘image space’). One simple and commonly used
scheme is illustrated in Table 9.1 and is in essence based on the ability of a display paradigm
to support various types of depth cue. As may be seen from this diagram, the conventional
flat screen display (in its basic form) via which we interact with the digital world usually
provides support for only the pictorial depth cues (see Section 5.4). However, this display
modality can be advanced to provide support for binocular parallax (stereopsis). This enables
images to appear to reside within a 3-D space but in its basic form does not allow us to move
our head from side to side (or upwards and downwards) to view an image from a different
vantage point (the motion parallax cue – see Section 5.6.2). Through the incorporation of
additional techniques, stereoscopic systems can often be made to support this cue. This may,
for example, involve the tracking of an observer’s vantage point (see Section 9.4) – although

1 Attributed to Albert Einstein (1879–1955).
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Table 9.1 A simple categorisation of various types of creative 3-D display. The arrows loosely indicate techniques that can be extended to form
the basis for another class of technology. Two classes of autostereoscopic system are included to distinguish between systems that do not support
oculomotor cues and those which do. However, in the main publications do not make this distinction.

)IIssalC(cipocsoeretsotuA)IssalC(cipocsoeretsotuAcipocsoeretSraluconoM

The conventional flat
screen display

Chromatically coded
(anaglyph)

Volumetric

Non-coded Immersive/augmented
virtual reality

Varifocal

cihpargoloHdedocyllaropmeT
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in general only horizontal parallax is supported.2 We categorise display systems that are able
to support the pictorial cues together with binocular and motion parallax as ‘autostereoscopic
systems’.

Generally, autostereoscopic displays are assumed to support both pictorial and binocular
cues. However, as may be seen in Table 9.1 we indicate two classes of autostereoscopic sys-
tem – these differ in terms of their ability to support the oculomotor cues (see Section 5.5).
Techniques listed in the first of these two columns (Class I), do not support oculomotor cues
and in fact depth cue conflict may exist in relation to the breakdown of the visual system’s
accommodation and convergence. (Recall that when we view our surroundings, the eyes focus
on – and their optical axes converge on – the object on which we fixate. However, when
we regard images depicted on displays based on the stereoscope, this no longer happens –
these two processes no longer operate in synchronism). Techniques listed in the right-hand
column of Table 9.1 (Class II) support (at least in principle) pictorial, parallax and oculo-
motor cues. Volumetric, varifocal and holographic systems represent the main form of dis-
play paradigms that fall into this category. These approaches will be introduced later in the
chapter.

When comparing and contrasting display techniques according to their ability to support
different types of depth cue, caution needs to be exercised – a display should not neces-
sarily be deemed superior simply because it is able to support a greater number of depth
cues.

2 In the case that only horizontal parallax is supported (‘horizontal parallax only’ is often given the
acronym HPO), an observer may move the head from side to side and obtain a different vantage point
onto an image scene. However, in this case moving the head in a vertical direction will not give rise to a
different view onto a scene.
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When viewing our surroundings, the relative emphasis that we place
on different depth cues varies according to the scene under observa-
tion and the way in which we may wish to interact with it. In some
situations the inability of a display to support one or more cues may not
be problematic. On the other hand, for some applications, the lack of
support for particular depth cues may hamper the visualisation and/or
interaction processes.

9.2.2 Forms of Image Space

In the previous subsection, we presented a general categorisation scheme based on the ability of
each display paradigm to satisfy a range of depth cues. However, as mentioned previously we can
categorise creative display technologies according to other criteria – such as the form of image
space that is associated with a technique. The most straightforward way of defining an image
space is to say that it represents the 2-D or 3-D region within which images may be placed.
Unfortunately, this definition is a little too restrictive – an image space does not necessarily
represent a physical 3-D region in space. For example, consider the stereograms depicted in
Figure 1.32. When these are correctly viewed (i.e. by means of the viewing glasses provided with
this book or by directly fusing the stereopair (by slightly ‘crossing’ the eyes)) a 3-D image is
observed. This image appears to reside in a 3-D space – however this is an impression that is
formed within the human visual system. In this scenario, the actual image (i.e. the stereopair)
resides on a 2-D surface. Only when these images are viewed in the correct manner do we
perceive an image that appears to occupy three physical dimensions (and hence assume the
formation of a 3-D image space). However, this is a perception of (and within) the visual system
and is not based on any physical reality. Consequently, for the purposes of this book we will
define an image space as follows:3

An image space denotes a region within which image components may
be placed or within which they appear to be located.

In Figure 9.1 we summarise five general forms of image space (these are based on a classification
scheme previously introduced in Blundell [2007]) and each is briefly discuss each below:

9.2.2.1 The Planar Image Space

This type of image space is associated with the conventional flat screen display. Here, image
components are positioned on a planar (2-D) surface and only pictorial depth cues are made
available to the visual system (as previously discussed, oculomotor and binocular cues are
absent). The extent of such an image space is defined by the dimensions of the display and in
the case of today’s computer displays, the planar image space is divided into two general
regions – the workspace and the menu system. The former represents the region in which
the results of the computational process are displayed and in which we can undertake creative
activity, whereas the latter comprises the icons etc which form the event driven user interface.

3 This definition does not encompass all possible scenarios but is sufficient for our purposes.



364 An Introduction to Computer Graphics and Creative 3-D Environments

Planar Image Space

Physical 3-D Image 
Space

Free Image Space

Virtual Image Space

Apparent Image Space

Forms of Image 
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associated with a 
display technique.

Figure 9.1 A summary of the different forms of image space that may be associated with various classes of display technology. The characteristics
of the image space not only impact on the visualisation opportunities offered by a display but also on the interaction techniques that may be most
effectively employed.

9.2.2.2 The Physical 3-D Image Space

In the case of volumetric display systems (these will be introduced shortly – see Section 9.5) the
image space comprises a transparent physical 3-D volume within which images may be depicted.
For the moment, it is sufficient to compare this volume to a goldfish bowl or tropical fish tank
within which the fish (representing image components) are free to move. When we view fish in
a bowl or tank, the visual system is presented not only with a range of pictorial depth cues but
also, since the fish occupy three physical dimensions, both binocular and oculomotor cues are
present. Any display system that permits images to be depicted within a physical image space
is by definition categorised as autostereoscopic (Class II) – recall Table 9.1. In the case that the
physical volume in which images are depicted has physical boundaries (e.g. glass or plastic walls)
or materials within the volume itself which prevent the insertion of the hand or an interaction
tool, then we will refer to this as a ‘physical’ image space.

9.2.2.3 The Free Image Space

As we have just indicated, image scenes depicted within a physical image space present the
observer with pictorial, oculomotor and binocular cues. In addition, a physical image space is
assumed to be contained within a solid vessel – the presence of which prevents the insertion
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of the hand or interaction tools (such as a pointer).4 However, in some applications, it is
advantageous for a user to be able to ‘touch’ image components and so the presence of materials
which exclude the insertion of physical objects into an image space may be undesirable. Thus,
we introduce the ‘free’ image space in which the image scene appears to be suspended within a
3-D space into which physical objects may be inserted.

In popular literature, the ability of creative 3-D display technologies to produce ‘free space’
images is sometimes misrepresented – with writers preferring to overlook fundamental science
in order to portray futuristic displays that enable images to appear to be suspended in space. In
this respect, great care has to be exercised. By way of example, consider the diagram presented
in Figure 9.2(a).

Here, our aim is to generate a free space image in Region A and with this in mind, we use
some form of projection system to cast an image vertically upwards. The observer at Location
B will not see any image – the projected light will continue to travel in a straight path –
upwards! Alternatively, if (as indicated in Figure 9.2(b)) Region A contains particles able to
scatter the projected light (recall Section 5.4.3), then light will reach the observer (although
in practise producing high quality images by this approach may be problematic). Interestingly,
the use of scattering centres to produce an image that appears to reside within free space was
first employed many years ago and underpinned the operation of a projection device known
as the Phantasmagoria. Dating back to the 18th century, in its basic form this device enabled
lantern slides to be cast into a cloud of smoke particles. This gave rise to ghostly images that
appeared to be suspended in space and it is claimed that this was put to military use during the
French Revolution as a means of terrifying combatants at night-time!5 In a more refined form,
the smoke particles were replaced with a cloud of fine barium oxide particles. Under normal
lighting conditions this cloud may not have been particularly visible – but when illuminated
with ultraviolet light the particles would have glowed and the cloud would have appeared to
shimmer.

The nature of the free-space image is summed up in Halle [1997] where the ‘projection
constraint’ is defined as follows:

‘A display medium or element must always lie along a line of sight between the viewer and all parts of a spatial
[free space] image.’

This situation is illustrated in Figure 9.2(b). Here, we assume that a medium able to scatter the
light (introduced from below) exists and is in the line of sight of the observer. Halle goes on
to write:

‘Photons must originate in, or be redirected by, some material. The material can be behind, in front of,
or within the space of the image [image space], but it must be present. All claims to the contrary violate
what we understand of the world . . . Technologies lavished with claims of mid-air projection should always be
scrutinized with regard to the fundamental laws of physics.’

In principle, an optical arrangement can be used to convert a physical image space into a free
image space and this may also offer image magnification. Thus an image created within a volume
that has solid boundaries can be magnified and repositioned so that it appears to be suspended
in space. However, any such arrangement must meet the ‘projection constraint’ mentioned
above. For related discussion see Blundell [2007].

4 The actual material(s) or arrangement of the materials that form the image space may also make it
impossible to insert physical objects into the image space.
5 The authenticity of this claim is uncertain – perhaps it is no more than an amusing possibility.
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(a)

(b)

(c)

Projection system
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A

Observer at Location B

Projection system

Observer at Location BRegion
A

Light impinges on a 
scattering particle

Beam projected skywards.

Observer

Figure 9.2 In (a) some form of beam is projected vertically in an effort to create a free space image in Region A. In (b) we introduce into Region
A particles able to scatter the projected beam. In (c) some form of beam is projected into the air in an attempt to generate a free space image that
appears to be suspended in the sky – see OTU Exercise 9.1.
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OTU Exercise 9.1: The ‘Free Space’ Image

Consider the diagram presented in Figure 9.2(c). Here, in an attempt to generate images
that appear to be suspended in the sky, some form of powerful beam (which may either be
scanned or spatially modulated – this issue need not concern us) is projected upwards. How
effective will this approach be – how does your answer conform to the comments that are
reproduced above from Halle [1997]?

9.2.2.4 The Virtual Image Space

When we look into a planar mirror, the reflected image appears to reside behind the mirror. If
we back away from the mirror, the reflected image moves away from us – in fact, the image lies
as far behind the mirror as an object is in front of it. This is illustrated in Figure 9.3(a). Here,
an object is placed at a distance d1 in front of the mirror. Two rays of light are shown emanating
from the object. As indicated in the illustration, at the point at which one of these rays impinges
on the mirror the angle between the ray and the surface normal (the angle of incidence) is i . A
basic law of reflection is that the angle of incidence and the angle of reflection are equal, thus
angles i and r are of the same size. Applying this law to both of the rays incident on the mirror,
the paths traversed by the reflected rays are immediately evident. To an observer, the image
appears to be located at the point at which the reflected rays appear to meet. This occurs at a
location behind the mirror such that distances d1 and d2 are equal.

The image produced by a plane mirror is said to be a ‘virtual image’ since it cannot be
cast onto a screen. Some forms of creative 3-D display system are able to produce a vir-
tual image space which we define as one which appears to be located behind the optical
component via which the image space is made visible to the observer. This is clarified in
Figure 9.3(b).

The virtual image technique has been employed in theatrical productions for many decades
and dates back at least as far as the 1860s. Interestingly, the technique that was developed at
that time underpins the operation of at least one form of creative 3-D display. It is therefore
instructive to briefly outline the manner in which virtual images were generated and employed
for the formation of theatrical illusions.

The basic technique appears to have been devised by Henry Dircks (although within lit-
erature credit is often incorrectly attributed to John Pepper) and is an advancement of the
Phantasmagoria technique mentioned above. In the 1860s ‘Pepper’s (Dircks’) Ghost’ made a
sensational appearance on the London stage. One form of this illusion is depicted in Figure 9.4.
In this illustration, the audience can be seen to the left hand side and interposed between
these spectators and the actors (to the right) is a large glass plate which is tilted towards the
audience. A phantom (physical actor) is located below the stage and is not directly visible to
the audience. However due to reflection in the glass plate, the audience see a virtual rendition
of the phantom – who appears to coexist within the space occupied by the actors. The optical
arrangement is summarised in Figure 9.5(a).

In Figure 9.5(b) we depict the basic process whereby light is reflected in the glass plate. In
this illustration the plate is shown in cross section and a ray of light impinges on this plate from
the left. When light travels between materials that have different optical densities, it undergoes
refraction – the direction of propagation of a ray (or group of rays) changes. This is caused by
the speed of propagation of the light changing – a property of a material known as the refractive
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Figure 9.3 As indicated in (a) when we look into a planar mirror, the image appears to lie as far behind the mirror as the object is
in front of it. Thus distances d 1 and d 2 are equal. In (b) we illustrate the concept of a virtual image space. Here, the observer looks
into some form of optical component (or arrangement of components). In the case of a free image space, the image space would reside
between the observer and optical component – however in the case of a virtual image space, the image appears to reside behind the optical
component.

index provides us with a measure of the speed at which light will travel in a particular medium as
compared to its speed in ‘free space’. The amount by which the direction of propagation changes
at the interface between two materials is given by Snell’s Law:

n1 sin θ1 = n2 sin θ2. (9.1)
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Figure 9.4 The use of Pepper’s Ghost (or more accurately Dircks’ Ghost) as a theatrical illusion. This same technique is used in the implementation
of a creative 3-D display able to produce a virtual image space – see Figure 9.7. (Image reproduced from Low, A.M., Popular Scientific Recreations,
Ward, Lock and Co (1933).)

The meaning of the various symbols may be readily understood from Figure 9.5(c). Let us now
consider the case that light passes from an optically dense to a less optically dense material
(e.g. from glass to air). As indicated in Figure 9.5(c), the light will be bent away from the
normal (i.e. θ2 > θ1). When θ2 = 90◦, the emerging light will simply travel along the surface
of the glass block and when θ2 > 90◦, the light will no longer emerge from the block but will
be reflected back into it – this is known as total internal reflection and in this case the glass is
acting as a mirror. Thus, on the basis of Eq. 9.1, for total internal reflection to occur we require
that:

n1

n2
sin θ1 > sin 90◦,

and so:

sin θ1 >
n2

n1
. (9.2)

OTU Exercise 9.2: Total Internal Reflection

Assuming that the refractive index of air is ∼1.003 and that of glass is ∼1.52, calculate the
minimum angle of incidence at the glass to air boundary that will result in total internal
reflection.



370 An Introduction to Computer Graphics and Creative 3-D Environments

(a)

(b)

(c)

Physical phantom (actor)

Stage

Virtual phantom

Audience

Lighting source

Beneath the stage

Glass plate

Incident ray

Refracted ray

Glass plate in cross 
section

Surface normal

θ1

Angle of incidence (θ1)

Angle of refraction (θ2)

Block of 
material with 
refractive index 
n1

Surroundings
have refractive 
index n2

Incident ray

Figure 9.5 In (a) we illustrate the optical arrangement that underpins Pepper’s (Dircks’) Ghost. Here, the physical phantom is located beneath
the stage and cannot be directly viewed by the audience. However, due to reflection in the glass plate (see Figure 9.4) the audience sees a virtual
image of the ghost that appears to coexist in the space in which the actors move. In (b) we illustrate the reflection within the glass plate. This
is caused by total internal reflection (based on refraction at the glass to air interface). In (c) a ray of light travels through a block of material and
undergoes refraction.
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This equation is used in determining the angle at which the glass plate employed in the so called
Pepper’s Ghost illusion should be tilted. In terms of total internal reflection in general, it is
important to note that:

Total internal reflection can occur when light passes from a dense to a
less optically dense medium – i.e. in the case of the plate used in the
Pepper’s Ghost illusion when light attempts to emerge from the plate.
Total internal reflection does not occur as the light enters the glass – i.e.
when light travels from a less dense to a more optically dense medium.

In appreciating the power of the ‘Pepper’s’ Ghost illusion, it is important to bear in mind that
from the perspective of an audience, the phantom appears to exist in the same space as that
occupied by the actors (however the phantom is not visible to the actors). Thus as long as the
actors are able to note the location at which the phantom will appear to be positioned (as far as
the audience is concerned), they are able to apparently make contact with it, do battle, threaten
it with cloves of garlic (if indeed garlic works with phantoms . . . ) etc. Under such duress, the
phantom may choose to flee in which case, in the true tradition of spectres, it can pass through
solid objects located on the stage!

The relevance of this theatrical illusion to today’s creative 3-D display technologies is readily
apparent when we consider the display technique shown in Figure 9.7.

Here, a flat screen display is inclined relative to a horizontal glass plate. The observer does not
directly view the images depicted on the display but rather views the image reflected in the glass
plate. Consider the point on the display screen labelled ‘A’ in Figure 9.6 and that corresponds to
a picture element (pixel). As indicated by the two rays, when we view the reflection of this point,
it will appear to be located beneath the glass plate. In fact, the display screen taken as a whole will
appear to lie in the approximate location indicated by the bold dashed line that is shown in the
diagram. If we were to depict stereoscopic images on the display screen (recall from Section 1.6
the chromatic and temporal coding techniques that can be used in the implementation of such
a display), then the 3-D image would appear to lie within a volume beneath the glass plate. This
represents a virtual image space.

The technique illustrated in Figures 9.6 and 9.7 is particularly effective when considered
from the point of view of interaction. An operator can reach around the glass plate and so
place the hand (together with an interactive pointer) within the space in which the image
appears to reside. The hand and interaction tool are directly visible through the glass and by
analogy represent the on-stage actors employed in the Pepper’s Ghost illusion (the 3-D image
representing the spectre). If the interaction tool supports haptic (in this case force feedback –
see Chapter 10) then the operator can ‘touch’ the image – the ghost appears to have substance –
the 3-D image seems to be a solid entity.

9.2.2.5 The Apparent Image Space

This form of image space was briefly introduced at the beginning of this subsection. However,
in the light of the above discussion concerning other forms of image space, a brief review of this
image space modality is worthwhile.
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Flat screen display

Glass plate

Observer Image
element A

Perceived location of 
image element A

Perceived location of the display 
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Figure 9.6 A Display technique based on the Pepper’s (Dircks’) Ghost illusion. In this embodiment, a flat screen display depicting stereo-
scopic images is inclined above a horizontal glass plate. The observer views the image reflected in the plate (i.e. does not directly view the
image depicted on the display screen). The image appears to reside beneath the glass plate – i.e. within a virtual image space. Also see
Figure 9.7.

In the case of the virtual image space, the image space location and extent is defined by
the geometry of the optical system employed within the display system, and in the case that
binocular parallax is supported, by the disparity of the two retinal images. These two ingredients
lead to the formation of an image space that lies behind the optical element via which the
observer views an image scene. However, an apparent image space is primarily formed on the
basis of binocular parallax – there is no fundamental requirement for an optical component to
be interposed between the observer and image space, and our perception of an image space is
not defined by the geometry of light entering the eyes. In some embodiments such an optical
component may exist and this complicates our explanation. However, for the moment we shall
put this complication to one side and consider the most straightforward case. Take another
look at the stereograms presented in Figure 1.32 and the additional stereograms reproduced
in Figure 9.8. As indicated previously, although a stereoscope or the type of viewing glasses
included with this book facilitate fusing the pair, they are not an essential requirement and most
people can (after a little practice) fuse such images by slightly crossing the eyes. The result is a
3-D image that appears to reside behind, in front of, or which spans the stereo plane (this is the
surface on which the stereopair is depicted). We refer to this as an apparent image space – the
depth and location of which is wholly illusionary. The sensations of depth and loca-
tion are perceived within the visual system from disparities that are encoded in the pair
of images (the image space has no physical basis – its existence is solely based on our
perception).
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Figure 9.7 A commercial display system produced by Reachin Technologies.6 The basic principle of operation of this system is based on the
Pepper’s (Dircks’) Ghost illusion which dates back to the 1860s. As can be seen, from this artist’s rendition, the reflected image appears to reside
behind the glass plate. Thus the users hand and interaction tool appear to coexist exist within the same virtual image space. This system employs
a 19 inch CRT based display (1024 by 768 pixels) that is refreshed at 120 Hz (giving a 60 Hz refresh frequency for each eye). The stereo viewing
glasses are of the shutter type and are connected by means of a wireless link. (Image kindly supplied by and reproduced by permission of Reachin
Technologies AB.)

In the context of display system technologies, it is very important to use
the term ‘illusionary’ with caution. Here, we must be clear – the images
depicted by all display system technologies are, to a greater or lesser
extent, illusionary. This is not very surprising since our visual percep-
tion of the physical world is also largely illusionary (recall discussion
in Chapter 5). Thus the ‘illusion’ of the existence of an apparent image
space is no more remarkable than our sensing different wavelengths of
light via an experience of colour.

6 Reachin Technologies AB, Formansvagen 11, 117 43 Stockholm, Sweden (www.reachin.se).
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Rather than fusing the images by slightly crossing the eyes, the stereograms presented in Fig-
ures 1.32 and 9.8 may be viewed using an optical device such as the stereoscope. In this case an
optical arrangement lies between the observer and the image space. However, this arrangement
simply aids the viewing process and is not a requirement. Consequently we still refer to the
formation of an apparent image space. On the other hand, the viewing system may relocate the
image space so, for example, making it appear to be further away. In this case the decision as to
whether an apparent or virtual image space is formed is often ambiguous and so it is necessary
to consider such systems on a case-by-case basis.

9.3 Stereoscopic Techniques

‘If we wish to know the force of human genius we should read Shakespeare.
If we wish to see the insignificance of human learning

we may study his commentators.’7

Creative 3-D display systems which employ the stereoscopic technique are fundamentally based
on the stereoscope, which was independently developed by both Charles Wheatstone and David
Brewster in the mid-nineteenth century. Here, as indicated in Chapter 1, a 3-D scene is depicted
on a 2-D medium. These views are presented in such a way that one view is visible to one eye,
and the other view to the other eye. Disparities in these views (see Section 5.6.1) are interpreted
by the human visual system as providing an indication of depth and so we perceive a three-
dimensional image. In the original form, pairs of stereoscopic images were hand-drawn but this
approach was rapidly superseded with the development of stereo photography.

Before moving on to discuss stereoscopic techniques in a little more detail, it is worth men-
tioning the so-called and somewhat ammusing ‘Chimenti controversy’. The mid 19th century
denoted a period of great scientific and engineering advancement – an age of industrial revo-
lution. Scientists were often strong, flamboyant and legendary characters funded by a personal
income or by a wealthy patron. Wheatstone and Brewster were well known members of this
scientific community and for reasons that will perhaps be never fully understood, Brewster
appears to have decided that he would go to practically any length to deny Wheatstone the
credit for the invention of stereoscopic imaging. It was certainly not that he sought the credit
for himself – he was simply keen to demonstrate that Wheatstone was not the first pioneer of this
field and so he attempted to place the credit elsewhere. This led to an acrimonious exchange of
Letters in the ‘Times’ newspaper and what joy Brewster must have experienced when, in 1859, he
learnt that a student – Alexander Crum Brown – had reported viewing two rediscovered images
created by Jacopo Chimenti da Empoli some 300 years earlier. These were displayed side by side
in the Musée Wicar in Lille and according to Crum Brown formed a stereopair (see Figure 9.9).

Brewster was perhaps a little rash in accepting (apparently without question) Crum Brown’s
opinion on the stereoscopic nature of the pair of images – perhaps it would have been more
prudent to view the images for himself . . . However, in his enthusiasm to deny Wheatstone
the credit for this invention, Brewster chose to promote the images sight unseen and over the
intervening decades, the Chimenti drawings have continued to attract attention and claims that
they provide evidence that stereoscopic techniques were mastered in the 16th century.

7 Attributed to William Hazlitt (1778–1830).
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Figure 9.9 The two Chimenti images. Differences are readily apparent – but do they really represent a stereopair? See text for discussion and
also OUT Exercise 9.3. (Supplied by and reproduced with the kind permission of Professor Nicholas Wade.)

OTU Exercise 9.3: The Chimenti Drawings

Once you have practiced fusing stereograms such as those presented in Figures 1.32 and 9.8
directly (without recourse to a stereoscope or other viewing glasses), investigate the stereo-
scopic nature of the Chimenti drawings presented in Figure 9.9. You may wish to photo-
copy and enlarge these drawings so that they are viewed under the conditions favoured
by Alexander Crum Brown. He indicated that in their original form each drawing measured
∼30 cm by 22 cm, and they were best observed from a distance of 4–5 yards (although he
does not appear to have specified their separation). You may wish to fix the drawings to a
wall and experiment with different separations. In addition, perhaps exchange the ‘left’ and
‘right’ views.

The author is able to discern relief from limited regions of the Chimenti drawings – overall relief
is not apparent and certainly, if Chimenti were experimenting with stereoscopic techniques, it
would seem natural to have chosen a subject of far less complexity (perhaps a simple cube,
cylinder or cone). It is unlikely that we will ever know why Chimenti created these two images
but it is doubtful that they were intended to represent a stereopair. However, it is evident that
in his promotion of these images, David Brewster should have exercised far greater caution. The
debate continues and even recent publications propagate claims that are not backed by fact.
For example, in an excellent book published in 1976 in the area of 3-D display systems [Okoshi
1976] (which continues to act as a standard work although it has been out of print for many
years and so is unfortunately becoming increasingly difficult to obtain), the author writes:

‘The first trial of artificial three-dimensional imaging was a stereoscopic drawing technique devised by
Giovanni Battista della Porta around the year 1600. It is a technique for drawing two precise pictures of
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an object observed from two different viewing directions. His drawings do not exist today. Similar stereoscopic
pictures, however, were drawn by many people for more than 200 years since della Porta.’

In fact, David Brewster also credited della Porta with the invention of the stereoscope and it is
perhaps on the basis of Brewster’s comments that this claim continues to appear in publications.
Certainly della Porta wrote about the possible reasons for nature providing us with two eyes, but
the thoughts that he expressed in his 1593 publication do not inspire one to the belief that he
had any insight into binocular vision. For example, he writes:

‘If someone places a staff in front of himself and sets it against some obvious crack in the wall opposite, and
notices the place, then when he shuts the left eye he will not see the staff to have moved from the crack opposite.
The reason is that one sees with the right eye, just as one uses the right hand and foot and someone using the
left eye or hand or foot is considered a monster. But if the observer closes the right eye, the staff immediately
shifts to the right side. There is a third argument – that nature made two eyes, one beside the other, so that one
may defend a man from attackers from the right and the other from the left. This is more obvious in animals,
for their eyes are separated by half a foot, as is seen in cattle, horses and lions. In birds one eye is opposite
the other, consequently, if things must be seen both on the right and on the left, the power of seeing must be
engaged very quickly for the mind to be able to accomplish its function. For these reasons the two eyes cannot
see the same thing at the same time.’ (Translation by Helen Ross from della Porta [1593].)

