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Foreword

Image processing, image analysis, computer vision, robot vision and ma-
chine vision are terms that refer to some aspects of the process of computing
with images. This process has been made possible by the advent of com-
puters powerful enough to cope with the large dimensionality of image data
and the complexity of the algorithms that operate on them.

In brief these terms differ according to what kind of information is used
and output by the process. In image processing the information is mostly
the intensity values at the pixels, and the output is itself an image; in
image analysis, the intensity values are enriched with some computed pa-
rameters, e.g. texture or optical flow, and by labels indicating such things
as a region number or the presence of an edge; the output is usually
some symbolic description of the content of the image, for example the
objects present in the scene. Computer, robot and machine vision very
often use three-dimensional information such as depth, three-dimensional
velocity and perform some sort of abstract reasoning (as opposed to purely
numerical processing) followed by decision making and action.

According to this rough classification this book deals with image
processing and some image analysis.

These disciplines have a long history that can be traced back at least
to the early sixties. For more than two decades, the field was occupied
mostly by computer scientists and electrical engineers and did not attract
much interest from mathematicians. Its rather low level of mathematical
sophistication reflected the kind of mathematical training that computer
scientists and electrical engineers were exposed to and, unfortunately, still
are: it is roughly limited to a subset of 19th century mathematics. This is
one reason. Another reason stems from the fact that simple heuristic meth-
ods, e.g. histogram equalisation, can produce apparently startling results;
but these ad hoc approaches suffer from significant limitations, the main
one being that there is no precise characterisation of why and when they
work or don’t work. The idea of the proof of correctness of an algorithm
under a well-defined set of hypotheses has long been almost unheard of in
image processing and analysis despite the strong connection with computer
science.

It is clear that things have been changing at a regular pace for some
time now. These changes are in my view due to two facts: first, the level
of mathematical sophistication of researchers in computer vision has been
steadily growing in the last twenty five years or so and second, the number



of professional mathematicians who develop an interest in this field of ap-
plication has been regularly increasing thanks maybe to the examples set
out by two Fields medallists, David Mumford and Pierre-Louis Lions. As a
result of these facts the field of computer vision is going through a crucial
mutation analog to the one that turned alchemy into modern chemistry.

If we now wonder what are the relevant mathematics to image process-
ing and analysis we come up with a surprisingly long list: differential and
Riemannian geometry, geometric algebra, functional analysis (calculus of
variations and partial differential equations), probability theory (probabilis-
tic inference, Bayesian probability theory), statistics (performance bounds,
sampling algorithms), singularity theory (generic properties of solutions to
partial differential equations) are all being successfully applied to image
processing. It should be apparent that it is in fact the whole set of 20th
century mathematics which is relevant to image processing and computer
vision.

In what sense are those mathematics relevant? as I said earlier, many of
the original algorithms were heuristic in nature, no proof was in general
given of their correctness and no attempt was made at defining the hypothe-
ses under which they would work or not. Mathematics clearly contribute
to change this state of affairs by posing the problems in somewhat more
abstract terms with the benefit of a clarification of the underlying concepts,
e.g. what are the relevant functional spaces, the possibility of proving the
existence and uniqueness of solutions to these problems under a set of well-
defined hypotheses and the correctness of algorithms for computing these
solutions. A further benefit of the increase of mathematical sophistication
in machine vision may come out of the fact that the mathematical methods
developed to analyse images with computers may be important for build-
ing a formal theory of biological vision: this was the hope of the late David
Marr and should be considered as another challenge to mathematicians,
computer vision scientists, psycho-physicists and neurophysiologists.

Conversely image processing and computer vision bring to mathematics
a host of very challenging new problems and fascinating applications, they
contribute to grounding them in the real world like physics does.

This book is a brilliant “tour de force” that shows the interest of using
some of the most recent techniques of functional analysis and the theory
of partial differential equations to study several fundamental questions in
image processing such as how to restore a degraded image and how to seg-
ment it into meaningful regions. The reader will find early in the book a
summary of the mathematical prerequisites as well as pointers to some spe-
cialised textbooks. These prerequisites are quite broad, ranging from direct
methods in the calculus of variations (relaxation, Gamma-convergence) to
the theory of viscosity solutions for Hamilton Jacobi equations and include
the space of functions of bounded variations. Lebesgue theory of integra-
tion as well as Sobolev spaces are assumed to be part of the reader’s culture
but pointers to some relevant textbooks are also provided.



The book can be read by professional mathematicians (and it is I think its
prime target) as an example of the application of different parts of modern
functional analysis to some attractive problems in image processing. These
persons will find in the book most of the proofs of the main theorems (or
pointers to these in the literature) and get a clear idea of the mathematical
difficulty of these apparently simple problems. The proofs are well detailed,
very clearly written and as a result, easy to follow. Moreover, since most
theorems can also be turned into algorithms and computer programs, their
conclusions are illustrated with spectacular results of processing performed
on real images. Furthermore since the authors provide examples of several
open mathematical questions my hope is that this book will attract more
mathematicians to their study.

It can also be read by the mathematically inclined computer vision re-
searcher. I do not want to convey the idea that I underestimate the amount
of work necessary for such a person in order to grasp all the details of all
the proofs but I think that it is possible as a first reading to get a gen-
eral idea of the methods and the main results. Hopefully this person will
then want to learn in more detail the relevant mathematics and this can be
done by alternating reading the textbooks that are cited and studying the
proofs in the book. My hope is that this will convince more image process-
ing scientists that these mathematics must become part of the tools they
use.

This book, written by two mathematicians with a strong interest in im-
ages, is a wonderful contribution to the mutation I was alluding to above,
the transformation of image processing and analysis as well as computer,
robot and machine vision into formalised fields, based on sets of competing
scientific theories within which predictions can be performed and methods
(algorithms) can be compared and evaluated. This is hopefully a step in
the direction of understanding what it means to see.

Olivier Faugeras



Preface

It is surprising when we realize just how much we are surrounded by images.
Images allow us not only to perform complex tasks on a daily basis, but also
to communicate, transmit information, represent and understand the world
around us. Just think, for instance about digital television, medical imagery,
video-surveillance, etc. The tremendous development in information tech-
nology accounts for most of this. We are now able to handle more and more
data. Many day to day tasks are now fully or partially accomplished with
the help of computers. Whenever images are involved we are entering the
domains of computer vision and image processing. The requirements for
this are reliability and speed. Efficient algorithms have to be proposed to
process these digital data. It is also important to rely on a well-established
theory to justify the well-founded nature of the methodology.

Amongst the numerous approaches which have been suggested, we focus
on Partial Differential Equations (PDEs), and Variational Approaches in
this book. Traditionally applied in physics, these methods have been suc-
cessfully and widely transferred in Computer Vision other the last decade.
One of the main interests in using PDEs is that the theory behind the con-
cept is well-established. Of course, PDEs are written in a continuous setting
refering to analog images, and once the existence and the uniqueness have
been proven, we need to discretize them in order to find a numerical so-
lution. It is our conviction that reasoning within a continuous framework
makes the understanding of physical realities easier and stimulates the in-
tuition necessary to propose new models. We hope that this book will
illustrate this idea effectively.

The message we wish to put over is that the intuition which leads to
certain formulations and the underlying theoretical study are often com-
plementary. Developing a theoretical justification of a problem is not simply
“art for art sake”. In particular, a deep understanding of the theoretical
difficulties may lead to the development of suitable numerical schemes or
different models.

This book is concerned with the mathematical study of certain image
processing problems. Thus we target two audiences:

• The first is the mathematical community and is achieved by showing
the contribution of mathematics to this domain by studying classical
and challenging problems which come from Computer Vision. It is



also the occasion to highlight some difficult and unsolved theoretical
questions.

• The second is the Computer Vision community: this is done by pre-
senting a clear, self-contained and global overview of the mathematics
involved for the problems of image restoration, image segmentation,
sequence analysis and image classification.

We hope that this work will serve as a useful source of reference and inspi-
ration for fellow researchers in Applied Mathematics and Computer Vision,
as well as being a basis for advanced courses within these fields.

This book is divided into six main parts. Chapter 1 introduces the subject
and gives a detailed plan of the book. In chapter 2, most of the mathematical
notions used therein are recalled in an educative fashion and illustrated in
detail. In Chapters 3 and 4 we examine how PDEs and variational meth-
ods can be successfully applied in the restoration and segmentation of one
image. Chapter 5 is more applied and some challenging computer vision
problems are described, such as sequence analysis or classification. As the
final goal of any approach is to compute some numerical solution, we pro-
pose an introduction to the method of finite differences in the Appendix.

We would like to express our deep gratitude to the following people for
their various contributions:

• The ARIANA group from INRIA Sophia Antipolis and in particular
Laure Blanc-Féraud and Christophe Samson for providing the results
regarding the classification problem.

• The ROBOTVIS group from INRIA Sophia Antipolis and especially
Olivier Faugeras and Bertrand Thirion for their subsequent valuable
comments.

• Agnés Desolneux, François Helt, Ron Kimmel, Etienne Mémin, Nikos
Paragios, Luminita Vese and Joachim Weickert for their contribu-
tion to the writing of certain parts and for providing us with some
experimental results.
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1
Introduction

1.1 The image society

Our society is often designated as being an “information society”. It could
also very well be defined as an “image society”. This is not only because
image is a powerful and widely used media of communication, but also
because it is an easy, compact and widespread way in which to represent
the physical world. When we think about it, it is very surprising indeed
(and maybe frightening) to realize just how much images are omni-present
in our lives, and how much we rely upon them: just have a glance at the
patchwork presented in Figure 1.1.

Advances made in acquisition devices are part of the origin of such a
phenomenon. A huge amount of digital information is available. The second
origin is naturally the increase in capacity of computers that enables us to
process more and more data. This has brought about a new discipline
known as Computer Vision.

For example, medical imagery made a substantial use of images from the
earliest days. Many devices exist which are based on ultrasounds, Xrays and
scanners, etc. Images produced by these can then be processed to improve
their quality, enhance some features or efficiently combine different pieces
of information (fusion).

Another important field that concerns us directly is remote sensing. This
designates applications where we need to analyze, measure or interpret
scenes at a distance. In addition to defense and video surveillance appli-
cations and road traffic analysis, the observation of the earths resources is
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Figure 1.1. Illustration of some applications or systems that use image analysis.
One may find in this patchwork examples from medecine, biology, satellite images,
old movie restoration, forensic and video-surveillance, 3-D reconstructions and
virtual reality, robotics or character recognition. Other applications include data
compression, industrial quality control, fluids motion analysis, art (for instance
for virtual databases or manuscript analysis), games, special effects, etc
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another important field. Image processing provides tools to track and quan-
tify changes in forests, water supplies, urbanization and pollution, etc. It is
also widely used for weather forecasting to analyze huge amounts of data.

Video processing is clearly becoming an important area of investigation.
This is because in many applications we need to process not only still
images but also sequences of images. Motion analysis and segmentation are
two important cues necessary for analyzing a sequence. This is necessary
for instance for the forecasting of the weather in order to estimate and
predict the movement of clouds. It is also determinant for more complex
task such as compression. A clear understanding of the sequence in terms of
background and foreground, with motion information enables us to describe
a sequence with less given information. New challenges and subsequent
problems are arising as video and cinema become digital: storage, special
effects, video processing like the restoration of old movies, etc.

Beyond these general themes, we could also mention many different ap-
plications where image processing is involved. These include “World Wide
Web”, character recognition, 3D reconstruction of scenes or objects from
images, quality control, robotics, fingerprint analysis, virtual art databases,
etc.

Without necessarily knowing it, we are consumers of image processing
on a daily basis.

1.2 What is a digital image?

A digital image (also called discrete image) comes from a continuous world.
It is obtained from an analog image by sampling and quantization. This
process depends on the acquisition device and depends for instance on
CCD’s for digital cameras. Basically, the idea is to superimpose a regular
grid on an analog image and to assign a digital number to each square of
the grid, for example the average brightness in that square. Each square is
called pixel, for picture element, and its value is the gray-level or brigthness
(see Figure 1.2).

Depending on the kind of image, the number of bits used to represent
the pixel value may vary. Common pixel representations are unsigned bytes
(0 to 255) and floating point. To describe a pixel, one may also need sev-
eral channels (or bands). For instance, in the case of a color image, three
channels are necessary, typically red, green, blue. In this book, we will only
consider gray-scale images, with one channel.

The last important characteristic of an image is its size (or resolution). It
is the number of rows and columns in the image. Just to give an idea, typical
digital cameras now give images of size 320x240 and can reach 3060x2036
for professional ones. For digital cinema, we consider images of size 720x576
(standard video format), 1920x1440 (high definition) or higher, for medical
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Figure 1.2. A digital image is nothing but a two dimensional array of pixels with
assigned brightness values

imagery functional MRI images are about 128x128. In a way, the higher
the resolution, the closer the digital image is from the physical world.

As in the real world, an image is composed of a wide variety of structures,
and this is even more complex because of the digitalization and the limited
number of gray-levels to represent it. To give an idea, we show in Figure 1.3
an image and some close-ups on different parts. This shows the effects of
low resolution (some areas would need more pixels to be represented) and
low contrasts, different kind of “textures”, progressive or sharp contours
and fine objects. This gives an idea of the complexity to find an approach
which permits to cope with the different problems or structures at the same
time.

Figure 1.3. Digital image example. � the close-ups show examples of low res-
olution, low contrasts, graduated shadings, sharp transitions and fine elements.



1.3. About Partial Differential Equations (PDEs) 5

1.3 About Partial Differential Equations (PDEs)

Many approaches have been developed to process these digital images and it
is difficult to say which one is more natural than the other. Image process-
ing has a long history. Maybe the oldest methods come from 1-D signal
processing techniques. They rely on the filter’s theory (linear or not), on
spectral analysis or on some basic concepts of probability or statistics. For
an overview, we refer the interested reader to the book by Jain [140].

Today, more sophisticated tools have been developed. Three main di-
rections emerge: stochastic modelization, wavelets and Partial Differential
Equation (PDE) approaches. Stochastic modelization is widely based on the
Markov Random Field theory (see [158, 118, 116]). It deals directly with
digital images. The wavelet theory is inherited from signal processing and
relies on decomposition techniques (see the monograph by S. Mallat[167]
and [63, 95, 96, 98, 99, 100]) We do not consider here these approaches and
focus instead on PDE based methods. They have been intensively developed
in image analysis since the nineties.

PDEs, which are one of the most important parts of mathematical analy-
sis, are closely related to the physical world. Every scientist comes across
the wave equation or the heat equation, and the names of Euler, Poisson,
Laplace, etc. are quite familiar. If PDEs originally come from physics and
mechanics, one may encounter them more and more in other fields such as
biology and finance and now in image analysis. One of the main interests
of using PDEs is that the theory is well-established. Of course, PDEs are
written in a continuous setting refering to analog images and once the ex-
istence and the uniqueness have been proven, we need to discretize them in
order to find a numerical solution. It is our conviction that reasoning in a
continuous framework makes the understanding of physical realities easier
and provides the intuition to propose new models. We hope that this book
will illustrate this idea well.

1.4 Detailed plan

This book is divided in five Chapters and an Appendix.

Chapter 2: Mathematical preliminaries

We cover in this chapter most of the mathematics used in this book. We
tried to make it as complete and educative as possible. Examples are given
to emphasize the importance of certain notions, or to simply illustrate
them. This chapter should be read carefully. It is divised in six sections.

Section 2.1 The direct method in the calculus of variations. Many
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problems in computer vision can be formulated as minimization problems.
Among the first concerns, we are interested in the existence of a solution.
The presentation of the methodology to prove existence reveals two major
notions: coercivity and lower semi-continuity (noted l.s.c., see Definition
2.1.3). Counter examples are proposed where these conditions are miss-
ing. Now, if the functional is not l.s.c., the idea is to look at the greatest
l.s.c. functional equal or less than the initial one. It is called the relaxed
functional (Definition 2.1.6). Some interesting properties link the relaxed
and the initial problem (Theorem 2.1.6). This notion is quite technical but
will be very useful in many occasions. Finally, we recall the notion of Γ-
convergence introduced by De Giorgi [119, 85] (Section 2.1.4, Definition
2.1.7). This permits to define a convergence for a sequence of functionals.
For instance, this can be used to approximate a problem for which charac-
terizing the solution is not easy (as a typical application, we refer to Section
3.2.4). The main properties are stated in Theorem 2.1.7. The link between
Γ-convergence and pointwise convergence is clarified in Theorem 2.1.8.

Section 2.2 The space of functions of bounded variation. It is the
functional space that is commonly used in image analysis. The main rea-
son is that, as opposed to classical Sobolev spaces [1], functions can be
discontinuous across hypersurfaces. In terms of images, this means that
images are discontinuous across edges. This is possible because derivatives
are in fact measures. After recalling some basic definitions on measures
in Section 2.2.1, the space BV (Ω) is defined in Section 2.2.2. This space
has interesting properties that we recall in Section 2.2.3: semi-continuity, a
notion of trace, compactness and decomposability. The latter is maybe the
more specific: it says that the derivative of a function u ∈ BV (Ω) can be
decomposed as:

Du = ∇u dx + (u+ − u−)nuHN−1
|Su

+ Cu,

that is the sum of an absolutely continuous part with respect to the
Lebesgue measure, a jump part and a Cantor measure. We finally gen-
eralize this decomposition to give a sense to convex functions of measures
(Section 2.2.4).

Section 2.3 Viscosity solutions in PDEs. In many situations, we will
encounter equations that do not come from variational principles, like in im-
age restoration or segmentation by level sets. So we need to find a suitable
framework to study these equations. To illustrate some of the problems, we
consider in Section 2.3.1 the case of the 1-D eikonal equation:{ |u′(x) | = 1 in (0, 1)

u(0) = u(1) = 0.

Existence, uniqueness and compatibility conditions are considered and re-
veal some difficulties. The framework of viscosity solution is then presented
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(Section 2.3.2, Definition 2.3.1). Introduced in the eighties for first order
PDEs by Crandall and P.L. Lions [82, 80, 160], the theory of viscosity solu-
tions has shown a very successful development and has been extended for
second order equations [81]. It is a notion of weak solutions that are con-
tinuous. To prove existence (Section 2.3.3), two approaches are classically
used: the vanishing viscosity method (giving its name to the theory), and
the Perron’s method. As for uniqueness (Section 2.3.4), it is usually based
on the Crandall-Ishii’s lemma (Lemma 2.3.2). Since it is very technical, we
try to illustrate on an easy example its role.

Section 2.4 Elements of differential geometry: the curvature. Im-
age analysis has obviously some connections with differential geometry. For
instance, curvature is a very important cue, and its definition depends on
the “object” that we are considering. We define here the notion of curva-
ture depending on we are interested in parametrized curves, images, or 3-D
surfaces. We refer to [161] for more details.

Section 2.5 Other classical and important result used in this book.
We finally mention some important results used in this book in different
proofs. The motivation is to help the reader to find most of the results in
this monograph, being as selfcontained as possible.

Chapter 3: Image restoration

Many applications are based on images and then rely on their quality.
Unfortunately, those images are not always of good quality for various
reasons (defects in the sensors, natural noise, interferences, transmission,
etc). Some “noise” is introduced, and it is important to consider auto-
matic and efficient approaches to remove it. It is historically one of the
oldest concerns and is still a necessary pre-processing for many applica-
tions. There exist many ways to tackle image restoration. Amongst others,
we may quote the (linear) filtering approach [140], the stochastic modeliza-
tion [114, 46, 73, 90, 116], and the variational/PDE based approaches. We
focus here on the latter.

Section 3.1 Image degradation. The notion of noise is quite vague and
it is often very hard to modelize its structure or its origins. Different mod-
els of degradation can be proposed and we briefly review some of them. In
all the sequel, we will assume that the noise follows a Gaussian distribution.

Section 3.2 The energy method. Restoring an image can be seen as
a minimization problem. We denote by u the original image and u0 the
observed image, assuming the following model of degradation:

u0 = Ru + η
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where η stands for an additive Gaussian noise and where R is a linear
operator representing the blur (usually a convolution). We show in Section
3.2.2 that the problem of recovering u from u0 can be approximated by:

inf
u∈{u∈L2(Ω); ∇u∈L1(Ω)2}

E (u) =
1
2

∫
Ω

|u0 −Ru|2dx + λ

∫
Ω

φ( | ∇u | )dx

where the function φ is convex and of linear growth at infinity, allowing
the preservation of discontinuities. The choice of this function φ determines
the smoothness of the resulting function u.

The mathematical study of this problem, considered in Section 3.2.3 re-
veals some major difficulties. The space V = {u ∈ L2(Ω); ∇u ∈ L1(Ω)2}
is not reflexive and we cannot deduce any information from bounded mini-
mizing sequences. So we relax the problem by studying it in the larger space
BV (Ω) and the correct formulation of the problem is (Theorem 3.2.1):

inf
u∈BV (Ω)

E(u) =
1
2

∫
Ω

|u0 −Ru|2 dx+

+ λ

∫
Ω

φ(|∇u|) dx + λc

∫
Su

(u+ − u−)dH1 + λc

∫
Ω−Su

|Cu|.

We demonstrate the existence and the uniqueness of a minimizer for E(u)
in the Theorem 3.2.2.

The Section 3.2.4 is about the numerical approximation of the solution.
Although some characterization of the solution is possible in the distribu-
tional sense, it remains difficult to handle numerically. To circumvent the
problem, we consider sequences of close functionals, using Γ-convergence.
This is quite standard and shows clearly the importance of the notion of
Γ-convergence.

The Section 3.2.5 investigates the role of the parameter λ with respect
to the solution. This introduces the notion of scale and we can wonder
about the meaning of an “optimal” λ. This question is usually handled in
a stochastic framework and we mention some related work.

Until now, we have always considered the convex case. Surprisingly, we
can observe very good numerical results using nonconvex functions φ, for
example with:

φ(s) =
s2

1 + s2
.

In the computer vision community, very little concerns is made on the
interpretation of the result. It is a very hard problem indeed. For instance,
we prove in Proposition 3.2.3 that the minimization problem:

inf
u∈W 1,2(Ω)

E(u) =
∫
Ω

∣∣u− u20
∣∣ dx + λ

∫
Ω

|∇u|2
1 + |∇u|2 dx
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has no minimizer in W 1,2(Ω) and that the infimum is zero (if u0 is not a
constant). It is still an open question to understand what the numerical
solution is and we conclude by discussing some recent related work.

Section 3.3 PDE-based methods. A restored image can be seen as
a version of the initial image at a special scale. More precisely, we consider
here models where an image u is embedded in a evolution process. We de-
note it by u(t, ·). At time t = 0, u(0, ·) = u0(·) is the original image. It is
then transformed through a process that can be written:

∂u

∂t
(t, x) + F (x, u(t, x),∇u(t, x),∇2u(t, x))

(A second order differential operator)
= 0 in Ω

which is a partial differential equation. In other words, the evolution of u
may depend on its derivatives at different orders. This is a very generic
form and we show in this section some possibilities for F to restore an
image. We distinguished three categories.

• Smoothing PDEs (Section 3.3.1). Maybe the most famous PDE in
image restoration is the heat equation:

∂u

∂t
(t, x)−∆u(t, x) = 0. (1.1)

We recall some of its main properties: the equivalence with a Gaussian
convolution, a low-pass filter, and some invariances of the operator
Tt defined by (Tt u0)(x) = u(t, x), where u(t, x) is the unique solution
of (1.1). Because its oversmoothing property (edges get smeared), it
is necessary to introduce some nonlinearity. We then consider the
model:

∂u

∂t
= div (c( |∇u|2)∇u), (1.2)

where the function c is fixed here so that the equation remains par-
abolic. If we compare to the heat equation, this does not seem to
introduce major changes, at least on a theoretical point of view. In
order to preserve the discontinuities, we show that we would like to
have c(s) ≈ 1√

s
as s → +∞. Unfortunately, because of this degen-

erated behaviour, it is no longer possible to apply general results for
parabolic equations. A well-adapted framework to study this equa-
tion is the nonlinear semi-group theory. The idea is to show that the
divergence operator in (1.2) is maximal monotone. A convenient way
to prove it is to identify the divergence operator with the subdif-
ferential of a convex lower semi-continuous functional J(u) given in
(3.48). We can then establish in Theorem 3.3.1 the existence and the
uniqueness of a solution. The characterization of the solution:

“u(t) ∈ Dom ( ∂J) .../... − du

dt
∈ ∂J(u(t))′′.
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is not very explicit and we try in Proposition 3.3.4 to better explain
it.
In 1992 Alvarez-Guichard-Lions-Morel introduced the notion of scale-
space via PDEs [4, 5]. Given some axioms and invariance properties
for an “image oriented” operator Tt, the idea is to try to identify this
operator. This is a major contribution and a very original work. More
precisely, under previous assumptions, it can be established (Theorem
3.3.2) that u(t, x) = (Ttu0)(x) is the unique viscosity solution of:

∂u

∂t
= F (∇u,∇2u).

In other words, if Tt verify some natural assumptions, then it can
be solved through a PDE depending only on the first and second
derivatives of u. With more assumptions, F can be fully determined
(Theorems 3.3.3 and 3.3.4).
We then present briefly the Weickert’s approach. We refer the in-
terested reader to [249] for more details. Roughly speaking, it is a
tensor based version of the equation (1.2) where the scalar coefficient
c which controls the diffusion is replaced by a function of the diffusion
tensor:

∇u∇ut =
(

u2x uxuy
uxuy u2y

)
.

Some Gaussian convolutions are introduced to take into account
the scales. This approach permits to better take into account the
directions of diffusion and is theoretically justified [249].
Last but not least, we mention some contributions by Fallah, Kimmel
et al [233, 232]. The specificity of these approaches is to consider
an image as a surface. The differential operators are then based on
the metric properties of the surface. Instead of recalling each model
separately, we try to present them in a common framework.

• Smoothing-enhancing PDEs (Section 3.3.2). We consider equations
that can behave locally as inverse heat equations. This is motivated
by the original choices of c by Perona and Malik [209] in the equation
(1.2):

c(s) =
1

1 +
s

k

or c(s) = e
− s
k (1.3)

where k is a constant. If we denote by T and N the tangent and
normal directions to the isophotes, the divergence term in (1.2) can
be rewritten as:

div(c(|∇u(t, x)|2)∇u(t, x)) = c(|∇u(t, x)|2)uTT + b(|∇u(t, x)|2)uNN

where the function b depends on c. With choices of c like (1.3), it can
be verified that the function b may become negative. Classical argu-
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ments as in the previous section can no longer be applied. It is in fact
the notion of “solution” itself that has to be defined differently. From
Kichenassamy [143], a solution should consist of regions with “low”
gradients separated by points of discontinuity where the gradient is
infinite (Theorem 3.3.6). Therfore, the notion of solution must be un-
derstood in a measure sense, and it is still an open problem. Another
possibility that we detail here is to introduce some regularization.
Catté et al [59] proposed to solve the following partial differential
equation instead of (1.2):

∂u

∂t
(t, x) = div( c(|( ∇Gσ ∗ u )(t, x)|2)∇u(t, x)).

Interestingly, we show that this equation is now well-posed and we
prove in Theorem 3.73 the existence and uniqueness of a solution in
the distributional sense. The existence is shown using a Schauder’s
fixed-point theorem.
Some challenging questions are still open and mentioned at the end
of this section.

• Enhancing PDEs (Section 3.3.3). In this last section, we examine the
case of deblurring (or enhancement). It is essentially devoted to the
shock filter model proposed by Osher and Rudin [199] in the 1-D case:

ut(t, x) = − |ux(t, x)| sign (uxx(t, x)). (1.4)

To better understand the action of this equation, we consider the
following simpler case:

ut(t, x) = − |ux(t, x)| sign( (u0)xx (t, x))

with u0(x) = cos(x). Using the method of characteristics, we con-
struct explicitely a solution. Although this cannot be done in the
general case (1.4), this presents interesting calculus. The understand-
ing of (1.4) on a theoretical point of view remains an open question
up to our knowledge.

❂

Chapter 4: The Segmentation Problem

In this chapter, we examine the segmentation problem which is, with image
restoration, one of the most important question in image analysis. Though
restoration and segmentation are not totally disconnected, image segmen-
tation has its own objectives (see Section 4.1) and its own methodology. By
segmentation, we mean that we are interested to know the constituant parts
of an image rather than to improve its quality (which is a restoration task).
The aim of Chapter 4 is to present two variational and PDE approaches
for the segmentation problem. In the first approach, the idea is to consider
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that segmenting an image consists, from an initial image u0, in constructing
a new image u closed to u0 and made of distinct homogeneous regions, the
boundaries between these regions being sharp and piecewise regular. This
is achieved by minimizing the Mumford-Shah functional (Section 4.2). The
second approach (which can be seen as a dual point of view of the former)
aims at detecting the contours of the objects lying in the image u0 (or a
smooth version of it). These contours are modelized by closed curves to be
identified. This edge detection method called geodesic active contours is
presented in Section 4.3.

Section 4.1: Definition and objectives. Based on some real examples,
we suggest what could image segmentation possibly mean. There are two
different ways to consider it. The first is to have a simplified version of the
original image, compounded of homogeneous regions separated by sharp
edges. The second is to extract some “significant” contours. Still, in each
case, the important features are edges and so we briefly recall some of the
earliest edge detectors that appeared in literature.

Section 4.2: The Mumford Shah functional. In Section 4.2.1, we first
present the formulation introduced by Mumford and Shah in 1985 [186].
It is an energy based method. For a given u0(x) (the initial image), we
search for a function u : Ω → R and a set K ⊂ Ω (the discontinuity set)
minimizing:

E(u,K) =
∫
Ω

(u− u0)2 dx + α

∫
Ω−K

|∇u|2 dx + β

∮
K

dσ.

The first term measures the fidelity to the data, the second imposes that
u is smooth in the region Ω−K and the third term that the discontinuity
set has minimal length and therefore is as smooth as possible. This type of
functional forms part of a wider class of problems called ”free discontinuity
problems”. As we can imagine, there is an important literature related to
the Mumford-Shah problem. We refer to the book of Morel and Solimini
[185] for a complete review. Our aim is to present to the reader a clear
overview of the main results.

Section 4.2.2 is concerned with the existence of a solution. As we can
forsee, it is not an easy task and the first question is: what is the good
functional framework? Following Ambrosio [9, 10, 11], we show why the
problem cannot be directly solved and we demonstrate the necessity to de-
fine an equivalent formulation involving only one unkown u. This is achieved
by considering the functional:

G(u) =
∫
Ω

(u− u0)2dx + α

∫
Ω

|∇u|2dx + β HN−1(Su).
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defined for u ∈ SBV (Ω) and where Su stands for the discontinuity set
of u, i.e. the complement, up to a set of HN−1 measure zero, of the set
of Lebesgue points of u. It is proven that the problem inf {G(u), u ∈
SBV (Ω)∩L∞(Ω)} admits at least a solution u and that the couple (u,K)
with K = Ω ∩ Su is a minimizer of the initial Mumford-Shah functional.

Once we get the existence of a minimizer, we would like to compute
it. The natural way to do that is to search for optimality conditions.
We establish these conditions (Theorem 4.2.3) assuming the regularity
hypotheses:

(C1) K is made of a finite number of C1,1-curves, meeting ∂Ω and meeting
each other only at their endpoints.

(C2) u is C1 on each connected component of Ω−K.

Section 4.2.3 investigates the regularity hypotheses (C1), (C2). In their
seminal work [186], Mumford and Shah conjectured that the functional
F (u,K) admits a minimizer satisfying (C1), (C2) and then they proved
that for such a minimizer, the only vertices of the curves γi forming K are:

(i) Points P on ∂Ω where one γi meets ∂Ω perpendicularly.

(ii) Triple points P where three γi meet with angles 2π
3 .

(iii) Crack-tip where a γi ends and meets nothing.

We first show qualitative properties (i), (ii) and (iii) when K verifies (C1)
and (C2). Then, we state the important result from Bonnet [41, 43] where
the hypotheses (C1) and (C2) are removed and replaced by a connectedness
assumption.

The approximation of the Mumford-Shah functional is examined in Sec-
tion 4.2.4. The lack of differentiability for a suitable norm does not allow
to use directly Euler equations. Therefore, it is natural to search for an
approximation of F (u,K) by a sequence Fε of regular functionals defined
on Sobolev spaces. There exist many ways to approximate F (u,K) and
we list some of them. We focus our attention on the Ambrosio-Tortorelli
approximation [13] which is one of the most used in image analysis. In their
approach, the set K (or Su) is replaced by an auxiliary variable v (a func-
tion) that approximates the characteristic function (1−χK). The sequence
of functionals Fε is defined by:

Fε(u, v) =
∫
Ω

(u− u0)2dx +
∫
Ω

(v2 + h(ε)) |∇u|2 dx+

+
∫
Ω

(
ε |∇v|2 +

1
4ε

(v − 1)2
)
dx

where h(ε) is a sequence of constants such that lim
ε→0

h(ε) = 0. Fε(u, v) are
elliptic functionals which Γ-converge to the Mumford and Shah functional.
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We close Section 4.2 by saying some words about the numerical compu-
tation and giving some experimental results (Section 4.2.5). We point out
the monograph of Braides [48] to anyone interested in the approximation
of free discontinuity problems.

Section 4.3: Geodesic active contours and the level sets method.
As suggested in Section 4.1 another approach for segmentation is to detect
the “significant” contours, for example the contours of the different objects
in a scene rather than to construct a partition made of homogeneous re-
gions. This is the active contour model. The idea of this approach is that
contours are characterized by sharp variations of the image intensity, and so
by infinite gradients. The principle consists in matching deformable curves
to the contours objects by means of energy minimization.

In Section 4.3.1, we begin by describing the Kass-Witkin-Terzopoulos
model [142] which is, to the best of our knowledge, one of the first in this
direction. In this model, the energy to be minimized is defined on a set C
of closed, piecewise regular, parametric curves (called snakes) and is given
by:

J1(c) =

b∫
a

|c′(q)|2 dq + β

b∫
a

|c′′(q)|2 dq + λ

b∫
a

g2(|∇I(c(q))|)dq,

c ∈ C, where g is a decreasing monotonic function vanishing at infinity.
Thanks to the third term, minimizing curves are attracting by the edges of
the objects forming the image. We point out some drawbacks of this model
(in particular, the non intrinstic nature of J1 which depends upon the
parametrization) that lead Caselles, Kimmel and Sapiro to propose their
geodesic active contour model [58] (Section 4.3.2). They observed that in
the energy J1, we can choose β = 0, and that, in a sense to be precised
(Definition 4.3.1), the minimization of J1(c) (with β = 0) is equivalent to
the minimization of:

J2(c) = 2
√
λ

b∫
a

g( |∇I(c(q))| ) |c′(q)| dq.

Now, J2 is invariant under change of parametrization and can be seen as a
weighted Euclidian length. Starting from an initial curve c0(q), we detect
the image contours by evolving a family of curves c(t, q) according to the
decreasing gradient flow associated to J2:

∂c

∂t
= (κ g − 〈∇g,N〉)N. (1.5)

where N is the unit outward normal to c(t, q) and κ its curvature. Thanks
to the definition of g, the evolution of {c(t, q)}t≥0 is stopped when edges are
detected. However, due to its parametric formulation, this model has still
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some drawbacks. For example, a change of topology (corresponding to the
detection of several objects) during the curve evolution is not allowed. To
circumvent this type of problem, Osher and Sethian proposed in a pioneer-
ing work [200] the so-called level set method that we examine in Section
4.3.3. The idea is simple: a curve in R2 can be seen as the zero-level line
of a function u defined from R2 to R. We reformulate the geodesic active
contour model in terms of the function u and we deduce that equation (1.5)
can be rewritten as:

∂u

∂t
= κg|∇u(t, x)| − 〈∇g,∇u〉. (1.6)

Then, we list the major advantages of this formulation and we show that
equations of the form (1.6) are well-posed in the viscosity sense. We de-
velop in details the mathematical analysis of (1.6) (existence, uniqueness,
maximum principles).

Section 4.3.4 is concerned with the experimental results obtained with
(1.6). The main difficulty in the numerical approximation of (1.6) comes
from the presence of hyperbolic terms. It is suggested why the discretization
has to be carried out carefully, which leads to the introduction of entropic
conservatives schemes. The interested reader will find more details in the
Appendix (Sections A.2 and A.3.4).

Finally, we point out in Section 4.3.5 how some limitations from the
snakes or level-set formulations may be overcome. Two recent contribu-
tions are presented. The first one is concerned with the stopping criterium.
Classically based on the intensity gradient (corresponding to sharp edges),
this criterium may not be suitable for some kind of images with soft con-
tours or “perceptual” contours (imagine an image with dots not evenly
distributed). The idea proposed by Chan and Vese [66] is to consider what
is inside the regions instead of only focusing on the boundaries. The second
one is related to the curves representation using level sets. Although it is
very convenient numerically, it can only deal with closed non-intersecting
hypersurfaces. We present some recent developments [219, 124] who de-
scribe a more flexible representation that should be more investigated in
the future. ❂

Chapter 5: Other Challenging Applications

The scope of this last chapter is more applied. Two main problems are
analyzed: sequence analysis and classification (a supervised segmentation).
Although some theoretical results are given and proved, the goal of this
chapter is mainly to show how the previous material may be used for more
“applied” and complex problems.

Section 5.1: Sequence analysis
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As the terms “sequence analysis” may appear quite wide and unprecise,
we begin in Section 5.1.1 by giving some generalities about sequences. The
aim is to make the reader realize that one uses all its knowledge of the
environment or scenario to analyze a sequence. Without this, it becomes a
very difficult problem.

One of the first difficulty is the motion estimation (Section 5.1.2). Beyond
the fact that motions may be of different types and amplitudes, it can
only be recovered thanks to intensity variations. This explains why it is
only possible to recover an apparent motion (a priori different from the
projection of the 3D real motion field). This section is essentially a review
of existing variational approaches for optical flow. We first present the so-
called optical flow constraint, which is a scalar equation corresponding to
the conservation of intensity along trajectories. It links the intensity of the
sequence u(t, x) : R+×Ω→ R (the data) to the instantaneous motion field
at time t = t0, σ(x) : Ω→ R2 (the unknown), by:

σ(x) · ∇u(t, x0) + ut(t, x0) = 0.

As it is not sufficient to solve the problem (one equation for two unknowns:
the two components of the flow field), many solutions have been proposed
and we recall some of them. We focus on regularization approaches and
mention some of the numerous research based on this method. We then
present in more details a discontinuity preserving approach by Aubert,
Deriche and Kornprobst [92, 17, 18] where some theoretical results have
been established. The problem is to minimize:

E(σ) =
∫
Ω

|σ ·Du + ut|
︸ ︷︷ ︸

A(σ)

+αs
2∑

j=1

∫
Ω

φ(Dσj)

︸ ︷︷ ︸
S(σ)

+αh
∫
Ω

c(Du)|σ|2 dx
︸ ︷︷ ︸

H(σ)

where αs, αh are positive constants. From now on, unless specified oth-
erwise, all the derivative are written in a formal setting (i.e. Du is the
gradient of u in the distributional sense). Since we look for discontinuous
optical flows, the suitable theoretical background to study this problem will
be the space of bounded variation BV(Ω) (see Section 2.2). The energy is
compounded of three terms:

• A(σ) is the “L1”-norm of the optical flow constraint. In fact, as it is
formal here, it has to be interpreted as a measure.

• S(σ) is the smoothing term, choosen as for image restoration (see
Section 3.2), in order to keep the discontinuities of the flow.

• H(σ) is related to homogeneous regions. The idea is that if there is
no texture, that is to say no gradient, there is no way to estimate
correctly the flow field. Then one may force it to be zero.
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We conclude this section by discussing the well-foundness of the optical
flow constraint in some situations, and try to indicate some future paths
for this still challenging problem.

The second problem that we consider in Section 5.1.3 is the problem
of sequence segmentation. Here, segmentation means finding the differ-
ent objects in a scene, and it is naturally in relation with velocity
estimation. Motion based segmentation perform well on some sequences
(low noise, good sampling,. . .) but will fail otherwise. Another idea is to
use the background redundancy to segment the scene into layers (fore-
ground/background). It is shown on a synthetic example how this idea may
be considered and what are the limits of the naive approach. In particular,
in the case of noisy sequences, obtaining a reference image is as difficult as
segmenting the sequence. So it would be certainly more efficient to look for
the reference image and the segmentation at the same time. This can be
formalized in terms of PDEs as done by Kornprobst, Deriche and Aubert
[154], where a coupled approach is proposed. Let N(t, x) denotes the given
noisy sequence, for which the background is assumed to be static. We look
simultaneously for:

• The restored background B(x).

• The sequence C(t, x) which indicates the moving regions. Typically,
C(t, x) = 0 if the pixel x belongs to a moving object at time t, and 1
otherwise.

The minimization problem is:

inf
B,C

∫∫
V

C2(B −N)2 + αc(C − 1)2 dxdt

︸ ︷︷ ︸
A(σ)

+αrb

∫
Ω

φ1(DB) + αrc

∫∫
V

φ2(DC)

︸ ︷︷ ︸
S(σ)

where αc , αrb , α
r
c are positive constants. The energy is compounded of two

kinds of terms:

• A(σ) realizes the coupling between the two variables B and C. The
second term forces the function C to be equal to 1, which corresponds
to the background. However if the current image N is too different
from the background (meaning that an object is present), then the
first term will be too high, which forces C to be 0.

