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Preface

Space-filling curves started their “lives” as mathematical curiosities, at the end
of the nineteenth century. The idea that a one-dimensional curve may completely
cover an area or a volume was, at that time, completely novel and counter-
intuitive. Together with their relatives – such as Koch curves, the Cantor Set, and
similar constructions – space-filling curves contradicted the then existing notion
of a curve and of continuity and differentiability of functions (being continuous
everywhere, but nowhere differentiable), and demanded new concepts in set theory
and dimensionality. As a result, space-filling curves became almost notorious as
“topological monsters”, and were studied by a good number of highly influential
mathematicians, such as Peano, Hilbert, Lebesgue, Sierpinski, and others. The book
of Hans Sagan [233] provides an excellent introduction and overview of these
mathematical aspects of space-filling curves, as well as on their history.

The recursive and self-similar construction of space-filling curves leads to
important locality properties – to put it in a nutshell, a space-filling-curve mapping
will ensure that close-by parameters will be mapped to neighbouring points in the
target set and – at least to a good extent – vice versa. It turned out that these
properties are highly useful in the computational sciences. Algorithms based on
space-filling curves can thus be used to construct spatial partitions to distribute
a problem to different processors of a parallel computer, to improve the memory
access behaviour of algorithms, or in general to find efficient data structures for
multidimensional data. Most of the time, space-filling curves are not necessarily
the best algorithm for the job where they are used – however, as Bartholdi and
Platzman [32] put it, they are like “a good pocketknife”, being “simple and
widely applicable”, and able to provide a convenient and satisfactory solution with
comparably small effort in implementation and computation.

The aim of this book is therefore to give an introduction to the algorithmics
of space-filling curves – to the various ways of describing them, and how these
different description techniques lead to algorithms for different computational tasks.
The focus will be on algorithms and applications in scientific computing, with a
certain preference on mesh-based methods for partial differential equations.
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How to Read This Book

The present book will hopefully serve multiple purposes – as a monograph on space-
filling curves; as a reference to look up specific aspects, algorithms, or techniques
to describe a specific curve; or as a textbook to be used as supplementary material
for a course related to scientific computing, or even for a series of lectures that
is dedicated to space-filling curves in particular. As a consequence, the sequential
order of chapters I chose for this book will necessarily not be able to match the
needs of every reader or lecturer. You are thus encouraged to read through this book
in a non-sequential way, skip chapters or sections, do detours to later chapters, or
similar. Some suggestions for selecting chapters and placing a different focus during
a course (“just the basics” vs. techniques for partial differential equations vs. special
focus on locality properties) are given in the figure above. In addition, every chapter
will end with a box called “What’s next?” that will give some suggestions on where
to read on.

Additional material (solution to exercises, code examples, links to other material,
errata if necessary) will be published on the website

www.space-filling-curves.org.



Preface vii

Acknowledgements

The topic of space-filling curves has been a part of my research and teaching
work for the last 8 years, at least, and numerous colleagues and fellow researchers
provided valuable input and ideas. I would especially like to thank all my colleagues
at Technische Universität München and at Universität Stuttgart – while I cannot
list all of them, I want to express my special gratitude to those who have been
my colleagues for the longest time: Hans Bungartz, Miriam Mehl, Tobias Neckel,
Tobias Weinzierl, and Stefan Zimmer. Amongst all colleagues from other research
groups, I would like to give thanks and tribute to Jörn Behrens, Herman Haverkort,
Bill Mitchell, and Gerhard Zumbusch, who provided lots of inspiration for this book
– especially for the chapters on Sierpinski curves and on locality properties.

Finally, and most of all, I want to thank Christoph Zenger, my former academic
supervisor and mentor. In 2003, we initiated a joint lecture on Algorithms in
Scientific Computing, with space-filling curves being one of three major topics. It
was the first course, in which I was solely responsible for the content of a lecture, it
has been running (with certain topical updates, of course) in this form for 8 years,
and it was the starting-point and foundation for this book project.

Munich April 23, 2012 Michael Bader



•



Contents

1 Two Motivating Examples: Sequential Orders on
Quadtrees and Multidimensional Data Structures . . . . . . . . . . . . . . . . . . . . . 1
1.1 Modelling Complicated Geometries with Quadtrees,

Octrees, and Spacetrees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1.1 Quadtrees and Octrees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.1.2 A Sequential Order on Quadtree Cells . . . . . . . . . . . . . . . . . . . . 3
1.1.3 A More Local Sequential Order on Quadtree Cells . . . . . . 6

1.2 Numerical Simulation: Solving a Simple Heat Equation . . . . . . . . . . 7
1.3 Sequentialisation of Multidimensional Data . . . . . . . . . . . . . . . . . . . . . . . 9

1.3.1 Requirements for Efficient Sequential Orders . . . . . . . . . . . . 11
1.3.2 Row-Major and Column-Major Sequentialisation . . . . . . . 12

2 How to Construct Space-Filling Curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.1 Towards a Bijective Mapping of the Unit Interval

to the Unit Square.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2 Continuous Mappings and (Space-Filling) Curves. . . . . . . . . . . . . . . . . 17
2.3 The Hilbert Curve . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.3.1 Iterations of the Hilbert Curve. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.3.2 Approximating Polygons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.3.3 Definition of the Hilbert Curve . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.3.4 Proof: h Defines a Space-Filling Curve . . . . . . . . . . . . . . . . . . . 22
2.3.5 Continuity of the Hilbert Curve . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.3.6 Moore’s Version of the Hilbert Curve .. . . . . . . . . . . . . . . . . . . . 24

2.4 Peano Curve. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.5 Space-Filling Curves: Required Algorithms . . . . . . . . . . . . . . . . . . . . . . . 27

3 Grammar-Based Description of Space-Filling Curves . . . . . . . . . . . . . . . . . 31
3.1 Description of the Hilbert Curve Using Grammars . . . . . . . . . . . . . . . . 31
3.2 A Traversal Algorithm for 2D Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.3 Grammar-Based Description of the Peano Curve . . . . . . . . . . . . . . . . . . 37
3.4 A Grammar for Turtle Graphics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

ix



x Contents

4 Arithmetic Representation of Space-Filling Curves . . . . . . . . . . . . . . . . . . . . 47
4.1 Arithmetic Representation of the Hilbert Mapping . . . . . . . . . . . . . . . . 47
4.2 Calculating the Values of h . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.3 Uniqueness of the Hilbert Mapping.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.4 Computation of the Inverse: Hilbert Indices. . . . . . . . . . . . . . . . . . . . . . . . 55
4.5 Arithmetisation of the Peano Curve . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.6 Efficient Computation of Space-Filling Mappings .. . . . . . . . . . . . . . . . 59

4.6.1 Computing Hilbert Mappings via Recursion
Unrolling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.6.2 From Recursion Unrolling to State Diagrams . . . . . . . . . . . . 61

5 Approximating Polygons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
5.1 Approximating Polygons of the Hilbert and Peano Curve.. . . . . . . . 67
5.2 Measuring Curve Lengths with Approximating Polygons.. . . . . . . . 69
5.3 Fractal Curves and Their Length .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
5.4 A Quick Excursion on Fractal Curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

6 Sierpinski Curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
6.1 The Sierpinski-Knopp Curve .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

6.1.1 Construction of the Sierpinski Curve . . . . . . . . . . . . . . . . . . . . . 77
6.1.2 Grammar-Based Description of the Sierpinski Curve .. . . 79
6.1.3 Arithmetisation of the Sierpinski Curve . . . . . . . . . . . . . . . . . . 80
6.1.4 Computation of the Sierpinski Mapping .. . . . . . . . . . . . . . . . . 81

6.2 Generalised Sierpinski Curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
6.2.1 Bisecting Triangles Along Tagged Edges . . . . . . . . . . . . . . . . . 83
6.2.2 Continuity and Locality of Generalised

Sierpinski Curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
6.2.3 Filling Triangles with Curved Edges . . . . . . . . . . . . . . . . . . . . . . 87

7 Further Space-Filling Curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
7.1 Characterisation of Space-Filling Curves . . . . . . . . . . . . . . . . . . . . . . . . . . 93
7.2 Lebesgue Curve and Morton Order . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
7.3 TheH -Index .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
7.4 The ˇ˝-Curve .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
7.5 The Gosper Flowsnake . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

8 Space-Filling Curves in 3D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
8.1 3D Hilbert Curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

8.1.1 Possibilities to Construct a 3D Hilbert Curve . . . . . . . . . . . . 109
8.1.2 Arithmetisation of the 3D Hilbert Curve. . . . . . . . . . . . . . . . . . 113
8.1.3 A 3D Hilbert Grammar with Minimal

Number of Non-Terminals. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
8.2 3D Peano Curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

8.2.1 A Dimension-Recursive Grammar
to Construct a 2D Peano Curve. . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

8.2.2 Extension of the Dimension-Recursive
Grammar to Construct 3D Peano Curves . . . . . . . . . . . . . . . . . 117



Contents xi

8.2.3 Peano Curves Based on 5 � 5 or 7 � 7 Refinement . . . . . . 119
8.2.4 Towards Peano’s Original Construction . . . . . . . . . . . . . . . . . . 122

8.3 A 3D Sierpinski Curve . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

9 Refinement Trees and Space-Filling Curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
9.1 Spacetrees and Refinement Trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

9.1.1 Number of Grid Cells for the Norm Cell
Scheme and for a Quadtree .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

9.2 Using Space-Filling Curves to Sequentialise
Spacetree Grids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
9.2.1 Adaptively Refined Spacetrees . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
9.2.2 A Grammar for Adaptive Hilbert Orders . . . . . . . . . . . . . . . . . 135
9.2.3 Refinement Information as Bitstreams . . . . . . . . . . . . . . . . . . . . 137

9.3 Sequentialisation of Adaptive Grids
Using Space-Filling Curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

10 Parallelisation with Space-Filling Curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
10.1 Parallel Computation of the Heat Distribution

on a Metal Plate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
10.2 Partitioning with Space-Filling Curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
10.3 Partitioning and Load-Balancing Based on Refinement

Trees and Space-Filling Curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
10.4 Subtree-Based Load Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
10.5 Partitioning on Sequentialised Refinement Trees . . . . . . . . . . . . . . . . . . 153

10.5.1 Modified Depth-First Traversals for Parallelisation . . . . . . 153
10.5.2 Refinement Trees for Parallel Grid Partitions . . . . . . . . . . . . 155

10.6 Data Exchange Between Partitions Defined
via Space-Filling Curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
10.6.1 Refinement-Tree Partitions Using Ghost Cells . . . . . . . . . . . 159
10.6.2 Non-Overlapping Refinement-Tree Partitions .. . . . . . . . . . . 160

11 Locality Properties of Space-Filling Curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
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Chapter 1
Two Motivating Examples: Sequential Orders
on Quadtrees and Multidimensional Data
Structures

In Scientific Computing, space-filling curves are quite commonly used as tools to
improve certain properties of data structures or algorithms, or even to provide or
simplify algorithmic solutions to particular problems. In the first chapter we will
pick out two simple examples – both related to data structures and algorithms on
computational grids – to introduce typical data structures and related properties and
problems that can be tackled by using space-filling curves.

1.1 Modelling Complicated Geometries with Quadtrees,
Octrees, and Spacetrees

Techniques to efficiently describe and model the geometry of solid objects are
an inherent part of any lecture or textbook on Computer Graphics. Important
applications arise, for example, in computer aided design (CAD) – in the car
industry this might be used to design car bodies, engine components, or even an
entire motor vehicle. However, once the design is no longer our sole interest, but the
structural stability of components, aerodynamics of car bodies, or similar questions
are investigated that require numerical simulation or computational methods, the
geometry modelling of such objects also becomes an important question in scientific
computing.

In geometry modelling, we distinguish between surface- and volume-oriented
models. Surface-oriented models first describe the topology of an object, via
vertices, edges, and faces, their position and how they are connected. The most
simple model of this kind is the so-called wire-frame model (see Fig. 1.1) – well-
known from classical computer games and old-fashioned science-fiction movies.
While wire-frame models are no longer much used in practice, their extensions
enable us to model edges and faces via Bézier curves or surfaces, NURBS, or
other higher-order curves and surfaces, and are still state-of-the-art in CAD. Hence,
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Fig. 1.1 3D geometry models of a car: surface-oriented modelling with a wire-frame model (left
image) vs. a 2D norm-cell scheme (right image) (Images reproduced (with permission) from
Mundani and Daubner [72])

the model describes the surface of an object, which separates the interior (the object
itself) from the exterior of the object.

In contrast, volume-oriented models characterise an object directly via the space
it occupies. The simplest volume-oriented model is the so-called norm cell scheme.
There, the object to be described is embedded into a regular mesh of cuboid cells.
For each of the cells, we then store whether it is inside or outside the object. The
norm cell meshes correspond to Cartesian meshes, as they are frequently used for
numerical discretisation in scientific computing. There, continuous functions are
approximated on such meshes, and each cell (or cell node) contains an approximate
function value or another approximation of the function (a low-order polynomial,
e.g.). In that sense, the norm cell scheme would represent the characteristic function
of an object, which is defined as 1 in the interior and 0 outside of the object.

For the classical surface-oriented models, the storage requirements grow with
the complexity of the object. In contrast, the storage requirement of the norm cell
scheme solely depends on the chosen resolution, i.e. the size of the norm cells.
For each of the cells, the norm cell scheme requires at least one bit to represent
whether a cell is inside or outside the domain. If different material properties are
to be modelled, the storage requirement per norm cell will grow respectively. Let’s
compute a quick estimate of the typical amount of required memory. We assume a
car body with an approximate length of 4 m, and width and height of 1.5 m each.
Using a uniform resolution of 1 cm, we will already need 400�150�150 grid cells –
which is around nine million. Though this already puts our memory requirement into
the megabyte range, it’s clear that modelling a car as a conglomerate of 1 cm-bricks
won’t be sufficient for a lot of problems. For example, to decide whether the doors
or boot panel of a car will open and close without collisions, no engineer would
allow a tolerance of 1 cm. Nor could the aerodynamics of the car be computed too
precisely. However, if we increase the resolution to 1 mm, the number of grid cells
will rise by a factor of 103, and the required memory will move into the gigabyte
range – which is no longer easily manageable for typical workstations.
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1.1.1 Quadtrees and Octrees

The so-called quadtrees (in 2D) and octrees (in 3D) are geometrical description
models that are designed to limit the rapid increase of the number of cells as is the
case for the regularly refined norm cells. The main idea for the quadtree and octree
models is to increase the resolution of the grid only in areas where this is necessary.
This is achieved by a recursive approach:

1. We start with a grid with very coarse resolution – usually with a grid that consists
of only a single cell that embeds the entire object.

2. Following a recursive process, we now refine the grid cells step by step until all
grid cells are either inside or outside of the object, or else until a given cell size
is reached, which is equal to the desired resolution.

3. During that process, cells that are entirely inside or outside the objects, are not
refined any further.

4. All other cells – which contain at least a small part of the object boundary – are
subdivided into smaller grid cells, unless the finest resolution is already reached.

By default, the grid cells are subdivided into congruent subcells. For example, to
subdivide square cells into four subsquares of identical size is a straightforward
choice in 2D and leads to the so-called quadtrees. Figure 1.2 illustrates the
subsequent generation of such a recursively structured quadtree grid for a simple
example object.

Tree structures would be a possible choice for a data structure that describes such
grids: each grid cells corresponds to a node of the tree. The starting cell defines the
root of the tree, and for each cell its four subsquares are the children of the respective
node. For our 2D, square-based recursive grid, we obtain a tree where each node
has exactly four children, which explains why the name quadtree is used for such
recursively structured grids. Our example given in Fig. 1.2 shows the quadtree that
corresponds to our recursively refined grid.

The quadtree-based grid generation can be easily extended to the 3D case. We
then use cubic cells, which are subdivided into eight cubes of half size. In the
corresponding tree structure, each node therefore has eight children, and we obtain
a so-called octree. A respective 3D example is given in Fig. 1.3.

1.1.2 A Sequential Order on Quadtree Cells

Assume that we want to process or update the data stored in a quadtree in a specific
way. We then have to perform a traversal of the quadtree cells, i.e. visit all quadtree
cells at least once. The straightforward way to do this is to perform a traversal of the
corresponding tree structure. In a so-called depth-first traversal this is achieved by
recursively descending in the tree structure, always following the left-most unvisited
branch, until a leaf cell is reached. After processing this leaf cell, the traversal steps
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Fig. 1.2 Generating the quadtree representation of a 2D domain. The quadtree is fully extended
only for the highlighted cells

Fig. 1.3 Generating the octree representation of a car body from a respective surface model
(Images with permission from Mundani and Daubner [72])
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Fig. 1.4 Quadtree representation of a given object and a simple sequential order on the quadtree
cells that results from a depth-first traversal of the corresponding tree structure

back up the tree until the first node is reached that still has a child node that was
not visited throughout the traversal. A recursive implementation of this depth-first
traversal is given in Algorithm 1.1. Note that the call tree of this algorithm has the
same structure as the quadtree itself.

Algorithm 1.1: Depth-first traversal of a quadtree
Procedure DFtraversal(node)

Parameter: node: current node of the quadtree (root node at entry)
begin

if isLeaf(node) then
// process current leaf node

else
foreach child 2 leaves(node) do

DFtraversal(child);
end

end
end

In what order will the cells of the quadtree be visited by this depth-first traversal
of the tree? This, of course, depends on the order in which we process the children
or each node in the foreach-loop. In the tree, we may assume that child nodes are
processed from left to right, but this does not yet fix the spatial position of the four
subcells. Assuming a local row-wise order – top-left, top-right, bottom-left, bottom-
right – in each node, we finally obtain a sequential order of the leaf cells of the
quadtree. This order is illustrated in Fig. 1.4.
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Fig. 1.5 Quadtree representation of a regular 4 � 4 grid, and a sequential order that avoids jumps

Fig. 1.6 Quadtree representation of a given object and a sequential order on the quadtree cells that
avoids jumps – the order corresponds to a depth-first traversal of the corresponding tree

1.1.3 A More Local Sequential Order on Quadtree Cells

We observe that the generated order leads to pretty large jumps between one cell
and its successor in the sequential order. Is it possible to generate an order where
successor and predecessor are also direct neighbours of a cell, i.e. share a common
boundary? For a comparably simple quadtree grid, such as a regular 4 � 4-grid,
it is not too difficult to come up with such a sequential order. Figure 1.5 shows
an example. The respective numbering scheme can be extended to larger grids and
finally leads to the Hilbert curve, which we will introduce in Chap. 2.

We can also adopt this Hilbert order to sequentialise the cells of our quadtree
grid, as illustrated in Fig. 1.6. Jumps are totally avoided in this sequential order, as
two cells that are neighbours according to the sequential order are also geometrical
neighbours in the sense that they have a common boundary. Sequential orders that
are able to maintain such neighbour properties are useful in a lot of applications.
One of those applications is the definition of equal-sized and compact partitions for
parallelisation of such quadtree grids. We will discuss such partitioning approaches
in Chaps. 9 and 10. We will show that the new sequentialisation again corresponds to
a depth-first traversal of the corresponding tree structure. However, the tree structure
for the new order differs from that used in Fig. 1.4 and uses a different local order
of the children of each node.
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While we might be able to draw such a sequential order into a given quadtree,
we do not have the required mathematical or computational tools available, yet, to
describe the generated order in a precise way, or to give an algorithm to generate it.
As for the simpler order adopted in Fig. 1.4, the order results from a local ordering
of the four children of each node of the quadtree. However, as we can observe
from Fig. 1.6, that local order is no longer uniform for each node. We will discuss a
grammar-based approach to define these local orders in Chap. 3, and use it to derive
traversal and other algorithms for quadtrees in Chaps. 9 and 14.

1.2 Numerical Simulation: Solving a Simple Heat Equation

Let us move to a further example, which is motivated by the field of numerical
simulation. As a simple example for such a problem, we examine the computation
of the temperature distribution on a metal plate. The geometrical form of the metal
plate shall be given, which also defines the computational domain ˝ of our problem.
Moreover, we assume that the temperature is known at the boundaries of the plate,
and that we know all heat sources and heat drains in the interior of the plate. We
further assume that, with the exception of these heat sources and drains, the plate
can only lose or gain heat energy across the boundaries of the plate. Finally, all
boundary conditions, as well as the heat sources and heat drains are assumed to be
constant in time, such that we can expect a stationary temperature distribution on
the metal plate. This temperature equilibrium is what we try to compute.

To be able to solve this problem on a computer, we first require a respective
mathematical model. Typically, we define a grid of measurement point on the metal
plate. We will compute the temperature only at these mesh points. Figure 1.7 shows
two examples of such grids. The one on the left is a uniform, rectangular grid (so-
called Cartesian grid) that is defined on a square metal plate. The example in the
right image shows an unstructured, triangular grid for a metal plate that has a more
complicated geometry. Of course, we could also use a quadtree- or octree-based
grid, as discussed in the previous section.

In the following, we will assume that the grid points will hold our measurement
points for the temperature, i.e. the grid points determine the position of our
unknowns.

The approximation to compute the temperature on the grid points, only, replaces
our problem of finding a continuous temperature distribution by the much simpler
problem (at least for a computer) of computing the temperature at a finite number of
grid points. To determine these temperatures, we will set up a system of equations
for the respective temperatures. In a “serious” application, the respective system of
equations would be derived from the discretisation of a partial differential equation
for the temperature. However, in the present example, we can get by with a much
simpler model.

From physics we know that, without heat sources or drains, the equilibrium tem-
perature at a grid point will be the average of the temperatures at the neighbouring
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(a) Cartesian Grid (b) Triangular Grid

Fig. 1.7 Two examples for a computational grid: a uniform, Cartesian grid (left image) vs. an
unstructured triangular grid on a complicated computational domain (right image). (a) Cartesian
grid. (b) Triangular grid

grid points. In the computational grids given in Fig. 1.7, we could use the adjacent
grid points, i.e. the grid point connected by grid lines, for this averaging.

In the Cartesian grid, we can also assume that the arithmetic average of the
four adjacent grid points will lead to a good approximation of the real equilibrium
situation. Hence, if we use the unknowns ui;j to denote the temperature at the grid
point in the i -th row and j -th column of the Cartesian grid, we obtain the following
equilibrium equation

ui;j D 1

4

�
ui�1;j C ui;j �1 C uiC1;j C ui;j C1

�

for each i and j . We can reformulate these equations into the standardised form

ui;j � 1

4

�
ui�1;j C ui;j �1 C uiC1;j C ui;j C1

� D 0:

Heat sources or drain may then be modelled by an additional right-hand side fi;j :

ui;j � 1

4

�
ui�1;j C ui;j �1 C uiC1;j C ui;j C1

� D fi;j for all i; j: (1.1)

The solution of this system of linear equations will give us an approximation for
the temperature distribution in equilibrium. The more grid points we will invest, the
more accurate we expect our solution. Figure 1.8 plots the solution for a 16�16 grid.
For that problem, no heat sources or drains were allowed, and zero temperature was
assumed at three of the four boundaries. At the fourth boundary, a sine function was
used to describe the temperature.
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Fig. 1.8 Solution of our model problem on a 16 � 16 Cartesian grid. The left plot shows the
temperatures at the grid points, whereas the right plot gives a bilinear interpolation of this pointwise
solution

Towards Large-Scale Simulations

For a full-featured, large-scale simulation of realistic applications, we have to
improve our simple computational model by a multitude of “features”:

• We will require a large number of unknowns, which we might have to place
adaptively in the computational grid, i.e. refine the grid only in regions where we
require a more accurate solution.

• The large number of unknowns might force us to use sophisticated solvers for
the resulting systems of equations, such as multigrid methods, which will use
hierarchies of grids with different solutions to obtain faster solvers.

• Expensive computations or huge memory requirements for the large amount
of unknowns will force us to use parallel computers or even supercomputers
to compute the solution. We will have to partition our grid into parts of equal
computational effort and allocate these partitions to different processors. We will
need to take care that the load distribution between the processors is uniform,
and perform load balancing, if necessary.

It turns out that for many of these problems, we need to sequentialise our grids in a
certain way. Adaptive, multidimensional grids need to be stored in memory, which
consists of a sequence of memory cells. We need loops to update all unknowns
of a grid, which is again often done in sequential order. Finally, we will see that
also parallelisation becomes simpler, if we can map our higher-dimensional grid to
a simple sequence of grid points. Thus, the sequentialisation of multidimensional
data will be our key topic in this book. And, again, we will introduce and discuss
sequential orders for this purpose, such as illustrated in Figs. 1.4 and 1.6.

1.3 Sequentialisation of Multidimensional Data

The data structures used for our two examples are not the only ones that fall into
the category of multidimensional data. In scientific computing, but also in computer
science, in general, such multidimensional data structures are ubiquitous:
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• Discretisation-based data and geometric models, such as in our two previous
examples;

• Vectors, matrices, tensors, etc. in linear algebra;
• All kinds of (rasterised) image data, such as pixel-based image data from

computer tomography, but also movies and animations;
• Coordinates, in general (often as part of graphs);
• Tables, as for example in data bases;
• Statistical data – in computational finance, for example, baskets of different

stocks or options might be considered as multidimensional data.

Throughout this book, we will consider such multidimensional data, in general,
i.e. all data sets where an n-tuple .i1; i2; : : : ; in/ of indices is mapped to correspond-
ing data.

For the simple case of multidimensional arrays, more or less every programming
language will offer respective data structures. Interestingly, already for the simple
case of a 2D array, the implementation is not uniform throughout the various
languages. While Fortran, for example, uses a column-major scheme (i.e. a column-
wise, sequential order), Pascal and C opted for a row-wise scheme, whereas C and
Java will also use a 1D array of pointers that point to the sequentialised rows. These
different choices result from the problem that no particular data structure can be
optimal for all possible applications.

Examples of Algorithm and Operations on Multidimensional Data

For the types of multidimensional data, as listed above, we can identify the following
list of typical algorithms and operations that work on this data:

• Matrix operations (multiplication, solving systems of equations, etc.) in linear
algebra;

• Traversal of data, for example in order to update or modify each member of a
given data set;

• Storing and retrieving multidimensional data sets, both in/from the computers
main memory or in/from external storage;

• Selecting particular data items or data subsets, such as a particular section of an
image;

• Partitioning of data, i.e. distributing the data set into several parts (of approxi-
mately the same size, e.g.), in particular for parallel processing, or for divide-
and-conquer algorithms;

• Accessing neighbouring elements – as observed in our example of the temper-
ature equation, where always five neighbours determine a row of the system of
equations to be solved.

There is probably a lot of further examples, and, again, in many of these operations,
the sequentialisation of the data set forms a central subproblem:

• Traversal of data is a straightforward example of sequentialisation;
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• Similarly, storing and retrieving data in main memory or on an external stor-
age require sequentialisation, because the respective memory models are one-
dimensional;

• Introducing a sequential order on the data, maybe in combination with sorting
the data according to this order, can simplify algorithms for subsequent, more
complicated problems.

In the broadest sense, we can interpret any operation that builds on nested loops,
such as

for i = 1, . . . , n do
for j = 1, . . . , m do

. . .

or similar constructs, as a traversal of multidimensional data.

1.3.1 Requirements for Efficient Sequential Orders

After we have recognised the importance of introducing sequential orders on mul-
tidimensional data structures, we can ask what requirements we should pose with
respect to the efficiency and suitability of such orders. Some of these properties
will be strictly necessary to make sequential orders work at all, while other demands
will be efficiency-driven.

Necessary Properties of Sequential Orders

A first, necessary property of a sequential order is that is generates a unique index
for each data item. First of all, this property ensures that we can safely access (i.e.
store and retrieve) this data item via its index. In addition, a traversal of the indices
will lead to a traversal of the data set, where all data items are processed exactly once
– no data item will be skipped and none will be processed twice. In a mathematical
sense, the mapping between indices and data items should be bijective.

For a contiguous data set, the sequentialisation should also lead to a contiguous
sequence of indices – ideally from 0 to n � 1 (or 1 to n). “Holes” in the index
range are therefore forbidden. We can argue, of course, whether this requirement is
rather required for efficiency than a necessity, as a small overhead of unused indices
might be acceptable in practice. However, we will take it as a characteristic feature
of sequentialisations that such holes in the index range do not occur.

Finally, we will need sequential orders on data sets of quite different extension –
such as arrays of different size or dimension. Hence, our indexing scheme needs to
be adjustable based on certain parameters, which means that we require a family of
sequential orders.
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Requirements Regarding Efficiency

The following requirements for efficient sequentialisations will result from the
respective applications, but also will depend on the respective use case. Hence, for
different applications, only some of the requirements might be of importance, and
the relative importance of the different properties will vary with applications, as
well.

• First of all, the mapping between data items and indices should be easy to com-
pute – in particular, the computation must be fast enough such that the advantages
of the sequential order are not destroyed by the additional computational effort.

• Neighbour relations should be retained. If two data items are neighbours in the
multidimensional data set, their indices should be close together, as well, and
vice versa. This property will always be important, if neighbouring data items are
typically accessed at the same time – consider extraction of image sections, for
example, or solving systems of equations similar to (1.1). Retaining neighbour
relations will then conserve the locality properties of data.

• Two variants of preserving locality are characterised by the continuity of the
mapping for sequentialisation and the clustering property. Continuity ensures
that data items with successive indices will be direct neighbours in the multidi-
mensional data space, as well. The clustering property is satisfied, if a data set
defined via a limited index range will not have a large extension in either direction
of the data space – in 3D, for example, an approximately ball-shaped data range
would be desired.

• The sequentialisation should not favour or penalise certain dimensions. The
requirement is not only a fairness criterion, but may be of particular importance,
if a uniform runtime of an algorithm is important, for example in order to predict
the runtime accurately.

1.3.2 Row-Major and Column-Major Sequentialisation

For 2D arrays, row-major or column-major schemes, i.e. the sequentialisation by
rows or columns, are the most frequent variants. A pixel-based image, for example,
could be stored row by row – from left to right in each row, and sequentialising the
rows from top to bottom. To store matrices (or arrays), row-major or column-major
storage is used in many programming languages. The index of the elements Aij is
then computed via

address.Aij / D in C j or address.Aij / D i C jm;

where n is the number of columns and m the number of rows.
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Which Properties Are Satisfied by Row-Major and Column-Major
Schemes?

The properties proposed in the previous section are only partially satisfied by the
row- or column-major schemes:

• Without doubt, the sequentialisation is easy and fast to compute – which explains
the widespread use of the schemes.

• Neighbour relations are only preserved in one of the dimensions – for a row-
major schemes, only the neighbours within the same row will be adjacent in the
index space, as well. Neighbours in the column dimension will have a distance of
n elements. For higher-dimensional data structures, the neighbour property gets
even worse, as still only the neighbour relation in one dimension will be retained.

• Continuity of the sequentialisation is violated at the boundaries of the matrix –
between elements with successive index, a jump to the new row (or column) will
occur, if the respective elements lie at opposite ends of the matrix.

• There is virtually no clustering of data. A given index range corresponds to few
successive rows (or columns) of the matrix, and will thus a correspond to a
narrow band within the matrix. If the index range is smaller than one column,
the band will degenerate into a 1D substructure.

• The row and column dimension are not treated uniformly. For example, many
text books on efficient programming will contain hints that loops over 2D arrays
should always match the chosen sequentialisation. For a row-major scheme, the
innermost loop needs to process the elements of a single row. The respective
elements are then accessed successively in memory, which on current processors
is executed much faster compared to so-called stride-n accesses, where there are
jumps in memory between each execution of the loop body.

The last item, in particular, reveals that choosing row-major or column-major
schemes favours the simple indexing over the efficient execution of loops, because
how to nest the loops of a given algorithm cannot always be chosen freely.

Row-Major and Column-Major in Numerical Libraries

While up-to-date libraries for problems in numerical linear algebra – both for
basic subroutines for matrix-vector operations or matrix multiplication as for more
complicated routines, such as eigenvalue computations – are still based on the
common row-major or column-major data structures, they invest a lot of effort
to circumvent the performance penalties caused by these data structures. Almost
always, blocking and tiling techniques are used to optimise the operating blocks to
match the size and structure of underlying memory hardware. Often, multiple levels
of blocking are necessary.

Nevertheless, due to the simplicity of the row- and column-oriented notations,
the respective data structures are kind of hard-wired in our “programming brain”,
and we seldom consider alternatives. A simple nested loop, such as
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for i = 1, . . . , n do
for j = 1, . . . , m do

. . .

will therefore usually not be replaced by a more general construct, such as

for all n-tupels (i,j,. . . ) do
. . .

even if the algorithms would allow this. However, to introduce improvements to a
data structure in a late stage of program design, is almost always difficult.

In this book, we will discuss sequential orders for data structures using space-
filling curves – presenting simple problems from linear algebra (in particular, in
Chap. 13) as well as examples from other fields in scientific computing, where data
structures based on space-filling curves can improve the performance of algorithms.
Our intention is not to argue that space-filling curves are always the best choice in
the end. However, they offer a good starting point to formulate your problems and
data structures in a more general way.

What’s next?

Remember: you might want to read the chapters of this book in non-sequential
order. Boxes like the present one will suggest how to read on.

The default choice is usually the next chapter and will be indicated by the
forward sign. In the following chapter, we will start with the construction
of space-filling curves.
This sign indicates that the next chapter(s) might be skipped.
The “turn right” sign indicates that you might want to do a slight detour
and already have a glimpse at a chapter or a section that comes later in the
book. For example, Chap. 9 will deal with quadtrees and octrees in detail
– in particular, Sect. 9.1.1 will quantify how many grid cells may be saved
by using a quadtree grid.
The “turn left” sign will indicate that you might want to redo an earlier
section or chapter in the book (perhaps with some new idea in mind).



Chapter 2
How to Construct Space-Filling Curves

In a mathematical sense, introducing a sequential order on a d -dimensional array
of elements (or cells) defines a corresponding mapping – from the range of
array indices f1; : : : ; ngd to sequential indices f1; : : : ; nd g, and vice versa. From
a practical point of view, such sequential orders should result from a family of
orders, i.e. be generated via a uniform construction for arbitrary n (and maybe d ). In
scientific computing (and many other fields), the respective data sets will represent
continuous data, and the size of the data set will depend on how we chose the
resolution in space (or time). We can therefore ask ourselves whether it is possible,
or even a good idea, to derive a suitable family of mappings from a continuous
mapping. In such a setting, our sequential index set becomes a parameter interval,
such as the 1D unit interval Œ0; 1�. Similarly, the multi-dimensional element set
becomes a certain image range, for example the unit interval Œ0; 1�d.

According to our discussion on the efficiency of sequential orders, in Sect. 1.3.1,
a good continuous mapping should be bijective and continuous. A bijective map-
ping ensures the required one-to-one correspondence between index and indexed
element, and a continuous mapping will avoid jumps between the image points of
adjacent parameters – which will avoid “holes” in the generated sequential order and
improve locality and clustering of data. We will see, in the following section, that
these two requirements are already too much for our wish list. But we will introduce
the Hilbert and the Peano curve as good alternatives.

2.1 Towards a Bijective Mapping of the Unit Interval
to the Unit Square

In set theory, two sets are defined to have the same number of elements, if a bijective
mapping exists between the two sets. This is highly intuitive for finite sets, as
the bijective mapping will provide a one-to-one matching between all elements,
but also works for the cardinality of infinite sets. The cardinality of sets, i.e. the
quantification of the (possibly infinite) number of elements of sets, is also important
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in computer science, in particular when talking about infinite sets. Fundamental
concepts such as countability and enumerability of sets are derived from cardinality
and its definition via the existence of a bijective mapping (from N to such a
set). The existence of functions that are non-computable is one of the important
consequences.

Hence, demanding a one-to-one mapping between the unit interval Œ0; 1� and
the unit square Œ0; 1�d implies that these need to have the same number of points –
which intuitively is not at all to be expected (after all, the unit interval is just a single
edge of the unit square). The following, highly contra-intuitive example concerning
the cardinality of sets is therefore well-known from many books and lectures in
that area, and goes back to Georg Cantor. We consider a mapping between the unit
interval Œ0; 1� and the unit square Œ0; 1� � Œ0; 1�. For any argument t 2 Œ0; 1�, we can
compute its binary representation

t D 02:b1b2b3b4b5b6 : : :

As the image of t , we define the following point in the unit square:

f .t/ D
�

02:b1b3b5 : : :

02:b2b4b6 : : :

�
:

That means, we simply build the first coordinate from all “odd” binary digits, and
the second coordinate from all “even” digits. In the same way, we can define an
inverse mapping g from the unit square to the unit interval:

g

�
02:b1b3b5 : : :

02:b2b4b6 : : :

�
D 02:b1b2b3b4b5b6 : : :

It is easy to prove that both f and g are surjective mappings. Each point of the unit
square is an image of a parameter in the unit interval, which we can find via the
binary representation. Likewise, each number in the unit interval can be found as a
result of g. If the unit square and the unit interval were finite sets, we could conclude
that the two sets must have the same number of elements. But is this also true for
infinite sets?

It turns out that neither f or g are bijective, though. For example:

f

�
1

2

�
D f .02:1/ D

�
02:1

02:0

�
D

0
@

1

2
0

1
A

and

f

�
1

6

�
D f .02:0010101 : : : / D

�
02:01111 : : :

02:00000 : : :

�
D

0
@

1

2
0

1
A :
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However, already in 1878 Georg Cantor showed (as corollary of a more general
theorem) the existence of a mapping between unit square and unit interval that is
indeed bijective. He thus proved that the unit interval has as many points as the unit
square – though being a subset of the unit square. This apparent contradiction led to
intense discussion about the cardinality of sets. The resulting concepts of countable
or enumerable sets are nowadays part of any lecture in computability theory.

2.2 Continuous Mappings and (Space-Filling) Curves

Almost immediately after Cantor’s finding, mathematicians began to look for a
mapping that is not only bijective, but also continuous. The graph of such mappings
is called a curve:

Definition 2.1 (Curve). Let f W I ! R
n be a continuous mapping of the compact

set I � R into R
n. The respective image f�.I/ of such a mapping is then called a

curve, and x D f .t/; t 2 I, is called the parameter representation of the curve.

Our general understanding of a curve is probably that of a contiguous line, such as an
arc, circle, ellipsoid, or similar. The cited mathematical definition is thus much more
general: a curve is the image of any continuous mapping from a parameter interval
into a 2D or higher dimensional space. The image of the mapping is defined as
the set of possible values, i.e. f�.I/ WD ff .t/ 2 R

n j t 2 Ig. Usually, the compact
parameter set I will simply be the unit interval Œ0; 1�. More complicated sets,
however, are also possible, as for the Lebesgue curve, for example (see Sect. 7.2).

Hence, finding a bijective curve that maps the unit interval to the unit square
means finding a curve that visits each point of the unit square (surjectivity), but
does not intersect itself (to remain injective). In 1879, already, Eugen Netto proved
that such a curve cannot exist. Such a mapping cannot be bijective and continuous at
the same time – provided that the target domain is a square or, in general, a smooth
manifold.

In 1890, however, Giuseppe Peano [214] and David Hilbert [131] presented
curves that are continuous and surjective (but not injective). As these curves still
visit every point of the unit square (thus completely filling a certain area or volume),
they are called space-filling:

Definition 2.2 (Space-filling Curve). Given a curve f�.I/ and the corresponding
mapping f W I ! R

n, then f�.I/ is called a space-filling curve, if f�.I/ has a
Jordan content (area, volume, . . . ) larger than 0.

Again, this definition is not restricted to the unit square as target domain: if a
continuous mapping f W I ! Q � R

n is also surjective, which means that every
point of the target set Q is an image of f , then f�.I/ is a space-filling curve, if the
area (or volume) of Q is non-zero. If Q is a “well-behaved” domain (i.e. a smooth
manifold), then there can be no bijective mapping f W I ! Q � R

n, such that f�.I/

is a space-filling curve (due to the proof by E. Netto).
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As f therefore cannot be injective, there are obviously situations where several
parameters are mapped to the same image point. Regarding the cardinality of sets,
we can therefore claim that the parameter interval has even more points than the
target domain Q (though we already know that we must not rely on such intuition).
Regarding the use of such mappings to generate a family of sequential (“space-
filling”) orders, the resulting ambiguity in indexing could be a problem. However,
we will see that the problem is less severe once we move back to discrete sequential
orders.

In the following sections, we will discuss the two most prominent examples
of space-filling curves – the Hilbert curve and the Peano curve. We will discuss
their construction, prove that they are indeed space-filling curves (according to the
definition given above), and introduce some important terminology.

2.3 The Hilbert Curve

In Sect. 1.1, we discussed a specific sequential order of grid cells in a quadtree that
will connect only neighbouring grid cells. The Hilbert curve is the generalisation
of this sequentialisation. Its construction and definition as a space-filling curve is
based on a recursive procedure, which resembles the quadtree generation:

1. The square target domain, starting with the unit square, is subdivided into four
subsquares, each of which with half the side length of the parent square.

2. Find a space-filling curve for each subsquare. The respective curve is obtained as
a scaled-down, rotated or reflected version of the original curve.

3. The respective reflection and rotation operations are to be chosen such that the
four partial curves can be connected in a way to preserve continuity.

Hence, we need to determine how to perform these reflections and rotations, and
also to turn this recursive idea into a formal definition.

2.3.1 Iterations of the Hilbert Curve

The so-called iterations of the Hilbert curve are a suitable means to illustrate the
reflection and rotation operations and the recursive building principle. The iterations
connect, as a polygon, the midpoints of the recursively subdivided subsquares.
More precisely, they connect the subsquares of a given recursive level such that
all subsquares of this level form a sequence where consecutive subsquares share a
common edge. Hence, for each level of refinement, we obtain one iteration of the
Hilbert curve. We will therefore talk of the n-th iteration of the Hilbert curve, if that
iteration connects the subsquares of the n-th refinement level.

Figure 2.1 shows the first three iterations, and illustrates how these iterations are
built step by step. There are actually two ways to explain this construction:
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Fig. 2.1 The first three iterations of the Hilbert curve

1. From each iteration to the next, all existing subsquares are subdivided into four
smaller subsquares. These four subsquares are connected by a pattern that is
obtained by rotation and/or reflection of the fundamental pattern given in the
leftmost image of Fig. 2.1. As we know where the iteration curve will enter and
exit the existing subsquare, we can determine how to orientate the local pattern.

2. From each iteration to the next, four copies of the existing iteration are connected.
The copies are rotated and reflected such that their start and end points can be
connected (compare the introduction at the beginning of Sect. 2.3). Note that the
orientation of the four iterations is the same regardless of the resolution of the
existing iteration.

We will imagine the Hilbert curve as the limit curve that is obtained, if we infinitely
repeat this recursive refinement. The iterations themselves, however, will still be of
practical importance later on, as we can directly use them for all kinds of finite,
discrete data structures, such as grids of cells or matrices.

2.3.2 Approximating Polygons

From the iterations of the Hilbert curve, we can anticipate that the “final” Hilbert
curve will start in the lower left corner of the unit square – i.e. in point .0; 0/ –,
run through the entire unit square, and terminate in the lower right corner – in point
.1; 0/. If we take a detailed look at the subsquares, and in particular if we refine
the iterations accordingly, we see that this also holds for the subsquares: the Hilbert
curve will enter each subsquare in one particular corner, and will exit the subsquare
in one of the corners that share a common edge with the entry corner.

If we connect these entry and exit corners with a polygon, we obtain the so-called
approximating polygon of a Hilbert curve. As for the iterations, we obtain different
approximating polygons depending on the refinement level of the subsquares. We
will speak of the n-th approximating polygon, if it connects the entry and exit
corners of the subsquares after n refinement steps. Figure 2.2 shows the first three
approximating polygons of the Hilbert curve.
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Fig. 2.2 The first three approximating polygons of the Hilbert curve; entry and exit points, as well
as the sequence in which they are visited by the Hilbert curve, are marked in addition

Fig. 2.3 Illustration of the Hilbert curve mixing properties of iterations and approximating
polygons

The approximating polygons are highly useful during the construction of the
Hilbert curve. Together with the iterations, they determine the sequence in which the
subsquares are visited by the Hilbert curve. In Chap. 5, the approximating polygons
will be discussed in more detail.

The concept of iterations and approximating polygons is often mixed to generate
a representation that illustrates both the entry and exit points as well as the
sequential order generated on the subsquares. Figure 2.3 gives an example of such
a representation.

2.3.3 Definition of the Hilbert Curve

For a mathematically strict definition of the Hilbert curve, we will use sequences
of nested 1D and 2D intervals. The fundamental idea of this construction is that
the Hilbert curve shall run through the unit square with a constant velocity: after
it has covered one quarter of the entire square, we request that it has also covered
one quarter of the parameter interval – and this shall also hold during the recursive
refinement of squares and parameter intervals.
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0 1 2 3

1 2

0 3

Fig. 2.4 Nested intervals and
mapping parameter intervals
to 2D subsquares during the
construction of the Hilbert
curve

Hence, for a given parameter t , we construct a sequence of nested intervals as
follows:

• As starting interval, we chose the entire parameter interval Œ0; 1�.
• For each interval Œa; a C h�, its successor it chosen as one of the intervals

�
a; a C h

4

�
;

�
a C h

4
; a C 2h

4

�
;

�
a C 2h

4
; a C 3h

4

�
;

�
a C 3h

4
; a C h

�
;

(2.1)
i.e. the first, second, third, or fourth quarter of Œa; a C h�.

• Of course, the successor is chosen such that it contains t .

For example, for the parameter t D 1
3
, we will obtain the following sequence of

intervals:
Œ0; 1� ;

�
1

4
;

2

4

�
;

�
5

16
;

6

16

�
;

�
21

64
;

22

64

�
; : : :

According to our recursive idea, each interval of this sequence is mapped to a
specific subsquare. Analogous to the sequence of nested intervals, we construct a
sequence of nested subsquares. Again, each such subsquare Œa; b� � Œc; d � will be
one quarter of the parent square:

�
a;

a C b

2

�
�

�
c;

c C d

2

�
;

�
a C b

2
; b

�
�

�
c;

c C d

2

�
;

�
a;

a C b

2

�
�

�
c C d

2
; d

�
;

�
a C b

2
; b

�
�

�
c C d

2
; d

�
:

(2.2)

Which of these 2D intervals is to be chosen can be read from the iterations or also
from the approximating polygons of the Hilbert curve – as illustrated in Fig. 2.4.

Note that if t lies on an interval boundary, the choice of nested parameter intervals
(and, as a consequence, that of the subsquares) is not unique. Whether this will pose
problems for our definition of the Hilbert curve, will need to be discussed later.

Definition 2.3 (Hilbert Curve). Let the parameter representation h.t/ be defined
via the following mapping algorithm:

• For each parameter t 2 I WD Œ0; 1�, a sequence of nested intervals

I � Œa1; b1� � : : : � Œan; bn� � : : : ;

exists, such that each interval is obtained by splitting its predecessor into four
parts of equal size – as in Eq. (2.1).
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• Any such sequence of intervals can be mapped one by one to a sequence of nested
2D intervals, as defined in Eq. (2.2). The iterations of the Hilbert curve determine
which 2D interval (i.e. which subsquare) is the image of which interval.

• The constructed 2D nested intervals will converge to a uniquely defined point in
Q WD Œ0; 1� � Œ0; 1� – this point shall be h.t/.

The image of h W I ! Q is then a space-filling curve, the Hilbert curve.

2.3.4 Proof: h Defines a Space-Filling Curve

To prove that the defined mapping h really determines a space-filling curve, we need
to prove the following three properties of h:

1. h is a mapping, i.e. each t 2 I is mapped to a unique value h.t/.
2. hW I ! Q is surjective.
3. h is continuous.

Proof: h Defines a Mapping

The question whether h defines a mapping is a direct consequence of the fact that the
nested intervals used in the definition are not uniquely defined. If a given parameter
t is identical to one of the interval boundaries, there are two possible choices to
proceed with the nested intervals. We therefore need to prove that the value h.t/ is
independent of the choice of nested intervals. To prove this property on the basis of
our current definition would be rather laborious. Hence, we will come back to this
question in Sect. 4.3, when we will have better tools available.

Until then, we can use the continuity of h as justification: the two different
choices of nested intervals are equivalent to computing both one-sided limits of
h.t/ at the parameter t . Continuity of h will assure that the limit from the left and
the limit from the right are equal.

Proof: h Is Surjective

To prove surjectivity, we need to prove that for each point q of the unit square, there
is a parameter t , such that h.t/ D q. That proof can be obtained by going backwards
from the nested subsquares to the nested intervals:

• For each point q 2 Q, we can construct a nested sequence of 2D intervals, such
that these 2D intervals correspond to the subsquares occurring in the construction
of the Hilbert curve.

• By construction, this 2D nesting uniquely corresponds to a sequence of nested
intervals in the parameter interval I. Due to the completeness of the real numbers,
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and because I was assumed to be compact, the nested intervals will converge to
a parameter t .

• With these nested parameter intervals, and the corresponding 2D nested intervals,
we apply the definition of the Hilbert curve and directly obtain that h.t/ D q.
Hence, h is surjective.

At this point, let us again have a look at the uniqueness problem: In the definition of
the Hilbert curve, we could have used a unique definition, for example by using the
following (right-open) intervals:

�
a; a C h

4

�
;

�
a C h

4
; a C 2h

4

�
;

�
a C 2h

4
; a C 3h

4

�
;

�
a C 3h

4
; a C h

�
:

However, such a nested sequence of intervals might actually converge to a limit
point that is not contained in any of the intervals. For example, if we always choose
the rightmost interval in such a sequence, the limit will be the right (open!) boundary
point, which is not included in the interval. Hence, when using intervals with open
boundaries, we would run into even more problems compared to using compact
intervals. And the uniqueness problem will turn out to be not that nasty.

2.3.5 Continuity of the Hilbert Curve

We have shown that h is a surjective mapping from the unit interval to the unit square
– i.e. h is a space-filling mapping. To proof that h is a curve, as well, we need to
show that h is continuous. We will actually prove a slightly stronger property, as h

turns out to be even uniformly continuous.
A function f W I ! R

n is uniformly continuous on an interval I, if for each
� > 0 there exists ı > 0, such that for any t1; t2 2 I with jt1 � t2j < ı, we have
that kf .t1/ � f .t2/k2 < �. Remember that for the “regular” continuity, it would
be sufficient to show continuity for each parameter t in the interval I separately.
Hence, we would be allowed to choose ı depending on t , as well.

Proving Continuity

Our strategy for the proof is to find an estimate that will give us an upper bound for
the distance of the image points, kh.t1/ � h.t2/k2, depending on the distance of the
parameters, jt1 � t2j. If we can obtain such an estimate for an arbitrary choice of the
parameters t1 and t2, we can easily find a proper ı for any � that is given to us. Such
an estimate is obtained in four main steps:

1. Given two parameters t1; t2 2 I, we choose a refinement level n 2 N, such that
jt1 � t2j < 4�n.
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2. For this n-th refinement level, the length of the nested intervals of the Hilbert
curve construction is 4�n. Therefore, the interval Œt1; t2� can range over at most
two such nested intervals, which have to be neighbours – because, if an entire
interval could fit between t1 and t2, their distance would have to be larger
than 4�n.

3. Due to the construction principle of the Hilbert curve, any two neighbouring
intervals will be mapped to two subsquares that share a common edge. By
construction, these squares will have a side length of 2�n. The image points
h.t1/ and h.t2/ both have to be within the rectangle that is built from these two
subsquares.

4. The distance between h.t1/ and h.t2/ can therefore not be larger than the length
of the diagonal of this rectangle. The rectangle’s side lengths are 2�n and 2 � 2�n,
hence the length of the diagonal is 2�n � p

5 (rule of Pythagoras). This length
is therefore an upper bound for the distance of h.t1/ and h.t2/, and we obtain:
kh.t1/ � h.t2/k2 � 2�n

p
5.

For a given � > 0, we can now always pick an n, such that 2�n
p

5 < �. With this
n, we obtain a ı WD 4�n, such that for any t1; t2 with jt1 � t2j < ı, we obtain the
continuity requirement from the considerations above:

kh.t1/ � h.t2/k2 � 2�n
p

5 < �:

This proves continuity of h.
At this point, we should note that we only required two major properties of the

construction to prove continuity:

• h always maps two adjacent parameter intervals to two adjacent subsquares (that
share a common edge). Note that, so far, we claimed that the Hilbert curve meets
this condition “by construction”, but didn’t give a real proof. We will be able to
provide such as proof in Sect. 3.4.

• Both intervals and subsquares are recursively subdivided into quarters. This will
ensure the exponential decay of interval and side lengths. It will also make sure
that all intervals and subsquares of the same refinement level have the same size.
(Note that we also use the fact that the squares stay squares, i.e. preserve their
shape during refinement.)

As many other space-filling curves also rely on these (or similar) properties, we will
be able to re-use our proof of continuity for a lot of further space-filling curves.

2.3.6 Moore’s Version of the Hilbert Curve

As illustrated in Fig. 2.5, it is possible to combine four regular Hilbert iterations (or
Hilbert curves) and obtain a closed space-filling curve, i.e., one that has the same
start and end point – here in

�
0; 1

2

�
. We will call the respective space-filling curve

Hilbert-Moore curve, as it was found by E. H. Moore.
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Fig. 2.5 The first three iterations of Moore’s version of the Hilbert curve

For construction and description of the Hilbert-Moore curve, see the exercises
after Chaps. 3 and 4.

2.4 Peano Curve

Following the same construction as for the Hilbert curve, we can also define the
historically first space-filling curve – the Peano curve, found by G. Peano in 1890.
Again, we follow a recursive construction of iterations of the Peano curve, and
define the Peano curve via the limit of this construction. The construction of the
Peano curve works as follows:

1. Whereas the Hilbert curve is based on a recursive substructuring into four
subsquares in each step, the Peano curve construction subdivides each subsquare
into nine congruent subsquares, each with a side length equal to one third of the
previous one.

2. Correspondingly, we define the nested intervals via a recursive subdivision into
nine equal-sized subintervals in each step. Again, each interval is mapped to a
specific subsquare of the same recursion level.

3. Hence, each of the subsquares will contain a part of the final Peano curve that is
again a suitably scaled and transformed copy of the entire curve. As illustrated
in Fig. 2.6, we need to assemble these partial curves to a contiguous curve on the
unit square.

4. The required transforms can also be determined from Fig. 2.6. In contrast to the
Hilbert curve, no rotations are required – we only require horizontal or vertical
reflections. Note that the reflection at the horizontal axis are especially required to
obtain the correct orientation of the curve in the central (top-centre, mid-centre,
and bottom-centre) subsquares.

5. The resulting switch-back patterns (here, in the vertical variant) are characteristic
for the Peano curve, and occur on every level of the Peano iterations.

The dominating direction of the “switch-backs” can be both horizontal and
vertical – see the two examples plotted in Fig. 2.7.
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Fig. 2.6 The first two iterations of the Peano curve

Fig. 2.7 Two different Peano curves of the switch-back type

The switch-back can also be in alternate directions, as in the example shown
in Fig. 2.8a. In that way, a multitude of different Peano curves can be generated. In
principle, there are 29 possible variants, however, a lot of them are symmetric to each
other. According to Sagan [233], there are 272 unique variants of switch-back-type
Peano curves. In addition, there are two variants of the so-called Peano-Meander
curves – the first iteration of one of these curves is given in Fig. 2.8b.

In contrast, there is indeed only one 2D Hilbert curve, if we disregard symmetric
variants obtained via reflection or rotation. A further variant of the Hilbert curve
would be the Hilbert-Moore curve, however, this variant has different start and end
points of the curve.

