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Preface

This book grew out of a conversation between two of the authors. We were dis-
cussing the fact that many of our students needed a set of competencies, which they
could not really learn in any course that we offered at the Technical University of
Denmark. The specific competencies were at the junction of computer vision and
computer graphics, and they all had something to do with “how to deal with” dis-
crete 3D shapes (often simply denoted “geometry”).

The tiresome fact was that many of our students at graduate level had to pick up
things like registration of surfaces, smoothing of surfaces, reconstruction from point
clouds, implicit surface polygonization, etc. on their own. Somehow these topics did
not quite fit in a graphics course or a computer vision course. In fact, just a few years
before our conversation, topics such as these had begun to crystallize out of com-
puter graphics and vision forming the field of geometry processing. Consequently,
we created a course in computational geometry processing and started writing a set
of course notes, which have been improved over the course of a few years, and now,
after some additional polishing and editing, form the present book.

Of course, the question remains: why was the course an important missing piece
in our curriculum, and, by extension, why should anyone bother about this book?

The answer is that optical scanning is becoming ubiquitous. In principle, any
technically minded person can create a laser scanner using just a laser pointer, a web
cam, and a computer together with a few other paraphernalia. Such a device would
not be at the 20 micron precision which an industrial laser scanner touts these days,
but it goes to show that the principles are fairly simple. The result is that a number
of organizations now have easy access to optical acquisition devices. In fact, many
individuals have too—since the Microsoft Kinect contains a depth sensing camera.
Geometry also comes from other sources. For instance, medical CT, MR and 3D
ultrasound scanners provide us with huge volumetric images from which we can
extract surfaces.

However, often we cannot directly use this acquired geometry for its intended
purpose. Any measurement is fraught with error, so we need to be able to filter the
geometry to reduce noise, and usually acquired geometry is also very verbose and
simplification is called for. Often we need to convert between various representa-
tions, or we need to put together several partial models into one big model. In other
words, raw acquired geometry needs to be processed before it is useful for some
envisioned purpose, and this book is precisely about algorithms for such processing
of geometry as is needed in order to make geometric data useful.

v
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Overview and Goals

Geometry processing can loosely be defined as the field which is concerned
with how geometric objects (points, lines, polygons, polyhedra, smooth curves, or
smooth surfaces) are worked upon by a computer. Thus, we are mostly concerned
with algorithms that work on a (large) set of data. Often, but not necessarily, we
have data that have been acquired by scanning some real object. Dealing with laser
scanned data is a good example of what this book is about, but it is by no means the
only example.

We could have approached the topic by surveying the literature within the topics
covered by the book. That would have led to a book giving an overview of the topics,
and it would have allowed us to cover more methods than we actually do. Instead,
since we believe that we have a relatively broad practical experience in the areas,
we have chosen to focus on methods we actually use, cf. Chap. 1. Therefore, with
very few exceptions, the methods covered in this book have been implemented by
one or more of the authors. This strategy has allowed us to put emphasis on what
we believe to be the core tools of the subject, allowing the reader to gain a deeper
understanding of these, and, hopefully, made the text more accessible. We believe
that our strategy makes this book very suitable for teaching, because students are
able to implement much of the material in this book without needing to consult
other texts.

We had a few other concerns too. One is that we had no desire to write a book
which was tied to a specific programming library or even a specific programming
language, since that tends to make some of the information in a book less general.
On the other hand, in our geometry processing course, we use C++ for the exer-
cises in conjunction with a library called GEL1 which contains many algorithms
and functions for geometry processing. In this book, we rarely mention GEL except
in the exercises, where we sometimes make a note that some particular problem can
be solved in a particular way using the GEL library.

In many ways this is a practical book, but we aim to show the connections to
the mathematical underpinnings: Most of the methods rely on theory which it is
our desire to explain in as much detail as it takes for a graduate student to not only
implement a given method but also to understand the ideas behind it, its limitations
and its advantages.

Organization and Features

A problem confronting any author is how to delimit the subject. In this book, we
cover a range of topics that almost anyone intending to do work in geometry pro-
cessing will need to be familiar with. However, we choose not to go into concrete

1C++ library developed by some of the authors of this book and freely available. URL provided at
the end of this preface.
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applications of geometry processing. For instance, we do not discuss animation, de-
formation, 3D printing of prototypes, or topics pertaining to (computer graphics)
rendering of geometric data. In the following, we give a brief overview of the con-
tents of the book.

Chapter 1 contains a brief overview of techniques for acquisition of 3D geometry
and applications of 3D geometry.

Chapters 2–4 are about mathematical theory which is used throughout the rest
of the book. Specifically, these chapters cover vector spaces, metric space, affine
spaces, differential geometry, and finite difference methods for computing deriva-
tives and solving differential equations. For many readers these chapters will not be
necessary on a first reading, but they may serve as useful points of reference when
something in a later chapter is hard to understand.

Chapters 5–7 are about geometry representations. Specifically, these chapters
cover polygonal meshes, splines, and subdivision surfaces.

Chapter 8 is about computing curvature from polygonal meshes. This is some-
thing often needed either for analysis or for the processing algorithms described in
later chapters.

Chapters 9–11 describe algorithms for mesh smoothing, mesh parametrization,
and mesh optimization and simplification—operations very often needed in order to
be able to use acquired geometry for the intended purpose.

Chapters 12–13 cover point location databases and convex hulls of point sets.
Point databases (in particular kD trees) are essential to many geometry processing
algorithms, for instance registration. Convex hulls are also needed in numerous con-
texts such as collision detection.

Chapters 14–18 are about a variety of topics that pertain to the reconstruction
of triangle meshes from point clouds: Delaunay triangulation, registration of point
clouds (or meshes), surface reconstruction using scattered data interpolation (with
radial basis functions), volumetric methods for surface reconstruction and the level
set method, and finally isosurface extraction. Together, these chapters should pro-
vide a fairly complete overview of the algorithms needed to go from a raw set of
scanned points to a final mesh. For further processing of the mesh, the algorithms in
Chaps. 9–11 are likely to be useful.

Target Audience

The intended reader of this book is a professional or a graduate student who is
familiar with (and able to apply) the main results of linear algebra, calculus, and
differential equations. It is an advantage to be familiar with a number of more ad-
vanced subjects, especially differential geometry, vector spaces, and finite difference
methods for partial differential equations. However, since many graduate students
tend to need a brush up on these topics, the initial chapters cover the mathematical
preliminaries just mentioned.

The ability to program in a standard imperative programming language such as
C++, C, C#, Java or similar will be a distinct advantage if the reader intends to put
the material in this book to actual use. Provided the reader is familiar with such a
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programming language, he or she should be able to implement many of the methods
presented in this book. The implementation will, however, be much easier if a library
of basic data structures and algorithms for dealing with linear algebra and geometric
data is available.

Supplemental Resources

At the web page of this book, http://www.springer.com/978-1-4471-4074-0, we pro-
vide three types of supplementary material.
1. Data for exercises. This comprises point sets and polygonal meshes suitable for

solving some of the exercise problems which are listed at the end of each chapter.
2. The GEL library. GEL is an abbreviation for Geometry and Linear algebra Li-

brary’—a collection of C++ classes and functions distributed as source code.
GEL is useful for geometry processing and visualization tasks in particular and
most of the algorithms in this book have been implemented on top of GEL.

3. Example C++ programs. Readers interested in implementing the material in this
book using GEL will probably find it very convenient to use our example pro-
grams. These programs build on GEL and should make it easy and convenient
to get started. The example programs are fairly generic, but for all programming
one of the examples should serve as a convenient starting point.

Notes to the Instructor

As mentioned above, the first three chapters in this book are considered to be prereq-
uisite material, and would typically not be part of a course syllabus. For instance,
we expect students who follow our geometry processing course to have passed a
course in differential geometry, but experience has taught us that not all come with
the prerequisites. Therefore, we have provided the four initial chapters to give the
students a chance to catch up on some of the basics.

In general, it might be a good idea to consider the grouping of chapters given in
the overview above as the “atomic units”. We do have references from one chapter
to another, but the chapters can be read independently. The exception is that Chap. 5
introduces many notions pertaining to polygonal meshes without which it is hard
to understand many of the later chapters, so we recommend that this chapter is not
skipped in a course based on this book.

GEL is just one library amongst many others, but it is the one we used in the
exercises from the aforementioned course. Since we strongly desire that the book
should not be too closely tied to GEL and that it should be possible to use this book
with other packages, no reference is made to GEL in the main description of each
exercise, but in some of the exercises you will find paragraphs headed by

[GEL Users]
These paragraphs contain notes on material that can be used by GEL users.
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2Vector Spaces, Affine Spaces, and Metric
Spaces

This chapter is only meant to give a short overview of the most important concepts
in linear algebra, affine spaces, and metric spaces and is not intended as a course;
for that we refer to the vast literature, e.g., [1] for linear algebra and [2] for metric
spaces. We will in particular skip most proofs.

In Sect. 2.1 on vector spaces we present the basic concepts of linear algebra:
vector space, subspace, basis, dimension, linear map, matrix, determinant, eigen-
value, eigenvector, and inner product. This should all be familiar concepts from a
first course on linear algebra. What might be less familiar is the abstract view where
the basic concepts are vector spaces and linear maps, while coordinates and matrices
become derived concepts. In Sect. 2.1.5 we state the singular value decomposition
which is used for mesh simplification and in the ICP algorithm for registration.

In Sect. 2.2 on affine spaces we only give the basic definitions: affine space,
affine combination, convex combination, and convex hull. The latter concept is used
in Delauney triangulation.

Finally in Sect. 2.3 we introduce metric spaces which makes the concepts of open
sets, neighborhoods, and continuity precise.

2.1 Vector Spaces and Linear Algebra

A vector space consists of elements, called vectors, that we can add together and
multiply with scalars (real numbers), such that the normal rules hold. That is,

Definition 2.1 A real vector space is a set V together with two binary operations
V × V → V : (u,v) �→ u + v and R× V → V : (λ,v) �→ λv, such that:
1. For all u,v,w ∈ V , (u + v) + w = u + (v + w).
2. For all u,v ∈ V , u + v = v + u.
3. There exists a zero vector 0 ∈ V , i.e., for any u ∈ V , u + 0 = u.
4. All u ∈ V has a negative element, i.e., there exists −u ∈ V such that u +

(−u) = 0.
5. For all α,β ∈ R and u ∈ V , α(βu) = (αβ)u.

J.A. Bærentzen et al., Guide to Computational Geometry Processing,
DOI 10.1007/978-1-4471-4075-7_2, © Springer-Verlag London 2012
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14 2 Vector Spaces, Affine Spaces, and Metric Spaces

6. For all α,β ∈ R and u ∈ V , (α + β)u = αu + βu.
7. For all α ∈ R and u,v ∈ V , α(u + v) = αu + αv.
8. Multiplication by 1 ∈R is the identity, i.e., for all u ∈ V , 1u = u.

Remark 2.1 In the definition above the set R of real numbers can be replaced with
the set C of complex numbers and then we obtain the definition of a complex vector
space. We can in fact replace R with any field, e.g., the set Q of rational numbers,
the set of rational functions, or with finite fields such as Z2 = {0,1}.

Remark 2.2 We often write the sum u + (−v) as u − v.

We leave the proof of the following proposition as an exercise.

Proposition 2.1 Let V be a vector space and let u ∈ V be a vector.
1. The zero vector is unique, i.e., if 0′,u ∈ V are vectors such that 0′ + u = u, then

0′ = 0.
2. If v,w ∈ V are negative elements to u, i.e., if u + v = u + w = 0, then v = w.
3. Multiplication with zero gives the zero vector, i.e., 0u = 0.
4. Multiplication with −1 gives the negative vector, i.e., (−1)u = −u.

Example 2.1 The set of vectors in the plane or in space is a real vector space.

Example 2.2 The set R
n = {(x1, . . . , xn) | xi ∈ R, i = 1, . . . , n} is a real vector

space, with addition and multiplication defined as

(x1, . . . , xn) + (y1, . . . , yn) = (x1 + y1, . . . , xn + yn), (2.1)

α(x1, . . . , xn) = (αx1, . . . , αxn). (2.2)

Example 2.3 The complex numbers C with usual definition of addition and multi-
plication is a real vector space.

Example 2.4 The set Cn with addition and multiplication defined by (2.1) and (2.2)
is a real vector space.

Example 2.5 Let Ω be a domain in R
n. A real function f : Ω → R is called a Cn

function if all partial derivatives up to order n exist and are continuous, the set of
these functions is denoted Cn(Ω), and it is a real vector space with addition and
multiplication defined as

(f + g)(x) = f (x) + g(x),

(αf )(x) = αf (x).
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Example 2.6 Let Ω be a domain in R
n. A map f : Ω → R

k is called a Cn map
if each coordinate function is a Cn function. The set of these functions is denoted
Cn(Ω,Rk) and it is a real vector space, with addition and multiplication defined as

(f + g)(x) = f (x) + g(x),

(αf )(x) = αf (x).

Example 2.7 The set of real polynomials is a real vector space.

Example 2.8 The set of solutions to a system of homogeneous linear equations is a
vector space.

Example 2.9 The set of solutions to a system of homogeneous linear ordinary dif-
ferential equations is a vector space.

Example 2.10 If U and V are real vector spaces, then U × V is a real vector space
too, with addition and multiplication defined as

(u1,v1) + (u2,v2) = (u1 + u2,v1 + v2),

α(u,v) = (αu, αv).

Example 2.11 Let a = t0 < t1 < · · · < tk = b be real numbers and let n,m ∈ Z0 be
non zero integers. The space

{
f ∈ Cn

([a, b]) | f |[t�−1,t�] is a polynomial of degree at most m, � = 1, . . . , k
}

is a real vector space.

2.1.1 Subspaces, Bases, and Dimension

A subset U ⊆ V of a vector space is called a subspace if it is a vector space itself.
As it is contained in a vector space we do not need to check all the conditions in
Definition 2.1. In fact, we only need to check that it is stable with respect to the
operations. That is,

Definition 2.2 A subset U ⊆ V of a vector space V is a subspace if
1. For all u,v ∈ U , u + v ∈ U .
2. For all α ∈ R and u ∈ U , αu ∈ U .

Example 2.12 The subset {(x, y,0) ∈ R
3 | (x, y) ∈R

3} is a subspace of R3.

Example 2.13 The subsets {0},V ⊆ V are subspaces of V called the trivial sub-
spaces.
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Example 2.14 If U,V ⊆ W are subspaces of W the U ∩ V is a subspace too.

Example 2.15 If U and V are vector spaces, then U ×{0} and {0}×V are subspaces
of U × V .

Example 2.16 The subsets R, iR ⊆ C of real and purely imaginary numbers, re-
spectively, are subspaces of C.

Example 2.17 The set of solutions to k real homogeneous linear equations in n

unknowns is a subspace of Rn.

Example 2.18 If m ≤ n then Cn([a, b]) is a subspace of Cm([a, b]).
Example 2.19 The polynomial of degree at most n is a subspace of the space of all
polynomials.

Definition 2.3 Let X ⊆ V be a non empty subset of a vector space. The subspace
spanned by X is the smallest subspace of V that contains X. It is not hard to see that
it is the set consisting of all linear combinations of elements from X,

spanX = {α1v1 + · · · + αnvn | αi ∈R,v1, . . . ,vn ∈ X,n ∈ N}. (2.3)

If spanX = V then we say that X spans V and X is called a spanning set.

Example 2.20 A non zero vector in space spans all vectors on a line.

Example 2.21 Two non zero vectors in space that are not parallel span all vectors in
a plane.

Example 2.22 The complex numbers 1 and i span the set of real and purely imagi-
nary numbers, respectively, i.e., span{1} = R ⊆ C and span{i} = iR ⊆ C.

Definition 2.4 The sum of two subspaces U,V ⊆ W is the subspace

U + V = span(U ∪ V ) = {u + v ∈ W | u ∈ U ∧ v ∈ V }. (2.4)

If U ∩ V = {0} then the sum is called the direct sum and is written as U ⊕ V .

Example 2.23 The complex numbers are the direct sum of the real and purely imag-
inary numbers, i.e., C = R⊕ iR.

Definition 2.5 A finite subset X = {v1, . . . ,vn} ⊆ V is called linearly independent
if the only solution to the equation

α1v1 + · · · + αnvn = 0

is the trivial one, α1 = · · · = αn = 0. That is, the only linear combination that gives
the zero vector is the trivial one. Otherwise, the set is called linearly dependent.
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An important property of vector spaces is the existence of a basis. This is secured
by the following theorem, which we shall not prove.

Theorem 2.1 For a finite subset {v1, . . . ,vn} ⊆ V of a vector space the following
three statements are equivalent.
1. {v1, . . . ,vn} is a minimal spanning set.
2. {v1, . . . ,vn} is a maximal linearly independent set.
3. Each vector v ∈ V can be written as a unique linear combination

v = α1v1 + · · · + αnvn.

If {u1, . . . ,um} and {v1, . . . ,vn} both satisfy these conditions then m = n.

Definition 2.6 A finite set {v1, . . . ,vn} ⊆ V of a vector space is called a basis if it
satisfies one, and hence all, of the conditions in Theorem 2.1. The unique number
of elements in a basis is called the dimension of the vector space and is denoted
dimV = n.

Theorem 2.2 Let V be a finite dimensional vector space and let X ⊆ V be a subset.
Then the following holds:
1. If X is linearly independent then we can find a set of vectors Y ⊆ V such that

X ∪ Y is a basis.
2. If X is a spanning set then we can find a basis Y ⊆ X.

The theorem says that we always can supplement a linearly independent set to a
basis and that we always can extract a basis from a spanning set.

Corollary 2.1 If U,V ⊆ W are finite dimensional subspaces of W then

dim(U) + dim(V ) = dim(U + V ) + dim(U ∩ V ). (2.5)

Example 2.24 Two vectors not on the same line are a basis for all vectors in the
plane.

Example 2.25 Three vectors not in the same plane are a basis for all vectors in
space.

Example 2.26 The vectors

ek = (0, . . . ,0︸ ︷︷ ︸
k−1

,1,0, . . . ,0︸ ︷︷ ︸
n−k

) ∈R
n, k = 1, . . . , n, (2.6)

are a basis for Rn called the standard basis, so dim(Rn) = n.

Example 2.27 The complex numbers 1 and i are a basis for C.
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Example 2.28 If U ∩ V = {0} are subspaces of a vector space and {u1, . . . ,uk} and
{v1, . . . ,v�} are bases for U and V , respectively, then {u1, . . . ,uk,v1, . . . ,v�} is a
basis for U ⊕ V .

Example 2.29 The monomials 1, x, . . . , xn are a basis for the polynomials of degree
at most n.

Example 2.30 The Bernstein polynomials Bn
k (x) = (

n
k

)
(1 − x)n−kxk , k = 0, . . . , n

are a basis for the polynomials of degree at most n.

2.1.2 Linear Maps, Matrices, and Determinants

A map between vector spaces is linear if it preserves addition and multiplication
with scalars. That is,

Definition 2.7 Let U and V be vector spaces. A map L : U → V is linear if:
1. For all u,v ∈ U , L(u + v) = L(u) + L(v).
2. For all α ∈ R and u ∈ U , L(αu) = αL(u).

Example 2.31 If V is a vector space and α ∈R is a real number then multiplication
by α: V → V : v �→ αv is a linear map.

Example 2.32 The map R → R : x �→ ax + b with b �= 0 is not linear, cf., Exer-
cise 2.7.

Example 2.33 Differentiation Cn([a, b]) → Cn−1([a, b]) : f �→ df
dx

is a linear map.

Example 2.34 If L1,L2 : U → V are two linear maps, then the sum L1 +L2 : U →
V : u �→ L1(u) + L2(u) is a linear map too.

Example 2.35 If α ∈ R and L : U → V is a linear map, then the scalar product
αL : U → V : u �→ αL(u) is a linear map too.

Example 2.36 If L1 : U → V and L2 : V → W are linear maps, then the composi-
tion L2 ◦ L1 : U → W is a linear map too.

Example 2.37 If L : U → V is linear and bijective, then the inverse map L−1 : V →
U is linear too.

Examples 2.34 and 2.35 show that the space of linear maps between two vector
spaces is a vector space.

Recall the definition of an injective, surjective, and bijective map.

Definition 2.8 A map f : A → B between two sets is
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• injective if for all x, y ∈ A we have f (x) = f (y) =⇒ x = y;
• surjective if there for all y ∈ B exists x ∈ A such that f (x) = y;
• bijective if it is both injective and surjective.

A map is invertible if and only if it is bijective.

Definition 2.9 Let L : U → V be a linear map. The kernel of L is the set

kerL = L−1(0) = {
u ∈ U | L(u) = 0

}
, (2.7)

and the image of L is the set

L(U) = {
f (u) ∈ V | u ∈ U

}
. (2.8)

We have the following.

Theorem 2.3 Let L : U → V be a linear map between two vector spaces. Then the
kernel kerL is a subspace of U and the image L(U) is a subspace of V . If U and
V are finite dimensional then
1. dimU = dim kerL + dimL(U);
2. L is injective if and only if ker(L) = {0};
3. if L is injective then dimU ≤ dimV ;
4. if L is surjective then dimU ≥ dimV ;
5. if dimU = dimV then L is surjective if and only if L is injective.

If L : U → V is linear and u1, . . . ,um is a basis for U and v1, . . . ,vm is a basis
for V , then we can write the image of a basis vector uj as L(uj ) = ∑n

i=1 aij vi .
Then the image of an arbitrary vector u =∑m

j=1 xj uj ∈ U is

L

(
m∑

j=1

xj uj

)

=
m∑

j=1

xjL(uj ) =
m∑

j=1

xj

n∑

i=1

aij vi

=
n∑

i=1

(
m∑

j=1

aij xj

)

vi =
n∑

i=1

yivi . (2.9)

We see that the coordinates yi of the image vector L(u) is given by the coordinates
xj of u by the following matrix equation:

⎛

⎜
⎝

y1
...

yn

⎞

⎟
⎠=

⎛

⎜
⎝

a11 . . . a1m

...
. . .

...

an1 . . . anm

⎞

⎟
⎠

⎛

⎜
⎝

x1
...

xm

⎞

⎟
⎠ . (2.10)

The matrix with entries aij is called the matrix for L with respect to the bases
u1, . . . ,um and v1, . . . ,vm. Observe that the columns consist of the coordinates of
the image of the basis vectors. Also observe that the first index i in aij gives the row
number while the second index j gives the column number.
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We denote the ith row in A by Ai_ and the j th column by A|j . That is,

A =
⎛

⎜
⎝

A1_
...

An_

⎞

⎟
⎠= (

A|1 . . . A|m
)
. (2.11)

Addition of linear maps now corresponds to addition of matrices,
⎛

⎜
⎝

a11 . . . a1m

...
. . .

...

an1 . . . anm

⎞

⎟
⎠+

⎛

⎜
⎝

b11 . . . b1m

...
. . .

...

bn1 . . . bnm

⎞

⎟
⎠

=
⎛

⎜
⎝

a11 + b11 . . . a1m + b1m

...
. . .

...

an1 + bn1 . . . anm + bnm

⎞

⎟
⎠ (2.12)

and scalar multiplication of linear maps corresponds to multiplication of a matrix
with a scalar

α

⎛

⎜
⎝

a11 . . . a1m

...
. . .

...

an1 . . . anm

⎞

⎟
⎠=

⎛

⎜
⎝

αa11 . . . αa1m

...
. . .

...

αan1 . . . αanm

⎞

⎟
⎠ . (2.13)

Composition of linear maps corresponds to matrix multiplication, which is defined
as follows. If A is a k × m matrix with entries aij and B is an m × n matrix with
entries bij then the product is an k × n matrix C = AB where the element cij is
the sum of the products of the elements in the ith row from A and the j th column
from B, i.e.,

cij = Ai_B|j =
m∑

k=1

aikbkj . (2.14)

The identity matrix is the n×n matrix with ones in the diagonal and zeros elsewhere,

I =

⎛

⎜⎜⎜⎜
⎝

1 0 . . . 0

0 1
. . .

...
...

. . .
. . . 0

0 . . . 0 1

⎞

⎟⎟⎟⎟
⎠

. (2.15)

If A is an n × m matrix and B is an m × n matrix then

IA = A and BI = B. (2.16)

Definition 2.10 We say an n × n matrix A is invertible if there exists a matrix A−1

such that

AA−1 = A−1A = I. (2.17)
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Fig. 2.1 The matrix for a
linear map with respect to
different bases

The matrix A−1 is then called the inverse of A.

Theorem 2.4 Let A be the matrix for a linear map L : U → V with respect to the
bases u1, . . . ,um and v1, . . . ,vm for U and V , respectively. Then A is invertible if
and only if L is bijective. In that case A−1 is the matrix for L−1 with respect to the
bases v1, . . . ,vm and u1, . . . ,um.

An in some sense trivial, but still important special case is when U = V and the
map is the identity map id : u �→ u. Let S be the matrix of id with respect to the
bases u1, . . . ,um and û1, . . . , ûm. The j th column of S consists of the coordinates
of id(uj ) = uj with respect to the basis û1, . . . , ûm. Equation (2.10) now reads

û = Su, (2.18)

and gives us the relation between the coordinates u and û of the same vector u with
respect to the bases u1, . . . ,um and û1, . . . , ûm, respectively.

Now suppose we have a linear map L : U → V between two vector spaces, and
two pairs of different bases, u1, . . . ,um and û1, . . . , ûm for U and v1, . . . ,vn and
v̂1, . . . , v̂n for V . Let A be the matrix for L with respect to the bases u1, . . . ,um and
v1, . . . ,vn and let Â be the matrix for L with respect to the bases û1, . . . , ûm and
v̂1, . . . , v̂n. Let furthermore S be the matrix for the identity U → U with respect to
the bases u1, . . . ,um and û1, . . . , ûm and let R be the matrix for the identity V → V

with respect to the bases v1, . . . ,vn and v̂1, . . . , v̂n; then

Â = RAS−1, (2.19)

see Fig. 2.1. A special case is when U = V , vi = ui , and v̂i = ûi . Then we have
Â = SAS−1.

Definition 2.11 The transpose of a matrix A is the matrix AT which is obtained
by interchanging the rows and columns. That is, if A has entries aij , then AT has
entries αij , where αij = aji .

Definition 2.12 An n × n matrix A is called symmetric if AT = A.

Definition 2.13 An n × n matrix U is called orthogonal if UT U = I, i.e., if
U−1 = UT .

Definition 2.14 An n × n matrix A is called positive definite if xT Ax ≥ 0 for all
non zero column vectors x.
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Before we can define the determinant of a matrix we need the notion of permu-
tations.

Definition 2.15 A permutation is a bijective map σ : {1, . . . , n} → {1, . . . , n}. If
i �= j , then σij denotes the transposition that interchanges i and j , i.e., the permu-
tation defined by

σij (i) = j, σij (j) = i, σij (k) = k, if k �= i, j. (2.20)

It is not hard to see that any permutation can be written as the composition of a
number of transpositions σ = σikjk

◦ · · · ◦ σi2j2 ◦ σi1j1 . This description is far from
unique, but the number k of transpositions needed for a given permutation σ is either
always even or always odd. If the number is even σ is called an even permutation,
otherwise it is called an odd permutation. The sign of a sigma is now defined as

signσ =
{

1 if σ is even,

−1 if σ is odd.
(2.21)

Definition 2.16 The determinant of an n × n matrix A is the completely anti sym-
metric multilinear function of the columns of A that is 1 on the identity matrix. That
is,

det(A|σ(1), . . . ,A|σ(n)) = sign(σ )det(A|1,A|2, . . . ,A|n) (2.22)

det
(
A′|1 + A′′|1,A|2, . . . ,A|n

)= det
(
A′|1,A|2, . . . ,A|n

)

+ det
(
A′′|1,A|2, . . . ,A|n

)
, (2.23)

det
(
αA|1,A|2, . . . ,A|n

)= α det
(
A|1,A|2, . . . ,A|n

)
, (2.24)

det(I) = 1, (2.25)

where σ is a permutation. The determinant of A can be written

det A =
∑

σ

signσ

n∏

i=1

aiσ(i), (2.26)

where the sum is over all permutations σ of {1, . . . , n}.

The definition is not very practical, except in the case of 2×2 and 3×3 matrices.
Here we have

det

(
a11 a12
a21 a22

)
=
∣∣∣∣
a11 a12
a21 a22

∣∣∣∣= a11a22 − a12a21, (2.27)
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Fig. 2.2 The area and volume can be calculated as determinants: area = det(u,v) and volume =
det(u,v,w)

The determinant of a 2 × 2 matrix A can be interpreted as the signed area of the
parallelogram in R

2 spanned by the vectors A1_ and A2_, see Fig. 2.2.

det

⎛

⎝
a11 a12 a13
a21 a22 a23
a31 a32 a33

⎞

⎠ =
∣∣∣∣∣∣

a11 a12 a13
a21 a22 a23
a31 a32 a33

∣∣∣∣∣∣
= a11a22a33 + a12a23a31 + a13a21a32

− a11a23a32 − a12a21a33 − a13a22a31. (2.28)

The determinant of a 3 × 3 matrix A can be interpreted as the signed volume of the
parallelepiped spanned by the vectors A1_, A2_, and A3_, see Fig. 2.2. The same
is true in higher dimensions. The determinant of a n × n matrix A is the signed
n-dimensional volume of the n-dimensional parallelepiped spanned by the columns
of A.

For practical calculations one makes use of the following properties of the deter-
minant.

Theorem 2.5 Let A be an n × n matrix, then

det AT = det A. (2.29)

The determinant changes sign if two rows or columns are interchanged, in particular

det A = 0, if two rows or columns in A are equal, (2.30)

det A =
n∑

i=1

(−1)i+j aij det Aij , for i = 1, . . . , n, (2.31)

where Aij is the matrix obtained from A by deleting the ith row and j th column,
i.e., the row and column where aij appears. If B is another n × n matrix then

det(AB) = det(A)det(B). (2.32)

The matrix A is invertible if and only if det A �= 0, and in that case

det
(
A−1)= 1

det A
. (2.33)
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Fig. 2.3 The inner product between two vectors in the plane (or in space)

If A is invertible then A−1 has entries αij , where

αij = (−1)i+j det Aji

det A
. (2.34)

Suppose A and Â are matrices for a linear map L : V → V with respect to two
different bases. Then we have Â = SAS−1 where S is an invertible matrix. We now
have det Â = det(SAS−1) = det S det A det S−1 = det A. Thus, we can define the
determinant of L as the determinant of any matrix representation and we clearly see
that L is injective if and only if detL �= 0.

2.1.3 Euclidean Vector Spaces and Symmetric Maps

For vectors in the plane, or in space, we have the concepts of length and angles. This
then leads to the definition of the inner product, see Fig. 2.3. For two vectors u and
v it is given by

〈u,v〉 = u · v = ‖u‖‖v‖ cos θ, (2.35)

where ‖u‖ and ‖v‖ is the length of a u and v, respectively, and θ is the angle between
u and v.

A general vector space V does not have the a priori notions of length and angle
and in order to be able to have the concepts of length and angle we introduce an
abstract inner product.

Definition 2.17 An Euclidean vector space is a real vector space V equipped with a
positive definite, symmetric, bilinear mapping V × V → R : (u,v) �→ 〈u,v〉, called
the inner product, i.e., we have the following:
1. For all u,v ∈ V , 〈u,v〉 = 〈v,u〉.
2. For all u,v,w ∈ V , 〈u + v,w〉 = 〈u,w〉 + 〈v,w〉.
3. For all α ∈ R and u,v ∈ V , 〈αu,v〉 = α〈u,v〉.
4. For all u ∈ V , 〈u,u〉 ≥ 0.
5. For all u ∈ V , 〈u,u〉 = 0 ⇐⇒ u = 0.

Example 2.38 The set of vectors in the plane or in space equipped with the inner
product (2.35) is an Euclidean vector space. The norm (2.41) becomes the usual
length and the angle defined by (2.44) is the usual angle.
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Example 2.39 The set Rn equipped with inner product

〈
(x1, . . . , xn), (y1, . . . , yn)

〉= x1y1 + · · · + xnyn, (2.36)

is an Euclidean vector space.

Example 2.40 The space Cn([a, b]) of n times differentiable functions with contin-
uous nth derivative equipped with the inner product

〈f,g〉 =
∫ b

a

f (x)g(x)dx, (2.37)

is an Euclidean vector space. The corresponding norm is called the L2-norm.

Example 2.41 If (V1, 〈·, ·〉1) and (V2, 〈·, ·〉2) are Euclidean vector spaces, then V1 ×
V2 equipped with the inner product

〈
(u1, u2), (v1, v2)

〉= 〈u1, v1〉1 + 〈u2, v2〉2, (2.38)

is an Euclidean vector space.

Example 2.42 If (V , 〈·, ·〉) is an Euclidean vector space and U ⊆ V is a subspace
then U equipped with the restriction 〈·, ·〉|U×U of 〈·, ·〉 to U × U is an Euclidean
vector space too.

Example 2.43 The space C∞
0 ([a, b]) = {f ∈ C∞([a, b]) | f (a) = f (b) = 0} of in-

finitely differentiable functions that are zero at the endpoints equipped with the re-
striction of the inner product (2.37) is an Euclidean vector space.

If u1, . . . ,un is a basis for V , v =∑n
k=1 viui , and w =∑n

k=1 wiui then the inner
product of v and w can be written

〈v,w〉 =
n∑

k,�=1

vkw�〈uk,u�〉 = vT Gw, (2.39)

where v and w are the coordinates with respect to the basis u1, . . . ,un of v and w,
respectively, and G is the matrix

G =
⎛

⎜
⎝

〈u1,u1〉 . . . 〈u1,un〉
...

...

〈un,u1〉 . . . 〈un,un〉

⎞

⎟
⎠ . (2.40)

It is called the matrix for the inner product with respect to the basis u1, . . . ,un and
it is a positive definite symmetric matrix. Observe that we have the same kind of
matrix representation of a symmetric bilinear map, i.e., a map that satisfies condition
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(1), (2), and (3) in Definition 2.17. The matrix G is still symmetric but it need not
be positive definite.

Let û1, . . . , ûn be another basis, let Ĝ be the corresponding matrix for the inner
product, and let S be the matrix for the identity on V with respect to the two bases.
Then the coordinates of a vector u with respect to the bases satisfies (2.18) and we
see that ûT Ĝ̂v = uT ST ĜSv. That is, G = ST ĜS.

Definition 2.18 The norm of a vector u ∈ V in an Euclidean vector space (V , 〈·, ·〉)
is defined as

‖u‖ =√〈u,u〉. (2.41)

A very important property of an arbitrary inner product is the Cauchy–Schwartz
inequality.

Theorem 2.6 If (V , 〈·, ·〉) is an Euclidean vector space then the inner product sat-
isfies the Cauchy–Schwartz inequality

∣∣〈u,v〉∣∣≤ ‖u‖‖v‖, (2.42)

with equality if and only if one of the vectors is a positive multiple of the other.

Corollary 2.2 The norm satisfies the following conditions:
1. For all α ∈R and u ∈ V , ‖αu‖ = |α|‖u‖.
2. For all u,v ∈ V , ‖u + v‖ ≤ ‖u‖ + ‖v‖.
3. For all u ∈ V , ‖u‖ ≥ 0.
4. For all u ∈ V , ‖u‖ = 0 ⇐⇒ u = 0.

This is the conditions for an abstract norm on a vector space and not all norms
are induced by an inner product. But if a norm is induced by an inner product then
this inner product is unique. Indeed, if u,v ∈ V then symmetry and bilinearity imply
that

〈u + v,u + v〉 = 〈u,u〉 + 2〈u,v〉 + 〈v,v〉.
That is, the inner product of two vectors u,v ∈ V can be written as

〈u,v〉 = 1

2

(‖u + v‖2 − ‖u‖2 − ‖v‖2). (2.43)

The angle θ between two vectors u,v ∈ V in an Euclidean vector space (V , 〈·, ·〉)
can now be defined by the equation

cos θ = 〈u,v〉
‖u‖‖v‖ . (2.44)

Two vectors u,v ∈ V are called orthogonal if the angle between them is π
2 , i.e., if

〈u,v〉 = 0.
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Example 2.44 If (V , 〈·, ·〉) is an Euclidean vector space and U ⊆ V is a subspace
then the orthogonal complement

U⊥ = {
v ∈ V | 〈u,v〉 = 0 for all u ∈ U

}
(2.45)

is a subspace of V , and V = U ⊕ U⊥.

Definition 2.19 A basis e1, . . . , en for an Euclidean vector space is called orthonor-
mal if

〈ei , ej 〉 = δij =
{

1 if i = j ,

0 if i �= j .
(2.46)

That is, the elements of the basis are pairwise orthogonal and have norm 1.
If u1, . . . ,un is a basis for an Euclidean vector space V then we can construct an

orthonormal basis e1, . . . , en by Gram–Schmidt orthonormalization. The elements
of that particular orthonormal basis is defined as follows:

v� = u� −
�−1∑

k=1

〈u�, ek〉ek, e� = v�

‖v�‖ , � = 1, . . . , n. (2.47)

Definition 2.20 A linear map L : U → V between two Euclidean vector spaces is
called an isometry if it is bijective and 〈L(u),L(v)〉V = 〈u,v〉U for all u,v ∈ U .

So an isometry preserves the inner product. As the inner product is determined by
the norm it is enough to check that the map preserves the norm, i.e., if ‖L(u)‖V =
‖u‖U for all u ∈ U then L is an isometry.

Example 2.45 A rotation in the plane or in space is an isometry.

Example 2.46 A symmetry in space around the origin 0 or around a line through 0
is an isometry.

Theorem 2.7 Let L : U → V be a linear map between two Euclidean vector spaces.
Let u1, . . . ,um and v1, . . . ,vm be bases for U and V , respectively, and let A be
the matrix for L with respect to these bases. Let furthermore GU and GV be the
matrices for the inner product on U and V , respectively. Then L is an isometry if
and only if

AT GV A = GU . (2.48)

If u1, . . . ,um and v1, . . . ,vm both are orthonormal then GU = GV = I and the
equation reads

AT A = I, (2.49)

i.e., A is orthogonal.
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On a similar note, if u1, . . . ,um and û1, . . . , ûm are bases for an Euclidean vector
space U and u ∈ U then the coordinates u and û for u with respect to the two bases

are related by the equation û = Su, cf. (2.18). If G and Ĝ are the matrices for the
inner product with respect to the bases then we have

uT Gu = 〈u,u〉 = ûT Ĝû = (Su)T ĜSu = uT ST ĜSu,

i.e., we have

G = ST ĜS. (2.50)

If the bases both are orthonormal then G = Ĝ = I and we see that S is orthogonal.

Definition 2.21 A linear map L : V → V from an Euclidean vector space to itself
is called symmetric if

〈
L(u),v

〉= 〈
u,L(v)

〉
, for all u,v ∈ V. (2.51)

Example 2.47 The map f �→ f ′′ is a symmetric map of the space (C∞
0 ([a, b]), 〈·, ·〉)

to itself, where the inner product 〈·, ·〉 is given by (2.37).

If A is the matrix for a linear map L with respect to some basis and G is the
matrix for the inner product then L is symmetric if and only if AT G = GA. If
the basis is orthonormal then G = I and the condition reads AT = A, i.e., A is a
symmetric matrix.

2.1.4 Eigenvalues, Eigenvectors, and Diagonalization

Definition 2.22 Let L : V → V be a linear map. If there exist a non zero vector
v ∈ V and a scalar λ ∈ R such that L(v) = λv then v is called an eigenvector with
eigenvalue λ. If λ is an eigenvalue then the space

Eλ = {
v ∈ V | L(v) = λv

}
(2.52)

is a subspace of V called the eigenspace of λ. The dimension of Eλ is called the
geometric multiplicity of λ.

If u1, . . . ,um is a basis for V , A is the matrix for L in this basis and a vector v ∈ V

has coordinates v with respect to this basis then

L(v) = λv ⇐⇒ Av = λv (2.53)

We say that v is an eigenvector for the matrix A with eigenvalue λ.

Example 2.48 Consider the matrix
( 1 3

3 1

)
. The vector

( 1
1

)
is an eigenvector with

eigenvalue 4 and
( 1

−1

)
is an eigenvector with eigenvalue −2.
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Example 2.49 The exponential map exp is an eigenvector with eigenvalue 1 for the
linear map C∞(R) → C∞(R) : f �→ f ′.

Example 2.50 The trigonometric functions cos and sin are eigenvectors with eigen-
value −1 for the linear map C∞(R) → C∞(R) : f �→ f ′′.

We see that λ is an eigenvalue for L if and only if the map L−λ id is not injective,
i.e., if and only if det(L − λ id) = 0. In that case Eλ = ker(L − λ id). If A is the
matrix for L with respect to some basis for V then we see that

det(L − λ id) = det(A − λI) = (−λ)n + tr A(−λ)n−1 + · · · + det A (2.54)

is a polynomial of degree n in λ. It is called the characteristic polynomial of L

(or A). The eigenvalues are precisely the roots of the characteristic polynomial and
the multiplicity of a root λ in the characteristic polynomial is called the algebraic
multiplicity of the eigenvalue λ. The relation between the geometric and algebraic
multiplicity is given in the following proposition.

Proposition 2.2 Let νg(λ) = dim(Eλ) be the geometric multiplicity of an eigen-
value λ and let νa(λ) be the algebraic multiplicity of λ. Then 1 ≤ νg(λ) ≤ νa(λ).

The characteristic polynomial may have complex roots and even though they
strictly speaking are not eigenvalues we will still call them complex eigenvalues.
Once the eigenvalues are determined the eigenvectors belonging to a particular real
eigenvalue λ can be found by determining a non zero solution to the linear equation
L(u) − λu = 0 or equivalently a non zero solution to the matrix equation

⎛

⎜⎜⎜⎜
⎝

a1,1 − λ a1,2 . . . a1,n

a2,1 a2,2 − λ
. . .

...
...

. . .
. . . an−1,1

an,1 . . . an,n−1 an,n − λ

⎞

⎟⎟⎟⎟
⎠

⎛

⎜
⎝

u1
...

un

⎞

⎟
⎠=

⎛

⎜
⎝

0
...

0

⎞

⎟
⎠ . (2.55)

If V has a basis u1, . . . ,un consisting of eigenvectors for L, i.e., L(uk) = λkuk

then the corresponding matrix is diagonal

Λ =

⎛

⎜⎜⎜⎜
⎝

λ1 0 . . . 0

0 λ2
. . .

...
...

. . .
. . . 0

0 . . . 0 λn

⎞

⎟⎟⎟⎟
⎠

, (2.56)

and we say that L is diagonalizable. Not all linear maps (or matrices) can be diag-
onalized. The condition is that there is a basis consisting of eigenvectors and this is
the same as demanding that V =⊕

λ Eλ or that all eigenvalues are real and the sum
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of the geometric multiplicities is the dimension of V . If there is a complex eigen-
value then this is impossible. The same is the case if νg(λ) < νa(λ) for some real
eigenvalue λ.

Example 2.51 The matrix
( 0 −1

1 0

)
has no real eigenvalues.

Example 2.52 The matrix
(√

2 1
0

√
2

)
has the eigenvalue

√
2 which has algebraic mul-

tiplicity 2 and geometric multiplicity 1.

In case of a symmetric map the situation is much nicer. Indeed, we have the
following theorem, which we shall not prove.

Theorem 2.8 Let (V , 〈·, ·〉) be an Euclidean vector space and let L : V → V be
a symmetric linear map. Then all eigenvalues are real and V has an orthonormal
basis consisting of eigenvectors for L.

By choosing an orthonormal basis for V we obtain the following theorem for
symmetric matrices.

Theorem 2.9 A symmetric matrix A can be decomposed as A = UT ΛU, where Λ
is diagonal and U is orthogonal.

Let (V , 〈·, ·, 〉) be an Euclidean vector space and let h : V × V → R be a sym-
metric bilinear map, i.e., it satisfies condition (1), (2), and (3) in Definition 2.17.
Then there exists a unique symmetric linear map L : V → V such that h(u,v) =
〈L(u),v〉. Theorem 2.8 tells us that V has an orthonormal basis consisting of eigen-
vectors for L, and with respect to this basis the matrix representation for h is diag-
onal with the eigenvalues of L in the diagonal. Now suppose we have an arbitrary
basis for V and let G and H be the matrices for the inner product 〈·, ·〉 and the bi-
linear map h, respectively. Let furthermore A be the matrix for L. Then we have
H = AT G, or as both G and H are symmetric H = GA. That is, A = G−1H and the
eigenvalue problem Av = λv is equivalent to the generalized eigenvalue problem
Hv = λGv. This gives us the following generalization of Theorem 2.9.

Theorem 2.10 Let G,H be symmetric n×n matrices with G positive definite. Then
we can decompose H as H = S−1ΛS, where Λ is diagonal and S is orthogonal with
respect to G, i.e., ST GS = G.

2.1.5 Singular Value Decomposition

Due to its numerically stability the singular value decomposition (SVD) is exten-
sively used for practical calculations such as solving over- and under-determined
systems and eigenvalue calculations. We will use it for mesh simplification and in
the ICP algorithm for registration. The singular value decomposition can be formu-
lated as
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Theorem 2.11 Let L : V → U be a linear map between two Euclidean vector
spaces of dimension n and m, respectively, and let k = min{m,n}. Then there exist
an orthonormal basis e1, . . . , en for V , an orthonormal basis f1, . . . , fm for U , and
non negative numbers σ1 ≥ σ1 ≥ · · · ≥ σk ≥ 0, called the singular values, such that
L(u�) = σ�v� for � = 1, . . . , k and L(u�) = 0 for � = k + 1, . . . , n.

We see that σ1 = max{‖L(e)‖ | ‖e‖ = 1} and that e1 realizes the maximum. We
have in general that σ� = max{‖L(e)‖ | e ∈ span{e1, . . . , e�−1}⊥ ∧‖e‖ = 1} and that
e� realizes the maximum. The basis for V is simply given as f� = L(e�)‖L(e�)‖ when
L(e�) �= 0. If this gives f1, . . . , fk′ then the rest of the basis vectors are chosen as an
orthonormal basis for span{f1, . . . , fk′ }⊥. In terms of matrices it has the following
formulation.

Theorem 2.12 Let A be an m × n matrix and let k = min{m,n}. Then A can be
decomposed as A = UΣVT , where U is an orthogonal m × m matrix, V is an
orthogonal n × n matrix, and Σ is a diagonal matrix with non zero elements σ1 ≥
σ1 ≥ · · · ≥ σk ≥ 0 in the diagonal.

The singular values are the square root of the eigenvalues of AT A, which is a
positive semi definite symmetric matrix. The columns of V, and hence the rows
of VT , are the eigenvectors for AT A.

Example 2.53
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Example 2.55
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Definition 2.23 The Moore–Penrose pseudo inverse of a matrix A is the matrix
A+ = VΣ+UT where A = UΣVT is the singular value decomposition of A and
Σ+ is a diagonal matrix with 1

σ1
, . . . , 1

σk
in the diagonal. So AA+ is a diagonal

m × m matrix with 1, . . . ,1︸ ︷︷ ︸
k

,0, . . . ,0︸ ︷︷ ︸
m−k

in the diagonal and A+A is a diagonal n × n

matrix with 1, . . . ,1︸ ︷︷ ︸
k

,0, . . . ,0︸ ︷︷ ︸
n−k

in the diagonal.
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Fig. 2.4 There is a unique translation that maps a point P to another point P ′. If it also maps

Q to Q′ then
−−→
PP ′ = −−→

QQ′. Composition of translations corresponds to addition of vectors,−−→
PP ′′ = −−→

PP ′ + −−−→
P ′P ′′

Observe that the pseudo inverse of Σ is Σ+.

Example 2.56 If we have the equation Ax = b and A = UΣVT is the singular value
decomposition of A, then U and VT are invertible, with inverse U−1 = UT and

VT −1 = V, respectively. We now have ΣVT x = UT b and the best we can do is to
let VT x = Σ+UT b and hence x = VΣ+UT b = A+b. If we have an overdetermined
system we obtain the least square solution, i.e., the solution to the problem

min
x

‖Ax − b‖2. (2.57)

If we have an underdetermined system we obtain the least norm solution, i.e., the
solution to the problem

min
x

‖x‖2, such that Ax = b. (2.58)

2.2 Affine Spaces

We all know, at least intuitively, two affine spaces, namely the set of points in a
plane and the set of points in space. If P and P ′ are two points in a plane then
there is a unique translation of the plane that maps P to P ′, see Fig. 2.4. If the
point Q is mapped to Q′ then the vector from Q to Q′ is the same as the vector
from P to P ′, see Fig. 2.4. That is, we can identify the space of translation in
the plane with the set of vectors in the plane. Under this identification addition
of vectors corresponds to composition of translations, see Fig. 2.4. Even though
we often identify our surrounding space with R

3 and we can add elements of R3 it
does obviously not make sense to add two points in space. The identification with R

3

depends on the choice of coordinate system, and the result of adding the coordinates
of two points depends on the choice of coordinate system, see Fig. 2.5.
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Fig. 2.5 If we add the
coordinates of points in an
affine space then the result
depends on the choice of
origin

What does make sense in the usual two dimensional plane and three dimensional
space is the notion of translation along a vector v. It is often written as adding a
vector to a point, x �→ x + v. An abstract affine space is a space where the notation
of translation is defined and where this set of translations forms a vector space.
Formally it can be defined as follows.

Definition 2.24 An affine space is a set X that admits a free transitive action of
a vector space V . That is, there is a map X × V → X : (x,v) �→ x + v, called
translation by the vector v, such that
1. Addition of vectors corresponds to composition of translations, i.e., for all x ∈ X

and u,v ∈ V , x + (u + v) = (x + u) + v.
2. The zero vector acts as the identity, i.e., for all x ∈ X, x + 0 = x.
3. The action is free, i.e., if there for a given vector v ∈ V exists a point x ∈ X such

that x + v = x then v = 0.
4. The action is transitive, i.e., for all points x,y ∈ X exists a vector v ∈ V such that

y = x + v.
The dimension of X is the dimension of the vector space of translations, V .

The vector v in Condition 4 that translates the point x to the point y is by Con-
dition 3 unique, and is often written as v = −→xy or as v = y − x. We have in fact a
unique map X × X → V : (x,y) �→ y − x such that y = x + (y − x) for all x,y ∈ X.
It furthermore satisfies
1. For all x,y, z ∈ X, z − x = (z − y) + (y − x).
2. For all x,y ∈ X and u,v ∈ V , (y + v) − (x + u) = (y − x) + v − u.
3. For all x ∈ X, x − x = 0.
4. For all x,y ∈ X, y − x = −(x − y).

Example 2.57 The usual two dimensional plane and three dimensional space are
affine spaces and the vector space of translations is the space of vectors in the plane
or in space.

Example 2.58 If the set of solutions to k real inhomogeneous linear equations in n

unknowns is non empty then it is an affine space and the vector space of translations
is the space of solutions to the corresponding set of homogeneous equations.

Example 2.59 If (X,U) and (Y,V ) are affine spaces then (X × Y,U × V ) is an
affine space with translation defined by (x,y) + (u,v) = (x + u,y + v).
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A coordinate system in an affine space (X,V ) consists of a point O ∈ X, called
the origin, and a basis v1, . . . ,vn for V . Any point x ∈ X can now be written as

x = O + (x − O) = O +
n∑

k=1

xkvk, (2.59)

where the numbers x1, . . . , xn are the coordinates for the vector x − O with respect
to the basis v1, . . . ,vn, they are now also called the coordinates for x with respect
to the coordinate system O,v1, . . . ,vn.

2.2.1 Affine and Convex Combinations

We have already noticed that it does not make sense to add points in an affine space,
or more generally to take linear combination of points, see Fig. 2.5. So when a
coordinate system is chosen it is important to be careful. It is of course possible to
add the coordinates of two points and regard the result as the coordinates for a third
point. But it is not meaningful. In fact, by changing the origin we can obtain any
point by such a calculation.

But even though linear combination does not make sense, affine combination
does.

Definition 2.25 A formal sum
∑k

�=1 α�x� of k points x1, . . . ,xk is called an affine
combination if the coefficients sum to 1, i.e., if

∑k
�=1 α� = 1. Then we have

k∑

�=1

α�x� = O +
k∑

�=1

α�(x� − O), (2.60)

where O ∈ X is an arbitrary chosen point.

Observe that in the last sum we have a linear combination of vectors so the ex-
pression makes sense. If we choose an other point O ′ then the vector between the
two results are

(

O +
k∑

�=1

α�(x� − O)

)

−
(

O ′ +
k∑

�=1

α�

(
x� − O ′)

)

= (
O − O ′)+

k∑

�=1

α�

(
(x� − O) − (

x� − O ′))

= (
O − O ′)+

k∑

�=1

α�

(
(x� − x�) + (

O − O ′))
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Fig. 2.6 The plane spanned
by three points

= (
O − O ′)−

(
k∑

�=1

α�

)
(
O − O ′)

= (
O − O ′)− (

O − O ′)= 0. (2.61)

That is, the result does not depend on the auxiliary point O .

Example 2.60 The line spanned by two different points x and y in an affine space
consists of affine combinations of the two points, that is, the points (1 − t)x + ty =
x + t (y − x), t ∈R.

Example 2.61 The plane spanned by three points in space (not on the same line)
consists of all affine combinations of the three points, see Fig. 2.6.

Unless the vector space of translations is equipped with an inner product there is
no notion of lengths in an affine space. But for points on a line the ratio of lengths
makes sense. Let x1,x2,y1,y2 be four points on a line and choose a non zero vec-
tor v on the line, e.g., the difference between two of the given points. Then there
exist numbers t1, t2 ∈ R such that we have y1 − x1 = t1v and y2 − x2 = t2v. The
ratio between the line segments x1y2 and x2y2 is now defined as t1

t2
. If we had cho-

sen another vector w then v = αw and yk − xk = tkαw and the ratio αt1
αt2

= t1
t2

is the
same. Observe that we even have a well defined signed ratio.

Definition 2.26 A convex combination of points x1, . . . ,xk is an affine combina-
tion

∑k
�=1 α�x� where all the coefficients are non negative, i.e., α� ≥ 0 for all

� = 1, . . . , k.

Example 2.62 The line segment between two points consists of all convex combi-
nation of the two points.

Let X be an affine space of dimension n and let x0, . . . ,xn be n+1 points that are
affinely independent, i.e., none of the points can be written as an affine combination
of the others. This is equivalent to the vectors x1 −x0, . . . ,xn −x0 being linearly in-
dependent. Then any point y in X can be written uniquely as an affine combination
of the given points, y =∑n

k=0 αkxk . The numbers α0, . . . , αn are called barycentric
coordinates for y with respect to the points x0, . . . ,xn. The case n = 2 is illustrated
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Fig. 2.7 The barycentric coordinates of a point y = α0x0 + α1x1 + α2x2 can be given in terms of
the ratio between different line segments

in Fig. 2.7 where two different geometric interpretations of the barycentric coordi-
nates are shown.

2.2.2 Affine Maps

Definition 2.27 An affine map between two affine spaces X and Y is a map f :
X → Y that preserves affine combinations, i.e.,

f

(
k∑

�=1

αkxk

)

=
k∑

�=1

αkf (xk). (2.62)

There is a close connection between affine maps between X and Y and linear maps
between their vector spaces of translations U and V . More precisely we have the
following proposition.

Proposition 2.3 Let f be an affine map between two affine spaces (X,U) and
(Y,V ). Then there is a unique linear map L : U → V such that f (x + v) =
f (x) + L(v) for all x ∈ X and u ∈ U .

We see that L(v) = f (x + v) − f (x) and it turns out that this expression does
not depend on x and that L is linear. If we now choose an origin O ∈ X and O ′ ∈ Y

then

f (O + v) = O ′ + (
f (O) − O ′)+ L(v) = O ′ + y + L(v). (2.63)

and we see that f is the sum of the linear map L and the translation defined by
y = f (O) − O ′ ∈ V .

Definition 2.28 A hyperplane in an affine space X is a subset, H , of the form

H = f −1 = {
x ∈ X | f (x) = c

}
, (2.64)

where f : X → R is affine and c ∈R.
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Fig. 2.8 To the left a convex
set and to the right a non
convex set

If x1, . . . , xn are coordinates for points in X with respect to some coordinate
system, then a hyperplane is given by an equation of the form

a1x1 + · · · + anxn = c. (2.65)

A half space is defined in a similar manner.

Definition 2.29 A half space in an affine space X is a subset, H , of the form

H = f −1 = {
x ∈ X | f (x) ≥ c

}
, (2.66)

where f : X → R is affine and c ∈R.

If x1, . . . , xn are coordinates for points in X with respect to some coordinate
system, then a half space is given by an equation of the form

a1x1 + · · · + anxn ≥ c. (2.67)

2.2.3 Convex Sets

Definition 2.30 A subset C ⊆ X of an affine space is called convex if for each pair
of points in C the line segment between the points are in C, see Fig. 2.8.

Definition 2.31 Let A ⊆ X be an arbitrary subset of an affine space X. The convex
hull of A is the smallest convex set containing A and is denoted CH(A).

There are alternative, equivalent, definitions of the convex hull.
1. The convex hull is the intersection of all convex sets containing A:

CH(A) =
⋂

A⊆C
C is convex

C. (2.68)

2. The convex hull is the intersection of all half spaces containing A:

CH(A) =
⋂

A⊆H
H is a half space

H. (2.69)
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Fig. 2.9 All convex
combinations of two, three,
and nine points

Fig. 2.10 From left to right,
a simplex in dimension 1, 2,
and 3

3. The convex hull is the set of all convex combinations of points in A:

CH(A) =
{

k∑

�=1

αkxk

∣∣∣∣

k∑

�=1

αk = 1 ∧ α1, . . . , αk ≥ 0 ∧ x1, . . . ,xk ∈ A

}

, (2.70)

see Fig. 2.9

Definition 2.32 A simplex is the convex hull of n + 1 affinely independent points
in a n dimensional affine space, see Fig. 2.10

Example 2.63 The convex hull of two points is the line segment between the two
points, a two simplex.

Example 2.64 The convex hull of three points is a triangle, and its interior a three
simplex.

Example 2.65 The convex hull of the unit circle S1 = {(x, y) ∈ R
2 | x2 + y2 = 1} is

the closed disk {(x, y) ∈ R
2 | x2 + y2 ≤ 1}.

2.3 Metric Spaces

A metric space is a space where an abstract notion of distance is defined. When we
have such a notion we can define continuity of mappings between metric spaces, the
notion of convergence and of open and closed sets, and the notion of neighborhoods
of a point.

Definition 2.33 A metric space (X,d) is a set X equipped with a map d : X ×X →
R that satisfies the following three conditions:
1. Symmetry, for all x, y ∈ X: d(x, y) = d(y, x).
2. The triangle inequality, for all x, y, z ∈ X: d(x, z) ≤ d(x, y) + d(y, z).
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Fig. 2.11 To the left an open set, there is room for a ball around each point. To the right a non
open set, any ball around a point on the boundary is not contained in the set

3. Positivity, for all x, y ∈ X: d(x, y) ≥ 0 and d(x, y) = 0 ⇐⇒ x = y.

Example 2.66 if V, 〈·, ·〉 is an Euclidean vector space and ‖ · ‖ is the corresponding
norm, then V equipped with the distance d(u,v) = ‖v − u‖ is a metric space.

Example 2.67 If (X,V ) is an affine space and V is an Euclidean vector space with
norm ‖ · ‖, then X equipped with the distance d(x,y) = ‖y − x‖ is a metric space.

Example 2.68 If Y ⊆ X is a subset of a metric space (X,d), then Y equipped with
the restriction of d to Y × Y is a metric space.

Example 2.69 If (X1, d1) and (X2, d2) are metric spaces then the Cartesian product
X1 × X2 equipped with the distance d((x1,x2), (y1,y2)) = d1(x1,y1) + d2(x2,y2)

is a metric space.

Example 2.70 If X is an arbitrary set and we define d by

d(x, y) =
{

1 if x �= y,

0 if x = y,
(2.71)

then (X,d) is a metric space. This metric is called the discrete metric.

Definition 2.34 Let (X,d) be a metric space. The open ball with radius r > 0 and
center x ∈ X is the set B(x, r) = {y ∈ X | d(x, y) < r}.

Example 2.71 If X is equipped with the discrete metric and x ∈ X is an arbitrary
point then

B(x, r) =
{

{x} if r ≤ 1,

X if r > 1.

Definition 2.35 Let X be a metric space. A subset U ⊆ X is called an open set if
there for all points x ∈ U exists an open ball B(x, r) ⊆ U , see Fig. 2.11.

Example 2.72 If X is equipped with the discrete metric then all subsets are open.
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Theorem 2.13 If X is a metric space then the set of open sets has the following
three properties:
1. The empty set ∅ and the whole space X are open sets.
2. If Ui , i ∈ I is an arbitrary collection of open sets then their union

⋃
i∈I Ui is an

open set.
3. If U1, . . . ,Un is a finite collection of open sets then their intersection U1 ∩ · · · ∩

Un is an open set.

The three properties above are the defining properties of a topological space
which is a more general concept. There exist many topological spaces that are not
induced by a metric.

Definition 2.36 Let X be a metric space. A subset F ⊆ X is called a closed set if
the complement X \ F is open.

Example 2.73 If X is equipped with the discrete metric then all subsets are closed.

Theorem 2.13 implies that the closed sets have the following three properties:
1. The empty set ∅ and the whole space X are closed sets.
2. If Fi , i ∈ I is an arbitrary collection of closed sets then their intersection

⋂
i∈I Fi

is a closed set.
3. If F1, . . . ,Fn is a finite collection of closed sets then their union F1 ∪ · · · ∪ Fn is

an closed set.

Definition 2.37 Let A ⊆ X be a subset of a metric space. The interior A◦ of A

is the largest open set contained in A. The closure A is the smallest closed set
containing A.

The interior and closure of a subset A of X can equivalently be defined as

A◦ = {
x ∈ A | ∃r > 0 : B(x, r) ⊆ A

}
, (2.72)

A = {
x ∈ X | ∀r > 0 : B(x, r) ∩ A �= ∅}. (2.73)

In other words all points in the interior has a surrounding ball contained in A, and
all balls centered at points in the closure intersects A.

A subset A of a metric space X is a neighborhood of a set B ⊆ X if B ∈ A◦, i.e.,
if and only if there for each x ∈ Y exists an r > 0 such that B(x, r) ⊆ A.

Definition 2.38 A sequence (xn)n∈N in a metric space (X,d) is called convergent
with limit x if

∀ε > 0 ∃n0 ∈ N : n > n0 =⇒ d(x, xn) < ε. (2.74)

We write xn → x for n → ∞ or limn→∞ xn = x. The formal definition of conti-
nuity is as follows.
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Definition 2.39 Let (X,d) and (Y, d ′) be metric spaces. A map f : X → Y is a
continuous in a point x ∈ X if

∀ε > 0 ∃δ > 0 : ∀y ∈ X : d(x, y) < δ =⇒ d ′(f (x), f (y)
)
< ε.

A map f : X → Y is a continuous map if it is continuous at all points of X and it
is a homeomorphism if it is bijective, continuous and the inverse f −1 : Y → X is
continuous too.

There are alternative definitions of continuity.

Theorem 2.14 Let (X,d) and (Y, d ′) be metric spaces. A map f : X → Y is a con-
tinuous map if and only if for all convergent sequences (xn)n∈N in X, the sequence
(f (xn))n∈N is convergent in Y and limn→∞ f (xn) = f (limn→∞ xn).

Theorem 2.15 Let (X,d) and (Y, d ′) be metric spaces. A map f : X → Y is a
continuous map if and only if for all open set U ⊆ Y the preimage f −1(U) = {x ∈
X | f (x) ∈ U} is an open set in X.

The last concept we need is compactness.

Definition 2.40 A subset C of a metric space X is called compact if always when
C is covered by a collection of open sets, i.e., C ⊆⋃

i∈I Ui , where Ui is open for
all i ∈ I , then there exists a finite number of Ui1, . . . ,Uin of the given open sets that
cover C, i.e., C ⊆ Ui1 ∪ · · · ∪ Uin .

There is an alternative definition of compact sets.

Theorem 2.16 A subset C of a metric space X is compact if and only if each se-
quence (xn)n∈N in C has a convergent sub sequence (xnk

)k∈N.

Theorem 2.17 If C is a compact subset of a metric space X then C is closed and
bounded.

If X = R
n then the converse is true.

Theorem 2.18 A subset C of Rn is compact if and only if C is closed and bounded.

One of the important properties of compact sets is the following result.

Theorem 2.19 A continuous function f : C → R on a compact set has a minimum
and a maximum, i.e., there exist x0, x1 ∈ C such that f (x0) ≤ f (x) ≤ f (x1) for all
x ∈ C.
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2.4 Exercises

Exercise 2.1 Prove Proposition 2.1.

Exercise 2.2 Prove that the examples in Examples 2.1–2.11 are vector spaces.

Exercise 2.3 Prove that if V is a vector space and U ⊆ V satisfies the conditions in
Definition 2.2 then U is a vector space.

Exercise 2.4 Prove that the examples in Examples 2.13–2.19 are subspaces.

Exercise 2.5 Prove Corollary 2.1.

Exercise 2.6 Show that the monomials as well as the Bernstein polynomials are a
basis, cf. Examples 2.29 and 2.30.

Exercise 2.7 Show that the map R → R : x �→ ax + b is linear if and only if b = 0.

Exercise 2.8 Prove that the maps in Examples 2.31–2.37 are linear.

Exercise 2.9 Prove that the spaces in Examples 2.38–2.43 are Euclidean vector
spaces.

Exercise 2.10 Prove the Cauchy–Schwartz inequality, Theorem 2.6. Hint: first
note that the theorem is trivial if one of the vectors is the zero vector. Next, use
〈u − αv,u − αv〉 = ‖u − αv‖2 ≥ 0 for all α ∈ R and find the α that minimize the
expression.

Exercise 2.11 Prove the statements in Example 2.44.

Exercise 2.12 Prove that the map in Example 2.47 is symmetric.

Exercise 2.13 Prove the statements in Examples 2.49 and 2.50.

Exercise 2.14 Prove Theorem 2.9. Hint: use Theorem 2.8.

Exercise 2.15 Prove Theorem 2.12. Hint: use Theorem 2.11.

Exercise 2.16 Prove the statements in Example 2.56.

Exercise 2.17 Prove that the spaces in Examples 2.57–2.59 are affine spaces.

Exercise 2.18 Prove Proposition 2.3.
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Exercise 2.19 Determine the convex hull of the set

A = {
(x, y) ∈R

2 | x = 0 ∧ y > 0
}∪ {(x, y) ∈R

2 | x > 0 ∧ xy = 1
}
.