In the next subsection we briefly discuss the way in which a virtual camera may be used to
create stereo-views of a computer generated scene, and subsequently summarise and build on
discussion previously presented in Section 1.6.2 in relation to stereoscopic coding techniques.

9.3.1 Creating Stereo-views

In Section 6.6 we discussed the use of a virtual cameral comprising a viewing plane, viewing
window, viewpoint and viewing coordinate system. We adopted a left-handed coordinate sys-
tem, placed the viewing plane in the plane zv = 0 and positioned the viewpoint on the zv axis.8

By forming two perspective projections – each corresponding to a different viewpoint location –
we can create a virtual stereo-camera and so provide stereo-views of a scene. In Figure 9.10, we
illustrate appropriate viewpoint positions and as may be seen each of these locations is offset by
a distance xe from the zv axis (these correspond to the left and right eye views).

In forming the stereo-views, we would typically set ye to zero thereby locating the viewpoints
in the x–z plane. We then set xe to ∼ one half of the interocular distance and undertake a
perspective projection for both +xe and −xe locations (one location corresponding to the left
eye view and the other to the right).

Four fundamental ways of encoding stereoscopic images for presentation to the human visual
system are summarised in Figure 9.11. Here we adopt the same terminology as used in previous
books [Blundell and Schwarz 2006, Blundell 2007] and refer to these techniques as non-coded,
chromatically coded, temporally coded, and spatially coded. These approaches were briefly
introduced in Section 1.6.2 and in the subsections that follow we revisit each and provide
references for further reading.

8 Recall that the axes of the coordinate system were ascribed a subscript ‘v’ to distinguish them from those
of the world coordinate system which were given a subscript ‘w’.
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Figure 9.10 In (a) we illustrate the two viewpoints used to create a stereopair. Here, the interocular distance corresponds to 2xe . In (b), diagram
(a) is re-drawn in plan view and two points of the image are indicated.

9.3.2 Non-coded Stereoscopic Techniques

As indicated in Section 1.6, this approach closely mimics the techniques pioneered by Wheat-
stone and Brewster in the mid-nineteenth century. In its original form two hand-drawn images
corresponding to slightly different viewpoints onto a 3-D scene are placed side by side and are
viewed so that each image is directed to the appropriate eye. In the 1940s research was under-
taken into replacing the two drawings/photographs which form a stereopair, with electronic
display screens based on CRT technology. This pioneering work developed over the subsequent
twenty years and in the 1960s led to the form of headset which we now associate with immersive
virtual reality (IVR) systems.
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Figure 9.11 Summarising the four general types of coding technique that can be used in connection with stereoscopic display system imple-
mentations. On the right-hand-side we indicate whether or not each general approach demands the use of viewing glasses or other forms of
viewing system and also the requirement for head tracking. In this latter respect, we are considering natural support for motion parallax and as
may be seen, only the spatially coded approach can support this cue without the need to track the observer’s view point9.

From our present perspective, it is instructive to identify the strengths and weaknesses of each
of the four general techniques that are identified in Figure 9.11. As summarised in Table 9.2,
key strengths of this approach are the avoidance of cross-talk (the images presented to the
two eyes are completely segregated), and the suitability of this technique for use in immersive
virtual reality (IVR) and augmented (mixed) reality headsets. In Section 1.6.2 we referred to
the implementation of the immersive virtual reality (IVR) headset, and here it is worth briefly
examining the augmented reality approach.

This technique enables real and synthetic images to be combined and in the case that a headset
is employed, the user can view real world images which are overlayed with computer generated
(synthetic) content. By way of a simple example of this type of application, consider the situation
that a technician is undertaking fault-finding on a complex system of electronic circuits, pipe-
work or the like. Naturally, a system that can reliably assist the technician in identifying the
function of cables, groups of cables or pipes could be a great asset – particularly if this circum-
vents the need to continuously consult extensive manuals or other forms of documentation.

9 Frequently, spatially coded systems support only horizontal parallax. Additional support for vertical
parallax may necessitate tracking the observers vantage point.
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Table 9.2 Summary of the strengths and possible weaknesses/complications of various general forms of stereoscopic technique.

Technique Key Advantages Potential Difficulties

Non-coded Elimination of cross-talk.
Suitability for IVR.
Suitability for augmented reality.

The use of two display screens.
Motion parallax requires head tracking.
Screens and optics must match the requirements of the
human visual system.

Chromatic coding Simple and cost effective.
Well suited to wire-frame image depiction.

Viewing glasses are required.
Limited ability to depict multi-colour images.
Motion parallax requires head tracking.
Cross-talk should be minimised.

Temporal coding The colour pallet of the display is not compromised. Viewing glasses are required.
Motion parallax requires head tracking.
Display must support a high refresh frequency.
Cross-talk should be minimised.

Spatial coding Viewing glasses are not required.
Motion parallax does not require head tracking.
The colour pallet of the display is not compromised.

As the number of views are increased, there is a
corresponding decrease in the number of pixels per
view.

In such a scenario, the augmented (mixed) reality technique may be beneficial; as the observer
looks at the wiring etc, computer generated labels are overlayed on the visible scene. However,
to operate successfully, it is pivotally important that the computer is able to identify the items
within the operator’s visual field. It appears that Ivan Sutherland may well have been the first
person to investigate this display modality [Sutherland 1968]. In relation to the head mounted
display (HMD) which he developed, he writes:

‘Half-silvered mirrors in the prisms through which the user looks allow him to see both the images from
the cathode-ray tubes [as with the original IVR headsets, two cathode ray tubes were used for the
depiction of the binocular pair] and objects in the room simultaneously. Thus displayed material can
be made either to hang disembodied in space or coincide with maps, desk tops, walls, or the keys of a
typewriter.’

He goes on to discuss the issue of position sensing (see Section 9.4) and describes the use of
both a system comprising mechanical linkages and a wireless technique employing ultrasonic
transmitters and receivers.

In comparing the IVR and augmented reality approaches, there is one important issue
that should not be overlooked. In the case of IVR, the user is immersed within a virtual
space – the physical world is no longer visible. This can lead to disorientation – especially
if the IVR application demands that the user be able to move around. Although one or
more senses may be supplied with wholly artificial content, gravity is ever present and the
human sense of balance can readily become confused when faced with conflicting sensory
input. In short, a traveller in cyberspace must still take into account their physical surround-
ings – to trip and fall in the physical world can quickly bring a cyber voyage to an abrupt
end!!
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An IVR headset disconnects the user’s sense of sight from the physical
world. This can result in disorientation and sensory conflict. The aug-
mented (mixed) reality approach (employing a headset) enables physi-
cal and synthetic content to be overlayed and unlike the IVR approach,
the user is not visually disconnected with the physical world.

Returning to the strengths and possible weaknesses of the non-coded technique as summarised
in Table 9.2, in the case that a headset is used, key weaknesses (or perhaps it may be better to say
complexities) of this approach are:

1. The need to employ separate display screens for the left and right views on the stereopair.
2. The need to interpose an optical arrangement between each display screen and the eye.
3. If the motion parallax depth cue is to be supported (enabling the user to view images from

different orientations simply by moving the head position) then a head tracking system
must be included.

4. The visual and temporal characteristics of the display screens must match the requirements
of the human visual system.

5. In the case of the IVR embodiment of this technique, the user may become disoriented and
sensory conflict may be problematic.

9.3.3 Chromatically Coded Images

Recall the section of anaglyph images presented earlier in this book. Here, the two different
viewpoints onto a 3-D scene are each depicted in a different colour. By using the filtered glasses
provided with this book, each eye is only able to see one of these two colours. Thus the image
depicted in red is seen by one eye, and the image depicted in green by the other eye. The images
are fused within the visual system and disparities within the views give rise to our perception
of three-dimensionality. Typically, glasses employing green and red or green and blue filters are
used – this provides strong wavelength separation of the two views and thereby enables the use
of lower quality filters.

The colour of the background on which anaglyph line drawing are created can impact on the
production of an anaglyph image. By way of example, let us suppose that an anaglyph drawing
is created in red and green and is viewed using glasses with corresponding filters. When green
lines are viewed through the red filter, they will appear to be black (as the red filter passes only
red (or close to red) light and the green does not contain wavelengths close to red). Similarly,
when red lines are viewed through the green filter, they will also appear to be black. Now let
us suppose that as illustrated in Figure 9.12(a), the lines are depicted on a black background.
Since the green line appears to be black when viewed through the red filter, it will merge with
the black background and so be non-visible (or practically so). Similarly the red line appears
black through the green filter and therefore will again merge with the background. Confirm this
using the anaglyph glasses supplied with this book – as you will observe, the red line is visible
only through the red filter and the green line only through the green filter. Now use the glasses to
view the diagram presented in Figure 9.12(b). You will see that the red line is now visible through
the green filter and the green line through the red filter: because of the reversal in the background
colour, line visibility has also reversed! Finally, in Figure 9.12(c), the two coloured lines are
printed on a grey background. When this diagram is viewed using the anaglyph glasses, each
line can be seen through the two filters. Consequently, not only do the colours of the lines and
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(a) (b) (c)

Figure 9.12 When (a) is viewed using the anaglyph glasses supplied with this book, the red line is visible through the red filter and the green
line through the green filter. In contrast when (b) is viewed in the same manner, the red line is visible though the green filter and the green line
through the red filter. In (c), as a result of the background colour, the extent of the cross-talk is increased.

the characteristics of the filters impact on the extent of the cross-talk – but also the background
colour plays a key role.

Let us now turn our attention to the possible strengths and weaknesses of the anaglyph
approach – see Table 9.2 for summary information. In terms of the former, the images are
easily created and can be particularly useful in the formation of three-dimensional wireframe
representations. In addition, this is perhaps the simplest and cheapest approach to the formation
of stereoscopic images. The main disadvantage relates to the inability of this technique to
support full colour depiction. As will be apparent during the course of this chapter, support
for the inclusion of the third dimension allways has associated costs and may create problems.
In terms of the anaglyph approach, restrictions in the extent of the colour pallet denotes the
‘Achilles’ heel’ of this technique. On the other hand this does not imply that this technique is
without merit since in many situations full-colour image depiction is unnecessary and in some
applications sound benefits can be derived from the depiction of images composed of a single,
or several, colours and which appear to reside in three-dimensional space.

9.3.4 Temporally Coded Images

Recall from our previous discussions that images depicted on a computer display comprise a
series of frames that are re-written at regular intervals. In the case of temporal coding the left
and right views of a stereopair are depicted in alternate frames, and viewing glasses are used
to provide a means by which these alternate frames are visible only to the appropriate eye.
As indicated in Section 1.6.2, these glasses can be either active or passive. Active glasses act
as shutters and here, for example, liquid crystal eye pieces can be used (although in the early
days of exploration of this technique, mechanical shutters were employed [Hammond 1924,
1928, US Patent 2,273,512]). When active glasses are employed, synchronisation signals must
be transmitted from the display to the glasses via either a cable or wireless link. In contrast,
passive glasses require no such connection and offer a lower cost solution.
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Cross-talk can be associated with systems that employ either active and passive glasses. For
example, in the case that active glasses are used in conjunction with a CRT based display, the
characteristics of the display itself (specifically the persistence of the phosphors) can lead to
cross-talk. The issue here is that following their stimulation by the electron beams, the light
output from the phosphors gradually decays – but the red, green and blue phosphors do not
decay at the same rate – green tends to decay the least rapidly. As a result, when the active glasses
switch visibility from one eye to the other, the green phosphor may still be visibly emitting light –
and this light is then presented to the ‘wrong’ eye. The use of passive glasses based on the linear
polarization of light can also result in cross-talk – although for a somewhat different reason.
Recall Figure 1.34; as the head is tilted, the extent of the cross-talk increases – until when the
head has been rotated by 90◦ the incorrect view is presented to each eye.10

Finally, as indicated in Section 1.6.2, the temporal coding technique places increased demands
on the performance of the display – specifically in terms of the frame refresh frequency.

9.3.5 Spatially Coded Images

In Section 1.6.2 we briefly introduced the spatial coding technique which enables 3-D images to
be viewed directly (without recourse to viewing glasses) and that is fundamentally based on the
‘parallax stereogram’ approach devised by F.E. Ives at the beginning of the 20th century. Recall
Figure 1.35 in which we show a plate (parallax barrier) containing a set of vertical slits that is
placed in front of a display screen or specially prepared stereo photograph. The stereoscopic
image comprises a set of interleaved strips and this embodiment assumes a viewing zone such
that the strips corresponding to the left and right-eye views are visible only to the appropriate
eye. As we mentioned, this approach has several weaknesses – particularly limited freedom in
viewing position and the loss of image intensity because a significant portion of the light output
from the displayed image is blocked by the presence of the barrier.

In the case that a parallax barrier is used to depict a single view onto a scene the observer’s
lateral location should remain close to the intended viewing position. As the observer moves
away from this region, both eyes may be presented with the same left or right view of the stereo
pair (and so the binocular cue will be lost) or a pseudoscopic image may be observed (here,
the left eye is presented with the right-hand stereo image and the right eye with the left-hand
image).11

This display paradigm may be used to encompass the motion parallax cue. Here, multiple
stereo views onto a scene are interleaved – one view being visible from each of a number of
adjacent viewing locations. Thus as the observer changes position a new view becomes visible.
However, as with all 3-D techniques, there is a penalty associated with the encapsulation of
the third dimension. Let us suppose that a display is able to depict nh pixels in the horizontal
direction and nv pixels vertically and that we employ some form of barrier to create a spatially
coded 3-D display that supports n views in the horizontal direction. In this case, the number of
pixels that can be associated with each view is given by:

nh · nv

n
.

Thus as we increase the number of views there is a corresponding reduction in the number
of pixels from which each view can be formed. Furthermore, even in the case that we support

10 An extreme problem that would only affect those who prefer to watch films while lying on a sofa . . .
11 In the case that a pseudoscopic view is presented, what would the observer perceive?
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only a single view, the inclusion of binocular parallax reduces the conventional horizontal pixel
resolution by 50%.12 Support for motion parallax also increases the demands placed on the
parallax barrier – increasing the number of views requires a corresponding reduction in the
barrier pitch and in turn this negatively impacts on image brightness.

Fortunately, spatially coded systems are not limited to the parallax barrier approach. For
example, the barrier may be replaced by 2-D array lenses which direct light into the des-
ignated viewing zones. This technique was devised in the early 20th century by Lippmann
[1908] who developed the use of a ‘fly’s eye’ array of lenses in support of full parallax
(both vertical and horizontal). Today this method is commonly encountered on novelty post-
cards (often of a fairly dubious nature . . . ) – the different views being used to encode either
changes in the subjects that are depicted or image animation (in which case as the observer
changes viewing location the image content appears to move). Display systems that employ
this general approach often make use of a set of cylindrical lenses (these lenses being referred
to as a lenticular sheet). The central axis of each lens usually lies in a vertical direction
and so they act to support only horizontal parallax. Since the lenticular sheet is completely
transparent there is no occlusion of light emitted from the display screen and therefore the
image brightness issues that are associated with the parallax barrier method are no longer
an issue.

For further introductory detail see Okoshi [1976] and for interesting discussion concerning
alternative techniques that may be employed in the development of spatially coded systems see,
for example, Collender [1967], Tilton [1988], Travis [1990], Lang et al. [1992], and Dodgson
et al. [1999]. In addition, details of a number of commercial systems are readily available via the
Internet.

9.4 Stereoscopic Systems: Supporting Motion Parallax

‘Those are my principles.
If you don’t like them I have others.’13

As indicated in the previous section, in their basic form the non-coded, anaglyph and temporally
coded systems do not support motion parallax. Consequently, we cannot move our head from
side to side or up and down to produce a different view onto a scene. Similarly, when we
reposition our head we do not experience the relative motion of objects which lie at different
depths. However, a brief re-examination of Figures 1.32 and 9.8 reveals the vital importance
of the motion parallax cue – we quickly become frustrated by not being able to change our
head position (and hence viewpoint) relative to the scene. In fact we extract a great deal of
information about the spatial form of a scene by slight adjustments in vantage point and so
when we view 3-D images, we instinctively wish to change our view point – but in their basic
form, these techniques do not allow us to do so.

One solution is to incorporate head-tracking by which the computer system is able to monitor
an operator’s vantage point and as this changes the position of, for example, the virtual camera
is modified accordingly. This is by no means a new idea and in the seminal paper written by
Parker and Wallis in the 1940s [Parker and Wallis 1948] the authors write:

12 However, despite this reduction, support for binocular parallax ensures that the visual system is pre-
sented with additional and important information.
13 Attributed to Groucho Marx (1890–1977).
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‘Since the use of parallax in everyday life most commonly occurs when one is moving relative to a large number
of stationary objects, it may be preferable for the operator to move his head rather than give him aspect controls
to turn manually. The aspect controls would then be operated by movements of the operator’s head, a joystick
device being used as a coupling, for example. The operator will then move his head around to look into an
apparently stationary three-dimensional volume. In order to remove any ambiguity and improve realism, the
perspective and/or perspective shading described previously could be added to the display. This could be made
adjustable, arranged to follow automatically any head movements, by the incorporation of a telescopic device
in the above mentioned joystick. It is clear, however, that this could be arranged for only one observer at each
display.’

The precise details of this quotation need not concern us – it is sufficient to note that the writers
were suggesting the use of a system employing mechanical linkages via which an operator’s
vantage point was to be monitored. Changes in position would then result in an update of the
image scene with an appropriate modification of the perspective view (by calculating this for
the new centre of projection) and/or changes in perspective shading. Since in the 1940s these
authors did not have access to digital computers (analogue computation was employed), this
was indeed a remarkable achievement.14

In Section 9.3.2 we referred to the work undertaken in the 1960s by Ivan Sutherland in
relation to augmented reality. This system also employed head-tracking and he describes two
approaches [Sutherland 1968]. The first paralleled the technique described some 20 years earlier
by Parker and Wallis and employed a system of mechanical linkages – with one end being
attached to the operator’s headset and the other to the ceiling. The joints were equipped with
digital position encoders so that the computer responsible for image generation could moni-
tor the user’s location (both translational and rotational motion are reported as having been
measured). Naturally, such a system would have been a little cumbersome and Sutherland also
described the use of ultrasound for position sensing. In fact, this approach was the precursor to
the head-tracking systems that are often used today. This (and other) head tracking techniques
are described by Burdea and Coiffet [2003] and summary discussion is presented in Blundell
[2007].

Position tracking can be achieved in various ways – in the case of systems implemented using
optical, magnetic and ultrasound techniques, there is no requirement for a physical connection
between the operator and the static tracking hardware. Below we briefly consider one approach
to the implementation of an ultrasound system.

Ultrasonic waves propagate in air at a speed (v) that is approximately given by:

v ∼ 331 + 0.6 T (9.3)

where T denotes the temperature measured in ◦C.

OTU Exercise 9.4: Head Tracking

Using Eq. 9.3 determine the time taken for an ultrasonic wave to travel a distance of 80 cm –
assuming a temperature of 27 ◦C.

14 The Parker and Wallis publication is extensive and rich in content. Unfortunately, there is often insuf-
ficient clarification as to the extent to which displays and associated devices (such as the head-tracking
system) were actually implemented.
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Figure 9.13 A head tracking arrangement. Three ultrasound sources are mounted at the corners of a triangular frame. This is typically attached
to the top of the display. Three ultrasound receivers are mounted at the corners of a triangular frame that is fixed to the viewing glasses worn by
the observer. See text for discussion.

In one embodiment, three sources of ultrasonic sound are mounted at the corners of a triangular
frame. This is typically positioned above the computer display. The operator dons stereoscopic
viewing glasses that are equipped with three ultrasonic detectors – again these are mounted at
the corners of a triangular support (although for convenience, this triangle is somewhat smaller
than the one that supports the ultrasonic transmitters – see Figure 9.13).

In the case of one approach, each transmitter broadcasts a short burst of ultrasound in turn.
Each transmission is detected by the three receivers and so once all three transmitters have
broadcast, nine position measuring signals have been acquired. By means of this temporal data
we can determine the relative location of the two triangular frames and in turn this enables us
to track the position of the observer.

As we know from OTU Exercise 9.4, the ultrasound signal will take ∼2.3 × 10−3 seconds to
travel a distance of 80cm. Thus the set of three transmissions may occupy ∼6.9 × 10−3 s. In
addition after each transmission it is necessary to pause to ensure that all extraneous echoes
have died away (these may be caused by a signal bouncing off objects within a room (or
off the walls) and subsequently impinging on the detectors). If, for example, we pause for a
period of 20 × 10−3 seconds between each transmission then a set of three will be completed in
∼47 × 10−3 s. This represents a basic position sensing latency – this time must elapse before a
complete position measurement can be obtained.15 Subsequently the computer must perform
calculations on the basis of the new viewpoint and update the display. In short, the update of
the display will lag (to a greater or lesser extent) behind the movements of the observer. In some
scenarios this lag may be readily apparent and can detract from the usability of a technique. In
Figure 9.14, we indicate the various sources of latency that may be associated with the head-
tracking display technique. For further discussion of various approaches to head tracking and
motion capture in general, see Burdea and Coiffet [2003].

15 We have assumed that each transmitter broadcasts in sequence. However, if an approach supports
parallel transmission, the latency can be reduced.
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Figure 9.14 Various latencies that may contribute to the lag associated with the use of head-tracking to support motion parallax.
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OTU Exercise 9.5: The CAVE and RAVE

The CAVE provides us with an example of an immersive 3-D environment based on temporally
coded stereoscopic techniques and that employs head-tracking. Research the history, princi-
ples of operation and applications of this approach. Identify at least one major advantage and
one major drawback of this display paradigm. The RAVE is a display system that represents a
derivative of the CAVE and was also pioneered at the Electronic Visualization Laboratory (at
the University of Illinois). Research this technique. Hint: information concerning the CAVE may
be found on-line and, for example, in Burdea and Coiffet [2003] and Blundell and Schwarz
[2006]. Also see Defanti et al. [1992] and Cruz-Neira [1993].

OTU Exercise 9.6: The Cybersphere

The Cybersphere provides us with an example of a radical approach to the implementation
of a projection-based display. Research the principles of operation of this system. Identify at
least one major advantage and one major drawback of this display paradigm. Hint: sources for
information include Fernandes et al. [2003] and Blundell and Schwarz [2006].

OTU Exercise 9.7: Stereoscopic Workbench Technologies

Research the implementation of stereoscopic workbench technologies which enable stereo
images to be positioned above a horizontal surface. Identify key strengths and weaknesses.
Details of commercially available systems may be found on-line. Also see Burdea and Coiffet
[2003].

9.5 Volumetric Display Techniques

‘Go confidently in the direction of your dreams.
Live the life you have imagined’16

As we have seen, in the case of the stereoscope the two different views on an image scene are
directed so that only one of these is visible to either eye, and the majority of creative 3-D display
techniques are fundamentally based on this principle. Volumetric systems adopt a somewhat
different approach. Here, images are depicted within a transparent physical volume and since an
image is able to occupy three spatial dimensions, it is inherently three-dimensional.

In Figure 9.15 several simple volumetric images are presented (also see Figure 9.22). Unfor-
tunately, it is impossible to do true justice to a volumetric image when it is captured by con-
ventional photography. As soon as the volumetric image is photographed, all but the pictorial
depth cues are lost and it is the combined presence of pictorial, oculomotor and parallax

16 Attributed to Henry David Thoreau (1817–1862).
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(a)
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(c)
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(d)

Figure 9.15 Here, we illustrate several very simple volumetric images depicted on an early Cathode Ray Sphere prototype (see Section 9.5.2).
Unfortunately when volumetric images are captured on conventional photographs the oculomotor and parallax cues are lost. This problem is
exacerbated by the fact that most volumetric display technologies generate translucent images. In (a) we show an animated piston, crankshaft
and connecting rod, (b) depicts a wireframe model of the ‘Starship Enterprise’ and (c) shows an animated stick figure that walks in a natural
manner around the display volume. This same figure is depicted as a stereogram in (d). When correctly fused, the natural three-dimensionality of
the figure is readily apparent. (Original images © B.G. Blundell 2005.)

cues that make volumetric images (when viewed directly) so visually captivating. However, in
Figure 9.15(d) a volumetric image is captured as a stereopair – and so the binocular parallax cue
is preserved. When this pair of images is fused either by direct viewing or by means of the stereo
viewing glasses provided with this book, the inherent three-dimensionality of this simple stick
figure is readily apparent.

Volumetric images are depicted within a transparent physical volume and by way of analogy
this can be compared to fish swimming in a goldfish bowl or tank. The fish, water-weeds,
and other objects in the bowl represent image components. Each fish occupies three physical
dimensions and the spatial separation of the fish (and any other items within the volume) is
immediately apparent. Furthermore, as with fish swimming in a bowl volumetric images may
be fully animated and many technologies allow practically unrestricted freedom in viewing
orientation. In this latter respect, a number of observers can look into the volume in which the
images are depicted and simultaneously observe the image scene from different orientations.
Additionally, viewing glasses or other viewing headgear are not required.

The volume within which volumetric images are depicted, is generally referred as an ‘image
space’, and images are usually constructed from voxels.

A voxel (volume element) is the three-dimensional equivalent of the
pixel and has various associated attributes. Whereas in the case of a
pixel we simply define position on a 2-D surface, a voxel’s position is
described as a triple with x, y, and z coordinates being specified. As with
a pixel, voxels have associated colour and intensity descriptors and can
either emit or scatter incident light.
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In the text that follows we briefly summarise some of the general characteristics of volumetric
display systems:

1. Support for depth cues: Since volumetric images occupy three physical dimensions, they
are inherently three dimensional. Various pictorial and non-pictorial depth cues are satis-
fied. However, in the case of practically all volumetric embodiments developed to date the
depth cue of occlusion is absent. Thus images take on a ghostly translucent appearance.
For some applications this ‘see-through’ characteristic can be advantageous and ensures
that from any particular viewing direction one image component cannot occlude another.
Furthermore, the ability of volumetric displays to naturally support accommodation and
convergence compensates (to some extent) for the absence of occlusion. Unfortunately
in literature it is often claimed that volumetric systems are inherently unable to satisfy
occlusion – this is not correct (see, for example Blundell and Schwarz [2000] and Blundell
[2007]).

Volumetric systems naturally satisfy a wide range of depth cues and this interfaces well
with the expectations of the human visual system. On the other hand, it is important to note
that the ability of volumetric systems to satisfy depth cues is generally limited by the physical
dimensions of the image space. For example, consider the depth cue of accommodation.
Volumetric image components can be located at different depths within an image space
and so, as we direct our attention to different image components, the eyes automatically
refocus and their convergence distance changes. The extent to which the accommodation
and convergence distances change is usually limited by the physical depth of the image
space.