Continuity and Surjectivity of the Peano Curve

To prove that the Peano construction indeed leads to a space-filling curve, we again
have to prove continuity and surjectivity of the respective mapping. Luckily, we can
re-use the proof for the Hilbert curve almost word-by-word:
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(a) Switch-back Peano curve (b) Peano-Meander curve

Fig. 2.8 Peano curves of the switch-back vs. the Meander type. The switch-back variant (a) has
been introduced as “Meurthe order” [123]

• Surjectivity results from the synchronous nesting of intervals and subsquares: for
each point of the unit square, there is a suitable sequence of nested subsquares
The corresponding intervals form a sequence of nested intervals that converge to
the parameter mapped to the given point. Obviously, that also includes existence
of such a point.

• To prove continuity, we remember that the continuity of the Hilbert curve was
proven based on two substantial properties:

1. Two adjacent intervals are always mapped to adjacent subsquares, and
2. Intervals and subsquares are generated via a recursive substructuring process

that splits each subsquare into a set of scaled-down, equal-sized subsquares
(analogous for the intervals).

Both requirements are satisfied for the Peano construction. We can therefore infer
continuity from the respective proof for the Hilbert curve.

2.5 Space-Filling Curves: Required Algorithms

Applications of space-filling curves basically exploit the particular order space-
filling curves induce on two- and higher-dimensional data structures. Our first step
in that direction was to demonstrate that space-filling curves exist, and to provide a
rough description of how to construct them. However, to be able to exploit space-
filling curves for computational problems, we need more formal descriptions of
space-filling curves – and of the induced family of space-filling orders for indexing
– and turn these into useful algorithms.

But what operations are we likely to need to be able to work with space-filling
curves? First of all, we will require functions that compute the mapping between a
higher-dimensional data structure and its sequentialisation by a space-filling curve:
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Computation of function values:
For a given parameter t 2 I, we need to be able to compute the corresponding
point h.t/ on the space-filling curve, i.e. we require an algorithm to compute the
respective mapping h. For the example of data indexed by a space-filling curve,
we need to be able to recover the data, if the index is given.

Computation of the index of a point:
For a given point p 2 Q, we want to compute the parameter t , for which
h.t/ D p. A main problem, here, will be that the inverse mapping h�1 is not
well defined, as several parameters may be mapped to the same point (i.e., the
function h is not bijective). We will see, however, that we can at least compute
an inverse mapping Nh�1 that provides such a parameter in a unique way.

A further typical operation will be to simply process all data in a certain order:

Traversal of objects indexed by h:
Given a set of points pi 2 Q, we want to process the points in the order induced
by the space-filling curve, i.e. such that

Nh�1.pi0/ < Nh�1.pi1/ < : : :

The data points may be regularly (for multi-dimensional arrays, e.g.) or irregu-
larly (geographical coordinates, e.g.) distributed in space.

The latter task is similar to a computer science “classic” – the travelling salesman
problem. There, the task is to visit a given number of cities (given by their
geographical position), such that the entire travelled distance is minimised. Space-
filling curves can actually provide a pretty good heuristics to solve this problem
(see Chap. 15 for some further details). An example for a traversal of regularly
distributed array data would be, for example, an update of all pixels in a computer
image that is stored as an array.

The computation of function values of indices, as well as the implementation of
traversals along a space-filling curve require a better, mathematical or computational
description of the curves. The definition used so far is not exact enough to be
transferable into a computer program. We will first discuss grammar-based descrip-
tions of space-filling curves, in Chap. 3, which will lead to traversal algorithms. In
Chap. 4, we will present an arithmetic representation of space-filling curves that
allows an efficient computation of mappings and indices.

References and Further Readings

Sagan’s book on space-filling curves [233] not only provides a thorough intro-
duction to the construction and mathematical analysis of space-filling curves, but
also gives extensive information on the history of space-filling curves (see also
his article [230]). Hence, we can keep this references section comparably short.
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Note that the original papers by Peano [214] (in French) and Hilbert [131] (in
German) are actually available online via the Digitalisierungszentrum Göppingen.
Hilbert introduced the geometrical approach to construct space-filling curves via the
respective iterations. Peano’s description was based on the ternary representation of
numbers – see Sect. 8.2.4. Moore introduced his variant of Hilbert’s curve in 1900
[193] (four additional patterns for curves based on the Hilbert curve were given by
X. Liu [168]). In addition, Moore gave a formal proof that the Hilbert and Peano
curves are continuous but do not have a derivative in any point of the curve. He also
discussed in detail the construction of the curves via “broken-line curves” – which
we refer to as the iterations and approximating polygons of the space-filling curves.

Wunderlich [277], in 1973, gave an instructive representation of the Hilbert
and Peano curves (also the Sierpinski curve introduced in Chap. 6), where he also
discusses the geometrical construction of space-filling curves via recursive use of
basic patterns (in German: “Grundmotive”). For the Peano curves, in particular, he
discussed the switch-back (Serpentinentyp) versus Meander type and introduced a
simple notation for the different variants obtained for the switch-back type. In his
notation, the standard curve in Fig. 2.6 is encoded by the bit-9-tuple 000 000 000,
while the right curve in Fig. 2.7, where all nine sub-patterns are switched to
horizontal direction would be Serpentine 111 111 111. Consequently, the curve in
Fig. 2.8a is Serpentine 110 110 110. Haverkort and van Walderveen [123] found that
the latter curve has the best locality properties (according to certain measures –
see Chap. 11) among all switch-back curves, and named it Meurthe order (after the
respective river).

What’s next?

The next two chapters will take on the challenge of finding algorithms for
indexing and traversal of data structures using space-filling orders. For
that purpose, we will need proper (mathematical) descriptions of space-
filling curves.
If you are interested in how a Hilbert or Peano curve might look in 3D,
then you can have a quick look at Chap. 8.

Exercises

2.1. Based on Definition 2.3, try to find the parameters (i.e., respective nested inter-
vals for the parameters) that are mapped to the corner points of the approximating
polygon of the Hilbert curve.
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2.2. The Hilbert curve is determined as soon as the start and end point of the curve
are fixed: if start and end are located at corners located on a common edge of
the unit square, the rotated and/or reflected versions of the original Hilbert curve
are obtained. For the Hilbert-Moore curve, start and end are located on an edge’s
centerpoint. Are there further possibilities? Try to find all of these (see also [168]).

2.3. Sketch the full proof of the continuity of the Peano curve, and especially
compute an upper bound of the distance of points, kp.t1/ � p.t2/k depending on
the distance of the parameters, jt1 � t2j.
2.4. Draw the first iterations of all 272 different Peano curves.



Chapter 3
Grammar-Based Description of Space-Filling
Curves

3.1 Description of the Hilbert Curve Using Grammars

To construct the iterations of the Hilbert curve, we recursively subdivided squares
into subsquares, and sequentialised the respective subsquares by the recursive
patterns given by the iterations. The patterns were obtained by respective rotations
and reflections of the original pattern. We will now figure out how many different
patterns actually occur in these iterations. For that purpose we will identify the basic
patterns within the iterations – each basic pattern being a section of the iteration that
either corresponds to a scaled down 0-th iteration (sequence “up–right–down”) or
results from a rotation or reflection of this pattern. Figure 3.1 illustrates the patterns
that occur in the first three iterations of the Hilbert curve.

We observe that the iterations consist of only four basic patterns – marked by
the letters H , A, B , and C in Fig. 3.1. We also see that, from each iteration to
the next, the corresponding part of the iteration will be refined according to a
fixed replacement scheme. This scheme is illustrated in Fig. 3.2. The replacement
scheme is obviously a closed scheme, such that no additional patterns can occur. In
the following, we will therefore describe the successive generation of iterations of
space-filling curves by specific grammars.

Defining a Grammar to Describe the Iterations
of the Hilbert Curve

We will define the respective grammar by the following components:

1. A set of non-terminal symbols: fH; A; B; C g. The non-terminals represent
our four basic patterns. The non-terminal H (i.e. the basic pattern) shall be
distinguished as the start symbol.

2. A set of terminal symbols: f";#; ;!g. The terminal symbols describe the
transitions between the basic patterns, and will also determine the connections
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Fig. 3.1 Determining the basic patterns in the first three iterations of the Hilbert curve
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Fig. 3.2 Replacement scheme of the basic patterns in the iterations of the Hilbert curve

between the subsquares by an iteration of the Hilbert curve. In Fig. 3.2, the
terminals are represented by the green arrows.

3. A set of production rules, i.e. replacement rules for the patterns:

H  � A " H ! H # B

A � H ! A " A C

B  � C  B # B ! H

C  � B # C  C " A

The productions determine for each basic pattern how it has to be replaced during
refinement of the iteration – in particular, it determines the correct sequences of
basic patterns and transfers between them.

4. An additional derivation rule: to construct a string from our grammar, we
are only allowed to replace all non-terminal symbols at once in a derivation
step. We thus ensure that a uniform refinement level is retained throughout the
construction of the corresponding curve.

The production rules of our grammar satisfy the requirements for a context-free
grammar, as they are frequently used in computer science. However, we did not
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include any terminal productions, i.e. productions that only have terminal symbols in
the right-hand side. Also, the additional derivation rule leads to a modified grammar,
which is related to so-called L-systems (see the references section).

The Grammar as a Closed System of Patterns

As a side result, the grammar for the Hilbert curve gives an answer to a question
we have not yet asked, but actually should have: is the system of patterns and
partial iterations to construct the Hilbert curve complete, such that we can infinitely
repeat it? Our grammar clearly answers that question, as we can see that only four
basic patterns occur in the iterations – represented by the four non-terminals H , A,
B , and C . In addition, we see from the production rules, and from the respective
illustration in Fig. 3.2 that the continuous connection between the basic patterns is
always guaranteed.

Last, but not least, the grammar serves as a mathematically exact description
of the sequence of transforms and pattern orientations, which complements the
definition of the Hilbert curve. So far, we were only able to give an intuitive,
informal description that was based on drawing the first couple of iterations.

Finally, we can interpret the non-terminals H , A, B , and C as representatives
of scaled-down “infinite” Hilbert curves, where H represents a Hilbert curve in
its original orientation, whereas A, B , and C correspond to the Hilbert curve in
different orientations. In that infinite case, the productions then become similar to
fixpoint equations.

Strings Generated by the Grammar

We will now discuss how the strings generated by the grammar look, and how they
can be used. For that purpose, we will apply the production rules, following the
additional derivation rule, and obtain:

H  � A " H ! H # B

 � H ! A " A C " A " H ! H # B ! A " H ! H # B # C  B # B ! H

Note that the arrow symbols exactly describe the iterations of the Hilbert curve, if we
interpret them as plotting instructions. The grammar strings provide the sequence of
plotting commands, such as “move up/down” or “move left/right” to successively
draw an iteration. The scheme is also similar to the concept of turtle graphics, as
it was used in classic programming languages. There, a “turtle” could be moved
over the screen subject to simple commands, such as “move forward”, “turn left”,
or “turn right”. We will also discuss grammars to generate the marching instructions
for such a turtle, in Sect. 3.4.
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Fig. 3.3 The first two levels of the derivation tree for the Hilbert grammar

3.2 A Traversal Algorithm for 2D Data

The iterations of the Hilbert curve give us a recipe to traverse the subsquares that are
used to define the Hilbert curve. For two-dimensional data, we can use the generated
sequential order as a traversal algorithm. Such data could, for example, be:

• Image data, where images are rasterised using square or rectangular pixels;
• Matrices in linear algebra;
• In general, all data that can be stored as a two-dimensional array.

We obtain a respective traversal algorithm, if we successively generate the strings
generated by the grammar, and then execute the moves given by the terminal arrows.
This derivation of the strings can be illustrated via a derivation tree, as given in
Fig. 3.3. The derivation tree is obviously directly equivalent to the call tree of
respective recursive procedures. We will therefore identify the non-terminals H ,
A, B , and C with corresponding recursive procedures (or methods), and turn the
terminal symbols ", #, , and! into non-recursive procedures that implement the
steps in upward, downward, left, or right direction on the respective data structure.

The non-terminal H , as well as the respective production H  � A " H !
H # B , is thus translated into a recursive procedure H, as given in Algorithm 3.1.
The procedures A(), B(), and C() are implemented in the same way from the
respective non-terminals and productions. The procedures up(), down(), etc.
need to implement the elementary moves on the traversed data structures.

Introducing Terminal Productions

In Algorithm 3.1, the procedures H(), A(), B(), and C() do not perform any
action; in particular, the case depth = 0 is disregarded. This corresponds to the
fact that we only consider the terminal arrow symbols in the strings of the grammar,
and neglect the non-terminals. We could reflect this by introducing "-productions
into the grammar:
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Algorithm 3.1: Hilbert traversal (depth prescribed as parameter)

Procedure H(depth) begin
if depth > 0 then

A(depth-1); up();
H(depth-1); right();
H(depth-1); down();
B(depth-1);

end
end
Procedure A(depth) begin

if depth > 0 then
H(depth-1); right();
A(depth-1); up();
A(depth-1); left();
C(depth-1);

end
end
Procedure B(depth) begin

if depth > 0 then
C(depth-1); left();
B(depth-1); down();
B(depth-1); right();
H(depth-1);

end
end
Procedure C(depth) begin

if depth > 0 then
B(depth-1); down();
C(depth-1); left();
C(depth-1); up();
A(depth-1);

end
end

H  � A " H ! H # B j H  � "

A � H ! A " A C j A � "

B  � C  B # B ! H j B  � "

C  � B # C  C " A j C  � "

The derivation rule then has to be extended: in each derivation step, we have to
replace all non-terminals at once, and we have to uniformly apply either the first
productions or the "-productions, everywhere.

As an alternative to the "-productions, we could also include productions that
represent an action to be performed at the current position. We could, for example,
use a � as additional terminal symbol:
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Algorithm 3.2: Hilbert traversal (execute task)
Procedure H(depth) begin

if depth = 0 then
// Execute task on current position
execute (. . . );

else
A(depth-1); up();
H(depth-1); right();
H(depth-1); down();
B(depth-1);

end
end

H  � A " H ! H # B j H  � �
A � H ! A " A C j A � �
B  � C  B # B ! H j B  � �
C  � B # C  C " A j C  � �

The respective grammar translates into Algorithm 3.2, which performs a traversal of
some 2D data structure following a Hilbert iteration, and performs a certain task on
each element. Try to use this template algorithm to implement a specific task – such
as a matrix update or matrix-vector multiplication, as suggested in Exercise 3.3.

Computational Costs of the Traversal Algorithm

We should do a quick calculation of the number of function calls executed by
Algorithm 3.2. Assume that, at start, the parameter depth contains the value p.
We will then generate a Hilbert iteration that traverses the cells of a 2p � 2p grid.
From each recursion level to the next, the number of recursive calls to one of the
procedures H(), A(), B(), or C() grows by a factor of 4. Hence, the total number
of calls to these procedures is

1C 4C 42 C : : : 4p D 1 � 4pC1

1 � 4
� 4

3
4p: (3.1)

In addition, on the leaf level each of the 4p recursive calls issues one terminal call
to execute().

As 4p D 22p D .2p/2, we see that the number of calls to execute() is exactly
equal to the number N D 2p�2p of cells (as it should be). However, we also obtain
that the total number of recursive calls is O.N /, due to Eq. (3.1). Note that the num-
ber of calls to the recursive functions can be reduced from 4

3
N to 1

3
N , if we do recur-

sion unrolling – as in Algorithm 3.3. There, the 4p calls on the leaf level are saved.
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Algorithm 3.3: Hilbert traversal with recursion unrolling

Procedure H(depth) begin
if depth = 1 then

execute(. . .); up();
execute(. . .); right();
execute(. . .); down();
execute(. . .);

else
A(depth-1); up();
H(depth-1); right();
H(depth-1); down();
B(depth-1);

end
end

Fig. 3.4 The first two iterations of the Peano curve

3.3 Grammar-Based Description of the Peano Curve

In the same way as for the Hilbert curve, we can derive a grammar for the Peano
curve given in Fig. 3.4. The relation between grammar and recursive construction of
the Peano curve is illustrated in Fig. 3.5. Note that the patterns P and R, as well as
Q and S , only differ in the orientation of the curve.

The grammar is built analogously to the Hilbert curve:

• As non-terminals, we define the characters fP; Q; R; Sg, where the characters
again represent the basic patterns, as given in Fig. 3.5. P is defined as the start
symbol of the grammar.

• The set of terminal symbols is identical to that of the Hilbert curve: f";#; ;!g.
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Fig. 3.5 Construction of the Peano curve and the corresponding grammar

Algorithm 3.4: 2D Peano traversal
Procedure P(depth) begin

if depth > 0 then
P(depth-1); up();
Q(depth-1); up();
P(depth-1); right();
S(depth-1); down();
R(depth-1); down();
S(depth-1); right();
P(depth-1); up();
Q(depth-1); up();
P(depth-1);

end
end

• Finally, we read the production rules from Fig. 3.5:

P  � P " Q " P ! S # R # S ! P " Q " P

Q  � Q " P " Q R # S # R Q " P " Q

R  � R # S # R Q " P " Q R # S # R

S  � S # R # S ! P " Q " P ! S # R # S

Again we demand, as an additional derivation rule, that in strings generated by the
grammar, we are only allowed to expand all non-terminals at once.

Again , we can turn this grammar into a corresponding algorithms that performs a
2D-traversal following the iterations of a Peano curve. The procedureP(), resulting
from symbol P , is given in Algorithm 3.4.
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Fig. 3.6 Construction of the turtle grammar for the Hilbert curve

3.4 A Grammar for Turtle Graphics

In the previous sections, we have developed traversal algorithms that can traverse a
2D data structure along a space-filling curve. We used a plotter concept, where the
plotter’s pen obeys commands such as up, down, left, and right, which means it is
navigated using absolute directions. While this is sufficient for a traversal algorithm,
it also poses certain limits. Consider, for example, Algorithm 3.2, which adds the
execution of a task to every visit of a data element. At the point where this task
execution is called by the recursive function, it can no longer tell which element
was previously visited, and it can also not predict to which element it will move
next. From the current pattern, it would be able to determine a recursive refinement
of the data structure, but for both entry and exit, there are two possible directions.
These are given by the terminal calls to up(), down(), etc., but the previous call is
no longer accessible on the call stack, and the following call is still to be determined
by a parent cell.

In the following, we will derive a grammar that helps to determine the entry and
exit directions. It will also change the plotter concept into that of turtle graphics,
where we navigate using relative directions – i.e. the turtle obeys to commands
such as forward, turn left, or turn right. As a result, the orientation of the patterns
no longer matters: for the Hilbert pattern H , the turtle does the same relative moves
(forward, turn right, forward, turn right, forward) as for pattern C . We are therefore
left with only two patterns, but each of these patterns splits up into several new, if
we keep track of the entry and exit directions.

Figure 3.6 gives a study of all possible patterns. We assume that the turtle has
entered via the bottom edge, i.e. the previously visited neighbour is assumed to be
below the current square. We then have the following variants:
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• The turtle can enter at the left-hand or at the right-hand corner of the entry edge.
• After entry, the turtle can follow a clockwise or counter-clockwise Hilbert

pattern.
• At the exit corner, the Hilbert curve can exit via two different edges (but not via

the entry edge, as no cell is visited twice).

Not all combinations are possible, so we are left with six different patterns, which
are illustrated in Fig. 3.6. For each scheme, the refinement scheme is illustrated.
Note that the scheme is uniquely defined for all patterns. As the entry and exit
conditions are explicitly considered, the refinement scheme particularly illustrates
the contiguity of the Hilbert iteration: for the resulting grammars it would be
straightforward to prove that they lead to contiguous iterations. In the proof of
continuity of the Hilbert curve, this will proof the claim that two adjacent intervals
are always mapped to adjacent subsquares.

With our experience from the previous sections, it is no longer difficult to derive
a grammar from Fig. 3.6:

• We have six non-terminals: fH; L; B; E; R; T g, with start symbol H .

• We have three terminals:
n

; ;
o
.

The traffic signs used as terminals illustrate the commands forward, turn left, and
turn right. To determine the productions of the grammar, we have to define exactly
where a pattern should start and end.

Grammar No. 1

For our first version of the grammar, we define that a patterns starts right after the
turtle has entered a subsquare, and stops after it has entered the next subsquares
– i.e. the transfer steps between the squares are included in the patterns. We thus
obtain productions that do not contain any terminal characters:

H  � B H T L B  � H R L T

L � H R L E E  � R H T L

T  � R H T B R  � E R L T

Naturally, such a grammar does not lead to a traversal algorithm, because there are
no movements involved. Hence, we need to add terminal productions, that draw the
basic patterns:

H  � B  �
L � E  �
T  � R  �
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Again, we have to modify the derivation rule: as usual, all non-terminals need to
be replaced simultaneously; in addition, we either have to use the non-terminal
productions for all non-terminals (recursion), or use the terminal productions for
all non-terminals (leaf-case).

Grammar No. 2

In Grammar no. 1, we notice that the last step of each terminal production is always
a forward command. This is, of course, the transfer step between two subsquares.
If we remove this transfer step from the terminal productions, and insert it into the
non-terminal productions, instead, we obtain the following productions:

H  � B H T L H  �
B  � H R L T B  �
L � H R L E L �
E  � R H T L E  �
T  � R H T B T  �
R  � E R L T R  �

(with the same additional derivation rules as for Grammar no. 1).
From these productions, we can see more clearly that our turtle will never

do two rotations without an intermediate forward step. As two non-terminals
are always separated by a forward move, turns that result from different non-
terminals cannot occur with one immediately following after another. In the terminal
production, we can also easily confirm that the turtle will never do more than one
subsequent turn.

Grammar No. 3

If we examine the non-terminal and terminal productions in Grammar no. 2, we
notice that for each non-terminal, the sequence of forward commands is identical
for the non-terminal and the terminal production. Moreover, it turns out that the
non-terminals L and R are always replaced by a in the terminal productions,
whereas the non-terminals H and T are always replaced by a . B and E are
simply left away in the terminal productions. If we compare this with Fig. 3.6, we
notice that the patterns L and R indeed lead to a left turn, while H and T lead to
a right turn of the turtle. For B and E , the turtle basically runs straight across the
subsquare.

We can therefore simplify our productions by using �-productions for B and E:
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Algorithm 3.5: 2D turtle-based Hilbert traversal
Procedure H(depth) begin

if depth = 0 then
execute(. . .);
turnright();

else
B(depth-1); forward();
H(depth-1); forward();
T(depth-1); forward();
L(depth-1);

end
end

H  � B H T L H  �
B  � H R L T B  � �

L � H R L E L �
E  � R H T L E  � �

T  � R H T B T  �
R  � E R L T R  �

Note that the terminal productions of Grammar no. 2 can be reconstructed from
this grammar by applying the non-terminal productions followed by the terminal
productions.

Turtle-Based Traversals

Again, we can turn our grammars into traversal algorithms for 2D data structures
– see Algorithm 3.5 for an implementation based on Grammar no. 3. The new
traversal algorithms correspond to turtle graphics, as it was used by early graphics
programming languages: the turtle is allowed to move forward, or do specific left or
right turns. We will thus call this traversal a turtle-based traversal, and refer to the
earlier traversal algorithms as plotter-based traversals.

There are a couple of interesting differences between the turtle-based and plotter-
based traversals:

1. During the turtle-based traversals, we can easily determine the previously visited
element, and also the following element. This is not easy to achieve in the plotter-
based traversal.

2. In contrast, the turtle-based traversal can no longer directly determine the left or
right neighbour, as we do not have an absolute orientation. However, this is quite
easily cured by storing the current direction.
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3. For the traversal of a 2D array, the implementation of the basic moves of
the plotter-based traversal corresponds to simple increment and decrement
operations on the array indices. In addition, only one index has to be incremented
or decremented in each step. This is a bit simpler than for the turtle-based
traversal, where the increments have to be stored somehow.

Moreover, the relative orientation used in the turtle-based grammars will be helpful
to describe the ˇ˝-curve introduced in Sect. 7.4. We will also use it for the traversal
of quadtree and octree structures in Chap. 14.

References and Further Readings

While the productions used to describe the iterations of space-filling curves are all
compatible with context-free grammars of the Chomsky hierarchy, the additional
rule to expand all non-terminals simultaneously in a given string turns our grammars
into so-called L-systems. L-systems where introduced by Lindenmayer [162] to
model the growth of organisms, where multiple, but similar processes happen at the
same time at different locations of the organism. The first description of space-filling
curves via L-systems (with chain code interpretation) was given by Siromoney and
Subramanian [246]. Prusinkiewicz [221, 223] suggested the interpretation via turtle
graphics, and presented L-systems for 2D Hilbert, Peano, and Sierpinski curves
(see also Exercise 3.5), as well as for certain fractal curves including the Gosper
curve (see Sect. 7.5). An instructive introduction to this modelling approach is given
in [222].

Gips [100] used the Koch snowflake (see Sect. 5.4), as well as the 2D Hilbert
and Peano curve as examples for the use of shape grammars. His grammar for the
Hilbert curve is very similar to Fig. 3.6. He introduced serial and parallel grammars,
which only differ in the application of the production rules – parallel application of
the rules being identical to our requirement of replacing all non-terminal symbols
at once, and thus leading to L-systems. Serial shape grammars may lead to adaptive
curves, as we will discuss in Chap. 9.

A characterisation of the curve patterns via symbols, as in Fig. 3.1, was already
used by Borel [45], in 1949. He set up tables to determine the patterns of the Hilbert
curve in successive subdomains, and described an algorithm to compute the image
points of parameters, based on their quaternary representation. Our Algorithm 3.1
is practically identical to the one given by Wirth [269, 270], who also provided
the respective algorithm for the Sierpinski curve (see Chap. 6). He also adopted the
corresponding production rules to describe the basic patterns and construction of the
respective iterations. Goldschlager [101] modified Wirth’s algorithm into a compact
recursive algorithms by coding the patterns into a set of four parameters that reflect
the orientation of the curve in the current subsquare. Witten and Wyhill [274]
noted the similarity of the resulting algorithm to respective recursive algorithms
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for “experimental graphics languages”, which where also used to generate so-called
dragon curves (see Sect. 5.4).

Griffiths [110] introduced table-based implementations of the grammar-based
algorithm. His algorithms generate the plotter steps to draw the respective curves. In
[111], he extended his study by an overview on curves that are based on subdividing
squares into 4 � 4 or 5 � 5 subsquares. A table-based index computation for the
Hilbert curve was also given by Bandou and Kamata [26]. In 2005, Jin and Mellor-
Crummey [141] described a table-based framework that uses tables to efficiently
implement grammar-based traversal algorithms. By recording relative positions in
the tables, they also describe algorithms to compute the indexing for different space-
filling curves. They demonstrated that their table-based implementation leads to
faster computation of space-filling mapping and traversals than algorithms based
on an arithmetisation of space-filling curves (see Chap. 4 and the references therein)
– which also demonstrates that the runtime of such algorithms depends to a large
degree on the available hardware.

What’s next?

While grammars are helpful to design space-filling-curve traversals,
it is difficult to use them for retrieving individual elements. For that
problem, we require the space-filling curve as a parameter-to-image-point
mapping – which will be the topic of the next chapter.
If you are wondering, how grammars and resulting traversals can be used
for adaptive quadtree or octree grids, as indicated in Chap. 1, then take a
detour to Chap. 9 (in particular, Sect. 9.2.2).

Exercises

3.1. In analogy to the grammars for the Hilbert and Peano curve, derive a grammar
that describes the iterations of the Peano-Meander curve, as given in Fig. 2.8b on
page 27.

3.2. In the same way, derive a grammar that describes the iterations of Moore’s
version of the Hilbert curve (see Sect. 2.3.6).

3.3. Extend Algorithm 3.2 such that it performs a given operation on a matrix A

stored in Hilbert order – such as multiplying all elements of A with a scalar, or
computing the matrix-vector product Ax with a specified vector x.
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3.4. In Sect. 3.4, we introduced turtle-based traversals for the Hilbert curve. Derive
a corresponding turtle-based traversal (and respective grammar) for the Peano curve.

3.5. The number of non-terminals used for the turtle grammars, as in Sect. 3.4, can
be reduced, if we allow the turtle to perform multiple rotation operations between
its steps. Show that only two non-terminals are then sufficient. (The L systems
presented by Prusinkiewicz [221] followed such an approach.)



Chapter 4
Arithmetic Representation of Space-Filling
Curves

Up to now, we have dealt with the finite iterations of the Hilbert and Peano curve,
only. However, these can only offer an approximate impression of the “infinite”
curves. Moreover, we are not yet able to compute the corresponding Hilbert or
Peano mapping, i.e. to compute the image point for a given parameter. The grammar
representations of space-filling curves are not directly suitable for this purpose, as
they always generate the iterations as a whole.

Hence, in this chapter we will describe a system to describe Hilbert curves, as
well as Peano curves and many similar curves, in an arithmetic way that allows the
efficient computation of the respective mappings. While the grammar representation
lead to algorithms to traverse data structures in space-filling-curve order, arithmetic
mappings (and their inverses) will allow us to reference and dereference individual
elements of these data structures.

4.1 Arithmetic Representation of the Hilbert Mapping

Let us first remember the following basic construction principles of the Hilbert
curve:

1. A given parameter is approximated by nested intervals: each interval is one of
the four quarters of its predecessor, starting with the parameter interval I.

2. The target point is approximated by nested subsquares: each of the subsquares is
again filled by a scaled-down, transposed, and rotated or reflected Hilbert curve
section.

The following arithmetisation of the Hilbert curve turns these two ideas into a
formal, mathematical description of the Hilbert mapping.

M. Bader, Space-Filling Curves, Texts in Computational Science and Engineering 9,
DOI 10.1007/978-3-642-31046-1 4, © Springer-Verlag Berlin Heidelberg 2013
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Quaternary Representation of Parameters

For the required nested intervals, the representation of the parameters as quater-
naries proves to be valuable (see Exercise 4.1 for a short discussion of quaternary
representations). For that purpose, we consider the typical boundaries of the nested
intervals in quaternary representation:

�
0;

1

4

�
D Œ04:0; 04:1� ;

�
1

4
;

2

4

�
D Œ04:1; 04:2� ;

�
2

4
;

3

4

�
D Œ04:2; 04:3� ;

�
3

4
; 1

�
D Œ04:3; 14:0� :

The quaternary digits directly reflect the numbering of the subsquares in each
iteration. For example, for the parameter t D 2

5
we obtain the nested intervals

Œ0; 1� ; Œ04:1; 04:2� ; Œ04:12; 04:13� ; Œ04:121; 04:122� ; : : : ;

which correspond to the quaternary 2
5

D 04:121212: : :

Recursively Mapping Subsquares to the Unit Square

The second main idea to construct the Hilbert curve is its self-similarity: the Hilbert
curve consists of four identical sub-curves, each of which fills one of the four
subsquares. In addition, each of these sub-curves is a scaled-down, rotated, and
translated copy of the original Hilbert curve.

Following a classical recursive approach, we assume that we are able to compute
the curve, i.e. the image point of a given parameter, for the scaled-down Hilbert
curves in the subsquares. Such an image point will be computed relative to the unit
square Œ0; 1�2. Hence, we need to compute its relative position in the respective
subsquare, subject to the scaling, rotation, and translation of the Hilbert curve in
this section.

For each subsquare, we therefore require a transformation operator that maps the
unit square into the correct subsquare and performs the necessary transformations.
Following Fig. 4.1, we will denote these operators as H0; H1; H2, and H3. The
quaternary digits will tell us the intervals that contain the parameters and therefore
determine the subsquares of the images and, as a consequence, which operator has
to be applied.
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0 1 2 3

H1 H2

H3H0

Fig. 4.1 Intervals and
corresponding transformation
operators H0; : : : ; H3

(compare Fig. 2.4 on page 21)

In matrix-vector notation, the four operators are:

H0 WD
�

0 1
2

1
2

0

��
x

y

�
H1 WD

�
1
2

0

0 1
2

��
x

y

�
C
�

0
1
2

�

H2 WD
�

1
2

0

0 1
2

��
x

y

�
C
 

1
2
1
2

!
H3 WD

�
0 � 1

2

� 1
2

0

��
x

y

�
C
�

1
1
2

�

All operators Hi first scale the argument vector (i.e. the image point) by a factor of
1
2
, as all subsquares have half the side length of the original square. In addition, each

operator performs a combination of rotations, reflections, and translations:

• Operator H0 performs a reflection at the main diagonal (swapping x- and y-
coordinates), which corresponds to the required clockwise 90ı turn plus change
of orientation.

• The operators H1 and H2 retain the orientation of the curve. Thus, no rotation
or reflections are necessary, and the operation matrix only performs a scaling. In
addition, the scaled-down curve is translated into the two respective subsquares.
H1 translates the curve by 1

2
in y-direction, i.e. into the top-left subsquare.

Likewise, H2 diagonally translates the curve into the top-right subsquare.
• Operator H3 requires the exchange of the x- and y-coordinates (similar to

operator H0), but in addition a reflection in both x- and y-direction – we therefore
scale with a negative factor, � 1

2
). Note that the reflection along the vertical axes

is required to obtain the correct orientation of the curve: the curve enters the
subsquare (i.e. starts) in the top-right corner and ends in the lower-right corner.
The position of the origin of the sub-curve in the top-right corner also determines

the translation vector of the curve,
�

1
1
2

�
.

4.2 Calculating the Values of h

With the given operators H0; : : : ; H3, the function values h.t/ are calculated via the
following three steps:

1. Compute the quaternary representation of the parameter: t D 04:q1q2q3q4 : : :

Then, parameter t lies in the q1-th interval and h.t/ in the q1-th subsquare.
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2. In the q1-th subsquare, parameter t corresponds to the local parameter Qt D
04:q2q3q4 : : : – with deleted first digit in the quaternary representation. We
therefore compute h.Qt/, which is the image of Qt in the q1-th subsquare relative to
the scaled-down and rotated Hilbert curve in that subsquare.

3. Transform the local coordinates of h.Qt/ (relative to the subsquare) into the
coordinates in the original square. This transformation is performed by applying
the operator Hq1 to h.Qt /.

Hence, the main steps for arithmetisation of the Hilbert curve may be combined into
the following recursive equation:

h.04:q1q2q3q4 : : :/ D Hq1 ı h.04:q2q3q4 : : :/: (4.1)

By successively applying the recursion on h, we obtain

h.04:q1q2q3q4 : : :/ D Hq1 ı h.04:q2q3q4 : : :/

D Hq1 ı Hq2 ı h.04:q3q4 : : :/

D : : :

How is this recursion terminated? To answer this question, we first examine the case
of finite quaternaries, where all quaternary digits after a certain qn are 0. We obtain

h.04:q1q2 : : : qn/ D h.04:q1q2 : : : qn000 : : : /

D Hq1 ı Hq2 ı : : : ı Hqn ı h.04:000 : : :/„ ƒ‚ …
D h.0/

:

From the construction of the Hilbert curve, we seem to know that h.0/ D .0; 0/.
But is this consistent with our outlined arithmetisation? For t D 0 D 04:000 : : : , the
recursion Eq. (4.1) leads to

h.04:0000 : : :/ D H0 ı h.04:000 : : :/ , h.0/ D H0 ı h.0/:

h.0/ therefore needs to be a fixpoint of H0. Indeed, h.0/ D .0; 0/ is the only fixpoint
of H0. For finite quaternaries t D 04:q1q2q3 : : : qn, we can thus compute h.t/ by

h.04:q1q2q3 : : : qn/ D Hq1 ı Hq2 ı Hq3 ı � � � ı Hqn

�
0

0

�
: (4.2)

For infinite quaternaries t , this is generalised to

h.04:q1q2q3 : : :/ D lim
n!1 Hq1 ı Hq2 ı Hq3 ı � � � ı Hqn

�
0

0

�
: (4.3)
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Example: Computation of h
�

1
4

�
and h

�
1
8

�

To compute the Hilbert image point of the parameters t D 1
4

and t D 1
8
, we first

need to determine their quaternary representation. We obtain:

1

4
D 04:1 and

1

8
D 04:02

According to Eq. (4.2), we get:

h

�
1

4

�
D H1

�
0

0

�
D
�

1
2

0

0 1
2

��
0

0

�
C
�

0
1
2

�
D
�

0
1
2

�
:

This is consistent with intuition: after having covered one quarter of the parameter
interval, the Hilbert curve should have visited the entire lower-left quarter of the
unit square. Hence, h

�
1
4

	
should be the connection point between first and second

subsquare. From the approximating polygon, we know that this should be the point�
0; 1

2

	
.

In the same way, we can compute the value of h
�

1
8

	
:

h

�
1

8

�
D H0 ı H2

�
0

0

�
D H0

 �
1
2

0

0 1
2

��
0

0

�
C
 

1
2
1
2

!!

D H0

 
1
2
1
2

!
D
�

0 1
2

1
2

0

� 1
2
1
2

!
D
 

1
4
1
4

!
:

Compare this with the second approximating polygon of the Hilbert curve (see
Fig. 2.1 on page 19). The point h

�
1
8

	 D h
�

2
16

	
is where the Hilbert curve transfers

from the second to the third subsquare (out of 16) of the respective level – which is
the point

�
1
4
; 1

4

	
.

An Algorithm to Compute the Hilbert Mapping

An algorithm to compute the values of the mapping h has to perform two separate
tasks:

1. Computation of the quaternary representation: following the equation

4 � 04:q1q2q3q4 : : : D .q1:q2q3q4 : : : /4;

we obtain the quaternary digits by repeatedly multiplying the parameters by 4,
and cutting off the integer part.
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Function hilbert – compute the Hilbert mapping (fixed number of digits)
Function hilbert(t, depth)

Parameter: t: index parameter, t 2 Œ0; 1�

depth: depth of recursion (equiv. to number of quaternary digits)
begin

if depth = 0 then
return (0,0)

else
// compute next quaternary digit in q
q := floor(4*t);
r := 4*t - q;
// recursive call to h()
(x,y) := hilbert(r,depth-1);
// apply operator Hq

switch q do
case 0: return ( y/2, x/2);
case 1: return ( x/2, y/2 + 0.5);
case 2: return ( x/2+0.5, y/2+0.5);
case 3: return ( 1.0-y/2, 0.5-x/2);

endsw
end

end

2. Application of the respective operators Hq in the correct order – in a recursive
algorithm, we can simply use Eq. (4.1) for that purpose.

A simple termination criterion for the algorithm is given by the number of quater-
nary digits considered in the parameter. In a recursive algorithm, this corresponds
to the number of recursive applications of an operator Hq . Function hilbert is a
recursive implementation of the final algorithm.

As an alternative, we can terminate the recursion once a given accuracy � is
obtained. If we interprete � to be the side length of the current subsquare with the
nested 2D-intervals (which contains the desired image point), then � D 2�depth, and
we can transfer Function hilbert into Function hilbertEps.

4.3 Uniqueness of the Hilbert Mapping

In this section, we will come back to a question raised during the definition and
construction of the Hilbert curve:

Are the function values of h independent of the choice of quaternary representa-
tion in the sense that

h.04:q1 : : : qn/ D h.04:q1 : : : qn�1.qn � 1/333 : : :/; qn 6D 0 ‹
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Function hilbertEps – compute the Hilbert mapping (prescribed accuracy)
Function hilbertEps(t, eps)

Parameter: t: index parameter, t 2 Œ0; 1�

eps: required precision (of point coordinates)
begin

if eps > 1 then
return (0,0)

else
// compute next quaternary digit in q
q := floor(4*t);
r := 4*t - q;
// recursive call to h()
(x,y) := hilbertEps(r,2*eps);
// apply operator Hq

switch q do
case 0: return ( y/2, x/2);
case 1: return ( x/2, y/2 + 0.5);
case 2: return ( x/2+0.5, y/2+0.5);
case 3: return ( 1.0-y/2, 0.5-x/2);

endsw
end

end

Note that we may disregard the case qn D 0, as then 04:q1 : : : qn D 04:q1 : : : qn�1

and our problem occurs at the previous digit.
Note that the two different quaternary representations correspond to two different

sequences of nested intervals – as we discussed in Sect. 2.3.4. The arithmetisation,
however, provides us with a mathematical tool to prove uniqueness independent of
the continuity argument. Our proof works in two steps:

1. Compute the limit lim
n!1 H n

3 , in particular lim
n!1 H n

3

�
0

0

�
:

2. For all qn D 1; 2; 3, show that Hqn ı
�

0

0

�
D Hqn�1 ı lim

n!1 H n
3

�
0

0

�
:

Compute h for Infinite Quaternaries

The computation of lim
n!1 H n

3 works as an example for how to compute h for infinite

quaternaries, in general. Though, for our proof, we only need the value

h.04:3333 : : :/ D H3 ı H3 ı : : :

�
0

0

�
D lim

n!1 H n
3

�
0

0

�
:
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We first write the operator H3 in the form

H3W
�

x

y

�
!
�

0 � 1
2

� 1
2

0

�
„ ƒ‚ …

DWA3

�
x

y

�
C
�

1
1
2

�
„ƒ‚…

WDb3

i:e: H3W v ! A3v C b3:

Based on this representation, we can compute the effect of H n
3 :

H 2
3 v D A3.A3v C b3/ C b3 D A2

3v C A3b3 C b3

H 3
3 v D A3.A

2
3v C A3b3 C b3/ C b3 D A3

3v C A2
3b3 C A3b3 C b3

:::

H n
3 v D An

3v C An�1
3 b3 C : : : C A3b3 C b3

The term An�1
3 b3 C : : : C A3b3 C b3 is more or less a geometric series, so we can

use a well-known trick:

.I � A3/
�
An�1

3 b3 C : : : C A3b3 C b3

	 D An�1
3 b3 C : : : C A3b3 C b3

�An
3b3 � An�1

3 b3 � : : : � A3b3

D b3 � An
3b3 D �

I � An
3

	
b3

Therefore, we obtain

An�1
3 b3 C : : : C A3b3 C b3 D .I � A3/�1

�
I � An

3

	
b3;

and, as lim
n!1 An

3 D 0, we get:

lim
n!1 H n

3

�
0

0

�
D lim

n!1

�
An

3

�
0

0

�
C An�1

3 b3 C : : : C A3b3 C b3

�

D lim
n!1

0
B@.I � A3/�1 .I � An

3„ƒ‚…
!0

/b3

1
CA D .I � A3/

�1 b3:

Hence, we can determine the function value h.1/ D h .04:3333 : : : / DW
�

x
y

�
by

solving the system of equations

.I � A3/

�
x

y

�
D b3 ,

�
1 1

2
1
2

1

��
x

y

�
D
�

1
1
2

�
:
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As the right hand side is identical to the first column of the system matrix, we can
directly read the solution as x D 1 and y D 0. Therefore,

h .04:3333 : : : / D h.1/ D
�

1

0

�
;

which is what we had to expect – the Hilbert curve ends in the lower-right corner of
the unit square.

Uniqueness of the Hilbert Mapping

To prove uniqueness, we still have to show that

Hqn

�
0

0

�
D Hqn�1

�
1

0

�
for all n D 1; 2; 3:

We will demonstrate this proof only for n D 1:

H1

�
0

0

�
D
�

1
2

0

0 1
2

��
0

0

�
C
�

0
1
2

�
D
�

0
1
2

�
and

H0

�
1

0

�
D
�

0 1
2

1
2

0

��
1

0

�
D
�

0
1
2

�
q:e:d:

Hence, the computation of the Hilbert function is independent of the choice of
quaternary representation, and thus also of the choice of nested intervals.

4.4 Computation of the Inverse: Hilbert Indices

Up to now, we computed the image points h.t/ for a given parameter t . However, to
compute the inverse problem is at least of equal relevance in practice:

For a given point .x; y/ 2 Q, find a parameter t , such that h.t/ D .x; y/.

In an application context, this task is equivalent to finding the memory location (i.e.,
the index) of a given tuple .x; y/.



56 4 Arithmetic Representation of Space-Filling Curves

Uniqueness of the Inverse Mapping

First, we remember a previous result: the Hilbert curve (as well as the Peano curve)
is surjective, but not bijective! Hence, there are points .x; y/ that are images of
multiple parameters t . Therefore:

• An inverse mapping h�1 does not exist in the strict sense.
• We can only define and compute a mapping Nh�1 that is technically forced to be

unique.
• We will call the parameter Nh�1.x; y/ the Hilbert index of the point .x; y/.

The computation of the Hilbert index follows the same recursive principle as the
computation of the Hilbert mapping, but works in opposite direction:

1. We first determine the subsquare that contains .x; y/.
2. Using the inverses of the operators H0; : : : ; H3, we can map .x; y/ into the unit

square. We obtain the point . Qx; Qy/, which corresponds to the relative position of
.x; y/ in its subsquare.

3. Via a recursive call, we compute a parameter Qt that is mapped to . Qx; Qy/.
4. Depending on the subsquare, we compute the final Hilbert index t from the

relative index Qt .

Determining the Inverse Operators of H0; : : : ; H3

We obtain the inverse operators of H0; : : : ; H3 by solving the respective transforms
for the source variables. For example, for H0 we obtain:

�
x

y

�
D H0

� Qx
Qy
�

D
 

1
2

Qy
1
2

Qx

!
)

� Qx
Qy
�

D
�

2y

2x

�

Analogous computation for H1, H2, and H3 leads to the following inverse operators:

H �1
0 WD

�
x

y

�
!
 

2y

2x

!
H �1

1 WD
�

x

y

�
!
 

2x

2y � 1

!

H �1
2 WD

�
x

y

�
!
 

2x � 1

2y � 1

!
H �1

3 WD
�

x

y

�
!
 

�2y C 1

�2x C 2

!
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An Algorithm to Compute the Hilbert Index

The (technically unique) inverse mapping Nh�1 is then obtained by inverting the
computation of the Hilbert mapping step by step:

1. For a given point .x; y/, determine the subsquare depending on whether x <> 1
2

and y <> 1
2
, and read the number q 2 f0; : : : ; 3g of this subsquare according to

the scheme
1 2

0 3

The ambiguous cases x D 1
2

and/or y D 1
2

have to be uniquely classified as
either < or > in order to achieve uniqueness of the inverse mapping.

2. With the respective inverse operator H �1
q , we then determine the relative position

of .x; y/ in the subsquare q, and obtain . Qx; Qy/ WD H �1
q .x; y/

3. We (recursively!) compute the Hilbert index Qt of the transformed point . Qx; Qy/ in
subsquare q: Qt WD Nh�1. Qx; Qy/.

4. The Hilbert index of .x; y/ is then obtained as t WD 1
4

�
q C Qt	.

We still need to add a termination criterion to this recursive scheme, which can either
be to consider a fixed number of recursions (which corresponds to a fixed number
of digits), or to demand a certain accuracy � for the computed Hilbert index. With
every recursive call, the accuracy � may be multiplied by 4, as the transformation
from subsquare to original square scales the respective parameter interval by a factor
of 4. If, after several steps of recursion, � > 1, we may deliver any value in Œ0; 1� as
result. We thus obtain Function hilbIndex to compute the Hilbert index up to a
given accuracy eps.

4.5 Arithmetisation of the Peano Curve

The arithmetisation of the Peano curve works in exactly the same way as for the
Hilbert curve. Instead of partitioning subsquares and intervals into four parts in each
step, the Peano curve now requires partitioning into nine parts. As a consequence,
we base our computations on representing the parameter t in the “nonal system”,
i.e. t D 09:n1n2n3n4 : : :. Likewise, we determine operators P0; : : : ; P8, such that

p.09:n1n2n3n4 : : :/ D Pn1 ı Pn2 ı Pn3 ı Pn4 ı � � �
�

0

0

�
:

The following scheme lists the operators Pn such that their geometrical position
reflects the corresponding subsquares in the recursive construction of the Peano
curve:
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Function hilbIndex – compute the Hilbert index (prescribed accuracy)
Function hilbIndex(x,y,eps)

Parameter: x,y: coordinates of image point, x; y 2 Œ0; 1�2

eps: required precision (of index parameter)
begin

if eps > 1 then return 0;
if x < 0.5 then

if y < 0.5 then
return ( 0 + hilbIndex(2*y, 2*x, 4*eps) )/4;

else
return ( 1 + hilbIndex(2*x, 2*y - 1, 4*eps) )/4;

end
else

if y � 0.5 then
return ( 2 + hilbIndex(2*x-1, 2*y - 1, 4*eps) )/4;

else
return ( 3 + hilbIndex(1-2*y, 2-2*x, 4*eps) )/4;

end
end

end
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�
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y

�
D
 

1
3
x C 0

1
3
y C 2
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!
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� 1
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�
D
 

1
3
x C 2

3

1
3
y

!

The operators need to scale the given point vectors by a factor of 1
3
, as in the

Peano curve construction the subsquares are obtained by partitioning into 3 � 3

subsquares in each steps. In general, the operators are a little simpler than for the
Hilbert curve:

• For the Peano curve, no operator requires a rotation or exchange of x- und
y-coordinates. Reflections in the horizontal and/or the vertical direction are
sufficient. As a result, the “switch-backs” of the curve are always in vertical
direction.

• The operators P0; P2; P6, and P8 retain the orientation of the curve – here, we
only require a scaling and translation to the new starting point.

• The operators P1 and P7 require reflection at the horizontal axis. Hence, the
x-coordinate changes its sign.
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Function peano – compute the Peano mapping (fixed number of digits)
Function peano(t, depth)

Parameter: t: index parameter, t 2 Œ0; 1�

depth: depth of recursion (equiv. to number of digits)
begin

if depth = 0 then
return (0,0)

else
// compute the next digit
q := floor(9*t);
r := 9*t - q;
(x,y) := peano(r,depth-1);
switch q do

case 0: return ( x/3, y/3 );
case 1: return ( (-x+1)/3, (y+1)/3 );
case 2: return ( x/3, (y+2)/3 );
case 3: return ( (x+1)/3, (-y+3)/3 );
case 4: return ( (-x+2)/3, (-y+2)/3 );
case 5: return ( (x+1)/3, (-y+1)/3 );
case 6: return ( (x+2)/3, y/3 );
case 7: return ( (-x+3)/3, (y+1)/3 );
case 8: return ( (x+2)/3, (y+2)/3 );

endsw
end

end

• In contrast, the operators P3 and P5 require reflection at the horizontal axis –
and, hence, a change of sign of the y-coordinate.

• Finally, operator P4 requires reflection both at the x- and y-axis (note the change
of orientation).

Analogous to the Hilbert mapping, the arithmetisation of the Peano curve can be
turned into a recursive function to compute the Peano mapping. See the algorithm
given in Function peano.

4.6 Efficient Computation of Space-Filling Mappings

For all of the space-filling curves discussed in this book, we will be able to derive
an arithmetisation as given for the Hilbert curve in Eq. (4.2):

h.04:q1q2q3 : : : qn/ D Hq1 ı Hq2 ı Hq3 ı � � � ı Hqn ı h.0/:

Straightforward recursive implementations, as used in the functions hilbert,
hilbertEps or peano, however, are not necessarily efficient – the frequent
recursive calls might sum up to a considerable computational overhead.
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Function hilbertUnroll – efficient computation of the Hilbert mapping (with
unrolling)

Function hilbertUnroll(t, depth)
Parameter: t: index parameter, t 2 Œ0; 1�

depth: depth of recursion (equiv. to number of hex digits)
begin

if depth = 0 then
return (0,0)

else
// compute next hex digit in q
q := floor(16*t);
r := 16*t - q;
// recursive call to h()
(x,y) := hilbertUnroll(r,depth-1);
// read operator H[q] from lookup table
return H[q]( x, y );

end
end

Such overheads can be reduced in a standard way by using recursion unrolling
techniques, i.e. by combining two or more recursive calls into one.

4.6.1 Computing Hilbert Mappings via Recursion Unrolling

In our operator notation, we can thus write the Hilbert mapping in the form

h.04:q1q2q3 : : : qn/ D .Hq1 ı Hq2 / ı .Hq3 ı Hq4/ ı � � � ı .Hqn�1 ı Hqn/ ı h.0/:

Combining two quaternary digits into a hex digit, and setting q12 WD q1q2, we obtain

h.04:q12q34 : : : qn�1;n/ D .Hq1q2 / ı .Hq3q4/ ı � � � ı .Hqn�1;qn / ı h.0/; (4.4)

where the operators Hqi qj are defined as Hqi qj WD Hqi ı Hqj . A recursive imple-
mentation of Eq. (4.4) requires only half the number of recursive calls – even
more important, such an implementation also requires half the number of operator
evaluations – check Exercise 4.6 or Sect. 4.6.2 to see that the operators stay linear
and do not become more complicated.

As the hex digits qij now require 16 different operators, we pay for the reduction
of operator executions by an increased number of different operators. In practice,
we can store these operators in a respective table, which leads to an implementation
as given in Function hilbertUnroll.
For a high-performance implementation, a couple of further optimisations to
Function hilbertUnroll are possible:
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• For number schemes that have a power of two as basis, the digits can be directly
read from the binary representation of the input parameter, which saves the effort
to compute the digits arithmetically. For the Hilbert curve, reading one byte of
the parameter’s mantissa will thus lead to four quaternary digits at once.

• Once the digits are computed, the recursive implementation can be changed into
a simple loop of operator evaluations.

• The matrix parts of the operators will come down to only few different matrices,
which correspond to the basic patterns of the space-filling curve (for the Hilbert
curve, we will obtain only four different matrices). Hence, we only need to store
an integer number as pointer to the correct matrix part for each operator, which
drastically reduces the amount of memory required for the lookup table. In a
similar way, the amount of storage required to store the translation vectors of the
operators can be strongly reduced.

Speedups of 5–6 can be expected by combining loop unrolling with all these
optimisations.

4.6.2 From Recursion Unrolling to State Diagrams

The recursion unrolling concept, as in Eq. (4.4) can be pushed further, if we write
the Hilbert operators H0, . . . , H3 in the following form:

H0W
�

x

y

�
! 1

2

�
T0

�
x

y

�
C t0

�
where T0 WD

�
0 1

1 0

�
; t0 WD

�
0

0

�

H1W
�

x

y

�
! 1

2

�
T1

�
x

y

�
C t1

�
where T1 WD

�
1 0

0 1

�
; t1 WD

�
0

1

�

H2W
�

x

y

�
! 1

2

�
T2

�
x

y

�
C t2

�
where T2 WD

�
1 0

0 1

�
; t2 WD

�
1

1

�

H3W
�

x

y

�
! 1

2

�
T3

�
x

y

�
C t3

�
where T3 WD

�
0 �1

�1 0

�
; t3 WD

�
2

1

�

Performing successive unrolling steps, as in Eq. (4.4), we obtain the following
arithmetisations for parameters t D 04:q1q2q3q4 or Qt D 04:q1q2q3q4q5q6:

h.t/ D s.04:q1q2q3q4/ D 1

4

�
Tq1q2

1

4

�
Tq3q4

�
0

0

�
C tq3q4

�
C tq1q2

�

D 1

4

�
Tq1q2

1

4
tq3q4 C tq1q2

�
D 1

42
Tq1q2 tq3q4 C 1

4
tq1q2;
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and similarly:

h.Qt/ D h.04:q1 : : : q6/ D 1

4

�
Tq1q2 h.04:q3 : : : q6/ C tq1q2

	

D 1

4

�
Tq1q2

�
1

42
Tq3q4 tq5q6 C 1

4
tq3q4

�
C tq1q2

�

D 1

43
Tq1q2 Tq3q4 tq5q6 C 1

42
Tq1q2 tq3q4 C 1

4
tq1q2 :

Repeating the computation for increasing numbers of digits, we obtain the following
representation of the Hilbert mapping:

h.t/ D h.04:q1q2 : : : q2n/ D
n�1X
kD1

1

4k
Tq1q2 � � � Tq2k�1q2k

tq2kC1q2kC2
C 1

4
tq1q2 :

Similar to Tq1q2 D Tq1Tq2 , we define Tq1:::q2k
WD Tq1q2 � � � Tq2k�1q2k

, which leads to
the following formula for the Hilbert mapping:

h.t/ D h.04:q1q2 : : : q2n/ D
n�1X
kD1

1

4k
Tq1:::q2k

tq2kC1q2kC2
C 1

4
tq1q2 : (4.5)

The operators Tq1:::q2k
can be successively computed as Tq1:::q2kC2

WD Tq1:::q2k

Tq2kC1q2kC2
and will only take four different values (incl. those of T0, T1, and

T3), which correspond to the four basic patterns H; A; B , and C , as used in
the grammar for the Hilbert curve. Function hilbertBially provides a non-
recursive implementation of the resulting scheme to compute the Hilbert mapping.
The function uses two for-loops. The first loop will compute the sequence of
quaternary digits. The second for-loop will hold the (successively updated) value
for Tq1:::q2k

in a variable T, and thus add the next term of the sum in (4.5) using
tabulated values for the tq2k�1q2k

(in ttable[]). The occurring instances of the
operators Tq2kC1q2kC2

are stored in a table Ttable, which is used to update T in each
iteration. Function hilbertBially can be further optimised by using a table
that will return the new operator Tq1:::q2kC2

for all four values of Tq1:::q2k
, depending

on the digits q2kC1 and q2kC2, and thus avoids an expensive operator evaluation in
T := T(Ttable[q[n]]). Hence, compared to a recursion-based implementa-
tion, such an iterative implementation can, in addition, avoid operator executions.