• S(σ) is the smoothing term. As usual, the functions φi are choosen
in order to preserve the discontinuities (see Section 3.2.2).

Although this functional is globally nonconvex and degenerated, existence
and uniqueness can be proven on the space of bounded variation, with
a condition on the coefficient αc. The performance of the algorithm is
illustrated on several real sequences.
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Finally, we consider in Section 5.1.4 the problem of sequence restoration
and more precisely movie restoration. Little research has been carried out
on this topic, and especially using PDEs. The aim of this section is essen-
tially to make the reader realize the difficulties of this task. It is mainly
due to the wide variety of ways a film can be damaged (chemical, me-
chanical, handling, etc). Faced with this variety of defects, we propose to
classify then, by taking into account the degree of human interaction which
is necessary to detect and/or correct them. Interestingly, this degree of in-
teraction/automation can also be found in the different systems that are
proposed nowadays. Something important which comes out of this discus-
sion is that no system is able to deal with every kind of defects. Finally, by
trying to define what should be a “perfect” restoration, it turns out that it
has to be perceptually correct: it will be sufficient for a defect to no longer
be perceived even if it has not been completely removed. More than any
other domain in computer vision, movie restoration should benefit from
advances and studies of human perception (see [141] for instance). Some
recent contributions using the PDE framework conclude this part.

Section 5.2 Image classification, which consists in assigning a label
to each pixel of an image, has rarely been introduced in a variational for-
mulation (continuous models), mainly because the notion of classes has a
discrete nature. Many classification models have been developed with struc-
tural notions as region growing methods for example [207], or by stochastic
approach (discrete models) with the use of Markov Random Field theory
[33, 258]. It is considered that stochastic methods are robust but nonethe-
less time consuming. The goal of this section is to show how PDEs and
variational techniques can also solve some image classification problems.
Two variational models are presented. For these two models, it is assumed
that each pixel is only characterized by its intensity level, that each class Ci

has a Gaussian distribution of intensity N(µi, σi) and that the number of
classes K and the parameters (µi, σi) are known (supervised classification)
(see Section 5.2.1).

In Section 5.2.2, we present a level-set formulation [221]. Here, classifi-
cation is seen as a partitioning problem. If Ω is the image domain and u0
is the data, we search for a partition of Ω defined by:

Ω =
K⋃
i=1

(Ωi ∪ Γi) and Ωi ∩ Ωj = ∅, i �= j

where Γi = ∂Ωi ∩ Ω is the intersection of the boundary of Ωi with Ω and
Γij = Γji = Γi ∩ Γj , i �= j, the interface between Ωi and Ωj . Moreover, to
be admissible, the partitioning process has to satisfy some constraints:

• Taking into account the Gaussian distribution property of the classes.

• Ensuring the regularity of each interface.
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This can be achieved by identifying each Ωi to an upper level set of a signed
function φi(.), i.e. φi(x) > 0 if x ∈ Ωi, φi(x) = 0 if x ∈ ∂Ωi and φi(x) < 0
otherwise.
These three requirements (partitioning, Gaussian distribution of classes,
regularity of interfaces) can be attained through the minimization of the
following global energy defined on Ω:

F (φ1, ..., φK) =
∫
Ω

(
K∑
i=1

H(φi(x))− 1

)2

dx+

+
K∑
i=1

ei

∫
Ω

H(φi(x))
(u0(x)− µi)2

σ2i
dx +

K∑
i=1

γi

∫
φi=0

ds

where H(s) is the Heaviside function: H(s) = 1 if s > 0 and H(s) = 0 if
s < 0. Unfortunately, the functional F has some drawbacks (non differen-
tiability, presence of a boundary term,. . .). Thus, instead of F , we propose
to minimize an approximated Fα close to F (as α → 0) and we show on
several experimental results the soundness of the model.

Section 5.2.3 presents another model of classification coupled with a
restoration process [222]. It is based on the theory of phase transitions
developed in mechanics [3, 53]. The model still relies on the minimization
of an energy whose generic form is:

Jε(u) =
∫
Ω

(u(x)−u0(x))2 dx+λ2ε

∫
Ω

ϕ(|∇u(x)|) dx+
η2

ε

∫
Ω

W (u(x), µ, σ) dx.

The first two integrals in Jε are the usual terms in restoration (we can
choose for instance φ(s) = s2, or φ(s) =

√
1 + s2). The third integral is a

classification term. The role of the function W (u) is to attract the values of
u towards the labels of the classes. Since the choosen labels are the mean
µi of the classes, good candidates for W are those which satisfy W (µi) = 0,
i = 1, ..K, W (u) ≥ 0 for all u. Such functions are known as multiple wells
potentials. The parameter ε > 0 is to be destined to tend to zero and
its contribution is major in the restoration-classification process. Roughly
speaking, as ε decreases, during the first steps of the algorithm, the weight

of 1
ε

∫
Ω

W (u(x), µ, σ) dx is negligible with respect to the two others and

only the restoration process runs. As ε becomes smaller, the diffusion is
progressively stopped while the classification procedure has become active.
This phenomenon is illustrated on experimental results.
Concerning the mathematical aspect of the approach, we show that the
model is well-posed when the regularization function is φ(s) = s2. We
study the asymptotical behaviour (as ε → 0) of Jε(u) as well as the one
of a sequence of minimizers uε of Jε. The proofs rely on the Γ-convergence
theory and are borrowed from previous works related to the theory of phase
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transitions [179, 234, 235]. We conclude this section by giving some illus-
trative examples on synthetic and real images. ❂

Appendix: Introduction to finite difference schemes in image
analysis

The scope of this monograph is to explain how PDEs can help to mod-
elize certain image processing problems and to justify the models. Until
now, we have always considered a continuous setting (x ∈ Ω ⊂ R2) refering
to analog images. However, working in this field requires also to test the
models in the digital (discrete) world. So we need to know how to discretize
the equations. Although several kind of approaches can be considered (like
finite elements or spectral methods), the success of finite differences in im-
age analysis is due to the structure of digital images for which we can
associate a natural regular fixed grid. The aim of this chapter is to give the
basis and the main notions of finite differences methods. It is also to write
the discretization of some complex operators presented in this book.

Section A.1: Definitions and theoretical considerations illustrated
by the 1-D heat equation. This section gives the main notions and defi-
nitions for discrete schemes (convergence, consistency and stability). Every
notion is illustrated by developing explicit calculus for the case of the 1-D
heat equation.

Section A.2: Hyperbolic equations. This section is concerned with
hyperbolic partial differential equations which are the more difficult equa-
tions to discretize properly. Just to make the reader aware of it, we first
consider the linear 1-D advection equation:

∂u

∂t
+ a

∂u

∂x
= 0

where a is a constant. Interestingly, we show that if we do not choose a
suitable discretization for the spatial derivative, then the scheme will be
unconditionaly unstable. The right way is to choose an upwind scheme that
is a scheme which takes into account the direction of the propagation.
We then consider the nonlinear Burgers equation:

∂u

∂t
+ u

∂u

∂x
= 0

and show by using the method of characteristics that a shock appear even
if we start from a continuous initial data, and we show that this also brings
some difficulties on a numerical point of view. The notions of monotone and
conservative schemes are then necessary to capture the correct entropy so-
lution.

Section A.3: Difference schemes in image analysis. After introduc-
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ing the main notations we present the discretization of certain equations
encountered in this book. Here the aim is to offer the reader the possibility
to re-implement these equations. The problems considered are:

• Restoration by energy minimization (from Section 3.2): we detail the
discretization of a divergence term which can also be found for the
Perona and Malik equation.

• Enhancement by Osher and Rudin’s shock filters (from Section 3.3.3):
the main interest is to use a flux limiter called minmod.

• Curves evolution with the level sets method. Having in mind the geo-
desic active contours equation from Section 4.3.3, we decompose the
problem by studying sperately the different terms. We start with the
classical mean curvature motion and we show on a simple example
that a re-initialization is in general necessary to keep a distance func-
tion. The second example is about motions with a constant speed. We
mention the possibility for such evolutions (and more generally with
monotone speed) to use a fast marching approach. The third equa-
tion is the pure advection equation. Finally, we come back to the
segmentation problem with geodesic active contours. Some examples
illustrate the equations.

We hope that this Appendix will give the reader effective ideas to discretize
and implement PDEs studied throughout this monograph and in their own
research. ❂



Guide to main mathematical concepts
and their application

This book is mainly organized by image processing problems and not by
classes of mathematical concepts. The aim of this guide is to highlight the
different concepts used and especially where they are applied.

Direct method in the calculus of variations (Section 2.1.2)
This terminology is used when the problem is to minimize an integral
functional, for example:

inf

{
F (u) =

∫
Ω

f(x, u(x),∇u(x)) dx, u ∈ V

}
. (F)

The classical (or direct) method consists in defining a minimizing sequence
un ∈ V , bounding uniformly un in V and extracting a subsequence converg-
ing to an element u ∈ V (compactness property, Section 2.1.1) and proving
that u is a minimizer (lower semi-continuity property, Section 2.1.2). This
technique has been applied in two cases:

Image restoration (Section 3.2.3, Theorem 3.2.2)

Sequence segmentation (Section 5.1.3)

Relaxation (Section 2.1.3)
When for a minimization problem (F) the direct method does not apply
(because the energy is not lower semi-continuous (l.s.c.), or the space is
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not reflexive for example) it is then classical to associate to (F) another
problem called (RF) (relaxed problem), that is another functional RF
(relaxed functional). (RF) is related to (F) thanks to the two following
properties. The first is that (RF) is well-posed i.e. (RF) does have solutions
and min{RF} = inf{F}. The second is that we can extract from minimizing
sequences of (F) subsequences converging to a solution of (RF). We have
used this concept for:

Image restoration for which the initial formulation was mathemat-
ically ill-posed (Section 3.2.3, Theorem 3.2.1 and Section 3.3.1,
Proposition 3.46).

Γ-convegence (Section 2.1.4)
The Γ-convergence is a notion of convergence for functionals. It is par-
ticularly well adapted to deal with free discontinuity problems. Roughly
speaking, if the sequence of functionals Fh Γ-converge to another func-
tional F , and if uh is a sequence of minimizers of Fh and u a minimizer of
F then (up to sequence): lim

h→0
Fh(uh) = F (u) and lim

h→0
uh = u. This notion

is illustrated in the two cases:

Approximation of the Mumford and Shah segmentation functional
(Section 4.2.4, Theorem 4.2.8).

Image classification (Section 5.2.1).

Viscosity solutions (Section 2.3)
The theory of viscosity solutions aims at proving the existence and the
uniqueness of a solution for the fully nonlinear PDEs of the form:

∂u

∂t
+ F (x, u(x),∇u(x),∇2u(x)) = 0

This is a very weak notion because solutions are expected to be only
continuous. We have used this theory for:

The Alvarez-Guichard-Lions-Morel scale space theory (Section 3.3.1,
Theorem 3.3.2).

Geodesic active contours and the level sets methods (Section 4.3.3,
Theorem 4.3.2).
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About functionals
For Ω an open subset of RN we define the following real valued functions
spaces:

B(Ω) Borel subset of Ω.
SN−1 Unit sphere in RN .
dx Lebesgue measure in RN .
HN−1 Hausdorff measure of dimension N − 1.
BV (Ω) Space of bounded variation.
BV − w∗ The weak* topology of BV (Ω).
Cp
0 (Ω) Space of real valued functions, p continuously

differentiable with compact support.
C∞
0 (Ω) Space of real valued functions, infinitely continu-

ously differentiable with compact support.
C0,γ(Ω) For 0 < γ ≤ 1: space of continuous functions f on

Ω such that |f(x)− f(y)| ≤ C|x− y|γ ,
for some constant C, x, y ∈ Ω.
It is called the space of Hölder continuous functions
with exponent γ.

Ck,γ(Ω) Space of k-times continuously differentiable func-
tions whose kth partial derivatives belong to
C0,γ(Ω).
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(C∞
0 (Ω))′ Dual of C∞

0 (Ω), i.e. the space of distributions on Ω.
Lp(Ω) Space of Lebesgue measurable functions f such that∫

Ω

|f |p dx <∞.

L∞(Ω) Space of Lebesgue measurable functions f such that
there exists a constant c with |f(x)| ≤ c, a.e. x ∈ Ω.

M(Ω) Space of Radon measures.
SBV (Ω) Space of Special functions of bounded variation.
LSC(Ω) Space of lower semi-continuous functions on Ω.
USC(Ω) Space of upper semi-continuous functions on Ω.
W 1,p(Ω) With 1 ≤ p ≤ ∞: Sobolev space of functions

f ∈ Lp(Ω) such that all derivative up to order p
belong to Lp(Ω). W 1,∞(Ω) identifies with the space
of locally Lipschitz functions.

W 1,p
0 (Ω) {u ∈W 1,p(Ω) : u|∂Ω = 0}.

Vector valued spaces will be denoted in bold font
BV(Ω), Cp

0(Ω), L
p(Ω), M(Ω), W1,p(Ω), SBV(Ω)

For X a Banach space with a norm |.|X and v : (0, T )→ X:

Cm(0, T ;X) With m ≥ 0, 0 < T < ∞: space of functions from
[0, T ] to X m-times continuously differentiable. It
is a Banach space with the norm

|v|Cm(0,T ;X) = max
0≤l≤m

(
sup

0≤t≤T

∣∣∣∣∂lv∂tl (t)
∣∣∣∣
X

)
.

Lp(0, T ;X) With 1 ≤ p < ∞: space of functions v → v(t)
measurable on (0, T ) for the measure dt (i.e. the
scalar functions t → |v|X are dt-measurable). It is
a Banach space with the norm

|v|Lp(0,T ;X) =

(∫ T

0
|v|pX dt

)1/p

< +∞.

L∞(0, T ;X) Space of functions v such that
|v|L∞(0,T ;X) = inf

c
{|v|X ≤ c, a.e. t}.

For a functional F : X →]−∞,+∞] where X is a Banach space:

Argmin F {u ∈ X : F (u) = infX F}.
Rτ (F ), RF , F Relaxed functional of F (for the τ -topology).
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l.s.c.(sequentially) Lower semi-continuous: F is called l.s.c.
if and only if for every sequence (un) converging to
u, we have: lim

n→∞
F (un) ≥ F (u).

u.s.c.(sequentially) Upper semi-continuous: F is called u.s.c.
if and only if for every sequence (un) converging to
u, we have: lim

n→∞F (un) ≤ F (u).

About Measures
For µ et ν two Radon measures

|µ| Total variation of the measure µ. If µ is vector
valued, we also denote |µ| = |µ1|+ . . . + |µN |.

ν � µ ν is absolutely continuous with respect to µ if and
only if: µ(A) = 0 ⇒ ν(A) = 0 for all A ∈ RN .

ν ⊥ µ ν is singular with respect to µ if and only if there
exists a Borel B ⊂ RN such that:
µ(RN −B) = ν(B) = 0.

About functions
For a function f : Ω ⊂ RN → R and a sequence of functions (fn)n∈N
belonging to a Banach space X:

fn −−−→
X

f The sequence (fn) converges strongly to f in X.

fn −−−⇀
X

f The sequence (fn) converges weakly to f in X.

fn −−∗−−⇀
X

f The sequence (fn) converges to f for the weak*
topology of X.

lim
n→+∞fn lim

n→+∞fn(x) = inf
k

sup {fk(x), fk+1(x), . . .}.
lim

n→+∞
fn lim

n→+∞
fn(x) = − lim

n→+∞fn(x)

= sup
k

inf {fk(x), fk+1(x), . . .}.
|f |X Norm of f in X.
spt(f) For a measurable function f : Ω ⊂ RN → R, let

(wi)i∈I be the family of all open subsets such that
wi ∈ Ω and for each i ∈ I, f = 0 a.e. on wi, then spt

(the support of f) is defined by sptf = Ω−
⋃
i

wi.

Df Distributional gradient of f .
D2f Hessian matrix of f (in the distributional sense).
∇f Gradient of f in the classical sense. It corre-

sponds to the absolutely continuous part of Df with
respect to the Lebesgue measure dx.
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div(f) Divergence operator: div(f) =
N∑
i=1

∂f
∂xi

.

∇2f Hessian matrix of f in the classical sense:

(∇2f)i,j = ∂2f
∂xi∂xj

.

 f Laplacian operator:  f =
N∑
i=1

∂2f
∂xi

2 .∫
Ω
−f dx Mean value of f over Ω:

∫
Ω
−f dx =

1
|Ω|

∫
Ω

f dx.

•
f Precise representation of f .
P±
Ω “superjets”.

For a function φ : RN → R

φ∗(.) The Fenchel-Legendre conjugate.
φ∞(.) The recession function defined by

φ∞(z) = lims→∞ φ(sz)/s.

Misc notations
A ↪→

strong
B A is relatively compact in B.

A ↪→
weak

B A is weakly relatively compact in B.

O∗ The adoint operator of O.
| . | Euclidian norm in RN .
Gσ The Gaussian kernel defined by:

Gσ(x) = 1
2π σ2 exp

(
−| x |2
2σ2

)
.

B(x, r) ⊂ RN Ball of center x and radius r.
S(N) Subset of N ×N symmetric matrices .
SNR(I1/I2) Signal to Noise Ratio: used to estimate the quality

of an image I2 with respect to a reference image I1.
It is defined by: SNR(I1/I2) = 10 log10

[
σ2(I2)

σ2(I1−I2)

]
where σ is the variance.

α ∨ s ∧ β Truncature function equal to α if s ≤ α, β if s ≥ β,
s otherwise.

sign(s) The sign function equal to 1 if s > 0, 0 if s = 0 and
-1 if s < 0.

χR The characteristic function of R:

χR(x) =

{
1 if x ∈ R

0 otherwise.
PerΩ(R) Perimeter of R in Ω defined as the total variation

of χR.



Notations and symbols 29

Symbols for readers convenience
Indicates general references, books, reviews or other
parts of the book where to find complementary
informations.

☛ Summary of an important idea.
� Symbol marking the end of a proof, an example or

a remark.
✺ This symbols indicates unsolved or challeng-

ing unsolved problems that need to be further
investigated.



2
Mathematical preliminaries

How to read this chapter?

This chapter introduces the mathematics used in this book. It covers some
of the main notions in the calculus of variations and the theory of viscosity
solutions. It is introductory and we tried to made it as self contained as
possible. A careful reading is advised to better understand the coming
analysis. The prerequisite for this chapter is a good course in advanced
calculus.

• Section 2.1 introduces the basic tools concerning optimization prob-
lems in Banach spaces. We answer the following questions: what are
the good hypotheses ensuring the existence and the uniqueness of a
minimizer? What can be said when some assumptions are missing?
We also introduce the notion of relaxed problem when the original
one is ill-posed (Section 2.1.3). Section 2.1.4 concerns the notion of
Γ-convergence which is a notion of convergence for functionals. The
Γ-convergence theory is particularly useful to approximate free dis-
continuity or ill-posed problems. This notion will be used several
times in all the book.

• Section 2.2 presents the space BV (Ω) of functions of bounded varia-
tion. This space appears to be the suitable functional space in image
analysis since it contains functions that can be discontinuous across
curves (i.e. across edges). Note that many theoretical results given in
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this book will be established in a BV -framework: see Sections 3.2,
4.2 and 5.1.

• Section 2.3 introduces the concept of viscosity solutions for nonlinear
second order PDEs. This notion is interesting since it allows to prove
the existence of a solution in a very weak sense and also its uniqueness
which is the most difficult part. An example of application will be
detailed further in Section 4.3.

• Some basic element of differential geometry used throughout this
book are recalled in Section 2.4.

• We conclude in Section 2.5 by giving various results of interest (in-
equalities and theorems) to be as much as possible self contained.
This section may be consulted just when necessary.

For a systematic study of the classical mathematics presented therein, the
following references may be useful:

Functional analysis [51, 109, 217, 218, 255], partial differential equa-
tions [105, 117], Sobolev spaces [1], integration [216], differential
geometry [161].

2.1 The direct method in the calculus of variations

2.1.1 Topologies on Banach spaces
Let us introduce some definitions. Let (X, |.|) a real Banach space1, we
denote by X ′ the topological dual space of X:

X ′ =

{
l : X → R linear such that | l |X′ = sup

x=0

|l(x)|
|x|X <∞

}
.

Classically X can be endowed with two topologies (we only work with
sequences):

Definition 2.1.1 (topologies on X)

(i) The strong topology,noted xn −−−→
X

x is defined by

|xn − x|X → 0 (n→∞).

(ii) The weak topology,noted xn −−−⇀
X

x is defined by

l(xn)→ l(x) (n→∞) for every l ∈ X ′.

1A Banach space is a complete, normed linear space. Complete means that any
Cauchy sequence is convergent.
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The strong convergence implies the weak convergence, but the reverse is
false in general.

Example Let us show it on a counter example. We consider the sequence
fh(x) = sin(2πxh), x ∈ (0, 1) when h→ 0. We are going to establish that
fh(x) −−−⇀

L2(Ω)
0 and that fh(x) −−−→

L2(Ω)
0 is not true.

To show the weak convergence, we have for all ϕ ∈ C∞
0 (0, 1) and by using

the mean value Theorem:∫
0

1

sin(2πxh)ϕ(x) dx =
1
h

∫
0

h

sin(2πy)ϕ
(y
h

)
dy = sin(2πξ)ϕ

(
ξ

h

)
with ξ ∈ [0, h]. So, it is clear that < fh, ϕ >→ 0 when h → 0 for all
ϕ ∈ C∞

0 (0, 1). By density, this result can be generalized for all ϕ ∈ L2(0, 1).
Now, to prove that there is no strong convergence, we can remark that:∫
0

1

sin2(2πxh) dx =
1
2

∫
0

1

(1− cos(4πxh) dx =
1
2

+
1
2

sin(4πh)
4πh

→ 1

when h→ 0. �

The dual X ′ can also be endowed with the strong and the weak topology:

Definition 2.1.2 (topologies on X ′)

(i) The strong topology, noted ln −−−→
X′

l, is defined by

|ln − l|X′ → 0 or equivalently sup
x=0
|ln(x)− l(x)|

|x|X → 0 (n→∞).

(ii) The weak topology, noted ln −−−⇀
X′

l, is defined by

z(ln)→ z(l) (n→∞) for every z ∈ (X ′)′, the bidual space of X.

In some cases it is more convenient to equip X ′ with a third topology:

(iii) The weak* topology,noted ln −−∗−−⇀
X′

l, is defined by

ln(x)→ l(x) (n→∞) for every x ∈ X.

The interest of the weak* topology will be clear later (see Theorem 2.1.1).
We recall that the space X is called reflexive if (X ′)′ = X and that X is
separable if it contains a countable dense subset.

Examples Let Ω be an open subset of RN .

• X = Lp(Ω) is reflexive for 1¡p¡∞ and separable for 1 ≤ p < ∞. The
dual space of Lp(Ω) is Lp′

(Ω) for 1 ≤ p <∞ with 1
p + 1

p′ = 1.

• X = L1(Ω) is non-reflexive and X ′ = L∞(Ω). �
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The main properties associated to these different topologies are summarized
in the following theorem.

Theorem 2.1.1 (weak sequential compactness)

(i) Let X be a reflexive Banach space, let K > 0 and xn ∈ X a sequence
such that |xn|X ≤ K, then there exist x ∈ X and a subsequence
xnj of xn such that xnj

−−−⇀
X

x (n→∞).

(ii) Let X be separable Banach space, let K > 0 and ln ∈ X ′ such that
| ln|X′ ≤ K, then there exist l ∈ X ′ and a subsequence lnj of ln such
that lnj −−∗−−⇀

X′
l (n→∞).

The interest of the weak* topology is that it allows to get compactness
results even if X is not reflexive. Notice that nothing can be said about the
strong convergence of the sequences.

2.1.2 Convexity and lower semi-continuity
Let X be a Banach space, F : X → R, and consider the minimization
problem

inf
x∈X

F (x).

Let us first consider the problem of the existence of a solution. Proving it
is usually achieved by the following steps, which is the direct method of
the calculus of variations:

(A) One constructs a minimizing sequence xn ∈ X, i.e. a sequence
verifying lim

n→∞ F (xn) = inf
x∈X

F (x).

(B) If F is coercive
(

lim
|x|→∞

F (x) = +∞
)
, one can obtain a uniform bound

|xn |X ≤ C. If X is reflexive, thanks to Theorem 2.1.1, one deduces
the existence of x0 ∈ X and of a subsequence xnj such that xnj −−−⇀

X
x0.

(C) To prove that x0 is minimum point of F it suffices to have the in-
equality lim

xnj
⇀x0

F (xnj
) ≥ F (x0) which obviously implies that

F (x0) = min
x∈X

F (x).

This latter property which appears here naturally, is called the weak lower
semi-continuity. More precisely we have the definition:

Definition 2.1.3 (lower semi-continuity)
F is called lower semi-continuous (l.s.c.) for the weak topology if and only
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if for all sequence xn ⇀ x0 we have:

lim
xn−−−⇀x0

F (xn) ≥ F (x0). (2.1)

The same definition can be given with a strong topology.

☛ In the direct method, the notion of weak l.s.c. emerges very naturally.

Unfortunately, it is in general difficult to prove the weak l.s.c.. A sufficient
condition that implies weak l.s.c. is the convexity:

Definition 2.1.4 (convexity) F is convex on X if and only if:

F (λx + (1− λ)y) ≤ λF (x) + (1− λ)F (y)

for all x, y ∈ X and λ ∈ [0, 1].

Theorem 2.1.2 (l.s.c. strong and weak) Let F : X → R is convex.
Then F is weakly l.s.c. if and only if F is strongly l.s.c..

This theorem is useful since in most cases the strong l.s.c. is not very hard
to prove.

If F is an integral functional, we can even say more about the link
between convexity and l.s.c.. Let Ω ⊂ RN be a bounded open set,
f : Ω×R×RN → R be a continuous function satisfying:

0 ≤ f(x, u, ξ) ≤ a(x, |u|, |ξ|) (2.2)

where a is increasing with respect to |u| and |ξ|, and integrable in x. Let
W 1,p(Ω) be the Sobolev space:

W 1,p(Ω) = {u ∈ Lp(Ω), Du ∈ Lp(Ω)} ,
where Du is the distributional gradient of u (Notice that in this case Du
is a function and we can also denote it ∇u). For u ∈ W 1,p(Ω) we consider
the functional:

F (u) =
∫
Ω

f(x, u(x), Du(x)) dx.

Theorem 2.1.3 (l.s.c. and convexity) F (u) is (sequentially) weakly l.s.c.
on W 1,p(Ω), 1 ≤ p <∞ (weakly* l.s.c. if p =∞) if and only if f is convex
in ξ.

Remarks

• We emphasize that convexity is a sufficient condition for existence.
There exist nonconvex problems admitting a solution [19].
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• The previous theorem has been established assuming that u : Ω ⊂
RN → Rm with m = 1. When dealing with gray scale images, we
are in this situation since N = 2, m = 1. This result is also true in
the case N = 1 and m > 1. Both cases can be referred to as scalar
(either N or m is equal to 1). However, this theorem is no longer true
in the vectorial case, when N > 1 and m > 1. A weaker definition of
the convexity has to be introduced (the quasi-convexity), and similar
results can be obtained. We refer the interested reader to [83] for
more details. �

Therefore, in the scalar case, that is u(x) ∈ R, the natural condition to
impose on the integrand f(x, u, ξ) to obtain the existence of a minimizer
for F , is the convexity in ξ. More precisely, we have:

Theorem 2.1.4 Let Ω ⊂ RN bounded and f : Ω×R×RN → R
continuous verifying

(i) f(x, u, ξ ) ≥ a(x) + b |u |p + c | ξ |p for every (x, u, ξ) and for some
a ∈ L1(Ω), b > 0, c > 0 and p > 1.

(ii) ξ → f(x, u, ξ ) is convex for every (x, u).

(iii) There exists u0 ∈W 1,p(Ω) such that F (u0) <∞,

then the problem inf
{
F (u) =

∫
Ω

f(x, u(x),∇u(x)) dx , u ∈W 1,p(Ω)
}

admits a solution. Moreover, if (u, ξ)→ f(x, u, ξ) is stricly convex for
every x, then the solution is unique.

In Theorem 2.1.4, the coercivity condition (i) implies the boundness of the
minimizing sequences. The condition (ii) permits to pass to the limit on
these sequences. The condition (iii) ensures that the problem has a mean-
ing. This can be summarized as follow:

☛ Convexity is used to get the l.s.c. while coercivity is related to the com-
pactness.

Before going further, let us illustrate on three examples the importance
of coercivity, reflexivity and convexity.

Examples Let Ω = ] 0, 1 ]. We propose below some classical examples
where either coercivity, reflexivity or convexity are no longer true:

(A) Weierstrass (N = m = 1)
Let f defined by f(x, u, ξ) = xξ2 and let us denote:

m = inf
{∫ 1

0
x (u′(x))2 dx with u(0) = 1 and u(1) = 0

}
.
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Then, we can show that this problem does not have any solution. The
function f is convex, but the W 1,2(Ω)-coercivity with respect to u is
not verified because the integrand f(x, ξ) = xξ2 vanishes at x = 0.
Let us first prove that m = 0. The idea is to propose the following
minimizing sequence:

un(x) =

1 if x ∈
(
0, 1
n

)
− log(x)

log(n) if x ∈
(

1
n, 1

)
It is then easy to verify that un ∈W 1,∞(0, 1), and that

F (un) ≡
∫ 1

0
x (u′

n(x))2 dx=
1

log (n)
→ 0.

So we have m = 0. If there exists ū a minimum, then we should have
F (ū) = 0, that is ū′ = 0 almost everywhere (a.e.) in (0, 1), which is
clearly incompatible with the boundary conditions.

(B) Minimal surfaces (p = 1).
Let f defined by f(x, u, ξ) =

√
u2 + ξ2. Then the associated func-

tional F is convex and coercive on the non reflexive Banach space
W 1,1(Ω) (F (u) ≥ 1

2 |u|W 1,1(Ω)). This example shows the importance
of reflexivity.
Let us denote:

m = inf
{∫ 1

0

√
u2 + u′2dx with u(0) = 0 and u(1) = 1

}
Let us prove that m = 1. First, we can remark that:

F (u) ≡
∫ 1

0

√
u2 + u′2dx ≥

∫ 1

0
|u′| dx ≥

∫ 1

0
u′dx = 1.

So we have m ≥ 1. Then, if we consider the sequence

un(x) =

0 if x ∈
(
0, 1− 1

n

)
1 + n(x− 1) if x ∈

(
1− 1

n, 1
) .

we can verify that: F (un)→ 1 (n→∞). So m = 1. If we assume the
existence of a solution ū, then we should have:

1 = F (ū) =
∫ 1

0

√
ū2 + ū′2dx ≥

∫ 1

0
|ū′| dx ≥

∫ 1

0
ū′dx = 1⇒ ū = 0,

which obviously does not satisfy the boundary conditions. As a
conclusion, there is no solution to this problem.
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(C) Bolza.
Let f defined by f(x, u, ξ) = u2 +

(
ξ2 − 1

)2. The Bolza problem is:

inf
{
F (u) =

∫ 1

0
((1− u′ 2)2 + u2) dx ; u ∈W 1,4(0, 1) (2.3)

u(0) = u(1) = 0
}
.

The functional is clearly nonconvex. It is easy to see that inf F = 0.
Indeed, for n an integer and 0 ≤ k ≤ n− 1, if we choose

un(x) =

x− k
n if x ∈

(
2k
2n,

2k + 1
2n

)
−x + k + 1

n if x ∈
(

2k + 1
2n , 2k + 2

2n

)
then un ∈W 1,∞(0, 1) and:

0 ≤ un(x) ≤ 1
2n for every x ∈ (0, 1)

|u′
n(x)| = 1 a.e. in (0, 1)

un(0) = un(1) = 0
.

Therefore 0 ≤ inf
u

F (u) ≤ F (un) ≤ 1
4n2

. Letting n → ∞, we get

inf
u

F (u) = 0. However there exists no function u ∈ W 1,4(0, 1), such

that u(0) = u(1) = 0, and verifying F (u) = 0. So the problem (2.3)
does not have a solution in W 1,4

0 (0, 1).

�

Once we have the existence of a minimum, the natural second step is to
write the optimality conditions. We need for that the definition of the
Gâteaux-derivative.

Definition 2.1.5 (Gâteaux derivative) Let X be a Banach space and
F : X → R. We call directional derivative of F at u in the direction

v the limit if it exists: F ′(u; v) = lim
λ→0+

F (u + λ v)− F (u)
λ

. Moreover if

there exists ũ ∈ X ′ such that F ′(u; v) = ũ(v), ∀v ∈ X, we say that F is
Gâteaux-differentiable at u and we note F ′(u) = ũ.

If F is Gâteaux-differentiable and if the problem inf
v∈X

F (v) has a solution

u, then we have

F ′(u) = 0.

Conversely if F is convex, then a solution u of F ′(u) = 0 is a solution
of the minimization problem. The equation F ′(u) = 0 is called an Euler-
Lagrange equation (also refered to as Euler-Lagrange equation). Let us write
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it explicitely for a functional F defined by:

F (u) =
∫
Ω

f(x, u(x),∇u(x)) dx

where f is of class C1 with respect to (u, ξ ), satisfies conditions (i) and
(iii) of Theorem 2.1.4, and the growth condition for the derivatives:{ ∣∣∣∂f∂u (x, u, ξ )

∣∣∣ ≤ a′ (1 + |u |p−1 + | ξ |p)∣∣∇|ξf(x, u, ξ )
∣∣ ≤ a′′ (1 + |u |p + | ξ |p−1)

a.e. x, ∀(u, ξ ) (2.4)

for some constants a′, a′′ > 0. Then we can prove that, for u ∈W 1,p(Ω):

F ′(u) =
∂f

∂u
(x, u,∇u)−

i=N∑
i=1

∂

∂xi

(
∂f

∂ξi
(x, u,∇u)

)
. (2.5)

We let the proof to the reader as an exercise.

Remark Notice that the growth conditions (2.4) permit to apply the
Lebesgue dominated convergence theorem to prove (2.5). �

2.1.3 Relaxation
In this section, we examine the case when the functional F is not weakly
l.s.c.. As we will see on a counterexample there is no hope to obtain, in
general, the existence of a minimum for F . We could however associate to
F another functional RF whose minima should be weak-cluster points of
minimizing sequences of F . This idea is important and will be used several
times in this book.
As an illustration, let us consider again the Bolza problem (2.3). In this
example, the integrand f(u, ξ ) = (1− ξ 2)2 + u2 is nonconvex in ξ and the
functional F is not weakly l.s.c. on W 1,4(0, 1). In such a situation, it is
classical to define the lower semi-continuous envelope (or relaxed function)
RτF of F .

Relaxation [45, 27, 44, 52, 84, 101, 83].

Let X a Banach space and F : X → R. In the sequel, we equally denote
by τ the strong or the weak topology of X.

Definition 2.1.6 (relaxed functional) The τ -lower semi-continuous en-
velope (also called relaxed functional) RτF of F is defined for every x ∈ X
by: RτF (x) = sup {G(x), G ∈ Γ} where Γ is the set of all τ -lower semi-
continuous functions on X such that G(y) ≤ F (y) for every y ∈ X.

To compute RτF , the following characterization is useful:
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Theorem 2.1.5 (characterization of the relaxed functional)
RτF is characterized by the following properties:

(i) For every sequence xn τ−converging to x in X then
Rτ F (x) ≤ lim

n→∞
F (xn).

(ii) For every x in X there exists a sequence xn τ−converging to x in X
such that Rτ F (x) ≥ lim

n→∞ F (xn).

We consider now the relation between the original problem inf {F (x), x ∈ X}
and the relaxed problem inf {RFτ (x), x ∈ X}.
Theorem 2.1.6 (main properties) Let X be a reflexive Banach space
and let τ be the weak topology. Assume that F : X → R is coercive, then
the following properties hold:

(i) RτF is coercive and τ -lower semi-continuous.

(ii) RτF has a minimum point in X.

(iii) min
x∈X

RτF (x) = inf
x∈X

F (x).

(iv) Every cluster-point of a minimizing sequence for F is a minimum
point for RτF .

(v) Every minimum point for RτF is the limit of a minimizing sequence
for F .

In summary, starting with a minimization problem which has no solution,
we can define a relaxed problem whose connections with the original one
are clearly stated in Theorem 2.1.6. For integral functionals, one possibility
to compute the relaxed functional is to use the polar and bipolar functions.
Let f : RN → R, we define the polar of f the function f∗ : RN → R as:

f∗(η) = sup
ξ∈RN

{η · ξ − f(ξ)}

and the bipolar of f :

f∗∗(ξ) = sup
η∈RN

{η · ξ − f∗(η)} .

Since f∗ and f∗∗ are the supremum of affine functions it turns out that f∗

and f∗∗ are convex. In fact from convex analysis results f∗∗ is the convex
envelope of f , i.e. the greatest convex function less than f .

η
(slope    )

ξ(  )f

−    (  )f η

ξ1ξ

*

Notice that the function f∗ has an interesting
geometric interpretation. The definition of f∗ implies:

f(ξ) ≥ η · ξ − f∗(η) for all ξ ∈ RN ,

that is, the affine function h(ξ) = η · ξ − f∗(η) is
everywhere below the graph of f . If this supremum
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is reached, for instance at ξ = ξ1, −f∗(η) is the intersection of this func-
tion with the vertical axis.

Examples

• If f(ξ) = 1
p |ξ|p, 1 < p <∞, then f∗(η) = 1

q |η|q, with 1
p + 1

q = 1.

• If f(ξ) = |ξ|, then f∗(η) =

{
0 if |η| ≤ 1
+∞ otherwise

.

• If f(ξ) = eξ, ξ ∈ R, then f∗(ξ) =


ηlog(η)− η if η > 0
0 if η = 0
+∞ if η < 0. �

Let us mention that the notion of polarity also exists in infinite dimensional
spaces. So, let us consider the functional

F (u) =
∫
Ω

f(x,∇u(x)) dx

where Ω is a bounded open subset of RN and f : Ω × RN → R is a
continuous function such that for every ξ ∈ RN and a.e. x:

a |ξ |p ≤ f(x, ξ ) ≤ b (|ξ |p + 1), 1 < p <∞
for some constant a, b > 0. If τ is the weak topology of W 1,p(Ω) then

RτF (u) =
∫
Ω

f∗∗(x,∇u(x)) dx,

where the polar functions are always computed with respect to the gradient
variable. To illustrate this, we compute in the example below the relaxed
functional for the Bolza problem.

Example For the previous Bolza problem:

inf
{
F (u) =

∫ 1

0
((1− u′2)2 + u2) dx ; u ∈W 1,4(0, 1), u(0) = u(1) = 0

}
the lack of weak l.s.c., as mentioned above, is due to the presence of the

nonconvex function ξ → (1 − ξ2)2. The second term

1∫
0

u2 dx is weakly

continuous according to the compact embedding W 1,4(0, 1) ⊂ L2(0, 1).
Then, the relaxed functional of F is

RF (u) =

1∫
0

(((1− u′2)+)2 + u2) dx
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where t+ = t if t ≥ 0 and t+ = 0 otherwise.
The problem inf{RF (u), u ∈W 1,4(0, 1), u(0) = u(1) = 0} admits a unique
solution u0 and the set E = {x ∈ (0, 1); |u′

0(x)| < 1} has a positive Lebesgue
measure (otherwise if |E| = 0 then |u′

0(x)| ≥ 1 a.e. x and F would have a
minimizer which is wrong). �

2.1.4 About Γ-Convergence
We recall in this section the main results concerning Γ-convergence. In-
troduced by De Giorgi [119, 85], the aim is to give a meaning to the
convergence of a sequence of functionals.

Γ-convergence [119, 14, 84]

This notion will be particularly useful for approximating nonconvex
problems in numerous applications throughout this book.

Let X be a separable Banach space endowed with a topology τ and let
Fh : X → R be a sequence of functionals.

Definition 2.1.7 (Γ-convergence) We say that Fh Γ-converges to F
(F = Γ− lim Fh) for the topology τ , if and only if:

(i) For every x in X and for every sequence xn τ -converging to x in X
then

F (x) ≤ lim
h→∞

Fh(xh).

(ii) For every x in X, there exists a sequence xn τ -converging to x in X
such that

F (x) ≥ lim
h→∞

Fh(xh).

Definition 2.1.8 (equicoercivity) We say that the sequence of function-
als is equicoercive if and only if for every t ≥ 0 there exists Kt a compact
subset of X such that: {x ∈ X; Fh(x) ≤ t} ⊂ Kt for all h.

Main properties of Γ-convergence are summarized in the following theorem.

Theorem 2.1.7 (main properties of the Γ-limit) Let X be a separa-
ble Banach space and let Fh be a sequence of equicoercive functionals from
X into R then:

(i) The Γ-limit of Fh, if it exists, is unique and l.s.c..

(ii) There exists a subsequence Fhk
and F such that F = Γ− lim Fhk

.