2. Image space characteristics: Let us continue for a moment with the goldfish in a bowl
analogy. If the water is not clear the clarity of our view of the goldfish will obviously be
affected. Furthermore, since water has a higher refractive index than air, as light emerges
from the goldfish bowl it undergoes refraction (we will refer to this as ‘boundary refraction’)
and this leads to a distorted view not only of the shape and size of individual goldfish but
also of their spatial separation and of the depth of the goldfish bowl. These are important
issues that we must consider when developing a volumetric architecture. The image space
should not only be transparent but should also exhibit a uniform refractive index. In
addition, to avoid (or minimise) boundary refraction we require that the refractive index
of the image space is as close as possible to the air that surrounds it. Failure to meet these
conditions can considerably detract from the usability of volumetric displays.

Let us suppose that a volumetric technology allows us to accurately
position well-defined voxels within an image space in such a way that
we are able to create superb, high quality images. This in itself by
no means guarantees that we will perceive such images as being of
a high quality. Components within the image space that obstruct the
passage of light or variations in the refractive index of the image space
medium will strongly impact upon the quality of the perceived image.
In addition, boundary refraction may cause image distortion, making
it difficult to, for example, accurately gauge the separation of image
components within a scene and accurately navigate a cursor so as to
interact with these components.
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3. Viewing freedom: Display systems based upon the stereoscopic approach generally pro-
vide one window onto the 3-D scene.17 Some volumetric embodiments provide a single
window onto a 3-D scene, other approaches provide two windows enabling observers to
look into the 3-D scene from both the front and rear, and other systems provide essentially
unrestricted freedom in viewing the 3-D scene. In this latter respect, an image space may
take the form of a sphere (e.g. the Cathode Ray Sphere – see Section 9.5.2), hemisphere
or cylinder, and observers can look onto the scene from practically any orientation. In
addition, volumetric displays support natural motion parallax. Consequently, an observer
gains a different vantage point onto a 3-D scene not only by moving from side to side, but
also by moving in any other direction.

For certain applications, unrestricted viewing freedom can be advantageous and in other
situations can be problematic. Consider, for example, a volumetric system employed for air
traffic control and which imposes no restriction on viewing freedom. The controller can be
positioned at any location around the image space – there is no defined vantage point. This
can lead to disorientation.

9.5.1 Display Subsystems

It is convenient to describe volumetric displays in terms of three key subsystems. These are
summarised in Figure 9.16 and the function of each is briefly discussed below:

1. The Image Space Creation Subsystem: This subsystem relates to the techniques used for the
formation of the image space within which volumetric images are depicted. Two general
approaches are adopted. Firstly, an image space may be formed through the rapid cyclic
motion of a surface or structure. In line with previous discussion [Blundell and Schwarz
2000] we will refer to this as the ‘swept volume’ approach. Alternatively, an image space
may be formed without recourse to mechanical motion (e.g. a gaseous medium may be
employed). We will refer to such systems as employing a ‘static volume’ approach.

2. The Voxel Generation Subsystem: This relates to the underlying physical processes used
in the production of visible voxels and may be readily understood by reference to the
conventional flat screen display based on, for example, CRT technology (see Section 1.5.1).
In this case, phosphor particles are stimulated to emit visible light by a process known
as cathodoluminescence. This denotes the underlying physical process that causes pixel
visibility and so by analogy represents the voxel generation subsystem.

3. The Voxel Activation Subsystem: This relates to the technique(s) that we employ to stim-
ulate the voxel generation process. Again returning to the CRT analogy, whilst cathodolu-
minescence denotes the voxel generation subsystem, visible pixel formation is achieved by
means of one or more electron beams that are swept across the surface of the screen. In
this case, we would say that the activation subsystem is implemented using electron beam
technologies. Usually, once we have defined the nature of the voxel generation subsystem,

17 One of the great difficulties in discussing emerging creative 3-D display technologies is in making
generalised statements that apply without exception. Whilst in the main, systems based on the stereoscopic
approach do provide a single window through which the 3-D scene can be viewed, there are exceptions
(e.g. the CAVE – referred to in OTU Exercise 9.5).
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Volumetric Display 
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Voxel Generation 
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Voxel Activation 
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Figure 9.16 Any volumetric display can be described in terms of three key subsystems. These relate to the formation of the image space, the
fundamental process that is used for the generation of visible voxels and the way in which voxels are activated so as to change between non-
visible and visible states.

we have only a limited number of choices as to the ways in which the voxel activation may
be implemented.

In the two subsections that follow, we provide a brief introduction to several exemplar volumet-
ric display system architectures. For more detailed discussion on display subsystems see Blundell
and Schwarz [2000], and Blundell [2007].

9.5.2 Swept Volume Volumetric Displays

As indicated above all swept volume display units are based on the rapid cyclic motion of
a surface or structure. Either rotational or translational (reciprocating) movement18 may be
adopted and in Figure 9.17 we indicate several exemplar techniques that are briefly reviewed
below. However, before we begin it is important to note that during the last 75 years, a great
range of swept volume systems have been proposed and constructed. In fact it appears that
John Logie Baird (the inventor of television) was probably the first to undertake research in this
area – and in 1931 he filed a remarkable patent (British Patent Number 373,196) the significance
of which has, until recently, been largely overlooked. Work in connection with this patent must
have been carried out some five years after he gave the first demonstration of practical television
and this provides us with a clear indication that Baird very quickly realised the limitations of
the flat screen display and the potential benefits of 3-D systems. For a review of Baird’s work in
connection with volumetric systems see Blundell [2006(a), 2007].

One of the difficulties faced in considering the swept volume approach is in coming to terms
with the great range of possible techniques that can be used in the implementation of the three
display unit subsystems. The exemplar systems introduced below are simply intended to provide
an insight into general techniques – references are supplied for further reading.

1. A Swept Volume Display Employing Translational Motion: Consider the arrangement
illustrated schematically in Figure 9.18. Here, a rectangular planar screen equipped with a
2-D array of light emitting elements moves back and forth so sweeping out a cubic volume
(image space). The 3-D image that we wish to depict is processed to comprise a set of
parallel slices and the volume swept out by the screen is also divided into a corresponding
set of slices (the slices being located at right angles to the direction of screen motion). As the

18 Occasionally a combination of these two forms of motion may be employed.
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Figure 9.17 Four exemplar swept volume techniques that are briefly reviewed in the text.

screen passes through each slice position, the corresponding image slice is made visible by
illuminating the appropriate light emitting elements. By way of a simple example, suppose
that we wished to depict an open cylinder whose axis lies parallel to the direction of screen
movement (this represents the simplest case). The slicing (ordering) of the data set gives
rise to a set of image slices each of which depicts the circular cross section of the image. As
the screen passes through each corresponding slice position, the appropriate light emitting
elements are illuminated. (On the basis of the coordinate system indicated in Figure 9.18,
the z direction is represented in terms of the screen’s temporal position.)

The frequency at which the screen must sweep out the image space is determined by our
need to avoid image flicker and in practice this means that the screen must complete a full
cycle of motion (comprising the forward and backward sweep) in no more than ∼40 ms
(corresponding to 25 Hz).

Typically, a display employing translational motion provides one or two windows onto
the image space – corresponding to the front and rear. Side views are generally highly
restricted because of the presence of the mechanical components that support the screen
and generate its movement.

In the late 1950s a display called the Peritron was developed [Withey 1958]. This used
the translational motion of a planar phosphor coated screen and an electron beam for voxel
activation. This was therefore a hybrid form of CRT – the CRT screen moving forwards
and backwards. In fact, the Peritron provides us with an example of a simple and effective
implementation of a swept volume display employing translational movement. One of
the key difficulties to development of displays of this type centres on the generation of
screen motion. Ideally, the depth of the image space should correspond to the part of the
screen’s motion in which it is moving with constant speed.19 In turn, it is naturally desirable

19 For discussion on screen update, linear motion and sinusoidal motion see Blundell and Schwarz [2000]
and Blundell [2007].
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Figure 9.18 A simple swept volume display employing the translational motion of a planar screen that is equipped with an array of light emitting
elements.

that the screen’s acceleration and deceleration (at either extreme of its motion) should be
maximised. In the case of the Peritron, the screen, mechanical drive system, and electron
beam were housed within an evacuated vessel. This would have effectively eliminated air
resistance to screen motion and so would have allowed the use of a light-weight screen and
drive system. For a summary of key advantages and potential problems associated with the
translational motion approach see Table 9.3.

2. A Swept Volume Display Employing the Rotational Motion of a Planar Screen: The
majority of swept volume display systems developed to date have employed rotational
motion. Here we will briefly discuss one particular embodiment which for a number of
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Table 9.3 A summary of various characteristics associated with the exemplar swept volume displays that are introduced in the text.

Exemplar Swept Volume
System General Strengths Potential or Inherent Weaknesses

Translational Motion of a Planar
Screen

1. Voxels may be positioned within a regular 3-D
lattice.

2. Light passing through the image space is not
subjected to absorption or refraction.

3. No boundary refraction.
4. Light-weight display.
5. Overall simplicity.

1. Implementation of the screen drive.
2. Ultimately the motion limits the dimensions of

the image space.

Rotational Motion of a Planar
Screen

1. Simplicity of the mechanical system responsible
for screen rotation.

2. Light passing through the image space is not
subjected to absorption or refraction.

3. Minimal boundary refraction.
4. Voxel generation and activation subsystems

may be implemented in a number of ways.
5. Light-weight display.
6. Viewing freedom.

1. Screen strength and rigidity are likely to limit
image space volume.

2. Uniformity of voxel density and placement may
be an issue.

Rotational Motion of a Helical
Screen

1. Support for large volume image space
generation.

2. Light passing through the image space is not
subjected to absorption or refraction.

3. Minimal boundary refraction.
4. Light-weight display.
5. Viewing freedom.

1. Gradient of helix increases towards the axis of
rotation.

2. Uniformity of voxel density and placement may
be an issue.

years formed a focal point to the author’s research into volumetric displays.20 The display is
named the Cathode Ray Sphere (CRS) and some simple images depicted on CRS prototypes
were previously presented in Figure 9.15. A diagram showing some of the key components
within an early CRS prototype is provided in Figure 9.19.

As may be seen from this illustration, CRS prototypes employ a rectangular glass plate
that rotates in such a way that the axis of rotation lies in the plane of the screen. This plate
is coated with one or more phosphors and two stationary electron guns are used for voxel
activation. Naturally, as the screen rotates, the geometry between the screen and the electron
guns continuously varies and when the plane of the screen lies at more acute angles to an
electron gun axis (see Figure 9.20(b) and (c)) problems occur in screen addressing. For
example:

� Voxels become increasingly elongated – see Figure 9.20(b).
� A small deflection of the electron beam causes an unacceptably large displacement of

the beam on the screen – see Figure 9.20(c).

20 See US Patents 5,703,606 and 6,054,817.
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Figure 9.19 An early Cathode Ray Sphere (CRS) prototype. Here, a thin phosphor coated glass plate rotates within an evacuated glass vessel. The
voxel activation subsystem comprises two electron guns. (Original drawing by Warren King.)

→
Figure 9.20 In (a) we show in plan view the region swept out by the rotating planar screen and the use of a single electron gun. This diagram
provides a general overview and in (b) and (c) we illustrate types of difficulty that can occur as the plane of the screen lies at an increasingly
acute angle to the electron beam axis. In (b), to the left we illustrate the screen lying at 90◦ to the electron gun axis (for clarity, the diameter of
the beam is exaggerated). In this situation a circular region of phosphor is excited. To the right we illustrate the situation in which the plane of
the screen lies at an acute angle to the electron gun axis. Here, the region of phosphor that is excited is no longer circular – this leads to voxel
elongation. In (c) we illustrate a further problem that arises. On the left hand side, we show the screen at 90◦ to the electron gun axis. Two
beam positions are indicated – the angle between these lines is intended to denote the smallest angle through which the controlling hardware
can deflect the beam (for clarity this angle is exaggerated). This results in a displacement of the beam on the screen which is denoted as η. On
the right hand side, we show the situation that occurs when the plane of the screen lies at an acute angle to the electron gun axis. Again the
diagram indicates the smallest beam deflection angle that can be achieved by the controlling hardware. The displacement on the screen is now
denoted as η′ where η′ > η. Gradually, as the screen lies at an increasingly acute angle with respect to the electron gun axis, we lose accuracy in
voxel placement.
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Figure 9.21 One simple approach that ameliorates the distortional and voxel placement dead zones. Here, two electron guns are used and each
is responsible for voxel activation within a limited region of the image space. Thus the gun that is denoted in red, is responsible for voxel activation
when the screen lies within the portion of the image space that is highlighted in red. Similarly, the gun depicted in blue writes to the region of the
image space that is shaded in this colour.

We refer to the first of these problems as giving rise to a distortional dead zone and the
second as the voxel placement dead zone21. Within this context, a dead zone may be defined
in the following way:

Dead Zone: A region of an image space within which image quality
is compromised by a reduction in one or more image space character-
istics.

Distortional and voxel placement dead zones may be resolved in various ways. In the
case of the CRS, a ‘brute force’ approach has generally been adopted and this involves
using two or three electron guns. These are arranged around the image space and each
is responsible for writing to a limited portion of this display volume. In short, each gun
only writes to the screen when the geometry between the screen and electron gun axis is
favourable – see Figure 9.21. Other approaches may be adopted. See, for example, the work
of Max Hirsch (US Patent Number 2,967,905) who in 1958 described two techniques. On
of these represents a truly radical approach – Hirsch maintained fixed geometry between
the electron guns and the screen by simply co-rotating the screen and electron guns! A

21 In fact various dead zones may be associated with both swept and static volume displays. For further
discussion see [Blundell and Schwarz 2000, Blundell 2007] and for more in depth analysis [Schwarz and
Blundell 1994a, 1994b, 1994c].
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(a) (b)

Figure 9.22 The Perspecta Spatial 3-D Display developed by Actuality Systems. In (a) a previous version of the display is shown projecting a
25 cm diameter volumetric image of an aeroplane over fractally-generated terrain. The image is visible from any angle around or above the display.
Actuality Systems Inc.’s founder Gregg Favalora is in the background. In (b) a segmented MRI scan of a cancerous lesion within a breast is displayed.
The various anatomical regions of interest are depicted using different colours. For example, the tumour is shown in purple, while the blood vessels
are illustrated in red and blue. The image data is courtesy of U. Penn. Radiology (Phila., Penn., USA) and Brigham and Women’s Hospital’s Surgical
Planning Laboratory (Boston, Mass., USA). (Images kindly supplied by, and reproduced by permission of Gregg Favalora, Actuality Systems Inc.)

publication in relation to a display system called the 3D-Rotatron [Shimada 1993] describes
an interesting optical arrangement, and a commercially available swept volume system (the
Perspecta) provides an excellent example of a further technique22 – see Figure 9.22 and
Table 9.4. A display described in a 1977 patent (US Patent Number 4,160,973) provides us
with another example of techniques that can be used in the implementation of the planar
screen swept volume display. Here, the rotating screen is equipped with a 2-D array of light
emitting elements and so beam sources are unnecessary.
As described previously, in the case that an image space is generated by the translational
motion of a planar screen, the data set is processed to generate a series of parallel slices
through the image scene and these are output to corresponding locations within the image
space. However, in the case that the rotational motion of a planar screen is employed, the
image space is divided into a number of sectors (see Figure 9.23) to which corresponding
radial slices of the image data set are output. The screen must rotate with sufficient rapidity
so that image flicker is not problematic. As with the display outlined previously (using
translational motion) this implies that the screen rotates at a frequency in excess of 25 Hz.
However, there is the possibility of obtaining two image refreshes during each cycle of screen
rotation and this therefore enables (at least in principle) the frequency of rotation to be
halved.

22 The Perspecta is produced by Actuality Systems Inc., 213 Burlington Road, Suite 105, Bedford, Massa-
chusetts 01730. (http://www.actualitysystems.com)
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Table 9.4 Some general details of the Perspecta display produced by
Actuality Systems. (Reproduced by kind permission of Gregg Favalora,
Actuality Systems Inc.)

The Perspecta 3-D System v1.9:

Image space: 25 cm diameter.
Field of view: 360◦ horizontal, 270◦ vertical.
Resolution: 198 slices (∼1 slice per degree), 768 by 768 pixels per slice.
Display dimensions: 48′′ high by 31′′ wide by 22.25′′ deep.
Graphics engine NVIDIA GPU, 2.2 GHz 64-bit AMD Athlon CPU.
Interface: Dual Gigabit Ethernet.

Full colour with 2-D and 3-D OpenGL texture-mapping support.

Key strengths and potential weaknesses of the planar screen approach are summarised in
Table 9.3.

OTU Exercise 9.8: Image Refresh

As indicated above, swept volume displays employing the rotational motion of a planar screen
may, at least in principle, support two image refreshes during each cycle of screen motion.
With reference to the CRS illustrated in Figure 9.19 suggest how you would obtain this objec-
tive. Additionally, in the case that we assume only one image refresh during each cycle of
screen motion, how would you arrange for the CRS to generate multi-colour images?

3. A Swept Volume Display Employing the Rotational Motion of a Helical Screen: In the case
that a planar screen is employed in conjunction with rotational motion, it is likely that the
mechanical rigidity and stability of the screen will set an upper limit on the dimensions

Plan View

Image space 
from above

Image space 
is divided into 
a number of 
sectors

Figure 9.23 Plan view of the image space. This is divided into a number of sectors and as the screen passes through each sector, a corresponding
slice of the image data set is output to it.
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of the image space.23 A helical screen offers greater mechanical rigidity than its planar
equivalent and is therefore better suited to the implementation of ‘large volume’ displays.

A patent filed in 1976 by Rüdiger Hartwig (German Patent Number DE 26 22 802 C2),
describes a swept volume display system based on a rotating helix and using directed laser
beams for the formation of voxels on the helical surface. Systems of this type are generally
referred to as HL3D (helix-laser-3-D) based technologies. Various forms of helix may, in
principle, be used – such as the single bladed configuration illustrated in Figure 9.24.

The original HL3D system employed a cylindrical image space measuring 60 cm in
diameter and 40 cm in height which was formed using a single bladed helix constructed
from a white plastic. Over the years considerable work has been undertaken in relation to
helical based displays – including research at Texas Instruments (see, for example, Williams
and Garcia [1988]) and by the US Navy24 (Soltan et al. 1992, 1994).

One further point to note concerning the use of a rotating helix relates to the ease by
which Cartesian coordinates may be mapped into the image space. Let us suppose that we
wish to map a set of points whose coordinates are denoted (x, y, z). We must define the
orientation of a corresponding image space coordinate system and then map our set of
points onto the rotating helix. We will assume that the image space coordinate system is as
indicated in Figure 9.24 – with the z-axis coincident with the axis of rotation. In principle,
when we map our set of points onto the helix, we need not modify the x and y values
(although in practice we would, for example, apply scaling). As far as the z coordinates are
concerned this is easily dealt with and is defined by the time (during each cycle of motion)
at which we write each point onto the helix. Due to the geometry of the helix, the height of
a point within the image space is directly proportional to the time at which it is illuminated
(where time is measured from the start of each rotational cycle).

4. A Swept Volume Display Employing Two Degrees of Rotational Freedom: The approach
illustrated in Figure 9.25 is included to prove a simple example of the ingenuity that has
been directed to the implementation of swept-volume systems. This display is described
in a patent filed in 1991 (European Patent Number 0 418 583 A2) and employs a planar
screen (10) that is housed within a transparent sphere (15). Two drive systems ((16) and
(19)) are employed – these being at right-angles to each other. Thus one drive provides
horizontal motion and the other supports vertical movement. Consequently, by adjusting
their relative speeds of motion the sphere (and screen) may be moved through a complex
motion cycle. The screen is constructed from a material able to scatter incident light and a
number of scanned laser sources are placed around the sphere – these are responsible for
voxel activation.

OTU Exercise 9.9: A Display Employing Two Degrees of Freedom

Consider the swept volume display illustrated in Figure 9.25. Discuss its operation – what are
the main strengths and weaknesses of this approach?

23 Other factors may also play a part – e.g. in the case of the CRS, the maximum achievable deflection of
the electron beams is an important issue.
24 One prototype system provided a cylindrical image space measuring 36 inches in diameter and 18 inches
in height. This provided support for colour image depiction (by means of three directed laser beams) and
an image refresh frequency of 40 Hz.
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(a)

(b)

Figure 9.24 In (a) a single bladed helix – as described in the original Hartwig 1976 patent. In (b) a prototype of the Helix3D display unit
employing the helical screen invented by Rüdiger Hartwig in 1976. This shows Prof. Hartwig at the first public presentation of his Helix3D display
technology at the University of Heidelberg, Germany 1982. The rotational axis which is clearly visible was used only in this first prototype. Due to
another aspect of the Hartwig invention, the Helix3D can be built without the need for such an axis and this eliminates the visual disturbance that
its presence can cause. For further information see US Patent 6,958,837, European Patents DE2622802C2 and DE10047695, also Hartwig [1982].
(Reproduced by kind permission of Professor R. Hartwig.)
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Figure 9.25 A swept volume display employing two degrees of freedom. The transparent sphere contains a semi-transparent screen. Several
scanned laser sources are used for voxel activation. (Reproduced from European Patent Number 0 418 583 A2.)

9.5.3 Static Volume Volumetric Displays

Research into the development of static volume systems has an even longer history than the
swept volume approach and dates back at least as far as 1912 (see French Patent Number
461600). Many techniques have been evaluated and as with swept volume research, some of
the early designs (prior to the late 1960s) simply failed because workers did not have access to
the necessary computer systems and required technologies.

Perhaps the simplest and most direct approach to the implementation of a static volume
display involves the use of a 3-D array of light emitting elements located within some form of
supporting structure. However, this method has a number of major disadvantages. For example:

1. Consider a cubic volume (image space) comprising an array of n by n by n light emitting
elements. If we were to double the length of side of this volume (and were to maintain the
same spacing between the light emitting elements) then there would be an 8-fold increase
in the total number of elements in the 3-D array). Thus doubling the length of side would
increase the number of elements from n3 to 8n3!

2. Even in the case of a small image space, to support a tolerable inter-voxel spacing, a large
number of elements are required. For example consider a cubic image space with sides of
length 20cm and an inter-voxel spacing of 1mm (which is quite coarse). Some 8 million
light emitting elements would be required and from (1) above, doubling the length of side
of the volume would increase this number to 64 million!

3. Naturally the presence of such an enormous number of light emitting elements (together
with the associated connections) would impact on image space transparency and would
therefore detract from image visibility, clarity, and the like.
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Figure 9.26 Here we consider a simple model of a fluorescent centre comprising three electronic energy levels. Two non-visible beams may be
used to excite the fluorescent centre from state |1〉 to |3〉 (via intermediate state |2〉). Subsequent radiative decay to the ground state may result
in the emission of a photon of visible light.

4. Due to the incorporation of enormous number of elements, interconnections and the
necessary supporting structure, any image space of useful dimensions is likely to have quite
a high mass and this may well impact on portability.

The above points highlight some of the weaknesses associated with employing a 3-D array of
light emitting elements – an approach that is likely to be unsuccessful.

Having put to one side an obvious method for implementing a static volume display, let us
now consider by way of example a more practical approach. Here, we will assume that an image
space is formed by means of a suitable gas held at an appropriate pressure within a transparent
container. Voxel generation may be achieved by a process known as the two-step (stepwise)
excitation of fluorescence – in which case the voxel activation subsystem usually employs two
beams of radiation. These are directed into the image space and a visible voxel is formed in
the region at which the beams intersect. In Figure 9.26, we provide a simple (idealised) model
that demonstrates the manner in which this process operates. Here we consider three quantised
atomic electronic energy levels – denoted |1〉, |2〉 and |3〉. Following previous publications (e.g.
Lewis et al. [1971], Blundell and Schwarz [2000]), we will refer to this atom as a ‘fluorescent
centre’ – which is defined in the following way:

A fluorescent centre may be defined as an atom, ion or molecule that
directly contributes to the production of light and hence the formation
of the visible voxel.

As indicated in Figure 9.26, we assume that the energy difference between states |1〉 and
|2〉 is E 2 − E 1 and between states |2〉 and |3〉 is E 3 − E 2. Let us now suppose that a beam
of radiation with a frequency f impinges on the fluorescent centre. Basic physics allows
us to relate the frequency of radiation to the energy (E ) of the photons that comprise the
beam:

E = h f, (9.4)
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where h denotes Planck’s constant.25 Furthermore, the frequency ( f ) and wavelength (λ) of a
wave are related by the following expression:

c = f λ,

where c represents the speed of electromagnetic radiation in the medium through which the
radiation is travelling. Thus we can write:

E = h f =
hc

λ
. (9.5)

Returning now to the fluorescent centre: if a beam of radiation comprising photons with energy
E 2 − E 1 (i.e. a beam whose frequency ( f1) is resonant with the |1〉 and |2〉 transition), then
energy absorption will occur and the fluorescent centre will undergo excitation from state |1〉 to
state |2〉. Under natural conditions this ‘excited’ fluorescent centre will decay and so return to
the ‘ground state’. However, if we also apply a second radiation beam with frequency f2 (which
is resonant with the energy difference between the |2〉 to |3〉 levels), the fluorescent centre will
undergo a further excitation from state |2〉 to state |3〉. Subsequently, the fluorescent centre will
return directly to the ground state.26 This will be accompanied by the emission of radiation with
photon energy E such that:

E = E 3 − E 1 = h( f1 + f2).

Thus, in this simple model, the frequency of the radiation emitted is greater than that of either of
the beams used in the excitation process and so, in principle, this approach may be implemented
using two infrared (non-visible beams). However, in practice other intermediate energy levels
are usually involved in both the excitation and decay processes and the model illustrated in
Figure 9.26 represents a simple (conceptualised) scenario.

A number of gases may be employed in the implementation of a gaseous image space able
to support voxel formation by means of the two-step excitation process. Those interested in
learning more about this technique will find useful information a range of publications such
as Blundell [2007] (a general overview, analysis and references), Zito and Schraeder [1963(a),
(b)] (concerning the use of mercury vapour) and US Patent Number 4,881,068 (containing
extensive discussion including the use of rubidium vapour). Also in connection with the use
of a solid image space medium (rather than a gas) see Lewis et al. [1971], Soltan et al. [1992],
Chinnock [1994], Downing et al. [1994], Glanz [1996], Soltan and Lasher [1996], Nayar and
Anand [2007].

Many other techniques have been applied to the implementation of static volume systems
(see Blundell [2007]) and for our present purposes, it is instructive to mention two of these:

1. In two (practically identical) patents filed in 1968 (US Patent Numbers 3,609,706 and
3,609,707) the development of static volume systems employing photochromic and
thermochromic materials is considered. It is not necessary to describe here the physical
processes by which these materials are able to support the production of visible voxels (for
relevant discussion see Blundell and Schwarz [2000] and Blundell [2007]). However, the
use of such materials offers to support the formation of voxels that scatter (rather than
emit) light.

25 Planck’s constant (h) ∼ 6.63 × 10−34 Js.
26 Or indirectly via some intermediate state that we have not included within our simple model.
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Figure 9.27 A simplified drawing showing the basic principle of operation of the DepthCube display manufactured by LightSpace Technologies.
The image space comprises a set of liquid crystal panels which are individually switched between transparent and scattering states. A high-speed
optical projection system casts a series of image slices into the display volume – to make a particular slice appear visible at a certain depth, the
corresponding liquid crystal panel is placed in a scattering state (all other panels being transparent). In effect, this approach represents the ‘solid
state’ rendition of a swept volume display employing translational motion.