Towards Finite State Machines

Due to the term 1

4k in front of the term Tq1:::q2k
tq2k�1q2k

, one could expect that the
addition effectively appends digits to the current value of x in each step. This
requires, however, that the elements of the added vector Tq1:::q2k

tq2k�1q2k
only take
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Function hilbertBially – loop-based implementation of Hilbert mapping (using
tables)

Function hilbertBially(t, depth)
Parameter: t: index parameter, t 2 Œ0; 1�

depth: depth of recursion (equiv. to number of quaternary digits)
begin

for n = 1, . . . , depth do
// compute quaternary digits in array q
q[n] := floor(4*t);
t := 4*t - q[n]

end
// compute image point in x
x := (0,0); T := T0;
for n = 1, . . . , depth do

// accumulate rotated translation vectors
x := x + T( ttable[q[n]] ) / 4n;
// accumulate rotation operators
T := T(Ttable[q[n]]);

end
return x;

end

values in 0; : : : ; 3. Unfortunately, this is not the case for the canonical Hilbert
operators. Respective operators for the Lebesgue curve (see Sect. 7.2) will lead to
this property. An algorithm analogous to Function hilbertBially would then
essentially turn into a finite state machine that takes the digits q[n] as input,
and successively appends the digits of the image point to the output x. Such a
construction to compute space-filling curves was first described by Bially [42] for
the Hilbert curve – see also the following references section. To derive it via a
construction similar to Eq. (4.5) requires a couple of technicalities. In particular, the
operators should be constructed for a Hilbert curve on the square Œ�1; 1� � Œ�1; 1�,
and a final transformation is then necessary to map this curve back into the unit
cube, Œ0; 1�2 – see Exercise 4.8.

References and Further Readings

For the arithmetisation, we followed the notation and presentation given in Sagan’s
textbook [233]. The general construction, however, is much older: Knopp, in 1917,
already presented a uniform method to construct the Koch curve (see Sect. 5.3)
and the Sierpinski space-filling curve (see Chap. 6) using the binary representation
of parameters and mapping the respective digit sequences to sequences of nested
triangles. Wunderlich [276], in 1954, extended this approach to general number
systems on base r and sets of mappings A0; : : : Ar�1, and gave an arithmetic repre-
sentation for the Hilbert curve (and for several other continuous non-differentiable
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curves, including the Koch curve), which leads to formulas analogous to Eqs. (4.2)
and (4.3). In a later, review-like article on space-filling curves [277], he presented
arithmetisations of the Peano curves and of the Sierpinski curve. He also described
the unrolling procedure given in Eq. (4.4) as a means to compute the Hilbert
mapping for rational parameters t (where we “unroll” over the periodic digits –
compare Exercise 4.1). Sagan [231] extended Wunderlich’s arithmetic representa-
tion towards a closed formula for the Hilbert curve – the respective formula further
simplifies Eq. (4.5) by studying the values of the operators Tq1:::q2k

. Sagan provides
an algorithm for the computation in [233].

As shown in Sect. 4.6.2, Sagan’s unrolling of operators also leads to an algorithm
that resembles a finite state machine. Bially’s algorithm [42], one of the very first
algorithms for space-filling curves, derived an equivalent algorithm directly via state
machines. His approach was extended by Lawder and King [155], in particular for
curves of higher dimension (however, Bially already provided state diagrams for a
3D and a 4D Hilbert curve).

A couple of further algorithms also build on the operator concept: Cole [69]
introduced a recursive algorithm that implemented the rotation and translation
operators directly via corresponding graphics primitives. Breinholt and Schierz [47]
introduced a recursive algorithm (“Algorithm 781”) to compute the iterations of
the 2D Hilbert curve that is based on integer versions of the operators Hi and
codes the current orientation of Hilbert iterations via two 0/1 parameters that
reflect the classical grammar patterns. While the table-based implementation of
space-filling mappings by Jin and Mellor-Crummey (SFCGen [141]) is primarily
based on the grammar representation, they use the arithmetisation of curves to
compute the respective tables. Further algorithms to compute space-filling curves
were introduced by Butz [58,59], in [198], or by Liu and Schrack [169] (2D Hilbert
curve).

What’s next?

The next chapter will take a closer look at approximating polygons,
which we used as helpers for construction, so far. They also provide an
interesting connection to fractal curves, such as the well-known Koch
curve.
You may skip this chapter for the moment, and read on with Chap. 6,
which deals with Sierpinski curves (constructed on triangular cells).
At this time, we have all the necessary tools to leave the 2D world and
move on to “proper”, 3D space-filling curves – the respective construc-
tions, grammars, and arithmetisation will be discussed in Chap. 8.
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Exercises

4.1. The quaternary representation of a parameter t is defined via the equation

04:q1q2q3q4 � � � WD
1X

nD1

4�nqn: (4.6)

Compute the quaternary representation of the parameters 1
8

and 1
3
, as well as of 2

5
.

4.2. Compute the image points of the Hilbert curve for the parameters 1
3

and 2
3
,

i.e. h
�

1
3

	
and h

�
2
3

	
. In a similar way, compute h

�
2
5

	
.

4.3. Show that the point
�

1
2
; 1

2

	
is the Hilbert image of three different parameters.

4.4. Give an arithmetisation of the Hilbert-Moore curve. Remember that the
Hilbert-Moore curve consists of the connection of four suitably transformed Hilbert
curves!

4.5. In analogy to the arithmetisation of the Hilbert and Peano curve, derive the
transformation operators required to descibe the Peano-Meander curve, (as given in
Fig. 2.8b on page 27), and give the formula to compute the values of the respective
mapping m.t/.

4.6. For the recursion-unrolling arithmetisation of the Hilbert curve, as given
in Eq. (4.4), computing the corresponding mappings Hqi qj. How many different
rotation matrices occur in the operators?

4.7. Adopt the recursion-unrolling approach to derive more efficient algorithms to
compute the inverse of the Hilbert mapping, i.e., the Hilbert index. In particular,
derive an algorithm that corresponds to Function hilbertBially.

4.8. Derive the operators for a Hilbert mapping that maps the unit interval to the
square Œ�1; 1� � Œ�1; 1� (instead of Œ0; 1�2). Try to turn this mapping into a finite-
state-machine representation, as suggested in Sect. 4.6.2.



Chapter 5
Approximating Polygons

5.1 Approximating Polygons of the Hilbert and Peano Curve

In Sect. 2.3.2 we have already used the approximating polygon of the Hilbert
curve to guide us during the construction of the curve. The arithmetisation of the
Hilbert curve, as introduced in the previous section, also gives us a tool to give a
mathematical definition of the polygons:

Definition 5.1 (Approximating Polygon of the Hilbert Curve). The polygon that
connects the 4n C 1 points

h.0/; h.1 � 4�n/; h.2 � 4�n/; : : : ; h..4n � 1/ � 4�n/; h.1/;

is called the n-th approximating polygon of the Hilbert curve.

Figure 5.1 again plots the first three approximating polygons of the Hilbert curve.
We used the approximating polygons to help during the construction of the Hilbert
curve, which was also due to the following properties of the polygons:

• The approximating polygons of the Hilbert curve are defined on corners of the
recursively substructured square. The respective corner points are the image
points of the boundaries of the nested intervals at the same recursion level.

• The connected corner points are the start and end points of the Hilbert curve
in the respective subsquares; hence, they determine where the curve enters and
leaves a subsquare (i.e., the transfer into the next subsquare).

Note that we could define respective mappings pn.t/ that describe the approx-
imating polygons as curves, themselves. It can be shown that the respective
sequence of mappings pn.t/ uniformly converges to the Hilbert curve. With the
obvious continuity of the polygons, this is a further proof for the continuity of the
Hilbert curve.

M. Bader, Space-Filling Curves, Texts in Computational Science and Engineering 9,
DOI 10.1007/978-3-642-31046-1 5, © Springer-Verlag Berlin Heidelberg 2013
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Fig. 5.1 The first three approximating polygons of the Hilbert curve

Fig. 5.2 First and second approximating polygon of the Peano curve

Approximating Polygons of the Peano Curve

Analogous to the Hilbert curve, we can define the approximating polygons for the
Peano curve.

Definition 5.2 (Approximating Polygons of the Peano Curve). The polygon that
connects the 9n C 1 points

p.0/; p.1 � 9�n/; p.2 � 9�n/; : : : ; p..9n � 1/ � 9�n/; p.1/

(p the Peano mapping) is called n-the approximating polygon of the Peano curve.

The first and second approximating polygons of the Peano curve are plotted in
Fig. 5.2. Note the typical, diagonal-based structure, which results from the fact that
entry and exit points of the Peano curve in each subsquare are always diagonally
across.

Recursive Construction via a Generator

If we examine the successive construction of the approximating polygons of the
Hilbert and the Peano curve, we recognise an important construction principle: the
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.n C 1/-th approximating polygon is always generated by replacing each edge of
the n-th polygon by a scaled-down first-order polygon. In addition to the scaling,
we have to ensure the correct orientation of that basic polygon, in particular for the
Hilbert curve. There, the polygon always needs to be oriented such that it is entirely
within the respective subsquare. Hence, the approximating polygon is generated by
recursive application of a basic polygon pattern, which we will call the generator in
the following. The respective similarity to Koch curves and other fractal curves will
be discussed in Sects. 5.3 and 5.4.

5.2 Measuring Curve Lengths with Approximating Polygons

We have defined the approximating polygons as the direct connection of the points

h.0/; h.1 � 4�n/; h.2 � 4�n/; : : : ; h..4n � 1/ � 4�n/; h.1/:

In particular, all points connected by the polygon lie on the Hilbert curve. This
is exactly the standard approach to measure the length of a given curve: we
approximate the curve by a sequence of more or less equally distributed curve
points, and sum up the distances between these points, i.e. measure the length of the
polygon. For finer and finer resolution, i.e. if the distances between the measurement
points are successively reduced, we expect that the respective measurement will
become more and more accurate. The length of the curve is then defined as the limit
of this procedure, if such a limit exists.

What Is the Length of the Hilbert Curve?

Hence, we can compute the length of the approximating polygons of the Hilbert
curve, and use them to determine the length of the Hilbert curve. For the length of
the polygons, we observe:

• The polygons are constructed by successive repetition of the generator. The
generator consists of four units (up-right-right-down,e.g.) and replaces a polygon
line that is only two units long.

• Hence, the length of the approximating polygons will double from each iteration
to the next.

The length of the 0-th approximating polygon is 1 (the base line of the unit square);
the length of the 1-st approximating polygon is 2, respectively. For the n-th polygon,
we obtain a length of 2n. Hence, for n ! 1, the length grows infinitely, and our
method to measure the length fails, because no limit of the polygon lengths exists.
We conclude:
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Fig. 5.3 The first four iterations of the Koch curve

1. The length of the Hilbert curve is obviously not well defined.
2. Instead, we can easily assign an area to the Hilbert curve. The area of the unit

square, i.e. the area taken up by all points of the curve, is a natural definition for
the area of the Hilbert curve, and is equal to 1.

In that sense, the Hilbert curve seems to be a two-dimensional object, which we
wouldn’t normally associate with a curve.

5.3 Fractal Curves and Their Length

Curves that are constructed via successive application of a generator are an
important family within the so-called fractal curves. Hence, the Hilbert curve is
a fractal curve in that sense. A further example of a fractal curve is the well-known
Koch curve, as illustrated in Fig. 5.3. The generator of the Koch curve is obtained
by removing the middle third of a given line, and replacing it by the two legs of an
equilateral triangle placed on the removed third. By successively replacing each line
segment by the generator from each iteration to the next, we obtain the iterations of
the Koch curve, as in Fig. 5.3. The Koch curve itself, similar to the Hilbert curve, is
defined as the limit curve of this construction.

We can try to measure the length of the Koch curve in the same way as for the
Hilbert curve. In fact the measurement procedure can be generalised to any fractal
curve that results from such a generator-based construction:

• The (infinite) fractal curve is approximated by the finite iterations, where we
assume that the points interpolated by the polygons lie on the curve. This is
guaranteed if the two endpoints of the generator stay on the endpoints of the
replaced line segment. If the line segments of the polygon have length ", then "

characterises the accuracy of the measurement. We can then denote the length
of the polygon as L."/, and interpret it as an approximation of the length of the
fractal curve, measured with accuracy ".

• The successive repetition of the generator gives us a simple formula for L."/. If
in each iteration, a line segment of length r (measured in line units) is replaced
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by a generator polygon of length q, then the length of the iterations increases by
a factor of q

r
in each step. At the same time, the accuracy is improved by a factor

of 1
r
. Hence, we obtain a recurrence equation for the length:

L
� "

r

�
D q

r
L."/; L.1/ WD �

• Applying this formula n times, we obtain for the length of the n-th iteration:

L

�
1

rn

�
D

�q

r

�n

L.1/ D qn

rn
�

Relative to the accuracy " WD 1
rn , we obtain that

L."/ D qn

rn
� D "qn� where rn D 1

"
or n D � logr ":

And after a short computation, we get:

L."/ D �"q� logr " D �""� logr "�log" q D �"1�D; with D D log q

log r
;

where we used that logr " � log" q D log "

log r
� log q

log "
D log q

log r
:

Hence, approximating the length of generator-defined fractal curve leads to the
following formula for the length:

L."/ D �"1�D with D D log q

log r
: (5.1)

Note that a finite length is only obtained for the case D D 1, which means that
q D r . Then, we replace a line segment of length r by a polygon of length q D r ,
which therefore has to be a straight line, as well. Hence, our fractal curve is just a
straight line in that case, and measuring the length of this straight line turns out to
be pretty boring.

Imagine, for comparison, the length measurement for a “well-behaved” curve,
such as a parabola or a circle line. There, we know that the measured curve length
K."/, for " ! 0, will converge to a fixed value � (the length of the curve). As
the ratio between successive approximate curve lengths will approach the value 1,
K."/ behaves according to the formula K."/ D �"0, at least in an asymptotic sense.
Hence, we obtain a value of D D 1 in this case.

It seems that � in Eq. (5.1) is actually a length, at least if D D 1. However,
what is D? For a straight line, i.e. a 1D object, we obtained that D D 1. For “well-
behaved” curves, which have a finite length and are therefore 1D objects, as well,
we still get D D 1. However, for the Hilbert curve, with r D 2 and q D 4, and
similar for the Peano curve, with r D 3 and q D 9, we obtain the values



72 5 Approximating Polygons

D D log 4

log 2
D 2 and D D log 9

log 3
D 2:

Hence, D seems to be a dimension – being 2 for the 2D Hilbert and Peano curve.
If we allow us a careful look to Chap. 8, where 3D space-filling curves will be
discussed, we can determine the values r D 2 and q D 8 from Fig. 8.2, which
plots the approximating polygon of a 3D Hilbert curve. Hence, D D 3.

Indeed, D can be interpreted as the “true” dimension of a fractal curve, and
together with Eq. (5.1) leads to a sensible way to characterise the length and
dimension of fractal curves:

• D is the fractal dimension of the curve.
• � is the length respective to that dimension.

For both the Hilbert curve and the Peano curve, the fractal dimension D D 2 is
consistent with the geometrical dimension of the target domain. Measuring the
“length” of the two curves in any other dimension, apart from D D 2 leads to a
value of either 0 or 1. In particular, measuring the volume (length in 3D) of the
Hilbert curve will give the value 0, and the classical 1D length is infinite.

5.4 A Quick Excursion on Fractal Curves

As depicted in Fig. 5.3, the generator of the Koch curve replaces a 3-unit segment by
a 4-unit polygon in each step. Hence, the length measurement according to Eq. (5.1)
leads to the following formula for the length of the Koch curve:

L."/ D "
1� log 4

log 3 � "1�1:26186; (5.2)

where " is the length of the line segments in the respective iteration. Hence, as the
dimension D of the Koch curve, we obtain

D D log 4

log 3
� 1:26186:

Thus, the Koch curve is neither a proper (1D-)curve, nor space-filling, as the Hilbert
or Peano curve. Measuring the length of the curve leads to an infinite length, while
the area of the curve is 0 (compare Exercise 5.1).

This “fractal” dimension has led to the term fractal curves for curves similar
to the Koch curve. Mandelbrot [174] has described fractal curves in detail, and
suggested their use for the description of quasi-natural objects – see the Koch
snowflake in Fig. 5.4. He also pointed out that the dimension D is equivalent to
the Hausdorff dimension of the respective curves.
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Fig. 5.4 The Koch snowflake
(three Koch curves built on
the legs of an equilateral
triangle)

How Long Is the Coast Line of Britain?

Mandelbrot also presented the following, famous example for length measurements:
Assume that we have to determine the length of the coast of the British Island. For
a first, rough estimate we could, for example, take a respective map and a pair of
dividers or a ruler. Measuring steps of 1 cm, we could then proceed step by step
along the coast line, until we have an approximation of the entire coast. The number
of centimetre-steps, together with the scale of the map, will give us a first estimate
of the length of the coast line. In a second step, we could move to a collection of
topographical maps with a much finer scale. The respective maps will also show
more details – smaller bays will become visible, and we are likely to obtain a larger
value for the length of the coast line. Figure 5.5 illustrates this effect by determining
the coast length using two different resolutions. The measurements with the red lines
uses units with only a third of the previous accuracy. The measured coast length thus
increases from 108 to 149 units. Next, we could buy a surveying equipment, and
physically perform a measurement of the coast lines, by determining the distances
between characteristic points along the coast line. Such an expedition will probably
lead to an even larger value for the coast length, and so on.

Luckily, this is a thought experiment, so we won’t go on and consider measuring
the coast line by an inch rule. From a modelling point of view, it is also debatable
whether coast lines will show the same behaviour on all scales or along its entire
extent. Sand beaches will probably lead to different fractal dimension than rocky
cliffs, and on centimetre scales we might obtain different values for the fractal
dimensions. However, the choice of resolution during the measurement obviously
does have a significant influence on the result, and there seem to be certain length
scales where coast lines – in their asymptotic behaviour – are more accurately
modelled by fractal curves than by classical analytical curves. Mandelbrot supported
his claim by the observation that different encyclopedias list different values for the
lengths of coast lines and boundaries, which show discrepancies of up to 20 %.
Moreover, he demonstrated that the measured coast lengths obey laws similar to
those given in Eq. (5.1). Figure 5.6 illustrates this claim by comparing the respective
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36x3 = 108 units

149 units

Fig. 5.5 Measuring the length of Britain’s coast line – using two different approximations with
different accuracy

Fig. 5.6 Plotting the measured lengths of Britain’s coast line, as determined from the map in
Fig. 5.5, in comparison to the approximate lengths of the Koch curve, the Gosper island, and a
circle
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lengths of the British coast line (as estimated from the map in Fig. 5.5) with the
lengths of iterations of the Koch curve and the Gosper island (see Sect. 7.5), and
also versus approximations of a circle line.

References and Further Readings

For the Hilbert and Peano curve, the iterations are much more common as an
illustration than the approximating polygons. However, as a tool for construction,
the polygons are important to determine entry and exit points. Wunderlich [277]
pointed out that the respective connectivity conditions (“Anschlussbedingungen”)
are one of the central building blocks to construct space-filling curves. The term
“approximating polygon”, as defined in this chapter, was already used by Polya
[220]. Constructions of space-filling curves that are based on approximating poly-
gons are much more frequent for fractal-type curves – see, for example, the Gosper
curve in Sect. 7.5. Ohno and Ohyama [199,200] presented a catalogue of symmetric
and non-symmetric space-filling curves that have approximating polygons that do
not touch themselves (or even intersect with themselves). For an introduction to
fractal curves, and for more background on this topic, refer to Mandelbrot’s book
on “The Fractal Geometry of Nature” [174], but also to the respective chapter by
Sagan [233], and to the review article by Goodchild and Mark [102], in particular
due to the references given therein.

What’s next?

The next two chapters will introduce further space-filling curves. The
Sierpinski curve (Chap. 6) is of special interest in Scienific Computing
due to its construction on triangular cells.
If you want to stick to the basics (Hilbert and Peano curves), you may skip
the next two chapters, and go on with Chap. 8, which will deal with 3D
curves.

Exercises

5.1. Using the highlighted triangular areas in the sketch below as upper bounds,
compute the area of the Koch curve.
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5.2. Using the highlighted triangles in the sketch of Exercise 5.1, we can generate
an arithmetisation of the Koch curve in the usual way (mapping subintervals to
subdomains). Set up that arithmetisation (note that the respective construction was
already presented in 1917, by Knopp [150]).

5.3. To construct the Koch curve, we replace the “middle third” by two legs of
a triangle, where both legs have the lengths of the left and right “thirds”. What
happens, if we – instead of the middle third – take out a much smaller section
(or even an infinitesimally small section)? This question was studied by Cesaro,
in 1905 [64], and the resulting curves are also known as Cesaro curves.

5.4. Give a grammar representation for the iterations of the Koch curve. Try a
“turtle” grammar, first, but also formulate a “plotter” grammar.

5.5. Give grammar representations for the approximating polygons of the Hilbert
curve – again, try both a “turtle” grammar and a “plotter” grammar. Is it possible
to generate the Hilbert polygons via the generator-based approach used for fractal
curves?

5.6. The approximating polygons of the standard Peano curve cannot be repre-
sented as a fractal curve with uniform generator. However, there actually exists a
Peano curve that is based on a single generator. Try to construct this curve.

5.7. Examine the generators given below (all curves are taken from [174]) and
construct the first iterations of the resulting fractal curves, or write a program to
generate the iterations. What’s the fractal dimension of each curve?



Chapter 6
Sierpinski Curves

6.1 The Sierpinski-Knopp Curve

All space-filling curves discussed so far were based on a recursive substructuring
into squares. The Sierpinski curve, in contrast, may be geometrically constructed
using a recursive substructuring based on triangles. The curve is named after
Waclaw Sierpinski, who – in 1912 – presented the respective mapping as the
solution of certain functional equations. Similar to the Hilbert and Peano curve,
the Sierpinski curve maps the unit interval onto a square. However, the original
construction refers to the square Œ�1; 1�2 instead of the unit square. As can be seen
from its illustration in Fig. 6.1, the curve may be split into two curves that each fill
a right triangle, if the filled square is cut along the main diagonal. The respective
triangle-filling curves will be discussed in the following section. A respective
mathematical description was introduced by Konrad Knopp, which is why the
respective curve is also called the Sierpinski-Knopp curve [233]. We will use the
term Sierpinski-Knopp curve, only if we want to explicitly discriminate between
the triangle- and square-filling version.

6.1.1 Construction of the Sierpinski Curve

The Sierpinski curve results from a recursive substructuring of a right, isosceles
triangle. The original triangle is successively split into congruent subtriangles. Each
triangle is split into two by splitting the hypotenuse. Hence, the former legs of the
parent triangle form the hypotenuses of the two child triangles. The first six steps
of this construction scheme are given in Fig. 6.2. Similar to the Hilbert and Peano
curve, we obtain the self-similar iterations typical for space-filling curves. Following
the usual procedure, we can define the Sierpinski-Knopp curve via nested intervals
and the corresponding sequentialisations.

M. Bader, Space-Filling Curves, Texts in Computational Science and Engineering 9,
DOI 10.1007/978-3-642-31046-1 6, © Springer-Verlag Berlin Heidelberg 2013
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Fig. 6.1 Iterations of the Sierpinski curve filling a square

Fig. 6.2 The first construction steps of the Sierpinski-Knopp curve

Definition 6.1 (Sierpinski-Knopp Curve). Consider I WD Œ0; 1� and the triangle T
defined by the corners .0; 0/, .1; 1/, and .2; 0/. Then, define the function sWI ! T
via the following description:

• For each t 2 I, there is a sequence of nested intervals

I � Œa1; b1� � : : : � Œan; bn� � : : : ;

where each interval of the sequence results from a splitting of the parent interval
into two equal parts: Œak; bk� D Œ ik � 2�k; .ik C 1/2�k�; ik D 0; 1; 2; : : : ; 2k � 1.



6.1 The Sierpinski-Knopp Curve 79

Fig. 6.3 Construction of the Sierpinski-Knopp curve using the approximating polygon

• Any such sequence of nested intervals corresponds to a sequence of nested,
isosceles, right triangles. The substructuring of triangles, as well as the corre-
spondence between intervals and triangles shall be given as shown in Fig. 6.2.

• The resulting sequence of nested triangles converges to a uniquely defined point
in T – define this point as s.t/.

The image of the resulting mapping s W I ! T is a space-filling curve, the
Sierpinski-Knopp curve.

The proof of continuity works in exactly the same way as for the Hilbert curve.
We exploit the recursive construction via nested intervals and triangles, and use that
two triangles which are direct neighbours in the Hilbert order will share a common
edge. The proof of surjectivity is also nearly identical to that for the Hilbert curve.

The Sierpinski-Knopp curve enters and leaves the subtriangles always in the
corners adjacent to the hypotenuse of the triangle. Hence, the approximating
polygon of the curve runs along the hypotenuse. This is reflected in Fig. 6.3.

6.1.2 Grammar-Based Description of the Sierpinski Curve

In Fig. 6.3, we see that the approximating polygons of the Sierpinski curve have an
alternating form in even and odd iterations: for odd iterations, the polygons run in
horizontal and vertical direction; for even iterations, they run along the diagonals. A
straightforward grammar-based description of the Sierpinski curve would therefore
require eight non-terminals – four non-terminals representing the horizontal and
vertical patterns of the odd iterations, and four non-terminals representing the
diagonal patterns.

We obtain a simpler grammar, if we simply leave out the even iterations, and
use a substructuring that splits each triangular cell into four subtriangles in each
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Fig. 6.4 Illustration of the basic patterns of the Sierpinski curve and of the production rules of the
respective grammar

iteration steps. From the approximating polygons (compare the two images on the
left of Fig. 6.3), we can set up a grammar that requires only four non-terminals. The
terminals, non-terminals, and productions can be read from Fig. 6.4, which again
illustrates the basic patterns and replacement rules of the iterations of the Sierpinski-
Knopp curve. Using the terminal characters f%;-;&;.;!;";#; g, which
now allow for diagonal moves, as well, we obtain the following productions of the
grammar:

S  � S % R! P & S

R  � R- Z " S % R

P  � P & S # Z . P

Z  � Z . P  R- Z

Again, we can use the grammar for a more formal description of the construction of
the Sierpinski curve, and thus supplement Definition 6.1.

6.1.3 Arithmetisation of the Sierpinski Curve

As for the Hilbert and Peano curves, the arithmetisation of the Sierpinski curve
works on a suitable number system. Similar to the grammar-based description,
also the arithmetisation of the Sierpinski curve is simpler, if it is based on a
substructuring of intervals and triangles into four parts in each iteration (see, in
contrast, Exercise 6.1). Hence, analogous to the Hilbert curve, we start with the
quaternary representation of the parameter t :

t D 04:q1q2q3q4 : : :
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The coordinate function s.t/ of the Sierpinski-Knopp curve then has the represen-
tation:

s.04:q1q2q3q4 : : :/ D Sq1 ı Sq2 ı Sq3 ı Sq4 ı � � �
�
0

0

�
: (6.1)

As usual, the operators S0 to S3 have to be determined from the required rotation,
reflections, and translations of the basic pattern. If we assume that the basic triangle
to be filled is defined by the corners .0; 0/, .1; 1/, and .2; 0/, then we obtain:

S0 WD
�
x

y

�
!
 
1
2
x

1
2
y

!
S1 WD

�
x

y

�
!
 � 1

2
y C 1

1
2
x

!

S2 WD
�
x

y

�
!
 
1
2
y C 1
� 1
2
x C 1

!
S3

�
x

y

�
!
 
1
2
x C 1
1
2
y

!
(6.2)

After the examples from Chap. 4, we can keep the explanation of the operators short.
For S0 and S3, a simple scaling is sufficient, plus an additional translation for S3.
The transformation matrix for operator S1 corresponds to a rotation by 90ı (counter-
clockwise). Operator S2 is obtained from S1 via a rotation by 180ı, such that an
additional change of sign for both x- and y-direction is needed.

6.1.4 Computation of the Sierpinski Mapping

Analogous to the Function hilbertBially introduced in Sect. 4.6.2, we can
derive an efficient algorithm to compute the Sierpinski mapping, which uses
recursion unrolling to reduce the number of operations. Certain similarities between
the operators S0, . . . , S3, as given in Eq. (6.2), allow us to simplify the computation
of the accumulated operators. Again, we rewrite the operators S0, . . . , S3 in the
following form:

S0W
�
x

y

�
! 1

2

�
Z0

�
x

y

�
C z0

�
where Z0 D Zp.0/ WD

�
1 0

0 1

�
; z0 WD

�
0

0

�

S1W
�
x

y

�
! 1

2

�
Z1

�
x

y

�
C z1

�
where Z1 D Zp.1/ WD

�
0 �1
1 0

�
; z1 WD

�
2

0

�

S2W
�
x

y

�
! 1

2

�
Z3

�
x

y

�
C z2

�
where Z3 D Zp.2/ WD

�
0 1

�1 0
�
; z2 WD

�
2

2

�

S3W
�
x

y

�
! 1

2

�
Z0

�
x

y

�
C z3

�
where Z0 D Zp.3/ WD

�
1 0

0 1

�
; z3 WD

�
2

0

�



82 6 Sierpinski Curves

Here, the Z operators are chosen to represent rotations in 90ı-steps, Z1 being a
rotation by 90ı and Z3 by 270ı. Note that Z1 D �Z3 and

Z2
1 D

�
0 �1
1 0

��
0 �1
1 0

�
D
��1 0

0 �1
�
D �I DW Z2;

hence, Z2 shall be a rotation by 180ı. The mapping p.q/ thus reflects how many
90ı-steps are taken in the operator Sq for a digit q.

Following the procedure discussed in Sect. 4.6.2, we obtain the following
representation of the Sierpinski mapping:

s.t/ D s.04:q1q2 : : : q2n/ D
n�1X
kD1

1

4k
Zp.q1q2/ � � �Zp.q2k�1q2k/zq2kC1q2kC2

C 1

4
zq1q2 :

With the definition Zp.q1:::q2k/ WD Zp.q1q2/ � � �Zp.q2k�1q2k/, we obtain the following
formula for the Sierpinski mapping:

s.t/ D s.04:q1q2 : : : q2n/ D
n�1X
kD1

1

4k
Zp.q1:::q2k/zq2kC1q2kC2

C 1

4
zq1q2 : (6.3)

In an implementation to compute s.t/ according to Eq. (6.3), we can again use a
table to store the possible values of the translations zqi qj (16 vectors, if we combine
two quaternary digits in each unrolling step). To obtain the operatorsZp.q1:::q2k/, we
need to accumulate the respective 90ı-rotations – due to our previous definitions,
we obtain p.q1 : : : qk/ DP qj mod 4.

Function sierpUnroll provides a non-recursive implementation of the
resulting scheme to compute the Sierpinski mapping, similar to Function
hilbertBially. We can again speed up this algorithm, if we use respective
tables to obtain the operators Ztable[p[n-1]].

6.2 Generalised Sierpinski Curves

The construction principle of the Sierpinski curve can be easily generalised from
isosceles, right triangles to arbitrary triangles. It is even possible to replace the
edges by more complicated curves as boundaries. The respective modifications of
the Sierpinski construction will be presented in the following section. They will also
provide us with a third approach to compute iterations, approximating polygons, and
mappings of space-filling curves, in general.
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Function sierpUnroll – computing the Sierpinski mapping (with unrolling)
Function sierpUnroll(t, depth)

Parameter: t: index parameter, t 2 Œ0; 1�

depth: depth of recursion (equiv. to number of hex digits)
begin

for n = 1, . . . , depth do
// compute hex digits in array q
q[n] := floor(16*t);
t := 16*t - q[n];
// accumulate rotations in array p
p[n] := ( p[n-1] + Ztable[q[n]] ) mod 4

end
// compute image point in x
x := (0,0);
for n = depth, . . . , 1 do

// accumulate rotated translation vectors
x := x + Ztable[p[n-1]] ( ztable[q[n]] ) / 4n;
return x;

end
end

6.2.1 Bisecting Triangles Along Tagged Edges

In the classical geometrical construction of Sierpinski curves, all cells are right,
isosceles triangles. The right angle and the hypotenuse define for each triangle how
it has to be bisected for the next iteration. In each step the triangle is split along
the hypotenuse. To generalise this construction for arbitrary triangles, we require a
substitute for the hypotenuses. For that, we will use the concept of tagged edges.

Definition 6.2 (Triangles with Tagged Edges). Given are three points x1; x2; x3 2
R
2 that define the corners of a triangle. The triple

Œx1; x2; x3�

shall define a triangle with tagged edge x1x2. The tagged edge x1x2 is assumed to
be oriented.

Analogous to the original Sierpinski construction, we can now recursively
subdivide an initial triangle domain recursively along tagged edges. If x4 is the
splitting point on the tagged edge x1x2, then we will subdivide the tagged triangle
x1; x2; x3 into the two subtriangles

Œx1; x3; x4� and Œx3; x2; x4� :

Figure 6.5 illustrates this splitting, and also shows that the polygon x1x3x2 along
the new tagged edges connects the three corners x1; x3, and x2 along the oriented,
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Fig. 6.5 Bisection of a
triangle at the tagged edge.
The oriented, tagged edges
are highlighted by arrows

tagged edges. We know this construction principles from the approximating poly-
gons of the Sierpinski curve. Hence, the tagged edges will build the approximating
polygons of the generalised Sierpinski curve – as the hypotenuses did for the
classical construction. In fact, this construction is already sufficient to define the
generalised Sierpinski curve:

Definition 6.3 (Generalised Sierpinski Curve). Given are I WD Œ0; 1� and a target
triangle T D Œx1; x2; x3� with tagged edge x1x2. The function OsWI ! T shall be
defined via the following construction:

• For each parameter t 2 I, there is a sequence of nested intervals

I � Œa1; b1� � : : : � Œan; bn� � : : : ;

where each interval in the sequence results from a bisection of its predecessor:
Œak; bk� D Œ ik � 2�k; .ik C 1/2�k�; ik D 0; 1; 2; : : : ; 2k � 1.

• Each sequence of intervals corresponds to a uniquely defined sequence of
nested triangles with tagged edges. Each triangle Œx˛; xˇ; x� � is bisected into the
subtriangles Œx˛; x� ; xı� and Œx� ; xˇ; xı� (xı a point on the tagged edge x˛; xˇ).
The initial triangle of the sequence is given by T .

• The constructed sequence of triangular domains converges to a uniquely defined
point in T – this point shall be defined as Os.t/.

The image of the function Os W I ! T is a space-filling curve, and shall be called a
generalised Sierpinski curve.

Note that we did not determine the choice of the splitting point xı on the tagged
edge. A straightforward choice would be to take the midpoint of the tagged edge,
but other choices are possible, as well. Figure 6.6 shows a generalised Sierpinski
curve on an equilateral triangle (with mid-point splitting). The respective curve was
constructed by Algorithm 6.1, which provides a straightforward implementation of
the construction outlined in the definition. The algorithm generates the list of centre
points of all triangles on a given bisection level n – the polygon defined by these
centre points, as usual, is the n-th iteration of the curve. Note that the sequence and
relative geometrical orientation of the three parameters x1, x2, and x3 determine
the local pattern of the generalised Sierpinski curve. Hence, a respective algorithm
can also be derived for the Hilbert or Peano curves – see the paragraph on vertex-
labelling algorithms on page 89 and also the exercises for this section.
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Fig. 6.6 Generalised
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equilateral triangle
(10-th iteration)

Algorithm 6.1: Computing the n-th iteration of a generalised Sierpinski curve
Procedure gensierp(x1, x2, x3, n)

Parameter: x1,x2,x3: vertices (as 2D coordinates); n: refinement level
Data: curve: list of vertices (empty at start, contains iteration points on exit)

begin
if n = 0 then

// add center point of triangle x1,x2,x3 to output list:
return attach(curve, center(x1,x2,x3))

else
// compute bisection vertex:
xnew := mid(x1,x2);
// recursive call to child triangles:
gensierp(x1, x3, xnew, n-1);
gensierp(x3, x2, xnew, n-1);

end
end

6.2.2 Continuity and Locality of Generalised Sierpinski Curves

For equilateral, right start triangles, the generalised Sierpinski curve is identical to
the “classical” Sierpinski curve. Thus, the generalised Sierpinski curves follow the
same construction, and should also be representable by grammars, or by respective
arithmetisations. We will therefore at least shortly discuss such representations for
the generalised Sierpinski curves.

Figure 6.7 shows the well-known grammar-based construction scheme for the
(generalised) Sierpinksi curve, based on four patterns S , R, P , and Z. From the
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Fig. 6.7 Geometric patterns during the construction of a generalised Sierpinski curve. The
analysis of the highlighted angles proves that the subtriangles may be classified into exactly four
congruency classes

construction, we quickly suspect that all triangles that belong to the same pattern are
congruent, i.e. can be transformed into each other by simple scaling and translation
operations. With a careful examination of the angles of the triangles, as illustrated
in Fig. 6.7, we can also prove this:

• An S triangle is substructured into two S triangles, an R and a P triangle. To
prove that the smaller S triangles are scaled down variants of the original S
triangle is straightforward (theorem of intersecting lines). The two triangles R
and P form a parallelogram, and thus have the same angles (and are therefore
congruent to each other).

• The R triangle will again be substructured, which will lead to two R triangles
(again congruent due to the theorem of intersecting lines), a new pattern Z,
and a triangle that should be congruent to the S triangles. S and Z form a
parallelogram, and therefore have the same angles.

• From the illustration of the R-production in Fig. 6.7, we see that the lower-left
angle of S is equal to � . Together with the angle ˇ, the smaller S triangle is
proven to be congruent to the original S triangle.

• From triangle P , we read that  C � C .� � ˇ/ D � , hence  C � D ˇ. In
addition, we have that �C � D � �ˇ (from triangle S ). The two parallelograms
built by eitherR plusP or S plusZ are therefore congruent. Splitting them along
either of the diagonals leads to the patterns R plus P or S plus Z, respectively.
With that knowledge, we can quickly identify all angles, as illustrated in Fig. 6.7.

Hence, during the construction of the generalised Sierpinski curve, we obtain only
four different shapes for the subtriangles, which are given by the four patterns S ,
R, P , and Z. All triangles with the same patterns can be mapped onto each other
by scaling and translation operations, only. Moreover, all S and Z triangles are
congruent; the Z triangles are rotated by 180ı. Likewise, the R and P triangles are
congruent to each other.
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The fact that all triangles in the generalised Sierpinski construction fall into only
a few congruency classes has a couple of important consequences:

• For applications in scientific computing (finite element methods, for example),
the size of the smallest and largest angle of the triangle cells is a limiting factor
for accuracy. The congruency classes guarantee that we can determine these two
angles easily, and that neither minimum nor maximum angle will approach any
extreme values.

• In Chap. 11, we will see that the congruency of the subtriangles is an important
prerequisite for certain locality properties of space-filling curves.

• In particular, our established proof for continuity of a space-filling curve will
work for generalised Sierpinski curves, as well: as the triangles are all scaled-
down copies of four basic templates, we can derive the required relation between
size of nested intervals and respective diameter of triangles.

In Sects. 8.3 and 12.2, we will discuss three-dimensional variants of the Sierpinski
curve. There, we will see that substructuring rules that do not lead to subtriangles
from a few congruency classes lead to problems in the construction of proper space-
filling curves.

6.2.3 Filling Triangles with Curved Edges

In Definition 6.3, we required that the new corner point xı is chosen somewhere on
the tagged edge. This choice gives us two important guarantees:

1. In every iteration, the boundary defined by the union of all subtriangles will stay
identical to the boundary of the initial triangle T . This is because any tagged
edge on a boundary of T will be split in two edges that are still placed on the
boundary of T . We will actually change this aspect in the following subsection.

2. Due to the construction, a tagged edge will always be the tagged edge for two
adjacent triangles. If both triangles are bisected, the four subtriangles should
neither have an overlap (apart from the edge itself) or a gap between them. This
is always guaranteed, if we choose the same splitting point for both triangles, but
it is also sufficient to choose splitting points on the tagged edge.

If we want to define a Sierpinski curve for a target domain with a more complicated
boundary, we need to disregard the first guarantee. Hence, we will allow that, during
the bisection

Œx1; x2; x3�! Œx1; x3; x4�; Œx3; x2; x4�;

the new splitting point x4 is no longer chosen on the edge x1x2. As illustrated in
Fig. 6.8, we may move it onto the edge of the target domain, instead. We interpret
this construction such that a domain given by the nodes Œx1; x2; x3� is no longer
necessarily a triangle. Instead, any “edge” x1x2 may be given by a more complicated
curve. In practice, it will make sense to retain straight lines as edges in the interior
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of the target domain, and only allow free-form curves along the boundaries of T .
An alternate interpretation is that we only consider regular triangles as cells, but
obtain a polygonal approximation of the complicated boundary by moving triangle
corners, as in Fig. 6.8.

A possible implementation is to extend Algorithm 6.1 to provide a parameter
representation of a curve for each edge of the initial target domain. The splitting
points are then computed from this parameter representation, and we can generate a
generalised circle-filling Sierpinski curve, as given in Fig. 6.9.

References and Further Readings

Already in 1905, Cesaro [64] essentially described the construction of the triangle-
filling Sierpinski curve as a generalisation of the Koch curve (compare Exercise
5.3). Sierpinski curve introduced “his” curve in 1912 [244] based on a func-
tional equation, and only briefly mentioned its geometrical construction. Such a
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construction, as triangle-filling curve, was discussed by Polya, one year later [220],
who generalised the curve to right triangles. The standard approach to construct
the mapping via subdivision of intervals and triangles was described by Knopp in
1917 [150]. In Scientific Computing, the triangular refinement scheme adopted for
the Sierpinski-curve construction, including the construction of generalised curves,
is equivalent to the so-called newest vertex bisection (e.g., [187, 242]). Sierpinski
orders on such grids often exploit the respective refinement structure – see especially
Chap. 9.

Vertex-Labeling Algorithms

In this chapter, Algorithm 6.1 for the generalised Sierpinski curves was derived from
the representation of triangular cells (and the respective bisection rules) via vertex
triples. The technique, however, can be easily adapted to describe Hilbert, Peano,
and other space-filling curves in two and three dimensions. Bartholdi and Goldsman
introduced such algorithms as vertex-labelling algorithms [29]. Algorithm 6.2 is a
respective implementation of a Hilbert traversal. Properly modified, vertex-labelling
algorithms can be used to compute the Hilbert mapping and Hilbert index, as well.
Note that the order of parameters x1; x2; x3; x4 encodes the geometrical orientation
of the basic patterns: x1 and x4 determine entry and exit point in each square, while
x2 and x3 denote the remaining two corners in the sequence as they are visited by
the Hilbert curve.

Algorithm 6.2: Computing the n-th iteration of a Hilbert curve via vertex-
labelling

Procedure hilbertVL(x1, x2, x3, x4, n)
Parameter: x1,x2,x3,x4: vertices (as 2D coordinates); n: refinement level
Data: curve: list of vertices (empty at start, contains iteration points on exit)

begin
if n > 0 then

return attach(curve, center(x1,x2,x3,x4))
else

hilbertVL(x1, mid(x1,x4), mid(x1,x3), mid(x1,x2), n-1);
hilbertVL(mid(x1,x2), x2, mid(x2,x3), mid(x2,x4), n-1);
hilbertVL(mid(x1,x3), mid(x2,x3), x3, mid(x3,x4), n-1);
hilbertVL(mid(x3,x4), mid(x2,x4), mid(x1,x4), x4, n-1);

end
end

For three- and higher-dimensional Hilbert and Peano curves, vertex-labelling
algorithms become less handy, because of the exponentially increasing number of
parameters – a d -dimensional (hyper-)cube will have 2d vertices, which leads to
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2d parameters for a vertex-labelling algorithm. There is, of course, a substantial
amount of redundancy in the vertex-tuple coding, but reducing that redundancy by
just storing the orientation of the cube according to the basic pattern, for example,
will lead to algorithmic approaches that are based on arithmetisation (compare the
algorithm by Breinholt and Schierz [47], for example, as discussed on page 63).
For simplex-based construction, such as (three-dimensional) Sierpinski curves,
vertex-labelling algorithms will prove to be a comfortable choice, though, as a
d -dimensional simplex only has d C 1 vertices – see Chap. 12.

What’s next?

The next chapter will provide some further examples of space-filling
curves – to get some more practice with the different mathematical tools to
describe space-filling curves. You may safely skip it, or leave it for later.
The default is then to move on with Chap. 8, which will discuss 3D space-
filling curves.
Are you wondering how a Sierpinski curve might look in 3D? This is a
more complicated question: a first option is presented in Sect. 8.3, however,
this curve is not much used in practice. We will discuss the whole complex
in Chap. 12.

Exercises

6.1. As indicated in Figs. 6.2 and 6.3, the Sierpinski curve can also be constructed
via bisection of triangles. Derive grammar representations and arithmetisations for
the Sierpinski curve following the bisection-based construction.

6.2. The plot below illustrates Polya’s extension of the Sierpinski curve, which is
constructed on right triangles. Discuss whether and how Polya’s curve could be
described via an arithmetisation or via grammars.

6.3. In Sect. 3.4, we introduced turtle-based traversals for the Hilbert curve. Derive
a corresponding turtle-based traversal (and respective grammar) for the Sierpinski
curve.
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6.4. Consider the bisection-based construction from Exercise 6.1 for generalised
Sierpinski curves. Show that we now obtain eight congruency classes for the
triangles!

6.5. Change Algorithm 6.2 into an algorithm that computes the Hilbert mapping,
i.e., the image point for a given parameter.

6.6. Generate a vertex-labeling algorithms for different variants of the Peano curve.



Chapter 7
Further Space-Filling Curves

7.1 Characterisation of Space-Filling Curves

During the construction of the Hilbert curve, the various Peano curves, and also of
the Sierpinski curve, we have consistently followed two substantial principles of
construction:

1. Starting from regularly refined sequences of nested intervals and nested sub-
squares or subtriangles, we mapped intervals to corresponding square or triangle
subdomains.

2. Squares or triangles that belong to adjacent intervals were again adjacent, i.e.
they had at least a common edge.

For further space-filling curves generated via this principle, including 3D and
higher-dimensional curves (see Chap. 8), we will therefore formalise these construc-
tion principles via the following definitions.

Definition 7.1 (Recursive Space-Filling Curve). A space-filling curve f WI !
Q � R

d is called recursive, if there is a multi-level partitioning of both I and Q
into subintervals Il;m and subdomains Ql;m (with I D I0;0 and Q D Q0;0), such that

• On each level l > 0, the intervals Il;m and the subdomains Ql;m result from a
partitioning of the parent intervals Il�1; Om and parent domains Ql�1; Om into M.l/

parts of equal size (i.e. equal area or volume of the Ql;m);
• The subdomains Ql;m are congruent to their parent domains Ql�1; Om up to a

suitable scaling;
• The subintervals Il;m are mapped to the corresponding subdomains Ql;m, i.e.:

f�.Il;m/ D Ql;m for all l and m.

With the term partitioning. we mean that neither the intervals Il;m nor the
subdomains Ql;m of a common level l will overlap, i.e., will at most share common
boundaries, and that the union of all child intervals or subdomains will be equal

M. Bader, Space-Filling Curves, Texts in Computational Science and Engineering 9,
DOI 10.1007/978-3-642-31046-1 7, © Springer-Verlag Berlin Heidelberg 2013
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to their parent. This requires that the subdomains Ql;m are so-called space-fillers,
i.e., geometrical objects that can be seamlessly arranged to fill the entire plane
(in 2D) or space.

Definition 7.2 (Connected Space-Filling Curves). A d -dimensional recursive
space-filling curve is called connected, if any two subsequent subdomains Ql;m and
Ql;n, i.e. subdomains that are images of adjacent intervals Il;m and Il;n, share a
common, .d � 1/-dimensional boundary face.

In particular, we call a space-filling curve edge-connected, if subsequent sub-
domains at least share a common edge, or (esp. in 3D) face-connected, if sub-
sequent subdomains share a common face. We will call a space-filling curve
node-connected, if subsequent subdomains at least share one common point.

The Hilbert curve, as well as all Peano curves discussed so far (including the
Peano-Meander curves) are therefore connected, recursive space-filling curves. We
will also demand these properties for the higher-dimensional variants. In particular,
3D Hilbert or Peano curves should be face-connected (see Chap. 8). Connected,
recursive space-filling curves always have the following properties:

• The respective mapping functions are uniformly continuous, as connectedness
and recursivity is sufficient for the respective proof (compare Sect. 2.3.5). In
Sect. 11.1, we will show that those properties are even sufficient to prove the
stricter Hölder continuity (with exponent 1=d ).

• The respective curves are locality preserving – again this is a result of connect-
edness and recursivity; we will see that the respective locality properties can be
quantified by the Hölder continuity.

• Their iterations can be described via grammars – hence, we can derive a
respective traversal algorithm following the standard procedure.

• The mapping may be computed via an arithmetisation – which provides us with
algorithms to computer curve points from parameters and vice versa.

To define a space-filling curve via an arithmetisation, we do not necessarily need the
connectedness – as the example of Morton order will show in Sect. 7.2. However,
if subsequent subdomains are not even connected via a common point, we will
normally not obtain a continuous mapping.

Definition 7.3 (Simple Space-Filling Curves). Finally, we will call a space-filling
curve simple, if an arithmetisation, as presented in Chap. 4, uses the same set of
operators for each recursive level of the construction.

Hence, the Hilbert, Sierpinski, and Peano curve are all simple space-filling curves.
The Hilbert-Moore curve is an example of a non-simple curve. Any recursive
and simple space-filling curve necessarily has to be self-similar. However, also
non-simple, recursive space-filling curves will be self-similar, if their grammar
representation requires only a limited set of basic patterns.
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01

00 11

10 0101 0111 1101 1111

1110110001100100

0001 0011 1001 1011

1010100000100000

Fig. 7.1 Substructuring and sequentialisation of subsquares used for Morton order. Each sub-
square contains the first digits of the binary representation of the parameters that are mapped to
this square

7.2 Lebesgue Curve and Morton Order

Already in Sect. 2.1, we discussed a simple mapping that maps the unit interval to
the unit square: the mapping exploits the binary representation of the parameter t ,

m.t/ D m.02:b1b2b3b4b5b6 : : : / D
�

02:b1b3b5 : : :

02:b2b4b6 : : :

�
; (7.1)

and is also known as Morton order, especially in computer science.
All image points that share the same start sequence of binary digits, for example

m.t/ D
�

02:010 : : :

02:101 : : :

�
;

lie in a common subsquare of side length 2�3 (in general 2�n, if they share the
first n bits). The respective subsquare is generated by performing the recursive
splitting of a square domain into four subsquares three times (similar to the recursive
construction of the Hilbert curve). The parameters that are mapped to this square are
of the form

t D 02:011001 : : :

All these parameters are within an interval of length 4�3, and again such an interval
is generated via generation of nested intervals similar to the Hilbert construction.

Thus, the Morton order can be defined via nested intervals and nested squares,
as well. However, the respective subsquares are sequentialised in a different order
by the Morton scheme. Figure 7.1 illustrates the generated sequentialisation. We
observe that the sequentialisation is of a much simpler type than the Hilbert curve.
In particular, the sequentialisation pattern is identical in each subsquare – starting
in the lower-left corner, and proceeding to the top-left, lower-right, and top-right
corner.
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00

10 11

01 0000 0001 0100 0101

0010 0011 0110 0111

1101110010011000

1010 1011 1110 1111

Fig. 7.2 Sequential order of subsquares generated by the Z-curve

In contrast to the Hilbert mapping, the mapping m.t/ generated by the Morton
order is obviously not continuous. For example, a jump occurs at t D 1

2
. There, the

left-sided limit is

lim
n!1 m.02:0 111 : : : 111„ ƒ‚ …

2n � 1 times

/ D lim
n!1

0
@02:011 : : : 1

02: 111 : : : 1„ ƒ‚ …
n times

1
A D

�
1
2

1

�
;

while the right-sided limit is given as

m.02:1000 : : : / D lim
n!1

�
02:1000 : : :

02:000 : : :

�
D
�

1
2

0

�
:

Z-Curve

If we exchange the coordinates in the definition of the Morton mapping m.t/, we
obtain the coordinate function

z.t/ D z.02:b1b2b3b4b5b6 : : : / WD
�

02:b2b4b6 : : :

02:b1b3b5 : : :

�
: (7.2)

The sequentialisation of subsquares generated by this mapping is then congruent to
the Morton order given in Fig. 7.1, but reflected at the main diagonal. Because of
the generated numbering patterns, which are illustrated in Fig. 7.2, the respective
function is often called the Z-function or Z-order. Similarly, we could also call the
Morton order N-order, and could define similar other orders, as well. The naming,
of course, might change if the origin of the coordinate system is placed in a different
corner than the lower-left corner, as done throughout this book. We will therefore
use the term Morton order as a generic term that can reflect Z-order, N-order, or (esp.
in higher dimensions) any other scheme that results from bit interleaving schemes.
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Fig. 7.3 Recursive
construction of the
Cantor Set by removing the
middle thirds

The Lebesgue Curve and the Cantor Set

Morton order, Z-curve, and relatives cannot really be called space-filling curves, as
they lack the continuity required for a curve. However, we can turn them into a real
space-filling curve using a certain trick that will restore continuity – the trick is to
change the index set for the parameters. If at every point, where the Z-curve or its
relatives have a jump, the index set would have a jump, too, the continuity would no
longer be violated at this position. For a 1D index interval, such a “jump” can only
be a gap in the interval. Hence, we require an index set with enough gaps (actually
an infinite number of gaps), which also has to follow a similar recursive construction
principle as the corresponding curve.