Exercise 2.20 Prove that the spaces in Examples 2.66–2.70 are metric spaces.

Exercise 2.21 Prove the statements in Examples 2.71, 2.72, and 2.73.

Exercise 2.22 Let A be a real n × m matrix of rank m ≤ n, let x ∈ R
m, and let

b ∈R
n. What is the solution to

min
x

f (x)|‖x‖=1,

where

f (x) = xT AT Ax?

Hint: try first the case where A is a 2 × 2-matrix, e.g., AT A = [ 5 −1
−1 5

]
.

Exercise 2.23 What are the solutions to

max
x

f (x),

where

f (x) = bT x
‖b‖‖x‖?

Exercise 2.24 What geometric object do the points x ∈ R
3, fulfilling the equation

nT x = α,

describe? Here n ∈ R
3 and α ∈ R. Please explain.
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3Differential Geometry

This chapter is not a course in differential geometry, for that we refer to the vast
literature, e.g., some with a classical approach [1–4], some with a more modern
approach [5–7] (closer to the general theory of manifolds). There are also other
books [8, 9] and some online notes [10, 11]. This text is only a short overview of
the most important concepts in surface theory. There are a few calculations, but for
examples or complete proofs the reader is referred to the references.

3.1 First Fundamental Form, Normal, and Area

A surface in space or, after choosing a coordinate system, in R
3, is a set of points

S ⊂ R
3 which is two dimensional in nature. That is, each point p ∈ S has a neigh-

borhood which can be parametrized by two coordinates:

x : R2 ⊇ U → R
3 : (u, v) �→ x(u, v). (3.1)

Just as a parametrization of a curve is called regular if the derivative is non vanish-
ing, x is a regular parametrization if the partial derivatives

x1 = xu = ∂x
∂u

, x2 = xv = ∂x
∂v

(3.2)

are linearly independent for each (u, v) ∈ U . In that case they span the tangent
space Tx(u,v)S, see Fig. 3.1. The first fundamental form is the quadratic form on the
tangent plane giving the inner product. If ξ, η are coordinates with respect to the
basis xu,xv , that is, if v = ξxu + ηxv then

I(v) = v · v = g11ξ
2 + 2g12ξη + g22η

2, (3.3)

where the coefficients are given by

gij = xi · xj , (3.4)

J.A. Bærentzen et al., Guide to Computational Geometry Processing,
DOI 10.1007/978-1-4471-4075-7_3, © Springer-Verlag London 2012
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Fig. 3.1 A tangent vector at
a point x is the derivative of a
curve on surface through x

The notation varies in the literature, and often the coefficients gij are denoted
E,F,G. With respect to the basis xu,xv the first fundamental form I has the matrix

I =
[
g11 g12
g21 g22

]
=

[
E F

F G

]
. (3.5)

That is, if a tangent vector v = ξ xu + η xv has coordinates (ξ, η) with respect to the
basis xu,xv then

I(v) = (
ξ η

)
I
(

ξ

η

)
. (3.6)

The normal is

n = xu × xv

‖xu × xv‖ and ‖xu × xv‖2 = det I = g11g22 − g2
12. (3.7)

By definition ‖xu × xv‖ is the area of the parallelogram spanned by the partial
derivatives xu and xv . So if A ⊂ U then the area of the corresponding subset of the
surface is

Area
(
x(A)

) =
∫

A

‖xu × xv‖dudv =
∫

A

√
g11g22 − g2

12 dudv. (3.8)

3.2 Mapping of Surfaces and the Differential

First we consider a real function, f : S → R defined on surface S ⊆ R
3. It is

called smooth if it expressed in the composition with a parametrization (3.1),
f ◦ x : U → R, is smooth. The differential dpf : TpS → R at a point p ∈ S is a
linear map between the tangent space TpS to S at p to R. The differential is defined
in the following way. If w ∈ TpS is a tangent vector and γ is a smooth curve in S

with γ ′(0) = w, see Fig. 3.1, then

dpf w = (f ◦ γ )′(0). (3.9)

A map f : S → R
n is given by n coordinate functions, f = (f1, . . . , fn). It is

called smooth if all coordinate functions fi : S → R is smooth. The differential of
f at p ∈ S is the linear map dpf : TpS → R

n given by dpf = (dpf1, . . . ,dpfn).
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Fig. 3.2 A map between two surfaces and its differential

Finally we consider a map f : S1 → S2 between two surfaces, see Fig. 3.2. It
smooth if it considered as a map into R

3 is smooth. Equivalently, it is smooth if it,
expressed in local coordinates, i.e., composed with parametrizations

y−1 ◦ f ◦ x : U1 → U2 : (u1, v1) �→ (u2, v2), (3.10)

is smooth. The image of curve γ is S1 is a curve in S2 and its derivative is a tangent
vector to S2. So the differential dpf : TpS1 → R

3 maps into Tf (p)S2. That is, the
differential is a linear map dpf : TpS1 → Tf (p)S2 between the tangent space TpS1
to S1 at p to the tangent space Tf (p)S2 to S2 at f (p). If we in particular consider
the curve γ (t) = x(u0 + tw1, v0 + tw2) then we have

f ◦ γ (t) = y ◦ (
y−1 ◦ f ◦ x

)
(u0 + tw1, v0 + tw2)

= y
(
u2(u0 + tw1, v0 + tw2), v2(u0 + tw1, v0 + tw2)

)
,

hence

w = γ ′(0) = w1xu + w2xv,

dγ (0)f w = (f ◦ γ )′(0)

=
(

∂u2

∂u1
w1 + ∂u2

∂v1
w2

)
yu +

(
∂v2

∂u1
w1 + ∂v2

∂v1
w2

)
yv.

So we see that with respect to the basis xu,xv in Tγ (0)S1 and the basis yu,yv in
Tf (γ (0))S2 the differential dγ (0)f has the matrix

df ∼ J =
(

∂u2
∂u1

∂u2
∂v1

∂v2
∂u1

∂v2
∂v1

)
. (3.11)

That is, we have the Jacobian J of the local expression (u1, v1) �→ (u2, v2).

Definition 3.1 A smooth map f : S1 → S2 between two surfaces is
1. an isometry if it preserves the length of curves;
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2. an conformal map if it preserves angles;
3. equiarea if it preserves area.

These three properties are used in Chap. 10 and can be expressed in terms of the
differential of f .

Theorem 3.1 Let I1 and I2 be the first fundamental form of the surfaces S1 and S2,
respectively. Then we have the following:
• The map f is an isometry if and only if the differential dpf is an isometry at each

point p ∈ S1. This is the case if and only if I1 = JT I2J.
• The map f is conformal if and only if the differential dpf is a scaling at each

point p ∈ S1. This is the case if and only if I1 = λJT I2J, where λ is a function on
S1.

• The map f is equiarea if and only if the differential dpf is equiarea at each point
p ∈ S1. This is the case if and only if det I1 = (det J)2 det I2.

We immediately see that if the map is both conformal and equiarea then I1 =
λJT I2J and λ = 1 so the map is an isometry.

3.3 Second Fundamental Form, the Gauß Map and
the Weingarten Map

Just as the curvature of a curve expresses how fast the tangent varies along the curve,
the curvature of a surface expresses how fast the normal varies along the surface.
The Gauß map takes a point on the surface to the normal, i.e., in local coordinates
it is given by (u, v) �→ n(u, v). This is obviously a map from the surface S to the
unit sphere S2. Furthermore, the normal to S2 at the point n ∈ S2 is n itself so the
tangent spaces Tn(u,v)S

2 and Tx(u,v)S are parallel. Thus, there is a unique translation
in R

3 which maps one onto the other. The shape operator or Weingarten map is the
differential of the Gauß map

W = dn : Tx(u,v)S → Tn(u,v)S
2 ∼= Tx(u,v)S. (3.12)

If v = ξxu + ηxv is a tangent vector then

W(v) = dn(v) = ξnu + ηnv (3.13)

and

v · W(v) = (ξnu + ηnv) · (ξxu + ηxv)

= ξ2nu · xu + ξη(nu · xv + nv · xu) + η2nv · xv. (3.14)

This is a measure of the rate of change of the normal in the direction v. Differentia-
tion of the equations n · xu = 0 and n · xv = 0 shows that

xij · n = −xi · nj = −xj · ni . (3.15)
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The second fundamental form is the following quadratic form on the tangent space:

I(v) = −W(v) · v = b11ξ
2 + 2b12ξη + b22η

2, (3.16)

where the coefficients bij are given by

bij = xij · n = −xi · nj = −xj · ni . (3.17)

Again, the notation varies in the literature, the coefficients (bij ) can also be denoted
(e, f, g), (L,M,N), or (l,m,n). With respect to the basis xu,xv the second funda-
mental form I has the matrix

III=
[
b11 b12
b21 b22

]
=

[
L M

M N

]
=

[
e f

f g

]
=

[
l m

m n

]
= · · · . (3.18)

That is, if a tangent vector v = ξ xu + η xv has coordinates (ξ, η) with respect to the
basis xu,xv then

I(v) = (ξ η)III

(
ξ

η

)
. (3.19)

If the Weingarten map W has the matrix W with respect to the basis xu,xv in the
tangent plane Tx(u,v)S then (3.14) can be written III = −I W. Thus, with respect to
the basis xu,xv the Weingarten map has the matrix

W = −I−1
III = −

[
g11 g12
g21 g22

]−1 [
b11 b12
b21 b22

]

= −1

g11g22 − g2
12

[
g22 −g12

−g21 g11

][
b11 b12
b21 b22

]
. (3.20)

The Weingarten map W is a symmetric map, i.e., W(u) · v = u · W(v), but W is a
symmetric matrix if and only if xu and xv are orthogonal and have the same length.

3.4 Smoothness of a Surface

If we compose a Ck-parametrization (see Example 2.6) with a change of a parameter
of class Ck−1 then the resulting new parametrization is of class Ck−1, but the surface
is of course the same. That is, the smoothness of a surface is not the same as the
smoothness of an arbitrary parametrization. We define the smoothness of a surface
as the maximal smoothness of a regular parametrization. It is not hard to see that
this is the same as the smoothness of the projection from the tangent plane to the
surface. The representation of the surface as a graph over its tangent plane, as shown
in Fig. 3.3, is interesting from other points of view. Let the surface be C2, let v1,v2

be a positive basis (not necessarily orthonormal) for the tangent plane, i.e., n =
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Fig. 3.3 The surface as a
graph over its tangent plane

Fig. 3.4 A planar section of
a surface. If θ = π

2 we have a
normal section. In that case
κn = ±κ and κg = 0 at the
origin

v1 × v2/‖v1 × v2‖, and let u,v,w be coordinates on R
3 with respect to the basis

v1,v2,n. Then the projection from the tangent plane to the surface has the expansion

w = b11u
2 + 2b12uv + b22v

2 + o
(
u2 + v2), (3.21)

i.e., the second order Taylor polynomial of the projection from the tangent plane to
the surface is given by the second fundamental form.

3.5 Normal and Geodesic Curvature

Let r(t) = x(u(t), v(t)) be a curve on the surface S. Denote the curve tangent by t,
the curvature vector by κ = dt/ds, where s is arc length on the curve. If u = n × t
then the Darboux frame is t,u,n, see Fig. 3.4. The tangent vector is

t = dr
ds

= du

ds
xu + dv

ds
xv, (3.22)

and the curvature vector is

κ = dt
ds

= d2r
ds2

= d2u

ds2
xu + d2v

ds2
xv +

(
du

ds

)2

xuu + 2
du

ds

dv

ds
xuv +

(
dv

ds

)2

xvv. (3.23)

The curvature vector is orthogonal to the tangent vector, so it can be written

κ = κnn + κgu, (3.24)
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where κn is called the normal curvature and κg is called the geodesic curvature. The
normal curvature is

κn = κ · n =
(

du

ds

)2

b11 + 2
du

ds

dv

ds
b12 +

(
dv

ds

)2

b22 = I(t). (3.25)

Observe that it depends only on the tangent! Consequently it only depends on the
first derivative. If we use another parameter than arc length s on the curve, say t ,
then we have

du

dt
= ds

dt

du

ds
and

dv

dt
= ds

dt

dv

ds
, (3.26)

so

I
(
r′(t)

) =
(

ds

dt

)2

I(t) =
(

ds

dt

)2

, (3.27)

and

I
(
r′(t)

) =
(

ds

dt

)2

I(t) = I
(
r′(t)

)
I(t). (3.28)

Thus

κn = I(t) = I(r′)
I(r′)

. (3.29)

The geodesic curvature is the remaining part of the curvature

κg = κ · u. (3.30)

The minimal curvature at a point of a curve with a certain tangent vector t is the
normal curvature κn = I(t). It is obtained when the geodesic curvature vanishes.
A geodesic is a curve with vanishing geodesic curvature, i.e., a curve with minimal
curvature and it is not surprising that it is a curve that minimizes length locally.

3.6 Principal Curvatures and Direction

The Weingarten map is a symmetric linear map so it has real eigenvalues and the
corresponding eigenvectors are orthogonal. The principal curvatures and principal
directions are the eigenvalues and eigenvectors of minus the Weingarten map, i.e.,
they are solutions to

−W(v) = κv ⇐⇒ I−1
IIIv = κv ⇐⇒ IIIv = κI v, (3.31)

where v is the column vector containing the coordinates of v. If Wvi = −κivi , where
v1,v2 are unit eigenvectors for W , and consequently is an orthonormal basis for the
tangent plane, then substituting t = cos θ v1 + sin θ v2 into (3.25) shows Euler’s
formula:

κn = κ1 cos2 θ + κ2 sin2 θ, (3.32)
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Fig. 3.5 A normal section of
a surface

where θ is the angle between the first principal direction and the tangent of the
curve.

Hence, the principal curvatures and principal directions are the maximum and
minimum value of the normal curvature and the directions in which they are ob-
tained.

If we intersect a surface with a plane containing the surface normal n at a point
p ∈ S we obtain a normal section of the surface, see Fig. 3.5. At the point p the
signed planar curvature and the normal curvature of the normal section agrees, up
to a sign. So it is a surprising fact that the curvature of a normal section is given by
Euler’s formula (3.32). In particular, when the intersecting plane of a normal section
is rotated around the normal then the curvature of intersection is either constant
or has exactly one minimum and one maximum, which are attained in orthogonal
directions.

3.7 The Gaußian and Mean Curvature

The Gaußian curvature is the product of the principal curvatures:

K = κ1κ2 = detW = det W = detIII

det I
= b11b22 − b2

12

g11g22 − g2
12

. (3.33)

Points on a surface are classified according to the sign of the Gaußian curvature K .
If K > 0 then we have an elliptic point and the surface curves the same way in
all directions. If K < 0 then we have a hyperbolic point and the surface curves
towards the normal in some directions and away from the normal in other directions,
see Fig. 3.6. If K = 0 and not both principal curvatures are zero then we have a
parabolic point, and finally if both principal curvatures are zero then we have a
planar point. On a negatively curved surface there are two directions where the
normal curvature is zero and they are called the asymptotic directions.

The mean curvature is the mean value of the principal curvatures,

H = κ1 + κ2

2
= − tr W

2
= tr(I−1

III)

2

= 1

2

g11b22 − 2g12b12 + g22b11

g11g22 − g2
12

. (3.34)
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Fig. 3.6 On the left a
positively curved surface, on
the right a negatively curved
surface

Fig. 3.7 Minimal surfaces. On the left a helicoid, in the middle a catenoid, and on the right Costa’s
minimal surface

It follows from (3.39) below that if a surface has zero mean curvature then the area of
the surface is minimal, at least locally. Consequently, a surface with H = 0 is called
a minimal surface, and it is the mathematical model of a soap film, see Fig. 3.7.

Calculation of curvature requires second order derivatives and it is unstable to
estimate derivatives. Integrals are stable to estimate and we will later use integrals
to estimate the mean and Gaußian curvature of meshes.

Let U ⊆ S be a connected subset of the surface S and consider the area of the
image n(U) on the unit sphere under the Gauß map. By the mean value theorem we
have

Area
(
n(U)

) =
∫

U

det(dn)dA =
∫

U

detW dA =
∫

U

K dA

= K(q)

∫
U

dA = K(q)Area(U),

where q ∈ U is a suitably chosen point. Thus, for a point p on the surface we have
the following expression for the Gaußian curvature:

K(p) = lim
U→p

Area(n(U))

Area(U)
, (3.35)

where U → p means p ∈ U and diamU → 0. This, in fact, is Gauß’ original defini-
tion and we will use it to give an estimate of the Gaußian curvature of a mesh, see
(8.7).

Now consider an offset S̃ of the surface S,

x̃(u, v) = x(u, v) + h(u, v)n(u, v). (3.36)
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The partial derivatives are x̃i = xi +hin +hni . If we calculate the first fundamental
form of the offset S̃ to first order in h then we get

g̃ij = x̃i · x̃j ≈ xi · xj + h(xi · nj + ni · xj ) = gij − 2hbij . (3.37)

The determinant is

det Ĩ ≈ det(I − 2hIII) = det(I)det
(
1 − 2hI−1

III
)

≈ det(I)
(
1 − 2h tr

(
I−1

III
)) = det(I)(1 − 4hH), (3.38)

and the square root is
√

det Ĩ ≈ √
det(I)(1 − 2hH). So if U ⊆ S and Ũ ⊆ S̃ is the

offset of U , then x̃−1(Ũ ) = x−1(U), and

Area(Ũ) =
∫

x̃−1(Ũ)

√
det Ĩ dudv ≈

∫
x−1(U)

√
det(I)(1 − 2hH)dudv

= (
1 − 2h(Q)H(Q)

) ∫
x−1(U)

√
det(I)dudv

= (
1 − 2h(Q)H(Q)

)
Area(U), (3.39)

for a suitably chosen Q ∈ U . We finally get the following expression for the mean
curvature:

H(p) = − lim
h→0
U→p

Area(Ũ) − Area(U)

2h Area(U)
= lim

U→p

∇h Area(U)

2 Area(U)
. (3.40)

We use this to give an estimate of the mean curvature of a mesh, see (8.4).

3.8 The Gauß–Bonnet Theorem

Consider a region R ⊆ S bounded by a piecewise regular curve C with exterior
angles φi at the break points, see Fig. 3.8. The Gauß–Bonnet theorem states that

∫
R

K dA +
∫

C

κg ds +
∑

φi = 2πχ(R), (3.41)

where χ(R) denotes the Euler characteristic of R. It is defined by

χ(R) = #Faces − #Edges + #Vertices (3.42)

in an arbitrary triangulation of R. We have in particular for a triangle T : χ(T ) = 1
and hence

∫
T

K dA +
3∑

i=1

∫
Ci

κg ds +
3∑

i=1

φi = 2π. (3.43)
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Fig. 3.8 A general triangle, a geodesic triangle, and a geodesic polygon. The exterior angle φi is
the angle between the incoming and outgoing tangent vector

If the triangle is geodesic then the geodesic curvature of the edges vanishes and we
have

∫
T

K dA = 2π −
3∑

i=1

φi =
3∑

i=1

(π − φi︸ ︷︷ ︸
interior angle = θi

) − π. (3.44)

For a general geodesic n-gon P we have

∫
P

K dA =
n∑

i=1

θi − (n − 2)π, (3.45)

where θi denotes the interior angles. We get a new estimate for the Gaußian curva-
ture which also can be used to justify the estimate (8.7).

3.9 Differential Operators on Surfaces

Let f : S → R be a real function defined on a surface S. The (intrinsic) gradient,
∇f (p), of f at p ∈ S is defined by the equation

∇f (p) · v = dpf v, for all v ∈ TpS. (3.46)

Before we can express the gradient in local coordinates we need the inverse of the
first fundamental form.

Definition 3.2 The entries of the matrix which is the inverse of matrix, (gij ), of the
first fundamental form are denoted gij . That is,

∑
k

gikgkj = δi
j =

{
1 if i = j,

0 if i �= j.
(3.47)

We leave the proof of the following theorem as Exercise 3.5.
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Theorem 3.2 If x : U → S is a parametrization of a surface S and f : S → R is a
smooth function, then the gradient of f is given by

∇f =
∑
k,

gk ∂(f ◦ x)

∂u

xk. (3.48)

The collection of all tangent spaces to a surface S is called the tangent bundle,
T S = ⋃

p∈S TpS, and a vector field is a map v : S → T S such that v(p) ∈ TpS.
If x : U → S is a parametrization of S then a vector field can be written as v =
v1 x1 + v2 x2, where v1 and v2 are real functions. The vector field is called smooth
if these functions are smooth.

If v is a smooth vector field on S then there exists a map Φ : R× S → S, called
the flow of v, such that

Φ(0,p) = p,
∂Φ

∂t
(t,p) = v

(
Φ(t,p)

)
,

Φ(t + s,p) = Φ
(
t,Φ(s,p)

)
.

(3.49)

The curves γ : t �→ Φ(t,p) are integral curves of v, i.e., γ ′(t) = v(γ (t)). Pictorially
the points in S flows along the integral curves.

One way of thinking about the (intrinsic) divergence, div v, of a smooth vector
field v is that it measures how volume changes as it flows along the integral curves
of v. That is, the divergence is characterized by the equation

∫
x−1(B)

div v dudv = d

dt

∫
x−1(Φ(t,B))

√
det(gij )dudv

∣∣∣∣
t=0

, (3.50)

for all subsets B ⊆ S, where x : U → S is a parametrization, and gij are the compo-
nents of the first fundamental form. The divergence theorem also holds for surfaces,
i.e., we have the following theorem.

Theorem 3.3 Let v be smooth vector field on a surface S and let B ⊆ S be a domain
with a piecewise smooth boundary ∂B . If n is the outward normal of the domain B

and s is arc-length on ∂B then
∫

x−1(B)

div v dudv =
∫

∂B

v · n ds. (3.51)

It will take us to far afield to derive the expression for the divergence in local
coordinates, so we will just state the result without proof.

Theorem 3.4 If x : U → S is a parametrization of a surface S and v is a smooth
vector field on S, then the divergence of v ◦ x = ∑

k vkxk is given by

div v =
∑

k

1√
det(gij )

∂

∂uk

(√
det(gij ) vk

)
. (3.52)
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Just as for the usual Laplacian, the Laplace–Beltrami operator is defined as

�f = div∇f. (3.53)

Knowing Theorems 3.2 and 3.4 it is not hard to derive the expression for
Laplace–Beltrami operator in local coordinates. We leave it as Exercise 3.6.

Theorem 3.5 If x : U → S is a parametrization of a surface S and f is a smooth
function on S, then the Laplace–Beltrami operator of f is given by

�f =
∑
k,

1√
det(gij )

∂

∂uk

(√
det(gij )g

k ∂(f ◦ x)

∂u

)
. (3.54)

3.10 Implicitly Defined Surfaces

Alternatively a surface can be given as the solution to an equation in three unknowns,
f (x, y, z) = c. The implicit function theorem [12] ensures that if f is a Cn function
and at a point on the surface the gradient ∇f is non vanishing, then the surface can
be parametrized locally by a Cn parametrization.

Sometimes this implicit representation has some advantages over the representa-
tion as a parametrized surface

x : (u, v) �→ (
x(u, v), y(u, v), z(u, v)

)
.

E.g., if we want to find the intersection of two surfaces, then we have the following
three possibilities:
• Two parametric surfaces. Here we have to solve three equations in four unknowns

(u, v, s, t):

x1(u, v) = x2(s, t), y1(u, v) = y2(s, t), z1(u, v) = z2(s, t).

• One parametric surface and one implicit surface. Here we have to solve one equa-
tion in two unknowns (u, v):

f
(
x(u, v), y(u, v), z(u, v)

) = c.

• Two implicit surfaces. Here we have to solve two equations in three unknowns
(x, y, z):

f1(x, y, z) = c1, f2(x, y, z) = c2.

Clearly the second option is the best, so it would be best if we could have a surface
represented both as a parametric surface and as an implicit surface. Mathematically
that is not a problem. Any surface can be represented in both ways. In practice there
are problems and the best one can hope for is to maintain a hybrid representation
where the parametric and implicit representations agree up to some given tolerance.
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In this note we will not be concerned with that aspect, but we will just demon-
strate how to determine the second fundamental form, the principal curvatures and
directions, and Gaußian and mean curvature for an implicit surface.

3.10.1 The Signed Distance Function

First we will assume that the surface is given as

S = h−1(0) = {
(x, y, z) ∈R

3 | h(x, y, z) = 0
}
, (3.55)

where h is a C2 function and
(

∂h

∂x

)2

+
(

∂h

∂y

)2

+
(

∂h

∂z

)2

= 1. (3.56)

It is not hard to see that (3.56) is equivalent to the condition that h is the signed
distance function of the surface. The function h is also called the normal form of the
surface. The signed distance function will in general not be smooth in all of R3, but
we only need the condition (3.56) in a neighborhood of S.

If r(t) = (x(t), y(t), z(t)) is a curve in S, i.e., h(x(t), y(t), z(t)) = 0, then differ-
entiation with respect to t yields

∂h(r(t))
∂x

x′(t) + ∂h(r(t))
∂y

y′(t) + ∂h(r(t))
∂z

z′(t) = 0,

i.e., the tangent vector r′ is orthogonal to the gradient ∇h. So we immediately find
that ∇h is the unit normal of S.

If we differentiate (3.56) with respect to x, y, and z then we obtain three equa-
tions:

2
∂2h

∂x2

∂h

∂x
+ 2

∂2h

∂x∂y

∂h

∂y
+ 2

∂2h

∂x∂z

∂h

∂z
= 0,

2
∂2h

∂y∂x

∂h

∂x
+ 2

∂2h

∂y2

∂h

∂y
+ 2

∂2h

∂y∂z

∂h

∂z
= 0,

2
∂2h

∂z∂x

∂h

∂x
+ 2

∂2h

∂z∂y

∂h

∂y
+ 2

∂2h

∂z2

∂h

∂z
= 0.

If we divide by 2 and write the equations in matrix form then we obtain

⎡
⎢⎢⎣

∂2h

∂x2
∂2h
∂x∂y

∂2h
∂x∂z

∂2h
∂y∂x

∂2h

∂y2
∂2h
∂y∂z

∂2h
∂z∂x

∂2h
∂z∂y

∂2h

∂z2

⎤
⎥⎥⎦

︸ ︷︷ ︸
H(h)

⎡
⎢⎢⎣

∂h
∂x

∂h
∂y

∂h
∂z

⎤
⎥⎥⎦

︸ ︷︷ ︸
∇h

=
⎡
⎣0

0
0

⎤
⎦ . (3.57)
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That is, the gradient ∇h of the signed distance function h is an eigenvector for the
Hessian H(h) with eigenvalue 0.

We will now see that there is a close connection between the Weingarten map
W for the surface and the H(h) for the signed distance function. Assume that
(x(t), y(t), z(t)) is a curve on the surface, i.e., h(x(t), y(t), z(t)) = 0 for all t . As
∇h is the unit normal, the Gauß map maps this curve to the following curve on the
unit sphere:

∇h =

⎡
⎢⎢⎣

∂h
∂x

(x(t), y(t), z(t))

∂h
∂y

(x(t), y(t), z(t))

∂h
∂z

(x(t), y(t), z(t))

⎤
⎥⎥⎦ .

If v = [x′, y′, z′]T then the action of the Weingarten map on v is given by

Wv = −d∇h

dt
= −

⎡
⎢⎢⎢⎣

∂2h

∂x2 x′ + ∂2h
∂x∂y

y′ + ∂2h
∂x∂z

z′

∂2h
∂y∂x

x′ + ∂2h

∂y2 y′ + ∂2h
∂y∂z

z′

∂2h
∂z∂x

x′ + ∂2h
∂z∂y

y′ + ∂2h

∂z2 z′

⎤
⎥⎥⎥⎦

= −

⎡
⎢⎢⎢⎣

∂2h

∂x2
∂2h
∂x∂y

∂2h
∂x∂z

∂2h
∂y∂x

∂2h

∂y2
∂2h
∂y∂z

∂2h
∂z∂x

∂2h
∂z∂y

∂2h

∂z2

⎤
⎥⎥⎥⎦

⎡
⎣x′

y′
z′

⎤
⎦ = −H(h)v.

In other words, the Weingarten map of the surface h(x, y, z) = 0 is minus the Hes-
sian H(h) restricted to the tangent space. The Hessian is a symmetric matrix so we
can find an orthonormal basis consisting of eigenvectors, and as ∇h is an eigen-
vector there exist two eigenvectors that are orthogonal to ∇h, i.e., that are tangent
vectors. These two vectors are then eigenvectors for the Weingarten map and hence
give the principal directions. Thus we have

Theorem 3.6 Let h be the signed distance function for a surface S and let e1, e2, e3

be pairwise orthogonal eigenvectors for the Hessian H(h) such that e3 = ∇h.
The principal directions for S are then e1 and e2 and if λ1, λ2, λ3 are the

eigenvalues for H(h), then λ3 = 0 and the principal curvatures are κ1 = −λ1 and
κ2 = −λ2.

We find in particular that the mean curvature is

M = κ1 + κ2

2
= −λ1 + λ2

2
= − trH(h)

2
= −1

2

(
∂2h

∂x2
+ ∂2h

∂y2
+ ∂2h

∂z2

)
,
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and the Gaußian curvature is

K = κ1κ2 = λ1λ2 =
∣∣∣∣∣∣

∂2h

∂x2
∂2h
∂x∂y

∂2h
∂y∂x

∂2h

∂y2

∣∣∣∣∣∣ +
∣∣∣∣∣∣

∂2h

∂x2
∂2h
∂x∂z

∂2h
∂z∂x

∂2h

∂z2

∣∣∣∣∣∣ +
∣∣∣∣∣∣

∂2h

∂y2
∂2h
∂y∂z

∂2h
∂y∂z

∂2h

∂z2

∣∣∣∣∣∣ .

Proof The formula for the mean curvature is obvious. So we only need to show the
formula for the Gaußian curvature. Here we note that the characteristic polynomial
for H(h) on one hand is

(λ1 − t)(λ2 − t)(0 − t) = −t3 + (λ1 + λ2)t
2 − λ1λ2t,

and on the other hand is

∣∣∣∣∣∣∣∣∣

∂2h

∂x2 − t ∂2h
∂x∂y

∂2h
∂x∂z

∂2h
∂y∂x

∂2h

∂y2 − t ∂2h
∂y∂z

∂2h
∂z∂x

∂2h
∂z∂y

∂2h

∂z2 − t

∣∣∣∣∣∣∣∣∣
.

All that is left is to compare the coefficients to t . �

3.10.2 An Arbitrary Function

We now let f be an arbitrary function with non vanishing gradient. We are interested
in the surface given by f (x, y, z) = 0. Observe that another level set f (x, y, z) = c

can be given as f (x, y, z)− c = 0. Let h denote the signed distance function for the
surface. Then we can write

f (x, y, z) = λ(x, y, x)h(x, y, z), (3.58)

where λ :R3 → R+ is some positive function. Differentiation of (3.58) yields

⎡
⎢⎢⎣

∂f
∂x

∂f
∂y

∂f
∂z

⎤
⎥⎥⎦ = h

⎡
⎢⎢⎣

∂λ
∂x

∂λ
∂y

∂λ
∂z

⎤
⎥⎥⎦ + λ

⎡
⎢⎢⎣

∂h
∂x

∂h
∂y

∂h
∂z

⎤
⎥⎥⎦ . (3.59)

At the surface we have h = 0 so on the surface we have ∇f = λ∇h, i.e.,

λ = ‖∇f ‖, ∇h = 1

λ
∇f. (3.60)
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Differentiation of (3.59) yields

⎡
⎢⎢⎢⎣

∂2f

∂x2
∂2f
∂x∂y

∂2f
∂x∂z

∂2f
∂y∂x

∂2f

∂y2
∂2f
∂y∂z

∂2f
∂z∂x

∂2f
∂z∂y

∂2f

∂z2

⎤
⎥⎥⎥⎦ = h

⎡
⎢⎢⎢⎣

∂2λ

∂x2
∂2λ
∂x∂y

∂2λ
∂x∂z

∂2λ
∂y∂x

∂2λ

∂y2
∂2λ
∂y∂z

∂2λ
∂z∂x

∂2λ
∂z∂y

∂2λ

∂z2

⎤
⎥⎥⎥⎦ +

⎡
⎢⎢⎣

∂λ
∂x

∂λ
∂y

∂λ
∂z

⎤
⎥⎥⎦

⎡
⎢⎢⎣

∂h
∂x

∂h
∂y

∂h
∂z

⎤
⎥⎥⎦

T

+

⎡
⎢⎢⎣

∂h
∂x

∂h
∂y

∂h
∂z

⎤
⎥⎥⎦

⎡
⎢⎢⎣

∂λ
∂x

∂λ
∂y

∂λ
∂z

⎤
⎥⎥⎦

T

+ λ

⎡
⎢⎢⎢⎣

∂2h

∂x2
∂2h
∂x∂y

∂2h
∂x∂z

∂2h
∂y∂x

∂2h

∂y2
∂2h
∂y∂z

∂2h
∂z∂x

∂2h
∂z∂y

∂2h

∂z2

⎤
⎥⎥⎥⎦ . (3.61)

Multiplying with ∇h on the right and using that we know that H(h)∇h = 0 and
h = 0 on the surface, we obtain

⎡
⎢⎢⎢⎣

∂2f

∂x2
∂2f
∂x∂y

∂2f
∂x∂z

∂2f
∂y∂x

∂2f

∂y2
∂2f
∂y∂z

∂2f
∂z∂x

∂2f
∂z∂y

∂2f

∂z2

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎣

∂h
∂x

∂h
∂y

∂h
∂z

⎤
⎥⎥⎦

=

⎡
⎢⎢⎣

∂λ
∂x

∂λ
∂y

∂λ
∂z

⎤
⎥⎥⎦

⎡
⎢⎢⎣

∂h
∂x

∂h
∂y

∂h
∂z

⎤
⎥⎥⎦

T ⎡
⎢⎢⎣

∂h
∂x

∂h
∂y

∂h
∂z

⎤
⎥⎥⎦ +

⎡
⎢⎢⎣

∂h
∂x

∂h
∂y

∂h
∂z

⎤
⎥⎥⎦

⎡
⎢⎢⎣

∂λ
∂x

∂λ
∂y

∂λ
∂z

⎤
⎥⎥⎦

T ⎡
⎢⎢⎣

∂h
∂x

∂h
∂y

∂h
∂z

⎤
⎥⎥⎦ .

That is, on the surface we have

H(f )∇h = ‖∇h‖2∇λ + (∇λ · ∇h)∇h = ∇λ + (∇λ · ∇h)∇h.

Multiplying with ∇hT on the left yields

∇hT H(f )∇h = ∇hT ∇λ + (∇λ · ∇h)∇hT ∇h = 2∇λ · ∇h.

So now we see that

∇λ · ∇h = 1

2
∇hT H(f )∇h,

∇λ = H(f )∇h − 1

2

(∇hT H(f )∇h
)∇h,

and hence

H(f ) = ∇λ∇hT + ∇h∇λT + λH(h)

=
(

H(f )∇h − 1

2

(∇hT H(f )∇h
)∇h

)
∇hT
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+ ∇h

(
H(f )∇h − 1

2

(∇hT H(f )∇h
)∇h

)T

+ λH(h)

= H(f )∇h∇hT + ∇h∇hT H(f ) − (∇hT H(f )∇h
)∇h∇hT + λH(h),

where we have used that H(f ) is symmetric. We now have

Theorem 3.7 Let f : R3 → R be a smooth function with non vanishing gradient
and let h : R3 →R be the signed distance function for the surface

S = f −1(c) = {
(x, y, z) ∈ R

3 | f (x, y, z) = c
}
.

On the surface we have

∇h = ∇f

‖∇f ‖ ,

H(h) = H(f )

‖∇f ‖ − H(f )∇f ∇f T + ∇f ∇f T H(f )

‖∇f ‖3
+ (∇f T H(f )∇f )∇f ∇f T

‖∇f ‖5
.

Proof We have already seen the case c = 0. To show the general case we only have
to note that the functions f − c and f have the same gradient and Hessian. �

The principal directions, the principal curvatures, and the mean and Gaußian
curvature can now be found using Theorem 3.6. For more on the normal form and
its applications, see [13].

3.11 Exercises

Exercise 3.1 Consider the surface in R
3 given by the equation z = xy.

1. Show that the tangent space at the point (0,0,0) is the xy-plane.
2. Explain why you can use (3.21) to find the second fundamental form at the point

(0,0,0) and do it.
3. Find the principal curvatures and directions at the point (0,0,0).
4. Find a parametrization of the surface.
5. Use this parametrization to:

(a) Find the surface normal at an arbitrary point of the surface.
(b) Find the first and second fundamental form at an arbitrary point of the sur-

face.
(c) Find the principal curvatures and directions at the point (1,1,1).
(d) Find the Gaußian and mean curvature at an arbitrary point of the surface.

6. Find an implicit representation of the surface.
7. Use this implicit form to:

(a) Find the surface normal at an arbitrary point of the surface.
(b) Find the principal curvatures and directions at the point (1,1,1).
(c) Find the Gaußian and mean curvature at an arbitrary point of the surface.
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Exercise 3.2 Consider the circle in the xz-plane with center (2,0,0) and radius 1.
By rotating the circle around the z-axis we obtain a surface, called a torus, in R

3.
1. Find a parametrization of the surface.
2. Find the surface normal at an arbitrary point of the surface.
3. Find the first and second fundamental form at an arbitrary point of the surface.
4. Find the Gaußian and mean curvature at an arbitrary point of the surface.
5. Find the principal curvatures and directions at an arbitrary point of the surface.

Exercise 3.3 Consider the helicoid given by the parametrization

x(u, v) = (v cosu,v cosu,u), (u, v) ∈ R
2.

1. Find the surface normal at an arbitrary point of the surface.
2. Find the first and second fundamental form at an arbitrary point of the surface.
3. Find the Gaußian and mean curvature at an arbitrary point of the surface.
4. Find the principal curvatures and directions at an arbitrary point of the surface.

Exercise 3.4 Consider the catenoid given by the parametrization

x(u, v) = (coshu cosv, coshu sinv, v)

1. Find the surface normal at an arbitrary point of the surface.
2. Find the first and second fundamental form at an arbitrary point of the surface.
3. Find the Gaußian and mean curvature at an arbitrary point of the surface.
4. Find the principal curvatures and directions at an arbitrary point of the surface.

Exercise 3.5 Prove Theorem 3.2.

Exercise 3.6 Prove Theorem 3.5. Hint: use Theorem 3.2 and 3.4.

Exercise 3.7 Show that if gij = δij then (3.48), (3.52), and (3.54) reduce to the
usual expressions for the gradient, divergence, and Laplace operator.
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4Finite Difference Methods for Partial
Differential Equations

When we seek to manipulate geometry, we often arrive at differential equations. For
instance, a simple height field may be described by a function f :R2 → R. Assume
we want the shape to be as smooth as possible; we could try to minimize the so
called membrane energy of f ,

EM [f ] = 1

2

∫
f 2

x + f 2
y dx dy, (4.1)

which basically penalizes stretch (cf. Chap. 9). From variational calculus we know
that a minimizer of EM must be a solution to

�f = fxx + fyy = ∂2f

∂x2
+ ∂2f

∂y2
= 0. (4.2)

We would typically solve this equation (known as the Laplace Equation) on some
bounded domain where we are given specific boundary conditions. To give another
example, in the level set method (cf. Chap. 17), we need to solve

∂Φ

∂t
+ F‖∇Φ‖ = 0, (4.3)

where Φ(t,x) : R × R
3 → R is a scalar function of time and spatial position and

F : R3 → R is known as the speed function. In this case, we would start from a
known value of Φ and solve forward in time. One can look at Φ as a function which
describes a shape: Φ is positive outside the shape and negative inside, and F is a
function which describes how the boundary deforms.

Above, we have seen examples of a boundary value problem and an initial value
problem. In both cases, we do not expect to be able to find closed form solutions but
instead we divide both time and space into discrete grids, and look for numerical
solutions.

One particular family of methods for solving differential equations on grids is
known as finite difference methods. The main purpose of this chapter is to briefly
review the basics of finite difference methods. This is quite a large field, and we

J.A. Bærentzen et al., Guide to Computational Geometry Processing,
DOI 10.1007/978-1-4471-4075-7_4, © Springer-Verlag London 2012
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will have to restrict the discussion to simple methods which are directly relevant
to the topics covered in this book. For more information about the finite difference
method, the interested reader is referred to [1] and [2] which are the main references
for the following chapter.

4.1 Discrete Differential Operators

In order to solve partial differential equations on discrete uniform grids, we need
discrete analogues of the continuous differential operators. Typically, we use one of
the three following discrete operators.

Definition 4.1 The forward difference operator, D+, approximates ∂
∂x

using the
current grid point and the next

D+f = f (i + 1) − f (i). (4.4)

The backward difference operator, D−, uses the current grid point and the previous

D−f = f (i) − f (i − 1). (4.5)

The central differences operator, D, uses the grid points on either side of the point,
we are interested in

Df = f (i + 1) − f (i − 1)

2
. (4.6)

One way of arriving at these operators is through Taylor polynomials. Recall that
Taylor’s theorem states that if we know the derivatives of all orders of a function f

at point i, we can compute f at a point x as a sum

f (x) =
∑
n

f (n)(i)

n! (x − i)n

= f (i) + f ′(i)(x − i) + 1

2
f ′′(i)(x − i)2 + · · · (4.7)

Assuming that we know the first-order partial derivative of f with respect to x at
a point i, we can write its value at i + 1

f (i + 1) = f (i) + f ′(i) + · · ·

where the dots indicate that we ignore all but the first two terms of the Taylor series.
Subtracting f (i) from both sides, we obtain

D+f = f (i + 1) − f (i).
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To simplify the formulas, it was assumed that we were employing a grid with unit
spacing. This need not be the case. Let h be the distance between two grid points;
then the Taylor approximation is

f (i + h) = f (i) + f ′(i)h + 1

2
f ′′(i)h2 + · · · (4.8)

and ignoring all but the first two terms, we can rearrange to obtain the forward
difference operator

D+f (i) = f (i + h) − f (i)

h
. (4.9)

To give one more example, we will find the second-order derivative in the x

direction.

f (i + 1) = f (i) + hf ′(i) + 1

2
h2f ′′(i) + · · · , (4.10)

f (i − 1) = f (i) − hf ′(i) + 1

2
h2f ′′(i) + · · · . (4.11)

By adding the two formulas and reordering, we obtain

D2f (i) = f (i + 1) + f (i − 1) − 2f (i)

h2
. (4.12)

We could also arrive at higher-order derivatives by repeated application of the dif-
ference operators. For instance, applying the forward operator to the result of the
backward difference operator produces

D+D−f = D+(
f (i) − f (i − 1)

) = (
f (i + 1) − f (i)

) − (
f (i) − f (i − 1)

)
= f (i + 1) + f (i − 1) − 2f (i). (4.13)

A different result is obtained if we apply the central differences operator twice

DDf = D
(
f (i + 1) − f (i − 1)

) = f (i + 2) − f (i) − (
f (i) − f (i − 2)

)
= f (i + 2) + f (i − 2) − 2f (i) (4.14)

but, arguably, it is preferable to start from the polynomials since that gives a clear
interpretation. Interestingly, we could also subtract the second formula from the
first, and in that case the second-order derivatives would cancel out leading to the
central differences formula.

No matter how we look at it, the difference operators simply give us the deriva-
tives of the polynomial which interpolates the data values, and, in fact, the method
whereby we obtain the polynomial does not really matter since it is uniquely de-
termined by the data points. We might, for instance, use interpolating polynomials
in Lagrange form (cf. Sect. 4.6). The main advantage of this method is that it also
works if the points are not equidistant.
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For simplicity the examples above dealt with derivatives of a function of one
variable, however, partial derivatives are treated in an identical fashion. For instance,
let a regular 2D grid be given and let f : R2 → R be a function of two variables.
The Laplacian of f at a grid point (i, j) is often computed,

�f ≈ D2
xf (i, j) + D2

yf (i, j)

= f (i + 1, j) + f (i − 1, j) + f (i, j + 1) + f (i, j − 1) − 4f (i, j). (4.15)

4.2 Explicit and Implicit Methods

A PDE which often turns up is the so called heat equation, which (in 1D) describes
how the heat distribution changes over time in a rod. The 1D version of this equation
is

∂f

∂t
= ∂2f

∂x2
, (4.16)

where f is the heat at a given point x and a given time t . This is an initial value
problem which we can solve provided that we have
• an initial condition: we know f (0, x);
• boundary conditions: we know f (t,0) and f (t,1)

where both the domain [0,1] and the fact that we start at time 0 are arbitrary choices.
To solve this equation we might begin by simply replacing the partial derivatives

with discrete differences. This leads to

F i+1
j − F i

j

h
= F i

j+1 + F i
j−1 − 2F i

j

k2
, (4.17)

where we have replaced f (t, x) with F i
j ≈ f (ih, jk) to distinguish between the

function we find using our discrete method and the true function. Of course, the con-
stants used in the finite difference approximations to the partial derivative, h and k,
are the grid spacings in the time and space axes, respectively. Now, let the bound-
ary and initial conditions be given. Following Morton and Mayers [2] we choose a
simple scenario which corresponds to a rod that is cooled to precisely zero degrees
at either end and warmed to precisely 1 degree at the center:

f (0, x) =
⎧⎨
⎩

2x x < 0.5
2 − 2x x ≥ 0.5
0 x < 0 ∨ x > 1

f (t,0) = f (t,1) = 0.

It has been kept in this state until an equilibrium (the initial condition) has settled
which we assume is the case at t = 0. At time t > 0 we keep it at zero degrees at
either end (the boundary condition), but what happens in between is precisely what
the PDE models.
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Fig. 4.1 This figure shows the initial condition for the heat equation and the solution after 50 time
steps for three different methods. The explicit solution at a time step of 0.0012 is not nearly as
good as the implicit solution where we can use a time step of 0.1—almost two orders of magnitude
more. Unfortunately, as is plain to see, increasing the time step by the slightest amount (to 0.0013)
leads to instability

Now, to evolve F forward in time, we just have to reorganize (4.17) to

F i+1
j = F i

j + h

k2

(
F i

j+1 + F i
j−1 − 2F i

j

)
. (4.18)

The only thing left is to choose h and k. In the example shown in Fig. 4.1 we have
chosen a spatial discretization of k = 0.05. There are two examples given; one where
h = 0.0012 and another where h = 0.0013. The former works while the latter does
not. To understand why this is the case, observe that we can write (4.18) in matrix
notation

F i+1 = AF i, (4.19)

where the matrix A encodes the explicit finite difference scheme from (4.18). Each
row has three entries centered around the diagonal consisting of h

k2 , 1−2 h

k2 , and h

k2 .
However, the first and last rows have 1 in the diagonal and 0 elsewhere since they
encode the boundary condition. If N denotes the number of points in our spatial grid,
we can write pseudo code (in Matlab syntax, which is convenient for this purpose)
for constructing the matrix A as shown in Algorithm 4.1.

If we keep the spatial discretization constant and analyze what happens to the
eigenvalues of A for a range of h values, we find that the numerically greatest eigen-
value is 1 until h = 0.00125 at which point it increases linearly as seen in Fig. 4.2.
Now, if the spectral radius of A, ρ(A), which is precisely the numerically greatest
eigenvalue of A is greater than 1, we cannot expect Fn to be bounded as n tends to
infinity. To understand this, consider that if V is an eigenvector of A correspond-
ing to an eigenvalue λ > 1, then AnV = λnV → ∞ for n → ∞. Finally, F can be
written as a linear combination of eigenvectors, most likely including V . While this
is just a vague but credible argument, it is, in fact, true that for a PDE whose solu-
tion does not increase with time, the scheme is stable if the spectral radius does not
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Algorithm 4.1 Constructing the matrix A for an explicit solution to the heat equation
A = null_matrix(N,N);
float v = h/sqr(k);
for (i = 1 to N-2) {
A(i,i-1) = v;
A(i,i) = 1-2*v;
A(i,i+1) = v;

}
A(0,0) = A(N-1,N-1) = 1;

Fig. 4.2 This is a plot of the
spectral radius, ρ(A), i.e. the
numerically greatest
eigenvalue, for the matrix A
as a function of h for
h ∈ [0,0.0025]

exceed 1 [1]. Stability means that the scheme limits the amplification of all compo-
nents of the initial condition [1]. Note that this does not necessarily mean that we get
the true solution. More precisely, stability does not imply convergence. Convergence
means that as we refine both the space and time discretizations we approach the true
solution. One big piece missing from the picture is consistency, which means that,
as we refine space and time, the difference equation converges to the true solution
to the PDE. In fact, for some combinations of schemes and partial differential equa-
tions, consistency and stability imply convergence. We will return to these matters
in Sect. 4.5.

It is worth pointing out that the condition h < 0.00125 from the example is really
a condition on the ratio between the time step and the spatial discretization, namely
h

k2 < 0.5. In this example, the time step allowed for seems very small. Fortunately,
we can take much larger time steps if we use a so called implicit method. The differ-
ence between an explicit method and an implicit method is that, in the latter case, we
compute the spatial derivatives at the next time step. This seems contradictory be-
cause we do not know the values at the next time step. However, this simply means
that we need to solve a linear system rather than just multiply the previous solution
onto a matrix.
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Algorithm 4.2 Constructing the A matrix for an implicit solution to the heat equa-
tion
v = dt/sqr(dx);
A = null_matrix(N,N);
for (i = 1 to N-2) {
A(i,i-1) = -v;
A(i,i) = 1+2*v;
A(i,i+1) = -v;

}
A(0,0) = A(N-1,N-1) = 1;

In the case of our example problem, an implicit scheme looks as follows:

F i+1
j − F i

j

h
= F i+1

j+1 + F i+1
j−1 − 2F i+1

j

k2
, (4.20)

which we can reorder

F i+1
j + h

k2

(
F i+1

j+1 + F i+1
j−1 − 2F i+1

j

) = F i
j , (4.21)

and express as the following linear system:

AF i+1 = F i, (4.22)

where (4.22) is a tridiagonal system and Gaussian elimination is an appropriate
method. Pseudo code for A would look as shown in Algorithm 4.2.

The advantage of the implicit method is seen very clearly in Fig. 4.1. For this
scheme we are able to use a time step of 0.1 which means that the method con-
verges to the true solution (uniform zero temperature) in the same number of time
steps. In fact, the implicit method is unconditionally stable, which means that if we
choose a larger time step, we get a bigger error, but the scheme does not “explode”
numerically [2].

4.3 Boundary Conditions

We have already mentioned the need to impose conditions on the boundary of a
domain when solving a partial differential equation. An obvious possibility is to
specify the value the function must take on the boundary, e.g.

f (0) = 0. (4.23)
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This is known as a Dirichlet boundary condition [2], which is what we imposed
in the preceding section. Another possibility is the use of von Neumann boundary
conditions, where a value is imposed on the derivative [2]. For instance,

∂f

∂x

∣∣∣∣
x=0

= f (0). (4.24)

There are many further possibilities. We can have different conditions on different
parts of the boundary or combine the two types of boundary condition.

To impose von Neumann boundary conditions on a problem, we express the
derivative in the condition using finite differences. This gives us a particular equa-
tion for the boundary point which we can use when solving the finite difference
equations. We continue our example with the heat equation and impose the von
Neumann boundary conditions,

∂f

∂x

∣∣∣∣
x=0

= ∂f

∂x

∣∣∣∣
x=1

= 0.

The continuous conditions translate into the following finite difference equations:

F i
0+1 − F i

0−1

2k
= 0 (4.25)

and

F i
N − F i

N−2

2k
= 0 (4.26)

where we have used central differences and N points. For each of these two equa-
tions, we can combine (4.17) with the boundary condition in order to annihilate the
grid points outside the grid (−1, and N , respectively). This leads to

F i+1
0 = F i

0 + 2
h

k2

(
F i

1 − F i
0

)
(4.27)

F i+1
N−1 = F i

N−1 + 2
h

k2

(
F i

N−2 − F i
N−1

)
. (4.28)

An example where von Neumann boundary conditions have been used is shown
in Fig. 4.3. By imposing a zero derivative, we model a rod that is fully insulated
at either end. As expected, the example shows that the heat is simply redistributed
along the rod until all points have the average value.
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Fig. 4.3 An example of
von Neumann boundary
conditions which prescribe a
zero derivative at either end
point but have no effect on
the endpoint value. The result
is that the heat is redistributed
along the rod until all points
have the average value

4.4 Hyperbolic, Parabolic, and Elliptic Differential Equations

Partial differential equations are often divided into hyperbolic, parabolic, and ellip-
tic equations. This taxonomy is straightforward in the case of second-order PDEs.
Assume that we have a PDE of the form

A
∂2f

∂x2
+ B

∂2f

∂x∂y
+ C

∂2f

∂y2
+ · · · = 0 (4.29)

where the discriminant B2 − 4AC determines whether the PDE is hyperbolic (B2 −
4AC > 0), parabolic (B2 − 4AC = 0) or elliptic (B2 − 4AC < 0) [1].

The naming is clearly related to conic sections: If we replace the partial deriva-
tives with powers of x and y, the contours are precisely those of a hyperbola if the
discriminant is negative and an ellipse if it is positive. Unfortunately, the picture is
a little less clear because a PDE can be hyperbolic in some regions and parabolic or
elliptic in other regions, since the constants A, B , and C may depend on x, y, f or
even on the first-order partial derivatives.

There are significant differences between the types of system that we model with
these three different types of partial differential equation and to some extent also on
the methods we use to solve them.

4.4.1 Parabolic Differential Equations

Parabolic differential equations are often initial value problems where information
is propagated forward in time but also smoothed. The heat equation, which we have
already seen, is a good example:

∂f

∂t
= ∂2f

∂x2
. (4.30)
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4.4.2 Hyperbolic Differential Equations

Hyperbolic differential equations on the other hand are also usually time dependent,
but they tend not to diffuse the initial condition. Discontinuities in the initial condi-
tion may be preserved as we solve forward in time. A common example is the wave
equation

∂2f

∂t2
= ∂2f

∂x2
, (4.31)

but simple linear propagation, i.e.

∂f

∂t
= a

∂f

∂x
, (4.32)

and, more generally, conservation laws

∂f

∂t
= ∂

∂x
G(f ), (4.33)

where G is the flux function [3], are also considered hyperbolic. This might seem
odd since it is a first-order equation which does not fit into the taxonomy based on
the discriminant. However, it has an important point in common with the second-
order hyperbolic equations, namely that information is propagated along so called
characteristics.

A characteristic is a curve along which the PDE reduces to an ODE, i.e. an ordi-
nary differential equation [1]. Given a hyperbolic PDE of the form

a
∂f

∂x
+ b

∂f

∂y
= c, (4.34)

let us introduce a curve Γ = {(x(t), y(t)) ∈ R
2}. By the chain rule, we know that

along the curve

df

dt
= ∂f

∂x

dx

dt
+ ∂f

∂y

dy

dt
. (4.35)

We can get rid of the first partial derivative by combining (4.34) with (4.35):

df

dt
=

(
c

a
− b

a

∂f

∂y

)
dx

dt
+ ∂f

∂y

dy

dt
. (4.36)

Gathering terms which include the other partial derivative, we get

df

dt
= ∂f

∂y

(
dy

dt
− b

a

dx

dt

)
+ c

a
. (4.37)

Thus, if we define the curve C by the differential equation

dy

dt
− b

a

dx

dt
= 0, (4.38)
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we get rid of the other partial derivative in (4.37), and along this curve,

df

dt
= c

a
. (4.39)

In other words, if C fulfills (4.38), the differential equation for f becomes the ordi-
nary differential equation (4.39), and we denote by C a characteristic. For a second-
order hyperbolic PDE, we have not one but two characteristic directions, given by
the roots of the polynomial (in dy

dx
)

D

(
dy

dx

)2

+ E
dy

dx
+ F = 0. (4.40)

Thus, the discriminant mentioned earlier (which tells us whether a second-order
PDE is hyperbolic, parabolic, or elliptic) is really the discriminant of this polynomial
and it indicates whether the characteristic directions are well defined [1].

4.4.3 Elliptic Differential Equations

Elliptic differential equations tend not to be time dependent but are often modeled
by steady state scenarios. For instance, the Poisson equation

∂2f

∂x2
= g, (4.41)

and the Laplace equation

∂2f

∂x2
= 0, (4.42)

are examples of elliptic equations.

4.5 Consistency, Stability, and Convergence

Of course, the goal is to solve a partial differential equation, and an important ques-
tion to ask when confronted with a finite difference scheme is whether the solution
of the difference equation converges to the true PDE as we refine the spatial dis-
cretization and the time step.

When examining a finite difference scheme for a partial differential equation, the
three important questions to ask are whether the scheme is stable, consistent, and,
as mentioned, convergent [2].

Stability means that the result does not “explode” numerically. In some cases the
partial differential equation has a particular structure which allows us to employ a
maximum principle [2]. For instance, the heat equation, which we have studied so
much in this chapter, must attain its maximum on one the three sides of its domain,
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defined by the initial and boundary equations. If the numerical solution can in fact
grow, the scheme is unstable.

Consistency means that the finite difference scheme converges to the true PDE
as the resolution of the spatiotemporal discretization is increased (h and k going
toward zero). If a scheme is not consistent with the partial differential equation that
we are trying to solve, we might get a result which appears reasonable but is really
an approximate solution to a different PDE. To check consistency, we look at the
truncation error of the scheme. The truncation error is the difference between the
true solution and one step of the finite difference scheme based on values of the true
solution. Based on a Taylor expansion of the true solution, we can analyze what
happens to the error as h, k → 0.

One might think that if a finite difference scheme is both stable and consistent,
it must also be convergent. In fact, that is not necessarily true, but for linear partial
differential equations and linear finite difference schemes, it is in fact true under
some additional assumptions regarding the boundary and initial conditions [1, 2, 4].
This is known as the Lax Equivalence Theorem.

Another important result is the Courant–Friederichs–Lewy Condition [2, 4]. This
condition states that for a finite difference scheme (or really any numerical method)
to be stable, then in the limit the numerical domain of dependence must include the
mathematical domain of dependence.

Let us consider a 1D time dependent partial differential equation. For instance,
we take the hyperbolic equation (4.32)

∂f

∂t
= a

∂f

∂x
.

In this case, the mathematical domain of dependence is the subset of the real axis at
t = 0 upon which the value at a given later point in time depends. In this case, we
have a first-order hyperbolic equation, so the dependency is a single point on the x

axis.
Now, if we look at a grid point (i, j) where i is the temporal index, and j is

the spatial, there is a similar set of grid points at t = 0 on which the solution at
t = ih depends, which is known as the numerical domain of dependence. If we
refine the grid (both space and time) then in the limit this domain must include the
mathematical domain.

Perhaps the CFL condition is used mostly in conjunction with hyperbolic partial
differential equations since they evolve along characteristics. Thus, checking the
CFL condition is tantamount to finding out whether the characteristics intersect the
t = 0 line within the numerical domain of dependence. The CFL condition can be
used to set time step restrictions, and it is a useful “sanity” check for a scheme.
Unfortunately, it is only a necessary but not a sufficient condition for stability.
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4.6 2D and 3D problems and Irregular Grids

So far, nothing has been said about irregular grids or grids in dimensions above 2D.
Most of the concepts carry over directly from 1D, but some special attention may
be required.

If the grid is irregular, it is convenient to compute the derivatives using interpo-
lating polynomials in Lagrange form. Say, we have three values f1, f2, f3 and three
corresponding points t1, t2, t3; then we can define an interpolating polynomial,

P(t) = f1
t − t2

t1 − t2

t − t3

t1 − t3
+ f2

t − t1

t2 − t1

t − t3

t2 − t3
+ f3

t − t1

t3 − t1

t − t2

t3 − t2
,

which is a second-order polynomial in Lagrange form that interpolates our three
data points (as the reader may assure himself) with no restrictions on equal grid
spacing. A Lagrange polynomial is a sum of products where each product attains
the data value at a particular point and is zero at the other points. Thus, the sum
interpolates all data values.

In the case of 2D irregular grids (e.g. triangle meshes) things may be a little more
tricky—partly because we do not know how many grid points are in the neighbor-
hood of the point at which we wish to compute the derivatives. However, in practice
the differential operators have a very similar form: a, possibly normalized, linear
combination of data points. In Chaps. 8 and 9 we will discuss a Laplace operator for
triangle meshes.

In Chap. 17, we will discuss techniques for deforming 3D surfaces which are
embedded as level-sets of a 3D scalar field stored as samples in a 3D grid of points,
and also volumetric methods for reconstruction of surfaces from points which sim-
ply boils down to solving a 3D Poisson or Laplace problem using finite differences.
In all these examples, we generally assume that the domain is completely regular.
However, that need not be the case and we refer the interested reader to [2] for a
discussion on how to handle irregular domain boundaries.

4.7 Linear Interpolation

In many cases, we need the value of a sampled function, f , between grid points.
Assuming that we only have the samples, F i = f (hi), how do we find a continu-
ous function, f̂ , which approximates f ? If smoothness is not required, one would,
typically, use linear interpolation:

f̂ (t) = αF i+1 + (1 − α)F i, i = �t/h�, α = t/h − i.

The notation �·� means “nearest integer below”. This can be generalized as follows.

Definition 4.2 We have the linear interpolation operator

IF (t) = αF i+1 + (1 − α)F i, i = �t�, α = t − i, (4.43)

where we make the simplifying assumption that the grid spacing h = 1.
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With the aid of I , we can define interpolation on a 2D grid,

IF (x, y) = IIF (x,·)(y)

= β
(
αF i+1,j+1 + (1 − α)F i,j+1)

+ (1 − β)
(
αF i+1,j + (1 − α)F i,j

)
, (4.44)

where i = �x�, j = �y�, α = x − i, and β = y − j . In other words, bilinear interpo-
lation can be written as three linear interpolations. We leave it as an exercise to the
reader to show how trilinear interpolation on a 3D grid can be implemented using
seven linear interpolations.

In many cases we would like to be able to estimate derivatives of a discrete
function at arbitrary points in space. For instance, we need the gradient in some
algorithms for isosurface polygonization (see Chap. 18). Clearly, we can compute
the gradient for each grid point as described and then interpolate it to an arbitrary
point using linear interpolation. However, we can also center the gradient filter on
the point where we wish to compute the gradient. The needed samples will then
no longer be grid points, so we need to interpolate those. For an analysis of the
efficiency and accuracy of these and other schemes for computing interpolated gra-
dients, the reader is referred to Möller et al. [5].

Another common scenario is that we would like to interpolate a value defined at
the vertices of a triangle to an arbitrary point inside the triangle.

Definition 4.3 Linear interpolation using barycentric coordinates (illustrated in
Fig. 2.7). Let a triangle be given by the three points pi ∈ R

2, where i ∈ {0,1,2}.
Linear interpolation of the corresponding values fi to a point q is given by

f̂ (q) = αf0 + βf1 + γf2, (4.45)

where

α = A(q,p1,p2)

A(p0,p1,p2)
, β = A(p0,q,p2)

A(p0,p1,p2)
, and γ = A(p0,p1,q)

A(p0,p1,p2)
,

where A(·, ·, ·) is the area of the triangle given by the three arguments.

α, β , and γ are referred to as the barycentric coordinates of the point q. They
have the important properties that they sum to one, α +β +γ = 1, and for any point
q inside the triangle α,β, γ > 0.

Clearly, there is much more to say about interpolation, but linear interpolation is
very frequently the tool we need. For interpolation of data values associated with
points in space that do not lie on a regular grid, we refer the reader to Chap. 16,
which deals precisely with the issue of scattered data interpolation.
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4.8 Exercises

Exercise 4.1 Verify that the wave equation is indeed hyperbolic, and the heat equa-
tion parabolic.

Exercise 4.2 Using Matlab or some other programming environment, reproduce the
example in Fig. 4.1.

Exercise 4.3 Compute the characteristic curve of ∂f
∂t

+a
∂f
∂x

= 0 from a point (x0, t0)

and find where it intersects the t = 0 curve.

Exercise 4.4 Compute the analytic solution for all time, t > 0, of the PDE above
for any given initial condition f0(x).
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1Introduction

Invoking Moore’s law and the long term exponential growth of computing power
as the underlying reasons for why a particular research field has emerged is per-
haps a bit of a cliché. Nevertheless, we cannot get around it here. Computational
geometry processing is about practical algorithms that operate on geometric data
sets, and these data sets tend to be rather large if they are to be useful. Processing
a big polygonal mesh, say a triangulated terrain, an isosurface from a medical vol-
ume, or a laser scanned object, would generally not be feasible given a PC from
the early 1980s with its limited computational power and a hard disk of around
10 MB. Even in the late 1990s, large geometric data sets might require numerous
hard disks. For instance, the raw scans of Michaelangelo’s David as carried out by
Marc Levoy and his students during the Digital Michelangelo project [1] required
32 GB of space—more than a typical hard disk at the time. However, since then the
world has seen not only a sharp decrease in the price of computation and storage
but also a proliferation of equipment for acquiring digital models of 3D shapes, and
in 2003 also the Symposium on Geometry Processing which was founded by Leif
Kobbelt.

Due to its practical nature, geometry processing is a research field which has
strong ties to numerous other fields. First of all, computer graphics and computer
vision are probably the fields that have contributed most to geometry processing.
However, many researchers and practitioner in other fields confront problems of a
geometric nature and have at their disposal apparatus which can measure 3D geo-
metric data. The first task is to convert these data to a useable form. This is often (but
not always) a triangle mesh. Next, since any type of measurement is fraught with
error, we need algorithms for removing noise from the acquired objects. Typically,
acquired 3D models also contain a great deal of redundancy, and algorithms for
geometry compression or simplification are also important topics in geometry pro-
cessing. Moreover, we need tools for transmission, editing, synthesis, visualization,
and parametrization; and, of course, this is clearly not an exhaustive list. Painting
with rather broad strokes, we see the goal of geometry processing as to provide the
tools needed in order to analyze geometric data in order to answer questions about

J.A. Bærentzen et al., Guide to Computational Geometry Processing,
DOI 10.1007/978-1-4471-4075-7_1, © Springer-Verlag London 2012
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2 1 Introduction

Fig. 1.1 An illustration of basic optical triangulation. Assume that unknown point z is observed
from points x and y, of which we know the positions. If we also know the angles θ1 and θ2, then
point z’s position can be determined by simple trigonometry. The observations of point z in points
x and y can e.g. be made by cameras or photogrammetrists on hilltops

the real world or to transform it into a form where it can be used as a digital pro-
totype or as digital content for, e.g., geographical information systems, virtual or
augmented reality, or entertainment purposes.

The goal of this chapter is to present a selection of the domains in which ge-
ometry processing is used. During this overview, we will also discuss methods for
acquiring the geometric data and refer to the chapters where we discuss the topics
in detail.