(iii) If F = Γ− lim Fh then F + G = Γ− lim
h→∞

(Fh + G) for all G: X → R

continuous.
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(iv) Set F = Γ− lim Fh and let us suppose that F (x) admits a unique

minimum point x0 on X and let xh ∈ X such that∣∣∣Fh(xh)− inf
x∈X

Fh(x)
∣∣∣ ≤ εh where εh → 0 (h→∞) then xh converges

to x0 in X and lim
h→∞

Fh(xh) = F (x0).

In general, there is no relation between Γ-convergence and pointwise
convergence. However there exist some connections.

Theorem 2.1.8 (Γ-convergence and pointwise convergence)

(i) If Fh converges to F uniformly then Fh Γ-converges to F .

(ii) If Fh is a decreasing sequence converging to F pointwise then Fh
Γ-converges to RF the lower semi-continuous envelope of F .

Now we illustrate these ideas by giving an example [84].

Example Let Ω be an open of RN and let ah be a sequence of func-
tions satisfying for all h: 0 < c1 ≤ ah(x) ≤ c2 a.e. x ∈ Ω for some constants
c1 and c2. Up to subsequences there exist from Theorem 2.1.1 a, b ∈ L∞(Ω)
such that ah −−∗−−⇀

L∞(Ω)
a and 1

ah −−∗−−⇀L∞(Ω)
b. Then let us consider the sequence of

functionals Fh : L2(Ω)→ R defined by

Fh(u) =
∫
Ω

ah u
2 dx.

We claim that Fh Γ-converges to F (u) =
∫
Ω

u2

b
dx for the weak topology

of L2(Ω). According to the definition, we have to prove:

(i) For every u ∈ L2(Ω) and for every uh −−−⇀
L2(Ω)

u then

lim
h→∞

Fh(uh) ≥ F (u).

(ii) For every u ∈ L2(Ω) there exists a sequence uh ∈ L2(Ω), uh −−−⇀
L2(Ω)

u

such that lim
h→∞

Fh(uh) ≤ F (u).

We begin to examine (ii).
Let u ∈ L2(Ω) and let us define uh = u

b ah
. Since 1

ah −−∗−−⇀L∞(Ω)
b it is clear

that uh −−−⇀
L2(Ω)

u and lim
h→∞

Fh(uh) = lim
h→∞

∫
Ω

u2

b2 ah
dx =

∫
Ω

u2

b
dx, so

lim
h→∞

Fh(uh) ≤ F (u) (in fact the equality holds).
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For proving (i), let u ∈ L2(Ω) and vh any sequence such that vh −−−⇀
L2(Ω)

u.

Let uh = u
b ah

, then from the inequality ah (vh − uh)2 ≥ 0, we deduce

ah v
2
h ≥ ah u

2
h + 2 ah uh(vh − uh) = − ah u

2
h + 2

u

b
vh

which yields

Fh(vh) ≥ −Fh(uh) + 2
∫
Ω

u

b
vh dx

therefore

lim
h→∞

Fh(vh) ≥ − lim
h→∞

Fh(uh) + 2
∫
Ω

u2

b
dx ≥ F (u),

which concludes the proof. �

Remark As an exercise, the reader can see for himself that the Γ-limit of

Fh for the strong topology of L2(Ω) is G(u) =
∫
Ω

a u2 dx! �

2.2 The space of functions of bounded variation

In most computer vision problems the discontinuities in the images are
significant and important features. So we need to be able to represent dis-
continuous functions. Unfortunately, classical Sobolev spaces do not allow
to take into account such phenomenon since the gradient of a Sobolev
function is a function. When u is discontinuous the gradient of u has to
be understood as a measure and the space BV (Ω) of functions of bounded
variation [106, 120, 89, 123] is well-adapted for this purpose. In this section
we recall some basic definitions about measures, then BV (Ω) is defined and
its main properties are examined. We end this section by introducing the
notion of convex functions of measures.

2.2.1 Basic definitions on measures
Definition 2.2.1 (algebra) Let X be a non empty set and let ' be a
collection of subsets of X.

(i) We say that ' is an algebra if ∅ ∈ ' and E1 ∪ E2 ∈ ', X − E1 ∈ '
whenever E1, E2 ∈ '.
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(ii) We say that an algebra ' is a σ-algebra if for any sequences (Eh) ⊂ '
its union

⋃
h

Eh belongs to '. σ-algebras are closed under countable

intersections.

(iii) If (X, τ) is a topological space we denote by B(X) the σ-algebra gen-
erated by the open subsets of X (the smallest σ-algebra containing the
open subsets).

We can now give the definition of a positive measure.

Definition 2.2.2 (positive measure) Let µ : ' → [0,+∞] we say that
µ is a positive measure if µ(∅) = 0 and µ is σ-additive on ' i.e. for any
sequences (Eh) of pairwise disjoint elements of ':

µ
( ∞⋃
h=0

Eh

)
=

∞∑
h=0

µ (Eh).

We say that µ is bounded if µ (X) <∞.

We will also use the notion of vector-valued measures.

Definition 2.2.3 (vector-valued measure) Let (X,') be a measure
space, m ∈ N , m ≥ 1. We say that µ : ' → Rm is a measure if
µ (∅) = 0 and for any sequences (Eh) of pairwise disjoint elements of ',

µ
( ∞⋃
h=0

Eh

)
=

∞∑
h=0

µ (Eh). If m = 1 we say that µ is a real or a signed mea-

sure and if m > 1 we say that µ is a vector-valued measure. We will denote
by M the space of vector-valued Radon measures2. If µ is a measure, we
define its total variation |µ | for every E ∈ ' as follows:

|µ | (E) = sup
{ ∞∑
h=0

∣∣∣µ (Eh) ; Eh ∈ ' pairwise disjoint, E =
∞⋃
h=0

Eh

∣∣∣}.
|µ | is bounded measure.

Definition 2.2.4 (µ-negligible) Let µ be a positive measure, we say that
A ⊂ X is µ-negligible if there exists E ⊂ ' such that A ⊂ E and µ (E) = 0.
A property P (x) depending on the point x ∈ X holds µ-a.e. in X if the set
where P fails is a µ-negligible set.

We end this subsection by recalling what is perhaps the most important tool
in integration theory, the Lebesgue decomposition. Let us first introduce
some definitions.

Definition 2.2.5 (Radon Nikodym derivative) Let µ be a bounded
positive measure, and ν be a measure. Let B(x, r) be the ball of center

2A Radon measure on RN is a measure which is finite in each compact set K ⊂ RN .
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x and radius r, we note

∆(x, r) =


ν (B(x, r))
µ(B(x, r)) if µ (B(x, r)) > 0

+∞ if µ(B(x, r)) = 0

and Dµν (x) = lim
r→0

∆(x, r) , Dµν (x) = lim
r→0

∆(x, r).

If Dµν (x) = Dµν (x) < ∞, we say that ν is differentiable with respect

to µ in x and we note d ν
dµ

(x) = Dµν (x) = Dµν (x) the Radon Nikodym
derivative of ν with respect to µ.

Definition 2.2.6 (absolutely continuous, mutually singular) Let µ
be a positive measure, and ν be a measure, we say that ν is absolutely
continuous with respect to µ and we write ν � µ if µ (E) = 0⇒ ν (E) = 0.
We say that µ and ν are mutually singular and we write µ⊥ν if there exists
a set E such that µ (RN − E) = ν (E) = 0.

The theorem is the following:

Theorem 2.2.1 (Lebesgue decomposition) Let µ be a positive bounded
measure on (X, ') and ν a vector-valued measure on (X, ') then there
exists a unique pair of measures νac and νs such that:

ν = νac + νs , νac � µ , νs⊥µ

Moreover dν
dµ

= dνac
dµ

, dνs
dµ

= 0 and ν(A) =
∫
A

dν
dµ

dµ+νs(A) for all A ∈ ',

where νac and νs are the absolute part and the singular part of ν.

2.2.2 Definition of BV (Ω)
Let Ω be a bounded open subset of RN and let u be a function in L1(Ω).
We note∫
Ω

|Du| = sup
{∫
Ω

udivϕ dx; ϕ = (ϕ1, ϕ2, . . . , ϕN ) ∈ C10(Ω)N , |ϕ|L∞(Ω) ≤ 1
}

where divϕ =
N∑
i=1

∂ϕi
∂xi

(x), dx is the Lebesgue measure, and C1
0 (Ω)N is the

space of continuously differentiable functions with compact support in Ω.
The inequality |ϕ|L∞(Ω) ≤ 1 means that all the components of the vector-
valued function ϕ have a L∞(Ω)-norm less than one.

Examples
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• If u ∈ C1(Ω), then
∫
Ω
udivϕ dx = −

∫
Ω

∇u · ϕ dx and∫
Ω

|Du| =
∫
Ω

|∇u(x)| dx.

• Let u be defined in (−1,+1) by u(x) = −1 if −1 ≤ x < 0 and

u(x) = +1 if 0 < x ≤ 1, then

+1∫
−1

u ϕ′ dx = −2ϕ(0) and

+1∫
−1

|Du| = 2.

We can remark that Du the distributional derivative of u is equal
to 2 δ0 where δ0 is the Dirac measure in 0. In fact, we have the
decomposition Du = 0 dx + 2δ0. �

Definition 2.2.7 (BV (Ω)) We define BV (Ω) the space of functions of
bounded variation as:

BV (Ω) =
{
u ∈ L1(Ω) ;

∫
Ω

|Du | <∞
}
.

We are going to show that if u ∈ BV (Ω), then Du (the distributional
gradient of u) can be identified to a Radon vector-valued measure. Let
u ∈ BV (Ω) and L: C1

0 (Ω)N → R be the functional defined by:

L(ϕ) =
∫
Ω

u divϕ dx.

L is linear and since u ∈ BV (Ω) we have:

sup
{
L(ϕ ) ; ϕ ∈ C1

0 (Ω)N , |ϕ|L∞(Ω) ≤ 1
}

= c <∞
where c is a constant depending only upon Ω and u. So for all ϕ ∈ C1

0 (Ω)N :

|L(ϕ )| ≤ c |ϕ|L∞(Ω) . (2.6)

Now let K ⊂ Ω be a compact set and ϕ ∈ C0(Ω)N , supp ϕ ⊂ K, we can
always find a sequence ϕk ∈ C1

0 (Ω)N such that:

ϕk → ϕ uniformly, k →∞
|ϕk|L∞(Ω) ≤ |ϕ|L∞(Ω), ∀k.

Let L(ϕ) = lim
k→∞

L(ϕk). From (2.6) this limit exists and is independent of

the choice of the sequence ϕk. Therefore L uniquely extends to a linear
continuous functional:

L : C0(Ω)N → R.

From the Riesz representation Theorem [216], there exists a Radon measure
µ (a positive measure finite on compact sets of RN ) and a µ-measurable
function σ such that:

|σ(x)| = 1 µ-a.e. x
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Ω

u divϕ dx = −
∫
Ω

σ · ϕ dµ for all ϕ ∈ C1
0 (Ω)N

which means that Du is a vector-valued Radon measure (Du = σ dµ).
An important example is the case when u = χA, the characteristic

function of a subset A of RN . Then:∫
Ω

|Du| = sup
{∫
A

divϕ dx; ϕ ∈ C1
0 (Ω)N , |ϕ|L∞(Ω) ≤ 1

}
.

If this supremum is finite, A is called a set of finite perimeter in Ω and we
note: ∫

Ω

|Du| = PerΩ(A).

If ∂A is smooth, PerΩ(A) coincides with the classical length (N = 2) or
surface area (N = 3).

2.2.3 Properties of BV (Ω)
We summarize below the main properties of BV (Ω) that we will use in the
sequel. We assume that Ω is bounded and has a lipschitz boundary.

(P1) Lower-semicontinuity

Let uj ∈ BV (Ω) and uj −−−→
L1(Ω)

u, then
∫
Ω

|Du| ≤ lim
j→∞

∫
Ω

|Duj |.

(P2) Trace
The trace operator tr : u → u|∂Ω, from BV (Ω) to L1(∂Ω,HN−1), is
linear continuous for the strong topology of BV (Ω). HN−1 denotes
the N − 1 dimensional measure (see Definition 2.2.8).

(P3) A weak∗ topology
BV (Ω) is a Banach space endowed with the norm

|u|BV (Ω) = |u |L1(Ω) +
∫
Ω

|Du|. We will not use this topology which

has no good compactness properties. Classically in BV (Ω) one works
with the BV − w∗ topologydefined as:

uj −−∗−−⇀
BV−w∗

u ⇔ uj −−−→
L1(Ω)

u and Duj −−∗−−⇀
M

Du (2.7)

where Duj −−∗−−⇀
M

Du means
∫
Ω

ϕDuj→
∫
Ω

ϕDu for all ϕ in C0(Ω)N .

Equipped with this topology, BV (Ω) has some interesting compact-
ness properties.
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(P4) Compactness
Every uniformly bounded sequences uj in BV (Ω) is relatively com-
pact in Lp(Ω) for 1 ≤ p < N

N − 1 , N ≥ 1. Moreover there exist a
subsequence ujk

and u in BV (Ω) such that ujk
−−∗−−⇀
BV−w∗

u. We also re-

call that BV (Ω) is continuously embedded in Lp(Ω) with p = +∞ if
N = 1, and p = N

N − 1 otherwise.

(P5) Decomposability of BV (Ω)
We are going to show that Du can decomposed as the sum of a
regular measure and a singular measure. Before doing that we need
the definition of the Hausdorff measure.

Definition 2.2.8 (Hausdorff measure) Let k ∈ [0,+∞] and
A ⊂ RN . The k-dimensional Hausdorff measure of A is given by:

Hk(A) = lim
δ→0

Hk
δ (A)

where for 0 < δ ≤ ∞, Hk
δ (A) is defined by

Hk
δ (A) =

wk

2k
inf

{∑
i∈I
|diam(Ai)|k , diam(Ai) ≤ δ , A ⊂ ∪

i∈I
Ai

}
for finite or countable covers (Ai)i∈I ; diam(Ai) denotes the diameter

of the set Ai and wk is a normalization factor equal to π
k
2 Γ(1 + k

2 )

where Γ(t) =

∞∫
0

st−1 e−s ds is the Γ-function (wk coincides with the

Lebesgue measure of the unit ball of Rk if k ≥ 1 is an integer).
We define the Hausdorff dimension of A by:

H− dim(A) = inf{k ≥ 0; H(A) = 0}.

Hk is a measure in RN , HN coincides with the Lebesgue measure LN

and for 1 ≤ k ≤ N , integer, Hk(A) is the classical k-dimensional area
of A if A is a C1 k-dimensional manifold embedded in RN . Moreover
if k > k′ ≥ 0 then Hk(A) > 0⇒ Hk′

(A) = +∞.
Let us go back to BV (Ω). If u belongs to BV (Ω) and if in Theorem
2.2.1 we choose µ = dx, the N -dimensional Lebesgue measure and
ν = Du, we get

Du = ∇u dx + Dsu

where ∇u(x) = d(Du)
dx

(x) ∈ L1(Ω) and Dsu⊥ dx. ∇u is also called
the approximate derivative of u (see [9]). In fact, we can say more
for BV (Ω) functions. In [9] Ambrosio showed that the singular part
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Dsu of Du can be decomposed into a ”jump” part Ju and a ”Cantor”
part Cu. Before specifying what is exactly Ju we have to define the
notion of approximate limit. Let B(x, r) be the ball of center x and
radius r and let u ∈ BV (Ω), we define the approximate upper limit
u+(x) and the approximate lower limit u−(x) by (see Figure 2.1)

u+(x) = inf
{
t ∈ [−∞,+∞] ; lim

r→0

dx({u > t} ∩B(x, r))
rN

= 0
}

u−(x) = sup
{
t ∈ [−∞,+∞] ; lim

r→0

dx({u < t} ∩B(x, r))
rN

= 0
}
.

If u ∈ L1(Ω), then:

lim
r→0

1
|B(x, r)|

∫
B(x,r)

|u(x)− u(y)|dy = 0 a.e. x. (2.8)

A point x for which (2.8) holds is called a Lebesgue point of u and
we have:

u(x) = lim
r→0

1
|B(x, r)|

∫
B(x,r)

u(y) dy, (2.9)

and u(x) = u+(x) = u−(x). We denote by Su the jump set, that is
to say the complement, up to a set of HN−1 zero measure, of the set
of Lebesgue points:

Su =
{
x ∈ Ω ; u−(x) < u+(x)

}
.

Su is countably rectifiable and for HN−1- a.e. x ∈ Ω, we can define a
normal nu(x).

Su

nu(x)

u+(x)
u−(x)

r
x

Br(x)

Figure 2.1. Definition of u+, u− and the jump set Su

So, the result proved in [9] is:

Du = ∇u dx + (u+ − u−)nuHN−1
|Su

+ Cu. (2.10)
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Ju = (u+− u−)nuHN−1
|Su

is the jump part and Cu is the Cantor part
of Dsu. We have Cu⊥ dx and Cu is diffuse i.e. Cu{x} = 0. More
generally we have Cu(B) = 0 for all B such that HN−1(B) < ∞,
that is to say the Hausdorff dimension of the support of Cu is strictly
greater than N − 1. From (2.10) we can deduce the total variation of
Du:

|Du | (Ω) =
∫
Ω

|Du| =

=
∫
Ω

|∇u | (x) dx +
∫
Su

∣∣u+ − u−∣∣ dHN−1 +
∫

Ω−Su

|Cu|.

Remark About differentiation. An important fact is that a summable
function is “approximately continuous” at almost every point. This means
that if u is simply in L1(Ω), the right-hand side of (2.9) exists dx a.e..
However, if u is also in BV (Ω), we can say more. Let us define:

•
u(x) =

u+(x) + u−(x)
2

HN−1 a.e. on Su. (2.11)

Then, it can be shown [247, 106] that
•
u is well-defined HN−1 a.e. on Su.

An interesting property of
•
u is that we have the following approximation

result :
•
u(x) = lim

ε→0
ηε K u(x) HN−1 a.e. (2.12)

where (ηε) are the usual mollifiers (see Section 2.5.3). The function
•
u is

called the precise representation of u since it permits in some way to define
u, HN−1 a.e.. Remark that

•
u and u are in fact the same elements in BV (Ω)

(they belong to the same equivalence class of dx a.e. equal functions)
therfore their distributional derivatives are the same. �

2.2.4 Convex functions of measures
We would like to give a sense to the formal writing:∫

Ω

Ψ(Du)

when u is a BV (Ω) function i.e. when Du is a measure. According to
the above discussion we are for the moment only able to define the total
variation of Du i.e. when Ψ(ξ) = |ξ|. Let us extend this to more general Ψ.

Convex functions of measures [123, 89].

Let φ : R→ R+ be convex, even, non decreasing on R+ with linear growth
at infinity and let φ∞ be the recession function of φ defined by
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φ∞(z) = lim
s→∞

φ (s z)
s . Then for u ∈ BV (Ω) and if Ψ(ξ) = φ(|ξ|), we set∫

Ω

Ψ(Du) =
∫
Ω

φ(|∇u(x)|) dx+φ∞(1)
∫
Su

∣∣u+ − u−∣∣ dHN−1 +φ∞(1)
∫

Ω−Su

|Cu| .

Of course, if Ψ(ξ) = |ξ|, this definition coincides with the total variation of
Du. The main consequence of this definition is that:

u→
∫
Ω

Ψ(Du) is l.s.c. for the BV − w∗ topology.

We will use this notion in image restoration (Chapter 3).

2.3 Viscosity solutions in PDEs

2.3.1 Around the eikonal equation
Until now, we have recalled some mathematical tools necessary to tackle
problems in computer vision from a variational point of view. But in many
situations, e.g. nonlinear filtering in restoration, equations we have to solve
do not come from variational principles. They are PDEs that are not Euler-
Lagrange equations of functionals so we need different tools.
To convince the reader of the difficulties in studying nonlinear PDEs, let
us consider this very simple 1-D example:{ |u′(x)| = 1 in (0, 1)

u(0) = u(1) = 0. (2.13)

which is the eikonal equation. Several questions appear unclear:

• The existence. Clearly (2.13) cannot admit a C1 solution since in this
case from Rolle’s Theorem we would deduce the existence of x0 ∈]0, 1[
such that u′(x0) = 0 which is in contraction with |u′(x0)| = 1. So
the gradient of u has to ”break” and a theory involving non-regular
solutions has to be developed.

• The uniqueness. For example the function u+(x) = 1
2 −

∣∣∣12 − x
∣∣∣ is a

solution of (2.13) for almost every x ∈ (0, 1). But u−(x) = −u+(x)
is also a solution. In fact there is an infinite number of solutions of
the form:

un(0) = un(1) = 0
u′
n(x) = 1 if x ∈

]
2k
2n ,

2k + 1
2n

]
k = 0, ..., 2n − 1.

u′
n(x) = −1 if x ∈

]
2k + 1

2n , 2k + 2
2n

]
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Some examples are given in Figure 2.2. Moreover 0 ≤ un(x) ≤ 1
2n so

un(x)→ 0 uniformly (n→∞). However, 0 is not a solution of (2.13).
Note that u+(x) is the greatest solution of (2.13).

10

u−(x)

u+(x)

Figure 2.2. Examples of admissible solutions of the 1-D eikonal equation

• The compatibility conditions. Let us consider the N -dimensional
eikonal equation.{ |∇u(x)| = f(x) in Ω, a bounded open set of RN

u|∂Ω = u0(x). (2.14)

Let x, y ∈ Ω and ξ(t) : [0, T ] → RN be a lipschitz path such that
ξ(0) = x, ξ(T ) = y and |ξ′(t)| ≤ 1 a.e. t ∈ (0, 1). We formally have

u(y)− u(x) =

T∫
0

∇u(ξ(s)) · ξ ′(s) ds

thus

|u(y)− u(x)| ≤
T∫
0

f(ξ(s)) ds

from which we deduce

|u(y)− u(x)| ≤ L(x, y)

where

L(x, y) = inf
ξ,T

{ T∫
0

f(ξ(s)) ds; ξ(0) = x; ξ(T ) = y; |ξ′(t)| ≤ 1; ξ(t) ∈ Ω
}
.

Writing this necessary condition for x, y belonging to the boundary
∂Ω of Ω we get

|u0(y)− u0(x) | ≤ L(x, y) (2.15)

which is a compatibility condition on the data.
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Remarks

• It can be shown [160] that in fact (2.15) is also a sufficient existence
condition.

• If f ≡ 1 and if Ω is convex, (2.15) writes as |u0(y)− u0(x)| ≤ |y − x|.
�

2.3.2 Definition of viscosity solutions
As it is suggested in the previous example, there is a need to define a suit-
able and well-defined framework. Initiated in the eighties for first order
PDEs by Crandall and PL Lions [82, 80, 160], the theory of viscosity solu-
tions has shown a very successful development and has been extended for
second order equations [81].

Theory of viscosity solutions [81, 24, 74]

Generally speaking the theory of viscosity solutions deals with equations
called Hamilton Jacobi equations of the form:

∂u

∂t
(t, x) + H(t, x,∇u(x),∇2u(x)) = 0 t ≥ 0, x ∈ Ω (2.16)

with boundary and initial conditions. H : ]0, T ]×Ω×R×RN ×SN → ' is
called an hamiltonian, SN is the set of N×N symmetric matrices and ∇2u
stands for the hessian matrix of u. H will be always supposed degenerate
elliptic:

H(t, x, u, p, S) ≥ H(t, x, u, p, S′) if S ≤ S′ (2.17)

(SN is ordered with the natural order: S ≤ S′ ⇔ ξ t(S′ − S)ξ ≥ 0 for
all ξ ∈ RN ). The theory aims to define generalized solutions of (2.16)
and particularly solutions that are only continuous. The following theorem,
stated for the stationary case, is useful to understand the definition of
viscosity solutions.

Theorem 2.3.1 Let H : Ω×R×RN × SN → ' be continuous
and degenerate elliptic and let u ∈ C2(Ω) then u is solution of
H(x, u(x),∇u(x),∇2u(x)) = 0 in Ω if and only if

(i) ∀φ ∈ C2(Ω), ∀x0 ∈ Ω local maximum of (u− φ)(x) then

H(x0, u(x0),∇φ(x0),∇2φ(x0)) ≤ 0.

(ii) ∀φ ∈ C2(Ω), ∀x0 ∈ Ω local minimum of (u− φ)(x) then

H(x0, u(x0),∇φ(x0),∇2φ(x0)) ≥ 0.



2.3. Viscosity solutions in PDEs 55

Proof Let φ ∈ C2(Ω), and x0 ∈ Ω be a local maximum of (u−φ)(x), then
from classical arguments:

∇u(x0) = ∇φ(x0)

∇2u(x0) ≤ ∇2φ(x0).

Hence from (2.17):

H(x0, u(x0),∇φ(x0),∇2φ(x0)) = H(x0, u(x0),∇u(x0),∇2φ(x0)) ≤
≤ H(x0, u(x0),∇u(x0),∇2u(x0)) = 0.

The inequality (ii) is proven by similar arguments.
Reciprocally if (i) and (ii) are true, by choosing φ = u and since each

point x ∈ Ω is both local maximum and local minimum of (u− φ)(x) = 0,
we get

H(x0, u(x0),∇u(x0),∇2u(x0)) ≤ 0

and H(x0, u(x0),∇u(x0),∇2u(x0)) ≥ 0

i.e. H(x0, u(x0),∇u(x0),∇2u(x0)) = 0.

�

☛ In the former equivalence (Theorem 2.3.1), u only needs to be continu-
ous. The derivatives are in fact evaluated on the test functions φ.

This observation leads to the following definition:

Definition 2.3.1 (viscosity subsolution, supersolution, solution)
Let H : ] 0, T ] × Ω × R × RN × SN → ' be continuous, satisfying (2.17)
and let u ∈ C(] 0, T ]× Ω) then

(i) u is a viscosity subsolution of (2.16) if and only if ∀φ ∈ C1(] 0, T ]×Ω),
∀(t0, x0) local maximum of (u− φ)(t, x) then
H(t0, x0, u(t0, x0),∇φ(t0, x0),∇2φ(t0, x0)) ≤ 0.

(ii) u is a viscosity supersolution of (2.16) if and only if ∀φ ∈ C1(]0, T ]×
Ω), ∀(t0, x0) local minimum of (u− φ)(t, x) then
H(t0, x0, u(t0, x0),∇φ(t0, x0),∇2φ(t0, x0)) ≥ 0.

(iii) u is a viscosity solution of (2.16) if u is both a viscosity subsolution
and a viscosity supersolution.

2.3.3 About the existence
We can wonder why the word ”viscosity” is used in the former definition.
This terminology comes from historical reasons. Initial work on Hamilton
Jacobi equations were first concerned with first order PDEs like:

H(x, u(x),∇u(x)) = 0. (2.18)
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The way to solve (2.18) was to introduce in (2.18) an additional regularizing
(viscosity) term:

−ε∆u(x) + H(x, u(x),∇u(x)) = 0. (2.19)

To prove existence, one can follow this two steps:

(i) Under suitable hypotheses, we show that (2.19) admits a unique
regular solution uε that we uniformly bound.

(ii) The second step is to study the behaviour of uε as ε→ 0 and to pass
to the limit in (2.19).

This method is well known in mechanics as the vanishing viscosity method.
We will use it in Chapter 4 (for active contours models).
In this approach, the main concern is in fact the behaviour of the solution
as ε→ 0. We have the following stability result:

Lemma 2.3.1 (stability [24]) Let Hε(x, u, p,M) be a sequence of con-
tinuous functions on Ω×R×RN × SN (Ω ⊂ RN ) satisfying the ellipticity
condition:

Hε(x, u, p,M1) ≤ Hε(x, u, p,M2) if M1 −M2 ≥ 0

and let uε ∈ C(Ω) be a viscosity solution of Hε(x, uε,∇uε,∇2uε) = 0 in Ω.
If uε → u in C(Ω) and if Hε → H in C(Ω×R×RN × SN )
then u is a viscosity solution of H(x, u,∇u,∇2u) = 0 in Ω.

Another way to get a viscosity solution is to use the Perron’s method.
Roughly speaking the method runs as follows. Under appropriate assump-
tions:

(i) One proves that the set S of subsolutions is not void.

(ii) Let w(x) = sup {v(x); v ∈ S}. By stability w(x) is a subsolution. It
remains to show that w(x) is a supersolution.

2.3.4 About the uniqueness
Theorems concerning uniqueness are perhaps the strong point of this the-
ory. But, as expected, it is also the most difficult part. For second order
Hamilton Jacobi equations uniqueness results are build on a powerful tech-
nical lemma due to Crandall-Ishii. Before stating it, we need the definitions
of super and sub-jet of u.

Definition 2.3.2 (super-jets, sub-jets) Let u: Ωt = ] 0, T ] × Ω → R
then we call super-jet of u(s, z) the set P+

Ω u(s, z) defined by : (a, p,X) ∈
R×RN × SN lies in P+

Ω u(s, z) if (s, z) ∈ Ωt and

u(t, x) ≤ u(s, z)+a(t−s)+p·(x−z)+ 1
2

(x−z)tX(x−z)+o(|t− s|+|x− z|2)
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as Ωt ⊃ (t, x)→ (s, z). Similarly the sub-jet of u(s, z) is defined by:

P−
Ω u(s, z) = −P+

Ω (−u)(s, z).

We can show [24, 81] that u is a subsolution (a supersolution) of (2.15) if
and only:

a + H(t, x, u(t, x), p,X) ≤ 0 (≥ 0) (2.20)

for all (t, x) ∈ Ωt and (a, p,X) ∈ P+
Ωt
u(t, x) (∈ P−

Ωt
u(t, x)). The interest

of this equivalent definition of sub (super) solution is that using of test
functions φ is not required anymore.

We can now state the Crandall-Ishii’s Lemma.

Lemma 2.3.2 (Crandall-Ishii’s Lemma [79, 81]) Let Ωi be locally com-
pact subsets of RNi and let ui: ] 0, T ]× Ωi → R be upper semi-continuous
functions, i = 1... k. Let ϕ be defined on an open neighbourhood of
(0, T ) × Ω1 × ... × Ωk and such that (t, x1, ..., xk) → ϕ (t, x1, ..., xk) is
once continuously differentiable and twice continuously differentiable in
(x1, ..., xk) ∈ Ω1 × ... × Ωk. Suppose that t ∈ (0, T ), xi ∈ Ωi, i =1...
k and

w(t, x1, ..., xk) ≡ u(t, x1) + ... + u(t, xk)− ϕ (t, x1, ..., xk) ≤ w(t, x1, ..., xk )

for 0 < t < T and xi ∈ Ωi. Assume moreover that there is r > 0 such that
for M > 0 there is a constant C such that for (bi, qi, Xi) ∈ P+

Ωi
ui(t, xi) ,

|xi − xi |+
∣∣ t− t

∣∣ ≤ r and |ui(t, xi) |+ | qi |+ |Xi| ≤M we have

bi ≤ C, i = 1....K (2.21)

then for each ε > 0 there exists Xi ∈ SNi such that

(bi,∇xi
ϕ (t, x1, ..., xk ), Xi) ∈ P+

Ωi
u(t, xi) for i = 1...k (2.22)

−
(1
ε

+ |A|
)
I ≤

 X1 · · · 0
...

. . .
...

0 · · · Xk

 ≤ A + εA2 (2.23)

b1 + b2 + ... + bk =
∂ ϕ

∂t
(t, x1, ..., xk) (2.24)

where A = (∇2
xi
ϕ )(t, x1, ..., xk).

This Lemma is technical and it is rather hard to understand its role to prove
uniqueness. Let us describe it in a caricatural example to show where it is
important.

Example Let Ω be bounded, we assume that u and v are two continuous
functions respectively sub and super-solution of

H(x, u,∇u,∇2u) = 0 x ∈ Ω, (2.25)
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and u ≤ v on ∂Ω. We want to show that u ≤ v on Ω. This is a “maximum
principle like result” and it gives uniqueness as soon as (2.25) is associated
with Dirichlet conditions.

Let us first assume that u and v are in fact classical sub and super
solutions of (2.25), that is to say twice differentiable. If the function w =
u− v admits a local maximum x̂ ∈ Ω, then we have:

∇u(x̂) = ∇v(x̂) (2.26)

∇2u(x̂) ≤ ∇2v(x̂) (2.27)

and so:

H(x̂, u(x̂),∇u(x̂),∇2u(x̂)) ≤ 0 ≤ H(x̂, v(x̂), ∇v(x̂) , ∇2v(x̂) ) (2.28)

≤ H(x̂, v(x̂), ∇u(x̂) , ∇2u(x̂) ). (2.29)

Remark that we have choosen as test functions u and v which was possi-
ble here because we assumed u and v ∈ C2(Ω). Now, if we assume3 that
H(x, r, p,X) is stricly increasing with respect to the variable r, then u− v
is negative at x̂ ∈ Ω and then u ≤ v on Ω (since we have assumed that
u ≤ v on ∂Ω).

In the generic case, one cannot choose anymore u and v as test functions
and write (2.26)-(2.27). Let us highlight what needs to be adapted from
the simple proof to the general case:

• Choosing u and v as test functions, and looking at the maximum
point of u(x) − v(x) allowed us to get the equality of the derivative
at the maximum point x̂ (2.26). This is used in (2.28)-(2.29) (see
terms ). In the general case, the classical idea is to duplicate the
variables.

• In the same way, we used in (2.28)-(2.29) the comparison between
the second derivatives (2.27) (see terms ). This comparison will
be given by the Crandall-Ishii’s Lemma, more precisely by (2.23).

See the detailed the proof of Theorem 4.3.2 in Section 4.3.3. �

2.4 Elements of differential geometry: the
curvature

In this section we recall some basic definitions and properties on differential
geometry and focus on the notion of curvature. The curvature has different
meaning depending on the “object” that we are considering. Typically, the

3Again, we recall that this example is just for educative purposes. In practice, such
a strong assumption will not be necessary.
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“objects” found in image analysis will be parametrized curves (for snakes
for instance), images that can be represented by their isovalues, or images
seen as surfaces where the height is the gray-scale intensity (see Figure 2.3).
We precise the notion of curvatures in these three cases. Naturally, there
are many other notions of curvature, especially for surfaces, and we refer
to [161] for more details.

T
Ns

Figure 2.3. Different “objects” encountered in image analysis: parametrized
curves, curves as isolevels of an image, image as a surface

2.4.1 Parametrized curves
Let x(p) = (x1(p), x2(p)) be a regular planar oriented curve in R2,
0 ≤ p ≤ 1. We note:

T (p) = x′(p) = (x′
1(p), x

′
2(p)) the tangent vector at x(p),

N(p) = (−x′
2(p), x

′
1(p)) the normal vector at x(p),

s(p) =

p∫
0

√
(x′

1(r))2 + (x′
2(r))2 dr the curvilinear abscissa (or arc length).

If x(p) is regular we can parametrize it by s and then T (s) = dx
ds

(s)

is such that |T (s)| = 1. The curvature tensor is defined by dT
ds

(s) =
d2x
ds2

(s). One can show that the curvature tensor is collinear to N(s)
|N(s)| i.e.

dT
ds

(s) = κ (s) N(s)
|N(s)| where κ (s) is the curvature and 1

|κ(s)| is the radius

of curvature. For any parametrization we have :

κ(p) =
x′
1(p) x

′′
2(p)− x′

2(p) x
′′
1(p)

((x′
1(p)

2 + x′
2(p)

2)
3
2

(2.30)

and

1
|x′(p)|

∂

∂p

(
x′(p)
|x′(p)|

)
= κ(p)

N(p)
|N(p)| .
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2.4.2 Curves as isolevel of a function u

Let us now consider the case where x(s), parametrized by its curvilinear
abscissa, is the k-level of a function u : R2 → R that is to say

x(s) = {(x1(s), x2(s)) ; u((x1(s), x2(s)) = k} .
By differentiating with respect to s the equality u((x1(s), x2(s)) = k we
get:

x′
1(s)ux1 + x′

2(s)ux2 = 0, (2.31)

where uxi
stands for ∂u

∂xi
(x1(s), x2(s)). Therefore the vectors (x′

1(s), x
′
2(s))

and (−ux2 , ux1) are collinear. For some λ we have{
x′
1(s) = −λux2

x′
2(s) = λux1 ,

(2.32)

so the vectors (ux1 , ux2) and (−ux2 , ux1) are respectively normal and tan-
gent to the curve x(s). If we differentiate again (2.31) with respect to s, we
obtain:

(x′
1(s))

2ux2
1

+ (x′
2(s))

2ux2
2

+ 2x′
1(s)x

′
2(s)ux1x2 + x′′

1(s)ux1 + x′′
2(s)ux2 = 0.

hence with (2.32):

λ 2((ux1)
2ux2

2
+(ux2)

2ux2
1
−2 ux1ux2 ux1x2)+

1
λ

(x′′
1(s)x′

2(s)−x′′
2(s)x′

1(s)) = 0.

But since |x′(s)| = 1, we get from (2.32) λ 2 = 1
|∇u|2 . Therefore with

(2.30) we deduce the expression of the curvature (of course, we suppose
|∇u(x)| �= 0):

κ =
(ux1)

2ux2
2

+ (ux2)
2ux2

1
− 2 ux1ux2 ux1x2

((ux1)
2 + (ux2)

2)
3
2

(2.33)

and we leave it as an exercise to the reader to verify that:

κ = div
( ∇u
|∇u|

)
. (2.34)

2.4.3 Images as surfaces
Let us now examine quickly the case of 3-D surfaces. Denote by D an open
set in R2, S : D → R3, (u, v)→ S(u, v) a regular parametrized surface. We
assume that the vectors Su and Sv are non-collinear for every (u, v) ∈ D,
so they form a basis of the tangent plane. N(u, v) = Su ∧ Sv

|Su ∧ Sv| is the unit
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normal vector to S(u, v). Some classical notations are:

E(u, v) = |Su|2
F (u, v) = Su · Sv
G(u, v) = |Sv|2

 coefficients of the first
quadratic fundamental form
of S(u, v)

L(u, v) = Suu ·N = −Su ·Nu

M(u, v) = Suv ·N = − 1
2(Su ·Nv + Sv ·Nu)

P (u, v) = Svv ·N = Sv ·Nv

 coefficients of the second
quadratic fundamental form
of S(u, v)

Using these notations, we have |Su ∧ Sv| =
√
EG− F 2, the surface element

is ds =
√
EG− F 2 dudv and the mean curvature H can be rewritten as:

H =
EP + GL− 2FM

2 (EG− F 2)
.

Differential geometry [161]

2.5 Other classical results used in this book

We now summarize some classical theorems, propositions or inequalities.
The purpose is not to give a complete list of important results but only to
help the reader to find the one that are used in this book. For a complete
and very clear overview, we refer the interested reader to the appendices of
the book by Evans [105] from which we have selected the relevant results.

Functional analysis [105]

2.5.1 Inequalities

Cauchy’s inequality with ε: ab ≤ εa2 + b2

4ε (a, b > 0, ε > 0).

Cauchy-Schwarz inequality: |x · y| ≤ |x||y| (x, y ∈ RN ).

Gronwall’s inequality (differential form).

(i) Let η(.) be a nonnegative, absolutely continuous function on [0, T ],
which satisfies for a.e. t the differential inequality:

η′(t) ≤ φ(t)η(t) + Ψ(t),

where φ(t) and Ψ(t) are nonnegative, integrable functions on [0, T ].
Then:

η(t) ≤ e
∫ t
0 φ(s)ds

[
η(0) +

∫ t

0
Ψ(s)ds

]
for all 0 ≤ t ≤ T.
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(ii) In particular, if η′ ≤ φη on [0, T ] and η(0) = 0, then
η ≡ 0 on [0, T ].

Gronwall’s inequality (integral form).

(i) Let ξ(t) be a nonnegative, integrable function on [0, T ] which satisfies
for a.e. t the integral inequality:

ξ(t) ≤ C1

∫ t

0
ξ(s)ds + C2

for some constants C1, C2 ≥ 0, then:

ξ(t) ≤ C2
(
1 + C1te

C1t
)

for a.e. 0 ≤ t ≤ T.

(ii) In particular, if ξ(t) ≤ C1

∫ t

0
ξ(s)ds for a.e. 0 ≤ t ≤ T , then:

ξ(t) = 0 a.e..

Hölder’s inequality: assume 1 ≤ p, q ≤ ∞, 1
p + 1

q = 1. Then, if u ∈
Lp(Ω), v ∈ Lq(Ω), we have:∫

Ω

|uv| dx ≤ |u|Lp(Ω) |v|Lq(Ω) .

Jensen’s inequality: assume that f : R → R is convex, and Ω ⊂ RN is
open, bounded (|Ω| = 1). Let u : Ω→ R be integrable. Then:

f

(∫
Ω
−u dx

)
≤

(∫
Ω
−f(u) dx

)
,

where
∫
Ω
−u dx denotes the mean value of u over Ω.

Minkowski’s inequality: assume 1 ≤ p ≤ ∞ and u, v ∈ Lp(Ω). Then:

|u + v|Lp(Ω) ≤ |u|Lp(Ω) + |v|Lp(Ω) .

Poincaré inequality: let Ω be an open bounded set of RN and
u ∈W 1,p

0 (Ω) = {u / u ∈W 1,p(Ω); u|∂Ω = 0}, 1 ≤ p < n, then:

|u|Lq(Ω) ≤ c1 |∇u|Lp(Ω) , q ∈
[
1,

np

n− p

]
for some constant c1 depending only on p, n, q and Ω.