A well-known example of such an index set is the so-called Cantor Set. It is
generated by recursively splitting intervals into three parts and removing the (open)
subinterval in the centre (starting with the unit interval). All points that survive this
recursive cutting procedure are defined to form the Cantor Set. Figure 7.3 illustrates
this construction principle. Memorising our considerations of the previous chapters,
it is not surprising that the Cantor Set can also be characterised via ternaries:

Definition 7.4 (Cantor Set). The set of all numbers t 2 Œ0; 1� that can be repre-
sented by ternaries of the form

t D 03; t1t2t3 : : : ; ti 2 f0; 2g;
is called the Cantor Set C.

Hence, the removal of middle thirds is achieved by disallowing the digit 1

in the ternary representation. All numbers that contain a 1-digit in their ternary
representation are excluded from the set – with the exception of finite ternaries that
end with a one, as these can be represented via an infinite ternary:

03:t1 : : : tn1 D 03:t1 : : : t20222 : : :

On this basis, we can define a space-filling curve analogous to the Z-curve:

Definition 7.5 (Lebesgue Curve). The image of the mapping b from the Cantor
Set C into the unit square Œ0; 1�2, with

b W C ! Œ0; 1�2; b.t/ D l.03; t1t2t3t4 : : :/ D
�

02; t1=2 t3=2 : : :

02:t2=2 t4=2 : : :

�
;

is called Lebesgue Curve.
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The Lebesgue curve is surjective, as each point of the unit square,

p.t/ D
�

02:b1b2b3 : : :

02:d1d2d3 : : :

�
2 Œ0; 1�2;

is an image of the parameter

t D 03:.2b1/ .2d1/ .2b2/ .2d2/ .2b3/ .2d3/ : : : ;

which is obviously a member of the Cantor Set C.

Continuity of the Lebesgue Curve

For the Lebesgue curve, we can show that it is continuous in every point t0 2 C. Let
t 2 C be a parameter with jt � t0j < 3�2n, where 3�2n is exactly the width of the
delete middle third in the 2n-th iteration during construction of the Cantor Set. If t0
and t are closer than 3�2n, then there cannot be a respective gap between them. As
a consequence, their first 2n ternary digits need to be identical:

t0 D 03:t1t2 : : : t2n : : :

t D 03:t1t2 : : : t2n : : :

For the corresponding images on the Lebesgue curve, we therefore obtain that

b.t0/ D
�

02:t1t3 : : : t2n�1 : : :

02:t2t4 : : : t2n : : :

�

b.t/ D
�

02:t1t3 : : : t2n�1 : : :

02:t2t4 : : : t2n : : :

�
:

The two points share the first n digits and therefore lie in a common subsquare with
side length 2�n. Their maximum possible distance is therefore given by the length
of the diagonal of this subsquare:

kb.t0/� b.t/k � 2�n
p

2:

Hence, for a given " > 0, we can choose an n such that 2�n
p

2 < ". With ı D 3�2n,
we can infer that for all t with jt � t0j < ı the inequality kb.t0/� b.t/k < " holds
due to our previous calculation. This exactly implies the continuity of b at t0. As t0
was chosen arbitrarily, b is continuous on the entire index set C.
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Fig. 7.4 Sequential orders given by the H-index (on 4 � 4, 8 � 8, and 16 � 16 elements)
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Fig. 7.5 Derivation of the grammar for the H-index

7.3 The H -Index

The H-index (or H-order) was introduced as a sequentialisation for the elements of a
2n � 2n array. Respective element orders are illustrated in Fig. 7.4. Even though it is
intended for quadratic domains, its construction is based on triangles, as illustrated
in Fig. 7.5. From the iteration rules depicted in Fig. 7.5, we can easily derive the
following productions for a grammar representation of the H-index:

H  � H " J ! L! H j """!#!"
J  � J ! K " H  J j " # """
K  � K  L # J ! K j ### " #
L � L # H  K " L j #!"!###
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Fig. 7.6 Comparison of the H-order with the Sierpinski curve

A close examination of the terminal productions reveals that we can replace these
by simpler productions that correspond to only one step:

H  � H " J ! L! H j "
J  � J ! K " H  J j "
K  � K  L # J ! K j #
L � L # H  K " L j #

One expansion step on the non-terminals immediately brings back the original
productions.

From the H-Order to the Sierpinski Curve

If we remember the grammar-based description of the Sierpinski curve,

S  � S % R! P & S

R  � R- Z " S % R

Z  � Z . P  R- Z

P  � P & S # Z . P

we recognise a strong similarity to the grammar for the H-index. The recursion
scheme for the non-terminals is equivalent, if we map the symbols S!H , R! J ,
Z!K , and P !L. This structural equivalence is due to the triangle-based
construction: in both constructions, the triangles are subdivided according to the
same scheme and the geometrical orientation of the triangles determines the pattern
of the curve. In addition, the child triangles are traversed in the same order – which
is not too surprising, as there is, in fact, no other choice, if we require adjacent
triangles to share a common edge.

Figure 7.6 shows a comparison of the H-index with the iterations (left image)
and with the approximating polygons (right image) of the Sierpinski curve. We
can obviously obtain the H-index traversal by replacing all diagonal steps of the
Sierpinski iteration by two steps that are in horizontal and vertical direction. And we
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Fig. 7.7 The second, third, and fourth iteration of the ˇ˝-curve. Note the arrows in the fourth
iteration, which mark the transfer points between the subsquares

also see that all nodes of the H-index iteration are also nodes of the approximation
polygon of the Sierpinski curve. Moreover these H-index nodes are visited in
Sierpinski order. We can therefore interpret the H-index iterations as polygons that
approximate the Sierpinski curve, which implies that the H-index will not lead to a
new space-filling curve. Its infinite iteration will lead to the Sierpinski curve, again.

7.4 The ˇ˝-Curve

The ˇ˝-curve is a variation of the Hilbert curve, as it is based on the same
elementary patterns. However, while for the Hilbert curve the refinement process
in each step is identical up to rotations and reflections, the ˇ˝-curve uses a more
complicated refinement algorithm. Similar to Moore’s variant of the Hilbert curve,
the ˇ˝-curve is constructed as a closed curve. The second to fourth iteration of the
ˇ˝-curve is illustrated in Fig. 7.7.

As can be observed in the fourth iteration, the entry and exit points of the curve
into and out of the individual subsquares are no longer situated in the corners, but
on the edges. As we will see, these points divide the edges according to the ratio
1:2 or 2:1. Hence, their distance to the nearest corner is one third of the side length.
We also observe that entry and exit points can be placed both on adjacent edges
and opposing edges, which leads to two different patterns – referred to a ˇ and ˝ ,
respectively.

The exact construction of the ˇ˝-curve is difficult to describe in words, so
we will use a grammar-based description, right away. Figure 7.8 illustrates the
refinement scheme for the ˇ˝-curve, which uses six different patterns:

• ˝ and � represent the patterns where entry and exit points are across. For ˝ , the
entry and exit point is closer to the right-hand corners.

• B and D are two patterns that lead to a left turn, i.e. the exit edge is adjacent top
the right-hand corner of the entry edge. Correspondingly, C and E lead to right
turns.

• While in B and E the entry point is closer to the right-hand corner of the entry
edge, the entry point of C and D is closer to the left-hand corner.
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Fig. 7.8 Derivation of the grammar for the ˇ˝-curve

As can be seen from Fig. 7.8, the six patterns form a closed system to refine the
patterns to arbitrary resolution. Different orientations of the patterns are required,
which is indicated by rotated characters.

In Fig. 7.8, we took up the turtle-grammar concept of Sect. 3.4, using only relative
movements (“move forward”, “turn left”, “turn right”), but no absolute directions,
to describe the iterations. Hence, our grammar for the ˇ˝-curve will consist of the
non-terminals fˇ; ˝; �; B; C; D; Eg (ˇ is only used as the starting symbol) and of
the terminal characters f"; ; g. In the same way as for the Hilbert grammar (see
Sect. 3.4), we can derive the following productions from Fig. 7.8:

ˇ  � D " B " D " B "
B  � C " B " D " ˝ j
C  � B " C " E " � j
D  � ˝ " B " D " E j
E  � � " C " E " D j
˝  � C " B " D " E j "

�  � B " C " E " D j
Note that the last " in the production for ˇ closes the curve. It is now straightforward
to produce a traversal algorithm from this grammar. A plot of the sixth iteration of
the ˇ˝-curve is given in Fig. 7.9.
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Fig. 7.9 The sixth iteration of the ˇ˝-curve

Arithmetisation of the ˇ˝-Curve

For the Hilbert curve, we determined an arithmetic representation of the Hilbert
mapping h via the recursion

h.04:q1q2q3 : : :/ D Hq1 ı h.04:q2q3 : : :/:

For the ˇ˝-curve, the situation is again more complicated. If we examine the
replacement schemes in Fig. 7.8, we quickly notice that the patterns represented
by ˝ and � require different operators than B and C . And while B and C are just
reflections of each other, D and E again require a different set of operators. They
would only be congruent to B or C , if we were able to reverse the orientation.

An arithmetisation is possible, nevertheless, if we define four different mappings
(each of which has a separate set of operators):

• � will describe the mapping for the patterns B and C ;
• ı will describe the mapping for D and E;
• ! will describe the mapping for ˝ and � (with operators G0; : : : ; G3).
• ˇ, finally, will be the ˇ˝-mapping – which has to take care of the starting

configuration.
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Table 7.1 Operators to compute the ˇ˝-mapping

i 0 1 2 3

f
.ˇ/

i ı � ı �

Q
.ˇ/
i

 
0 � 1

2
1
2

1
2

0 0

!  
0 � 1

2
1
2

1
2

0 1
2

!  
0 1

2
1
2

� 1
2

0 1

!  
0 1

2
1
2

� 1
2

0 1
2

!

f
.�/

i � � ı !

Q
.�/
i

 
1
2

0 0

0 � 1
2

1
2

!  
0 � 1

2
1
2

1
2

0 1
2

!  
0 1

2
1
2

� 1
2

0 1

!  
0 1

2
1
2

� 1
2

0 1
2

!

f
.ı/

i ! � ı ı

Q
.ı/
i

 
0 � 1

2
1
2

1
2

0 0

!  
0 � 1

2
1
2

1
2

0 1
2

!  
0 1

2
1
2

� 1
2

0 1

!  
1
2

0 1
2

0 � 1
2

1
2

!

f
.!/

i � � ı ı

Q
.!/
i

 
1
2

0 0

0 � 1
2

1
2

!  
0 � 1

2
1
2

1
2

0 1
2

!  
0 1

2
1
2

� 1
2

0 1

!  
1
2

0 1
2

0 � 1
2

1
2

!

For each of these mappings, we require a set of operators, which we will denote
as Q

.�/
i ; Q

.ı/
i ; Q

.!/
i , and Q

.ˇ/
i . The indices i D 0; : : : 3, as usual, will be given by

the respective quaternary digits. In addition, the recursive calls of each mapping
will also depend on the digits – i.e., a different mapping will be called in each step,
such as:

ˇ.04:q1q2q3 : : :/ D Q.ˇ/
q1
ı f .ˇ/

q1
.04:q2q3 : : :/;

where f
.ˇ/

i 2 f�; ı; !g (ˇ itself is not called recursively, as it reflects the starting
pattern).

Table 7.1 lists all operators and also specifies the recursive calls depending on
the quaternary digits. Function betaOmega, finally gives an algorithm to compute
the ˇ˝-mapping. It takes fun as a parameter to specify the four different mappings
� , ı, !, and ˇ. The operators Q

.f un/
q and the recursive scheme of mappings f

.f un/
q

are taken from Table 7.1.

7.5 The Gosper Flowsnake

So far, all our space-filling curves were based on tesselations of the plane into
triangles or rectangles. In this section, we will discuss a space-filling curve, the
so-called Gosper curve (or Gosper flowsnake), that is based on a tesselation into
hexagons. The construction is illustrated in Fig. 7.10, which plots the first two
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Function betaOmega – compute the ˇ˝-curve (fixed digits)
Function betaOmega(fun, t, depth)

Parameter: fun: type of ˇ˝ mapping, fun 2 f�; ı; !; ˇg (fun D ˇ on entry)
t,depth: index parameter and depth of recursion (as usual)

begin
if depth = 0 then

return (0,0)
else

// compute next quaternary digit in q
q := floor(4*t);
r := 4*t - q;
// recursive call
(x,y) := betaOmega(f

.fun/
q , r, depth-1);

// apply operator Qq for correct mapping fun:

return Q
.fun/
q .x; y/;

end
end

R

G G

G G

G R

RR

G R

R

R

G G

R

Fig. 7.10 The first two iterations of the Gosper curve, G and R representing the two basic
generating patterns
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Fig. 7.11 The fifth iteration of the Gosper curve. The seven connected fourth iterations, each
filling a smaller approximated Gosper island, are plotted in different colours

iterations of the Gosper curve. From this illustration, we can extract the following
grammar description:

G  � Gl " Rl " R " rG " rGl " G " rR

j " l l " l " rr " r " r "
R  � Gl " R " rRl " Rl " G " rG " rR

j " l " l " l l " r " rr "
(7.3)

with non-terminals G and R, and f"; r; lg as terminal characters. G and R represent
the two basic patterns, as indicated in Fig. 7.10, but do not reflect the rotation of
the patterns. Consequently, we follow the turtle-graphics concept for the terminal
characters, such that "models a forward step and fr; lg prescribe 60ı-rotations to the
left or right, respectively. Figure 7.11 shows the fifth iteration of the Gosper curve,
as it results from a straightforward implementation of the grammar in Eq. (7.3).

Obviously, the Gosper curve does not fill a hexagon. As a hexagon cannot be
split into smaller, congruent hexagons, the subdomains have to be slightly modified
in each iteration, such that they can be split into seven congruent subdomains. In
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Fig. 7.10, this change of domains is illustrated via a light blue line that represents
the boundary of the previous hexagonal cells. The subsequent modification of the
boundary lines leads to a domain that has a fractal curve as boundary, which is
generated by the following generator:

The resulting fractal-bounded domain (with a hexagon as initiator) is called the
Gosper island – in Fig. 7.11, we can see how the iterations of the Gosper curve
successively fill the Gosper island, and how the Gosper island is substructured into
seven smaller islands. Thus, the Gosper island is a fractal space-filler.

References and Further Readings

The classification of space-filling curves in the given form was already introduced
by Wunderlich [277], who pointed out that to construct space-filling curves,
these should be recursive and connected according to the definition given in
Sect. 7.1 (where he also assumed the curves to be simple and use a uniform set
of transformations). In addition, he required that exit and entry point of the space-
filling curve in neighbouring subdomains are identical.

Lebesgue introduced his curve in a textbook on integration and analysis of
functions [157], using a notation very similar to Definition 7.5. He already pointed
out that the curve is trivially extended to higher dimensions. The term “Morton
order” refers to a technical report by Morton [194], who described the application
of bit interleaving for codes in the context of geographical data bases – which is
likely to be the first application of Morton order in computer science. The Lebesgue
curve and Morton order found their way into Scientific Computing with the use of
quadtree and octree data structures – see the respective references of Chap. 9.

The H-index was introduced by Niedermeier et al. [196], who proved, in the same
paper, that the H-index has optimal locality properties among all cyclic indexings
(which derive from closed space-filling curves). Similarly, the ˇ˝-curve, found by
Wierum [268], was developed as a curve with better locality properties than the
Hilbert curve. It is slightly worse than the H-index, though, but – in contrast to
H-index – is a recursive space-filling curve. See also Chap. 11 on locality properties
of space-filling curves.

The “flowsnake” discussed in Sect. 7.5 was constructed by William Gosper in
1975, and first presented a year later by Martin Gardner [95] in his series on “Math-
ematical Games”. This article also discussed the generation of the Gosper island
(see Exercise 7.5). Both, island and curve, were also discussed by Mandelbrot [174].
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Fukuda et al. [93] and Akiyama et al. [6] introduced a multitude of variants of the
Gosper curve with varying degree (i.e., number of recursive subdomains) using a
construction based on equilateral triangles. The Gosper curve rarely shows up in
applications, though it would be an obvious choice for meshes constructed from
hexagons.

What’s next?

The next chapter will take us to the three-dimensional case, and thus to
“true” space(!)-filling curves.

Exercises

7.1. Derive a standard arithmetisation of Morton order, and examine how it
corresponds to the bit-oriented definition of the mapping.

7.2. Due to the structural similarity of the H-index and the Sierpinski curve, we can
use the arithmetisation of the Sierpinski curve to compute the H-index of a given
grid cell (and vice versa). Describe how the respective algorithm to compute the
Sierpinski index (or Sierpinski mapping) has to be modified.

7.3. Draw the approximating polygons for the Gosper curve and derive a grammar
to describe them.

7.4. Derive an arithmetisation of the Gosper curve.

7.5. Try to compute the area of the Gosper island by computing the areas enclosed
by the successive boundary polygons. For the areas of the seven child-islands, we
expect 1/7-th of the area of the parent island. On the other hand, one can construct
the boundary of a Gosper island by connecting six half-boundaries of the child-
islands, which suggests that the boundary of the child islands is one third of that of
the parent island. Is there a conflict?



Chapter 8
Space-Filling Curves in 3D

8.1 3D Hilbert Curves

To construct a three-dimensional Hilbert curve, we want to retain the characteristic
properties of the 2D Hilbert curve in 3D. Hence, the 3D Hilbert curve should

• Fill the unit cube instead of the unit square;
• Be recursive, and should be based on recursive substructuring of cubes into

subcubes with halved side length – hence, a substructuring into eight subcubes is
wanted;

• Be face-connected.

These requirements leave us with three possible basic patterns, which are illustrated
in Fig. 8.1.

While the first two patterns, similar to the 2D construction, start and end at a
common edge of the cube, the “spiral form” depicted in the right-most plot has its
start and end points diagonally across, instead. Such a scenario did not occur in 2D.
As this diagonal curve will lead to a different kind of approximating polygons, we
will not consider it for the construction of a “proper” Hilbert curve – in particular,
it can be shown that such a construction cannot lead to a simple space-filling curve.
We will also disregard the pattern in the centre, and concentrate on the left-most
pattern, which is most similar to the 2D pattern.

8.1.1 Possibilities to Construct a 3D Hilbert Curve

Even if we restrict ourselves to the left-most pattern in Fig. 8.1, the construction of
a 3D Hilbert curve is not straightforward as in the 2D case. We will not obtain a
unique “Hilbert Curve”, but a whole collection of curves that can all be called a 3D
Hilbert curve. In the following, we will discuss the possible variants.

M. Bader, Space-Filling Curves, Texts in Computational Science and Engineering 9,
DOI 10.1007/978-3-642-31046-1 8, © Springer-Verlag Berlin Heidelberg 2013
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Fig. 8.1 Possible basic patterns to construct a 3D Hilbert curve

Fig. 8.2 Two variants from which to choose the approximating polygon of a 3D Hilbert curve (top-
left and top-right plot). The plots below show the corresponding second iteration of the respective
Hilbert curves

Varying the Approximating Polygon

Figure 8.2 illustrates two different constructions of 3D Hilbert curves. In both
constructions, the eight subcubes of the first iteration are sequentialised in the same
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Fig. 8.3 Two further variants from which to choose the approximating polygon of a 3D Hilbert
curve

Fig. 8.4 A fourth variant to construct the approximating polygon of a 3D Hilbert curve (together
with the respective second iteration)

order. However, the two plots at the top illustrate that the approximating polygons
of the two curves differ. Note the different transfers through the third and fourth
and through the fifth and sixth subcube. Mixing the two options will thus lead to
two further options, which are symmetric to each other – they are given in Fig. 8.3.
Finally, a fourth variant to construct the approximating polygon is given in Fig. 8.4.
In all cases, the effect of the different choices will only show up in the second
iteration of the curves.

Variants Due to Rotations of the Patterns

Figure 8.5 illustrates a further option to construct different variants of the 3D
Hilbert curve. There are two possibilities to connect two adjacent corners of the
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Fig. 8.5 Varying the basic 3D Hilbert pattern by a suitable rotation

Fig. 8.6 Two different constructions of a 3D Hilbert curve. Note the different orientation of the
Hilbert pattern in each subcube despite the identical local start and end points

subcube by a local Hilbert pattern. Hence, for a given approximating polygon, we
can choose separately for each of the eight subcubes, which of the variants shown in
Fig. 8.5 should be used. Figure 8.6 shows two different 3D Hilbert constructions that
demonstrate these options. Note that despite of an identical approximating polygon
the orientation of the local Hilbert patterns is different in all of the eight subcubes.
Nevertheless, the first iteration is identical, and the eight subcubes of the first level
are visited in the same order.

Obviously there are 28D 256 different variants that result from a different choice
of orientation of the local patterns. Adding the four different possibilities to choose
the approximating polygon leads to 1,024 potential variants (the two variants
in Fig. 8.3 lead to constructions that are pairwise symmetric). As there are also
two variants to construct the approximating polygon for the second basic pattern
in Fig. 8.1, there are 6�28D 1,536 structurally different variants to construct a simple
3D Hilbert curve.
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8.1.2 Arithmetisation of the 3D Hilbert Curve

The arithmetisation of the 3D Hilbert curve follows the established scheme. Due to
the recursive substructuring into eight intervals and cubes in each iteration step, the
respective arithmetisation is based on the octal representation of the parameter.

Hence, for a parameter t D 08:k1k2k3k4 : : : given as an octal number, we need
to determine the operators Hk for the following representation:

h.08:k1k2k3k4 : : :/ D Hk1 ıHk2 ıHk3 ıHk4 ı � � �
0
@

0

0

0

1
A

Each operator H0 to H7 describes the transformation of the unit cube into one of the
eight subcubes. For the Hilbert curve illustrated in the left plot of Fig. 8.6, we can
derive the following set of operators:
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Figure 8.7 illustrates how to derive the operators H0 and H7: the images of the three
canonical unit vectors form the column vectors of the matrix part of the operator,
which implements the required rotations and reflections. The translation part of
the Hk operators, as for the 2D case, can be read from the starting points of the
subcurves in each of the eight octants. Analogous to the 2D Hilbert and Peano
arithmetisations, we can use these operators to build algorithms to compute the
respective 3D Hilbert mapping, and also the 3D Hilbert index.
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Fig. 8.7 Obtaining the Hk operators for the arithmetisation of a 3D Hilbert curve

8.1.3 A 3D Hilbert Grammar with Minimal Number
of Non-Terminals

Grammar representations for 3D Hilbert curves, in general, are tedious, because of
the large number of required non-terminal characters. In total, there are 48 different
basic patterns: for each of the 12 edges, there is a set of four patterns that have their
entry and exit point of the curve adjacent to the given edge – two different patterns
are obtained from pattern rotations, as in Fig. 8.6, and two further patterns result
from switching the orientation, i.e., exchanging entry and exit point. An exhaustive
search on all 1,024 regular 3D Hilbert variants reveals that nearly all grammars for
the curves will require 24 non-terminals. However, for each of the four possible
approximating polygons, we obtain exactly one curve that requires only 12 non-
terminals. The arithmetisation introduced in the previous Sect. 8.1.2, leads to one of
these four curves.

The 12 non-terminals for this special 3D Hilbert curve are coded in a specific
way to describe the orientation of the corresponding pattern:

Œxyz�; Œx Ny Nz�; Œyzx�; ŒyNz Nx�; Œzxy�; Œz Nx Ny�; Œ NxyNz�; Œ Nx Nyz�; Œ Nyz Nx�; Œ NyNzx�; ŒNzx Ny�; ŒNz Nxy�

The triples reflect the image of the general vector .x; y; z/ subject to a rotation
that converts the starting pattern, Œxyz�, into the desired pattern. Bars indicate
negative values, such that Œx Ny Nz� corresponds to the image vector .x;�y;�z/, e.g.
Thus, the third coordinate direction in each triple reflects the orientation of the
edge that is adjacent to the entry and exit points (which is the z direction for the
initial pattern Œxyz�). A bar will consequently indicate that the connection of entry
to exit point runs in the negative coordinate direction. The location of x and y

in the triple indicate the location of the entry point within the respective plain.
A bar indicates that the entry point will be at coordinate 1 in that direction –
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xyz yzx

zxy xyz xyz

yzx yzx zxy zxy

xyz yzx

zxy

Fig. 8.8 The 12 basic batterns required to construct the 3D Hilbert curve, as introduced in
Sect. 8.1.2. The connection of entry and exit point is highlighted by a green arrow for each pattern

otherwise at coordinate 0. For example, the pattern Œz Nx Ny� has its entry point located
at coordinates .0; 1; 1/ and the connection to the exit point, at .1; 1; 1/, is in the
positive x-direction. All 12 occurring patterns, together with their non-terminals,
are illustrated in Fig. 8.8. The 3D Hilbert curve introduced in Sect. 8.1.2 is then
described by the following productions:

Œxyz�  � Œyzx� � Œzxy�! Œzxy� � Œ Nx Nyz� " Œ Nx Nyz� � ŒNzx Ny� ŒNzx Ny� � ŒyNz Nx�

Œx Ny Nz� � ŒyNz Nx� � Œz Nx Ny�! Œz Nx Ny� � Œ NxyNz� # Œ NxyNz� � ŒNz Nxy� ŒNz Nxy� � Œyzx�

Œyzx�  � Œzxy�! Œxyz� " Œxyz� Œ Nyz Nx� � Œ Nyz Nx�! Œx Ny Nz� # Œx Ny Nz� ŒNz Nxy�

ŒyNz Nx� � Œz Nx Ny�! Œx NyNz� # Œx Ny Nz� Œ NyNzx� � Œ NyNzx�! Œxyz� " Œxyz� ŒNzx Ny�

Œzxy�  � Œxyz� " Œyzx� � Œyzx� # Œz Nx Ny�! Œz Nx Ny� " Œ NyNzx� � Œ NyNzx� # Œ NxyNz�
Œz Nx Ny� � Œx Ny Nz� # ŒyNz Nx� � ŒyNz Nx� " Œzxy�! Œzxy� # Œ Nyz Nx� � Œ Nyz Nx� " Œ Nx Nyz�

Œ NxyNz� � Œ Nyz Nx� � ŒNzx Ny� ŒNzx Ny� � Œx Ny Nz� # Œx NyNz� � Œzxy�! Œzxy� � Œ NyNzx�

Œ Nx Nyz� � Œ NyNzx� � ŒNz Nxy� ŒNz Nxy� � Œxyz� " Œxyz� � Œz Nx Ny�! Œz Nx Ny� � Œ Nyz Nx�

Œ Nyz Nx� � ŒNzx Ny� Œ NxyNz� # Œ NxyNz�! Œyzx� � Œyzx� Œ Nx Nyz� " Œ Nx Nyz�! Œz Nx Ny�

Œ NyNzx� � ŒNz Nxy� Œ Nx Nyz� " Œ Nx Nyz�! ŒyNz Nx� � ŒyNz Nx� Œ NxyNz� # Œ NxyNz�! Œzxy�

ŒNzx Ny� � Œ NxyNz� # Œ Nyz Nx� � Œ Nyz Nx� " ŒNz Nxy� ŒNz Nxy� # ŒyNz Nx� � ŒyNz Nx� " Œxyz�

ŒNz Nxy� � Œ Nx Nyz� " Œ NyNzx� � Œ NyNzx� # ŒNzx Ny� ŒNzx Ny� " Œyzx� � Œyzx� # Œx NyNz�
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Fig. 8.9 Switch-back patterns for the 3D Peano curve

The set of terminal characters is now f ;!;#;"; �;�g, where � and � represent
backward and forward moves in the z direction (imagine the tail or tip of an arrow
seen from behind, or from the front, respectively).

8.2 3D Peano Curves

As a 3D Peano curve, we expect a recursive, face-connected space-filling curve
constructed from a recursive substructuring of the target domain, the unit cube
Œ0; 1�3, into 3 � 3 � 3 congruent subcubes in each step of the recursion. As there
is already a multitude of different Peano curves in the 2D case, and as the example
of the Hilbert curve showed us that the degree of freedom to construct a space-filling
curve is likely to grow in 3D, we can expect an even larger collection of 3D Peano
curves than in 2D. We will therefore concentrate on switch-back curves, only. The
respective basic patterns for construction are given in Fig. 8.9. As the approximating
polygons of all three patterns are given by the space diagonal, we can again replace
these pattern against each other in a construction of a 3D Peano curve, and thus
obtain an abundance of different curves.

An interesting property of the 3D Peano patterns that can be observed in Fig. 8.9
is that the patterns are assembled from 2D Peano curves. Moreover, the 3D patterns
will traverse the subcubes of any 3� 3 plane within the 3� 3� 3 subcubes according
to a 2D Peano pattern. In this section, we will therefore restrict ourselves to a special
type of 3D Peano curves, which can be constructed via such a recursion on the
dimension.

8.2.1 A Dimension-Recursive Grammar to Construct
a 2D Peano Curve

Figure 8.10 illustrates that the grammar-based description of the standard 2D Peano
curves can be split into two steps that correspond to the horizontal and vertical
direction. The respective patterns still can be represented by the usual patterns
P , Q, R, and S , which are now characterised by the diagonal relevant for the
approximating polygon. However, the respective subdomains of the patterns can
be both cubes and rectangles.
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Fig. 8.10 Derivation of the dimension-recursive grammar of a “standard” 2D Peano curve

We can describe this construction by a grammar that extends the set of non-
terminals fP; Q; R; Sg by further non-terminals fPy; Qy; Ry; Syg that correspond
to the rectangular subdomains. The production rules of the grammar are then:

P  � Py ! Ry ! Py

Q  � Qy  Sy  Qy

R  � Ry ! Py ! Ry

S  � Sy  Qy  Sy

Py  � P " Q " P

Qy  � Q " P " Q

Ry  � R # S # R

Sy  � S # R # S

The grammar is equivalent to the grammar presented in Sect. 3.3, as can easily
be seen by expanding the non-terminals fPy; Qy; Ry; Syg in the productions for
P; Q; R, and S . We just take an intermediate step via the rectangular subdomains.
At this point, take some time to try Exercise 8.4, which deals with the question
of how to extend this approach to construct iterations on rectangular meshes and
respective Peano curves on rectangular domains – Sect. 8.2.3 will generalise this
problem to rectangular grids of (almost) arbitrary size.

8.2.2 Extension of the Dimension-Recursive Grammar
to Construct 3D Peano Curves

The grammar for the 2D Peano curve can be extended to that for a 3D curve in an
almost straightforward way. We now require three sets of non-terminals – the
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Fig. 8.11 Approximating polygons and corresponding non-terminals to construct a dimension-
recursive grammar for a 3D Peano curve (the indices of the non-terminals are omitted, but should
be obvious)

non-terminals fP; Q; R; Sg that represent patterns for the cubic subdomains
plus non-terminals fPy; Qy; Ry; Syg and fPyz; Qyz; Ryz; Syzg for the rectangular
domains, where we subdivided in only one or two of the three dimension. The
convention for the indices of the non-terminals is to take the non-split dimensions
(i.e. the longer sides of the rectangle) as indices. The images in Fig. 8.11 illustrate
the construction of the 3D Peano curve from these 12 patterns – for illustration
purposes, the patterns are depicted by the corresponding approximating polygon,
only.
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With the terminal characters f ;!;#;"; �;�g, we can transfer the 3D Peano
curve constructed in Fig. 8.11 into the following grammar:

P  � Pyz ! Ryz ! Pyz

Q  � Qyz  Syz  Qyz

R  � Ryz ! Pyz ! Ryz

S  � Syz  Qyz  Syz

Pyz  � Py " Qy " Py

Qyz  � Qy " Py " Qy

Ryz  � Ry # Sy # Ry

Syz  � Sy # Ry # Sy

Py  � P � S � P

Qy  � Q �R �Q
Ry  � R �Q �R
Sy  � S � P � S

Based on this grammar, Algorithm 8.1 implements a traversal along the iterations
of the respective 3D Peano curve. We give the recursive procedure for the non-
terminals P , Py , and Pyz. The implementation of the procedures for the remaining
non-terminals is straightforward. Note that the reduction of the recursion parameter
depth is only required in the procedure for P . Hence, the recursion is only stopped
on a “cubic” pattern, which also ensures that we perform the same number of
substructuring steps in each dimension.

Algorithm 8.1: 3D Peano traversal
Procedure P(depth) begin

if depth > 0 then
Pyz(depth-1); right();
Ryz(depth-1); right();
Pyz(depth-1);

end
end
Procedure Pyz(depth) begin

Py(depth); up();
Qy(depth); up();
Py(depth);

end
Procedure Py(depth) begin

P(depth); back();
S(depth); back();
P(depth);

end

8.2.3 Peano Curves Based on 5 � 5 or 7 � 7 Refinement

The 3�3 switchback pattern to construct the regular Peano curves is easily extended
to a 5 � 5 or 7 � 7 pattern, as illustrated in Fig. 8.12. In fact, we can define such a
pattern on any n � m grid, provided n and m are odd numbers. An extension to
the 3D case is possible in the same way, and by recursive extension, we will obtain
Peano iterations on nk �mk (in 2D) or nk �mk � lk (in 3D) cells. For k !1, we
thus obtain a new family of Peano curves.
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Fig. 8.12 First iteration of a Peano curve based on a 5 � 5 or 7 � 7 switchback pattern

Fig. 8.13 Second iteration of a Peano curve on a .5 C 5 C 3/ � .5 C 3 C 3/ grid

Peano Iterations on .2n C 1/ � .2m C 1/ or .2n C 1/ � .2m C 1/ � .2l C 1/

Grids

Peano curves based on 5 � 5 or 7 � 7 refinement are not too often used; however,
as we will discuss in this section, we can apply the respective patterns to generate
Peano iterations on grids of (nearly) arbitrary size. We will stick to the regular 3� 3

recursion, and only allow other patterns on the leaf level. A simple example is given
in Fig. 8.13.

In a 3�3 recursion, we have to split the number of cells in each of the dimensions
into a sum of three numbers that determine the size of the subsquares. Hence, we
exploit the fact that any odd number can be written as a sum of three odd numbers
of nearly equal size:

2nC 1 D
8<
:

k C k C k if 2nC 1 D 3k;

k C k C .k C 2/ if 2nC 1 D 3k C 2;

k C .k C 2/C .k C 2/ if 2nC 1 D 3k C 4;

(8.1)
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Algorithm 8.2: 3D Peano traversal on an l �m � n grid (l; m; n odd)

Procedure P(l,m,n) begin
if l < 9 and m < 9 and n < 9 then

leafP(l,m,n);
return

end
if l >= m and l >= n then

P(split (l,1), m, n); right();
R(split (l,2), m, n); right();
P(split (l,3), m, n);
return

end
if l < m and m >= n then

P(l, split (m,1), n); up();
Q(l, split (m,2), n); up();
P(l, split (m,3), n);
return

end
if l < n and m < n then

P(l, m, split (n,1)); back();
S(l, m, split (n,2)); back();
P(l, m, split (n,3));
return

end
end

where we assume that k is again an odd number. Note that if we split two subsequent
odd numbers, 2nC1 and 2nC3, into such a sum, the summands will still only differ
by 2, at most:

2nC 3 D
8<
:

k C k C .k C 2/ if 2nC 1 D 3k;

k C .k C 2/C .k C 2/ if 2nC 1 D 3k C 2;

.k C 2/C .k C 2/C .k C 2/ if 2nC 1 D 3k C 4:

(8.2)

Further splits of k and kC2 will again lead to sums of three odd numbers that differ
by 2, at most. By induction, we can thus prove that any odd number can be split into
a sum of 3p odd numbers, which differ by at most 2. Hence, we can generalise the
simple pattern given in Fig. 8.13 for any grid of size .2nC1/�.2mC1/. Obviously,
the leaf patterns will have sizes m � n, where m and n may be 3, 5, or 7, because
for m; n D 9, there would be a further step of recursion.

We can thus generate Peano iterations on arbitrary grid sizes, provided the
grid sizes are given by odd numbers. However, even if data structures have even
dimension sizes, padding by one additional element in an even-sized dimension
will allow us to use such Peano iterations to generate element numberings on
these data structures. Algorithm 8.2 sketches an implementation to produce such
Peano iterations. The function split is used to compute the sizes of the split
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subsquares according to Eqs. (8.1) and (8.2). The leaf-case in Algorithm 8.2 needs
to be implemented in the function leafP (for the pattern P ). Note that we can call
the leaf case for larger sizes of the leaf squares, as well. We just need to change the
respective stopping criterion in the recursion, and replace 9 by the desired maximum
leaf size.

8.2.4 Towards Peano’s Original Construction

The dimension-recursive construction of the 2D Peano curve can also be represented
via an arithmetisation:

p.03:t1t2t3t4 : : :/ D P x
t1
ı P

y
t2 ı P x

t3
ı P

y
t4 ı � � �

�
0

0

�
:

The alternating substructuring along the different dimensions is reflected by the two
groups of operators P x

j and P
y
j , and the subdivision into three sub-rectangles in

each step leads to the construction via the ternary system. The operators P x
j are

easily derived as

P x
0

�
x

y

�
D
 

xC 0

1
3
yC 0

!
P x

1

�
x

y

�
D
 �xC 1

1
3
yC 1

3

!
P x

2

�
x

y

�
D
 

xC 0

1
3
yC 2

3

!
:

In its recursive formulation, the arithmetisation of the dimension-recursive Peano
curve can then be written as

p.t/ D p.03:t1t2t3 : : : / D P x
t1
ı
�

03:x1x2 : : :

03:y1y2 : : :

�
D P x

t1
ıp.03:t2t3 : : : / D P x

t1
ıp.Qt/:

For t1 D 0 and t1 D 2, the bit representation of p.t/ stays simple,

P x
0 ı
�

03:x1x2 : : :

03:y1y2 : : :

�
D
�

03:x1x2 : : :

03:0y1y2 : : :

�
P x

2 ı
�

03:x1x2 : : :

03:y1y2 : : :

�
D
�

03:x1x2 : : :

03:2y1y2 : : :

�
;

however, for t1 D 1, all ternary digits of the x-coordinate are reversed:

P x
1 ı

�
03:x1x2 : : :

03:y1y2 : : :

�
D
�

1 � 03:x1x2 : : :

03:1y1y2 : : :

�
D
�

03:.2 � x1/.2 � x2/ : : :

03:1y1y2 : : :

�
:

Any subsequent occurrence of a 1-digit will lead to a further reversal of digits. The
number of reversals is thus given by the number of preceding 1-digits. For the P y

operators, we observe the same behaviour – with the exception that the digits in the
y-coordinate are reversed. In his original construction [214], Giuseppe Peano used
such reversal of ternary digits to describe his space-filling curve.
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Definition 8.1 (Peano curve, Peano’s original construction). Consider a param-
eter t 2 I WD Œ0; 1� given in ternary representation:

t D 03:t1t2t3t4 : : :

The Peano mapping pWI ! Q WD Œ0; 1� � Œ0; 1� is then defined as

p.t/ WD
�

03:t1 kt2.t3/ kt2Ct4 .t5/ : : :

03:k
t1 .t2/ kt1Ct3 .t4/ : : :

�
;

where the operator k is defined as k.ti / WD 2 � ti for ti D 0; 1; 2, and kj will apply
the operator k exactly j times.

The operator k has the property

k2.t/ D t ) k2n.t/ D t for all n;

hence, only 1-digits will lead to a reversal of digits. Note that the ternary represen-
tation must not be stopped after a finite number of digits – otherwise a wrong result
will be obtained:

p.03:11/
‹D
�

03:1

03:k
1.1/

�
D
�

03:1

03:1

�
D
�

1
3
1
3

�

p.03:1100/
‹D
�

03:1k1.0/

03:k
1.1/k1.0/

�
D
�

03:12

03:12

�
D
�

5
9
5
9

�

p.03:110000 : : : /
ŠD
�

03:1k1.0/k1.0/ : : :

03:k
1.1/k1.0/k1.0/ : : :

�
D
�

03:122 : : :

03:122 : : :

�

D
�

03:2

03:2

�
D
�

2
3
2
3

�
:

As trailing 0 digits will be reversed, as well, we always have to compute p.t/ using
an infinite ternary representation of t .

8.3 A 3D Sierpinski Curve

The Sierpinski curve can be extended from the 2D to the 3D case, as well. One of
the main difficulties, however, is the recursive substructuring of the target domain.
For the 3D Hilbert and Peano curve the step from squares to cubes was intuitive,
and the recursive subdivision of each cube into 8 or 27 subcubes respectively was
straightforward. For a 3D Sierpinski curve, we expect a tetrahedral target domain,
instead. The question of how a tetrahedron is recursively substructured into smaller
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Fig. 8.14 Bisection of a
tetrahedron with tagged edge.
The oriented tagged edges are
marked by respective arrows

tetrahedra, however, is non-trivial, and we will come back to this question in
Chap. 12. For the following construction, we will sacrifice the feature of having
a substructuring into congruent subdomains. To obtain such a substructuring, we
generalise the bisection approach with tagged edges that was used in Sect. 6.2.

Definition 8.2 (Tetrahedron with Tagged Edge). Given are the four corner points
x1; x2; x3; x4 2 R

3 of a tetrahedron. The quad-tuple

Œx1; x2; x3; x4�

shall then be defined as the tetrahedron with tagged edge x1x2, where the edge x1x2

is assumed to be oriented.

Similar to the bisection of triangles, we can split the given tetrahedron along the
tagged edge, and obtain two sub-tetrahedra:

Œx1; x2; x3; x4�! Œx1; x3; x4; x5� ; Œx3; x2; x4; x5� : (8.3)

The new corner x5 is, by default, chosen as the midpoint of the tagged edge
x1x2. Figure 8.14 shows an example of such a bisection. The tagged edges are
again oriented such that they can replace the previous tagged edge by a respective
polygon. Hence, as in the 2D case, the tagged edges will serve as the approximating
polygon of a 3D Sierpinski curve. Encouraged by this analogy, we can formulate
the respective definition of the 3D Sierpinski curve:

Definition 8.3 (3D Sierpinski Curve). Let I WD Œ0; 1�, and S D Œx1; x2; x3; x4� be
a tetrahedron with tagged edge x1x2. The mapping function sWI ! S shall then be
defined via the following instructions:

• For each parameter t 2 I, there is a sequence of nested intervals

I � Œa1; b1� � : : : � Œan; bn� � : : : ;

where each interval results from bisecting the parent interval: Œak; bk� D Œ ik �
2�k; .ik C 1/2�k�; ik D 0; 1; 2; : : : ; 2k � 1.

• Each sequence of intervals corresponds to a sequence of tetrahedra generated by
bisection according to Eq. (8.3), S being the initial tetrahedron.

• The resulting sequence of 3D-tetrahedra converges uniquely to a point in S – this
point shall be defined as s.t/.
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Fig. 8.15 3D Sierpinski curve on an equilateral tetrahedron (12-th iteration)

The image of the mapping s W I ! S then defines a 3D Sierpinski curve.

Analogous to Algorithm 6.1 for the generalised Sierpinski curve, we can turn
Definition 8.3 into vertex-labelling Algorithm 8.3 to compute the iterations of the
3D Sierpinski curve. Figure 8.15 plots an iteration of the 3D space-filling curve
generated by this algorithm. An equilateral tetrahedron was used as target domain.

Algorithm 8.3: Computing the n-th iteration of a 3D Sierpinski curve
Procedure sierp3D(x1, x2, x3, x4, n)

Parameter: x1,x2,x3,x4: vertices (as 3D coordinates); n: refinement level
Data: curve: list of vertices (empty at start, contains iteration points on exit)

begin
if n = 0 then

return attach(curve, center(x1, x2, x3, x4))
else

sierp3D(x1, x3, x4, midpoint(x1,x2), n-1);
sierp3D(x3, x2, x4, midpoint(x1,x2), n-1);

end
end

As we will see in Chap. 12, the construction of tetrahedra for the presented 3D
Sierpinski curve leads to distorted tetrahedra and thus to a space-filling curve with
inferior locality properties However, it will also turn out that the given curve is the
only possibility to construct a face-connected 3D Sierpinski curve.
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References and Further Readings

The first 3D Hilbert curves were apparently described by Bially [42], who provided
a state diagram to compute the respective mappings (see Sect. 4.6.2), and by
Butz [58], who provided an algorithm for an n-dimensional curve. Bially’s curve,
similar to the curve described in Sect. 8.1.3, came by with only 12 patterns (which
are equivalent to the number of states in his state diagram) – Fig. 8.4 plots its first
iteration and approximating polygon.

The 3D Hilbert curve in Fig. 8.2 (left plots) was found independently by Sagan
[232, 233]. The curve in the right plots of Fig. 8.2 was presented by Gilbert [99].
Alber and Niedermeier [9] discussed the number of possible variants of 3D Hilbert
curves, and also provide a generalisation of the Hilbert curve to construct higher-
dimensional curves. Further algorithms for higher-dimensional Hilbert curves were
introduced by Quinqueton and Berthod [224] and Kamata et al. [145]. Hamilton
and Rau-Chaplin [118] discussed compact Hilbert indexings for higher-dimensional
spaces with the added requirement that different dimensions may demand a
considerably different number of indices in that direction. The respective indexings
are kept compatible to the standard curves, though. The credit for the first higher-
dimensional curves, however, is likely to go to Bially [42], who provided a state
diagram for a 4D curve, and to Butz [58] (both in 1969) – at least, they were among
the first to provide respective algorithms.

Peano, in his original paper [214], had already discussed the 3D version of
his curve. Also, he had pointed out that the curve was trivial to be adapted to
constructions based on any odd number, such as in Sect. 8.2.3. We will take up the
discussion of 3D Sierpinski curves in Chap. 12; hence, see the references section
of this chapter for background on 3D Sierpinski curves. The simplest option to
construct a 3D (or even higher-dimensional) space-filling order is probably to use
Morton order – a respective bit-oriented mapping is straightforward for any given
dimension. Exercise 8.6 deals with the question how the parameter interval should
be chosen to obtain a continuous mapping.

What’s next?

The remainder of this book will focus on applications of space-filling
curves. The next chapter will start with the combination of quadttrees and
octrees with space-filling curves. Chapter 10 will focus on using space-
filling curves as tools for parallelisation. It is recommended to do these
two chapters as a block.
The question of 3D Sierpinski curves is much more complicated than our
first discussion in this chapter. For applications in Scientific Computing,
it is especially connected with the question how to construct tetrahedral
meshes. Chapter 12 will discuss this question in more detail.
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Exercises

8.1. In Fig. 8.2, the approximating polygon and iteration in the two left plots
illustrate the 3D Hilbert curve as suggested by Sagan [232, 233]. Derive the
operators H0; : : : ; H7 for the arithmetisation of this 3D Hilbert curve.

8.2. Try to construct a closed 3D curve of Hilbert-type, analogous to the 2D Hilbert-
Moore curve. Give a respective arithmetisation.

8.3. Construct a Hilbert-type curve from the central basic pattern in Fig. 8.1. Again,
give the respective arithmetisation.

8.4. Describe how to extend the dimension-recursive grammar for the 2D Peano
curve to generate iterations that traverse a rectangular grid of 3m � 3n grid
cells. Formulate a respective traversal algorithm. You should also discuss how the
respective modified iterations could lead to the definition of a modified Peano curve
on rectangular domains.

8.5. Check whether the 3D Sierpinski construction is Sect. 8.3 can be extended to
higher-dimensional curves. In particular, check whether the bisection rule

Œx1; x2; x3; x4; x5�! Œx1; x3; x4; x5; xm� ; Œx3; x2; x4; x5; xm� ;

with xm D 1
2
.x1 C x2/ leads to a sequence of 4-simplices that share a common

3-dimensional simplex as hyperface.

8.6. In 2D, we need to choose the Cantor Set as parameter interval to turn Morton
order into a continuous mapping (the Lebesgue curve). Discuss how the parameter
set should look like in the 3D case. (Is it still possible to use the Cantor Set?)



Chapter 9
Refinement Trees and Space-Filling Curves

In Sect. 1.1, we introduced quadtrees and corresponding refinement trees, as shown
in Fig. 9.1, as efficient data structures for geometric modelling. We have even
considered a sequential order on the respective grid cells, which we now recognise
as equivalent to a Hilbert curve. In this chapter, we will add the respective details
to this idea – we will discuss a highly memory-efficient bitstream data structure
to store quadtree and octree structures, extend the idea to general spacetrees, and,
above all, introduce how to generate and compute sequential orderings of the grid
cells based on space-filling curves.

9.1 Spacetrees and Refinement Trees

Quadtrees and octrees subdivide the side length of the squares and cubes into
two parts in each step. However, respective spatial tree-oriented structures can
easily be generalised to allow substructuring into three or four parts in each step.
Figure 9.2 provides an example for a 3� 3 partitioning in each step, and also shows
a corresponding adaptive Peano curve. We could call the respective grid a nonal-tree
grid (or nontree grid?!), but for a corresponding 3D grid (and its refinement in 27
subcells in each step), we finally have to look for a better naming scheme.

Definition 9.1 (kd -spacetree). A (possibly attributed1) tree is called a kd -spacetree,
if it has the following properties:

• Each node of the tree is either a leaf, or has exactly kd children. Each child node
is again a kd -spacetree.

• Each node represents a d -dimensional hypercube. In particular, this holds for
each leaf node, as well.

1We call a tree attributed, if each node or leaf stores additional information, as for example inside-
outside information, material properties, or similar.

M. Bader, Space-Filling Curves, Texts in Computational Science and Engineering 9,
DOI 10.1007/978-3-642-31046-1 9, © Springer-Verlag Berlin Heidelberg 2013
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Fig. 9.1 Generating the quadtree representation of a 2D domain. The quadtree is fully extended
only for the highlighted cells (see also Fig. 1.2)

Fig. 9.2 An adaptive spacetree grid with 3 � 3 partition in each refinement step. The grid
refinement is triggered by a set of particles, and the refinement steps are chosen such that each
leaf-level grid cell finally contains at most one particle

• From each tree level to the next, the side lengths of the hypercubes are reduced
by a factor of k�1.

A spacetree is called regularly refined, if all leaf nodes are on the same refinement
level. Otherwise, it is called an adaptive spacetree.

According to this definition, a quadtree is a 22-spacetree, and an octree cor-
responds to a 23-spacetree. While we will restrict the term spacetree to grids
that have cubes or hypercubes as cells, it is clear that the refinement principle is
easily extended to cuboid cells. We will also extend the principle to triangular and
tetrahedral grids.
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Fig. 9.3 Quadtree refinement for a rectangle that is parallel to the coordinate axes

9.1.1 Number of Grid Cells for the Norm Cell Scheme
and for a Quadtree

Intuitively, we expect that a quadtree will require significantly fewer cells to describe
a given object with the same resolution as the norm cell scheme. After all, we may
use much coarser cells in the interior and outside of the object. However, can this
advantage be quantified?

We will try to determine the different number of cells for a simple, 2D example:
we prescribe a rectangle that is parallel to the coordinate axes, has side lengths
3
4

and 1
2
, but is placed such that it will never exactly match the refined subcells

(i.e., the coordinates are not finite binary fractions). The object will be embedded
into the unit square Œ0; 1�2, which forms the root element of our quadtree refinement.
The first quadtree refinement steps are illustrated in Fig. 9.3. For that rectangle, we
can exactly determine how many octree elements are required, if the refinement is
increased step by step – the respective number of elements is then compared with
the norm cell scheme.

Note that in the norm cell scheme, all cells of the (uniform) grid will be replaced
by four cells of half the size. Hence, independent of the size of the rectangle, we
will require n2 cells, if our cells have side lengths of h D n�1. The number of cells
thus grows of order O.h�2/ with the resolution h.

In the quadtree grid, we will only refine cells that contain the boundary of
the rectangle. Assume that a quadtree has already been refined up to a cell size
2h and contains r cells on the boundary and s cells that are entirely inside or
outside of the rectangle. Each of the r boundary cells will be replaced by 4 cells
of size h. However, only 2r of these 4r cells will again be on the boundary: along
the boundary, it is obvious that for each cell exactly 2 of 4 smaller cells are again
on the boundary. The four corner cells will be replaced by 16 cells of half the size –
again, 8 of them will again be on the boundary (compare Fig. 9.3 and note that the
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side lengths were chosen as multiples of the cell size). Hence, the refined quadtree
of cell size h will have 2r boundary cells plus s C 2r cells that will not be further
refined. We therefore obtain the following recurrence equation for the number of
grid cells sk and rk of a quadtree of refinement level k:

rk D 2rk�1; sk D sk�1 C 2rk�1:

Note that this recurrence does not hold for the first two steps, k D 0 and k D 1,
where the grid only consists of the root cell or four boundary cells. In refinement
level k D 2, as denoted by the solid lines in the left image of Fig. 9.3, we have
r2 D 10 boundary cells and s2 D 6 interior or exterior cells. The recurrence then
holds for all k � 3, and leads to the following formula for the number of boundary
cells:

rk D 2 � rk�1 D : : : D 2 � 2 � : : : � 2
„ ƒ‚ …

.k�2/ times

�r2 D 2k�2 � 10 D 5

2
� 2k:

For the sum sk of interior and exterior cells, we therefore obtain

sk D sk�1 C 2rk�1 D sk�2 C 2rk�2 C 2rk�1 D : : : D s2 C 2

k�1
X

�D2

r�

D 6C 2 � 5
2

k�1
X

�D2

2� D 6C 5.2k � 1 � 21 � 20/ D 5 � 2k � 14:

A quadtree of level k therefore consists of rk C sk D 15
2
� 2k � 14 � 15

2
� 2k cells.

In comparison with the size h D 2�k of a grid cell, the quadtree therefore consists
of approximately 15

2
� h�1 grid cells. Hence, while we have O.h�2/ grid cells in the

norm cell scheme, the octree requires only O.h�1/ cells.
In general, the number of required cells no longer grows with the area of the

modelled domain, but depends on the length of its boundary – note that 5
2

is exactly
the length of the boundary of our rectangle. In 3D, the number of grid cells will
depend on the area of the surface, instead of the domain’s volume. A detailed
discussion including proofs for this property was given by Faloutsos [85]. However,
this considerable reduction only occurs, if the boundary is sufficiently smooth – as
a counter-example, imagine a domain that is bounded by the Hilbert-Moore curve!

9.2 Using Space-Filling Curves to Sequentialise
Spacetree Grids

In the introduction, we have introduced the problem of sequentialisation of multi-
dimensional data structures. For any data structure, its sequentialisation is an
important issue, as it can serve as memory layout, element traversal, or just to
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Fig. 9.4 Quadtree representation of a uniformly refined grid, and its sequentialisation by a Hilbert
curve iteration

make problems simpler via the induced sequential order. Our sequential approach,
naturally, will be based on space-filling curves.

Similar to spacetrees, Hilbert and Peano curves result from a recursive substruc-
turing process. The 2D Hilbert curve is obviously constructed from a (regularly
refined) 22-spacetree (quadtree); similarly, the construction of 3D Peano curves is
based on a 33-spacetree. We can therefore sequentialise the leaf cells of a regularly
refined 22-spacetree (of depth n) by simply following the n-th iteration of the Hilbert
curve (compare the example in Fig. 9.4). In the same way, iterations of the Peano
curve can be used to sequentialise regularly refined 3d -spacetrees.

To compute the sequentialisation, we can use the traversal algorithms as intro-
duced in Chap. 3. For example, Algorithm 3.1 will compute the sequentialisation
of the tree in Fig. 9.4. Remember that this traversal algorithm was derived from the
grammar-based description of the Hilbert curve, where the productions

H  � A " H ! H # B

A � H ! A " A C

B  � C  B # B ! H

C  � B # C  C " A

define the recursive scheme of the algorithm: Each of the non-terminal characters
H , A, B , and C is turned into a recursive procedure, and the productions determine
the (nested) recursive calling scheme; the quadtree then has exactly the same
structure as the call tree of the recursive algorithm – compare Fig. 3.3 on page 34 and
see the annotated quadtree in Fig. 9.5. The sequential order results from a depth-first
traversal of this call tree, i.e. of the quadtree:

• If possible, we descend in the tree, always choosing the leftmost node that has
not been visited before.