Voxels that scatter incident light are optically opaque or semi-opaque.
This enables images to take on a solid appearance and hence the depth
cue of occlusion is satisfied. Furthermore, shadows may be created
naturally through the use of external light sources. This opens up many
interesting opportunities and enables the volumetric image to more
closely represent the electronic equivalent of the traditional sculpted
object.

2. LightSpace Technologies Inc. manufactures a static volume display system known as the
DepthCubeTM. The image space comprises a set of liquid crystal panels that are stacked
so as to lie parallel to each other (see Figure 9.27), and each may be individually switched
between transparent and strongly scattering states.27 The control hardware addresses the
panels in sequence and so the depth at which scattering occurs continuously varies. An
optical image projection system is used to output a series of image slices into the image
space. In Figure 9.27, we indicate a panel at a particular depth within the image space
that for a brief period is in a scattering state. At this time, the optical projection system
outputs the image slice that is to appear at this depth. Subsequently, the panel is returned
to a transparent state and an adjacent panel is switched into a scattering state. Another

27 Note: each panel is switched in its entirety between these two states – limited parts of each panel are not
addressed.
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image slice is then output etc. For further discussion see Sullivan [2003], US Patent Number
6,100,862 and the LightSpace Technologies website.28

9.6 Varifocal Systems

‘Until a man duplicates a blade of grass,
nature can laugh at his so called scientific knowledge.’29

We now briefly turn our attention to an autostereoscopic display paradigm that received partic-
ular attention in the mid to late 1960s and 1970s. It is interesting to note that most of the work
that was undertaken in relation to this display technique was directed to medical applications
and some excellent results were obtained.

As the name implies, the varifocal mirror approach is based on a curved mirror whose focal
length continuously changes. In a particularly simple form this is achieved by stretching a
highly reflective flexible membrane (e.g. aluminised Mylar) across the cone of a loudspeaker –
see Figure 9.28. A sinusoidal signal is then applied to the ‘speaker and this causes the flexible
membrane to continuously vary between concave and convex states. The well known mirror
equation provides us with a relationship between the position of an object (u), the focal length
of the mirror ( f ) and the location of the image that is produced (v):

1

u
+

1

v
=

1

f
. (9.6)

Furthermore, suppose that an object has a height denoted as ho and the image a height hi , then
the lateral magnification produced by a curved mirror is given by:

Magification =
hi

ho
=

v

u
. (9.7)

Alternatively, combining this with Eq. 9.6, we can write:

Magnification =
v

f
− 1. (9.8)

In applying Eq.’s 9.6 through to 9.8, we need to adopt a sign convention that distinguishes
between concave (converging) and convex (diverging) mirrors and that enables us to distinguish
between real and virtual objects and images.30 Such a convention is as follows:

28 http://www.lightspacetech.com.
29 Attributed to Thomas Edison (1847–1931).
30 In standard elementary optics/physics texts, a real image is one that is brought to focus in the region
between the observer and the mirror. This contrasts with a virtual image which appears to lie behind the
mirror. In the context of the forms of image and image space introduced earlier in this chapter, we refer
to the former as a ‘free’ image and continue to use the term ‘virtual’ for the latter.
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reflective coating
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Figure 9.28 A simple implementation of a varifocal system. A flexible membrane (with mirrored coating) is attached to the front of a conven-
tional loudspeaker. A sinusoidal signal is applied to the ‘speaker and this causes the flexible mirror to continuously vary between concave and
convex states.

Real is Positive:
� Real objects and real images are said to be located at positive dis-

tances from the mirror.
� Virtual objects and virtual images are said to be located at negative

distances from the mirror.
� A concave (converging) mirror is said to have a positive focal

length.
� A convex (diverging) mirror is said to have a negative focal length.

OTU Exercise 9.10: Locating the Size and Position of an Image Formed by
Curved Mirrors

1. Consider a concave (converging) mirror with a focal length of 20 cm. An object of height
2 cm is placed 10 cm from the mirror. Determine the location and size of the final image.
Is this image located in front of, or behind the mirror (i.e. in terms of the forms of image
identified earlier in this chapter, does this constitute a free space or virtual image)?

2. Repeat question (1) but this time assume the use of a convex mirror.

Hint: Remember to adopt the sign convention indicated above!

As the radius of curvature of the varifocal mirror changes, so too does its focal length. Con-
sequently, on the basis of Eq. 9.6, it is apparent that as the mirror moves through a cycle
of its vibration, the image of an object that is placed in front of the mirror will appear
to change in position. Furthermore, only a small change in mirror curvature is needed to
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generate a large change in image location. This is demonstrated by the following equation
in which the image position (denoted as v(t) (indicating the v is a function of time)) is
related to the mirror diameter (d), the object location (u), the maximum mirror displace-
ment (xmax) and the frequency of the sinusoidal waveform that is applied to the mirror
(ω = 2π f ):

v(t) ∼ d2u

16u |xmax| sin ωt − d2
. (9.9)

For a simple derivation of. this equation, see Appendix B.

OTU Exercise 9.11: The Curvature of a Varifocal Mirror

Consider that an object is placed 80 cm in front of a varifocal mirror which has a diameter
of 30 cm. Assuming that the peak to peak amplitude of motion of the mirror is 4 mm and
considering only the portion of the mirror’s motion for which it is convex, determine the depth
of the image space (i.e. the range of image location).

As is apparent from OTU Exercise 9.11, a small change in mirror curvature has a considerable
impact on the location of the image and so the varifocal approach supports (in principle) the
formation of an image space which has significant depth. However, we should also bear in
mind that the changing curvature of the mirror also impacts on magnification. For example
continuing with the scenario described in the previous OTU Exercise, we can use Eq. 9.8 to
determine the magnification at the two locations that correspond to the extremes of the mirror’s
convex cycle. In the case that t = 0, we know that the object and image distances are equal and
therefore the magnification is unity. On the other hand, when t = 3T/4, the magnification is
approximately 51/80 ∼ 0.6.

The issue of the continuously varying magnification associated with a varifocal mirror means
that when a series of image slices are computed for output to the mirror, each must be suitably
scaled. In this way, we can resolve the variable magnification issue.

Naturally, so that images depicted by means of a varifocal based display are perceived as being
free from flicker, the mirror must vibrate with sufficient rapidity. As with the swept volume
volumetric system employing translational motion, this means that the mirror must vibrate at
a frequency in excess of 25 Hz. In the case that the display is based on the simpler loudspeaker
approach summarised in Figure 9.28, this leads to undesirable acoustic noise (the lower bound
to human hearing is in the range 16–32 Hz). Unfortunately, in literature, the issue of acoustic
noise is often cited as representing a fundamental flaw associated with this approach and this
is said to negate the usefulness of this technique. However, this is not correct and a number of
techniques can be used to either ameliorate or completely eliminate this problem. For example:

1. Lawrence Sher undertook a great deal of research in connection with varifocal systems and
in a patent filed in 1977 (US Patent Number 4,130,832) he describes a system that was
intended to overcome the problem of acoustic noise.

2. Alternative designs place the mirror within an evacuated vessel and this completely
eliminates the issue of acoustic noise. For example, see UK Patent Application Number
GB 0700505.1.
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Figure 9.29 A stereoscopic photograph of simulated air traffic control data depicted on a varifocal system prototyped by Alan Traub in the 1960’s.
The image is depicted on an oscilloscope and is reflected by the varifocal mirror (which appears on the right hand side of each of the stereo images).
This simple varifocal system employed a loudspeaker drive (part of which can be seen on the extreme right). The images may be fused using the
stereo glasses supplied with this book or simply by slightly ‘crossing’ the eyes. Notice that when viewed as a stereopair, the varifocal image appears
to lie behind the varifocal mirror and so this represents a virtual image space. (Reproduced from Traub [1967], by kind permission, © 1967 Optical
Society of America).

Acoustic noise is not an inherent problem of the varifocal technique,
but is rather a problem that is associated with certain varifocal archi-
tectures. With judicious design a silent varifocal system can be imple-
mented and this enables the refresh rate to be increased beyond 30 Hz.

Without doubt the varifocal technique offers many interesting opportunities and represents
a low cost autostereoscopic display modality. In Figure 9.29, a stereoscopic photograph of a
varifocal image is reproduced. For further reading see, for example, Blundell [2007], McAllister
[1993]31, Traub [1967], Rawson [1968, 1969], King and Berry [1970], Harris et al. [1986],
Kennedy and Nelson [1987], Sher [1988] and US Patents 3,493,290 and 4,130,832.

9.7 Holographic Techniques

‘Each of us visits the Earth involuntarily and without an invitation.
For me, it is enough to wonder at its secrets.’32

Researchers working on the development of creative 3-D display systems often regard an elec-
tronic display able to depict animated holographic images in real time as the ultimate (although
somewhat elusive) display technique. Holographic images are able to support the pictorial,
oculomotor and parallax depth cues and so they are well suited for the natural requirements of

31 In Chapter 11, Lawrence Sher discusses varifocal systems.
32 Attributed to Albert Einstein (1879–1955).
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the human visual system. On the other hand, in its truest form, computed holography (which
is also called electroholography or holographic video) has extreme computational overheads
and places stringent requirements on the display hardware. Shortly, we will briefly discuss the
computational requirements of this technique but before doing so we provide some general
background detail.

9.7.1 General Issues

Detailed discussion on holographic techniques is beyond the scope of this book and our purpose
is simply to present some general information and references for further reading.

The basic concept of holography was first described in a one-page article written by Denis
Gabor that was published in ‘Nature’ in the late 1940s [Gabor 1948]33. At that time Gabor
was primarily interested in using holography to advance electron microscopy; the development
of optical holographic techniques represented a secondary objective. Despite his remarkable
publication, some years were to pass before interest in optical holography really gained momen-
tum. The implementation of practical holographic recording and display techniques requires
access to a coherent high-intensity monochromatic (single wavelength) light source. These are
characteristics of laser radiation and so with the advent of the laser in the early 1960s, optical
holography became a practical proposition (see, for example, [Leith and Upatnieks [1962,
1963, 1964]).

Conventional photography captures on film the amount of light reflected by the objects that
comprise the scene. Furthermore, there is a one-to-one correspondence between points within
the scene and points on the photographic film. In contrast, a holographic image is created by
capturing not only the amplitude of reflected light, but also its phase. In short:

When an object scatters incident light, the scattering process is
described by the strength and phase of the waves emanating from the
surface. This information can be used to capture the three-dimensional
form of an object and enables (at least in principle) pictorial, oculomo-
tor and parallax cues to be supported.

Furthermore, as we have just mentioned, in the case of conventional photography each ‘point’
within an image scene is mapped onto a corresponding point on the photographic film.
In contrast, in the case of a holographic recording, there is no such one-to-one mapping –
each point within the scene is mapped to a wide area of the hologram. Thus, if the holographic
recording is scratched or even if a fragment is removed, this does not mean that a corresponding
part of the image scene will be lost!

A holographic recording takes the form of an interference pattern and in brief, this can be
obtained by taking a laser and splitting the beam so that light travels along two paths – see
Figure 9.30. Light traversing one of these paths impinges on the object (or collection of objects)
whose holographic image is to be recorded. Light scattered by the object then interferes with the
second (reference) beam and the interference pattern is captured on film. Subsequently, when
the holographic recording is re-illuminated with the laser source used in the recording process,
the original object (or collection of objects) appears in 3-D form.

33 Additionally, a review paper written by Gabor in the early 1970s is well worth reading – it provides a
wealth of important information [Gabor 1972].



414 An Introduction to Computer Graphics and Creative 3-D Environments

Object whose holographic image is to 
be formed

Laser beam is 
split and 
follows two 
paths

Reference beam

Laser light scattered by 
object

Photographic plate on 
which the interference 
pattern is captured

Laser

Figure 9.30 A simplified overview of the recording of a holographic interference pattern. Here, we show light from a laser split into two
beams that traverse separate paths. One of these beams forms a ‘reference’ and the other impinges on the object whose holographic image
is to be recorded. Subsequently, the light scattered by the object and the reference beam combine to produce an interference pattern on
the recording medium. In this way it is possible to record not only the amplitude of the waves scattered by the object but also their
phase.

9.7.2 Computed Holography

In the above discussion, we have outlined a general technique for capturing a holographic fringe
pattern that contains both amplitude and phase information. Naturally, we can also generate
such a fringe pattern on the basis of mathematical calculations and in this way may make
holographic recordings of virtual objects and scenes. In one scenario, once the fringe pattern has
been computed, it is imprinted on a suitable medium and when illuminated in an appropriate
manner the 3-D scene may be viewed. However, this approach does not support interaction
nor does it enable image animation. Consequently, an ultimate goal is to display holographic
images in real time (i.e. at video refresh rates) and thereby allow both animation and interac-
tion. Unfortunately, this is a daunting task. Within this context, Blundell and Schwarz [2006]
write:

‘. . . in order to diffract visible light, the fringe pattern needs a resolution on the order of the wavelength of light
(∼400–700 nm). The digital fringe pattern must therefore be displayed at a spatial resolution of around 2000
pixels/mm!’

Recall junior level science lessons in which plane waves are generated in a water tank (the so
called ‘ripple tank’). When these waves pass through an opening whose width is larger than the
wavelength of the waves – plane waves will emerge. On the other hand, if they pass through a
narrower opening (i.e. one whose width is less than or approximately equal to the wavelength
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Figure 9.31 Here, we illustrate (in plan view) a ripple tank. Planar waves in water are generated on the left hand side and propagate to the
right. In (a) these waves pass through a gap (wide slit) whose width is considerably greater than their wavelength. Consequently, after passing
through the gap, the waves continue to be essentially planar. This contrasts to the situation illustrated in (b). The width of the slit is now less
than the wavelength of the waves. As a result, the waves subsequently spread out and exhibit semicircular wavefronts. This process is known as
diffraction.

of the incident waves) semi-circular waves will emerge – see Figure 9.31. This ‘spreading out’ of
the waves is known as diffraction. In this context Nelkon and Parker [1995] write:

‘. . . when a wave is incident on a narrow opening whose width is of comparable order to the wavelength.
The wave now spreads out or is ‘diffracted’ after passing through the slit. If the width of the slit, however,
is large compared with the wavelength, the wave passes straight through the opening without any noticeable
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diffraction. This is why visible light, which has wavelengths of the order of 6 × 10−7 m, passes straight through
wide openings and produces sharp shadows; whereas sound which has wavelengths over a million times longer
and of the order of say 0.5 m can be heard round corners.’

Returning now to the previous quotation. Let us consider light with a wavelength of 500nm. It
follows that in order for diffraction to occur when light passes through a fringe pattern that we
have created, the fringe pattern must exhibit ‘detail’ with spacings on the order of 500 × 10−9 m.
Thus within the fringe pattern we require on the order of 1/0.5 × 10−6 = 2 × 106 ‘elements’ per
metre. This is equal to a spatial resolution of 2000 ‘elements’ per mm. A more accurate estimate
of the number of digital samples (N) that must be computed so as to generate a full parallax
(vertical and horizontal) hologram is given by St. Hilaire et al. [1992]. If we assume that we are
to generate a hologram that has a height h and width w, then:

N =
4wh sin2 θ

λ2
. (9.10)

Where λ represents the wavelength of the light and θ the range of viewing angle.

OTU Exercise 9.12: Computing a Holographic Fringe Pattern

On the basis of Eq. 9.10 determine the approximate number of digital samples that must
be calculated to generate a square holographic image with sides of length 20 cm and that
supports a viewing angle of 30◦. Assume that the wavelength of the light is 500 nm.

The above OTU Exercise indicates a need to compute ∼16 × 1010 digital samples per holo-
graphic frame. For any real-time application this is a daunting task. Furthermore, if we assume
that each fringe pattern sample is represented by eight bits and that we wish to have a frame
update frequency of 30 Hz, then the digital bandwidth to the display device is ∼38 × 1012 bits
per second.

Certainly, when we consider the generation and depiction of computed holograms for
real time applications, the problems are daunting. Not only must we be able to compute
the digital samples with sufficient rapidity, but also the graphics pipeline must be able to
handle their throughput and the display system must be able to support their depiction.
Unfortunately, popular literature often overlooks these fundamental issues, and accounts
of stylistic display technologies based on holographic techniques are presented as accom-
plished fact. In addition, some workers in the area of creative 3-D display technologies have
exploited the general popularity of the holographic technique by implying (in some way)
that their display products are based on holographic principles when in actual fact this
is by no means the case. Thus in the case that a real-time display product has a name
(or the like) which implies that it is based on a holographic approach, caution should be
exercised . . .

Returning to Eq. 9.10 we can use a number of strategies for reducing the number of digital
samples that comprise the fringe pattern. For example, we can reduce the size of the holograph,
reduce the extent of viewing freedom and support only horizontal parallax. This latter approach
has a significant impact and in this case Eq. 9.10 reduces to:

N =
2wh sin θ

λ
.
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OTU Exercise 9.13: Viewing Freedom

Suppose that in an attempt to reduce the overheads associated with the computed hologra-
phy technique, we support only horizontal parallax and reduce θ from 45◦ to 25◦.

1. Estimate the impact this would have on the lateral extent of the viewing zone. Assume a
typical viewing distance of 50 cm.

2. Estimate the effect this would have on the number of digital samples comprising the
fringe pattern (as with OTU Exercise 9.12, assume λ = 500 nm and that the hologram is
a square with sides of length 20 cm).

Other techniques are summarised in Blundell and Schwarz [2006]. For more detailed discus-
sions also see, for example, Okoshi [1976], Lucente [1993, 1994, 1996], Ritter et al. [1997, 1998]
and Halle [1996].

9.8 Discussion

‘Il y en a toujours l’un qui baise, et l’un qui tourne la joue.’34

Despite the considerable length of this chapter, we have been able to do little more than provide
a brief insight into the technologies and techniques that may be used in the implementation of
creative 3-D display technologies and have identified various general characteristics. Certainly
there is no ‘perfect’ 3-D display – they all possess (to a greater or lesser degree) limitations
and undesirable characteristics. On the other hand these must be balanced against the inherent
limitations of the conventional flat screen display – and for certain key applications, the inability
of today’s standard computer display to support the parallax depth cues has a negative impact
on the visualisation and interaction processes.

At present there is a significant and growing interest in the development of creative 3-D
display and interaction technologies. For example, in Figure 9.32 we reproduce two stereopairs
showing an image depicted on a 3-D display system that is under development at the University
of Southern California. Observers are able to move around the image space and view displayed
images from any orientation. Horizontal parallax is inherently associated with this display
technique and in addition head tracking can be used to support vertical parallax. Interestingly
this approach fundamentally builds on both volumetric and multi-view techniques. However,
unlike the majority of volumetric architectures the depth cue of occlusion is supported thereby
allowing images to exhibit a ‘solid’ appearance. Voxels are emissive and so external lighting
cannot be used to form natural shadows. For further details of this exciting technology see Jones
et al. [2007]35 – the Abstract from which is reproduced below:

‘We describe a set of rendering techniques for an autostereoscopic light field display able to present interactive
3D graphics to multiple simultaneous viewers 360 degrees around the display. The display consists of a high-
speed video projector, a spinning mirror covered by a holographic diffuser, and FPGA circuitry to decode

34 Quoted from Monsarrat, N., ‘The Cruel Sea’, Cassell and Co (1953). Translation: ‘There is always one
who kisses and the other who turns the cheek.’
35 A preprint of this publication together with a video download are available via the following URL:
http://gl.ict.usc.edu/Research/3DDisplay/ (date last visited: December 2007).
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(a)

(b)

Figure 9.32 Stereo pairs of an image depicted on the Light Field display developed by Andrew Jones et al. These stereopairs have been captured
at different viewpoints around the display. In connection with these images the researchers write: ‘The two stereo viewpoints sample the 360◦

field of view around the display. The right pair [Figure a] is from a vertically-tracked camera position and the left pair [Figure b] is from an untracked
position roughly horizontal to the centre of the display.’ [Jones et al. 2007]. (Images kindly provided by Mark Bolas, reproduced with permission.)

specially rendered DVI video signals. The display uses a standard programmable graphics card to render over
5,000 images per second of interactive 3D graphics, projecting 360-degree views with 1.25 degree separation
up to 20 updates per second. We describe the system’s projection geometry and its calibration process, and
we present a multiple-center-of-projection rendering technique for creating perspective-correct images from
arbitrary viewpoints around the display. Our projection technique allows correct vertical perspective and
parallax to be rendered for any height and distance when these parameters are known, and we demonstrate
this effect with interactive raster graphics using a tracking system to measure the viewer’s height and distance.
We further apply our projection technique to the display of photographed light fields with accurate horizontal
and vertical parallax. We conclude with a discussion of the display’s visual accommodation performance and
discuss techniques for displaying color imagery.’



Chapter 9 . Creative 3-D Display Techniques 419

(a)

(b) (c)

Figure 9.33 Images depicted on the display technology developed by Shree K. Nayar and Vijay N. Anand. Image (a) shows a 3-D avatar
photographed from three different viewpoints. This avatar is also depicted in (b) and is reported to comprise 127,333 points. In (c) 3-D Pac-Man is
depicted on the display. (Images kindly provided by Shree Nayar, reproduced with permission).

A further example of ongoing development work is described in an excellent publication by
Nayar and Anand [2007]. This relates to a volumetric technique in which images are formed
within a solid transparent medium. In Figure 9.33 we reproduce several images displayed using
this system. In describing this technology, the researchers write:

‘Systems for displaying images and videos have become part of our everyday lives. However, most systems in
use today can only display 2D images. Since we live in a 3D physical world, a system that can display static
and dynamic 3D images would provide viewers with a more immersive experience . . .

Our displays use a simple light engine and a cloud of passive optical scatterers. The basic idea is to trade off
the light engine’s 2D spatial resolution to gain resolution in the third dimension. One way to achieve such a
tradeoff is to use a stack of planar grids of scatterers where no two stacks overlap each other with respect to the
light engine’s projection rays.

Such a semiregular 3D grid suffers from poor visibility. As the viewer moves around the point cloud, the fraction
of visible points varies dramatically and is very small for some viewing directions. However, randomizing the
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point cloud in a specific manner consistent with the light engine’s projection geometry produces a remarkably
stable visibility function.

We used a technology called laser induced damage . . . that can efficiently, precisely, and at a very low cost
embed a desired point cloud in a solid block of glass or plastic. Each scatterer is a physical crack in the block
that is created by focusing a laser beam at a point. When such a crack is lit by ambient light it is barely visible,
but when it is lit by a focused source it glows brightly.

To illuminate the scatterers, we developed an orthographiclight engine that uses an off-the-shelf digital
projector and inexpensive optics to create parallel rays with a large footprint. While orthographic projection
isn’t required, it allows us to use point clouds without resolution biases and with relatively straightforward
calibration of the display.

We developed several versions of our volumetric display, each designed to meet the needs of a specific class of
objects or a specific application . . . ’ [Nayar and Anand [2007]

In the next chapter we turn our attention to issues relating to interaction, and introduce haptic
interaction techniques which are ideally suited for use with various forms of creative 3-D display.
In fact many of the underlying software techniques used in the implementation of haptic systems
closely parallel those used in 3-D computer graphics.

OTU Exercise 9.14: Constructing a Simple Varifocal Display System

In a most interesting publication, Professor Fuchs et al. [1982] describe the implementation of
a varifocal display system. Two illustrations from this publication are reproduced in Figure 9.34.
In recent correspondence with the author of this book, Professor Fuchs summarised a highly
practical approach to the implementation of such a display. This does not require access
to specialised equipment and is presented in slightly edited form below. This provides an
excellent opportunity for project activity.

1) Buy a drum head with a shiny surface from a music store (or a piece of aluminised mylar
stretched tightly across an embroidery hoop).

2) Place this very close (<1′′) to a large (12′′) speaker.
3) Attach a sine-wave generator (set to 30 Hz) to the speaker.
4) Take the RGB component outputs of a video card from your PC to an oscilloscope

monitor’s raw inputs (red to x-deflection, green to y-deflection, blue to intensity (z-
modulation)).36

5) Attach the vertical sync output of the video card to the trigger input of the sine-wave
generator.

6) Set the video card to 30 Hz output rate, 24 bit RGB (8 bits per colour).
7) Load the 3D points you want to display on this varifocal mirror into the graphics card. Note

that the video card’s pixels will be output to the varifocal mirror display once every 1/30 of
a second in synchrony with the vibrating movements of the drum-head mirror. Thus the
pixels will be in depth order, the pixels nearer the top of the ‘image’ in the video card, will
be scanned out before the ones farther down the ‘image’.

Professor Fuchs adds ‘My impression is that people have made this kind of desktop varifocal
display within a day. It’s the easiest demonstration of a true 3d display I know of. The images are
pretty dramatic, they float in space and people can walk around them.’

36 Naturally due care should be taken so as to avoid causing any damage to the PC or video card!
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Figure 9.34 These illustrations are reproduced from the most interesting publication by Fuchs et al. [1982] and show the projection arrangement
used in the implementation of a varifocal system. The display (in this case CRT based) may be seen towards the top of the illustrations and from this,
image slices are cast onto the varifocal mirror (into which the viewers are looking). Note that each viewer will see a slightly different perspective
view of the image scene. See OTU Exercise 9.14. (Images kindly supplied by Professor Henry Fuchs.)
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9.9 Review Questions

1. Recall that various types of image space were introduced in Section 9.2.2. In general, what
type of image space is generated by volumetric display systems?

2. In the context of volumetric systems, what do you understand by the term ‘dead zone’?
3. Consider the case of a stereoscopic display that employs temporal coding. What is the key

penalty that is associated with this coding technique?
4. Consider the case of a stereoscopic display that employs chromatic coding. What is the key

penalty that is associated with this coding technique?
5. Consider the case of a stereoscopic display that employs spatial coding. What is the key

penalty that is associated with this coding technique?
6. State the three key subsystems that comprise a volumetric display.
7. What additional depth cues are supported by holographic, varifocal and volumetric dis-

play systems?
8. State the five forms of image space that we have identified in this chapter.
9. Consider the case of standard stereograms – such as those presented in Figure 1.32. What

form of image space is associated with this approach?
10. When does total internal reflection occur?

9.10 Feedback to Review Questions

1. The volumetric display technique usually gives rise to a physical image space.
2. A dead zone represents a region of an image space within which image quality is compro-

mised by a reduction in one or more image space characteristics.
3. Each eye only receives alternate frames. Therefore, to avoid image flicker the frame refresh

rate must be increased by a factor of approximately two.
4. Such an approach is limited in its ability to support multicolour imaging – the colour

pallet is greatly reduced – often to only two colours.
5. The total pixel bandwidth of the display is distributed across the number of stereo views

that are generated. Naturally, this results in a reduction in the number of pixels that
comprise each view.

6. The image space creation subsystem, the voxel generation subsystem and the voxel activa-
tion subsystem.

7. The oculomotor cues – accommodation and convergence.
8. Planar image space, physical image space, free image space, virtual image space and

apparent image space.
9. An apparent image space.