Poincaré-Wirtinger inequality: let Ω be open, bounded and connected
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with a C1 boundary, then for all u ∈W 1,p(Ω), 1 ≤ p ≤ +∞,∣∣∣∣u− ∫
Ω
− u dx

∣∣∣∣
Lp(Ω)

≤ c2 |∇u|Lp(Ω)

for some constant c2 depending only on p, n and Ω. Remark that the same
inequality holds for functions of bounded variation, where |∇u|Lp(Ω) is re-
placed by the total variation |Du|(Ω).

Young’s inequality: let 1 < p, q <∞, 1
p + 1

q = 1, then:

ab ≤ ap

p
+
bq

q
(a, b > 0).

Young’s inequality with ε: let 1 < p, q <∞, 1
p + 1

q = 1, then:

ab ≤ εap + C(ε)bq for C(ε) = (εp)−q/pq−1.

2.5.2 Calculus facts
Ω is supposed to be a bounded, open subset of RN , and ∂Ω is supposed to
be C1.

Theorem 2.5.1 (Gauss-Green Theorem) Suppose u ∈ C1(Ω). Then∫
Ω

uxi
dx =

∫
∂Ω

uνi ds (i = 1, . . . , N).

where ν is the outward unit normal of ∂Ω.

Theorem 2.5.2 (Integration by part formula) Let u, v ∈ C1(Ω).
Then ∫

Ω

uxiv dx = −
∫
Ω

uvxi dx +
∫
∂Ω

uvνi ds (i = 1, . . . , N).

Theorem 2.5.3 (Green’s formulas) Let u, v ∈ C2(Ω). Then:

(i)
∫
Ω

 u dx =
∫
∂Ω

∂u
∂ν

ds.

(ii)
∫
Ω

∇v · ∇u dx = −
∫
Ω

u v dx +
∫
∂Ω

∂v
∂ν

u ds.

(iii)
∫
Ω

u v − v u dx =
∫
∂Ω

u∂v
∂ν
− v ∂u

∂ν
ds.
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Theorem 2.5.4 (Coarea formula) Let u : RN → R be Lipschitz
continuous and assume that for a.e. r ∈ R, the level set

{x ∈ RN | u(x) = r}
is a smooth, (n− 1)-dimensional hypersurface in RN . Suppose also
f : RN → R is continuous and integrable. Then:∫

RN

f |∇u| dx =
∫ +∞

−∞

(∫
{u=r}

f ds

)
dr.

2.5.3 About convolution and smoothing
For Ω ⊂ RN , we denote Ωε = {x ∈ Ω | dist(x, ∂Ω) > ε}.
Definition 2.5.1 (mollifier)

(i) Define η ∈ C∞
c (RN ) by:

η(x) =

Cexp
(

1
|x|2 − 1

)
if |x| < 1

0 if |x| ≥ 1,

the constant C > 0 is selected so that
∫
RN

η dx = 1. η is called a

standard mollifier.

(ii) For each ε > 0, set:

ηε(x) =
1
εN

η
(x
ε

)
.

The functions ηε are C∞
c (RN ) and satisfy:∫

RN

ηε dx = 1, spt(ηε) ⊂ B(0, ε).

Definition 2.5.2 (mollification) If f : Ω→ R is locally integrable,
define its mollification by:

fε = ηε ∗ f in Ωε

that is:

fε(x) =
∫
Ω

ηε(x− y)f(y)dy =
∫

B(0,ε)

ηε(y)f(x− y)dy for x ∈ Ωε.

Theorem 2.5.5 (properties of mollifiers)

(i) fε ∈ C∞
c (Ωε).

(ii) fε → f a.e. as ε→ 0.
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(iii) If f ∈ C(Ω), then fε → f uniformly on compact subsets of Ω.

(iv) If 1 ≤ p <∞ and f ∈ Lp
loc(Ω), then fε → f in Lp

loc(Ω).

2.5.4 Uniform convergence
Theorem 2.5.6 (Arzelà-Ascoli compactness criterion) Suppose that
{fk}∞k=1 is a sequence of real-valued functions defined on RN such that:

|fk(x)| ≤M (k = 1, . . . , x ∈ RN )

for some constant M , and the {fk}∞k=1 are uniformly equicontinuous. Then
there exist a subsequence {fkj

}∞j=1 ⊆ {fk}∞k=1 and a continuous function f ,
such that:

fkj
→ f uniformly on compact subsets of RN .

We recall that saying that {fk}∞k=1 are uniformly equicontinuous means
that for each ε > 0, there exists δ > 0, such that |x − y| < δ implies
|fk(x)− fk(y)| < ε, for x, y ∈ RN , k = 1, . . .

2.5.5 Dominated convergence theorem
Theorem 2.5.7 (dominated convergence theorem) Assume the func-
tions {fk}∞k=1 are Lebesgue integrable and:

fk → f a.e..

Suppose also:

|fk| ≤ g a.e.,

for some integrable function g. Then:∫
RN

fk dx→
∫
RN

f dx.

This theorem which is fundamental in the Lebesgue theory of integration
will be very often used in this book.

2.5.6 Well-posed problem
Finally, recall the classical definition concerning the well-posedness of a
minimization problem or a PDE.

Definition 2.5.3 (well-posed) When a minimization problem or a PDE
admit a unique solution which depends continuously on the data, we say
that the minimization problem or the PDE are well-posed in the sense of
Hadamard.

If one of the following conditions: existence, uniqueness or continuity
fails, we say that the minimization problem or the PDE are ill-posed.



3
Image Restoration

How to read this chapter?

Image restoration is historically one of the oldest concerns and is still a
necessary pre-processing for many applications. So we start with a precise
study of this problem which will give to the reader a broad overview of the
variational and PDE based approaches as applied to image analysis.

• We first give in Section 3.1 some precisions about what we mean
by degradation or noise. This is actually a difficult question and we
focus on a simple model with additive noise and convolution by a
linear operator for the blur.

• Section 3.2 presents the restoration through the minimization of a
functional involving two terms: a fidelity term to the data (based on
the model of noise) plus a regularization term. We discuss in Sec-
tion 3.2.2 some qualitative properties we would like for the restored
image. This leads to a certain functional that we study in details in
Section 3.2.3 (existence and uniqueness of a solution). This subsection
is rather mathematical and shows an example of relaxation in the BV-
framework. Section 3.2.4 concerns the the numerical computation of
the solution found previously. We develop an algorithm called half-
quadratic minimization and present some experimental results. We
finally mention in Section 3.2.5 some scale invariance properties and
conclude in Section 3.2.6 by considering the nonconvex case.
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• Section 3.3 is a survey of some PDEs based models proposed in litter-
ature over the last decade, for restoration and enhancement. Three
types are distinguished:

– Smoothing or parabolic PDEs (Section 3.3.1) mainly used in
pure restoration.

– Smoothing-enhancing or parabolic-hyperbolic PDEs (Section
3.3.2) concerning restoration-enhancement processes.

– Hyperbolic PDEs (Section 3.3.3) for enhancing blurred images,
focusing on shock-filters.

For each case we develop in details how to get the model and its
mathematical justification (when it is possible and instructive). The
mathematical background involves the theory of maximal opera-
tors, the notion of viscosity solutions (Section 3.3.1) and fixed point
techniques (Section 3.3.2). As for Section 3.3.3 no rigorous results
are available. We only mention a conjecture by Osher and Rudin
regarding the existence of a weak solution for shock-filters.

3.1 Image degradation

It is well-known that during formation, transmission or recording processes,
images are deteriorated. Classically this degradation is the result of two
phenomena. The first one is deterministic and is related to the mode of
image acquisition, to possible defects of the imaging system (blur created
by a wrong lens adjustment, by motion...) or other phenomena such as
atmospheric turbulences. The second phenomenon is a random one and
corresponds to the noise coming from any signal transmission. When it is
possible, it is important to choose a degradation model, as close as pos-
sible to the reality. Each model is usually characterized by a probabilistic
distribution. In many cases, a Gaussian distribution is assumed. However
some applications require more specific ones like Gamma distribution for
radar images (speckle noise), the Poisson distribution for tomography, etc.
We show in Figure (3.2) few examples of possible degradations.

Our aim in this chapter is to explain the methods which allow to remove
or diminish the effects of these degradations. To fix the terminology, we
will designate this processing as restoration.

Unfortunately, it is usually impossible for a given real image to identify
the kind of noise involved. If no model of degradation is available (for in-
stance, we may know the defects of the satellite used for the acquisition),
some assumptions have to be made. A commonly used model is the follow-
ing. Let u : Ω ⊂ R2 → R an original image describing a real scene, and let
u0 be the observed image of the same scene (i.e. a degradation of u). We
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Figure 3.1. “Borel building” image (building from INRIA Sophia-Antipolis)

original image salt and pepper noise speckle noise

additive Gaussian noise multiplicative blur and additive
Gaussian noise Gaussian noise

Figure 3.2. Examples of degradations on the top left-hand side corner of the
“Borel building” image
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assume that:

u0 = Ru + η, (3.1)

where η stands for a white additive Gaussian noise and where R is a linear
operator representing the blur (usually a convolution). Given u0, the prob-
lem is then to reconstruct u knowing (3.1). As we will see, the problem is
ill-posed and we are only able to carry out an approximation of u.

3.2 The energy method

3.2.1 An inverse problem
Let u be the original image describing a real scene (the unknown), and
let u0 be the observed image (the data). Let us assume valid the model of
degradation (3.1). Recovering u from u0 knowing (3.1) is a typical example
of inverse problem.

Inverse problems [147]

This is not an easy task since we know little things about the noise η.
We only know some statistics as its mean, its variance... Of course, since
η is a random variable, a natural way to interpret equation (3.1) is to use
probabilities (see for instance [46, 73, 90, 116]). It is not our goal to de-
velop such a theory. Let us only mention that by supposing that η is a
white Gaussian noise, and according to the maximum likelihood principle,
we can find an approximation of u by solving the least square problem:

inf
u

∫
Ω

|u0 −Ru|2 dx (3.2)

where Ω is the domain of the image. To fix ideas, let us imagine for a
moment that u0 and u are discrete variables in RM , that R is a M ×M
matrix and that |.| stands for the Euclidian norm. If a minimum u of (3.2)
exists then it necessarily verifies the following equation:

R∗u0 −R∗Ru = 0 (3.3)

where R∗ is the adjoint of R. Solving (3.3) is in general an ill-posed prob-
lem. R∗R is not always one to one and even if R∗R were one to one, its
eigenvalues may be small causing numerical instabilities. Therefore the idea
is to regularize the problem (3.2) that is considering a connected problem
which admits a unique solution.

☛ From now on, we suppose that u0 ∈ L∞(Ω) (Ω ⊂ R2, bounded) and that
R is a linear operator of L2(Ω). We do not use any probabilistic argument.
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The noise η is regarded as a perturbation causing spurious oscillations in
the image. One of the goals of the restoration is to remove these oscillations
while preserving salient features as edges.

3.2.2 Regularization of the problem
A classical way to overcome ill-posed minimization problems is to add
a regularization term to the energy. This idea was introduced in 1977
by Tikhonov and Arsenin [239]. The authors proposed to consider the
minimization problem:

F (u) =
∫
Ω

|u0 −Ru|2 dx + λ

∫
Ω

|∇u|2 dx. (3.4)

The first term in F (u) measures the fidelity to the data. The second one
is a smoothing term. In other words we search for u fitting the best to
the data so that its gradient is low (so that noise will be removed). The
parameter λ is a positive weighting constant.

To study this problem, the functional space for which both terms are
well-defined is:

W 1,2(Ω) =
{
u ∈ L2(Ω);∇u ∈ L2(Ω)2

}
.

Under suitable assumptions on R (we will come back later on these as-
sumptions) the problem inf

{
F (u), u ∈W 1,2(Ω)

}
admits a unique solution

characterized by the Euler-Lagrange equation

R∗Ru−R∗u0 − λ∆u = 0 (3.5)

with the Neumann boundary condition

∂u

∂N
= 0 on ∂Ω (N is the outward normal exterior to ∂Ω).

Is the solution u of (3.5) a good candidate to our original restoration prob-
lem? The answer is no since it is well known that the Laplacian operator
has very strong isotropic smoothing properties and doesnot preserve edges
(see Figure 3.3). Equivalently, this over smoothing can be explained by
looking at the energy (3.4). The Lp norm with p = 2 of the gradient allows
to remove the noise but unfortunately penalyzes too much the gradients
corresponding to edges. One should then decrease p in order to keep as
much as possible the edges. One of the first work in this direction were
done by Rudin, Osher and Fatemi [215, 214] who proposed to use the L1

norm of the gradient of u in (3.5), also called the total variation, instead
of the L2 norm.
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original noisy image result

Figure 3.3. Restoration of the noisy “Borel building” image (additive Gaussian
noise) by minimizing (3.4): edges are lost (in this case R =Id)

In order to study more precisely the influence of the smoothing term, let
us consider the following energy [20, 245]:

E(u) =
1
2

∫
Ω

|u0 −Ru|2dx + λ

∫
Ω

φ(|∇u|) dx. (3.6)

☛ We need to find the properties on φ so that the solution of the mini-
mization problem is close to a piecewise constant image, that is formed by
homogeneous regions separated by sharp edges.

Let us suppose that E(u) has a minimum point u. Then it formally verifies
the Euler-Lagrange equation:

R∗Ru− λ div
(
φ′(|∇u|)
|∇u| ∇u

)
= R∗u0. (3.7)

Equation (3.7) can be written in an expanded form by developing formally
the divergence term.

N

T

We are going to show that it can be decomposed using
the local image structures, that is the tangent and nor-
mal directions to the isophote lines (lines along which
the intensity keeps constant). More precisely, for each
point x where |∇u(x)| �= 0 we can define the vectors

N(x) = ∇u(x)
|∇u(x)| and T (x), |T (x)| = 1, T (x) orthogo-

nal to N(x). With the usual notations ux1 , ux2 , ux1x1 ...
for the first and second partial derivatives of u, we can
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rewrite (3.7) as

R∗Ru− λ
(

φ′(|∇u|)
|∇u| uTT − φ′′(|∇u|) uNN

)
= R∗u0 (3.8)

where we denote by uTT and uNN the second derivatives of u in the T -
direction and N -direction respectively:

uTT = tT ∇2u T =
1

|∇u|2 (u2x1
ux2x2 + u2x2

ux1x1 − 2ux1ux2ux1x2)

uNN = tN ∇2u N =
1

|∇u|2 (u2x1
ux1x1 + u2x2

ux2x2 + 2ux1ux2ux1x2).

In fact, decomposing the divergence term as a weighted sum of the two
directional derivatives along T and N can be done for most classical diffu-
sion operators [153]. This allows to see clearly the action of the operators
in directions T and N .
In our case, this is also useful to determine how the function φ should be
choosen:

• At locations where the variations of the intensity are weak (low gra-
dients), we would like to encourage smoothing, the same way in any
directions. Assuming that the function φ is regular, this isotropic
smoothing condition may be achieved by imposing:

φ′(0) = 0, lim
s→0+

φ′(s)
s

= lim
s→0+

φ′′(s) = φ′′(0) > 0. (3.9)

Therefore at points where |∇u| is small, (3.8) becomes:

R∗Ru− λφ′′(0)(uTT + uNN ) = R∗u0

i.e. since uTT + uNN = ∆u:

R∗Ru− λφ′′(0)∆u = R∗u0. (3.10)

So, at these points, u locally satisfies (3.10), which is a uni-
formly elliptic equation having strong regularizing properties in all
directions.

• In a neighborhood of an edge C, the image presents a strong gradient.
If we want to preserve this edge, it is preferable to diffuse along C
(in the T -direction) and not across it. To do this, it is sufficient in
(3.7) to annihilate, for strong gradients, the coefficient of uNN and
to assume that the coefficient of uTT does not vanish:

lim
s→+∞φ′′(s) = 0, lim

s→+∞
φ′(s)
s

= β > 0. (3.11)

Unfortunately, these two conditions are not compatible. One must

find a compromise. For example, φ′′(s) and φ′(s)
s both converge to
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zero as s→ +∞, but with different speed:

lim
s→+∞φ′′(s) = lim

s→+∞
φ′(s)
s

= 0 and lim
s→+∞

φ′′(s)
φ′(s)
s

= 0. (3.12)

Notice that many functions φ verifying the conditions (3.9)-(3.12) can be
found. For example the function

φ(s) =
√

1 + s2, (3.13)

which is usually called the hypersurface minimal function.

Remark The assumptions (3.9) and (3.12) on φ are qualitative. They
have been imposed in order to describe the regularization conditions. Nat-
urally, they are not sufficient to ensure that the model is mathematically
well-posed. Other hypotheses such as convexity, linear growth are necessary.
This is developed in the coming section. �

3.2.3 Existence and uniqueness of a solution for the
minimization problem

This section is devoted to the mathematical study of:

inf
{
E(u) =

1
2

∫
Ω

|u0 −Ru|2dx + λ

∫
Ω

φ(|∇u|)dx
}
. (3.14)

In order to use the direct method of the calculus of variations, we have to
assume some minimal hypotheses on φ:

φ is a strictly convex, nondecreasing function from R+

to R+, with φ(0) = 0 (without a loss of generality) (3.15)

lim
s→+∞φ(s) = +∞. (3.16)

This latter growth condition must not be too strong because it must not
penalize strong gradients, i.e. the formation of edges (see what happened
with φ(s) = s2). Hence we assume that φ grows at most linearly:

There exist two constants c ¿ 0 and b ≥ 0 such that
cs− b ≤ φ(s) ≤ cs + b ∀s ≥ 0. (3.17)

Remark To recover and preserve edges in an image, it would certainly be
preferable to impose a growth condition of the type: lim

s→+∞φ(s) = β > 0. In

this case the contribution of the term φ(|∇u|) in E(u) would not penalize
the formation of strong gradients since ”it would cost nothing”. Unfor-
tunately, as we also want that φ has a quadratic behavior near zero, then
necessarily φ should have a nonconvex shape, which is an undesirable prop-
erty (see for instance the Bolza problem discussed in Sections 2.1.2 and
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2.1.3). �

According to (3.17), the natural space on which we would be able to seek
a solution, is the space

V =
{
u ∈ L2(Ω); ∇u ∈ L1(Ω)2

}
.

Unfortunately, this space is not reflexive. In particular, we cannot say any-
thing about minimizing sequences that are bounded in V . However, an
interesting remark is that sequences bounded in V are also bounded in
BV (Ω). Therefore, they are compact for the BV − w∗ topology. Still, the
energy E is not lower semi-continuous for this topology. . . In this case, it
is classical to compute the relaxed energy.

Theorem 3.2.1 The relaxed functional of (3.14) for the BV−w∗ topology
is defined by:

E(u) =
1
2

∫
Ω

|u0 −Ru|2 dx+ (3.18)

+ λ

∫
Ω

φ(|∇u|) dx + λc

∫
Su

(u+ − u−)dH1 + λc

∫
Ω−Su

|Cu|

where c = lim
s→+∞

φ(s)
s .

Proof Let us define:

e(u) =


1
2

∫
Ω

|u0 −Ru|2dx + λ

∫
Ω

φ(|∇u|) dx if u ∈ V

+∞ if u ∈ BV (Ω)− V.

We note that e(u) = E(u) if u ∈ V . Since e(u) is not l.s.c. for the BV−w∗

topology we need to compute its l.s.c. envelope (for the BV−w∗ topology),
i.e. the greatest l.s.c. functional e(u) less than or equal to e(u). Since E(u)
is l.s.c. (see Section 2.2.3), we have e(u) ≥ E(u). Thus, we have to show
that e(u) ≤ E(u).
Thanks to [89], for each u ∈ BV (Ω) there exists a sequence un ∈ C∞(Ω)∩V
such that un −−−⇀

BV−w∗
u and E(u) = lim e(un). Therefore:

E(u) = lim e(un) ≥ inf
un ∈ BV (Ω)
un −−−⇀

BV−w∗
u

{ lim e(un) } = e(u)

which concludes the proof. �
In the sequel, we also assume that:

R : L2(Ω)→ L2(Ω) is a linear continuous operator, and R.1 �= 0 (3.19)
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The second assumption of (3.19) means that R does not annihilate the
constants which guarantees the BV -coercivity of E(u).

Theorem 3.2.2 Under assumptions (3.15)-(3.17) and (3.19), the mini-
mization problem:

inf
u∈BV (Ω)

E(u) (3.20)

where E is defined by (3.18), admits a unique solution u ∈ BV (Ω).

Proof The proof follows [245, 246].
Step 1: Existence
Let un a minimizing sequence for (3.20). Thanks to (3.16), we have:

|Dun| (Ω) =
∫
Ω

|∇un| dx +
∫

Sun

|u+n − u−
n | dH1 +

∫
Ω−Sun

|Cun| ≤M∫
Ω

|Run − u0|2 dx ≤M

where M denotes an universal strictly positive constant which may differ
from line to line. The first above inequality says that the total variation of
Dun is uniformly bounded. It remains to prove that |un|L1(Ω) is bounded.

Let wn = 1
|Ω|

∫
Ω

undx and vn = un−wn. Then
∫
Ω

vndx = 0 and Dvn = Dun.

Hence |Dvn| ≤ M . Using the generalized Poincaré-Wirtinger inequality ,
we get:

|vn|L2(Ω) ≤ K |Dvn| (Ω) ≤M where K is a constant (3.21)

Now, from the inequality
∫
Ω

|Run − u0|2 dx ≤M , we deduce:

|Rwn|L2(Ω)

[
|Rwn|L2(Ω)−2

(
|R| |vn|L2(Ω) + |u0|L2(Ω)

) ]
≤

≤ |Rwn|L2(Ω)

[
|Rwn|L2(Ω) − 2 |Run − u0|L2(Ω)

]
≤

≤
[
|Run − u0|L2(Ω) − |Rwn|L2(Ω)

]
≤

≤ |Rvn + Rwn − u0|2L2(Ω) =

= |Run − u0|2L2(Ω) ≤M

where |R| denotes the norm of the operator R. Let xn = |Rwn|L2(Ω) and
an = |R| |vn|L2(Ω) + |u0|L2 , then the above inequality writes as:

xn(xn − 2an) ≤M
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with 0 ≤ an ≤ |R|M + |u0|L2(Ω) ≤M . Therefore, we obtain:

0 ≤ xn ≤ an +
√
a2n + M ≤M

i.e.

|Run|L2(Ω) =
∣∣∣ 1
|Ω|

∫
Ω

undx
∣∣∣ |R.1|L2(Ω) ≤M

and thanks to (3.19), we obtain that
∣∣∣∫
Ω

undx
∣∣∣ is uniformly bounded.

Applying again the Poincaré-Wirtinger inequality, it results from (3.21):

|un|L2(Ω) =
∣∣∣vn +

1
|Ω|

∫
Ω

undx
∣∣∣
L2(Ω)

≤ |vn|L2(Ω) +
∣∣∣ 1
|Ω|

∫
Ω

undx
∣∣∣ ≤M.

Hence un is bounded in L2(Ω) and in L1(Ω) (Ω is bounded). Since |Dun| (Ω)
is also bounded, we get that un is bounded in BV (Ω).
Thus, up to a subsequence, there exists u in BV (Ω) so that un −−−⇀

BV−w∗
u

and Run −−−⇀
L2(Ω)

Ru.

Finally, from the weak semi-continuity property of the convex function
of measures and the weak semi-continuity of the L2-norm, we get∫

Ω

|Ru− u0|2 dx ≤ lim
n→+∞

∫
Ω

|Run − u0|2 dx∫
Ω

φ(Du) ≤ lim
n→+∞

∫
Ω

φ(Dun)

that is to say:

E(u) ≤ lim
n→+∞

E(un) = inf
v∈BV (Ω)

E(v)

i.e. u is minimum point of E(u).

Step 2: Uniqueness
Let u and v be two minima of E(u). From the strict convexity of φ we
easily get that Du = Dv, which implies that u = v + c. But as the func-

tion u→
∫
Ω

|Ru− u0|2dx is also strictly convex, we deduce that Ru = Rv,

therefore R.c = 0 and from (3.19) we conclude that c = 0 and u = v. �

3.2.4 Toward the numerical approximation
The next question is to characterize the solution of the problem (3.20) in
order to get a numerical approximation. If we try to write directly the
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Euler-Lagrange equations, the difficulty is to define variations on BV (Ω)
because of the presence of measures. Some interesting results can still be
obtained. For instance, it can be proved that the solution of (3.20) verify:

(i) R∗Ru−R∗u0 − λdiv
(
φ′(|∇u|)
|∇u| ∇u

)
= 0 in L2(Ω).

(ii) φ′(|∇u|)
|∇u|

∂u
∂N

= 0 on ∂Ω.

(iii) For all w ∈ BV (Ω) with Dw = ∇wdx+Dsw and Dsw = ρDsu+ µ′:∫
Ω

(Ru− u0)Rw dx +
∫
Ω

φ′(|∇u|)
|∇u| ∇u · ∇w dx +

∫
Ω

ρ|Dsu|+
∫
Ω

|µ′| ≥

≥ −
∫
Ω

div
(
φ′(|∇u|)
|∇u| ∇u

)
w dx

where ∇u is the approximate derivative of u. This is fully detailed in
Proposition 3.3.4 (Section 3.3.1) which involves similar operators. So, it
is mathematically uncorrect to use only (i) and (ii) to find a numerical
solution, which is usually done. However the condition (iii) remains difficult
to handle. . .

To circumvent this difficulty, we can consider a “close” energy for which
the Euler-Lagrange equation will be easier to implement. This can be done
through Γ-convergence. The general idea is the following (see also Figure
3.4):

• We construct a sequence of energy Eε so that for each ε > 0, the
associated minimization problem admits a unique minimum uε in
the Sobolev space W 1,2(Ω). Then, we prove, via the Γ-convergence
theory, that uε converges in L1(Ω)-strong to the minimum of E(u).

• Then, for ε > 0 fixed, we propose a suitable numerical scheme called
the half-quadratic algorithm for which we give a convergence result.
The idea is to introduce an additional variable, also called dual vari-
able, so that the extended functional Jε(u, b) has the same minimum
value as Eε(u). More precisely, we show that the minimizing se-
quence of Jε, (un, bn) is convergent and that un convergences for
the L1(Ω)-strong topology to uε.

This methodology has been originaly proposed with the total variation
(φ(s) = s) by Chambolle and Lions [64]. It has been then extended to
convex functions of measures and applied for several problems (see for
instance Sections 5.1.2 and 5.1.3). It is general in the sense that it is a way
to approximate the smoothing term which is usually the difficult point. Let
us present in detail this two-steps approach.
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L1-strong L2-strong

Γ-convergence

(un, bn)∃!uε ∈ W 1,2(Ω)∃!u ∈ BV (Ω)

minimizationapproximation

W1,2(Ω) × L2(Ω)W1,2(Ω)BV (Ω)

Eε(u) Jε(u, b)

A quadratic The half-quadratic

E(u)

Figure 3.4. Overview of the approach

A quadratic approximation

For a function φ verifying (3.15)-(3.17), let us define φε by

φε(s) =


φ′(ε)
2ε s2 + φ(ε)− εφ′(ε)

2 if 0 ≤ s ≤ ε

φ(s) if ε ≤ s ≤ 1/ε
εφ′(1/ε)

2 s2 + φ(1/ε)− φ′(1/ε)
2ε if s ≥ ε.

We have ∀ε, φε ≥ 0 and ∀s, lim
ε→0

φε(s) = φ(s). Now, let us define the
functional Eε by

Eε(u) =


1
2

∫
Ω

|Ru− u0|2 dx + λ

∫
Ω

φε(|∇u|)dx if u ∈W 1,2(Ω)

+∞ otherwise.
(3.22)

From now on, we suppose that φ and R satisfy hypotheses (3.15)-(3.17)
and (3.19). The existence and the uniqueness of uε are quite obvious and
derive from classical arguments.

Proposition 3.2.1 For each ε > 0, the functional Eε has a unique
minimum uε in W 1,2(Ω).

Now, to show that uε converges in L1(Ω)-strong to the unique minimum of
E(u), we are going to use the notion of Γ-convergence. In particular we use
the two following results that we recall for the convenience of the reader
(see Chapter 2, Theorems 2.1.7 and 2.1.8):

Let X be a topological space, endowed with a τ-topology and let Fh, F : X → R,
then
Theorem 2.1.7 .../... Let us assume that (Fh) is equi-coercive and Γ-converges to F .
Let us suppose that F has a unique minimum x0 in X. If (xh) is a sequence in X such
that xh is a minimum for Fh, then (xh) converges to x0 in X and (Fh(xh)) converges
to F (x0).
Theorem 2.1.8 .../... If (Fh) is a decreasing sequence converging to F pointwise, then
(Fh) Γ-converges to the lower semi-continuous envelop of F in X, denoted RτF .

Then, we have the following result:
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Theorem 3.2.3 The sequence uε from Proposition 3.2.1 converges in
L1(Ω)-strong to the unique minimum u of E(u) and Eε(uε) converges to
E(u).

Proof In our case X = L1(Ω). Let us denote by Ẽ(u) : BV (Ω) → −
R the

functional defined by

Ẽ(u) =

{
E(u) if u ∈W 1,2(Ω)
+∞ otherwise.

By construction, we observe that Eε(u) is a decreasing sequence converging
pointwise to Ẽ(u). Therefore Eε Γ-converges to the lower semi-continuous
envelope Rτ Ẽ of Ẽ. In order to apply the Theorem 2.1.7, we need to check
that E = Rτ Ẽ.

Step 1: E is l.s.c. in L1(Ω) with respect to the L1(Ω)-strong topology.
Indeed, let uh ∈ L1(Ω) such that uh −−−→

L1(Ω)
u as h→ +∞ and

lim
h→+∞

E(uh) < ∞. Then, as E(uh) is bounded, we deduce that uh is

uniformly bounded in BV (Ω). Thus, up to a subsequence, uh −−−⇀
BV−w∗

u

and
lim

h→+∞
E(uh) ≥ E(u), i.e. E is l.s.c. with respect to the L1(Ω) topology.

Step 2: Let us show that E = Rτ Ẽ.
From Step 1, it suffices to prove that for u in BV (Ω) there exists a se-
quence uh ∈W 1,2(Ω) such that uh −−−→

L1(Ω)
u and E(u) = lim

h→+∞
Ẽ(uh). Such

a sequence can be constructed by using classical approximation arguments
[106, 89].

Finally, applying the Γ-convergence result from Theorem 2.1.7, we con-
clude that uε, the unique minimum of Eε, converges in L1(Ω)-strong to the
unique minimum u of E. �

The half-quadratic minimization

Now, it remains to compute uε numerically. To do this, we can use the
Euler-Lagrange equation verified by uε:

R∗Ruε − div
(
φ′(|∇uε|)
|∇uε| ∇uε

)
= R∗u0. (3.23)

Equation (3.23) is a highly nonlinear equation. To overcome this difficulty
we propose the half-quadratic algorithm based on the following ”duality”
result [72, 115].

Proposition 3.2.2 Let φ : [0,+∞[→ [0,+∞[ be such that φ(
√
s) is con-

cave on ]0,+∞[ and φ(s) is non-decreasing. Let L and M be defined by



3.2. The energy method 81

L = lim
s→+∞

φ′(s)
2s and M = lim

s→0

φ′(s)
2s . Then there exists a convex and

decreasing function ψ : ]L,M ]→ [β1, β2] so that:

φ(s) = inf
L≤b≤M

(bs2 + ψ(b)) (3.24)

where β1 = lim
s→0+

φ(s) and β2 = lim
s→+∞

(
φ(s)− sφ′(s)

2

)
. Moreover, for

every s ≥ 0, the value b for which the minimum is reached is given by

b = φ′(s)
2s . The additional variable b is usually called the dual variable.

Proof Let θ(s) = −φ(
√
s). By construction θ(s) is convex. Thus, θ(s)

identifies with its convex envelope, i.e.

θ(s) = θ∗∗(s) = sup
s∗

(ss∗ − θ∗(s∗))

where θ∗(s∗) is the polar function of θ(s) defined as:

θ∗(s∗) = sup
s

(ss∗ − θ(s)).

Therefore:

φ(
√
s) = inf

s∗ (−ss∗ + θ∗(s∗)).

Let b = −s∗ and s =
√
s, then φ writes as:

φ(s) = inf
b

(bs2 + θ∗(−b)) (3.25)

that gives the first part of the theorem with ψ(b) = θ∗(−b). Now,

θ∗(−b) = sup
s

(−sb− θ(s))

and, since the application s→ −sb−θ(s) is concave, the supremum is given
by the zero of its derivative:

−b− θ′(s) = 0

that is to say b = φ′(
√
s)

2s . As the application s→ φ′(s)
2s is non-increasing,

it is easy to see that the infinimum in (3.24) is achieved for b ∈ [L, M ].
The expressions of β1 and β2 follow immediately. �

Remark It is interesting to observe that Proposition 3.2.2 applies for
convex and nonconvex functions φ. But, in all cases the function ψ ap-
pearing in (3.24) is always convex. We list in table 3.1 three examples of
functions φ and their corresponding functions ψ.
We mention that the first one is often called hypersurface minimal function.

The last column presents scaled versions of φ
′(s)
s so that they are close to

0.1 for s = 1 (see also Figure 3.5). This permits to better compare them
from a numerical point of view. �
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φ(s) convex? ψ(b) φ′(s)
2s Scaled φ′(s)

2s
1 2

√
1 + s2 − 2 Yes b + 1

b
1√

1 + s2
1√

1 + (10s)2

2 log(1 + s2) No b− log(b)− 1 1
1 + s2

1
1 + (3s)2

3 s2

1 + s2
No b− 2

√
b + 1 1

1 + s2
2

1
1 + (3s/2)2

2

Table 3.1. Examples of φ functions

3
2
1

Figure 3.5. Functions φ′(s)
2s with different choices of φ (see table 3.1)

Now, let us look at how we may apply Proposition 3.2.2 for solving the
problem:

inf
u

{
Eε(u) =

1
2

∫
Ω

|Ru− u0|2 dx + λ

∫
Ω

φε(|∇u|)dx, u ∈W 1,2(Ω)
}
.

Let us assume that φε fulfills the hypotheses of Proposition 3.2.2. Then
there exists Lε, Mε and ψε so that:

Eε(u) =
1
2

∫
Ω

|Ru− u0|2 dx + λ

∫
Ω

inf
Lε≤b≤Mε

(b |∇u|2 + ψε(b)) dx.
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Supposing that we can invert the infinimum with respect to b and the
integral (this can be justified), we have:

inf
u

Eε(u) = inf
u

inf
b

[1
2

∫
Ω

|Ru− u0|2 dx + λ

∫
Ω

(b |∇u|2 + ψε(b))dx
]

= inf
b

inf
u

[1
2

∫
Ω

|Ru− u0|2 dx + λ

∫
Ω

(b |∇u|2 + ψε(b))dx
]
.

If we introduce the functional:

Jε(u, b) =
1
2

∫
Ω

|Ru− u0|2 dx + λ

∫
Ω

(b |∇u|2 + ψε(b)) dx

then:

☛ Jε is convex in u and for each u fixed in W 1,2(Ω) it is convex in b.

Of course, Jε(u, b) is not convex in the pair (u, b). So, this leads to the
alternate semi-quadratic algorithm described in Table 3.2. To illustrate
this, we display in Figure 3.6 the obtained result on the “Borel building”
image. The sequence of functions bn(x) can be seen as an indicator of

original noisy image result

Figure 3.6. Result with the half-quadratic minimization (compare with Figure
3.3: noise is removed while discontinuities are kept)

contours. If φ verifies the edge-preserving hypotheses: lim
s→+∞

φ(s)
2s = 0 and

lim
s→0+

φ(s)
2s = 1, then

• If bn(x) = 0 then x belongs to a contour.
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For (u0, b0) given

• un+1ε = argmin
u

Jε(u, bn). Since the problem is convex (and

quadratic), this equivalent to solve:{
R∗Ru− div(bn∇u) = 0 in Ω
bn ∂u
∂N

= 0 on ∂Ω.
(3.26)

Once discretized, the linear system can be solved with a
Gauss-Seidel for example.

• bn+1 = argmin
b

Jε(un+1ε , b). According to Proposition 3.2.2,

the minimum in b is reached for

bn+1 =
φ′ (∣∣∇un+1ε

∣∣)
2
∣∣∇un+1ε

∣∣ . (3.27)

• Go back to first step until convergence.

The limit (u∞
ε , b∞) is the solution (see Theorem 3.2.4)

Table 3.2. Presentation of the half-quadratic algorithm also called ARTUR (see
[70, 72]). On a numerical point of view, the only difficulty is the discretization of
the term div(b∇u) in (3.26) where b is given and defined by (3.27). Several possi-
bilities can be considered. This is detailed in the Section A.3.2 of the Appendix.

• If bn(x) = 1 then x belongs to an homogeneous region.

So the property of this iterative algorithm is to detect and take into account
progressively the discontinuities of the image. This is illustrated in Figure
3.7 where the initial condition was such that (u0, b0) ≡ (0, 1).

Now, as far as the convergence of this algorithm is concerned, we have:

Theorem 3.2.4 If φε and R satisfy (3.15)-(3.17) and (3.19), and if φε
fulfills the assumptions of Proposition 3.2.2, then the sequence (un, bn) is
convergent in L2(Ω)-strong×L∞(Ω)-weak. Moreover un converges strongly
in L2(Ω) (and weakly in W 1,2(Ω)) to the unique solution uε of Eε.

We do not reproduce here the proof of Theorem 3.2.4. It is rather long and
technical. For more details, we refer the reader to [64, 17].

Remarks

• The only assumption ensuring that the semi-quadratic algorithm
works is φ(

√
s) concave. That is to say, we may even apply this algo-

rithm to nonconvex functions φ. Of course, we will be able to give a
convergence result only for convex functions.
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u0

n = 0 n = 1 n = 4 n = 15

Figure 3.7. Illustration of the behaviour of half-quadratic algorithm on a synthetic
image u0. On the right-hand side, four iterations of the algorithm are displayed
(n = 0, 1, 4, 15). First row is un while the second one is bn. Initialization is u0 ≡ 0
and b0 ≡ 1. This shows the interpretation of b as an edge detector which becomes
more precise as time evolves.

• The half-quadratic approach can also be realized with another duality
result based on the Legendre transform. This has been studied in
[16, 71].

�

3.2.5 Some invariances and the role of λ

In this section we set some elementary properties to highlight the invariance
and the ”scale” nature of the parameter λ in front of the regularization term
in E(u):

E(u) =
1
2

∫
Ω

|u− u0|2 dx + λ

∫
Ω

φ(|∇u|)dx.

Here we assume that u0 ∈ L2(Ω) and that φ verify hypotheses (3.15)-(3.17).
Let u(x, λ) be the unique minimizer of E(u). To simplify, we suppose that

u(., λ) ∈W 1,1(Ω) ∩ L2(Ω).

Let us define the operator Tλ : L2(Ω) → L2(Ω) by Tλu0 = u(λ) where
u(λ) = u(x, λ). By definition, we have for all v ∈W 1,1(Ω) ∩ L2(Ω)

1
2

∫
Ω

|u(x, λ)− u0(x)|2 dx+λ
∫
Ω

φ(|∇u(x, λ)|)dx ≤ (3.28)

≤ 1
2

∫
Ω

|v(x)− u0(x)|2 dx + λ

∫
Ω

φ(|∇v(x)|) dx.
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Moreover, u(x, λ) necessarily verifies the Euler-Lagrange equation:
u(x, λ)− u0(x) = λ div

(
φ′ (|∇u(x, λ)|)
|∇u(x, λ)| ∇u(x, λ)

)
in Ω

φ′(|∇u(x, λ)|)
|∇u(x, λ)|

∂u
∂N

(x, λ) = 0 on ∂Ω.
(3.29)

We begin by carrying out some invariance properties which can be easily
proved. These invariances with respect to some image transformation Q
express the fact that Tλ and Q can commute.

(A1) Gray level invariance:
Tλ0 = 0 and Tλ(u0 + c) = Tλu0 + c, for every constant c.

(A2) Translation invariance:
Define the translation τh by (τh)(f)(x) = f(x + h),
then Tλ(τhu0) = τh(Tλu0).

(A3) Isometry invariance:
Let us denote (Rf)(x) = f(Rx) for any isometry of R2 and function
f from R2 to R. Then Tλ(Ru0) = R(Tλu0). Of course, this invariance
is true because the regularization function depends on the norm of
∇u.

Now, let us examine some properties of the correspondence:

λ→ Tλu0(x) = u(x, λ).

Before proving them, it is interesting to do some quantitative tests on the
“Borel building” image. From these experiments, we can observe that

• The SNR reaches a maximum rapidely and decreases fastly (see
Figure 3.8).

• |u(., λ)|L2(Ω) seems to be constant.

• u(., λ), the mean of u, is constant.

•
∫
Ω

|u(x, λ)− u0| dx tends to zero, which means that u converges in

the L1(Ω)-strong topology to the average of the initial data.

Let us see if we can prove some of theses empiric properties.

Property 1 The L2 norm of u(., λ) is bounded by a constant independant
of λ.