• On leaf level, we process the current element, for example attach its number in
the sequential order, store or retrieve from the corresponding memory location,
update the node values, or similar.

• Afterwards, we backtrack upwards in the tree to the first (i.e. lowest-level) node
that has not been visited, yet, and proceed with the traversal.



134 9 Refinement Trees and Space-Filling Curves

4

3

0 1

2

7

6 9

13

14 15

12

11

10

8

5

A B B

H H

A

A

H A A C

H

B

C B B H

Fig. 9.5 Recursive call tree for the Hilbert traversal algorithm

Hence, we always visit the nodes in the tree representation strictly from left to right.
For the corresponding grid cells, the algorithm determines a fixed sequence as well,
which directly results from the grammar for the underlying space-filling curve. For
the non-terminal H , for example, the sequence starts in a lower-left corner, and then
proceeds with the steps up–right–down.

The geometrical position of each grid cell is therefore uniquely determined by
the position of its corresponding node in the quadtree representation. Hence, the
depth of the quadtree is the only data, which we have to store to be able to retrieve
the grid structure, including the position of all grid cells (provided, of course, we
store the size of the root cell of the tree). In this sense, the quadtree structure does
not require more memory than to store a uniform grid in a classical, array-oriented
way, where we would only store the number of grid points per dimension plus the
size of the grid cells.

9.2.1 Adaptively Refined Spacetrees

When introducing the spacetree structure, our intention was of course not to be
limited by the uniform refinement any more. Hence, we will extend our approach to
be able to sequentialise adaptively refined spacetrees in the same way:

• We keep using a depth-first traversal of the quadtree.
• We stick to the left-to-right sequence for processing the nodes of the tree, and thus

retain the local ordering of the spacetree cells in each refinement step, which is
given by the grammar of the space-filling curve.

• However, we can no longer use the depth of the tree to determine whether a node
is a leaf. Instead, we add a respective “refinement bit” to each node of the tree,
which tells us whether the respective node corresponds to a leaf cell or to a cell
that is refined.

Algorithm 9.1 outlines the scheme of such an adaptive tree traversal (compared
to the non-adaptive traversal in Algorithm 3.2, only the if-condition is changed).
Figure 9.6 illustrates the generated traversal for a simple adaptive spacetree grid.
However, the implementation outlined in Algorithm 9.1 is obviously not able to
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Algorithm 9.1: Algorithmic sketch of an adaptive Hilbert traversal

Procedure H() begin
if node cell is a leaf then

// Execute task on current position
execute (. . . );

else
A(); up();
H(); right();
H(); down();
B();

end
end

Fig. 9.6 An adaptive spacetree grid and its sequentialisation according to the Hilbert curve

produce the non-aligned steps that are required between quadtree cells of different
size. The necessary additions can be required by considering an improved grammar
representation for the Hilbert order.

9.2.2 A Grammar for Adaptive Hilbert Orders

To turn a classical Hilbert grammar, for example

H  � A " H ! H # B j H  � �
A � H ! A " A C j A � �
B  � C  B # B ! H j B  � �
C  � B # C  C " A j C  � �;
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Algorithm 9.2: Scheme of an adaptive Hilbert traversal

Procedure H() begin
if node cell is a leaf then

// Execute task on current position
execute (. . . );

else
refineH ();
A(); up();
H(); right();
H(); down();
B();
coarsenH ();

end
end

into a traversal algorithm, we required an additional production rule to prescribe
a uniform level of refinement. Now, to keep track of the refinement level of a
non-terminal in the generated strings, we require additional information. Such
information can be obtained from two additional terminals that model refinement
and coarsening – we will simply use parentheses, and obtain the following
productions:

H  � .A " H ! H # B/ j H  � �
A � .H ! A " A C / j A � �
B  � .C  B # B ! H/ j B  � �
C  � .B # C  C " A/ j C  � �:

These productions lead to a classical context-free grammar. As we can thus expand
any of the non-terminals on any level, we can model arbitrarily refined quadtrees
and define a Hilbert order on the respective quadtree cells. The improved traversal
Algorithm 9.2 is directly obtained from the context-free grammar by matching the
new terminal characters with functions refineH() and coarsenH(). During
the traversal, the functions refineH() and coarsenH() have to perform two
tasks:

1. Reduce (or increase) the step size for the terminal steps up(), down(), etc.,
before (or after) executing the calls for the child cells.

2. Move from the center of a parent cell to the center of the first child cell
(refineH), or move from the center of the last child cell back to the center
of the parent cell (coarsenH) – the respective operations therefore depend on
the current pattern, e.g. H .

The adaptive Hilbert curve in Fig. 9.6 can be produced with Algorithm 9.2, if the
nodes of the polygon are obtained from the positions successively marked by the
procedure exec().
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Algorithm 9.3: Adaptive Hilbert traversal of a bitstream-encoded quadtree
Procedure H()

Data: bitstream: bitstream representation of spacetree;
streamptr: current position

begin
// move to next element in bitstream
streamptr := streamptr + 1;
// check whether current node is leaf
if bitstream[streamptr] then

// execute task on current position
execute (. . . );

else
// read and process all child nodes
refineH ();
A(); up();
H(); right();
H(); down();
B();
coarsenH ();

end
end

9.2.3 Refinement Information as Bitstreams

Algorithm 9.2 performs a depth-first traversal of the quadtree, where in each level
the order of the children is prescribed by the Hilbert grammar. Hence, the relative
position of the child cells is given, and the only information required to restore the
entire structure of the quadtree grid is whether a tree node is refined or not. We can
code this information in a single bit. Moreover, the respective refinement bits will
be required exactly in the order defined by the depth-first traversal. We can thus
simply store the refinement bits in a bitstream, which in the simplest case could be
implemented as an array of bits. The result is Algorithm 9.3, which can thus be used
for quadtree traversals. Figure 9.7 illustrates the refinement bits for our quadtree
example, and also shows a typical part of the refinement bitstream. Note that we’ve
omitted the information whether a terminal quadtree cell is entirely inside (grey) or
outside (white) the domain. Such information could be inserted after the respective
0-bit. However, we can also store a separate array that contains all this information,
where the terminal cells are again stored in Hilbert order (compatible to the depth
first traversal). To model more complicated, realistic objects via a quadtree, we can
generalise this additional array, and use it to store additional material information
on the object in each of the array elements.
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Fig. 9.7 Traversal of a quadtree grid in Hilbert order together with the refinement information (as
annotation for the quadtree and as refinement bitstream)

9.3 Sequentialisation of Adaptive Grids
Using Space-Filling Curves

The sequentialisation of quadtree grids according to a Hilbert order can, of course,
be generalised to most of the other space-filling curves discussed in this book –
provided we use adaptive grids that are compatible with their construction process.

Figure 9.8 is already known from our introductory chapter (as Fig. 1.4) – we now
recognise it as a quadtree grid that is sequentialised via Morton order (or Lebesgue
curve).

Figure 9.9 provides a simple example of a 33-spacetree grid that is sequentialised
by a 3D Peano curve.

In Sects. 6.1 and 8.3, we discussed Sierpinski curves in 2D and 3D. Just as the
spacetree grids, their construction results from a recursive subdivision process of the
grid cells – however, instead of squares and cubes, we used triangles and tetrahedra
as cells. Again, it is straightforward to introduce Sierpinski-based sequentialisations
for adaptive triangular and tetrahedral grids. Figure 9.10 shows such an adaptive
triangular grid, the corresponding representation via a (binary) refinement tree, and
the sequentialisation of the grid cells along a Sierpinski curve.
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Fig. 9.8 Sequentialisation of a quadtree grid using Morton order

Fig. 9.9 Sequentialisation of a 3D spacetree using a Peano curve
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Fig. 9.10 An adaptive triangular grid, its corresponding refinement tree, and the sequentialisation
of the grid cells along a Sierpinski curve

References and Further Readings

The concept of quadtrees appeared in the early 1970s in image processing – see
for example Klinger and Dyer [148, 149] or Hunter and Steiglitz [136] (who gave
a proof that the number of leaf cells depends on the length of the boundary of an
object), but also the approaches by Warnock [263] or by Tanimoto and Pavlidis [254]
(who used only fully balanced quadtrees). In the context of data bases, and roughly
at the same time, quaternary trees were constructed to organise point data (tuples),
such as by Finkel and Bentley [87] and Bentley and Stanat [142]. A bitstream
encoding for quadtrees, such as discussed in Sect. 9.2.3, was first presented by
Kawaguchi [147] (for use in image compression). See Samet [235] for a review on
the history of quadtrees, and also on algorithms on quadtrees. Samet also discussed
recursive refinement of triangles and other geometric objects. With the advent of 3D
computer graphics, quadtrees were extended to octrees [138, 178, 179] and higher-
dimensional hyper-octrees [279].

As binary or quaternary encodings of quadtrees [2], especially via depth-first
sequentialisation of the leaves [96, 201], directly lead to Morton order [153], and
Z order [202, 204], i.e., to the Lebesgue space-filling curve, respective connections
were soon pointed out. An adaptive Hilbert indexing on a quadtree structure was
probably first described by Quinqueton and Berthod [224], though they did not use
the term quadtree.

Spacetrees and Refinement Trees in Scientific Computing

In computational science, the use of quadtrees and octrees grew popular with the
presentation of the Barnes-Hut algorithm [28] and similar methods to efficiently
compute long-range interactions of particles, especially in astrophysics. Octrees
were also utilised for grid generation – both, to generate octree grids for dis-
cretisation [4, 68] but also as helper structure to efficiently generate unstructured
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meshes [237, 241, 243]. Aftosmis et al. [5] used Hilbert and Morton order to
optimise various computational tasks (mesh coarsening, partitioning, inter-mesh
interpolation) on adaptive quadtree and octree meshes for computational fluid
dynamics (see also [275] for a similar approach). We will save all references
on parallelisation, which is surely the best established application of space-filling
curves, for the respective section in Chap. 10. In Chaps. 13 and 14, we will list
approaches that improve cache performance using space-filling curves.

The presentation of refinement trees, as given in this section, is based on
the respective partitioning method introduced by Mitchell [189], who discussed
tree-based definition of space-filling orders for quadtree and octree grids, as
well as for adaptive triangular and tetrahedral grids that result from bisection or
quadrisection/octisection refinement. See also the reference sections of Chap. 12
(space-filling orders on tetrahedral meshes) and, in particular, of Chap. 10 (parallel
partitioning using refinement trees). Maubach [177] also presented an algorithm
to define a Sierpinski order on an adaptive triangular grid, which is however, more
complicated than Mitchell’s refinement-tree approach or an algorithm similar to 9.3.

Computer Graphics: Triangular Grids and Triangle Strips

In computer graphics, triangular meshes are especially popular, as certain basic
operations are simpler to perform on triangles, and because hardware accelerators
have a long tradition of speeding up the processing on triangular grids. The use
of structured refinement to create right-triangular grids started out from quadtree
grids. An early work by Von Herzen and Barr [261], for example, described how to
obtain triangular meshes from restricted quadtrees, which allow at most a 2:1 size-
difference between neighbouring quadtree cells (see also Exercise 9.1). Recursive
bisection and respective triangle trees were, for example, introduced by Duchaineau
et al. [80] (who discuss refinement cascades), Lindstrom et al. [163], or by Evans
et al. [84]. Hebert et al. [126] used newest vertex bisection represented via binary
trees and binary codes, and studied traversal algorithms for respective grid points.
Triangle trees that are not based on bisection refinement were, for example, studied
by de Floriani and Puppo [73] or Lee and Samet [159] (see also the references
therein).

Sierpinski orders on recursively structured grids are especially used in the context
of triangle strips, i.e., edge-connected sequences of triangle cells, which can be
efficiently stored and processed by graphic libraries and hardware. Pajarola [207]
generated such triangle strips (equivalent to Sierpinski order) on restricted quadtree
triangulations; similar approaches were followed by Lindstrom and Pascucci [164],
Velho and Gomes [260], or Hwa et al. [137]. Pascucci [211] also discussed the use
of a 3D Sierpinski curve (as given in Sect. 12.2.2) to generate tetrahedral strips. The
construction of triangle strips on unstructured and structured meshes were discussed
by Bartholdi and Goldsman [30].
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What’s next?

The combination of spacetrees and space-filling curves provides the basis
for many applications of space-filling curves in scientific computing. The
next chapter will discuss parallelisation as maybe the most important.
Further applications will be presented in Chaps. 13 and 14. You can have
a short look at the basics, now, but to discuss them in details requires an
understanding of locality properties of space-filling curves – which is the
topic of Chap. 11.

Exercises

9.1. Consider a restricted quadtree, i.e., a quadtree where neighbouring quadtree
cells allow at most a size-difference of 2:1. Starting from this adaptive grid,
construct a conforming triangular grid, i.e., where all grid points are vertices of the
triangular cells (triangle vertices are not allowed to lie on an edge of the neighbour
triangle). Try to develop a formal construction scheme that leads to grids that are
compliant with newest vertex bisection.

9.2. The bitstream representation of a spacetree or refinement tree is motivated by
a traversal of the entire tree – including all inner nodes of the tree. Discuss how the
data structure has to be modified or extended to allow a traversal that only visits the
leaves of the tree.

9.3. A triangle strip can be represented as a sequence of vertices A; B; C; D; E; : : : ,
which models the triangle sequence ŒA; B; C �; ŒB; C; D�; ŒC; D; E�, etc. Check that,
using this notation, it is not possible to represent a triangle sequence in Sierpinski
order via a triangle strip. There are two approaches to “cure” this problem – for
example, by inserting vertices multiple times (thus allowing additional, possibly
“degenerate”, triangles) or by introducing a swap command that exchanges two
vertices in the vertex sequence. For both possibilities, show how to generate a
triangle strip from Sierpinski order.



Chapter 10
Parallelisation with Space-Filling Curves

Applications for the fastest and largest supercomputers nowadays originate to a
large extent from scientific computing – in particular, from numerical simulations
of phenomena and processes in science and engineering. Examples can be found in
many diverse areas, such as the computation of aerodynamic properties of vehicles
or aircraft, the prediction of weather or climate phenomena, in molecular physics
and chemistry, but also in astrophysics and geoscience.

As the accuracy of these simulations is determined by the number of unknowns
used in the computational model, simulation codes often have to be able to deal
with hundreds of millions or billions of unknowns. Both the computation time and
the memory requirements demand the use of parallel supercomputers to make such
large problems tractable. The computational scientist’s job is then to parallelise
the numerical simulation. The standard approach is to partition the computational
domain into equal parts, and distribute these partitions onto the available computing
cores. We will introduce this problem for a well-known example: the heat equation.

10.1 Parallel Computation of the Heat Distribution
on a Metal Plate

Let us remember the heat distribution example we used in the introduction. For
a metal plate that is discretised via a computational grid, such as illustrated in
Fig. 10.1, we want to compute the approximate temperatures at the respective grid
points.

Again, we can set up a system of linear equations for the temperature values. For
the Cartesian grid, we obtain the system known from Eq. (1.1):

ui;j � 1

4

�
ui�1;j C ui;j �1 C uiC1;j C ui;j C1

� D fi;j for all i; j; (10.1)

M. Bader, Space-Filling Curves, Texts in Computational Science and Engineering 9,
DOI 10.1007/978-3-642-31046-1 10, © Springer-Verlag Berlin Heidelberg 2013

143



144 10 Parallelisation with Space-Filling Curves

(a) Cartesian Grid (b) Triangular Grid

Fig. 10.1 Two computational grids for the metal plate problem: a simple Cartesian grid (left
image), and an unstructured triangular grid (right image)

where ui;j is the unknown temperature at grid point .i; j /, and fi;j models a heat
source or drain at this grid point.

As we want to compute the temperature distribution as accurately as possible, we
try to increase the number of unknowns as far as our computer allows. To limit the
computational load for each computing core of our (super-)computer, we distribute
our problem in smaller partitions. The partitions will be distributed to the cores
(and also to the available main memory, if distributed memory is used), solved in
parallel, and then combined to a global solution. Neglecting the potential numerical
issues involved with such a combination of individual solutions, we also have to ask
ourselves how the partitions should be chosen. In particular, what criteria should be
satisfied by an efficient partitioning of the computational grid?

Criteria for an Efficient Partitioning

In parallel computing, there are two “killer criteria” that are most of all respon-
sible for losing computational efficiency. First, the computing time lost due to
communication between processors, which is by orders of magnitude slower
than computation itself. And second, a bad load distribution, i.e. a non-uniform
distribution of the total computational work to the available processors, which will
cause processors to be idle and waiting for other processors to finish. For the creation
of parallel partitions in our application, this poses two requirements of fundamental
importance:

• Each partition shall contain the same number of unknowns!
Usually, the computational costs are mostly determined by the number of
unknowns. Hence, a uniform distribution of unknowns will usually ensure a
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uniform distribution of the computational work. Note that we have to adapt this
requirement as soon as the amount of work per unknown is no longer uniform. In
addition, further computational resources, most of all memory, might also have
an influence on the load distribution.

• The boundaries of the partitions shall be as short as possible!
In our system of Eqs. (10.1), only unknowns that correspond to neighbouring
grid points are coupled by the system. Hence, for all typical computations
(solving the system of equations, computation of the residual), we will access
those neighbouring unknowns at the same time. It is therefore important to
have as many unknowns available on the local processor, i.e. in the local
partition, as possible. For all unknowns outside of the local partition, costly
communication would be necessary to retain a uniform value of such unknowns
across all partitions. Keeping the partition boundaries short therefore reduces
communication between processors.
Considering the geometry of the partitions, the requirement for short boundaries
will prefer compact partitions over stretched ones. Note that an important
additional requirement can also be to keep the number of neighbours small, in
order to reduce the number of data exchanges between pairs of processors. This is
especially important, if establishing a connection between processes is expensive.

Depending on the specific application, further requirements may be important.
Similarly, the relative importance of the different requirements may strongly depend
on the application. We will especially consider adaptive grids. There, the number
of grid points and unknowns is increased at critical regions, in order to achieve
an improved accuracy there. Such an increased resolution might be necessary to
capture small details of the computational geometry, but it can also be required
for numerical reasons. For example, an error estimator (or error indicator) could
be used to determine regions of large error in the computational domain, where
the the grid should be refined and thus further unknowns invested. In time-
dependent simulations, the regions of adaptive refinement might change throughout
the simulation, and a dynamically adaptive refinement and coarsening may become
necessary.

Such adaptive or dynamically adaptive grids will pose further demands on a
successful partitioning algorithm:

• For adaptive grids, a partitioning algorithm must not be based solely on the
geometry of the computational domain, but has to consider the grid refinement
and (possibly changing) position of the unknowns.

• If the initial load distribution can be considerably changed by dynamical refine-
ment and coarsening, a quick update of the partitions or even a fast repartitioning
must be possible. Hence, in addition to computing an initial load distribution,
efficient load balancing should be possible.

• For comparably small changes of the number of unknowns per partition, the
shape of the partitions should change only slightly, as well. It is desirable to
retain as many unknowns in their old partition as possible, because migrating
unknowns to new partitions requires expensive communication.
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10.2 Partitioning with Space-Filling Curves

Space-filling curves offer two properties that make them particularly attractive to be
used for parallelisation:

• Space-filling curves provide a sequential order on a multidimensional com-
putational domain and on the corresponding grid cells or particles used for
simulations. To subdivide such a sequentialised list into partitions of equal size
is a trivial task, and even if the partitioning criteria are more complicated,
transforming the problem into 1D will considerably simplify the problem.

• Space-filling curves preserve locality and neighbour relations. Two points in
space with an only slightly different Hilbert or Peano index will also be close
neighbours in the image space. Hence, partitions that combine neighbouring
points in the index space will correspond to a local point set in the image space,
as well.

Hence, we can expect that a parallelisation based on space-filling curves could be
able to satisfy the two main requirements for partitions – uniform load distribution
and compact partitions. To actually compute the partitions, we will discuss two main
options: an approach via the computation of the indices generated by the space-
filling curve, but also traversal-based algorithms that build on the recursive structure
of the construction. The quality of the resulting partitions will be discussed in detail
in Chap. 11.

Partitioning by Using the Indices of the Grid Points

With the inverse mapping of a space-filling curve, we can compute an index for each
grid point of a discretisation mesh. These real-valued indices impose a sequential
order on the grid points, which we can use to define partitions for parallelisation.
A straightforward option is to first sort the grid points according to the computed
indices, and split this sorted array of grid points into equal-sized parts (similarly, we
could sort the grid cells according to the indices of their centre points). A prototype
implementation to compute partitions, for example based on the Peano curve, is then
given by the following steps:

1. For each grid point gi , compute the Peano index Np�1.gi /.
2. Sort the vector (array/list/. . . ) of grid points g according to the indices Np�1.gi /.
3. Partition the vector g of N grid points into K partitions:

g.k/ WD �
g.k�1/N=K ; : : : ; gkN=K�1

�
for k D 1; : : : ; K .

While step 3 will require at most O.N / operations (to place each grid point into
its partition), standard algorithms for sorting the grid points (using Mergesort or
Quicksort, e.g.) will require O.N log N / operations. The computational effort for
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Fig. 10.2 Partitioning of a set of randomly chosen grid points according to their Peano index. In
the example to the right, the points are concentrated towards the lower-left corner

the Peano indices, at first glance, seems to be linearly dependent on the number of
grid points. However, remember that the computation of Np�1.gi / for an individual
point gi depends on the number of digits in the resulting index. If the number of grid
points N grows, we also need to increase the accuracy of the index computation,
but even in the worst case, O.log N / digits will be sufficient. This leads to a
computational effort for O.N log N / for the entire partitioning problem.

An advantage of the sorting approach is that we do not have any restrictions on
the structure of the grid. Even for unstructured point sets, such as given in Fig. 10.2,
a partitioning using the sorting approach is possible without changes. Note, however,
that the partitioning itself typically has to be executed in parallel. Hence, we require
a parallel sorting algorithm, and also the distribution of points to partitions needs
to be parallelised. For choosing a suitable parallel sorting algorithm, the following
properties should therefore be considered:

• Typically, only part of the computational grid will change, which means that
the grid cells will be presorted to a large degree. A sorting algorithm should be
efficient for such situations, and must not deteriorate to a slow algorithm in that
case (which would be the case for a straightforward Quicksort algorithm).

• Due to the index computations, we are not restricted to comparison-based sorting
algorithms, but may use algorithms like Bucketsort, which have an O.N /-
complexity in the average case.

• If we choose a low precision for the index computations, the sorting algorithm
should be stable in the sense that cells that have the same index will not be
exchanged by the sorting algorithm. In that way, such cells will not move to
other partitions unnecessarily, for example during repartitioning.

For examples of suitable sorting algorithms, see the references section of this chap-
ter. See also Exercise 10.1, which discusses comparison algorithms to efficiently
determine the relative space-filling-curve order of two points.
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Fig. 10.3 Traversal-based partitioning of two rectangular grids using the Peano curve. In the right
image, an example using a recursively structured grid is shown

Traversal-Based Partitioning

For a uniform grid, such as the Cartesian grid given in Fig. 10.1, but also for any
grid that is described by a spacetree or refinement tree, a sorting-based partitioning
algorithm is likely to be inefficient, because the special structure of the grid is
not exploited. A more efficient approach can be based on using grid traversals, as
they are discussed in Sects. 3.2 (for uniform grids) and 9.2 (for adaptive grids). A
prototype algorithm is then given by the following steps:

1. Traverse the grid points gi along a space-filling curve, and label the grid points
by a respective incremental index ni .

2. Use the index ni to place each grid point gi into a partition, such that

.k � 1/N

K
� ni <

kN

K
:

If we already know the total number N of grid points, one traversal is sufficient,
otherwise we will need an initial traversal to count the grid points. In practice, we
will keep track of the total number of grids points during refinement and coarsening
of the grid cells. We will also update the indexing during such traversals.

The computational effort of the resulting partitioning algorithm is O.N /, as
during the traversal, each grid point is processed exactly once, and both the
numbering and the placement in a partition can be implemented with O.1/

operations. The effort for the traversal itself is also O.N /. Hence, the traversal-
based partitioning is cheaper (by a logarithmic factor) than using index-based
sorting. The advantage is obtained by using a structured grid; however, note that
the grid may be recursively structured and thus still be a fully adaptive grid, such as
illustrated in Fig. 10.3. For unstructured grids, it is possible to generate and maintain
a recursively structured grid as an organisational data structure, and thus also use the
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traversal-based partitioning for unstructured grids or particle-based data. However,
note that such an organisational structure can usually not be set up with O.N / effort
for an unstructured mesh, so it has to be generated alongside the unstructured mesh.

10.3 Partitioning and Load-Balancing Based on Refinement
Trees and Space-Filling Curves

Whenever we are faced with a dynamically adaptive computation, the number of
grid cells might change strongly across the computational domain. Then, even if we
start with a perfectly load-balanced grid, the partitions may become unbalanced
after a certain number of refinement and coarsening steps. To re-balance the
computational load, we can follow either of the following basic principles:

• We can re-compute the partitions from scratch. Such a repartitioning is worth-
while, if we expect substantial changes of the grid partitions. We then even
consider that entire partitions (in contrast to just small parts of them) have
to be relocated to other cores. It is only feasible, though, if the costs for the
repartitioning are not too high, or at least if the repartitioning is not required too
often.

• We can restrict ourselves to exchanging grid cells between neighbouring parti-
tions. In that case, two neighbouring partitions will determine the difference of
their cell numbers (or computational load, in general) and will then try to level out
that difference by exchanging a suitable number of cells (half of the difference,
for example). Such approaches are often referred to as diffusion approaches
and require a couple of load balancing steps to level out large imbalances. In
a strict space-filling-curve setting, we can even restrict the exchange of cells to
neighbours in the sequential order given by the space-filling curve. Then, every
partition will only exchange cells with its predecessor and successor in the space-
filing order, which further simplifies the algorithms.

If we follow a refinement-tree approach to represent an adaptive grid, a reparti-
tioning step can be prepared by augmenting the refinement tree by information on
the computational load in each node. In Fig. 10.4, we have augmented each node of
the tree by the number of leaves in the corresponding subtree. Hence, we assume
that each leaf, and its corresponding grid cell, cause the same computational load.
By tracking and updating such load information on each subtree, we can, during
repartitioning, determine for any partition what grid cells it will keep, which cells
it will forward to other process (and to which process), and whether it will obtain
additional cells from other processes. For the the case given in Fig. 10.4, we can
determine the partitions via the following steps:

1. The root node carries information on the total computational load (19), and thus
provides us with the three partitions f1; : : : ; 7g, f8; : : : ; 13g, and f14; : : : ; 19g.
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Fig. 10.4 Three partitions and their respective refinement tree – the inner nodes of the refinement
tree are augmented by respective load information (leaf nodes have load 1)

2. From the load information on level two, we obtain that the left subtree con-
tains leaf numbers f1; : : : ; 7g, while the right subtree contains leaf numbers
f8; : : : ; 19g.

3. Thus, the first partition, f1; : : : ; 7g (green), consists of the left subtree. Partitions
f8; : : : ; 13g and f14; : : : ; 19g are in the right subtree.

4. In the node with load 12, we consider the loads of the children, 9 and 3. We
conclude that the left subtree will contain the entire second partition (yellow, 6

cells) plus the first 3 cells of the third partition (cyan). And so on. . .

Hence, in every node of the tree, we have as information the index range of the leaf
nodes that are contained in the tree, and we know the boundaries of the partitions,
which we can compute from the root node. See also Exercise 10.3, which discusses
how to turn this construction into a formal algorithm.

A corresponding parallel algorithm requires the load information to be replicated
on processors. As a minimum, we need to store the load of the root node (i.e., the
total number of leaves) on all processes. In addition, a parent node requires the load
information of its children to determine the partition sizes. Figure 10.5 illustrates
the information required on each partition. We have to embed a given partition into
a complete refinement tree that starts from the root node, in a similar way as if
we would describe a complicated domain by a refinement tree. Note that the load
information in siblings is replicated in all corresponding processes. It will therefore
often be more convenient to store that information in the respective parent nodes.

10.4 Subtree-Based Load Distribution

So far, our partitioning approaches have been cell-oriented: for a given cell, we
determined the corresponding partition, which was given by the space-filling-curve
index of the cell. As a result, we will usually obtain partitions that consist of
fractions of a subtree. The respective cells are contiguous with respect to the
order given by the space-filing curve; however, they may consist of many different
subtrees, which might not belong to a compact, local subtree.
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Fig. 10.5 The parallel partitions as in Fig. 10.4, each of which is embedded into a corresponding
refinement tree with load information for partitioning
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Fig. 10.6 Subtree-oriented partitioning

An alternative approach is therefore to switch to a subtree-oriented partitioning,
as illustrated in Fig. 10.6. There, we strive to construct partitions that consist of
entire subtrees that are as large as possible. In each inner node of the refinement tree,
we may decide to split off one of the subtrees and put the resulting partition onto a
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different processor – similarly, we can split off several subtrees to other processors,
if we consider the case of non-binary trees, such as quadtrees or octrees.

Master-Slave Structure and Quality of Partitions

The main motivation for this subtree-oriented approach is to keep the communica-
tion structures between partitions, but also the load balancing mechanism, as simple
and as local as possible. If a partition becomes too big, it can decide – independent
of all other processes and partitions – to split off a subtree of appropriate size.
Hence, in a master-slave sense, the master can successively delegate work to
slaves. The slaves may again become local masters and delegate subtrees to other
processes.

As the sequence of cells in the subtrees is still given by the space-filling curve,
the partitions will have the same locality properties as for the previous algorithms.
However, as entire subtrees are split off, the shape of the boundaries is much more
regular than it would be for standard space-filling-curve approaches. We can expect
that the partition boundaries between a master and its slave processes consist of
just a few .d � 1/-dimensional hyperplanes, which can even lead to a reduced
amount of communication (see the discussion of the edge-cut of partitions, in
Sect. 11.2.1). In particular, however, we obtain a communication pattern that is
easier to implement. If a subtree is split off as a new partition, the newly generated
partition boundary will be between master and slave. Hence, any given section of
the partition boundary can be tracked back to a former master. Moreover, every
time a partition is split off, the master process can forward all required boundary
information to the slave, including with which neighbour processes it will need to
communicate.

Load Balancing and Work Pool Approach for Parallelisation

The orientation towards subtrees, however, also leads to certain restrictions: If we
only allow one subtree per partition, we will not necessarily be able to obtain a
perfectly balanced partitioning – see the example in Fig. 10.6. Even if we allow
several partitions per processor, we will strive to make the subtrees as large as
possible. The resulting coarse granularity of partition sizes, however, might then
still lead to certain imbalances. Hence, the subtree-oriented approach will only pay
off, if these load imbalances can be limited, and are countered by gains due to the
simpler communication structure.

A possible solution to finding processes that can take over work from masters
is a work-pool approach. The subtrees are announced to a work pool, from which
“lazy” workers (slaves) may pick up additional work. If the work pool is distributed
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across the available compute cores (as a collection of work queues, for example),
the respective approach is equivalent to classical work stealing approaches. See the
references section of this chapter for additional information on such approaches.

10.5 Partitioning on Sequentialised Refinement Trees

In Sects. 9.2 and 9.3, we discussed how recursively structured adaptive grids can be
stored via sequentialised bitstreams that encode the structure of the corresponding
refinement tree of the grid. The inherently sequential processing of such a bitstream,
however, requires some additional attention, if we are working in a parallel
setting:

• In a shared-memory environment, we might prefer to store the sequentialised
refinement tree only once, but traverse it in parallel by several processes. Hence,
we need to be able to skip grid sections that are handled by other processes.
Hence, we need to augment our data structure by the required information.

• In a distributed-memory setting, we will probably choose to store a separate grid
on each partition. In that case, we can keep the grid traversals simple by retaining
the global grid representation, but coarsening the non-local partitions as far as
possible. An interesting problem is then also how to join partitions or exchange
parts of the grid in a load balancing step.

We will deal with these questions in the following two subsections.

10.5.1 Modified Depth-First Traversals for Parallelisation

Assume that we can use several threads for the processing of the unknowns on an
adaptive grid, but we want to store the grid information only once and share this
data structure across multiple threads. Still, each of the threads will only process a
limited partition of the grid, which means that it will only traverse a limited part of
the corresponding refinement tree. In each node of the refinement tree, a thread will
therefore first check whether this node, i.e., at least part of the subtree below, belongs
to its own partition. If not, the thread will simply skip this part of the refinement tree.

Skipping subtrees is easy as long as we store the parent-child relation explicitly.
However, if we want to adopt a bitstream data structure as introduced in Sect. 9.2.3,
we cannot skip a subtree, because we would need to know its exact size in the
bitstream representation. Instead, we need to include this size information into the
bitstream. It is sufficient to replace the single refinement bit by the number of nodes
in the entire subtree, which changes the bitstream into a stream of numbers. To
skip a subtree, we then simply need to skip the respective number of nodes in
the stream. Figure 10.7 repeats the example in Fig. 9.7, now using the subtree size
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Fig. 10.7 Hilbert traversal of a quadtree grid together with the refinement stream – coding the
number of nodes of each subtree as refinement information

information instead of refinement bits. Algorithm 9.3 is easily adapted to implement
a traversal on such a subtree-size encoded stream – see Algorithm 10.1 in the
following subsection.

Modified Depth-First Traversals

A potential disadvantage of the size-augmented storage scheme will show up
especially, if we use a subtree-oriented partitioning, as described in Sect. 10.4.
There, it could be advantageous to decide dynamically, in a current node, whether
subtrees should be scheduled to different threads, how many subtrees should be
scheduled to an available slave thread, or similar. Such scheduling decisions require
the availability of all size informations for all subtrees. To retrieve the respective
information, however, we need to traverse through the subtrees, or at least to perform
a respective jump in the bitstream. This can be avoided, if we replace the size
information of a node by the sizes of all subtrees, i.e., if we store the subtree sizes
of a given node contiguously. Figure 10.8 modifies our well-known example to
match this new data structure. The positions of the size informations in the data
stream can be interpreted as a modified version of the depth-first traversal: for each
node, we first visit all child nodes, similar to a breadth-first traversal. However, this
breadth-first traversal is stopped at the child-level, and all further subtrees are visited
in a depth-first fashion. The order of grid nodes induced by this modified depth-
first traversal is also illustrated in Fig. 10.8. A sketch of the modified-depth-first
traversal is given in Algorithm 10.1. In the second for-loop, before the if-statement,
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Fig. 10.8 Hilbert traversal of a quadtree grid together with the numbering of the nodes in modified
depth-first search. Compare the new order within the data stream with that used in Fig. 10.7

we include a check whether the respective subtree is within a given partition. The
respective decision can use the entire size information available in the array ref.

10.5.2 Refinement Trees for Parallel Grid Partitions

In a distributed-memory environment, we will have to store the required grid
information separately for each partition. Naturally, we strive to restrict the memory
requirement to a minimum, which means that we only want to store information on
the part of the grid that belongs to the local partition. As already shown in Fig. 10.5,
we can embed a local partition grid into the global grid by using a global grid where
all non-local nodes of the refinement tree are not further expanded. Figure 10.9
updates Fig. 10.5 in the sense that we now show the corresponding grid that is stored
for each partition. The respective local grids will contain all grid cells that belong
to the current partition in their full resolution, but will be fully coarsened in all
parts that belong to other partitions. Again, the nodes of the refinement tree can be
annotated to store the number of grid cells in a respective subtree.

In a load distribution step, we will need to exchange a subgrid that contains the
required number of grid cells between two grids that are represented by such local
refinement trees. In a traversal-based approach, we require two steps:

• The partitions that give away grid cells need to perform a split traversal, where
subtrees that correspond to grid parts that are no longer in the local partition will
be fully coarsened. At the same time, a new local refinement tree has to be built
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Algorithm 10.1: Modified depth-first traversal (in Hilbert order) of a size-
encoded quadtree

Procedure H()
Data: sizestream: size encoding of spacetree;

streamptr: current position
Variable: ref : size (sizestream elements) of the children (as array)

begin
// read info on all childs from sizestream
for i = 1, . . . , 4 do

streamptr := streamptr + 1;
ref[i] := sizestream[streamptr];

end
refineH ();
for i = 1, . . . , 4 do

if partition i executed by other thread then
// skip partition in bitstream
streamptr := streamptr + ref[i];
continue;

end
if ref[i] = 0 then

// execute task on current cell
execute (. . . );

else
// call to recursive pattern (A, H, H, and B, respectively)
childH(H,i);
// step to next cell (up, right, left, and none)
step(H,i);

end
end
coarsenH ();

end

that embeds the grid cells that are to be transferred to the other partition (see
Exercise 10.4).

• The receiving partitions now need to join the two refinement trees in a respective
tree traversal. A simplified implementation of such a join traversal is given in
Algorithm 10.2.

The split and join traversal can be generalised for splitting large partitions into two
parts or joining two small partitions into a larger one, and will thus enable load
balancing for scenarios where the number of available processes might change.
For example, in the set-up phase of a large-scale simulation, an initial, relatively
coarse grid might be successively refined to obtain the final resolution. Adopting
split traversals will step-by-step increase the number of processes during such a
set-up phase.



10.6 Data Exchange Between Partitions Defined via Space-Filling Curves 157

2 3

3 4

217

19

2

2 3 3

2

63

3

217

9

19

3 3

2

2

6

3

217

9

19

Fig. 10.9 Parallel grid partitions as in Fig. 10.5: now, each local grid contains the local grid cells
in full resolution whereas the grid is fully coarsened in all parts that belong to other partitions

10.6 Data Exchange Between Partitions Defined
via Space-Filling Curves

So far, we have discussed the definition of partitions via space-filling curves, and
also how the respective partitions can be traversed in parallel, including necessary
changes of the data structures. In this section, we will add another essential aspect of
parallel processing: we will discuss how data can be exchanged between partitions.
For many applications, such communication is restricted to the exchange of data at
the boundary of two partitions, for example:

• Exchanging the refinement status of edges along the partition boundaries, in order
to avoid hanging nodes across partition boundaries (during adaptive refinement
or coarsening of the grid);
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Algorithm 10.2: Traversal to join two binary refinement trees
Procedure join reftree(joinStream, aStream, bStream)

Parameter: aStream,bStream: input trees in bitstream encoding
Result: joinStream: joined tree (in bitstream encoding, as output parameter)
Variable: aRef,bRef : refinement status of the two current nodes

begin
// read refinement info in bitstreams
aRef = read(aStream); bRef = read(bStream);
if aRef= bRef then

// copy identical parts of the refinement tree
append (joinStream, aRef);
if aRef= 1 then

join reftree(joinStream, aStream, bStream);
join reftree(joinStream, aStream, bStream);

end
else

// only one of the subtrees is non-empty
if aRef= 1 then

append(joinStream, aRef);
add reftree(joinStream, aStream);
add reftree(joinStream, aStream);

else
// bRef = 1
append(joinStream, bRef);
add reftree(joinStream, bStream);
add reftree(joinStream, bStream);

end
// no action if aRef = bRef = 0

end
end

Procedure add reftree(joinStream, stream)
Parameter: joinStream, stream: refinement trees in bitstream encoding
Result: refinement tree stream is added to joinStream as subtree
Variable: ref : current refinement status (of the subtree)

begin
ref = read(stream) ;
append(joinStream, ref);
if ref= 1 then

add reftree(joinStream, stream);
add reftree(joinStream, stream);

end
end

• Synchronising the unknowns on the partition boundaries as part of a domain
decomposition approach with non-overlapping domains;

• Exchanging the values of so-called ghost cells, i.e., cells of a neighbouring
partition that are replicated in the local partition.
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Fig. 10.10 Parallel quadtree grid partitions that share a layer of ghost cells (highlighted by using
a darker colour) – here, ghost cells are required to share at least a common edge with any cell of
the partition

The communication problem thus depends on whether two adjacent partitions will
only share data lying directly on their respective partition boundaries, or whether
the partitions overlap, and thus share data that is local to grid common cells.

10.6.1 Refinement-Tree Partitions Using Ghost Cells

During parallel processing, algorithms will typically access data in neighbouring
grid cells to update unknowns or grid data – our system of linear Eqs. (10.1) for the
heat equation being one example. To avoid communication operations each time we
enter a cell close to a partition boundary, a standard approach is to replicate grid
cells in a partition, if their data is required for computations by the local partition,
even if these cells are treated by a neighbouring partition. Such cells are often called
ghost cells (or halo cells). Figure 10.10 gives an example of a quadtree grid, where
two parallel partitions share a layer of ghost cells. Note that each quadtree grid is
embedded into the same unit domain and all cells outside the local partition and
ghost cell layer are fully coarsened.

A typical numerical algorithm will perform the following steps for each parti-
tion:

1. Update the unknowns in each cell based on the unknowns in the neighbouring
cells, including unknowns in ghost cells.

2. Update the values in the ghost cells, i.e., each partition will send the values of the
updated unknowns to the respective neighbour partition.

3. With the updated ghost-cell unknowns, each process can proceed with step 1.

In a concrete implementation, such a ghost-cell approach has the advantage that
the update of unknowns works exactly in the same way for all cells – regardless of
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whether they are adjacent to a partition boundary or in the interior of a partition. The
parallelisation problem is thus reduced to the problem of updating the ghost layer.

Now assume that we use refinement-tree grids and traverse them according to a
fixed order, given by a space-filling curve, e.g. If we use the same ordering scheme
in all parallel partitions, any two partitions will traverse their common ghost cells
in exactly the same order – compare the Hilbert order induced on the ghost cells in
Fig. 10.10. Note that this property extends to unknowns on edges or vertices of the
grid cells, as well, as long as we define a unique order in all partitions – for example,
the order defined by the last access to an unknown during a traversal. The data
exchange during communication between two partitions is then simplified in the
sense that both partitions use the same relative order of the unknowns. In particular,
it is sufficient to exchange the values of the data only, without additional information
on their location.

10.6.2 Non-Overlapping Refinement-Tree Partitions

In domain composition approaches with non-overlapping domains, unknowns in
parallel partitions will at most access unknowns that are located on partition
boundaries, which in such contexts are therefore often referred to as a separator.
The values of the separator unknowns then need to be approximately computed
in advance – such as in so-called Schur complement methods (see [247] for
an introduction to such domain decomposition methods). For certain numerical
schemes (explicit time-stepping methods, for example), it is also sufficient to access
separator values from the previous iterative step (or time step). This situation will
often occur, if an element-wise processing of the unknowns is applied – see, for
example, the case study in Chap. 14. We then have the situation that no ghost cells
are required, and partitions will be directly adjacent to each other, and only share
the separator, i.e., the partition boundary, with their respective neighbours. In the 2D
case, the connectedness of space-filling curves will then induce a couple of helpful
properties on the partitions and on the communication patterns. Thus, let’s consider
the following partitioning scenario:

• The computational domain is embedded into the unit square (or any other domain
that is filled by a space-filling curve), and we apply a structured, but possibly
adaptive grid refinement that is compatible to the construction of the space-filling
curve. Grid cells that are outside of the computational domain are considered
as obstacle cells, which means that they are treated as part of the grid (and of
respective partitions), but either no or minimal processing is done on such cells.

• The space-filling curve compatible with this grid is assumed to be connected
(i.e., edge-connected in 2D) and induces a respective indexing on the grid cells.
Partitions are defined via index intervals (each partition consisting of exactly one
index interval).
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Fig. 10.11 Partitions induced
by a 2D Hilbert space-filling
curve – note that the
node-located unknowns are
split into a left (green discs)
and a right (red discs) half

As we are primarily concerned with the synchronisation of the unknowns on the
separators, we will, in the following, assume that unknowns are located on cell
vertices. However, the discussion will also apply, if unknowns are located on cell
edges. Unknowns located in the interior of cells, finally, do not pose any problems,
as they are local to one partition and will not be communicated.

An important observation for 2D connected space-filling curves is then, that they
will divide the node- and edge-located unknowns of the sequentialised grid into two
parts – a left half and a right half, as illustrated in Fig. 10.11. In the same way, any
partition – and thus any partition boundary of a given partition – will be split into
a left and a right part. For parallelisation and, in particular, for the communication
patterns during parallelisation, this has a couple of helpful implications:

1. As the iterations of a connected curve cannot intersect themselves, we obtain
exactly one left and one right part of the boundary in each partition. Moreover,
the indices of the cells adjacent to the partition boundary will grow or decrease
monotonously along a partition–partition boundary. Note that the adjacent
partitions will be numbered in opposite order along their common separator. This
so-called stack property will be exploited for a much more general processing
approach in Chap. 14. For parallelisation, we can utilize it for writing and reading
boundary values to communication buffers. Unknowns are sent in the sequential
order obtained from the traversal, and are received in inverse order by the
adjacent partition.

2. Due to the monotonicity of indices, the boundary between two partitions will be
contiguous. It cannot be intersected by a boundary with other partitions, because,
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then, we would have a contradiction between partitions being defined via
contiguous intervals, and unknowns at partition boundaries being in monotonous
order.

3. As a corollary, the indices of the partitions (i.e., the numbers of the intervals
that define them) are either growing or decreasing monotonously along partition
boundaries, but may have occasional jumps in that sequence (consider the
red boundary of the blue partition in Fig. 10.11). Still, this property can be
exploited to structure the communication pattern for data exchange between all
partitions, and ensure that partitions send and receive packages from neighbours
in optimised order.

The left and the right part of each partition meet at the entry and exit points of
the curve in this partition. We will take up this discussion in Chap. 14, where we
will examine an approach that exploits the stack property at partition boundaries for
additional computational tasks. There, we will also discuss the 3D case, as this, of
course, is not just a natural extension of 2D.

References and Further Readings

The first applications that used space-filling curves for parallelisation again stem
from N -body simulation problems [234, 245, 264], which mainly used Morton
order on quadtrees and octrees – compare the references section on spacetrees. For
PDE-based simulation on spacetree grids, space-filling-curve techniques for paral-
lelisation and partitioning were quickly adopted. For example, Patra and Oden [212]
used index-based graph partitioning for finite element simulations; Pilkington and
Baden [217, 218] introduced an approach based on inverse SFC mappings followed
by recursive bisection in 1D. Sorting-based approaches were presented by Kaddoura
et al. [143] (Morton/Hilbert order on graphs that represent discretisation grids),
Ou et al. [206], or Aluru and Sevilgen [10] (Z-curve). Luitjens et al. [172] especially
discussed parallel sorting to generate parallel Hilbert indexing. Parallelisation
approaches that use space-filling indices for hash functions were followed by
Parashar and Browne [210], as well as by Griebel and Zumbusch [108, 109].
Variants of partitioning methods based on inverse mappings are discussed in [249].
To determine costs of subtrees via respective octree traversals was introduced
by Flaherty et al. [88]. Scalability to very large numbers of compute cores was
demonstrated in [225]. The refinement-tree approaches outlined in this section are
strongly based on the work by Mitchell [189]. The subtree-oriented techniques
discussed in Sect. 10.4, as well as the use of modified depth-first traversals, are based
on the work of Weinzierl [265].

Interestingly, Sierpinski curves are less commonly used for parallelisation
(despite their somewhat superior locality properties – see Sect. 11), even in the
case of triangular grids. Respective parallelisation approaches were for example,
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introduced by Behrens and Zimmermann [40] (generalised Sierpinski curves for
oceanic applications) and by Zumbusch [286], who also provide excellent reviews
on this issue in their respective textbooks [37,287]. Nevertheless, Hilbert or Morton
order are often used even for structured triangular grids ([228], e.g.).

Locality properties of space-filling curves, and thus the quality of resulting
partitions will be discussed in the next chapter – hence, see the respective references
section for literature that specialised on respective theoretical aspects. Comparisons
of space-filling-curve approaches with other partitioning methods, especially graph-
based approaches, were presented, for example, by Hendrickson et al. [128, 129],
Schloegel et al. [240], or Schamberger and Wierum [239].

Applications and Software

Parallelisation and partitioning based on space-filling curves, by now, has become
state-of-the-art, and there is a multitude of various applications, and also a good
number of simulation packages that exploit space-filling curves. For example,
packages that use Hilbert or Morton order on octree-structured grids include
PARAMESH [79], Racoon [79], Dendro [253], or p4est [55]. Zoltan [61, 76] is a
load-balancing package that offers traversal-based partitioning using Morton order,
Gray codes, or Hilbert curves. The Peano framework [52] (see also Chap. 14)
is based on the Peano curve and respective spacetree refinement. For triangular
grids, amatos [39] is a Finite Element package that uses bisection refinement and
generalised Sierpinski curves for parallelisation.

As already indicated above, the parallelisation of tree algorithms for particle-
type simulations was one of the earliest applications of space-filling curves for
parallelisation, and is still in use for applications in astrophysics [167], for Coulomb
solvers [98], or for general elliptic problems [280]. Similarly, space-filling curves
have been used in molecular dynamics [14, 46, 62], for cosmological simulations
using Smoothed Particle Hydrodynamics [248], or for meshfree PDE solvers [107].
Within grid-based simulations, space-filling curves were adopted as a tool for
parallelisation of general PDE solvers [209] and for Finite Element problems [213,
252], including multigrid [108] or domain decomposition methods [33], or divide
and conquer algorithms [12]. Specific applications include computational fluid
dynamics [5, 8, 49, 52, 53], including biofluidics [225] and magnetohydrodynamics
[284], and solvers for supernova simulation [60]. In the geosciences, space-filling
curves have been used in the simulation of mantle convection [54], seismic wave
propagation [258], as well as in atmospheric [36, 74, 195] and ocean modelling
[75]. Further applications in scientific computing include matrix operations in linear
algebra [19, 152], or even neural networks [63]. In classical computer science,
space-filling-curves were, for example, used as an indexing scheme for processor
meshes to parallelise tree searches [144], sorting algorithms [236], or problems in
computational geometry [186].
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Fig. 10.12 Unstructured
triangular grid covering
Bavaria – can you generate a
good partitioning using one
of the space-filling-curve
approaches?

What’s next?

The next chapter will discuss the quality of partitions defined via space-
filling curves, which results from certain locality properties.
You should not skip the locality properties entirely, but at least browse
through the most important concepts (Hölder continuity, in particular),
before moving on.

Exercises

10.1. Extend the algorithms derived in Exercise 4.7, such that they can be efficiently
used for index comparisons of points, i.e., to determine which of two points is visited
earlier by the Hilbert curve.

10.2. Take the unstructured triangular grid given in Fig. 10.12 and try to generate a
numbering of the elements. You can either try a map-based approach (draw a space-
filling curve on top on the grid), or impose some spacetree structure on the grid.
Check the quality of your numbering by examining the generated partitions.

10.3. Examine the example for determining the parallel partitions for Fig. 10.4, and
specify a prototypical algorithm to compute such partitions. Does your algorithm
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also work in a parallel setting, such as in Fig. 10.5, where only the partition-local
part of the refinement tree is stored on a given parallel process.

10.4. Sketch an algorithm that splits a refinement tree into two partitions, reading
the respective bitstream encoding, and writing the bitstream encoding of the two
partitions as output.

10.5. In Sect. 10.6.2, we discussed that a space-filling curve iteration divides the
node-located unknowns into two parts that are left and right of the iteration,
respectively. How can you determine in each grid cell, which unknowns are left
or right of the curve?



Chapter 11
Locality Properties of Space-Filling Curves

11.1 Hölder Continuity of Space-Filling Curves

The overall properties of space-filling curves, together with the results for the
examples shown in Figs. 10.2 and 10.3, indicate that space-filling curves are a good
heuristics for an efficient load distribution of data into compact partitions. It would,
of course, be interesting to be able to quantify this property, or give a mathematical
property to characterise it.

In the following section, we will see that the so-called Hölder continuity of space-
filling curves is an appropriate tool to quantify locality properties of space-filling
curves.

Definition 11.1 (Hölder continuous). A mapping f W I ! R
n is called Hölder

continuous with exponent r on the interval I, if there is a constant C > 0 for all
parameters x; y 2 I, such that:

kf .x/ � f .y/k2 � C jx � yjr :

Of course, we could exchange the Euclidian norm k � k2 by another, equivalent
norm in this definition.

For space-filling curves, the Hölder continuity provides a relation between
the distance of the indices (parameters) and the distance of the image points. The
distance of indices is given by the parameter distance jx � yj; the distance of
the image points is given by kf .x/ � f .y/k2. In the following section, we will
show that the Hilbert curve is Hölder continuous with exponent r D d �1, where d

denotes the dimension of the curve:

kf .x/ � f .y/k2 � C jx � yj1=d D C d
p

jx � yj

M. Bader, Space-Filling Curves, Texts in Computational Science and Engineering 9,
DOI 10.1007/978-3-642-31046-1 11, © Springer-Verlag Berlin Heidelberg 2013
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11.1.1 Hölder Continuity of the 3D Hilbert Curve

To prove Hölder continuity of the 3D Hilbert curve works in almost the same way
as the proof for regular continuity. However, a few technical details need to be
added:

1. Consider two arbitrary parameters x; y 2 I. We can then choose an n, such that
8�.nC1/ � jx � yj < 8�n.

2. 8�n is exactly the length of the intervals in the n-th iteration of the 3D Hilbert
construction. The interval Œx; y� will therefore overlap at most two intervals of
the n-th level, which have to be adjacent!

3. Due to the construction of the 3D Hilbert curve, the two intervals will be mapped
to two adjacent cubes with side length 2�n. The function values h.x/ and h.y/

there lie within the cuboid made up from these two cubes.
4. The maximal distance between h.x/ and h.y/ is therefore limited by the space

diagonal of this cuboid. The length of this diagonal is exactly

2�n �
p

12 C 12 C 22 D 2�n � p
6:

5. Hence, for the distance kf .x/ � f .y/k2, we obtain the following inequality:

kh.x/ � h.y/k2 � 2�n
p

6 D .8�n/
1=3

p
6 D �

8�.nC1/
�1=3

81=3
p

6

� 2
p

6 jx � yj1=3

Choosing C WD 2
p

6 and d D 3, we have thus proven the Hölder continuity of
the 3D Hilbert curve.

From the proof, it becomes obvious that connectedness and recursivity (in particular,
congruent subdomains) are sufficient properties to prove Hölder continuity.
Hence, all connected, recursive space-filling curves will be Hölder continuous
with exponent d �1.

11.1.2 Hölder Continuity and Parallelisation

Via the inequality

kf .x/ � f .y/k2 � C d
p

jx � yj;

the Hölder continuity of a curve provides a relation between jx � yj, which is
the distance of the indices defined by the space-filling curve, and the distance
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kf .x/ � f .y/k of the corresponding curve points. Primarily, jx � yj is a distance in
the parameter interval. However, we can also relate it to the corresponding section
of the curve, i.e. the image of the interval Œx; y� under the mapping h. With this
additional relation, the Hölder continuity would lead to a relation between the area
of a partition, proportional to jx � yj, and the extent of a partition, which depends
on the maximal distance kf .x/ � f .y/k. Hence, we need to take a closer look at
the relation between an interval Œx; y�, and the volume of the corresponding section
of the space-filling curve.

Definition 11.2. Consider the parameter representation f W I ! R
n of a space-

filling curve. We will call f parameterised by volume (area), if for each interval
Œx; y�, the length jx � yj of the interval is equal to the volume (area) of the image

f Œx; y� WD ff .�/W � 2 Œx; y�g :

We can, quite easily, prove that our previously defined mapping h for the 3D Hilbert
curve is parameterised by volume:

1. For any given parameter interval Œx; y�, we can find two sequences of intervals

Œan; bn� and Œcn; dn�;

where

• The interval boundaries an; bn; cn, and dn are multiples of 8�n, i.e. are interval
boundaries of the intervals used for the construction of the 3D Hilbert curve.