10. Total internal reflection can occur when light travels from a dense to a less optically dense
medium.



Interaction and Haptic
Feedback 10

‘. . . and consoled himself with pastimes
such as cricket, which he played in a
manner highly specialised, following
the ball up the moment it left the
bowler’s hand, and sometimes
retrieving it before it reached the
batsman.’

10.1 Introduction

The mouse is the tool most commonly used for interaction with both graphical images and
the event driven user interface. Despite its simplicity and intuitive functionality, this device is
uni-directional – enabling us to input to the computer but not, in itself, providing us with
any sensation of the results of the interaction activity. In this sense the conventional mouse
is passive and the only haptic feedback1 that we receive during the interaction process is
generated by the friction between the mouse and the surface on which it is moved, resistance
to finger pressure as we press its buttons, etc. In this context, it is important to appreciate
that unlike our other sensory systems the haptic channel is bi-directional – enabling us to
sense and act upon our surroundings. However, in terms of our interaction with computer
systems, traditional interaction devices do not capitalise on the bi-directional capabilities of the
human haptic system – we output to the computer but do not receive input (via this sensory
modality) relating to the results of our interaction activities. In this context, Kim et al. [2003a, b]
write:

‘Imagine trying to tell Michel Angelo to sculpt David within the confines of the computer interface. This would
be equivalent to restricting him to the use of only one eye since the monitor only provides 2-D images and to
the use of only one arm since he works through the mouse. It would be necessary to disengage his nerve endings

1 Haptics – derived from the Greek – haptesthai – meaning to come into contact with. Here, we use the
term ‘haptic feedback’ in its broadest sense to encompass both touch and force feedback.

423
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because the mouse provides no force feedback and his arm must be confined so that it can only move in one
plane at a time.’

Clearly, impairing the human sensory systems can greatly detract from our natural dexterity –
thereby increasing task difficulty and in some cases making it impossible for us to perform tasks
within the digital domain which, within the physical world, would be relatively straightforward.
Consideration of simple and even rudimentary everyday tasks reveals the critical reliance that
we place on haptic feedback. For example:

1. Testing soft fruit (e.g. peaches) for ripeness. Can we place total confidence on the visual
system? To what extent is this seemingly simple task facilitated by bringing several of our
senses to bear?

2. Threading a nut onto a bolt or inserting a key into a lock – such tasks are made much more
difficult when our hands are numb from cold and thereby our tactile sense is impaired.

3. Working with materials such as wood, plastics and metals in situation in which we need to
gauge the amount of force that we are applying when, for example, bending or cutting.

4. Reaching for and grasping a wine glass whilst distracted by conversation. Here, we need to
sense initial contact and in addition gauge the pressure applied as we grasp the glass.

To date, the standard computer interface does not incorporate haptic capabilities and for
certain applications this can negatively impact on our ability to make optimal use of computer
technologies. However, there is a growing recognition that as computer applications continue to
increase in complexity there is a need to advance computer display technologies (by supporting,
for example, the parallax depth cues) and also to incorporate some form(s) of haptic feedback.

The development of the computer interface in support of three-
dimensional tactile images should be driven by a wish to advance key
applications that can really benefit from such capabilities and should
be underpinned by practical technologies.

Within this context, when considering the practicality of technologies, we must give careful
attention to their ability to effectively (harmoniously) interface with the human sensory systems
and the associated computational costs – especially in relation to real time applications. Below
we briefly consider two indicative areas of application in which haptic technologies are playing
an increasingly important role:

10.1.1 Medical Training

There are many situations in which our activities can have potentially harmful consequences.
In such cases, simulation systems play a vital role during the training process, enabling, for
example, the trainee to make mistakes without undesirable physical consequences. In addition,
it is possible for the trainee to view the results of actions which in real world situations could
have serious consequences, and to particularly focus on more demanding aspects of procedures.
In the case of surgery and the like, simulation systems will often enable a significant portion
of the training process to be carried out on virtual objects, which reduces the undesirable
reliance that is traditionally placed on animal subjects or human volunteers. Surgery places
tremendous demands on a surgeon’s tactile senses and any surgical simulation system that
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does not incorporate support for haptic feedback is likely to have only limited application (as
critical information will be absent) and will not best support a ‘suspension of disbelief ’ (recall
discussion in Chapter 1).

Typically, surgical simulation systems make use of specially designed surgical tools via which
the operator interacts with computer generated images – the virtual patient (for interesting
discussion, see for example, Hinckley and Pausch [1998]). Consider, for example, ‘minimally
invasive surgery’. Here, surgical instruments located on the end of a thin tube (a laparoscope)
are inserted through a small incision – a so-called ‘keyhole’. A small camera attached to the end
of the laparoscope provides the surgeon with vital visual cues and procedures are underpinned
by haptic cues that occur during the insertion and manipulation processes. It has been found
that ‘mentor based’ training procedures (of the type used in traditional ‘open surgery’) are
less suited to the remote laparoscope based approach, and here simulation plays a crucial role
(see, for example, Seymour et al. [2002] and Schijven and Jakimowicz [2003]). Similarly, the
administration of an epidural anaesthetic to the spine places critical reliance on human dexterity
and tactile sensation since the needle encounters several soft tissue layers (exhibiting different
levels of resistance) during the insertion process. Here, any lack of skill or concentration on the
administrator’s part (resulting, for example, in the penetration of the dura) can cause pain to
the patient and may have long term repercussions. Again this is an area where simulation can
play a vital role in the training process, although great reliance is placed on the fidelity haptic
feedback system and requires that it is able to signal delicate changes in haptic sensation.2 This
contrasts with, for example, a flight simulator where haptic signals are stronger and changes in
signal occur at a coarser level.

10.1.2 Creative Design

There is increasing recognition that human creative activities that are supported by digital
technologies can be advanced through the incorporation of appropriate haptic systems. These
offer to provide the artist and designer with a better sensation of material properties, surface
textures etc. and enable interaction operations to more closely mimic traditional methods (e.g.
the tactile sensations derived when using a brush on canvas or when cutting and forming
materials). Indeed the sculptor may be presented with virtual clay which can not only take on
the properties of its physical counterpart but may also be assigned additional properties, thereby
opening up new opportunities.3 Furthermore, it is possible to assign haptic properties to the 3-
D space in which interaction occurs (in contrast to assigning the haptic properties to objects
within the space). For example, a three-dimensional grid of ‘force grooves’ can be created thus
facilitating the guidance of the interaction tool (and so, for example, assisting in the formation
of straight lines). In addition, researchers report that this form of grid encourages users to move
the interaction tool into the interaction space [Snibbe et al. [1998].

In this chapter we briefly discuss aspects of the interaction process and haptic feedback in
general. We begin by considering interaction in the context of visual and proprioception cues.
Here we refer to both uni-manual and bi-manual interaction and emphasise the critical role
played by the latter as we interact with our surroundings, and which can be clearly demonstrated
by unscrewing the cap from a bottle of ketchup (or the like) when using only one hand! In

2 For a video download describing a epidural simulation system that incorporates haptic feedback see
http://www.yantric.com (date last visited, 2nd September 2007).
3 For excellent video downloads showing exemplar applications see http://www.sensable.com/industries-
video-gallery.htm (date last visited, 4th September 2007).
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Section 10.3 we focus on somatosensory perception which relates to the wide-ranging sensations
we derive from both internal sensory receptors, and from the vast network of receptors located
within the structure of the skin. Here, we also briefly consider the frequency characteristics of
the human haptic channel and consider the demands that this can place on the haptic rendering
process.

In Section 10.4 we summarise issues relating to traditional human computer interaction tools
and again refer to uni-manual and bi-manual interaction. Finally, in Section 10.5 we focus on
the implementation of haptic systems and provide a number of references that provide more
in-depth discussion.

Key Learning Outcomes: At the end of this chapter you should be able to:

� Discuss issues relating to our interaction with digital systems.

� Describe aspects of the human haptic system.

� Discuss key issues relating to the incorporation of haptic feedback within the human-
computer interaction interface.

� Appreciate the synergy that can be derived through bi-manual interaction.

10.2 Concerning Interaction

‘What we embed in the computer is the inert and empty shadow,
or abstract reflection of the past operation of our own intelligence.’4

The keyboard and mouse provide the means by which the majority of today’s computer users
undertake interactive operations. Interestingly, these two interaction modalities are somewhat
dissimilar in the demands that they place on our sensory and motor systems. Consider the
keyboard, which a touch typist with sufficient skill may rapidly operate with little if any recourse
to visual cues. Here, reliance is placed on an intuitive (largely subconscious) ability to accurately
judge both the relative and absolute locations of the hands/fingers and the force applied to the
keys. Only an occasional glance at the keyboard will be needed and visual feedback is continually
provided via the display screen. However, even if we break this feedback loop (e.g. by turning
off the screen) the typing process can continue in a reasonably successful way (although the
frequency of errors is likely to increase). This compares to other situations in which tasks are
strongly underpinned by our ability to judge the absolute and relative locations of the hands –
even when, as with the keyboard, such tasks require the cooperation of both hands. For example,
consider the skilled pianist. Only occasionally will he or she glance at the keys – the sheet of
music usually being the primary focus of attention. This process is in fact far more demanding
than is the rapid use of a keyboard by a touch typist because, for example, although both
situations require an accurate knowledge of the location of hands and fingers, the use of the

4 Source: Talbott, S.L., ‘The Future Does Not Compute’, O’Reilly & Associates, Inc., (1995).
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keyboard requires relatively little arm movement whereas the pianist must maintain the high
accuracy of hand and finger placement across larger distances. This necessitates a continual shift
in the location of the arms (and even changes in body posture). The pianist receives continual
feedback (primarily of an audible nature)5 and as with the visual feedback provided to the typist
via the computer screen, if the cues supplied by audible feedback loop are in some way severed,
the musician can still continue to play.

In summary, the efficient use of the keyboard is strongly underpinned by our ability to
accurately judge the location of the hands and fingers and through the sense of touch by which
we determine the force imparted by the fingers. This is demonstrated in the brief sample of text
presented below and that was dictated to a touch typist able to type at 110 words to minute:

This text is being dictated to a touch typist at normal talking speed.
However, the computer display is turned off and so the only feedback
received by the typist is from her view of the keyboard.

This is being dictated not only wi th the computer display turned off,
but also with the typist not looking at the keyboard. In short, this text is
being typed with the typist only employing her intuitive knowledge of
the relative and absolute positions of her fingers together with tactile
feedback.

Although these represent only brief fragments of text, it is apparent that the lack of visual
feedback has had little impact on the typist’s ability to enter text into the computer (the first
fragment contains no errors and the second has a single error: ‘wi th’).

Now let us turn our attention to the mouse. The operation of this device is underpinned by
hand-eye coordination and certainly, if we were to turn off the computer display there would be
little chance of our being able to employ the mouse in a useful manner. It is helpful to assign to
an interaction tool an ‘interaction space’ – this representing the physical region within which the
interaction tool operates. For example, a joystick may operate by the motion of the ‘stick’ and
in this case, the extent of the interaction space corresponds to the range of possible movement.
When the device is used to navigate a cursor on a conventional flat screen display, there is a
one-to-one mapping (via a suitable scaling factor) between the movement of the joystick and
the displacement of the cursor. In the case of a mouse, the extent of the interaction space is not
limited by the device itself (after all we can define any scaling factor that we deem appropriate
for the mapping between the interaction and image spaces), but rather by the practicalities of
using the device. In fact, we often employ a very small interaction space and adopt a scrolling
action (involving the continual lifting and repositioning of the mouse).

Although the mouse provides us with a simple, effective and intuitive means of navigating
a cursor on a conventional flat screen display, its usefulness can be somewhat eroded when we
consider the issue of cursor navigation in a 3-D space. Let us suppose the use of a simple mouse
in which the motion of the cursor in the third dimension is effected by pressing (and holding
down) a mouse button. Furthermore let us suppose that we wish to navigate the cursor so that
it becomes coincident with an image component that is located within a 3-D space and that
motion parallax is not supported by the display technology. In such a scenario, we are likely to
encounter difficulties in judging the depth of the cursor relative to the image component under
consideration. This is easily demonstrated in the following OTU Exercise.

5 Although, of course should an error occur, the pianist does not have access to a ‘delete’ facility!
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OTU Exercise 10.1: Object Alignment in a 3-D space

1. Position your left hand so that your first finger is pointing vertically upwards and is about
40cm in front of you. Close both of your eyes. Now point the first finger of your right hand
vertically downwards and attempt to align the two fingers so that the finger of the left
hand is directly below that of the right hand (the fingers should not touch). Open your
eyes and determine how well you have succeeded in this alignment task.

2. Repeat (1) but instead of using your fingers, hold a pointer (e.g. a pen or pencil) in the left
hand and another in the right. Again one pointer should be held vertically upwards and
the other vertically downwards and the objective is to align the two.

3. If you are still in any doubt as to the ease and accuracy with which the fingers or pointers
can be aligned (and which is underpinned by the accurate knowledge of the orientation
and position of our limbs) repeat (1) and (2) but now with your hands behind your back!
(Although you will now need to select a more convenient distance!)

4. Now for a more demanding task. Stand a pointer (e.g. pen, pencil or the like) vertically
upwards on a tabletop. Crouch down so that your head is at approximately the same
height as the pointer and so that it lies at a distance of ∼40cm. Hold a second pointer in
either your left or right hand. Orientate this pointer so that it points vertically downwards,
close one of your eyes and keeping your head absolutely still, move the pointer held in
the hand so that it is aligned with (i.e. is vertically above) the static pointer positioned on
the tabletop. Open both eyes and move your head to determine how well/accurately you
were able to achieve alignment.

Consider two objects (such as the pointers referred to in the above
OTU Exercise) which are misaligned so that, for example, one pointer is
not directly above the other. In this case, when we shift our viewpoint
in a horizontal direction the pointers appear to move relative to each
other. This movement is referred to as parallax (hence the associated
depth cue is called ‘motion parallax’). Alternatively, if the two pointers
are properly aligned, shifting the viewing position will not result in
our perception of relative motion. This is referred to as a state of ‘no
parallax’.

In carrying out the above OTU Exercise, it is likely that you will have been able to undertake
the first three tasks without any difficulty and that you will have accurately aligned your fingers
or pointers. However, in the case of the fourth task, achieving accurate alignment is a little
more problematic. In this scenario, since you are not in physical contact with the pointer that
has been placed on the tabletop, you are unable to benefit from the cues that were present in the
previous tasks in which you grasped both pointers. Consequently, cues based on proprioception
provide you with no information concerning the location of the desktop pointer and you are
now dependent on visual cues. By using only one eye and ensuring that your head does not
move, the parallax cues are absent (as is the case when we employ a conventional computer
display). In the case that the two pointers are identical (or if you have prior knowledge of their
relative sizes) linear perspective is likely to represent an important visual cue. In addition, the
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oculomotor cues are also likely to assist. (Can you suggest any other cues that may play a useful
role?) The accuracy with which you were able to achieve alignment may be disappointing –
especially in view of the conscious effort applied to the task.

Consider a further scenario in which one pointer continues to rest on a tabletop and the
second is held in some form of clamp which is suspended and is moved by means of a system
of pulleys and strings (again we assume that the parallax cues are disabled – throughout the
alignment task the head does not move and one eye is closed). This represents an even more
difficult case – as neither pointer is held and so cues based on proprioception are entirely absent.
However, if we restore the parallax cues, the alignment process is greatly facilitated (for this task
motion parallax is particularly important).

Let us now return to the original scenario in which we seek to navigate a cursor through a
3-D scene using a conventional mouse (recall we assumed that motion of the cursor in the third
dimension would be affected by holding down one of the mouse buttons). In the case that we
are using a conventional flat screen display, both the parallax and oculomotor cues are absent
and so too are cues that we may derive on the basis of proprioception (thus this parallels the
alignment scenario outlined in the previous paragraph). Indeed achieving accurate navigation
and the alignment of the cursor with image components is far from easy. We can of course adopt
strategies that will ameliorate the difficulty. For example:

� We can align the cursor in the x–y plane with an image component. Subsequently, we rotate the
image scene so that the display screen coincides with the y–z plane and now perform alignment
in the third dimension. Some degree of iteration may be necessary and this approach parallels
the incorporation of motion parallax.

� As we navigate the cursor, the object (or image component) that is in closest proximity to it
may be made to change colour. In this way we reduce the level of accuracy that is needed to
successfully align the cursor with an entity in the image scene – once the intended target changes
colour we need simply press a predefined key and so dock the cursor with the target.

Various other strategies may be employed some of which are entirely software based and can be
adopted for use with the conventional computer interface and others require the incorporation
of additional hardware. In general terms software based approaches that operate with the
standard flat screen display serve to simply ameliorate the difficulties associated with interacting
with a 3-D scene and do not allow us to make full use of our sensory systems. Alternative
approaches that necessitate hardware changes include the following:

(1) Support for the Parallax and Perhaps Oculomotor cues: This enables us to make full use
of our binocular vision and allows the interaction process to be carried out in a manner
that more closely follows the intuitive ways in which we interact with our surroundings.
The display techniques introduced in the previous chapter provide us with examples of
systems that may be used. However, it is important to note the key role played by the
motion parallax cue – a system that supports binocular parallax but which fails to embrace
motion parallax may be advantageous as far as visualisation is concerned but may not
necessarily advance the interaction process. Furthermore, in the case that support for the
motion parallax cue is based on the head tracking technique, latencies (representing the
delay that occurs between head movement and the update of the displayed image) must be
minimised. Ideally, the display system should support both horizontal and vertical parallax
(although in the case of real time applications, this may be precluded by the associated
computational cost or by limitations of the display technology).
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(2) Interaction and Image Space Mapping: Here we consider the use of interaction tools
for cursor navigation that support a 3-D interaction space and that provide an intuitive
and direct mapping between movements in the interaction space and the corresponding
motion of a cursor in image space. When coupled with (1) above, this can lead to signifi-
cant advantages.

(3) Haptic Feedback: The incorporation of haptic feedback so that it is possible to ‘feel’ ones
way through the image space – apparently touching and so sensing the proximity of objects
within a scene. Within this context it is appropriate to quote Hermann Helmholtz (1821–
1894):

‘The sense of touch, it is true, can distinguish relations in space, and has the special power of judging of all
matter within reach, at once as to resistance, volume, and weight; but the range of touch is limited, and
the distinction it can make between small distances is not nearly so accurate as that of sight. Yet the sense
of touch is sufficient, as experiments upon persons born blind have proved, to develop complete notions of
space. This proves that the possession of sight is not necessary for the formation of these conceptions, and
we shall soon see that we are continually controlling and correcting the notions of locality derived from
the eye by the help of the sense of touch, and always accept the impressions on the latter sense as decisive.
The two senses, which really have the same task, though with very different means of accomplishing it,
happily supply each other’s deficiencies. Touch is a trustworthy and experienced servant, but enjoys only
limited range, while sight rivals the boldest flights of fancy in penetrating to illimitable distances’6

There can indeed be little doubt that faced with one of today’s computers, Helmholtz
would have been quick to identify weaknesses in the interface and ways in which it could
be developed so as to make better use of our sensory and motor systems. Perhaps he
would have particularly appreciated the importance of supporting both pictorial and non-
pictorial cues and of exploiting the synergy that occurs when the visual and haptic channels
are simultaneously (and harmoniously) brought to bear on a common task.

10.3 Somatosensory Perception

‘No reader of this book will need to ask why I have dedicated it to Helmholtz.
There is no one else to whom one can owe so completely the capacity to write a book

about sensation and perception. If it be objected that books should not be dedicated to the dead,
the answer is that Helmholtz is not dead. The organism can predecease its intellect, and conversely.

My dedication asserts Helmholtz’s immortality – the kind of immortality that remains
the unachievable aspiration of so many of us.’7

Somatosensory perception is the title given to the wide-ranging sensations that we derive from
both internal sensory receptors and from the vast network of receptors that are located within
the structure of the skin. As indicated in Figure 10.1, these give rise to five general modalities
of sensation and because of the range of receptors involved, it is convenient to group receptors
according to their general function. For example, we can identify:

6 Quoted from the 19th century writings of Hermann Helmholtz. Appearing in Warren and Warren (eds.)
[1968].
7 Warren and Warren (eds.) [1968] quoting from Boring, E.G., ‘Sensation and Perception in the History
of Experimental Psychology’.
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Somatosensory Perception

The sense of 
touch

The sense of 
relative

temperature

The sense of 
pain

The sense of 
force (internal 
and external)

The sense of 
posture

Figure 10.1 Somatosensory perception embraces five general types of sensation. See text for discussion.

� Mechanoreceptors: These convey mechanical deformations of the skin (these receptors are
also present in joints and muscles).

� Thermoreceptors: These convey changes in temperature of the skin.
� Nocioceptors: These convey sensations of pain.

However, although grouping receptors according to their function offers a seemingly tidy solu-
tion, it presupposes that they each respond to only one form of stimulus. This is not always the
case – as demonstrated by the following OTU Exercise.

OTU Exercise 10.2: The Functionality of Receptors

Here, you will need somebody to assist.

1. Ask the person to lie down and place a warm coin on his or her forehead. Subsequently
replace the coin with one that is cold – but otherwise identical. Do not mention that you
are using identical coins. Ask them to indicate which coin is the heavier.

2. Repeat the above experiment but this time place the coins on the forearm. However, now
make use of coins that are at three temperatures – warm, cold and skin temperature.

For the purposes of our present discussions, it is the senses of posture, force and touch that can
play an important part within the interaction process and so it is the mechanoreceptors that
are of primary interest. These receptors play a key role in cutaneous sensitivity (our sense of
touch) and also in our sense of proprioception (recall Section 5.3.1 and especially Figure 5.9
in which different facets of proprioception are summarised). In the following subsection, we
briefly discuss issues relating to our sense of touch and subsequently turn our attention to
proprioception.
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10.3.1 Cutaneous Sensitivity

As indicated above, our sense of touch (by which, for example, we are able to determine the
surface texture and relative temperature of objects) is underpinned by the various types of
receptor that lie within the skin. Five main types of mechanoreceptor are involved – these are:

1. Meissner’s Corpuscles: These lie close to the surface of the skin and have a small well-
defined receptive field (the median extent being ∼ 13mm2 [Kaczmarek et al. 1991]). These
receptors are said to be ‘rapidly adapting’ because for a sustained (constant) level of input,
their firing rate rapidly decays. Consequently, they respond to changes in input stimulus.

2. Merkel’s Disks: As with the Meissner’s Corpuscles, these receptors also lie close to the
surface of the skin and have a small well-defined receptive field (the median field being
∼11mm2 [Kaczmarek et al. 1991]). They are ‘slowly adapting’ and are therefore able to
detect sustained (constant) pressure. It appears that these receptors play a particularly
important role is our detection of surface roughness [Blake et al. 1997].

3. Pacinian Corpuscles: These are rapidly adapting and therefore, as with Meissner’s Corpus-
cles, do not signal a constant level of stimulus but rather rapid variations. The receptive field
of these detectors is large and indistinct (the median extent being ∼101 mm2 [Kaczmarek
et al. 1991]).

4. Ruffini Endings: These are slowly adapting receptors that are particularly able to detect the
stretching of the skin. As with Pacinian Corpuscles, they exhibit a large and rather indistinct
receptive field (the median receptive field being ∼59 mm2 [Kaczmarek et al. 1991]).

5. Basket Ending: These are associated with ‘hairy’ skin8 and are located at the roots of hairs.
They are extremely sensitive to hair displacement.

OTU Exercise 10.3: Spatial Resolution of Receptors

The spatial distribution of the mechanoreceptors that lie close to the surface of the body varies
with location and the ‘two point threshold’ technique may be used to provide an indication of
the spatial density of receptors.

Hold two pointers (e.g. pencils) in one hand (grasping them as ‘chopstick’ so that you are
able to adjust the separation of their two tips). Investigate the spatial distribution of receptors
on, for example the hands (e.g. palms and finger-tips), arms and legs. This is most easily done
with the help of another participant. For example, grasp the pointers so that their tips are
∼1cm apart and bring the two into contact with the arm (it is important for both pointers to
come into contact with the skin simultaneously). Exert light pressure and ask the participant
how many points of contact he/she can feel. In the case that only one point of contact is
sensed, increase the separation of the pointers and repeat the process until the participant
is just able to detect two points of contact – the ‘two point threshold’.

Hint: In the case of the fingertips, the pointers will need to be in quite close proximity.

8 This contrasts with the mucous membrane that is found internally, mucocutaneous skin which interfaces
between hairy and mucous membrane and glabrous skin which is found on parts of the fingers, on the
soles of the feet and on the palms.
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10.3.2 Proprioception

As we have discussed, proprioception9 is multifaceted (recall Figure 5.9). It not only provides
us with a certain (and quite accurate knowledge) of the position and spatial orientation of
our limbs but also with information concerning their motion and the means by which we are
able to determine the force we exert as we interact with objects (or, conversely, the force that
objects exert on us). The mechanisms via which such information is derived have been the
subject of considerable debate and in the nineteenth century the widely held view was that such
information was provided by means of a sense of ‘innervation’. In brief, researchers believed that
rather than employing feedback from detectors able to measure the position and orientation of
joints, the body places reliance on a knowledge of the signals being issued by the brain. Hermann
Helmholtz was a keen advocate of this view and in this context, Sherrington [1900] writes:

‘A phenomenon cited by Helmholtz is the following: “When the right external rictus is paralysed, the right eye
can no longer rotate to the right. So long as it turns only to the nasal side it makes regular movements, and
the correct position of objects is perceived. When it should be rotated outwardly, however, it stays still in the
primary position, and the objects appear flying to the right, although the position of eye and retinal image are
unaltered”. The left sound eye is covered. “In such a case”, Helmholtz goes on to say, “the exertion of the will
is followed neither by actual movement of the eye, nor by contraction of the muscle in question, nor even by
increased tension in it. The act of will produced absolutely no effect beyond the nervous system, and yet we
judge of the direction of the line of vision, as if the will had exercised its normal effects. We believe it to have
moved to the right, and, since the retinal image is unchanged, we attribute to the object the same movement
we have erroneously ascribed to the eye . . . These phenomena leave no room for doubt that we only judge the
direction of the line of sight by the effort of will with which we strive to change the position of our eyes . . . We
feel, then what impulse of the will, and how strong a one, we apply to turn the eye into a given position”.’

The opposing (and current understanding) is that we place great reliance on the feedback that
we receive from muscle receptors – specifically ‘muscle spindles’ and ‘Golgi organs’:

� Muscle Spindles: These are arranged in parallel to the main muscle fibres and are able to detect
changes in length (and the rate of change of length). In addition to their action as receptors
they also perform a motor function, and this duality of purpose is likely to have hampered our
understanding of the important role that they play in the feedback process.

� Golgi Organs: These are located in series with the muscle fibres and provide feedback in
connection with the tension of the muscle.