Proof By letting v = 0 in (3.28) and remembering that φ(0) = 0, we get:∫
Ω

|u(x, λ)− u0|2dx ≤
∫
Ω

|u0|2dx
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15

10

5

SNR

10050 150 λ

Figure 3.8. SNR as a function of λ. After being optimal, high values of λ smooth
too much the image

from which, we deduce:∫
Ω

|u(x, λ)|2dx ≤ 2
∫
Ω

|u0|2dx

i.e. the L2-norm of u is bounded by a constant independent of λ. �

Property 2 For every λ, we have
∫
Ω

u(x, λ)dx =
∫
Ω

u0(x)dx.

Proof From (3.29), we get∫
Ω

u(x, λ)dx =
∫
Ω

u0(x)dx + λ

∫
Ω

div
(
φ′(|∇u(x, λ)|)
|∇u(x, λ)| ∇u(x, λ)

)
dx.

But thanks to the Green formula and the boundary condition in (3.29):∫
Ω

div
(
φ′(|∇u(x, λ)|)
|∇u(x, λ)| ∇u(x, λ)

)
dx =

∫
∂Ω

φ′ (|∇u(x, λ)|)
|∇u(x, λ)|

∂u

∂N
dΓ = 0

which concludes the proof. �

Property 3 u(., λ) converges in L1(Ω)-strong to the average of the initial
data.

Proof Again from (3.28), letting v = 0, we obtain:

0 ≤ λ

∫
Ω

φ(|∇u(x, λ)|dx ≤ 1
2

∫
Ω

u20(x) dx.

Therefore:

0 ≤ lim
λ→+∞

∫
Ω

φ(|∇u(x, λ)|dx ≤ lim
λ→+∞

1
2λ

∫
Ω

u20(x)dx = 0
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i.e. lim
λ→+∞

∫
Ω

φ(|∇u(x, λ)|)dx = 0. Since φ is strictly convex with linear

growth, we easily deduce from the above equality that:

lim
λ→+∞

|∇u(., λ)|L1(Ω) = 0. (3.30)

On the other hand, thanks to the Poincaré-Wirtinger inequality:∫
Ω

|u(x, λ)− u0|dx ≤ cte |∇u(x, λ)|L1(Ω) with u0 =
1
Ω

∫
Ω

u0(x, λ) dx.

Thus, with (3.30), lim
λ→+∞

∫
Ω

|u(x, λ)− u0|dx = 0, i.e. u(., λ) converges in

L1(Ω)-strong to the average of the initial data. �

This latter property shows that λ can be interpreted as a scale para-
meter. Starting from the initial image u0 we construct a family of images
{u(x, λ)}λ>0 of gradually simplified (smoothed) versions of it. This scale
notion, also called scale space theory, plays a central role in the image
analysis and has been investigated by many authors [28, 185, 4, 148, 251].
As we will see in the Section 3.3, ”scale space ideas” are strongly present
in the PDE theory.

3.2.6 Some remarks in the nonconvex case.
As noticed at the beginning of Section 3.2.3 a ”good” edge-preserving
behaviour for φ would be such that:

φ(s) ≈ cs2 as s→ 0+ (3.31)
lim

s→+∞φ(s) ≈ γ> 0. (3.32)

Unfortunately, conditions (3.31) and (3.32) imply that φ is nonconvex. Of
course, there is no longer existence of a solution to the minimization prob-
lem and one cannot prove any convergence result. Netherveless, potentials
satisfying (3.31)-(3.32) like:

φ(s) =
s2

1 + s2

seem to provide better (sharper) results than convex potentials with linear
growth. . . This is illustrated in Figures 3.9 and 3.10. So what can be said
for this case?
First of all we have just mentioned that using a nonconvex potential yields
to an ill-posed problem. This may be not straightforward indeed. Let us
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clear image image u0 cross-section of u0

Figure 3.9. Clear image (without noise), original noisy image (obtained by adding
a Gaussian noise of variance 20) and a cross-section of it passing through the
center of the image.

φ convex
(φ(s) =

√
1 + s2 − 1)

φ nonconvex(
φ(s) = s

2

1 + s
2

)

result u cross-section of u dual variable b

Figure 3.10. Results obtained using a convex and a nonconvex φ function. We
display the result u, a cross-section passing through the center of the image
and the dual variable b. One can observe that nonconvex φ functions allow to
reconstruct sharper images.

prove it for the following energy:

E(u) =
∫
Ω

∣∣u− u20
∣∣ dx + λ

∫
Ω

|∇u|2
1 + |∇u|2 dx.

The function φ(s) = s2

1 + s2
satisfies (3.31) and (3.32) with γ = 1. We are

going to show that E(u) has no minimizer. We assume that u0 ∈ L∞(Ω).

Proposition 3.2.3 If u0(x) is not a constant, the functional E(u) has no
minimizer in W 1,2(Ω) and inf

{
E(u); u ∈W 1,2(Ω)

}
= 0.

Proof For clarity’s sake, we prove the proposition in the one-dimensional
case: Ω =]a, b[. The same proof goes for N ≥ 2. We follow the proof given
by Chipot et al [75].
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By density, we always may find a sequence of step functions un such that:

|un| ≤ |u0|
L∞ , lim

n→∞ |un − u0|L2(Ω) = 0.

In fact, we can find a partition a = x0 < x1 < · · · < xn = b such that
un is constant on each interval (xi−1, xi), hn = max

i
(xi−1 − xi) < 1 with

lim
n→∞hn = 0. Let us denote σi = xi − xi−1. Next, we define a sequence of
continuous functions un by:

un(x) =

un(x) if x ∈ [xi−1, xi − σ2i ]
(un,i+1 − un,i)

σ2i
+ un,i if x ∈ [xi − σ2i , xi]

where un,i = un(x)/]xi−1,xi[. It is easy to check that:

|un − un|L2(Ω) ≤ 2 |u0|2L∞

n∑
i=1

σ2i ≤ 2 |u0|2L∞ (b− a)hn.

Therefore lim
n→∞ |un − un|L2(Ω) = 0. Since:

lim
n→∞ |un − u0|L2(Ω) ≤ lim

n→∞ |un − un|L2(Ω) + lim
n→∞ |un − u0|L2(Ω)

we also deduce that lim
n→∞ |un − u0| = 0. Moreover:

b∫
a

u′
n
2(x)

1 + u′
n
2(x)

dx =
∑
i

xi∫
xi−σ2

i

(un,i+1 − un,i)2

σ2i + (un,i+1 − un,i)2
dx ≤

≤
∑
i

σ2i ≤ hn
∑
i

σi = hn(b− a)

thus:

lim
n→∞

b∫
a

u′
n
2(x)

1 + u′
n
2(x)

dx = 0

and finally:

0 ≤ inf
u∈W 1,2(Ω)

E(u) ≤ lim
n→∞E(un) = 0

i.e.

inf
u∈W 1,2(Ω)

E(u) = 0.
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Now, if there exists a minimizer u ∈W 1,2(Ω), necessarily E(u) = 0, which
implies: 

b∫
a

|u− u0|2 dx= 0 ⇔ u = u0 a.e.

b∫
a

u′2

1 + u′2 dx = 0 ⇔ u′ = 0 a.e.

The first equality is only possible if u0 ∈W 1,2(Ω) (since u ∈W 1,2(Ω)) and
in this case the second equality implies u′

0 = 0, which is only possible if u0
is a constant. Therefore excluding this trivial case, E(u) has no minimizer
in W 1,2(Ω). �

☛ By density arguments, there is no hope to obtain the existence of a
minimizer for E(u) in any reasonable space.

Then what can we do? A possibility is to regularize the functional E(u)
either by adding constraints, or by adding a supplementary term. This lat-
ter idea has been investigated by Chipot et al [75]. They introduced the
following energy:

Eε(u) =
∫
Ω

|u− u0|2 dx + λ

∫
Ω

|∇u|2
1 + |∇u|2 dx + ε

∫
Ω

|∇u|2 dx.

Eε(u) is convex for ε ≥ λ
4 and nonconvex for ε < λ

4 . The former case is
not interesting since it is too regularizing and not edge-preserving. Though
Eε(u) is nonconvex for ε < λ

4 , it has a quadratic growth at infinity. This
fact allows us to use convexification tools that permit to obtain the exis-
tence of a minimizer for Eε(u) in the one-dimensional case [75].

✺ For dimensions greater than one, the problem is quite open. The be-
haviour of the minimizing sequences is also a challenging problem which
is closely related to the Perona-Malik anisotropic diffusion, as we shall see
further.

Another attempt would be to work directly with the discrete version of
E(u). For example, we mention a recent paper by Rosati [212] who studies
the asymptotic behaviour of a discrete model related to E(u). In his paper,

Rosati chooses φ(s) = s2

1 + µs2
and with the condition that µ is propor-

tional to the mesh-size h, he proves that the discrete model Γ-converges to
a modified Mumford-Shah functional as h tends to 0. This is surely a wise
approach since if we make such efforts to introduce nonconvex potentials,
it is because they give very good numerical results in restoration problems.
Discrete problems have generally solutions even in the nonconvex case. It
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should be very interesting to investigate better the relationships between
discrete and continuous models.

We also mention that choosing φ(s) = log(1 + s2) leads also very good
results and is often used in experiments. This is again another situation
since φ is nonconvex but with sublinear growth at infinity. This would be
also very interesting to understand the problem from a theoretical point of
view.

3.3 PDE-based methods

In the previous section, we have considered a class of approach which con-
sists in setting the best energy according to our needs. The equations that
were to be solved numerically were the Euler-Lagrange equations associ-
ated to the minimization problems. Another possibility is to work directly
on the equations, without thinking of any energy. This is the aim of this
section to present some classical PDE-based methods for restoration, try-
ing to follow the chronological order in which they appeared in literature.
These models can be formally written in the general form:

∂u
∂t

(t, x) + F (x, u(t, x),∇u(t, x),∇2u(t, x))
(a second order differential operator)

= 0 in Ω

∂u
∂N

(t, x) = 0 on ∂Ω (Neumann boundary condition)

u(0, x) = u0(x) (initial condition)

(3.33)

where u(t, x) is the restored version of the initial degraded image u0(x).
As usual ∇u and ∇2u stand respectively for the gradient and the Hessian
matrix of u with respect to the space variable x. Let us comment.

One of the main difference with the equations encountered up to now is
the presence of the parameter t. Starting from the initial image u0(x) and by
running (3.33) we construct a family of functions (i.e. images) {u(t, x)}t>0
representing successive versions of u0(x). As t increases we expect that
u(t, x) changes into a more and more simplified image, or in other words
structures for large t constitute simplifications of corresponding structures
at small t. Moreover no new structure must be created. For these reasons
t is called a scale variable.

As we will see further, the choice of F in (3.33) is determining since we
would like to attain two goals that may seem a priori contradictory. The
first is that u(t, x) should represent a smooth version of u0(x) where the
noise has been removed. The second is to be able to preserve some features
such as edges, corners, T-junctions, which may be viewed as singularities.

Finally, a natural question is how to classify PDE-based models. The
answer is inevitably subjective. Maybe, the simplest way is to choose
the classical PDEs classification, namely forward parabolic PDEs, back-
ward parabolic PDEs and hyperbolic PDEs corresponding respectively to
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smoothing, enhancing and smoothing-enhancing processes. Let us follow
this classification.

3.3.1 Smoothing PDEs
The heat equation

The oldest and most investigated equation in image processing is probably
the parabolic linear heat equation [28, 4, 148]:{

∂u
∂t

(t, x)−∆u(t, x) = 0 x ∈ R2, t ≥ 0
u(0, x) = u0(x).

(3.34)

Notice that we have here x ∈ R2. In fact, we consider that u0(x) is primarily
defined on the square [0, 1]2. By symmetry we extend it to C = [−1,+1]2

and then in the whole R2 by periodicity (see Figure 3.11). This way of ex-
tending u0(x) is classical in image processing. The motivation will become
clearer in the sequel. If u0(x) extended in this way satisfies in addition∫
C

|u0(x)| dx < +∞, we will say that u0 ∈ L1
#(C).

u0
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Figure 3.11. Extension of u0 primarily defined on [0, 1]2 to R2 by symmetry and
periodicity

The motivation to bring out such an equation came from the following
remark: solving (3.34) is equivalent to carry out a Gaussian linear filtering
which was widely used in signal processing. More precisely, let u0 be in
L1
#(C), then the explicit solution of (3.34) is given by:

u(t, x) =
∫
R2

G√
2 t(x− y)u0(y) dy = (G√

2 t ∗ u0)(x) (3.35)
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where Gσ(x) denotes the two-dimensional Gaussian kernel:

Gσ(x) =
1

2π σ2
exp

(
−− |x|

2

2σ2

)
. (3.36)

The convolution by a positive kernel is the basic operation in linear image
filtering. It corresponds to a low-pass filtering (see Figure 3.12). This for-
mula gives the correspondance between the time t and the scale parameter
σ of the Gaussian kernel.

σ = 0 σ = 5 σ = 20

Figure 3.12. Examples of the test image at different scales

The action of the Gaussian kernel can also be interpreted in the frequency
domain. Let us define the Fourier transform:

F [f ](w) =
∫
R2

f(x) exp (−i w · x) dx

where w ∈ R2. It is well-known that:

F [Gσ ∗ f ](w) = F [Gσ](w)F [f ](w)

and since:

F [Gσ](w) = exp

(
− |w|

2

2/σ2

)
then:

F [Gσ ∗ f ](w) = exp

(
− |w|

2

2/σ2

)
F [f ](w)

i.e. the convolution by a Gaussian is a low-pass filter that inhibits high
frequencies (oscillations in the space domain).

Remark As we can observe in Figure 3.12, the smoothing is isotropic:
it does not depend on the image and it is the same in all directions. In
particular, edges are not preserved.
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D

N
D

1

2

T
In fact, if we introduce two arbitrary orthonormal direc-

tions D1 and D2, we have ∆u = uD1D1 + uD2D2 . If we
rewrite this equality with the directions D1 = N = ∇u

|∇u|
and D2 = T with T ·N = 0, |T | = 1, then ∆u = uNN+uTT .
The isotropy means that the diffusion is equivalent in the
two directions.

As it will be shown in the sequel, most of the diffusion operators can be
decomposed as a weigthed sum of uNN and uTT [153]. �

To set the properties satisfied by u(t, x), we can either use the fact that u
is convolution product or we can deduce these properties from the general
theory of uniformly parabolic equation. Choosing the latter approach, we
summarize below some of the main properties of u(t, x) (see [130] for the
proofs).

Proposition 3.3.1 Let u0 be in L1
#(C) and define u(t, x) by (3.35). Then

u(t, x) satisfies for all t > 0 and x ∈ R2, the heat equation with initial value
u0:

∂u

∂t
(t, x) = ∆u(t, x) and lim

t→0

∫
C

|u(t, x)− u0(x) | dx = 0

u(., t) ∈ L1
#(C) and u ∈ C∞(R2 × (0, T )) for all T > 0.

Moreover, if t1 is any positive real number, there exists a constant c(t1) so
that for t ∈ [ t1,+∞ [

sup
x∈R2

|u(t, x) | ≤ c(t1) |u0 |L1
#(C) . (3.37)

If u0 ∈ L∞
# (C) then we have a maximum principle

inf
x∈R2

u0(x) ≤ u(t, x) ≤ sup
x∈R2

u0(x). (3.38)

u(t, x) given by (3.35) is the unique solution of the heat equation satisfying
conditions (3.37) and (3.38).

Remark The uniqueness of u in Proposition 3.3.1 has been obtained in the
class of periodic functions. If we drop this assumption we have to replace
it by another one. It is well-known that the heat equation ∂u

∂t −∆u = 0 in
R2× (0, T ), u(0, x) = 0 has infinitely many solutions. Each of the solutions
besides u ≡ 0 grows very rapidly as |x | → +∞. To get an uniqueness result
in this case, it sufficient to impose that u satisfy the growth estimate:

|u(t, x) | ≤ Aea |x|2 ,

for some constants A and a > 0. We refer to [105] for more details. �

Now, let Tt, t > 0, be the family of scale-operators from L1
#(C) into
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L1
#(C) defined by (Tt u0)(x) = u(t, x), where u(t, x) is the unique solution

of (3.34) given by (3.35). Tt is a family of linear operators. We list below
some invariance properties of Tt which can be easily proved by remarking

that Gσ(x) > 0,
∫
R2

Gσ(x) dx = 1, and by using the periodicity of u0 and

classical theorems of integration theory such as the Fubini’s Theorem:

(A1) Gray level shift invariance:
Tt(0) = 0 and Tt(u0 + c) = Tt u0 + c, for any constant c.

(A2) Translation invariance:
Tt(τh u0) = τh (Tt u0), where τh is the translation τh(f)(x) = f(x+h).

(A3) Scale invariance:
Tt(Hλ u0) = Hλ(Tt′ u0) with t′ = t λ2, where (Hλf)(x) = f(λx).

(A4) Isometry invariance:
Tt(Ru0) = R(Tt u0), for any orthogonal transformation R of R2

where (Rf)(x) = f(Rx).

(A5) Conservation of average value:

Tt(M u0) = M(Tt u0), where Mf =
∫
C

−f(x) dx.

(A6) Semi-group property:
Tt+s u0 = Tt (Ts u0).

(A7) Comparison principle:
If u0 ≤ v0 then (Ttu0) ≤ (Ttv0).

These invariance properties are quite natural from an image analysis point
of view. For example the gray level shift invariance means that the analysis
must be independent of the range of the brightness of the initial image. The
other geometric properties traduce the invariance of image analysis under
the respective positions of percipiens and perceptum.

Are these properties sufficient to ensure correct qualitative properties
for Ttu? The answer is no. Though the heat equation has been (and is)
successfully applied in image processing, it has really some drawbacks: it is
too smoothing. In fact, whatever the regularity of the initial data, u(t, x) is
C∞ in x, ∀t > 0: edges are lost. We sometimes say that the heat equation
has infinite speed of propagation. Of course, this instantaneous regularity
is not a desirable property since in particular edges can be lost or severely
blurred.

Nonlinear diffusion

We are going to describe models that are generalizations of the heat equa-
tion. What we would like to do is to find models (if possible, well-posed
models) removing the noise while preserving the edges at best. By now,
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the domain image will be a bounded open set Ω of R2. Let us consider the
following equation initially proposed by Perona and Malik [209]:

∂u
∂t

= div ( c(|∇u|2) ∇u) in Ω× (0,T)
∂u
∂N

= 0 on ∂Ω× (0, T )
u(0, x) = u0(x) in Ω

(3.39)

with c(s) : [ 0, +∞[→ ] 0, +∞[. Before going further, we can remark that
if we choose c ≡ 1, then we recover the heat equation. Now, imagine that
c(s) is a decreasing function satisfying c(0) = 1 and lim

s→+∞ c(s) = 0 . With

this choice:

• Inside the regions where the magnitude of the gradient of u is weak,
equation (3.39) acts like the heat equation resulting in an isotropic
smoothing.

• Near the region boundaries where the magnitude of the gradient is
large, the regularization is “stopped” and the edges are preserved.

Indeed, we can be more precise if we interpret this divergence operator using
the directions T , N associated to the image (as for (3.7)-(3.8)). By devel-
oping formally the divergence operator, we get (with the usual notations
ux,uxx, ...)

div ( c(|∇u|2)∇u) =

=2 (u2xuxx + u2yuyy + 2uxuyuxy) c′(| ∇u |2) + c(| ∇u |2) (uxx + uyy).

If we define b(s) = c(s) + 2sc′(s), then (3.39) reads as

∂u

∂t
(t, x) = c(|∇u|2) uTT + b(|∇u|2) uNN . (3.40)

Therefore (3.40) may be interpreted as a sum of a diffusion in the T -
direction plus a diffusion in the N -direction, the functions c and b acting as
weighting coefficients. Of course, since N is normal to the edges it would be
preferable to smooth more in the tangential direction T than in the normal

direction N . Thus, we impose lim
s→+∞

b(s)
c(s) = 0, or equivalently, according

to the definition of b:

lim
s→+∞

s c′(s)
c(s)

= −1
2
. (3.41)

If we restrict ourselves to functions c(s) > 0 with power growth then the
above limit implies that c(s) ≈ 1√

s
as s → +∞. The question now is to

know whether (3.39) is well-posed or not.
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Firstly, we have to examine the parabolicity of equation (3.39). To do
this, we observe that (3.39) can be written as:

∂u

∂t
= a11(| ∇u |2)uxx + 2 a12(| ∇u |2)uxy + a22(| ∇u |2)uyy (3.42)

with

a11(| ∇u |2) = 2u2x c
′(| ∇u |2) + c(| ∇u |2)

a12(| ∇u |2) = 2ux uy c′(| ∇u |2)
a22(| ∇u |2) = 2u2y c

′(| ∇u |2) + c(| ∇u |2)

and (3.42) is parabolic if and only if
∑

i=1,2
aij(| ∇u |2) ξi ξj ≥ 0, ∀ξ ∈ R2.

An easy algebräic calculation shows that this condition reduces to the only
inequality:

b(s) > 0.

To summarize, the assumptions imposed on c(s) are:
c : [ 0, +∞ [→ ] 0, +∞ [ decreasing
c(0) = 1, c(s) ≈ 1√

s
as s→ +∞

b(s) = c(s) + 2 s c′(s) > 0.

(3.43)

A canonical example of function c(s) verifying (3.43) is c(s) = 1√
1 + s

.

☛ With the assumption the (3.43) the nonlinear diffusion model (3.39)
acts as a forward parabolic equation smoothing homogeneous regions while
preserving edges.

Remark If we release the condition b(s) > 0, by supposing for exam-
ple that for some s0, b(s) > 0 for s ≤ s0, and b(s) < 0 for s > s0 then
(3.39) changes into a backward parabolic equation for |∇u|2 > s0, or equiv-
alently into a smoothing-enhancing model. We will come back latter on
this model (see Sectionsec:Rest:smoothing-enhancing). �

What can be said concerning the existence of a solution for (3.39)? Un-
fortunately, with the assumption (3.43) we cannot directly apply general
results for parabolic equations. The difficulty comes from the highly degen-
erated behaviour of (3.39) due to the vanishing condition c(s) ≈ 1√

s
as s

tends to infinity. As a matter of fact, one can find some classical results for
equations of the form:

∂u

∂t
− div a(t, x, u,∇u) = 0
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where the function a satisfies the structure conditions:

a(t, x, u,∇u) .∇u ≥ α0 | ∇u |p − β0(t, x) (3.44)

| a(t, x, u,∇u) | ≤ α1 | ∇u |p−1 + β1(t, x) (3.45)

a.e. (t, x) with p > 1; (αi)i=0,1 are given constants and (βi)i=0,1 are given
non-negative functions satisfying some integrability conditions [97]. Here
we have p = 1 . . .

☛ In fact the difficulties to get an existence result for (3.39) have to be
compared to the ones encountered in Section 3.1.2 for variational problems.
We saw that a linear growth assumption on the potential required enlarg-
ing the problem and working on the space BV (Ω) of functions of bounded
variation.

A well-adapted framework to solve (3.39) with assumptions (3.43) is
the nonlinear semi-group theory and the notion of maximal operator. We
only recall some basic definitions referring the reader to [50, 60] for the
complete theory. Let (H,< . >) be an Hilbert space and A : H → P(H)
an operator where P(H) is the set of subsets of H. The domain of A is the
set D(A) = {x ∈ H ; Ax �= ∅} and the range of A is R(A) =

⋃
x∈H

Ax. If for

any x ∈ H the set Ax contains more than one element, we say that A is
multivalued. The graph of A is the set G(A) = {(x, y) ∈ D(A)×H; y ∈ Ax}.
Definition 3.3.1 (monotone operator) A : H → P(H) is said
monotone if and only if:

∀x1, x2 ∈ D(A) : 〈Ax1 −Ax2, x1 − x2〉H×H ≥ 0

or ∀y1 ∈ Ax1, ∀y2 ∈ Ax2 : 〈y1− y2, x1− x2〉H×H ≥ 0 if A is multivalued.

The set A of monotone operators can be ordered by a graph inclusion. We
will say that A1 ≤ A2 if and only if G(A1) ⊂ G(A2), which is equivalent to
A1(x) ⊂ A2(x) ∀x ∈ H. It can be shown that every totally ordered subset
of A has an upper bound. Then, thanks to the well-known Zorn Lemma
[216], A contains at least one maximal element, which is called a maximal
monotone operator. Accordingly, a monotone operator A : H → P(H) is
maximal monotone if and only if G(A) ⊂ G(B) implies A = B, where
B : H → P(H) is an arbitrary monotone operator.

In practice, to show that a monotone operator is maximal, it is easier to
use the following characterizing property:

Proposition 3.3.2 Let A : H → P(H), A monotone, then A is maximal
monotone if and only if:

(i) The operator (A+I) is surjective, i.e. R(A+I) = H (I is the identity
operator).

or
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(ii) ∀λ > 0 (I + λA)−1 is a contraction on the whole H.

Example Let ϕ : H →]−∞,+∞] convex, proper (ϕ �= +∞).
Then for any x ∈ H, the subdifferential of ϕ at x defined as:

∂ϕ(x) = {y ∈ H ; ∀ξ ∈ H, ϕ(ξ) ≥ ϕ(x) + 〈y, ξ − x〉H×H}

is monotone. It can be proved [50] that if ϕ is a lower semi-continuous
proper convex function then ∂ϕ(x) is maximal monotone. �

The main interest of this notion, in our context, is that it permits to solve
certain nonlinear evolution PDEs:

Proposition 3.3.3 [50] Let A : H → P(H), A maximal monotone, and
u0 ∈ D(A), then there exists a unique function u(t) : [0,+∞[→ H such
that: {

0 ∈ du
dt

+ Au(t)
u(0) = u0.

(3.46)

So, if we want to solve equations like (3.46) we only have to check, accord-
ing to Proposition 3.3.2, that (A + I) is surjective. Thus, the study of an
evolution equation reduces to the study of a stationary one which repre-
sents a big advantage. Let us apply these results to (3.39). Our aim is to
show that the divergence operator in (3.39):

Au = −div ( c (|∇u |2)∇u)

is maximal monotone. As suggested before, a classical and convenient way
is to identify A with the subdifferential of a convex l.s.c. functional. Let
Φ(t) be the function defined by:

Φ(s) =

s∫
0

τ c(τ2) dτ + 1.

We have Φ(0) = 1, Φ′(s) = s c(s2) and if c(s) satisfies (3.43) then Φ(s) is
strictly convex. Let us set:

J(u) =


∫
Ω

Φ(| ∇u(x) |) dx if u ∈W 1,1(Ω)

+∞ if u ∈ L2(Ω)−W 1,1(Ω).
(3.47)
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We can easily verify that Au = div
(

Φ′(|∇u|)
|∇u| ∇u

)
identifies with the

subdifferential of J at u, ∂J(u), with:

Dom(A) =
{
u ∈W 1,1(Ω), div

(
Φ′(|∇u|)
|∇u| ∇u

)
∈ L2(Ω),

Φ′(|∇u|)
|∇u|

∂u

∂N
= 0 on ∂Ω

}
.

Unfortunately J(u) is not lower semi-continuous on L2(Ω) and then A is
not maximal monotone. To overcome this difficulty, like in the variational
case, we introduce the relaxed functional:

J(u) =


∫
Ω

Φ(| ∇u(x) |) dx + α |Dsu | if u ∈ BV (Ω)

+∞ if u ∈ L2(Ω)−BV (Ω)
(3.48)

where ∇u dx+Dsu is the Lebesgue decomposition of the measure Du and

α = lim
s→+∞

Φ(s)
s . J(u) is convex and l.s.c. on L2(Ω). Then, we associate to

J(u) the evolution problem on L2(Ω):{
0 ∈ du

dt
+ ∂J(u) on ]0,+∞[

u(0, x) = u0(x).
(3.49)

We can check that ∂J is maximal monotone and from general results con-
cerning evolution equations governed by maximal monotone operator, it is
proved in [245] the following theorem:

Theorem 3.3.1 [245] Let Ω be an open, bounded and connected subset of
R2, with Lipschitz boundary Γ = ∂Ω. Let u0 ∈ Dom ( ∂J) ∩ L∞(Ω), then
there exists a unique function u(t) : [ 0, +∞ [→ L2(Ω) such that

u(t) ∈ Dom ( ∂J), ∀t > 0,
du

dt
∈ L∞((0, +∞);L2(Ω)) (3.50)

− du

dt
∈ ∂J(u(t)), a.e. t > 0, u(0) = u0. (3.51)

If û is a solution with û0 instead of u0, then (3.52)
|u(t)− û(t) |L2(Ω) ≤ |u0 − û0 |L2(Ω) for all t ≥ 0.

Remarks

• For each t > 0, the map u0 → u(t) is a contraction of Dom (∂J) in
Dom (∂J). We denote by S(t) its unique extension by continuity to
Dom (∂J) = DomJ = BV (Ω). If u0 is in BV (Ω), then u(t) = S(t)u0
is called the generalized solution of (3.39).
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• We observe that if u(t, x) is a solution of (3.39) then a.e. t:∫
Ω

u(t, x) dx =
∫
Ω

u0(x) dx.

To prove it, we differentiate I(t) =
∫
Ω

u(t, x) dx and apply the Green’s

formula:

I ′(t) =
∫
Ω

du

dt
(t, x) dx =

∫
Ω

div
(
c(|∇u|2 (t, x))∇u(t, x)

)
dx =

=
∫
Γ

c(|∇u|2 (t, x))
du

dN
(t, x) ds = 0.

Thus I(t) = I(0) =
∫
Ω

u0(x) dx.
�

Although this theorem ensures the existence of the solution, it remains dif-
ficult to understand. In particular, if we look at results (3.50) or (3.51),
one would like to know more about ∂J . Let us characterize ∂J(u) for
u ∈ BV (Ω). Let us assume that ∂J(u) �= ∅ and ξ ∈ L2(Ω) is such that
ξ ∈ ∂J(u). By definition we have:

J(u + sw) ≥ J(u) + s < ξ,w >L2(Ω)×L2(Ω) ∀s, ∀w ∈ L2(Ω). (3.53)

From (3.53), we can deduce some conditions by choosing successively
functions w C∞

0 (Ω), C∞
0 (Ω) and BV (Ω). So we have the following result,

Proposition 3.3.4 If ∂J(u) �= ∅, then:

(i) ∂J(u) has only one element given by

ξ = div
(

Φ′(|∇u|)
|∇u| ∇u

)
∈ L2(Ω).

(ii) Φ′(|∇u|)
|∇u|

∂u
∂N

= 0 on ∂Ω.

(iii) For all w ∈ BV (Ω) with Dw = ∇wdx+Dsw and Dsw = ρDsu+ µ′:∫
Ω

Φ′(|∇u|)
|∇u| ∇u.∇w dx+

∫
Ω

ρ|Dsu|+
∫
Ω

|µ′| ≥ −
∫
Ω

div
(

Φ′(|∇u|)
|∇u| ∇u

)
w dx.

Proof Starting from the definition (3.53), we look for necessary conditions
on ξ. Several choices of w are made:

Step 1: w ∈ C∞
0 (Ω)



3.3. PDE-based methods 103

We have Du + sDw = (∇u + s∇w)dx + Dsu and (3.53) rewrites:

J(u + sw)− J(u)
s

=
∫
Ω

Φ(|∇u + s∇w|)− Φ(|∇u|)
s

dx ≥

≥ < ξ,w >L2(Ω)×L2(Ω) ∀s, ∀w ∈ C∞
0 (Ω).

When s→ 0+, we have after integrating by part:

−
∫
Ω

div
(

Φ′(|∇u|)
|∇u| ∇u

)
w dx ≥ < ξ,w >L2(Ω)×L2(Ω) ∀w ∈ C∞

0 (Ω).

By changing w into −w, we obtain:

ξ = −div
(

Φ′(|∇u|)
|∇u| ∇u

)
in the distributional sense. (3.54)

Since ξ ∈ L2(Ω), this equality is also true in L2(Ω).

Step 2: w ∈ C∞(Ω)
We also have Du + sDw = (∇u + s∇w)dx + Dsu, and by (3.53):∫

Ω

Φ′(|∇u|)
|∇u| ∇u.∇w dx ≥ < ξ,w >L2(Ω)×L2(Ω) ∀w ∈ C∞(Ω).

After integrating by part we have now:

−
∫
Ω

div
(

Φ′(|∇u|)
|∇u| ∇u

)
w dx +

∫
∂Ω

Φ′(|∇u|)
|∇u| ∇u.n w ds ≥

≥< ξ,w >L2(Ω)×L2(Ω) ∀w ∈ C∞(Ω).

Notice that the term on ∂Ω is well-defined since σ = Φ′(|∇u|)
|∇u| ∇u ∈ L2(Ω)2

and div(σ) ∈ L2(Ω) thanks to (3.54) (see [159]). Thanks to (3.54), we easily
deduce from the previous inequality the condition (ii).

Step 3: w ∈ BV (Ω)
Let Dsw = ρDsu+ µ′ be the Lebesgue decomposition of the measure Dsw
with respect to Dsu. So, we have

Du + sDw = (∇u + s∇w)dx + Dsu(1 + sρ) + sµ′.

Thus:

J(u + sw)− J(u)
s

=

=
∫
Ω

Φ(|∇u + s∇w|)− Φ(|∇u|)
s

dx +
∫
Ω

|1 + sρ| − 1
s

|Dsu|+
∫
Ω

|µ′|,
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and by letting s→ 0, with (3.53), we obtain the inequality (iii). �

Remarks

• It is useless to search for more characterization choosing w ∈ L2(Ω)
(and not in BV (Ω)) since in this case J(u + sw) = +∞.

• In fact, since Φ is convex, it is easy to show that if u ∈ BV (Ω)
verifies (i), (ii) and (iii), then ∂J(u) �= ∅. Therefore, (i), (ii) and (iii)
are necessary and sufficient conditions ensuring that ∂J(u) �= 0.

• The existence and uniqueness theorem from Brezis tells that −du
dt
∈

∂J(u(t)). We just showed that this means du
dt

= Φ′(|∇u|)
|∇u| ∇u in

L2(Ω). �

Let us now interpret the last inequality (iii) in a particular case which is
representative in image analysis. Before that, we need the following lemma:

Lemma 3.3.1 Let Ω be regular, σ ∈ C(Ω)M bounded, divσ ∈ L2(Ω) and
w ∈ BV (Ω) ∩ L2(Ω). Then we have the following Stokes formula:∫

Ω

div σ w dx =
∫
∂Ω

σ · n w ds−
∫
Ω

σ ·Dw

where
∫
Ω

σ ·Dw =
∫
Ω

σ · ∇w dx +
∫
Ω

σ ·Dsw.

Proof By regularization, we can find a sequence wn ∈ C∞(Ω) such that:

wn −−−→
L2(Ω)

w

|Dwn| −−−→ |Dw|.

Since wn is regular, we have∫
Ω

div σ w dx =
∫
∂Ω

σ · n wn ds−
∫
Ω

σ · ∇wn dx.

Moreover the convergence for the strong topology of BV (Ω) induces the
BV−w∗ convergence and the convergence of the trace operator. The result
is obtained as n tend to infinity. �

Ω1

Ω0
ν

n

Σ
ΓAs announced previsouly, let us explain the equality

(iii) from Proposition 3.3.4 where we suppose that
u admits a discontinuity along a single curve Σ and
Ω = Ω0 ∪ Σ ∪ Ω1. So u ∈ C1(Ω0 ∪ Ω1) and we have:

Dsu = [u]ν dH1|Σ = (u1 − u0)ν dH1|Σ.
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We can still decompose Dsw in the following way: Dsw = ρ[u] dH1|Σ +µ′.
Now, the idea is to look at the term:

A =
∫
Ω

div
(

Φ′(|∇u|)
|∇u| ∇u

)
w dx ≡

∫
Ω

σw dx with σ =
Φ′(|∇u|)
|∇u| ∇u.

By decomposing A on Ω0 and Ω1 and by applying Lemma 3.3.1, we have:

A =−
∫
Ω0

σ · ∇w dx−
∫
Ω0

ρσ ·Dsu−
∫
Ω0

σµ′ +
∫
Σ

σ · νw ds

−
∫
Ω1

σ · ∇w dx−
∫
Ω1

ρσ ·Dsu−
∫
Ω1

σµ′ −
∫
Σ

σ · νw ds +
∫
∂Ω

σ · n︸︷︷︸
=0

w ds

=−
∫
Ω

σ · ∇w dx−
∫
Ω

ρσ ·Dsu−
∫
Ω

σµ′.

By replacing this expression in (iii) with Dsu = [u]ν dH1|Σ, we obtain after
some computation:∫
Σ

ρ

{
|[u]| − Φ′(|∇u|)

|∇u| ∇u · ν[u]
}

ds +
∫
Ω

{
|µ′| − Φ′(|∇u|)

|∇u| ∇uµ
′
}

dx ≥ 0.

The second integral is always positive (if |Φ′| ≤ 1) but ρ is arbitrary. So we
have:

|[u]| − Φ′(|∇u|)
|∇u| ∇u · ν[u] = 0 a.e. on Σ,

that we can rewrite (if [u] �= 0):

sign[u] =
Φ′(|∇u|)
|∇u| ∇u · ν a.e. on Σ. (3.55)

This condition is an interpretation of (iii). Naturally, this could be gener-
alized to the case where u admits discontinuities on a finite or countable
set of curves. It would be interesting to see if this condition could be used
numerically.

The Alvarez-Guichard-Lions-Morel scale space theory

In this section we examine the remarkable work of Alvarez et al [4]. In this
paper the connection between scale space analysis and PDEs is rigorously
established. Starting from a very natural filtering axiomatic (based on de-
sired image properties) they prove that the resulting filtered image must
necessarily be the viscosity solution of a PDE. In addition, they completely
describe these PDEs. Most of their results have been collected in a very
recent monograph by F. Guichard and J.M. Morel [130]. It is not our in-
tention to set out all the details and refinements of their axiomatic. Our
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purpose is to review some aspects of this very nice theory. We follow the
presentation given in the original Alvarez et al paper [4, 5].

As said previously, we define a multi-scale analysis as a family of opera-
tors {Tt}t≥0 which, applied to the original image u0(x), yield to a sequence
of images u(t, x) = (Tt u0)(x). We are going to list below a series of axioms
to be verified by {Tt}t≥0. These formal properties are very natural from
an image analysis point of view. For simplicity, we suppose for all t ≥ 0,
Tt : C∞

b (R2) → Cb(R2) where C∞
b (R2) (respectively Cb(R2)) is the space

of bounded functions having derivatives at any order (respectively bounded
continuous functions). This is not restrictive since, as usual in mathemati-
cal analysis, once properties are proved for regular functions we can extend
them to non regular functions by density arguments.

List of axioms and invariance properties (X denotes the space C∞
b (R2))

(A1) Recursivity:
T0(u) = u, Ts ◦ Tt(u) = Ts+t(u) for all s, t ≥ 0 and all u ∈ X.

(A2) Regularity:
|Tt(u + h v)− (Tt(u) + h v) |L∞ ≤ c h t for all h and t in [0, 1] and all
u, v ∈ X.

(A3) Locality:
(Tt(u) − Tt(v))(x) = o(t), t → 0+ for all u and v ∈ X such that
∇αu(x) = ∇αv(x) for all |α | ≥ 0 and all x (∇αu stands for the
derivative of order α).

(A4) Comparison principle:
Tt(u) ≤ Tt(v) on R2, for all t ≥ 0 and u, v ∈ X such that
u ≤ v on R2.

(I1) Gray level shift invariance:
Tt(0) = 0, Tt(u + c) = Tt(u) + c for all u in X and all constant c.

(I2) Translation invariance:
Tt(τh.u) = τh.(Ttu) for all h in R2, t ≥ 0, where (τh.u)(x) = u(x+h).

We emphasize that these axioms and invariance properties are quite nat-
ural from an image analysis point of view. A1 means that a coarser analysis
of the original image can be deduced from a finer one without any depen-
dence upon the original picture. A2 states a continuity assumption of Tt.
A3 means that (Ttu)(x) is determined by the behaviour of u near x. A4
expresses the idea that if an image v is brighter than another image u, this
ordering is preserved across scale. Finally, I1 and I2 state respectively that
no a priori assumption is made on the range of the brightness and that all
points are equivalent.
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We are now in position to give the main result. We denote by S2 the
space of all 2× 2 symmetric matrices endowed with its natural ordering.

Theorem 3.3.2 [5] Under assumptions A1, A2, A3, A4, I1 and I2:

(i) There exists a continuous function F : R2 × S2 → R satisfying
F (p,A) ≥ F (p,B) for all p ∈ R2, A and B in S2 with A ≥ B such
that:

δt(u) =
Tt(u)− u

t
→ F (∇u,∇2u), t→ 0+

uniformly for x ∈ R2, uniformly for u ∈ X.

(ii) If u0 ∈ Cb(R2), then u(t, x) = (Tt u0)(x) is the unique viscosity
solution of: {

∂u
∂t

= F (∇u,∇2u)
u(0, x) = u0(x)

and u(t, x) is bounded, uniformly continuous on R2.

Proof We only give the main steps, omitting sometimes technical details
and referring for the original proofs to [4, 5].

Step 1: Existence of an infinitesimal generator
There exists an operator S : X → Cb(R2) such that

δt(u) =
Tt(u)− u

t
→ S[u], t→ 0+

uniformly on R2 and for all u ∈ X. See [4, 5] for this very technical proof.