• Each interval Œan; bn� is the smallest interval that still contains Œx; y�;
• Each interval Œcn; dn� is the largest interval that is still contained in Œx; y�.

Note that, as a consequence, the interval boundaries will converge to x; y, i.e.
an; cn ! x and bn; dn ! y for n ! 1. The intervals Œan; bn� will thus serve as
upper bounds, and the intervals Œcn; dn� as lower bounds in our proof.

2. Due to construction, the length of the intervals Œan; bn� will be equal to ˛n �8�n for
certain ˛n. Similarly, the length of the intervals Œcn; dn� will be equal to �n � 8�n.
In addition, the following inequality holds:

�n � 8�n � jy � xj � ˛n � 8�n:

3. As the intervals Œan; bn� and Œcn; dn� consist of the intervals used to construct the
Hilbert curve, their images hŒan; bn� and hŒcn; dn� will consist of the respective
cubes of side length 2�n. As the volume of each cube is given by .2�n/3 D 8�n,
the volume covered by all cubes is

V .f Œan; bn�/ D ˛n � 8�n and V .f Œcn; dn�/ D �n � 8�n:
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4. Due to our construction, and due to the construction of the Hilbert curve, we
know that

f Œcn; dn� � f Œx; y� � f Œan; bn�:

As a result, we obtain for the respective volumes:

V .f Œan; bn�/ D ˛n � 8�n � V .f Œx; y�/ � V .f Œcn; dn�/ D �n � 8�n:

5. As both ˛n � 8�n and �n � 8�n converge to the length of the interval Œx; y�, we
finally obtain:

V .f Œx; y�/ D jx � yj :

Thus, our standard definition of the Hilbert mapping h leads to a parameter
representation of the 3D Hilbert curve that is parameterised by volume.

We can again ask, whether our proof can be transferred to a larger class of
space-filling curves. One of the central assumptions required for the proof is that
we follow a recursive construction of the space-filling curve; in particular, all child
domains were assumed to have an identical volume (area) and all subintervals were
assumed to be of the same size. In addition, we assumed that we use intervals as
parameter set – which actually prevents the Lebesgue curve (with the Cantor Set as
parameter space) from being parameterised by volume. In contrast, connectedness is
not required in the proof, such that the Z-curve (or a similar curve) is parameterised
by volume. As recursive curves, all Peano curves and the 2D Sierpinski curve are
also parameterised by volume (area). Note that the 3D Sierpinski curve introduced
in Sect. 8.3 is also parameterised by volume, even though it is not strictly recursive
(the shapes of the tetrahedra are not congruent to their respective parents, but have
at least the same volume).

For all curves that are recursive, connected, and parameterised by volume, the
length of the interval jx � yj is equal to the volume of the image f Œx; y�, such that
the inequality that defines Hölder continuity,

kf .x/ � f .y/k2 � C d
p

jx � yj;

directly relates the distance of two image points to the volume covered by the space-
filling curve between these two points. The Hölder continuity therefore determines
the relation between volume and extent (given by the maximum diameter, e.g.) of a
partition defined by this curve. In that sense, the Hölder continuity – and in particular
the involved constant C , as we will see – acts as a measure of compactness of
partitions.
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11.1.3 Discrete Locality Measures for Iterations
of Space-Filling Curves

The Hölder continuity of space-filling curves also shows up when their iterations
or, in general, space-filling orders induced on discrete meshes are examined. For a
d -dimensional array f1; : : : ; ngd (or the corresponding Cartesian grid), for example,
such a space-filling order would define a mapping cW f1; : : : ; nd g ! f1; : : : ; ngd .
A locality measure equivalent to Hölder continuity for such a discrete order is
then

max

(
kc.i/ � c.j /k˛

d
pji � j j W i; j 2 f1; : : : ; ngd ; i 6D j

)

; (11.1)

where kc.i/ � c.j /k˛ denotes a suitable metric, for example the Euclidian distance
(˛ D 2). In literature, also the following ratio is used:

max

� kc.i/ � c.j /kd
˛

ji � j j W i; j 2 f1; : : : ; ngd ; i 6D j

�
; (11.2)

If we require a general characterisation of the corresponding space-filling curve,
we can derive discrete locality measures by taking the supremum over all iterations
of the curve:

C˛ WD lim
n!1 sup

(
kc.i/ � c.j /k˛

d
pji � j j W i; j 2 f1; : : : ; ngd ; i 6D j

)

; (11.3)

or, similarly:

QC˛ WD lim
n!1 sup

� kc.i/ � c.j /kd
˛

ji � j j W i; j 2 f1; : : : ; ngd ; i 6D j

�
: (11.4)

Table 11.1 lists the locality coefficients C˛ and QC˛ for different space-filling orders
and for the following distances defined on two image points .x1; : : : ; xd / and
.y1; : : : ; yd /:

• The Euclidian distance: kx � yk2 WD P
.xi � yi /

2

• The “Manhattan” distance: kx � yk1 WD P jxi � yi j
• The maximum distance: kx � yk1 WD maxfjxi � yi jg
The coefficients QC˛ for the 2D curves are cited from the work of Haverkort and
van Walderveen [123], the 3D coefficients were given by Niedermeier et al. [196] –
further references are given in the last column of the table (see the references section
for a more detailed discussion of these works). Note that H-index is equivalent to
the Sierpinski curve.
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Table 11.1 Locality measures for different space-filling curves and different distances. Exact
numbers are given for analytically proven bounds; numbers are rounded to two or three significant
digits, if they were obtained by experiment. Number in italics are just re-computed from the
respective other coefficient, and are given for easier comparison of the numbers

C1 C2 C1
QC1

QC2
QC1 Reference

2D curves:

Hilbert
p

6
p

6 3 6 6 9 [34, 67, 196]
ˇ˝ 2.236 2.236 3.000 5.000 5.000 9.000 [123]
H-index 2 2 2

p
2 4 4 8 [196]

Morton order 1 1 1 1 1 1 –

Peano (Fig. 2.6) 2
p

2 2
p

2

q
10 2

3
8 8 10 2

3

Meurthe (Fig. 2.8a) 2.309 2.380 3.266 5.333 5.667 10.667 [123]
Sierpinski 2 2 2

p
2 4 4 8 [196]

Gosper flowsnake 2.52 2.52 3.56 6.35 6.35 12.70 [123]

3D curves:

Hilbert a (Fig. 8.2, right) 3.08 3.22 4.62 29.2 33.2 98.4 [196]
Hilbert b (Fig. 8.2, left) 3.11 3.25 4.83 30.0 34.2 112.1 [196]
Hilbert c (Fig. 8.4) 3.11 3.25 4.83 30.0 34.2 112.1 [196]

11.2 Graph-Related Locality Measures

Any discretisation grid can also be described by a graph G D .V; E/, where the set
of graph vertices V and respective connecting edges E are given by the vertices and
edges of the grid cells. In addition, we can define a graph bG D .C; bE/, where the
grid cells C form the vertices of the graph, and where we define an edge in bE for
any pair of cells that are direct neighbours in the grid. Such a graph is often referred
to as the dual graph of G. Several commonly-used properties of graphs then turn
into valuable properties of the represented discretisation grid:

• A graph partitioning will partition the vertices of the graph into disjoint sets
Vi , with V D S

Vi . The minimum and maximum sizes jVi j of the sets reflect the
quality of the load distribution. If we are not dealing with element-located instead
of vertex-located unknowns, such a partitioning can, of course, be defined for the
dual graph bG, as well.

• The edge cut of a graph partitioning is defined as the set of edges that need to
be removed to disconnect the graph into the respective non-connected partitions.
As the vertices correspond to unknowns, the edges reflect which neighbouring
unknowns are required to update unknowns in solvers. Hence, the size of the edge
cut is a measure for the amount of communication between partitions. Depending
on the location of the unknowns, the edge cut of G or that of the dual graph bG
might be the better measure.

• A graph or a graph partition is called connected, if it contains a path of edges
between any two vertices of the graph (partition). In the same sense, we can call
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a grid (or a partition) connected, if the corresponding graph is connected. Note
that a face-connected space-filling curve on a grid is only possible, if the dual

graph of the grid is connected. If G is connected, but not bG, we might at least be
able to construct a node-connected space-filling curve.

Due to the correspondence between graphs and grids, algorithms for graph partition-
ing are a frequently used tool for the partitioning of discretisation grids. As the graph
partition problem, in general, is NP-complete, optimal solutions are too expensive
to find. However, there are a couple of successful heuristic approaches, which are
implemented by respective graph partitioning software (see the references section
for a couple of examples).

11.2.1 The Edge Cut and the Surface of Partition Boundaries

As discussed in Sect. 10.1, the boundary (in 2D) or surface (in 3D) of a partition
determines the amount of data to be communicated to neighbouring partitions.
Hence, the surface-to-volume ratio of partitions is an important quality measure
for partitions. In the graph setting, the surface of a partition is basically given by
the size of the edge-cut of the dual graph (if we assume that cells have edges with a
uniform length, such that each cut edge has the same contribution to the boundary
length). For simple geometric objects, such as circles, spheres, squares, or cubes,
the surface-to-volume ratio is proportional to a.d�1/=ad for a d -dimensional object
of extent a (diameter, side length, etc.). Zumbusch [285,287] has shown that space-
filling curves lead to partitions with the same asymptotic surface-to-volume ratio, if
they are Hölder continuous and parameterised by volume (see also Exercise 11.4).

In practice, however, the length and shape of partition boundaries generated by
space-filling curves are not absolutely optimal. Two examples – using the Peano
curve to determine partitions on a uniformly refined and on an adaptive spacetree
grid – are given in Fig. 11.1. The four partitions in the left image, for example, lead
to 630 edges that are on a partition boundary – i.e., an edge cut of 630 (for the dual
graph). The optimal solution for four partitions on this 81 � 81 grid is 4 � 81 D 324.
On the bright side, the Peano curve would generate an optimal partitioning into nine
partitions.

Graph partitioning algorithms that strive to minimize the edge cut when creating
partitions of uniform size usually lead to results with shorter boundary surfaces.
Again, the respective minimisation problem is known to be NP-complete, such
that even solvers based on heuristics are computationally expensive. Partitioning
based on space-filling curves can therefore be advantageous, if partitions have to
be recomputed frequently, which is typically necessary for problems that require
dynamic refinement and coarsening of the mesh. The asymptotically optimal
surface-to-volume ratio assures that the partitions, which are guaranteed to be of
the same size, will also be of a certain quality regarding surface lengths.
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Fig. 11.1 Partitions defined via a Peano curve on a uniformly refined and on an adaptive spacetree
grid

(b) Computational domain with an obstacle(a) Complicated domain geometry

Fig. 11.2 Disconnected partitions when using space-filling-curve partitioning

11.2.2 Connectedness of Partitions

For a connected space-filling curve, the partitions generated on the corresponding
grid, as obtained from the recursive construction of the iterations, will be connected,
as well. However, if we move to more complicated geometries, the respective grid
partitions, even for connected space-filling curves, might no longer be connected.
Two example scenarios are given in Fig. 11.2. In particular, disconnected partitions
can occur due to the following reasons:

• A complicated computational domain is embedded into a unit square or cube,
and the (possibly unstructured) discretisation grid is partitioned according to the
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Fig. 11.3 An adaptive
spacetree that is split into five
partitions defined via Morton
order

space-filling-curve indices of the grid cells. If the space-filling curve leaves and
re-enters the domain, we can obtain a non-connected partition – as illustrated in
Fig. 11.2a.

• Partitions can be disconnected by “holes” or obstacles in the domain, as
illustrated in Fig. 11.2b.

Note that for both cases, partitions will not be disconnected, if we embed the
computational domain (including holes and obstacles) in a spacetree or refinement-
tree grid, and traverse the obstacle and boundary cells, as well (as it is common
for marker-and-cell approaches). If such obstacle cells are coarsened as much as
possible, the resulting overhead can usually be tolerated.

Connectedness of Partitions Defined by Morton Order

With non-connected space-filling curves, such as Morton order (or any order defined
by the Lebesgue curve, the Z-curve, or respective variants), subsequent grid cells
will not necessarily be direct neighbours. Hence, spacetree partitions defined via
Morton order are not necessarily connected. On the other hand, partitions are higher-
dimensional objects, so while a single cell of a spacetree partition might not be
connected to its immediate neighbour in Morton order, it might still be connected to
another spacetree cell of the same partition. Figure 11.3 gives an example of such a
spacetree partitioning. Apparently, partitions will consist of at most two contiguous
components. In the following, we will give a proof that this property is not restricted
to the example in Fig. 11.3, but results from the special construction of the Morton
order, and is thus valid for any spacetree partition, even if 3D or higher-dimensional
Morton order is used.
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Without loss of generality, we can restrict our discussion to regularly refined
grids: the connectedness of a partition will not change, if we refine any grid cell of
a spacetree to its deepest level L – assuming that subdivided cells will stay in the
same partition as their parents, and making no assumption on the number of cells in
a partition. We can thus assume that we have a grid size of h D 2�L, and that the
partitions are defined via the image cells of an interval Œa; b�, where both a and b are
multiples of 4�L, i.e., they are boundaries of the nested intervals used in the well-
known construction of Morton order. We can further assume that ja � bj > 4�k for
a respective level k (using the largest possible k) and that k � L (otherwise, move
to level L D k), such that a and b are not in different nested intervals of size 4�k .
We thus have the following setting:

left right

ba

1. a is situated in a left completion interval of level k; all parameters larger than a

are mapped to cells within the partition – we will call this part the left completion
part of the partition.

2. b is situated in a right completion interval of level k; all parameters smaller
than b are mapped to cells within the partition – we will call this part the right
completion part of the partition.

3. Between the left and right completion intervals, we can have between 0 and 2

intervals of level k (note that we chose the largest possible k) that are entirely
mapped to the considered partition, and which we shall call the centre part of the
partition.

The left and right completion interval are both allowed to be empty, but neither of
them should cover an entire level-k interval. If they are both empty, then the centre
consists of at least one entire interval (we are not interested in empty partitions . . . ).
If the left completion interval is not empty, it will contain the lower-right-most
cell; the left completion part is thus connected to the lower and right neighbours
within the centre parts of the partition. Similarly, the right completion part is
connected to the upper and left neighbours within the centre parts.

This leads to only six possible scenarios how the resulting partitions can be
arranged. These scenarios are illustrated in Fig. 11.4. The two tables in Fig. 11.4
summarise the number of connected parts of the partition, if we assume that both
the left and the right completion parts are always connected. We see that we obtain
at most two connected parts, where we consider parts that only touch at a single
point as being not connected.

Hence, to finalise our proof, we need to show that left completion and right
completion parts are indeed always connected. Figure 11.5 illustrates the possible
scenarios, and it is easy to see that all four scenarios lead to a connected partition,
if the smaller left completion part is again connected. Hence, we obtain a recursion
argument, which we can easily prove by induction over the refinement level. For
the connectedness of the right completion part, we can generate an analogous proof
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right

left
:1B:A

right

left
B2:

right

left

scen. left compl. right compl. partitions comment
A empty empty 2 parts 2 and 3 touch

left or right not empty 1 parts 2 and 3 connected by last cell of left or first
cell of right completion part

B1 ∗ non-empty 1 or 2 left connected to part 2;
right not necessarily connected to left completion

∗ empty 1 left connected to part 2
B2 non-empty ∗ 1 or 2 right connected to part 3;

left not necessarily connected to right completion
empty ∗ 1 right connected to part 3

left

right

C1:

right

C2:
left

right
left

C3:

scen. left compl. right compl. partitions comment
C1 ∗ ∗ 1 or 2 left not necessarily connected to right completion
C2 ∗ ∗ 1 or 2 left not necessarily connected to right completion
C3 ∗ ∗ 1 or 2 left not necessarily connected to right completion

Fig. 11.4 Possible connectedness scenarios of partitions defined via Morton order. ‘�’ marks a
“don’t care” case (empty or non-empty)

by induction, such that our proof is finished: partitions defined via a Morton order
mapping of a parameter interval consist of at most two connected parts. Note that
the property and also the general idea of the proof carry over to 3D and to higher-
dimensional cases.

References and Further Readings

Locality measures, such as in Eqs. (11.1) and (11.2) were established by Gotsman
and Lindenbaum [105]. who proved lower and upper bounds for the Hilbert curve
in the Euclidean metric. Niedermeier et al. [196] introduced a framework to prove
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left

leftleft

left
Fig. 11.5 Connectedness
scenarios for the left
completion part

tighter bounds, and presented respective bounds for the 2D Hilbert curve that come
close to the lower bound of QC2 D 6. They also provided locality coefficients for
the Hilbert curve in the Manhattan metrics, and for the H-index (in Euclidian,
Manhattan, and maximum metrics). The results for 3D Hilbert curves, as given in
Table 11.1, are also obtained from [196] (see also their review on further work on
this topic). A proof that the dilation factor of the 2D Hilbert curve is exactly 6 was
given by Bauman [34].

Partition-Oriented Locality Measures

The Hölder continuity and the respective locality measures discussed in Sect. 11.1
actually relate the area of a partition to the distance of the image points of the
interval boundaries that define the partition. However, if space-filling curves are
used to define the partitions on a computational grid, we would rather like to
relate the area of a partition (which reflects the number of grid points) to the
diameter or largest extent of the partition. Or similar, we would like to know the
ratio between the length of the partition boundary and its area. Zumbusch [285]
showed that the quasi-optimality of the Hölder continuity does transfer to the
boundary-to-area (or surface-to-volume) ratio of partitions. Respective discrete
locality measures were also studied by Hungershöfer and Wierum [135, 268], who
computed the surface-to-area and diameter-to-area ratios of partitions induced by
a space-filling curve in comparison to the respective ratios of a square. Tirthapura
et al. [256] gave an analysis of the number of remote accesses (to nearest neighbour
cells), if partitions are generated via space-filling curves. A comparison of the
partition boundaries and edge-cuts of space-filling-curve partitions vs. graph-based
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partitioners applied to different finite element grids was given by Schamberger and
Wierum [239].

Haverkort and Walderveen [123] proposed locality measures that are motivated
by using space-filling curves to create bounding boxes for point data. In their work,
they also provide a review on existing results regarding various locality measures
for space-filling curves.

“Inverse” Locality

While Hölder locality quantifies the quality of the mapping indexing function
I ! Q, or f1; : : : ; nd g ! f1; : : : ; ngd in the discrete case, the locality of
an indexing NcW f1; : : : ; ngd ! f1; : : : ; nd g is also an interesting question (it is
impossible to define a continuous mapping Q ! I). Mitchison and Durbin [190]
proposed

X
.j Nc.i C 1; j / � Nc.i; j /jq C j Nc.i; j C 1/ � Nc.i; j /jq/

as a locality measure for 2D array indexings, where q penalises (if q > 1) or toler-
ates (q < 1) large distances between adjacent cells. For q � 1, optimal indexings
have to be ordered, i.e., monotonous in the coordinate directions, which means that
the standard space-filling curve (excluding the Lebesgue curve) indexings cannot be
optimal.

Even though indexings based on space-filling curves will usually not map a
square partition to a single contiguous index sequence, we usually get by with only
few such sequences – especially, if we allow a certain overhead of “unused” indices.
When designing data structures based on space-filling curves, it is an interesting
question how many contiguous index sequences are required to cover a partition.
Jagadish [139, 140] and Moon et al. [191] studied this question in the context of
data bases (see also the references in these articles). Asano et al. [18] discussed
it for range queries for image data bases, and introduced a special 2D space-
filling curve that only requires three contiguous index sequences for any partition
rectangle, if a certain overhead is allowed. Interestingly, the locality coefficients
C˛ of their curve are slightly weaker than the Hilbert curve (for Euclidian and
Manhattan measure, see [123]). In such data base applications, covering partitions
by fewer contiguous sequences leads to a substantial speed-up, because contiguous
data can be read very fast compared to the time required to search a new partition
start.

Note that the question how many contiguous index sequences cover a given
domain is related to the question of connected partitions: If, in Fig. 11.2a, we
consider the five “petals” of this flower-shaped domain as separate domains that
are covered by contiguous sequences, we see that every petal is likely to be covered
by multiple index partitions.
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What’s next?

The next chapter will take up the discussion on Sierpinski curves in
2D and 3D. The question of locality properties, in this case, is strongly
connected with the shape of the triangles and tetrahedra generated by the
bisection process.
If you want to skip the triangular and tetrahedral constructions, you can
on with Chap. 13, which will discuss the effect of locality properties on
the cache efficiency of resulting algorithms.

Exercises

11.1. Examine whether the Lebesgue curve is Hölder continuous.

11.2. Compute the diameter-to-volume ratios for simple geometrical objects in
2D and 3D, such as circles, squares, cuboids, spheres, etc., and compare these
ratios with the respective constants obtained for the Hölder continuity (as given
in Table 11.1).

11.3. Write a simple test program that generates random pairs of indices and
computes the ratio between index and point distance for a given space-filling curve
(using respective algorithms to compute the image point from a given index). Use
this program to test the coefficients given in Table 11.1.

11.4. Use a case study similar to that in Sect. 11.2.2 to compute an upper bound for
the surface-to-volume ratio of partitions obtained by Hilbert order. Discuss whether
a similar upper bound can also be obtained for the Lebesgue curve.

11.5. If we examine the computation of Hölder coefficients for space-filling curves,
we notice that sequences of consecutive squares (i.e., adjacent squares that are
sequentialised by a straight line segment) are, in general, disadvantageous. Try
to generate iterations on small k � k grids, and try to keep the longest “straight”
sequence of cells as small as possible. Pay attention to what happens, if these basic
patterns are to be repeated in order to construct higher iterations.



Chapter 12
Sierpinski Curves on Triangular
and Tetrahedral Meshes

Triangular and tetrahedral grids are widely used in numerical simulation. Especially
in the “world” of Finite Element methods, triangles and tetrahedra are the most
popular building blocks for computational grids – regardless of whether such grids
are unstructured or structured, or whether they are uniform or adaptive. Defining
sequential orders on such grids – for parallelisation, efficient data structures, or just
to improve performance – is therefore a well-studied task (see the references section
of this chapter). A straightforward approach to compute such orderings could be
to compute the indices of the centre points of grid cells, for example, using an
arbitrary space-filling curve. However, such an approach will not take advantage
of any structure that was imposed during grid generation. In this chapter, we will
therefore discuss variants of the Sierpinski curve in two and three dimensions that
are constructed in a compatible way for an underlying (structured) triangular or
tetrahedral grid.

12.1 Triangular Meshes and Quasi-Sierpinski Curves

12.1.1 Triangular Meshes Using Red–Green Refinement

A frequently used method for structured refinement of triangular grids is called red–
green refinement, and is illustrated in Fig. 12.1. In each regular refinement step, a
triangle is subdivided into four child triangles. The vertices of the new triangles are
located on the centres of the three edges. As we can see from Fig. 12.1, the resulting
child triangles have identical side lengths and are therefore congruent to each other.
Note that the actual side length a, b, and c of the triangles can be arbitrary – hence,
we obtain a mesh of congruent triangle cells for an arbitrary root triangle. The
respective refinement step is referred to as red refinement.

Using such regular refinement steps only, adaptive grids will necessarily contain
so-called hanging nodes, i.e., nodes that are vertices in some of the adjacent
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Fig. 12.1 Basic red–green refinement scheme – “red” refinement

Fig. 12.2 Basic red–green refinement scheme – “green” refinement
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Fig. 12.3 Recursive construction and resulting grammar for the construction of a node-connected
quasi-Sierpinski curve on triangular meshes resulting from uniform red–green refinement

triangles, but lie on an edge of another adjacent triangle. As such hanging nodes
require separate treatment in numerical schemes, they are often avoided during grid
generation. For triangular cells, this is easily solved via bisection of the triangles
at the hanging node, as illustrated in Fig. 12.2. The corresponding refinement step
is referred to as green refinement. If we require further refinement of a “green”
triangle, though, we should turn it into a “red triangle” first, and proceed with “red
refinement” on this grid. Hence, the two children of a green triangle should not be
split into smaller triangles in order to avoid distortion of the triangular cells.

12.1.2 Two-Dimensional Quasi-Sierpinski Curves

From the refinement scheme in Fig. 12.1, we can see that it will not be possible to
construct a Sierpinski curve in the regular manner. More specifically, we cannot
construct an edge-connected curve. The reason is simply that the three child
triangles that are situated in the corners have only one edge-connected neighbour,
which is the central child triangle for all three. Hence, a contiguous path that
connects all four triangles via common edges does not exist.

However, we can construct an order on the child triangles such that they are node-
connected. The respective recursive construction scheme is given in Fig. 12.3. The
building patterns, denoted by S , P , Q, and R in Fig. 12.3 can again be turned into
a grammar to construct iterations or approximating polygons of a potential space-
filling curve.
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Algorithm 12.1: Computing the n-th approximating polygon of a quasi-
Sierpinski curve

Procedure quasisierp(x1, x2, x3, n)
Parameter: x1,x2,x3: vertices (as 2D coordinates); n: refinement level
Data: curve: list of vertices (empty at start, contains iteration points on exit)

begin
if n > 0 then

return attach(curve, x1, x2)
else

quasisierp(x1, mid(x1,x2), mid(x1,x3), n-1);
quasisierp(mid(x1,x2), mid(x1,x3), mid(x2,x3), n-1);
quasisierp(mid(x1,x3), mid(x2,x3), x3, n-1);
quasisierp(mid(x2,x3), x2, mid(x1,x2), n-1);

end
end

An alternative and simpler implementation to construct the red–green refinement
scheme, however, follows the notation we introduced in Sect. 6.2 for generalised
Sierpinski curves. As we no longer have a tagged edge bisection, we will denote
triangles as triples .x1; x2; x3/ of the vertices x1, x2, and x3 (i.e., using parentheses
instead of square brackets). The new vertices of the child triangles are then given by
1
2
.x1 C x2/, 1

2
.x1 C x3/, and 1

2
.x2 C x3/, and we can formulate the refinement rule

as follows:

.x1; x2; x3/ !
�
x1;

x1Cx2

2
; x1Cx3

2

�
;
�

x1Cx2

2
; x1Cx3

2
; x2Cx3

2

�
;

�
x1Cx3

2
; x2Cx3

2
; x3

�
;
�

x2Cx3

2
; x2; x1Cx2

2

�
:

(12.1)

In this notation, the order of the vertices in the triples .x1; x2; x3/ is always chosen
such that x1 is the vertex, where the curve enters, and x2 is the vertex where the curve
leaves the triangle. Hence, the edge x1x2 is part of the approximating polygon of the
resulting curve. The approximating polygon can thus be generated by recursively
generating the triangles as given by Eq. (12.1), and then connecting the first two
edges in each triangle. Such an implementation via vertex labelling is given in
Algorithm 12.1.

Quasi-Sierpinski Curves

The construction given by Eq. (12.1) and Algorithm 12.1 defines a space-filling
curve that fills the given initial triangle .x1; x2; x3/. Instead of giving a rigorous
definition of the curve’s mapping and a full proof that this mapping is continuous
and space-filling, we will just summarise the most important properties:

• In the usual way, we will map intervals of length 4�n (n the refinement level) to
triangles, which are constructed by recursive quadrisection.
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Fig. 12.4 Local ordering for
green refinement of triangular
cells

• In each quadrisection step, the side lengths of the triangles are halved. As all
triangles on the same refinement level are congruent, the longest side length of
all triangles will be halved in each refinement step.

• Hence, two parameters t0 and t1 with distance less than 4�n will be located in
neighbouring intervals, and will be mapped to two node-connected triangles with
maximum side lengths c � 2�n. The distance of the image points is therefore
2c � 2�n, at most.

• Comparing the proofs for continuity and Hölder continuity of the Hilbert and
Peano curve, we can infer that our quasi-Sierpinski curve is Hölder continuous
with exponent 1

2
.

According to our classification introduced in Sect. 7.1, quasi-Sierpinski curves are
recursive, node-connected space-filling curves. We can infer from our discussion
that such curves are obviously Hölder continuous with exponent d �1, in general.

12.1.3 Red–Green Closure for Quasi-Sierpinski Orders

Quasi-Sierpinski curves are based on uniform, red-refinement grids. If we switch
to refinement-tree approaches, as introduced in Chap. 9, we will obtain structured
adaptive triangular grids similar to those introduced in Sect. 9.3. If we want to
avoid hanging nodes, and thus require green refinement, we have to define local
orders on the two child cells of a green triangle. Such orders for the three possible
combinations of entry- and exit-vertices are given in Fig. 12.4. As green refinement
stops after one refinement level, and is replaced by red refinement for further
refinement, we do not need to consider whether these local orders can be extended
towards a closed, nested recursive scheme – though, it wouldn’t be too difficult.

12.2 Tetrahedral Grids and 3D Sierpinski Curves

12.2.1 Bisection-Based Tetrahedral Grids

In Sect. 8.3, we already discussed a 3D version of the Sierpinski curve. However,
it turned out that this Sierpinski curve has much weaker locality properties than
what we would like to have. Most importantly, the ratio between the side lengths of
the generated tetrahedral cells is not bounded, such that we obtain heavily distorted
cells. As a result, the corresponding Sierpinski curve is no longer Hölder continuous
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Fig. 12.5 Tetrahedral refinement (generated tetrahedra and 4-tuple notation) according to the
refinement rules given in Eq. (12.2). Note that we start with the case l D 2 .mod 3/

with exponent d �1 D 1
3
. Hölder continuity can still be shown, but with a weaker

exponent (see the solution of Exercise 12.2).
For many applications, it is important, though, that certain locality properties

or shape restrictions of the generated cells are preserved. Hence, we require a
generation scheme that is able to preserve the tetrahedral shapes. We will restrict
ourselves to bisection-based refinement and also retain our 4-tuple notation with the
tagged-edge convention, at first. Then, the following refinement scheme was shown
to generate properly shaped tetrahedra. It uses a different refinement rule on every
third refinement level l :

Œx1; x2; x3; x4�
lD0 .mod 3/�! Œx1; x3; x4; xs� ; Œx2; x3; x4; xs�

Œx1; x2; x3; x4�
lD1 .mod 3/�! Œx1; x3; x4; xs� ; Œx2; x3; x4; xs�

Œx1; x2; x3; x4�
lD2 .mod 3/�! Œx1; x3; x4; xs� ; Œx2; x4; x3; xs�

(12.2)

where xs D 1
2
.x1 C x2/ is the new vertex on the tagged edge x1x2. Figure 12.5

illustrates the tetrahedra that are generated by this splitting scheme.
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Local and Global Refinement Edges

As a key feature of the introduced scheme for tetrahedral refinement, it turns out
that the faces of the generated tetrahedra are bisected according to the classical
2D scheme. We can therefore identify a local refinement edge for each face of
a tetrahedron. Once this face is split during one of the following bisection steps,
this local refinement edge will carry the new vertex. After the split, the two other
edges will become the local refinement edges in their respective triangular face,
just as in the 2D construction. In any tetrahedral cell produced by this construction,
two of the four faces will have the same local refinement edge. In our refinement
scheme (12.2), the tetrahedra are always split at this edge, which we therefore call a
global refinement edge. Figure 12.6 illustrates the local and global refinement edges
for our refinement scheme.

In Fig. 12.6, we also introduce the so-called red–black classification of the
tetrahedra in the present refinement scheme. A tetrahedron is called black, if the
two other local refinement edges (i.e., those that are not global refinement edges)
share a common vertex. Otherwise, they are called red. The red–black classification
was used by Bänsch [43], who introduced the respective refinement scheme directly
via different refinement rules for red and black tetrahedra. He used the red–black
classification of the current tetrahedron and its parent to determine the position of
the local refinement edges in the bisected child tetrahedra. The refinement scheme
given by Eq. (12.2) was introduced by Kossaczky [151] as a simpler description
of Bänsch’s refinement algorithm. Figure 12.6 thus illustrates the equivalence of
the two schemes, which we will refer to as the Bänsch-Kossaczky scheme. It also
shows that the global refinement edges are unique in the sense that there cannot be
two pairs of adjacent local refinement edges.

On the Shapes of the Generated Tetrahedra

Liu and Joe [165], who introduced a closely related bisection scheme for tetrahedra
(see the references section), used the tetrahedron given in Fig. 12.7 to derive the
shapes of the bisected tetrahedra. Their so-called canonical tetrahedron is given by

Tcan WD Œ.�1; 0; 0/; .1; 0; 0/; .0; 0; 1/; .0;
1

2

p
2/�: (12.3)

It is easily computed (see Exercise 12.4) that the Bänsch-Kossaczky scheme, when
applied to this canonical tetrahedron, will generate congruent tetrahedra on each
bisection level. The two tetrahedra of the first level, for example, result from a
bisection at edge ..�1; 0; 0/; .1; 0; 0// and are symmetric to the yz-plane (compare
Fig. 12.7). After three bisection steps, the resulting eight tetrahedra are all congruent
to each other, and are scaled-down versions of the canonical tetrahedron.

If we compute a mapping � that maps an arbitrary tetrahedron ŒA; B; C; D�

to Tcan, then � will map any children, grandchildren, etc. of ŒA; B; C; D� to
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[A,B,C,D] → [A,C,D,E ], [B,C,D,E ]

[A,B,C,D] → [A,C,D,E ], [B,D,C,E ]

[A,B,C,D] → [A,C,D,E ], [B,C,D,E ]

[A,C,D,E ] → [A,D,E,F ], [C,E,D,F ]

[A,C,D,E ] → [A,D,E,F ], [C,D,E,F ]

[A,C,D,E ] → [A,D,E,F ], [C,D,E,F ]

[B,C,D,E ] → [B,D,E,F ], [C,E,D,G]

[B,D,C,E ] → [B,C,E,K], [D,C,E,K]

[B,C,D,E ] → [B,D,E,G], [C,D,E,G]
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Fig. 12.6 Local and global refinement edges for the bisection scheme (12.2). The tetrahedra are
shown cut open at the three edges that meet at a vertex opposite to the refinement edge. The
resulting red–black classification is derived for all tetrahedra
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Fig. 12.7 The canonical tetrahedron given by Liu and Joe [165] (vertices marked by boxes) –
given are the coordinates of the split points of the first three bisection steps. Note the symmetry of
the two child tetrahedra (symmetric to the highlighted yz-plane)

[A, E, F, H]

[D, E, F, H]

[C, E, F, J]

[D, E, F, J] [D, E, K, J]

[C, E, K, J] [C, E, K, G]

[B, E, K, G]

Fig. 12.8 Neighbouring tetrahedra after three bisection steps of the Kossaczky scheme (12.2),
starting with level l D 2 (compare Fig. 12.5). The graph connects tetrahedra, if they share a
common face. Obviously there is no face-connected iteration that connects all eight tetrahedra

corresponding children and grandchildren of Tcan. As a result, the shapes of the
tetrahedra in a bisection-generated mesh will fall into a limited set of congruency
classes. In particular, their shapes will not degenerate, such that, for example, the
ratio between longest and shortest edge stays bounded, but also the interior angles
of the tetrahedra stay within a certain range. The latter property is essential for the
use of tetrahedral meshes in many applications of scientific computing, such as for
Finite Elements.

12.2.2 Space-Filling Orders on Tetrahedral Meshes

We would, of course, like to carry over the construction of the 3D Sierpinski
curve presented in Sect. 8.3 to the tetrahedral meshes constructed via the Bänsch-
Kossaczky scheme. The result would be a face-connected space-filling curve, which
should then be Hölder continuous with exponent 1

3
. Figure 12.8, however, shows

that such a construction cannot exist. In the respective graph, the eight tetrahedra
generated after three bisection steps (starting with a red tetrahedron) form the nodes,
and are connected by graph-edges, if they share a common face. A face-connected
Sierpinski iteration on the given eight child tetrahedra would thus be equivalent to
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a contiguous path that connects all eight children. It is easy to check that such a
path unfortunately does not exist. We therefore cannot construct a face-connected
3D space-filling curve following this approach.

A Three-Dimensional, Node-Connected Quasi-Sierpinski Curve

It is possible, however, to construct a node-connected, quasi-Sierpinski curve on
grids generated from the Bänsch-Kossaczky scheme. In principle, we only have to
track the entry and exit points of the Sierpinski curve within the tetrahedral (parent)
cells, which leaves quite a lot of choices for the construction. In the following, we
place the following restrictions:

• Our choice shall be purely local: for each parent tetrahedron, we want to
determine a first and second child, such that a depth-first traversal that obeys
this local order will produce the grid traversal.

• As candidates for the entry and exit vertices of the curve in the child cells, we
have the three vertices at the common face. The new vertex that is introduced at
the split edge is not immediately used as entry or exit point of the curve in the
respective child tetrahedra. If both other vertices remain as candidates (only, if
entry and exit vertex of the parent cell are both adjacent to the split edge), we
chose the vertex with the smaller index in the 4-tuple, i.e., the “oldest” possible
vertex.

• If two scenarios are identical up to the entry and exit vertices being switched,
we use the same entry/exit vertex in the children. Thus, the resulting curves just
change orientation.

• As the refinement rules for l D 0 and l D 1 are identical in the Kossaczky
scheme, we try to keep these rules identical also with respect to the entry and
exit vertices.

The resulting refinement scheme is given in Eqs. (12.4) and (12.5) – for each
tetrahedron, the entry vertex is marked by a bar below the vertex; exit vertices are
marked by bars above the vertex:

• for l D 0 .mod 3/ or l D 1 .mod 3/:

�
x1; x2; x3; x4

� �! �
x1; x3; x4; xs

�
;
�
x2; x3; x4; xs

�

�
x1; x2; x3; x4

� �! �
x2; x3; x4; xs

�
;
�
x1; x3; x4; xs

�

�
x1; x2; x3; x4

� �! �
x1; x3; x4; xs

�
;
�
x2; x3; x4; xs

�

�
x1; x2; x3; x4

� �! �
x2; x3; x4; xs

�
;
�
x1; x3; x4; xs

�

�
x1; x2; x3; x4

� �! �
x2; x3; x4; xs

�
;
�
x1; x3; x4; xs

�

�
x1; x2; x3; x4

� �! �
x1; x3; x4; xs

�
;
�
x2; x3; x4; xs

�

(12.4)
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• for l D 2 .mod 3/:

�
x1; x2; x3; x4

� �! �
x1; x3; x4; xs

�
;
�
x2; x4; x3; xs

�

�
x1; x2; x3; x4

� �! �
x2; x4; x3; xs

�
;
�
x1; x3; x4; xs

�

�
x1; x2; x3; x4

� �! �
x1; x3; x4; xs

�
;
�
x2; x4; x3; xs

�

�
x1; x2; x3; x4

� �! �
x2; x4; x3; xs

�
;
�
x1; x3; x4; xs

�

�
x1; x2; x3; x4

� �! �
x2; x4; x3; xs

�
;
�
x1; x3; x4; xs

�

�
x1; x2; x3; x4

� �! �
x1; x3; x4; xs

�
;
�
x2; x4; x3; xs

�

(12.5)

The scheme may be implemented as a vertex-labelling algorithm, similar to
Algorithm 8.3 for our face-connected curve (with bad locality). However, according
to the refinement rules in (12.4) and (12.5), the two recursive calls will occur in
different order depending on the refinement level and on the current location of
entry and exit points. This information can be coded in a respective refinement
table, which is easily obtained from (12.4) and (12.5). Figure 12.9 plots the resulting
curve, if the unit tetrahedron Œ.0; 0; 0/; .1; 0; 0/; .0; 1; 0/; .0; 0; 1/� is used as root
domain.

Hölder Continuity of the Generated Curve

Our 3D quasi-Sierpinski curve is not strictly recursive and only node-connected,
such that we cannot directly infer Hölder continuity for the respective mapping s.
However, we can exploit the fact that the tetrahedral cells belong only to a
limited number of different congruency classes. Hence, even for an arbitrary initial
tetrahedron, we know that after 3k bisections, the longest edge of any tetrahedron
on this level will be bounded by c � 1

2k , where c is a constant that is determined by
the “worst” congruency class.

Assume that the mapping s is defined via the usual construction, using nested
intervals that are split in eight intervals in each recursion step, and, correspondingly,
direct refinement of the tetrahedral subdomains in eight children. On each level n,
the edge lengths of the tetrahedra are then bounded by c � 1

2n , and the proof of Hölder
continuity is straightforward:

• For any choice of two parameters t1 and t2, pick an n, such that 8�.nC1/ � jt1 �
t2j < 8�n. Thus, t1 and t2 will be in the same or in adjacent intervals.

• Their image points s.t1/ and s.t2/ will, in the worst case, be located in two
tetrahedra of level n that share at least a common vertex.

• As the longest edge of these two tetrahedra is bounded by c � 1
2n , the distance of

the image points will be ks.t1/ � s.t2/k � 2c 1
2n .

• After short computation, we obtain that ks.t1/ � s.t2/k � 4cjt1 � t2j1=3.
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Fig. 12.9 The 12-th iteration of the node-connected quasi-Sierpinski curve generated by the
scheme given in (12.4) and (12.5)

Hence, the 3D node-connected quasi-Sierpinski curve is Hölder continuous with
exponent 1

3
. It is also straightforward to prove that the curve is parameterised by

volume, such that we can compute parallel partitions using this curve, and infer all
compactness properties discussed in Chap. 10.

References and Further Readings

Tetrahedral Bisection

Mesh refinement schemes that are based on bisection of tetrahedral cells have been
proposed by several authors. In Sect. 12.2,we discussed the scheme introduced by
Bänsch [43], following the notation Kossaczky [151] developed for this scheme. The
tetrahedral mesh generation process by Maubach [176] is also based on the tuple
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notation .x1; x2; x3; x4/ of a tetrahedron, with vertices x1; x2; x3; x4 2 R
3. Similar

to the Bänsch-Kossaczky scheme, it uses different bisection edges depending on the
refinement level l . With k WD 3 � .l .mod 3//, Maubach defines bisection on level
l via the rule

Œx1; x2; x3; x4� ! Œx1; : : : ; xk; xs; xkC2; : : : ; x4� ; Œx2; : : : ; xkC1; xs; xkC2; : : : ; x4� ;

(12.6)

where xs D 1
2
.x1 C xkC1/. Note that the sequences x1; : : : ; xk and xkC1; : : : ; x4, as

well as x2; : : : ; xkC1 or xkC2; : : : ; x4 might be empty or consist of only one vertex.
Exercise 12.5 deals with the question of equivalence of the two schemes. A symbolic
refinement algorithm for the Maubach scheme was also given by Hebert [125].

Further bisection-based schemes for tetrahedral meshes were introduced by
Arnold et al. [17], and by Liu and Joe [165, 166]. Both schemes are defined
on a type classification of tetrahedra – two types that correspond to Bänsch’s
red/black classification plus two additional types. Arnold et al. [17] also discussed
the similarities and differences of the four schemes: the schemes are essentially
equivalent, if meshes that are build from a single initial tetrahedral cell are studied,
and if this tetrahedron is black or red according to Bänsch’s scheme. Liu and Joe
[165] used the canonical tetrahedron given in Fig. 12.7 to prove that their scheme
produces tetrahedra that fall into a limited set of congruency classes. Due to the
similarity of the schemes, this result can be essentially transferred to the other
three schemes. Liu and Joe also proved that the diameters ı.Tn/ of tetrahedra Tn

on the n-th bisection level will be smaller than c.1=2/n=3ı.T /, where T is the initial
tetrahedron [165]. Together with the node-connectedness, this result directly leads
to Hölder continuity of the quasi-Sierpinski curve discussed in Sect. 12.2.2.

A different bisection scheme was introduced by Rivara and Levin [227], who
always use the longest edges of tetrahedra as refinement edges (longest-edge
bisection). It is similar to the scheme of Liu and Joe [165] in the sense that Liu and
Joe applied longest edge bisection to the canonical tetrahedron given in Fig. 12.7,
which is then mapped to tetrahedral cells to transfer the bisections to the respective
cells. Hence, while the schemes may produce similar sequences of bisections, they
will usually lead to different meshes.

Sierpinski Orders in 3D

The inadequate bisection refinement discussed in Sect. 8.3, as well as the corre-
sponding Sierpinski curve, seems to be an example for the problem that “failures”
are not too often published: there seems to be no discussion that quantifies the
problems with the simple refinement schemes, and my literature search on 3D
Sierpinski curves brought up only a single paper that actually used this curve:
Pascucci [211] uses a respective order on tetrahedral grids to speed up isosurface
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computation (see references on triangular and tetrahedral stripping in Chap. 14). He
also reported that the curve had apparently not been described before.

The use of generalised, (quasi-)Sierpinski curves for parallelisation of problems
discretised on tetrahedral grids was established by Zumbusch [287]. Mitchell [188]
discusses the construction of quasi-Sierpinski orders on both triangular and tetrahe-
dral meshes that stem from a structured refinement approach. He also discussed
quadrilateral refinement schemes. His article on the refinement-tree partitioning
method [189] is the basis for the scheme presented in Sect. 12.2.2 – however, for
our Sierpinski curve, we avoided to use vertices on bisection edges as entry and exit
vertex in the child cells.

Hamiltonian Paths and Self-Avoiding Walks

To compute a space-filling order on an unstructured grid is equivalent to finding
an Hamiltonian Path through the grid’s dual graph. If the respective paths do not
intersect themselves, they are referred to as self-avoiding walks. To transfer the
typical space-filling-curve construction to unstructured grids has been attempted
by a couple of authors. Heber et al. [124], for example, examined node-connected
orders on structured adaptive triangular grids in the context of self-avoiding walks.
Schamberger and Wierum [238] exploited the structure of modified refinement trees
to infer so-called graph-filling curves.

What’s next?

The next two chapters will provide case studies on how to exploit the
properties induced by space-filling curves for different aspect of algo-
rithms in scientific computing. Chap. 13 will focus on matrix operations,
while Chap. 14 will deal with mesh-based algorithms, for example to
solve partial differential equations.
Even if you want to focus on the mesh-based case study, you should not
skip the linear algebra chapter entirely, but have at least a short look
on the introduction of caches and respective models to analyse cache
performance (Sects. 13.1 and 13.2).
If you skipped the chapter on locality properties, you should have at least
a short look at the basics provided there, before you proceed.
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Exercises

12.1. Formulate an arithmetisation of the 2D quasi-Sierpinski curve, following the
approach introduced in Chap. 4.

12.2. Try to find an exponent r , for which the Hölder continuity holds for the
Sierpinski curve of Sect. 8.3.

Hint: You can show that any edge is bisected, i.e. cut to half of its length, after at
most five bisection steps.

12.3. Examine the refinement edges of the tetrahedra used for the construction of
the Sierpinski curve of Sect. 8.3. Show that only black tetrahedra occur.

12.4. For the canonical tetrahedron Tcan, as given in Eq. (12.3), perform the first
three bisection steps according to Kossaczky’s notation. Compute the edge lengths
of the eight resulting tetrahedra to show that they are all congruent to each other.

12.5. Determine the order of vertices x1; x2; x3; x4 2 R
3 in the notations for the

Maubach and the Bänsch-Kossaczky scheme, such that the two schemes generate
the same tree of tetrahedral elements.



Chapter 13
Case Study: Cache Efficient Algorithms for
Matrix Operations

In Chaps. 10 and 11, we discussed applications of space-filling curves for paral-
lelisation, which were motivated by their locality properties. In the following two
chapters, we will discuss further applications, which again exploit the intrinsic
locality properties of space-filling curves. As both applications will focus on
inherently cache-efficient algorithms, we will start with a short introduction to
cache-memory architectures, and discuss the resulting requirements on cache-
efficient algorithms.

13.1 Cache Efficient Algorithms and Locality Properties

In computer architecture, a so-called cache (or cache memory) denotes a fast
memory component that replicates a certain part of the main memory to allow faster
access to the cached (replicated) data. Such caches are necessary, because standard
memory hardware is nowadays much slower than the CPUs. The access latency, i.e.
the time between a data request and the arrival of the first requested piece of data, is
currently1 about 60–70 ns. During that time, a fast CPU core can perform more than
100 floating point operations. This so-called “memory-gap” between CPU speed
and main memory is constantly getting worse, because CPU speed is improving
much faster (esp. due to using multicore processors) than memory latency. For
memory bandwidth (i.e. the maximum rate of data transfer from memory to CPU),
the situation is a bit better, but there are already many applications in scientific
computing whose performance is limited by memory bandwidth instead of CPU
speed.

Cache memory can be made much faster, and can even keep up with CPU
speed, but only if it is much smaller than typical main memory. Hence, modern
workstations use a hierarchy of cache memory: a very small, so-called first-level

1Currently, here, means in the year 2010.

M. Bader, Space-Filling Curves, Texts in Computational Science and Engineering 9,
DOI 10.1007/978-3-642-31046-1 13, © Springer-Verlag Berlin Heidelberg 2013
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cache, running at the same speed as the CPU; a second-level cache that is larger
(typically a few megabytes), but only running at half speed, or less; and maybe
further levels that are again larger, but slower. Figure 13.1 illustrates such a pyramid
of cache memory.

The situation is further complicated on multi- and manycore CPUs, because
cache memory can then be shared between the CPU cores of one processor, and,
in addition, we may have non-uniform memory access (NUMA) to main memory.
Figure 13.2 shows a schematic diagram of four quadcore CPUs, where in each CPU,
all cores share a common level-3 cache, but have individual level-1 and level-2
caches. Each CPU has a separate memory controller (MC), which is connected
to a part of main memory – access to non-local memory runs via an interconnect
(IC) between the four cores. As a result, CPUs will have different access speeds to
different parts of the main memory.

Memory-Bound Performance and Cache Memory

The size and speed of the individual cache levels will have an interesting effect
on the runtime of software. In the classical analysis of the runtime complexity of
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algorithms, a typical job is to determine how the runtime depends on the input size,
which leads to the well-known O.N / considerations. There, we often assume that
all operations are executed with the same speed, which is no longer true on cache-
based systems.

Instead, we often observe a situation as in Fig. 13.3. For very small problem size,
all data resides in the first-level cache, and the algorithm runs at top speed. As soon
as the data does no longer fit into level-1 cache, the speed is reduced to a level
determined by the level-2 cache. The respective, step-like decrease of execution
speed is repeated for every level of the memory hierarchy, and leads to the velocity
profile given in Fig. 13.3. While the complexity of an algorithm will not change
in the O.N /-sense, such large differences in execution speed cannot be ignored in
practice. Hence, we need to make implementations cache efficient, in order to fully
exploit the available performance.

How Cache Memory Works: Cache Lines and Replacement Strategies

Once we use more data than we can fit into the cache, we need a mechanism to
decide what data should be in the cache at what time. For such cache strategies,
there are a couple of technical and practical restrictions:

• For technical reasons, caches do not store individual bytes or words, but
small contiguous chunks of memory, so-called cache lines, which are always
transferred to and from memory as one block. Hence, cache lines are mapped
to corresponding lines in main memory. To simplify (and, thus, speed up) this
mapping, lines of memory can often be transferred only to a small subset of
lines: we speak of an n-associative cache, if a memory line can be kept in n

different cache lines. The most simple case, a 1-associative cache, is called a
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direct-mapped cache; a fully associative cache, where memory lines may be kept
in any cache line, are powerful, but much more expensive to build (if the cache
access needs to stay fast).

• If we want to load a specific cache line from memory, but already have a full
cache, we naturally have to remove one cache line from the cache. In an ideal
case, we would only remove cache lines that are no longer accessed. As the cache
hardware can only guess the future access pattern, certain heuristics are used to
replace cache lines. Typical strategies are to remove the cache line that was not
used for the longest time (least recently used), or which had the fewest accesses
in the recent history (least frequently used).

• A programmer typically has almost no influence on what data is kept in the
cache. Only for loading data into the cache, so-called prefetching commands are
sometimes available.

Associativity, replacement strategy, and other hardware properties may, of course,
vary between the different levels of caches. And it is also clear that these restrictions
have an influence of the efficiency of using caches.

Cache Memory and Locality

Caches lead to a speedup, if repeatedly accessed data is kept in the cache, and is thus
accessed faster. Due to the typical cache design, algorithms and implementations
will be cache efficient, if their data access pattern has good temporal or spatial
locality properties:

• Temporal locality means that a single piece of data will be repeatedly accessed
during a short period of time. Replacement strategies such as least recently used
or least frequently used will then reduce the probability of removing this data
from the cache to a minimum.

• Spatial locality means that after an access to a data item, the next access(es) will
be to items that are stored in a neighbouring memory address. If it belongs to the
same cache line as the previously accessed item, it has been loaded into the cache
as well, and can be accessed efficiently.

Hence, the cache efficiency of an algorithm depends on its temporal and spatial
locality properties.

Cache-Aware and Cache-Oblivious Algorithms

Cache efficient implementation or algorithms can be classified into two categories,
depending on whether they consider the exact cache architecture of a platform:

• Cache-aware algorithms or implementations use detailed information about the
cache architecture. They try to increase the temporal or spatial locality by
adapting the access pattern to exactly fit the number and size of the cache levels,
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the length of the cache line, etc. Hence, such a cache-aware implementation is
specific for a particular platform, and at least certain parameters need to be tuned,
if the architecture changes.

• Cache-oblivious algorithms, in contrast, do not use explicit knowledge on a
specific architecture. Instead, the algorithms are designed to be inherently cache
efficient, and profit from any presence of caches, regardless of their size and
number of cache levels. Hence, their data access pattern need to have excellent
temporal and spatial locality properties.

We have seen that space-filling curves are an excellent tool to create data structures
with good locality properties. Hence, we will discuss some examples of how these
properties can be exploited to obtain cache-oblivious algorithms.

13.2 Cache Oblivious Matrix-Vector Multiplication

For a vector x D .x1; : : : ; xn/ 2 R
n and an n � n-matrix A with elements aij , the

elements of the matrix-vector product y D Ax are given as

yi WD
nX

j D1

aij xj :

The matrix-vector product is a standard task in linear algebra, and also not difficult
to implement, which makes it a popular programming task in introductory lectures
on programming. We can assume that most implementations will look similar to the
one given in Algorithm 13.1 (omitting the initialisation of the vector y).

Algorithm 13.1: Matrix-vector multiplication (loop-based)

for i D 1 : : : n do
for j D 1 : : : n do

yi WD yi C Aij � xj ;
end

end

To determine the cache efficiency of this algorithm, let’s now examine the
temporal and spatial locality properties of this implementation. Regarding the
matrix A, we notice that each element is accessed exactly once. Hence, temporal
locality of the access will not be an issue, as no element will be reused. The spatial
locality depends on the memory layout of the matrix. If the elements are stored
in the same sequence as they are traversed by the two nested loops, the spatial
locality will be optimal. Hence, for Algorithm 13.1, the matrix elements should
be stored row-by-row (so-called row-major layout). However, if our programming
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language uses column-major layout (as in FORTRAN, for example), we should
change Algorithm 13.1: the spatial locality would then be optimal, if we exchange
the i - and j -loop. In general, spatial locality is perfect as long as we traverse the
matrix element in the same order as they are stored in memory.

Changing the traversal scheme of the matrix elements will, however, also change
the access to the two vectors x and y. As both vectors are accessed or updated n

times throughout the execution of the algorithm, both temporal and spatial locality
are important. For the loop-based access given by Algorithm 13.1, the access to both
vectors is spatially local, even if we exchange the two loops. However, the temporal
locality is different for the two vectors. The access to vector y is optimal: here, all
n accesses to a single element are executed, before we move on to the next element.
For the access to x, we have exactly the opposite situation: Before an element of x is
re-used, we first access all other elements of the vector. Hence, the temporal locality
for this pattern is the worst we can find. A first interesting question is, whether
exchanging the loops will improve the situation. Then, x and y will change roles,
and which option is faster depends on whether temporal locality is more important
for the read access to x or for the write access to y. Even more interesting is the
question whether we can derive a traversal of the matrix elements that leads to more
local access patterns to both vectors.