1.1 From Optical Scanning to 3D Model

Acquisition of 3D data can be done in a wide variety of ways. For instance, a touch
probe allows a user to interactively touch an object at various locations. The probe
is connected to a stationary base via an articulated arm. Knowing the lengths and
angles of this arm, we can compute the position of the tip and hence a point on
the object. Clearly, this is a laborious process. There are also automated mechanical
procedures for acquisition, but due to the speed and relative ease with which it can
be implemented, optical scanning has emerged as the most used method for creating
digital 3D models from physical objects.

Almost all optical scanning procedures are based on optical triangulation, cf.
Fig. 1.1, which is the core of classical photogrammetry, and also of much of naviga-
tion. Today, optical triangulation is often done via camera technology. If we observe
the same 3D point in the images from two different cameras with known positions
and optics, we have a situation like that illustrated in Fig. 1.1: From the relative posi-
tions and orientations of the two cameras combined with the positions in the images
of the observed points, we can compute the two angles θ1 and θ2 and, consequently,
the position of the unknown point z. Expressed differently: given a camera of known
orientation and position, a point in the image produced by the camera corresponds
to a line in space. Thus, if we observe the same 3D point in two cameras, we can
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Fig. 1.2 To help establish
correspondences between
images, laser light can e.g. be
shone on the object, as
illustrated here

find the location of that 3D point as the intersection of two lines. Namely, the lines
that correspond to the images of the 3D point in each of the two cameras.

Unfortunately, it is not easy to find points in two images that we can say with
certainty to correspond to the same 3D point. This is why active scanners are often
used. In an active scanner a light source is used in place of one of the cameras. For
instance, we can use a laser beam. Clearly, a laser beam also corresponds to a line
in space, and it is very easy to detect a laser dot in the image produced by a camera
thus obtaining the intersecting line. In actual practice, one generally uses a laser,
which emits a planar sheet of light. Since line plane intersection is also unique, this
is not much of a constraint. In fact, it allows us to trace a curve on the scanned
object in one go. A laser plane shone onto a surface is illustrated in Fig. 1.2. Finally,
by projecting a structured pattern of light onto an object with a projector, it can
be made much easier to find correspondences. This is known as structured light
scanning.

Another optical technology for 3D optical acquisition is time of flight (ToF), cf.
Fig. 1.3. Here a light pulse (or an array of light pulses) is emitted, and the time it
takes for these light pulses to return is measured. Typically, this is done by measur-
ing the difference in phase between the outgoing and the returning light. Note that
this modality directly provides a depth value per pixel.

What these scanners have in common is that they produce a, fairly irregular, point
cloud. Usually, several geometry processing tasks are required to use the points ac-
quired. First of all, a single optical scanning generally does not capture the entire
object: typically we need to perform several scans. In some cases, we do not know
the precise orientation of the scanner relative to the object for each scan, and in these
cases, we need to register the scans to each other. This is the topic of Chap. 15. Sec-
ondly, the density of the acquired point cloud depends on the distance and angle
between the object and the scanner. Moreover, many objects have concavities into
which the cameras (and the laser) do not reach. Thus, we cannot make many as-
sumptions regarding the point clouds which the scanner produces.

In most cases, we wish to put together a triangle mesh from these points. Trian-
gle meshes, and, more generally, polygonal meshes along with basic operations for
editing such meshes are the topic of Chap. 5.
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Fig. 1.3 Time of Flight (ToF). Top: An illustration of the time of flight principal. A light pulse
is emitted from the emitter, bounces of the surface to be measured, and recorded by the receiver.
Since the time difference, t , between emission and receival can be measured, the distance to the
surface, d , can be calculated, because the speed of light c is known. Bottom: An image of a time
of flight camera. The lens in the middle is in front of a camera, where each pixel is a receiver. As
such, a 3D image is recorded at each frame

Generating a mesh from the individual scans is often done by Delaunay triangu-
lation, which we describe in Chap. 14, but when the scans have been registered, one
often employs a volumetric method, cf. Chap. 17, for the reconstruction since this
class of methods generally performs well when it comes to reconstructing closed,
watertight surfaces—even from moderately noisy data. Volumetric methods pro-
duce an implicit surface representation in the form of a voxel grid as the immediate
output.

For point clouds of just a few thousand points, radial basis functions (RBFs) pro-
vide an alternative methods for reconstruction as discussed in Chap. 16. With this
class of methods, we solve a linear system in order to find coefficients for a set of
radial basis functions such that their sum weighted by the coefficients is equal to the
data values. This is a very effective and general tool that allows us not only to recon-
struct 3D models from 3D point clouds but also to solve many other interpolation
problems. However, the simple variations of this method employ dense linear sys-
tems. Thus, for optical scans we would generally resort to the voxel-based methods
from Chap. 17.

To obtain a triangle mesh from an implicit representation, we need to apply an
isosurface polygonization method. Such methods are discussed in Chap. 18. A tri-
angle mesh produced as the final surface reconstruction from a point cloud obtained
via structured light scanning is shown in Fig. 1.4.
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Fig. 1.4 A sculpture scanned with a structured light setup. The eight resulting scans were coarsely
aligned manually and then registered using ICP. The registered points are shown on the left with
different colors for each subscan. From the registered point cloud a mesh was produced (as shown
on the right) using a volumetric method

Regardless of what method is used for reconstruction, the meshes produced from
an optical scanning tend to be both noisy and to contain too many triangles. For
this reason, we often employ algorithms for smoothing, mesh reduction and mesh
optimization on our acquired meshes. Such algorithms are discussed in Chaps. 9
and 11. Techniques for both optimization and smoothing often rely on measures for
curvature in triangle meshes, which are covered in Chap. 8.

1.2 Medical Reverse Engineering

There are many ways in which 3D surfaces acquired by optical scanning can be of
great help by allowing us to create cost-efficient, individually customized solutions
where we previously had to either use costly human labor or be content with a one-
size-fits-all solution.

A striking example is the case of hearing aids. Many modern hearing aids are
of the “in-the-ear” type where the apparatus is inserted into the ear canal. The vari-
ation in human anatomy makes it impossible to create a hearing aid that will fit a
wide range of people, and a tight fit is quite important to avoid issues with sound
feedback. The modern way of creating an in-the-ear hearing aid is to first make an
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Fig. 1.5 A schematic
drawing of the CT-scanning
process. In the CT-scanning
process several X-ray images
are taken at different angles;
typically many more than the
two images or scans depicted
here. These X-rays, which are
projections of the volume,
can then be combined into a
3D model

impression of the ear canal and then laser scan this impression. From the scan a shell
for the hearing aid can be constructed, and a technician can quickly place the com-
ponents and thus finish the design. Of course, it would be costly to create a mould
for a customized hearing aid, but, fortunately, recent advances in 3D printing mean
that it is possible to manufacture just a single shell at reasonable cost.

Dental work is another area where custom solutions are desired. For instance,
when a tooth has to be filed down and a crown placed on the stub, it is important
that the crown fits the stub snugly and also that it fits the other teeth. Clearly, this is
much easier to do if we have a digital model of the teeth in the vicinity of the stub
and the stub itself. Again, optical scanning can be used to produce a digital model
of the shape. In fact, several companies are developing scanners which can be used
directly in the mouth of the patient.

Digital models of 3D geometry do not necessarily come just from optical scan-
ning of surfaces. Another important source of 3D models (in particular) of human
anatomy is computed tomography. In X-ray CT, X-ray images of the subject are
taken from a wide range of directions. Each of these images show the integral tissue
density. Because we know from what directions the images have been taken, we can
create a 3D image where we choose densities for all 3D pixels (generally called vox-
els) such that if we were to create synthetic X-ray images using our 3D image, we
would get close to the real X-ray images, see Fig. 1.5. Thus, we are solving a large
inverse problem to obtain an anatomical 3D image. Such 3D images can also be cre-
ated based on ultrasound or MRI (magnetic resonance imagery). In either case, we
end up with a 3D image, which can be used for direct visualization or we can extract
surfaces by finding isosurfaces—i.e. surfaces where the intensity in the 3D image
has constant value. As already mentioned, the topic of isosurface polygonization is
covered in Chap. 18.
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1.3 Computer Aided Design

Polygonal meshes are not the only useful representation for geometry. In fact, a quite
different way of representing surfaces is used in more or less all modern CAD (com-
puter aided design) systems. CAD models are used for much more than visualiza-
tion purposes. They can form the basis for both critical numerical simulations and
for manufacturing to a very high precision. That means it is necessary to have an ac-
curate and genuine smooth representation of the geometry, and the faceted world of
meshes does not always suffice. Instead, the surface is divided into patches and each
patch is parametrized using piecewise polynomials or rationals as coordinate func-
tions. Such functions are called splines and can be expressed as a linear combination
of B-spline or NURBS basis functions.

This representation has many desirable properties. The B-spline basis has min-
imal support which implies that the surfaces can be edited and controlled locally.
B-splines are also positive and form a partition of unity, which implies that the sur-
face is in the convex hull of its control points. Finally, NURBS patches can exactly
represent sections of spheres, cones, or cylinders. In practice this is a very important
feature when designing objects that are to be manufactured. Parametric surfaces in
general and NURBS in particular are discussed in Chap. 6.

When it comes to computer animated movies or computer games, splines are
used less often in spite of the fact that content creation for both games and animated
movies could be seen as computer aided design. In computer animated movies, the
issue is largely that it is difficult to ensure that a collection of NURBS patches con-
tinue to be joined in a smooth fashion as the object, say a character, is animated [2].
Conversely, we can consider a very complex polygonal mesh to be a single subdi-
vision surface, and when subdivision is applied, the limit surface will be smooth. In
Chap. 7 we discuss the most widely used types of subdivision surface and develop
some of the theory used for their analysis.

For computer games, we would often like the scene to render at 60 frames per
second which translates into around 16 ms for doing all the computation needed for
a frame. For this reason, characters in games are generally just simple polygonal
models with texture. Often, displacement maps are used to add geometric detail
while relatively few polygons are actually being rendered. In fact, the ability to
map color and other attributes onto a triangle mesh is one of the characterizing
features of modern graphics hardware. To apply these maps, we need techniques for
parametrization of polygonal meshes, and that is the topic of Chap. 10.

It should also be noted that, recently, modern graphics cards have gained the
ability to tessellate smooth surfaces, and that means that we may increasingly see
subdivision surfaces or even NURBS used in interactive graphics. This can be seen
as a consequence of the increased computational power of the GPU: we can now
use it to synthesize content in the form of triangles and textures where, initially, it
was simply a machine for drawing textured triangles.
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1.4 Geographical Information Systems

Geographic Information Systems (GIS) represent an important area of application
of geometry processing since it is assessed that at least 80 % of the data processed
by local governments is spatial (see [3]). Geographic Information Systems are com-
puterized systems, which deal with the automated or semi-automated acquisition
of spatial data, its storage in a spatial database, management system, the optimiza-
tion of its retrieval through spatial access methods or spatial indexing (covered in
Chap. 12), its rendering in 2D or 3D, and spatial analyses and their rendering.

Geometric data structures like the Voronoi diagram and its dual graph, the De-
launay graph (covered in Chap. 14), play a central role in GIS, due to the fact they
solve the proximity problem in GIS (i.e. finding the nearest neighbor from a given
location), but Voronoi diagrams and Delaunany graphs are also a way to index spa-
tial data, which allows for several levels of details and a hierarchical decomposition
of the space into cells used for indexing. Recent GIS research by Boguslawski and
Gold [4] uses recently developed geometric data structures like the Dual Half-Edge
(a generalization of the Quad-Edge data structure to 3D).

Geographic data can be acquired using different techniques with varying accu-
racies corresponding to different scale ranges. The best accuracy is obtained using
geodesy (on the order of the millimeters for first order geodetic points), surveying
techniques, and Global Navigation Satellite Systems (of the order of centimeters).
Aerial photogrammetry allows one to generate 3D models from pairs of aerial pho-
tographs with accuracies in the order of tenths of centimeters. With the same order of
accuracy, LIDAR (LIght Detection And Ranging) allows one to generate 3D mod-
els, but requires more processing to clean the datasets. Note that LIDAR is the same
technology in principle as Time of Flight, which was discussed previously. Satel-
lite photogrammetry allows one to generate maps with varying accuracies (from the
order of the meter to tenths of meters typically).

In the following, we discuss various GIS related uses of geometric data.
Digital Terrain Models (DTMs) in GIS typically use the TIN (Triangular Irreg-

ular Network) data structure, which is equivalent to a triangular mesh in the domain
of computer graphics. A TIN or triangulation is created with vertices at each point
where the planar coordinates and the elevation above a reference mean sea level are
known. Then the DTM is constructed by calculating the elevations at the other loca-
tions, which are typically interpolated using linear interpolation. However, ordinary
and Line Voronoi diagrams and their dual graphs and constrained Delaunay graphs
are also used to generate Digital Terrain Models. The locations at which elevations
are known are used as generators of the Voronoi diagram. The DTM is constructed
by computing the elevations at the other locations by the so-called “natural neigh-
bor” interpolation. Line Voronoi diagrams or constrained Delaunay triangulations
are used to generate DTMs, when there are linear discontinuities (see Anton [5]).
Voronoi diagrams of points and open oriented line segments allow one to model
vertical faults. A fault is a curve along which the elevation changes discontinuously
as a point crosses from one side of the fault over to the other side.
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3D City Models can be constructed on top of DTMs by decomposing buildings
in 3D stereo models arising from Aerial Photogrammetry into parallelepipeds and
more generally convex polytopes (i.e. convex polyhedra). Then the appearance of
the facets of the buildings can be constructed from aerial photographs. This is an
area where geometry processing is heavily used, and where photogrammetry and
computer graphics meet very closely.

Convex hulls and decompositions of 3D solids into convex polytopes is central
to the constrained data model, which is one of the main spatial data models used in
GIS. Moreover, convex hulls and decompositions of 3D solids into convex polytopes
is central to spatial indexing, and in particular the Binary Space Partitioning Tree.

Finally, augmented reality is used more and more in GIS in order to give a
photo-realistic rendering of existing and projected facilities. Augmented reality is
another area where GIS, computer graphics and geometry processing are closely
intertwined.

1.5 Summary and Advice

Clearly, we have only lightly touched the topic of acquisition of geometric data and
sparsely sampled the multifarious applications of geometry processing. Hopefully,
this quick tour has given a sense of the topic. As the reader will have noticed, this
chapter has also given us an opportunity to give an overview of the book.

In fact, all but the coming three chapters from Part I were discussed above. These
three chapters are not about geometry processing but about some of its mathematical
underpinnings: Chapter 2 is about vector spaces, affine spaces, and metric spaces.
It contains important elements of linear algebra. Notions are needed in many places
of the book. Chapter 3 is about smooth differential geometry. This provides back-
ground for the discrete approximations needed for instance to compute curvature in
triangles meshes. Finally, Chap. 4 gives a very brief introduction to finite difference
methods for partial differential equations.

The material in the following three chapters may be a daunting place to start on
a first reading. We suggest that readers who do indeed feel daunted jump right into
the material of Part II. Much of the material can be understood without recourse to
Part I, but the reader might find it useful to peruse these chapters later, to gain a
deeper understanding of the underpinnings.
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5Polygonal Meshes

The purpose of this chapter is to give a general introduction to polygonal meshes
and especially triangle meshes. We introduce the notation and basic concepts re-
quired for understanding how mesh data structures are implemented. In addition,
this chapter contains a discussion of some data sources for polygonal meshes and
some primitive manipulation operations which form the basic operations for many
algorithms discussed in later chapters.

Polygonal and especially triangle meshes are a very important shape representa-
tion, and their importance is arguably increasing. There are several reasons for this:
first of all, the ability of graphics hardware to render an ever increasing number of
triangles in real-time, secondly, the fact that ever larger triangle meshes are acquired
from devices such as laser scanners and structured light scanners. Thirdly, many al-
gorithms for manipulation of triangle meshes have been developed recently. Thus,
we are now able to perform direct manipulations of shapes represented as triangle
meshes where we might previously have had to convert the shape to some other
representation.

In the following section, we give a brief overview of primitives for shape rep-
resentation. This is followed by a more in-depth treatment of polygonal meshes in
Sect. 5.2. In Sect. 5.3 we discuss various common sources of polygonal mesh data
in order to motivate our interest in this representation and also issues which often
arise when dealing with polygonal meshes—to motivate much of the material in
this book. Section 5.4 deals with primitive operations for mesh manipulation. Fi-
nally, Sect. 5.5 contains descriptions of a number of common data structures for
polygonal mesh representation.

5.1 Primitives for Shape Representation

However, other types of polygon are frequently more useful than triangles. In par-
ticular quadrilaterals (quads for short) often align better with the symmetries of
an object than triangles would. In other types of application, polygons with even
more edges are useful, and for yet other types of application, we might prefer en-
tirely other representations: polygonal meshes are by nature non-smooth, and it does
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take many polygons to produce a fair approximation of a smooth surface. Conse-
quently, the de facto industry standard for CAD surfaces remains NURBS patches
(Sect. 6.6). However, for models which are animated, subdivision surfaces are very
popular (Chap. 7). Finally, implicit surfaces (cf. Sect. 3.10, Chaps. 18 and 16) easily
lend themselves to modeling of complex surfaces with very few primitives.

Some years ago, there was a big interest in points as both a primitive for modeling
and rendering. It was observed in the seminal paper by Grossman and Dally [1] that
points are simpler than even triangles, and in cases where we deal with fairly high
resolution meshes, triangles often project to no more than a single pixel when the
model is displayed. This led to a number of papers about point rendering, e.g. [2–5]
to name a few and, subsequently, also a novel interest in how to manipulate point
clouds. Many algorithms from image analysis and polygonal mesh manipulation
were applied to point clouds [6, 7]. However, the lack of connectivity information
remains a problem. In the presence of very thin structures, it is a problem that the
distance between point samples may be greater than the thickness of the structure.
Moreover, points are an even more memory demanding representation of surfaces
than triangles.

To sum up, there are reasons to use other representations for geometry for many
particular applications, but it seems fair to say that the polygonal mesh representa-
tion is the representation most widely useful in geometry processing, and in reality
other representations are often converted to polygons (triangles) before rendering.

5.2 Basics of Polygonal and Triangle Meshes

Definition 5.1 Polygonal Mesh Entities:
• A polygonal mesh is simply a set of faces F , a set of edges E , and a set of

vertices V where it is understood that E and V are precisely the edges and vertices
of the faces in F , respectively. We will assume a numbering of the faces, edges,
and vertices.

• The point in space corresponding to vertex i will be denoted pi .
• The edge from vertex i to vertex j is eij = pj − pi . Just as for vertices, we may

refer to edge i as ei .
• The total number of vertices (the cardinality of V) will be denoted |V| and like-

wise for edges and faces.
• It will be useful to refer to the set of neighbors, Ni , of a vertex i, i.e. the set j

such that ij is an edge in the triangle mesh.
• The number of neighbors of a vertex i, |Ni |, is called the valence of vertex i.
• The 1-ring of a vertex is the set of polygons sharing that vertex, see Fig. 5.1. The

neighbors of a vertex are also sometimes referred to as the 1-ring neighbors since
they belong to the 1-ring.

Many algorithms require the mesh to correspond to our intuitive notion of a sur-
face which can be formalized by requiring the mesh to represent a manifold.
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Fig. 5.1 A vertex and its
1-ring

Fig. 5.2 Two examples of
triangle meshes which are not
2-manifold

Definition 5.2 A shape is a manifold if any sufficiently small patch is homeomor-
phic (cf. Definition 2.39) to a disk.

In other words, this definition means that any sufficiently small patch has an
invertible (i.e., one-to-one and onto) mapping of that patch onto a unit disk. This
would be true, for instance, for a point on an edge shared by two triangles, but it
would not be true if three triangles met at the edge. Two triangles meeting at a
vertex is another example of a non-manifold configuration, see Fig. 5.2. We state
without proof (but see [8]) the following theorem:

Theorem 5.1 Triangle mesh manifoldness conditions: faces must meet only along
edges or vertices, and an edge must be shared by either one or two faces, depending
on whether it is an interior edge or along the boundary. Secondly, the faces around
a vertex must form a single cycle.

These conditions entail a geometric property, namely that the mesh does not self-
intersect since that would violate the condition that faces meet only along edges of
the mesh. Also invalid are shapes like two boxes glued together along a common
edge or two pyramids sharing an apex.

For many purposes it is convenient to deal only with triangles. Triangles have
the nice property that they are planar. If we know that a mesh is composed only
of triangles, it simplifies both storage and a number of algorithms. On the other
hand, it is generally very easy to convert polygons with more than three edges to
triangles—especially if they are all planar and convex or approximately so [9].
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5.3 Sources and Scourges of Polygonal Models

Most popular modeling packages allow the users to directly model polygonal
meshes. In this case, the polygon of choice is usually the quadrilateral. In many
other cases, the polygons are the result of some form of acquisition. Typically, the
acquisition process leads to data in one of the three forms discussed below.
• Scattered points in 2D. These could be terrain points measured by a surveyor.

Such data have the nice feature that they can be projected into 2D and triangulated
in the plane, typically using Delaunay triangulation (see Chap. 14). In this and
other cases where the data can be considered to be samples of a height function
f : R2 →R the situation is much simpler than in the following case.

• Scattered points in 3D. We may have point samples of a complex 3D surface
that cannot easily be flattened to a planar surface. This is a harder case, in par-
ticular when the topology of the object cannot be assumed known. Frequently,
in fact, such data are converted to the implicit representation discussed below.
Chapters 16 and 17 discuss methods for precisely that.

• Implicit surfaces (cf. Sect. 3.10). In many cases, we have a function Φ : R3 → R

with some associated isovalue τ such that the surface S = Φ−1(τ ). In 2D the
contour of Φ corresponding to the isovalue τ would generally be a closed curve,
and in 3D it is a watertight surface. In later chapters we will discuss both vari-
ous representations for implicit surfaces and techniques for extracting the contour
surface as a polygonal mesh. Another well known source of implicit surfaces is
volumetric data which may be acquired using computed tomography scanners or
magnetic resonance imagery. These scanning modalities are often used in medi-
cal imaging.
Polygonal meshes which were produced as described above have a tendency to be

fraught with a number of problems which are completely analogous to those faced
when dealing with other types of signal: photographs, sounds or any other type of
signal, which has been acquired from a real world data source. We will return to this
viewpoint that a polygonal mesh produced by some sort of acquisition process is a
discrete geometric signal. However, meshes have some additional problems, since
the mesh connectivity and the overall object topology may both suffer from noise.
To sum up, the most important issues we have to deal with are as follows:
• Oversampling. Most acquisition techniques do not distinguish between regions

of high or low degree of geometric detail. Consequently a mesh produced in this
fashion will have a tendency to be oversampled in places leading to unnecessarily
large geometric models.

• Undersampling. For the same reason tiny features and sharp edges or corners are
rarely sampled well. Consequently, e.g. a sharp edge is typically jagged in a mesh
produced by some acquisition technique.

• Irregularity. In a completely regular triangle mesh, all vertices have valence 6,
but only a torus or a planar patch admit a completely regular mesh. However, in a
highly regular mesh, we can have relatively few vertices with valencies other than
six. Since many algorithms tend to work better on meshes which are relatively
regular, it is often desirably to improve the regularity of a mesh. Particularly nasty
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Fig. 5.3 Many mesh
manipulation algorithms, for
instance smoothing
algorithms, only modify the
vertex positions

triangles are often classified as needles and caps. A needle is a triangle with one
edge that is extremely short and a cap is an obtuse triangle with an angle of close
to 180◦. A needle may also be a cap and vice versa.

• Topological issues. The mesh may consist of disconnected patches of polygons.
Since many laser scanners produce data in patches, this issue frequently arises.
In more extreme cases we may be dealing with a soup of disconnected triangles
where we have no knowledge of shared vertices and edges—typically because
that information has been misplaced. Finally, we may have a manifold mesh but
of a different genus than expected—either because a handle was introduced or
removed.

5.4 Polygonal Mesh Manipulation

Many of the above problems have spawned a lot of work in the geometry process-
ing research community. For instance, there is a large body of literature on mesh
smoothing. Most of this concerns how to remove noise by attenuating high fre-
quency variations in the mesh with the underlying assumption that the surface is
smooth. However, in recent years many authors have focused on anisotropic smooth-
ing where sharp edges (in particular) are preserved while noise is removed (cf.
Chap. 9).

Mesh smoothing algorithms preserve mesh connectivity. In fact, vertex positions
(see Fig. 5.3) are typically the only mesh attribute which is modified.

Except for vertex move, all primitive operations for mesh manipulation somehow
change the vertex connectivity. In the following, we will present four often used
mesh manipulation operations, and discuss their uses briefly but leave their precise
applications to later chapters.

The first of these primitive operations is edge collapse which is shown in Fig. 5.4.
This operation removes a single edge and (in the case of triangle meshes) the two
adjacent faces. Since it reduces mesh complexity it is often used for simplification—
especially since the introduction of the very popular QSlim algorithm [10] by Gar-
land and Heckbert, which is discussed in Sect. 11.1.

Collapsing an edge can also be seen as welding its two endpoint vertices, and,
depending on the mesh representation, these two vertices need not be connected. If
we allow the merging of unconnected vertices non-manifold situations may arise. If
we weld two vertices from different components, the result is a single vertex with
two disconnected 1-rings. In the original paper by Garland and Heckbert, this was
seen as an advantage since it allows different components to be joined. On the other
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Fig. 5.4 Collapsing an edge
and the inverse operation
known as vertex split

hand, some mesh representations do not allow non-manifold meshes. If we wish to
prevent non-manifold situations from occurring, only vertices connected by an edge
can be collapsed, and we need to perform the following tests.
1. We find all vertices connected to both endpoint vertices. If a face adjacent to the

edge is a triangle, the corner not on the edge will obviously be connected to both
endpoint vertices, and that is not a problem since the triangle disappears when
the edge is collapsed which means that the two connections are joined. In all
other cases where a vertex is connected to both endpoints of an edge, we need to
disallow the edge collapse since the result would be a vertex with two edges to
the welded vertex.

2. If all faces around the edge being collapsed are triangles and the endpoints of the
edge have valence three, the object is a tetrahedron, and collapsing the edge will
collapse the tetrahedron.

3. If a face adjacent to the edge being collapsed is a triangle, it will disappear, and
the valence of the final vertex belonging to this edge will be reduced by one.
If the valence of this vertex is three it will be reduced to two. If the remaining
two faces in the 1-ring of this vertex are triangles, they will become coplanar. If
the faces are not triangles we may wish to allow the collapse since valence two
vertices could be considered legal.

4. We may not want to collapse an edge which connects two boundary loops, be-
cause in that case we join the two loops in a figure eight construct. However, in
reality it may be fairly easy for most mesh representations to handle this situa-
tion.

All of these tests are required to enforce a manifold constraint on the mesh, but, of
course, we may not always wish to do so. However, if the representation can only
handle manifolds, failure to enforce the constraints would lead to a degenerate mesh.

The inverse of an edge collapse is a vertex split. While edge collapse reduces ge-
ometric detail, vertex split introduces detail, and in fact multi-resolution hierarchies
based on these two operators are often used in mesh processing.

Irregular connectivity in triangle meshes can be improved with a simple opera-
tion known as edge flip or edge swap illustrated in Fig. 5.5. An edge flip removes
an edge, producing a quad and forms two new triangles by introducing the other
diagonal of the quad as a new edge. This simple operation can greatly improve the
regularity of the mesh. For 3D meshes, it also changes the geometry since the tri-
angles are usually non planar. Again, we must be a little careful when applying this
operation. If a vertex has valence three, it is impossible to flip any incident edge
since this would reduce the valence to two causing a non-manifold situation.
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Fig. 5.5 Flipping an edge

Fig. 5.6 Splitting an edge or
a face

If we wish to introduce more detail, for instance produce a smoother model from
a coarse mesh, techniques for introducing detail are needed. While vertex split is
one option, other techniques work by inserting vertices in edges or in the interior of
polygons as illustrated in Fig. 5.6. However, regular subdivision schemes which will
be discussed later usually work by splitting a triangle into four new triangles and a
quad into four new quads. Repeated application of these operations combined with
a smoothing operation typically leads to very fair surfaces. Subdivision is discussed
in detail in Chap. 7. In contrast, the two operations shown in the margin are usually
combined with edge flips to ensure a proper distribution of valences. Their main
advantage is that they introduce detail in a highly localized manner.

5.5 Polygonal Mesh Representations

Till now, we have simply assumed that there is some mesh representation without
considering in detail how to actually store the polygons. In fact, there are many
representations, and which we choose has great bearing on what we can easily do
with the mesh.

The simplest solution is to store each polygon with the geometric position of each
of its vertices. However, doing so means that we have no connectivity information—
effectively, we have just a polygon soup which can be rendered but little manipula-
tion is possible since all the primitive operations assume that we have some knowl-
edge about how polygons relate to each other.

A more useful and very simple representation is an indexed face set. An indexed
face set stores the mesh in two arrays. The first one contains all vertices indexed
by number (typically just in a linear array). For each vertex we store its attributes,
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Fig. 5.7 An indexed face set with the actual geometry on the left, the list of vertices in the middle,
and the face list on the right

which means at least its position in space but frequently also other information such
as a vertex normal, and possibly some attributes needed for specific purposes such
as rendering. The second array is a list of faces which contains at least a list of
indices where each index refers to the vertex array. An example is shown below in
Fig. 5.7.

While indexed face sets allow us to deduce for instance which polygons share
edges, this information is not explicitly encoded. In general, it takes a loop over all
faces to find a face sharing an edge with a given other face. Similarly we have to
visit all faces to find the set of vertices sharing an edge with a given vertex. We can
easily bring down this time to a constant time query if we create an additional array
with adjacency information. For each vertex we could store the faces containing
that vertex, and the vertices which share an edge with that vertex. Another way to
accomplish roughly the same goal is to store with each polygon the adjacent polygon
across each edge. In this case, we also need to store the index of the corresponding
edge in the adjacent polygon. Zorin advocates this representation for subdivision
surfaces [11].

Given such an augmented representation, we can perform many algorithms effi-
ciently, but the auxiliary data structures need to be updated if the mesh is changed.
While this is certainly feasible, many researchers and professional choose instead to
use edge-based data structures. Edge-based data structures are in general also very
flexible with regard to what types of polygon can be stored.

The fundamental idea is to represent connectivity by explicitly storing how edges
relate to each other. For each face of the mesh, we simply store a pointer to a single
one of its edges. Likewise, we store for each vertex just a pointer to a single edge.
If we want the next edge in the edge loop which defines a face, we simply follow
a pointer from the current edge. Consequently, we can circulate a face, visiting all
its edges even though the face only has a pointer to one of these. Since edge-based
representations are based on edges knowing their incident faces, only manifolds are
usually representable using such data structures.
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Fig. 5.8 The classic winged edge data structure. While widely used, it is probably fair to say that
it is now superseded by the half edge data structure

The classic winged edge data structure [12] is shown below in Fig. 5.8. The
winged edge is an oriented edge connecting two vertices. For both of its two face
loops, it has pointers to the next edges in both clockwise and counter clockwise
direction. This allows us to move around a face in the fashion described above. Un-
fortunately, the winged edge representation is a bit complicated, and it has another
flaw: the edge itself is bidirectional, but the winged edge is oriented. If we want to
move from an edge to the next edge, which pointer we have to use depends on the
orientation of the edge. This means that to circulate a face we need to use condition-
als (if statements) which is s potentially a problem with today’s CPUs which have
very deep pipelines. If a branch is mispredicted many instructions already partially
processed in the pipeline must be discarded which is detrimental to performance.

5.6 The Half Edge Data Structure

The half edge representation [13] solves this problem by having two representations
of a given edge. Half edges come in pairs, and each member of the pair represents
the edge from the point of view of one of the two polygons sharing the edge. Thus,
there is no ambiguity. Each half edge has a next pointer which points to the next
edge in the loop that corresponds to its face. By simply following the next pointers,
we can visit all the edges in the edge loop of a face. See Fig. 5.9

It is also possible to visit all edges around a vertex since the vertex knows one of
its (outgoing) half edges. To visit all vertices sharing an edge with a given vertex, v,
we can proceed as follows:
1. Follow the pointer which v holds to an outgoing half edge h which we also la-

bel h0.
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Fig. 5.9 This is an illustration of the half edge data structure. To avoid further overloading of the
crowded diagram, the arrows are only named in the example in the box. The half edge (h) itself
points to one incident vertex, to its opposite, and to the next and previous half edges in the counter
clockwise loop around the face. A vertex (v) points to one outgoing half edge, and a face (f) points
to one half edge in its loop. Arrows corresponding to all these pointers are shown

2. h holds a pointer to a vertex w which we visit.
3. Follow the pointer to the edge opposite h and its next pointer. This yields the next

outgoing half edge in a clockwise loop around v. Name this half edge h.
4. If h is identical to h0 we are done, else go to 2.
The reader should be able to follow the steps above by referring to Fig. 5.9. In
practice it is rarely necessary to directly deal with the pointers in the half edge
data structure unless implementing it. Usually a library such as OpenMesh [14]
or GEL [15] will provide so called circulators. They usually come in two flavors:
face circulators and vertex circulators. Face circulators allow the user to visit all
edges in a loop around the face, and vertex circulators do the same for vertices.
In other words, a circulator simply maintains a pointer to a current half edge in a
face or vertex loop, and it can be incremented in order to move to the next in the
loop.

There is a number of variations of the theme discussed above. Three concrete
examples are the quad-edge data structure [16], the G-map [17] and the lath data
structure [18]. All three emphasize ease of obtaining the dual mesh (where each
face is a vertex and vice versa) but fundamentally, the same topological (i.e. spa-
tial connectivity) information is encoded. Another variation is the directed edge
data structure [19] which is a triangle mesh specialized edge-based data struc-
ture.
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5.6.1 The Quad-edge Data Structure

The quad-edge data structure operates on pairs of subdivisions, for which there exist
two one-to-one mappings that send vertices of one subdivision to faces of the other
subdivision and vice versa, and edges of one subdivision to edges of the other one
and vice versa, where the term subdivision is defined as follows.

Definition 5.3 A subdivision of a manifold1 M is [16] a partition S of M into three
finite collections of disjoint parts, the vertices (denoted by V), the edges (denoted
by E or E) and the faces (denoted by F ) with the following properties:
• every vertex is a point of M,
• every edge is a line of M,
• every face is a disk of M,
• the boundary of every face is a closed path of edges and vertices.

A directed edge of a subdivision P is an edge of P together with a direction
along it and a given orientation (see page 80 in [16]). Since directions and orien-
tations can be chosen independently, for every edge of a subdivision there are four
different directed and oriented edges [16]. For any oriented directed edge e we can
define unambiguously its vertex of originOrg(e), its destination, Dest(e), its left
face, Left(e), and its right face, Right(e). The flipped version Flip(e) of an edge e is
the same unoriented edge taken with opposite orientation and same direction. The
symmetric of e, Sym(e) corresponds to the same undirected edge with the opposite
direction but the same orientation as e.

The next edge with the same origin, Onext(e) is defined as the one immedi-
ately following e (counterclockwise) in the ring of edges out of the origin of e

(see Fig. 5.10). The next counterclockwise edge with the same left face, denoted by
Lnext(e), is defined as the first edge we encounter after e when moving along the
boundary of the face F = Left(e) in the counterclockwise sense as determined by
the orientation of F .

Definition 5.4 Two subdivisions S and S∗ are said to be the dual [16] of each other
if for every directed and oriented edge e of either subdivision, there is another edge
Dual(e) (which is defined as the dual of e) of the other subdivision such that:
• the dual of Dual(e) is e: Dual(Dual(e)) = e,
• the dual of the symmetric of e is the symmetric of Dual(Sym(e)): Dual(Sym(e)) =

Sym(Dual(e)),
• the dual of the flipped version of e is the symmetric of the flipped version of

Dual(e): Flip(Dual(e)) = Sym(Flip(Dual(e)))
• moving counterclockwise around the left face of e in one subdivision is the

same as moving clockwise around the origin of Dual(e) in the other subdivision:
Lnext(Dual(e)) = Onext−1(Dual(e)).

1A two-dimensional manifold is a topological space with the property that every point has an open
neighborhood which is a disk.
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Fig. 5.10 The edge functions

The corresponding subdivisions of the quad-edge data structure are called dual.
The perfect example of such a pair of dual subdivisions in computational geometry
is the Voronoi diagram and the Delaunay triangulation (or more generally the De-
launay graph) of a point set, and the quad-edge data structure allows one to traverse
concurrently the Voronoi diagram and the Delaunay triangulation.

The dual of an edge e is the edge of the dual subdivision that goes from the
(vertex corresponding to the) left face of e to the (vertex corresponding to the) right
face of e but taken with orientation opposite to that of e.

The quad-edge data structure [16] is in fact a convenient mathematical structure
for representing the topological relationships among edges of any pair of dual sub-
divisions on a two-dimensional manifold. Edge functions (see Fig. 5.10) allow the
traversal of the pair of dual subdivisions at the same time, and it can be used to
construct a pair of dual subdivisions at the same time, as in the case with the incre-
mental construction of the Delaunay triangulation and the Voronoi diagram, which
we will see in Chap. 14.

As shown in the top part of Fig. 5.11, each branch of the quad-edge is part of a
loop around a Delaunay vertex/Voronoi face, or around a Delaunay triangle/Voronoi
vertex. The lower part of Fig. 5.11 shows the corresponding Delaunay/Voronoi
structure, where (a, b, c) are quad-edges, and (1, 2, 3) are Delaunay vertices.

The topology of the subdivision is completely determined by its edge algebra,
and vice versa. This allows all the edge functions to be expressed using three ba-
sic primitives, Flip, Rot, and Onext described above [16]. The quad-edge traversal
operations are based on the edge algebra (E,E∗,Onext,Flip,Rot), and their ex-
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Fig. 5.11 A simple Voronoi
diagram and its
corresponding quad-edge

Table 5.1 Basic quad-edge
topological operators

Operation Description

e := MakeEdge[] Creates an edge e to a newly created data
structure representing an empty manifold

Splice[a, b] Joins or separates the two edge rings a Org
and b Org, and independently, the two dual
edge rings a Left and b Left (see Fig. 5.12)

pression as composition of the basic primitives [16].The main advantage of the
quad-edge data structure is that all the construction and modification of planar
graphs can be done using two basic topological operators (see Table 5.1), and
the complex topological operations built from these two basic topological opera-
tors.

In summary, a reasonably complete mesh library should (independent of imple-
mentation) contain functionality allowing the user to iterate through all entities, ver-
tices, edges (or half edges) and faces and to locally move from one entity to the
next—say from a vertex to any of its outgoing edges. These local operators could
be implemented via circulators. It should also provide a (rich) set of primitive ma-
nipulation operations such as those discussed in Sect. 5.4.
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Fig. 5.12 The Splice topological operator

5.7 Exercises

Exercise 5.1 Write a computer program that loads and displays a polygonal mesh
from a file in one of the common mesh formats (e.g. OBJ, OFF, PLY, or X3D).

[GEL Users] Such a program has been written for GEL users. Download it and
try it out on some of the 3D models distributed with the example program.

Exercise 5.2 Based on the program from the exercise above, your goal is to write
a function which computes the dual of a polygonal mesh. A dual mesh has a vertex
for every face and a face for every vertex. Simply create a vertex for each face and
a face for each vertex. The vertex created for a face should be at the center of the
face.

Hint: probably the easiest way of solving this problem is to create a new mesh as
an indexed face set and then to convert that indexed face set to your representation
of choice. You will need to be able to iteratively visit all vertices and faces, a method
to associate an attribute with a face, and a method to circulate around a vertex.

[GEL Users] If you base your work on the example program, you simply need
to fill in the compute_dual function in the program from the previous exercise.

Once you have filled in this function, if you run the program with an example
model, pressing ‘d’ should produce the dual. Note that pressing ‘d’ repeatedly will
smooth and shrink the mesh.

Exercise 5.3 Implement the quad-edge data structure using GEL. Use two different
manifolds, and add for each edge in one manifold, add the pointer to its dual edge
in the other manifold. Keep your implementation for further use.
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6Splines

In this chapter, we describe the type of curves and surfaces often used in modern
CAD systems. The de facto industry standard here is NURBS which stands for
Non Uniform Rational B-Splines. Even though the animation industry has largely
switched to subdivision surfaces (cf. Chap. 7) B-Splines are still relevant: They are
a very flexible tool for the representation of smooth surfaces, they allow for exact
representation of conic surfaces, and the CAD business has a lot of software and
know-how pertaining to B-Splines. For further reading and proofs we refer to the
vast literature on the subject, e.g. [1–4].

The main drawback of B-splines (and other parametric surfaces) compared to
subdivision is the fact that continuity across surface patches is hard to maintain
when the surface deforms. Thus, subdivision surfaces are preferred for animation.
On the other hand, subdivision surfaces have issues with irregular vertices which
also occur near the seams between patches.

6.1 Parametrization

Often a surface cannot be parametrized by a single regular parametrization but need
to be specified by several patches. This is certainly true for CAD models of com-
plex objects like cars, ships, and aeroplanes. They consist of thousands of patches.
In differential geometry the individual parametrizations are normally required to
be defined on open sets. Then a smoothness conditions like C1, C2 etc., see Ex-
ample 2.6 in Chap. 2, on the surface can be formulated as the same smoothness
condition on the individual parametrizations. In a CAD system the parametrizations
are typically defined on a closed rectangle and the individual patches on the surface
only overlap at the boundary,

x1(U1) ∩ x2(U2) ⊆ x1(∂U1) ∩ x2(∂U2). (6.1)

Now a smoothness condition on the individual parametrization does not secure
the same smoothness on the surface. Certain boundary conditions have to be sat-
isfied. The terminology regarding smoothness is also slightly different. In the

J.A. Bærentzen et al., Guide to Computational Geometry Processing,
DOI 10.1007/978-1-4471-4075-7_6, © Springer-Verlag London 2012
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Fig. 6.1 Parametrization

CAGD (Computer Aided Geometric Design) community two patches join Ck if
the parametrization meet in a Ck fashion along the common boundary, while Gk or
GCk means that there at each point on the common boundary locally exists a regular
Ck parametrization. In differential geometry this will be called a Ck surface. This
is the same as the tangent planes agree and the projection from the common tangent
plane is Ck .

6.2 Basis Functions and Control Points

The parametrization (illustrated in Fig. 6.1) x : U → R
3 is of the form

x(u, v) =
n∑

�=1

c�F�(u, v).

The functions F� : U → R are called the basis functions and the points c� ∈ R
3 are

called the control points. The definition of the parametrization x is independent of
the coordinate system if and only if the basis functions form a partition of unity, i.e.,

n∑

�=1

F�(u, v) = 1, for all (u, v) ∈ U. (6.2)

The basis functions, F�, are normally products, F�(u, v) = G�(u)H�(v), of uni-
variate polynomials, rational functions, piecewise polynomials, or piecewise ratio-
nal functions. So even though we are interested in surfaces we start with functions
of one variable.

6.3 Knots and Spline Spaces on the Line

We consider functions f : [a, b] → R that are piecewise polynomials of degree d .
That is, we have a sequence of break points, called knots, where the different pieces
of polynomials meets with a certain degree of differentiability.
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Fig. 6.2 A spline of degree 2
consisting of four polynomial
pieces, parabolas

Definition 6.1 A knot sequence or knot vector is a non-decreasing sequence, de-
noted u,

u1 ≤ · · · ≤ ud+1︸ ︷︷ ︸
boundary knots

< ud+2 ≤ · · · ≤ ud+n︸ ︷︷ ︸
inner knots

< ud+n+1 ≤ · · · ≤ u2d+n+1︸ ︷︷ ︸
boundary knots

, (6.3)

where a = ud+1 and b = un+d+1. If u� < u�+1 = · · · = u�+ν < u�+ν then we say
that the knot u�+1 = · · · = u�+ν−1 has multiplicity ν.

If the multiplicity of a knot is one, i.e., ν = 1, then we call the knot simple. If the
multiplicity is equal to the degree, i.e., ν = d , we say that the knot has full multi-
plicity. Often the boundary knots have multiplicity d + 1, i.e., u1 = · · · = ud+1 = a

and un+d+1 = · · · = un+2d+1 = b.

Definition 6.2 The spline space of degree d on the knot vector u is the space

Sd
u = Sd

u
([a, b])

=
{

f : [a, b] →R

∣∣∣∣
f |]u�,u�+1[ is a polynomial of degree d and

f is Cd−ν at a knot with multiplicity ν

}
. (6.4)

Notice that with the knot vector (6.3) we have at most n knot intervals,
[ud+1, ud+2], . . . , [ud+n,ud+n+1], and consequently each spline in the spline space
consists of n polynomial pieces. To be precise, if all knots are simple then we have
n pieces and each time the multiplicity of a knot is increased by one the number of
pieces drops by one. In Fig. 6.2 we have plotted a spline of degree two consisting of
four polynomial pieces.

If a knot is simple then two polynomial pieces meet with at least Cd−1 differ-
entiability; if a knot has full multiplicity then two polynomial pieces meet with
continuity only, and finally if the multiplicity is greater than the degree, i.e., ν > d

then two polynomial pieces meet discontinuously.
We can also consider functions f : R →R defined on all of the reals. In that case

we will have a bi-infinite knot sequence, e.g. Z.
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Fig. 6.3 B-splines of degree 0, 1, and 2 on the knot vector u = 0,0,0, 1
2 , 3

4 ,1,1,1. The boundary
knots have multiplicity 3 so N0

1 = N0
2 = N0

6 = N0
7 = N1

1 = N1
6 = 0

6.4 B-Splines

B-splines (B for basis, i.e., basis splines) form a basis with minimal support for a
spline space.

Definition 6.3 The B-splines Nd
u,�(u) of degree d on the knot vector u can be de-

fined recursively,

N0
u,�(u) =

{
1 if u� ≤ u < u�+1,

0 otherwise,

Nd
u,�(u) = u − u�−1

u�+d−1 − u�−1
Nd−1

u,� (u) + u�+d − u

u�+d − u�

Nd−1
u,�+1(u).

With the knot vector (6.3) we have n+d functions, but some of them could be the
zero function. Indeed, if a knot has multiplicity ν > d , then d − ν of the functions
Nd

� are the zero function. In Fig. 6.3 the case d = 0,1,2 is illustrated for the knot
sequence u = 0,0,0, 1

2 , 3
4 ,1,1,1, and in Fig. 6.4 some cubic B-splines on different

knot vectors are plotted.
We give the following theorem without proof, for that we refer to [1–3] or Exer-

cise 6.1.

Theorem 6.1 The B-splines on a knot vector u have the following properties.
1. The restriction of the B-spline Nd

u,�(u) to the open interval ]u�,u�+1[ is a poly-
nomial of degree d .

2. The B-spline Nd
u,�(u) is Cd−ν at a knot with multiplicity ν.

3. The support of the B-spline Nd
u,�(u) is [u�,u�+d+1].

4. The collection of B-splines Nd
u,�(u) forms a basis with minimal support for the

spline space Sd
u .

5. The B-splines form a partition of unity, i.e.,
∑

� Nd
u,�(u) = 1.
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Fig. 6.4 Cubic B-splines on different knot vectors

6. If the knot sequence is Z, then the B-splines of a fixed degree are the translates
of each other

Nd
Z,�(u) = Nd

Z,1(u + 1 − �), (6.5)

and they satisfy the following refinement equation:

Nd
Z,0(u) =

∑

�

Nd
Z,0(2u − �). (6.6)

A spline curve is a curve of the form

r(u) =
n+d∑

�=1

c�N
d
u,�(u), (6.7)

and the points c� are called the control points. The control points are normally not
points on the curve but if a knot u�+1 = · · · = u�+d has full multiplicity then c� =
r(u�+d), cf. Exercise 6.2. As a corollary to Property 3 above we can describe the
influence of a single control point on a spline curve.

Corollary 6.1 Let r(u) =∑� c�N
d
u,�(u) be a spline curve on a knot vector u. Then

the control point c� only influences the curve on the interval [u�,u�+d+1]. Con-
versely, the piece of the curve given by the knot interval [u�,u�+1] is only influenced
by the d + 1 control points c�−d−1, . . . , c�.
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6.4.1 Knot Insertion and de Boor’s Algorithm

If we insert a knot u∗ ∈ [uk,uk+1) in a knot sequence, u = · · · ≤ uk < uk+1 ≤ · · · ,
then we obtain a refined knot sequence u∗ = · · · ≤ uk ≤ u∗ < uk+1 ≤ · · · and we
clearly have Sd

u ⊆ Sd
u∗ . That is, any spline, r(u) =∑ ckN

d
u,k(u), with knot sequence

u can be written as a spline, r(u) =∑ c∗
�N

d
u∗,�(u), with knot sequence u∗. The new

control points, c∗
� , are given by

c∗
� =

⎧
⎪⎨

⎪⎩

c�, � ≤ k − d,

(1 − α�)c�−1 + α�c�, � = k − d + 1, . . . , k − 1,

c�−1, � ≥ k,

(6.8)

where

α� = u∗ − u�−1

u�+d−1 − u�−1
. (6.9)

The de Boor’s algorithm is the process of repeated insertion of a knot until we have
full multiplicity and obtain a point on the curve. We formulate it as a theorem.

Theorem 6.2 Let r(u) =∑k ckN
d
u,k(u) be a spline curve of degree d with knots u =

u1, . . . , u2d+n+1 and control points c1, . . . , cn+d . If u ∈ [u�,u�+1] then the point
r(u) on the curve can be determined by de Boor’s algorithm. Put c0

i = ci for i =
� − d, . . . , � and calculate for k = 1, . . . , d

αk
i = u − u�

u�+d − u�

,

ck
i = (1 − αk

i

)
ck−1 + αk

i ck−1
i , i = � − d + k, . . . , �.

(6.10)

Then r(u) = cd
� .

6.4.2 Differentiation

The derivative of a spline of degree d is clearly a spline of degree d − 1.

Theorem 6.3 The derivative of the B-spline Nd
u,� is

d

du
Nd

u,1(u) = − d

u2+d − u2
Nd−1

u,2 (u),

d

du
Nd

u,�(u) = d

u�+d − u�

Nd−1
u,� (u) − d

u�+d+1 − u�+1
Nd−1

u,�+1(u),

� = 2, . . . , n + d − 1,

d

du
Nd

u,n+d(u) = d

un+2d − un+d

Nd−1
u,n+d(u).

(6.11)
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Now consider a spline curve r(u) =∑
� c�N

d
u,�(u). Using Theorem 6.3 we see

that

r′(u) =
n+d∑

�=1

c�

d

du
Nd

u,�(u) = −c1
d

u2+d − u2
Nd−1

u,2 (u)

+
n+d−1∑

�=2

c�

(
d

u�+d − u�

Nd−1
u,� (u) − d

u�+d+1 − u�+1
Nd−1

u,�+1(u)

)

+ cn+d

d

un+2d − un+d

Nd−1
u,n+d(u)

=
(

n+d∑

�=2

c�

d

u�+d − u�

Nd−1
u,� (u) −

n+d∑

�=2

c�−1
d

u�+d − u�

Nd−1
u,� (u)

)

=
n+d∑

�=2

d(c� − c�−1)

u�+d − u�

Nd−1
u,� (u), (6.12)

where we have used Nd−1
u,1 = Nd−1

u,n = 0 on the interval [ud+1, ud+n+1]. This gives
us the following.

Theorem 6.4 The derivative of a spline curve r(u) =∑
� c�N

d
u,�(u) with knot vec-

tor u = u1, . . . , u2d+1+n is a spline curve with knot vector u2, . . . , u2d+n and with
control points

d� = d(c� − c�−1)

u�+d − u�

. (6.13)

6.5 NURBS

The acronym NURBS stands for Non Uniform Rational Basis Spline. We again have
a knot vector, u = u1, . . . , u2d+1+n, and the B-splines, Nd

u,k . But now we introduce

weights, w = w1, . . . ,wd+n, and the weighted B-splines, wkN
d
u,k . The weighted

B-splines are no longer a partition of unity, so to restore affine invariance they are
normalized and we arrive at NURBS,

Rd
u,w,k(u) = wkN

d
u,k(u)

∑n+d
�=1 w�N

d
u,�(u)

. (6.14)

A rational spline curve is a curve of the form

r(u) =
n+d∑

k=1

ckR
d
u,w,k(u) =

n+d∑

k=1

ck

wkN
d
u,k(u)

∑n+d
�=1 w�N

d
u,�(u)

=
∑n+d

k=1 w�ckN
d
u,k(u)

∑n+d
k=1 wkN

d
u,k(u)

. (6.15)



106 6 Splines

We immediately see that the weights are not unique. First of all, if all the weights
are multiplied by a common factor then the NURBS, Rd

u,w,k , are obviously left
unchanged. Secondly, a rational linear reparametrization will change the weights
without changing the shape of a rational spline curve. More precisely, we have the
following theorem, see [5].

Theorem 6.5 Let Rd
u,w,k be NURBS with knots u and weights w and consider the

rational linear transformation

ψ(u) = αu + β

γu + δ
, with inverse φ(t) = −δt + β

γ t − α
. (6.16)

We then have Rd
u,w,k(φ(t)) = Rd

û,ŵ,k(t), where û = ψ(u) and

ŵk = wk∏d
j=1(γ uk+j + δ)

. (6.17)

Observe that the parameters α, β , γ , and δ, in the rational transformations, are
only determined up to a common factor, but that does not matter because multiplying
the weights with a common factor does not change the NURBS.

We still have two degrees of freedom left in the rational linear transformation.
They can be determined by the position of two parameter values, e.g., ψ(ud+1) =
ud+1 and ψ(ud+n+1) = ud+n+1. It is always possible to choose γ and δ such that
w1 = wn+d = 1; in that case we say that the NURBS are in standard form.

If r(u) is a rational spline curve in R
m then we can define an ordinary polynomial

spline curve r̂ in R
m+1 by letting

r̂(u) =
[

n+d∑

k=1

wkckN
d
u,k(u),

n+d∑

k=1

wkN
d
u,k(u)

]

=
n+d∑

k=1

[wkck,wk]Nd
u,k(u). (6.18)

We see that we can get r from r̂ by dividing the first m coordinates with the last.
That is, r is the central projection of r̂. That gives us the following.

Theorem 6.6 A rational spline curve on some knot vector with weights wk and
control points ck is the central projection of a polynomial spline curve on the same
knot vector and with control points [wkck,wk].

The theorem implies that we can obtain any conic section as a rational spline, see
Fig. 6.5 and Sect. 6.7.1. In the figure a part of an ellipse is obtained as the central
projection of a piece of a parabola. By taking several parabolas it is possible to
obtain a full ellipse, but if the parabolas are written as a quadratic spline it is only
C0, not C1. If a rational spline with smoothness Cn is requested then it has to have
degree 2n + 2, see [6]. Hence the inner knots have multiplicity n + 2.
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Fig. 6.5 On the left an ellipse and to the right a hyperbola both colored blue and obtained as the
central projection of a parabola, colored red

6.6 Tensor Product Spline Surfaces

We finally are ready to define tensor product spline surfaces. The basis functions are
simply products of B-splines, i.e., we have basis functions

R
d,e
k,� (u, v) = Nd

u,k(u)Ne
v,�(v), (6.19)

where u = u1, . . . , u2d+m+1 and v = v1, . . . , v2e+n+1 are knot vectors. They give a
basis with minimal support for the spline space

⎧
⎪⎨

⎪⎩
f : R2 →R

∣∣∣∣∣

f |]uk,uk+1[×]v�,v�+1[ is a polynomial of degree d × e

f is Cd−μ at a knot line u = uk with multiplicity μ

f is Ce−ν at a knot line v = v� with multiplicity ν

⎫
⎪⎬

⎪⎭
.

A tensor product spline surface is a surface of the form

x(u, v) =
m+d∑

k=1

n+d∑

�=1

ck,�R
d,e
k,� (u, v)

=
m+d∑

k=1

n+d∑

�=1

ck,�N
d
u,k(u)Ne

v,�(v). (6.20)

Just as in the case of curves we introduce weights wk,� and obtain rational basis
functions

R
d,e
k,� (u, v) = wk,�N

d
u,k(u)Ne

v,�(v)
∑m+d

k=1
∑n+d

�=1 wk,�N
d
u,k(u)Ne

v,�(v)
. (6.21)

A rational tensor product spline surface is a surface of the form
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x(u, v) =
m+d∑

k=1

n+d∑

�=1

ck,�R
d,e
k,� (u, v)

=
∑m+d

k=1
∑n+d

�=1 wk,�ck,�N
d
u,k(u)Ne

v,�(v)
∑m+d

k=1
∑n+d

�=1 wk,�N
d
u,k(u)Ne

v,�(v)
. (6.22)

We can again define an ordinary tensor product spline surface x̂ in a space of one
higher dimension by letting

x̂(u, v) =
[

m+d∑

k=1

n+d∑

�=1

wk,�ck,�N
d
u,k(u)Ne

v,�(v),

m+d∑

k=1

n+d∑

�=1

wk,�N
d
u,k(u)Ne

v,�(v)

]

=
m+d∑

k=1

n+d∑

�=1

[wk,�ck,�,wk,�]Nd
u,k(u)Ne

v,�(v). (6.23)

Once more we see that we can obtain the rational surface x by dividing all coordi-
nates but the last in x̂ by the last coordinate in x̂. So we also have the corresponding
theorem.

Theorem 6.7 A rational tensor product spline surface with weights wk,� and con-
trol points ck,� is the central projection of a polynomial tensor product spline surface
on the same knot vectors and with control points [wk,�ck,�,wk,�].

Just as we can represent pieces of conic section exactly as rational spline curves,
we can represent pieces of quadric surfaces exactly by rational tensor product sur-
faces, see Sect. 6.7.1.

6.7 Spline Curves and Surfaces in Practice

Probably, NURBS curves and surfaces are largely used through CAD systems where
the implementation is hidden. One example of a completely NURBS-based modeler
is Rhinoceros™ from Robert McNeel & Associates.

Even people who need NURBS curves or surfaces in software rarely need to im-
plement them from scratch. For people using OpenGL, the OpenGL utility library
(GLU) has a set of functions for dealing with both NURBS curves and surfaces.
An example of NURBS surfaces produced by OpenGL and glu is shown in Fig. 6.6.
The GLU API supports direct rendering of NURBS curves and surfaces and through
callback functions it is also possible to retrieve the polygons produced by the tessel-
lation.
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Fig. 6.6 An example of a NURBS surface rendered with the OpenGL utility library. On the left
the surface was tessellated by dividing the parameter domain into equally large areas. On the right
a tolerance in pixel units was imposed on the edge lengths

6.7.1 Representation of Conics and Quadrics

One of the advantages of rational spline curves and surfaces is that it is possible to
represents conic curves and quadric surfaces exactly. Another advantage is that the
curves are invariant under projective transformations. A thorough treatment requires
some projective geometry and the use of homogeneous coordinates. But we stick
with Euclidean coordinates.

Definition 6.4 Let X and Y be affine spaces. A projective map is a map P : U → V

of the form

P : v 
→ f (v)

ω(v)
, (6.24)

where f : X → Y and ω : U → R are affine maps.
If X = Y then P is called a projective transformation.

If we are given a rational spline curve x with control points ck and weights wk

and subject it to a projective transformation then we obtain

P(x) = P

(∑
k wkckNk∑
k wkNk

)
=
∑

k wk f (ck)Nk∑
k wkNk

/∑
k wkω(ck)Nk∑

k wkNk

=
∑

k wkf (ck)Nk∑
k wkω(ck)Nk

=
∑

k wkω(ck)
f (ck)
ω(ck)

Nk
∑

k wkω(ck)Nk

. (6.25)

We see that P(x) is rational spline curve with control points ĉk = P(ck) and weights
ŵk = wkω(ck). We similarly have the following.

Theorem 6.8 Suppose P : v 
→ f (v)/ω(v) is a projective transformation and

x(u, v) =
(∑

k,�

wk,�ck,�N
d
u,k(u)Ne

v,�(v)

)/(∑

k,�

wk,�N
d
u,k(u)Ne

v,�(v)

)
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Fig. 6.7 On the left different conics. In blue a hyperbola with w = 3, in black a parabola with
w = 1, in red a circle with w = √

(2)/2, and in green an ellipse with w = 1/3. On the right a
stereographic projection which gives a rational parametrization of the circle

is a rational spline surface. Then P(x(u, v)) is rational spline surface too, with
control points

ĉk,� = P(ck,�) = f (ck,�)

ω(ck,�)
(6.26)

and weights

ŵk,� = wk,�ω(ck,�). (6.27)

Ellipses and hyperbolas can be written as the image of a parabola under a projec-
tive transformation. So using such a transformation and the formulas above we can
write ellipses and hyperbolas as a quadratic rational spline curve. We will not give
a general treatment but only a simple example.

Consider a quadratic curve with knot vector 0,0,0,1,1,1. Then there is only
one polynomial segment and the B-splines are simply the Bernstein polynomials of
degree two, B2

0 (t) = (1 − t)2, B2
1 (t) = 2(1 − t)t , and B2

2 (t) = t2, see Exercise 6.4.
We now consider the control points (1,0), (1,1), and (0,1) and the weights 1, w,
and 1. If w > 1 then we obtain a piece of a hyperbola, if w = 1 then we obtain a piece
of a parabola, and if 0 < w < 1 then we obtain a piece of an ellipse. A particular
case of the latter is w = √

2/2 in which case we obtain a quarter of a circle, see
Fig. 6.7. Another way to get the rational parametrization of the circle is to consider
stereographic projection, see Fig. 6.7.

We can also use a stereographic projection to give a rational parametrization
of the sphere. On the sphere stereographic projection from the south pole and its
inverse is given as

(x, y, z) 
→ (x, y)

1 + z
and (u, v) 
→ (2u,2v,1 − u2 − v2)

1 + u2 + v2
, (6.28)

respectively. If we compose a rational parametrization of a domain in the uv-plane
with stereographic projection then we obtain a rational parametrization of the cor-
responding domain on the sphere, but the degree in u and v is doubled, see Fig. 6.8.
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Fig. 6.8 On the left two different patches on the sphere. One, with red and green parameter lines,
has degree (4,4). The other, with blue and magenta parameter lines, has degree (2,4), both covers
one sixth of sphere. On the right the image of the two patches under stereographic projection. Here
the patches has degree (2,2) and (1,2), respectively

Any quadrilateral in the plane can be parametrized by a bilinear patch, i.e., a poly-
nomial patch of degree (1,1). If we compose with stereographic projection then we
obtain rational patches on the sphere with degree (2,2). But it is not possible to
partition the sphere into patches of degree (2,2). If we use higher degree patches it
becomes possible.

One way is first to project a cube, co-centered with the sphere, from the cen-
ter onto the sphere. This partitions the sphere into six equally sized patches, cor-
responding to the six faces of the cube, see Fig. 6.8. The boundaries of these six
patches are arcs of great circles and stereographic projection maps these patches
onto six domains in the plane who’s boundaries are circles or lines. There is a cen-
tral “square-like” domain with four arcs of circles as boundaries, four equally sized
“fan-like” domains with two arcs of circles and two line segments as boundaries,
and finally one unbounded domain, see Fig. 6.8.

The central planar domain has a boundary consisting of four circles and it can
be parametrized by a rational patch of degree (2,2). The knot vectors are without
inner knots so the B-splines reduces to the Bernstein polynomials of degree 2, cf.,
Exercise 6.4. That is, we have a parametrization x : [0,1]2 → R

2 of the form

x(u, v) =
∑2

k,�=0 wk,�ck,�B
2
k (u)B2

� (v)
∑2

k,�=0 wk,�B
2
k (u)B2

� (v)
. (6.29)

If the weights are in standard form then the boundary control points and weights are
uniquely given. We are then left with one inner control point and one inner weight
that both are far from unique. One symmetric choice is the following set of control
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points and weights:

ck,� =
⎡

⎣
(a1, a1) (0, b1) (−a1, a1)

(b1,0) (0,0) (−b1,0)

(a1,−a1) (0,−b1) (−a1,−a1)

⎤

⎦ ,

wk,� =
⎡

⎣
1 w1 1
w1 1 w1
1 w1 1

⎤

⎦

(6.30)

where

a1 =
√

3

3 + √
3
, b1 = 6

√
3

(3 + √
3)2

, w1 =
√

6 + √
2

4
. (6.31)

Another natural choice for the inner weight could be w2
1 instead of 1. In any case,

when we compose with stereographic projection we obtain a patch of degree (4,4)

on the sphere. It has the form

x̂ =
∑4

k,�=0 ŵk,�̂ck,�B
4
k (u)B4

� (v)
∑4

k,�=0 ŵk,�B
4
k (u)B4

� (v)
, (6.32)

where the control points and weights can be found from the equation

x̂(u, v) = (2x(u, v),1 − ‖x(u, v)‖2)

1 + ‖x(u, v)‖2
, all u,v ∈ [0,1], (6.33)

or equivalently

4∑

k,�=0

[
ŵk,�̂ck,�, ŵk,�

]
B4

k (u)B4
� (v)

= [2q(u, v)p(u, v), q(u, v)2 − ∥∥p(u, v)
∥∥2

, q(u, v)2 + ∥∥p(u, v)
∥∥2]

, (6.34)

where p(u, v) and q(u, v) are the numerator and the denominator in (6.29), respec-
tively.

The “fan-like” planar domain has two circles and two straight lines as the bound-
ary and can be parametrized by a patch of degree (1,2) of the form

x(u, v) =
∑1

k=0
∑2

�=0 wk,�ck,�B
1
k (u)B2

� (v)
∑1

k=0
∑2

�=0 wk,�B
1
k (u)B1

� (v)
, (6.35)

where the control points and weights are

ck,� =
[
(a1, a1) (b1,0) (a1,−a1)

(a2, a2) (b2,0) (a2,−a2)

]
, wk,� =

[
1 w1 1
1 w2 1

]
, (6.36)
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and

a2 =
√

3

3 − √
3
, b2 = 6

√
3

(3 − √
3)2

, w2 =
√

6 − √
2

4
. (6.37)

When we compose with stereographic projection we obtain a patch of degree (2,4)

on the sphere. The control points and weights can be found like in the case of the
patch of degree (4,4).

On the sphere the two domains look exactly the same, so it is of course pos-
sible to parametrize both with a patch of degree (2,4). It is in fact possible to
parametrize any domain on the sphere bounded by four circles by a patch of de-
gree (2,4), see [7].