Step 2: A general lemma
Let X,Y, Z be three sets, A : X → Y and G : X → Z. Let us suppose
that the equality G(x) = G(x′) implies A(x) = A(x′), then there exists
F : G(X) ⊂ Z → Y such that for all x in X, A(x) = F (G(x)), i.e. A is
only a function of G.

Step 3: Let us show that if u and v satisfy{
u(0) = v(0);∇u(0) = ∇v(0) = p ∈ R2;∇2u(0) = ∇2v(0) = A ∈ S2

}
,

then {S[u](0) = S[v](0)} .
Let z(x) a function in C∞

b (R2) such that z(x) ≥ 0 and z(x) = |x |2 for x
near 0. Set uε(x) = u(x)+ε z(x). We claim that uε(x) ≥ v(x) for |x | small
enough. Indeed, thanks to the Taylor formula:

uε(x) = u(0) + x · ∇u(0) +
1
2
∇2u(0)x · x + o(|x|2) + ε z(x).
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But, since u, v ∈ C∞
b (R2) and z(x) = |x |2 in a neighborhood of zero, it is

clear that there exists a constant c > 0 so that o(|x|2)+ε z(x) ≥ 0 for |x| ≤
c ε. Therefore uε(x) ≥ v(x) for |x | ≤ c ε. Then, let us set wε(x) = w(x/ε)
where w ∈ C∞

b (R2), 0 ≤ w ≤ 1, w(x) = 1 if |x | ≤ c/2 and w(x) = 0 if
|x | ≥ c. Finally, let us define uε(x) = wε(x)uε(x) + (1− wε(x)) v(x). The
function uε(x) verifies:

∇αuε(0) = ∇αuε(0), ∀α
uε(x) ≥ v(x) on R2.

Thus, from A4, we get Tt(uε) ≥ Tt(v) on R2 and (since uε(0) = uε(0) =
u(0) = v(0) = 0):

Tt(uε)(0)− uε(0)
t

≥ Tt(v)(0)− v(0)
t

.

If t → 0+, we get S [uε](0) ≥ S [v](0). But from A3, we have: (Ttuε)(0) −
(Ttuε)(0) = o(t), which implies S [uε](0) ≥ S [v](0). Now, letting ε→ 0 and
using the uniform convergence in Step 1, we deduce S [u](0) ≥ S [v](0) and
by symmetry (changing z(x) into −z(x)) we finally obtain:

S [u](0) = S [v](0).

Step 4: Let us show the same property as in step 3 for any x0 ∈ R2

Let u and v satisfying:{
u(x0) = v(x0);∇u(x0) = ∇v(x0) = p ∈ R2;∇2u(x0) = ∇2v(x0) = A ∈ S2} .

We have to prove S [u](x0) = S [v](x0). Without a loss of generality, we can
suppose that u(x0) = v(x0) = 0. Let us define:

ux0(x) = (τx0 .u)(x) = u(x0 + x)
vx0(x) = (τx0 .v)(x) = v(x0 + x).

We have: ux0(0) = vx0(0) = 0, ∇ux0(0) = ∇vx0(0), ∇2ux0(0) = ∇2vx0(0).
Step 3 implies S [ux0 ](0) = S [vx0 ](0). But, from I2:

S[ux0 ](0) = S[τx0 .u](0) = lim
t→0+

Tt(τx0.
.u)(0)− (τx0 .u)(0)

t
=

=
from I2

lim
t→0+

τx0 .(Ttu− u)(0)
t

= (τx0 .S[u])(0) = S[u](x0)

and the same stands for S[v](x0). Therefore:

S[u](x0) = S[v](x0).

To summarize, we have for all x ∈ R2, the following property:
if
{
(u(x),∇u(x),∇2u(x)) = (v(x),∇v(x),∇2v(x))

}
then

S[u](x) = S[v](x). So we apply the general lemma of Step 2 with:

X =
{
u(x); u ∈ C∞

b (R2)
}
,

Y =
{
S[u](x); u ∈ C∞

b (R2)
}
,

Z =
{
(u(x),∇u(x),∇2u(x)); u ∈ C∞

b (R2)
}
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and G : u(x)→ (u(x),∇u(x),∇2u(x)) (G : X → Z). We have:

G(u(x)) = G(v(x)) implies S[u](x) = S[v](x).

Therefore, there exists a function F : G(X) ⊂ Z → Y such that

S[u](x) = F (x, u(x),∇u(x),∇2u(x)).

Step 5: F does not depend on x and u
This a direct consequence of I1 and I2. From I2, we have for all h

τh.S[u](x) = S[τh.u](x)

i.e. for all h:

F (x + h, u(x + h),∇u(x + h),∇2u(x + h)) =

= F (x, u(x + h),∇u(x + h),∇2u(x + h))

thus F does not depend on x. Now, from I1, if c is any constant:

S[u + c] = lim
t→0+

Tt(u + c)− (u + c)
t

= lim
t→0+

Tt(u)− u

t
= S[u]

i.e. for c:

F (u(x) + c,∇u(x),∇2(x)) = F (u(x),∇u(x),∇2(x))

thus F does not depend on u.

Step 6: F is continuous and nondecreasing with respect to its second argu-
ment.
The continuity of F follows from Step 1. Let us show that for all p ∈ R2,
A,B ∈ S2 such that A ≥ B, then F (p,A) ≥ F (p,B). Let us define

u(x) =
(
p · x +

1
2
Ax · x

)
w(x) and v(x) =

(
p · x +

1
2
B x · x

)
w(x)

where w(x) is the function defined in Step 3. We have:

u(0) = v(0) = 0, ∇u(0) = ∇v(0) = p, ∇2u(0) = A, ∇2v(0) = B.

Moreover

A−B ≥ 0 ⇒ u(x) ≥ v(x) ⇒ (Ttu)(x) ≥ (Ttv)(x) (from A4)

and the last inequality at x = 0 implies:

S[u](0) = F (p,A) ≥ S[v](0) = F (p,B).

Step 7: u(t, x) = (Tt u0)(x) is the unique viscosity solution of:{
∂u
∂t

= F (∇u,∇2u)
u(0, x) = u0(x).

(3.56)
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Let us first prove that u(t, x) is a sub-solution of (3.56). Let φ(t, x) be a
test function and (x0, t0) be a global maximum of (u− φ)(t, x). Without a
loss of generality, we may suppose:

u(x0, t0)− φ (x0, t0) = max
(t,x)

(u− φ)(t, x) = 0

and that φ(t, x) is of the form: φ(t, x) = f(x) + g(t) with g(t0) = 0. These
two simplifications imply:

u(t, x) ≤ φ(t, x) for all (t, x)
u(x0, t0) = φ (x0, t0) = f(x0).

Now, let h in ]0, t0[. From the recursivity axiom A1, we get:

Th(u(x0, t0 − h)) = (Th ◦ Tt0−h)(u0(x0)) = Tt0(u0(x0)) = u(x0, t0) = f(x0)

but since u ≤ φ:

f(x0) =u(x0, t0) = Th(u(x0, t0 − h)) ≤
≤Th(φ(x0, t0 − h)) = Th(f(x0) + g(t0 − h)) = Th(f(x0)) + g(t0 − h).

Thus, since g(t0) = 0

1
h

(g(t0)− g(t0 − h)) +
1
h

(f(x0)− Th(f(x0)) ≤ 0

and if h→ 0+

g′(t0)−F (∇f(x0),∇2f(x0)) ≤ 0 i.e.
∂φ

∂t
(x0, t0)−F (∇f(x0),∇2f(x0)) ≤ 0

which means that u(t, x) is a sub-solution of (3.56). It can be proved using
similar arguments that u(t, x) is a super-solution. So u(t, x) is a viscosity
solution of (3.56).

This last step concludes the proof of Theorem 3.3.2. �

If the multi-scale analysis satisfies additional invariance properties then
the function F can be written in an explicit form. We state below two
important cases.

Theorem 3.3.3 [4, 5] Let us suppose that Tt satisfy the assumptions of
Theorem 3.3.2 and

(I3) Isometry invariance:
Tt(R.u)(x) = R.(Ttu)(x) for all orthogonal transformation R on R2,
where (R.u)(x) = u(Rx).

We also assume that u → Tt u is linear. Then u(t, x) = (Tt u0)(x) is the
solution of the heat equation ∂u

∂t
= c∆u, u(0, x) = u0(x), where c is a

positive constant.

Theorem 3.3.4 [4, 5] Let us suppose that Tt satisfy the assumptions of
Theorem 3.3.2 and
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(I4) Gray scale invariance:
Tt(ϕ(u)) = ϕ(Tt(u)) for all nondecreasing real function ϕ.

(I5) Scale invariance:
∀λ, t > 0, there exists t′(t, λ) > 0 such that Hλ.(Tt′ u) = Tt(Hλ.u),
where (Hλ.u)(x) = u(λx). Moreover, we suppose that t′(t, λ) is
differentiable with respect to λ at λ = 1 and that the function
g(t) = ∂t′

∂λ
(t, 1) is continuous and positive for t > 0.

(I6) Projection invariance:
For all A : R2 → R2 linear, for all t > 0, there exists t′(t, A) > 0
such that A.(Tt′u) = Tt(A.u).

Then u(t, x) = (Tt u0)(x) is the solution of:{
∂u
∂t

= |∇u| (t curv u)1/3

u(0, x) = u0(x)

where curv u =
uxx u

2
y + uyy u

2
x − 2uxy uxuy

| ∇u |3 .

☛ These two last theorems are very interesting since they express that the
Alvarez et al theory is a very natural extension of the linear theory (Theo-
rem 3.3.3) but also because the multi-scale axiomatic leads to new nonlinear
filters (Theorem 3.3.4).

Remarks

• If in Theorem 3.3.4 we suppose that Tt satisfy I4, I5 and I3 instead
of I6, we only get the PDE:

∂u

∂t
= | ∇u |β (t curv u)

where β is a continuous non-decreasing function.

• The previous scale-space theory can be extended to the analysis of
movies [5, 128, 129, 181, 182, 180].

• There are strong connections between PDEs described in this section
and morphological operators (i.e. monotone, translation and contrast
invariant operators). In fact, let F be a set of functions containing
continuous functions and characteristic functions of level sets of el-
ements of F , then it can be proven [174] that any morphological
operator on F is of the form

(Tu)(x) = inf
B∈B

sup
y∈B

u(x + y)

where B is a family of structuring elements. As a very interesting
result, one can prove that if we adequately scale morphological op-
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erators, then by iterating the resulting operators we retrieve all the
equations given in this section. The interested reader can consult
[55, 130] and the references therein. �

Weickert’s approach

In order to take into account local variations of the gradient orientation,
we need to define a more general descriptor than the magnitude of the
gradient only. Let us start with simple remarks.
As seen in previous sections, it is a natural idea to say that the preferred
smoothing direction is the one that minimizes gray value fluctuations. Let
d(θ) be the vector (cos θ, sin θ). An elementary calculation shows that the
function F (θ) = (d (θ) · ∇u(x))2 is maximal if d is parallel to ∇u and
is minimal if d is orthogonal to ∇u. We can also remark that maximiz-
ing (respectively minimizing) F (θ) is equivalent to maximize (respectively
minimize) the quadratic form dt∇u∇ut d. The matrix

∇u∇ut =
(

u2x1
ux1ux2

ux1ux2 u2x2

)
(3.57)

is positive semidefinite, its eigenvalues are λ1 = |∇u|2 and λ2 = 0 and
there exists an orthonormal basis of eigenvectors v1 parallel to ∇u and v2
orthogonal to ∇u.
So, it would be tempting to define at x an orientation descriptor as a
function of ∇u∇ut(x). But, by proceeding like this, we do not take into
account possible information contained in a neighborhood of x. To this
end, the idea proposed by Weickert is to introduce smoothing kernels at
different scales. We only sketch the main ideas since Weickert himself has
written a monograph [249] based on his work.
To avoid false detections due to the noise, u(x) is first convolved with a
Gaussian kernel kσ : uσ(x) = (kσ ∗u)(x). The local information is averaged
by convolving componentwise ∇uσ∇utσ with a Gaussian kernel kρ. The
result is a symmetric, positive semidefinite matrix

Jρ(∇uσ) = kρ ∗ ∇uσ∇utσ. (3.58)

The matrix Jρ(∇uσ) has orthonormal eigenvectors v1, v2 with

v1 parallel to
(

2 j12
j22 − j11 +

√
(j22 − j11)2 + 4 j212

)
where jlk are the elements of the matrix Jρ(∇uσ). The corresponding
eigenvalues are given by

µ1 =
1
2

[
j11 + j22 +

√
(j11 − j22)2 + 4j212

]
and

µ2 =
1
2

[
j11 + j22 −

√
(j11 − j22)2 + 4j212

]
.
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They describe average contrast in the eigendirections within a neighbor-
hood of size O(ρ). The noise parameter σ makes the descriptor insensible
to details of scale smaller than O(σ). The vector v1 indicates the orientation
maximizing the gray value fluctuations while v2 gives the preferred local
direction of smoothing. The eigenvalues µ1 and µ2 convey shape informa-
tion. Isotropic structures are characterized by µ1 ∼= µ2, line like structure
by µ1 . µ2 ≈ 0, corners by µ1 ≥ µ2 . 0.

Now, the nonlinear diffusion process is governed by a parabolic equation
that can be viewed as an extension of (3.39):

∂u
∂t

= div(D(Jρ(∇uρ))∇u) in Ω×]0, T ]
u(0, x) = u0(x) on Ω
〈D(Jρ(∇uρ))∇u, N〉 = 0 on ∂Ω×]0, T ]

(3.59)

where D is an operator to be precised next and N is the unit outward
normal to ∂Ω. Notice the boundary condition which is the natural condition
associated to the divergence operator1. We have the following result:

Theorem 3.3.5 [249] Let us assume that:

(i) The diffusion tensor D = (dij) belongs to C∞(S2, S2) where S2

denotes the set of symmetric matrices.

(ii) Uniform positive definiteness: for all w ∈ L2(Ω, R2) with |w(x) | ≤ k
on Ω, there exists a positive lower bound ν(k) for the eigenvalues of
D(Jρ(w)).

Then for all u0 ∈ L∞(Ω) equation (3.59) has a unique solution u(t, x)
satisfying

u ∈ C([ 0, T ]; L2(Ω)) ∩ L2([0, T ];W 1,2(Ω))
∂u

∂t
∈ L2((0, T );W 1,2(Ω))

Moreover, u ∈ C∞(Ω×]0, T [). This solution depends continuously on u0
with respect to the L2-norm and it fulfils the extremum principle:

inf
Ω

u0(x) ≤ u(t, x) ≤ sup
Ω

u0(x).

Related results have been proved for semi-discrete and fully discrete ver-
sions of the model. For the proofs as well as further properties (invariances,
image simplification properties, behaviour as t tend to infinity, we refer to
Weickert [249].

Let us now describe two possibilities of how to choose the diffusion tensor
D(Jρ). Since the eigenvectors of D should reflect the local image structure,

1This can be compared with the boundary condition which was associated to the
divergence operator in (3.29)
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original image result

Figure 3.13. Example of Weickert’s edge-enhancing (3.60) approach applied on
the noisy “Borel building” image. It combines isotropic smoothing within flat
regions with diffusion along edges. Diffusion across edges is reduced.

original image result

Figure 3.14. Example of Weickert’s coherence-enhancing approach (3.61), from
[250]. Interrupted lines are closed and the semantically important singularities
are not destroyed. A typical application is for fingerprint enhancement where
structure is especially important. The right-hand side image presents the result.
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one should choose the same orthonormal basis of eigenvectors as one gets
from Jρ. The choice of the corresponding eigenvalues λ1 and λ2 of D
depends on the desired goal:

• Edge-enhancing anisotropic diffusion [248]. If one wants to
smooth preferably within each region and aims to preserve edges, then
one should reduce the diffusivity λ1 perpendicular to edges all the
more as the contrast µ1 is large. This behaviour may be accomplished
by the following choice:

λ1 =

{
1 if µ1=0,
1− exp

(
−3.315
µ4

1

)
otherwise,

λ2 = 1.
(3.60)

Figure 3.13 illustrates such a process.

• Coherence-enhancing anisotropic diffusion [250]. If one wants
to enhance flow-like structures and close interrupted lines, one should
smooth preferably along the coherence direction v2 with a diffusivity
λ2 which increases with respect to the coherence (µ1−µ2)2. This may
be achieved by the following choice of the eigenvalues of D(Jρ):

λ1 = α,

λ2 =

{
α if µ1=µ2,
α + (1−α) exp

(
−1

(µ1−µ2)2

)
otherwise,

(3.61)

where the small positive parameter α ∈ (0, 1) keeps the diffusion
tensor uniformly positive definite. Figure 3.14 shows the restoration
properties of this diffusion filter as applied to a degraded fingerprint
image.

Surface based approaches

In [233, 232] Sochen, Kimmel, and Malladi introduced the concept of im-
ages as embedded maps and minimal surfaces, and applied it to processing
movies, color images, texture, and volumetric medical images (see [145]).
According to their geometrical framework for image processing, intensity
images are considered as surfaces in the spatial-feature space. The image is
thereby a two dimensional surface in three dimensional space (see Figure
3.15).

Let us briefly explain the main ideas for gray level images. As mentioned,
an image is not considered as a function u(x) from a domain Ω into R, but
as an embedded surface M in R3 defined by:

(σ1, σ2)→ X(σ1, σ2) = (X1(σ1, σ2), X2(σ1, σ2), X3(σ1, σ2))
Σ→M
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Figure 3.15. Interpretation of an image as a surface. The height is equal to the
gray level value

where (σ1, σ2) denote the local coordinates of the surface2. The main point
is that Σ and M are viewed as Riemannian manifolds equipped with
suitable (Riemannian) metrics. To better understand, let us consider the
following example corresponding to a particular choice of Σ and X:

Σ = Ω, the image domain,
σ1 = x1, σ2 = x2 the classical cartesian coordinates,
X(x) = (x, u(x)) where u(x) is the gray level intensity.

The metric on Σ is the usual one, dx21 +dx22, and the induced metric onM
is ds2 = dx21 + dx22 + du2, that is, from an elementary calculus:

ds2 = dx21 + dx22 + (ux1dx1 + ux2dx2)
2

= (1 + u2x1
)dx21 + 2ux1ux2dx1dx2 + (1 + u2x2

)dx22.

This can be rewritten:

ds2 = (dx1, dx2)
(

1 + u2x1
ux1ux2

ux1ux2 1 + u2x2

)(
dx1
dx2

)
i.e. the metric is given by the symmetric definite positive matrix:

G =
(

1 + u2x1
ux1ux2

ux1ux2 1 + u2x2

)
.

How these concepts can be useful from an image analysis point of view? We
know that most images are noisy or deteriorated. To obtain a restored ap-
proximation of a degradated image, we search forM having a minimal area.
By this way, singularities are smoothed. So, if g denotes the determinant
of G, we have to minimize with respect to u the integral:

S(M) =
∫∫
Ω

√
gdxdy =

∫∫
Ω

√
1 + u2x1

+ u2x2
dx.

2Σ is called the image manifold and M the space feature manifold
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If a minimizer u(x) exists, necessarily it verifies the Euler-Lagrange
equation:

∂

∂x1

 ux1√
1 + u2x1

+ u2x2

 +
∂

∂x2

 ux2√
1 + u2x1

+ u2x2

 = 0,

i.e.

ux1x1(1 + u2x2
) + ux2x2(1 + u2x1

)− 2ux1ux2ux1x2

(1 + u2x1
+ u2x2

)3/2
= 0 (3.62)

which is equivalent to say that the mean curvature H ofM is zero. Surfaces
of zero mean curvature are known as minimal surfaces.

For computing numerically a solution, we embed equation (3.62) into a
dynamical scheme:

dX

dt
(t) = F (3.63)

where F is an arbitrary flow field defined on M(t). If X(t) is of the form:

X(t) = (x1, x2, u(t, x1, x2))T ,

then we have

dX

dt
(t) =

(
0, 0,

∂u

∂t
(t, x1, x2)

)T

.

Therefore, the motion is necessarily in the z direction. If we choose
F = (0, 0, αH), we obtain the scalar equation:

∂u

∂t
= αH = α

ux1x1(1 + u2x2
) + ux2x2(1 + u2x1

)− 2ux1ux2ux1x2

(1 + u2x1
+ u2x2

)3/2
(3.64)

The coefficient α ∈ R can be interpreted as a weighting parameter. If
α = 1√

1 + u2x1
+ u2x2

then (3.64) rewrites as

∂u

∂t
=

ux1x1(1 + u2x2
) + ux2x2(1 + u2x1

)− 2ux1ux2ux1x2

(1 + u2x1
+ u2x2

)2
. (3.65)

The right-hand side term in (3.65) is known as the Laplace Beltrami oper-
ator and the equation (3.65) can be viewed as the projection on the z-axis
of the flow dX

dt
= H N where N = 1√

1 + u2x1
+ u2x2

(ux2 ,−ux1 , 1)T is the

unit normal to M(t) (see Figure 3.16).
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The quantity 1√
1 + u2x1

+ u2x2

= 1√
g

has in fact a remarkable

interpretation. Let us consider the ratio:

r =
Adomain

Asurface

where Adomain is the area of an infinitesimal surface in the image domain
(x1, x2) and Asurface is the corresponding area on the surface M (see also
Figure 3.16).

N

DomainA

SurfaceA
X

x x 21

Figure 3.16. Representation of the normal N , Adomain and Asurface.

This ratio can be interpreted as an indicator of the height variation on
the surface. r is equal to 1 for flat surfaces and is close to 0 near edges. In
fact r is related to the metric of the surface since:

r =
dx1dx2√
gdx1dx2

=
1√
g

=
1√

1 + u2x1
+ u2x2

.

Hence, from a restoration point of view, it would be desirable to incorporate
r in the model. For example, in (3.64), we can choose α = rγ , so the flow
becomes:

∂u

∂t
= rγ+3(ux1x1(1 + u2x2

) + ux2x2(1 + u2x1
)− 2ux1ux2ux1x2). (3.66)

By selecting different γ we recover some flows already proposed:

• For γ = −1, (3.66) is the mean curvature flow projected onto the
normal [233, 232].

• For γ = 0, (3.66) is the flow proposed by [102].

• For γ = 1, (3.66) is the Laplace Beltrami flow. A result using this
operator is shown in Figure 3.17.

Observing the result in Figure 3.17, we can remark that it is quite similar
with the half-quadratic minimization and the total variation model de-
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original image result

Figure 3.17. Example of the Laplace Beltrami equation on the “Borel building”
image.

scribed in Section 3.2. In fact, as shown in [233, 232] the Laplace Beltrami
equation has a direct relation with the total variation based regularization
methods. If we choose on Σ the metric ε2dx21+ε2dx22 (ε > 0) and onM the
metric ds2 = ε2dx21 + ε2dx22 + du2, then the associated symmetric definite
positive G is given by

G =
(

ε2 + u2x1
ux1ux2

ux1ux2 ε2 + u2x2

)
and a minimal surface is obtained by minimizing the functional

Sε(M) = ε

∫∫
Ω

√
ε2 + |∇u|2 dx

which is obviously a regularization of the total variation energy.
In fact, the real interest of this approach on a numerical point of view

lies in the vectorial case. This Riemannnian formalism can be developed in
a wide variety of cases: textures, color, etc. For example, for color images,
the space feature manifold M is defined by:

X(σ1, σ2) = (X1(σ1, σ2), X2(σ1, σ2), Xr(σ1, σ2), Xg(σ1, σ2), Xb(σ1, σ2)).

X is an embedded surface in R5, and Xr, Xg, Xb are the three brightness
components in the (Red, Green, Blue) system. We leave it as an exercise
to the reader to write the associated metric and refer to [233, 232] for more
details and experiments.
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3.3.2 Smoothing-Enhancing PDEs
The Perona and Malik model [209]

Smoothing PDEs can be viewed as low-pass filters and act as forward diffu-
sion processes. What about introducing locally high-pass filters? We show
in this section how a suitable choice of the weighting coefficient c(.) in the
Perona and Malik model (3.39) permits to get this result3.

Let us first consider the 1-D case (x ∈ R):{
∂u
∂t

(t, x) = [ c(u2x(t, x))ux(t, x) ]x
u(0, x) = u0(x)

(3.67)

and give some formal definitions:

Definition 3.3.2 (edge) For a fixed time t, we say that x is an edge of
a function u(t, x) if ux(x) = max

x
ux(t, x). If u is smooth enough, we

necessarily have at x: uxx(t, x) = 0 and uxxx(t, x) ≤ 0. We will say that an
edge x is blurred by a PDE if in a neighborhood of x, ux(t, x) decreases as
t increases, or in other words if ∂

∂t
(ux(t, x)) ≤ 0.

We will say that an edge x is enhanced by a PDE if in a neighbourhood
of x, ux(t, x) increases as t increases, i.e. if ∂

∂t
(ux(t, x)) ≥ 0.

Let us examine the relationship between the coefficient c(.) in the PDE
(3.67) and the blurring/enhancing of an edge. From (3.67), we have
formally:

∂

∂t
(ux) =

(
∂u

∂t

)
x

= [ c(u2x)ux]xx = uxxx b(u2x) + 2u2xx b
′(u2x)

where b(s) = 2sc′(s) + c(s). If x is an edge at time t, then uxx(t, x) = 0
and uxxx(t, x) ≤ 0. Thus:

sign
(
∂u

∂t
(t, x)

)
x

= sign(−b(u2x)(t, x)).

Therefore, we see that the blurring/enhancing process is governed by the
sign of b(u2x):

• If b(u2x) > 0, which means that (3.67) is a forward parabolic equation,
the edge is blurred.

• If b(u2x) < 0, which means that (3.67) is a backward parabolic
equation, the edge is sharpened.

3We recall that in Section 3.3.1, it was assumed b(s) = c(s) + 2sc′(s) > 0
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Now, let us go back to the general 2-D Perona and Malik model [209]:{
∂u
∂t

(t, x) = div( c( |∇u(t, x)|2)∇u(t, x))
u(0, x) = u0(x)

(3.68)

where c : [0,+∞[→]0,+∞[ is a smooth decreasing function. As we saw in
Section 3.3.1, equation (3.68) can be rewritten as:{

∂u
∂t

(t, x) = c( |∇u(t, x)|2)uTT + b(|∇u(t, x)|2)uNN

u(0, x) = u0(x).

Following our intuition from the 1-D case, if we want to sharpen edges, we
need to impose that (3.68) is backward in the normal direction N , i.e.

b(s) = 2s c′(s) + c(s) < 0 for large s ≥ K, where K is a given threshold.
(3.69)

If we want to smooth homogeneous regions, we can impose:

c(0) = b(0) = 1,

which implies that (3.68) acts as the heat equation for small gradient. Of
course, there exist several possible choices for c(.). A typical example is:

c(s) =
1

1 +
s

K

.

Now, what can be said about the existence of a solution for (3.68) with
b satisfying (3.69)? The response is quite clear: hardly nothing. To better
understand the difficulty let us examine the 1-D ”backward” heat equation:

{
∂u
∂t

(t, x) = −uxx(t, x) on R× ] 0, T [
u(0, x) = u0(x).

(3.70)

By making the change of variable τ = T − t, it is easy to see that whenever
u(t, x) is a solution of (3.70) then v(τ, x) = u(t, x− τ) is a solution of{

∂v
∂τ

(τ, x) = vxx(τ, x) on R× ] 0, T [
v(t, x) = u0(x)

(3.71)

which is exactly the heat equation with the backward datum v(t, x) =
u0(x). So, if (3.70) admits a solution, the same goes for (3.71). But, ac-
cording to the regularizing property of the heat equation, necessarily u0(x)
should be infinitely differentiable. If not, we deduce that (3.70) does not
have a classical (and a weak) solution.

The same conclusion goes for (3.68) in the 1-D case. More precisely,
Kichenassamy [143] proved the following result:

Theorem 3.3.6 (Kichenassamy [143]) Let us suppose that
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(i) There exists a constant K > 0 so that b(s) > 0 for s < K2 and
b(s) < 0 for s > K2.

(ii) Both c(s) and b(s) tend to zero as s→ +∞.

(iii) (3.68) has a solution u(t, x) verifying K1 ≤ ux(t, x) ≤ K2 for all
x ∈ [A,B] and all t ∈ [0, T ], for some A, B and K1 > K.

Then u(t, x) is infinitely differentiable at t = 0 and for all x ∈]A,B[.
Therefore, if the initial image is not infinitely differentiable there is no
weak solution.

In fact, it results from [143] that a ”solution” must consist of regions in
which it has a gradient less than K in absolute value, separated by points
of discontinuity where the gradient is infinite. Thus, the notion of solution
must be understood in the measure sense.

Regularization of the Perona and Malik model: Catté et al [59]

If we persist to study (3.68) in a backward regime, we have to reconsider
our notion of solution. One way to tackle an ill-posed problem as (3.68) is
to introduce a regularization that makes the problem well-posed. Then, by
reducing the amount of regularization and observing the behaviour of the
solution of the regularized problem, one can obtain precious information
for the initial one. This way was followed by Catté et al [59]. The idea is
to substitute in the diffusion coefficient c(|∇u|2) the gradient of the image
∇u by a smooth version of it Gσ ∗∇u, where Gσ is a smoothing kernel4, for
example the Gaussian one (3.36). Since Gσ ∗ ∇u = ∇(Gσ ∗ u) = ∇Gσ ∗ u,
Catté et al proposed the regularized model:{

∂u
∂t

(t, x) = div( c( |(∇Gσ ∗ u)(t, x)|2)∇u(t, x))
u(0, x) = u0(x).

(3.72)

This model has at least two advantages with regard to the Perona and
Malik model:

• If the initial data is very noisy (introducing large oscillations in the
gradient of u), then the Perona and Malik model cannot distinguish
between ”true” edges and ”false” edges created by the noise. The
proposed model (3.72) avoids this drawback since now the equation
diffuses only if the gradient is estimated to be small. In fact, the model
makes the filter insensitive to noise at time tσ since (∇Gσ ∗ u) (t, x)
is exactly the gradient of the solution at time σ of the solution of the
heat equation with initial datum u(t, x).

4Since we write some convolution, u is in fact prolongated in R2 as in Section 3.3.1
(by symmetry and periodicity)
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• As we prove next, equation (3.72) is now well-posed.

Let us establish that (3.72) is well-posed. Let us note Ω =]0, 1[×]0, 1[ and
g(s) = c(s2). We have:

Theorem 3.3.7 [59] Let g : R+ → R+
∗ smooth, decreasing with g(0) = 1,

lim
s→+∞ g(s) = 0 and s → g(

√
s) smooth. If u0 ∈ L2(Ω), then there exists a

unique function u(t, x) ∈ C([ 0, T ];L2(Ω)) ∩ L2((0, T );W 1,2(Ω)) verifying
in the distributional sense:

∂u
∂t

(t, x)− div( g( |(∇Gσ ∗ u)(t, x)|)∇u(t, x)) = 0 on Ω× ]0, T [
∂u
∂N

(t, x) = 0 on ∂Ω×]0, T [
u(0, x) = u0(x).

(3.73)
Moreover, |u|L∞((0,T );L2(Ω)) ≤ |u0|L2(Ω) and u ∈ C∞( Ω× ] 0, T [ ).

Proof We follow [59].
Step 1: Uniqueness of the solution
Let u1 and u2 be two solutions of (3.73). For almost every t in [0, T ] and
i = 1, 2, we have

d

dt
ui(t)− div(αi(t)∇ui(t) ) = 0,

∂ui
∂N

= 0, ui(0) = u0

where αi(t) = g(|∇Gσ ∗ ui|). Thus:

d

dt
(u1 − u2)(t)− div(α1(t)(∇u1 −∇u2 )(t)) = div( (α1 − α2)(t)∇u2(t)).

Then, multiplying the above inequality by (u1 − u2), integrating over Ω
and using the Neumann boundary condition, we get a.e. t:

1
2
d

dt

∫
Ω

|u1(t)− u2(t)|2 dx+
∫
Ω

α1 |∇u1(t)−∇u2(t) |2dx = (3.74)

= −
∫
Ω

(α1 − α2)∇u2(t) · (∇u1(t)−∇u2(t)) dx.

But, since u1 belongs to L∞((0, T );L2(Ω)), then |∇Gσ ∗ u1| belongs to
L∞((0, T );C∞(Ω)) and there exists a constant M = M(Gσ, |u0 |L2(Ω))
such that | ∇Gσ ∗ u1| ≤M a.e. t, ∀x ∈ Ω. As g is decreasing and positive,
it follows that a.e. in Ω×] 0, T [

α1(t) = g(| ∇Gσ ∗ u1| ) ≥ g(M) = ν > 0,

which implies from (3.74):

1
2
d

dt

(
| (u1 − u2)(t)|2L2(Ω)

)
+ ν |∇(u1 − u2)(t)|2L2(Ω) ≤ (3.75)

≤ |α1 − α2|L∞(Ω) | ∇u2(t)|L2(Ω) |∇(u1 − u2)(t)|L2(Ω) .
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Moreover, since g and Gσ are smooth, we have:

|α1(t)− α2(t)|L∞(Ω) ≤ C |u1(t)− u2(t)|L2(Ω) (3.76)

where C is a constant which only depends on g and Gσ. From (3.76) and
by using the Young’s inequality, we obtain:

1
2
d

dt

(
| (u1 − u2)(t)|2L2(Ω)

)
+ ν | ∇(u1 − u2)(t)|2L2(Ω) ≤

≤ 2
ν
C2 | (u1 − u2)(t)|2L2(Ω) | ∇u2(t)|2L2(Ω) +

ν

2
|∇(u1 − u2)(t)|2L2(Ω)

from which we deduce:
1
2
d

dt
( | (u1 − u2)(t)|2L2(Ω)) ≤

4
ν
C2 | ∇u2(t)|2L2(Ω) | (u1 − u2)(t)|2L2(Ω) .

To conclude, we need the Gronwall’s inequality (see Section 2.5.1) that we
recall here:

If y(t) ≥ 0 satisfies
dy

dt
(t) ≤ c1(t) y(t) + c2(t)

then y(t) ≤
(
y(0) +

t∫
0

c2(s) ds
)

exp
( t∫

0

c1(s) ds
)
.

Applying this inequality to y(t) = |(u1 − u2)(t)|2L2(Ω) we get, since u1(0) =
u2(0) = u0:

| (u1 − u2)(t)|2L2(Ω) ≤ 0, i.e. u1 = u2.

Step 2: Existence of a solution
The proof is based on a classical fixed-point argument. Let us define the
space:

W (0, T ) =
{
w ∈ L2((0, T );W 1,2(Ω)) ;

dw

dt
∈ L2((0, T );W 1,2(Ω)

′
)
}

where W 1,2(Ω)′ is the dual of W 1,2(Ω). W (0, T ) is an Hilbert space for the
norm:

|w |W = |w |L2((0,T );W 1,2(Ω)) +
∣∣∣∣ dwdt

∣∣∣∣
L2((0,T );W1,2(Ω)′ )

Let w ∈W (0, T )∩L∞((0, T );L2(Ω)) so that |w |L∞((0,T );L2(Ω)) ≤ |u0 |L2(Ω)
and let us introduce the variational problem (Pw):

〈 du(t)
dt

, v 〉W 1,2(Ω)′ ×W 1,2(Ω) +
∫
Ω

g(|(∇Gσ ∗ w )(t)|)∇u(t)∇v dx = 0

for all v ∈ W 1,2(Ω), a.e. t in [0, T ], which is now linear in u. As seen in
Step 1, there exists a constant ν > 0 such that g(| ∇Gσ ∗ w| ) ≥ ν a.e.
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in Ω×]0, T [. Therefore, by applying classical results on parabolic equations
(see [105], page 356), we prove that the problem (Pw) has a unique solution
uw in W (0, T ) satisfying the estimates:

|uw |L2((0,T );W 1,2(Ω)) ≤ c1

|uw |L∞((0,T );L2(Ω)) ≤ |u0 |L2(Ω) (3.77)∣∣∣∣ duwdt
∣∣∣∣
L2((0,T );W 1,2(Ω)′)

≤ c2

where c1 and c2 are constants depending only on g, Gσ and u0. From these
estimates, we introduce the subspace W0 of W (0, T ) defined by:

W0 =


w ∈W (0, T ), w(0) = u0
|w |L2((0,T );W 1,2(Ω)) ≤ c1,

|w |L∞((0,T );L2(Ω)) ≤ |u0 |L2(Ω) ,∣∣∣ dwdt ∣∣∣
L2((0,T );W 1,2(Ω)′)

≤ c2

 .

By construction, w → S(w) ≡ uw is a mapping from W0 into W0. Moreover,
one can prove that W0 is no empty, convex and weakly compact in W (0, T ).
Thus, we can apply the Schauder’s fixed-point Theorem:

Theorem 3.3.8 (Schauder’s fixed point Theorem) If E is a convex,
compact subset of a Banach space and if S : E → E is continuous, then
there exists x ∈ E such that S(x) = x.

So, let us prove that the application S : w → uw is weakly continuous
(W0 → W0). Let wj be a sequence, which converges weakly to some w
in W0 and let uj = uwj

. We have to prove that S(wj) = uj converges
weakly to S(w) = uw. From (3.77) and classical results of compact inclu-
sion in Sobolev spaces [1], we can extract from wj , respectively from uj , a
subsequence (labelled wj , respectively uj) such that for some u, we have

duj
dt

−−−⇀
L2((0,T );W 1,2(Ω)′)

du

dt

uj −−−→
L2((0,T );L2(Ω))

u

∂uj
∂xk

−−−⇀
L2((0,T );L2(Ω))

∂uj
∂xk

wj −−−→
L2((0,T );L2(Ω))

w

∂Gσ

∂xk
∗ wj −−−→

L2((0,T );L2(Ω))

∂Gσ

∂xk
∗ w and a.e. on Ω×]0, T [

g(|∇Gσ ∗ wj |) −−−→
L2((0,T );L2(Ω))

g(|∇Gσ ∗ w|)

uj(0) −−−→
W 1,2(Ω)′

u(0).
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The above convergences allow us to pass to the limit in (Pw) and get
u = uw = S(w). Moreover, since the solution is unique, the whole sequence
uj = S(wj) converges weakly in W0 to u = S(w), i.e. S is weakly contin-
uous. Consequently, thanks to the Schauder’s fixed-point Theorem, there
exists w ∈ W0 such that w = S(w) = uw. The function uw solves (3.73).
The regularity follows from the general theory of parabolic equations. �

Remark The Theorem 3.3.7 provides a natural algorithm for the nu-
merical approximation of the solution. Let u0 ∈ L2(Ω), we construct a
sequence un by solving the iterative scheme:

∂un

∂t
(t, x)− div(g(|(∇Gσ ∗ un)(t, x)|)∇un+1(t, x)) = 0 a.e. on Ω×]0, T [

∂un+1

∂N
(t, x) = 0 a.e. on ∂Ω×]0, T [

un+1(0, x) = u0(x)

It is proven in [59] that un converges in C([ 0, T ]; L2(Ω)) to the unique
solution of (3.71). �

Let us mention the existence of other models for regularizing the Per-
ona and Malik equation. For example, Nitzberg-Shiota [194] proposed the
coupled system (in 1-D)

∂u
∂t

= (c(v)ux)x
∂v
∂t

= 1
τ ( |ux|2 − v )

u(0, x) = u0(x) and v(0, x) is a smoothed version of |u′
0(x)|2.

The function v plays the role of time-delay regularization, where the para-
meter τ > 0 determines the delay. For other models, see Barenblatt et al
[22], Chipot et al [75], Alvarez et al [6].

✺ In spite of the lack of a rigorous mathematical theory concerning the
Perona and Malik equation, it is successfully used in many numerical exper-
iments. This phenomenon is still unexplained. It is likely that the behaviour
of the associated discrete problem does not reflect the ill-posedness of the
continuous version but this has to be more investigated.

A first attempt to justify the Perona and Malik model was done by
Kichenassamy who defined in [143] a notion of generalized solution. This
direction is promising and should be more investigated.

Once this regularized model is well-defined, a natural question arises:
does equation (3.72) approach equation (3.68) as σ tends to zero? This is
a difficult question and no mathematical response is available today. Per-
haps, a clue to tackle this question would be to find a suitable functional
framework for which uσ, the solution of (3.72), and its gradient would be
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uniformly bounded with respect to σ. Then accumulation points could be
considered as good candidates.

Another question which is empirical, is the choice of the parameter σ.
Here again, there is no satisfying answer. In general, this choice is fixed by
the user and is related to other parameters, for example those defining the
function c(s).

3.3.3 Enhancing PDEs
The Osher and Rudin’s shock-filters [199]

We close this chapter devoted to image restoration by examining edge
enhancement via PDEs. In fact, in a way, enhancing and smoothing are
opposite processes. In the former case, we want to create discontinuities
at places where they have to appear, while in the latter case we want to
remove superfluous features and false discontinuities. A typical example of
enhancing is deblurring. In this section, we show how some nonlinear hy-
perbolic PDEs (called shock filters) can be used for edge enhancement and
deblurring. Let us start with the one-dimensional case. Ideally, an edge can
be modelized by the step function:

u(x) =

{
1 if x > 0
−1 if x < 0.