Matrix Traversals Using Space-Filling Curves

In Algorithm 13.1, we easily see that the two loops may be exchanged. Actually,
there is no restriction at all concerning the order in which we execute the element
operations. We should therefore denote Algorithm 13.1 in the following form:

Algorithm 13.2: Matrix-vector multiplication (forall loop)

forall the .i; j / 2 f1; : : : ; ng2 do
yi WD yi C Aij � xj ;

end

From Algorithm 13.2, we can now consider execution orders without being
influenced by loop constructions. We just need to make sure that each matrix
element is processed exactly once, i.e. that we perform a traversal, and can then try
to optimise the temporal and spatial locality properties. Our previous discussions of
the locality properties of space-filling curves therefore provide us with an obvious
candidate.

Assuming that the matrix dimension n is a power of two, we can use a Hilbert
iteration, for example, to traverse the matrix. Hence, we modify the traversal
algorithm of Chap. 3.2 to obtain an algorithm for matrix-vector multiplication. For
that purpose, it is sufficient to interpret our direction operations up, down, left,
and right as index operations on the matrix and the two vectors. Operators up and
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down will increase or decrease i , i.e., the current row index in A and vector index
in y. Operators left and right will change j , which is the column index of A

and the vector index of x, respectively. Algorithm 13.3 outlines the full algorithm
for matrix-vector multiplication.

Algorithm 13.3: Matrix-vector multiplication based on Hilbert order matrix
traversal

Procedure mulvH(n)
Parameter: n: matrix/vector size (must be a power of 2)
Data: A,x: input matrix and vector; i,j: current row/column
Result: y: matrix-vector product (initialised to 0 at entry)

begin
if n = 1 then

y[i] = y[i] + A[i,j] * x[j];
else

mulvA(n/2); i++;
mulvH(n/2); j++;
mulvH(n/2); i––;
mulvB(n/2);

end
end
. . .

To retain the optimal locality of the access to the matrix elements, the matrix
elements need to be stored according to the Hilbert order, as well. For the accesses
to the vectors x and y, we obtain an overall improved temporal locality. During the
matrix traversal, all elements of a 2k �2k-block will be processed before the Hilbert
order moves on to the next 2k � 2k-block. During the corresponding .2k/2 element
operations, 2k elements of vector x and 2k elements of vector y will be accessed
– each of them 2k times. On average, we will therefore execute m2 operations
on a working set of only 2m elements – for any m � n. Hence, even if only a
small amount of elements will fit in a given cache, we can guarantee re-use of both
elements of x and y. Our “naive” implementation in Algorithm 13.1 will guarantee
this only for one of the two vectors.

13.3 Matrix Multiplication Using Peano Curves

For two n � n-matrices A and B , the elements of the matrix product C D AB are
given as

Cik WD
nX

j D1

Aij Bjk:
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Similar to Algorithm 13.1 for the matrix-vector product, we could implement the
computation of all Cik via three nested loops – one over j to compute an individual
element Cik , and two loops over i and k, respectively – compare Algorithm 13.4

Algorithm 13.4: Matrix multiplication (loop-based)

for i D 1 : : : n do
for k D 1 : : : n do

for j D 1 : : : n do
Cik WD Cik C Aij � Bjk I ;

end
end

end

Again, we can exchange the three loops arbitrarily. However, for large matrices,
the cache efficiency will be less than optimal for any order. In library imple-
mentations, multiple optimisation methods, such as loop unrolling or blocking
and tiling, are applied to improve the performance of matrix multiplication. The
respective methods carefully change the execution order to match the cache levels
– in particular the sizes of the individual caches (see the references section at the
end of this chapter). In the following, we will discuss an approach based on Peano
curves, which leads to a cache oblivious algorithm, instead.

As for matrix-vector multiplication, we start with Algorithm 13.5, where we
stress that we simply have to execute n3 updates Cik D Cik C Aij Bjk for all triples
.i; j; k/. Thus, matrix multiplication is again an instance of a traversal problem.

Algorithm 13.5: Matrix multiplication (forall loop)

forall the .i; j; k/ 2 f1; : : : ; ng3 do
Cik WD Cik C Aij � Bjk ;

end

The n3 element operations correspond to a 3D traversal of the triple space. For the
access to the matrix elements, in contrast, only two out of three indices are needed
for each of the involved matrices. Hence, the indices are obtained via respective
projections. We will therefore use a Peano curve for the traversal, because the
projections of the classical 3D Peano curve to 2D will again lead to 2D Peano
curves. In Fig. 13.4, this property is illustrated for the vertical direction. It holds
for the other two coordinate directions, as well.

Figure 13.4 also tells us that if we execute the matrix operations Cik D
Cik C Aij Bjk according to a 3D Peano order, the matrix elements will be accessed
according to 2D Peano orders. As a consequence, we should store the elements in
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Fig. 13.4 Illustration of the projection property of the 3D Peano curve

that order, if possible. We will first try this for the simple case of a 3 � 3 matrix
multiplication:

0

@
c0 c5 c6

c1 c4 c7

c2 c3 c8

1

A

„ ƒ‚ …
DW C

CD
0

@
a0 a5 a6

a1 a4 a7

a2 a3 a8

1

A

„ ƒ‚ …
DW A

0

@
b0 b5 b6

b1 b4 b7

b2 b3 b8

1

A

„ ƒ‚ …
DW B

(13.1)

(here, the element indices indicate the 2D Peano element order). Then, the 3D Peano
traversal of the element operations will lead to the following sequence of element
updates:

c0 CD a0b0 c5 CD a6b3 �! c5 CD a5b4 c6 CD a5b7 �! c6 CD a6b8

# " # " #
c1 CD a1b0 c4 CD a7b3 c4 CD a4b4 c7 CD a4b7 c7 CD a7b8

# " # " #
c2 CD a2b0 c3 CD a8b3 c3 CD a3b4 c8 CD a3b7 c8 CD a8b8

# " # "
c2 CD a3b1 c2 CD a8b2 c3 CD a2b5 c8 CD a2b6

# " # "
c1 CD a4b1 c1 CD a7b2 c4 CD a1b5 c7 CD a1b6

# " # "
c0 CD a5b1 �! c0 CD a6b2 c5 CD a0b5 �! c6 CD a0b6

(13.2)

Note that this scheme follows an inherently local access pattern to the elements:
after each element operation, the next operation will re-use one element and access
two elements that are direct neighbours of the elements accessed in the previous
operation. To extend this simple 3 � 3-scheme to a multiplication algorithm for
larger matrices, we need

• A 2D Peano order that defines the data structure for the matrix elements;
• A recursive extension of the 3�3-scheme in Eq. 13.2, which is basically obtained

by using matrix blocks instead of elements;
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Fig. 13.5 Recursive construction of the Peano element order to store matrices

• A concept for matrices of arbitrary size, as the standard Peano order will only
work for matrices of size 3k � 3k.

The 2D Peano order for the elements is derived in a straightforward manner from the
iterations of the Peano curve. The respective construction is illustrated in Fig. 13.5.
The pattern symbols P , Q, R, and S now denote a numbering scheme for the
corresponding subblock in the matrix.

13.3.1 Block-Recursive Peano Matrix Multiplication

Let’s now formulate the 3 � 3 multiplication scheme of Eq. (13.2) to a scheme for
matrices in Peano order. In a first step, we write the matrices as 3�3 block matrices:

0

@
PA0 RA5 PA6

QA1 SA4 QA7

PA2 RA3 PA8

1

A

0

@
PB0 RB5 PB6

QB1 SB4 QB7

PB2 RB3 PB8

1

A D
0

@
PC 0 RC 5 PC 6

QC1 SC 4 QC 7

PC 2 RC 3 PC 8

1

A : (13.3)

Here, we named each matrix block according to its numbering scheme (see
Fig. 13.5), and indicated the name of the global matrix and the relative position
of the block in the Peano order as indices. The element operations of Eq. 13.2 now
lead to multiplication of matrix blocks, as in PC 0 CD PA0PB0, QC1 CD QA1PB0,
PC 2 CD PA2PB0, etc.

If we just examine the numbering patterns of the matrix blocks, we see that there
are exactly eight different types of block multiplications:

P CD PP Q CD QP R CD PR S CD QR
P CD RQ Q CD SQ R CD RS S CD SS:

(13.4)

For the block operation P CD PP, we have already derived the necessary block
operations and their optimal sequence of execution in Eq. (13.2). For the other seven
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Table 13.1 Execution orders for the eight different block multiplication schemes. ‘C’ indicates
that the access pattern for the respective matrix A, B , or C is executed in forward direction (from
element 0 to 8). ‘�’ indicates backward direction (starting with element 8)

Block scheme P CD PP P CD RQ Q CD QP Q CD SQ R CD PR R CD RS S CD QR S CD SS

A C C C C � � � �
Access to B C C � � C C � �

C C � C � C � C �

types of block multiplications, it turns out that we obtain similar execution patterns,
and that no further block operations arise besides those already given in Eq. (13.4).
Hence, we obtain a closed system of eight recursive multiplication schemes.

13.3.2 Memory Access Patterns During the Peano Matrix
Multiplication

Our next task is to derive execution sequences for the other seven multiplication
schemes: Q CD QP, R CD PR, etc. We will leave the details for Exercise 13.2,
and just state that each multiplication scheme leads to an execution order similar
to that given in Eq. (13.2). In addition, all eight execution orders follow the same
structure as the scheme for P CD PP, except that for one, two, or even all three
of the involved matrices, the access pattern runs backwards. Table 13.1 lists for
the eight different schemes which of the access patterns run backwards.

All eight schemes can be implemented by using only increments and decrements
by 1 on the Peano-ordered element indices. Hence, jumps in memory are completely
avoided throughout the computation of a 3 � 3 block. Our next step is therefore
to make sure that jumps are also avoided between consecutive block schemes.
As example, we examine the transfer between the first two block operations in a
P CD PP scheme: we assume that we just finished the operation PC 0 CD PA0PB0,
and now would go on with QC1 CD QA1PB0.

• On matrix A, we have traversed the P -ordered block 0, which means that our last
access was to the last element in this block. The Q CD QP scheme runs in ‘C’
direction on A (see Table 13.1), such that the first access to the Q-ordered block
1 in A will be to the first element, which is of course a direct neighbour of the
last element of block 0.

• In matrix C , we have the identical situation: the P -ordered block 0 has been
traversed in ‘C’ direction, and the next access will be to the first element in the
Q-ordered block 1.

• In matrix B , both execution sequences work on the P -ordered block 0. However,
while the P CD PP scheme accesses B in ‘C’ direction, the Q CD QP scheme
will run in ‘�’ direction on B . Hence, the last access of the P CD PP scheme
is to the last element of the block, which will also be the start of the Q CD QP
scheme.
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Fig. 13.6 Memory access pattern for all three matrices during a 9�9 Peano matrix multiplication.
The highlighted areas are obtained by partitioning the operations (left image) or the accessed
elements of C (right image)

Hence, the increment/decrement property stays valid between the two block opera-
tions. A careful analysis (which is also too tedious to be discussed here) reveals that
this is true for all recursive block operations occurring in our multiplication scheme.

As a result, the Peano matrix multiplication can be implemented as illustrated
in Algorithm 13.6. There, the schemes P CD PP, Q CD QP, etc., are coded via
the ‘C’- or ‘�’-directions of the execution orders for the three matrices, as listed in
Table 13.1. The change of direction throughout the recursive calls is coded in the
parameters phsA, phsB, and phsC.

The increment/decrement property leads to an inherently local memory access
pattern during the Peano matrix multiplication, which is illustrated in Fig. 13.6.
There, we can observe certain locality properties of the memory access:

• A given range of contiguous operations (highlighted in the left image) will access
only a certain contiguous subset of matrix elements.

• Vice versa, a contiguous subset of matrix elements will be accessed by a set of
operations that consists of only a few contiguous sequences.

Both, the operator subsets and the range of elements, define partitions that can
be used to parallelise the Peano matrix multiplication (following a work-oriented
or an owner-computes partitioning, respectively). However, the underlying locality
properties also make the algorithm inherently cache efficient, which we will
examine in the following section.

13.3.3 Locality Properties and Cache Efficiency

Figure 13.6 illustrates the spatial locality properties of the new matrix multiplica-
tion. From the respective chart, we can infer a so-called access locality function,
LM .n/, which we can define as the maximal possible distance (in memory) between
two elements of a matrix M that are accessed within n contiguous operations.

For a loop-based implementation of matrix multiplication, we will typically
access a range of k successive elements during k operations – which already
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Algorithm 13.6: Recursive implementation of the Peano matrix multiplication
Procedure peanoMult(phsA, phsB, phsC, dim)

Data: A,B,C: the matrices, C will hold the result of C += AB;
a,b,c: indices of the matrix element of A, B, and C
(a, b, and c should be initialised to 0 on entry)

Parameter: phsA,phsB,phsC: index increments/decrements for a, b, and c;
dim: matrix block dimension (must be a power of 3)

begin
if dim = 1 then

C[c] += A[a] * B[b];
else

peanoMult( phsA, phsB, phsC, dim/3); a += phsA; c += phsC;
peanoMult( phsA,–phsB, phsC, dim/3); a += phsA; c += phsC;
peanoMult( phsA, phsB, phsC, dim/3); a += phsA; b += phsB;

peanoMult( phsA, phsB,–phsC, dim/3); a += phsA; c –= phsC;
peanoMult( phsA,–phsB,–phsC, dim/3); a += phsA; c –= phsC;
peanoMult( phsA, phsB,–phsC, dim/3); a += phsA; b += phsB;

peanoMult( phsA, phsB, phsC, dim/3); a += phsA; c += phsC;
peanoMult( phsA,–phsB, phsC, dim/3); a += phsA; c += phsC;
peanoMult( phsA, phsB, phsC, dim/3); b += phsB; c += phsC;

peanoMult(–phsA, phsB, phsC, dim/3); a –= phsA; c += phsC;
peanoMult(–phsA,–phsB, phsC, dim/3); a –= phsA; c += phsC;
peanoMult(–phsA, phsB, phsC, dim/3); a –= phsA; b += phsB;

peanoMult(–phsA, phsB,–phsC, dim/3); a –= phsA; c –= phsC;
peanoMult(–phsA,–phsB,–phsC, dim/3); a –= phsA; c –= phsC;
peanoMult(–phsA, phsB,–phsC, dim/3); a –= phsA; b += phsB;

peanoMult(–phsA, phsB, phsC, dim/3); a –= phsA; c += phsC;
peanoMult(–phsA,–phsB, phsC, dim/3); a –= phsA; c += phsC;
peanoMult(–phsA, phsB, phsC, dim/3); b += phsB; c += phsC;

peanoMult( phsA, phsB, phsC, dim/3); a += phsA; c += phsC;
peanoMult( phsA,–phsB, phsC, dim/3); a += phsA; c += phsC;
peanoMult( phsA, phsB, phsC, dim/3); a += phsA; b += phsB;

peanoMult( phsA, phsB,–phsC, dim/3); a += phsA; c –= phsC;
peanoMult( phsA,–phsB,–phsC, dim/3); a += phsA; c –= phsC;
peanoMult( phsA, phsB,–phsC, dim/3); a += phsA; b += phsB;

peanoMult( phsA, phsB, phsC, dim/3); a += phsA; c += phsC;
peanoMult( phsA,–phsB, phsC, dim/3); a += phsA; c += phsC;
peanoMult( phsA, phsB, phsC, dim/3);

end
end

requires some optimisations in order to avoid stride-n accesses. For the naive
implementation given in Algorithm 13.4, we thus have LM .n/ � n for all involved
matrices. For an improved algorithm that operates on matrix blocks of size k�k, we
will typically obtain loops over k contiguous elements, so the worst case will reduce
to LM .k/ � k with k � n. However, as long as we stay with a k � k block, we will
perform k3 operations on only k2 elements of a matrix. Hence, if our storage scheme
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for the matrices uses k � k-blocks, as well, and stores such elements contiguously,
we perform k3 operations on k2 contiguous elements. The best case that could be
achieved for the access locality function LM should therefore be LA.k/ � k2=3.
Thus, even a blocked approach has the following limitations on LM :

• We have only one block size, k0, that can lead to the optimal locality – this could
be cured, if we change to a recursive blocking scheme (a first step towards space-
filling curves).

• The locality will still be LM .k/ � k, if we are within the smallest block.
• Between two blocks, the locality will only be obtained, if two successively

accessed blocks are stored contiguously in memory.

The recursive blocking and the last property (contiguity) is exactly what is achieved
by the Peano multiplication scheme. We can therefore obtain L.k/ 2 O.k2=3/ as an
upper bound of the extent of the index range for any value of k.

While we have L.k/ D k2=3, if we exactly hit the block boundaries, i.e.,
compute the distances for the first element operations of two consecutive block
multiplications, we obtain a slightly worse ratio for arbitrary element operations.
For a tight estimate, we need to determine the longest streak of not reusing matrix
blocks in the Peano algorithm. For matrix B , which is always reused three times,
the longest streak is two such block multiplications. For three block multiplications,
either the first two or the last two work on the same B-block. In the scheme for
matrix A, up to nine consecutive block multiplications can occur until a block is
re-used. For matrix C , three contiguous block operations occur. During recursion,
though, two such streaks can occur right after each other. For matrix A, we therefore
obtain 18 as the length of the longest streak. In the worst case, we can therefore do
18n3 block operations on matrix A on 18n2 contiguous elements of A. Thus, for
matrix A, we get that

LA.n/ � 18

182=3
n2=3 D 3

p
18n2=3: (13.5)

For matrix C , we get a maximum streak length of 6, and therefore

LB.n/ � 3
p

2n2=3; LC .n/ � 3
p

6n2=3: (13.6)

If we only consider O.n3/-algorithms for matrix multiplication, i.e., if we disregard
Strassen’s algorithm and similar approaches, then a locality of LB.n/ 2 O.n2=3/

is the optimum we can achieve. The locality functions LA.n/ � 3n2=3, LB.n/ �
2n2=3, and LC .n/ � 2n2=3 are therefore asymptotically optimal. LB and LC , in
addition, involve very low constants.

13.3.4 Cache Misses on an Ideal Cache

The access locality functions provide us with an estimate on how many operations
will be performed on a given set of matrix elements. If a set of elements is given by
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a cache line or even the entire cache, we can estimate the number of cache hits and
cache misses of the algorithm. To simplify that calculation, we use the model of an
ideal cache, which obeys to the following assumptions:

• The cache consists of M words that are organized as cache lines of L words each.
Hence, we have M=L cache lines. The external memory can be of arbitrary size
and is structured into memory lines of L words.

• The cache is fully associative, i.e., can load any memory line into any cache line.
• If lines need to be evicted from the cache, we assume that the cache can “foresee

the future”, and will always evict a line that is no longer needed, or accessed
farthest in the future.

Assume that we are about to start a k �k block multiplication, where k is the largest
power of 3, such that three k � k matrices fit into the cache. Hence, 3 � k2 < M , but
3 � .3k/2 > M , or

1

3

r
M

3
< k <

r
M

3
: (13.7)

The cache will usually (except at start) be occupied by blocks required from pre-
vious multiplications; however, one of the three involved blocks will be reused and
thus already be stored in the cache. To perform the following element operations, we
will successively have to fetch all cache lines that contain the elements of the two
new matrix blocks. The ideal cache strategy will ensure that the matrix block that
is reused from the previous block multiplication will not be evicted from the cache.
Instead, cache lines from the other two blocks will be replaced by the elements for
the new block operation. We can also be sure that elements of these new blocks
will not be evicted during the entire block operation. Hence, there will be only

2
l

k2

L

m
cache line transfers for these two k � k blocks – to simplify the following

computation, we assume that
l

k2

L

m
D k2

L
.

As we will perform .n=k/3 such block operations, the total number of cache line
transfers throughout an n � n multiplication will be

T .n/ D
�n

k

�3 � 2 �
�

k2

L

�
D 2n

kL
�

0
B@

2n

1
3

q
M
3

� L

1
CA D 6

p
3

n3

L
p

M
: (13.8)

For arbitrary size of the cache lines, we still have T .N / 2 O
�

n3

L
p

M

�
, with a

constant close to 6
p

3. Note that the respective calculation also works, if we have
multiple levels of cache memory. Then, the estimate of cache line transfers refers
to the respective size M of the different caches. For realistic caches, we might
obtain more cache transfers because of a bad replacement strategy. However, a
cache that always evicts the cache line that was used longest ago (“least recently
used” strategy) will expel those cache lines first that contain matrix elements that
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are farthest away in terms of location in memory, because the access pattern of the
multiplication will make sure that all matrix elements that are “closer” in memory
have been accessed at a later time. What we cannot consider at this point is effects
due to limited associativity of the cache, i.e., if a cache can place memory lines only
into a specific set of cache lines.

13.3.5 Multiplying Matrices of Arbitrary Size

For practical implementations, it turns out that regular CPUs will not run at full
performance, if we use a fully recursive implementation. For small matrix blocks,
loop-based implementations are much more efficient. One of the reasons is that
vector-computing extensions of CPUs can then be exploited. We should therefore
stop the recursion on a certain block size k � k, which is chosen to respect such
hardware properties. To extend our algorithm for matrices of arbitrary size, we then
have three options:

1. We can embed the given matrices into larger matrices of size 3p � 3p (or, with
blocks as leaves: 3pk � 3pk). The additional zeros should, of course, not be
stored. A respective approach is described in Sect. 13.4, where such a padding
approach is given for band matrices or sparse matrices in general. In such an
approach, we will typically stop the recursion on matrix blocks, as soon as these
fit into the innermost cache of a CPU.

2. In Sect. 8.2.3, we introduced Peano iterations on 3D grids of size k�l �m, where
k, l , and m may be arbitrary odd numbers. The Peano matrix multiplication
also works on such Peano iterations. For the leaf-block operations, we have to
introduce schemes for matrix multiplication on n1 � n2, where n1 and n2 may be
3, 5, or 7, respectively. Actually, the scheme will work for leaf blocks of any odd
size.

3. We can stick to the classical 3 � 3 recursion, if we stop the recursion on larger
block sizes. If these are stored in regular row- or column-major order (compare
the approach in Sect. 13.4), we just need to specify an upper limit for the size of
these blocks, and can then use an implementation that is optimised for small (but
arbitrary) matrix sizes.

What approach performs best will depend on the specific scenario. The first
approach is interesting, for example, if we can choose the size of the leaf-level
matrix block such that three such blocks fit exactly into the innermost cache. The
constant factor for the number of cache line transfers, as estimated in Eq. (13.8) will
then be further reduced. The third approach is especially interesting for coarse-grain
parallel computations. There, the leaf-level blocks will be implemented by a call to
a sequential library, where the size of the leaf blocks is of reduced influence. See the
works indicated in the references section for more details.
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Fig. 13.7 Illustration of a spacetree storage scheme for sparse matrices. The tree representation of
the sparsity pattern is sequentialised according to modified depth-first scheme, where information
on the child tree is stored within a parent node

13.4 Sparse Matrices and Space-Filling Curves

Sparse matrices are matrices that contain so many zero elements that it becomes
worthwhile to change to different data structures and algorithms to store and
process them.2 Considering our previous experience with space-filling-curve data
structures for matrices and arrays, but also for adaptively refined grids, we can
try to use a quadtree-type structure to store matrices that contain a lot of zeros.
As illustrated in Fig. 13.7, we recursively subdivide a matrix into smaller and
smaller blocks. The substructuring scheme can be a quadtree scheme, but due to
our previously introduced Peano algorithm, we again use a 3 � 3 refinement, i.e.,
a 32-spacetree. Once a matrix block consists entirely of zero elements, we can stop
refinement, mark the respective tree with a zero-block leaf, and thus not store the
individual elements. For blocks that contain elements, we stop the recursion on
blocks of a certain minimal sizes. On such blocks, we either store a dense matrix
(could be even in row- or column-major order) or a small sparse matrix (using a
respective simple storage scheme). The tree structure for such a storage scheme is
also illustrated in Fig. 13.7.

The matrix blocks, either sparse blocks or dense blocks, are stored in the
sequential order given by the Peano curve. However, in contrast to the Peano
scheme for dense blocks, the matrix blocks will now have varying size – because
of the different sparsity patterns of the individual blocks, but also because the zero
blocks are not stored at all. Hence, to access a specified block, it will usually be
necessary to traverse the sparsity tree from its root. To issue recursive calls on
one or several child matrix blocks, a parent node needs information on the exact
position of all child blocks in the data structure. Thus, in a node, we will store the

2Following a definition given by Wilkinson.
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start address of all nine child blocks of the matrix. Zero blocks are automatically
considered by this scheme by just storing two consecutive identical start addresses.
As we typically need both start and end addresses for the children, we also need to
store the end address of the last block. Hence, for every parent node, we will store a
sequence of ten integers, as indicated by the data stream in Fig. 13.7. We thus obtain
a data structure that follows the same idea as the modified depth-first traversal that
was introduced for the refinement trees of adaptive grids, in Sect. 10.5.

The sparsity structure information and the matrix elements of the leaf blocks can
either be stored in a single data stream or in two separate streams. If we choose
to store the elements together with the structure, we will only need to change the
data structure for the leaf blocks. These blocks will then require information on
the block size and type (dense or sparse), as well as on the extent of the block in
terms of bytes in memory. If matrix elements are stored in a separate stream, the
pre-leaf-level nodes need to store respective pointers to the start of the respective
blocks in the elements stream.

As already indicated in Sect. 13.3.5, we can also use the presented sparse-matrix
data structure for matrices that are only dense (or comparably dense) in certain
parts of the matrix – one simple example would be band matrices. In that case, we
can further simplify the data structure by allowing only dense matrix blocks in the
leaves.

References and Further Readings

The Peano-curve algorithm for matrix multiplication was introduced in [24], where
we particularly discussed the cache properties of the algorithm. The locality
properties, as given in Eqs. 13.5 and 13.8 are asymptotically optimal – respective
lower bounds were proven by Hong and Kung [132]. Hardware-oriented, efficient
implementations of the algorithms, including the parallelisation on shared-memory
multicore platforms, were presented in [21, 127]. In [19], we discussed the paral-
lelisation of the algorithm using message passing on distributed-memory. There, the
result for cache line transfers in the ideal-cache model can be used to estimate the
number of transferred matrix blocks in a distributed-memory setting. The extension
for sparse matrices was presented in [22], which also includes a discussion of
LU-decomposition based on the Peano matrix multiplication.

Since the advent of cache-based architectures, improving the cache efficiency of
linear algebra operations has been an active area of research. Blocking approaches
to improve the cache-efficiency were already applied in the first level-3 BLAS
routines, when introduced by Dongarra et al. [78]. Blocking approaches and the
block-oriented matrix operations were also a driving factor in the development
of LAPACK [13], whose implementation was consequently based on exploiting
the higher performance of BLAS 3 routines. Since then, blocking and tiling of
matrix operations has become a standard technique for high performance libraries.
The ATLAS project [267] uses automatic tuning of blocking sizes to the available



13.4 Sparse Matrices and Space-Filling Curves 213

memory hierarchy, and GotoBLAS [104] explicitly considers the translation look-
aside buffer (TLB) and even virtual memory as further cache levels [103].

Block matrix layouts to improve cache efficiency were introduced by Chatterjee
et al. [65], who studied Morton order and 4D tiled arrays (i.e., 2D arrays of
matrix blocks), and by Gustavson [116], who demonstrated that recursive blocking
automatically leads to cache-efficient algorithms. Frens and Wise [90] used quadtree
decompositions of dense matrices and respective recursive implementations of
matrix multiplication and of QR decomposition [91]. The term cache-oblivious
for such inherently cache-efficient algorithms has been introduced by Frigo et
al. [92]. For a review of both cache-oblivious and cache-aware algorithms in
linear algebra, see Elmroth et al. [81]. For further, recent work, see [106, 255],
e.g. Yotov et al. [112,281] compared the performance of cache-oblivious algorithms
with carefully tuned cache-aware approaches, and identified efficient prefetching
of matrix blocks as a crucial question for recursive algorithms. For the Peano
algorithm, the increment/decrement access to blocks apparently solves this problem.
In any case, block-oriented data structures and algorithms are more and more
considered a necessity in the design of linear algebra routines. The designated
LAPACK-successor PLASMA [56, 57], for example, aims for a stronger block
orientation, and similar considerations drive the FLAME project [113]. As libraries
will often depend on row-major or column-major storage, changing the matrix
storage to blocked layouts on-the-fly becomes necessary; respective in-place format
conversions were studied in [115].

For sparse matrices, quadtree data structures were, for example, examined by
Wise et al. [271, 272]. Hybrid “hypermatrices” that mix dense and sparse blocks
in recursively structured matrices were discussed by Herrero et al. [130]. Haase
[117] used a Hilbert-order data structure for sparse-matrix-vector multiplication to
improve cache efficiency.

Chapter 14 will present a cache-oblivious approach to solve partial differential
equations on adaptive discretisation grids – hence, we save all further references to
work on cache oblivious algorithms, be it grid-based or other simulation approaches,
for the references section of Chap. 14.

What’s next?

The next chapter will do a second case study, now focusing on mesh-based
algorithms, for example to solve partial differential equations.
The next chapter will use Sierpinski curves and also the Lebesgue curve
and Morton order – if you skipped the respective chapters and sections,
you should do them now (Chaps. 6 and 12 for Sierpinski curves, Sect. 7.2
for Lebesgue curves and Morton order).
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Exercises

13.1. Try to determine the number of cache misses caused by Algorithm 13.3,
following the same cache model as in Sect. 13.3.4. Focus, in particular, on the misses
caused by the access to the vectors x and y.

13.2. Use the graph-based illustration of Eq. (13.2) to derive the execution orders
for the matrix multiplication schemes Q CD QP, R CD PR, S CD QR, etc.

13.3. Consider an algorithm that uses 2D Morton order to store the matrix elements,
and 3D Morton order to execute the individual element operations of matrix
multiplication. Analyse the number of cache misses causes by this algorithm, using
a cache model and computation as in Sect. 13.3.4.

13.4. As a data structure for sparse matrices, we could also refine the sparsity tree
up to single elements, i.e., not stop the recursion on larger blocks. Give an estimate
on how much memory we will require to store a sparse matrix (make suitable
assumptions on the sparsity pattern or sparsity tree, if necessary).



Chapter 14
Case Study: Numerical Simulation on
Spacetree Grids Using Space-Filling Curves

In Chap. 1, we have already introduced the numerical solution of a heat equation
on adaptive grids as a motivating example. In Chaps. 9 and 10, we discussed how
to combine spacetrees and space-filling curves to obtain efficient data structures,
as well as partitioning and load distribution algorithms for the parallelisation of
such problems. Together, spacetrees and space-filling curves were shown to be
able to allow adaptive refinement of meshes, but still retain locality properties on
the discretisation mesh. However, for full-featured numerical simulations, we still
have to discuss how to deal with the following problems:

• Adaptive refinement and coarsening of the grid might require certain balancing
operations on the grid. For example, certain limitations between the size of
neighbouring grid cells are sometimes prescribed. Hence, we require respective
balancing algorithms.

• To solve numerical problems, we need efficient algorithms to perform the
subsequent computational steps of classical iterative solvers. Hence, we need
efficient traversal algorithms to update the unknowns on a spacetree grid.

Additional challenges might arise from the integration of multigrid solvers, or other
efficient numerical approaches.

In the following, we will extend the concept of locality properties and introduce
inherently memory-local and memory-efficient traversal algorithms on spacetrees,
which can be used to implement conjugate gradient or multigrid solvers for
stationary problems, or time-stepping schemes to solve time-dependent equations.

14.1 Cache-Oblivious Algorithms for Element-Oriented
Traversals

We will start with the heat equation problem we already used in the introduction:

• There, we used a uniformly refined discretisation grid, where the unknowns
(temperature values) are placed on the vertices of the grid cells.

M. Bader, Space-Filling Curves, Texts in Computational Science and Engineering 9,
DOI 10.1007/978-3-642-31046-1 14, © Springer-Verlag Berlin Heidelberg 2013
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Fig. 14.1 Neighbouring unknowns in a quadtree grid

• We need to solve a system of linear equations, where the individual equations
couple unknowns on adjacent grid points, for example

ui;j � 1

4

�
ui�1;j C ui;j �1 C uiC1;j C ui;j C1

� D fi;j for all i; j (14.1)

in the case of a regular grid – see also Eq. (1.1).
• We will use iterative solvers to compute approximate solutions for the unknowns

ui;j . A lot of these solvers will be based on computing the residuals

ri;j D fi;j � ui;j C 1

4

�
ui�1;j C ui;j �1 C uiC1;j C ui;j C1

�
for all i; j;

(14.2)

and use the residuals for local updates of the approximate solutions.

A crucial component of our data structures and algorithms will therefore be to
ensure an efficient access to the local neighbours of an unknown. In a spacetree grid,
this is easy as long as a neighbouring unknown is located in the same spacetree cell.
However, as Fig. 14.1 shows, neighbouring unknowns can also be located in entirely
different subtrees. There are not too many choices to implement such accesses
efficiently:

• If the tree structure is stored explicitly, we can follow the parent–child pointers.
The number of pointers depends on the depth of the tree, and will therefore
depend logarithmically on the number of grid cells. Usually, this is too expensive.

• A sequentialised storage scheme, as introduced in Sect. 9.2, will be even worse,
as we would need to traverse all intermediate subtrees, which leads to computa-
tional effort which, in the worst case, is proportional to the entire number of grid
cells.



14.1 Cache-Oblivious Algorithms for Element-Oriented Traversals 217

• For a sequentially stored uniform grid, we can compute the position of an
unknown directly, using the indexing algorithms for space-filling curves. The
effort then depends on the number of digits we need to compute to determine the
index, which again depends logarithmically on the grid size. For adaptive grids,
however, the index computation becomes complicated, because we do not
know the size of the subtrees. A modified depth-first storage, as introduced in
Sects. 10.5 and 13.4, is then required, which leads to similar computational costs
as a pointer-based scheme.

• To store indices of the neighbours or pointers to them explicitly will extend
the tree data structure towards a general (directed, acyclic) graph. Accesses to
neighbours will then have an O.1/ computational effort, but the extension of the
data structure will substantially increase the memory requirement. Depending
on how much additional information we have to or choose to store, the memory
advantage in comparison to using unstructured meshes will be lost.

A possible remedy is to use hash tables to store unknowns, which leads to an average
complexity of O.1/ for accesses to unknowns. However, evaluating a hash function
for each access remains expensive, and hash tables are usually cache-inefficient.

The approach that we propose in the following will tackle the problem in two
steps: it will avoid node-oriented traversals and use an element-oriented approach,
instead, and it will introduce a stack-system to handle multiple updates of unknowns
during the grid traversals.

14.1.1 Element-Based Traversals on Spacetree Grids

First of all, we note that not all neighbours are difficult to access in a spacetree:
the access to unknowns within the same spacetree element should, in fact, be
simple – if we disregard that unknowns on nodes and edges will belong to multiple
adjacent cells. We can therefore try to traverse our grid element-by-element, only
accessing the element-local unknowns in each element. As a consequence, we need
to re-formulate the node-oriented computation, as suggested by the notation used in
Eq. (14.1), in an element-oriented way (and, similarly, the computation of residuals,
as in Eq. (14.2).

Element-Based Discretisation

Figure 14.2 illustrates how to change the node-based discretisation given by the
system (14.1) into an element-based discretisation. In that way, we change a node-
based system of equations Ax D b into a set of element systems A.e/x.e/ D b.e/,
where the global matrix A and right-hand side b is summed up from the element
contributions:

A D
X

e2S

A.e/ and b D
X

e2S

b.e/: (14.3)
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Fig. 14.2 Node-based and equivalent element-based discretisation of the heat equation

Element-oriented discretisation methods, such as Finite Element, Finite Volume,
or discontinuous Galerkin methods, will directly deliver such element systems.
Often, these element systems are then accumulated to a global system according
to Eq. (14.3). While the following approach could also be used to assemble such
global matrices, its main goal is to avoid this overhead and directly work on the
element systems, instead.

Element-Based Residual Updates

Of course, we need to be able to perform operations such as computing the residual,
as in Eq. (14.2), based on the element-oriented formulation. With r D b � Ax and
Eq. (14.3), we obtain

r D
X

e2S

.b.e/ � A.e/x.e/

„ ƒ‚ …
DWr.e/

D
X

e2S

r.e/; (14.4)

i.e. we accumulate element contributions of the global residual vector. Hence, in
each element, we will access all unknowns that are located in this element, which
means that all unknowns are accessed by all adjacent elements. Similarly, each
component of the global residual vector corresponds to one unknown and is
therefore updated by all elements adjacent to that unknown. Hence, in a rectangular
grid (with unknowns located on vertices), we will have four accesses to each
unknown, and also four updates to each residual.

We therefore need to work out solutions to the following two access problems:

• We need efficient access to the unknowns x.e/ in each element. Even if unknowns
are adjacent to more than one element, we only want to store them once.
However, all adjacent elements need to be able to access it efficiently.

• We will do several updates on each residual component. Hence, we need to store
intermediate results. As for the x.e/, we do not want to store element contribu-
tions separately, but use only one variable to accumulate residual contributions
for one unknown.
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Fig. 14.3 Colouring of
unknowns in a uniformly
refined quadtree grid – the
Hilbert curve divides the
unknowns into a green group
(left of the curve) and a red
group (right of the curve).
Note the stack principle
during the access to the
unknowns 1 up to 9

To put it short, we need to arrange repeated accesses and updates to given unknowns
or residual components located on vertices (or edges). We do not want to store the
respective variables multiple times and cannot store the variable in a fixed memory
location (this would imply an index or hash-table solution, as discussed earlier). A
solution to this dilemma is to store the variables only once, but in multiple locations
in memory – as explained in the following paragraph.

14.1.2 Towards Stack-Based Traversals

Let’s study Fig. 14.3, which shows a uniformly refined quadtree grid sequentialised
by a Hilbert curve. As we have already discussed for parallelisation, in Sect. 10.6,
the Hilbert iterations splits the unknowns into two halves: a green half that is located
left of the curve, and a red half right of the curve. In addition the subsequent accesses
to the unknowns of one colour strictly follow a last-in-first-out scheme, i.e. follow a
stack principle. The unknowns 1–9, for example, will first be accessed in ascending
order by the elements left of them. Afterwards, they will be accessed by the elements
adjacent to the right-hand side in descending order. Hence, to store intermediate
values of these unknowns, we can use a stack. To store and retrieve all unknowns of
the grid, we require two different stacks – one for the green unknowns and one for
the red ones. After leaving an element, we will store all unknowns that need to be
accessed again on the corresponding colour stack. Correspondingly, when entering
an element, we can obtain all unknowns that were already accessed by previous
elements from the respective colour stack.

Once an unknown has been updated by all adjacent elements, we must not put
it back onto a colour stack. Otherwise, it would block all elements below it, which
still need to be updated. We therefore introduce two additional data structures: an
input stream that holds the original unknowns (before their first update access) and
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Fig. 14.4 Sequential order of the unknowns in the input and output stream. Left image: first-access
order or a forward traversal; right image: last-access order or a backward traversal

an output stream that holds the finished unknowns, respectively. The order of the
unknowns within the input stream has to correspond to the order in which they will
be first accessed during the traversal (first-access order). Figure 14.4 (left image)
illustrates this order for a uniformly refined grid. Note that we will often have a
first access to two unknowns at once when entering a cell (3 and 4, or 7 and 8, for
example). In that case, the unknown that would be visited first in a refined grid gets
the lower number.

In the same way, the output stream will store the unknowns in the order as their
processing is finished by the traversal (last-access order). This sequential order is
illustrated in the right image of Fig. 14.4; however, in that image we do a backward
traversal! Again, there are frequent situations where two unknowns are finished in
the same cell (2 and 3, or 46 and 47, for example). And in concordance with the
first-access order, the unknown that would be finished first in a refined grid gets the
lower number.

Now compare the two orders resulting from the forward and backward traversal
in Fig. 14.4: we can see that the first access during the forward traversal leads to
exactly the opposite order that results from the last access during the backward
traversal – we will refer to this property as the inversion property. Hence, after a
forward traversal, all unknowns on the output stack are in a correct order to start
a backward traversal – we only need to treat the output stream as a stack, and use
it as an input stream in inverted order. The same result is obtained vice versa, so
we should treat the input and output stream as input and output stacks, as well.
After each traversal the input and output stack change their role, and we change the
orientation of the traversal.

Figure 14.5, finally, illustrates the overall setting for the traversal algorithm,
in particular the interaction of colour stacks, element-oriented processing, and
input/output streams. Such stack-based traversal algorithms are possible for several
space-filling curves. Figure 14.6 demonstrates the necessary stack property for the
standard 2D Peano curve and for the Sierpinski curve.
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Fig. 14.5 System of stacks and streams for the element-oriented traversals

Fig. 14.6 Stack property of the standard 2D Peano curve and of the Sierpinski curve

14.2 Implementation of the Element-Oriented Traversals

In the previous section, we have explained the idea of the element-oriented traversals
in enough detail to be able to perform it on a piece of paper – if you want to try it at
this point, refer to Exercise 14.1. However, to formulate a proper algorithm that is
able to perform the traversals, including the correct stack operations, on a computer,
we need to solve the following problems:

• Which unknowns of an element will be taken from the input stream, and which
unknowns are already located on a colour stack?
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Fig. 14.7 Construction of the
turtle grammar for the Hilbert
curve

• From which colour stack do we need to retrieve a previously accessed unknown?
Similarly, on which colour stack do we need to store an unknown that will be
processed further.

• How do we identify unknowns that are finished, i.e. need to be put onto an output
stack.

14.2.1 Grammars for Stack Colouring

To decide from which colour stack an unknown needs to be stored or retrieved, we
need to classify the unknowns locally into unknowns on the left-hand or right-hand
side of the curve. In Sect. 3.4, we discussed the turtle-graphics grammars, which
allow us to determine the local course of a space-filling curve within an element,
especially the entry and exit edges. Figure 14.7 illustrates the construction of this
grammar again, for the Hilbert curve. Once the entry and exit edges of the curve are
known, it is easy to decide whether an unknown is located on the left-hand or right-
hand side of the curve. Hence, the turtle grammars will be used for our stack-based
traversal algorithms.

14.2.2 Input/Output Stacks Versus Colour Stacks

Our next step is to discriminate whether a given unknown should be retrieved
from the input stream or from one of the colour stacks. Also, we need to decide
whether an updated unknown should be put onto a colour stack or be written to the
output stream. To decide this, we require information whether an unknown has been
accessed before, which is related to the question which of the adjacent elements has
already been visited during a traversal.

One obvious solution is to count the number of accesses to each unknown, which
of course has the disadvantage that a separate counter variable is necessary for each
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Fig. 14.8 Turtle grammar patterns to determine the node colouring for stack based Sierpinski
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unknown.1 In the following, we will discuss a more elegant approach that is based
on an old/new classification of edges. We will present this for a traversal following
the Sierpinski-curve on a compatible triangular grid, as the respective construction
is easier than for the Hilbert curve.

Stack Colouring for the Sierpinski Curve

We again need a turtle grammar for the Sierpinski curve, which was the topic of
Exercise 6.3. In the usual way, we need to examine the entry and exit edges of
the Sierpinski curve in a triangular element. As the Sierpinski curve will enter and
leave an element always at a node that is adjacent to the hypotenuse, we obtain three
different patterns, which are illustrated in Fig. 14.8:

• Pattern H : enter via the hypotenuse, exit across the opposite leg;
• Pattern K: enter via a leg, exit across the hypotenuse;
• Pattern V : enter and exit via the two legs.

As usual, the pattern for the child elements are determined by the patterns of their
parents, and follow a fixed recursive scheme.

Old/New Classification

As also illustrated in Fig. 14.8, the patterns H , K , and V provide additional
information on whether adjacent elements have already been visited:

• An element adjacent to an entry edge has already been visited – more exactly, it
was processed right before the current element;

• An element adjacent to an exit edge was not visited before: it will be processed
right after the current element.

1We assume here that we have exactly one unknown on each corner of the grid. If multiple
unknowns would be placed on corners and edges, we only need the respective information for
each corner and edge of an element.
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Fig. 14.9 Old/new classification of edges for the Sierpinski traversal

Hence, we only need to determine the old/new information for the third edge (also
called the colour edge) in each triangle. As already indicated in Fig. 14.8, we will
code this old/new information into the patterns, and use six patterns for the final
grammar: Ho, Hn, Ko, Kn, Vo, and Vn. As Fig. 14.9 shows, the old/new information
can again be determined from the classification of the parents.

Colour Stacks Versus Input/Output Stacks

With the old/new classification, we can decide whether unknowns on vertices need
to be retrieved from the input stream or from one of the colour stacks:

• If an unknown is adjacent to an old edge, it has been processed and updated
before, and should therefore be retrieved from the respective colour stack.

• If an unknown is only adjacent to new edges, it was not processed before.
It therefore has to be retrieved from the input stream.

Technically, this classification is incomplete: it would be possible that an unknown is
adjacent to two new edges, but was processed within an element that is not adjacent
to either of these edges and only touches the current element at this node. It can be
shown by a study of the possible location and orientation of the parent element that
due to the construction of the Sierpinski curve such a scenario does not occur.

After processing an element, we need to decide which unknowns have to be
stored on colour stacks – for further use by later elements – and which unknowns
can be put onto the output stream, because their processing is finished. Again, a
study of the Sierpinski curve’s construction leaves only two possible scenarios:

• If an unknown is adjacent to at least one new edge, it will be processed again
in the respective adjacent element, and therefore needs to be stored on a colour
stack.

• If an unknown is exclusively adjacent to old edges, it will be put onto the output
stream.

To decide whether an unknown has been updated by all adjacent elements, it is not
immediately obvious that is sufficient that the respective node is connected to two
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old edges. A pessimistic implementation would introduce a counter for the updates.
However, in the case of adaptively refined grids or for complicated geometries, even
such a counter would need to be initialised, as the number of adjacent elements
can vary between 4 and 8 for a vertex, and is thus not trivial to figure out. It turns
out, however, that the two-old-edges criterion is indeed sufficient – which requires a
closer study of the scenarios that can occur (see Exercises 14.3 and 14.4, which deal
with this problem).

14.2.3 Algorithm for Sierpinski Traversal

For uniformly refined grids, as they result from a fully balanced refinement tree, all
ingredients for a fully-functional algorithm are now set. Following the classification
shown in Fig. 14.9 – with the element types Ho=n, Ko=n, and Vo=n – we introduce six
separate, nested recursive procedures that either issue calls to the child elements, or,
on leaf level, perform the required stack operations and element updates depending
on the current cell type. Algorithm 14.1 specifies the respective operations for the
case Hn. Algorithm 14.1 is already formulated to work on a bitstream-encoded
refinement-tree grid. But does the grid traversal also work on adaptive triangular
grids?

Algorithm 14.1: Sierpinski traversal on an element of type Hn

Procedure Hn()
Data: bitstream: bitstream representation of spacetree (streamptr: current position);

green,red: stacks to store intermediate values
Variable: entry/exit/angleUnknown: unknowns on the three cell vertices

begin
// move to next element in bitstream
streamptr := streamptr + 1;
if bitstream[streamptr] then

// obtain local unknowns
entryUnknown := green.pop();
angleUnknown := input.pop();
exitUnknown := red.pop();
// execute task on current position
execute (. . . );
// execute task on current position
green.push(entryUnknown);
green.push(angleUnknown);
red.push(exitUnknown);

else
// recursive call to children
Vn();
Ko();

end
end
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Fig. 14.10 Refinement cascade on an adaptive triangular grid. The highlighted edge is marked for
refinement; the dashed edges mark the forced refinement to retain conformity of the grid

If we compare the stack accesses of an adaptive grid with a uniformly refined
grid that has the maximum depth of the adaptive grid, it is easy to check that the
stack operations – pop and push from/to colour stacks and input/output stacks –
for the unknowns on the adaptive grid cells will stay the same in the full grid. Nor
will the order change, in which these accesses occur. Hence, we can interpret an
adaptive grid as a regular grid, where a lot of unknowns, and also the corresponding
stack accesses are left away. Our stack access scheme will therefore stay correct, if
these missing unknowns can be identified by all cells of the grid. This is ensured, if
unknowns are only placed on vertices of grid cells, which is always guaranteed in
the case of so-called conforming grids.

14.2.4 Adaptivity: An Algorithm for Conforming Refinement

An adaptive grid is called conforming, if any two adjacent grid cells share either a
vertex or an entire edge (for 3D grids: an entire face). Grids with so-called hanging
nodes, which are placed on an edge of a neighbouring grid cell, are forbidden.
Hence, during adaptive refinement of a refinement-tree grid, we have to ensure that
such situations are avoided. A natural approach is to mark cells for refinement, first,
exchange the refinement information between adjacent cells, and mark additional
cells for refinement, if necessary. In that way, we might obtain a refinement cascade,
as illustrated in Fig. 14.10.

Again, the algorithm to exchange and update refinement information between
grid cells can follow the stack-based scheme, and works similar to Algorithm 14.1.
As the exchanged unknowns now reflect the refinement status of edges, unknowns
are now located on edges instead of on vertices, which even simplifies the stack
access, as all unknowns are accessed exactly twice. Algorithm 14.2 outlines the
scheme for the case Ho.

If we examine Fig. 14.10 more closely, we can see that the refinement cascades
can propagate in the direction given by the Sierpinski order, but also against it.
Even worse, the propagation can change between these orientations multiple times.
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Algorithm 14.2: Sierpinski traversal to propagate refinement information (for
element type Ho)

Procedure Ho()
Data: bitstream: bitstream representation of spacetree (streamptr: current position);

green,red: stacks to store refinement status;
input,output: streams for refinement status of edges

Variable: left/rightLeg, hypotenuse: refinement of the three cell edges
begin

// move to next element in bitstream
streamptr := streamptr + 1;
if bitstream[streamptr] then

// obtain local unknowns
leftLeg := green.pop();
rightLeg := input.pop();
hypotenuse := red.pop();
// update refinement status of current cell
execute (. . . );
// execute task on current position
output.push(leftLeg);
green.push(rightLeg);
output.push(hypotenuse);

else
// recursive call to children
Vo();
Ko();

end
end

As Algorithm 14.2 can only propagate the information in one of the directions,
we require multiple traversals – in practice, we repeat the traversals until a static
refinement status is reached. Hence, Algorithm 14.2 is not efficient for refinement
at singular points. Instead, it is intended for scenarios where a large part of the grid
cells are refined or coarsened at the same time. In practice, we should therefore
collect all refinement and coarsening decisions for all grid cells, for example as
part of an error estimation traversal, and then process all refinement and coarsening
requests together.

14.2.5 A Memory-Efficient Simulation Approach
for Dynamically Adaptive Grids

The stack&stream-based approach presented in this chapter combines a series
of individual steps that are based on each other and can thus achieve their full
advantage only if all steps are combined:

• The bitstream representation for the refinement tree grids leads to minimal
memory requirements to store the adaptive grids.
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• The stack&stream-based traversal algorithms ensure that information can be effi-
ciently exchanged between adjacent cells, even though no neighbour information
is permanently stored.

• The traversals require an element-oriented discretisation and element-oriented
processing of operators (incl. residual computation, etc.). In that way, an explicit
set-up of global system matrices is avoided, which again leads to substantial gains
in memory requirement. A prerequisite is, however, that the element stiffness
matrices can be efficiently computed for each cell, or that only a couple of
different template matrices need to be stored (which is possible, if a geometrically
uniform refinement of grid cells is used).

• The restriction to stacks and streams as basic data structures is highly cache
friendly. Together with the locality properties introduced by the space-filling
curves, we obtain excellent cache performance for the respective traversal
algorithms.

• The traversals are fully compatible with the parallelisation approaches discussed
in Chap. 10.

The approach is therefore most efficient in simulation scenarios, where dynamically
adaptive grids are used, i.e., grids that need to be refined and coarsened throughout
the entire simulation. Such refinement and coarsening can, for example, be triggered
by frequent changes of the computational domain (consider fluid flow simulation
in moving geometries) or by numerically motivated refinement at moving hot-
spots (consider refinement along a propagating shock wave, for example). In such
cases, the frequent refinement and coarsening of grids is already a challenge for
the data structure, as locality properties cannot be retained by classical approaches.
In addition, an explicit assembly of global matrices is not feasible, if such an
assembly has to be repeated in almost every time step. For application scenarios,
as well as for further details on the design, implementation, and integration of such
stack&stream-based approaches, see the references section at the end of this chapter.

14.3 Where It Works: And Where It Doesn’t

The stack&stream-based traversal and data processing on adaptive grids requires a
couple of properties that need to be fulfilled by the space-filling element order:

• The stack property simply states that data can be put to stacks and retrieved from
stack by adjacent elements during traversals. In 2D, this property is satisfied by
all edge-connected space-filling curves – in particular, for Hilbert, Peano, and
Sierpinski curves. It does not apply for Morton order, however (see Sect. 14.3.2).

• In 3D and higher dimensions, the stack property requires that at a common
(hyper-)face of two subdomains (resulting from the curves construction process)
the element orders imposed by the space-filling curve on the two faces are exactly
inverse to each other. We will refer to this as the palindrome property. To have
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curves matching at common faces in this way seems to require that the curve is
face-connected, however, this is not sufficient!

• The inversion property ensures that data written to the output stream is required in
opposite direction by the input stream during the following, backward traversal.
Hence, the last-access order of the forward traversal has to be inverse to the first-
access order of the backward traversal (and vice versa). The inversion property
also applies to Hilbert, Peano, and Sierpinski curves in 2D.

For the 3D and higher-dimensional case, the situation is, in general, much more
complicated than in 2D. 3D Hilbert curves do no longer satisfy the stack property
(see Sect. 14.3.1) – in particular they do not satisfy the palindrome property. For
Sierpinski curves, already the construction of a face-connected curve is difficult.
However, for the 3D Sierpinski curve introduced in Sect. 8, a stack&stream-traversal
is possible [121] (see also Exercise 14.6). Peano curves (the canonical curves of
switch-back type, only) have been proven to be ideal for stack&stream-traversals.
They satisfy the palindrome property, which is also a consequence of the projection
property of the Peano curve, i.e., the fact that projections along the coordinate
directions lead to lower-dimensional Peano curves. Stack-based Peano traversal can
thus be constructed for n-dimensional spacetree grids (see the references of this
chapter). In the following, we discuss the Morton-order and 3D-Hilbert case, in
order to illustrate the different roadblocks to obtaining stack&stream traversals.

14.3.1 Three-Dimensional Hilbert Traversals

Figure 14.11 illustrates the examination of the stack property for the first 3D Hilbert
iteration. In each of the three images, the unit cube is split along a cutting plane that
is parallel to the coordinate planes. The palindrome property is only satisfied by the
cutting plane in the top-left image. For the front-back cutting plane, as in the lower
left image, the Hilbert order is parallel, but not in reverse order. For the horizontal
cutting plane in the right image, the traversal orders prescribed by the Hilbert curve
in the adjacent cells are not even parallel to each other. As the basic patterns already
fail, none of the multiple Hilbert curve variants is able to satisfy the stack property.