6.7.2 Interpolation and Approximation

We first consider the univariate case. Here we are given parameter values μ� ∈ R

and corresponding data points x� that belong to some affine space, (it could be just
real numbers). We are now looking for a spline r(u) = ∑

k ckN
d
k (u, u) such that

r(μ�) = x� for all �. If we have L points then we get L linear equations

n+d∑

k=1

ckN
d
u,k(μ�) = x�, � = 1, . . . ,L, (6.38)

in the control points ck . In order to have a unique solution we certainly need to have
the same number of variables and equations, i.e., we need to have L = n + d . If this
is the case then the following theorem gives a necessary and sufficient condition for
when (6.38) has a unique solution, see [1, p. 200].

Theorem 6.9 (Schoenberg–Whitney) Let u = u1 ≤ · · · ≤ u2d+n+1 be a knot se-
quence where all inner knots have at most full multiplicity, i.e., all B-splines of de-
gree d are continuous. Given n+d strictly increasing parameter values, μ1 < · · · <
μn+d , the matrix Nd

u,k(μ�) of the system (6.38) is regular if and only if Nd
u,k(μk) = 0

for all k = 1, . . . , n + d , i.e., if and only if ud+k < μk < ud+2k , all k.

So given some univariate data it is not hard to find an interpolating spline. The
most difficult case is when the parameter values are not given. Then they have to be
chosen and the resulting interpolating spline is sensitive to this choice.

When it comes to bivariate interpolation the situation is much more difficult.
Unless the data have a nice rectangular structure it is not possible to find an interpo-
lating tensor product spline. So we give up on exact interpolation and use approx-
imation instead. We are still given parameter values (μj , νj ) ∈ R

2 and data points
xj , � = 1, . . . ,N , but now we solve the equations

x(μj , νj ) =
∑

k,�

ck,�N
d
u,k(μj )N

e
v,�(νj ) = xj , j = 1, . . . ,N, (6.39)
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Fig. 6.9 A tensor product spline surface approximating 10,000 data points randomly sampled
from the function depicted to the left. In the middle the error when using cubic splines and
19 × 19 = 361 control points. On the right log10 of the L2 and L∞ error as a function of the
number of control points

in the least square sense. That is, we minimize the L2 error

error = 1

N

N∑

j=1

∥∥x(μj , νj ) − xj

∥∥2
. (6.40)

If we choose an ordering (ki, �i), i = 1, . . . , (m + d)(n + e) = M of the indices
(k, �) and define the N × M matrix

A =
⎡

⎢⎣
Nd

k1
(u|̃u1)N

e
�1

(v|̃v1) . . . Nd
kM

(u|̃u1)N
e
�M

(v|̃v1)

...
. . .

...

Nd
k1

(u|̃uN)Ne
�1

(v|̃vN) . . . Nd
kM

(u|̃uN)Ne
�M

(v|̃vN)

⎤

⎥⎦ ,

the M × K matrix C = [ck1,�1 . . . ckM,�M

]T
,

and the N × K matrix X = [x1 . . . xN

]T
,

where K is the dimension of the space where the data points, xj , and the control
points, ck,�, are lying in, then minimizing the L2 error (6.40) can be formulated as

minimize‖AC − X‖2,

cf. Example 2.56. To illustrate this we have taken 10,000 random samples from the
function (6.43) depicted to the left in Fig. 6.9. We have used cubic splines in both
the u and v direction, i.e., d = e = 3. As the number of knot intervals we have tried
m = n = 1, 2, 4, 16. That is, we have K = 1, N = 10,000, and M = 16, 25, 49,
361. The result is shown in Fig. 6.9, where we have plotted the graph of the function
from which the data were sampled, the error at all data points in the case of the
highest resolution, and finally the logarithm of L2 error and the L∞ error, and the
maxj ‖x(μj , νj ) − xj‖2 are plotted as a function of the number of control points.
It should be noted that already with 49 control points we obtain a visually good
approximation.
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Fig. 6.10 An example of a NURBS surface tessellated uniformly (left) with Velho’s adaptive
scheme (center) and uniformly with subsequent triangle reduction (right)

The corresponding problem for rational tensor product splines is linear in the
control points but non-linear in the weights. If the weights wk,� are fixed then
we have the same results; we simply replace Nd

u,k(μj )N
e
v,�(νj ) with the NURBS,

R
d,e
k,� (μj , νj ), defined in (6.21).

6.7.3 Tessellation and Trimming of Parametric Surfaces

Parametric surfaces can be either uniformly or adaptively tessellated, i.e., converted
from a smooth parametric surface to a polygonal mesh. Moreover, adaptive tessel-
lation can be done in a multitude of ways. Velho et al. present a unified and hier-
archical approach to tessellation [8], which is shown applied to a NURBS patch in
Fig. 6.10 (middle). This adaptive tessellation scheme starts from an initial triangula-
tion and then refines it adaptively where needed. Compared to a uniform tessellation,
much fewer triangles are spent to achieve a given fidelity. The GLU interface also
affords some adaptivity in the tessellation, but the method used is somewhat cruder,
see Fig. 6.6.

In many cases, the quadrilateral domain over which a NURBS patch is defined
does not exactly match the boundary which is needed for some design. For this
reason, most APIs (including GLU) for NURBS rendering support trimming.

The principle is simply that we use curves (typically also NURBS curves) to
define a closed path. Everything (arbitrarily) to the right of the path is then left
out. Thus, if our trimming curve is clockwise, we leave out the interior, making
a hole, and if it is counterclockwise, we keep the interior. Typically, trimming is
implemented in a very general fashion allowing us to cut out multiple pieces, to
compose closed trim loops of several curves, and to have trimming curves within
trimming curves, for instance to create an annular region [9]. In Fig. 6.11 a very
simple example is shown where a circular region of the domain has been cut out of
a NURBS patch using a closed NURBS curve.

6.8 Exercises

Exercise 6.1 Prove the B-spline properties in Theorem 6.1.
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Fig. 6.11 An example of a NURBS surface with and without trimming. Note that the trimming
curve is actually a perfect circle in the parameter domain created as a quadratic 2D NURBS curve

Exercise 6.2 Show that if a knot ul+1 = · · · = ul+d has full multiplicity and x(u) =∑n+d
�=1 c�N

d
u,�(u), then c� = x(u�+d).

Exercise 6.3 Prove Corollary 6.1.

Exercise 6.4 Show that if there is only one knot interval and the knot vector is
u = 0, . . . ,0︸ ︷︷ ︸

d+1

,1, . . . ,1︸ ︷︷ ︸
d+1

, then the B-splines are the Bernstein polynomials

Nd
u,�+1(u) = Bd

� (u) =
(

d

�

)
(1 − u)d−�u�, � = 0, . . . , d. (6.41)

Exercise 6.5 Prove the knot insertion algorithm (6.8).

Exercise 6.6 Let

h(t) = 1

2

(
1 + t√

1 + t2

)
, (6.42)

and sample the function

f (u, v) = h(5x)h(5y) sin
(
π(x + y)

)
cos
(
2π(x − y)

)
, (6.43)

densely on the square [−1,1]2. Choose degrees d and e, knot vectors

u : −1, . . . ,−1︸ ︷︷ ︸
d+1

< ud+1 ≤ · · · ≤ ud+m < 1, . . . ,1︸ ︷︷ ︸
d+1

,

v : −1, . . . ,−1︸ ︷︷ ︸
e+1

< ve+1 ≤ · · · ≤ ve+n < 1, . . . ,1︸ ︷︷ ︸
e+1

,
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and minimize the L2 error

N∑

j=1

(
d+m∑

k=1

e+n∑

�=1

ck,�N
d
u,k(μj )N

e
v,�(νj ) − fj

)2

,

where fj = f (μj , νj ), j = 1, . . . ,N , are the samples.
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7Subdivision

Subdivision curves and surfaces are defined as the limit of a sequence of successive
refinements of a control polygon or mesh. There is in many cases a close connec-
tion to spline curves with a uniform knot vector and uniform tensor product sur-
faces.

In many ways, subdivision curves and surfaces provide nearly the same possi-
bilities as spline curves and surfaces. However, in some ways, subdivision is sim-
pler. There are no issues with stitching together the patches (even if the surface is
animated) since the starting point is a polygonal mesh. This is of great practical
importance: if a character is modeled with spline patches, ensuring that these join
smoothly as the character is animated is a tricky problem.

On the other hand, for subdivision surfaces, we need to deal with extraordinary
vertices where the subdivided mesh may be less smooth than elsewhere.

There are also some other important differences. Subdivision surfaces can be
parametrized which is convenient because it means that they can be used where a
parametric form is required, but we normally tessellate subdivision surfaces pre-
cisely by subdividing the mesh. Hence, one would not normally use an adap-
tive tessellation algorithm for parametric surfaces on subdivision surfaces. Nor
would one often trim a subdivision surface since we may instead trim the initial
mesh.

In Sect. 7.1, we study subdivision curves. Curve subdivision is simple to express
using matrix multiplication, and we discuss the relation to spline curves and how an
eigenanalysis can be used to find points on the limit curve (after infinitely many sub-
division steps). In Sect. 7.2, we present a similar discussion but now for subdivision
surfaces. Here the matrix representation is somewhat more difficult but still highly
useful for analysis of the schemes. In Sect. 7.2.1 the characteristic map is presented.
The characteristic map is a tool for analysis of whether subdivision schemes are
tangent plane continuous in the limit.

In Sect. 7.3 we turn to concrete subdivision schemes and discuss the Loop,
Catmull–Clark, modified butterfly, sqrt(3), and Doo–Sabin schemes. Finally, some
advanced techniques and recent methods are discussed briefly in Sect. 7.3.4.

J.A. Bærentzen et al., Guide to Computational Geometry Processing,
DOI 10.1007/978-1-4471-4075-7_7, © Springer-Verlag London 2012
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7.1 Subdivision Curves

A B-spline curve of degree n on the knot vector consisting of the integers, i.e.,
a curve which is piecewise polynomial of degree n and is Cn−1 at the integers, can
be written as

∑
k∈Z c0

kB
n(t − k), where Bn(t) = Nn

Z,1(t) and the control points c0
k

form the control polygon. In the plane we have c0
k = (x0

k , y0
k ) and in space we have

c0
k = (x0

k , y0
k , z0

k). The curve is of course also Cn−1 (in fact C∞) at the half integers
so it is also a spline curve on the knot vector consisting of the half integers. Thus, it
can be written

∑
k∈Z c1

kB
n(2t −k) where c1

k are new control points. This process can
be repeated and we can write the spline curve as

∑
k∈Z c�

kB
n(2�t − k). The above

process gives us linear mappings (subdivision)

[
c0
k

] �→ [
c1
k

] �→ · · · �→ [
c�
k

] �→ [
c�+1
k

] �→ · · · , (7.1)

and it turns out that this sequence of control polygons converges to the spline curve∑
k∈Z c0

kB
n(t − k).

Let us as a simple example find the uniform quadratic B-spline B2(t). The
B-splines can be found recursively, cf. Sect. 6.4,

B0(t) =
{

1 t ∈ [0,1)

0 t /∈ [0,1)
(7.2)

Using B1(t) = tB0(t) + (2 − t)B0(t − 1), we obtain

B1(t) =

⎧
⎪⎨

⎪⎩

t t ∈ [0,1)

2 − t t ∈ [1,2)

0 t /∈ [0,2)

(7.3)

and performing this once more, B2(t) = t
2B1(t) + 3−t

2 B1(t − 1) yields

B2(t) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1
2 t2 t ∈ [0,1)
1
4 (3 − (3 − 2t)2) t ∈ [1,2)
1
2 (t − 3)2 t ∈ [2,3)

0 t /∈ [0,3)

(7.4)

Theorem 7.1 The uniform B-splines (cf., Fig. 7.1) satisfy the refinement equation

Bk(t) = 1

2k

k+1∑

�=0

(
k + 1

�

)

Bk(2t − �). (7.5)

Proof The case k = 0 is easy, B0(t) = B0(2t) + B0(2t − 1). For the general case
we first note that
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Fig. 7.1 The B-splines of
degree 0, 1, and 2

Fig. 7.2 The uniform
B-spline of degree 2 is a
linear combination of dilated
and translated copies of itself
with weights 1

4 , 3
4 , 3

4 , and 1
4

B�(2t) ∗ B0(2t) =
∫

B�(2s)B0(2t − 2s)ds

= 1

2

∫

B�(s)B0(2t − s)ds = 1

2
B�+1(2t)

and

B�(2t) ∗ B0(2t − 1) =
∫

B�(2s)B0(2t − 1 − 2s)ds

= 1

2

∫

B�(s)B0(2t − 1 − s)ds = 1

2
B�+1(2t − 1).

Now we write Bk as a k + 1 fold convolution of B0 with itself,

Bk(t) = B0(t) ∗ · · · ∗ B0(t)
︸ ︷︷ ︸

k+1

= (
B0(2t) + B0(2t − 1)

) ∗ · · · ∗ (
B0(2t) + B0(2t − 1)

)

︸ ︷︷ ︸
k+1

=
k+1∑

�=0

(
k + 1

�

)

B0(2t) ∗ · · · ∗ B0(2t)
︸ ︷︷ ︸

k+1−�

∗B0(2t − 1) ∗ · · · ∗ B0(2t − 1)
︸ ︷︷ ︸

�

= 1

2k

k+1∑

�=0

(
k + 1

�

)

Bk(2t − �).
�

In particular, see Fig. 7.2,

B2(t) = 1

4
B2(2t) + 3

4
B2(2t − 1) + 3

4
B2(2t − 2) + 1

4
B2(2t − 3). (7.6)

If we substitute this into a uniform quadratic spline curve, then we obtain
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∑

k∈Z
c0
kB

2(t − k)

=
∑

k∈Z
c0
k

(
1

4
B2(2t − 2k) + 3

4
B2(2t − 2k − 1) + 3

4
B2(2t − 2k − 2)

+ 1

4
B2(2t − 2k − 3)

)

= 1

4

∑

k∈Z
c0
kB

2(2t − 2k) + 3

4

∑

k∈Z
c0
kB

2(2t − 2k − 1)

+ 3

4

∑

k∈Z
c0
k+2B

2(2t − 2k) + 1

4

∑

k∈Z
c0
k+2B

2(2t − 2k − 1)

=
∑

k∈Z

c0
k + 3c0

k+2

4
B2(2t − 2k) +

∑

k∈Z

3c0
k + c0

k+2

4
B2(2t − 2k − 1)

=
∑

k∈Z
c1
kB

2(2t − k),

where

c1
2k−1 = 3

4
c0
k + 1

4
c0
k+2 and c1

2k = 1

4
c0
k + 3

4
c0
k+2. (7.7)

This is the subdivision rules for the quadratic spline curve.
All this can also be seen another way. If we write the basis functions as a row

vector

B(t) = [
. . . B2(t + 2) B2(t + 1) B2(t) B2(t − 1) B2(t − 2) . . .

]
(7.8)

and the control polygon as a column matrix

C0 = [
. . . c0

−2 c0
−1 c0

0 c0
1 c0

2 . . .
]T

, (7.9)

then the spline curve can be written as a matrix product

∑

k∈Z
c0
kB

2(t − k) = B(t)C0. (7.10)

The refinement equation (7.5) can be written

B(t) = B(2t)S (7.11)
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where the subdivision matrix S is a bi-infinite matrix with entries S2�+k,� = 1
4

(3
k

)
,

S = 1

4

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

. . .
�

↓
3 0 0

2� → 3 1 0
1 3 0 0
0 3 1 0
0 1 3 0
0 0 3 1

0 1 3
0 0 3

. . .

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (7.12)

Observe that the rows of S sum to one, and this will be important later. Notice that
the columns are shifted down by two when we go from one column to the next.

If we consider cubic splines then the sequence 1
4 , 3

4 , 3
4 , 1

4 in the columns are
replaced with the sequence 1

8 , 4
8 , 6

8 , 4
8 , 1

8 and if the degree is n then the sequence

becomes 1
2n , . . . , 1

2n

(
k
n

)
, . . . , 1

2n . In all cases the down shift by two is the same and
the rows sum to one. By taking other numbers than the binomial coefficients we get
other subdivision schemes. In order for the rows to sum to one we need that both
the even and odd elements in the sequence sum to one.

We can now write

∑

k∈Z
c0
kB

2(t − k) = B(t)C0 = B(2t)SC0 = B(2t)C1

=
∑

k∈Z
c1
kB

2(2t − k), (7.13)

and we see that subdivision can be written C1 = SC0. Repeated subdivision is given
by

Ck = SCk−1 = · · · = SkC0. (7.14)

Using the same matrix S at each level is called stationary subdivision. In Fig. 7.3
the first two levels of subdivision are illustrated.

Suppose we want to investigate the local behavior at t = 0. In a small neigh-
borhood of t = 0 only the four basis functions B2(t), B2(t + 1), B2(t + 2), and
B2(t + 3) are non-zero. So we need only four control points to determine the local
behavior, and we say that the invariant neighborhood has size 4. We can also see
that if we start with four points and perform repeated subdivision then that piece of
the control polygon converges to two segments of the final curve, cf. Fig. 7.4.
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Fig. 7.3 The first two levels of subdivision. If the subdivision continues the refined polygon con-
verges towards the black dotted spline curve

Fig. 7.4 The invariant neighborhood of a quadratic spline has size 4. In each row the middle four
points determine the local behavior at t = 0. The outermost points in each row converges from the
outside to the midpoints of the outermost polygon legs

7.1.1 Eigenanalysis

Now (the right) four consecutive points of the control polygon determine the local
behavior at t = 0, but so do the middle four consecutive points, see Fig. 7.4, when
the control polygon is subdivided. That means that we do not need the full infinite
subdivision matrix (7.12) but only the small bold 4 × 4 sub-matrix. In the following
S denotes this local subdivision matrix,

S = 1

4

⎡

⎢
⎢
⎣

1 3 0 0
0 3 1 0
0 1 3 0
0 0 3 1

⎤

⎥
⎥
⎦ . (7.15)

The local subdivision matrix S has eigenvalues

λ1 = 1, λ2 = 1

2
, λ3 = 1

4
, λ4 = 1

4
, (7.16)

with corresponding eigenvectors

x1 =

⎡

⎢
⎢
⎣

1
1
1
1

⎤

⎥
⎥
⎦ , x2 =

⎡

⎢
⎢
⎣

1
1
3

− 1
3−1

⎤

⎥
⎥
⎦ , x3 =

⎡

⎢
⎢
⎣

1
0
0
0

⎤

⎥
⎥
⎦ , x4 =

⎡

⎢
⎢
⎣

0
0
0
1

⎤

⎥
⎥
⎦ . (7.17)
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We can now write the column of four control points as

C0 =
4∑

i=1

xiai = XA,

where the coefficients ai are points or vectors,

X =

⎡

⎢
⎢
⎣

1 1 1 0
1 1

3 0 0
1 − 1

3 0 0
1 −1 0 1

⎤

⎥
⎥
⎦ and a =

⎡

⎢
⎢
⎣

a1
a2
a3
a4

⎤

⎥
⎥
⎦ .

We clearly have

A = X−1C0 or

⎡

⎢
⎢
⎣

a1
a2
a3
a4

⎤

⎥
⎥
⎦ =

⎡

⎢
⎢
⎣

0 1
2

1
2 0

0 3
2 − 3

2 0
1 −2 1 0
0 1 −2 1

⎤

⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎣

c0
−3

c0
−2

c0
−1

c0
0

⎤

⎥
⎥
⎥
⎥
⎦

.

The result of repeated subdivision is now easy to calculate

Ck = SkC0 = Sk
4∑

i=1

xiai =
4∑

i=1

Skxiai =
4∑

i=1

λk
i xiai → x1a1. (7.18)

Furthermore,

x1a1 =

⎡

⎢
⎢
⎣

1
1
1
1

⎤

⎥
⎥
⎦

[
0 1

2
1
2 0

]

⎡

⎢
⎢
⎢
⎢
⎣

c0
−3

c0
−2

c0
−1

c0
0

⎤

⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎣

1
1
1
1

⎤

⎥
⎥
⎦

c0
−2 + c0

−1

2
.

A similar calculation can be made for any stationary subdivision, and when the
rows sum to one, we always find that 1 is an eigenvalue with an eigenvector consist-
ing of all ones. This is important; if the largest eigenvalue of the local subdivision
matrix is different from one then repeated subdivisions diverge. If we do not have a
basis of eigenvectors then the analysis is more complicated.

We now continue our analysis of the local behavior by subtracting the limit,

Ck − x1a1

λk
2

=
4∑

i=2

(
λi

λ2

)k

xiai → x2a2 (7.19)

and

x2a2 =

⎡

⎢
⎢
⎣

1
1
3

− 1
3

−1

⎤

⎥
⎥
⎦

[
0 3

2 − 3
2 0

]

⎡

⎢
⎢
⎢
⎢
⎣

c0
−3

c0
−2

c0
−1

c0
0

⎤

⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎣

3
1

−1
−3

⎤

⎥
⎥
⎦

c0
−2 − c0

−1

2
.
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Fig. 7.5 Subdivision of
quadratic tensor product
B-spline surface

Recalling that the second eigenvalue is 1/2 and the third eigenvalue is 1/4, we have
Ck = a1x1 + 2−ka2x2 + O(4−k) or

⎡

⎢
⎢
⎣

ck
−3

ck
−2

ck
−1
ck

0

⎤

⎥
⎥
⎦ =

⎡

⎢
⎢
⎣

1
1
1
1

⎤

⎥
⎥
⎦

c0
−2 + c0

−1

2
+

⎡

⎢
⎢
⎣

3
1

−1
−3

⎤

⎥
⎥
⎦

c0
−2 − c0

−1

2k+1
+ O

(
4−k

)
.

In the limit when k → ∞ we obtain a well defined tangent in the direction of a2
or equivalently in the direction c0

−1 − c0
−2. Again the same kind of analysis can be

done for any stationary subdivision scheme and the conclusion is that we want the
following properties of the local subdivision matrix.
• The first (dominant) eigenvalue λ1 should be 1.
• The next (sub dominant) eigenvalue λ2 should be strictly less than 1.
• All other eigenvalues should be strictly less than λ2.

7.2 Subdivision Surfaces

Just as for curves subdivision of surfaces is performed by calculating new points by
taking convex combination of the old points, i.e., each new point is a weighted aver-
age of (some) old points. In Fig. 7.5 the case of a quadratic tensor product B-spline
surface is illustrated. There is also a local subdivision matrix for subdivisions sur-
faces. It is not hard to find the 16 × 16 subdivision matrix for the quadratic tensor
product B-spline surface in Fig. 7.5, but the precise result depends of course on how
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the control points are numbered. One particular numbering gives

S = 1

16

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 3 0 0 3 9 0 0 0 0 0 0 0 0 0 0
0 3 1 0 0 9 3 0 0 0 0 0 0 0 0 0
0 1 3 0 0 3 9 0 0 0 0 0 0 0 0 0
0 0 3 1 0 0 9 3 0 0 0 0 0 0 0 0
0 0 0 0 3 9 0 0 1 3 0 0 0 0 0 0
0 0 0 0 0 9 3 0 0 3 1 0 0 0 0 0
0 0 0 0 0 3 9 0 0 1 3 0 0 0 0 0
0 0 0 0 0 0 9 3 0 0 3 1 0 0 0 0
0 0 0 0 1 3 0 0 3 9 0 0 0 0 0 0
0 0 0 0 0 3 1 0 0 9 3 0 0 0 0 0
0 0 0 0 0 1 3 0 0 3 9 0 0 0 0 0
0 0 0 0 0 0 3 1 0 0 9 3 0 0 0 0
0 0 0 0 0 0 0 0 3 9 0 0 1 3 0 0
0 0 0 0 0 0 0 0 0 9 3 0 0 3 1 0
0 0 0 0 0 0 0 0 0 3 9 0 0 1 3 0
0 0 0 0 0 0 0 0 0 0 9 3 0 0 3 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

the eigenvalues are 1, 1
2 , 1

2 , 1
4 , 1

4 , 1
4 , 1

4 , 1
4 , 1

8 , 1
8 , 1

8 , 1
8 , 1

16 and this result is independent
of the numbering. Just as in the curve case the dominant eigenvalue is 1 and has
multiplicity 1. Now the sub-dominant eigenvalue (still 1

2 ) has multiplicity 2. We can

write the original configuration of control points as C0 = ∑
xiai where xi are the

eigenvectors and the coefficients ai are points or vectors. The configuration after k

steps of subdivision is now

Ck = SkC0 = Sk
∑

xiai =
∑

Skxiai =
∑

λk
i xiai → x1a1, (7.20)

and we see that a1 is the limit point. Performing the same calculation as in the curve
case gives

Ck − x1a1

λk
2

=
∑(

λi

λ2

)k

xiai → x2a2 + x3a3, (7.21)

and we see that a2 and a3 spans the tangent plane. So now we want the following
properties of the local subdivision matrix.
• The first (dominant) eigenvalue λ1 should be 1.
• The next two (sub dominant) eigenvalues λ2, λ3 should be equal and strictly less

than 1.
• All other eigenvalues should be strictly less than λ2 = λ3.
Unfortunately, the picture is slightly complicated by extraordinary vertices. An ex-
traordinary vertex is a vertex whose valency is not regular. In a mesh of identical
regular quads (i.e., squares), which tile the plane, all vertices are incident on four
such quads. In a mesh of regular triangles, six triangles meet at a vertex. For a
quad-based scheme the extraordinary vertices are those of valency different from
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four, and, in a triangle-based scheme, the extraordinary vertices are those of valency
different from six.

If the original control mesh has extraordinary vertices and/or faces we cannot use
the standard rules. The generalization of the quadratic tensor product B-spline to the
case of non-quadrilateral is the Doo–Sabin scheme. After one step of subdivision all
vertices have valence four and the number of extraordinary faces are constant. So we
need special rules for extraordinary faces, and the corresponding subdivision matrix
is different in the vicinity of an extraordinary face.

One generalization of the cubic tensor product B-spline to vertices with valence
different from four is known as the Catmull–Clark scheme. After one step of sub-
division all faces are quadrilaterals and the number of extraordinary vertices are
constant. Now we need special rules for extraordinary vertices and the subdivision
matrix once more changes in the vicinity of an extraordinary vertex.

Most subdivision schemes are as above extensions of a tensor product (or box-
spline surface), so we know the degree of differentiability away from extraordinary
vertices and faces. As subdivision does not create new extraordinary points or faces
by repeated subdivision will separate two extraordinary point or faces by an arbi-
trary number of regular points and faces. So when we analyze the surface at an
extraordinary vertex or face, we may assume it is the only one. The eigenanalysis is
not enough though, we also need to consider the so called characteristic map, which
we now proceed to define.

7.2.1 The Characteristic Map

Given an extraordinary point or face we can then find a ring around it that we can di-
vide into a number of sectors where each sector is a piece of an ordinary tensor prod-
uct B-spline surface (or box spline surface), parametrized over a fixed domain Ω ,
see Fig. 7.6. That is, the j th sector can be written

x(u, v, j) = Bj (u, v)C0 = Bj (u, v)
(∑

xiai

)
, (u, v) ∈ Ω, (7.22)

where Bj (u, v) is a row vector containing the basis functions, C0 is a column ma-
trix containing the control points, the columns x1,x2, . . . are the eigenvectors for
the local subdivision matrix and the coefficients ai are points or vectors. When we
now subdivide the mesh the regular part becomes larger and larger. Thus, we ob-
tain a sequence of rings, parametrized as above, that shrink to the point we want to
investigate. The j th sector in the kth ring is parametrized as

xk(u, v, j) = Bj (u, v)Ck = Bj (u, v)
(

Sk
∑

xiai

)

= Bj (u, v)
(∑

λk
i xiai

)
, (7.23)

where S is the local subdivision matrix. When k → ∞ we see that

xk(u, v, j) → Bj (u, v)x1a1 = a1,
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Fig. 7.6 Above the ring of a quadrilateral mesh for a point of valence 3, 4, 5, and 6, respectively.
Below the domain Ω for the standard sector. On the left for a quadrilateral control mesh, on the
right for a triangular mesh

since, by affine invariance, all rows of S must sum to one, which entails that x1 =
[1 1 . . . 1]T , and the sum of the elements in Bj (u, v) is also one. Consequently,
Bj (u, v)x1 = 1. If λ2 = λ3 > λ4 ≥ · · · , and we furthermore have

xk(u, v, j) − a1

λk
2

= Bj (u, v)

(

x2a2 + x3a3 +
∑

i≥4

(
λi

λ2

)k

xiai

)

, (7.24)

so the local behavior is approximately given by Bj (u, v)(x2a2 + x3a3).

Definition 7.1 For a local subdivision matrix with eigenvalues λ1 = 1 > λ2 = λ3 >

|λ4| ≥ · · · , and corresponding eigenvectors xi the characteristic map is on the j th
sector defined by

Ψ (u, v, j) = Bj (u, v)[x2,x3], (u, v) ∈ Ω. (7.25)

Recall that x2,x3 are column vectors of length n, where n is the size of the invari-
ant neighborhood, and Bj (u, v) is a row vector of length n. Thus, Bj (u, v)[x2,x3]
is a row vector of length two and Ψ (·, ·, j) is a map Ω →R

2.

Definition 7.2 The characteristic map is regular if

det
∂Ψ (u, v, j)

∂(u, v)
	= 0, for all (u, v) ∈ Ω and for all sectors j .
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Fig. 7.7 Many subdivision
schemes split triangles or
quadrilaterals as shown in this
figure

Theorem 7.2 If the eigenvalues λi for the local subdivision matrix satisfy i λ1 =
1 > λ2 = λ3 > |λ4| ≥ · · · , and the characteristic map is regular, then the subdivision
surface is a tangent plane continuous for all initial control meshes c0 = ∑

xiai

where the coefficients a2, a3 are linearly independent.

7.3 Subdivision Surfaces in Practice

Subdivision curves are very easy to implement. From a control polygon subdivision
recursively produces a new polygon with twice as many vertices. Vertex positions
are conveniently stored in an array, and if we are given a particular vertex occupying
a given entry in this array, the next vertex is known to be stored in the subsequent
entry in this vector.

For surfaces the principle is almost the same. The control polyhedron is refined
by insertion of new vertices, which are computed as linear combinations (summing
to one) of vertices in the coarser polyhedron. However, the connectivity is more
complicated. We can store our vertices in a single array, but there is no longer a
simple connection between the position of the vertex in the mesh and its array index.

Instead, to define a subdivision scheme, we must specify how more refined poly-
gons are produced from the coarse polygons, and how the positions of the resulting
new vertices are computed. The two most common strategies for the former task are
shown in Fig. 7.7. As shown in the marginal figure, triangles are split by inserting
a new vertex on each edge. The result is four new triangles: a center triangle and
three triangles which each share one corner with the old triangle. In a quad mesh,
we use a slightly different strategy, and split each edge by inserting a vertex, but we
also add a vertex to the center of each face and form new faces by connecting the
edge vertices with the face vertex. Note that a general N-gon is turned into N quads
by this procedure.

These operations are sometimes referred to as 1–4 splits. Note that in a triangle
mesh, only valence six vertices are introduced by the triangle splitting scheme and
only valence four vertices by the quadrilateral splitting scheme. Thus, extraordinary
vertices whose valence is different from the regular valence are not introduced by
these splits (cf. Sect. 7.3.2).
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Fig. 7.8 The Loop masks for
old vertices and vertices
inserted on edges. Note that
there is no rule for face
vertices since vertices are not
inserted in faces in the Loop
scheme. v denotes valence

From the above discussion, it is clear that we are dealing with three classes of
vertices when we refine a mesh by splitting polygons. The first class consists of
the vertices which are shared by the coarse and the refined mesh. The second class
consists of edge vertices, i.e. vertices which we insert on edges, and the final class
consists of face vertices.

These classes are convenient when it comes to specifying how vertex positions
are computed. It is not quite practical to use a matrix notation. Instead subdivision
schemes are often specified via so called masks which specify how a new vertex is
computed from the old vertices. For instance, the Loop masks are shown in Fig. 7.8.
The fat dots indicate what vertex position we are computing. Say, we are computing
a vertex on an edge. The left hand image shows the mask for an edge vertex. It tells
us that we should compute the position of the new vertex by taking three eighths
of the vertices at either end of the edge and one eighth of the vertices opposite the
edge. Note that these weights sum to one. The right image tells us how to update the
position of an existing vertex. The gap in the 1-ring illustrates that the rule is used
for vertices of arbitrary valence. To apply the rule, β needs to be computed which is
done according to

β = 1

v

(
5

8
− (3 + 2 cos(2π/v))2

64

)

(7.26)

where v is the valency of the vertex [1].
Thus, we now know the Loop scheme almost well enough to implement it. The

only thing left to cover is a practical concern. The normal procedure for splitting
faces is to visit every face and split it into four new faces, but a new vertex created
on an edge will be shared by a set of faces on either side of that edge. If our imple-
mentation is based on an indexed face set representation, there is no natural way to
store the new edge vertex between the point in the time that we visit the first face
and the second face sharing that edge. A common solution is to create an auxiliary
edge data structure (for instance a hash table) to store the new vertices. However, if
we are using an edge-based representation it is somewhat simpler, since we already
have explicit edge representations, and we can probably store the positions of new
vertices as a datum associated with the edges.
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Fig. 7.9 The tetrahedron on the left was subdivided three times producing the sequence of images
from left to right. Observe that Loop shrinks the models a great deal

Another implementation concern is whether to subdivide “in place” or create a
new mesh. The latter is simpler. If our mesh is represented using an edge-based rep-
resentation, it is clearly possible to split as we go along, but the practical difficulties
are greater than if we simply build a new mesh. There is less house-keeping because
we do not have to keep track of which vertices are new, which vertices are old, edges
which have been split, etc.

7.3.1 Subdivision Schemes

In this chapter, we deal exclusively with stationary subdivision schemes based on
linear combinations of vertices. We can classify such subdivision schemes according
to several criteria. The most common are as follows.
• The type of polygon the scheme is designed for: triangles, quadrilaterals or some

other type.
• Whether it is primal or dual. Primal schemes are those which work as described

above. In a dual (also known as vertex splitting) scheme, we split each vertex into
a number of new vertices. The number is equal to the number of faces incident on
that vertex.

• Whether it is interpolating or approximating. In other words whether the original
vertices are interpolated or not.
In the following, we will discuss a number of concrete subdivision schemes.

Similar discussions can be found in a number of books, e.g. Zorin’s SIGGRAPH
course notes [1], Warren and Weimer’s book [2], and Real-Time Rendering [3].

7.3.1.1 Loop
The Loop scheme [4], which we have just used as an example, is a triangle-based,
primal, and approximating scheme. In regular regions, Loop subdivision reproduces
C2 quartic triangular box splines in the limit. At extraordinary vertices the limit
surface is C1. Loop subdivision is useful because triangle meshes are so common.
Loop subdivision is shown in Fig. 7.9.

7.3.1.2 Catmull–Clark
However, subdivision-based modeling systems often employ a scheme designed
for quadrilaterals, because quads align better with the symmetries of most objects.
A commonly used scheme is known as Catmull–Clark (see Fig. 7.11). Catmull–
Clark is a quad-based, primal, and approximating scheme. In regular regions,



7.3 Subdivision Surfaces in Practice 133

Fig. 7.10 The Catmull–Clark masks for old vertices and vertices inserted on edges, and vertices
inserted in faces. In the vertex mask, v is the valency

Fig. 7.11 The simple mesh on the left was subdivided two times to produce the center and right
meshes using Catmull–Clark subdivision

the Catmull–Clark limit surface is C2 and it reproduces a bicubic tensor product
B-spline patch, as mentioned earlier. At extraordinary vertices the limit surface
is C1 [1].

All faces are split by inserting a vertex at the center and on each edge and, sub-
sequently, connecting the face vertex with all the edge vertices as shown in Fig. 7.7.
The Catmull–Clark masks are shown in Fig. 7.10, and an example of Catmull–Clark
subdivision is shown in Fig. 7.11.
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Fig. 7.12 The Doo–Sabin
scheme is an example of a
dual scheme where a vertex is
split into multiple
vertices—one for each
incident face. On top a cube
after 1, 2, and 3 steps of
Doo–Sabin. Below the cube
subdivided using 1, 2, and 3
steps of Catmull–Clark

7.3.1.3 Doo–Sabin
Duality is easiest to explain with an example: Doo–Sabin is a quad-based, dual, and
approximating scheme which reproduces quadratic tensor product B-spline surfaces
in the limit.

The scheme is a dual scheme, which means that, conceptually, we split vertices
rather than faces. Specifically, we produce a new vertex for each corner of each face.
The position of the new vertex is the average of [1]
– the centroid of the face,
– the midpoints of the two edges adjacent to the old corner, and
– the position of the old corner.
The face is retained in a slightly shrunk version, and we create a new face for each
edge and each vertex. Edges become quads and vertices become faces with the same
number of edges as the valency of the vertex. Three steps of Doo–Sabin subdivision
are shown in Fig. 7.12.

Intuitively, the Doo–Sabin scheme can be seen as a chamfering of the corners
and edges of the old model. From a different point of view, it can also be seen
as a generalization of the Chaikin curve subdivision scheme where we simply cut
off the corners of a polygon until a smooth surface is obtained. In the Doo–Sabin
scheme, we repeatedly cut the edges and corners until we obtain a smooth surface.
The method was originally described in [5].

7.3.1.4 Modified Butterfly
So far, we have only discussed approximating schemes. When subdivision surfaces
are used for design, we typically want approximating schemes because if we force
a surface to interpolate a set of points, the surfaces have a tendency to develop
wrinkles. However, approximating schemes tend to cause considerable shrinkage.
Consequently, it is best to use an interpolating scheme if we just want to refine a
coarse model slightly with a few steps of subdivision.

One well known method for creating interpolating surfaces is the Modified But-
terfly, which is a primal, triangle-based subdivision method. Triangles are split in the
same 1–4 fashion as in the Loop scheme. However, the limit surface is only C1 even
in regular regions. Since the scheme is interpolating, there is no vertex rule. How-
ever, there is a rule for edge vertices which applies to edges adjacent to two regular
vertices and one which applies to edges where one of the vertices is irregular.
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Fig. 7.13 The Modified
Butterfly scheme

Fig. 7.14 The tetrahedron on
the left was subdivided three
times producing the sequence
of images from left to right.
Unlike the Loop, Modified
Butterfly does not shrink the
mesh. On the other hand, the
resulting surface is a little less
fair

The masks for the Modified Butterfly are shown in Fig. 7.13, and the βi are
computed as follows:

v = 3: β0 = 5

12
, β1 = − 1

12
, β2 = − 1

12

v = 4: β0 = 3

8
, β1 = 0, β2 = −1

8
, β3 = 0

v ≥ 5: βi =
1
4 + cos(2πi/v) + 1

2 cos(4πi/v)

v

where v denotes valency as usual [1].
In the first step (and only in the first step), we may have an edge where both end-

points are irregular. In this case, we can simply compute the edge vertex using the
irregular rule for both endpoints and average the result. An example of a Modified
Butterfly subdivision is shown in Fig. 7.14.

7.3.1.5
√

3 Subdivision
The number of triangles grows exponentially when subdividing. For real-time ren-
dering applications this can be a problem, since we wish to keep the amount of
geometry down in order to keep the frame rate up. The

√
3 scheme [6] addresses
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Fig. 7.15 One iteration of the
√

3 subdivision scheme. First we insert vertices at the centers of all
faces (center image), and then all the old edges are flipped producing the final result on the right

Fig. 7.16 The masks for the
√

3 scheme

this problem in two ways. First of all, it is a triangle-based approximating scheme,
and arguably primal, but it does not employ the usual 1–4 split. Instead, a vertex is
inserted at the center of every triangle, and then the old edges are flipped as illus-
trated in Fig. 7.15. Thus, the number of triangles is only tripled in each iteration, and
two iterations of the algorithm lead to a regular subdivision of each triangle where
the original edges are tri-sected. This is the reason for the unusual name. In

√
3 sub-

division, the face vertex is simply inserted in the center of the old face (weighting
each old vertex by 1/3). The masks are shown in Fig. 7.16. β is computed:

β = 4 − 2 cos(2π/v)

9v
. (7.27)

The
√

3 scheme has a very nice feature when it comes to adaptive subdivision.
In adaptive subdivision, we selectively subdivide where needed. Typically, when a
region is deemed sufficiently flat, we stop the subdivision process. Unfortunately,
problems arise where faces at different levels of subdivision are adjacent. Consider
a face which is refined using a 1–4 based scheme which is adjacent to an unrefined
face. In this case, we have a T-junction on the edge which is split from one side only.
Usually this is fixed by inserting an edge connecting the junction to the opposite
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Fig. 7.17 Adaptive
subdivision using the

√
3

scheme above and the normal
1–4 scheme below. On the
left, we have shown how the
triangles are subdivided in the
two schemes. On the right,
the edge flips in the second
step of

√
3 are shown, but

notice that the old edge
separating the subdivided
triangle from the
unsubdivided is left
unflipped. Note also the
addition of an edge to avoid a
T-junction in the 1–4 scheme
shown below

face. This problem does not exist in the
√

3 scheme since the edges are not split. All
we have to do is omit an edge flip. The differences are illustrated in Fig. 7.17.

Finally, the slower rate of increase in the number of triangles makes transitions
between subdivided and not subdivided areas more gradual.

7.3.2 The Role of Extraordinary Vertices

Extraordinary vertices (cf. Sect. 7.2) are simply vertices of irregular valence, but
what does that mean in practice? Regular triangles, quadrilaterals, and hexagons,
and only those, tile the plane. However, only an infinite plane or a torus admits a
tiling with only regular vertices. Thus, any non-trivial mesh contains extraordinary
vertices, but the number is constant during subdivision because subdivision algo-
rithms never create or remove extraordinary vertices. In general, however, subdivi-
sion surfaces tend to become a little less smooth in the vicinity of an extraordinary
vertex, and if the valence is very high, it usually leads to artifacts.

Thus, extraordinary vertices seem to be something the designer should avoid, but
that is neither possible nor desirable. Extraordinary vertices should be placed at the
corners of the model: Observe that if we assume that the quads are nearly regular,
a valence three vertex in a quad mesh has an angle sum of roughly 270 degrees
and a valence five vertex a sum of 450 degrees. In other words, if we consider (8.5)
we should expect that a valency three vertex is at a point of positive and a valency
five vertex at a point of negative Gaussian curvature. Conversely, a vertex which is
intended to be nearly flat in the limit surface should be of valence four.

Finally, note that if a triangle mesh is subdivided with, say, Catmull–Clark, the
result is a very unusual pattern because in the first step nearly every vertex is extraor-
dinary. Thus, subdivision schemes should only be used on meshes of the intended
type.
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Fig. 7.18 Boundary rules for Loop, Catmull–Clark, Doo–Sabin, and
√

3. The vertex we are com-
puting is indicated by a fat dot, and the other vertices of the edges by a vertical line

7.3.3 Boundaries and Sharp Edges

So far, we have assumed the mesh to be a closed 2-manifold. In many cases, this
assumption is not acceptable, and we need to deal with boundaries. This is usually
done by making special masks for boundary edges and vertices which only include
other edge vertices. By letting new boundary vertices depend only on other bound-
ary vertices, we ensure that the same smooth curve is obtained when two subdivision
surfaces meet along a common boundary. Of course, boundary rules are simply sub-
division rules for subdivision curves.

Loop and Catmull–Clark both use boundary rules for curves whose limit curves
are cubic splines. The boundary rules for Doo–Sabin lead to quadratic splines. The
boundary rules in the case of the Modified Butterfly scheme are fairly complex, and
we refer the reader to [7] for a discussion.

In the case of
√

3 subdivision, it is a little harder to deal with boundary edges,
since these cannot be flipped. However, after two subdivision steps, the boundary
edge has been trisected. Consequently, the boundary rules are only applied in every
other step, and we have three types of rule: one for each of the two types of edge
vertex and one for the original vertices.

The boundary rules for the various schemes are shown diagrammatically in
Fig. 7.18.

The boundary edges are also useful in other situations where we want a sharp
edge. If a sequence of edges interior to the surface needs to be sharp, we simply
subdivide them using the boundary rules instead of the face rules.
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7.3.4 Advanced Topics

It is possible to push a vertex to its position on the limit surface without performing
an infinite number of subdivisions. Recall that the limit position is given by the first
eigenvalue of the subdivision matrix. Thus, what we need to do is to decompose
the vertex positions inside the mask into a linear combination of the eigenvectors
of the matrix. It then follows from (7.20) that the limit position is simply the first
eigenvector times its weight in this linear combination. Similarly, we can find the
tangent frame from the second and third eigenvectors. In practice, this work has
been done in a generic fashion for the most popular schemes, and it is possible to
find closed form formulas for the computation of these limit positions and tangent
vectors, e.g. in [3].

It is fairly convenient to implement subdivision in terms of the rules encoded in
the masks shown in Sect. 7.3.1 if we are dealing with data structures that directly
encode the mesh connectivity. However, both Loop and Catmull–Clark admit a dif-
ferent implementation in two loops where edges and faces are split by inserting a
vertex in the middle during the first iteration. This produces a topologically split
mesh with the same geometry. In the second loop, a simple smoothing updates the
vertex positions. Although we still need to treat extraordinary vertices in a special
fashion, this is arguably simpler than using the traditional approach [8].

In a seminal paper [9], Jos Stam pointed out that it is possible to parametrize
Catmull–Clark surfaces using a method (that also generalizes to other schemes),
which is based on analyzing the eigenstructure of the subdivision matrix. In fact, it
is, of course, easy away from the extraordinary vertices where the limit surface is a
parametric surface, but if just one vertex in a patch is extraordinary, more work has
to be done. If we have performed two iterations of subdivision, we can divide the
mesh into patches where only a single vertex of any quad is extraordinary. It is pos-
sible to write down the subdivision matrices for these patches, i.e. the matrices that
will produce a new patch at finer scale around the same extraordinary vertex. Some-
what simplified, to evaluate the parametrization of the subdivision surface near an
extraordinary point, we can simply subdivide until the vicinity of the point is a reg-
ular patch and then evaluate the surface as a bicubic B-spline. Subdivision is costly,
but since we know the subdivision matrix, we do not have to do the subdivision. We
can find the control points for the spline surface from the eigenvector decomposi-
tion of the vertices by multiplying with a sufficiently high power of the eigenvalue.
We cannot avoid irregular vertices, and as pointed out by Myles and Peters [10],
it is a bit ironical that popular subdivision schemes are motivated by the ability to
handle extraordinary vertices while having lower degree of continuity precisely at
those vertices. The C2PS scheme is C2 at the so called polar vertices which may be
irregular vertices. Polar vertices are placed at the tips of protrusions and surrounded
by a ring of triangles. A polar configuration (see Fig. 7.19) is characterized by edge
sequences flowing away from the pole in a radial manner and edge loops circling
the pole. Subdivision with C2PS preserves the polar structure by doubling the num-
ber of radial edge sequences and loops as shown in Fig. 7.19 (middle). Notice that
the valency of the pole doubles for each step of subdivision: nonetheless, the limit
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Fig. 7.19 A polar configuration and how it looks after one and two iterations of subdivision

surface is C2 smooth. Only the pole and the two innermost loops of edges are dealt
with in a special way. The remaining vertices are subdivided using Catmull–Clark.
Unfortunately, the C2PS is scheme is not widely adopted in commercial modeling
packages, and, in fact, the images in Fig. 7.19 show our own slightly simplified
implementation. However, it seems natural to model a wide range of shapes using
polar configurations, so we believe the scheme holds significant promise.

Specifically, we look at the center of a polar configuration. With the advent of
programmable graphics hardware, many algorithms have been transferred to the
graphics processing unit. Subdivision has been a problem in this respect because it
is not possible to subdivide a triangle (or quad) in isolation. We always need neigh-
boring vertices. Fortunately, this is becoming easier since recent graphics cards are
equipped with so called geometry shaders which allow computations to be carried
out on a per-triangle level with access to neighboring vertices. The current trend also
seems to go in the direction of adding tessellation units to graphics hardware. This
means that smooth surface primitives whether formulated as subdivision surfaces or
parametric surfaces are making their way into the graphics hardware, and we may,
finally, be moving away from the polygon as the standard primitive for rendering.

7.4 Exercises

Exercise 7.1 Implement Doo–Sabin subdivision. Hint: This scheme can be imple-
mented as a very simple subdivision where each quad is split into four quads by
inserting a vertex in the center of each face and midpoint of each edge. This is fol-
lowed by taking the dual of the mesh (where the dual vertices are averages of the
corners of the corresponding face).

Exercise 7.2 Implement the
√

3 scheme.
[GEL Users] GEL and many other subdivision schemes allow you to easily flip

edges making this scheme straightforward to implement.
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Exercise 7.3 Implement Catmull–Clark. Hint: This is hard to do if you change the
connectivity of the original It is easiest to first compute the new vertices created for
edges and faces and the new positions of the old vertices. Subsequently, a new mesh
is created with this information.

Exercise 7.4 Implement Loop subdivision. Hint: see above.

Exercise 7.5 Implement the Modified Butterfly subdivision. Hint: same connectiv-
ity as Loop.

Exercise 7.6 Implement boundary rules for the implemented schemes.
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8Curvature in Triangle Meshes

Algorithms for effective manipulation and visualization of triangle meshes often
require some knowledge about the differential properties of the mesh. A trivial ex-
ample is the surface normal, which is dealt with in Sect. 8.1. The surface normal is
only defined for triangle faces, but when a mesh is drawn as a smooth surface, one
generally defines the normal at each vertex and interpolates it across faces. To do
so, some technique for normal estimation is required. For many other applications
such as shape smoothing, shape analysis, artistic rendering, etc. information about
curvature is needed.

This chapter explains how the notion of curvature can be extended to triangle
meshes. We will assume that the mesh is a triangle mesh and not a general polygonal
mesh. This is not a limitation since any polygonal mesh can be triangulated in order
to produce a triangle mesh.

As regards notation: perhaps, it would be more stringent to use different symbols
for the discrete versions of differential geometry, say, mean curvature, for which we
use H both in the discrete and continuous case. Going further, we could have used
various notational devices to distinguish between mean curvature computed using
different methods. We have done neither and use H for mean curvature both in the
continuous and discrete setting. We believe that it can be seen from the context to
what precisely the symbol refers.

Since curvature is not, strictly speaking, defined on meshes, computing curvature
from meshes must be approached by one of the following approaches:
• Compute the integral curvature of a small area instead of the pointwise curvature.

This is the basic strategy used in the formulas for the computation of the mean
curvature normal in Sect. 8.2 and the Gaußian curvature in Sect. 8.3.

• Find a smooth surface that is very close to the triangle mesh: if every edge in a
triangle mesh is replaced by a cylindrical patch and every vertex is replaced by a
spherical cap, we can compute the curvature of this smooth approximation. This
basic strategy is employed in the methods discussed in Sect. 8.4.

• Compute a smooth approximation. This is the classic way of estimating curvature
from triangle meshes is based on almost the opposite outlook. The triangle ver-
tices are assumed to be sampled from some smooth surface, and we fit a smooth

J.A. Bærentzen et al., Guide to Computational Geometry Processing,
DOI 10.1007/978-1-4471-4075-7_8, © Springer-Verlag London 2012
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surface to the vertices in the neighborhood of the point where we wish to find the
curvature. This method is discussed in Sect. 8.5.

In Sect. 8.6 we discuss how to compute the directions of principal curvature from
the shape operator, which has been discussed in the preceding sections.

Finally, it should be noted that there are many other strategies for estimating cur-
vature than those mentioned here. Section 8.7 provides some pointers to additional
literature. The Appendix contains a derivation of the Cotan formula [1] for the mean
curvature normal [2].

For references to books on differential geometry as well as an introduction to the
fundamental notions, the reader is referred to Chap. 3.

8.1 Estimating the Surface Normal

All curvature measures are basically functions of the derivatives of the normal, and
information about the surface normal in itself is used for many purposes, e.g. for
shading when rendering meshes. However, we frequently want to compute the sur-
face normal at vertices where the normal is, strictly speaking, not defined. This
section explains a sound method for computing what is termed a pseudo normal at
mesh vertices. By pseudo normal we understand a vector, associated with a point
on a triangle mesh, that is imbued with some properties analogous to those of the
normal of a smooth surface.

In Chap. 3, we introduced the notion of a parametrization of a smooth surface.
A parametrization S : R2 ⊇ U → R

3 : (u, v) �→ S(u, v) is a map from a 2D domain
to a smooth surface in 3D. As discussed in Sect. 3.3, the normal to a smooth surface
is the cross product of the derivative of S with respect to u and v,

n = Su × Sv

‖Su × Sv‖ .

For a triangular mesh, the normal is clearly defined on the faces, where it is just a
vector perpendicular to the face, but what do we do at vertices and edges? A starting
point is to ask which properties we should require of a vertex normal. An obvious
requirement is that the normal should be similar to the normal of a smooth surface,
if the mesh is very close to a smooth surface. In other words, we should require that
the normal computed for a mesh converges to the normal of a smooth surface, if we
refine the mesh (divide the faces into smaller and smaller faces) until it converges to
the smooth surface.

If the faces are refined in a sound fashion such that the radii of their circumcircles
tend to zero, all the normals around a vertex will tend to the same normal as we refine
the mesh, and the average of the face normals of faces incident on a given vertex
would satisfy this property. Indeed, a common solution for computing the normal at
a vertex is to simply average the normals of the incident faces. However, this is not
the best solution. To see why, we consider two additional properties that we need to
require of a good vertex normal.
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Fig. 8.1 The angle weighted
normal is the average of the
face normals weighted by the
angle αi which the face
makes at the vertex

(1) The normal should be independent of the tessellation and depend only on the
geometry of the mesh. Put differently, if one were to add an outgoing edge to a
vertex by splitting an incident triangle into two triangles, this should not affect
the normal estimate at that vertex.

(2) The normal should allow us to determine whether a point is inside or outside the
mesh. This is more subtle, but for an arbitrary point near but not on a smooth
surface, we know that the normal at the closest point on the nearby smooth
surface will point towards that point. A similar property would be desirable for
vertex normals in meshes.

Having this in mind, we arrive at the following.

Definition 8.1 The angle weighted pseudo normal AWPN at a vertex is

nα =
∑

αini

‖∑
αini‖ , (8.1)

where i runs over all faces incident on the vertex in question.

The AWPN has both these desirable properties. It is almost the same as just
averaging the normals of incident faces, but now the normals are weighted by the
angle which the face makes at the vertex as illustrated in Fig. 8.1. It is obvious that
simply splitting a face does not affect the AWPN since if we split a face by a line
going through a vertex, we merely obtain two faces both with the normal of the old
face, and the angles sum to the angle of the old face [3].

The AWPN also has the second property. Let pi ∈ R
3 be the point in space asso-

ciated with vertex i. If we are given a second point q such that pi is the point on the
mesh closest to q, we have

nα · (q − pi ) > 0, (8.2)

where nα is the normal at vertex i, precisely if q is outside the mesh. Of course,
we can insert a vertex on a face or an edge without changing the geometry so the
AWPN is defined everywhere: on a face it is simply the face normal. On an edge the
AWPN is the average of the normals of the two incident faces. For a proof of (8.2)
the reader is referred to [4].
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8.2 Estimating the Mean Curvature Normal

In the case of plane curves, curvature is unambiguously defined: it is the rate of
change of the unit tangent vector. For surfaces, the situation is more involved, but,
as discussed in Chap. 3, we can define the normal curvature at a point as the cur-
vature of a normal section. A normal section is the intersection of the surface and a
plane containing the normal. Rotating the plane around the normal, we obtain a dif-
ferent normal curvature for each angle. For two perpendicular directions we obtain,
respectively, the smallest and the greatest normal curvature. These are denoted the
minimum and maximum principal curvatures. The mean curvature is the average of
the principal curvatures.

The mean curvature is also related to the notion of a minimal surface [5], i.e.,
a surface that has the smallest area among all surfaces with the same boundary. If
the mean curvature is zero everywhere on a surface, any small local change to the
surface will increase the area. Thus, H = 0 everywhere on a minimal surface.

To be a bit more precise, imagine a small patch around a point p. We can think of
p as a control point which can be moved freely, and the patch (a small neighborhood
of p) will deform smoothly as this happens. Note that the patch is also assumed to
join the rest of the surface in a smooth fashion and that the rest of the surface is not
affected by the deformation. Let the area of the patch be A. The area A can be seen
as a function of the position of p, and, hence, we can define the gradient of A.

The mean curvature is defined as the following limit:

2Hn = 2H = lim
A→0

∇A

A
, (8.3)

where the vector H is the mean curvature normal and with the condition that the
greatest distance between two points on the curve enclosing the area A also tends
to zero. This is a slightly different formulation from the one in Sect. 3.7, because
we consider the change of the area, A, to be a function of a deformation of the local
patch in any direction and not just the normal direction. The salient difference is that
(8.3) yields the mean curvature normal, and (3.40) is a formula for the scalar mean
curvature.

In the case of discrete surfaces, we have a natural definition of a “local patch”,
namely the 1-ring of the vertex. This led Desbrun et al. [2] to define the mean cur-
vature normal simply as the gradient of the area of the 1-ring normalized by the area
of the 1-ring.

Definition 8.2 The mean curvature normal for a mesh vertex is

H(pi ) = 1

2

∇A
1-ring
i

A
1-ring
i

= 1

4A
1-ring
i

∑

pj ∈Ni

(cotαij + cotβij )(pi − pj ), (8.4)
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Fig. 8.2 A comparison of mean curvature (left) to Gaußian curvature (right). Blue is positive and
red is negative, intensity indicates magnitude and the white stripes are spaced at equal intervals to
indicate the rate of change

Fig. 8.3 The angles α and β

are the angles opposite to
edge ij

where A
1-ring
i is the area of the 1-ring. In this equation we sum over all the edges in

the 1-ring and weight the edge by the cotangent of the angles at the vertices opposite
the edge as illustrated in Fig. 8.3. The details of how to derive this formula are found
in the Appendix to this chapter.

Figure 8.2 shows the difference between mean and Gaußian curvature.
A desirable property of the mean curvature normal as defined above is that if the

1-ring is flat, the mean curvature normal is 0. In practice this means that the overall
size and shape of the triangles are unchanged if the mean curvature normal is used
for smoothing as discussed in Sect. 8.7.

It is important to note that the mean curvature normal is really the Laplace–
Beltrami operator (cf. (3.53)) applied to the vertex coordinates independently. Thus,
(8.4) can be seen as a discrete Laplace–Beltrami operator applied to the vertex co-
ordinate p.
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8.3 Estimating Gaußian Curvature using Angle Defects

While mean curvature is the average of the principal curvatures, Gaußian curvature
is their product, but we recall from Chap. 3 that there is also a more intuitive way to
define Gaußian curvature.

We can construct a closed curve c ∈ S around p in the surface S. This curve will
have a corresponding curve c′ in the image of S on the Gauß map. Let the area
enclosed by c be denoted AS and the area enclosed by the corresponding curve c′
be denoted AG. The Gaußian curvature is defined as the limit of the ratio of these
two areas

K = lim
AS→0

AG

AS

, (8.5)

with the further condition that the greatest distance between two points on the curve
c also tends to zero (cf. Sect. 3.7).

Gaußian curvature is clearly zero almost anywhere on a triangle mesh. The neigh-
borhood around a point on a triangle face is completely flat and maps to a single
point on the sphere, and the neighborhood around a point on an edge can be un-
folded into a flat surface. However, for a vertex it is rarely so. If the 1-ring around a
vertex is to be “flattened”, the angles which the incident triangles make at the vertex
must sum to 2π . Otherwise, the vertex has a non-zero Gaußian curvature.

To compute the Gaußian curvature, the limit of the areas in (8.5) can be approxi-
mated using finite areas. We begin by finding the area on the unit sphere of a curve
around the vertex v. Clearly there is a normal for each incident face, and these nor-
mals become the vertices of a spherical polygon1 whose area is

AG(pi ) = 2π −
∑

j

θj , (8.6)

where θj is the angle of face j at the vertex pi , and j is an index running over all
faces in the 1-ring. Equation (8.6) is sometimes called the angle deficit.

The next step is to find the corresponding area on the triangle mesh. Here it is
reasonable to divide the area of each triangle among its three vertices; hence

AS(pi ) = 1

3

∑

j

Aj ,

again, index j runs over all triangles in the 1-ring of pi , and Aj is the area of triangle
j in the 1-ring. This leads to the following expression for the Gaußian curvature of
a vertex.

1A spherical polygon is a polygon on a unit sphere: a polygon whose vertices are points on a unit
sphere and whose edges are segments of great circles connecting these vertices.
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Fig. 8.4 The Voronoi region (left) and the region used for computing the mixed area (right). The
region used for the Voronoi area is not included in the 1-ring in the case of obtuse triangles which
is the motivation for the mixed area. For each obtuse triangle, the mixed-area region is obtained by
connecting a corner of the region to the middle of the edge opposite the obtuse angle

Definition 8.3 The Gaußian curvature at a vertex of a triangle mesh is

K(pi ) = AG(pi )

AS(pi )
= 2π − ∑

j θj

1
3

∑
j Aj

. (8.7)

The Gauß–Bonnet theorem (cf. Sect. 3.8) can also be used to justify this formula,
see [6] for a very lucid explanation.

Assigning a third of the triangle areas to each triangle is not ideal. We would like
to assign to a given vertex the area of the region of the mesh closest to that vertex. In
other words, the area of the Voronoi neighborhood [6]. Unfortunately, as observed
by Meyer et al. [6], the Voronoi neighborhood is not contained in the 1-ring in the
presence of obtuse triangles (see Fig. 8.4). Following [6] the solution is embodied
in Algorithm 8.1 for the mixed area where the symbols are shown in Fig. 8.4. This
algorithm uses the Voronoi area where possible but restricts the region used for area
computation to the 1-ring area. The regions are also non-overlapping and tile the
mesh [6].

Algorithm 8.1 Mixed Area of vertex i

1. Let Amix = 0
2. For each face f incident on vertex i:
3. If f is not obtuse then
4. Amix = Amix + 1

8 (cot(αij )‖pi − pj‖2 + cot(βik)‖pi − pk‖2)

5. Else If the obtuse angle is at vertex i: Amix = Amix + 1
2A(f )

6. Else Amix = Amix + 1
4A(f )
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Fig. 8.5 The dihedral angle
of an edge is the angle
between the two normals
sharing that edge

Fig. 8.6 An edge replaced
by a cylindrical blend

8.4 Curvature Estimation based on Dihedral Angles

Estimation of both the mean curvature and the shape operator (cf., Sect. 3.3) may
be based on the fact that for triangle meshes the surface only bends across edges.
If we imagine that a sharp edge is replaced by a cylindrical blend of radius r , the
curvature is well-defined on this blend. The curvature is zero in the direction of the
edge and 1

r
in the direction perpendicular to the edge (see Fig. 8.6). At any point on

the cylinder, the mean curvature is H = 1
2r

.
The angle β between the face normals on either side of the edge is denoted the

dihedral angle, see Fig. 8.5. Since the cylindrical blend should meet the faces on
either side smoothly (i.e., the cylinder normal should be the same as the face normal
where they meet) the slice of the cylinder should also have an angle of β—regardless
of the radius. Let e be a vector in the direction of the edge and having the same
length. The area of the cylindrical blend is βr‖e‖, and thus the mean curvature
integrated over the entire cylindrical blend, B , is

∫

B

H = 1

2
β‖e‖dA,

regardless of r . Consequently, the formula also holds in the limit as r tends to zero,
and it is reasonable to define the integral of the mean curvature as follows.
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Definition 8.4 The integral of the mean curvature over the edge is

H(e) = 1

2
β‖e‖. (8.8)

The edge may be concave as well as convex. Assign a positive sign to β if the edge
is concave and a negative sign if it is convex.

To integrate the mean curvature over the surface we only need to sum He over
all edges leading to the following formula for the integral absolute mean curvature:

∫

S

H dA =
|E |∑

i=1

H(ei ) = 1

2

|E |∑

i=1

βi‖ei‖. (8.9)

In practice one often needs the integral absolute mean curvature which is defined
as follows:

∫

S

|H |dA = 1

2

|E |∑

i=1

|βi |‖ei‖, (8.10)

where the sign of β is ignored. For instance, this curvature measure is sometimes
minimized when one wishes to optimize a triangulation. See Sect. 8.7.

It is also possible to define a shape operator integral for edges using the notions
above. Instead of the ordinary 2 × 2 matrix, we will define the shape operator as a
3 × 3 matrix. This matrix should have an eigenvalue of zero and a corresponding
eigenvector pointing in the normal direction. Its two non-zero eigenvectors corre-
spond to the min and max curvature, but its eigenvectors are swapped. In other
words, the eigenvector corresponding to the maximum eigenvalue is in the direction
of minimum curvature.

For an edge, the 3 × 3 shape operator is defined as follows:

S(e) = βeeT

‖e‖2
, (8.11)

where β is defined in the same way as above (also with regard to sign). Note that
S(e)e = βe, and S(e)v = 0 for any vector, v, that is orthogonal to e.

To obtain the shape operator at a given vertex (or, generally, point) on the mesh,
a good strategy is to select a region, R, around the vertex. One then sums the shape
operators for each edge wholly or partially within R multiplied by the length of the
intersection of R and the edge segment. Finally, divide by the area of R to obtain
the average for the region. We have the following definition.

Definition 8.5 The shape operator for a point on a triangle mesh is

S(p) =
∑

ei∩R 
=∅[length(ei ∩ R)βieieT
i

1
‖ei‖2 ]

area(R)
. (8.12)
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See [7] for a more rigorous derivation of these formulas based on the theory of
normal cycles. Also, a very similar shape operator has been defined by Polthier
et al. [8]. If we make the simplifying assumption that all edges are split at their
midpoint we obtain the somewhat more readable formula

S(pi ) =
∑

j∈Ni
[ 1
‖eij ‖βij eij eT

ij ]
2AS(pi )

. (8.13)

8.5 Fitting a Smooth Surface

In this section, we discuss an alternative way of obtaining the shape operator, this
time as a 2 × 2 matrix.

An obvious way of estimating the curvature of a triangle mesh is based on fitting
a smooth surface to the mesh. Finding a global surface that fits the mesh is a difficult
problem. Instead, one simply approximates the surface in a local neighborhood of
a vertex, pi . Fortunately, any smooth surface can be represented locally as a height
function f (u, v) where u and v are coordinates in an estimated tangent plane with
normal n. We require that f (0,0) = pi and that the surface normal of f at pi is n.
A good surface to use is the paraboloid given by

f (u, v) = 1

2

(
au2 + 2buv + cv2). (8.14)

If, in fact, b = 0 then a and c are the principal curvatures. However, this requires
that the two axes spanning the tangent plane are aligned with the principal directions
which is not the case in general.

The first step is to find the surface normal. Clearly, the mean curvature normal
discussed in Sect. 8.2 could be used.