Let us imagine that some process (a convolution, for example) has blurred
this edge, so that we have in hand a smooth version u0(x) of u(x) (see
Figure 3.18). The problem is to go back to u(x), starting from u0(x).

x x

−1 −1

+1+1

u u0

?

Figure 3.18. Illustration of the one dimensional case

To illustrate the reasoning and cover the different possibilities, we consider
in this section the following initial condition:

u0(x) = cos(x).

In this case, as depicted in Figure 3.19, we would like to define a family of
evolving curves {u(t, x)}t>0 in order to sharpen the edges.

☛ As we can observe, the direction of the motion of u(t, x) is a func-
tion of x and depends of the sign of the product ux(t, x)uxx(t, x).
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The four cases are indicated in Figure 3.19. Notice that at points x where
uxx(t, x) = 0 or ux(t, x) = 0, it is desirable that no motion occurs.

x

0 π/2 π 3π/2−π/2

ux > 0 ux > 0
uxx < 0 uxx < 0

ux < 0 ux < 0
uxx > 0 uxx > 0

Figure 3.19. Illustration of the debluring procedure in the 1-D case, for the initial
condition u0(x) = cos(x), represented on

[
−π
2 ,

3π
2

]
. The dashed line represents

the initial condition, and in solid line we display the function after some time.
Arrows show the direction of displacement.

Following this idea, Osher and Rudin [199] proposed to solve{
ut(t, x) = − |ux(t, x)| sign (uxx(t, x))
u(0, x) = u0(x) (3.78)

where sign(u) = 1 if u > 0, sign(u) = −1 if u < 0, sign(0) = 0. For example,
at points where ux(t, x) > 0 and uxx(t, x) > 0, we can verify that (3.78)
behaves like ut(t, x) + ux(t, x) = 0 that is a transport equation with speed
+1, which is the desired motion. The same goes for the other cases. Before
trying to justify this equation, we are going to consider a simplified version.

A case study: construction of a solution by the method of characteristics

Let us examine more precisely the following simpler case:{
ut(t, x) = − |ux(t, x)| sign( (u0)xx (t, x))
u(0, x) = u0(x)

(3.79)

with u0(x) = cos(x). We are going to search for an explicit solution. To do
this, we use the method of characteristics for which we recall the general
formalism.

Method of characteristics [105]

Let U be an open subset of RN and Γ ⊂ ∂U , a part of the boundary
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of U . Let us consider the nonlinear first-order PDE{
F (x, u,Du) = 0 in U
u = g on Γ (3.80)

where F and g are supposed smooth. The idea is to convert the PDE into
a system of Ordinary Differential Equations (ODE). Let us fix any point
x ∈ U and let us suppose that u ∈ C2 is a solution of (3.80). We would
like to calculate u(x) by finding some curve lying within U , connecting x
with a point x0 ∈ Γ, and along which we can compute u. Since u = g on
Γ, we know the value of u at x0 and we desire to calculate u all along the
curve, and in particular at x. Let us suppose that the curve is described
parametrically by x(s) = (x1(s), . . . , xN (s)). We define

z(s) = u(x(s)) (3.81)
p(s) = Du(x(s)). (3.82)

Now, the question is to choose a good curve x(s) in such a way that we
can compute z(s) and p(s). In practice, we have to find the equations that
are satisfied by x(s), z(s) and p(s), and to solve them.

We first differentiate (3.82) with respect to s:

ṗi(s) =
N∑
j=1

uxixj (x(s)) ẋj(s), i = 1, ..., N
(
ṗi =

dpi
ds

)
(3.83)

then we differentiate (3.80) with respect to xi:

N∑
j=1

∂F

∂pj
(x, u,Du)uxjxi +

∂F

∂z
(x, u,Du)uxi +

∂F

∂xi
(x, u,Du) = 0. (3.84)

In order to get rid of second derivative terms, let us define x(s) as the
solution of the ODE system:

ẋj(s) =
∂F

∂pj
(x(s), z(s), p(s)). (3.85)

Assuming that x(s) exists and thanks to (3.81)-(3.82), the equation (3.84)
evaluated at x = x(s) writes as:

N∑
j=1

∂F

∂pj
(x(s), z(s), p(s))uxjxi(x(s)) +

∂F

∂z
(x(s), z(s), p(s)) pi(s)+

+
∂F

∂xi
(x(s), z(s), p(s)) = 0.

If we substitute in this expression ∂F
∂pj

(x(s), z(s), p(s)) by ẋj(s) (cf. (3.85)),

we get from (3.83)

ṗi(s) = −∂F
∂z

(x(s), z(s), p(s)) pi(s)− ∂F

∂xi
(x(s), z(s), p(s)) = 0.
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Finally, differentiating (3.81) with respect to s, we obtain:

.
z(s) =

N∑
j=1

∂u

∂xj
(x(s)) ẋj(s) =

N∑
j=1

pj(s)
∂F

∂pj
(x(s), z(s), p(s))

In summary, in vector notation, x(s), z(s) and p(s) satisfy the system of
(2N + 1) first-order ODE (called characteristic equations): ẋ(s) = DpF (x(s), z(s), p(s))

ż(s) = DpF (x(s), z(s), p(s)) · p(s)
ṗ(s) = −DxF (x(s), z(s), p(s))−Dz(x(s), z(s), p(s)) p(s)

(3.86)

Naturally, we need in addition to specify the initial conditions. To make it
more clear, let us come back to our initial problem (3.79). Unfortunately,
our calculus will be quite formal since in the case of equation (3.79), the
function F is not differentiable! In order to adopt the same notations as
previously, we make the change of variables x2 = t and x1 = x. Therefore,
(3.79) writes: {

ux2 + sign(u0)x1x1 |ux1 | = 0 in U
u(x1, 0) = u0(x1) on Γ (3.87)

i.e. F (x1, x2, z, p) = p2 + sign(u0)x1x1 | p1|. We choose u0(x1) = cos(x1),
thus (u0(x1))x1x1 = − cos(x1).
Let U =]− π

2 ,
3π
2 [×R+ and Γ =

{
(x1, x2), x1 ∈ ]− π

2 ,
3π
2 [ , x2 = 0

}
. To

get rid of the sign function, we split the study into two cases.

First case: Equation is studied on ]− π
2 ,

π
2 [×R+

In this case, sign(cos(x1))x1x1 = −1. Therefore, we formally have:

Dp1F = − p1
| p1| , Dp2F = 1, DzF = Dx1F = Dx2F = 0

and (3.86) writes: 
ẋ1(s) = − p1(s)

| p1(s) | , ẋ2(s) = 1

ṗ1(s) = ṗ2(s) = 0,
ż(s) = p2(s)− | p1(s)|

(3.88)

For s = 0, we suppose that x1(0) = a ∈] − π
2 ,

π
2 [ and x2(0) = 0. The

integration of (3.88) is immediate. We get for some constants p01 and p02:
x1(s) = − p01∣∣ p01 ∣∣ s + a, x2(s) = s

p(s) = (p01, p
0
2)

z(s) = (− ∣∣ p01 ∣∣ + p02) s + cos(a).

It remains to determine (p01, p
0
2). Since u(x1, x2) = cos(x1) on Γ, we have

p01 = ux1(a, 0) = − sin a and p02 = ux2(a, 0). But from equation (3.87), we
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deduce p02 = ux2(a, 0) = |ux1(a, 0) | = | sin a |. Therefore, the characteristic
curve x(s) is given by {

x1(s) = sin a
| sin a | s + a

x2(s) = s

and u(x1(s), x2(s)) = z(s) = (− | sin a | + | sin a | ) + cos(a) = cos(a), that
is to say, u is constant along characteristics. We have two cases (see also
Figure 3.20):

(i) if sin a > 0, i.e. a ∈ [ 0, π2 [, then x1(s) = s + a, x2(s) = s and the
characteristics are straight lines. Thus, in this case, the solution of (3.87)
is u(x1, x2) = cos(x1 − x2) with x2 < x1 < π/2.

(ii) if sin a¡ 0, i.e. a ∈] − π
2 , 0 [ then x1(s) = −s + a, x2(s) = s and

u(x1, x2) = cos(x1 + x2) with −π/2 < x1 < −x2.

0 π/2 x1

x2

π/2

−π/2

u = cos(x1 − x2)u = cos(x1 + x2)
u =?

Figure 3.20. Characteristic lines in ]− π
2 ,

π
2 [×R+. Notice that no characteristics

go into the gray region.

Second case: Equation is studied on ]π2 ,
3π
2 [×R+

In this case the equation becomes ux2 + |ux1 | = 0 and a similar study leads
to the solution (see also Figure 3.21):

u(x1, x2) =

{
cos(x1 + x2) if π2 < x1 < π − x2

cos(x1 − x2) if x2 + π < x1 <
3π
2 .

Thanks to these calculi, we can observe that:

• The function u(x1, x2) is discontinuous (a shock) along the line x1 =
π
2 , i.e. at a point where characteristics intersect.

• u(x1, x2) is not yet defined for −x2 < x1 < x2
and π−x1 < x2 < x1 − π.
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0 π/2

x2

π/2

3π/2 x1

u =?

π

u = cos(x1 − x2)u = cos(x1 + x2)

Figure 3.21. Characteristic lines in ]π2 ,
3π
2 [×R+. Notice that no characteristics

go into the gray region.

• If we do not want to create other discontinuities than those described
above, we must set:

u(x1, x2) =

{
1 if − x2 < x1 < x2

−1 if π − x1 < x2 < x1 − π.

In conclusion, we propose as a solution of{
ux2 + sign(− cos(x1)) |ux1 | = 0 in ]−π2 , 3π

2 [×R+

u(x1, 0) = cos(x1),
(3.89)

the piecewise regular function u depicted in Figure 3.22. It is easy to see,
by symmetry, that if U = R × R+, then we can construct a solution of
(3.87) (with u0(x1) = cos(x1)) whose discontinuities only develop at x1 =
(2k + 1)π/2, k = 0,±1,±2 . . .

cos(x1 − x2)

cos(x1 + x2)

0 π/2

x2

π/2

−π/2 3π/2π

−11

x1

Figure 3.22. Solution proposed for equation (3.89).

This example shows very well why equations like (3.87) acts as edge
enhancement filters. Starting from an initial data u0(x) = cos(x) (we return
to our previous notations (t, x)), we have constructed a family of functions
{u(t, x)}t>0 so that, as t increases, the limiting process tends to an ideal
one-dimensional edge model: the step function u(x) = (−1)k for (2k −
1) π2 < x < (2k+1) π2 . We illustrate in Figure 3.23 the solution at different
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times. We can remark that edge formation and sharpening process occur
at the places where (u0(x))xx = 0.

−π 0 π/2
x

3π/2π−π/2−3π/2

Figure 3.23. Illustration of the function u solution of (3.79) at different times.

Comments on the shock-filter equation

Now, let us come back to more general one-dimensional models. As
described in [199], let us consider the equation:{

ut = − |ux | F (uxx), x ∈ R, t > 0
u(0, x) = u0(x). (3.90)

Here, F is a Lipschitz continuous function satisfying:{
F (0) = 0
sign(s)F (s) > 0, s �= 0 (3.91)

A typical example of (3.90) is:{
ut = − |ux | uxx, x ∈ R, t > 0
u(0, x) = u0(x) (3.92)

which can be written as:{
ut + (uxx sign(ux))ux = 0, x ∈ R, t > 0
u(0, x) = u0(x). (3.93)

The equation 3.93) (or (3.92)) can be considered as a transport equation
whose the speed of propagation is locally given by c(x) = sign(ux)uxx.
Moreover, since edges are defined as maximum points of |ux |, then at
these points we have necessarily uxx = 0 and locally uxx changes of sign.
Thus, the speed c(x) plays the role of an edge-detector. From a mathemat-
ical point of view this type of equations is severely ill-posed.

✺ As already noticed, up to our knowledge, there is no theoretical justifi-
cation for this problem. One of the first difficulty is to define the suitable
notion of weak solution. We may wonder if the notion of discontinuous
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viscosity solutions [23, 25] may help for the understanding of this equation.

Nevertheless, Osher and Rudin [199] have performed very satisfying nu-
merical simulations and they conjectured the following result.

Conjecture [199] The evolution equation (3.90), with u0(x) continuous,
has a unique solution which has jumps only at inflection points of u0(x)
and for which the total variation in x of u(t, x) is invariant in time, as
well as the location and value of local extrema.

The transposition of these ideas to the two-dimensional case is now straight-
forward. We have to write an equation which is the combination of a
propagation term |∇u| and an edge-detection term whose desired behav-
iour involves changing sign across edges (or singular features) so that the
local flow field is directed towards the edges. A good candidate is:

∂u

∂t
= − |∇u| F (L(u)) (3.94)

where F satisfies (3.91) and where L is a nonlinear elliptic operator so that
zero crossings define the edges of the processed image. According to the
Marr’s theory [169], the most classical operator is the Laplacian:

L(u) = ∆u = uxx + uyy.

A better choice would be:

L(u) =
1

| ∇u |2 (u2xuxx + 2uxuyuxy + u2yuyy)

which corresponds to the second derivative of u in the direction of the
∇u
| ∇u | (here edges are defined as level curves of u).

The efficiency of this approach is demonstrated in Figures 3.24 and 3.25.
We refer the reader to Section A.3.3 of the Appendix for the discretiza-
tion of (3.94). There are usually two main criticisms for this model. The
first is that the results obtained is not realistic from a perception point of
view. As it can observed in Figure 3.25 the result is a piecewise constant
image so that texture and fine details are lost (compare to the clear “Borel
building” image in Figure 3.1). However, one cannot expect to recover de-
tails not present in the original blurred image. . . The second criticism is
that if we have also some noise present in the image it will be enhanced.
To overcome this difficulty Alvarez-Mazorra [7] combine shock filters and
anisotropic diffusion and add a smoothing kernel for the estimation of the
direction of the edges (see also [152]).



3.3. PDE-based methods 135

t=0 t=2 t=4 t=10

Figure 3.24. Example of shock filters on a blurred image representing a jar with
some flowers. The blur has been generated by a convolution with a Gaussian
kernel of variance σ = 10. Some iterations until convergence are then shown.
This example shows that degradations due to blur cannot be fully recovered for
fine structures (see for instance the extremities of the leafs).

original blurred image result

Figure 3.25. Example of shock filters on the blurred “Borel building” image.
The blur has been generated by a convolution with a Gaussian kernel of variance
σ = 10. One can observe the patch effect produced by this algorithm.



4
The Segmentation Problem

How to read this chapter?

This chapter is concerned with image segmentation which plays a very
important role in many applications. The aim is to find a partition of an
image into its constituant parts. As we will see, the main difficulty is that
one need to manipulate objects of different nature: functions, domains in
R2 and curves.

• We first try in Section 4.1 to better define what image segmentation
is and we briefly survey some classical ideas in image segmentation.
In fact the notion of segmentation depends on the kind of image we
have to process and what we want to do. In the last decade, two main
approaches have been developed: the Mumford and Shah approach
and the geodesic active contours method.

• Section 4.2 concerns the Mumford and Shah functional. Here the idea
is to find a close image of the initial one compounded of several re-
gions with nearly constant intensity. The difficulty for studying the
Mumford and Shah functional is that it involves two unknowns: the
intensity function and the set K of edges. This difficulty is tackled
in Sections 4.2.2 and 4.2.3 which are concerned with the mathemat-
ical study of this problem (definition of the suitable mathematical
framework, optimality conditions, regularity of the edge set). Section
4.2.4 is a survey of some approaches for approximating the Mumford
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and Shah functional. Most of them are based on the Γ-convergence
theory. Finally, we present in Section 4.2.5 some experimental results.

• Section 4.3 deals with the geodesic active contours and the level sets
method. Here, the objective is to find the boundaries of objects in an
image. The idea is to modelize those contours as curves that should
match the highest gradients. We start in Section 4.3.1 by recalling
the Kass, Witkin and Terzopoulos snakes model which is one of the
first work in this direction. This model which has some drawbacks
has been revisited by Caselles, Kimmel and Sapiro who proposed a
geodesic active contour strategy (Section 4.3.2). We clearly establish
the connection between these two formulations. One of the main in-
terest of the latter model is that it can be rewritten using a level sets
formulation. This is detailed in Section 4.3.3 where we prove the well-
posedness of this model in the viscosity sense. This section is rather
technical but shows a complete and classical proof using viscosity so-
lutions. We finally illustrate this approach in Section 4.3.4 and we
refer to the Appendix for the details regarding the discretization.

4.1 Definition and objectives

As a first definition, we could say that segmenting an image means dividing
it into its contituant parts. However this definition is rather unsatisfactory
and ambiguous. Let us have a look to the images presented in Figure 4.1.
In the left-hand side image, every contour (edge) information is important
and it would be interesting to have an identification of all the contours
separating two regions of different intensities. Equivalently, one would like
to have a simplified version of the original image, compounded of homoge-
neous regions separated by sharp edges. The right-hand side second image
illustrates the notion of objects. Some contours (the boundaries of the ob-
ject) may have more importance (depending on the application) and it
would be interesting to find an approach to detect them. These two exam-
ples show that the notion of segmentation is not unique and may depend
on the kind of image we have to deal with.

Still, in each case, the important features are edges. Edge detection has
been an early concern in computer vision. Classical approaches are based
on local differential properties of an edge, for instance on the first and
second derivatives of the image (see Figure 4.2).
At the first order, the earliest methods were based on the application of
some convolution masks to approximate the first derivative, thus enhanc-
ing edges [211, 210, 231]. Then, Canny [54] proposed an edge detector that
is still widely used. The starting point was to define criteria that an edge
detector should satisfy: reliability of the detection, accuracy of the localisa-
tion, and the requirement of one response per edge. This leads to an optimal
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“Borel building” “objects”

Figure 4.1. Two examples of images suggesting different notions of segmentation

u |∇u| sign( u)

uσ = Gσ ∗ u |∇uσ| sign( uσ)

Figure 4.2. Edges and derivatives. First and second order derivatives of the image
“objects” and a smoothed version of it are displayed. The gradient is represented
using inverted colors for a for a better visualization. The Laplacian is negative
in the black areas, positive in the white ones, zero otherwise. Edges can be seen
as the locations where the gradient is locally maximum, or where the Laplacian
changes sign. Notice how the smoothing allows to obtain a cleaner description of
the edges.



140 4. The Segmentation Problem

filter which is in fact a very close approximation to the first derivative of a
Gaussian. This has been further developed by Deriche [91] and Shen and
Castan [230] who proposed sharper filters implemented recursively.
At the second order, the important starting point was the method proposed
by Marr and Hildreth [170] based on zero-crossing detection of a Laplacian
of a Gaussian, noted LoG (see also [134, 195, 253]). This kind of approach
produces closed contours, the corners are rounded and the connectivity at
the junctions is poor.

These approaches are local and combine derivatives at different scales.
The goal is to identify the edges which are characterized by sharp variations
of the intensity. If we consider the examples from Figure 4.1 we may propose
two different strategies:

• To segment the “Borel building” image, the dual point of view would
be to find a simplified image as a combination of regions of constant
intensities. By constructing such an approximation of an image, we
would also have the segmentation. Also, as it is local, there is no
concern about the smoothness of the contours. These two ideas can
be incorporated in a variational framework: starting from an image
u0, we look for a pair (u,K) such that u is a nearly piecewise constant
approximation of u0 and K corresponds to the set of edges. This was
proposed by Mumford and Shah in 1989 and we detail in Section 4.2
this model and its properties.

• Now, if we consider the “objects” image, one would like to have
a technique separating the five objects, without any concern of the
internal texture. One intuitive idea should be to consider a curve
enclosing all the objects and make it evolve until it reaches the
boundaries of the objects. Eventually, this curve could shrink or split.
This idea has been initialy proposed by Kass Witkin and Terzopoulos
(active contours) and it is based on an energy minimization depend-
ing on the curve. This is presented in Section 4.3 as well as further
developments like the level sets formulation.

We will work afterwards with the “objects” image which has interesting
properties, with regards to the previous discussion. First of all, it is com-
pounded of five different objects with different sizes, shapes or textures
(see Figure 4.3), so that both aspects of segmentation can be tested (in
terms of edge detection or object segmentation): the mug has covered with
several images, one part of the stapler is quite elongated and fine, several
similar keys are superimposed, the disk has a hole, and the coin is small
and present small contrasts. It will be interesting to observe what kind of
results we obtain with the different approaches.
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Figure 4.3. Different parts of the “objects” image

4.2 The Mumford and Shah functional

4.2.1 A minimization problem
Let us present the model introduced by Mumford and Shah in 1989 [187].
In this section Ω is a bounded open set of RN , N = 2, 3 and u0(x) is
the initial image. Without a loss of generality we can always assume that
0 ≤ u0(x) ≤ 1 a.e. x ∈ Ω. We search for a pair (u,K), where K ⊂ Ω is the
set of discontinuities, minimizing:

F (u,K) =
∫

Ω−K

(u− u0)2dx + α

∫
Ω−K

|∇u|2 dx + β

∫
K

dσ (MS)

where α and β are non negative constants and
∫
K

dσ is the length of K. In

their seminal paper [187], the authors conjectured that:

Conjecture 4.2.1 There exists a minimizer of F so that the edges (the
discontinuity set K) are the union of a finite set of C1,1 embedded curves.
Moreover they predicted that each curve may end either as a crack tip (a
free extremity, i.e. K looks like a half line) or in triple junction that is
three curves meeting at their endpoints with 2π

3 angle between each other.

The purpose of this section is to analyze this conjecture and the recent
advances on this subject. We first concentrate on the existence problem
(Section 4.2.2) and then study the geometric properties of the set K (Sec-
tion 4.2.3). We conclude by giving some details on the approximation of
this functional (Section 4.2.4).

4.2.2 The mathematical framework for the existence of a
solution

Before studying this problem, we need to correctly define the functional
F (u,K) ans in particular decide which class of K to consider. It is clear
that we cannot a priori impose that K is made of a finite set of C1,1-
curves since one cannot hope to obtain any compactness property and so
any existence theorem with this too restrictive assumption. The regularity
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of K will have to be proven a posteriori. This situation is classical in the
calculus of variations and one overcomes this difficulty by looking for a
solution in a wider class of set of finite length rather than just in a set
of C1,1-curves. This is achieved by defining the length of K as its (N -1)-
dimensional Hausdorff measure HN−1(K) which is the most natural way
of extending the notion of length to non-smooth sets (see Definition 2.2.8,
Section 2.2). Therefore we rewrite the Mumford and Shah functional as:

F (u,K) =
∫

Ω−K

(u− u0)2 dx + α

∫
Ω−K

|∇u|2 dx + β HN−1(K)

where for the moment K ⊂ Ω is a closed set and u belongs to the Sobolev
space W 1,2(Ω−K). We can observe that F (u,K) is minimal in the sense
that removing one of the three terms would imply that inf F (u,K) = 0 and
we could obtain trivial solutions. For example if we drop the first integral
in F then u = 0 and K = ∅ are solutions, or if we drop the second term
then u = u0 and K = ∅ are solutions. Nevertheless, if we reject trivial
solutions it can be interesting to study some of these limiting cases. For
example, in the latter case (α = 0) we obtain the reduced Mumford and
Shah functional:

E(u,K) =
∫

Ω−K

(u− u0)2 dx + β HN−1(K).

It is easy to see that if K is fixed (K �= ∅) then a solution u is piecewise con-
stant (u is equal to the mean of u0 on the connected components of Ω−K)
and so E becomes only a function of K. A lot of work has been devoted
to this particular case. Let us mention contributions from Mumford and
Shah [187], Morel and Solimini [185, 183, 184], Massari and Tamanini [173].

☛ The difficulty for studying F is that it involves two unknowns u and
K of different nature: u is a function defined on a N -dimensional space,
while K is a (N -1)-dimensional set.

In order to apply the direct method of the calculus of variations, it is
necessary to find a topology, which ensures at the same time lower semi-
continuity of F and compactness of the minimizing sequences. The difficulty
comes from HN−1(K). Indeed let E be a Borel set of RN with topological
boundary ∂E. It is easy to convince oneself that:

☛ the application E → HN−1(∂E) is not lower semi-continuous with re-
spect to any compact topology.

Let us consider the following example. Let {xi} be the sequence of all
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rational points in RN and let

Bi =
{
x ∈ RN ; |x− xi| ≤ 2−i

}

Ek =
k⋃

i=0

Bi, E =
∞⋃
i=0

Bi.

Denoting by |E| the N -dimensional Lebesgue measure of E and by wN the
Lebesgue measure of the unit ball in RN , we get:

|E| ≤
∞∑
i=0

|Bi| = wN

∞∑
i=0

2−iN =
wN

1− 2−N
<∞.

Since rational points are dense in RN we have E = RN and thus
∂E = E − E = RN − E has infinite Lebesgue measure which implies:

HN−1(∂E) = +∞.

On the other hand:

HN−1(∂Ek) ≤ HN−1

(
k⋃

i=0

∂Bi

)
= NwN−1

k∑
i=0

2−i(N−1) ≤

≤ N
wN−1

1− 2−(N−1) < +∞.

Therefore the sequence
{HN−1(∂Ek)

}
is bounded, Ek → E (k → +∞)

in the sense of measures (or equivalently the sequence of characteristic
functions χEk

converges in L1 to χE , however we do not have:

HN−1(∂E) ≤ lim
k→+∞

HN−1(∂Ek).

This shows the necessity to find another formulation of F (u,K). The new
formulation involves the space BV (Ω) of functions of bounded variation
in Ω (Section 2.2). The idea is to identify the set of edges K to the jump
set Su of u, which allows to eliminate the unknown K. So the idea is to
consider the functional:

G(u) =
∫
Ω

(u− u0)2dx + α

∫
Ω

|∇u|2dx + β HN−1(Su). (4.1)

If we do not have a lower semi-continuity property with sets (see above re-
mark), we are going to show that it can be obtained with functions. Now,
it is tempting to minimize G on the space BV (Ω). Unfortunately the space
BV (Ω) may contain pathological non-constant functions which are contin-
uous and have approximate differential equal to zero almost everywhere (a
well-known example is the Cantor-Vitali function [10]). For such a function
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v we have:

G(v) =
∫
Ω

(v − u0)2 dx ≥ inf
u∈BV (Ω)

G(u) ≥ 0

and since these pathological functions are dense in L2(Ω) we get:

inf
u∈BV (Ω)

G(u) = 0

which implies that the infinimum of G cannot be achieved in BV (Ω) in
general. To avoid this phenomenon we must eliminate these pathological
functions which have the particularity that their distributional derivatives
are measures concentrated on Cantor sets. Let us recall that the distri-
butional derivative Du of a BV (Ω) function can be splitted into three
mutually singular measures:

Du = ∇u dx + (u+ − u−)nuHN−1
|Su

+ Cu

where J(u) = (u+ − u−)nuHN−1
|Su

is the jump part and Cu the Cantor
part. Following Di Giorgi [87, 86] we call SBV (Ω) the space of special
functions of bounded variation as the space of BV (Ω) functions such that
Cu = 0. Remark that Cantor-Vitali functions mentioned above do not
belong to SBV (Ω) since their support are mainly based on Cantor sets.
Consequently, the suitable functional space to minimize (4.1) seems to be
SBV (Ω). The natural question is now to establish the relation between the
two problems:

inf
u,K

{ F (u,K), u ∈W 1,2(Ω−K) ∩ L∞(Ω),
K ⊂ Ω, K closed , HN−1(K) <∞

}
(P1)

inf
u

{
G(u), u ∈ SBV (Ω) ∩ L∞(Ω)

}
(P2)

The answer can be found in Ambrosio [9] and is the consequence of the
following theorem:

Theorem 4.2.1 [9] Let K ⊂ Ω be a closed set so that HN−1(K) <∞ and
let u ∈ W 1,2(Ω − K) ∩ L∞(Ω), then u ∈ SBV (Ω) and Su ⊂ K ∪ L with
HN−1(L) = 0.

From Theorem 4.2.1 it follows that inf P2 ≤ inf P1. By using compactness
and lower semi-continuity theorems (see below) it can be shown that (P2)
has a solution u. For such a minimizer De Giorgi-Carriero-Leaci [88] proved
that:

HN−1(Ω ∩ (Su − Su)) = 0.

So by setting K = Ω∩Su we get a solution of (P1) and min (P1) = min (P2).

It remains to show that (P2) has a solution. This is the direct consequence
of the following theorem:
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Theorem 4.2.2 [11] Let un ∈ SBV (Ω) be a sequence of functions so
that there exists a constant C with |un(x)| ≤ C < ∞ a.e. x ∈ Ω and∫
Ω

|∇un|2 dx +HN−1(Sun
) ≤ C, then there exists a subsequence unk

con-

verging a.e. x to a function u ∈ SBV (Ω). Moreover ∇unk
converges weakly

in L2(Ω)N to ∇u and lim HN−1(Sunk
) ≥ HN−1(Su).

We obtain a solution for (P2) by applying Theorem 4.2.2 to any minimiz-
ing sequence of (P2) and by remarking beforehand that we can restrict to
minimizing sequences satisfying |un|L∞(Ω) ≤ |u0|L∞(Ω) (using a troncature
argument).

☛ The SBV cluster points of sequences as defined in Theorem 4.2.2 are
solutions of (P2). Remark that no uniqueness result is available. This will
be illustrated in the coming section.

As we get the existence of a minimizer we would like now to compute
it. The natural way to do that is to search for optimality conditions. Curi-
ously, it is easier to establish them by using F (u,K) than G(u). So, let us
suppose that there exists a pair (u,K) solution of (P1) i.e.

F (u,K) ≤ F (v,K ′) (4.2)

for all v ∈ W 1,2(Ω −K ′) ∩ L∞(Ω), K ′ ⊂ Ω, K ′ closed, HN−1(K ′) < ∞.
Moreover, let us suppose that (u,K) satisfies the Mumford and Shah con-
jecture:

(C1) K is made of a finite number of C1,1-curves γi, meeting ∂Ω and
meeting each other only at their endpoints.

(C2) u is C1 on each connected component of Ω−K.

Theorem 4.2.3 Let (u,K) be a solution of (P1) satisfying (C1) and (C2)
then

α∆u = u− u0 on Ω (4.3)
∂u

∂N
= 0 on ∂Ω and on the two sides γ±

i of each γi (4.4)

e(u+)− e(u−) + β curv γi = 0 on γi (4.5)

where e(u) = (u− u0)2 + α |∇u|2 ,
u+ and u− are the traces of u on each side of K (each side of γi),
curv γi is the curvature of γi.
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Proof The proof of (4.3) and (4.4) is standard. We first look at the
variations of F with with respect to u. In (4.2) we choose K ′ = K and
v = u + θ ϕ with θ ∈ R and ϕ is a test function with compact support.
Then:

0 ≤ F (u + θ ϕ,K)− F (u,K) = θ2
∫

Ω−K

(ϕ2 + α |∇ϕ|2) dx+ (4.6)

+ 2θ
∫

Ω−K

(ϕ (u− u0) + α∇ϕ · ∇u) dx

Dividing (4.6) by θ > 0 (respectively by θ < 0) and letting θ → 0+

(respectively θ → 0−) we get:

0 =
∫

Ω−K

ϕ (u− u0) dx + α

∫
Ω−K

∇ϕ · ∇u dx, ∀ϕ. (4.7)

Choosing ϕ with compact support in Ω − K and integrating the second
integral by parts in (4.7) we obtain:

0 =
∫

Ω−K

ϕ (u− u0 − α∆u) dx ∀ϕ

i.e.

u− u0 − α∆u = 0 on Ω−K.

Now, multiplying (4.3) by a function ϕ ∈ C1(Ω) we easily obtain (4.4).
To prove (4.5), the idea is to look at the variation of F with respect to K.

We propose to give a slightly different proof than Mumford and Shah one’s.
The arguments we are going to use will be useful later for active contours.
For the sake of clarity, we also look at a simpler version of the Mumford
and Shah problem. We suppose that there is only one object in the scene,
and that K is a closed C1,1-curve.
Let Ωint be the open set enclosed by K and Ωext = Ω−Ωint−K. Our aim
is to consider variations of K according to the flow dx

dt
= v(t, x) where v

is an arbitrary velocity. We denote by K(t) such a variation, t ≥ 0, with
K(0) = K. Since u varies as K moves, we denote u(t, x) the unique solution
of inf

u
F (u,K(t)) and uint(t, x) = u(t, x)|Ωint(t) , uext(t, x) = u(t, x)|Ωext(t).

So let:

f(t) =
∫

Ω−K(t)

[(u(t, x)− u0(x))2 + α |∇u(t, x)|2] dx + β

∫
K(t)

dσ.
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Writing Ω = Ωint(t) ∪ Ωext(t) ∪K(t) we have

f(t) =
∫

Ωint−K(t)

[(uint(t, x)− u0(x))2 + α |∇uint(t, x)|2] dx+

+
∫

Ωext−K(t)

[(uext(t, x)− u0(x))2 + α |∇uext(t, x)|2] dx + β

∫
K(t)

dσ.

We remark that in the expression of f(t) both the domain of integration
and the integrands depend on t. As we are interested in the first variation
of F we need to estimate f ′(t).

• For the first two integrals, we need to use a classical result on deriv-
ative for domain integral: if l(t, x) is a regular function defined on a
bounded regular domain w(t) of RN and if we set:

g(t) =
∫

w(t)

l(t, x) dx (4.8)

then:

g′(t) =
∫

w(t)

∂l

∂t
(t, x) dx +

∫
∂w(t)

l(t, x) v ·N dσ (4.9)

where ∂w(t) is the boundary of w(t), N is the unit outward normal
to ∂w(t), and v is the velocity of ∂w(t).

• Regarding the last term, we also need to know how to estimate the
derivative of the length. We can show that:

d

dt

( ∫
K(t)

dσ
)

=
∫

K(t)

curvK(t) v ·Ndσ.

The proof can be found in Section 4.3.2 (see (4.22)-(4.23)).
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By applying the above results we get:

f ′(t) =2
∫

Ωint(t)

(uint − u0)
∂uint
∂t

dx +
∫

K(t)

(uint − u0)2v ·N dσ+ (4.10)

+ 2α
∫

Ωint(t)

∇uint · ∇
(
∂uint
∂t

)
dx + α

∫
K(t)

|∇uint|2 v ·N dσ+

+ 2
∫

Ωext(t)

(uext − u0)2
∂uext
∂t

dx−
∫

K(t)

(uext − u0)2v ·N dσ+

+ 2α
∫

Ωext(t)

∇uext · ∇
(
∂uext
∂t

)
dx− α

∫
K(t)

|∇uext|2 v ·N dσ+

+ β

∫
K(t)

curvK(t) v ·N dσ.

Thanks to Green’s formula we have∫
Ωint(t)

∇uint · ∇
(
∂uint
∂t

)
dx = −

∫
Ωint

∆uint
∂uint
∂t

dx +
∫

K(t)

∂uint
∂t

∂uint
∂n

dσ,

but uint(t, x) is the solution of{
α∆uint(t, x) = uint(t, x)− u0(x) in Ωint(t)
∂uint
∂N

= 0 on K(t)

Thus

α

∫
Ωint(t)

∇uint · ∇
(
∂uint
∂t

)
dx = −

∫
Ωint(t)

(uint(t, x)− u0(x))
∂uint
∂t

(t, x) dx.

The same goes for

α

∫
Ωext(t)

∇uext · ∇
(
∂uext
∂t

)
dx = −

∫
Ωext(t)

(uext(t, x)− u0(x))
∂uext
∂t

(t, x) dx.

Therefore by replacing these last expressions in (4.10) we get:

f ′(t) =
∫

K(t)

((uint − u0)2 + α |∇uint|2) v ·N dσ−

−
∫

K(t)

((uext − u0)2 + α |∇uext|2) v ·N dσ + β

∫
K(t)

curvK(t) v ·N dσ
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or, with the notations of Theorem 4.2.3:

f ′(t) =
∫

K(t)

(e(uint)− e(uext) + β curvK(t)) v ·N dσ.

Until now we have not specified how the variations of K(t) are. We
choose that K moves along its outward normal according to the following
differential equation

∂x
∂t

= v(t, x) = V (x(t)) N
x(0) = K

where V is an arbitrary velocity. Since |n| 2 = 1, f ′(t) writes as:

f ′(t) =
∫

K(t)

(e(uint(t, x))− e(uext(t, x)) + β curvK(t))V (x(t)) dσ.

If (u,K) is a minimizer of the Mumford and Shah functional, we have
necessarily f ′(0) = 0, i.e.

0 =
∫
K

(e(uint(x))− e(uext(x)) + β curvK)V (x)dσ

and since V is arbitrary we obtain:

e(uint)− e(uext) + β curvK = 0 on K.

This proves (4.5) in this simpler case. We let the reader convince himself
that the above proof also runs in the general case. �

Remark Before analyzing the edge set K it would be appropriate to
say some words about the regularity of the function u. If K is supposed
C1,1 and if u0 is continuous, then the standard theory of elliptic operator
[105, 117, 127] implies that:

• u is C1 on the open set Ω −K and at all simple boundary point of
K and ∂Ω.

• u extends locally to a C1-function on the region plus its boundary.

α

ΩConnected component of    − K

However problems can arise at corners: if P is a cor-
ner with an angle α such that π < α ≤ 2π (including
the exterior of crack, i.e. when P is the end point of a
C1,1-curve which is not continued by any other arc)
then u has the form (in polar coordinates centered
at P ):

u(r, θ) = c r
π
α sin

(π
α

(θ − θ0)
)

+ v̂(r, θ) (4.11)

where v̂(r, θ) is C1 and c, θ0 are suitable constants. �
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4.2.3 Regularity of the edge set
In this section we look at qualitative properties verified by a minimizer
of the Mumford and Shah functional and we examine in particular the
structure of the set K. The first result was given by Mumford and Shah
in 1989 [187]. It was a first step to solve their own conjecture (see Section
4.2.1).

Theorem 4.2.4 [187] Let N = 2. If (u,K) is a minimizer of F (u,K) so
that K is a union of simple C1,1-curve γi meeting ∂Ω and each other only
at their endpoints, then the only vertices of K are:

(i) Points P on ∂Ω where one γi meets ∂Ω perpendicularly.

(ii) Triple points P where three γi meet with angles 2π
3 .

(iii) Crack-tip where a γi ends and meets nothing.

Proof (Sketch of the proof). As we can imagine, proving (i)-(iii) is not
simple, and we do not reproduce all the details. We refer the interested
reader to [187] for their instructive and illuminating constructions. Five
steps can be distinguished:

(A) Since we are concerned with the regularity of K, we deal with a local
phenomenon and we just have to consider the energy inside a ball
B(P, ε). In fact, we say that (u,K) minimizes F if no change altering
(u,K) inside a ball B, and leaving it unchanged outside, can decrease
F .

(B) One proves that K has no kinks, i.e. points P where two edges γi and
γj meet at angle other than π.

(C) One shows that γi meets ∂Ω perpendicularly.

(D) At triple points that is points P where three curves γi ,γj , γk meet
with angle θi,j , θj,k ,θk,i then we necessarily have θi,j = θj,k = θk,i =
2π
3 .

(E) Finally one proves there is no point where four or more γi meet at
positive angle as well as cuspidal corner, i.e., corners where two arcs
are tangent.

The way to prove (B), . . ., or (E) is always the same: by contradiction if
(B),..., or (E) were not satisfied then we can locally construct from (u,K)
another pair (u′,K ′) which decreases strictly F (u,K) and so contradicting
that (u,K) is a minimizer in the sense of (A).

To illustrate the above discussion let us show how (B) can be proved.
Let P be a kink point and let Bε = B(P, ε) be the ball of center P and of
radius ε. Let us suppose that γi ∪ γj divides Bε into sectors B+

ε with angle
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α+, 0 < α+ < π and B−
ε with angle α−, π < α− < 2π (see Figure 4.4).

Bε
−

B+
ε

j

P

Bε

i

K

γ

γ

α+

Figure 4.4. Definition of B+
ε and B+

ε

Let us define the C∞-function φ(x, y), 0 ≤ φ ≤ 1 by:

φ(x, y) =

{
1 if x2 + y2 ≥ 1
0 if x2 + y2 ≤ 1

2

and let:

φε(x, y) = φ

(
x− x(P )

ε
,
y − y(P )

ε

)
.

Now we are going to construct from (u,K) another admissible pair (u′,K ′).
What we are doing is cutting the corner at P at a distance of ε2 shrinking
B+
ε and expanding B−

ε . More precisely, the only change we are doing in K
is to remove the curvilinear triangle PMN from B+

ε and to add it to the
set B−

ε leaving unchanged the rest of K (see Figure 4.5). We call K ′ this
new set of edges and B

′+
ε the new B+

ε (respectively B
′−
ε the new B−

ε ).

j

i

K

K

B

B

Bε

Bε
−

+γ

γ

P

M

N
ε/2

ε

’

’

’

Figure 4.5. Construction of the other solution (u′,K′)
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Then we define u′(x, y) as follows:

u′(x, y) =

{
u(P ) + φε(x, y)(u(x, y)− u(P )) on B

′−
ε

u(x, y) otherwise

and without a loss of generality we can suppose that u(P ) = 0. Let us
evaluate F (u′,K ′)− F (u,K). By construction, this difference reduces to:

F (u′,K ′)− F (u,K) =
∫

B
′−
ε

[(φεu− u0)2 − (u− u0)2] dx+

+ α

∫
B

′−
ε

[|∇(φεu)|2 − |∇u|2] dx + β

∫
K′

dσ−β
∫
K

dσ.