Over the years, the ‘innervationists’ were able to strengthen their case by means of the ‘phantom
limb phenomenon’. In this context, Clark and Horch (writing in Boff et al. [1986]) write:

‘After an amputation, many persons have powerful illusions that the amputated limb or portions of it, still
exists, and they feel they can move the missing limb . . . These illusions may come from abnormal activity
arising from the neuroma, or tumor, that forms on the stump of a severed nerve as the fibres attempt to regrow,
but more likely, the phantom from some internal schema the brain has. Any kinesthetic sensations associated
with attempts to flex or extend a phantom joint voluntarily would clearly need to arise internally because no
sensory receptors remain to provide a sensation.’

Of course, the fact that patients report such sensations following an amputation (and the
consequent removal of receptors) provides a powerful argument in relation to the sense of
innervation and the relative unimportance of receptor based feedback. Clark and Horch (citing
the work of others) continue:

9 Proprioception is also referred to as ‘kinesthesis’.
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‘However, . . . when speaking of movement of a phantom limb, one must distinguish between a movement
of a phantom as a whole, because the remaining stump moved, and a “bending” of a non-existing joint
within the phantom . . . Only the latter situation would involve the generation of new signals related to the
phantom . . . amputees feel that they can bend a non-existent joint only when some portion of the muscles
that once moved the joint remains in the stump. Eliminate these bits of muscle and the sensory receptors they
contain, and the person loses this sense of feeling.’

Perhaps it will ultimately be demonstrated that both feedback from muscle receptors and a
sense of innervation provide complementary data via which the brain is able to deduce a wealth
of vital information in a seemingly effortless manner.

10.3.3 The Frequency Characteristics of the Human Haptic System

In developing interaction tools – and particularly tools that are able to effectively operate with
the human haptic channel – it is important to consider the frequency characteristics of the
relevant sensory systems.

As discussed, in the case that a display employs transient optical phenomena (i.e. displays
where the light output is not continuous and falls away in the intervals between image refresh),
it is necessary for the display to be refreshed at a frequency equal to or greater than the critical
flicker frequency. Consequently, a display must be refreshed at a frequency of no less than 30
Hz.10 On the other hand, smooth image animation can be achieved with an image update
frequency of ∼10Hz. This denotes the time available for the computation of image frames and
their output to the display.

In contrast, the mechanoreceptors within the skin are sensitive to a wide range of vibrational
frequencies. In this context, Burdea [1996] writes:

‘. . . tactile sensing has a 0 to 400 Hz bandwidth. Very fine feature recognition, such as surface textures with
small rugosities, requires a much higher bandwidth (up to 5,000 to 10,000 Hz).’

Here, it is interesting to pause for a moment and run the fingertips across different types of
surface texture (e.g. wood, plaster or the bark of a tree). Notice that even as the fingers are
moved more rapidly across the surface, it is still possible to sense characteristics of the texture
quite accurately. The realistic simulation of such a seemingly simple process demands a high
tactile update frequency and this places great demands on the computer system and on the
hardware responsible for the provision of the tactile sensation.

Consider the much simpler situation in which we simply seek to simulate steady contact
with a surface (i.e. the finger tips ‘touch’ but do not move across the surface). Should the refresh
frequency be insufficient, one would experience vibration rather than steady pressure (the tactile
equivalent of image flicker). In addition, constant pressure contact does not enable us to readily
distinguish between hard and soft surfaces – here we are more reliant on changes in pressure.
As a result, the tactile update frequency plays a key role in determining the ability of a haptic
system to realistically simulate surfaces which exhibit different levels of rigidity.11

10 As previously indicated, to eliminate the problem of subliminal flicker the refresh frequency is signifi-
cantly greater than this.
11 It is interesting to consider the way we evaluate fruit for ripeness. Consider the case of a pear. Usually,
in order to determine the hardness of the fruit, we don’t simply prod it with a fingertip but rather hold
the pear in the hand. Peter Cahusac writing in Roberts [2002] describes this as ‘active’ – as opposed to
‘passive’ – touch (where we simply prod an object), and writes: ‘Our hands are most suitably adapted to
perform active touch as they work together to grasp, palpate, prod, press, rub and heft the tested object.’
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OTU Exercise 10.4: Tactile Update Frequency

Consider the simulation of (a) a hard (rigid) surface such as a metallic plate, and (b) a
deformable (soft) surface such as rubber, or a human limb. Discuss the demands that these
two situations place on the tactile update frequency.

The update frequency needed to effectively support the simulation of force feedback is some-
what less demanding, and 20–30 Hz may be sufficient for the human sensory system but may
not necessarily result in realistic simulation. By way of a simple example, consider the scenario
in which some form of haptic probe (which supports force feedback) is rapidly moved through
an image scene that comprises a number of ‘solid’ objects. In the case that the force update
frequency is insufficient, the probe may not provide feedback to the user that it has contacted
an object until the probe itself has been moved some distance beneath the object’s surface. If we
suppose that a probe is moved at a speed of 20 cm.s−1 and we assume a force update frequency
of 20Hz, then it is possible for the probe to have penetrated 1cm beneath the object’s surface
before a haptic force is experienced!

Consider the case of a physical ‘soft ball’. If we hold the ball in the hand and apply a pressure
with the thumb, the ball will be deformed and the thumb will ‘penetrate’ a certain distance.
In accordance with the third of Isaac Newton’s Laws of motion12 a state of equilibrium will
be reached in which the ‘action’ (corresponding to the force applied by the thumb (ft)) and
‘reaction’ (the restoring force resulting from the deformation of the ball (fb)) are in balance.
In the simplest case, the reaction increases linearly with the amount (d) by which the thumb
deforms the ball. Thus, fb= −kd – where k is a constant of proportionality and accounts for the
stiffness of the material from which the ball is fabricated (see Section 10.5). We can therefore
write that when in a state of balance:

d =
−ft

k

Let us now consider the equivalent deformation of a virtual ‘soft ball’. As we have already
mentioned, if the haptic force update frequency is not able to properly support the speed at
which the haptic probe is moved, the probe may penetrate some distance beneath the surface of
the ball before the system responds. In fact, if we are simulating a ball that has a high rigidity
(represented by k in the above equation), then the depth of penetration (d) may be one that
would, in practical terms, correspond to a very large force. Unless we design the simulation
system with care, this could result in the user suddenly experiencing a high haptic feedback
force that would result in the probe being ejected from the ball (being bounced out of it) – see
Figure 10.2. Naturally, this contrasts with the real world scenario in which we would expect to
experience a gradual increase in the reaction force as the ball is deformed.

The issue of an insufficient force update rate also impacts on our perception of the work
done and energy released during the deformation of a soft ‘springy’ surface. Continuing with
the example of the ‘soft ball’; in a real-world situation when we apply a force and deform the
ball, we are doing work and this results in energy being stored in the ball. Upon the removal of

12 The three laws of motion were published by Newton in 1687 in his classic work ‘Principia Mathe-
matica Philosophiae Naturalis’ (Mathematical Principles of Natural Philosophy). These laws are given in
Section 10.5.



436 An Introduction to Computer Graphics and Creative 3-D Environments

(a) (b)

(c)

Haptic probe

Soft ball

Direction of 
probe motion

Probe penetrates 
the object space

Probe is ejected from the object

Figure 10.2 Here, a haptic probe encounters a virtual ‘soft ball’. In (a), we assume that the haptic force update occurs just before the probe
encounters the space occupied by the ball. No contact force is therefore experienced. The next haptic force update occurs when the probe is in the
location indicated in (b). Here, the probe has penetrated the space occupied by the ball but up until this point the user has experienced no haptic
force. As indicated in (c), a sudden (high) haptic force is fed back to the user and the probe is ejected from the ball. Various techniques can be used
to circumvent this problem and it is important to ensure that the system supports an adequate haptic force update frequency.

the external force the ball releases this energy and returns to its undeformed shape. As discussed
above, in the case that we are dealing with the simulation of a virtual ball and have an insufficient
haptic force update frequency, the probe is able to penetrate the ball without work having been
done. Subsequently, following a force update the probe experiences a strong restoring force
and is ejected – a situation corresponding to a release of energy. In the real-world scenario, the
mechanical energy released is, to a close approximation, equal to the work done in deforming
the ball.13 However, in the case of the simulation, energy release can occur even though work
has not been done!

It is also important to note that if the haptic force update frequency is insufficient, the haptic
probe may not only penetrate the space occupied by virtual objects but even worse – it may pass
completely through them. This situation is illustrated in Figure 10.3.

In the above discussion we have focused on issues that relate to the output of signals from
the machine to the human operator. It is also important to note the frequency response of the

13 The mechanical energy released cannot be greater than the work done on the soft ball and in practice
is a little less. This is due to the generation of heat as the ball is deformed and when it is returning to its
undeformed shape.
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(a) (b)

Virtual object

Haptic probe

Direction of 
probe motion

Probe is about to enter the space 
occupied by the virtual object

Probe has effortlessly passed through 
the space occupied by the virtual 
object

Figure 10.3 In (a) we assume that the haptic probe is about to enter the space occupied by a virtual (‘solid’) object. At this instant the haptic
force is updated and since the probe has not yet encountered the object, no force is registered. The next haptic force update occurs after the probe
has passed through the space occupied by the object (as indicated in (b)). Naturally, this situation is problematic and highly undesirable.

human system in its ability to issue force and motor commands. In this context, the human
finger can comfortably operate up to ∼5–10 Hz [Burdea 1996].

10.4 Traditional Interaction

‘The true harvest of life is intangible –
a little star dust caught, a portion of the rainbow I have clutched.’14

The vast majority of users interact with the computer by means of the keyboard and mouse.
Seldom do they have the opportunity of employing other forms of interaction modality, and
interactive operations are largely accomplished in a uni-manual manner. Both the keyboard
and mouse have a long history – the former dating back to the 19th century and the latter to the
1960s. In many countries the ‘QWERTY’ keyboard layout is used, and it is interesting to note
that this was originally devised to reduce (rather than increase) typing speed. This layout is in
fact a legacy of the days of the early mechanical typewriter when weaknesses in the design of the
mechanical components would, if particular character sequences were entered too rapidly, cause
the mechanism to ‘jam’. The ‘QWERTY’ layout was therefore devised to increase the distance
between certain keys and so force the fingers to travel further when selecting particular keystroke
combinations. This inserted small delays into the speed at which a typist could select the ‘rogue’
keystroke combinations and so reduced the frequency with which typewriters faltered. Despite
the fact that mechanical components have been eliminated from today’s computer keyboards,

14 Attributed to Henry David Thoreau (1817–1862).



438 An Introduction to Computer Graphics and Creative 3-D Environments

we still live with the legacy of the past – a keyboard layout that is designed to reduce the speed
at which we are able to effect communication!15

In fact, the efficiency of the standard keyboard has little relevance to computer graphics
applications and, in this context, the mouse plays a much more important role. This device
was prototyped in ∼1964 for use in a study concerning the relative merits of various forms
of interaction tool. In its original form, the mouse was somewhat different to the device so
widely used today. The original mouse was housed in a wooden case and used two orthogonally
positioned wheels. Motion of the mouse resulted in differences in the rates of rotation of the
wheels and in turn this motion was captured by potentiometers16 one of which was connected
to each wheel.

The study referred to above evaluated the use of not only the mouse, but also the lightpen,
joystick, a knee control (via which a cursor could be navigated by movements of the knee)
and a curious device called a ‘Grafacon’. This study is reported in English et al. [1967] and for
summary discussion, see Blundell and Schwarz [2006]. In essence, English and his co-workers
used the interaction device to navigate a cursor and ‘acquire’ a target on a conventional 2-D
screen. Acquisition time and acquisition accuracy were measured. For experienced users, the
mouse demonstrated the shortest acquisition time and lowest error rate, whereas when novice
users were tested, the lightpen, knee control and mouse exhibited similar acquisition times –
the mouse exhibiting the lowest error rate. Of course, the results of any such trial must be
interpreted with considerable care as these are likely to be linked to the nature of the application.
Furthermore, it is also necessary to consider the impact of the tool on the human operator (e.g.
in terms of fatigue and RSI). Additionally, the trial was specifically based on the navigation of
a cursor (the researchers referred to this as a ‘bug’) in a 2-D space – issues become much more
complex when we consider navigation in three spatial dimensions.17 Certainly English et al.
were aware that it was unrealistic to make an unequivocal statement indicating the superiority
of any one particular interaction device, and within this context they write:

‘Thus it seems unrealistic to expect a flat statement that one device is better than another. The details of the
usage system in which the device is to be embedded make too much difference. Irrespective of the speeds with
which one can make successive display selections with a given device, the tradeoffs for the characteristics of
fatigue, quick transfer to and from the keyboard, etc., will heavily weight the choice amongst the devices. And
these tradeoffs, and the possibilities for designing around them, are not apparent until after a good deal of
design and analysis has been done for the rest of the system.’

In the 1970s, workers at Xerox PARC developed the Alto and Xerox 800 series workstations.
These were the precursors of today’s desktop machines and incorporated many advanced

15 One key issue is the number of touch typists who are trained in the use of the conventional keyboard
layout. The adoption of any other layout would involve re-training and this can only be justified if there is
clear evidence that an alternative layout is significantly better. Despite attempts that have been made over
the years to develop more logical keyboard layouts, it has been difficult to clearly demonstrate that they
offer greater efficiency.
16 A potentiometer is a variable resistor. Rotation of a shaft causes the resistance of the potentiometer to
change. The prototype mouse was an analog (rather than a digital) device – mouse motion giving rise to
a change in the magnitude of analog signals.
17 English et al. did not separately measure the time taken to reach for the interaction device and the
subsequent time required for cursor navigation – these two times were compounded within a single
measurement. Naturally, this would have influenced the results they obtained. For related discussion see
Card et al. [1978] who recorded these times separately.
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features that we now take for granted.18 In 1971, Xerox licensed the mouse from Stanford
Research Institute and subsequently incorporated it within its workstation technologies. By
the mid 1980s, personal computers and workstations were proliferating at a dramatic pace; the
graphical user interface (with its icons and menus) was a standard feature of these machines,
and so too was the mouse.

It is readily apparent that the mouse is a uni-manual device – supporting input from the
‘preferred’ hand. In contrast, it may initially seem that the keyboard is a bi-manual device. In
the context of our current discussions we assume that a bi-manual activity is one where the two
hands are simultaneously and synergistically brought to bear on a common task, and so advance
human dexterity. Although the keyboard enables us to employ both hands, the hands essentially
act independently – and in the main only one key is pressed at any instant.19 Thus, a touch typist
uses both hands to simply increase the speed of throughput and not to increase dexterity. We
therefore view the keyboard as an essentially uni-manual input device. In the next sub-section,
we briefly review aspects of synergistic bi-manual interaction – a technique which is likely to
play a critical role in our interaction with emerging creative 3-D display systems.

10.4.1 Synergistic Bi-manual Interaction

In Figure 10.4 we identify various forms of bi-manual activity and illustrate these by reference
to some simple tasks. As may be seen, we broadly define two types of bi-manual activity in
accordance with whether the hands undertake a task in a cooperative or independent man-
ner. In addition we consider actions undertaken by the hands as being either symmetrical or
asymmetrical. For example, consider the case that we use the hands to simultaneously trace
out two similar shapes such as circles. If the hands are moving in the same direction then they
are both executing the same task (symmetrical) in an independent manner. Alternatively, tasks
such as knitting, using a knife and fork, or knotting a shoe-lace would be classed as cooperative
asymmetrical activities.

In many situations we derive great benefit by bringing the two hands to bear in a synergistic
manner on a common task (try knotting a shoe-lace or tie using only one hand . . . ). Dexterity
is increased, the effort that must be applied to the task is reduced, and the overall accuracy of
the resulting interactive operation is improved. In contrast, when we attempt to simultaneously
perform two independent tasks with our hands, cognitive effort is increased. For example, trace
out a circle with one hand and a square with the other, or try to tap out separate rhythms
with the two hands.20 Despite the difficulty that we experience, such tasks are relatively simple
when compared to the intricate movements associated with knitting, and this provides a simple
demonstration of the effectiveness of synergistic bi-manual interaction as compared to bi-
manual independent action.

In discussing synergistic bi-manual interaction, Blundell and Schwarz [2006] write:

18 In relation to this fascinating history (which includes the development of the event driven user interface
and WYSIWYG (‘what you see is what you get’) document editor) see Smith and Alexander [1999], and
summary discussion in Blundell and Schwarz [2006].
19 In some instances, two (or even three) keys are simultaneously pressed (e.g. ‘the use of the shift key for
letter capitalisation and the use of ‘shift’+‘alt’+‘del’). However, in the main only one key is pressed at any
one time.
20 Referred to as a polyrhythm: ‘. . . a polyrhythm: two conflicting but isochronous sequences. Most people
have great difficulty in coordinating the two hands in such tasks in which two rhythms are not integer multiples
of each other.’ [Leganchuk et al. 1998].
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Uni-manual

Bi-manual

Independent

Cooperative

Symmetrical

Asymmetrical

Symmetrical

Asymmetrical

Tracing two circles 
in space (in or out of 
phase) but in the 
same direction

Tracing a square and 
circle in the air

Milking a cow (out 
of phase), cutting 
across a log with a 
circular bench 
mounted saw (in 
phase)

Knitting, eating with 
a knife and fork

Holding a coffee 
cup. (Writing with 
pen and paper is in 
fact a bi-manual 
activity)

Figure 10.4 Bi-manual activities can be either cooperative or independent. In each case tasks can be viewed as being either symmetrical or
asymmetrical. On the right of the illustration we provide simple examples of associated activities. See text for further discussion.

‘The non-preferred hand provides a dynamic frame of reference for the preferred hand. Finer granularity of
motion is achieved with the preferred hand – the two hands exhibit “asymmetric temporal-spatial scales of
motion”. The non-preferred hand leads the sequence of actions.’

Thus the actions of the preferred hand are referenced to the non-preferred hand. This is
readily evident from our everyday experience. For example, the buttons of a small calculator
are generally more easily (rapidly) selected when we hold the calculator in the non-preferred
hand rather than when we simply rest it on a table top. Similarly, writing on paper is facilitated
by resting the non-preferred hand on the paper (even under circumstances where the paper is
unlikely to shift position as we write). In an excellent publication, Hinckley et al. write:

‘. . . two hands do more than just save time over one hand. Users have a keen sense of where their hands
are relative to one another, and this can be used to develop interaction techniques which are potentially
less demanding of visual attention. Using both hands helps users to ground themselves in a body-relative
interaction space as opposed to requiring consciously calculated action in an abstract environment-relative
space . . . Using both hands alters the syntax of the manual tasks which must be performed, which influences a
user’s problem-solving behaviour and therefore has a direct influence on how users think about a task.’

Interestingly, a study conducted by Leganchuk et al. [1998] indicates that the benefits offered by
bi-manual activity increase with task complexity:

‘For the cognitively less demanding tasks . . . we see the performance of the two-handed technique was similar
or even inferior to that of the one-handed technique. However as the tasks become more cognitively demand-
ing . . . we see that two-handed [interaction] has a significant performance gain.’

The conventional flat screen display severely restricts the opportunities for synergistic bi-manual
interaction. Indeed the effectiveness of such interaction modalities is strongly reliant on the
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display paradigm permitting the interaction tools to enter the image space in which an image
resides (or in which it appears to reside).21 Furthermore, it is not necessarily advantageous
to force particular interaction techniques upon the user. In this context Blundell and Schwarz
[2006] summarise the work of Cutler et al. [1997] as follows:

‘A publication by Cutler et al. [1997] reinforces this point. This describes a bi-manual interaction paradigm
used in conjunction with the “Responsive Workbench” display system. In brief this display projects high-quality
temporally coded stereoscopic images onto the table-top. Head tracking is supported, and a user is able to move
around the table and “touch” the images that appear above its surface. Interaction is reported as being effected
via Fakespace’s PINCH gloves (equipped with six-degrees-of-freedom (DOF) position sensors) that can detect
the pinching together of different fingers and a Polhemus stylus (being pen-like in form and tracked by a
6-DOF position sensing system and having a single interaction button). Here the stylus represents the more
accurate interaction tool, and the user is free to either use the gloves (continually worn) for interaction or
pick up and use the stylus. By providing this flexibility, it is possible for the operator to naturally select the
most intuitively appropriate manipulator. A set of tools are described, these being categorized as either uni-
manual (e.g. “one-handed grab” – pick up and move a single object), bi-manual symmetric (e.g. “turntable” –
enabling an object to be rotated about a fixed axis), or bi-manual asymmetric (e.g. “zoom”). The researchers
report:

“During our observations we also found that users often picked up two seemingly independent one-handed
tools and used them together in a coordinated fashion . . . One of the more surprising results was that the
asymmetric combination of a PINCH glove for the left hand and stylus for the right hand worked much better
in many situations than the two PINCH gloves, especially for asymmetric tasks.”

In their summary, they add:

“When beginning this work we thought that all the two-handed input techniques would need to be explicitly
designed and programmed. However, when using the system we found that perhaps the most interesting tasks
emerged when the user combined two otherwise independent uni-manual tools.” [Cutler et al. 1977]

Advantages may therefore be obtained by providing a set of interaction tools within an environ-
ment that is able to support different interaction modalities. In this way, the system does not
force a specific interaction technique onto the user, but is adaptive to human problem solving
skills and our natural interactive dexterity.

10.5 Haptic Feedback

‘The system of nature, of which man is a part, tends to be self-balancing,
self-adjusting, self-cleansing. Not so with technology.’22

Today, a diverse range of haptic interaction systems are available. These range from full-body
or arm exoskeletons, ceiling or floor mounted haptic ‘arms’, through to haptic gloves and desk
mounted interaction probes (for more detailed discussion see Burdea [1996]). In the discussion
that follows we focus on the use of the use of a haptic probe (a pen-like interaction paradigm)
of the general type illustrated in Figure 10.5. In its simplest form, this is used to manipulate a
virtual point within a 3-D space and the haptic sensation is derived from the interaction tool’s
ability to output a force vector of appropriate magnitude. Since this vector has three orthogonal

21 See, for example, the video clip concerning suturing that is available via the following URL:
http://www.medicvision.com.au/simulators.htm (date last visited 5th September 2007).
22 Attributed to E.F. Schumacher (1911–1977).
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(a) (b)

Figure 10.5 Exemplar desktop haptic interaction tools (force feedback). In (a) the PHANTOM OmniTM 6-DOF device and in (b) the PHANTOM
DesktopTM which also offers 6-DOF. For technical details see Table 10.1. (Images supplied by, and reproduced with the permission of SensAble
Technologies Inc.�.)

components, the haptic tool is referred to as a 3-DOF (degrees of freedom) device. This is in
contrast to an interaction tool that is able to provide both force and torque sensations – a 6-
DOF device.

Although a simple 3-DOF pen-like interaction tool provides only a very limited haptic
experience (and does not, for example, make use of the delicate sense of touch supported by
our fingertips), it can be used advantageously in the interaction process. Furthermore, the
implementation of this approach is relatively straightforward as we need only concern ourselves
with the motion of the tip of the probe (or its virtual representation) within a 3-D space.
Thus the problem is reduced to a simulation of a point in space. In contrast, although a glove
based interaction tool can increase the sense of realism and enhance interaction dexterity (by
supporting force and possibly tactile feedback), implementation issues are somewhat more
complex. Such gloves typically support the application of forces to the fingertips relative to the
palm, back of the hand or forearm. Thus, for example, a user can experience haptic sensations
in relation to picking up and squeezing objects. In order to provide a realistic sensation of an
object’s weight, it is necessary ‘ground’ the haptic device – thereby enabling a vertical force to
be supplied to, and experienced by, the user.

In some situations (such as the provision of a synthetic gravitational
force) the ‘grounding’ of a haptic device is necessary. This enables
the device to exhibit the fundamental characteristic that we associate
with Newton’s third Law of Motion (see below). Although in principle
a haptic glove offers greater mobility (in terms of the extent of the
interaction space) than do various other haptic interaction modalities,
mobility can be lost as a consequence of the need to ‘ground’ the inter-
action tool.

Newton’s Laws of Motion provide a succinct description of the movement of objects in situa-
tions where forces are either present or absent. They are therefore of pivotal importance in the



Chapter 10 . Interaction and Haptic Feedback 443

Table 10.1 Technical specifications for the PHANTOM Omni and PHANTOM Desktop haptic interaction devices that are illustrated in Figure 10.5.
(Technical data kindly supplied by SensAble Technologies Inc, who indicate ‘SensAble PHANTOM product specifications are subject to change
without notice. SensAble shall not be liable for technical or editorial errors or omissions contained herein. PHANTOM, PHANTOM Desktop, PHANTOM
Omni, SensAble, and SensAble Technologies, Inc., are trademarks or registered trademarks of SensAble Technologies, Inc’.)

creation of models that are intended to represent dynamic scenes (such as a set of objects that
occasionally collide). Furthermore, as indicated above, Newton’s third Law of Motion23 must
be considered when we endeavour to support various forms of force feedback. For convenience
Newton’s three laws are stated below:

23 In relation to Isaac Newton, Margaret A. Boden [2006] sheds some light on one of the quotations that
is widely attributed to him – ‘If I have seen further it is by standing on the shoulders of Giants.’ She writes,
‘Sir Isaac Newton was not a nice man. His personal unhappiness often fuelled intemperate attacks on others
including his social inferiors. One such was his Royal Society colleague, Robert Hooke. Although Hooke was
a scientific rival (with a competing theory of light), and the first to suggest (in 1679) that the planets move
under some influence inversely proportional to the square of their distance from the sun, he was menially
employed as a technician. Newton rarely minced his words in criticising him . . . Yet Newton is now regarded
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Newton’s Three Laws of Motion

1. Every body continues in a state of rest or uniform motion in a
straight line, unless compelled by an external force to do other-
wise.

2. The rate of change of momentum of the body is directly propor-
tional to the applied force and takes place in the direction in which
the force acts.

3. Action and reaction are equal and opposite.

(Momentum is a vector quantity that is given by the product of mass
and velocity.)

In the next subsection, we briefly outline several key stages within the haptic interaction loop.

10.5.1 Support for Haptic Feedback

In this subsection we limit our discussion to the use of a 3-DOF ‘pen-like’ interaction probe
and so simply deal with the movement of a point (corresponding to the tip of the probe) in a
3-D space. In the text that follows, we loosely follow Blundell and Schwarz [2006] where more
detailed discussion is presented. Several key steps within the haptic pipeline are summarised in
Figure 10.6 and these are outlined below:

1. Model Formation: Here we assign haptic properties to objects within the image scene. In
the simplest case we may indicate that the point representing the tip of the haptic probe
cannot enter the space occupied by an object. Naturally this gives rise to a rigid (non-
deformable) representation that we would associate with, for example, a billiard ball. Alter-
natively, we may wish to model an elastically deformable object such as a soft ball. Here, we
can make use of Hooke’s Law (recall mention of Robert Hooke in the previous footnote)
in which the reaction force (F) increases linearly with the extent of the deformation (d).
For example, suppose that we wish to model an elastically deformable sphere of radius r . In
general terms, Hooke’s Law is given by:

F ∝ −d,

as a model of magnanimity because of his oft-quoted remark: “If I have seen further it is by standing on
the shoulders of Giants.” He said this in a letter to Hooke, one of several written at that time in which he
fulsomely complimented his long-term adversary. These comments weren’t intended seriously, however, indeed
Newton’s apparent modesty contained a venomous personal insult. His remark was a commonplace, dating
back five centuries to John of Salisbury, for whom it was already second hand: ‘Bernard of Chartres used
to compare us to [puny] dwarfs perched on the shoulders of Giants. He pointed out that we see more and
further than our predecessors not because we have keener vision or greater height, but because we are lifted up
and borne aloft on their gigantic stature.’ John’s words had often been quoted . . . so Newton’s contemporaries,
including Hooke himself, would inevitably be reminded of puniness and dwarves. And the punchline? The
unfortunate Hooke was a tiny hunchback, described by an acquaintance as ‘[physically] but despicable, being
very crooked . . . [and] but low of Stature, tho’ by his limbs he shou’d have been moderately tall’. Magnanimity
this was not.’
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Sense position and orientation of the 
haptic interaction device – if appropriate 

update the location /orientation of its 
virtual representation.