The next obvious question is: how many points to use? The surface has only
three degrees of freedom, so only three points are needed. If too many points are
used, the result is an overdetermined system, but this system can be solved in the
least squares sense [9]. In practice, it is probably a good idea to simply use all the
neighbors of a vertex. If the triangle mesh is not degenerate there will be at least
three neighbors.

Based on the normal, n, we need to compute a pair of vectors a and b spanning
the tangent plane. We can find the first one by picking a random vector ã (not parallel
to n) and by subtracting its projection onto n:

a = ã − n(ã · n)

‖ã − n(ã · n)‖ ,

and b = n×a. a, b, and n define a frame in space. We choose to let this frame attach
to the point pi for which we wish to fit the surface. By construction, this means that
the uv-coordinates of pi are at (0,0). For all other points, we find the uv-coordinates
in the following way: let T = [ab] be a 3 × 2 matrix whose columns are a and b.
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Fig. 8.7 The projection of a
vertex into the tangent plane
associated with n

The uv coordinates are

(uj , vj ) = TT (pj − pi ),

and the height values are

hj = n · (pj − pi ).

See Fig. 8.7. For all points pj , we can form the equation

hj = f (uj , vj ),

where the coefficients are unknown. These equations can be rewritten in matrix form
UX = F where U is the matrix of parameter values, X is the vector of coefficients
for the polynomial surface, and F is the vector of height values

⎡

⎢
⎢
⎢
⎢
⎢
⎣

. . .

. . .
u2

j

2 ujvj

v2
j

2
. . .

. . .

⎤

⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎣
a

b

c

⎤

⎦ =

⎡

⎢
⎢
⎢
⎢
⎣

.

.

hj

.

.

⎤

⎥
⎥
⎥
⎥
⎦

. (8.15)

We will assume that we have at least three points. In this case, we can solve (8.15)
in the least squares sense. The least squares solution is

X = DF = ((
UT U

)−1UT
)
F. (8.16)

The final step is to estimate the curvature values form the coefficient vector. The
shape operator (as a 2 × 2 matrix) can be computed directly from the derivatives
of f .

Definition 8.6 The Shape operator for a mesh vertex (2 × 2 matrix) is

S = − 1
√

1 + f 2
u + f 2

v

[
1 + f 2

u fufv

fufv 1 + f 2
v

]−1 [
fuu fuv

fuv fvv

]

,
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where it is understood that all derivatives are evaluated at (u, v) = (0,0). Fortu-
nately, fu(0,0) = fv(0,0) = 0 so the first matrix is the identity; we have fuu = a,
fuv = b, and fvv = c. Consequently,

S = −
[
a b

b c

]

. (8.17)

From S, the principal curvatures and directions at the point pi can be computed as
discussed in the next section. It is also straightforward to transform S into a 3 × 3
matrix using the matrix T:

S3D = TSTT .

For a more detailed discussion of the method above, the reader is referred to
Hamann [10].

8.6 Estimating Principal Curvatures and Directions

Given a shape operator, S, represented as either a 2 × 2 or 3 × 3 matrix, the problem
of finding the principal curvatures and the corresponding directions (an example
of minimum curvature directions is shown in Fig. 8.8) is reduced to finding the
eigenvalues and eigenvectors of S. Note that S is not necessarily symmetric—this
depends on the parametrization. However, the methods which we have discussed
above both produce symmetric shape operators. This may be important since simple
methods for computing eigensolutions rely on the matrix being symmetric.

If S is represented as a 3 × 3 matrix, the eigenvector corresponding to the numer-
ically smallest eigenvalue (it should be zero, but it is possible that it is not exactly
zero due to numerical issues) is the normal direction. The two remaining eigenso-
lutions correspond to the principal curvatures and directions. If one of the principal
curvatures is zero, it is clearly not possible to distinguish between the principal
direction and the normal. However, if we know the normal (which can easily be
estimated) the cross product of the normal and the first principal direction (eigen-
vector) will give the second principal direction. If all eigenvalues are 0, the surface
is clearly planar and the principal directions are not defined.

If S is a 2 × 2 matrix, the eigensolutions simply correspond to the principal
curvatures and directions.

Note, though, that if the dihedral angle method from Sect. 8.4 was used to es-
timate the shape operator, the directions are flipped so that the eigenvector corre-
sponding to the greatest eigenvalue is the direction of minimal curvature.

Once the principal curvatures have been computed, it is easy to find the Gaußian
and mean curvatures using the relations

H = 1

2
(κmin + κmax) = 1

2
trace(S),
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Fig. 8.8 The min curvature directions of the bunny. The directions were estimated using the di-
hedral angle method from Sect. 8.4. The shape operators at each vertex were averaged with their
neighbors to smoothen the field, and then the eigensolutions were found as discussed in Sect. 8.6

and

K = κminκmax = det(S).

8.7 Discussion

For an interesting comparison of curvature estimation methods see [11]. Surazhky
et al. construct meshes from known smooth surfaces and compare the estimated
curvature to the analytic.

Clearly, not all techniques for estimating curvature have been discussed. Prob-
ably a good starting point for a more in-depth look at the literature is [6] where
Meyer et al. propose a systematic framework for estimating curvatures from trian-
gle meshes. Two methods (which were not discussed here) for estimating the shape
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operator were proposed by Taubin [12] and by Hildebrandt and Polthier [8]. The
latter is similar but not identical to the method discussed in Sect. 8.4. Note also
that this is an active area of research, and new methods for computing differential
geometric properties of meshes still appear.

The most obvious application of curvature measures on triangle meshes is simply
the enhancement of visualization. Small curvature variations may not be obvious
from a shaded rendition of 3D model but are easy to detect if the curvature is mapped
onto the surface.

A related area is non-photorealistic rendering which is concerned with the ren-
dering of 3D models in an artistic fashion. One artistic style that has been simulated
is “hatching” where the artist draws strokes in order to enhance shape and simu-
late shading. Very often these strokes are aligned with the directions of min or max
curvature as discussed in [13].

In some cases, we wish to improve a triangulation while maintaining the vertices
unchanged. The most popular way of doing this is by edge flipping. The edge shared
by two adjacent triangles can be replaced by a transverse edge. One approach is to
loop over all edges and flip if it reduces some energy. This means that some energy
function is required, and an effective choice is the integral absolute mean curvature
(8.10). See Sect. 11.2 for more details on this method.

There is a large body of literature on this topic of smoothing and removing noise
from triangle meshes. A popular method is to move vertices in the opposite direction
of the mean curvature normal, i.e. in the direction of −H. This will minimize the
surface area leading to a smoother surface. In fact, (8.4) was (re)introduced in the
context of surface smoothing by Desbrun et al. [2]. It is worth noting, though, that
volume is also reduced which is often a bit of a problem. For more on smoothing
see Chap. 9.

In [14] Pierre Alliez et al. proposed a technique for “remeshing” a polygonal
mesh to produce a new (quad-dominant) mesh whose edges would be aligned with
the min and max curvature directions. This method was based on the shape operator
discussed in Sect. 8.4. Since this paper a number of other solutions to the same
problem have appeared, e.g. [15].

8.8 Exercises

Exercise 8.1 Write a program which computes the Gaußian of all vertices. Visual-
ize the values as a scalar field defined on the surface.

[GEL Users] GEL provides a tool for visualization of scalar fields on meshes.

Exercise 8.2 Write a program which computes the mean curvature normal at all
vertices. Visualize the values as a scalar field defined on the surface. Since the mean
curvature normal is a vector, it must be converted to a scalar. Take the dot product
of the angle weighted normal and the mean curvature normal at each vertex. The
mean curvature is the sign of this dot product times the length of the mean curvature
normal.
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Fig. 8.9 A triangle with a
vertex pi

Exercise 8.3 Compute the integral of the Gaußian curvature over a mesh of known
Euler characteristic, χ . Verify that the integral corresponds almost exactly to 2πχ .

Exercise 8.4 Compute the shape operator for each vertex of a mesh. Obtain the
principal curvature directions and visualize those.

[GEL Users] GEL provides a line field visualization tool.

Appendix

In this appendix, we derive the Cotan formula for the gradient of the area of a trian-
gle. Given a triangle (shown in Fig. 8.9) whose vertex pi is movable, compute the
gradient of the area of the triangle as a function of pi .

It is clear that the gradient is perpendicular to the plane of the triangle since
moving pi either in the positive or negative direction along the triangle normal will
increase the area. Hence, the present position is a minimum. Moving pi parallel to
the base line b will not change the area. It follows that the gradient is in the plane
of the triangle and orthogonal to b. It is trivial to find the length of the gradient, and
this leads to the first line of the equation below. After a number of steps, we reach
the expression used in (8.4).

Some of the steps may be a little tricky. The bottom line is that we need to use the

fact that the cotangent of an angle between two vectors a and b is equal to aT b
‖a×b‖ :

∇A(pi ) = (b × a) × b
2‖b × a‖

= (btb)a − (bta)b
2‖b × a‖

= (btb)a − (bta)a + (bta)a − (bta)b
2‖b × a‖

= −(ctb)a
2‖c × −b‖ + (bta)c

2‖b × a‖
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= (ct−b)a
2‖c × −b‖ + (bta)c

2‖b × a‖
= 1

2
(a cotβ + c cotα).

References

1. Pinkall, U., Polthier, K.: Computing discrete minimal surfaces and their conjugates. Exp.
Math. 2(1), 15–36 (1993)

2. Desbrun, M., Meyer, M., Schröder, P., Barr, A.H.: Implicit fairing of irregular meshes using
diffusion and curvature flow. In: Proceedings of the 26th Annual Conference on Computer
Graphics and Interactive Techniques, SIGGRAPH ’99, pp. 317–324. ACM Press, New York
(1999). doi:10.1145/311535.311576

3. Thürmer, G., Wüthrich, C.A.: Computing vertex normals from polygonal facets. J. Graph.
Tools 3(1), 43–46 (1998)

4. Bærentzen, J., Aanæs, H.: Signed distance computation using the angle weighted pseudo-
normal. IEEE Trans. Vis. Comput. Graph. 11(3), 243–253 (2005)

5. do Carmo, M.P.: Differential Geometry of Curves and Surfaces. Prentice-Hall, Englewood
Cliffs (1976)

6. Meyer, M., Desbrun, M., Schröder, P., Barr, A.H.: Discrete differential-geometry operators for
triangulated 2-manifolds. In: Hege, H.-C., Polthier, K. (eds.) Visualization and Mathematics
III, pp. 35–57. Springer, Heidelberg (2003)

7. Cohen-Steiner, D., Morvan, J.-M.: Restricted Delaunay triangulations and normal cycle. In:
Proceedings of the Nineteenth Annual Symposium on Computational Geometry, SCG ’03,
pp. 312–321. ACM Press, New York (2003). doi:10.1145/777792.777839

8. Hildebrandt, K., Polthier, K.: Anisotropic filtering of non-linear surface features. Comput.
Graph. Forum 23(3), 391–400 (2004)

9. Golub, G.H., van Loan, C.F.: Matrix Computations, 3rd edn. John Hopkins, Baltimore (1996)
10. Hamann, B.: Curvature approximation for triangulated surfaces. In: Geometric Modelling,

pp. 139–153. Springer, London (1993)
11. Surazhsky, T., Magid, E., Soldea, O., Elber, G., Rivlin, E.: A comparison of Gaussian

and mean curvatures triangular meshes. In: Proceedings of IEEE International Automation
(ICRA2003), Taipei, Taiwan, 14–19 September, pp. 1021–1026 (2003)

12. Taubin, G.: Estimating the tensor of curvature of a surface from a polyhedral approximation.
In: Proceedings of the Fifth International Conference on Computer Vision, ICCV ’95, p. 902.
IEEE Comput. Soc., Washington (1995)

13. Hertzmann, A., Zorin, D.: Illustrating smooth surfaces. In: Proceedings of the 27th Annual
Conference on Computer Graphics and Interactive Techniques, SIGGRAPH ’00, pp. 517–526.
ACM, New York (2000). doi:10.1145/344779.345074

14. Alliez, P., Cohen-Steiner, D., Devillers, O., Lévy, B., Desbrun, M.: Anisotropic polygonal
remeshing. ACM Trans. Graph. 22(3), 485–493 (2003). doi:10.1145/882262.882296

15. Kälberer, F., Nieser, M., Polthier, K.: QuadCover-Surface Parameterization using Branched
Coverings. Comput. Graph. Forum 26(3), 375–384 (2007)



9Mesh Smoothing and Variational Subdivision

A big part of the motivation for this book is the need to deal with acquired geom-
etry: for instance, triangle meshes produced from optically scanned point clouds.
Scanning is measurement, and any measurement is subject to noise. Apart from de-
tracting from the visual quality of the model, noise can also be a problem for other
geometric algorithms. Therefore, removing noise from the “signal” in a triangle
mesh is an important concern, and, in fact, the analogy is excellent since we can
construe the vertex positions of a triangle mesh as a discrete signal on an irregular
grid. The signal analysis viewpoint is explored in Sect. 9.1 where we revisit some
of the basic notions which will be used later.

In Sect. 9.2, we introduce the simplest type of mesh smoothing, Laplacian
smoothing, where a vertex is replaced by the average of its neighbors. Laplacian
smoothing is effective but results in a great deal of shrinkage. Taubin smoothing,
which is described next, does a better job of preserving the coarse features, but both
Taubin and Laplacian smoothing also have a tangential component [1], causing the
shape of the triangles to be smoothed as well as the geometry of the shape they
represent.

In Sect. 9.3 we replace the Laplacian with the Laplace–Beltrami operator (cf.,
Sect. 3.9) and arrive at mean curvature flow, which does a much better job of pre-
serving the shape of the triangles while smoothing the geometry represented by the
mesh. The Laplace–Beltrami operator for a triangle mesh can be written as a ma-
trix as we shall discuss in Sect. 9.4, and we can use the eigenvectors of this matrix
to perform a spectral analysis of the shape completely analogous to the discrete
Fourier transform. This can be used for smoothing although for large meshes it is
quite challenging to implement efficiently.

In Sect. 9.5 we discuss some smoothing methods that preserve sharp edges and
corners. Such features are treated as noise by other smoothing algorithms.

Finally, smoothing combined with an up-sampling of the triangle mesh leads to
a simple technique for generating very smooth surfaces. This technique is known as
variational subdivision, which is the topic of Sect. 9.6.

J.A. Bærentzen et al., Guide to Computational Geometry Processing,
DOI 10.1007/978-1-4471-4075-7_9, © Springer-Verlag London 2012
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Fig. 9.1 Simple smoothing
of a 1D signal: the signal on
top contains high frequencies
which have been removed by
convolving the signal with a
function that serves as a
low-pass filter. In the discrete
setting this is simply
equivalent to replacing a
value by the weighted
average of its neighbors

9.1 Signal Processing

The immediate problem with smoothing a triangle mesh is that it is not quite clear
what smoothing means. We can approach the problem by viewing a triangle mesh as
a signal. In many ways, a mesh can be seen as a 2D signal on an irregular grid, just
like an image is a 2D signal on a regular grid of pixels. On a regular grid, smoothing
is performed simply by averaging samples. A simple example of a 1D signal and its
smoothed counterpart are shown in Fig. 9.1.

For nD signals (smooth or discrete on a regular grid) smoothing can be under-
stood as low-pass filtering. Recall that both continuous and discrete signals can be
transformed into the frequency domain via the Fourier transform and the discrete
Fourier transform, respectively. In the following, we will consider just 1D discrete
signal, f , consisting of N samples. We can express f as the sum

f (k) =
N−1∑

n=0

F(n) exp(2πikn/N),

where F(n) is a coefficient which controls how much of the pure wave
exp(2πikn/N) at frequency n that contributes to f .

In the frequency domain, a low-pass filter is simply a function which attenuates
the coefficients, producing new coefficients Flow(n) = L(n)F (n). The ideal low-
pass filter removes high frequencies by simply having L(n) = 0 for frequencies
above some threshold and L(n) = 1 elsewhere.

This removes high frequency detail in the signal, and since noise is frequently
more “high frequency” than the real signal content, this is often desirable. Of course,
there is no guarantee that the high frequencies contain only noise. In fact, it is a
fundamental problem that smoothing tends to remove not only noise but also parts
of the signal.

It is not only possible to perform low-pass filtering in the frequency domain. If
L(n) and F(n) are, respectively, the Fourier transform of the filter and of a func-
tion, the low-pass filtering is simply Flow(n) = F(n)L(n). In the time domain, the
same operation can be expressed in terms of convolution, flow(k) = f (k) ∗ l(k) =∑

m f (m)l(k − m), where ∗ denotes convolution. Assuming l is symmetric and of
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compact support, we can write the filtering

flow(k) =
w∑

m=−w

f (m)l(m − k), (9.1)

which is simply a weighted sum of the values of f in the vicinity of k where the
support w tells us over how wide a neighborhood this average is taken. l is just
the weighting function. Unfortunately, the ideal low-pass filter is not of compact
support, but often we would smooth a signal simply using a symmetric filter with
a small support. In other words, we would locally average the signal values. As we
shall see, this carries over into the mesh domain.

9.2 Laplacian and Taubin Smoothing

In analogy to (9.1), we can smooth the vertex positions, pi , of our mesh using

pi ← 1

|Ni |
∑

pj ∈Ni

pj ,

where Ni is the set of neighbors of i. In other words, a vertex is replaced by the
average of its neighbors. This is known as Laplacian smoothing [2]. A weight λ can
be used to control the degree of smoothing:

pi ← (1 − λ)pi + λ

|Ni |
∑

pj ∈Ni

pj .

These formulas can be written in terms of a mesh Laplacian. The Laplacian of a
2D function is �f = fuu + fvv . It is not obvious what that means on a mesh. The
umbrella operator [2] is based on the observation that we can least squares fit a
smooth second order surface f :R2 → R

3 to the vertices in the 1-ring neighborhood
of a given vertex. With a particular choice of parameter domain,

L(pi ) = 1

|Ni |
∑

pj ∈Ni

(pj − pi ) (9.2)

is the value of �f at pi . For a complete derivation, see the Appendix. In terms of L,
the weighted averaging can now be rewritten

pi ← pi + λL(pi ). (9.3)

For a practical implementation, we should avoid overwriting the positions of some
vertices before we have computed the Laplacian at other vertices. Thus, a good
strategy is to first compute the Laplacian, using (9.2), at all vertices and store these
in an array. Subsequently, the positions are updated at all vertices using (9.3). The
result of Laplacian smoothing implemented in this fashion is shown in Fig. 9.2(a).
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Fig. 9.2 Top: the reconstructed bunny used for these experiments consisting of 35341 vertices,
a version where noise has been added to the vertices (normal direction displacement) and a closeup
of the ear. (a) The bunny after smoothing with 10 iterations of Laplacian smoothing, weight
λ = 0.5. (b) Smoothing with 50 iterations of Taubin smoothing. (c) Mean curvature smoothing
with 10 iterations, weight λ = 0.5
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Fig. 9.3 The result of over
smoothing. A comparison of
4000 iterations of Laplacian
smoothing (left) and Taubin
smoothing (right)

Returning to the low-pass filter outlook, Taubin observed that it is possible to
define notions of frequency and vibration modes for a triangle mesh, and these con-
cepts are strongly linked to the Laplacian. Laplacian smoothing (9.3) has the effect
that it attenuates all frequencies (except 0). See [2] for details. This indiscriminate
attenuation leads to severe shrinkage (as shown in Fig. 9.3), and Taubin designed
a filtering process with less shrinkage. The result is the λ|μ algorithm,1 which is
identical to Laplacian smoothing except that for every other iteration

pi ← pi + λL(pi ),

and for every remaining iteration

pi ← pi − μL(pi ).

If the constants λ and μ are chosen according to certain guidelines, this procedure
will attenuate large frequencies and actually enhance low frequencies slightly. In the
experiments in this chapter, we chose λ = 0.5 and μ = −0.52.

The λ|μ algorithm is effective in that it does not shrink nearly as much as
Laplacian smoothing while it does remove high frequency noise. The theoretical
explanation for this is that it is a better approximation of a low-pass filter: unlike
in Laplacian smoothing, the low frequencies are not attenuated. In fact they are
boosted slightly. A more intuitive explanation is that it alternately shrinks and ex-
pands the model. Thus, the total shrinkage is far less than in plain Laplacian smooth-
ing. Row (b) of Fig. 9.2 shows the effect of Taubin smoothing and Fig. 9.3 shows the
difference between 4000 iterations of Laplacian smoothing versus 4000 iterations of
Taubin smoothing. While the former shrinks the mesh to a no longer recognizable
version, the latter turns it into a bit of a caricature by enhancing some fairly coarse
features (due to the aforementioned boosting of low frequencies).

1Pronounced “Lambda-Mu”, although generally referred to as Taubin smoothing.
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9.3 Mean Curvature Flow

While λ|μ solved the shrinkage problem to a large degree it still did not solve all
the problems. The λ|μ algorithm is an excellent choice for removing a little noise,
but if too many iterations of λ|μ are used the result can be surprising since some
frequencies are actually enhanced as discussed above.

Moreover, the particular choice of the Laplacian,

L(pi ) = 1

|Ni |
∑

pj ∈Ni

(pj − pi ),

does not take geometry into account. This has the practical implication that if the tri-
angle mesh has edges of very irregular length both λ|μ and plain Laplacian smooth-
ing will tend to distort the mesh to equalize the edge lengths. While this may be
desired it can also lead to an unwanted distortion.

In fact, the umbrella operator is a poor choice as observed by Desbrun et al. [1]
because it does not take the shape metric into account. What we should use instead is
the Laplace–Beltrami operator, which is defined as the divergence of the gradient on
a surface. For more details, see Sect. 3.9. As noted in Sect. 8.2, the Laplace–Beltrami
operator applied to the vertex coordinates yields the mean curvature normal. This led
to the Cotan formula [3] (8.4) which has the desirable property that it is zero if the
1-ring is flat. This property is not shared by the umbrella operator which will move
a vertex to the centroid of its neighbors regardless of local geometry. This indicates
that there is less distortion if we simply plug the mean curvature normal into (9.3).
Put differently, Desbrun’s use of the mean curvature normal rather than the umbrella
operator is useful in order to smooth the shape rather than both the shape and the
mesh. On the other hand, the mesh still shrinks with this approach. This problem
was solved simply by rescaling the mesh to make up for lost volume [1].

Another contribution of [1] was that the authors introduced an implicit smoothing
method which allowed for bigger time step albeit the algorithm requires the solving
of a linear system. For a simple explicit solver, we should use the following operator:

LLBO(pi ) = 1∑
pj ∈Ni

cotαij + cotβij

×
∑

pj ∈Ni

(cotαij + cotβij )(pj − pi ), (9.4)

in lieu of L in (9.3). With reference to Fig. 9.4 the angles are computed as follows:

αij = acos

(
(pi − pk) · (pj − pk)

‖pi − pk‖‖pj − pk‖
)

,

βij = acos

(
(pi − pl ) · (pj − pl )

‖pi − pl‖‖pj − pl‖
)

.

(9.5)



9.4 Spectral Smoothing 165

Fig. 9.4 The vertices and
angles needed for computing
the weights used in mean
curvature flow

Some care should be taken to avoid numerical problems. On most computer systems
known to us, acos will return an invalid (NaN) floating point value for input outside
the range [−1,1], and due to numerical imprecision, the argument could be outside
the range. Thus, it makes sense to clamp the argument to [−1,1] before applying
acos. Likewise, if the mesh is degenerate and, say, pi and pk are at the same posi-
tion, the normalization above results in a division by zero. Typically, we fix this by
normalizing a vector only if its length is non-zero. Finally, if αij or βij are zero, the
result will also be an invalid floating point value. Our solution here is to compute
cot(α) = 1

tan(ε+α)
where ε is a small number around the machine precision.

With these precautions, mean curvature flow is an effective technique for smooth-
ing which is recommended if it is important that the geometry and not the structure
of the triangle mesh is smoothed. Figure 9.2(c) illustrates mean curvature flow.

9.4 Spectral Smoothing

As discussed, smoothing attenuates the high frequency details in the mesh, but it
is difficult to filter out some frequencies while leaving other frequencies unscathed
using methods such as Laplacian or Taubin smoothing. Thus, methods which allow
us to deal more precisely with the frequency content of meshes are of great interest.

As observed by Taubin, the basis functions of the Fourier transform are the eigen-
functions of the Laplace operator [2]. On a finite discrete grid, we can represent the
Laplace operator as a matrix, and the eigenvectors of this matrix form a basis in
which we can represent functions on the grid.

This generalizes to triangle meshes where we would use the eigenvectors of the
Laplace–Beltrami operator as our basis. Thus, we need to express the Laplace–
Beltrami operator, L, as a matrix L whose entries are defined as follows [4]:

Lij = 1√
AiAj

(cotαij + cotβij ) if i, j connected,

Lii = −
∑

j∈Ni

1√
AiAj

,

(9.6)
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where Ai is the area belonging to vertex i and the angles α and β are defined as
shown in Fig. 8.3. Ideally, the area used should be the Voronoi area, i.e., the area
of the mesh closest to vertex i. Unfortunately, there is no guarantee that this area is
contained in the set of faces incident on vertex i and then the formula for computing
the Voronoi area does not yield the correct result. In practice, we, therefore, suggest
using the mixed area proposed by [5] where the Voronoi area is used except at
obtuse triangles. The normalization in (9.6) is a little different from the definition
in (8.4). That is because for a spectral decomposition we need the eigenvectors to
be orthogonal, which requires L to be symmetric, i.e., Lij = Lji . Therefore, instead
of dividing all entries in row i by the area associated with vertex i, we divide each
entry, Lij by the square root of the product of the areas associated with vertices i

and j .
For a mesh of N vertices, L has dimensions N × N , and we can compute the

Laplacian of a function whose values are defined per vertex by constructing a vector
of these values, v, and multiplying it on to the matrix, i.e., Lv.

To perform spectral smoothing, we compute the N eigenvectors, ei , of the mesh.
Given all the X, Y, and Z coordinates of the vertices in three separate vectors, we
can now do a spectral decomposition of the mesh by computing the projection of
the coordinate vectors onto each eigenvector as follows:

kx
i = ei · X,

k
y
i = ei · Y,

kz
i = ei · Z.

(9.7)

To get back our coordinate vectors, we sum up the contributions

X =
N∑

i=1

kx
i ei ,

Y =
N∑

i=1

k
y
i ei ,

Z =
N∑

i=1

kz
i ei ,

(9.8)

and if choose N smaller than the total number of vertices we get a smoothed result.
Note that the eigenvectors should be sorted in ascending order of eigenvalue since
the eigenvalue of an eigenvector corresponds to its frequency.

Figure 9.5 illustrates what happens if we reconstruct using 2, 4, 50, and 500
eigenvectors. The mesh shown has 3581 vertices.

This is an effective method for smoothing, but it is perhaps not the most practical
method. Using a standard numerics library, running on a modest computer, it can
easily take minutes to compute the eigenvectors of the Laplace–Beltrami operator
for even a small mesh. Better results can be obtained if we use a sparse matrix
library and restrict ourselves to computing a subset of the eigenvectors. For details
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Fig. 9.5 The vertex positions of the original (simplified) bunny mesh (far left) were projected onto
the eigenvectors of the Laplace–Beltrami operator. From this representation, we reconstructed the
mesh using 2, 4, 50, and 500 eigenvectors as shown from left to right

on such numerical issues and other practical as well as theoretical aspects of spectral
mesh processing, the interested reader is referred to the course notes by Levy and
Zhang [6].

9.5 Feature-Preserving Smoothing

All of the methods discussed so far indiscriminately attenuate high frequency con-
tent whether it corresponds to noise or to actual fine details such as corners and
edges.

An effective method for feature-preserving smoothing, known as FVM (Fuzzy
Vector Median) filtering, is due to Shen and Barner [7]. Their approach is to perform
first a filtering of the face normals and to then fit the mesh to this new set of normals.
Naively taking the average of a face normal and the normals of adjacent faces would
not preserve features. Instead, the authors propose to use a median filter. Initially, for
each face, f , we form a set of faces which are incident on f . The median normal is
the face normal with the smallest angle to the other normals in that set. We obtain the
smoothed normal of face f by computing the weighted average of all the normals
in the incident face set, where the weight is computed using a Gaußian function of
the angular distance to the median normal.

In the second step, the vertices are moved so as to minimize the difference be-
tween the filtered normal and the actual face normal [7]. One iteration of the update
algorithm consists of applying

pi ← pi + k
∑

j∈Ni

∑

f ∈Fij

nf

(
nT

f (pi − pi )
)
, (9.9)

where Fij is the set of (one or two) faces adjacent to edge ij , and k is a small
constant. We suggest to use around 20 iterations and k = 0.05.

The method is fairly simple to implement, and the results are convincing. Fig-
ure 9.6 shows how the fuzzy median filter can be used to reconstruct the geometry
of a cylinder with uneven sized faces from a slightly noisy version. Clearly, in this
case, Taubin smoothing only makes matters worse. The method is not very efficient,
however, and, recently, Zheng et al. proposed a somewhat similar algorithm based
on bilateral filtering of normals [8]. This method appears to be more efficient since
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Fig. 9.6 A cylinder triangulated with triangles of uneven size (top left) has had some noise added
(top right). Below, a comparison of Taubin smoothing (bottom left) and FVM smoothing [7] (bot-
tom right)

the bilateral filter only compares the normal of f to its adjacent faces where the
median filter also compares the normals of adjacent faces to each other.

9.6 Variational Subdivision

In the preceding sections, we have thought of smoothing mostly as a form of low-
pass filtering, but we can also see it as a diffusion process or as energy minimiza-
tion which is the outlook we will adopt in the rest of this chapter: the surface is
changed to reduce some energy, and if we combine this type of energy minimizing
smoothing with refinement of the mesh, we obtain what has been called variational
subdivision [9].

Using variational subdivision, we iteratively place new vertices on the midpoints
of edges to introduce more detail and then move these new vertices to minimize an
energy. Since we want the mesh to interpolate the original points, these are never
moved—only inserted points are moved. This means that the method is relatively
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indifferent to the size of the input, but is very sensitive to the size of the output since
the amount of work done is proportional to the number of output vertices in the final
triangle mesh.

9.6.1 Energy Functionals

Briefly put, calculus of variations allows us to find optimal functions by minimizing
the values of functionals [10]. A functional, E, is a mapping from a space of func-
tions to a real number which we can think of as an energy. The optimal function
according to this energy measure is the one that minimizes E. We will consider two
functionals: the membrane energy and the bending energy. The former is a function
of the values of the first derivatives, i.e., it penalizes stretch, whereas the latter is a
function of the second derivatives, hence penalizing bending.

The membrane energy functional is

EM [f ] = 1

2

∫
f 2

u + f 2
v . (9.10)

In order to find the function f which minimizes this energy, we must find the so
called variational derivative, δEM

δf
and then the point where the variational derivative

is 0. This is completely analogous to normal analysis where the first derivative is 0 at
an extremal point. Again, it is also just a necessary and not a sufficient condition for
finding the global minimum that the variational derivative is 0. However, we shall
assume that we do find the global minimum.

For a generic functional, J , the equation δJ
δf

= 0 is called the Euler–Lagrange
equation. Let J have the form

J [f ] =
∫

F(u, v,f,fu, fv)dudv,

where F is a function which depends on u, v, f and its partial derivatives with
respect to u and v. The Euler–Lagrange equation is then as follows:

Ff − ∂

∂u
Ffu − ∂

∂v
Ffv = 0,

where, e.g., Ffu is the partial derivative of F w.r.t. fu [10].
In our particular case, the functional EM does not directly depend on f , hence

we obtain

0 = − ∂

∂u
Ffu − ∂

∂v
Ffv

= − ∂

∂u
fu − ∂

∂v
fv

= −fuu − fvv.
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In other words, if the membrane energy is minimal, we have the Laplace equation

�f = fuu + fvv = 0. (9.11)

The thin plate or bending energy is

EB [f ] = 1

2

∫
f 2

uu + 2f 2
uv + f 2

vv. (9.12)

Again, the minimum is found by finding the solution to the Euler–Lagrange equation
which turns out to be the biharmonic equation

0 = fuuuu + 2fuuvv + fvvvv, (9.13)

and note that the right hand side is simply the squared Laplace operator, i.e.,

fuuuu + 2fuuvv + fvvvv = �2f.

To summarize, we have two simple schemes. If we wish to minimize the membrane
energy, we need to find the solution to

�f = 0,

whereas the bending energy is minimized by

�2f = 0.

The strategy is to find a discrete version of the two expressions. Here the umbrella
operator which is discussed above and derived in the appendix is the most obvious
choice of Laplace operator. As noted in the sections on smoothing, the umbrella
operator will smooth not only the geometry but also the triangulation. However, for
variational subdivision that is likely to be an advantage. To solve for the bending
energy, the Laplacian can be applied twice to obtain the square Laplacian.

9.6.2 Minimizing the Energies

At this point, we have a Laplacian operator for a mesh. This operator can be ex-
pressed as a matrix, L (applying the Laplacian to all vertices at once).

LP = −KP, (9.14)

where P is the vector of vertex positions, I is the identity, K = I −W , Wij is 1/|Ni |
if vertex i and j are connected.

To minimize the membrane energy for a mesh, we need to solve the following
equation:

LP = −KP = (W − I )P = 0. (9.15)
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In other words, the Laplacian must be 0 for the entire mesh, and we can solve this
system of equations using Gauß–Seidel iteration [11]. The idea behind Gauß–Seidel
iteration is to iteratively compute the solution to a system of equations. For each row,
we solve for the value of the diagonal element using the current value of all the other
columns. When we move on to the next row, the value from the previous row is used.
Provided we have a vertex i with valence three, row i of the equation above looks
like this

−pi + 1

3
pj + 1

3
pk + 1

3
pl = 0,

where j, k, l are the indices of the neighbors of vertex i. In a Gauß–Seidel scheme
we would update as follows:

pi ← 1

3
pj + 1

3
pk + 1

3
pl .

From this example, we can distill the general rule

pi ← 1

|Ni |
∑

pj ∈Ni

pj , (9.16)

which can also be expressed in terms of the Laplacian

pi ← L(pi ) + pi . (9.17)

The squared Laplacian is similar. We simply apply the Laplacian to the values of
the Laplacian at each vertex. Solving the equations is a tiny bit more complicated,
however, since we do not have ones down the diagonal. The squared Laplacian can
be written in full

L2(pi ) = 1

|Ni |
∑

pj ∈Ni

(
L(pj ) −L(pi )

)

= 1

|Ni |
∑

pj ∈Ni

[
1

|Nj |
∑

pk∈Nj

(pk − pj ) − 1

|Ni |
∑

pk∈Ni

(pk − pi )

]
.

From this equation, we can simply sum up the weights for pi to compute the update
rule. The weights are

w = 1

|Ni |
∑

pj ∈Ni

[
1

|Nj | + 1

]
. (9.18)

Thus, L2(pi ) = 0 is the same as

L2(pi ) − wpi + wpi = 0
1

w
L2(pi ) − pi + pi = 0

pi − 1

w
L2(pi ) = pi ,
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leading to the following update rule:

pi ← pi − 1

w
L2(pi ). (9.19)

Kobbelt notes a few important details [12]. In particular, we cannot use Gauß–Seidel
iteration if we precompute the Laplacian for each vertex. Hence, we need to first
compute all the Laplacians and then (having computed the squared Laplacians) we
compute temporary vertex positions for each vertex. Finally, we assign these tem-
porary positions to the vertices which completes one iteration. This corresponds to
Jacobi iterations rather than Gauß–Seidel [11]. We generally use a damping factor
of 0.4 which leads to the following (final) update rules for the squared Laplacian:

pi ← pi − 0.4

w
L2(pi ). (9.20)

Kobbelt provides some more precise guidelines for choosing the damping parame-
ter [12].

9.6.3 Implementation

We now have a vertex update rule for both the membrane energy and the bending
energy. We also know that the membrane energy can be minimized using a simple
Gauß–Seidel scheme while the bending energy can be minimized using Jacobi itera-
tion. A remaining question is how to handle boundary conditions. Vertices pi which
are part of the input should not be moved, and vertices on the boundary should also
be treated differently.
• In our implementation, boundary vertices are simply never moved. This is also

true if they have been introduced during subdivision (which will be discussed
later). The value of the Laplacian is simply 0 for a boundary vertex.

• Vertices which were part of the input but do not lie on the boundary are simply
not moved but they are used when computing L and L2 of their neighbors.
The goal of the algorithm is to introduce new vertices and to move these to posi-

tions so as to minimize either the bending energy or the membrane energy.
New detail is introduced by splitting edges. An edge split introduces a new vertex

which is located on the midpoint of the split edge. Consequently, the (one or) two
triangles sharing this edge are also split.

The aim is to create a mesh which minimizes the desired energy, but, in general,
we would also like the mesh to be as regular as possible. To attain these goals the
following three steps are repeated.
• To make the edge lengths more even, edges are split if they are longer than 1.5

times the average edge length.
• Edges are flipped if it maximizes the minimum angle and the dihedral angle be-

tween the two triangles is very low. This step also improves regularity.
• The energy minimization procedure discussed in the preceding section is run until

the error is below a set threshold (or a maximum number of iterations has been
reached.



9.7 Exercises 173

Fig. 9.7 From top to bottom: a detail of a smooth terrain obtained via L2 variational subdivision
and a corresponding detail of the original mesh

This is iterated for a number of iterations (say 20) until no edge is longer than the
average.

The next step is to introduce more detail. For a fixed number of iterations (typ-
ically 2), the precise same procedure as described above is performed. The only
difference is that edges are split if they are longer than 0.75 times the average length.

The result of variational subdivision applied to the Delaunay triangulation of a
terrain data set is shown in Fig. 9.7. As seen, a relatively smooth surface is produced.
This is because the bending rather than the membrane energy has been used. If the
membrane energy is minimized, the terrain looks more like stretched fabric.

9.7 Exercises

Exercise 9.1 Implement Laplacian smoothing, i.e., perform two passes over a trian-
gles mesh: in the first pass computing the Laplacians using (9.2) and in the second
pass updating the vertex positions using (9.3).

Exercise 9.2 Extend the previous exercise to Taubin smoothing.

Exercise 9.3 Extend the previous exercise to smoothing based on mean curvature
flow.

Exercise 9.4 Implement variational subdivision using the guidelines from
Sect. 9.6.3.

[GEL Users] Note that GEL supplies functions for splitting edges and triangu-
lating the resulting mesh.
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Appendix: A Laplace Operator for a Triangle Mesh

There are a number of techniques for finding a � operator on a triangle mesh. In
many cases, we prefer a discrete Laplace–Beltrami operator, but the umbrella op-
erator [2] has also been used extensively in this chapter and will be derived in the
following.

To start with, we consider how to find the value of � locally at a single vertex.
Notice that in the following, we will move from a scalar function f : R2 → R to a
vector function f : R2 → R

3. This simply means that we minimize three functions
f x , f y , and f z independently, where f(u, v) = [f x(u, v) f y(u, v) f z(u, v)]T .

In the above, we assumed a parametric surface representation. However, this
parametric representation need not be global. All we need is a local function f which
approximates the surface in the neighborhood of that vertex. Given such a function f,
we can simply compute its

�f = fuu + fvv,

and consider that to be the Laplacian of the mesh at the vertex in question. Typi-
cally, we find a local surface approximation by least squares fitting a second order
polynomial surface to the 1-ring neighborhood of a vertex

f(u, v) = f0 + ufu + vfv + u2

2
fuu + uvfuv + v2

2
fvv. (9.21)

Note that the coefficient f corresponds precisely to the surface point f(0,0) and the
other coefficients correspond to the first and second derivatives of the surface at
(u, v) = (0,0).

In order to find a suitable function, f, at a given mesh vertex we must assign a pair
of parameter coordinates (u, v) to each vertex. Let the centre vertex have parameter
coordinates (0,0) and let the other (u, v) coordinates be numbered from 1 to n where
n is the valency (number of neighbors) of the vertex. This is illustrated in Fig. 9.8.

Let j be the index of a vertex in the 1-ring. We reserve the index 0 for the centre
vertex, and the neighbors are numbered from 1 to n. Let pj be the 3D space position
of vertex j . Since (u, v) = (0,0) has been assigned to the centre vertex,

f(0,0) = f0 = p0.

We now subtract the equation above from (9.21) for all the neighboring vertices. We
can then write the resulting system of equations (n equations, one for each neigh-
boring vertex) in matrix form UF = P where U is the matrix of parameter values,
F is the vector of coefficients for the polynomial surface, and P is the vector of
geometric positions:

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

. . . . .

. . . . .

uj vj

u2
j

2 ujvj

v2
j

2
. . . . .

. . . . .

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

fu
fv
fuu
fuv
fvv

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

.

.

pj − p0
.

.

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (9.22)
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Fig. 9.8 This figure
illustrates the 1-ring of a
vertex and shows the
parameter coordinates for the
centre vertex and its
neighbors

Note that each entry in F and P is really a 3D vector. This is not important for the
analysis, since we can consider each component separately.

Clearly, the matrix above has a solution only in the case where n = 5 since the
matrix U is not square otherwise. We will assume that we have at least five neigh-
bors. In this case, we can solve (9.22) in the least squares sense

F = DP = ((
UT U

)−1UT
)
P. (9.23)

To sum up, F is the vector of coefficients to our polynomial surface, and the third
and fifth entry of F correspond to the second order derivatives of f(u, v). We can
compute the Laplacian simply by

�f = F3 + F5 = (D3_ + D5_)P. (9.24)

Till now, we have ignored the fact that we do not really have a parametrization.
Now we need to find a parametrization since the U and, hence, D requires it. We now
parametrize in a way that is completely independent of geometry. A very simple
method is to just distribute the parameter coordinates evenly on the unit circle as
shown in Fig. 9.9.

With this distribution, we can precompute parameter coordinates for a particular
valence as follows:

(uj , vj ) = (
cos(2πj/n), sin(2πj/n)

)
.

If we plug the above values into the U matrix and compute (9.24), we obtain an
unexpectedly simple result. It turns out that

D3_ + D5_ = [4/n 4/n . . . 4/n],
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Fig. 9.9 This figure
illustrates the 1-ring of a
vertex and shows the
parameter coordinates for the
centre vertex and its
neighbors. There are eight
neighbors, and hence the
angle between them is 2π/8

(apparently) for all valencies greater than 5. For n < 5 the system is singular. This
result leads to the following very simple formula:

�f = 4

n

n∑

j=1

(pj − p0). (9.25)

In other words, the Laplacian is simply the average of the vectors from the centre
vertex to its neighbors times 4. This factor is of no importance since we want to
solve �f = 0.

Let Ni be the set of indices of neighbors to the vertex of index i and let n = |Ni |
be the valency of vertex i. Dropping the 4 factor, we can now write a discrete triangle
mesh Laplacian, L, operating on a vertex pi

L(pi ) = 1

|Ni |
∑

pj ∈Ni

(pj − pi )

=
(

1

|Ni |
∑

pj ∈Ni

pj

)
− pi . (9.26)

This operator is usually referred to as the umbrella operator, and we can express it
as a matrix (applying the Laplacian to all vertices at once).

LP = −KP, (9.27)

where P is the vector of vertex positions, I is the identity, K = I −W , Wij is 1/|Ni |
if vertex i and j are connected. This Laplacian is also used for vertices of valence
less than 5, but note that these are rare—unless the mesh is very irregular.
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10Parametrization of Meshes

Previously in this book, we have discussed parametric surfaces which are mappings
from a 2D domain into 3D. However, many, if not most, 3D models in computer
graphics are made of triangles with texture. Texture in this context means an image
which is glued on to the 3D model as illustrated in Fig. 10.1. Unfortunately, since
the images are flat and the 3D model is generally curved (albeit piecewise planar)
the image needs to be deformed in order to precisely fit the 3D model or conversely
the 3D model needs to be flattened to map it onto the image. Typically, we perform
the following steps, illustrated in Fig. 10.2, in order to define the mapping from
texture onto 3D model [1]:
1. the 3D mesh is cut into smaller pieces (each with disc topology) meaning that

the piece can be smoothly deformed to a disc, cf. Sect. 2.3,
2. each piece is made planar, and
3. the pieces are packed into a 2D texture image.
For each vertex, we now have its texture coordinates, i.e., its 2D position in the
texture image. Thus, when we need a mapping from a point inside a triangle and
into the texture image, we simply interpolate the texture coordinates at the corners
of the triangle.

Neither the cutting nor the packing are trivial steps, and in some cases an effort is
made to avoid these steps. For instance, many objects have sphere topology and the
mesh may, in this case, be deformed into a sphere instead of a disc [2]. Also, some
recent methods produce periodic parametrizations covering the entire shape [3]. In
the present chapter, we shall focus on methods for flattening 3D surfaces which
are already of disc topology. Bruno Levy et al. give a fairly complete overview of
the entire process of cutting, flattening and packing the maps in the paper, which
introduced least squares conformal maps [1].

Flattening of 3D surfaces, or parametrization, is not useful exclusively for texture
mapping. Many algorithms also work in the parametrization domain rather than
directly on the 3D shape since this can sometimes simplify algorithms for, e.g.,
remeshing [4]. Moreover, this is clearly not a new topic. In fact, map projections,
see Fig. 10.3, are probably the best known examples of parametrizations. The task is

J.A. Bærentzen et al., Guide to Computational Geometry Processing,
DOI 10.1007/978-1-4471-4075-7_10, © Springer-Verlag London 2012
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Fig. 10.1 This figure illustrates the principle of texture mapping. Texture stored in a planar image
is mapped onto the mesh

Fig. 10.2 This figure illustrates the steps in parametrization (carried out) in the Wings 3D pro-
gram. The simple geometric shape (left) is cut into pieces as indicated by the colored patches
(center) and each pieces is then flattened and packed (poorly) into a 2D image (right)

Fig. 10.3 To the left Mercator projection (1569). An example of a conformal parametrization. To
the right Lambert Azimuthal projection (1772). An example of an area preserving parametrization
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to find a one-to-one mapping between a region on a surface, in this case the sphere,
and a region in the plane.

10.1 Properties of Parametrizations

A parametrization is a mapping from a curved surface to a planar surface (and vice
versa, cf. Sect. 3.1). The ideal situation would of course be if such a mapping could
be to scale, i.e., the mapping preserves lengths and by implication angles. Such a
mapping is known as an isometric map, and, in general, we cannot get such maps,
so one has to settle for less.

A weaker condition on the parametrization is preservation of angles, in which
case the parametrization is called a conformal map. The Mercator projection is
an example, see Fig. 10.3. Another is preservation of area in which case the
parametrization is called a equiarea map. The Lambert Azimuthal projection is an
example, see Fig. 10.3. Let x : U ⊂ R

2 → S ⊂ R
3 be a parametrization of a surface

and let I be the first fundamental form. By Theorem 3.1 we have the following.

1. The parametrization x is an isometry if and only if I = ( 1 0
0 1

)
.

2. The parametrization x is conformal (cf. Fig. 10.3) if and only if I = (
λ 0
0 λ

)
, where

λ is a function on U .
3. The parametrization x is equiarea (cf. Fig. 10.3) if and only if det I = 1.
It is, in general, impossible to have an isometric parametrization. It is only devel-
opable surfaces, cylinders, cones, and tangent developables that can be unrolled in
the plane. They are characterized by having zero Gaußian curvature.

A parametrization is by definition invertible so we can consider the inverse map
u = x−1 : S → U . Any of the properties, 1–3, above obviously holds for x if and
only if it holds for u. In our applications, the smooth surface S is replaced by a
triangular mesh and in the parametrization algorithms we present in this chapter it
is an invertible, and piecewise linear, map, u : S → U ⊆R

2, we construct.
We can identify the plane with the field of complex numbers and a mapping

between two planar domains is conformal if and only if it is holomorphic, which
means that it is complex differentiable. So the uniformization theorem [5, 6], a fa-
mous result in complex function theory, tells us that any simply connected surface,
i.e., with disk topology, can be parametrized conformally and the parameter domain
can be any simply connected domain in the plane.

As we shall soon see, this is in contrast to the piecewise linear situation where the
conformal factor of a conformal map has to be constant, so the map is, essentially,
an isometry.

Going back to planar domains U1,U2 ⊆ R
2 and a mapping f : U1 → U2 :

(u, v) �→ (x, y) the first fundamental form is

I =
(

∂x
∂u

∂y
∂u

∂x
∂v

∂y
∂v

)(
∂x
∂u

∂x
∂v

∂y
∂u

∂y
∂v

)

=
(

( ∂x
∂u

)2 + (
∂y
∂u

)2 ∂x
∂u

∂x
∂v

+ ∂y
∂u

∂y
∂v

∂x
∂u

∂x
∂v

+ ∂y
∂u

∂y
∂v

( ∂x
∂v

)2 + (
∂y
∂v

)2

)

,
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so f is conformal if and only if the Cauchy–Riemann equations hold:

∂x

∂u
= ∂y

∂v
and

∂x

∂v
= − ∂y

∂u
. (10.1)

If we differentiate the first equation with respect to u and the second with respect to
v and add the result we see that

�x = ∂2x

∂u2
+ ∂2x

∂v2
= 0, likewise �y = ∂2y

∂u2
+ ∂2y

∂v2
= 0. (10.2)

The definition of a harmonic function f : RN → R is precisely that �f = 0, and
we see that the coordinate functions x(u, v) and y(u, v) of a conformal map are
harmonic functions.

Definition 10.1 A harmonic map x : (u, v) �→ (x(u, v), y(u, v)) from one planar
domain to another is a map where the two coordinate functions, x and y, are har-
monic.

Harmonic functions minimize the Dirichlet energy,

E(f ) = 1

2

∫
‖∇f ‖2 dudv. (10.3)

This turns out to be attractive: the energy minimization property implies that har-
monic functions and maps are smooth. So while the latter are neither angle nor area
preserving, they are often used in practice.

Any continuous map of the boundary of two regions, i.e., ∂U1 → ∂U2, extends
uniquely to a harmonic map between the interiors U1 → U2. Furthermore, if the
target U2 is convex then the Rado–Kneser–Choquet Theorem, [7–9] tells us that
this harmonic map is a diffeomorphism. A diffeomorphism is a homeomorphism
(cf. Sect. 2.3), where both the map and its inverse is differentiable.

A map f : S → U from a surface S ⊆R
3 to a domain U ⊆R

2 is called harmonic
if, in (10.2), we replace the Laplace operator � in R

2 with the Laplace–Beltrami
operator on the surface S, see Sect. 3.9. Again the Rado–Kneser–Choquet Theorem
holds, i.e., if U is convex then any homeomorphism ∂S → ∂U of the boundaries
extends uniquely to a harmonic map S → U which is a diffeomorphism on the
interior.

10.1.1 Goals of Triangle Mesh Parametrization

In the context of triangle meshes, we often strive for a conformal mapping—because
local preservation of the angles in the triangles corresponds well with our intuitive
notion of shape preservation. Unfortunately, it is, generally, not possible to make a
truly conformal mapping of a triangle mesh. A conformal map would mean that all
triangles are mapped from 3D and into the plane without changing their angles (only
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their sizes). Unfortunately, this is not possible in general: Two triangles sharing an
edge would have to be scaled by the same factor. Since the mesh is connected this
means that all triangles must be scaled by the same factor.

While conformality is not attainable, a number of useful and much used tech-
niques for parametrization of triangle meshes have been developed. In Sect. 10.2 the
basic algorithm is introduced in the context of convex combination mappings: The
method corresponds to fixing the boundary of a disk shaped mesh to a 2D polygon
and then smoothing the interior of the mesh until convergence. In Sect. 10.3, mean
value (or Floater) coordinates are used. This method employs different weights for
the smoothing procedure which have the special property that for an already planar
mesh the algorithm does not change anything. In Sect. 10.4, harmonic maps are in-
troduced. These maps tend to give smooth parametrizations, and in Sect. 10.5 the
boundary is allowed to move which enables us to create parametrizations, which are
least squares conformal.

For a more in-depth treatment, the reader is referred to the survey by Floater and
Hormann [10] or the recent book by Botsch et al. [11] which covers parametrization
and many other aspects of mesh processing.

10.2 Convex Combination Mappings

A practical way of computing the flattening of a 3D mesh is as follows. Since the
mesh must have disc topology, it has a boundary. The boundary vertices are placed
in such a way that they form a convex shape in the 2D domain. All other vertices
are now computed in such a way that

ui =
∑

j∈Ni

λij uj , (10.4)

or, equivalently,
∑

j∈Ni

λij (uj − ui ) = 0, (10.5)

where ui = [ui, vi] is the vector of 2D parameter space coordinates for vertex i and
Ni its set of neighbors. The weights, λij , must have the property that

∑
j∈Ni

λij = 1,
and λij > 0. If this is fulfilled, we know according to Tutte’s theorem [10] that the
mapping is one to one. In other words, the mesh does not fold as it is flattened. In
the case where λij = 1/|Ni | we call the resulting weights barycentric weights.

Algorithm 10.1 shows a simple pseudocode listing of the algorithm for flattening
a mesh of disk topology. Having run the algorithm, the mesh is turned into the unit
disk. Of course, the algorithm works only if the mesh has precisely one simple
boundary loop.

As illustrated in Fig. 10.5 (top) barycentric weights do lead to a lot of distortion
and a less than fair parametrization. The figure compares different techniques for
flattening the mesh shown in Fig. 10.4.
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Algorithm 10.1 Flatten Mesh

1. Let B be the set of boundary vertices
2. Let n = |B|, k = 0
3. Visit vertices i ∈ B in counter clockwise order:
4. ui = [cos(2πk/n) sin(2πk/n)]
5. k = k + 1
6. Visit vertices i /∈ B: ui = [0 0]
7. While vertices move significantly:
8. For each vertex i /∈ B:
9. ui = ∑

j∈Ni
λij uj

Fig. 10.4 A 3D model of a
head. Note that this
triangulated manifold is in
fact homeomorphic to a disc
since it is cut off at the neck.
Consequently, it can be
flattened

10.3 Mean Value Coordinates

Michael Floater proposed a different set of weights known as mean value coordi-
nates [12] and defined as follows:

λij = wij∑
k∈Ni

wik

, wij = tan(
θi−1

2 ) + tan(
θi

2 )

‖pi − pj‖ , (10.6)

where the angles are illustrated in Fig. 10.6. Mean value coordinates have some
concrete advantages. They are always positive since θi < π and they also seem to
do a much better job of preserving the structure of the mesh in a 2D parametriza-
tion than barycentric coordinates as illustrated in Fig. 10.5. Perhaps their power of
reproduction is not surprising since these coordinates are designed to fulfill

∑

j∈Ni

λij pj = pi , (10.7)
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Fig. 10.5 Comparison of
mesh flattening by solving the
Laplace equation with the
boundary vertices placed on a
circle. Various edge weights
were used for the discrete
Laplace operator: From top to
bottom, we used barycentric,
harmonic, and floater (mean
value) weights. Images on the
left show a grid mapped from
the parameter domain back
onto the mesh. Images on the
right show parts of the
parameter domain

when the points pi all lie in a planar configuration which does not fold. Thus, a pla-
nar triangle mesh, which does not fold, is its own parametrization with respect to
mean value coordinates. Or put more simply, running the parametrization algorithm
does not change such a planar mesh if we use mean value coordinates.

Since mean value coordinates depend on geometry (and do not change), it is a
good idea to compute and store λij before the main loop of Algorithm 10.1. Other-
wise, the procedure is the same.
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Fig. 10.6 A one ring with
the angles used in the
cotangent formula and the
vertices of the corresponding
edge

10.4 Harmonic Mappings

As discussed above, harmonic maps are smooth thanks to the property that they
minimize the Dirichlet energy. When it comes to mesh parametrization, we seek a
harmonic map u from the mesh to a planar domain. Thus, it is important to note
that we are now operating on a 3D surface, and the Laplace operator does not take
the surface metric into account. Instead, we should use the Laplace–Beltrami oper-
ator which is defined as the divergence of the gradient on the surface. Stating this
precisely in a smooth setting requires more formalism, than we wish to introduce
here. However, the Laplace–Beltrami operator applied to vertex positions is pre-
cisely two times the mean curvature, thus, for the discrete version, we can use (8.4)
simply replacing the vertex positions with an arbitrary function f :

�Sf = 1

4A
one ring
i

∑

pj ∈Ni

(cotα + cotβ)(fi − fj ),

where A
one ring
i is the area of the triangles incident on vertex i. Typically we do not

normalize with one ring area but instead with the sum of the weights, i.e., we solve
(10.4) with

λij = wij∑
k∈Ni

wik

, wij = 1

2
(cotα + cotβ), (10.8)

for every vertex i, where Ni is the set of indices of neighbors to vertex i as illustrated
in Fig. 10.6.

Algorithm 10.1 remains unchanged for harmonic mappings, but a problematic
issue is that the cots can be negative if one or both of α and β are obtuse. A simple
fix is to clamp the edge weights to a small positive number. Subdivision is another
possibility as mentioned in [11].

10.5 Least Squares Conformal Mappings

In the methods described so far, we do not allow the boundary of the parametrization
to change. This limits how much we can reduce distortion. It is possible to come
closer to conformal maps if we allow the boundary to change. First of all, we can
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view harmonic maps in a different way: The Dirichlet energy

ED(u) = 1

2

∫

S

‖∇u‖dA (10.9)

is minimized by solving �Su = 0. The lower bound of the Dirichlet energy is the
area of the map [13] and if the minimum is reached then the map is indeed confor-
mal. This has motivated the introduction of the conformal energy

EC(u) = ED(u) − A(u) (10.10)

where A(u) is simply the area of the parametrization domain.
In a discrete setting, we observe that moving vertices in the interior of the 2D

parametrization domain does not change the area. Thus, the area gradient is zero.
This, however, is not true on the boundary. Thus, to go from a harmonic mapping
which minimizes the Dirichlet energy to a mapping which minimizes the conformal
energy, we should impose as boundary conditions that the discrete Laplace–Beltrami
operator applied to the coordinates in the parameter domain is identical to the area
gradient.

Again, we can use Algorithm 10.1 for the practical implementation. The main
difference is that while we still initialize the boundary vertices to lie on a unit disk,
we only fix two boundary vertices. The remaining boundary vertices are updated
during the loop, but the new position is set to

ui = 1
∑

j∈Ni
wij

∑

j∈Ni

wij uj i /∈ B

ui = 1
∑

j∈Ni
wij

( ∑

j∈Ni

wij uj − gi

)
i ∈ B

(10.11)

where gi is the gradient of the area of triangles incident on vertex i (as a function of
the position of vertex i) and B is the set of boundary vertices. When computing the
weights wij we now have to deal with boundary edges that have only one incident
triangle. In this case, the weight is computed using (10.8) with only one of the cot
terms.

10.5.1 Natural Boundary Conditions

This method was reached in different ways by Desbrun et al. [14] and Levy et al. [1]
and later these two approaches were shown equivalent in a brief unpublished note
by Cohen–Steiner and Desbrun. The approach by Levy et al. was to find a discrete
expression for the conformal energy and minimize it in the least squares sense.
Hence, they called the result least squares conformal maps.

The approach in [14] is, essentially, that it is “natural” that the discrete Laplacian
equals the area gradient on the boundary because in the planar case, the two are,
in fact, the same. For this reason, Desbrun et al. called these boundary conditions
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Fig. 10.7 A single triangle
and the angles used in the
cotangent formula

the natural boundary conditions. As we see in (10.13) below, the area gradient of
a triangle in 2D can be computed simply by rotating the baseline ukuj 90 degrees
so that it points in the direction of the height. Thus, for all triangles incident on a
boundary vertex i, we rotate by 90 degrees and sum all edges ukuj where k, j are
the indices of an edge opposite vertex i and belonging to its one ring. In the case of
a boundary vertex, this sum replaces zero on the right hand side of (10.5), where we
assume that harmonic weights are used.

Referring to Fig. 10.7, the per triangle contribution to (10.8) is

1

2

(
cotα(ui − uj ) + cotβ(ui − uk)

)
, (10.12)

where we now assume that the angles are also computed from the flattened mesh.
We can rewrite (10.12) to show that it is the same as the gradient of the area of the
triangle, A(ui ), as a function of the position of ui . For simplicity, we will simply
assume a planar configuration below. We introduce a new point m where the height
of the triangle intersects the baseline. Now,

1

2

(
cotα(ui − uj ) + cotβ(ui − uk)

)

= 1

2

(‖m − uk‖
‖ui − m‖ (ui − uj ) + ‖m − uj‖

‖ui − m‖ (ui − uk)

)

= 1

2

(‖m − uk‖
‖ui − m‖ (ui − m + m − uj ) + ‖m − uj‖

‖ui − m‖ (ui − m + m − uk)

)

= 1

2

(‖uj − uk‖(ui − m)

‖ui − m‖
)

= ∇A(ui ). (10.13)

Why is the last equality true? We will make a very simple argument. If we move
ui parallel to the baseline ukuj , its area does not change and the derivative in that
direction is zero. As for the magnitude, the area is a linear function of distance to
the baseline ukuj and proportional to half its length.

In Fig. 10.8 we compare harmonic parametrization with natural boundary con-
ditions to regular harmonic parametrization where the boundary vertices are pinned
to the unit circle. The difference is not enormous, but clearly pinning the bound-
ary vertices to the circle creates a significant distortion precisely near the boundary.
However, natural boundary conditions requires us to specify two vertices in the
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Fig. 10.8 Comparison of harmonic parametrization with natural boundary conditions (top right,
bottom right) and with boundary vertices pinned to a circle (top left, bottom left)

boundary to lock scaling, rotation and translation. In [15] it is argued that this is a
problem because the solution depends on what vertices we choose. This is probably
true, but the dependency can only be due to numerical issues. Indeed, implementing
this method we found that it was much more sensitive to the quality of the mesh,
and our simple iterative solver would fail for meshes with poor triangulations near
the boundary.

10.6 Exercises

Exercise 10.1 Implement Algorithm 10.1 and try it using barycentric, harmonic,
and mean value coordinates. The mesh used in this chapter is provided as an exam-
ple on the book homepage.

Exercise 10.2 Implement least squares conformal maps by adding natural boundary
conditions to the harmonic maps implementation from the first exercise.
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11Simplifying and Optimizing Triangle Meshes

In Chap. 9 we considered methods for improving triangle quality by smoothing and
thus moving the mesh vertices. In this chapter, we will consider methods which
modify triangle meshes (mostly) without moving vertices. This can be quite impor-
tant when the vertices are known to have little noise as, for instance, terrain points
measured by a surveyor. It could also be that smoothing is simply done in a different
part of the pipeline as we shall discuss in Sect. 11.3.

The two main tools for mesh manipulation, which we will use in this chapter,
are edge collapse and edge flip. The former tool is very effective when it comes to
reduction of the complexity of a triangle mesh which is the topic of Sect. 11.1. Trian-
gle meshes acquired from real objects or from tessellated iso-surfaces (cf. Chap. 18)
are almost invariably too detailed for rendering or further processing, and reducing
the number of triangles can significantly speed up any such downstream processing.

In Sect. 11.2 we discuss how edge flips can be used to improve a triangle mesh.
This is useful when we have a mesh without much redundancy in the set of vertices
but whose geometry can still be improved. These improvements could be made both
to improve the quality of the triangles (removing triangles with very small or big
angles) and also to improve the overall geometry of the shape. Figure 11.1 illustrates
how a scanned 3D model of a Greek bust is significantly improved by edge flipping;
the most obvious improvement being that the dark spots in the rendering, which
are due to nearly degenerate triangles, are removed by optimization. However, as
Fig. 11.10 shows, mesh optimization can sometimes find structure in the data which
the original triangulation does not show.

Edge flips alone do not suffice if our goal is to create a nearly regular mesh where
most vertices have valency six and triangles are nearly equilateral. In Sect. 11.3 we
consider how to combine optimization by edge flipping with smoothing as well as
both coarsening and refinement in order to produce a nearly regular mesh.

A general theme of this chapter is optimization. In the case of simplification,
we look for the mesh which best approximates an original mesh but with a smaller
number of vertices. In the case of mesh optimization, we try to find a mesh which
minimizes a geometric measure (e.g., curvature) or which maximizes triangle qual-
ity (e.g., making them as equilateral as possible). In most cases, we use simple

J.A. Bærentzen et al., Guide to Computational Geometry Processing,
DOI 10.1007/978-1-4471-4075-7_11, © Springer-Verlag London 2012
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Fig. 11.1 The Egea statue on the left was optimized by edge flipping producing the result on the
right. Initially, the integral absolute mean curvature was greedily optimized using edge flips. Next,
the minimum angle was maximized using the same method, but with a threshold on the dihedral
angle disallowing flips across sharp edges

greedy strategies where we always choose the best next step. Such strategies often
work well but might be trapped in local minima. If the results are not satisfactory
a “bigger hammer” that often improves things significantly is simulated annealing
which is discussed more in Sect. 11.2.3

11.1 Simplification of Triangle Meshes

Acquired triangle meshes have a tendency to contain a lot of redundancy. For in-
stance, an optical scanner measures the 3D position of points on a surface and it is
not generally possible to tune the number of measured points to how detailed the
surface is. Consequently, we have to deal with meshes containing, say, millions of
polygons, and in many cases it is desirable to remove this redundancy by some sort
of simplification.

Perhaps the method that first comes to mind first is clustering of vertices. For
instance, we could divide space into a regular grid of rectangular boxes, and all ver-
tices with a given box are replaced with a single new vertex at the average position
of the old vertices. Clearly, some triangles have all vertices inside the box and are re-
duced to points (and are discarded), other triangles will be reduced to line segments,
while some remain triangular.

This procedure has the advantage that it can simplify topology, i.e., we can sim-
plify a sponge object effectively using this method. On the other hand, we often
want to disallow topology changes. Another issue with the method is that the geom-
etry of the object will change a lot: sharp edges and corners are not preserved when
we simply compute average positions. In general, clustering is too simplistic and
produces results far worse both with regard to triangle quality and to approximation
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Fig. 11.2 A simple comparison of simplification by clustering on the left to Garland–Heckbert
simplification on the right. The meshes contain the same number of triangles, 3682

of the original object than the method which we will discuss later in this chapter.
For a comparison see Fig. 11.2.

Another fairly early method consists of removing a vertex along with all inci-
dent triangles and then triangulating the hole. If the hole has a fairly regular shape
and the triangles lie in what is reasonable approximation of a plane [1]. This pro-
cedure known as decimation works well, but it has been superseded by a slightly
simpler alternative which we will describe shortly. Decimation can also be seen
as a precursor of more recent work where triangle clusters are found and replaced
by individual polygons [2]. These methods, called variational shape approximation,
directly compute simplified polygonal meshes from very detailed triangle meshes.
The central idea is to find a set of clusters which minimizes an energy function that
describes how well these clusters fit a smooth patch such as a plane or more gen-
erally a quadric surface [3]. Thus, instead of clustering vertices in space with no
regard for connectivity, we cluster faces on the surface according to how well they
approximate a smooth surface.