14.3.2 A Look at Morton Order

For Morton order (or the Lebesgue curve), as introduced in Sect. 7.2, the stack
condition between adjacent planes quite obviously does not apply. However, as we
can see from Fig. 14.12, the bit representations of adjacent cells match in the sense
that adjacent cells have identical bits for the coordinate directions of the cutting
plane. This projection property is a direct result of the index construction, where
the bit representations for the individual coordinate directions are simply interleaved
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Fig. 14.11 Examination of the palindrome property of the 3D Hilbert curve: the stack property is
only satisfied at the cutting plane shown in the top left image. Dashed arrows indicate the relative
traversal order within a 2 � 2-slice
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Fig. 14.12 Bit representation of Morton indices along in 2D and 3D

and do not depend on each other. Hence, this property stays valid for n-dimensional
Morton order, as well.

The matching indices suggest that we might again be able to exchange data on
common hyperfaces via simple data structures, which would no longer be stacks,
but streams or queues, instead, to match the index properties. However, such a data
structure does not work in the expected way, as illustrated in Fig. 14.13. Imagine a
queue data structure for edge-based data in 2D, as in the left image of Fig. 14.13.
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There, we plan to append edges at the tail of the queue, such that they can be used
by the adjacent cell. Data is retrieved from the head of the queue. During traversal of
the first three elements, we will first obtain the edge data A, B, and D from an input
stream, and append them to the queue after leaving the elements. In the highlighted
fourth cell, we would read C from the input stream, but cannot obtain B from the
queue, as it is blocked by A, which is still at the head of the queue. Note that our
idea of using two queues (or stacks) for unknowns to the left and right of the curve
breaks down for Morton order: the unknowns A, B, and D are left of the curve
when stored on the queue, but are right of the curve when they are obtained. Hence,
according to a left-right colouring of queues, they should be placed on the same
queue – however, our example shows that the resulting queue scheme already fails
for the simplest adaptive example.

In the right image of Fig. 14.13, we try an alternate, level-oriented colouring
scheme and use vertex-located data. According to this scheme, unknown C would
be stored in the red queue after traversal of the first four elements. In elements
0100 and 0101, B and E would be read from input and stored to the green queue.
As C, placed in the red queue, does not obstruct access to B and E, we can easily
retrieve them in the next two fine-level elements. During these two cells, we would
also append F to the red queue. Thus, we are faced with a queue conflict in the
highlighted cell, as F should be retrieved from the red queue, which still has C at its
head.

Inversion Property for Input/Output-Streams in Morton Order

Note that – despite the in-order projection property of Morton order – the input and
output stream do not obey a queue order: the processing of F is obviously finished
before C and D have been updated by all adjacent cells. Hence, while C and D are
read before F by the input stream (i.e., come before F in first-access order), they
are written to an output stream after F (i.e., come later in last-access order). In that
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respect, queues seem to be inherently incompatible to space-filling curves as data
structures, which is apparently related to the recursive construction of space-filling
curves: recursion is an approach that is naturally connected to stack data structures.

If we examine the right image of Fig. 14.13 more closely, we can find that an
input-output-stream of the node data A–K would actually follow a stack principle,
if we alternate between forward and backward traversal – such that the inversion
property is satisfied. To verify this, we set up a table that lists the first-access and
last-access order for the node data during forward and backward traversal:

Forward Backward

First access A B C D E F G H J K K J G D H C E F B A

Last access A B F E C H D G J K K J H G F E D C B A

Note that the diagonal sequences are exactly inverse to each other. Hence, after a
forward traversal that has written all data to a stream in last-access order – i.e.,
simply writes all data to a stream once it has been processed by all elements – a
backward traversal can use this stream in reverse order and will find all elements in
correct first-access order.

Hence, to find an effective stream-based traversal scheme for spacetrees stored
in Morton order, we would require an efficient solution for the intermediate storage
of node- and edge-based data. For example, we could use a lot more data streams
– one for each level of recursion – or invest .d � 1/-dimensional grids to exchange
data by random access. It is open, however, whether such solutions would be
computationally efficient. An alternative could be to store the interfaces between
d -dimensional spacetrees explicitly and exchange data via these permanent data
structures. Such boundary-extended spacetrees have been suggested by Frank [89].

References and Further Readings

Cache oblivious approaches based on refinement trees, space-filling-curve orders,
and stack-oriented access have been developed for spacetree grids and Peano-
traversals by Zenger, Guenther [114], Mehl et al. [183], and Weinzierl and
Mehl [266]; for triangular grids and Sierpinski orders, the approaches were
introduced by Bader and Zenger [23, 25]. The approaches have been applied
to scenarios where dynamically adaptive refinement and coarsening of the
discretisation grid is required either by a changing computational domain or
by numerical requirements, such as in computational fluid dynamics [52, 181]
(in particular, fluid-structure interaction [48, 180]) or in the context of Tsunami
simulation [20, 38]. Parallelisation of the approaches has been studied by Weinzierl
et al. [53, 182, 265], in particular. The extension of the Peano approach to higher
dimensions is presented in [120], where the authors also discuss the palindrome
property and the Peano curve’s projection property as requirements to construct a
stack-based scheme.
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In the references section of Chap. 13, we have already discussed works that
exploit the locality properties of space-filling curves not only for parallelisation,
but also to improve cache efficiency. In the context of molecular simulation, such
approaches have been studied by Hu et al. [134] and by Mellor-Crummey et al. [184]
– the latter examined both molecular dynamics applications and an unstructured-
mesh code. For related work on general graph-structured computations, see also
[7, 205]. A comparison of different re-ordering methods can be found in [119].
Behrens et al. [36] used Sierpinski curves on bisection-generated adaptive grids
and observed improvements regarding the cache performance, but also regarding
the behaviour of the ILU-based preconditioner, which was able to profit from a
space-filling-curve numbering of the unknowns.

In computer graphics, the stack&stream approach is similar to the usage of
triangle and tetrahedral strips – see the references section of Chap. 9. In that
context, the group of Gotsman [27, 44] introduced and analysed cache-oblivious
algorithms based on triangle strips, providing lower bounds for the number of
cache misses that are obtained during traversals and for different cache sizes. A
further work that focuses on caches was presented by Hoppe [133]. Gerstner [97]
presented an approach that is most closely related to our stack&stream approach
– he studied algorithms based on newest-vertex-bisection and respective binary
refinement trees, using the Sierpinski curve to generate triangle strips. He introduced
stack structures, quite similar to the approach discussed here, to exchange data
between neighbours, but required a logarithmic number of stacks.

What’s next?

Actually, this was the last major chapter of the book. The next and final
chapter will list some further areas of applications for space-filling curves.
Did you skip any chapters so far? Well, now would be the right time to go
back. . .

Exercises

14.1. Take a piece of paper and try to perform the traversal algorithms step by step
on simple quadtree grids. In particular, pay attention to the stack operations. Try to
do the same exercise using the Sierpinski curve (on a compatible, uniformly refined
triangular grid) or the Peano curve (on a 3k � 3k Cartesian grid).

14.2. Sketch an algorithm that exchanges the indices of neighbouring quadtree cells
via a stack-based traversal.
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14.3. Consider a triangle that has two old edges adjacent to the right angle,
and examine the possible scenarios for the old/new classification of the adjacent
triangles and of the respective parent cells. Is it guaranteed that the node at the right
angle has already been processed by all adjacent elements (esp. the triangle that only
touches the vertex, but not the two edges at the right angle)?

14.4. Now consider the case that two old edges are adjacent to the entry node of a
triangle (note that such a scenario can only occur for triangles of type Vo or Ho). Use
Fig. 14.7 to determine the possible parent and grandparent triangles – is it possible
that the entry node touches a “new” edge?

14.5. For adaptive quadtree grids, it can be advantageous to require a certain size
balance between adjacent grid cells. For example, we can request that grid cells that
share a common boundary may have a size difference of at most 2:1 (2:1 balancing).
Modify the algorithm for conforming refinement, as discussed in Sect. 14.2.4, to
obtain such a 2:1 balanced quadtree.

14.6. Examine the 3D Sierpinski curve introduced in Sect. 8 and check whether it
satisfies the palindrome property.



Chapter 15
Further Applications of Space-Filling Curves:
References and Readings

In 1981, Goldschlager – in his short communication on a simpler recursive
algorithm for Hilbert and Sierpinski curves [101] – wrote that

The main application of these curves to Computer Sciences has been recre-
ational, as they produce pretty pictures on a plotter.1

And even though being contradicted already in a 1983 article by Witten and Wyhill
[274] in the same journal, Goldschlager was certainly right in the sense that for a
long time space-filling curves where “topological monsters” that were of interest to
a few mathematicians, but of little practical use.

In the meantime, however, applications have come up in various problem
settings. Already in 1988, Bartholdi and Platzman [32] formulated a so-called
Generic Space-filling Heuristic (GSFH), which summarises almost any application
of space-filling curves in two short sentences:

Definition 15.1 (Generic Space-filling Heuristic [32]).

1. Transform the problem in the unit square, via a space-filling curve, to a problem
on the unit interval.

2. Solve the (easier) problem on the unit interval.

In this monograph, we only discussed applications of space-filling curves in
scientific computing, and even within this discipline, we concentrated on aspects
regarding the connection of space-filling curves to quadtrees and octrees (in
Chap. 9) and their use in parallelisation (Chap. 10) and for cache-efficient algorithms
(Chaps. 13 and 14). Hence, in this last chapter, we will provide a short overview on
further applications, with a stronger focus on classical computer science.

1One of the earliest applications of space-filling curves was actually published in a series on
“Computer Recreations” and carried the title Space-filling curves, or how to waste time with
a plotter [198]. It contained one of the earliest algorithms to draw a space-filling curve, and
mentioned that “drawing the polygons is an excellent test of the long-term positional stability
of your plotter”.

M. Bader, Space-Filling Curves, Texts in Computational Science and Engineering 9,
DOI 10.1007/978-3-642-31046-1 15, © Springer-Verlag Berlin Heidelberg 2013
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Fig. 15.1 “Travelling Presidential Candidate Map” – a tour through all 37,000 ZIP code locations
in the United States, computed using the Hilbert curve (special thanks go to Robert Kosara, who
generated this graph and permitted its use in this book; for a detailed explanation of this image, see
his website: http://eagereyes.org/Applications/ZIPTPCMap.html)

Space-Filling Curves As Heuristics for Combinatorial
Problems

Bartholdi and Platzman [32] suggested their general space-filling curve heuristics
for several combinatorial problems in scientific computing, such as the travelling
salesman problem, or the K-Median problem. In the travelling salesman problem,
the shortest path is wanted to visit a set of given locations exactly once – an
excellent illustration of the problem is given in Fig. 15.1. It reproduces Robert
Kosara’s “Travelling Presidential Candidate Map”, which shows a tour through all
37,000 ZIP locations in the United States – the tour is an approximate solution to
the traveling salesman problem using the Hilbert curve as heuristics. The traveling
salesman problem is known to be NP-complete, but approximations to the solution
can be found quickly via computing the space-filling-curve order of the given point
set [31,219]. Bertsimas and Grigni [41] provided an example that the solution found
via this heuristics can be longer than the exact solution by up to a logarithmic factor.
An analysis of the tour length obtained via the space-filling curve heuristics was
given by Gao and Steele [94]. In general, the space-filling-curve heuristics excels
by the quick computation of the tour, and can serve, for example, to compute an
initial solution for more sophisticated algorithms (e.g., [229]). As a testbed to study
properties of the traveling salesman problem and heuristic algorithms to solve it,
Norman and Moscato used Sierpinski curves to generate problem instances with
controlled properties [197].
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The K-Median problem is a variant of a partitioning problem: for a given set of
points, K “medians” are to be found that minimise the sum of the distances of all
points to their respective closest median. In addition to Bartholdi’s algorithm in [32],
approaches based on space-filling curves were used in the context of classification,
for example for vector quantisation in signal processing [83] or for fuzzy controllers
[82], but also for the regular nearest-neighbour problem [66, 161, 173], and for the
similar problem of contact searching [77].

Data Bases and Geographical Information Systems

Space-filling orders were also exploited to construct data structures for range queries
on images [18, 140]. These use cases are closely related to applications of space-
filling curves in geographical information systems [1,170], geographical data bases,
and data bases in general. Range queries on geometrical or geographical data –
idealised as multidimensional point sets, for example – led to application of space-
filling curves in these fields. Early works were, for example, based on locational
codes [2] (similar to Z order) or bit interleaving [204] (Morton order). A review
on space-filling-curve and other techniques is given in [51]. In data bases, keys
consisting of multiple attributes can be treated as such multi-dimensional point data
[86, 139]. Hilbert curves and Morton/Z-order, in particular, have been widely used
in the context of data bases to extent classical 1D indexing data structures for higher
dimensions [154,257]. Examples include kd-trees [156], R-trees [16,122,123,146],
or UB-trees [35, 226] (which combine B-trees with Z-order). The use of quadtree
and octree data structures was already outlined in the references for Chap. 9.

Related to the use in data bases is the application of space-filling curves for
storage of multidimensional data, in general. such as for geographical point data
[262], for image data bases [203], but also for systems to explore simulation data,
e.g. resulting from turbulence simulation [216] or from simulations on unstructured
grids [208].

Signal Processing and Computer Graphics

The earliest applications of space-filling curves appeared in signal processing, for
example by Abend et al. [3] in 1965, who used space-filling-curve mappings for
pattern classifications. Their technique to exploit n W 1 and 1 W n mappings to encode
and decode multidimensional signals to 1D signals and apply 1D methods, was also
used by Bially [42] in the context of bandwidth reduction. The work of Lempel and
Ziv [160], who used a 2:1 mapping with 1D techniques for data compression (esp.
image data), also falls in this category.

In computer graphics, space-filling curves appeared as data structures or scan-
ning orders (“Peano scan”) for images for various applications, such as image
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compression [15, 160, 278] (space-filling scans followed by 1D techniques), colour
reduction [250], video scrambling [175], lossless or lossy image coding [71, 185,
215], or even digital watermarks [192]. Space-filling scans were also suggested for
dithering of images, such as by Witten and Neal [273] for the bilevel (black&white)
display of continuous tone images, or for image halftoning in general [259, 282].
For the successive generation of Delauney triangulations from given point sets [11],
space-filling curves were used to order the points to improve the quality of the
Delauney meshes [50,171,283]. Further applications are texture classification [158],
topological matching [251], or image browsing [70].

As in the scientific-computing applications, space-filling curves were integrated
with quadtrees, octrees, and adaptively refined triangular meshes to obtain data
structures for computer graphics and geometry processing. These were already
outlined in the references for Chaps. 9 and 14. The combination with structured
adaptive refinement of meshes – with a wide range of use cases in computer graphics
and scientific computing – is still of high relevance, and will hopefully drive further
research on space-filling curves.

What’s next?

That’s all for now – you’ve reached the end of the book. In the appendix,
you will find solutions to selected exercises (including some further
interesting material).
Did you do all (or at least most of) the exercises in the previous chapters?
Well, if you didn’t, then don’t proceed to the solutions . . .



Appendix A
Solutions to Selected Exercises

A.1 Two Motivating Examples

(no exercises)

A.2 Space-Filling Curves

2.1 The corner points of the approximating polygons reflect an entry/exit point
of the curve in each subsquare. As an entry point, the respective points – by
construction – will always be located in the first subsquare and correspond to the
leftmost of the respective nested intervals. Hence, the entry point is an image of the
left boundary of the respective interval. As examples, we obtain the parameter–point
pairs 0! .0; 0/, 1

4
! .0; 1

2
/, etc.

2.2 Some further variants to construct a curve similar to Moore’s variant are given
in Fig. A.1 (see also [168]).

2.3 The proof of continuity of the Peano curve can be copied almost word by word
from the respective proof for the Hilbert curve, as given in Sect. 2.3.5: For two
given parameters t1 and t2, we choose a refinement level n, such that jt1 � t2j < 9�n

(owing to the substructuring into nine subsquares in each step); t1 and t2 are then
mapped to points p.t1/ and p.t2/ that are lying in two adjacent subsquares of side
length 3�n. Their distance kp.t1/�p.t2/k thus has to be smaller than 3�n �p5 (and
the rest of the proof is straightforward).

2.4 I hope you didn’t take that exercise too seriously. . .

M. Bader, Space-Filling Curves, Texts in Computational Science and Engineering 9,
DOI 10.1007/978-3-642-31046-1, © Springer-Verlag Berlin Heidelberg 2013
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Fig. A.1 Three variants of the Hilbert-Moore curve. The left-most variant uses the same orienta-
tion of the four Hilbert parts as Moore’s curve, but moves the start and end point to the centre of
the unit square
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Fig. A.2 Construction and grammar symbols of the Peano-Meander curve

A.3 Grammar-Based Description of Space-Filling Curves

3.1 The derivation of a grammar for the Peano-Meander curve is illustrated in
Fig. A.2. We need the following symbols and production rules:

• Non-terminals: fM; W; L; N g, start symbol M

• Terminals: f";#; ;!g
• Production rules:

M  � N " N "M !M !M # W  L # L!M

W  � L # L # W  W  W "M ! N " N  W

L � W  W  L # L # L! N "M !M # L

N  � M !M ! N " N " N  L # W  W " N

3.2 From Fig. 2.5, it is straightforward to obtain the production rule for the start
symbol (here: M ):

M  � NB " NB ! NA # NA;
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where the non-terminals NA and NB correspond to the patterns represented by A and
B in the regular Hilbert-curve grammar (as in Fig. 3.1). However, their orientation
is exactly inverse. This also reflects in the productions for NA and NB:

NA � NC ! NA " NA NH
NB  � NH  NB # NB ! NC

(and similar for NH and NC ). Thus, the Hilbert-Moore grammar requires five non-
terminals, but M is only used as start symbol.

3.3 An algorithm for matrix-vector multiplication using Hilbert traversal is
discussed in Sect. 13.2, see in particular Algorithm 13.3.

3.5 If rotation is neglected, all basic patterns of the Hilbert curve come down to the
two patterns and . For these, two non-terminals, in the
following denoted R and L, are sufficient, with terminal productions

R  � L � :

Thus, we have to include the turns and moves between the patterns into the non-
terminal productions:

R  � L R R L

L � R L L R

Compare Fig. 3.6 on page 39 for illustration. From the structure of the productions,
it is clear that a turtle that obeys to this grammar might do multiple turns before
performing the next forward step.

A.4 Arithmetic Representation of Space-Filling Curves

4.1 With 8 D 204 and 5 D 114, the quaternary representation of the fractions 1
8
,

1
3
, and 2

5
can be computed in a regular long division, as learned in school for the

decimal system:

1 : 204 D 04:02

0
10
0

100
100
–

1 : 34 D 04:11 : : :

0
10
3
10

3
1. . .

2 : 114 D 04:12 : : :

0
20
11
30
22

2. . .
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Thus, we have 1
8
D 04:02, 1

3
D 04:11 : : : , and 2

5
D 04:12 : : :

4.2 1
3

has the quaternary representation 04:111 : : : (see Exercise 4.1). The recursion
equation (4.1) for the Hilbert mapping thus reads:

h

�
1

3

�
D h.04:111 : : :/ D H1 ı h.04:11 : : :/ D H1 ı h

�
1

3

�
; (A.1)

which means that h
�

1
3

�
is a fixpoint of operator H1. The fixpoint equation

H1

�
x

y

�
D
�

1
2

0

0 1
2

��
x

y

�
C
�

0
1
2

�
D
�

x

y

�
;

is solved by x D 0 and y D 1, such that h
�

1
3

� D .0; 1/.
For 2

5
(or 04:121212 : : :), Eq. (A.1) turns into

h

�
2

5

�
D h.04:121212 : : :/ D H1 ıH2 ı h.04:1212 : : :/ D .H1 ıH2/ ı h

�
2

5

�
:

Hence, h
�

2
5

�
can be computed as the fixpoint of the operator H1 ı H2 (see

Exercise 4.6).

4.4 Analogous to Eq. (4.3) on page 50, we obtain the following arithmetisation for
the Hilbert-Moore mapping m.t/,

m.04:q1q2q3 : : :/ D lim
n!1 Mq1 ıHq2 ıHq3 ı � � � ıHqn

�
0

0

�
;

where we need to derive a new set of operators Mi to reflect the fact that, in the
first recursion step, we assemble four regular Hilbert curves, but using different
orientation. The operators Mi are:

M0 WD
�

0 � 1
2

1
2

0

��
x

y

�
C
 

1
2

0

!
M1 WD

�
0 � 1

2
1
2

0

��
x

y

�
C
 

1
2
1
2

!

M2 WD
�

0 1
2

� 1
2

0

��
x

y

�
C
 

1
2

1

!
M3 WD

�
0 1

2

� 1
2

0

��
x

y

�
C
 

1
2
1
2

!

4.6 As an example, we compute the operator H12 D H1 ıH2:

H1 ıH2

�
x

y

�
D
�

1
2

0

0 1
2

�"�
1
2

0

0 1
2

��
x

y

�
C
 

1
2
1
2

!#
C
�

0
1
2

�

D 1

4

�
1 0

0 1

��
x

y

�
C
 

1
2
3
4

!
:
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As there are only four orientations of the basic Hilbert pattern, the matrix part of
the operators (corresponding to the rotation/reflection) will only have four different
values (up to scaling).

A.5 Approximating Polygons

5.1 The Koch curve can be enclosed by triangular areas in the following way:

On refinement level n, each triangle has a basis of length 3�n, a height of 3�n
p

3
6

,

and thus an area of 3�2n
p

3
12

. Each green triangle is split into four smaller ones from
each level to the next. Thus, there are 4�n D 2�2n triangles on the n-th level, with a

total area of 2�2n � 3�2n
p

3
12
D � 2

3

��2n
p

3
12

, which converges to 0 for n!1. As the
Koch curve is enclosed by the green triangles on all levels, its area has to be even
smaller, such that it can only be 0.

5.3 Figure A.3 shows subsequent iterations for two Koch curves, where the “middle
third” is replaced by a very narrow isosceles triangle. Cesaro showed, in 1905 [64],
that if the acute angle approaches 0, the curve becomes space-filling – compare the
approximating polygon of the Sierpinski curve (compare Fig. 6.3).

5.4 The “turtle” grammar is quite simple, as it only requires a single non-terminal:

K  � K l K rr K l K

j "

(l and r are terminal symbols that represent a left or right rotation by 60ı).
In contrast, deriving a plotter grammar for the Koch curve is very tedious, as the

“baseline” of the curve can occur in all 60ı-steps.

5.5 The construction of the grammars should be no problem, however, it is worth
to state that a “turtle” grammar with only one non-terminal will not work, as the
generator has to be applied in two different orientations (first “turn left” or first
“turn right”). Hence, the generator-based approach to construct fractal curves only
works, if we allow such variations of the generator.

5.6 For the canonical Peano curve, the respective generator is applied in two
symmetric orientations. Figure A.4 shows the second iteration and polygon of a
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α = 5◦⇒D≈ 1.785: α = 1◦⇒D≈ 1.951:

Fig. A.3 A Koch curve approximating the Sierpinski curve

Fig. A.4 Iteration and approximating polygon of the Peano curve required by Exercise 5.6

curve where the generator is uniformly oriented (the first turn in a subsquare is
always to the right).

5.7 Iterations of the resulting curves are plotted in Fig. A.5. The values for q,
r , and the resulting fractal dimension D are given for each curve (following the
computation in Sect. 5.3.
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r = 3, q= 5 ⇒D≈ 1.465:

r = 4, q= 8 ⇒D= 1.5:

r = 6, q= 18 ⇒D≈ 1.613:

r = 2
√

2, q= 4 ⇒D= 4
3 :

Fig. A.5 Fractal curves resulting from the generators given in Exercise 5.7



246 A Solutions to Selected Exercises

A.6 Sierpinski Curves

6.3 The construction of a turtle-based grammar for the Sierpinski curve is discussed
in Sect. 14.2 – see Fig. 14.8, in particular.

6.4 Exercise 6.1 leads to a grammar with eight non-terminals, which correspond
to eight congruency classes of subtriangles for such generalised Sierpinski curves.
The proof for congruency of the patterns in Sect. 6.2.2 has to be extended to the
remaining four congruency classes (but works in exactly the same way).

A.7 Further Space-Filling Curves

7.1 Our standard arithmetisation technique, applied to Morton order, leads to the
following equation for the Morton mapping m.t/:

m.04:q1q2q3 : : :/ D lim
n!1 Mq1 ıMq2 ı � � � ıMqn

�
0

0

�
; with

Mi

�
x

y

�
D 1

2

��
1 0

0 1

��
x

y

�
C bi

�
D 1

2

��
x

y

�
C bi

�
:

The components of the translation vector bi are both either 0 or 1. Applying the
same technique as in Sect. 4.6.2, we obtain

m.04:q1q2q3 : : :/ D 1

2
bq1 C

1

22
bq2 C

1

23
bq3 C : : : ;

which corresponds to a binary representation.

7.3 From Fig. A.6, we can derive the following grammar to describe the approxi-
mating polygons of the Gosper curve:

G  � G l R l R r G r G l G r R

j " l " l l " r " rr "" r "
R  � G l R r R l R l G r G r R

j " l "" l l " l " rr " r "
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G R
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G G

RG

R

RG

R

R

G G

R

Fig. A.6 The first two approximating polygons of the Gosper curve. Again, G and R represent
the two basic generating patterns

A.8 Space-Filling Curves in 3D

8.1 The operators for the approximation of Sagan’s 3D Hilbert curve [233] are:
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Fig. A.7 Different scenarios of constructing a conforming triangular grid in restricted quadtree
cells. The nodes indicate the vertices of the restructed quadtree grid – nodes on edges indicate
hanging nodes in the restricted quadtree

Fig. A.8 A restricted quadtree grid and its triangular counterpart (newest vertex bisection)

A.9 Refinement Trees and Space-Filling Curves

9.1 In a restricted quadtree, grid vertices can either be placed on the corners of the
cells or also on the midpoints of a cell edge (if the neighbouring cell is refined).
To construct a conforming grid of triangles, we replace each square cell by a set of
triangle cells that cover the square cell and use all vertices – as illustrated in Fig. A.7.
An example of a small quadtree grid and the corresponding triangular grid, which
is compatible with newest vertex bisection, is given in Fig. A.8.

9.3 Figure A.9 shows a simple triangular grid together with the Sierpinski order
on the grid cells. The Sierpinski order defines a triangle strip, i.e., a sequence of
edge-connected triangle cells. When reading the vertex data A to O, we have to read
one additional vertex per grid cell (in Fig. A.9, the vertices are labelled such that the
data is read in alphabetical order), while two vertices can always be reused:

• In the optimal case, the two reused vertices are the two predecessors in the node
stream: In our example, the first five vertices are read as ABCDE, and correspond
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Fig. A.9 Using Sierpinski
orders as triangle strips in
Exercise 9.3

to triangles ABC, BCD, and CDE (i.e., the last three vertices in the stream
determine the triangle).

• When reading F, however, the last two vertices were D and E, whereas the next
triangle is CEF.

• One option is to swap C and D on the vertex stream. With such a swap command
that exchanges the second- and third-latest vertex on the stream, our triangle strip
for Fig. A.9 reads (with s as swap command):

ABCDE s FG s DH s I s J s K s L s FM s KNO:

Note that vertices D, F, and K have to be included twice in the data stream.
• Another option is to replicate all “missing” vertices within the triangle strip and

thus introduce additional, duplicate triangles: Hence, after the strip ABCDE, we
would need to read C again, which leads to the strip ABCDECF, in which the
triangle CDE occurs twice (as CDE and DEC). The entire strip then reads:

ABCDECFEGDHGIJGKLGFLMKNMO:

• To avoid the duplication of triangles (and respective duplicate processing), we
can also allow “degenerate” triangles (where two of the vertices are identical) in
the strip: Changing ABCDE to ABCDCE introduces such a degenerate triangle
CDC, but now has the correct sequence CE at the end to proceed with reading F
from the strip to obtain triangle CEF, The entire strip for Fig. A.9 then reads:

ABCDCEFEGDGHGIGJGKGLFLMKMNO:

A.10 Parallelisation with Space-Filling Curves

10.3 Algorithm A.1 is an example on how to determine the process-local partition
in a size-encoded quadtree. To keep this prototypical implementation simple, the
algorithm just marks the subtrees as being local or remote. Once a subtree is entirely
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Algorithm A.1: Mark partitions as local or remote in a size-encoded quadtree
Procedure markPart(currIndex)

Parameter: currIndex: quadtree nodes that have already been marked (0 on entry)
Data: sizestream: size encoding of spacetree;

streamptr: current position
startPartition, endPartition: interval boundaries of the local partition

Variable: ref : size (sizestream elements) of the children (as array)
begin

// read info on all childs from sizestream
for i = 1, . . . , 4 do

streamptr := streamptr + 1;
ref[i] := sizestream[streamptr];

end
for i = 1, . . . , 4 do

if currIndex > endPartition or currIndex+ref[i] < startPartition then
// mark partition as remote
markRemote(sizestream,currIndex);
// skip partition in bitstream
streamptr := streamptr + ref[i];

else if currIndex � startPartition and currIndex+ref[i] � endPartition then
// mark partition as local
markLocal(sizestream,currIndex);
// skip partition in bitstream
streamptr := streamptr + ref[i];

else if ref[i] > 0 then
// recursive call to subtree (contains local and remote notes)
markPart(currIndex);

end
// update variable currIndex
currIndex = currIndex+numNodes(sizestream,streamptr);

end
end

inside (or outside) the partition interval, the entire subtree is marked as local (or
remote). Function numNodes() returns the number of nodes in a subtree – if all
nodes (including inner nodes) of the tree are counted, this information can directly
be obtained from the size-encoding; if only the leaf-nodes (i.e., quadtree cells) are
counted, we require an additional algorithm to determine this number (and we might
want to augment the size-encoding by this data). Function numNodes() is used
to update variable currIndex, which holds the number of nodes (leaves only or
including inner nodes) that have already been marked during the traversal.

Algorithm A.1 is a sequential algorithm, but can be modified to work in a parallel
setting as illustrated in Fig. 10.5. Here, the situation might occur that a subtree that is
supposed to be local is not yet stored locally – for example, during the repartitioning
of a grid. Hence, Algorithm A.1 needs to be extended by respective communication
operations that obtain this part from another process. Similarly, formerly local
subtrees (stored as full subtrees) might be declared remote, such that the subtree
representation will have to be send to the respective process.
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10.5 The information required to determine left and right nodes is provided by a
turtle grammar, as introduced in Sect. 3.4. See Chap. 14 for an extensive discussion.

A.11 Locality Properties of Space-Filling Curves

11.2 The following table lists the diameter-to-volume ratios for some simple
geometrical objects in 2D and 3D – the last column denotes the constant c in the
ratio d D c � D

p
V :

Object Typ. length Diameter d Area/volume V Ratio c D
Square a a

p
2 a2 d D p

2 � V 1=2 1.41

Rectangle (3:1) a; 3a a
p

10 3a2 d D
p

10p
3

� V 1=2 1.83

Circle r 2r �r2 d D 2p
�

� V 1=2 1.13

Cube a a
p

3 a3 d D p
3 � V 1=3 1.73

Cuboid (3:1:1) a; 3a a
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A.12 Sierpinski Curves on Triangular and Tetrahedral
Meshes

12.2 The 3D Sierpinski curve, as given in Sect. 8.3, is face-connected, such that
a first component of the proof for Hölder continuity is in place: two parameters
that are in adjacent intervals will be mapped to adjacent tetrahedral cells. An upper
bound for the points’ distance is thus the sum of the largest side lengths of the
tetrahedra. In the standard proofs for Hölder continuity, this is put in relation with
the size of the corresponding parameter intervals – in the ideal case, we have a
ratio of 2�nW 8�n, which for the 3D Hilbert curve means that bisecting the side
length in each of the three dimension will finally lead to eight subcubes and eight
corresponding subintervals.

For the face-connected 3D Sierpinski curve, this ratio is less favourable: three
bisection levels are not sufficient to halve the size of each subtriangle (in the
terms of maximal side length) – instead we require at least five bisection steps to
guarantee this. Hence, the ratio of tetrahedral side lengths to interval sizes is more
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Fig. A.10 Tetrahedral refinement (generated tetrahedra and 4-tuple notation) according to the
refinement rules given in Eq. (12.6) on page 192

like 2�nW 32�n D .25/�n. Hence, the exponent 1
3

for Hölder continuity cannot be
achieved – though a somewhat smaller exponent is possible.

12.3 We have already answered this question. If we stick to a uniform bisection
rule, as in Sect. 8.3, we are always faced with the bottom-most situation in Fig. 12.6.
Hence, we only get black tetrahedra.

12.5 Figure A.10 illustrates the first three bisection steps of a tetrahedral cell
according to the bisection scheme by Maubach – see Eq. (12.6) on page 192. The
starting level and sequence of nodes in the tuple notation for the initial tetrahedron
were chosen to exactly match the refinement via the Baensch-Kossaczky scheme, as
in Fig. 12.5 on page 185. Hence, the two schemes will produce the same sequence
of child cells from identical initial tetrahedra.
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Fig. A.11 Graph representation of the operations of a 3 � 3 matrix multiplication of type
Q CD QP

A.13 Cache Efficient Algorithms for Matrix Operations

13.2 For the block operation QCDQP , the respective 3�3 matrix multiplication is

0
@a6 a5 a0

a7 a4 a1

a8 a3 a2

1
A
0
@b0 b5 b6

b1 b4 b7

b2 b3 b8

1
A D

0
@ c6 c5 c0

c7 c4 c1

c8 c3 c2

1
A : (A.2)

The derivation of the optimal execution order is illustrated in Fig. A.11. There, we
connect only those operations where indices of successively accessed matrices are
either identical or differ by at most 1.

A.14 Numerical Simulation on Spacetree Grids Using
Space-Filling Curves

14.2 Of the three indices of the neighbour cells, only the index on the colour edge
(i.e., edges that are not between cells with contiguous indices) is difficult to obtain.
Indices on crossed edges are easy, as they are the increment and decrement of the
current cell index.

The straightforward option to determine crossed-edge indices is to take the
Sierpinski traversal of Algorithm 14.2 (to exchange refinement info between cells),
and turn it into an algorithm to exchange indices, instead. If you invest an additional
integer variable per cell to store the index of the crossed-edge neighbour, you obtain
a data structure that allows direct access to all edge-connected cells.

Algorithm A.2 further reduces the storage requirements of this approach: only
indices on colour edges shall be stored – for these indices, we adopt the standard
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Algorithm A.2: Sierpinski traversal to propagate refinement information (for
element types Ho and Hn)

Procedure Ho()
Data: bitstream: bitstream representation of spacetree (streamptr: current position);

green,red: stacks to neighbour indices;
input,output: streams for indices of colour-edge neighbours

Variable: currIndex: index of the current cell;
left/rightIndex, hypoIndex: indices of the three neighbour cells

begin
// move to next element in bitstream
streamptr := streamptr + 1;
if bitstream[streamptr] then

// update local index and determine indices of crossed-edge neighbours
hypoIndex := currIndex;
currIndex = currIndex + 1;
rightIndex := currIndex + 1;
// for colour edge, obtain Index from stack
leftIndex := green.pop();
// write own index to colour edge output stream
output.push(currIndex);

else
// recursive call to children
Vo();
Ko();

end
end

// procedure Hn() is identical to Ho() up to the following lines:
Procedure Hn() begin

// . . .
if bitstream[streamptr] then

// . . .
leftIndex := input.pop();
// write own index to colour edge output stream
green.push(currIndex);

else
// recursive call to children . . .

end
end

stack&stream approach. Algorithm A.2 implements the Ho- and Hn-pattern for this
idea, which have the hypotenuse and the right leg as crossed edges, and the left leg
as an old/new colour edge. Ho and Hn only differ in the accesses to the colour stack,
so the procedure for Hn only shows the two changed statements.

14.5 Ensuring a 2:1 size balance between adjacent elements of a quadtree or octree
grid can also be implemented via respective traversals, as in Algorithm 14.2.
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However, we now have to synchronise the refinement status of four edges
(for quadtrees) or six faces (for octrees), respectively. Also, a stack-based scheme
to exchange the refinement data will not work (compare Sect. 14.3). An interesting
variant is the question whether the 2:1 size balance should also be enforced between
elements that are only node- or edge-connected (the latter in 3D).
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Access locality function, 206
Peano matrix multiplication, 208

Adaptive grids, 145
Adaptive refinement, 9
Algorithm

vertex labelling, 89
Applications (of SFC), 235–238
Approximating polygon

definition, 67
entry and exit points, 20
generator, 69
Hilbert curve, 19, 68

3D, 110, 111
length, 69–72
Peano curve, 68
quasi-Sierpinski curve, 183
Sierpinski curve, 79

Arithmetic representation, 94
ˇ˝-curve, 103–104
Hilbert curve, 47–49

3D, 113
Peano curve, 57–59
Sierpinski curve, 80–81

Bänsch-Kossaczky scheme, 186, 188, 192
Barnes-Hut algorithm, 140
Basic patterns, 31

Hilbert curve, 31
3D, 110

Peano curve
3D, 116

ˇ˝-curve, 101–104
arithmetisation, 103–104
entry and exit points, 101
grammar, 101–102

iterations, 101
locality properties, 107

Bézier curves and surfaces, 1
Bially’s algorithm, 64
Bijective, 11
Bisection

of tetrahedra, 124, 184–186, 191–192
of triangles, 83

Bisection refinement, 141
Bitstream

for modified depth-first traversal, 154
Bitstream encoding, 140, 225

for parallel traversals, 153–155
Blocking, 13, 202
Block layout (for matrices), 213
Boundary-extended spacetrees, 232

Cache
associative, 197
direct-mapped, 198
first-, second-, third-level, 196
ideal cache, 209
L1, L2, L3, 196
n-associative, 197
prefetching, 198
replacement strategy, 198

Cache-aware, 213
algorithms, 198

Cache lines, 197
Cache memory, 195

hierarchy, 195, 196
and locality, 198–199

Cache-oblivious, 213
algorithms, 199, 233

Canonical tetrahedron, 186, 192
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Cantor, G., 16, 17
Cantor Set, 97, 170
Cantor’s mapping, 16–17

bijectivity, 16
Cartesian grid, 7, 8, 144
Cartesian mesh, 2
Characteristic function, 2
Closed curve, 24, 101
Clustering, 13

of data, 12
Colour edge, 224
Colour stacks, 219

rules, 222–225
Column-major, 12, 200
Combinatorial problems, 236
Communication, 144, 145
Communication pattern

master-slave, 152
Compactness, 170

partitions, 145
Computational fluid dynamics, 141, 163
Computer aided design, 1
Computer graphics, 1, 141, 233, 237
Conforming grid, 226
Conforming refinement

spacetree grid, 226–227
Conforming triangular grid, 142
Congruency classes, 188, 192
Connected graph, 172
Connected partitions, 174
Connected SFC, 24, 107, 160, 168, 170, 174

definition, 94
Contiguous, 11
Continuity, 12

of space-filling curves, 24
Curve

definition, 17
parameter representation, 17

Data base applications, 179
Data bases, 237
Data compression, 237
Data structures

arrays, 12
matrices, 12
multidimensional data, 10

Daxpy operation, 197
Delauney triangulation, 238
Depth-first traversal, 3, 133, 134, 137

algorithm, 5
Diffusion approach

for load balancing, 149
Dimension of fractal curves, 71

Discontinuous Galerkin methods, 218
Discrete locality measure, 171
Distributed memory, 153, 155
Dithering, 238
Domain decomposition, 158, 160
Dual graph, 172, 193
Dynamically adaptive, 145
Dynamically adaptive grids, 228

Edge-connected, 94, 182
Edge cut, 172
Element-based discretisation, 217–218
Entry and exit points

of partitions, 162
of SFC, 75

Entry edge, 223
Error estimation, 227
Error estimator/indicator, 145
Euclidian distance, 171
Exit edge, 223

Face-connected, 94, 173, 188, 229
Finite Element methods, 163, 181, 188, 218
Finite state machine, 62, 64
Finite Volume methods, 218
First-access order, 220
Fractal curve, 70, 72, 107
Fractal dimension, 72

Generalised Sierpinski curve, 82–88
algorithm, 85
circle-filling, 88
congruency classes of triangles, 85
continuity, 85, 87
definition, 84
grammar, 86
locality, 86
triangle-filling, 85
on triangles with curved edges, 87

Generator, 69
Gosper island, 107
Koch curve, 70

Generic Space-filling Heuristic, 235
Geographical information system, 237
Geometry modelling, 1

surface-oriented, 1
volume-oriented, 2

Geoscience applications, 163
Ghost cells, 158, 159

Hilbert order, 159, 160
refinement-tree grid, 159–160
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Global refinement edge
of a tetrahedron, 186

Gosper, W., 107
Gosper curve, 104–107

grammar, 106
variants, 108

Gosper flowsnake. See Gosper curve
Gosper island, 74, 106, 107
Grammar, 94

ˇ˝-curve, 101–102
context-free, 136
derivation rule, 32
generated strings, 33
Gosper curve, 106
Hilbert curve, 31–36

3D, 114–116
H-index, 99
non-terminal symbols, 31
Peano curve, 37–38

3D, 119
production rules, 32
quasi-Sierpinski curve, 182
shape grammars, 43
Sierpinski curve, 79–80, 86
table-based implementation, 44
terminal productions, 34
terminal symbols, 31
turtle graphics, 39

Granularity of partitions, 152
Graph-filling curves, 193
Graph partitioning, 172

algorithms, 173
connected, 172
edge cut, 172
index-based, 162
locality measure, 172–177

Halo cells, 159
Hamiltonian Path, 193
Hanging nodes, 157, 181, 226
Hash functions, 162
Hash table, 217
Hausdorff dimension, 72
Heat equation, 7–8, 143, 215

residual computation, 216
stationary problem, 7
system of linear equations, 8, 143, 216

Hilbert, D., 17
Hilbert curve

approximating polygon, 19, 68
length, 69

arithmetisation, 47–49

basic patterns, 31, 33
construction, 18
continuity, 23–24, 67
definition, 21
fractal dimension, 71
grammar, 31–33, 133

adaptive, 135–136
context-free, 136
with terminal productions, 34–36
turtle graphics, 39–42

higher-dimensional, 126
iterations, 18
as limit curve, 19
mapping (see Hilbert mapping)
surjectivity, 22
3D (see 3D Hilbert curve)
traversal algorithm (see Hilbert traversal)
turtle grammar, 222

Hilbert index, 56
algorithm, 57, 64
operators, 56
3D, 113
uniqueness, 56

Hilbert mapping, 21, 22
algorithm, 51–52, 64

vertex labelling, 89
finite quaternaries, 50–51
finite state machines, 62
infinite quaternaries, 50, 53–55
inverse (see Hilbert index)
non-recursive implementation, 63
operators, 49

3D, 113
recursion unrolling, 60
3D, 113
uniqueness, 52–55

Hilbert-Moore curve, 24
Hilbert order, 6

adaptive spacetree, 135
matrix-vector multiplication, 200
for optimisation, 141
quadtree, 6, 137

Hilbert traversal, 34–36
adaptive algorithm, 136

with bitstream encoding, 137
adaptive spacetree, 135
call tree, 134
recursion unrolling, 36
turtle-based, 42

H-index, 99–101
grammar, 99
iterations, 99
locality properties, 107
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Hölder continuity, 167–170, 178
parallelisation, 168–170
partition shape, 169
quasi-Sierpinski curve, 184
surface-to-volume ratio, 173
3D Hilbert curve, 168
3D quasi-Sierpinski curve, 190
3D Sierpinski curve, 184

Hölder continuous
definition, 167

H-order. See also H-index
vs. Sierpinski curve, 100

Ideal cache, 209
Image compression, 140
Image data base, 179
Image processing, 238
Index

based on SFC, 179
computation, 28

for partitioning, 146
Input stream, 219
Inverse mapping, 146
Inversion property, 220, 229

Morton order, 231
Iterations

ˇ˝-curve, 101
definition, 18
Hilbert curve, 18
H-index, 99
Morton order, 95
Peano curve, 25
Sierpinski curve, 78
Z-curve, 96

Join traversal, 156
algorithm, 158

kd -spacetree. See also Spacetree
definition, 129

Kd-trees, 237
K-Median problem, 236
Knopp, K., 63, 77
Koch curve, 63, 70, 72, 74

construction, 70
length, 70–71

Koch snowflake, 73

Last-access order, 220
Last-in-first-out, 219

Least frequently used, 198
Least recently used, 198, 209
Lebesgue curve, 97–98, 138

continuity, 98
definition, 97
vs. Morton order and Z-Curve, 97

Left-right splitting (via SFC), 161
Length of coast lines, 72, 73
Load balancing, 9, 145, 149

diffusion approach, 149
Load distribution, 144

exchange subgrid, 155
subtree-based, 150–153

Locality measures, 177
discrete, 171
graph partitions, 172–177
for index/inverse mapping, 179
for iterations of SFC, 171
partitions, 178

Locality of data, 12
Locality preserving, 94, 146
Locality properties, 185

ˇ˝-curve, 107
H-index, 107

Local refinement edge
of a tetrahedron, 186

Longest-edge bisection, 192
Loop unrolling, 202
L-systems, 33, 43
LU-decomposition, 212

Mandelbrot, B., 73
Manhattan distance, 171
Mapping

computation, 28
Hilbert curve (see Hilbert mapping)
Peano curve (see Peano mapping)
Sierpinski curve (see Sierpinski mapping)

Master-slave structure, 152
Matrix multiplication

algorithm, 202
blocking and tiling, 212
Peano curves (see Peano matrix

multiplication)
as 3D traversal, 202

Matrix operations, 163
Matrix storage, 213

conversion of formats, 213
Matrix-vector multiplication, 199–201

algorithm, 199, 200
Hilbert traversal, 201

cache efficiency, 199–201
Hilbert order, 200
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Maximum distance, 171
Memory-bound performance, 196–197
Memory gap, 195
Modified depth-first traversal, 153–155

algorithm, 156
Molecular dynamics, 163, 233
Moore, E. H., 24, 29
Morton order, 94–96, 107, 138, 140, 229–232

construction, 95
inversion property, 231
iterations, 95
non-continuous, 95
for optimisation, 141
projection property, 229
quadtree, 139

Multicore CPUs, 196
Multidimensional arrays, 10
Multidimensional data, 9

algorithms and operations, 10
Multigrid method, 9

N -body problem, 162
Nearest-neighbour problem, 237
Neighbour relations, 12, 13, 146
Nested intervals, 21, 48
Netto, E., 17
Newest vertex bisection, 89, 141
Node-connected, 94, 173, 182, 189
Non-terminal symbols. See Grammar
Non-uniform memory access, 196
N-order, 96
Norm cell scheme, 2, 131

number of cells, 2
n-tuple, 10
NUMA. See Non-uniform memory access
Numerical linear algebra, 13
NURBS, 1

Octree, 3, 4, 107, 129
computer graphics, 140
grid generation, 140
number of grid cells, 132
23-spacetree, 130

Old/new classification of edges, 224
Output stream, 220

Padding, 210
Palindrome property, 228, 232
Parameterised by volume, 169, 191

Lebesgue/Peano/Sierpinski curve, 170
3D Hilbert curve, 169

Particle-base simulation, 163
Partition boundaries

left and right part, 161
subtree-based partitioning, 152

Partitioning, 9, 10
criteria for efficiency, 144–146
index-based, 146–147
parallel sorting, 147
refinement-tree, 149–150

parallel algorithm, 150
sequentialised refinement trees, 153–156
software, 163
space-filling curves, 146–156, 162, 173
subtree-based, 150–153, 162
traversal-based, 148–149

unstructured grids, 148
Partitions, 144

compact, 145, 170
connected, 173–177, 179
data exchange, 157–162
disconnected, 174
length of boundary, 145
locality measures, 178
Morton order, 175–177
number of unknowns, 144
spacetree, 175
surface-to-volume ratio, 173, 178

Peano, G., 17, 25
Peano curve

approximating polygon, 68
arithmetisation, 57–59
construction, 25
construction by Peano, 122
continuity, 27
dimension recursive, 116–117, 122
fractal dimension, 71
grammar, 37–38

dimension recursive, 116–117
iterations, 25

grids of arbitrary size, 120–122
mapping (see Peano mapping)
Meurthe order, 29
notation, 29
projection property, 232
5�5 or 7�7 refinement, 119
surjectivity, 26
switch-back type, 120
3D (see 3D Peano curve)
traversal algorithm (see Peano traversal)
variants, 29

Meander type (see Peano-Meander
curve)

switch-back type, 26
Peano index, 146
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Peano iterations
grids of arbitrary size, 210

Peano mapping
algorithm, 59
dimension recursive, 122
operators, 57–59
Peano’s original formulation, 122

Peano matrix multiplication, 201–210
block-recursive scheme, 204–206
cache efficiency, 206–210
cache misses, 208–210
contiguous access, 208
increment/decrement access, 205, 206
matrices of arbitrary size, 210
memory access pattern, 205–206

locality properties, 206
parallelisation, 210, 212
recursive blocking, 208
recursive implementation, 207
3 � 3-scheme, 203

Peano-Meander curve, 26
Peano order

grids of arbitrary size, 120–122
for matrix elements, 204
spacetree, 139

Peano scan, 237
Peano traversal, 38, 232

grids of arbitrary size, 121
Performance

daxpy operation, 197
matrix multiplication, 197
memory-bound, 196–197

Plotter, 235
Production rules. See Grammar
Projection property, 232

Morton order, 229

Quadtree, 3–7, 107, 129, 137, 140, 213
bitstream encoding, 138, 140
boundary cells, 131
construction, 3, 4
depth-first traversal, 5
ghost cells, 159
Hilbert order, 6, 138, 140
Morton order, 139
number of grid cells, 131–132, 140
restricted quadtree, 141
sequentialisation by Hilbert curve,

133
sequential order, 3–7
22-spacetree, 130
traversal, 3
Z-order, 5

Quasi-Sierpinski curve, 182–184
algorithm, 183
approximating polygon, 183
grammar, 182
Hölder continuity, 184
mapping, 183
3D, 189–191

Hölder continuity, 190–191
Quasi-Sierpinski order

on triangular meshes, 184
Quaternary representation, 48
Queue data structures, 230
Queue property

(violation by) Morton order, 231

Range queries, 237
Recursion unrolling, 60–62
Recursive blocking (for matrix storage), 213
Recursive SFC, 24, 107, 168, 170

definition, 93
Red-black refinement, 186
Red-green refinement, 181
Refinement bit, 134
Refinement cascade, 226
Refinement tree, 138, 141, 162, 175, 193, 225

parallel grid partitions, 155–156
Refinement-tree partitioning, 149–150
Residual computation

element-based, 218
Residuals, 216
Row-major, 12, 199
R-trees, 237
Runtime complexity, 196

Sagan, H., 28
Self-avoiding walks, 193
Self-similar, 94
Self-similarity, 48
Separator, 160
Sequentialisation, 9–13

column-major, 12
row-major, 12

Sequentialisation by SFC, 27
Sequential order, 3, 146

family, 11
Hilbert curve, 6
locality, 6–7
requirements, 11–12

Shared memory, 153
Sierpinski, W., 77
Sierpinski curve, 100

approximating polygon, 79
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arithmetisation, 80–81
construction, 77
definition, 77
generalised curve (see Generalised

Sierpinski curve)
grammar, 79–80, 100
vs. H-order, 100
iterations, 78
mapping (see Sierpinski mapping)
node-connected (see Quasi-Sierpinski

curve)
parallelisation, 162
3D (see 3D Sierpinski curve)
turtle grammar, 223

Sierpinski-Knopp curve, 77
Sierpinski mapping, 63, 81–82

algorithm, 82
non-recursive implementation, 82
operators, 81

Sierpinski order
adaptive triangular grid, 140
red-green refinement, 184
triangle strips, 141

Signal processing, 237
Simple SFC, 107, 109

definition, 94
Smoothed Particle Hydrodynamics, 163
Space-filler, 94, 107
Space-filling curve

connected (see Connected SFC)
definition, 17
recursive (see Recursive SFC)

Spacetree, 175, 211
adaptive, 130
adaptive traversal, 134–135
definition, 129
kd -spacetree, 129
numerical simulation on spacetree grids,

215–232
Peano order, 139
regularly refined, 130
sequentialisation, 132

Hilbert order, 135
Spacetree grid

access to neighbour cells, 216–217
conforming refinement, 226–227
ghost cells, 159–160

Spacetree traversal
element-based, 217–219
first-access order, 220
last-access order, 220
Morton order, 229–232
multiple access to unknowns, 218

Peano order, 232
stack-and-stream scheme, 220

Sparse matrix, 211
Hilbert order, 213
Peano order, 211
quadtree storage scheme, 213
spacetree storage scheme, 211–212

Spatial locality, 198
Split traversal, 155
Stack-based traversal

adaptive grid, 226
algorithm, 225–226
edge-located unknowns, 227, 254
memory efficiency, 227–228
old/new classification, 223–224
Peano curves, 229
stack rules, 222–225

Stack property, 219, 228
Hilbert curve, 219
partition boundaries, 161
Peano curve, 221
Sierpinski curve, 221
(violation by) Hilbert order, 229

Surface-oriented geometry modelling, 1
Surjective, 17

Tagged edge, 83, 124
Temporal locality, 198
Terminal symbols. See Grammar
Tetrahedral grids, 181, 184–191

angles of tetrahedra, 188
bisection refinement, 184–188, 191–192

shapes of tetrahedra, 186
longest-edge bisection, 192
red-black refinement, 187, 192

Tetrahedral meshes. See Tetrahedral grids
Tetrahedral strips, 141, 233
Tetrahedron with tagged edge, 124
3D Hilbert curve, 109–116

approximating polygon, 110, 111
arithmetisation, 113
basic patterns, 110

rotation, 111, 112
face-connected, 109
grammar, 114–116

number of terminals, 114
Hölder continuity, 168
mapping, 113
operators, 113
parameterised by volume, 169
variants, 109–112, 126

number of different curves, 112
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3D Hilbert index, 113
3D Hilbert traversal

palindrome/stack property, 229, 230
3D Peano curve, 116–119

basic patterns, 116
dimension recursive, 116, 117
grammar, 119
projection property, 202, 203
switch-back type, 116

3D Sierpinski curve, 123–125
algorithm, 125
definition, 124
face-connected, 125
Hölder continuity, 184
tetrahedral strips, 141

3D Sierpinski order, 192
Tiling, 13, 202
Topological monsters, 235
Translation lookaside buffer, 213
Travelling salesman problem, 28, 236
Traversal, 3, 10

on adaptive spacetrees, 134–135
algorithm, 34

Hilbert curve (see Hilbert traversal)
Peano curve (see Peano traversal)

computational costs, 36
depth-first (see Depth-first traversal)
of a matrix, 200
modified depth-first, 153
in SFC order, 28
turtle-based vs. plotter-based, 42

Tree algorithms, 163
Triangle strips, 141, 233

swap command, 142
Triangle with tagged edge, 83
Triangular grid, 8, 144, 181–184

adaptive, 141

red-green refinement, 181–184
Sierpinski order, 140

Triangular meshes, 141
Tuple, 10
Turtle grammar

Hilbert curve, 222
Sierpinski curve, 223

Turtle graphics, 33
ˇ˝-curve, 102
Gosper curve, 106
grammar, 39

UB-trees, 237
Uniformly continuous, 23, 94
Uniqueness

of inverse mapping, 56
of SFC mappings, 52–55

Vertex labelling, 84, 89, 125, 183,
190

Volume-oriented geometry modelling,
2

Wire-frame model, 1, 2
Working set, 201
Work pool approach, 152
Work stealing, 153
Wunderlich, W., 29

Z-curve, 96, 140
iterations, 96
mapping, 96

Z-order. See Z-curve
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