If appropriate, update the image scene to 
take into account the interaction that has 

occurred.

Calculate the level of haptic feedback 
and transmit to the operator.

Collision detection: is the haptic tool in 
contact with, or has it penetrated, objects 

within the scene? 

Yes

No

Model formation: the assignment of 
haptic properties to the objects that 

comprise the image scene.

Haptic
interaction loop

Figure 10.6 A simplified overview summarising key stages in relation to the generation of haptic output. See text for discussion.

and so:

F = −kd.

where the constant of proportionality is referred to as the elastic constant associated with a
particular material and represents the resistance of the material to a force of deformation.
In the case of the sphere referred to above, we may model its elastic properties using an
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equation of the form:

|F| = k(r − dp),

where dp represents the distance of the point that represents the tip of the haptic probe from
the centre of the sphere and 0 ≤ dp ≤ r . Thus an elastic force is indicated when the probe
enters the space occupied by the sphere, and gradually increases as the probe moves closer to
the sphere’s centre. Such a model is somewhat naïve in that, in the case of physical objects,
Hooke’s Law is only applicable over a certain deformation range. If an ‘elastic’ object is
subjected to too great a deformation (denoted by the object’s ‘elastic limit’) then, when the
force is removed, the object will not return to its original form – it will remain deformed.
In addition, we should also consider the inclusion of a surface friction model – in the
absence of which the haptic probe will tend to slip along convex surfaces into concavities.
Realism may be further enhanced through the inclusion of a surface texture model which
can be achieved by allowing frictional parameters to vary over short distances (for related
discussion see, for example, Minsky et al. [1990] and Mark et al. [1996]).

The haptic properties that we associate with a scene can be static or dynamic. In this latter
respect we may, for example, model a scene in which the temperature gradually changes
over time causing objects to become more (or less) elastic and even undergoing changes
in state (such as a liquid freezing). Naturally such temporal changes must be incorporated
within the model.

2. Device Location: In the case that we are using a 3-DOF interaction probe, we must deter-
mine the location of the probe’s tip within 3-D space (in the case of a 6-DOF interaction tool
that is able to support both force and torque feedback we must also determine orientation).
In the most basic scenario we obtain Cartesian coordinates defining the location of the
tip of the probe, and use these coordinates to determine its position relative to objects
that comprise the image scene. This is achieved by forming a virtual representation of
the interaction device which in the case of the 3-DOF probe referred to above is simply
a point (sometimes referred to in literature as the ‘haptic interaction point’ (HIP)). This
representation may be used to generate visible cues on the display screen through the
formation of an appropriate ‘cursor’, although in the case that the interaction tool and
image are able to occupy the same space (recall discussion in Section 9.2.2) the creation
of a visible cursor is unnecessary.

3. Collision Detection: Here, we determine whether or not a ‘spatial collision’ has occurred
between the HIP and the scene contents. In the case that the haptic probe is not in touch
with any of the objects that comprise the image scene (and assuming that the virtual
medium within which the objects reside has zero density24), then movement of the haptic
probe should not give rise to any sensation of force. The development of efficient collision
detection algorithms is of great importance in the formation of dynamic computer graphics
scenes and also in robotics. Collision detection within the context of haptic feedback draws
on this work and can be approached in various ways. If, for example the shape and volume
of objects that comprise a scene are represented using simple analytic expressions (recall
Section 7.7), then in the case of a 3-DOF haptic probe we simply determine if the HIP
has entered the space occupied by each object. Alternatively, if we are dealing with other

24 Here we are assuming that the objects are located in free space and are not, for example, immersed in a
liquid.
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representations (e.g. polyhedra) the task is somewhat more complicated – see, for example,
Lin and Gottschalk [1998], Watt [2000], Jimenez [2001], Lin et al. [2004] and Foley et al.
[1990].

4. Generation of Haptic Feedback: This stage involves the calculation of the haptic force and
its output to the operator. When a 3-DOF probe is employed, the force vector correspond-
ing to the most recent HIP location is determined and transmitted to the interaction device.
The use of a 6-DOF probe necessitates the calculation of both force and torque vectors and
this increases the computational cost.

5. Update of the Image Scene: Finally, we must update the image scene to take into account
changes that have been made as a result of user interaction. For example, this may include
imparting (or modifying) object motion, the results of object deformation etc.

10.6 Discussion

‘Imagination was given to man to compensate him for what he is not;
a sense of humour to console him for what he is’.25

In this, the final chapter, we have briefly considered aspects of the interaction process. In this
context we have considered traditional and emerging interaction modalities and have alluded
to the complex human haptic systems. It is hoped that this discussion will encourage the reader
towards further studies in this area, and in the context of human haptic systems the book by
Kandel et al. [2000] provides an excellent starting point. Burdea [1996] provides sound coverage
of basic haptic interaction tools and gives extensive references for further reading. A number of
excellent publications discuss collision detection, and Watt [2000] is a good starting point.

In the case that a haptic probe is used in connection with objects that are represented in
polyhedral form, the operator is likely to sense the discontinuities that exist between polygons.
‘Force shading’ techniques (analogous to Phong shading) can be employed to reduce perceived
force discontinuities – see, for example Zilles and Salisbury [1994] and also Morgenbesser
and Srinivasan [1996]. For readers interested in the application of haptic interaction tools to
volumetric data, Blundell and Schwarz [2006] provides a useful introduction and contains
references for further reading.

‘After long storms and tempests over-blown
The sun at length his joyous face doth clear:
So whenas fortune all her spite hath shown,

Some blissful hours at last must needs appear . . .
In which captiv’d she many months did mourn,

To taste of joy, and to wont pleasures to return.’26

25 Francis Bacon (1561–1626).
26 Edmund Spenser, The Faerie Queene, Canto III.



Appendix
Maths: Some Useful Results A

‘He was asleep, for he knew not remorse.’

1. Equation for a Straight Line:

y = mx + c .

Here, m denotes the gradient and c the y intercept (the point at which the line crosses the
y-axis).

2. Parametric Equations for a Line Segment:

x = x1 + (x2 − x1) t

y = y1 + (y2 − y1) t.

The line connects points (x1, y1) and (x2, y2). The parameter is denoted by t.

3. Parametric Vector Equation for a Line:

r(u) = a + u(b − a).

Here, the parameter is denoted by u.

449
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4. Identity Matrix for Multiplication:
(a) Two by two: [

1 0
0 1

]
.

(b) Three by three: [
1 0 0
0 1 0
0 0 1

]
.

5. Determinant of a 3 by 3 Matrix

a11

∣∣∣∣a22 a23

a32 a33

∣∣∣∣ − a12

∣∣∣∣a21 a23

a31 a33

∣∣∣∣ + a13

∣∣∣∣a21 a22

a31 a32

∣∣∣∣ .
6. Scalar Product:

a · b = a1b1 + a2b2 = |a||b| cos θ.

7. Equations for a Parabola:
(a) For a parabola created about the vertical axis:

(x − h)2 = 4 p (y − k) .

Where the vertex is located at (h, k) and p denotes the vertical distance of the focus
from the vertex.

(b) For a parabola created about the horizontal axis:

(y − k)2 = 4 p (x − h) .

8. The Circle:

(x − a)2 + (y − b)2 = r 2.

Where r denotes the radius and the circle is centred on the point (a, b).

9. The Ellipse (centred on the origin):

x2

a2
+

y2

b2
= 1.

10. Pythagorean Identities:

cos2 θ + sin2 θ = 1

1 + tan2 θ = sec2 θ =
1

cos2 θ

1 + cot2 θ = cosec2 θ =
1

sin2 θ
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11. Sum and Difference Formulae

sin (a + b) = sin a cos b + cos a sin b
sin (a − b) = sin a cos b − cos a sin b
cos (a + b) = cos a cos b − sin a sin b
cos (a − b) = cos a cos b + sin a sin b

12. Differentiation – The Product Rule:

d(uv)

dx
= u

dv

dx
+ v

du

dx
.

13. Differentiation – The Chain Rule:

dy

dx
=

dy

dt
· dt

dx
.

14. Pascal’s Triangle:

1
1 1

1 2 1
1 3 3 1

1 4 6 4 1
1 5 10 10 5 1

1 6 15 20 15 6 1
1 7 21 35 35 21 7 1

15. Vector (Cross) Product

a × b = (a2b3 − a3b2) i − (a1b3 − a3b1) j + (a1b2 − a2b1) k = (|a||b| sin θ) n̂.

a × b =

∣∣∣∣∣
i j k

a1 a2 a3

b1 b2 b3

∣∣∣∣∣ =

∣∣∣∣a2 a3

b2 b3

∣∣∣∣ i −
∣∣∣∣a1 a3

b1 b3

∣∣∣∣ j +

∣∣∣∣a1 a2

b1 b2

∣∣∣∣ k.

a × b = (|a||b| sin θ) n̂.

|a × b| = |a||b| sin θ =
√

(a2b3 − a3b2)2 + (a1b3 − a3b1)2 + (a1b2 − a2b1)2.

n̂ =
a × b

|a × b| .



Appendix
The Curvature of a

Varifocal Mirror B
‘On the whole, perhaps his life was uneventful
for so far-travelling a dog, though it held its
moments of eccentricity . . .’

In this Appendix we present a brief derivation of Eq. 9.10 – an equation which provides us
with the location of the image generated by a varifocal mirror as a function of the mirror’s
curvature. For convenience Eq. 9.10 is given below and the meanings of the various symbols are
summarised in Figure B.1.

v(t) ∼ d2u

16u|xmax| sin ωt − d2
.

On the basis of the right-angle triangle (denoted ABC) in Figure B.1, we can write:

(
d

2

)2

+ (R(t) − x(t))2 = R(t)2.

Re-arranging this expression for R(t) we obtain:

R(t) =
1

2x(t)

[
x(t)2 +

d2

4

]
.

453



454 An Introduction to Computer Graphics and Creative 3-D Environments

x(t)

R(t)

d

R(t)

Centre of
curvature
(C)

Pole

Principle axis

A

B

Figure B.1 The varifocal mirror (shown here in cross section) has a maximum displacement in its curvature of x max. R (t ) denotes the mirror’s
radius of curvature (when concave) and this distance is twice the mirror’s focal length. The mirror’s diameter is d .

It is reasonable to assume that the mirror’s diameter is very much greater than the maximum
mirror deformation (i.e. d >> xmax) and so we may re-write the above expression as:

R(t) ∼ d2

8x(t)
. (B.1)

Given that the deformation of the mirror varies in a sinusoidal manner (e.g. in the case that we
use the loudspeaker and silvered Mylar membrane arrangement and apply a sinusoidal wave to
the ‘speaker’), then we can express x(t) as:

x(t) = |xmax| sin ωt,

where, ω = 2πv = 2π/T (v denotes the frequency of vibration and T the periodic time of
vibration). Hence we can re-write Eq. B.1 as:

R(t) ∼ d2

8 |xmax| sin ωt
. (B.2)

Finally, we make use of the basic formula for curved mirrors.1

1

u
+

1

v(t)
=

1

f (t)
,

1 This equation is derived in most basic physics and optics textbooks. See, for example, Nelkon and
Parker [1995].
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and since the focal length is one half of the radius of curvature (i.e. f (t) = R(T)/2):

1

u
+

1

v(t)
=

2

R(t)
.

Using Eq. B.2 to eliminate R(t) and re-arranging for v(t), we obtain:

v(t) ∼ d2u

16u |xmax| sin ωt − d2
.

Note that at t = 0, this equation reduces to v(0) ∼ −u. This corresponds to the time at which
the varifocal mirror is planar. A virtual image is formed – this lies as far behind the mirror as
the object is in front of it.



Appendix
The Scalar Product C

‘And how a battle cheered his spirit! He
was certainly no Christian; but, allowing
for essential dog,
he was very much a gentleman.’

Given two vectors a = a1i + a2j + a3k and b = b1i + b2j + b3k, their scalar (dot) product is
given by:

a · b = a1b1 + a2b2 + a3b3 = |a||b| cos θ, (C.1)

where θ denotes the angle between the vectors such that 0 ≤ θ ≤ 180◦. The fact that the scalar
product is equal to the sum of the products of the corresponding components of the two vectors
(a1b1 + a2b2 + a3b3) is simply based on the definition of the scalar product. However, it is both
interesting and instructive to understand how this product relates to the angle between the two
vectors – i.e. to verify the right hand side of the above expression.

Here, it is necessary to use the ‘Cosine Rule’. Recall that Pythagoras’ theorem allows us to
relate the lengths of the sides of a right-angle triangle. The Cosine Rule goes one step further –
it can be used on any triangle – the rule is not limited to the right-angle variety. Consider the
triangle depicted in Figure C.1 and which has sides of length A, B and C and internal angles
a, b and c (note that angle a is opposite side A, angle b opposite side B etc.). The Cosine Rule
indicates that:

A2 = B2 + C 2 − 2BC cos a. (C.2)
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c

B

A
Cb

a

Perpendicular

l

Figure C.1 To readily obtain the Cosine Rule, we use a perpendicular to divide the arbitrary triangle ABC into two right-angled triangles.

In fact, in the case that angle a is 90◦, the right-hand term is zero and the equation reduces
to a statement of Pythagoras’ theorem. The Cosine Rule can be derived by including a per-
pendicular that splits the arbitrary triangle illustrated in Figure C.1 into two right-angled
triangles.

Consider the right-hand triangle. The length of the perpendicular (x) is given by:

x = C sin a.

In addition, the length of the base of this triangle (l) is:

l = C cos a.

Thus the base of the left-hand triangle may be expressed as:

B − C cos a.

We now know the lengths of the three sides of the left-hand triangle and apply Pythagoras’
theorem:

A2 = (C sin a)2 + (B − C cos a)2.

Expanding the right-hand bracket and re-arranging we obtain:

A2 = B2 + C 2(sin2 a + cos2 a) − 2BC cos b.

Recall that sin2 θ + cos2 θ = 1 (see Figure C.2) and so this expression reduces to the Cosine Rule
presented above.

Let us now return to our original goal concerning the expression of the scalar product given
at the beginning of this Appendix (Eq. C.1). On the basis of the definition of the scalar product,
and for a vector a = a1i + a2j + a3k we can write:

a · a = a1a1 + a2a2 + a3a3 = a2
1 + a2

2 + a2
3 = |a|2.
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(a)

(b)

θ

x

h

For the triangle: sin θ = y/h, cos θ = x /h.

Thus y = h sin θ, x = h cos θ.
Using Pythagoras’ theorem: x2 + y2 = h2,

and so: (h cos θ)2 + (h sin θ )2 = h2

Thus cos2 θ + sin2 θ = 1.

y

Figure C.2 The right-angled triangle depicted in (a) is used to show that cos2 θ + sin2 θ = 1.

Consider the vectors a, b and b−a illustrated in Figure C.3. Based on the above equation, we
can write:

(b − a) · (b − a) = |b − a|2.

We can expand the terms on the left hand side so that we can write:

b · b − a · a − a · b − b · a = |b − a|2.

The scalar product is commutative (i.e. a · b = b · a) and so:

b · b − a · a − a · b − b · a = |b − a|2 = b · b − a · a − 2a · b.

and since b · b = |b|2 and a · a = |a|2, we can write:

|b − a|2 = |b|2 + |a|2 − 2a · b. (C.3)
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a

b

b-a

x

y

θ

Figure C.3 Illustrating three vectors – a, b and b−a. See text for discussion.

Returning to Figure C.3, we can use apply the Cosine Rule to this triangle and so:

|b − a|2 = |b|2 + |a|2 − 2|a||b| cos θ,

Equating this equation with Eq. C.3, we obtain:

|b|2 + |a|2 − 2a · b = |b|2 + |a|2 − 2|a||b| cos θ,

and so:

a · b = |a||b| cos θ .



Appendix
Concerning the Plane D

‘How many thousand walks
did we not go together,
so that we still turn to see
if he is following at his padding gait,
attentive to the invisible trails’

D.1 Introduction

‘Nothing in education is so astonishing as the amount of ignorance
it accumulates in the form of facts.’1

In this Appendix we introduce some basic mathematics relating to the plane. We begin by
considering the intersection of a line with a plane. Here we represent the line in parametric
form and determine the coordinates of the point at which the line and an arbitrarily oriented
plane intersect (if indeed they do). Initially we consider the case of an unbounded plane and
subsequently describe the intersection of a line with a finite (triangular) region. In Section D.3,
we turn our attention to the intersection of two planes. The techniques used here provide useful
practice in the application of elementary vector techniques.

1 Attributed to Henry Brooks Adams (1838–1918).
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D.2 Determining the Intersection of a Line with a Plane

In computer graphics there is a frequent need to efficiently determine whether a line that has
a particular location and orientation intersects with planar surfaces comprising objects within
a scene. By way of a simple analogy, suppose that you are presented with a laser pointer and
planar surface (such as a white board). Naturally, you can direct the pointer so that it impinges
on the surface – or otherwise. Given a surface that has an infinite extent, the column of light
emitted from the laser will impinge on the surface unless: (1) the laser emits light in a direction
that is parallel to the plane of the surface, or (2) the laser is oriented away from the surface, or
(3) the laser is aligned in the plane of the surface (‘edge on’).

In the case that the surface has a finite extent (e.g. a whiteboard), the laser may fail to impinge
upon the surface for any of the above reasons, and in addition may simply be oriented so as to
intersect the plane containing the surface at a point that is outside the boundary of the actual
surface.

Clearly, if a scene contains multiple objects, one object may obstruct all or part of our view of
another. Thus, for example, although I may aim a laser pointer in the direction of a whiteboard
(or the like), the passage of light may be blocked by the presence of my computer – which lies
between the board and the pointer. Given a computer graphics scene comprising a number of
objects, it is vital that we are able to determine the parts of each object that are visible from
a certain viewpoint. Let us therefore consider the way in which we are able to determine the
coordinates of the point at which a line (corresponding to the column of light emitted by the
laser in the above analogy) intersects a planar surface.

Recall from Section 2.4.11 that we can represent a line using a parametric equation in which
we define a position vector to a point on the line together with a vector that lies along the line.
Thus if we define two position vectors (a and b) to points on the line, we can define the location
of any other point on the line (r(u)) as:

r(u) = a + u(b − a), (D.1)

where u denotes the parameter, and in the case that vectors a and b define the end-points of a
line segment, 0 ≤ u ≤ 1. We can re-write this expression in terms of the vector components in
the x, y and z directions. Thus:

r(u) = (ax + u(bx − ax )) i + (ay + u(by − ay))j + (az + u(bz − az)) k,

where we assume that vector a has components ax i + ay j + azk and similarly vector b has
components bx i + by j + bzk. Recall Eq. 7.3 – the general form of equation for a plane:

Ax + B y + C z + D = 0.

At the point at which the line and plane intersect (if indeed they do intersect) both line and
plane have the same coordinates. Thus we can insert the components of the vector r(u) into the
above expression for the plane. This gives:

A (ax + u(bx − ax )) + B(ay + u(by − ay)) + C (az + u(bz − az)) + D = 0.

Expanding the brackets and re-arranging:

Aax + Bay + Caz + D + u(A(bx − ax ) + B(by − ay) + C (bz − az)) = 0.
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We can re-arrange this further and so obtain an expression for the parameter u:

u =
Aax + Bay + Caz + D

A(ax − bx ) + B(ay − by) + C (az − bz)
.

Recall from Section 7.4 that in the case of the ‘general form’ of equation for a plane, the
coefficients A, B and C correspond to the components of the vector that lies at right-angles
to plane (the surface normal). Bearing this in mind (and denoting this normal as n), we can
write the above equation in a more compact manner:

u =
(a · n) + D

n · (a − b)
. (D.2)

Once we have determined the parameter u, this value can be inserted into Eq. D.1 so providing
us with the position vector of the point of intersection. The sign of the calculated value of
the parameter provides useful information. Let us suppose that we are located at the point on
the line whose location is defined by position vector a – thus we are looking ‘down’ the line
towards the point defined by position vector b. A negative value of u indicates that the surface
is ‘behind’ us and therefore it is not in our line of sight – from a practical point of view there is
no intersection (this is akin to the laser pointer mentioned earlier being oriented so as to emit
light in a direction that is away from the whiteboard).

As mentioned at the beginning of this subsection, a line may lie parallel to the surface of
the plane in which case the two will not intersect. In this scenario, the line is oriented at right-
angles to the surface normal in which case the scalar product n · (a − b) is zero – thus Eq. D.2
will indicate that u becomes infinitely large – implying that the line and plane never meet.

So far in our analysis we have assumed that the plane has an infinite extent – we have not
considered the intersection of a line with a finite plane. To illustrate this scenario, we will
consider that the surface is a triangle with vertices P, Q and R. The position vectors to these three
vertices will be denoted p, q and r respectively – as indicated in Figure D.1. We now consider a
point (labelled L in the diagram and with position vector l), the coordinates of which have been
obtained using the analysis presented above – point L corresponds to the point at which a line
intersects the plane containing triangle PQR. Our task is to find out whether or not this point
lies inside the triangle.

This may be achieved by representing the position of point L in terms of the vectors p, q
and r. Consider a line that is drawn from L to one of the sides of the triangle – the line being
drawn in such a way that it lies parallel to one of the other sides (PR). In the illustration this
line is shown for one particular position of L. In Figure D.2 an alternative scenario is depicted.
In this case, we have created a line that is parallel to edge PQ. However given the position of L
relative to the triangle, intersection with an edge of the triangle will now only occur if the edge is
extended.

Thus the line that we have created is arranged to be parallel to one side of the triangle and
intersects another side – or an extended side. We can express the sides of the triangle in terms of
the position vectors p, q and r. Thus PQ = q − p and PR = r − p. Now let us define the location
of L in terms of the known vectors (this parallels previous discussion presented in Section 7.4.4).
This is readily achieved by considering the path we can traverse to move from the origin to L.
We begin by using vector p – this gets us to point P. We then move some certain distance along
vector PQ – this gets us to the location at which the dashed line from L intersects the edge of
the triangle. Finally we must move in the direction of the dashed line. Since this line is parallel
to vector PR, we need simply move a certain distance in this specified direction. This may be
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q

p

r

l

Q

R

Py

x

z

Arbitrary point L 
that lies in the 
plane of the 
triangle with 
position vector l

This dashed line is in the plane of the triangle and is parallel to one edge 
of the triangle (PR)

Q

R

P

Point L

Figure D.1 Here we illustrate a triangle with vertices P, Q and R. L represents a point that lies in the plane of the triangle. We begin our analysis
by drawing a line from L to an edge of the triangle in such a way that the line is parallel to one of the triangle’s edges. In this case we have drawn
the line from L to side PQ in such a way that it is parallel to side PR. See text for discussion.

expressed as:

l = p + λPQ + εPR = p + λ (q − p) + ε (r − p),

where λ and ε are fractional distances respectively indicating the distance moved in the direction
of vectors PQ and PR.

Finally, we need to specify some conditions that will determine whether or not point L lies
within the triangle.

1. Both λ and ε must be equal to, or greater than, zero. If, for example, λ were to be negative,
then this would mean that we were not moving along the relevant edge of the triangle – but
rather in the opposite direction – away from the triangle – in which case L obviously cannot
be within the triangle.
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Point L

P

Q

R

Extension of 
side PR

Figure D.2 In this case we have chosen to consider a line from point L that is parallel to PQ. To obtain an intersection between this line and one
of the sides of the triangle, we must extend the side – otherwise there will be no intersection.

Determine the vector that 
is normal to the plane 
containing the triangle

For example, take the vector 
product of two vectors that lie 
within the plane – defining the 

edges of the triangle

Determine whether or not 
the line and plane intersect

In the case that the line and 
plane intersect, determine 
values for the parameters λ

and ε

Verify whether or not 
conditions for intersection 
within the triangle are met

Does n.(a-b)=0?

λ≥0, ε≥0 and λ+ε≤1?

Figure D.3 A summary of steps that may be taken to determine if a line intersects with a triangle.
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2. Recall OTU Exercise 7.5 in which we considered the production of a right-angle triangle.
Given two orthogonal vectors (a and b) the hypotenuse of the triangle may be defined by
‘mixing’ together a and b in the appropriate proportion – that is to say:

λa + εb = λa + (1 − λ) b.

Thus for the triangle illustrated in Figure D.1, in the case of the locus of points defining the
edge connecting vertices Q and R:

λ + ε = λ + (1 − λ) = 1,

and so for points that lie on, or inside this edge:

λ + ε ≤ 1.

In summary, we require both parameters to be greater than or equal to zero and the sum of the
parameters must be less than or equal to one. In Figure D.3, we summarise the steps that we
may carry out in order to establish if an arbitrary line intersects with the interior of a triangular
region.

D.3 The Intersection of Two Planes

‘Great God! this is an awful place
and terrible enough for us to have laboured to it

without the reward of priority.’2

The intersection of two planes occurs along a straight line which lies in both planes (see
Figure D.4(a)). In contrast, in the case of a cube, the mutual intersection of three planes occurs
at a point (at each vertex of the cube). In this subsection, we confine our discussion to the
intersection of two planes – the basic approach used here can be extended to encompass the
three-plane situation.

We can represent the line of intersection (L) using a parametric equation in which, as usual,
we define a vector (a = axi + ayj + azk) in the direction of the line and a position vector (p =
pxi + pyj + pzk) to a point on the line (P):

L = p + ua

It is easy to define the vector a. Consider the diagram presented in Figure D.4(b). Here, we
show the surface normal vectors for the two planes (denoted n1 and n2). Taking their vector
product, we obtain a vector that lies at right-angles to the two normal vectors and which lies in
the direction of the line that denotes the intersection of the two planes. Thus:

n1 × n2 = a.