More recently, attention has been turned to other methods, which are based on
creating periodic parametrizations of the triangles meshes based on vector fields
such as those produced by the principal curvature directions. A good example of
such a method is QuadCover by Kälberer et al. [4]. The advantage of these methods
is that they produce quad meshes that align well with the symmetry directions of the
object and generally have an appearance similar to meshes that have been created
by a human designer.

However, when it comes triangle mesh simplification, a relatively early algorithm
due to Garland and Heckbert is still much used [5]. Instead of removing a vertex
along with its incident faces, the vertex is removed by merging it with a neighbor-
ing vertex thus collapsing their shared edge (cf. Sect. 5.4). In fact, this operation
can more generally be seen as merging any two vertices in which case topological
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Algorithm 11.1 Mesh simplification
1. For each edge we store the cost of a collapse in a priority queue.
2. Extract the collapse which is cheapest and perform it. This removes an edge

along with its adjacent triangles. Its two vertices are merged into a single vertex,
possibly with a new position.

3. Recompute the collapse cost for all edges affected by the collapse and update
their position in the priority queue.

4. Until the stop condition is met, we go to 2.

changes are still possible, but in most cases we only merge connected vertices and
often explicitly disallow a merge if the topology would change.

11.1.1 Simplification by Edge Collapses

When performing mesh simplification we generally wish to reduce the complexity
of the model while preserving the geometry as much as possible. In the context
of a method based on edge collapse, a greedy strategy would be to always choose
the edge collapse which has the least impact on geometry and to go on until the
simplification goal has been reached. Thus, we need a cost function which tells
us how much the geometry changes for a given edge collapse. With such a cost
function, we can perform mesh simplification using Algorithm 11.1. This algorithm
requires a priority queue, which is an off-the-shelf data structure. However, a banal
but tricky issue is that we need to update the entries in the priority queue in Step 3.
A simple alternative is to put a time stamp on the edges. When an edge cost is
updated, we update the time stamp and put an entry with the new time stamp in the
priority queue. When an element is extracted from the queue, we discard it if the
time stamps do not match.

The next important concern is the stop condition. The easiest condition is to sim-
ply stop when a given mesh complexity has been reached, e.g., how many of the
original vertices or faces are left. Ideally, we would want the algorithm to stop when
the changes to the mesh are too great. This is essentially what the cost function typi-
cally measures and an obvious function is one which measures the distance from the
simplified shape to the original. This can be stated more precisely as the Hausdorff
distance. If we regard the original mesh as a point set A and the simplified mesh
as a point set B , we find, for all points in B , the closest point in A. The directed
Hausdorff distance is then the greatest of these:

h(A,B) = max
a∈A

(
min
b∈B

(‖a − b‖)
)
. (11.1)

This is not a symmetric measure, since the tip of a small feature in A could be
far from B while all points on B are quite close to some point of A as shown
in Fig. 11.3. To make it symmetric, we simply take the maximum of the directed
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Fig. 11.3 The directed
Haussdorf distance from A to
B is greater than that from B

to A since the closest point on
B is relatively far from the tip
of the protrusion on A

Hausdorff distance from A to B and B to A:

H(A,B) = max
(
h(A,B),h(B,A)

)
. (11.2)

To compute the symmetric Hausdorff distance in practice, we will have to sample
points on all of the triangles to create a dense set of points (capturing all features)
for both A and B .

Thus, we could implement an algorithm which iteratively collapsed edges, al-
ways picking the edge whose collapse would cause the smallest increase in Haus-
dorff distance, until the Hausdorff distance were above a given threshold or a given
number of triangle had been reached. In practice this algorithm will be quite costly
from a computational point of view. A feasible alternative is to precompute a dis-
tance field (cf. Chap. 17) for the original mesh. If we denote the original B , the
Hausdorff distance from the decimated mesh A to B is computed by sampling a
set of points on A and for each point looking up the distance in B’s distance field.
The maximum of the distances found is an approximation of the directed Hausdorff
distance. Although the grids used in [6] are binary in the sense that the grid points
have binary values, this approach is similar to that adopted by Zelinka and Garland.

11.1.2 Quadric Error Metrics

However, previously Garland and Heckbert proposed another strategy [5]. Given a
plane in 3D space which we will define through a normal, n, and the distance of the
plane from the origin, d , we can compute the square distance to a point, p,

Q(p) = (p · n − d)2

= (
pT n − d

)(
nT p − d

)

= pT Ap + bT p + d2, (11.3)

where A = nnT and b = −2dn. Normally, we define the plane from a triangle where
a point of the triangle is used to compute the distance to the origin. If we call that
point p0, then d = n · p0.

Thus, Q, which we will denote a quadric error metric (QEM), is a quadratic
function which we can represent by the triple 〈A,b, d〉. Alternatively, using homo-
geneous coordinates, we could also represent Q as a 4 × 4 matrix, however, we will
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use the triple notation. Assuming we have two planes, measuring the sum of square
distance is straightforward:

Q1(p) + Q2(p) =
∑

i∈{1,2}
pT Aip + bT

i p + d2
i

= pT (A1 + A2)p + (
bT

1 + bT
2

)
p + (

d2
1 + d2

2

)
. (11.4)

Or we could simply sum the two QEMs

Q = Q1 + Q2 = 〈A1 + A2,b1 + b2, d1 + d2〉. (11.5)

If Q represents the sum of two or more QEMs, Q(p) represents the sum of squared
distances to the original planes. Computationally, there is no difference between
computing the squared distance to a single plane and computing the sum of squared
distances to a great number of planes.

Informally, a QEM is a function which measures how close a point is to a bunch
of planes (containing a subset of the triangles in a 3D model). The value may be
high either because the point is far from the planes or because the planes are not
well aligned. No matter how many points are involved, the computational cost is
constant. If p is a vertex, and we find Q, the QEM which represents the planes of
all triangles incident on p, then Q(p) = 0. Conversely, as p moves away from this
point, the value increases.

For the purpose of simplification, we initially compute a QEM for each vertex
by summing the QEMs for the planes of all incident triangles. We then compute Q,
a QEM for each edge, by summing the end-point QEMs. The error of performing an
edge collapse is then simply Q(p) where p is the position of the collapsed vertex.
That position could, for instance, be the position of one of the end-points q1 or q2,
depending on whether Q(p1) < Q(p2). Alternatively, we could pick the optimal
position. Since Q is quadratic, we know that its minimum is where ∇Q = 0 and

∇Q(p) = 2Ap + b, (11.6)

so we can easily find the optimal position, popt,

∇Q(popt) = 2Apopt + b = 0 =⇒ popt = −1

2
A−1b. (11.7)

Unfortunately, A may not be full rank which corresponds to the optimum occurring
at any point in a plane or on a line. For instance, if all the faces that contributed
to Q lie in the same plane, Q = 0 for any point in that plane. To solve that problem,
one generally computes the singular value decomposition of A = UΣVT to find the
pseudo inverse, A+ = VΣ+UT where small singular values of Σ have been set to
zero to obtain a stable solution. An advantage of using the optimal position is that
we generally get a better simplified mesh. However, we pay the price that the set of
vertices of the simplified mesh is not the subset of the vertices of the original mesh.
If we want to compute a progressive mesh [7] such that we can dynamically change
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Fig. 11.4 Four bunnies. The top left image shows the Stanford Bunny. To the right it has been
simplified using the Garland–Heckbert method with 33000 edge collapses. On the bottom left,
33000 random collapses were used, and on the bottom right 33000 edge collapses with optimal
point placement

the number of vertices we use for a given 3D model, it is a great advantage that
the vertices of the simplified mesh are a subset. However, for simply computing a
simplified mesh, it is preferable to use the optimal positions.

Whatever strategy is chosen, we find the new vertex position pnew and compute
its cost Q(pnew) which we store in a priority queue. We then extract the cheapest
collapse and perform it by removing the edge and its to adjacent triangles. The new
merged vertex is then placed according to the chosen strategy. The QEM of the
merged vertex is simply the sum of the QEMs of the vertices which were merged.
Finally, all edges incident on the new, merged vertex are updated and reinserted in
the priority queue.

The results of the presented algorithm are shown in Fig. 11.4. It is very reassuring
that the random collapses in the bottom left image are clearly inferior to the QEM-
based collapses in the right images. If we look closely, and especially at the ears of
the Stanford Bunny, it is also clear that optimal placement produces better meshes
with more equilateral triangles than simply choosing one of the end-points.
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11.1.3 Some Implementation Details

In Garland and Heckbert’s original description of the algorithm, any pair of vertices
can be contracted, but it is often implemented on top of a halfedge data structure
which does not support non-manifold surfaces. This means that vertices belonging
to different components will not be selected for merging, but also that we must take
care not to perform simplifications that might result in non-manifold meshes. These
cases were discussed in Sect. 5.4.

A more subtle issue is related to the fact that if A is singular (or so close that
we set some of the singular values to zero) popt = − 1

2 A+b yields the optimal point
closest to the origin. That is usually not desirable since the origin could be placed
quite arbitrarily. We would much prefer, say, the optimal point closest to the center
of the edge being collapsed. Fortunately, we can remedy the situation since columns
of V which correspond to zeroes in Σ form a basis for the null space. Thus, we
can add any linear combination of those columns to popt. So, in practice, if v1 and
v2 are columns whose corresponding singular values are zero, we compute the new
position

pnew = popt + v1(v1 · p0) + v2(v2 · p0), (11.8)

where p0 is the point we wish should serve as the origin. In practice we use the edge
midpoint.

Garland and Heckbert adopted a slightly different strategy which is explained in
Michael Garland’s thesis [8]. If the matrix A is regular, they compute the inverse.
If it is singular they search along the line segment for an optimal position with the
end-points of the contracted edge as their final fall back option.

The precautions discussed above do not entirely guarantee that the new vertex
position is a sound choice. The new vertex position could introduce flipped triangles
with a very big dihedral angle along some edge. To prevent this, we check whether
the new vertex position lies inside the region defined by the triangles that will form
its new 1-ring [8].

A final issue is that of mesh boundaries. A vertex on the boundary can certainly
be collapsed. If two vertices that are collapsed both lie on the boundary we will
normally require that the edge between them is also a boundary edge, since we
otherwise introduce a vertex which lies on two boundary loops. From a geometric
point of view, boundaries also cause trouble. Boundary vertices which result from
a collapse could easily be pulled away from the boundary which, effectively, could
cause holes in the mesh to grow. This problem is easily fixed by adding extra QEMs
to the QEMs of boundary vertices. For a boundary vertex, we compute two planes
both of which contain its normal and one of its two incident boundary edges. These
planes which are perpendicular to the surface and contain the boundary edges suffice
to prevent the boundary loops from degenerating.
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Algorithm 11.2 Mesh optimization
1. Initially, �F is computed for all edges, and for each edge e a pair 〈�F(e), e〉 is

inserted into a priority queue if �F(e) < 0.

2. The next step is a loop where we iteratively extract and remove the record with
the �F corresponding to the greatest decrease in energy from the heap and flip
the corresponding edge.

3. After an edge flip, �F(e′) must be recomputed for any edge e′ if its �F(e′) has
changed as the result of e being flipped.

4. The loop continues until the priority queue is empty.

11.2 Triangle Mesh Optimization by Edge Flips

As we have seen above, simplification can be performed through simple greedy
optimization where we select the cheapest edge to collapse until the stop criterion is
reached. A very similar algorithm can be used for a wide range of tasks if—instead
of edge collapse—we use edge flips (cf. Fig. 11.6). This method simply reconnects
a set of points making no changes to the vertex positions, but it does reconnect
vertices. This algorithm applies whenever we wish to improve the geometry of the
mesh without changing the number or position of the vertices.

An energy function and a priority queue are needed and the basic scheme is to
always perform the edge flip which leads to the greatest reduction in energy F .
Given an edge, e, we denote by �F(e) the energy after minus the energy before an
edge flip:

�F(e) = Fafter(e) − Fbefore(e). (11.9)

Thus, to optimize greedily we need to pick always the edge e with the most negative
�F(e). The details are in Algorithm 11.2. When updating the priority queue, one
can use the time stamp method discussed above in Sect. 11.1.1.

This algorithm can be used to turn any planar triangulation into a Delaunay trian-
gulation. A Delaunay triangulation has the property that it minimizes the maximum
angle. If a flip which changes a configuration of two triangles p0p1p2 and p0p2p3
into p0p1p3 and p3p1p0 (cf. Fig. 11.7) increases the smallest of the six angles in
the configuration it should be made. This corresponds to locally making the edge
Delaunay, and when all such edges have been processed, the mesh is Delaunay
(cf. Sect. 14.2.3). Thus in this case

�F = −(smallest angle after flip − smallest angle before flip). (11.10)

Note that in this case �F is only the local change in energy. Unless the smallest
of the six angles happens to be the globally smallest angle, the energy of the entire
mesh is unaffected. Nevertheless, if the algorithm is run until no more local changes
can be made, the mesh is Delaunay [9].

Having performed the flip, we need to update �F(e′) for any edge e′ belonging
to the two triangles which share the flipped edge e.
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Fig. 11.5 The starting point (top left) is a simplified version of the Stanford bunny (simplified us-
ing the Garland–Heckbert method) which has been corrupted by random edge flips (top right). We
then use the greedy optimization method just described to maximize the minimum angle (bottom
left) and to minimize the integral absolute mean curvature (bottom right)

An important aspect of this algorithm is that it also works quite well on meshes
which are not planar, and in Fig. 11.5 we see the result (bottom left) of applying the
method to a simplified bunny where the connectivity has been corrupted by random
edge flips (shown top right). The result is, in fact, very similar to the original model
(top left) but near the bottom of the model, we notice that the silhouette has become a
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Fig. 11.6 Edge
Configurations: A triangle
mesh approximates a surface
with a sharp bend. On the left
an edge is transverse to the
bend. On the right an edge
flip has been performed, and
the new edge follows the bend

Fig. 11.7 This illustration
shows an edge e, the normals
of its adjacent faces, its
end-points and the dihedral
angle

bit jagged. This is unsurprising because in a sense our energy only takes the triangle
quality and not the mesh quality into account.

11.2.1 Energy Functions Based on the Dihedral Angles

Maximizing the minimum angle improves triangle quality but not necessarily the
mesh geometry. Consider Fig. 11.6 where points are sampled near a sharp feature
line (or bend). Possibly the best configuration considering only the triangle quality is
the one on the left, but clearly the configuration on the right is a better representation
of what we expect the geometry should look like.

Dyn et al. considered various curvature-based energy measures which could be
used to improve triangle meshes using edge flips [10]. One of their findings was
that the integral absolute mean curvature works well and is fairly cheap to compute.
There are several ways of computing the integral absolute mean curvature. One
of these is to sum the dihedral angle times edge length for all edges (8.10). The
approach used by Dyn et al. is similar, but they compute a spatial average for each
vertex and then sum the per-vertex measures of curvature. We find that directly using
(8.10) leads to meshes of just as high quality. If we denote the dihedral angle by β
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Fig. 11.8 Plot of Fc for a
single edge e as a function of
dihedral angle βe with γ = 4
and le = 1

(cf. Fig. 11.7), the energy is simply

Fβ = 1

2

|E |∑
i=1

|βi |‖ei‖. (11.11)

This functional is almost the same as F2 in [10], except that we have energy per
edge rather than per vertex.

When an edge flip is performed, the difference in energy,

�Fβ = F
β

after − F
β

before,

is easily computed since only the five edges belonging to the two triangles adjacent
to e are affected. This energy measure works quite well and was used in Fig. 11.5
(bottom right). It is clear that minimizing the integral absolute mean curvature some-
times produces triangles that have a smaller minimum angle but a better overall
mesh geometry. In particular, we notice that the jagged silhouette from the bottom
left image is straight in the bottom right image.

For some tasks, we have found that variations Fβ can be quite useful. These
tasks, mostly related to optimization of triangle meshes representing terrain models,
were investigated in a technical report [11] from which we relate central findings in
this chapter.

One simplification we can make to Fβ is due to the fact that the angle β is
generally computed from the normal vectors and we do not need to take the inverse
cosine to obtain the angle. More importantly, if we consider Fig. 11.6 it is clear that
the flipped edge in the configuration on the right could have a very sharp dihedral
angle such that �Fβ does not decrease because a single big dihedral angle after the
flip could outweigh the sum of the moderately big dihedral angles before the flip.
We address this problem by introducing a parameter γ which is used to bias the
energy towards making flips. Putting these things together, we obtain

Fc =
|E |∑
i=1

[
le

(
1 − cos(βe)

)]1/γ
, (11.12)

where we often choose γ = 4. A plot of Fc as a function of βe is shown in Fig. 11.8.
An example of the use of this energy which we shall return to is shown in Fig. 11.10.
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Fig. 11.9 This figure
illustrates the problem of
flipping an edge which is
adjacent to a vertex of
valence three

11.2.2 Avoiding Degenerate Triangles

Not all edges should be flipped even if the flip will cause an energy reduction. Some-
times an edge flip can cause a very sharp edge to be introduced. Since the method,
essentially, tries to concentrate dihedral angle in a few edges while keeping most
edges smooth, the issue is not surprising, but it should be avoided by setting an up-
per threshold, τ ∈ [0,π], on the dihedral angle. If an edge flip results in a dihedral
angle greater than this threshold, the flip is not allowed. Usually, this threshold is
set to 2.09 rad ≈ 120◦.

In the case of terrain data, we know that the triangles should always face up,
consistently. If an edge flip results in a triangle facing down, the flip is not allowed.

If we are dealing with terrain data, it seems that either of these two rules suffices.
For general triangle meshes, the first rule is necessary, and the second does not
apply.

However, more rules are necessary: It is assumed that the triangle mesh repre-
sents a manifold surface [12], possibly with boundary. It is fairly obvious that we
cannot flip boundary edges. However, some flips will also violate the manifold prop-
erty of the mesh and these are not allowed. In practical terms, manifoldness means
that every edge is adjacent to two triangles, and that the triangles sharing a vertex
form a single cycle around that vertex (cf. Sect. 5.2). Moreover, the intersection of
two triangles should be either empty or the shared edge.

To preserve manifoldness, an edge is flipped only on two conditions:
1. Both vertices at the end-points of the edge must have valence (i.e., the number

of adjacent edges) greater than three.
2. The two vertices which will be connected by the flip must not be connected by a

different edge.
The first rule ensures that we do not have vertices of valence two after the flip. If an
interior vertex has valence two, it is connected to two edges which in turn are both
adjacent to the same two triangles. Then these two triangles share all three vertices,
which means that they have collapsed as shown in Fig. 11.9.

Since all edges are straight, a violation of the second rule means that two edges
after the flip are geometrically identical. Since an interior edge is shared by two
faces, we would have at least three and in general four faces meeting at the same
geometric edge after the flip.



204 11 Simplifying and Optimizing Triangle Meshes

11.2.3 Simulated Annealing

A problem with the greedy strategy is that for many problems, including the present,
all edges can be in a configuration that is locally optimal while the configuration is
not globally optimal. Simulated annealing [13] is a general framework for optimiza-
tion which is well suited to avoid these local optima, although the algorithm is often
slow.

Larry Schumaker initially suggested using simulated annealing as a tool for com-
puting optimal triangulations via edge flips [14]. Applied to the problem at hand, the
method works as follows. We iteratively, pick a random edge from E and compute
the �F associated with flipping this edge. If �F ≤ 0 the flip is performed since the
energy decreases. If �F > 0, the flip is performed with probability:

Pflip(e) = e
−�F

T , (11.13)

where T is the temperature. A random number, r is generated, and if Pflip(e) > r

then e is flipped. For a given T , a small �F means a high probability, and for a
given �F a high temperature means high probability.

Initially, the temperature is very high, which means that all flips are probable.
After some time, the temperature is lowered according to an annealing schedule,
and as the temperature approaches zero, so does the probability of making flips
which cause the energy to increase. The intuition behind the method is that the
initial random flips help avoid being trapped in poor local optima.

Simulated annealing requires some initial parameters. For the experiments in this
chapter, these have been selected experimentally based on advice given in [14]. The
initial temperature is

T0 = −2 min
e

(
�F(e)

)
.

All edges are visited five times in random order (and are either flipped or not ac-
cording the scheme above) before the temperature is lowered. The new temperature
is then computed according to

T ← T · 0.9.

When the temperature becomes very low, flips that increase the energy cease to
occur in practice, and when all edges have been visited without any flips being made,
the algorithm terminates. Pseudocode which sums up the steps discussed above is
provided in Algorithm 11.3.

The method has been tested on several models. The row of images in Fig. 11.10
show a terrain model generated using Delaunay triangulation and after various types
of optimization. The most important feature is a road which runs along the left edge
of the terrain. Fortunately, it is very easy to verify whether a triangulation correctly
captures this feature, and that is plainly not the case for the Delaunay triangulation
shown on the left. In the image on the center left, Fc has been minimized using a
greedy approach. As feared, it does get stuck in a local minimum, and the edges
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Algorithm 11.3 Simulated annealing on meshes
1. Set T = −2 mine(�F(e))

2. Perform five iterations where each edge e is visited in random order:
• if �F(e) ≤ 0 flip e

• else perform flip with probability exp(
−�F(e)

T
)

3. T ← T · 0.9
4. if any flips were made, go to 2

Fig. 11.10 From left to right, this figure shows the original Delaunay triangulation of the height
points, the triangulation after a greedy optimization (with γ = 4), the triangulation after simulated
annealing with γ = 1, and, finally, the triangulation after optimization using simulated annealing
with γ = 4. Notice how the road running along the left side of the terrain is correctly reconstructed
in the image on the right

are only partially aligned with the road. In the image on the center right, simulated
annealing has been used with γ = 1, but again the result is not satisfactory. Only
the combination of γ = 4 and simulated annealing gives a good reconstruction of
the road as seen in the image on the right. The images in Fig. 11.11 show height
curves from the terrain generated directly from the Delaunay triangulation and after
optimization (the same as in the top right image).

The Venus model was used for a test which is shown in Fig. 11.12. The initial
model was corrupted by performing random edge flips resulting in the model shown
in the middle. Using simulated annealing in conjunction with Fβ produced the result
on the right.

Unfortunately, simulated annealing is not efficient, and for very large models,
run times of hours could be required. Perhaps for this reason Dyn et al. [10] took a
different approach to avoiding local minima. Instead of using simulated annealing
they considered combinations of two flips which combined would give an energy
reduction. To be more precise, a single flip might sometimes lead to an energy in-
crease, but if we combine it with a second flip, the combined operation decreases
the energy.
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Fig. 11.11 The two images show the height curves of the model before and after minimization of
Fc, γ = 4

Fig. 11.12 The original Venus model (left), the Venus model corrupted by random edge flips
(middle), the Venus model after minimization of Fβ using simulated annealing (right)
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Algorithm 11.4 Remeshing by local operations
1. Split all edges longer than 4/3 l at their midpoint.
2. Collapse all edges shorter than 4/5 l to their midpoint.
3. Optimize the mesh to improve regularity using Algorithm 11.2.
4. Smooth the mesh.
5. Project vertices onto the original surface.

Thus, a scheme similar to the greedy approach described above is used, but the
priority queue now also contains these double flips. On the other hand, an advantage
of simulated annealing is that it is simpler to implement and almost always gives
good results provided the parameters have been set to reasonable values. Therefore,
simulated annealing is often a good choice for applications where quality of the
result is important and run time less so.

11.3 Remeshing by Local Operations

In the previous section, we discussed schemes that only reconnect vertices. While
that is sufficient for many tasks, we sometimes need to do more. For instance, the
meshes produced by isosurface polygonization algorithms as discussed in Chap. 18
often have vertices which are extremely close together, and, clearly, flipping will
not improve on that. Edge collapses would help, and we can add edge splits to break
edges that are too long. If we also add smoothing to the repertoire (cf. Chap. 9), we
can achieve a semi-regular mesh of high quality. Unfortunately, when we smooth
the mesh, we invariably pull it a bit away from the original surface. To ensure that
we blur details as little as possible, we should also project the vertices back onto
the original surface. If the mesh is a triangulated isosurface, projection onto the
isosurface is straightforward (and the procedure is discussed below). If we only
have the original triangle mesh, projection is a bit more difficult but still feasible.
One approach is to create a distance field from the triangle mesh.

The algorithm we discuss in the following is the one used in [15] which was
in turn adapted from [16]. The input is a triangle mesh and a representation of the
original surface onto which we can project points that have moved. We initially
compute the median edge length l of the original triangle mesh and then perform
ten iterations of Algorithm 11.4. As explained in [17] the numbers 4/3 and 4/5 are
not arbitrary, but judiciously chosen to ensure that collapses and splits result in edge
lengths closer to the target length l than before. Unfortunately, collapsing an edge
shorter than 4/5 of the target length could cause some of the edges connected to the
old end-points to exceed 4/3 of the target length. It is important that we disallow a
collapse if that situation arises [17]. Otherwise, the mesh does not approach a stable
configuration.

The optimization in Step 3 is simply carried out using the greedy edge flip al-
gorithm discussed in Sect. 11.2 but using deviation from regularity as energy. In a
regular triangle mesh, all vertices have valency six. Thus, we can define a regularity
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energy

Fr = 1

2

|V |∑
i=1

(|Ni | − 6
)2

, (11.14)

which is clearly minimal for a completely regular mesh. However, for boundary
vertices the number 6 should be replaced with 4 since that is the valency of regular
boundary vertices.

In our experience, maximizing the minimum angle also works well as an alter-
native to directly optimizing the valency. To promote the regularity of the triangle
areas, tangential, area weighted Laplacian smoothing is used in Step 4. This is sim-
ilar to normal Laplacian smoothing except for two features.
• Each vertex is weighted with the area of its 1-ring. This has the effect that vertices

with a big 1-ring area pull more than vertices with a small 1-ring area promoting
equalization of the 1-ring areas.

• The Laplacian vector is projected into the tangent plane of the vertex. This pre-
vents shrinkage and ensures that vertices stay on or at least close to the surface.

In our experience Taubin smoothing also works quite well: like tangential Laplacian
smoothing it shrinks the surface very little. On the other hand, some shrinkage is un-
avoidable, and, in Step 5, we adjust the mesh to compensate for the shrinkage which
occurs during smoothing. Say our surface is implicitly represented (cf. Sect. 3.10)
via a function Φ : R3 → R where τ is the isovalue, i.e., the value such that we can
define our surface S = {x|Φ(x) = τ } = Φ−1(τ ). In that case, we can simply project
the point using

pnew = p − (
Φ(x) − τ

) ∇Φ(x)

‖∇Φ(x)‖2
. (11.15)

We usually do not have a closed form expression for Φ which is rather represented
as a regular 3D grid of samples. Thus, we would typically use central differences
(cf. Sect. 4.1) to approximate the gradient ∇Φ and (trilinear) interpolation to com-
pute values away from grid points.

If Φ is not close to being a linear function of distance to the surface, we may
need to iterate (11.15) a few times to get sufficiently close to the isosurface, but note
that since a tessellation of the isosurface is a starting point, p is originally very close
to the isosurface and (11.15) generally works well with very few iterations.

As also argued in [17] this algorithm is simpler to implement than many of the
alternatives. Figure 11.13 shows the result of the application of the algorithm to a
mesh produced by Marching Cubes (cf. Chap. 18). The difference is hard to see
on the rendered image on top, but quite obvious in the reflection line and wireframe
images. However, the real reason for performing this optimization is that if we are to
use the mesh for numerics, a semi-regular triangle mesh is preferable to an irregular
mesh [16].
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Fig. 11.13 This figure shows several images of a mesh reconstructed from a structured light scan
of the first author of [15]. The left column of images show the result before the optimization method
discussed in the present section has been applied. The right column shows the result after. From
top to bottom we have normal rendering, rendering of reflection lines and wireframe
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11.4 Discussion

The focus of this chapter has been on simple algorithms which can be used to im-
prove triangle meshes. When it comes to optimization of triangles meshes without
moving the vertices, our options are fairly limited, and the methods in Sect. 11.2 are
probably the most reasonable methods to apply. On the other hand, simplification
and remeshing (Sects. 11.1 and 11.3) can be done in many ways and much research
has gone into these two topics. Incidentally, we can see simplification as being just
one goal of remeshing. Other goals, which we did not consider here would be to
obtain a quad mesh aligned with the principal curvature directions and out-of-core
methods which allow for remeshing of meshes too large to be contained in a com-
puter’s main memory.

The book by Botsch et al. [17] is a good place to begin further investigation of
this and other topics pertaining to remeshing. Hoppe’s early work on optimization of
meshes and subdivision surfaces so that they fit a point cloud is also recommended
[18, 19]. In a broader perspective, the goal of mesh optimization is to produce a
CAD model from a laser scan or otherwise acquired model of a real world object.
If we go a bit further than just reconstructing triangle meshes, and reconstruct para-
metric (e.g., NURBS) patches, we arrive at reverse engineering for CAD which is
an important topic in its own right.

11.5 Exercises

Exercise 11.5.1 [GEL Users] GEL supports functions for mesh optimization
through edge flipping and also Garland–Heckbert simplification. Experiment with
these methods. In particular, try to combine mesh simplification and mesh optimiza-
tion in an iterative algorithm that both simplifies and improves triangle meshes.

Exercise 11.5.2 Based only on a mesh data structure that supports edge flips, imple-
ment the scheme for mesh optimization outlined in Algorithm 11.2. In particular, we
suggest you test the implementation on the two problems of maximizing minimum
angle and minimizing the integral absolute mean curvature.
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12Spatial Data Indexing and Point Location

This chapter is devoted to the spatial data structures that can be used in order to
optimize the access to spatial objects, needed in many of the other chapters of this
part, and in particular, the Iterative Closest Point algorithm. Indeed, in many geo-
metric algorithms, one needs to get fast access to the neighbors of a given object
in order to traverse them. This is also true in some application fields like robotics
and computer vision. However, many geometric data sets are too large to be stored
entirely in the Random Access Memory (RAM). The purpose of spatial data in-
dexing is to decompose the space into regions placed along a space filling curve,
where each region can be stored within a disk block, which is the smallest unit of
memory that can be transferred between the Random Access Memory and the mass
storage. The Z-order curve shown in Fig. 12.1 is a space filling curve. We call these
curves “space filling curves”, because the sequence of tiles given by the curves fills
the space of the data set. The resulting order of the regions is given by the linear
order of the regions along the space filling curve. An easy adversary argument im-
plies that any linear order will fail to always have locations that are close in two-
or higher-dimensional space close in this linear order. Thus, no spatial indexing in
two- or higher-dimensional space is perfect. Some compromises must be made.

This chapter is organized as follows. Section 12.1 will present the context of
spatial data indexing: databases, spatial data handling and spatial data models. Sec-
tion 12.2 will present space-driven methods: the kD tree, the adaptive kD tree, the
binary space partitioning tree and the different kinds of quadtree. Some of these
methods are also driven by objects. Section 12.3 will present the R trees, which are
object-driven spatial access methods. Finally, Sect. 12.4 concludes the chapter.

12.1 Databases, Spatial Data Handling and Spatial Data Models

For a more in-depth coverage of databases, the reader can refer to [1]. Spatial
databases have been covered very extensively in [2, 3]. Spatial data sets tend to
be large, thus whole data sets cannot always be stored in the RAM (Random Ac-
cess Memory) or main memory. Therefore, data have to be organized physically on

J.A. Bærentzen et al., Guide to Computational Geometry Processing,
DOI 10.1007/978-1-4471-4075-7_12, © Springer-Verlag London 2012

213



214 12 Spatial Data Indexing and Point Location

the mass storage in order to be retrieved efficiently (and transferred to the RAM or
main memory). Spatial data indexing can be used for both point location and range
searches (search for all objects in a given region).

12.1.1 Databases

In usual non-spatial databases, the solution for fast retrieval of information is typi-
cally to index the tables of the database using an index file. Information in databases
is stored in tables, which are collections of records. Each record is a n-tuple where
each element of the tuple is a value that belongs to the same set, which is called
a domain. The value type is called a field. Each table must have a minimal (in the
set inclusion sense) set of fields, which identifies uniquely and unambiguously any
record in the table. This minimal set of fields is called a key. An example of a key for
a table of passengers is a passport number together with the country code. An index
file stores pairs of keys and record numbers in the total ordering of the keys. Using
binary search, any entry in an index file can be searched for by key in logarithmic
time. Once the key–record number pair has been located, it is possible to retrieve
in constant time the full record in the file that has been indexed. However, non-
spatial information does not have intrinsically a topology (a consistent definition of
neighborhoods), and it can be sorted using some total ordering.

12.1.2 Spatial Data Handling

Spatial data could be ordered using an order on any coordinate, but that would not
make sense, because such an order would project an n-dimensional space into a
one-dimensional space filling curve, which would not store spatial data according
to its topology. Indeed, there is no spatial ordering that can guarantee that points that
are close in the spatial sense (topologically or geometrically) are stored in adjacent
memory locations or even adjacent memory pages. A simple adversary argument is
easy to design whatever method you use to group points in memory pages. It will
be easy for an adversary, given a decomposition of the space into buckets or regions
(see Fig. 12.1), to take two points near the boundary of two different buckets or
regions and placed on both sides of the boundary. For example, take two points
close to but on opposite sides of the common boundary of tiles “13” and “31”.
Those two points are neighbors, but they are stored in memory pages corresponding
to the different buckets or regions that are far away.

However, different methods have been designed in order to speed-up point or
object retrieval in the mass memory of the computer. The general idea is to cluster
spatial data stored within a spatial database. Each cluster will be stored in a mass
memory page. Different ways of clustering spatial data, and therefore different cor-
responding spatial indices, have been proposed in order to facilitate the efficient
retrieval of spatial information in a computer. One can classify spatial data indexing
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Fig. 12.1 The Z-order

methods according to the mathematical constructs that are used to define the clus-
ters. Spatial indexing methods have used similar approaches as spatial data models,
which are models of spatial data.

12.1.3 Spatial Data Models

Spatial data models have been thought of in terms of the basic idea leading to the
spatial data model: either the underlying space, or the objects that are in that space,
or both. Space-driven spatial data models are models of spatial data, where space is
partitioned into cells. In spatial databases and GIS, such a spatial data model with no
gaps in the stored space is called “continuous”. These space-driven spatial data mod-
els include the raster spatial data model, which is a regular tessellation of the space
in rectangular cells (resulting from applying a grid onto the space). Space-driven
spatial data models include also any regular or irregular tessellations. An important
class of such tessellations are space tilings, among which we will see the Voronoi
diagram in Chap. 14. The space-driven spatial data models are characterized by the
fact that the neighborhood of the objects is given by the tiling, which is called an
“implicit topology” in spatial databases or GIS jargon.

Object-driven spatial data models are structured by objects. Unless they are a
partition of the space (like Voronoi diagrams), they are discontinuous because space
is not actually stored: the only stored features are object boundaries. For example,
a polygon is stored as the sequence of lines that compose the boundary of the poly-
gon. The main example of the object-driven spatial data model is the vector spatial
data model. The vector spatial data model does not store any neighborhood relation-
ships between objects. In spatial databases and GIS, the vector spatial data model
with no topology whatsoever is called the “spaghetti” spatial data model. Exten-
sions of the vector spatial data models have been proposed for storing the connec-
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tivity relationships between objects (the network spatial data model) or both the
connectivity and the spatial adjacency between objects (the topological spatial data
model). In the spaghetti spatial data model, the connectivity and spatial adjacency
relationships must be computed by using tolerances.

Hybrid space and object driven spatial data models include the Voronoi diagram,
because it is an irregular tessellation or tiling (partition of the space into tiles) of
the underlying space that adapts to objects. It is characterized by both an implicit
topology, an explicit topology and a continuous space.

12.2 Space-Driven Spatial Access Methods

The general idea of spatial data indexing and point location is to locate spatial data
in regions or clusters that are stored in the physical memory on a single page or
disk block. Some methods form clusters by subdividing the space while others form
clusters by grouping objects. This leads to the classification into space-based spatial
indexing methods and object-based spatial indexing methods. However, some of
the methods presented in this section are hybrid, in a sense. Another classification
deals with the kind of memory that is dealt with by the spatial data indexing: either
the main memory (e.g. RAM) or the mass memory (e.g. hard disks). This leads to
the classification into main memory spatial indexing methods and spatial indexing
aids point location, because it allows one to retrieve and, therefore, locate points
efficiently in their cluster. Spatial indexing is a mechanism that aids the access and
location of spatial objects. For this reason, the methods used in spatial data indexing
are called spatial access methods. The main purpose of spatial access methods is to
create spatial indices that allow to access and locate spatial data as fast as possible.
A spatial index is the 2D equivalent of a book (binary tree) index (which is one-
dimensional).

Space-driven spatial access methods include:
• the grid (regular tessellation)
• the kD tree (n-dimensional)
• the BSP tree (Binary Space Partitioning Tree, n-dimensional)
• the Quadtree (two-dimensional)
• the Octree (three-dimensional)

The grid or regular tessellation is very well adapted to handling image data, and
corresponds to the raster spatial data model presented above. The kD tree is a special
case of the more general BSP tree. The BSP tree is based on a decomposition of
the space, which is an irregular tessellation. The BSP tree is at the origin of the
constrained spatial data model, which is very well adapted to handling straight line
segments, polygons and points. The quadtrees and the octrees are also based on
irregular tessellations.
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Fig. 12.2 A kD tree (K = 2)

12.2.1 The kD Tree

The name of the kD tree comes from the fact that it is a multidimensional binary
tree. It is a generalization of the bisection algorithm to n-dimensional space. The
kD tree was discovered by Bentley in 1975 (see [4]). The kD tree is a binary tree,
where each internal node contains one point and corresponds to a parallelepiped
that has been defined by that point (see Fig. 12.2). A parallelepiped is a convex set
bounded by convex polygons whose supporting hyperplanes are two-by-two paral-
lel. The root node corresponds to the whole parallelepiped-like region of interest.
The parallelepiped is divided in two parts by hyperplanes orthogonal to each one of
the coordinate axes alternatively on the different levels of the kD tree. A rotation of
the axes can be performed beforehand in order to match the Principal Components
Analysis axes.

New points are inserted by descending the tree until a leaf is reached. The paral-
lelepiped in which the new point is located is split into two parallelepipeds along the
axis corresponding to the level of the kD tree. As an example, we suppose the last
added point was E, and we are adding F . Since F is in the right child parallelepiped
of E and it is separated from the other child of E by a line parallel to the x axis, it
must become the right child of E and the left and right children parallelepipeds of
F must be separated by a line parallel to the y axis of coordinates.

The main problem of the kD tree is that its shape depends on the order in which
points were added. In the worst case, n points require n levels, and a search will
take linear time.

In order to avoid this problem, a balanced version of the kD tree was introduced.
The adaptive kD tree splits each set of points in subsets of roughly equal cardi-
nalities forming two parallelepipeds (see Fig. 12.3). This ensures that the resulting
adaptive kD tree is a balanced tree. Note that the bisection into two sets of roughly
equal cardinalities requires median finding, but not necessarily sorting. Therefore,
since median finding can be done in linear time, the complexity of the kD tree is
O(n logn). Any search in an adaptive kD tree will require logarithmic time in the
worst case. However, the balancing imposed by the adaptive kD tree makes it harder
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Fig. 12.3 An adaptive 2D
tree

Fig. 12.4 A 3D tree (from
[5])

to insert or delete points, because standard balancing strategies based on rotations
cannot be used because the rotations would destroy the rule that at a given depth
of the tree, all the bisections are done with respect to a plane orthogonal to the
same axis of coordinates. However, this rule has been relaxed in the most recent
extension of kD trees known as the generalized kD tree. Therefore an adaptive gen-
eralized kD tree allows easier insertions and deletions and satisfies the balancing
property.

A 3D tree is shown on Fig. 12.4.
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Fig. 12.5 A BSP tree
generated by hyperplanes

Fig. 12.6 A BSP tree
generated by line segments
composing the boundary of a
polygon

12.2.2 The Binary Space Partitioning Tree

The BSP-Tree was originally developed for 3D computer graphics by Fuchs, Ke-
dem and Naylor in [6]. The BSP tree represents the organization of space by a
set of half-spaces (see Fig. 12.5). It is very well suited for storing a collection of
unrelated hyperplanes, but is can also be used to store line segments or polygons
(see Fig. 12.6). The input hyperplanes or line segments will be called input objects
hereafter. The BSP tree uses hyperplanes supporting the input objects to divide the
space recursively into half-spaces. Nodes are added when a space is subdivided by
the addition of an input hyperplane or line segment. A positive orientation is chosen
together with the supporting hyperplane in order to define a half-space. The result-
ing half-space will be used in order to split all the existing half-spaces. Therefore,
each addition of an half-space splits all the intersected half-spaces into two new
half-spaces, and the object corresponding.

Note also that the kD tree is a special case of a BSP tree (planes perpendicular to
one axis of coordinates, the axis alternates at each level change).

12.2.3 Quadtrees

Quadtree is the generic name for all kinds of tree built by the recursive division of
the two-dimensional space into four quadrants. The foundational work was done by
Finkel and Bentley in [7].
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Fig. 12.7 A point quadtree

Fig. 12.8 A point-region
quadtree

Quadtrees are always quaternary trees where the quadrants are named SW (for
South–West), NW (for North–West), NE (for North–East) and SE (for South–East)
and stored in that order, and all nodes at the same depth have the same area. At each
step a quadrant is subdivided into four new quadrants. However, the steps need not
to be in the order of the input: i.e., some input requires the addition of more than
one level to the quadtree. Since quadtrees may not be balanced, any search may take
linear time in the worst case.

The most common quadtree types are:
• the point quadtree (see Fig. 12.7);
• the point-region quadtree (see Fig. 12.8); and
• the region quadtree (see Fig. 12.9).

The difference between the different flavors of quadtrees lies in the way the space
is subdivided into quadrants with respect to the input.

In the point quadtree, the quadrants are defined by the input points: the horizontal
and vertical lines pass through the input points. In the point-region quadtree, the
quadrants do not pass through input points, but exactly one of the four quadrants
contains each input point.
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Fig. 12.9 A region quadtree

In the region quadtree, there are two kinds of leaves: the white leaves that are
not covered by bounding line segments of the input regions; and the black leaves
that are covered by bounding line segments of input regions. The region quadtree
final decomposition induces a set of cells (quadrants of different sizes) such that the
black quadrants approximate the input regions.

Quadtrees have found favor in many commercial Spatial Database Management
Systems (SDBMS) because of their applicability to many data types, their ease of
implementation and their good practical performance.

12.2.4 Octrees

Octrees are the analog of quadtrees in the three-dimensional space. They were first
invented by Meagher in [8]. Octrees are 8-ary trees, where each node that is not a
leaf has eight children (called octants). The same categories of quadtrees are found
in octrees. Again, the search takes linear time in the worst case. An octree is depicted
in Fig. 12.10.

12.3 Object-Driven Spatial Access Methods

The main object-driven spatial access method is the R tree, proposed by Guttman
in [10]. Rather than divide space, R Trees (Rectangle Trees) group objects into
a hierarchical organization using minimum bounding rectangles (MBR) or their
n-dimensional analog (minimum bounding hyper-rectangles), see Fig. 12.11.
Groups of points lines or polygons are indexed based on their MBR. Objects are
added to the MBR that requires the least expansion of the R tree to accommodate
the object, provided this will not exceed the memory page storage of the MBR.
Internal nodes are guaranteed to contain at least a fixed percentage of their maxi-
mal capacity. If an MBR must expand beyond a preset parameter it is split into two
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Fig. 12.10 An octree
(from [9])

Fig. 12.11 A R tree (from [11])
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MBRs. R trees have a static branching factor, which is the maximal number of chil-
dren for any node of the R tree. R trees are very flexible and give good performance.

Objects are added the following way into a R tree. The MBR of the object or set
of objects is added in the subtree of the node (hyper-rectangle) that will expand the
least in area. If several hyper-rectangles expand least, the one that has the smallest
area will be used for the insertion of the new hyper-rectangle. When the number
of children equals the branching factor, the children of that node need to be redis-
tributed between their current parent and the new internal node that will be created
in order to store the remaining children.

R trees have some redundancy in the way they store objects. Indeed, the MBRs
interiors may intersect, i.e. the MBRs overlap. Therefore, the same object can in-
tersect more than one MBR. The area of a MBR is called coverage. Overlap and
coverage are two major draw-backs of R trees, which limit their performance be-
cause of the redundancy they induce. R trees have been generalized in order to try to
avoid the overlap between rectangles and the coverage by rectangles. R+ trees [12]
remove the overlap by breaking down MBRs that overlap and storing the objects
in those MBRs in two different places. They can be seen as a compromise between
the kD tree and the R tree. R* trees [13] try to avoid both of them while storing
both points and two-dimensional data. R trees have been extended in many differ-
ent ways, including in the n-dimensional space. R trees have a good performance
in practice. However, they were not asymptotically optimal. The Priority R tree or
PR tree is the first optimal R tree (invented by Arge et al. [14]) in the sense that
it can answer range queries in an asymptotically optimal number of input/output:
O((N/B)1−1/d + T/B), where N is the number of d-dimensional (hyper-) rectan-
gles stored in the R tree, B is the disk block size, and T is the output size.

Figure 12.12 shows a 3D R tree.

12.4 Conclusions

The purpose of spatial data indexing is to organize objects within a given space
so as to aid efficient spatial retrieval, location and selection. There exists a wide
variety of spatial indexing techniques. R tree indexing is considered to be the most
efficient but this is at the expense of complexity. Most of current commercial Spatial
DataBase Management Systems include spatial data indexing, and most advanced
spatial database management systems offer the R tree spatial access method.
• IBM DB2 (Spatial Extenders) uses grids.
• Informix Universal Server (Spatial Datablade) uses R trees.
• Oracle spatial uses R trees (in 2D, 3D, and 4D) and quadtrees.
Finally the ANN library (A Library for Approximate Nearest Neighbor Searching)
[15] implements an approximative nearest neighbor search in a n-dimensional space
using the kD tree.
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Fig. 12.12 A 3D R tree
(from [11])

12.5 Exercises

Exercise 12.1 Write a kD tree as a BSP tree.

Exercise 12.2 Write an adaptive kD tree as a BSP tree.

Exercise 12.3 Write the different quadtrees as BSP trees.

Exercise 12.4 Implement the BSP tree using GEL.

Exercise 12.5 Implement the R tree using GEL.
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13Convex Hulls

In this chapter, we present the notion of convex hull of a set, which is the smallest
convex set enclosing that set, and is therefore, very closely connected to the notions
of convexity and convex combination presented in Chap. 2. Convex hulls offer a
construction algorithm for Delaunay triangulations, which will be presented in next
chapter.

Convexity is a mathematical (geometric and analytical) notion that has many ap-
plications in computational geometry, but also in optimization, and thus potentially
in many real-world applications. These applications cover a wide range of disci-
plines: control systems, signal processing, communications and networks, electronic
circuit design, data analysis and modeling, statistics (optimal design), and finance.
In Computational Geometry, convexity is closely related to the Delaunay triangula-
tion and the Voronoi diagram, which are two very widely used mathematical con-
structs in Computational Geometry, and the subject of next chapter. In fact, both the
Delaunay triangulation and the Voronoi diagram can be constructed from some par-
ticular convex hulls (see Chap. 14). Convexity is the basic framework for explaining
convex hulls and their relationships with Delaunay graphs and Voronoi diagrams.

This chapter is organized as follows: Sect. 13.1 recalls the concept of convexity
while Sect. 13.2 recalls the definition of convex hulls. Section 13.3 presents the al-
gorithms for 2D convex hulls, while Sect. 13.4 presents the most efficient algorithms
for convex hulls in 3D. Section 13.5 concludes this chapter.

13.1 Convexity

We have introduced the notion of affine spaces, barycenters and convexity in
Chap. 2. We recall these notions here. It is not possible to define convexity with-
out an affine space constructed from a vector space. Indeed, the notion of convexity
is closely related to the notions of an infinite straight line and of barycenter, which
are closely related to the notion of affine space. Moreover, the definition of convex-
ity from the definition of an affine space allows one to understand why convexity
is invariant by any affine transformation (any composition of translations and/or
central similarities).

J.A. Bærentzen et al., Guide to Computational Geometry Processing,
DOI 10.1007/978-1-4471-4075-7_13, © Springer-Verlag London 2012
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Fig. 13.1 The convex hull of
a set of points in the plane as
intersection of the half-spaces
bounded by supporting
hyperplanes

Definition 13.1 ([1, 2, Definition 11.1.1]) A subset S of an affine space X is called
convex if, for any x, y ∈ S, we have [x, y] ⊂ S, where [x, y] = {λx + (1 − λ)y|λ ∈
[0,1]}.
Examples:
• intervals in R,
• interval vectors in R

n,
• half-planes, half-spaces,
• convex polyhedra (intersection of a finite set of closed half-spaces),
• polytopes1 (compact convex polyhedra with non empty interior) like cubes, tetra-

hedra, pyramids, balls,
• contour sets of convex objects.

13.2 Convex Hull

Let us first define supporting hyperplanes, which can be used in some definitions of
the convex hull.

Definition 13.2 ([1, 2, Definition 11.5.1]) Let A be an arbitrary subset of an affine
space X. A supporting hyperplane for A is any hyperplane H containing a point
x ∈ A and such that all points of A belong to one of the two half-spaces bounded
by H . We say that H is a supporting hyperplane for A at x (see Fig. 13.1).

Alternative definitions: The convex hull can be defined in the following (all prov-
ably equivalent) ways:

Definition 13.3 ([1, adapted from Sect. 11.1.8.1]) The convex hull of a subset A of
a affine space X is the intersection of all convex sets that contain A.

1In some countries, polytopes are defined as bounded polyhedra, without requiring them to be
convex.
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Fig. 13.2 The convex hull of
a set of points in the plane

Proposition 13.1 ([1, 2, adapted from Sect. 11.1.8.1]) The convex hull of a subset A

of an affine space X is the smallest convex set that contains S.

Proposition 13.2 ([1, 2, adapted from Proposition 11.5.5]) The convex hull of a
closed subset A of an affine space X is the intersection of all the closed half-spaces
containing A.

Proposition 13.3 ([1, 2, Proposition 11.1.8.4]) The convex hull of a subset A of an
affine space X is the set of barycenters of families of points of A with non-negative
masses: {∑i∈I λixi |xi ∈ A,λi ≥ 0,

∑
i λi = 1, Iarbitrary} with λI = 0 except for

finitely many indices.

Examples:
• the convex hull of a finite set of points of Rn is called a polytope; in 2D it is called

a polygon (see Fig. 13.2);
• the convex hull of n + 1 points of Rn that are not on a same hyperplane is called

a simplex.
Notation: The convex hull of a subset A of an affine space X is denoted as CH(A)

hereafter in this chapter.
The computation of the convex hull of a set S = S1 ∪ S2 can be subdivided into

the computation of the convex hull of two (or more) smaller convex sets: the convex
hulls of S1 and S2.

Theorem 13.1 For any subset S = S1 ∪ S2 of a real affine space X, CH(S) =
CH(CH(S1) ∪ CH(S2)) (see Fig. 13.3).

Proof We will prove the equality of the two sets above by proving that each one of
them is a subset of the other. Let us first prove that CH(S1 ∪ S2) ⊆ CH(CH(S1) ∪
CH(S2)). First, by Definition 13.3, it is clear that A ⊆ B =⇒ CH(A) ⊆ CH(B).
Clearly, S1 ∪S2 ⊆ CH(S1)∪CH(S2). Thus, CH(S1 ∪S2) ⊆ CH(CH(S1)∪CH(S2)).
Then, let us prove now that CH(CH(S1) ∪ CH(S2)) ⊇ CH(S1 ∪ S2). Clearly Si ⊆
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Fig. 13.3 The convex hull can be computed by decomposing the set into smaller sets recursively
(until the set consists of 3 points), and then recombining the convex hulls by adding supporting
hyperplanes for the union of convex hulls

S for i = 1,2. Thus, CH(Si) ⊆ CH(S) for i = 1,2. Hence, CH(S1) ∪ CH(S2) ⊆
CH(S) and as CH(S) is convex, the same arguments as above proves CH(CH(S1)∪
CH(S2)) ⊆ CH(S). �

13.3 Convex Hull Algorithms in 2D

We consider the computation of the convex hull CH(P) of a set of points P =
p1, . . . , pn in the affine Euclidean plane R2. We will present here some useful strate-
gies for designing geometric algorithms that are widely used in Computational Ge-
ometry in order to design any geometric algorithm. These include the following:
• Incremental algorithms: construct the final result by inserting in turn each object

of the input and computing the intermediary result after insertion of that object.
The incremental algorithm for convex hulls is presented in Sect. 13.3.2. Even
though it is not optimal in 2D, it can be faster in practice than optimal algorithms,
and it is optimal in 3D.

• Divide and conquer: recursive approach: divide recursively the input until the
problem can be solved trivially for that input size, and then merge the subprob-
lem solutions. The divide and conquer algorithm for convex hull is presented in
Sect. 13.3.3. It is optimal in any dimension.

• Scan: scan the input along one direction or around a point. A scan algorithm for
convex hulls in 2D is presented in Sect. 13.3.1.

• Sweep line or plane-sweep: decompose the input into vertical strips, such that
the information necessary for solving the problem is located on the vertical lines
delimitating those vertical strips. There exists a sweep line algorithm for convex
hulls in 2D.
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Sorting reduces to the convex hull in linear time. Indeed if the convex hull of a set
of points on a parabola of equation y = x2 is known, then by projection on the x-axis
of coordinates (by keeping only the x-coordinates), the sorting of the corresponding
projections in R is known. Thus, if the lower bound of the convex hull problem was
lower than the lower bound of sorting, then by computing the convex hull of the
projections of the points on the parabola and then projecting back the points on the
straight line, one could get the sorting in better time than Ω(n logn), a contradiction
with the fact the lower bound of the sorting problem is Ω(n logn). Thus, the lower
bound of the convex hull problem is at least the same as the lower bound of the
sorting problem, i.e. Ω(n logn). We will see in this chapter that this lower bound is
actually attained by several convex hull algorithms.

Finally, the convex hull reduces to sorting in linear time. Indeed, if a list of points
is sorted according to the former, their polar angle with respect to a point inside the
polygon formed by the list of points, and if there are ties, according to their square
distance to that point, then the convex hull of the set of points can be computed
in linear time by removing from the sorted list all vertices whose internal angle is
larger than π . This is the principle of Graham’s scan algorithm, which we introduce
now. The output of all the 2D convex hull algorithms is always an ordered list of
vertices forming the boundary of the convex hull sorted in the same order as before.

13.3.1 Graham’s Scan Algorithm

This algorithm is not dynamic nor semi-dynamic because it requires knowing all
the points in the input before the beginning. We will describe the Graham scan,
cf., Fig. 13.4, which is the most efficient scan algorithm. The algorithm starts with
a start point s ∈ P which is by construction on the boundary of the convex hull
(which is a polygon): e.g. the rightmost lowest x-coordinate point. It also uses a
point o that is chosen to be in the interior of the convex hull. Such a point could be
the centroid (barycenter with all masses being equal) of any three points in P . Let L

be a periodic infinite list (or a circular doubly linked in computer science terms) of
the vertices pi sorted in increasing lexicographic order of polar angle and squared
polar distance around o with pointers to the preceding vertex (PRED) and to the
following vertex (NEXT).2

It performs a scan of the points and computes at each scanned point v, the
relative position of NEXT(NEXT(v)) with respect to the vector vNEXT(v). If
NEXT(NEXT(v)) is on the right of or on vNEXT(v), NEXT(v) is eliminated
from the convex hull and the scan starts again from PRED(v) (this is called
backtracking hereafter). The relative position is computed using the determinant
det(vNEXT(v),vNEXT(NEXT(v))). A flag f is used in order to avoid scanning
again the start vertex except in case of backtracking.

Its pseudo-code is presented in Algorithm 13.1.

2The lexicographic ordering is the ordering of a language dictionary. In this case the vertices are
first ordered according to their polar angle around o, and if there are ties, the vertices having the
same polar angle around o are ordered according to their square distance to o.
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Algorithm 13.1 Graham’s scan 2D convex hull
Require: P = {p1, . . . , pn}
Ensure: CH(P) is the polygon defined by the output L, where the vertices are

stored in order of increasing polar angle in L.
1: Compute the start vertex v as the rightmost lowest y coordinate by sorting the

y coordinates of the points in P = {p1, . . . , pn} (and the x coordinates of the
points having the lowest y coordinate).

2: Let L be a periodic infinite list (or a circular doubly linked in computer science
terms) of the vertices pi sorted in increasing lexicographic order of polar an-
gle and squared polar distance around o with pointers to the preceding vertex
(PRED) and to the following vertex (NEXT).

3: Let w := PRED(v)

4: f := false
5: while NEXT(v) 	= s or f = false do
6: if NEXT(v) = w then
7: f := true
8: end if
9: if det(vNEXT(v),vNEXT(NEXT(v))) ≤ 0{right turn} then

10: Remove NEXT(v) from L

11: Let v := PRED(v)

12: else {left turn}
13: Let v := NEXT(v).
14: end if
15: end while
16: return L

Proof of correctness: If NEXT(NEXT(v)) is on or on the right of vNEXT(v), then
NEXT(v) is a reflex vertex (the internal angle at NEXT(v) is reflex, i.e. ≥ π ), and
NEXT(v) is internal to the triangle OvNEXT(NEXT(v)), thus the polygon defined
by the vertices and their ordering in L is not convex. Thus, it is not the convex hull
of P . Thus, none of the internal angles ̂vNEXT(v)NEXT(NEXT(v)) are reflex and
all the edges of the form vNEXT(v) have all points in P on one side of them when
Graham’s scan terminates. Thus, all hyperplanes through edges vNEXT(v) touch
exactly two vertices of P and all points in P are on the same side with respect to
these hyperplanes. Thus all hyperplanes through edges vNEXT(v) are supporting
hyperplanes. Thus, the polygon defined by L is the boundary of CH(P).

Analysis: The total cost of the while loop is linear since the operations are per-
formed for every vertex: line 13 (if the angle is not reflex) or lines 10 and 11 (if
the angle is reflex). The backtracking of line 11 must stop since the start vertex is
assumed to be on the convex hull, and once a vertex of the boundary of the convex
hull at which the internal angle is not equal to π has been visited, the backtracking
cannot go back before that vertex. The total number of visited vertices is thus linear.
The cost of the remainder of the algorithm is dominated by the cost of searching,
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Fig. 13.4 The scan of the points from a point in the interior of the convex hull (Graham’s scan): the
order of the scan is given by the radial segments through the point in the interior of the convex hull;
the edges between input points resulting from forward scanning are the plain non-radial edges; the
edges between input points resulting from the backtracking are dashed for those that do not belong
to the boundary of the convex hull and thick plain lines correspond to the edges of the boundary of
the convex hull

which is Θ(n logn). Thus the complexity of the algorithm is O(n logn). It matches
the lower bound Ω(n logn) for the convex hull problem, so it is optimal.

13.3.2 Incremental (Semi-dynamic) Algorithm

Such an algorithm is semi-dynamic because it allows one to add points and maintain
the convex hull as points are added. The algorithm consists in starting from three
points. The convex hull of a set of three points is trivial: it is the triangle that joins
the three points (even in the case of a degenerate situation like the three points
being collinear). Then, every point of the input set is added and the convex hull is
maintained as follows.

Its pseudo-code is presented in Algorithm 13.2.
Proof of correctness: Since the polar angle of a point of the boundary of the

convex hull with respect to p(i + 1) (pole) and a given line (polar axis) is a con-
tinuous function, the image of the convex hull is an interval. Thus, the points at
which the minimum and maximum are attained are on the boundary of the convex
hull CH(i + 1). Assume that there are two distinct points A and B on which the
minimum is attained. Since A and B are aligned with p(i), either all the points in
between them are aligned with p(i), or there is a reflex angle at one of such a points,
but this is impossible since the convex hull is convex! If all the points defining the
convex hull are such that no three of them are aligned, then, by the continuity of the
polar angle function described above, we can assume that there is one and exactly
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Algorithm 13.2 Incremental 2D convex hull (see Fig. 13.5)
Require: P = p(1), . . . , p(n)

Ensure: CH(n) = CH(P), where the vertices are stored in the lexicographic order
of increasing polar angle first, and square distance second.

1: CH(3) = {p(1),p(2),p(3)}
2: for i = 4 to n do
3: Let CHi be the convex hull of points P(i) = p(1), . . . , p(i)

4: Let p(i + 1) be the point being inserted and
5: The current convex hull CH(i) is traversed either clockwise or counter-

clockwise to determine whether p(i + 1) belongs to CH(i) or not
6: if p(i + 1) ∈ CH(i) then
7: CH(i + 1) = CH(i)

8: else {p(i + 1) /∈ CH(i)}
9: Determine the 2 vertices v1(i) and v2(i) defining the new support-

ing hyperplanes together with p(i + 1), which are before and after
p(i + 1) in the lexicographic order

10: All edges and vertices between v1(i) and v2(i) are removed from the
convex hull

11: The straight line segments v1(i)p(i + 1) and v2(i)p(i + 1) are added
to CH(i)

12: end if
13: end for
14: return CH(n)

Fig. 13.5 The incremental construction of the convex hull

one vertex v1(i) at which the minimum is attained. In the same way, we can prove
that there is one and exactly one vertex v2(i) at which the maximum is attained.
Finally, all edges between v1(i) and v2(i) (in the order around p(i + 1)) separate
CH(i) and p(i+1). Thus, they are not on the boundary of the convex hull CH(i+1)
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Fig. 13.6 The polar angles of the points on the boundary of CH(P) with respect to a point in the
interior of the convex hull

and, therefore, they must be replaced by the edges v1(i)p(i + 1) and v2(i)p(i + 1),
which are on the boundary of CH(i + 1).

Analysis: Since at insertion of point pi , the algorithm needs to visit at most n

vertices, the algorithm is quadratic (i.e. O(n2)). Since it is asymptotically higher
than the lower bound for the convex hull problem, it is not optimal. However, it
allows one to add points, which is not the case for the other optimal convex hull
algorithms presented in this chapter.

13.3.3 Divide and Conquer Algorithm

Such an algorithm is not dynamic nor semi-dynamic because it requires knowing
all the points in the input before beginning. The algorithm consists in recursively
splitting the input into subsets of sizes differing by at most 1 (for example around
the median in the x-coordinate) until the size of the input is 3 or less. The convex
hull of a set of up to three points is trivial: it is the triangle that joins the three points
(even in the case of a degenerate situation like the three points being collinear).

The pseudo-code is presented in Algorithm 13.3.
Proof of correctness: If p1 belongs to the interior of CH2, then the polar angle

of the points defining the boundary of CH2 with respect to p1 (pole) and a given
line (polar axis) is a monotonic function (see Fig. 13.6). Otherwise, according to the
same reasoning as the one in the proof of correctness of the incremental 2D convex
hull algorithm, there must exist two vertices v1 and v2 on the boundary of CH2 on
which the polar angle of the points of the boundary of CH2 with respect to p1 (pole)
and a given line (polar axis) attain, respectively, their minimum and their maximum.
Also, according to a similar reasoning as in the proof already mentioned above, all
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Algorithm 13.3 Divide and conquer 2D convex hull
Require: P = p1, . . . , pn

Ensure: CH is the convex hull of points P = p1, . . . , pn, where the vertices are
stored in the lexicographic order of increasing polar angle first, and square dis-
tance second.

1: Sort the P = p1, . . . , pn

2: Function ConvexHull(P)

3: if cardinality(P) ≤ 3 then
4: return P
5: else {cardinality(P) > 3}
6: Split the set P into two sets Pleft and Pright
7: CH1 = ConvexHull(Pleft) and CH2 = ConvexHull(Pright)

8: Let p1 be any point in the interior of CH1
9: Determine whether p1 is in the interior of CH2

10: if p1 is not in the interior of CH1 then
11: Determine the vertices v1 and v2 of CH2 on which the maximal and

minimal polar angles with respect to p1 are attained
12: v1 and v2 separate two monotonic chains, one that is closer to p1

than the other one and the other one
13: Discard the monotonic chain that is closer to p1 (these points separate

CH1 and CH2) from CH2
14: Order all the points of CH1 and CH2 in the increasing order of the

polar angle with respect to p1
15: end if
16: Store the output of Graham’s scan of CH1 ∪ CH2 in CH
17: return CH
18: end if

the edges between v1 and v2 separate p1 and CH2. Theorem 13.1 allows one to
conclude.

Analysis: Since the algorithm requires sorting first, it requires at least O(n logn).
The cost for computing the convex hull of the union of two convex hulls is linear in
the size of the input, because the ordering of the points of CH1 and of CH2 is linear
since both the points of CH1 and of CH2 are already sorted. Thus, the running time
follows the following law: T (n) ≤ 2T n/2 + O(n). Finally, by the master theorem
[3, Theorem 4.1 and proof in Sect. 4.4], T (n) = O(n logn).

13.4 3D Algorithms

We consider the computation of the convex hull CH(P) of a set of points P =
p1, . . . , pn in the affine Euclidean three-dimensional space R

3. An example of a
convex hull of a set of points in 3D is shown in Fig. 13.7.
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Fig. 13.7 The convex hull of
a set of points in 3D

13.4.1 Incremental Algorithm

An incremental (dynamic) algorithm for computing the convex hull of points in
3D exists. It is a straightforward extension of the incremental 2D convex hull algo-
rithm. The algorithm checks whether the point p(i + 1) to be inserted is in the
current convex hull CH(i) or not. If p(i + 1) ∈ CH(i), there is nothing to do:
CH(i + 1) = CH(i). If not, all the planar facets that separate CH(i) from p(i + 1)

need to be identified. The set of all these planar facets is bounded by a cycle
E = {e(j), j = 1, . . . ,m} of edges in CH(i). The convex hull CH(i + 1) is obtained
by removing all planar facets that separate CH(i) from p(i + 1); and adding all
the edges e(j)p(i + 1), j = 1, . . . ,m. The complexity of the algorithm is quadratic,
since at each new insertion, at most a linear number of faces must be tested. In-
deed, by Euler’s formula (v − e + f = 2), the number of facets f and the number
of edges e are linear in the number of vertices v. It is therefore optimal, unlike in
the 2D case. It uses the same gift wrapping technique as the following divide and
conquer algorithm.