Determining the position vector to a point on the line is a little more taxing. Using the general
equation for a plane (Eq. 7.3) we can write for Plane 1:

A1 px + B1 py + C1 pz + D1 = 0, (D.3)

2 Captain Robert Falcon Scott (1868–1912).
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(a)

(b)

Line of intersection of the two planes

Plane 1
Plane 2

n1

n2

a

Figure D.4 In (a) we illustrate the intersection of two non-parallel planes. Intersection takes place along a line that lies in both planes. Diagram
(b) shows the surface normal vectors (denoted n1 and n2) for the two planes. These vectors are drawn from a point along the line at which the
planes intersect. Their vector product results in a vector along the line of intersection (denoted a in the text).

and for Plane 2:

A2 px + B2 py + C2 pz + D2 = 0. (D.4)

Where A1, B1 and C1 denote the components of the surface normal vector n1 and A2, B2 and
C2 are those associated with n2. (Do you recall the physical significance of the fourth term in
these equations?) Clearly any particular point along the line on which the planes intersect has
the same coordinates in both planes – once we have the coordinates of P, we can insert it into the
two plane equations and will find that it satisfies each of them. In order to determine the three
coordinates of the point P algebraically we need an additional equation.3 Such an equation can
be obtained by defining that the point P be positioned such that the angle between the vector p
and the line is 90◦ (this does not limit the validity of the result). Thus we can write:

a·p = 0.

3 Also see Jones et al. [2007] who discusses a simple and direct approach to determining the coordinates
of P.
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From which it follows that:

ax px + ay py + az pz = 0. (D.5)

We can express Eq.’s D.3–D.5 in matrix form:[
A1 B1 C1

A2 B2 C2

ax ay az

] [
px

py

pz

]
=

[−D1

−D2

0

]
. (D.6)

We can now solve this equation and obtain expressions for px , py and pz .

OTU Exercise D.1: Finding the Coordinates of a Point on the
Line of Intersection

On the basis of Eq. D.6, obtain equations for the coordinates of the point P which lies on the
line denoting the intersection of two planes.

Hint: You may wish to glance back to the strategy used in Section 7.4.1.
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Chapter 1

1.5: Cross-Sections

Diagram (a) could, for example represent a cross-section through a block of material within
which three circular holes have been cut.

Diagram (b) cannot represent a cross-section of a physical object. The two ‘circuits’ (here,
we use the term ‘circuits’ in the context of ‘graph theory’ to indicate a closed path containing
at least one edge) are non-disjoint. This contrasts with the situation depicted in (a) and (c) in
which the circuits are disjoint.

Diagram (c) could, for example represent a horizontal cross-section through a chair or table –
each of the circles representing a single leg.

1.6: Vector and Scalar Quantities

Mass – scalar, Velocity – vector, Distance – vector, Density – scalar, Time – scalar, Temperature –
scalar, Acceleration – vector, Force – vector.

1.7: Video Memory Access Time

Using Eq. 1.1, we obtain an access time of ∼18 ns (ns denotes nanoseconds (1 ns = 10−9 s)).
Note the refresh period is 1/70∼0.014 s.

1.8: Passive Polarizing Glasses

If the head is tilted, this will result in increased cross-talk. This problem can be overcome by
using circularly polarized filtering – see, for example, Walworth [1984].

469
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Chapter 2

2.1: Conversion from Rectangular to Polar Coordinates

(a) The value of r is calculated using Pythagoras:
√

32 + 32 ≈ 4.2. The value of θ may be
determined from Eq. 2.1:

ϑ = arctan
( y

x

)
= arctan

(
3

3

)
= arctan 1 = 45◦

Thus the coordinates of P are given by (4.2, 45◦)
(b) The value of r is calculated using Pythagoras:

√
(−3)2 + 32 ≈ 4.2

The value of θ is found using by Eq. 2.1:

ϑ = arctan
( y

x

)
= arctan

(
3

−3

)
= arctan(−1) = −45◦

However, it is important to recall that θ is measured in an anticlockwise direction from
the positive x-axis. If you plot the location of P in Figure 2.1 you will see that it lies
in Quadrant II and so θ is in the range 90◦ ≤ θ ≤ 180◦. In fact, the angle that we have
calculated is measured from the negative x-axis. Thus to determine the correct value of θ
we must subtract this angle from 180◦. This gives 135◦.

Thus the coordinates of P are given by (4.2, 135◦)

2.2: The Equation of a Line

The line passes through these two points and it may be helpful to begin by sketching the line.
Since the line passes through the point (2,1) we can use Eq. 2.2 and write 1 = 2 m + c .
Similarly for the point (3,2) we can write 2 = 3m + c . Solving these equations for m and c, we
obtain m = 1 and c = −1. Thus the equation for the line is y = x − 1.

2.3: The Parametric Form

Rearrange the two equations:

t =
x − x1

x2 − x1
t =

y − y1

y2 − y1
.

We can now equate these two equations and so eliminate t:

x − x1

x2 − x1
=

y − y1

y2 − y1
.

Rearranging gives Eq. 2.3.

2.4: Parametric Form and Mid-Point of a Line Segment

Inserting the end point values into Eqs. 2.3 and 2.4, we obtain:

x = 1 + (3 − 1)t
y = 2 + (4 − 2)t
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x
1 2 3 4−4 −3 −2 −1

1

2

3

−2

−1

−3

y

Figure OTU 2.2 The Equation of a Line.

Thus:

x = 1 + 2t

y = 2 + 2t

The mid-point of the line segment is at t = 0.5. Substituting this value into the above two para-
metric equations we obtain x = 2 and y = 3. Thus the coordinates of the mid-point are (2,3).

2.6: Expressing a Vector in Terms of Orthogonal Unit Vectors

OQ = 6i + 9j.

2.7: Addition and Subtraction of Vectors

p + q = 6i + 14j.
p − q = −2i + 4j.

2.8: Reversing the Direction of a Vector

d = 4i − 2j.
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2.9: Using the Scalar Product

1. Find the magnitude of a and b: |a| =
√

22 + 32 =
√

13 and |b| =
√

42 + 12 =
√

17.
Determine the dot product: a·b = 2·4 + 3·1 = 11.
Now use Eq. 2.7 to find the angle between the vectors: 11 =

√
13 · √

17 cos θ
Thus cos θ∼0.74 and so θ∼42◦.

2. Determine the dot product: p·q = 0
Thus p·q/|p||q| = 0 (irrespective of vector magnitudes). Hence cos θ = 0 and so
θ = 90◦.

2.10: Potting Lines Using the Vector Equation

Choose some exemplar values for t (we will select 0, 1, 2) and for both vector equations we
determine vector values. We subsequently draw and compare the two graphs.

1 2

y

x

2

4

6

8

10

12

For a = ti + (4t + 3)j

t a
0 3j
1 i + 7j
2 2i + 11j

For a = 0.25ti + (3 + t)j.

t a
0 3j
1 0.25i + 4j
2 0.5i + 5j

Figure OTU 2.10 Plotting Lines Using the Vector Equation.
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2.11: Locating the Point at which Two Lines Intersect

1. As indicated in Eq. 2.11: r = a + td. Here, d represents the direction vector – this defines the
slope (gradient) of the line. Thus for two lines to be parallel, their direction vectors (d1 and
d2) must be parallel. In turn, this means that d1 = kd2 where k denotes a scaling factor (the
vectors may be of different length but must be parallel in their orientation). The direction
vectors of the two lines are: −i + 2j and 2i + j. By inspection, it is clear that we cannot
multiply one of these equations by a number (k) so as to obtain the other. Consequently, it
follows that the lines are not parallel.

2. To find the point of intersection, we must appreciate that we need to locate a point on both
lines that is defined by the same position vector. Clearly if a point on one line is given by
a position vector p and a point on the other line is given also defined by the same position
vector, then the two points must occupy the same location in space and this by definition
corresponds to the point at which the lines intersect.

We begin by expressing the two vector equations in the form r = xi + yj. By rearranging the
terms, the first line may be expressed as:

r1(t) = (1 − t)i + (3 + 2t)j,

and the second line:

r2(s ) = (1 + 2s )i + (−2 + s )j.

At the point at which the lines intersect r1 = r2. We can therefore equate the horizontal and
vertical components of these two vectors:

1 − t = 1 + 2s , 3 + 2t = −2 + s .

Thus from the first equation we know that t = −2s . Inserting this into the second equation
gives s = 1, and so t = −2. To obtain the position vector for the point of intersection, we insert
either the value of t into the above equation for r1 or the value of s into the other. (Using both
substitutions we can check our answer – both position vectors should be the same at the point
of intersection!). We obtain r = 3i − j.

2.12: The Multiplication of Matrices

1.

[
1 2
2 3

][
1 1
3 2

]
=

[
1×1 + 2×3 1×1 + 2×2
2×1 + 3×3 2×1 + 3×2

]
=

[
7 5

11 8

]
.

2.

[
2 1
3 2

][
2
1

]
=

[
2×2 + 1×1
3×2 + 2×1

]
=

[
5
8

]
.

3.

[
1 2
3 4

][
1 0
0 1

]
=

[
1 2
3 4

]
.

In the case of the third question, multiplication by

[
1 0
0 1

]
has no effect.
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2.13: An Identity Matrix[
1 2 1
2 1 0
2 0 3

][
1 0 0
0 1 0
0 0 1

]
=

[
1 + 0 + 0 0 + 2 + 0 0 + 0 + 1
2 + 0 + 0 0 + 1 + 0 0 + 0 + 0
2 + 0 + 0 0 + 0 + 0 0 + 0 + 3

]
=

[
1 2 1
2 1 0
2 0 3

]
.

2.14: Calculating an Inverse Matrix

The determinant is: −10

Thus the inverse is given by:

[−1/10 4/10
3/10 −2/10

]
.

2.16: The Parabola

Let y = u, then x = u2. Thus:

r(u) = u2i + uj.

u −3 −2 −1 0 1 2 3

r(u) 9i − 3j 4i − 2j i − j 0i + 0j i + j 4i + 2j 9i + 3j
x 9 4 1 0 1 4 9
y −3 −2 −1 0 1 2 3

2.17: The Circle

Rearranging the equation for the circle we obtain:

y =
√

9 − x2.

We use x values in the range −3 ≤ x ≤ 3. For example:

x −3 −2 −1 0 1 2 3

y 0 +2.2 or −2.2 +2.8 or −2.8 +3 or −3 +2.8 or −2.8 +2.2 or −2.2 0

Chapter 3

3.1: Scaling the Dimensions of a Shape

Here, the horizontal and vertical components are each scaled by a different amount. In this sense
the scaling is said to be unbalanced.
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3.2: Rotation About the Origin

In both cases, we insert the relevant angle into Eq. 3.5. Thus:

1.

[
0 1

−1 0

]
.

2.

[−1 0
0 −1

]
.

3.4: Combining Transformations

Here, we reverse the order of the two left most matrices in Eq. 3.7 – the rotation matrix now
comes first. [

0 1
−1 0

] [−1 0
0 1

]
=

[
0 1
1 0

]
.

Applying this to the position vectors that define the location of the vertices of the rectangle
ABCD that was used in OTU Exercise 3.3 confirm this result.

3.5: A Translation Operation

p = 2i + 4j
q = 4i + j

Expressing these as homogeneous vectors:

p = [2 4 1]
q = [4 1 1]

We now apply the shift operation to these two homogeneous vectors. Using Eq. 3.13, we
obtain:

[
2 4 1

] [
1 0 0
0 1 0
4 2 1

]
=

[
6 6 1

]
,

and

[
4 1 1

] [
1 0 0
0 1 0
4 2 1

]
=

[
8 3 1

]
.

Thus the coordinates of P′ and Q′ are (6,6) and (8,3) respectively.
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Chapter 4

4.1: Derivatives
1. f ′(x) = 9x2 + 12x − 4, f ′′(x) = 18x + 12.

2.
dy

dx
= 36x3 − 12x2 + 4x + 5,

d2 y

dx2
= 108x2 − 24x + 4.

3. y = x(4x + 3) = 4x2 + 3x .
dy

dx
= 8x + 3,

d2 y

dx2
= 8.

4. y =
√

x = x1/2.
dy

dx
=

1

2
· x−1/2 =

1

2.x1/2
=

1

2
√

x
.

d2 y

dx2
=

1

2
· −1

2
x−3/2 = − 1

4x3/2

4.2: Further Derivatives

1. dy/dx = 5(6x + 3)4 · 6 = 30(6x + 3)4

2. dy/dx = 6(1 − 3x)1 · −3 = −18(1 − 3x) = 54x − 18.
Alternatively, we can begin by expanding the equation – giving: y = 3 + 27x2 − 18x . If

we now differentiate, we obtain dy/dx = 54x − 18.
3. y = 3x(1 − x)2. Here we can use the Product Rule – let u = 3x and v = (1 − x)2.

dy

dx
= 3x · d

dx
(1 − x)2 + (1 − x)2 · d

dx
3x = −6x (1 − x) + 3 (1 − x)2 .

4.3: Determining the Coordinates of a Turning Point
dy

dx
= 12x − 6 = gradient

At the turning point, the gradient equals zero and so: 12x − 6 = 0. Thus x = 0.5. Inserting this
value into the Cartesian equation for the curve, we obtain y = −3.5. Thus the coordinates of the
turning point are (0.5, −3.5).

4.4: Summation Notation

x =
4∑

j =2

2 j = 22 + 23 + 24 = 28

4.10: Sketching a Bézier Curve

Table of values for the graph is as follows:



Feedback to Selected OTU Exercises 477

t x y

0 1 1
0.2 3.6 3.24
0.4 5.8 4.36
0.6 7.6 4.36
0.8 9 3.24
1.0 10 1.0

4.11: Sketching a Piecewise Polynomial

Tables of values for the graphs are as follows:
For a(t):

t y

0 0
0.2 0.02
0.4 0.08
0.6 0.18
0.8 0.32
1.0 0.5

For b(t):

t y

1.0 0.5
1.2 0.66
1.4 0.74
1.6 0.74
1.8 0.66
2.0 0.5

For c(t):

t y

2.0 0.5
2.2 0.32
2.4 0.18
2.6 0.08
2.8 0.02
3.0 0
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4.12: A Spline Function

(a) Differentiating the three equations gives:

a ′(t) = t
b′(t) = −2 (t − 1.5)1 = 3 − 2t
c ′(t) = −1 (3 − t)1 · −1 = t − 3

At the point at which the first two functions join, t = 1. At this point, a ′(t) = 1 and b′(t) = 1.
Thus at this point the gradients of the two functions are the same. At the point at which the
second and third functions meet, t = 2. Here, b′(t) = −1 and c ′(t) = −1. Thus at the point at
which these two curves meet, they have the same gradient.

(a) Taking the second derivative, we obtain:

a ′′(t) = 1
b′′(t) = −2
c ′′(t) = 1

Clearly, for a(t) and b(t), the rate of change of gradient is different. Similarly, b(t) and c(t) have
a different rate of change of gradient.

4.14: Polynomials – Order and Degree

The polynomial has a degree of 5 and an order of 6.

Chapter 5

5.1: The Density of Pixels on a Standard Computer Display

Let’s suppose that a monitor offers 1000 by 800 pixels per frame and let us assume a screen
measuring 400 by 300 mm. Thus the density of pixels (assuming that they are equally spaced in
both the vertical and horizontal directions) is 8 × 105/12 × 104∼7 mm−2. In this respect, the
image acquisition characteristics of this central region of the eye far surpass the displays image
depiction capabilities!

5.4: Photon Energy

Combining Eqs. 5.1 and 5.2 we obtain:

E =
hc

λ
.

The wavelength λ = 550 nm = 550 × 10−9 m. Assuming c ∼ 3 × 108 ms−1 and h ∼ 6.6 ×
10−34 J.s. Thus:

E ≈ 6.6 × 10−34 × 3 × 108

550 × 10−9
= 0.36 × 10−18 J.
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5.6: Perceived Brightness

On the basis of Eq. 5.3, approximately eight lamps would be required.

5.7: Detection Acuity

(a) Let the diameter of the wire be denoted by D. Then:

tan 1′ = tan 1/60◦ =
D

2
. Thus: D ≈ 0.6 mm.

Let the horizontal extent of the retinal image be denoted as d . Then:

tan 1′ =
d

20
. Thus: d ≈ 0.006 mm.

(b) Assume, for example, a screen that measures 35 cm horizontally and which depicts 1000
pixels along this length. In this case we can estimate pixels that are ∼0.3 mm in diameter
(here, we make a small allowance for the inter-pixel separation). Assuming a viewing
distance of 50 cm = 500 mm, then:

tan θ =
0.3

500
= 6 × 10−4. Thus θ ≈ 0.03◦ = 1.8′.

5.14: Convergence Angle

Equation 5.26 relates the distance (d) with the angle of convergence (β):

tan
β

2
=

I

2d
,

where I is the interocular distance that we assume ∼6.3 cm. Thus when d = 400 cm:

β = 2 tan−1 3.15

400
≈ 0.902◦,

and when d = 500 cm:

β = 2 tan−1 3.15

500
≈ 0.722◦.

The angle of convergence changes by approximately 0.18◦. For the second part of this exercise,
we can write:

0.18◦ ≈ 2 tan−1 3.15

20
− 2 tan−1 3.15

x
,

where x represents the distance that we wish to determine. Evaluating this expression we obtain:

0.18◦ ≈ 17.9 − 2 tan−1 3.15

x
,

and so the change in distance is ∼0.2 cm.
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Chapter 6

6.1: Combining Transformations

[
1 0 0
0 1 0
0 0 i

] [
a b 0
d e 0
0 0 1

] [
1 0 0
0 1 0
g h 1

]
=

[
a b 0
d e 0
g i hi i

]
.

6.3: Matrices for Reflection

(a) Reflection in the x–y plane: ⎡
⎢⎣

1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 1

⎤
⎥⎦ .

(b) Reflection in the y–z plane: ⎡
⎢⎣

−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤
⎥⎦ .

(c) Reflection in the x–z plane: ⎡
⎢⎣

1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 1

⎤
⎥⎦ .

6.4: Calculating the Vector Product

Eq. 6.7 provides an expression for the vector product:

a × b = (a2b3 − a3b2) i − (a1b3 − a3b1) j + (a1b2 − a2b1) k.

Thus

1. a × b = (−2 − 3) i − (−1 − 6) j + (1 − 4) k = −5i + 7j − 3k
2. b × a = (3 + 2) i − (6 + 1) j + (4 − 1) k = 5i − 7j + 3k

Hence a × b �= b × a and hence the operation is not commutative. However on inspection of
the results, it is apparent that a × b = −(b × a). Thus the resulting vectors are of the same
magnitude but point in directly opposite directions.

6.5: The Vector Product of Parallel Vectors

1. In the case that two vectors are parallel, θ = 0◦ and so sin θ = 0. As a result, the vector
product is zero.
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2. Using Eq. 6.7, we can write:

a × b = (a2b3 − a3b2) i − (a1b3 − a3b1) j + (a1b2 − a2b1) k
= (−30 + 30) i + (−12 + 12) j + (20 − 20) k.

Hence a × b = 0.

6.6: Determination of the Surface Normal

Using Eq. 6.7, we can write:

n = a × b = (a2b3 − a3b2) i − (a1b3 − a3b1) j + (a1b2 − a2b1) k
= (42 − 16) i − (14 − 6) j + (16 − 18) k.

Thus:

n = 26i − 8j − 2k.

This vector is perpendicular to the plane defined by a and b. It has a magnitude determined by
the magnitudes of both a and b and also by the angle between these two vectors. To convert the
vector n into a unit vector, we need to calculate the magnitude of a × b. This is given by:

|n| = |a × b| =
√

262 + 82 + 22 =
√

744.

Eq. 6.10 now allows us to obtain the unit vector:

n̂ =
a × b

|a × b| =
n

|n| =
26i − 8j − 2k√

744
=

26i√
744

− 8j√
744

− 2k√
744

.

6.7: The Application of a 4 by 4 Matrix

[
3 4 5 1

] ⎡
⎢⎣

1 0 0 0
0 cos 45◦ sin 45◦ 0
0 − sin 45◦ cos 45◦ 0
0 0 0 0.5

⎤
⎥⎦ ≈ [

3 −0.7 6.4 0.5
]
.

Thus the point is approximately located at (6, −1.4, 12.8).

6.8: The Inverse of a Matrix
(a)

R−1
z (α) =

⎡
⎢⎣

cos α − sin α 0 0
sin α cos α 0 0

0 0 1 0
0 0 0 1

⎤
⎥⎦ .
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and,

⎡
⎢⎣

cos α sin α 0 0
− sin α cos α 0 0

0 0 1 0
0 0 0 1

⎤
⎥⎦

⎡
⎢⎣

cos α − sin α 0 0
sin α cos α 0 0

0 0 1 0
0 0 0 1

⎤
⎥⎦ =

⎡
⎢⎣

cos2 α + sin2 α 0 0 0
0 sin2 α + cos2 α 0 0
0 0 1 0
0 0 0 1

⎤
⎥⎦

Recall that cos2 α + sin2 α = 1 and so the above result is the identity matrix for multipli-
cation.

6.9: Example Calculation

The point L can be represented in homogeneous form as [2 2 −4 1]. Thus the coordinates of
L’ may be determines as follows:

[
2 2 −4 1

] ⎡
⎢⎣

1 0 0 0
0 1 0 0
0 0 0 −1/10
0 0 0 1

⎤
⎥⎦ =

[
2 2 0 0.4 + 1

]
.

The coordinates of L′ are therefore:(
2

1.4
,

2

1.4
, 0

)
≈ (

1.43, 1.43, 0
)
.

6.11: The Perspective Projection: Object Orientation

x

y

Figure OTU 6.11 The Perspective Projection – Object Orientation.
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Chapter 7

7.2: Regular Polyhedra

The number of edges per face is represented by e and the total number of faces by S. Thus,
we can write, e S = 2E where E represents the total number of edges forming the polyhedron
(note the factor of two arises because each edge is ‘shared’ between two adjacent faces). We can
also write that Vv = 2E , where v denotes the number of edges emanating from each vertex.
Thus:

V =
2E

v
and S =

2E

e
.

Substituting into Eq. 7.1, we obtain:

2E

v
− E +

2E

e
= 2.

Dividing through by 2E gives:

1

v
+

1

e
− 1

2
=

1

E
.

Obviously, the total number of edges comprising the polyhedron (E ) must be greater than
zero. Thus:

1

E
> 0, and so

1

v
+

1

e
− 1

2
> 0.

For a polyhedron, it is apparent that both e and v must be equal to or greater than three (e.g.
a face bounded by only two faces would not make particular sense . . . ). In the case that both e
and v equal four, the left hand side of the above equation equals zero and when both e and v
are greater than four, the left hand side of the equation becomes negative – implying that E is
negative – which is not the case! We can therefore conclude that both e and v cannot be greater
than three. Thus if we assume that e equals three, then to satisfy the above inequality, 3 ≤ v ≤ 5.
Similarly, if we assume that v equals three, then 3 ≤ e ≤ 5.

We can conclude that valid combinations for e and v (denoted as an ordered pair (e, v)) are
(3,3), (3,4), (3,5), (4,3), (5,3). Inserting these values, we can determine corresponding values for
E . These are presented below:

Edges per
face (e)

Edges from
each vertex (v)

Total number
of edges (E) Polyhedron

3 3 6 Tetrahedron
3 4 12 Octahedron
3 5 30 Icosahedron
4 3 12 Cube
5 3 30 Dodecahedron
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7.3: The Euler-Poincaré Equation

For this polyhedron there are 20 vertices (V), 30 edges (E ) and 12 surfaces (S). There is a
single component (P = 1), one hole passes through the object (H = 1) and a total of two holes
(HB = 2 – corresponding to either end of the hole that passes through the object). Eq. 7.2
indicates:

V − E + S = 2(P − H) + HB .

Using this data, both the left and right hand sides of this equation equate to two.

7.4: The Normal Vector

The normal vector (n) is given by 3i + 2j + 4k. The question requires us to find the unit vector –
hence we must calculate the magnitude of n. This is given by:

|n| =
√

32 + 22 + 42 =
√

29.

Thus the unit vector is given by:

n̂ =
1√
29

(3i + 2j + 4k).

7.6: Determining the Plane Equation and Perpendicular Distance

The general equation for the plane is:

Ax + B y + C z + D = 0.

The values of the coefficients A, B and C are given by the vector components of the surface
normal. Inserting these values we obtain:

x + y + z + D = 0.

We are told that the plane passes through a point P with position vector p = 2j + k. Inserting
these values we find that D = −3. Thus the equation for the plane is given by:

x + y + z − 3 = 0.

The magnitude of the normal vector is given by |n| =
√

12 + 12 + 12 =
√

3. The perpendicular
distance from the origin is given by:

|D|
|n| =

3√
3
.

7.8: The Spatial Occupancy of a Cone

y ≥ 0, y ≤ 1, x2 + z2 ≤ (1 − y)2 .
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Chapter 9

9.2: Total Internal Reflection

Using Eq. 9.2:

sin θ1 >
n2

n1
∼ 1.003

1.52

Thus

θ1 > 41.3◦

9.4: Head Tracking

Given a temperature of 27 ◦C, the velocity of the wave is:

v ∼ 331 + 0.6T = 331 + 0.6 × 27 ∼ 347 ms−1

Speed =
Distance traveled

Time taken

Hence, time = 0.8/347 ∼ 2.3 × 10−3 seconds.

9.10: Locating the Size and Position of an Image Formed by Curved Mirrors

(1) f = 20 cm, u = 10 cm. Using Eq. 9.7:

1

10
+

1

v
=

1

20
,

thus v = 20 cm. Further, the answer is negative indicating that the image is behind the mirror
(virtual).

Using Eq. 9.8:

Magnification =
v

u
=

20

10
= 2.

(2) In the case of the convex mirror, we denote the focal length as being negative. Thus f =
−20 cm, u = 10 cm. Again using Eq. 9.7, we now obtain v ∼ 6.67 cm. The calculated distance
is negative and so again the image is virtual. Note that whatever the location of a real object
placed in front of a convex mirror, the image is always virtual.

Using Eq. 9.8: we obtain a magnification of 2/3 – indicating that the image is diminished
in size.
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Chapter 10

10.2: The Functionality of Receptors

1. This is known as the ‘Weber Illusion’ (after the 19th century German physiologist). The cold
coin is perceived as being the heaviest. This indicates the presence of receptors that respond
to both temperature and pressure.

2. The warm and cold coins are now likely to be perceived as being heavier than the coin at
skin temperature. We may conclude that the sensation provided by the receptors varies with
location on the body.
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Vieth-Műller Circle 240
View frustrum 341
View plane 287
Viewing

coordinate system 288
volume 338
window 287

Viewpoint (assumption of position) 229
Viewport 113
Virtual camera 287
Virtual image space 367
Volumetric display

image opacity 408
occlusion 392
subsystems 393
techniques 389

Volumetric images – opaque 418
Voxel 391

activation 393
generation 393
opaque 408

W
Watts to Lumens 199
Weighted average 164
Wheatstone, Charles 22, 376, 379
Wireframe model 296
Wordsworth, William 5
World coordinate system 337

Y
Yaw 262

Z
Z-buffer technique 344


	cover.jpg
	front-matter.pdf
	fulltext.pdf
	fulltext_001.pdf
	fulltext_002.pdf
	fulltext_003.pdf
	fulltext_004.pdf
	fulltext_005.pdf
	fulltext_006.pdf
	fulltext_007.pdf
	fulltext_008.pdf
	fulltext_009.pdf
	back-matter.pdf