13.4.2 Divide and Conquer Algorithm

Another optimal 3D convex hull algorithm is the divide and conquer algorithm. The
general behavior of the algorithm is the same as in 2D. Only the merging of the
convex hulls of smaller sets is different due to the three-dimensionality. The merg-
ing of two convex hulls in 3D requires the construction of a triangulation that is
wrapping the two convex hulls with simplicial facets (triangles) whose edges and
vertices belong to different convex hulls, such that the plane that spans that triangle
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Fig. 13.8 The gift wrapping
algorithm on the set of points
shown in Fig. 13.7

is a supporting hyperplane for P . For this purpose, we begin by identifying an edge
of the convex hull of the union of the two convex hulls. This can be done by project-
ing the two convex hulls onto one of the planes of the equation x = 0 or y = 0 or
z = 0. Then, we choose a starting vertex as in the 2D case. The starting edge is the
edge connecting that starting vertex with another projection such that the hyperplane
passing through them is a supporting hyperplane for the set of projections of P onto
the chosen plane of projection. The corresponding edge in the three-dimensional
space is the starting edge. It links two vertices that do not belong to the same previ-
ous convex hull. The first supporting hyperplane will contain that starting edge and
its projection onto the chosen plane (by construction, it is a supporting hyperplane
for the set of original points).

The merging of the two convex hulls uses a “gift wrapping” algorithm (see
Fig. 13.8). Starting from the starting edge and the first supporting hyperplane, the al-
gorithm rotates the starting hyperplane around the starting edge, until the first vertex
of the point set is hit. Thus, the first triangle of the gift wrapping has been defined.
Two new edges have also been defined: the edges that connect the extremities of the
starting edge with the newly hit vertex. Each time a new triangle is found, all the
old facets that are hidden by that new triangle are discarded from the convex hull.
Then, the search proceeds as follows: the next vertex of the convex hull is found by
rotating the hyperplane containing the last triangle found around the chosen newly
found edge. Since there are two new edges, there might be a branching with each
new branch of the search that corresponds to one of the two newly found edges
of the convex hull. The search stops each time it visits a triangle that has been al-
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ready visited. Then, the search continues with the other neighbor of the last visited
triangle.

The merging can be done in time proportional to the size of the input. Thus,
again by the master theorem, the complexity of the divide and conquer algorithm is
O(n logn).

13.5 Conclusions

This chapter has presented the notion of convex hulls through several algorithms
that implement the general strategies for designing geometric algorithms. In the next
chapter, we will see two very important spatial data structures: the Voronoi diagram
and the Delaunay triangulation, which are strongly related to convex hulls.

13.6 Exercises

Exercise 13.1 Prove that the convex hull of a circle is itself together with its interior
(prove that the disk bounded by the circle is the smallest convex set containing the
circle). What are the supporting hyperplanes?

Exercise 13.2 Prove that the convex hull of an ellipse is itself together with its
interior (prove that the closed region bounded by the ellipse is the smallest convex
set containing the ellipse). What are the supporting hyperplanes?

Exercise 13.3 What is the convex hull of the graph of the function y = 1/x? What
is the convex hull of the closed region bounded by the coordinate axes and the graph
of the function y = 1/x?

Exercise 13.4 Implement the 2D convex hull algorithms described in this chapter
using GEL or the quad-edge data structure code provided in [4] and plot the running
time for different input sizes. Observe the running time behavior of these algorithms
as a function of the input size.

Exercise 13.5 Implement the 3D gift-wrapping algorithm described in this chapter
using GEL or the quad-edge data structure code provided in [4]. Use it to compute
the Delaunay triangulation of a set of points (see Chap. 14).
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14Triangle Mesh Generation: Delaunay
Triangulation

The generation of triangle meshes from points is a central issue when dealing with
geometric data, e.g., where surface data are often created by triangulating a point set.
Examples include the generation of a surface from points produced by an acquisition
device such as a laser scanner, or the triangulation of a domain such that simulations
can be performed on it via the finite element method.

This chapter deals with triangulation, primarily by the introduction of the 2D De-
launay triangulation, which in some sense is the archetypical triangulation. Hereby
key concepts and general principles of triangulation are introduced, such that the
reader hopefully appreciates the nature of meshing and is able to understand the
general literature within the field with more ease. Good general references on the
subject include [1–4].

This chapter is organized by first introducing key concepts of triangulation and
Delaunay triangulation specifically, cf. Sects. 14.1 and 14.2, whereupon algorithmic
details are covered in Sect. 14.3. Following these, general issues of triangulation are
briefly presented in Sects. 14.4 and 14.5. The chapter ends with a brief overview of
Voronoi diagrams, in Sect. 14.6, which are closely linked to the Delaunay triangu-
lation.

In relation to implementation, it should be noted that the Quad-Edge data struc-
ture of Sect. 5.6.1 is in many aspects ideal for computing the Delaunay triangulation
and the Voronoi diagram, because it can traverse both the Delaunay triangulation
and the Voronoi diagram at the same time. Furthermore, it is the data structure used
in [5], as discussed in the section on the divide and conquer algorithm.

14.1 Notation and Basic 2D Concepts

In 2D, a triangulation classically starts with a set of points, pi ∈ P , which shall be
connected with edges, ei ∈ E , such that these edges form triangles, ti ∈ T . These
edges and triangles can formally be considered as sets of two or three points, re-
spectively. The goal of the triangulation process is, intuitively, to form a unified
geometric entity of the given points, P . As the name states, this geometric entity
takes the form of a triangular mesh. More formally:

J.A. Bærentzen et al., Guide to Computational Geometry Processing,
DOI 10.1007/978-1-4471-4075-7_14, © Springer-Verlag London 2012
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Fig. 14.1 The Delaunay triangulation of 50 random points

Definition 14.1 (Triangulation) A triangulation of a point set P is a set of triangles
T , such that we have the following:
• All points, pi ∈P , are vertices in at least one triangle.
• The interiors of any two triangles do not intersect.
• All the points pi only intersect the triangles ti ∈ T at the triangles vertices.
• The union of all the vertices of the triangles is P .

The points, pi , are often referred to as vertices, vi ∈ V , as well, since they are
‘corners’ in polygons. In this chapter the two terms are used interchangeably, unless
otherwise stated.

14.2 Delaunay Triangulation

The Delaunay Triangulation is a special triangulation of a point set P , which has
some additional nice properties—see Fig. 14.1. In fact the Delaunay triangulation is
often thought of as the archetypical ‘nice’ triangulation. The concepts of Delaunay
triangulation in 2D can be extended to 3D where the concept becomes the Delaunay
tetrahedralization.

In this chapter, the classical concept from computational geometry, Delaunay
triangulation, will first be defined, along side proofs of many of its properties. A ve-
hicle for doing this is an algorithm for performing Delaunay triangulation, the flip
algorithm. The presentation of this algorithm is naturally done via a string of con-
structive proofs, which give insight into the Delaunay triangulation. The derivation
here closely follows that given in [3], but also [1, 2] provide good introductions
to the subject. A motivation for including proofs of some of the properties is that
the line of thought behind them is similar to those in the algorithms for Delaunay
triangulation.
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Fig. 14.2 Here edge ei is
Delaunay

Definition 14.2 (Empty Circle) A circle is empty if and only if its interior contains
no points of P .

Definition 14.3 (Circumcircle of an Edge) A circumcircle of an edge from pi to pj

is a circle going through pi and pj .

Note that for a given edge there are infinitely many circumcircles.

Definition 14.4 (Delaunay Edge) An edge is Delaunay if and only it has an empty
circumcircle.

Note, it is almost always possible to find a non-empty circumcircle of an edge,
but this is of no consequence for this definition. See Fig. 14.2.

Definition 14.5 (Delaunay Triangulation) A triangulation, D, is a Delaunay trian-
gulation, if an edge is Delaunay if and only if it is in D.

That is the Delaunay triangulation of a set of points is all the Delaunay edges
related to those points.

This definition is only perfectly meaningful, in relation to triangulation, if no
four points in P lie on a common circle, and no three points in P are aligned.
This is referred to as the points being in general position. The non general case is
considered in Sect. 14.2.2, where it is argued that in the non general case a choice
has to be made as to which ambiguous Delaunay edges are not included in the
triangulation.

Definition 14.6 (Circumcircle of a Triangle) The circumcircle of a triangle is the
unique circle going through its three vertices.

See Fig. 14.3.

Definition 14.7 (Delaunay Triangle) A triangle is Delaunay if and only its circum-
circle is empty.
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Fig. 14.3 Here triangle ti is
Delaunay

Fig. 14.4 It is seen that a
circumcircle of ei cannot be
constructed such that it
contains neither pi or pj

The concepts of Delaunay triangles and Delaunay edges are connected, since

Lemma 14.1 For a given triangulation T of the point set P , all the triangles of T
are Delaunay if, and only if, all the edges are Delaunay.

Proof Note that the circumcircle of a given triangle is also a circumcircle for the
three edges of the triangle. Since all edges belong to a triangle, it is seen that if all
triangles ti ∈ T are Delaunay, then so are all the edges.

Conversely, assume that there is a non Delaunay triangle, ti , in a given triangula-
tion, where all the edges are Delaunay—in particular the edges of that triangle. This
implies that there is at least one point, pi , located in the circumcircle of ti . Since T
is a triangulation the point pi is located outside of ti (see Fig. 14.4).

Denote the edge separating the inside of ti and pi by ei—within the space of the
circumcircle of ti . Denote the vertex of ti not connected to ei by pj . Next, note that
any circumcircle of ei is defined by the endpoints of ei and the center of the circle.
The center of a given circumcircle is located on the line of points of equal distance
to the endpoints of ei . Consider the circumcircle of ei that is the circumcircle of ti ,
which has pi in its interior. If a circumcircle of ei is to be constructed, such that it
does not contain pi the center of the circumcircle has to move further away from ei

in the direction away from pi . This will, however, cause pj to lie in the circumcircle.
Hence ei is not Delaunay.

So if a given triangle is not Delaunay one of its edges is not either, which is a
contradiction to the assumption, thus concluding the proof. �
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Fig. 14.5 On the left the edge ei is Local Delaunay. If it is flipped, yielding the situation on the
right where it is denoted ej , it is not local Delaunay

A less restrictive definition, which is useful when constructing algorithms is the
following definition.

Definition 14.8 (Local Delaunay Edge) In a triangulation T , an edge, ei is locally
Delaunay if and only if it is either a boundary edge or if it is Delaunay with respect
to the vertices of the two triangles that contain the edge ei .

See Fig. 14.5. This definition is, however, quite strong and leads to the follow-
ing.

Lemma 14.2 (Delaunay Lemma) If all edges, ei ∈ E , of a triangulation, T , are
local Delaunay then all edges are also Delaunay.

Proof Assume that all edges of T are local Delaunay, but that there exists an edge,
e1, which is not (globally) Delaunay. The proof of Lemma 14.1 implies that one of
the triangles, t0, which e1 is incident on is not Delaunay and as such has a point,
p′, in its circumcircle. For ease of explanation, and without loss of generality, let us
assume that the orientation is such that e1 is part of a horizontal line, and that p′ is
located above this line and t0 below it.

Construct a line, l, from the center of e1 to p′, depicted as the dashed line in
Fig. 14.6.1 Enumerate the sequence of edges that l intersects in order of occurrence,
i.e., [e2, e3, . . . , en], and denote by ti the triangle above ei and by pi the vertex of ti
not part of ei . See Fig. 14.6. Note that p′ = pn.

1If l goes through another point, replace p′ with that.
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Fig. 14.6 Left: The notation and basic construction of Lemma 14.2. Right: The part of the cir-
cumcircle of the lower triangle above the common edge is completely in the circumcircle of the
upper triangle, by the local Delaunay property

Consider the circumcircles of the two triangles, ti−1 and ti , that contain the
edge ei . As seen in Fig. 14.6, if ei is locally Delaunay the part of the lower cir-
cumcircle above ei is completely in the interior of the upper circumcircle.

By construction p′ is located in the circumcircle of t0 above e1, and by the
above argument in the circumcircle of t1. Since p′ is located above all the edges
[e1, e2, . . . , en], it is seen by induction that p′ is located in the circumcircles of
[t0, . . . , tn]. The fact that p′ is located in the circumcircles of tn−1, and tn is a con-
tradiction to en being locally Delaunay, thus concluding the proof. �

Hence, if all edges in a triangulation are local Delaunay, the triangulation is a
Delaunay triangulation.

14.2.1 Refining a Triangulation by Flips

In this section, a theoretical outline of the flip algorithm for Delaunay triangula-
tion is presented, where the general concept is that triangulations can be refined to
become a Delaunay triangulation by successive flipping of edges. Hereby further
properties of the Delaunay triangulation are also drawn forth. A more detailed de-
scription of this algorithm is given in Sect. 14.3.2.

The flip algorithm is an algorithm which, given a triangulation, optimizes it in a
greedy fashion by flipping edges—hence the name. In the case of Delaunay triangu-
lation, it searches for edges which are not local Delaunay and flips them, such that
they become local Delaunay. The algorithm then terminates when there are no more
edges to flip.
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Fig. 14.7 Here ei is not
flippable since the associated
quadrilateral is concave

Fig. 14.8 The quadrilateral
of edge ei with endpoints a

and b

Definition 14.9 (Edge Flip) An edge is flipped by erasing it and inserting an edge
in the other diagonal of the formed quadrilateral. An edge is only flippable if the
quadrilateral associated with the edge is convex, see Figs. 14.5 and 14.7.

Flipping of edges does ‘improve’ the triangulation, in that

Lemma 14.3 Let ei be an edge of a triangulation T , then either ei is local Delau-
nay or ei is flippable and the edge created is locally Delaunay.

Proof Let the quadrilateral associated with ei have the four vertices a, b, c and d

where the ends of ei are a and b—see Fig. 14.8. Consider now the circumcircle of
triangle �abc. If d is not in this circumcircle ei is local Delaunay, thus satisfying
the Lemma.

If d is inside the circumcircle of �abc it can be shown that by construct the
quadrilateral is convex. To see this, note that, since d is bounded by the circumcircle
of �abc and is on the opposite side of ei w.r.t. c, no angle can be greater than 180◦.
Thus in the case where d is inside the circumcircle of �abc, ei is flippable.

Also, a circle passing through c and d , which is also tangent to the circumcircle
of �abc at c, contains neither a nor b. Hence the edge created by a flip of ei is local
Delaunay, see Fig. 14.8. �

It follows that the flip algorithm is correct.

Lemma 14.4 Given a triangulation T of n points, pi ∈ P , then the flip algorithm
terminates after O(n2) flips, and the result is a triangulation whose edges are all
Delaunay.
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Fig. 14.9 Four points on a common circle. It is seen that two triangulations are possible

For a proof, see [3]. As an immediate consequence of this the following can be
shown.

Theorem 14.1 Let P be a set of three or more points in the plane, where no three
points lie on a common line and no four points lie on a common circle. Then the
Delaunay triangulation, D, of P is a triangulation, and the flip algorithm produces
it. This is the case provided that an initial triangulation of P exists.

Proof Because no three points are lie on a common line and no four points lie
on a common circle (i.e. points are in general position), there exists a Delaunay
triangulation of the points. By Lemma 14.4, the application of the flip algorithm to
any triangulation produces a triangulation whose edges are all Delaunay.

It is also seen that no other edge is Delaunay. Consider an edge ei �∈ D with
endpoints pi and pj both in P . Since D is a triangulation, ei must cross some edge
ej ∈ D. The edge ej has an empty circumcircle, since it is in D, where either pi

or pj lies strictly outside, since no four points are on a common circle. It follows
that ei does not have an empty circumcircle and as such is not Delaunay. �

14.2.2 Points not in General Position

In the above, it has been assumed that no four points are located on a common circle
and no three points are aligned. If this is not the case, Delaunay edges intersecting
themselves at points that do not belong to the point set or degenerate (flat) triangles
can—potentially—be included in the Delaunay graph, and the concept of Delaunay
triangulation becomes ambiguous. This is illustrated in Fig. 14.9, where there are
two possible triangulations of a point set all only including Delaunay edges. How-
ever, in the non general case, we cannot include all Delaunay edges and still have a
triangulation, e.g., if we included both possible edges in Fig. 14.9 they would cross
and the result would not be a triangulation. Hence a compromise has to be made.
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• Either all Delaunay edges will be included, and the result will be a Delaunay
graph (but not a Delaunay triangulation),

• or a consistent choice of Delaunay edges is included, and the result is indeed a
triangulation consisting of Delaunay edges, albeit not all such Delaunay edges
are included in the triangulation.

In practice, all Delaunay edges are typically not included, and a triangulation con-
sisting of only—but not all—Delaunay edges is formed, i.e., the latter choice.

14.2.3 Properties of a Delaunay Triangulation

The Delaunay triangulation of a point set has some nice properties, apart from the
circumcircles of all edges and triangles being empty. It is these properties that make
the Delaunay triangulation the typical triangulation of choice. Some of the more
central properties are briefly mentioned here.

Min Max Angle A common problem in triangulations is that some triangles be-
come too skinny, in that one of their angles becomes too small. This, among other,
relates to finite element simulations, where very skinny triangles can cause numer-
ical instability. To avoid this—as best as possible—the Delaunay triangulation is a
good choice, since the following can be shown.

Lemma 14.5 (Min Max Angle) Among all triangulations of a point set, P , the
Delaunay triangulation maximizes the minimal angle.

See e.g., [2] for a proof.

Lifted Circle Considering the circumcircle of three points p1, p2 and p3. Then
a fourth point p4, location w.r.t. this circumcircle has an alternative interpretation
if the points are projected onto the surface f : (x, y) → (x, y, x2 + y2) (which is a
paraboloid of revolution, see Fig. 14.10).

Lemma 14.6 Given the 3D points p̄1 = (p1x,p1y,p2
1x +p2

1y), p̄2 = (p2x,p2y,p2
2x +

p2
2y), p̄3 = (p3x,p3y,p2

3x + p2
3y) and p̄4 = (p4x,p4y,p2

4x + p2
4y). Then the point p4

lies in the circumcircle of p1, p2, and p3, if, and only if, p̄4 lies below the plane
spanned by p̄1, p̄2 and p̄3. The vertical direction is the z-coordinate.

Proof Consider the plane spanned by p̄1, p̄2 and p̄3, z = k1x + k2y + k3 and the
paraboloid of revolution, z = x2 + y2, as functions of x and y. It is seen that for the
intersection of these two surfaces the x and y values are given by

k1x + k2y + k3 = x2 + y2
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Fig. 14.10 Illustration of the lifted circle principle. On the left it is illustrated that three points
on the parabola x2 + y2 define a plane, and the intersection of that plane with the parabola define
a 2D ellipsoid. If this ellipsoid is projected into 2D it will be the circumcircle of the three points
projected into 2D. Thus any point in the circumcircle of the three points will project to a point
below the before mentioned plane. On the right this is illustrated by a 2D vertical slice through the
parabola, where any point in the “in circle” area will project to a point on the parabola below the
plane

which is a circle. It is this circle which is the projection of the intersection of the
two surfaces onto the xy-plane.

Denote the circumcircle of p1, p2 and p3 by C. Since C is unique and p̄1, p̄2
and p̄3 naturally lie on the geometric loci defined by p and f , it is seen that the
C projects to the intersection of the geometric loci defined by f and p. Since f

defines a paraboloid and p a plane, it is obvious that the points inside C project
to the only points on the paraboloid defined by f which are below the hyperplane
given by p. This can also be seen by stating the fact the point (x, y) is interior to
the circle C centered on (x0, y0) of radius r0 if its distance to the circle center is
less than the radius of the circle: (x − x0)

2 + (y − y0)
2 < r2

0 . Separating the second
degree terms (in the variables x and y) from the others, we get x2 + y2 < 2xx0 +
2yy0 + (x2

0 + y2
0 + r2). The left hand side of the previous inequality corresponds to

the z coordinate of the lifting of the point (x, y) on the paraboloid; while the right
hand side corresponds to the z coordinate of the lifting of the point (x, y) on the
hyperplane defined by p. Thus we conclude the proof. �

This is an issue of theoretical importance, which gives insight into the properties
of the Delaunay triangulation, and is the basis of proofs concerning this triangula-
tion, e.g., the InCircle predicate defined later. In particular it states that if we
project the 2D points, pi ∈ P , onto the parabola z = x2 + y2, resulting in the 3D
points p̄i ∈ P̄ , then the Delaunay triangulation corresponds to the convex hull of
these 3D points p̄i , cf. Chap. 13.

14.3 Delaunay Triangulation Algorithms

As indicated above, Delaunay triangulation is very widely used and has been around
for some time, hence there is a multitude of algorithms for achieving it with varying
running and implementation complexity. A survey of algorithms is beyond the scope
here. For an overview the reader is referred to [1, 3, 4].
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The most efficient Delaunay triangulation algorithms run in O(n logn) time,
where n is the number of vertices. Arguably, the fastest of these algorithms is the
divide and conquer algorithm of Guibas and Stolfi described in [5], which is rela-
tively easy to implement. Another popular class of algorithms is the sweepline type
algorithms, which have similar properties.

The divide and conquer algorithm does not generalize to dimensions higher than
two, which is e.g., the case of the flip algorithm mentioned previously in this chapter.
The flip algorithm is of the incremental insertion type is very easy to implement and
will run in O(n2) time; cf. e.g., [3, Sect. 2.1.5] [2, 5].

This section starts out by presenting the algorithmic details of some of the most
common geometric primitives used for triangulation, such as the in circle test. Fol-
lowing this, a detailed description of the flip algorithm is given in Sect. 14.3.2,
whereafter the divide and conquer algorithm is outlined.

14.3.1 Geometric Primitives

In most algorithms for triangulation there are two basic computational primitives
that prevail. These are tests of if a point is located to the left of a line spanned by
two other points LeftOf, and the test of if a point is located in the circumcircle of
three other points, InCircle. Hence these will be described here and will be dealt
with again in Sect. 14.4.

Definition 14.10 (LeftOf) The predicate LeftOf(p1,p2,p3) determines if the
point p3 lies to the left of the line spanned by p1 and p2.

A more symmetrical definition is that the points p1, p2, and p3 lie in a counter-
clockwise order. A concrete way to calculate this predicate is by determining the
sign of a determinant.

Lemma 14.7 The predicate LeftOf(p1,p2,p3) can be calculated by the sign of
the following determinant: ∣∣∣∣∣∣

1 p1x p1y

1 p2x p2y

1 p3x p3y

∣∣∣∣∣∣ > 0. (14.1)

Proof First note that the determinant becomes zero if, and only if, the points are
collinear implying that the 3 × 3 matrix loses rank. Consider then the case of p1 =
(0,0), p2 = (1,0) and p3 = (1,1), which clearly are in a counterclockwise order. In
this case the determinant is given by

∣∣∣∣∣∣
1 0 0
1 1 0
1 1 1

∣∣∣∣∣∣ = 1 > 0.



252 14 Triangle Mesh Generation: Delaunay Triangulation

Note that for the case of p1 = (0,0), p2 = (1,1), and p3 = (1,0), which clearly are
in a clockwise order ∣∣∣∣∣∣

1 0 0
1 1 1
1 1 0

∣∣∣∣∣∣ = −1 < 0.

Interpreting (14.1) as a function on R
6 it is seen that it is smooth, and that it is only

zero when the underlying three points, p1, p2 and p3, are collinear. Also, any smooth
deformation of a given set of points, p1, p2 and p3, can only go from being counter-
clockwise to being clockwise by being collinear. So with the two above examples it
is seen that (14.1) is positive if the points are counterclockwise and negative if they
are clockwise. �

Definition 14.11 (InCircle) The predicate InCircle(p1,p2,p3,p4) determines if
point p4 lies inside of the circumcircle of points p1, p2 and p3, where it is assumed
that the points p1, p2 and p3 are in counterclockwise order.

The reason that p1, p2 and p3 are assumed to be in counterclockwise order is
that InCircle is also calculated as the sign of a determinant. This sign naturally
depends on the ordering of points p1, p2 and p3, which would change of the point
were ordered in a clockwise fashion. This implies that if the points p1, p2 and p3

are ordered in a clockwise fashion, the result of InCircle should be negated. This
can naturally be incorporated in the implementation of the InCircle predicate if
so desired. A concrete way to calculate InCircle is as follows.

Lemma 14.8 The predicate InCircle(p1,p2,p3,p4) can be calculated by the
sign of the following determinant:

∣∣∣∣∣∣∣∣∣

p1x p1y p2
1x + p2

1y 1
p2x p2y p2

2x + p2
2y 1

p3x p3y p2
3x + p2

3y 1
p4x p4y p2

4x + p2
4y 1

∣∣∣∣∣∣∣∣∣
< 0. (14.2)

Proof Considering Lemma 14.6 and its proof, it is seen that (14.2) is the signed
volume of the tetrahedron spanned by p̄1, p̄2, p̄3 and p̄4. It is noted the p̄4 is below
the plane spanned by p̄1, p̄2 and p̄3 if p4 is inside the circumcircle of p1, p2 and
p3 and above otherwise. Hence with the traditional sign conventions the volume is
positive when p4 is inside and negative when it is outside—given the counterclock-
wise orientation of p1, p2 and p3. It is also seen that the determinant in (14.2) only
becomes zero when p̄1, p̄2, p̄3, and p4 become coplanar implying that p1, p2, p3,
and p4 are on a common circle. �



14.3 Delaunay Triangulation Algorithms 253

As an example, consider the points p1 = (0,0), p2 = (1,0), p3 = (1,1), and
p4 = ( 2

3 , 1
3 ), where p4 is clearly inside the circumcircle of p1, p2, and p3 which are

ordered in a counterclockwise fashion. Inserting into (14.2) gives∣∣∣∣∣∣∣∣

0 0 0 1
1 0 1 1
1 1 2 1
2
3

1
3

5
9 1

∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣
0 0 0
1 0 1
1 1 2

∣∣∣∣∣∣ −
∣∣∣∣∣∣
0 0 0
1 1 2
2
3

1
3

5
9

∣∣∣∣∣∣ +
∣∣∣∣∣∣
0 0 0
1 0 1
2
3

1
3

5
9

∣∣∣∣∣∣ −
∣∣∣∣∣∣
1 0 1
1 1 2
2
3

1
3

5
9

∣∣∣∣∣∣

= 0 − 0 + 0 −
(

−4

9

)
= 4

9
> 0,

where the matrix is expanded by minors w.r.t. the last column. Note that in 3D
similar predicates exist.

14.3.2 The Flip Algorithm

As outlined in Sect. 14.2.1 an arbitrary triangulation can be refined into a Delaunay
triangulation via a succession of flips. This property can be used to construct an
algorithm for computing a Delaunay triangulation of a given set of points, P , here
assumed to be in 2D. This construction process primarily consists of addressing a
number of practical issues brushed over in Sect. 14.2.1.

The first practical issue is that Sect. 14.2.1 deals with the refinement of triangula-
tions, and here we do not have a triangulation but just a set of points. The way this is
dealt with is by using an incremental insertion approach. That is, we first construct
a triangle, which is so large that it is certain to include all points, {p1, . . . ,pn} ∈ P .
Hereby we add three extra points pn+1,pn+2,pn+3, being the corners of this new
‘super’ triangle. It is seen that the triangulation of pn+1,pn+2,pn+3 only is a De-
launay triangulation, since there are only three points. Following this, each of the
points are added to the triangulation one by one. As seen in Fig. 14.11, a point, pi

is added by
1. finding the triangle, tj , the point pi is located within;
2. adding edges from pi to the three corners of tj , whereby tj is subdivided;
3. refining the resulting triangulation into a Delaunay triangulation via edge flips;
whereafter pi+1 is added in a similar manner. Since the triangulation is obviously a
Delaunay triangulation after Step 3, after the last point, pn, has been added, the
resulting triangulation is a Delaunay triangulation of the original points P plus
pn+1,pn+2,pn+3. The last part of the flip algorithm thus consists of removing points
pn+1,pn+2,pn+3, and all edges connected to them.

Other practical issues concerning the flip algorithm should also be mentioned.
Firstly concerning Step 1, it is noted that the added points are never on an edge,
due to the assumption of points being in a general position. If this is not the case
decisions have to be made on how to deal with this issue, cf. Sect. 14.2.2.

There is also the issue of how to efficiently find the triangle tj containing pi .
Due to the close links to the Voronoi diagram, cf. Sect. 14.6, it is seen that a corner
of tj must be the inserted point already inserted closest to pi . Efficient techniques for
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Fig. 14.11 An illustration of the first few steps of the flip algorithm. Top left: A large triangle en-
compassing all the points P is formed. Top middle: The first point, p1 is inserted. Top right: Edges
from p1 to the corners of its encompassing triangle are added. Since this is already a Delaunay
triangulation no refinement is illustrated. Bottom left: The second point p2 is inserted. Bottom
middle: Edges from p2 to the corners of its encompassing triangle are added. Bottom right: The
triangulation is refined, here by a single flip

doing this are found in Chap. 12. A more specialized solution is to form a search tree
based on the incremental triangulation history, cf. [2]. For a basic implementation,
all triangles can of course be tested in a sequential manner.

In relation to the refinement of Step 3, it is noted that if all edges are locally De-
launay, then the whole triangulation is Delaunay and vice versa. Also before the in-
sertion in Step 1 all edges are locally Delaunay. Thus after the insertion the only pos-
sible non locally Delaunay edges are the ones from tj and the three edges added in
Step 2. Thus, initially only these six edges have to be considered for flipping.2 These
edges can be inserted into a heap—containing edges for consideration—where sub-
sequent edges of triangles effected by a flip should be inserted into. When this heap
is empty, all edges are locally Delaunay.

Lastly, it should be mentioned that the amortized running time of the algorithm
will be improved if the points are inserted in a random order [6].

2Actually, of these six edges the three new ones will be locally Delaunay. To see this, note that
before the insertion of the point the triangle tj is Delaunay, and thus has an empty circumcircle. It
is seen that a circumcircle of one of the new edges can be constructed completely within this old
circumcircle (e.g., by shrinking the old circumcircle), whereby the new edges are locally Delaunay
at the outset.
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Table 14.1 Pseudo code for the central recursion in the divide and conquer algorithm for Delau-
nay triangulation

T̄ =Delaunay_Split_and_Merge(P̄)

If |P̄| > 3

1. Split P̄ into two equal parts L and R, such that all points in L have a lower y value than the
points in R.

2. Tl = Delaunay_Split_and_Merge(L).

3. Tr = Delaunay_Split_and_Merge(R).

4. T̄ = Merge(Tl ,Tr ).

Else If |P̄| = 3 form triangle.

Else form a line

Return triangulation, T̄ .

14.3.3 The Divide and Conquer Algorithm

As mentioned above, the arguably most efficient (i.e., best) algorithm for computing
the Delaunay triangulation in 2D is the divide and conquer algorithm by Guibas and
Stolfi [5], which is relatively simple to implement, albeit not as simple as the flip
algorithm. Another difference from the flip algorithm is that the divide and conquer
algorithm does not generalize to higher dimensions than two. A discussion of the
divide and conquer strategy in general is found in Chap. 13.

The basis of this divide and conquer algorithm is that it is relatively simple and
efficient to merge two non-overlapping Delaunay triangulations into one Delaunay
triangulation. Also, if the points are sorted according to y value it is straight forward
to divide the point sets where the points in one set all have higher y value than the
other, and thus must have non-overlapping triangulations. Lastly, if a set of points
has two or three points it is easy to form a Delaunay triangulation by forming a line
or a triangle (although it could be argued if a line is a triangulation, but this is of no
consequence here).

The algorithm starts out by sorting the 2D points P relative to their y value,
whereby the points can easily be divided according to increasing y value, and the
recursion of Table 14.1 is performed on the points P . For details on implementation,
especially on the merge step, the interested reader is referred to [5].

14.4 Stability Issues

An issue in many algorithms from computational geometry, and with triangulation
in particular, is that the algorithms are not stable w.r.t. numerical noise. The reason
is that the algorithms work by taking some discrete action based on the value of
some predicate. By discrete is meant that there is no smooth transition between
the actions. The problem arises when the predicate value approaches the ‘border’
between implying two actions, and the calculated value is uncertain due to round off
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Fig. 14.12 With the given certainty of the predicate it is not possible to determine which action
to take

Fig. 14.13 Four points close
to being on a common circle

error, as illustrated in Fig. 14.12. In this regard it should be noted that the rounding
of the error can vary for the semantically same predicate expressed in two different
syntaxes.

As an example consider four points, a, b, c, d , close to being on a common cir-
cle in the context of a Delaunay triangulation algorithm—see Fig. 14.13. Here the
predicate InCircle is likely to be used for determining if the diagonal should go
from a to b or from c to d . However, it is likely that it will say both or neither, in
the face of numerical noise.

It should be noted that this issue is not just of theoretical interest. In fact most
algorithms will fail too frequently for comfort if this stability issue is not addressed.
Hence for real triangulation applications these issues need to be considered and in
many applications should be dealt with.

There are a couple of different ways of addressing this problem, a few of which
will be discussed here. One way is to use exact arithmetic in the algorithm instead
of the traditional floats or doubles. This, however, has the drawback of slowing
the computations down considerably—approximately 70 times in some applica-
tions [7].
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Another approach is to monitor if a predicate value comes close to the ‘border’
(see Fig. 14.12). By close is meant close to numerical precision. In these few cases
the predicate is calculated with increased precision, in order that the issue ceases to
exist. There are a couple strategies for doing this, two of which are [7, 8].3

Another issue is that for some predicate values there is no appropriate action.
E.g. if a triangulation is to be made of three points located on a common line, in
which case (14.1) will be zero. A solution is to permute the points slightly—making
them non collinear—whereby an appropriate action can be taken, cf. e.g., [2].

14.5 Other Subjects in Triangulation

As mentioned, mesh generation can easily fill a whole course, and as such there are
many subjects related to this matter not covered here. In order to make the student
aware of their existence two of the most central will be covered briefly here.

14.5.1 Mesh Refinement

One major subject in mesh generation is mesh refinement. The idea is that if it is not
possible to make a nice enough triangulation of a point cloud, e.g., via a Delaunay
triangulation, then final triangle mesh can be improved by inserting strategic points
via some rule or another, cf. e.g., [3].

An example where this could be desirable is the triangulation of a point cloud,
with the intent of simulation. Here some triangles sometimes become two slim for
numerical comfort, and extra points can be inserted to break up such triangles.

14.5.2 Constrained Delaunay Triangulation

A constrained Delaunay triangulation is a triangulation of a set of points, with the
constraint that the triangulation should contain certain edges—which are called con-
strained edges, and which need not be Delaunay—and that all Delaunay edges that
do not cross any of those constrained edges (except at their extremities) belong to
the triangulation, cf. e.g., [1–3]. This necessitates a slight modification of the De-
launay properties of triangles and edges termed constrained Delaunay. Indeed, the
constrained edges are flagged so that they may not be changed by subsequent trian-
gle flips.

An example of this is the triangulation of the interior of a polygon. Here the
edges of that polygon should naturally be in the final triangulation, regardless of
them being Delaunay or not. Note that the triangulation of a polygon is a special
case of triangulation, and as such, special algorithms have been constructed for this
purpose, cf. e.g., [1, 9], including a O(n) running time algorithm; cf. e.g., [10].

3Both papers contain further references to the subject.
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Fig. 14.14 The Voronoi diagram of ten random points, P . Note that the regions, Vi , denote exactly
the parts of R2 which are closest to its respective point pi ∈ P

Recently, constrained Delaunay triangulations have been extended in order to
handle moving points that may move along constrained trajectories. The result is
a kinetic constrained Delaunay triangulation [11], where the moving point may
be part of a constrained Delaunay edge. Its main application is in the field of
Geospatial Information Systems; however, it can also be applied to navigation and
robotics.

14.6 Voronoi Diagram

A problem closely related to Delaunay triangulation is that of determining which
one of a number of given locations, P , an arbitrary position is closest to, e.g., which
hospital is closest to you. This extends to the problem of computing a diagram or
map of indicating for all points, e.g., in 2D, which point in P is the closest, cf.
Fig. 14.14. This diagram is called the Voronoi Diagram, after Georgy Voronoi, and
is seen to consist of regions, Vi , associated with each point, pi , formally defined as
follows.



14.7 Exercises 259

Definition 14.12 (Voronoi Region in 2D) Given a set of points {p1, . . . ,pn} ∈ P the
Voronoi regions are defined by

Vi = {
x ∈R

2 | ‖x − pi‖ ≤ ‖x − pj‖, ∀pj ∈ P
}
, (14.3)

i.e., the region of points in R
2 closest to pi .

In computing the Voronoi diagram, the edges are naturally of special interest, in
that they define the Voronoi regions, Vi . These edges or boundaries occur when two
Voronoi regions, Vi and Vj , are adjacent, and points on these have equal distance to
pi and pj , and no other points are closer. This is equivalent to being able to construct
a circle
• centered at the edge between the Voronoi regions Vi and Vj ;
• traversing pi and pj ;
• which is empty.
This is equivalent to having an empty circumcircle of an edge from pi to pj , which
is again equal to the definition of a Delaunay edge from pi to pj . A definition of
a Delaunay triangulation of a point set P is then that it is the dual of the Voronoi
diagram of the same point set, P . By this is meant that there is a Delaunay edge
from pi to pj if, and only if, there is an edge between Vi and Vj . It can be shown
that this is equivalent to the previous definition of Delaunay triangulations given in
this chapter, cf. [2]. An example is given in Fig. 14.15.

In practice, the Voronoi diagram of a point set P is often computed by first com-
puting the Delaunay triangulation of P , because efficient algorithms exist for doing
the latter, cf. e.g., [9]. In this regard it should be noted that the corners of the Voronoi
regions correspond to points which have equal distances to three points in P , and as
such correspond to the centers of the circumcircles of the Delaunay triangles.4 Thus
a Voronoi diagram can be constructed from a Delaunay triangulation, by adding a
vertex at the center of each circumcircle of the Delaunay triangles, and then con-
necting two such vertices if, and only if, the corresponding triangles share an edge.

14.7 Exercises

Exercise 14.1 The aim of this exercise is to implement an algorithm for Delaunay
triangulation of points. Hereby it is hoped that a greater understanding of the the-
ory behind Delaunay triangulation is obtained. It is thus important that a working
algorithm is achieved; however, an industrial strength one is not needed.

What algorithm you choose to implement is up to you—as long as it is a variant
of one that someone has argued to be correct. The simplest algorithm we can rec-
ommend is an incremental insertion algorithm, cf. e.g., Sect. 14.3.2. A more chal-
lenging algorithm—with a more applicable running time—is a divide and conquer
type algorithm. A good description of such an algorithm is found in [5].

4Note that the center of a Delaunay triangle’s circumcircle need not necessarily be located within
that triangle.
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Fig. 14.15 The Voronoi diagram from Fig. 14.14, with the Delaunay triangulation added

We have included two data sets on which you should apply your algorithms. An
easier one consists of 10 random points. A more realistic one is containing 3D ter-
rain data. The 3D terrain data are to be projected into the xy-plane and triangulated
there. This induces a triangulation in 3D which is the result you should achieve.
Deliverables: Illustration of the triangulated data sets, and interpretation of the re-

sults.
Resources: The Gel framework, the files containing the two point sets, data.txt

and kote1.txt and a small demonstration to get you started, delaunay.cpp.
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153D Surface Registration via Iterative Closest
Point (ICP)

Many geometric 3D models of real objects originate from a 3D scanning process,
such as laser scanning. An often occurring issue in this scanning process is that
it is only practically possible to capture partial scans of the object in question, cf.
Fig. 15.1. So in order to get a complete 3D model these partial 3D scans or sur-
faces have to be combined into one. A major task in doing this is getting the partial
surfaces into a common reference frame or coordinate system, in that it is seldom
known with sufficient accuracy how the object moved relative to the scanner be-
tween scans.

The typical process for getting these partial surfaces into the same reference
frame is by first registering them to each other, such that corresponding points are
identified. Following this, a transformation is found which minimizes the distance
between the correspondences. Following this, the surfaces, e.g., triangular meshes,
are merged into one combining data structure.

The main subject of this chapter is that of registration, and the iterative closest
point method (ICP) in particular. The merging of partial scans is, however, briefly
covered in Sect. 15.5 with links to the methods presented through out this book. It
should also be noted that registration of 3D surfaces has a wide range of applications
beyond the merging of partial scans, e.g., object recognition and searching of 3D
object databases, cf. e.g., [1].

15.1 Surface Registration Outline

Registration of data sets, be they signals, images, surfaces, etc., is one of the main
problems in computer science and signal analysis. For 3D surfaces representing
(partially) overlapping parts of the same (or a similar) object, the aim is to find
the locations, e.g., points, on the surfaces corresponding to the same entity on the
underlying object, cf. e.g., Fig. 15.2.

One way of addressing the surface registration problem is to first find salient fea-
tures and then try to match them to each other by pattern recognition, [2]. This is an
approach much used in image analysis, cf. e.g., [3, 4]. Instead of relying on being

J.A. Bærentzen et al., Guide to Computational Geometry Processing,
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Fig. 15.1 An illustration of partial scan registration. Top: Two partial scans of a statue taken from
different angles by a structured light scanner. Bottom: The two surfaces or meshes registered and
aligned to each other using ICP
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Fig. 15.2 A general illustration of 3D surface registration, where correspondences (dashed lines)
are made between the part of the surface corresponding to the same underlying part of the object
(here illustrated by color)

able to solve the registration by devising a pattern recognition approach, a popular
approach in geometric processing is the iterative closest point method (ICP), which
is covered here. The ICP method is used to match two surfaces and determines corre-
sponding points as the closest one between surfaces. Following this, the two surfaces
are aligned so as to minimize the distance between the corresponding points, and the
process is repeated until convergence, e.g., the closest point correspondences does
not change.

The ICP is thus a quit simple, albeit rather successful, heuristic for solving the
problem. The ICP algorithm also uses a greedy optimization strategy. As such its
success relies on adequate initialization, i.e., the two surfaces not being too far from
each other. If this is not the case the feature-based methods mentioned above could
be considered, or else several random initializations could be attempted. In the case
of aligning partial scans from a scanner, a rough estimate is often available. Such
a rough estimate is e.g. achieved from laser scanners, which move relatively little
between scans to have a large overlap, by initially assuming that the object had not
moved relative to the scanner.

15.2 The ICP Algorithm

To summarize the above, the ICP algorithm is used to align one mesh M1 to an-
other M2. The assumption is that the two meshes are a realization/discretization
of the same underlying surface, possibly with noise added, and that the mesh M1
has undergone a rigid transformation (rotation and translation), cf. Fig. 15.3. The
problem is to estimate this rigid transformation, which will map M1 onto M2, in
an ‘optimal’ way.

The ICP algorithm does this in the following way, cf. [5]:
1. For all vertices p1i ∈ M1, find the closest vertex p2i ∈M2, cf. Fig. 15.4.
2. Find the rigid transformation (rotation R and translation t) that minimizes the

distance between the transformed p1i and the p2i , i.e.,

min
R,t

∑

i

∥∥(Rp1i + t) − p2i

∥∥2
. (15.1)

3. Apply the estimated rigid transformation to M1.
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Fig. 15.3 Two similar meshes, one rotated and translated w.r.t. the other

Fig. 15.4 Two stylized
meshes, where the distances
between point pairs are
denoted by the dotted lines

4. If convergence has not been reached go to 1. A typical measure of convergence
is that the closest point pairings in step 1 are unchanged.
A simple illustration of the workings of the ICP algorithm is given in Fig. 15.5.

An interpretation of this algorithm is; that we iteratively assume that the closest
point is the correct correspondence for p1i , estimate and apply the appropriate trans-
formation. It should also be noted that the fact that the least squares norm, ‖ · ‖2

2, is
used can be interpreted as the noise corrupting the meshes is Gaußian.

ICP is in essence a greedy algorithm, and will not always converge to the global
optimum, but it has obtained popularity, because it gives good results, with decent
data and initial guesses.
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Fig. 15.5 Four iterations of the ICP algorithm where the red point set is aligned to the blue. The
closest point relations are denoted by the green lines

15.2.1 Implementation Issues

There are several issues to be dealt with when implementing the ICP, and naturally
there are different preferences in this area. Firstly, there is the issue of finding the
closest point/vertex v2i to v1i . The ‘obvious’ thing to do would be for all p1i to
traverse all the vertices in M2. However, this is a O(n2) operation, and becomes a
disadvantage in that this algorithm is often run on meshes containing thousands of
vertices. Instead a kD tree, or similar, should be used, see e.g., [6]. Such spatial data
structures are the subject of Chap. 12.

Another thing is that the matchings or closest points are not required to be unique.
That is, more than one vertex in M1 can have a given vertex in M2 as a closest
point. This can in part be motivated by not wanting to endure the cost of enforcing
the uniqueness constraint (e.g., using methods like [7]), but also by the fact that the
two meshes might not be equally sampled. E.g., a small triangle might be inserted in
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M1 instead of a single vertex in M2. This non-uniqueness also implies that different
closest point pairs will be achieved depending on whether M1 is aligned to M2 or
vice versa. Hence the general algorithm is non-symmetric depending on which mesh
is aligned to which. However, if the algorithm is successful the difference should be
negligible.

A last main part of implementing an ICP algorithm is how to find the rigid trans-
formation (R and t) that minimizes the distance between the closets point pairs, cf.
(15.1). The straightforward solution is to apply a nonlinear optimization algorithm
to (15.1), e.g., [8]. There are, however, more direct methods for matching point sets,
cf. e.g., [9], which will be presented next.

15.2.2 Aligning Two 3D Point Sets

Here the method of [9] will be outlined, although there are other direct methods
achieving the same goal. Denote the closest point pairs corresponding to p1i ,p2i as
pi ,p′

i—the distinction is made, because all vertices might not be used, and some
may occur more than once. As such we rewrite (15.1) as

min
R,t

∑

i

∥∥(Rpi + t) − p′
i

∥∥2
. (15.2)

The first result needed is that the optimal t is that which connects the center of
mass of the two point sets, i.e., (see [9] for a proof)

t = 1

n

n∑

i=1

p′
i − 1

n

n∑

i=1

pi . (15.3)

For the further analysis, aimed at estimating the 3 by 3 rotation matrix R, we will
assume that the two point sets have been translated such that their center of mass is
at the origin. That is, define

qi = pi − 1

n

n∑

j=1

pj ,

q′
i = p′

i − 1

n

n∑

j=1

p′
j .

It can then be shown that R can be found via the SVD1 of the following matrix:

H =
n∑

i=1

qiq′
i
T
.

1Singular Value Decomposition, cf. Chap. 2.
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Denote the SVD by H = U�VT , then

R = UVT .

It should, however, be verified2 that the determinant of R is 1 and not −1. In the
latter case the algorithm has failed, which should only happen seldomly and in the
face of extreme noise.

There is an important detail concerning the calculation of H, seen by expanding
the expression:

H =
n∑

i=1

qiq′
i
T

=
n∑

i=1

(
pi − 1

n

n∑

j=1

pj

)(
p′

i − 1

n

n∑

k=1

p′
k

)T

=
n∑

i=1

pip′
i
T −

(
n∑

i=1

pi

)(
1

n

n∑

k=1

p′
k

)T

−
(

1

n

n∑

j=1

pj

)(
n∑

i=1

p′
i

)T

+ n

(
1

n

n∑

j=1

pj

)(
1

n

n∑

k=1

p′
k

)T

=
n∑

i=1

pip′
i
T − 1

n

(
n∑

j=1

pj

)(
n∑

k=1

p′
k

)T

.

This implies that H (and thus R) and t can be calculated by one pass of the closest
point sets, instead of the two indicated by the original formula. In other words, by
updating

n,
∑

i

pip′
i
T
, y

∑

j

pj ,
∑

k

p′
k

as step 1 is performed in the ICP algorithm outlined above, all the information
needed in order to calculate t, H and thus R is collected. Hence there is no need
for explicitly saving the closest point pairs. An outline of how to estimate the rigid
transformation, also known as an Euclidean similarity transformation is given in
Table 15.1.

2If the determinant is −1 R is a reflection and not a rotation.
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Table 15.1 Pseudo code for aligning two point sets via a rigid transformation

Given a set of 3D point correspondences, pi ,p′
i , i ∈ [1, . . . , n], find the rigid transformation, R, t

that minimizes

min
R,t

∑

i

‖(Rpi + t) − p′
i‖2.

Compute
∑

i

pip′
i
T
,

∑

j

pj ,
∑

k

p′
k.

This can be done in one pass through the data. Then set

t = 1

n

n∑

i=1

p′
i − 1

n

n∑

i=1

pi

H =
n∑

i=1

pip′
i
T − 1

n

(
n∑

j=1

pj

)(
n∑

k=1

p′
k

)T

U�VT = H The SVD of H

R = UVT

Verify that the determinant of R is plus one.

15.2.3 Degenerate Problems

It should be noted that if the two meshes are planar, then a unique solution is not
achievable. This is clear since two planes can be perfectly aligned in many different
ways. Thus such cases, and cases that are close to these, will cause the algorithm
problems. As an obvious extension of this is if the meshes are located on a line or
close to it, the problems get even worse. If large parts of the meshes are planar then
weighting of the data points might be in order cf. [10].

15.3 ICP with Partly Overlapping Surfaces

An underlying assumption of the ICP algorithm is that upon convergence, for all
points the closest point is the correct correspondence. It follows from this assump-
tion that the two surfaces or meshes to be registered capture the same underlying 3D
geometry, in that for more or less all points the corresponding point on the other sur-
face should exist. With partially overlapping surfaces, e.g., aligning different partial
scans, this assumption is violated to a point where the basic ICP algorithm breaks
down, cf. Fig. 15.6.

This issue of aligning partially overlapping meshes, can be addressed by incor-
porating a heuristic into the ICP algorithm whereby points, which do not have cor-
responding points on the other surface, are not included in the alignment. One such
heuristic, which has proven highly successful, is proposed in [11]. This heuristic
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Fig. 15.6 Six iterations of the standard ICP algorithm of the red point set to the blue. Since the
point sets, or surfaces, are only partially overlapping, it is seen that the large amount of red points
overwhelm the algorithm giving erroneous results
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labels points for which the corresponding point on the other surface is an edge point
as not having a corresponding point. As such these points should not be included in
the alignment, cf. Fig. 15.7. The underlying assumption about this heuristic of [11],
is that if the surfaces are located on top of each other, points in non-overlapping
regions will be closest to edges on the other surface. This assumption often holds,
cf. Figs. 15.5 and 15.1.

Thus adapting the standard ICP algorithm to working with partially overlapping
meshes in this manner, requires that edge points can be computed. If the surface is
represented as a triangular mesh this can e.g., be done by identifying points that only
share one triangle with another point. Two points only sharing one triangle implies
that one of the edges of that triangle does not have an opposing triangle, and as such
is an edge of the surface.

15.4 Further Extensions of the ICP Algorithm

Although the ICP is a very successful algorithm, many extensions have been pro-
posed to it in order to enhance its performance and to enable it to address more
situations, e.g., for partially overlapping meshes as described above. A few more of
these extensions will briefly be presented here, in order for the reader to be aware of
their existence. However, for a more in depth discussion refer to [10].

15.4.1 Closest Point not a Vertex

The difference between the ICP method proposed in [5] and [12], is that in [12] the
closest point to p1i on M2 need not necessarily be a vertex. That is the point closest
to p1i might be on a face or an edge of the mesh.

The advantage is obviously that if the two meshes are sampled differently and
the faces are large, a much better estimate of the closest point will be obtained. The
disadvantage is that it is more cumbersome to do, and is less robust towards hard
problems, i.e., close to degenerate, cf. [10].

15.4.2 Robustness

There has also been work done on making the ICP more robust towards erroneous
data, cf. [13–15], and choosing weighting schemes to better depict the reliability of
the different parts of the mesh, cf. [10, 14, 16].

Also additional information associated with the mesh can be used. E.g., if the
meshes has been generated from stereo images, there will also be a texture asso-
ciated with it, cf. e.g., [17]. This texture can naturally be used for finding good
candidates for the point on M2 corresponding to a p1i ∈ M1, i.e., a point should
both be close and have a similar texture to be paired with p1i .
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Fig. 15.7 Six iterations of the ICP algorithm adapted to handle partial overlapping surfaces, on
the same data as Fig. 15.5. It is seen that no registrations, in the form of green lines, involve the
edge of the blue points. Also the algorithm is seen to perform satisfactorily as opposed to the
standard algorithm as illustrated in Fig. 15.5
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15.5 Merging Aligned Surfaces

As mentioned in the beginning of this chapter, the typical task in which the ICP is a
part, is that of merging two meshes. A way of doing this is as follows.
1. Align the two surfaces, e.g., via ICP, as described in this chapter.
2. Convert the two meshes into point clouds, e.g., by only using the vertices and not

the faces.
3. Use the theory form Chap. 17 to reconstruct a surface from the points via a

volumetric method.
4. If needed, use the methodology from Chap. 18 to convert the surface from the

previous step into a mesh.
A few points should be made about this approach for surface merging. Firstly, it

will also work on raw, un-meshed, point clouds. That is, there is no reason to form
a point cloud into a mesh, before this method is run, in that ICP works on raw point
clouds as well.

Secondly, the reason why two meshes are merged by via a conversion to an iso-
surface representation, as opposed to directly merging the meshes, is that it generally
works better. The issue with such a direct merging of meshes, is that non-manifold
results are hard to avoid, in that there is no simple way to interpolate between meshes
(with considerable curvature and possible holes). With iso-surfaces, i.e., volumetric
methods, such interpolation between surfaces is simple and straightforward.

Lastly, if more than two scans are to be aligned—partly overlapping or not—
methods exist which deal with making ICP work in such settings, cf. e.g., [18, 19]

15.6 Exercises

Exercise 15.1 The aim of this exercise is to implement a version of the ICP al-
gorithm, used for the registration of meshes. Hereby it is hoped that a greater un-
derstanding of the relevant theory is obtained. It is thus important that a working
algorithm is achieved, however, an industrial strength one is not needed.

We have included two data sets, on the books homepage, on which you should
apply your algorithms, an easy and a realistic. These two data sets are named
mesh1.x3d and mesh2.x3d. The first mesh is a simple one to develop your
algorithm on, the second is more realistic.
Deliverables: Illustration of the aligned meshes, and interpretation of the results.
[GEL Users] The Gel framework is a valuable aid. Note that the GEL framework

contains an implementation of a kD-tree.
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16Surface Reconstruction using Radial Basis
Functions

In this chapter, we discuss methods for reconstructing surfaces from scattered points
by interpolation using radial basis functions (RBF). By “scattered” we understand
simply that the points do not lie on a regular grid. Interpolation is the process of
finding the value at any point in space of a function sampled at the scattered points.
For a general discussion of interpolation of scattered points, see [1].

It turns out that interpolation is a simple and effective method for reconstruction
of surfaces from scattered points. In fact there are two different approaches both of
which are discussed in this chapter. Taking the first approach, the surface becomes
the graph of a function of two variables. If we take the second approach, the surface
is the level set or isosurface of a function of three variables. The two approaches are
illustrated (in 2D) in Fig. 16.1.

To be more precise, the first approach, which we discuss in Sect. 16.3, creates a
surface, S = {x = [x y z]T ∈R

3|z = s(x, y)}, which is given by a function s of x and
y. To make S interpolate our set of scattered points, {xi}, we require of s that for any
point i in our data set, zi = s(xi, yi). The 2D case is illustrated in Fig. 16.1 (left). In
some cases we may want to relax the interpolation requirement, and then we obtain
a surface which approximates rather than interpolates our points as indicated by the
dotted line in the figure.

However, this approach does not always apply. In some cases, our points do not
lie on the graph of a function of two variables as illustrated (again for the 2D case) on
the right in Fig. 16.1. Interpolation using radial basis functions is still an effective
tool, but the surface must now be defined implicitly, i.e., S = {x ∈ R

3|s(x) = τ },
where s is a function of x, y, and z, and τ is known as the isovalue. We require of
s that s(xi ) = τ . In other words, we find the implicit surface (cf. Sect. 3.10) that
interpolates our points. The astute reader will have noticed an issue: the constant
function that maps any point to τ fulfills the condition, but does not give us an
isosurface. Consequently, we need to impose other conditions to use this method,
which is discussed in Sect. 16.4.

In the following section (Sect. 16.1), we motivate the use of radial basis functions
by discussing some limitations of the alternatives, and in Sect. 16.2, we discuss the
RBF method in detail.

J.A. Bærentzen et al., Guide to Computational Geometry Processing,
DOI 10.1007/978-1-4471-4075-7_16, © Springer-Verlag London 2012
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Fig. 16.1 A 2D illustration of the two approaches to creating a shape from scattered points. On
the left the solid curve is a graph of a function, which interpolates the data points. The dotted
curve is the graph of a function that approximates the points. On the right, the solid curve is an
isocurve or level set of a function which interpolates the data points. Again, we can find a curve
(dotted) which only approximates the points. The advantage to approximation is that we often get
a smoother curve (or surface in 3D)

16.1 Interpolation of Scattered Data

Scattered data interpolation is a very general tool that is widely used for a range
of applications. We have already discussed Delaunay triangulation and the Voronoi
diagram in Chap. 14. Recall that the Voronoi cell of a given point xi ∈ X where
X is a is simply the region in space where every point is closer to xi than to any
other point in X. Thus, if we want a piecewise constant interpolation function s we
can define it by simply finding the closest point and then using the data value for
that point. This corresponds to finding out in what Voronoi cell the point is located.
Implementation-wise, we would construct a spatial database, e.g., a kD tree, and use
that to locate the nearest point.

However, if we wish a piecewise linear interpolation, we might want to use the
dual of the Voronoi diagram instead, i.e., the Delaunay triangulation. We now define
s(x) by finding the triangle containing x and we linearly interpolate the data values
at the corners to the point x. Thus, we have a piecewise linear interpolation.

While these techniques are probably very suitable for a range of applications, we
would often like an interpolation that is more smooth than piecewise constant or
linear. Moreover, it is far from trivial to construct a Delaunay triangulation in higher
dimensions. In other words, we would like a more general tool.

One simple technique is often referred to as Shepard interpolation [1]. The ba-
sic idea behind Shepard interpolation is to compute a spatially varying weighted
average of the data points.

s(x) =
∑

i w(‖x − xi‖)fi
∑

i w(‖x − xi‖) , (16.1)
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Fig. 16.2 A simple example
of Shepard interpolation

where, for instance, we let w(r) = 1
(r+ε)2 using ε � 1. This function will assign a

large weight to a point if we are very close, and a small weight otherwise. However,
it is clear that the method is only approximately interpolating. Precise interpolation
requires w(0) = ∞ but since that is not possible, we tend to settle for simply having
a large value at zero. However, this tends to lead to visible artifacts in the interpo-
lation function. In Fig. 16.2, we see an example where w(r) = 1

(r+10−5)2 . It is fairly
easy to guess where the data points are.

The problem with Shepard’s method is that to get approximate interpolation, we
need a function w with very large derivatives which tends to show in the solution.
Thus, we tend to get better results with radial basis functions, the method to which
we devote the remainder of this chapter.1

16.2 Radial Basis Functions

In the following discussion, we often follow Powell’s course notes on radial basis
functions [2], which is an introductory text on general interpolation using radial
basis functions, and [3], which is one of the early papers on the applications of
RBFs to surface reconstruction.

The idea behind interpolation using radial basis functions is to choose a basis
of functions with which we can represent a class of functions in the domain over
which we interpolate. Specifically, we choose a basis consisting of radially sym-
metric functions, and we associate one basis function with each data point. Our
interpolation function is represented in this basis, i.e., as a linear combination of the
radial functions associated with each data point.

Suppose, we are given a set of points {xi ∈ R
d} and associated data values fi .

Furthermore, let ψ = exp(−αr2). In that case, we can write down a linear system

fi =
∑

j

λjψ
(‖xi − xj‖

)
, (16.2)

whose solution is the set of coefficients λi . In matrix form

f =���λλλ, (16.3)

1Since w is also a function of point distance, one might say that the functions used in Shepard’s
method are also “radial”. Sometimes nomenclature can be a bit misleading.



280 16 Surface Reconstruction using Radial Basis Functions

where �ij = ψ(‖xi − xj‖). Clearly, we cannot have two data points at the precise
same location since that would lead to two identical rows in ��� . Assuming we do
not, then, having solved for λ, we can define a function

s(x) =
∑

j

λjψ
(‖x − xj‖

)
, (16.4)

which by construction interpolates the data values. However, it is not immediately
clear whether (16.2) has a solution. It turns out, however, that because of our choice
of ψ , the system is positive definite, i.e., that λλλT ���λλλ > 0 if λλλ �= 0.

For most functions other than the Gaußian ψ , we need the coefficients to fulfill
the condition that

∑
j λjP (xj ) = 0 for any polynomial P whose order depends

on the choice of ψ . If this condition is fulfilled for a vector λλλ �= 0, we know that
λλλT ���λλλ > 0.

Typically, P is either a constant or a linear polynomial. We can express the condi-
tion

∑
j λjP (xj ) = 0 in matrix notation. For the sake of simplicity, assume that we

just need a linear polynomial. Now, let P be a matrix where each row is [1 xi yi zi]
and where xi , yi , and zi correspond are the coordinates for one of the points we
wish to interpolate. P looks as follows:

P =

⎡

⎢
⎢
⎣

1 x1 y1 z1
1 x2 y2 z2
. . .

1 xn yn zn

⎤

⎥
⎥
⎦ .

If λ is orthogonal to each column, i.e., PT λλλ = 0, λλλ is also orthogonal to any linear
combination of columns and thus to any linear polynomial.

For reasons which will be explained shortly, we also add a polynomial term to
the sum of radial basis functions. Thus, we need to solve

fi =
∑

j

λjψ
(‖xi − xj‖

) + P(xi ), (16.5)

where P is a polynomial with coefficients c. In matrix form,

[
��� P

]
[
λλλ

c

]

= [
f
]
. (16.6)

Now, if we add the condition PT λλλ = 0 to the linear system, we get the system that we
normally have to solve when dealing with RBF interpolation. The following theorem
shows that this system is not singular, since that would lead to a contradiction.

Theorem 16.1 Given a matrix of RBF coefficients, ��� , and a matrix, P, as defined
above, where the order of the polynomial is chosen such that for a non-zero coeffi-
cient vector, λλλ, PT λλλ > 0 =⇒ λλλT ���λλλ > 0,

[
��� P
PT 0

][
λλλ

c

]

=
[

f
0

]

(16.7)
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Table 16.1 This table
contains various radial basis
functions along with the
required order of polynomial
to use in (16.5)

Name ψ(r) Polynomial

Gaußian ψ(r) = exp(−αr2) N/A

Linear ψ(r) = r Constant

Thin Plate Spline ψ(r) = r2 log(r) Linear

Cubic ψ(r) = r3 Linear

is non-singular for f �= 0.

Proof Assume that for a non-zero coefficient vector, [λλλ c]T ,

[
��� P

]
[
λλλ

c

]

= 0

���λλλ + Pc = 0

λλλT ���λλλ + (λλλT P)c = 0

λλλT ���λλλ = 0

which is a contradiction since PT λλλ = 0 implies that λλλT ���λλλ > 0. To get the last row,
we used λλλT P = PT λλλ = 0. Thus, the system is not singular. �

Unsurprisingly, it is not trivial to choose a polynomial order such that PT λλλ >

0 =⇒ λλλT ���λλλ > 0. What order to use depends on the type of RBF. For a more
detailed discussion, the reader is referred to [2]. Table 16.1 adapted from [2] sum-
marizes the polynomial orders needed for popular selections of RBFs.

To sum up, for a given choice of radial basis functions, we can construct a system
of linear equations of the form (16.7). Having solved that system, we obtain an
interpolation function

s(x) =
∑

j

λjψ
(‖x − xj‖

) + P(x). (16.8)

16.2.1 Regularization

Typically, interpolating functions oscillate more than functions which merely ap-
proximate the data and if we assume that our data are not completely noise free, it
is not necessarily a good idea to enforce interpolation in any case. Regularization
simply relaxes the interpolation requirement.

If the system is ill-conditioned, regularization also improves the condition num-
ber of the system we need to solve. The principle is simply to add a constant to the
diagonal of the linear system which we need to solve in order to obtain the RBF
coefficients,

fi =
∑

j

λjψ
(‖pi − pj‖

) + P(pi ) + kλi, (16.9)
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where k is the regularization constant. In matrix form, we obtain
[
��� + kI P

PT 0

][
λ

c

]

=
[

f
0

]

. (16.10)

Note that the constant k should generally be small in comparison to the extent of the
data. Note also that from a statistical point of view, this type of regularization can
be seen as trading a small bias for a reduction in variance.

16.3 Surface Reconstruction

As described, the RBF method can be directly applied to reconstruct a surface if
the surface can be seen as the 2D graph of a function. In this case, the value we
interpolate is the height value, i.e., fi = zi . What then are the choices of ψ and what
polynomials should be used? A few commonly used RBFs are shown in Table 16.1,
adapted from [2], along with the required polynomial terms.

If we are given 2D points with associated height values, a particularly common
choice is the so called thin plate spline RBF, ψ(r) = r2 log(r). The thin plate spline
solution has the nice property that it minimizes the linearized bending energy (cf.
Sect. 9.6)

E[s] = 1

2

∫

s2
xx + 2s2

xy + s2
yy dx dy. (16.11)

Thus, for 2D implementations, the thin plate spline basis function is an obvious
choice. In Fig. 16.3 is an example showing a tessellated height map which is pro-
duced from a set of discrete height points by interpolation using thin plate splines.

16.4 Implicit Surface Reconstruction

However, this procedure only works for 2.5D data. What do we do if we need to
reconstruct a surface from points which cannot be assumed to be sampled from a
height map? The normal procedure is to use the points to reconstruct an implicit
representation of the surface. This method was popularized by Turk and O’Brien
[4].

If we know all the points lie on the surface we wish to reconstruct, an obvious
strategy is to assign the data value 0 to all the points. However, there is an obvious
problem, namely that s(x, y, z) = 0 would interpolate the points. To fix this prob-
lem, we need to have points which do not lie on the isosurface. Provided we have
estimated surface normals together with the points, the most common procedure is
to move a fixed amount in the positive (or negative) normal direction and create a
new point at that position. An example of this is shown in Fig. 16.4.

Examples of RBF surfaces reconstructed in this fashion are shown in Fig. 16.5.
Note that we have cheated a bit in this example since the points are simply the
vertices of a mesh. Of course, that makes it a lot easier to obtain the normal. In the
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Fig. 16.3 A terrain reconstructed from scattered points using thin plate splines

Fig. 16.4 A set of points
(solid) and auxiliary points
(hollow) obtained by
offsetting along the normal.
Also shown is a surface which
interpolates the point set

case of laser scanned data, normals are often estimated by locally fitting a plane to
the point cloud. The normal at a given point is then the normal of the local plane
estimate. To obtain the surface orientation, we can observe that the camera used by
the laser scanner must have been able to see the point. Thus, we know a direction
to something on the “outside”, and this direction can be used to orient the normals.
For a detailed discussion of how to estimate point normals, see Sect. 17.1.1.

An example including regularization is shown in Fig. 16.6. Note that the surface
is more wavy in the reconstruction without regularization.
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Fig. 16.5 Reconstruction from points in 3D using various radial basis functions. The original
points are simply the mesh vertices (top left) plus a set of points offset in the normal direction. The
radial basis functions are linear (top right), cubic (bottom left), and Gaußian (bottom right)

Fig. 16.6 The result using cubic radial basis functions without regularization (left) and with reg-
ularization (right)
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16.5 Discussion

There are many methods for reconstruction of surfaces from point clouds. The meth-
ods discussed in this chapter are extremely simple and highly effective—but only
for a modest number of points, since the matrices involved are dense. A remedy for
this issue is to use compactly supported radial basis functions [5]. The volumetric
methods which are discussed in the next chapter also solve the problem. This is
because they largely decouple the reconstruction problem from the input points.

Capturing objects with sharp edges remains a problem, though. Shen et al. pro-
posed a method for reconstruction of implicit surfaces from points and triangles
where the reconstructed function will interpolate an entire triangle and uses the tri-
angle’s normal field as an interpolation condition [6]. This allows the authors to
fairly accurately interpolate a triangle mesh without letting go of the advantages of
implicit surfaces: in particular that the implicit surface closes holes in the surface
given by the input points and triangles.

Unfortunately, the great simplicity of the method is easily lost when we aim to
speed up the method or achieve a more exact approximation. Another issue is that of
outliers. Regularization allows us to find a surface that approximates the input points
rather than interpolating them. That is highly useful if the point cloud is noisy, but
what if it contains outliers that are not even close to the true surface? A somewhat
different method known as the Eigencrust method [7] was developed by Kolluri et al.
In their paper, the authors created a Delaunay tetrahedralization of the input points
and used a graph cut algorithm to select the subset of the tetrahedra considered to
be interior. This method is able to deal with a significant fraction of outliers.

16.6 Exercises

Exercise 16.1 Obtain a set of 2D points with associated height values. One such
data set is provided on the homepage accompanying this book. Use the thin plate
splines basis function, φ(r) = r2 log(r), and find the coefficients of the resulting
function, s(x). To visualize the resulting function, generate a triangle mesh sampled
on a regular 2D grid: the x, y values lie on the grid and z = s(x, y).

[GEL Users] A demo program to get you started on this exercise and the next is
provided in the GEL examples package.

Exercise 16.2 Next, use φ(r) = r3 to do interpolation between points in 3D with an
associated scalar value. Load a small triangle mesh and for each vertex create a point
with associated value 0 at the position of the vertex. Also, place some additional
points inside and outside the mesh and give these points values different from zero.
Points inside should all be greater than zero and points outside should all be less
than zero (or the other way around). Use the RBF method to create a function s that
interpolates these constraints and whose zero-level set is a surface passing through
the original points. Visualize the results using an implicit-surface polygonizer (cf.
Chap. 18).

The following are possible extensions to the basic exercise.
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• Use mesh normals to automatically generate the inside and outside points in the
last part of the exercise.

• Add some regularization to relax the precise interpolation requirement.
• Try different radial basis functions, but bear in mind that the linear system may

not have full rank unless you use a different polynomial term.
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17Volumetric Methods for Surface
Reconstruction and Manipulation

In the previous chapter, we discussed a method for surface reconstruction based on
the implicit representation, i.e., a representation where the surface S is given as the
set of points x ∈ R

3 such that Φ(x) = τ , where τ is denoted the isovalue. As a
convention, we usually choose τ = 0. Another convention is the choice that Φ > 0
outside the surface and Φ < 0 inside.

In the previous chapter, Φ was represented by a set of radial basis functions. The
central idea connecting the material in this chapter is that we can represent Φ as a
dense collection of samples on a regular 3D grid as illustrated in Fig. 17.1 (right)
for the 2D case. To change S we only need to change the samples defining Φ . If a
sample (a pixel in 2D) in a uniformly positive region is made negative, a small lump
of material is created. Thus, while changes to the surface are made indirectly, it is
easy to make changes because each sample controls Φ , and hence the shape, only
in a very small region of space.

In this context, the samples are usually denoted voxels in analogy to the pixels of
a regular 2D grid, and the grid is often called a volume while this type of implicit
representation is generally termed the volume representation or volumetric repre-
sentation.

Initially, in Sect. 17.1 a volumetric method for reconstruction of surfaces from
point clouds is presented. This method requires that we have a local linear approx-
imation of the surface at each point via a point normal. In Sect. 17.1.1 we discuss
the topic of computing point normals. Next, in Sect. 17.2 we discuss and compare
to a similar method, which has gained broad acceptance, namely the Poisson Recon-
struction Method.

In Sect. 17.3 we turn to the Level Set Method. The LSM may also be used for
reconstruction, but its main use is manipulating existing surfaces. When it comes to
surface manipulation, the main advantage of the implicit representation is that it is
easier to deal with changes in topology. This may not be obvious, but hopefully the
illustration in Fig. 17.2 makes it more clear. If we represent a surface explicitly, for
instance as a triangle mesh, changes to topology involve cutting holes in the object
and connecting the boundary loops of the holes with a tubular surface. If a surface is
implicitly represented, it is given as the level set or isosurface of a function. When

J.A. Bærentzen et al., Guide to Computational Geometry Processing,
DOI 10.1007/978-1-4471-4075-7_17, © Springer-Verlag London 2012
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Fig. 17.1 The shape is given implicitly by a function Φ which is represented by its samples on a
voxel grid

Fig. 17.2 The principle of the implicit surface (or curve) representation is that the surface (or
curve) is a level set of a function one dimension higher. The figure illustrates the 2D case where
we can think of the function as a terrain height map and of the level set as where the water surface
intersects the terrain. By modifying the function (changing the terrain) we indirectly change the
level set and thus the implicit curve. Even changes to topology are easy, as illustrated above where
the right image shows the merge of the two curves resulting from a change to the function

this function is represented by samples on a grid, it is very easy to make these
topological changes.

For the purposes of the LSM, the Φ function is usually an (approximate) signed
distance field. What this means is that the absolute value of Φ at a point in space is
the distance to the closest point on a surface. The sign of Φ then determines whether
the point is inside or outside the surface. Finally, in Sect. 17.4 we discuss conversion
of triangle meshes to signed distance fields.

17.1 Reconstructing Surfaces by Diffusion

Reconstruction of surfaces from point clouds using radial basis functions as dis-
cussed in Chap. 16 ceases to be a manageable approach when we have to deal with
many thousand points. This is where volumetric methods come in. Rather than hav-
ing a few basis functions for each point, we have a 3D grid of voxels. That may
seem like a step in the wrong direction (since there are typically many more voxels),
but we will no longer need to solve a dense linear system. Instead the volumetric
methods lead to extremely sparse systems which we can solve with simple iterative
schemes.



17.1 Reconstructing Surfaces by Diffusion 289

Fig. 17.3 Samples of the
distance to surface. Light
means outside and dark
means inside. The monotone
pale blue areas are of
unknown status

Very close to the surface, we assume that the surface is approximately planar.
Of course, “close” is relative, but in practice a distance on the order of the distance
between adjacent voxels is usually a good choice. We also assume that for each
input point we have a normal vector tangent to the plane that approximates the
surface at that point. Fortunately, obtaining a normal estimate is usually possible for
optical scans, and, indeed, most surface reconstruction methods do require normals.
Alternatively, a method for computing surface normals is discussed in Sect. 17.1.1.

With these definitions in place, the procedure is simple: For each voxel, we sam-
ple the distance to the plane given by the position of the point and the normal asso-
ciated with each point that is close. If no points are close, the distance at the voxel
is undefined. If several points are close, we compute the weighted average of the
distances, typically using a Gaußian kernel.

Thus, we obtain a voxel grid where most voxels have unknown distances but a set
of voxels close to the original points are seeded with distance values. See Fig. 17.3
for a 2D example. The next step is to extend the distance function from the sparse set
of voxels near the input points to the rest of the voxels in the volume. A method for
computing the distance values in the entire volume was suggested by Davis et al. [1].
The basic idea is to keep the values of the known voxels fixed as constraints while
blurring the volume to obtain the values at all other voxels.

A simple example of a 2D implementation of a similar1 algorithm is shown in
Fig. 17.4. The black and white image has been sampled at locations with high gra-
dient values. Some of the sampled pixels are shown in Fig. 17.3. It is clear from
this figure that the contour of the object is not entirely defined by known pixels:
we can go from inside to outside by a path consisting entirely of pixels where the
value of Φ is unknown. It is reasonable to ask how we can be sure that the gaps are
filled in the expected way? The answer is that blurring creates a smooth function
that interpolates the known pixels and this smooth function will have a smooth zero

1We say ‘similar’ because the blurring is done a bit differently, but the principle is the same.
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level set that probably matches our expectations. However, if the gaps are too large
and the original surface very erratic, we can certainly arrive at a situation where the
result is unexpected.

Of course, smooth is a rather vague term. To be more precise, the reconstruction
is performed by solving

�Φ = 0 (17.1)

subject to the constraint that Φ is unchanged at the selected samples. If �Φ = 0 we
have minimized the membrane energy,

∫
‖∇Φ‖2 dx dy,

which is a measure of how smooth the function is. In practice this is simply a prin-
cipled approach to blurring.

Inserting the discrete version of the Laplacian �, we obtain

1

4

(
Φ[i − 1, j ] + Φ[i + 1, j ] + Φ[i, j − 1] + Φ[i, j + 1] − 4Φ[i, j ]) = 0. (17.2)

This leads to a very sparse linear system we can solve by a simple update procedure
for each pixel (or voxel in 3D). However, some care must be taken to ensure stability,
and one typically adds a damping constant k. The final update applied to each pixel
looks as follows:

Φ[i, j ] ← Φ[i, j ] + k

4

( ∑
(l,n)∈N2D

i,j

Φ[l, n] − Φ[i, j ]
)

, (17.3)

where

N2D
i,j =

{[
i − 1

j

]
,

[
i + 1

j

]
,

[
i

j − 1

]
,

[
i

j + 1

]}
.

This formula is iteratively applied to each pixel. However, for the pixels where we
have a known value, we simply copy that value back. Putting all of this together, we
arrive at the pseudocode shown in Algorithm 17.1. The results of an experiment are
shown in the aforementioned Fig. 17.4.

In a volumetric setting, the formula is nearly identical except that we now have
six neighboring voxels instead of four neighboring pixels, so

Φ[i, j, k] ← Φ[i, j, k] + kL[i, j, k], (17.4)

where

L[i, j, k] = 1

6

∑
(l,n,m)∈N3D

i,j,k

Φ[l, n,m] − Φ[i, j, k], (17.5)
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Algorithm 17.1 Pseudocode for 2D reconstruction
for (N iterations)
{
for(each known pixel at i,j)

Phi(i,j) = known_pixels(i,j);

for(each pixel i,j)
{
L = 0
for(l,n in N_2D(i,j))
L += Phi(l,n)/4.0;

L -= Phi(i,j);

Phi_tmp(i,j) = Phi(i,j) + k * L;
}
Phi = Phi_tmp;

}

and

N3D
i,j,k =

⎧⎨
⎩

⎡
⎣ i − 1

j

k

⎤
⎦ ,

⎡
⎣ i + 1

j

k

⎤
⎦ ,

⎡
⎣ i

j − 1
k

⎤
⎦ ,

⎡
⎣ i

j + 1
k

⎤
⎦

⎡
⎣ i

j

k − 1

⎤
⎦ ,

⎡
⎣ i

j

k + 1

⎤
⎦

⎫⎬
⎭ .

Thus, for k = 1 the algorithm simply amounts to iteratively replacing each voxel
with its neighbors while keeping voxels of known value fixed. However, Algo-
rithm 17.1 would converge very slowly and be quite sensitive to noise. These two
issues will be addressed in the following.

Any acquisition method is subject to measurement noise. Volumetric methods
for surface reconstruction from points are relatively resilient to noise. However, in
some cases we get actual outliers, i.e., points which are far from the other points
due to error—not because the point lies on a small feature captured by the scanner.
The Laplacian smoothing algorithm just discussed is likely to create small spurious
surface components if outliers are present as illustrated in Fig. 17.6. Thus, a practical
algorithm should remove these outliers.

For the examples in this chapter, we find the neighbor set of points within some
radius of a given point, p. If the number of neighbors is very small, we take it that p
is isolated and reject it. Otherwise, we compute the average of the neighbors. If the
distance from p to the average is greater than some constant times the distance to
the farthest neighbor, we discard the point. Since normal estimation also requires us
to find the set of points close to a given point, it is convenient to remove outliers as a
part of the normal estimation, which is discussed below in Sect. 17.1.1. A different
approach is adopted in the CGAL package: points are sorted in increasing order
of average square distance to the n nearest neighbors [2]. With this ordering, the
outliers are the points at the end of the list, and one may easily reject a user specified
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Fig. 17.4 The original image (top left) was sampled as described in the text. Solving a discrete
version of the Laplace equation with these values as constraints, we obtain the top right image after
100 iterations, the bottom left image after 50000 iterations. Thresholding the bottom left image
produces a fairly good reconstruction shown bottom right

percentage of the points. It is observed that the constant n should be greater than the
size of clusters of outliers. Clearly, both approaches require tweaking parameters
since, unfortunately, there is no simple test for whether a point is an outlier. To
some extent it is an arbitrary choice how aggressively to remove points.

An important performance concern is that the algorithm might take many itera-
tions to converge. In the 2D example in Fig. 17.4, 50000 iterations were used. If the
algorithm is run at a single resolution, it is likely that we might need the same order
of iterations for 3D reconstruction. However, if we use a multi-resolution approach,
we can do much better. For instance, if we run the algorithm on a very coarse voxel
grid, say 8 × 8 × 8 voxels, we can obtain a coarse solution in just a few iterations.
Now, we can double the resolution of the coarse solution to 16 × 16 × 16 voxels
by linearly interpolating the voxels of the coarse grid and then use this interpolated
solution to initialize the algorithm. Since we are already close to a solution, it typi-
cally takes only a few iterations to get a good result at which point we again double
the resolution until the voxel grid is fine enough to capture the details of the model.
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Algorithm 17.2 Pseudocode for 3D reconstruction
DIM = MIN_DIM
while(DIM<=MAX_DIM)
{

for (N iterations)
{

for(each point p with normal n)
{

Plane P(p,n);
for(each voxel i,j,k close to p)

Phi(i,j,k) = P.distance(i,j,k)
}
for(each voxel i,j,k)
{

L = 0
for(l,n,m in N_3D(i,j,k))

L += Phi(l,n,m)/6.0;
L -= Phi(i,j,k);

Phi_tmp(i,j,k) = Phi(i,j,k) + k * L;
}
Phi = Phi_tmp;

}
DIM = DIM * 2;
Phi = double_resolution(Phi);

}
Mesh = polygonize_zero_levelset(Phi);

The final step of the algorithm is the isosurface polygonization used to obtain a
triangle mesh. Algorithms for isosurface polygonization are the topic of Chap. 18.

Putting the pieces together, we obtain the relatively simple Algorithm 17.2. Re-
sults from an implementation of this algorithm are shown in Fig. 17.5. Here 10 iter-
ations are used with a damping constant k = 1 (i.e., voxels are replaced by a straight
average of their neighbors) for each level or reconstruction except for the final level
(256 × 256 × 256) where only five iterations are used and a smaller damping of
k = 0.8 is used to keep things sharp.

17.1.1 Computing Point Normals

As mentioned, most reconstruction algorithms require that we have a so-called nor-
mal associated with each input point. Together with the point itself, the normal de-
fines a local, planar approximation to the surface we are trying to reconstruct.
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Fig. 17.5 Top: The Stanford bunny reconstructed from the original scans at volume resolutions
of 8 × 8 × 8, 16 × 16 × 16, and 32 × 32 × 32 voxels. Bottom: Reconstructions at resolutions of
64 × 64 × 64, 128 × 128 × 128, and 256 × 256 × 256 voxels

One way of obtaining the normals is to project the points into 2D, compute the
Delaunay triangulation (cf. Chap. 14), and then compute the vertex normals using
the method described in Sect. 8.1. This is an excellent approach if there is a direction
we can use for a 2D projection. Unfortunately, this is not always the case. Moreover,
computing the Delaunay triangulation just to obtain normals may be deemed too
computationally expensive, and, also, we may want to use a larger neighborhood of
points than just those which are connected via the edges of a triangulation in order
to obtain a smoother normal estimate.

For these reasons, we typically compute the normal of a given point by least
squares fitting a plane to the points in its vicinity. Using a spatial data structure
(generally a kD tree, cf. Chap. 12), we can find the set of points within a given
radius or, for some number N , the N closest points. Let us denote a point in this set
by pi = [xi yi zi ]T .

The plane, P , which we seek, is defined by a point, po, lying in the plane and
a normal vector, n, perpendicular to the plane. Given these two definitions, the dis-
tance to plane is

dP(p) = nT (p − po). (17.6)

Thus P = {p ∈ R
3|dP (p) = 0}. The choice of po is easy since we know that the

average of the points, p̄ = [ x̄ ȳ z̄ ]T = 1
N

∑N
i=1 pi minimizes the sum of square dis-

tances to the plane for any normal direction.
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Lemma 17.1 Given a set of points, {pi}, and a plane, P , with any normal, n, choos-
ing po = p̄ minimizes the sum of square distances,

∑N
i=1 dP

2(pi ), to the plane.

Proof To simplify things, we let d = nT po. Since n and the points are given, the
sum of square distances is a quadratic function of d alone:

f (d) =
N∑

i=1

dP
2(pi ) =

N∑
i=1

(
nT (pi − po)

)2 =
N∑

i=1

(
nT pi − d

)2
. (17.7)

Taking the derivative, f ′(d) = 2dN + 2
∑N

i=1 nT pi , and requiring that f ′(d) = 0,
we arrive at d = nT 1

N

∑N
i=1 pi . �

We can now turn to finding the normal n that minimizes the sum of square dis-
tances to the plane centered at po = p̄.

Lemma 17.2 Given a set of points, {pi}, and a plane, P , containing po = p̄, the
plane normal, n, which minimizes

∑N
i=1 dP

2(pi ) is the eigenvector corresponding
to the smallest eigenvalue of the covariance matrix of {pi}.

Proof

n =
⎡
⎣nx

ny

nz

⎤
⎦ = argmin

n

N∑
i=1

(
(xi − x̄)nx + (yi − ȳ)ny + (zi − z̄)nz

)2

= argmin
n

N∑
i=1

(
nT (pi − p̄)

)2

= argmin
n

nT

(
N∑

i=1

(pi − p̄)(pi − p̄)T

)
n

= argmin
n

nT Mn

= argmin
n

f (n), (17.8)

subject to the constraint that ‖n‖ = 1. Observe that M = ∑N
i=1(pi − p̄)(pi − p̄)T is

a symmetric positive definite (or semidefinite) matrix, which means that its eigen-
vectors are mutually orthogonal and its eigenvalues positive or zero. Therefore, we
can write n as a linear combination of its eigenvalues n = ∑3

i=k αkek where ek is
the kth eigenvector and αk the corresponding weight in the linear combination. The
unit length constraint can be expressed as

∑3
k=1 α2

k = 1. If we let ξk be the kth
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eigenvalue and plug this expansion into f (n), we obtain

f (n) = f

(
3∑

k=1

αkek

)

=
(

3∑
k=1

αkek

)T

M

(
3∑

k=1

αkek

)

=
(

3∑
k=1

αkek

)T (
3∑

k=1

αkξkek

)

=
3∑

k=1

α2
kξk

≥
3∑

k=1

α2
kξ3, (17.9)

where ξ3 is the smallest eigenvalue. Clearly, the last inequality is an equality iff
α3 = 1 and α{1,2} = 0. Thus, f is minimal if n is the eigenvector corresponding to
the smallest eigenvalue of M. From its definition, it is clear that M is indeed the
covariance matrix of the set of points {pi}. �

What we have done is really to apply principal component analysis to the points,
{pi}. The normal vector, n, is the direction of the axis of least variation in {pi}. From
a practical point of view, we normally compute the eigenvectors of the two largest
eigenvalues (the axes of greatest variation) and then find the normal as the cross
product of these.

One troublesome issue is that the normal orientation is not necessarily consistent.
It may be the case that some normals point towards the interior of the shape and
some towards the exterior. Fortunately, for any optical scanning device, we know
that all points must be visible from the camera. Assuming the camera is at o and
we arbitrarily desire outward pointing normals, we can simply check whether ni ·
(o − pi ) > 0 where i is now an index that runs over all points, and ni is the normal
associated with point i. If ni · (o − pi ) < 0, we invert the normal direction.

In some cases, we have mixed points from several scans, misplaced information
about the scanning procedure, or, for some other reason, cannot tell whether the
normal points towards the interior or the exterior. In these cases, we can simply
enforce a consistent orientation on the points. Hoppe suggested a relatively simple
graph algorithm for this purpose in a paper which also discusses the above method
for computing normals [3]. However, for some data sets, it might be very difficult to
find a consistent normal orientation. For instance, imagine a surface that has interior
voids. Alliez et al. propose a method [4], which has the advantage that it obtains
the surface normal consistently as a part of the reconstruction algorithm. They also
discuss various schemes for finding point normals.
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17.2 Poisson Reconstruction

The method presented above in Sect. 17.1 is certainly not the only volumetric
method for surface reconstruction. In Sect. 11.3 we discussed another method based
on Markov Random Fields [5], and, in fact, a fairly large number of volumetric
methods for surface reconstruction have been developed since the early work by
Hoppe et al. [3].

Probably, the most well known of these algorithms is Poisson Reconstruction due
to Kazhdan et al. [6]. Poisson Reconstruction is fairly efficient thanks to an adaptive
implementation, it has a simple theoretical explanation, and a publicly available
implementation. All of these three virtues are contributory to the success of the
method.

The idea behind Poisson Reconstruction is to find an indicator function χ , which
is defined as a function which is zero outside the surface and one inside. Unfortu-
nately, this means that the gradient of χ is unbounded on the surface and zero else-
where. Nevertheless, we wish to obtain a function χ whose gradient field matches a
vector field W given by the (interpolated) normals of the input points, i.e., ∇χ = W.
Consequently, the authors propose to smooth both sides of the equation, obtaining

∇(χ ∗ ψ)(x) = (W ∗ ψ)(x),

∇Φ(x) = V(x),
(17.10)

where V = W ∗ ψ , Φ = χ ∗ ψ , ψ is a smoothing kernel, and x is the point at
which we evaluate. Thus, we need to invert the gradient operator in order to find Φ .
Unfortunately, not all vector fields are gradient fields of a scalar field. Specifically,
only curl free vector fields are integrable, i.e., the gradient fields of scalar functions.
To solve this problem, the authors propose solving the problem in the least squares
sense which amount to taking the divergence of both sides of (17.10):

∇ · ∇Φ(x) = ∇ · V(x),

�Φ(x) = ∇ · V(x).
(17.11)

In words, we have the Laplacian of Φ on the left hand side and the divergence of a
vector field, which is a scalar field, on the right hand side. Such an equation is called
a Poisson equation, hence the name of the method.

The actual boundary points where the unknown function χ is discontinuous
could in theory be computed by deconvolution of Φ , but in practice the authors
propose to take an average of the values of Φ at the input points [6]. This average is
then used as the isovalue for isosurface polygonization (cf. Chap. 18).

Solving the Poisson equation on a regular grid would be entirely possible and
lead to a method very similar to the one from the previous section. In fact, the
differences amount to that
• the right hand side of (17.1) was zero and
• the function, Φ , was forced to interpolate given values at voxels close to the input

points.



298 17 Volumetric Methods for Surface Reconstruction and Manipulation

Fig. 17.6 Reconstruction using Laplacian smoothing of the volume and no outlier removal (left),
the same method with outlier removal (middle) and Poisson reconstruction with no outlier removal
(right). The Poisson method tends to produce a smoother result, but the outliers do not cause
spurious components

The Poisson reconstruction method has the advantage that the theory is elegant and
the intuition is extremely clear: we are looking for a function whose gradient field
matches the point normals. While the isosurface does not precisely correspond to the
theoretically correct surface we would get by deconvolution, the method makes up
for this potential source of error by representing Φ adaptively using a hierarchical
basis of compactly supported functions. This is harder to implement but more space
efficient than using a regular voxel grid. It also allows Kazhdan et al. to compute
solutions at greater precision. In their paper, the octrees used for the hierarchical
representation have depths of up to 10 which corresponds to a voxel grid resolution
of 10243 [6].

Figure 17.6 compares the method from Sect. 17.1 to Poisson Reconstruction.2

Outlier removal was deliberately not performed. Consequently, the method based
on Laplacian smoothing of the volume contains some spurious surface components
due to the outliers. Poisson reconstruction seems to be a bit more robust to outliers.
Laplacian reconstruction, however, is simple to implement and works well if outliers
are removed.

17.3 The Level Set Method

The reconstruction methods discussed in the first part of this chapter simply produce
a volumetric representation of a 3D shape, but once created the shape is static. The
Level Set Method (LSM) [7] allows us to deform volumetrically defined shapes.
Assume that we are dealing with a surface S(t) ⊂ R

3 where t is the time param-
eterization. The surface S is assumed to change according to some speed function
that pushes S in the normal direction. The speed function may depend on the ge-
ometry of S or be completely independent of S. A good example of the latter is a
speed function that is always constant causing S to grow by constantly moving in

2Using MeshLab’s implementation: http://meshlab.sourceforge.net/.
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the normal direction. A good example of a speed function that does depend on S

is one that depends on the curvature of S and pushes the surface in the direction of
the curvature center. Such a speed function will smooth the surface and can be very
useful.

The Level Set Method tracks the motion of S in the normal direction, and this is
expressed by a relationship with an embedding function Φ : R3 ×R

+ → R. For all
points on S the value of Φ must be zero. This leads to the equation

Φ
(
S(t), t

) = 0, (17.12)

where S(t) denotes a given point on S at time t . Equation (17.12) simply says that
S(t) is an isosurface (here called a level set) of Φ(·, t). Because this holds for any
point in time, both S and Φ may evolve but the Level Set Equation continues to hold
implying that also

dΦ
(
S(t), t

)
/dt = 0. (17.13)

To see how the change of Φ and S are coupled, we take the derivative of (17.12)
using the chain rule

dΦ
(
S(t), t

)
/dt = dΦ

(
Sx(t), Sy(t), Sz(t), t

)
/dt

= ∂Φ

∂t
+ ∇Φ · dB

dt
, (17.14)

where ∇Φ = [
∂Φ
∂x

∂Φ
∂y

∂Φ
∂z

]
. Because all motion is in the normal direction, we can

write the change of S in terms of a speed function F times the normal, ∇Φ
‖∇Φ‖ ,

dS(t)

dt
= F

∇Φ

‖∇Φ‖ . (17.15)

Plugging this equation back into (17.14), we obtain the Level Set Equation,

∂Φ

∂t
+ F‖∇Φ‖ = 0. (17.16)

The Level Set Method works on a discrete grid representation of Φ , that is,3

Φn[i, j, k] = Φ(i�x, j�y, k�z,n�t).

This is a 4D discrete function, but, in general, only one time step is stored. In other
words, Φ is really represented as a 3D voxel grid, and the Level Set Method is,
essentially, a solver for an initial value problem: given a Φ0 what is the value at time
step n. The initial value, Φ0 is typically a distance field, but after several iterations
of the LSM, Φ drifts from being a distance field and requires reinitialization as we
will discuss in Sect. 17.3.2.

3For simplicity and without loss of generality, we will assume in the following that unit time step
is used and that the grid spacing is unit.
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17.3.1 Discrete Implementation

An implementation of the LSM on a regular grid requires that de discretize the
equations. The first step is to choose discrete operators for the derivatives.

Definition 17.1 (Difference Operators) The forward difference operator is used for
approximations of the time derivative:

∂Φ

∂t
≈ D+tΦ = Φn+1[i, j, k] − Φn[i, j, k]. (17.17)

The spatial derivative for x can similarly be approximated using either the forward
or the backward difference operator, i.e., either

D+x = Φn[i + 1, j, k] − Φn[i, j, k] or

D−x = Φn[i, j, k] − Φn[i − 1, j, k]. (17.18)

Of course, the operators for y and z are completely analogous.

Using these definitions, we can discretize (17.16) as follows:

Φn+1[i, j, k] = Φn[i, j, k] − F
∥∥∇Φn

∥∥, (17.19)

where the gradient ‖∇Φn‖ must be computed in the upwind direction. If F ≥ 0,∥∥∇Φn
∥∥2 = max

(
D−x,0

)2 + min
(
D+x,0

)2

+ max
(
D−y,0

)2 + min
(
D+y,0

)2

+ max
(
D−z,0

)2 + min
(
D+z,0

)2
. (17.20)

Conversely, if F < 0,∥∥∇Φn
∥∥2 = max

(
D+x,0

)2 + min
(
D−x,0

)2

+ max
(
D+y,0

)2 + min
(
D−y,0

)2

+ max
(
D+z,0

)2 + min
(
D−z,0

)2
. (17.21)

At first this upwinding seems to be a bit odd; why not simply approximate the gra-
dient with central differences? The answer is that F indicates which way informa-
tion propagates, and the gradient should be approximated using only voxels that
lie in the direction whence information comes. If this principle is not obeyed, the
numerical solution can easily become unstable in the presence of discontinuities.
A more mathematical explanation is that the upwinding scheme is necessary be-
cause Φ might have discontinuities in which case the differential equation does not
have a normal solution. However, an integral form of the equation can have a weak
solution and the upwinding is a part of this weak solution. This is explained in [7]
but the discussion of weak solutions is sketchy. To fully appreciate the issues, in-
sight into the field of conservation laws [8] is required, but Osher and Fedkiw also
provide a more in-depth treatment of the mathematics of the LSM [9].
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What time step is appropriate? A condition known as the CFL (Courant
Friederichs Lewy) condition asserts that given a first order scheme like the one
discussed above, the speed function must obey

maxF ≤ �x

�t
. (17.22)

In words, the speed function (in the entire domain) should not exceed the ratio of the
spatial grid spacing to the time step. If we consider only grids with unit spacing and
unit time step, this reduces to the simple condition that the speed function should
not exceed 1. The CFL condition is mentioned by Sethian [7] and explained more
deeply by LeVeque [8].

If F depends on the curvature of the evolving surface, discontinuities do not
occur because curvature flow in 2D and mean curvature flow in 3D tends to keep
things smooth. Sethian suggests using central differences for the first and second
order partial derivatives involved in computing the curvature [7].

17.3.2 Maintaining a Distance Field

The Level Set Method does not work well unless we use a method which keeps
Φ close to being a distance field. Depending on how we implement the LSM the
tendency for Φ to drift away from distance field’ness differs, but in all cases, the
procedure known as redistancing is generally called for.

Typically, the so-called fast marching method is used for this purpose [10]. How-
ever, it is not completely straightforward to implement well as discussed in [11]. It
is also not necessarily the fastest option [12]. A very simple alternative is to use the
so-called reinitialization equation:

∂Φ

∂t
+ s(Φ0)

(‖∇Φ‖ − 1
) = 0, (17.23)

where

s(Φ0) = Φ0√
Φ0

2 + ε2
, (17.24)

where ε is a constant often chosen to be about the size of a cell in the grid [13]. The
reinitialization equation was introduced by Sussman et al. [14] based on work by
Rouy and Tourin [15]. In (17.23), Φ0 is not quite a distance function but often fairly
close. If, for the moment, we ignore s, (17.23) simply links the time derivative of Φ

and the length of the spatial gradient of Φ . If the gradient is long, we decrease Φ .
If it is short, we increase Φ . After some steps of a discrete implementation, Φ is
generally very close to being a distance field.

The sign function s(Φ0) is the sign of the original function which must be known
for all grid points in advance. Most authors use a sign function which is very small
near the interface to avoid moving the interface. Sussman’s own choice was (17.24).
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Algorithm 17.3 Pseudocode for a simple LSM implementation running simple
mean curvature flow
float dt = 1.0; // timestep
for(each pixel i,j)
{

float d = grid(i,j);
float l = laplacian(grid, i, j);
float g = length(grad(grid, i, j));
tmp_grid(i,j) = d + dt * l * g;

}
grid = tmp_grid;

Algorithm 17.4 Pseudocode for the reinitialization equation used to keep Φ close
to being a distance field
float dt = 0.5; // timestep
for(each pixel i,j)

sign_grid(i,j) = sign(grid(i,j));

for(each pixel i,j)
{
float d = grid(i,j);
float g = length(grad(grid,i,j));
float s = sign_grid(i,j);
tmp_grid(i,j) = d + dt * s * (1.0 - g);

}
grid = tmp_grid;

An important implementation detail is that ‖∇Φ‖ must be computed in an up-
wind fashion using the method discussed in the previous section. Pseudocode for
an implementation of redistancing using the reinitialization equation is shown in
Algorithm 17.4.

17.3.3 Curvature Flow in 2D

To aid in the understanding of the Level Set Method, we provide a simple 2D ex-
ample. In this example, the speed function is simply the mean curvature. For a 2D
distance field, the mean curvature is just the Laplacian. Thus, we are evolving

∂Φ

∂t
+ F‖∇Φ‖ = 0 (17.25)
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Fig. 17.7 An example of 2D curvature flow. The images show what happens after 30, 660, 1500,
and 6030 steps. The colors indicate whether we are inside or outside, and the stripes are added
(using a sine function) simply to give an indication of whether the function is indeed a distance
function

forward in time where F = �Φ . In pseudocode, one iteration looks as shown in
Algorithm 17.3 where grad is implemented in an upwind fashion. The Laplacian
is implemented as above. In between every iteration, we run two iterations of reini-
tialization, which is shown in Algorithm 17.4.

With a few simplifications that do not change the overall picture, this algorithm
is precisely what was used to generate the pictures in Fig. 17.7.

17.3.4 3D Examples

While the Level Set Method can be difficult to implement, it is a quite powerful
and versatile tool. Some of the possible speed functions are mean curvature which
smooths the surface or a constant which expands or contracts the surface. For pur-
poses such as segmentation, we would use a speed function which attracts the sur-
face to certain features in a 2D or 3D image.
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Fig. 17.8 Left: a 3D sculpture created using a Level Set Method-based sculpting tool starting
from a single cube. Middle: the same sculpture but sliced along a plane. The colors indicate how
Φ varies. It is clear that voxels farther from the interface than a few voxel grid units are clamped
to min and max values. Right: Dumbbell deforming under mean curvature flow. Note that it breaks
into several pieces

However, the Level Set Method can also be used for 3D sculpting [16]. In this
case, we need to be able to make local changes to the model. That is easily done
by multiplying the speed function by a spatial window which makes it localized.
An example of a model sculpted in this fashion is shown in Fig. 17.8. The main
tools used were a constant speed function and mean curvature flow. In both cases,
a smooth windowing function was used to restrict the influence, and both positive
and negative smoothing was applied: negative mean curvature flow leads to a rather
chaotic behavior and was used to sculpt the hair. In the middle image, the model has
been sliced with a plane and the value of the Φ function is textured onto the plane.
The model was sculpted initially at low volume resolution and then features were
added as the resolution was increased.

In Fig. 17.8 (right) we see a dumbbell model deforming under mean curvature
flow. The result is that it not only becomes smoother but also breaks into several
pieces. This is different from curvature flow in 2D where a shape will never break
into several components.

17.4 Converting Triangle Meshes to Distance Fields

The Level Set Method can be initialized such that the level set is a simple geometric
shape, say, a sphere. However, in many cases, we would like to convert a triangle
mesh or other explicit geometry representation to a signed distance field in order to
apply the Level Set Method (LSM). There are also a number of other uses of signed
distance fields, cf. [12].

Clearly, computing the distance from a point, p, to a single triangle is a sub-
routine of any algorithm for computing the distance from p to a triangle mesh. The
distance to a triangle is normally computed by a simple case analysis. First, we com-
pute the closest point, p′, in the plane containing the triangle. If p′ happens to be
contained in the triangle, the plane distance is the correct distance. If p′ is outside,
the closest point is either an edge or a vertex of the triangle. We can use the same
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Fig. 17.9 On the left p has been projected into the plane of a triangle yielding p′. A simple case
analysis reveals that the closest feature of the triangle is an edge. The right hand figure illustrates
that the face normals (n1 and n2) may not give reliable information about whether a point p is
inside or outside since the dot products n1|2 · (p − p′) have opposite sign. The angle-weighted
normal, however, always gives the correct sign. In the figure, na illustrates the angle-weighted
normal

procedure discussed in Delaunay triangulation (see discussion of LeftOf predicate
in Sect. 14.3) to test whether the point is inside the triangle.

Otherwise, one or two edges rejected p′. Figure 17.9 (left) illustrates the case
where a single edge rejected p′. We need to project the vertex onto the line contain-
ing the rejecting edge to test whether the closest feature is the interior of the edge or
one of its vertices. If two edges reject p′, the vertex shared by these two edges must
be the closest feature. Having found the closest feature and the point on the closest
feature, the distance computation amounts simply to computing the distance from
the original point p to the point on the closest feature.

Of course, not all triangle meshes may be converted to a signed distance field.
An important prerequisite is that the triangle mesh must be watertight, i.e., divide
space into a part which is outside and a part which is inside. No path may lead from
the inside region to the outside without crossing the mesh.

Often, we care only about distances smaller than some threshold. In this case,
we say that the distance field is clamped. Typically, we clamp to an interval such as
[−MAX_DIST,MAX_DIST]. Algorithm 17.5 computes a clamped signed distance
field to a triangle mesh. Since the distance is clamped, we only need to visit voxels
within a bounding box that contain all points closer to the triangle than MAX_DIST.

The algorithm initially assigns MAX_DIST to every voxel. Next, all triangles
are visited, and for each voxel in the bounding box of a triangle, the distance is
computed to the triangle. If this distance is smaller than the distance already stored,
the new distance is stored.

We compare the absolute value of the distance, since, in the interior, we have neg-
ative distances. This leads to the question of how the sign should be computed. The
most obvious idea is to simply check on which side of the triangle plane the tested
point lies and count the distances negative on one side. This does not work, unfortu-
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Algorithm 17.5 Converting a triangle mesh to a clamped, signed distance field
for (each voxel i,j,k in grid)

grid(i,j,k) = MAX_DIST;
for (each triangle T)
{

for( each voxel i,j,k in bounding_box(T))
{

d = T.distance_to(i,j,k);
if((abs(d) < abs(grid(i,j,k)))

grid(i,j,k) = d;
}

}

nately. If the closest point is a vertex or an edge, several triangles share that vertex
(or edge), and the triangle may lie in front of some and behind others. Figure 17.9
(right) illustrates the issue. Consequently, the normal of the plane containing the tri-
angle is not really useful. Often, the solution has been to use ray casting: we follow
a half-line from the voxel at which we desire to compute the sign towards infinity. If
we cross the mesh surface just once, we know that we are inside. More generally, an
odd number of crossings means that we are inside—and an even number means we
are outside. This sounds simple, but in practice it is not trivial to make the method
work well. The issue is that the half-line (or ray) may cross the mesh precisely at an
edge or a vertex. In these cases, great care must be taken not to count the crossing
more than once.

A remedy is the use of the angle-weighted pseudo normal which was discussed
in Sect. 8.1. The angle-weighted pseudo normal is defined at the closest feature of
the mesh. In other words, if the closest point on the mesh is an edge or a vertex,
we do not use a face normal, but instead the angle-weighted pseudo normal at that
feature. As discussed, this choice of normal does tell us robustly whether the point
is inside or outside the mesh without the need for ray casting.

17.4.1 Alternative Methods

Sean Mauch suggested a somewhat different approach known as Characteristics
Scan Conversion (CSC) [17] where a cell, denoted a characteristic, is associated
with each feature of the triangle mesh. These features are similar to Voronoi regions
in that they are non-overlapping and enclose the part of space closest to the feature
(face, edge, vertex) with which they are associated and the sing of the distance
is unambiguously given once we have located the containing characteristic. The
CSC method is amenable to GPU implementation [18], however sign issues easily
arise and the authors of [18] advocate the use of angle-weighted pseudo normals for
correct computation of sign.
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If we need an unclamped signed distance field, i.e., the entire voxel grid is con-
tained in the bounding box of every triangle, an altogether different approach is
needed to achieve reasonable efficiency. For a given voxel, potentially all triangles
could contain the closest distance. To bring that number down, we need a hierar-
chical representation of the triangle mesh. For more details, the reader is referred
to [19] and [20].

17.5 Exercises

Exercise 17.1 (Computing Point Normals) Obtain a point set from the book home-
page or an online repository. A triangle mesh where the vertex connectivity is dis-
carded is sufficient. Compute normals for each point using the method described
in Sect. 17.1.1 where a given search radius r determines how large a neighborhood
should be used. Visualize the normals as short line segments each emanating from
their respective points. To avoid dealing with orientation, draw a line segment in
both the positive and negative normal direction. Observe how the field of normals
becomes smoother as r is increased.

[GEL Users] In the CGAL part of the library, GEL provides functions for com-
puting the exterior product (abT ) of two vectors as well as a function for computing
the eigensolutions to a positive symmetric matrix. GEL also provides appropriate
functions for loading meshes in various formats.

Exercise 17.2 (Surface Reconstruction) Implement the diffusion-based reconstruc-
tion method from Sect. 17.1 or Poisson Reconstruction on a plain 3D voxel grid
using the points and normals from the previous exercise as input. It is advisable
to use a fairly low volume resolution (ca. 64 × 64 × 64) since many iterations are
needed for convergence on a fine grid.

[GEL Users] In the Geometry part of the library, GEL provides data structures
for voxel grids. Also provided are functions for polygonization (cf. Sect. 18).

Exercise 17.3 (2D Level Set Method) Implement the 2D LSM method outlined in
Sect. 17.3.3. See if you can smooth a 2D shape represented initially as a 2D black
and white image. Use the reinitialization equation to convert the image to a distance
field and run iterations of curvature flow as described.
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Methods for converting point clouds to an implicit representation were discussed ex-
tensively in the past two chapters. In Sect. 17.4 we also discussed a method for con-
verting triangle meshes to the implicit representation (specifically, distance fields).
In the present chapter, we consider the inverse operation, namely isosurface polygo-
nization. Isosurface polygonization is the general term for algorithms that convert
implicit surfaces to polygonal (typically triangle) meshes.

One reason why such algorithms are important in the context of geometry pro-
cessing is that most of the robust algorithms for reconstruction of surfaces from
point data go via an implicit representation. From a practical point of view, this
means that a point cloud to triangle mesh pipeline is often composed of two steps:
the first step converts a point cloud to an implicit surface, and the second step con-
verts the implicit surface to triangle mesh.

There are numerous methods for isosurface polygonization. In this chapter, we
restrict ourselves to the cell-based methods, where space is divided into a number of
cells (typically cubes or tetrahedra) and the isosurface is then approximated within
each cell. In the following section (Sect. 18.1) we introduce the basic idea of cell-
based isosurface polygonization. In Sect. 18.2 we go into details with the Marching
Cubes algorithm. Finally, in Sect. 18.3 we discuss the merits of the dual contouring
type of isosurface polygonization algorithms.

18.1 Cell Based Isosurface Polygonization

To define the problem precisely, we assume that our surface is a level set,

S = Φ−1(τ ) = {
x ∈R

3|Φ(x) = τ
}
, (18.1)

of a function Φ : R3 → R where τ is known as the isovalue. In some cases, this
surface may not exist or it may have singularities. For instance, if Φ(x) = 0 in all of
space, the set S is simply all of space and not a surface. Fortunately, it can be shown
that if the gradient ∇f is defined and non-zero at all points where Φ(x) = τ then
Φ−1(τ ) is a closed 2-manifold surface (cf. Sect. 3.10).
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Fig. 18.1 An illustration of a
voxel grid. We normally
denote the corners voxels,
and this is where we know the
value of the function that
defines our implicit surface.
The cubes are generally
denoted cells

To give a simple example, an ellipsoid may be very compactly represented as
the set of points fulfilling ax2 + by2 + cz2 − r2 = 0. Conversely, approximated by
a triangle mesh, a great number of triangles would be needed to provide a smooth
approximation which would still only be an approximation. However, implicitly rep-
resented shapes are sometimes a much less compact representation: medical shape
data often originates from various types of scanning (e.g., MRI or CT scanning)
which produce volume data in the form of voxel grids.

Whatever our implicit representation, we can use the same tools for isosurface
polygonization. If it is necessary, we can obtain a continuous function from a voxel
grid by interpolation. However, that is not necessary in most cases, since the poly-
gonization algorithm may exploit the structure of the voxel grid.

While cell-based approaches (alternatively space decomposition-based ap-
proaches) are now common, early approaches for isosurface polygonization looked
at slices of the 3D domain at a time, producing closed curves to approximate the
contour within each slice. Afterwards these contours were stitched together to form
a surface [1]. Another approach which does not use space decomposition is to seed a
triangle somewhere on the implicit surface and then grow the surface by adding ad-
jacent triangles [2]. This can generate a very nice mesh, but special attention needs
to be paid to the situation which arises when two “fronts” meet. Moreover, we do
only get a single surface component per seed point.

Both approaches also tend to be a little more complex than the space decomposi-
tion methods on which this chapter will focus. Space decomposition methods divide
space into a number of cells and then polygonize each cell separately. That leaves
open a couple of obvious questions: what cells to use? What kinds of approximation
to use? The most obvious answer to the first question is “cubical cells” since cubes
tile space and it is very easy for a given point to find out which cube contains that
point if we use a regular grid of cubical (or at least rectangular) cells. Moreover, if
we deal with voxel data, we already have a grid of rectangular cells which is clearly
the most obvious choice. A voxel grid is shown in Fig. 18.1.
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18.2 Marching Cubes and Variations

Marching Cubes is the name of a well-known algorithm for isosurface polygoniza-
tion [3] which was preceded slightly by [4]. For a variety of reasons, including that
it is a simple, table driven approach, which a competent programmer can quite eas-
ily implement, Marching Cubes has become almost synonymous with isosurface
polygonization. Like most of the polygonization methods, MC is based on the de-
composition of space into a set of cubical cells where the corners of the cells are
voxels if our implicit representation is already in the form of a voxel grid. If the
implicit surface is given by a some other representation it needs to be sampled at the
cell corners.

In either case, to obtain a surface, we approximate the implicit representation
with a polygonal surface within each of these cells. Now, given a cubical cell, how
do we approximate the surface? To answer that question, we must make some as-
sumptions regarding the surface we polygonize. Most importantly, we assume that
we can discover how the surface behaves within the cell simply by looking at the
cell corners. For instance, given two cube corners sharing an edge, if Φ < τ (the
isovalue) at one corner and Φ > τ at the other corner, we know that the surface
intersects the edge shared by these corners. Thus, to find out whether the isosur-
face intersects an edge, we just need to classify the corners as above or below the
isovalue.

The basic observation in Marching Cubes is that for any two cells, which have the
same corner classification, the structure of the surface is the same. Only the precise
point location along the edge differs. Thus, we can use a table driven approach where
the inside/outside values of each of the eight corners of the cube are used as an index
into a polygonization table which tells us what triangles should be generated. As an
illustration, in Fig. 18.2 (center) a configuration (shown blue) has been selected
based on the corner values. From an implementation point of view, we can observe
that a single bit for each of the eight corners can be used to represent the inside–
outside state of a corner. Consequently, the table of cell polygonizations should have
256 = 28 elements of “template polygonizations”. Due to symmetry, the number of
distinct cases is actually much less. However, normally a full table of 256 elements is
used since the case analysis is then completely trivial. From an implementation point
of view, these templates are usually stored as a collection of triangles. Normally, the
triangles form just a single connected component, but in some cases they form two.
In principle, we can also store the configuration as a collection of general polygons
instead of triangles.

Given a function Φ , we can find out precisely where the surface intersects the
edge using a root finding method to find the point where Φ = τ . Having done this we
move the vertices of the template to the intersection points as illustrated in Fig. 18.2
(right).

In the case of voxel data (no known Φ), we simply find the point along the
edge where linear interpolation between the values at the corners would yield the
isovalue. Let the distance between two voxels be �. The linear interpolation, v, of
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Fig. 18.2 Basic steps of the Marching Cubes algorithm. On the left a cell whose eight corners
have associated voxel values indicated by grey level, and the corners on the left side are inside, the
ones on the right are outside the isosurface. In the center image, the appropriate surface which sep-
arates the inside corners from the outside corners has been selected (shown blue). On the right, the
vertices of the separating surface have been placed such that the interpolated value at the vertices
matches the isovalue (indicated by the grey color in the small squares)

the values va and vb to a point which is a given by the interpolation parameter t is

v = va(� − t) + tvb

�
, (18.2)

where t ∈ [0,�] indicates where we wish to interpolate. Now, given an edge con-
necting voxels with values va < τ and vb > τ , we can find the precise intersection
point by solving for v = τ in (18.2):

t = �
τ − va

vb − va

. (18.3)

This needs to be done for every cell consisting of eight voxels. For an (L + 1) ×
(N + 1) × (M + 1) voxel grid, Marching Cubes proceeds by decomposing space
into L × N × M cubical cells. For each cell, we classify its corners and use the
result to look up the structure of the polygonization for that cell. Once a cell has
been polygonized, we proceed to the next cell until all cells have been visited. If
we generate a single polygon for each (connected component in a) cell, the result
is as shown in Fig. 18.3. However, typically, the result is triangulated as shown in
Fig. 18.4.

The use of a table driven approach simplifies the algorithm but it creates the need
for a large table whose generation is likely to be error prone. A different approach
was proposed by Bloomenthal [5]. The essence of his algorithm is to start from an
intersection on an edge and then systematically find the other intersection points
while staying on one side of the isosurface. From an algorithmic point of view, this
is more complicated, but it does remove the need for a table.

18.2.1 Ambiguity Resolution

While cubical cells have a number of advantages, the choice of cubes entails some
ambiguities.
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Fig. 18.3 The output of
Marching Cubes if we
produce a single polygon for
each (component in a) cell.
Normally, we produce
triangles, but if we produce
just a single polygon for each
cell, the structure of the
polygonization is more clear:
we note that the edges of the
polygons form three families
of 2D contours

Fig. 18.4 The typical
triangulated Marching Cubes
output

Assume that you are given a cube and the two diagonally opposite corners are
outside the isosurface while the remaining corners are inside. This configuration has
two interpretations. Either the surface has two different components—one for each
exterior corner—or the surface has a tubular hole and the two corners are in the hole.
The 2D analogue is a bit easier to grasp and shown in Fig. 18.5.

The 2D analogue is a problem in 3D triangulation, since it corresponds precisely
to the situation on a cube face which is also open to two interpretations. When we
use an algorithm such as Marching Cubes, we need to consistently choose the same
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Fig. 18.5 Ambiguous face
configuration

configuration for both polygonization cells sharing a given face. If we always con-
nect or always divide surface components then we obtain a consistent result, but if
we do not choose the same face configuration when polygonizing adjacent cells us-
ing, e.g., Marching Cubes, we do not get a watertight surface. Nielson and Hamann
observed that if we use bilinear interpolation across the face, the intersection curves
where the implicit surface cuts the face form two hyperbolic arcs which each join
a pair of intersection points [6]. They then find the value of the function where the
asymptotes of the two hyperbola branches intersect and decide based on the value of
that point whether to separate or connect the surface components. Aptly, this method
is known as the asymptotic decider.

Apart from consistently choosing a configuration or choosing a configuration
based on the asymptotic decider there is one more solution: choose a different type
of cell. A tetrahedron is the simplest possible polyhedron, and we can easily divide
our cubical cells into tetrahedra. The advantage of using a tetrahedral decomposi-
tion is that we can always separate the interior corners from the exterior corners by
slicing the tetrahedron with a single plane. The intersection of a tetrahedron and a
plane is also relatively simple; it is either a triangle or a quadrilateral, whereas the
intersection of a cube and a plane can be a more complex polygon.

The next question is how we obtain these tetrahedra. Perhaps the most frequently
used method is to insert a corner at the center of the cube dividing it into six pyra-
mids. Each pyramid can then be divided into a tetrahedron by slicing it along the
diagonal of the bottom. That leads to a total of twelve tetrahedra.

However, a cube can also be divided into just five tetrahedra: one tetrahedron is
formed in the center of the cube by connecting a diagonal in the bottom face of the
cube with the perpendicular diagonal in the top face. The remaining four corners of
the cube then form tetrahedra together with the faces of the central tetrahedron.

Unfortunately, using tetrahedra rather than cubes leads to more triangles—and
not necessarily better shaped triangles. Hence, since the ambiguities inherent when
using cubical cells can be resolved, it is not clear that it is better to use tetrahedra.

18.3 Dual Contouring

The main issue with the contouring methods described so far is that they always
place vertices on the edges of the polygonization cells and the isosurface may
intersect an edge very close to a corner. If that happens, very small and often
poorly shaped triangles are the result. Such triangles are abundant in the example in
Fig. 18.4. A solution to this problem is called dual contouring. Probably, the idea
was first envisioned by Frisken who called the method surface nets and used it on
binary voxel data [7].
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Fig. 18.6 Dual contouring
before vertices have been
pushed onto the surface

Fig. 18.7 A 2D illustration
of two cubes around voxels at
positions [i, j, k] and
[i + 1, j, k] which are on
either side of the isosurface.
The bold line is the interface
between the two cubes which
the polygonizer will output

The idea is to place a cube around each voxel in a regular 3D voxel grid. The
cube should have a side length equal to the distance between two voxels and be
centered exactly on the location of the voxel. These cubes are dual to the cubes used
as polygonization cells since in a polygonization cell, the voxel are at the corners
rather than centers. To avoid confusion in the following, we will refer to the cubes
centered on voxels simply as cubes. The cubes are dual to the polygonization cells
(whose voxels are corners), which we will denote cells.

Now, if a cube belongs to a voxel which is inside the isosurface and it shares
a face with a cube that is outside, that shared face belongs to our polygonization.
Thus, we proceed by visiting all cube faces and simply output the faces that are
shared by cubes on opposite sides of the surface. The result is a sugar cubes model
as shown in Fig. 18.6.

To give a very simple example, assume that a voxel at position i, j, k in the voxel
grid is inside the isosurface, say Φ(i, j, k) > τ , where τ is the isovalue, and that its
neighboring voxel along the x axis is outside, i.e., Φ(i + 1, j, k) < τ . This situation
is illustrated in Fig. 18.7.
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Then a dual contouring polygonizer would output a quadrilateral face with the
four corners

[i + 0.5, j, k] + [0,−0.5,−0.5],
[i + 0.5, j, k] + [0,0.5,−0.5],
[i + 0.5, j, k] + [0,0.5,0.5],
[i + 0.5, j, k] + [0,−0.5,0.5]

Thus for each voxel where Φ > τ we check all six neighboring voxels in the positive
and negative X, Y , and Z directions. For each neighbor where Φ < τ we output a
quadrilateral.

The resulting set of quadrilaterals does not form a connected mesh. If we out-
put the coordinates of each corner for each quad, we will simply have a “soup” of
unconnected quads. To get a connected mesh, the procedure is to identify quad cor-
ners that lie at the same point with a single vertex. Then we can store our quads as
indexed faces: i.e., we have a list of vertices and each quad is represented by four
vertex indices. This also means that we can do smooth shading since it is possible
to compute a normal for each face and then compute a normal for each vertex as the
average of the incident face’s normals.

However, if we would like a manifold mesh, the problem arises that dual contour-
ing does not remove the consistency issues encountered by MC and related meth-
ods. Cases arise where two cubes are connected by a single edge or a vertex. Such
configurations are clearly non-manifold (cf. Sect. 5.2). We can solve most of the
problems by being consistent, but non-manifold situations will still arise: in partic-
ular, a pair of vertices that occur twice in each others 1-ring is a situation that could
arise. Instead of simply identifying quad corners at the same geometric position with
a single vertex, we can stitch the quads together. From the initial set of quads, we
can create an edge-based representation (e.g. halfedge based) where each face is a
manifold onto itself. Then, we stitch the edges the edges together. For each bound-
ary edge, we locate another boundary edge with end points at the same geometric
location and in opposite order. This pair is then welded together which, in itself, is
not a trivial algorithm to implement, because there is a number of special cases to
consider. On the other hand, one should but bear in mind that it is necessary only if
we need a manifold representation of the mesh, and, for a number of purposes, such
as visualization, it is not necessary that the mesh is manifold.

18.3.1 Placing Vertices

So far, we have said nothing about how the cube vertices are placed. By default
they are at the centers of the cells, but in general, we just constrain them to remain
inside the cells. This means that they are constrained to a 3D region and not to an
edge. Consequently, they can be placed much more judiciously leading to a nicer
triangulation.
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Fig. 18.8 Dual contouring
after vertices have been
pushed onto the surface

Frisken simply relaxed the mesh by considering all edges to be springs of zero
rest length. The vertices then move to tauten the mesh but subject to the constraint
that they have to remain inside cells. This approach is particularly useful if we have
no real isosurface because we only have a voxel classification, i.e., we know whether
a voxel is inside or outside but not its precise value. That is the case, if we are dealing
with segmented volume data.

Provided we have a smooth function Φ (e.g., defined by interpolation) we can
project the vertices of the mesh onto the isosurface using the method mentioned
in Sect. 11.3, which we will describe in more details here. It is simply Newton’s
method in 3D. Given a function Φ , an estimate of the distance to the τ isosurface at
a point p is

Φ(p) − τ

‖∇Φ(p)‖ . (18.4)

For a linear or an affine function, the above equation is exact. In general, it is simply
an approximation. In order to get to the isosurface, we need to multiply by the
normalized gradient ∇Φ

‖∇Φ‖ and subtract from the original point. Plugging in, we
obtain

x ← x − (
Φ(x) − τ

) ∇Φ(x)

‖∇Φ(x)‖2
, (18.5)

where x is initialized to be the original cube corner (vertex). Since we start quite
close to the isosurface, a few iterations should suffice to place x on a nearby point
on the isosurface. That procedure was used in Fig. 18.8.
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Fig. 18.9 Dual contouring
after vertices have been
pushed onto the surface and
the faces have been
triangulated

Dual contouring also has the property that it produces quadrilateral faces rather
than triangles. If triangles are desired, it is easy to divide the quadrilaterals along a
diagonal. A sound strategy is to divide along the shortest diagonal. For the example
above, this leads to the result in Fig. 18.9.

The name dual contouring was actually coined in [8] by Tao Ju et al. The method
was a good deal more complex than described above due to the fact that they used
an octree rather than a regular grid of cubes. They also desired to reconstruct sur-
faces with sharp edges. That is not normally possible with isosurface polygonization
methods because the sharp features do not normally coincide with the vertices gen-
erated. However, in dual contouring we can place the vertex anywhere within a cell.
Assuming Φ contains a sharp feature which intersects the cell, we can place our
vertex on that feature. Of course, this requires us to have precise knowledge of the
feature, but that is often the case. For instance, the implicit representation Φ may
represent the intersection of two implicitly defined solids, and in this case we can
detect nearby points on the intersection curve of their surfaces.

18.4 Discussion

A topic not discussed above that often causes some difficulty is the choice of coordi-
nate system. It is natural to assign integer coordinates to voxels, but the function we
polygonize generally does not exist in a coordinate system that precisely matches
these voxel coordinates. Consequently, we often need a function that maps between
voxel coordinates and the coordinates in which our function is defined.

There are a number of well-known strategies for accelerating polygonization
methods. The fact that we need to visit all cells is a little wasteful since typically
only on the order of N2 cells contain parts of the surface, while we visit N3 cells.
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One strategy for improving on this aspect is to track surface components. Say,
we are visiting a polygonization cell which happens to intersect the surface. We
then visit only those neighboring cells that share a face which is intersected by the
surface. By recursively visiting cells next to cells which contain the surface, we can
find all of the cells intersected by the surface, but only for one connected component.
Thus, if we know the isosurface has only one component we can get a speedup from
visiting far fewer cells (on the order of N2 rather than N3 where N is the side length
in voxels of the volume).

18.5 Exercises

Exercise 18.1 Implement dual contouring isosurface polygonization. Start by defin-
ing a very simple implicit shape such as a sphere and sample the function defin-
ing the sphere i.e., f (x, y, z) = (x − xc)

2 + (y − yc)
2 + (z − zc)

2 − r2, where
[xc, yc, zc]T is the center and r is the radius on a regular grid in R

3 (illustrated in
Fig. 18.1). Choose center and radius such that the sphere lies in the center of the
voxel grid. In this exercise, only the basic algorithm should be implemented and
the result will be a sugar cube polygonization like the one in Fig. 18.6. Render the
resulting quads.

[GEL Users] A voxel grid data structure and several tools are provided in GEL.
A small example program on the book homepage should serve as a starting point
for the exercise.

Exercise 18.2 Continuing the exercise above, use a small, fixed number of iter-
ations to project vertices onto the isosurface using (18.5). You should now see a
sphere.

Exercise 18.3 Continuing the exercise above, stitch the quads together. This should
be done before the vertices are projected onto the isosurface since we then have to
do less work. A simple form of stitching is to simply merge vertices which share the
same geometric point.

[GEL Users] GEL users can take advantage of the stitch_mesh function to
do this exercise with a single function call.
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D
Darboux frame, 50
De Boor’s algorithm, 104
Delaunay

divide and conquer algorithm, 254
flip algorithm, 246, 253
geometric primitives, 251
lifted circle, 249

Delaunay edge, 243
Delaunay Lemma, 245
Delaunay triangle, 243
Delaunay triangulation, 227, 241, 243
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Determinant, 22
Diagonalizable, 29
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I
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Implicit method, 70
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Implicit surface, 57
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Initial condition, 68
Initial value problem, 65
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Inner product, 24
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Interpolation

scattered data, 78, 277–283
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Intrinsic divergence, 56
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Invertible, 19
Irregular connectivity, 88
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Isometry, 27, 47
Isosurface polygonization, 78, 309

ambiguity resolution, 312
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Isosurface polygonization (cont.)
cell based, 309–314
dual contouring, 314–318
Marching Cubes, 311–314

Isovalue, 287
Iterative Closest Point (ICP), 263

K
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Knot, 100
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Laplace Equation, 65
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Linear interpolation, 77
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addition, 20
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symmetric, 21
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Mean curvature flow, 164, 165
Mean value coordinates, 184
Mesh Laplacian, 161

Mesh representation
edge based, 90
halfedge, 91, 92
indexed face set, 89
quadedge, 93–95

Meshes
polygonal, 84–95
triangle, 84–95

Minimal surface, 53
Mixed area, 149
Moore–Penrose pseudo inverse, 31

N
Needles, 87
Negatively curved, 53
Neighborhood, 40
Noise, 160
Norm, 26
Normal curvature, 51, 52, 146
Normal form, 58, 62
Normal section, 52, 146
Numerical stability, 255
NURBS, 105

standard form, 106, 111
tessellation, 115

adaptive, 115
uniform, 115

trimming, 115
weight, 105

O
Object recognition, 263
Octree, 221
Offset, 53, 54
Open ball, 39
Open set, 39
Orthogonal complement, 27
Orthonormal, 27

P
Parabolic point, 52
Parametric surface, 57
Permutation, 22

even, 22
odd, 22
sign, 22

Planar curvature, 52
Planar point, 52
Polar vertices, 139
Positively curved, 53
Principal component analysis, 296
Principal curvatures, 51, 52, 59, 62, 146
Principal directions, 51, 52, 59, 62
Projective map, 109
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Projective transformation, 109
Pseudo normal, 144, 145

Q
Quadric error metric, 195
Quadtree, 219

R
R tree, 221
Radial basis function, 287

cubic, 282
Gaußian, 282
linear, 282
regularization, 281
thin plate spline, 282

Radial basis functions, 279–283
Ratio of lengths, 35
Registration, 263
Regular parametrization, 45

S
Scan algorithms, 230
Second fundamental form, 49
Sethian, James A., 300
Shape operator, 48
Signal processing, 160
Signed area, 23
Signed distance function, 58–60, 62
Signed volume, 23
Simplex, 38
Simulated annealing, 204–207
Singular value decomposition, 30
Singular values, 31
Smooth, 47
Smooth function, 46
Smooth map, 46
Smoothness of a surface, 49
Soap film, 53
Space filling curve, 213
Spanned, 16
Spanning set, 16
Spatial data handling, 214
Spatial data indexing, 213
Spatial data structures, 213
Spatial tessellation, 213
Spectral smoothing, 165–167
Spline

rational, 105
tensor product surface, 107

Spline curve, 103
Spline space, 101
Stable, 69, 75
Standard basis, 17
Stereographic projection, 110

Subdivision
approximating, 132
boundaries, 138
Catmull–Clark, 132
characteristic map, 128
curves, 120–126
Doo–Sabin, 134
dual, 132, 134
extraordinary vertex, 127, 137
interpolating, 132
invariant neighborhood, 123
local matrix, 124, 127
loop, 132
matrix, 123
parametrization, 139
polar, 139
primal, 132
rules, 122√

3, 135
stationary, 123
surfaces, 126–140
variational, 168–173

Subspace, 15
direct sum, 16
sum, 16

Sudvision
interpolating, 134
modified butterfly, 134

Supporting hyperplanes, 228
Surface reconstruction, 282, 288–298

diffusion, 288–293
normal estimation, 293
Poisson, 297
volumetric, 288–298

Surface registration, 263
Surjective, 19
Sweep line or plane-sweep algorithms, 230
Symmetric map, 49

T
Tangent plane, 50
Taubin smoothing, 161–163
Taylor polynomials, 66
Torus, 63
Translation, 32, 33
Triangle

Circumcircle of, 243
Delaunay, 243

Triangle inequality, 38
Triangle mesh

Gaußian curvature, 148, 149
integral mean curvature, 150
Laplace operator, 174–176
mean curvature normal, 146, 147
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Triangle mesh (cont.)
optimization, 199–208
parametrization, 179–189

harmonic, 186
least squares conformal, 186
mean value coordinates, 184, 185, 195,

198
natural boundary conditions, 187

principal curvature, 154
shape operator, 151–155
simplification, 192–198
smoothing, 159–168

feature preserving, 167, 168
Laplacian, 161
mean curvature flow, 164, 165
spectral, 165–167
tangential, 208
Taubin, 161–163, 208

Triangle meshes
distance field conversion, 304

Triangulation, 54, 241
Delaunay, 243

Truncation error, 76

U
Umbrella operator, 161

Uniformization theorem, 181
Unit normal, 58
Upwind gradient, 300

V
Valence, 84
Variational subdivision, 168
Vector field, 56
Vector space, 13
Vertex, 84
Vertex move, 87
Vertex normal, 144, 145
Vertex split, 88
Volume representation, 287
Von Neumann, 72
Voronoi area, 149
Voronoi diagram, 227, 258
Voronoi region, 258
Voxel, 287

W
Weingarten map, 48, 51, 59

Z
Z-order, 214
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