We examine the first two terms separately (we will denote by c a universal
constant):

A1ε =
∫

B
′−
ε

[
(φεu− u0)2 − (u− u0)2

]
dx =

=
∫

B
′−
ε

[
1− φ ε

1 + φε
u20 − (1− φε)

(√
1 + φε u− u0√

1 + φε

)2]
dx ≤

≤
∫

B
′−
ε

u20 dx ≤ c ε2

A2ε =α
∫

B
′−
ε

[
|∇(φεu)|2 − |∇u|2

]
dx =

=α
∫

B
′−
ε

[
(φ2ε − 1) |∇u|2 + u2 |∇φε|2 + 2uφε∇φε · ∇u

]
dx.

But, thanks to (4.11) we have:

u = O
(
r

π

α−
)

and |∇u| = O
(
r

π

α− −1
)

and taking into account that φ2ε ≤ 1, |∇φε| ≤ c
ε , and that ∇φε = 0 in the

ball B
(
P, ε2

)
, we obtain

A2ε ≤ c ε2

(
ε

2π

α−

ε2
+ ε

π

α− 1
ε
ε

π

α− −1

)
= c ε

2π

α− .

Finally in the third term
∫
K′

dσ − ∫
K

dσ, we are replacing asymptotically as

ε → 0 the equal sides of an isoceles triangle with angle α+ by the third
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side, so

A3ε =
∫
K′

dσ −
∫
K

dσ ≤ ε
(

sin
α+

2
− 1

)
≤ 0

and we obtain

F (u′,K ′)− F (u,K) = A1ε + A2ε + A3ε ≤ c
(
ε2 + ε

2π

α− + ε
(

sin
α+

2
− 1

))
.

(4.12)
Since 0 < α+ < π and π <α− < 2π, (4.12) shows that the energy decreases
by order ε if ε is sufficiently small, which contradicts that (u,K) is a mini-

mizer. We notice that the data term A1ε =
∫

B
′−
ε

[(φεu− u0)2 − (u− u0)2] dx

is of order ε2 and thus negligible with respect to the two other terms inde-
pendently of the data u0. �

Remark This regularity conditions are very interesting and constrain the
segmentation to verify some properties, at the cost of the fidelity to the
image. For instance, if we consider the simple case depicted in Figure 4.6,
the Theorem 4.2.4 shows that we can not get the exact segmentation with
lines crossing at π/2. Qualitatively, we may obtain one of the two config-
urations described in Figure 4.6. This is a caricatural illustration of why
uniqueness may not be true.

or

Figure 4.6. Illustration of “equivalent” segmentations for a given image. This is
to show why regularity conditions on the edge set may have some influence on
the uniqueness of the solution. �

As said before, Theorem 4.2.4 is a first step in the proof of the Mum-
ford and Shah conjecture. To go further we have to remove the assumption
that K is made of a finite union of simple C1,1-curves meeting ∂Ω and
each other only at their endpoints. A. Bonnet carried out an important
progress in this direction. We only state his results and we refer the reader
to [41, 42, 43] for the proofs.

Theorem 4.2.5 [41, 43] If (u,K) is a minimizer of F so that K is
connected, then (u,K) is one of the following:

(i) K is empty and u is constant.
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(ii) K is a straight line defining two half-planes and u is constant on each
half-plane.

(iii) K is the union of three half lines with 2π
3 angles and u is constant

on each sector.

(iv) In a polar set of coordinates (r, θ), u(r, θ) =
√

2
π
√
r cos θ2 for θ ∈

[0, 2π[ and K is the half-axis θ = 0 (a crack-tip).

We notice that conclusions of Theorem 4.2.5 and Theorem 4.2.4 are very
similar. The major difference lies in the assumptions. In Theorem 4.2.4, K
is supposed made of a finite union of C1,1 -arcs while in Theorem 4.2.5, K
is supposed connected. Bonnet also proved the following result:

Theorem 4.2.6 [42, 43] Every isolated connected component of K is the
union of a finite set of C1- arcs. These arcs are C1,1 away from crack-tips
and can merge through triple junctions with 2π

3 angles.

We notice that Theorem 4.2.6 does not allow a minimizer to have an infi-
nite number of arbitrary small pieces connected to each other. The proof
of Theorem 4.2.6 relies on a characterization of the minimizers, which is
very similar to the one given in Theorem 4.2.4.

✺ We conclude this section by saying that the Mumford and Shah con-
jecture is always an open question in the most general setting, i.e. without
connectedness constraint.

4.2.4 Approximations of the Mumford and Shah functional
The lack of differentiability of the functional for a suitable norm does not
allow to use, as it is classical, Euler-Lagrange equations. Moreover, the
discretization of the unknown discontinuity set is a very complex task. A
commonly used method is to approximate F (u,K) (or G(u)) by a sequence
Fε of regular functionals defined on Sobolev spaces, the convergence of Fε to
F as ε→ 0 being understood in the Γ-convergence framework (see Section
2.1.4). Of course, if we want to get an efficient approximation, the set K
must not appear in Fε. Four classes of approaches may be distinguished:

(A) Approximation by elliptic functionals [13].
In this approach the set Su (or K) is replaced by an auxiliary variable
v (a function) that approximates the characteristic function (1−χSu)
i.e. v(x) ≈ 0 if x ∈ Su and v(x) ≈ 1 otherwise. Ambrosio and
Tortorelli [13] proposed the following sequence of functionals:

Fε(u, v) =
∫
Ω

(u−u0)2 dx+
∫
Ω

v2 |∇u|2 dx+
∫
Ω

(
ε |∇v|2 + 1

4ε (v − 1)2
)
dx
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which is discussed afterwards.

(B) Approximations by introducing second order singular perturbations
[48] (see also [29, 56])
For instance:

Fε(u) =



∫
Ω

(u− u0)2 dx + 1
ε

∫
Ω

f(ε |∇u|2) dx + ε3
∫
Ω

|∇2u|2 dx

if u ∈W 2,2(Ω)
+∞ if u ∈ L1(Ω)−W 2,2(Ω)

where W 2,2(Ω) is the Sobolev space of L2-functions whose distribu-
tional derivatives up to the second order belong to L2(Ω) and where f
is a lower semi-continuous increasing function from [0,+∞[ to [0,+∞[
so that there exist α, β ∈ R such that:

α = lim
s→0+

f(s)
s

, β = lim
s→+∞f(s),

and ∇2u denotes the Hessian matrix of u equipped with the norm
|A| = max (〈Aξ, ξ〉, |ξ| = 1). In fact, for this kind of approximation
one can prove [48] that Fε Γ−converges for the L1−topology to a
variant of the Mumford and Shah functional:

G̃(u) =


∫
Ω

(u− u0)2 dx + α

∫
Ω

|∇u|2 dx + m(β)
∫
Su

√
u+ − u−dHN−1

if u ∈ GSBV (Ω)
+∞ otherwise

where m(β) = β
3
4

(
2
√

3
2 +

√
2
3

)
and where GSBV (Ω) is the space

of L1−functions u for which the truncated function uT = −T ∨u∧T
belongs to SBV (Ω) for all T > 0 (∨, resp. ∧, denotes the sup, resp.
inf, operator).

(C) Approximation by introducing non-local terms [49]
A typical example is:

Fε(u) =
∫
Ω

(u− u0)2dx +
1
ε

∫
Ω

f
(
ε

∫
B(x,ε)

− |∇u(y)|2dy
)
dx

where f is a suitable non-decreasing continuous function and∫
B(x,ε)

− h(y) dy denotes the mean value of h on the ball B(x, ε).

Perhaps the motivation of introducing non-local approximation comes
from the impossibility, as pointed out in [49] (see also [84]), to obtain
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a variational approximation by means of local integral functionals of
the form:

Eε(u) = e

∫
Ω

(u− u0)2dx +
∫
Ω

fε(∇u(x)) dx.

Indeed, if such an approximation was existing, the Mumford and
Shah functional would be also the Γ-limit of the relaxed sequence:

REε(u) =
∫
Ω

(u− u0)2dx +
∫
Ω

f∗∗
ε (∇u(x)) dx

where f∗∗
ε is the convex envelope of fε (see Section 2.1.3). Therefore

the Mumford and Shah functional would also be convex!

(D) Approximation by finite-difference schemes [61, 62, 121]
This kind of approximation is perhaps the most natural one from a
numerical point of view. The method consists in considering u(x) as
a discrete image defined on a mesh of step-size h > 0 and Fh as a
discrete version of the Mumford and Shah functional. To the best of
our knowledge, A. Chambolle proposed the first theoretical work in
that direction [61, 62] following earlier ideas of Blake and Zissermann
[39]. In the 1-D case, Let:

ghk =
1
h

∫
kh

(k+1)h

u0(t)dt

uh = (uhk)kh∈Ω a given discrete signal.

Then Chambolle proposed the following discrete functional:

Fh( uh ) = h
∑
k

Wh

(
uhk+1 − uhk

h

)
+ h

∑
k

(uhk − ghk )2 (4.13)

where Wh(t) = min
(
t2, 1

h

)
, and proved that Fh Γ−converges to:

F (u) =
∫
Ω

(u− u0)2dx+
∫

Ω−Su

u′2dx + card(Su) for u ∈ SBV (Ω).

This approximation can be adapted in dimension two for:

Fh(uh) =h2
∑
k,l

Wh

(uhk+1,l − uhk,l
h

)
+ h2

∑
k,l

Wh

(uhk,l+1 − uhk,l
h

)
+

+ h2
∑
k,l

(uhk,l − ghk,l)
2. (4.14)

A similar Γ-convergence result can be proved but the 1-D Hausdorff
measure is changed into an anisotropic 1-D measure which takes into
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account the lack of rotational invariance of the natural 2-D extension
of (4.14). We refer the reader to [61, 62] for more complete proofs as
well as other related works [212, 47, 30].

It is beyond the scope of this book to examine in details these four ways to
approximate the Mumford and Shah functional. That would surely make
more than one hundred pages! We choose instead to focus on the approx-
imation (A), proposed by Ambrosio and Tortorelli [13], which is the first
one that appeared in literature, and which is commonly used in vision. We
consider here the case N = 2 and we set the parameters α and β to 1:

Fε(u, v) =
∫
Ω

(u− u0)2dx +
∫
Ω

v2 |∇u|2 dx +
∫
Ω

(
ε |∇v|2 +

1
4ε

(v − 1)2
)
dx.

Before stating rigorous mathematical results, let us show thanks to intu-
itive arguments how Fε approaches the Mumford and Shah functional. We
reproduce a good explanation given by March [168]. Since the discontinuity
set Su is of zero-Lebesgue measure (and so v(x) would be equal to 1 a.e.),
our aim is to construct a sequence of functions (uε, vε) converging to (u, 1)
so that the sequence Fε(uε, vε) converges to G(u).
Let us fix some notations. We denote by:

- τ(x) the distance of the point x to Su,
- Aε = {x ; τ(x) < η(ε)}, Bε = {x ; η(ε) < τ(x) < γ(ε)}, with

γε
ηε

εε

u

A B

S

lim
ε→0

η(ε) = lim
ε→0

γ(ε) = 0. We restrict our construc-
tion to functions uε so that uε are smooth on Aε and
uε= u outside Aε. For the control functions, since
∇uε blows up near Su, vε have to be small in Aε. We
choose vε= 0 on Aε, vε = 1 − w(ε) outside Aε ∪ Bε,
with lim

ε→0
w(ε) = 0. Finally we impose that vε be

smooth in the whole domain Ω.
It is easy to verify that the first two integrals in Fε

converge to the first two integrals in G. The treatment
of the third term is more delicate. By construction we
have:∫

Ω

ε |∇vε|2 dx +
∫
Ω

1
4ε

(1− vε)2dx = (4.15)

=
1
4ε

[∫
Aε

dx + w(ε)2
∫

Ω−Aε∪Bε

dx

]
+

∫
Bε

(
ε |∇vε|2 +

1
4ε

(1− vε)2
)
dx.

If we choose η(ε) and w(ε) so that η(ε)
ε and w(ε)2

4ε go to zero as ε → 0,
then the first two integrals in the right-hand side of (4.15) converge to zero.

Thus, it remains to study the limit of Rε =
∫
Bε

(
ε |∇vε|2 + 1

4ε (1− vε)2
)
dx.
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We search for vε in Bε as a function of the form vε(x) = σε(τ(x)) with
σε : R+ → R+. With this choice, since |∇τ | = 1, Rε reduces to:

Rε =
∫
Bε

(
ε σ′

ε
2(τ(x))

)
+

1
4ε

(
1− σε(τ(x))2

)
dx.

By noting t = τ(x) and g(t) = H1{x; τ(x) = t}, we get:

Rε =
∫

η(ε)

γ(ε)(
ε σ′

ε
2(t) +

1
4ε

(1− σε(t)2)
)
g(t)dt.

Then let us define σε as the solution of the Ordinary Differential Equation:{
σ′
ε(t) = 1

2ε (1− σε(t))
σε(η(ε)) = 0.

An elementary calculus gives:

σε(t) = 1− exp
(
η(ε)− t

2ε

)
and Rε rewrites as:

Rε =
1
2ε

∫
η(ε)

γ(ε)

exp
(
η(ε)− t

ε

)
g(t) dt.

Thanks to the mean value Theorem, there exists t0 ∈ ]η(ε), γ(ε)] such that

Rε =
g(t0)
2ε

∫
η(ε)

γ(ε)

exp
(
η(ε)− t

ε

)
g(t) dt =

g(t0)
2

(
1− exp

(
η(ε)− γ(ε)

ε

))
.

Choosing γ(ε) so that lim
ε→0

γ(ε)
ε = +∞, and observing that g(t0) converges

to H1(Su), we get

lim
ε→0

Rε = H1(Su).

To conclude, we have just constructed a sequence (uε, vε) approaching (u, 1)
and such that limε→0 Fε(uε, vε) = G(u). Naturally, this does not prove the
Γ-convergence of Fε to G but it gives an idea of the methodology. It is also
a way to check how we formally obtain the expected limit.

Now, let us go back to a more rigorous discussion. We first have to prove
that Fε(u, v) admits a minimizer and then that Fε(u, v) Γ−converges to
the Mumford and Shah functional. Let us fix ε > 0. Then Fε(u, v) is well-
defined on the space V =

{
(u, v) ∈W 1,2(Ω)2 ; 0 ≤ v ≤ 1

}
and it is weakly

(i.e. for the weak topology) lower semi-continuous on this space. To obtain
the existence of a minimizer it suffices to bound on V any minimizing se-
quence (unε , v

n
ε ) independently of n. We easily bound in L2(Ω) the sequences
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unε , v
n
ε , ∇vnε but a difficulty arises when we want to bound ∇unε since we

have no control on the term
∫
Ω

(vnε )2 |∇unε |2dx. To bypass this difficulty we

slightly modify Fε(u, v) by adding a perturbation:

F̃ε(u, v) = Fε(u, v) + h(ε)
∫
Ω

|∇u|2dx

where h(ε) > 0 is a suitable constant such that lim
ε→0

h(ε) = 0. With this

modification, it is now clear that F̃ε(u, v) is coercive on V and we have
shown the following theorem:

Theorem 4.2.7 Let us suppose that u0 ∈ L∞(Ω) then the problem
inf
V

F̃ε(u, v) admits a solution (uε, vε) with |uε|L∞(Ω) ≤ |u0|L∞(Ω).

When ε→ 0, we have the following Γ-convergence result:

Theorem 4.2.8 [13, 48] Let F̃ε : L1(Ω)×L1(Ω)→ [0,+∞] be defined by

F̃ε(u, v) =

∫
Ω

(u− u0)2 dx +
∫
Ω

(v2 + h(ε)) |∇u|2 dx+

+
∫
Ω

(
ε |∇v|2 + 1

4ε (1− v)2
)
dx if (u, v) ∈W 1,2(Ω)2, 0 ≤ v ≤ 1

+∞ otherwise

and let G : L1(Ω)× L1(Ω)→ [0,+∞] be defined by

G(u) =


∫
Ω

(u− u0)2 dx +
∫
Ω

|∇u|2 dx +H1(Su) if u ∈ GSBV (Ω)

and v = 1 a.e.
+∞ otherwise.

If h(ε) = o(ε) then F̃ε(u, v) Γ−converges to G(u, v) for the L1(Ω)2-strong
topology. Moreover, F̃ε admits a minimizer (uε, vε) so that up to subse-
quences, uε converges in L1(Ω) to a minimizer of G, u ∈ SBV (Ω), and
inf F̃ε → inf G(u) (ε→ 0).

The proof of Theorem 4.2.8 is long and rather technical. We refer the
interested reader to Braides [48].

4.2.5 Experimental results
A natural method to compute numerically a solution of the Mumford and
Shah functional is to consider one of the approximation (A)-(D) described
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in Section 4.2.4, and then to write the discretized version of it. This can be
achieved by using a finite difference scheme [62, 61, 121, 237] (see also the
Appendix), or a finite element scheme [30, 47].

We present in Figure 4.7 some experimental results obtained with a mod-
ified Mumford and Shah functional, namely the piecewise constant model.

u u (random colormap) K

u u (random colormap) K

Figure 4.7. Result of the segmentation of the images “objects” and “Borel build-
ing” using the region growing approach from Megawave2. The solution (u,K)
is displayed. Notice that the middle image is displayed with a random colormap
just to have a better idea of the different regions. Created in 1993 by Jacques
Froment at the CEREMADE, University of Paris 9 Dauphine,MegaWave2 is now
directed by the CMLA laboratory of the Ecole Normale Supérieure de Cachan.
It can be downloaded from http://www.cmla.ens-cachan.fr/Cmla/Megawave/.

The only change with respect to the Mumford and Shah functional is
that we only consider two terms in the energy: the fitting term to the data
and the measure of the discontinuity set K:

F (u,K) =
∫

Ω−K

(u− u0)2 dx + β

∫
K

ds.

The strategy to minimize F is relatively simple and belongs to the class of
region merging (or region growing) methods (see [213]). It consists in:
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• Remarking that, given a segmentation Ω0 =
M⋃
i=1

(
Ω0
i ∪K0

)
, then

the corresponding minimizer u of F (u,K0) is a piecewise constant
function where the constants are the averages of u0 over each Ω0

i .

• Merging recursively all pairs of regions whose merging decreases the
energy F , the coefficient β > 0 playing the role of a scale parameter.

4.3 Geodesic active contours and the level sets
method

In this section we examine the snake and the geodesic active contours mod-
els. Unlike the Mumford and Shah functional, the aim is no longer to find
a partition of the image but to automatically detect contours of objects.
This raises two questions: how a contour may be represented and which
criterion would permit to select the true contours. In many methods of
image detection one supposes a sharp variation of the image intensity I(x)
between the background of the scene and the objects. Therefore the mag-
nitude of the gradient of I is high across the boundaries of objects and we
may choose |∇I(x)| (or a function of it) as a detector of contours. There
exists an extensive literature on snakes and geodesic active contours and
the method is by now widely used in image analysis. Though the theory
may be applicable both in two and three dimensions, we only develop the
2-D case for the sake of simplicity.

Active contours, sankes, level sets [38, 229, 198, 223]

4.3.1 The Kass-Witkin-Terzopoulos model [142]
We begin by describing the Kass-Witkin-Terzopoulos model [142] which is
to the best of our knowledge one of the first work in this direction. We note
Γ the set of the image edges (the boundaries of objects). We suppose that
Γ =

⋃
j∈J

Cj , J finite or countable, where each Cj is a piecewise C1 closed

curve in R2. Concerning the intensity I: Ω ⊂ R2 → R (Ω bounded) we
assume that the function x = (x1, x2)→ |∇I(x1, x2)| belongs to W 1,∞(Ω).
In order to characterize edges by zero values rather than by infinite values
we define a function g: [0,+∞ [→]0,+∞ [ satisfying:

(i) g is regular monotonic decreasing.

(ii) g(0) = 1 , lim
s→+∞ g(s) = 0.



162 4. The Segmentation Problem

The function x→ g( |∇I(x)| ) is called an edge detector function. A typical
choice of g is g(s) = 1

1 + s2
(see Figure 4.8).

I |∇I| g(|∇I|)
Figure 4.8. Example of edge detector function. g(s) = 1

1 + s2 has been choosen

for the right-hand side image. Noise is reduced and contours are enhanced. Also
note the inversion of colors due to the function g.

In Kass et al [142], boundary detection consists in matching a deformable
model to an image by means of energy minimization. Because of the way
the contours move while minimizing the energy they called them snakes.
Let C be the set of curves of R2 defined by:

C =
{
c : [a, b]→ Ω, c piecewise C1, c(a) = c(b)

}
then for c ∈ C let J(c) be the following energy:

J(c) =

b∫
a

| c′(q) |2 dq + β

b∫
a

| c′′(q) |2 dq
︸ ︷︷ ︸

internal energy

+ λ

b∫
a

g2( |∇I(c(q))|) dq
︸ ︷︷ ︸

external energy

, (4.16)

where c(q) = (c1(q), c2(q)), c′(q) =
(
dc1
dq

, dc2
dq

)
, |c′(q)| =

√(
dc1
dq

)2
+
(
dc2
dq

)2
and with the same notations for c′′. The first two terms called spline or
internal energy are used to impose a smoothness constraint. The first-order
term makes the curve act like a membrane and the second-term makes it
act like a thin plate. Setting β = 0 allows second order discontinuities as
corners. The third term, the external energy, attracts the curve towards the
edges of the objects. As Ω is bounded, it is easy to show that the energy
J(c) admits at least a global minimum in the Sobolev space (W 2,2(a, b))2.
The Euler-Lagrange equations associated to J(c) are a fourth-order system:

{ −c′′ + β c(iv) + λ ∇F |c(c) = 0
c(a) = c(b)

(4.17)



4.3. Geodesic active contours and the level sets method 163

where c(iv) is the fourth order derivative and F (c1, c2) = g2( |∇I(c1, c2)| ).
Other boundaries conditions can be added.
Unfortunately, since J(c) is nonconvex (it is lower semi-continuous on
(W 2,2(a, b))2), no uniqueness result is available and by solving (4.17) (as
done in Kass et al [142]) we can only hope to reach a local minimum.

☛ In this approach, the main idea was to formulate the problem as a
minimization one.

However, this approach has real drawbacks:

• The functional J(c) is not intrinsic since it depends on the parame-
terization of c. We could obtain different solutions by changing the
parameterization while conserving the same initial curve.

• Because of the regularity constraint, the model does not handle
changes of topology. In fact it is not possible to detect more than
one object. Moreover, this object has to be convex.

• In practice, to solve numerically the problem we embed (4.17) into
a dynamical scheme by making the curve depend on an artificial
parameter (the time) t ≥ 0, that is we solve:


∂c
∂t

(q, t) = −c′′(q, t) + β c(iv)(q, t) + λ ∇F |c(c(q, t))
c(q, 0) = c0(q)
c(a, t) = c(b, t)

(4.18)

where c0(q) is an initial curve surrounding the object to be detected.
Numerical problems arise when solving (4.18). As we can only reach
a local minimum we have to choose c0(q) close enough to the object
to be detected. Another difficult task is the choice of a set of marker
points when discretizing the parameterized evolving curve. The posi-
tions of the marker points have to be updated in time according to the
approximations in the equations of the motion. For large and com-
plex motions several problems occur. For example, concentration, or
on the contrary, void regions can be created causing numerical insta-
bilities and false detections. A good explanation of such phenomenon
is given in [227].

We are going now to show how the above difficulties can be overcome with
the geodesic active contour model.
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4.3.2 The Caselles-Kimmel-Sapiro geodesic active contours
model [58]

In the Kass et al model (4.16), the term β

b∫
a

|c′′(q)|2 dq (the elasticity term)

is a second order smoothness component which minimizes the squared cur-
vature. As we will see later the model with β = 0 also decreases the
curvature making this term redundant (see (4.24)). It is then natural to
introduce the functional J1 defined by:

J1(c) =

b∫
a

|c′(q)|2 dq + λ

b∫
a

g2( |∇I(c(q))| )dq (4.19)

on the set C = {c : [a, b]→ Ω, c piecewise C1, c(a) = c(b)}. Still, the func-
tional J1 is not yet satisfactory because it is not intrinsic, that is it depends
on the parametrization of c. So the idea is to introduce the functional J2
defined by:

J2(c) = 2
√
λ

b∫
a

g( |∇I(c(q))| ) |c′(q)| dq. (4.20)

It is easy to see that J2 is now intrinsic: if we define a new parametrization
of the curve via q = φ(r), φ : [c, d]→ [a, b], φ′ > 0, we obtain:

J2(c) = 2
√
λ

d∫
c

g( |∇I(c̄(r)) | ) | c̄′(r) | dr

with c̄(r) = c(φ(r)) i.e. there is no change in the energy. Therefore, if
we compare J2 to the classical length definition of a curve1, we observe
that J2 can be seen as a new length by weighting the Euclidian length.
The weight is g(|∇I(c(q))|) which contains the information regarding the
objects boundaries. In other words we have defined a new metric (a Rie-
mannian metric) for which we search for geodesics. Beyond this geometric
argument, we will see that this formulation also enables to apply very effi-
cient numerical schemes.

☛ Starting from J1, we have introduced a functional J2 which is intrinsic
and that can be interpreted as a weighted Euclidian length. Now the ques-
tion is to understand the link between the two minimization problems.

1The length of a curve is defined by L =

b∫
a

|c′(q)| dq
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In [58], Caselles et al have shown, by using concepts of Hamiltonian theory,
that minimizing J1 was “equivalent” to minimize J2. This idea has been
widely re-used in the sequel to justify this choice. However, it is unsatisfac-
tory regarding two concerns. The first is that the notion of equivalence is
not even clear. It would be natural to say that two minimization problems
are equivalent if they have the same solutions or possibly if they have the
same extremals. In our case we cannot apply these notions since it is not
clear whether the problem inf

c
J2(c) has a solution or not. The edge function

g being degenerated in any neighborhood of an edge, it would be difficult
to bound minimizing sequences in any reasonable space. The second is that
we may wonder why it is necessary to use concepts from the Hamiltonian
theory and if it could be possible instead to use classical techniques of the
calculus of variations.

In this direction, Aubert and Blanc-Féraud [15] defined a precise notion
of equivalence and proved it in this context. We do not reproduce the whole
discussion of [15] but we will only state what can be, in our opinion, a right
definition of equivalence. Before setting that definition we need to study the
variations of the energies in a neighborhood of a given curve c(q). Calculi
developed below are set in details since they will be useful afterwards.
Let c(q) ∈ C and let c(q, t) be a family of curves, where t ≥ 0 is an
exterior parameter (the time), such that c(q, 0) = c(q). Let us note Ji(t) =
Ji(c(q, t)), i = 1, 2. The first step consists in computing J ′

i(t), i = 1, 2.

• Calculus of J ′
1(t). We have:

J1(c) =

b∫
a

∣∣∣∣∂c∂q (q, t)
∣∣∣∣2 dq + λ

b∫
a

g2( |∇I(c(q, t))| )dq.

In order to simplify the notations, we write c instead of c(q, t), g
for g(|∇I(c(q, t))|) and we suppose that λ = 1. We will also denote
u · v = 〈u, v〉. Thus:

1
2
J

′
1(t) =

b∫
a

〈∂c
∂q

,
∂2c

∂t∂q
〉 dq +

b∫
a

〈∂c
∂t
, g∇g〉 dq.

By integrating by parts with respect to q the first integral (we assume
that c(a, t) = c(b, t) and ∂c

∂q
(a, t) = ∂c

∂q
(b, t) for all t > 0) we get:

1
2
J

′
1(t) =

b∫
a

〈∂c
∂t
,−∂

2c

∂q2
+ g∇g〉 dq.
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Denoting by s = s(q) =

q∫
a

∣∣∣∂c∂q (τ)
∣∣∣ dτ the arc length, then we always

have for any curve c:

∂2c

∂q2
=

∣∣∣∣∂c∂q
∣∣∣∣2 ∂2c∂s2

+ 〈T, ∂
2c

∂q2
〉T

where T denotes the unit tangent vector: T = ∂c
∂q

/∣∣∣∂c∂q ∣∣∣. Let N be
the unit normal vector to the curve and let κ be the curvature then
we have (see section 2.4):

∂2c

∂s2
= κN

thus J ′
1(t) becomes:

1
2
J

′
1(t) =

b∫
a

〈∂c
∂t
,−κ

∣∣∣∣∂c∂q
∣∣∣∣2N − 〈T, ∂2c∂q2

〉T + g∇g〉dq.

If we decompose the vector ∇g in the tangential and normal
directions:

∇g = 〈∇g,N〉N + 〈∇g, T 〉T
we obtain

1
2
J

′
1(t) =

b∫
a

〈∂c
∂t
,
[
−κ

∣∣∣∣∂c∂q
∣∣∣∣2+〈g∇g,N〉]N+

[
〈g∇g, T 〉−〈T, ∂

2c

∂q2
〉
]
T 〉dq

therefore thanks to the Cauchy-Schwarz inequality the flow for which
J1(t) decreases most rapidly is given by:

∂c

∂t
=

[
κ

∣∣∣∣∂c∂q
∣∣∣∣2 − 〈g∇g,N〉]N − [

〈g∇g, T 〉 − 〈T, ∂
2c

∂q2
〉
]
T. (4.21)

• Calculus of J
′
2(t). We have:

1
2
J2(t) =

b∫
a

g(|∇I(c(q, t))|)
∣∣∣∣∂c∂q (q, t)

∣∣∣∣ dq (4.22)

then

1
2
J

′
2(t) =

b∫
a

g 〈
∂c
∂q∣∣∣ ∂c∂q ∣∣∣ ,

∂2c

∂t∂q
〉 dq +

b∫
a

∣∣∣∣∂c∂q
∣∣∣∣ 〈∇g, ∂c∂t 〉 dq.



4.3. Geodesic active contours and the level sets method 167

The first integral of the right-hand side is integrated by parts with
respect to q:

1
2
J

′
2(t) =−

b∫
a

[
〈g ∂

∂q

( ∂c
∂q∣∣∣ ∂c∂q ∣∣∣

)
+

∂c
∂q∣∣∣ ∂c∂q ∣∣∣ 〈∇g,

∂c

∂q
〉, ∂c
∂t
〉
]
dq+

b∫
a

∣∣∣∣∂c∂q
∣∣∣∣ 〈∇g, ∂c∂t 〉dq.

This equation can be rewritten as:

1
2
J

′
2(t) =

b∫
a

∣∣∣∣∂c∂q
∣∣∣∣〈∂c∂t ,∇g − 1∣∣∣ ∂c∂q ∣∣∣

∂

∂q

( ∂c
∂q∣∣∣ ∂c∂q ∣∣∣

)
g −

∂c
∂q∣∣∣ ∂c∂q ∣∣∣ 〈∇g,

∂c
∂q∣∣∣ ∂c∂q ∣∣∣ 〉〉dq

and remembering the definitions of T , N and κ we get:

1
2
J

′
2(t) =

b∫
a

∣∣∣∣∂c∂q
∣∣∣∣〈∂c∂t ,∇g − κgN − 〈T,∇g〉T 〉dq.

Decomposing again ∇g on the basis (N,T ) we finally obtain:

1
2
J

′
2(t) =

b∫
a

∣∣∣∣∂c∂q
∣∣∣∣〈∂c∂t , 〈∇g,N〉N − κgN〉dq (4.23)

so the direction for which J2(t) decreases most rapidly is given by:

∂c

∂t
= (κg − 〈∇g,N〉)N. (4.24)

Remark Note that if g ≡ 1, then the flow (4.24) reduces as

∂c

∂t
= κN (4.25)

which is the well-known mean curvature motion (or shortening flow). This
flow decreases the total curvature as well as the number of zero-crossings
and the value of maxima/minima curvature. Therefore it has the proper-
ties of shortening (an initial curve shrinks under (4.25) to a point in finite
time with asymptotically circular shape) as well as smoothing (points with
high curvature evolve faster and disappear asymptotically). An example is
shown in Figure 4.9 (see also Section A.3.4 in the Appendix). For more
geometric details about (4.25) we refer to [104]. �

We are now in position to state what we mean by saying that the
two-minimization problems inf

c
J1(c) and inf

c
J2(c) are equivalent.

Definition 4.3.1 (equivalence between inf
c

J1(c) and inf
c

J2(c))

The problems inf
c

J1(c) and inf
c

J2(c) are equivalent if for any curve c ∈ C
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t=0 t=50 t=100 t=150 t=200 t=250 t=350

Figure 4.9. Example of the mean curvature motion

there exists a neighborhood V (c) of c so that in V (c) the flow which most
decreases J1 is also a decreasing flow for J2 and vice et versa.

In order to apply this criterion, we need a more precise definition of an edge.

Definition 4.3.2 (edge) Let c ∈ C, we say that c is an edge of the image
I if there exists ε0 such that ∀ε < ε0, ∃ αε, lim

ε→0
αε = 0, such that |∇I(x)| ≥

1
ε if x ∈ Vε = {x : d((x); c) ≤ ε}, where d is the distance function.

Theorem 4.3.1 Let us assume that the edge detection function g satisfies:
for any edge c ∈ C there exist l, l′ ∈ Q, l < l′ such that ∀ε < ε0,∀x ∈ Vε

(i) g(|∇I(x)|) = O(εl).

(ii) |∇g(|∇I(x)|)| = O(εl
′
).

Then the two-minimization problems inf
c
J1(c) and inf

c
J2(c) are equivalent

in the sense of the Definition 4.3.1.

Proof We have to prove that the flow (4.21) which makes J1 decrease
most rapidly also makes J2 decrease and conversely the flow (4.24) which
makes J2 decrease most rapidly also makes J1 decrease. In order to do that
we replace ∂c

∂t
given by (4.21) in the expression of J

′
2(t) and vice et versa.

When ∂c
∂t

is given by (4.21), J
′
2(t) becomes:

J
′
2(t) =

b∫
a

−g(〈∇g,N〉 − κg)
(
〈∇g,N〉 − κ

g

∣∣∣∣∂c∂q
∣∣∣∣2 ) ∣∣∣∣∂c∂q

∣∣∣∣ dq. (4.26)
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In the same way if we replace ∂c
∂t

by its expression in (4.24) then J
′
1(t)

writes as:

J
′
1(t) =

b∫
a

−g(〈∇g,N〉 − κg)
(
〈∇g,N〉 − κ

g

∣∣∣∣∂c∂q
∣∣∣∣2 ) ∣∣∣∣∂c∂q

∣∣∣∣ dq. (4.27)

In order to know the sign of J
′
2(t) in (4.26) or the sign of J

′
1(t) in (4.27) it

suffices to study a.e. q the sign of the integrand:

z(q, t) = −g(〈∇g,N〉 − κg)
(
〈∇g,N〉 − κ

g

∣∣∣∣∂c∂q
∣∣∣∣2 ).

By developing this expression we obtain:

z(q, t) = −κ2
∣∣∣∣∂c∂q

∣∣∣∣2 g + κ
( ∣∣∣∣∂c∂q

∣∣∣∣2 + g2
)
〈∇g,N〉 − g(〈∇g,N〉)2.

Let us recall now that g stands for g(|∇I(c(q, t))|) and let us assume that
c(q, t) is in a neighborhood Vε of an edge c(q, 0) of the image I, then we
have thanks to the assumptions (i) and (ii) on g:

z(q, t) ≈ −aεl ± bεl
′− cε2l

′

with a, b, c ≥ 0. When ε is small enough the sign of z(q, t) is given by the
sign of −aεl and so it is negative (we suppose that κ is bounded otherwise
as soon as |κ| . 1 we have κ2 ≥ |κ| and z would remain nonpositive). �

The Caselles et al model [58] may be improved by adding to the right-
hand side of (4.24) a supplementary term:

∂c

∂t
= (κg − 〈∇g,N〉+ αg )N. (4.28)

The main interest of adding αg to the velocity is that it makes the detec-
tion of nonconvex objects easier and it increases the speed of convergence.
In fact α ≥ 0 must be chosen large enough so that the coefficient (κ + α)
remains of constant sign. Consequently, the curvature κ can have a non
constant sign and nonconvex shapes can then be detected.

Remark It is worth noticing that equation (4.28) does not come from
any energy unless the function g is a constant (and this not the case since
g is a detector function). As a matter of fact the flow ∂c

∂t
= αN with α ≥ 0

(a constant) is the flow deduced from the area energy:

A(t) = −1
2

b∫
a

〈c(q, t),
( −∂c2/∂q

∂c1/∂q

)
〉dq.
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For each t > 0, A(t) is the area enclosed by c(q, t) = (c1(q, t), c2(q, t)) and
it is easy to verify that:

A′(t) = −
b∫

a

〈∂c
∂t
,N〉

∣∣∣∣∂c∂q
∣∣∣∣ dq.

Thus the direction in which A(t) is decreasing most rapidly is ∂c
∂t

= N . �

To summarize the situation, starting from the initial formulation of Kass
et al (4.16), we introduced the energy J1 and an intrinsic (geometric)
functional J2. We clearly defined the link between these two optimiza-
tion problems. From a numerical point of view, we can wonder which
formulation is the best to choose. As we are going to see in the next sec-
tion, the Euler-Lagrange equations associated to J2 can be written in an
Eulerian formulation by using a level sets approach (which is not the case
for J1). The level sets approach is based on the description of the curve
as the zero-crossing of a higher dimensional function and allows major
simplifications.

4.3.3 The level sets method
The aim of this section is to find an efficient algorithm to solve (4.28).
Naturally, one could parametrize the curve c and discretize the equation
but this direct approach faces difficulties that we will emphasize later. More
generally, we are interested in flows governed by equations of the form:{

∂c
∂t

= F N

c(q, 0) = c0(q).
(4.29)

The equation (4.29) says that the curve c(q, t) moves along its normal with
a speed F which may depend on t, c, c′, c′′. The level sets formulation is
based on the following observation due to Osher-Sethian [200]:

☛ A curve can be seen as the zero-level of a function in higher dimension.

For example, a curve in R2 can be represented as the zero-level line of
function R2 → R (see Figure 4.10). More precisely, let us suppose that
there exists a function u : R+ ×R2 → R so that:

u(t, c(t, q)) = 0 ∀q, ∀t ≥ 0. (4.30)

Then if u is sufficiently regular, by differentiating (4.30) with respect to t
we obtain:

∂u

∂t
+ 〈∇u , ∂c

∂t
〉 = 0



4.3. Geodesic active contours and the level sets method 171

=

<

>0

0

0

Figure 4.10. Basis of the level sets approach: a closed curve can be seen as the
zero-level of a function in higher dimension. For instance, the function can be the
signed distance to the curve, negative inside and positive outside.

and by replacing the expression of the speed given in (4.29) we get:

∂u

∂t
+ 〈∇u , F N〉 = 0. (4.31)

But recalling that the unit inward normal to the front defined by (4.30) is
given by N = − ∇u|∇u| (we suppose that u is negative inside the curve and

positive outside) then (4.31) rewrites as:

∂u

∂t
(t, c(t, q)) = F |∇u(t, c(t, q))| . (4.32)

According to the way we have established (4.32), this equation is a priori
only valid for the zero-level set of u. But one of the advantages of the
method is that u may be regarded as defined on the whole domain R+×Ω.
So, we can solve the PDE:

∂u

∂t
(t, x) = F |∇u(t, x)|

for t ≥ 0 and x ∈ Ω as soon as F is well-defined off the front, i.e. on the
whole space. Then once u is calculated on R+ ×Ω we just need to extract
the zero level set of u to get the curve. We will come back on this question
later. Of course we have to add:

(i) A boundary condition: one generally chooses that the normal
derivative vanishes on ∂Ω i.e. ∂u

∂N
= 0 on ∂Ω.
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(ii) An initial condition at t = 0. A good candidate is the signed distance
function to an initial given curve c0(q) surrounding the objects:

u(0, x) = d̄(x, c0) =

{
+d(x, c0) if x is outside c0
−d(x, c0) if x is inside c0

where d(x, c0) is the Euclidian distance to c0.

Therefore the final model is
∂u
∂t

(t, x) = F |∇u(t, x)| for (t, x) ∈ ]0,+∞[ × Ω
u(0, x) = d̄(x, c0)
∂u
∂N

= 0 for (t, x) ∈ ]0,+∞[ × ∂Ω.
(4.33)

The equation (4.33) is called an Hamilton-Jacobi equation (see also Section
2.3.2). There are many advantages to work with this Eulerian formulation:

• The first is that the evolving function u(t, x) always remains a func-
tion as long as F is smooth. But, if we only consider the level set u = 0
(and so the front c(t, q)), it may change topology, break, merge as u
evolves. We illustrate this in Figure 4.11. This is a main advantage
of this representation, since we do not need to take these topology
changes into account numerically.

• A second important interest concerns the numerical approximation:
we can use a fixed discrete grid in the spatial domain and choose finite
differences approximations for the spatial and temporal derivatives.
We refer to Sections 4.3.4 and A.3.4 for more details.

• Another advantage is that intrinsic geometric elements of the front
such as the normal vector or the curvature can be easily expressed
with respect to u. Notice that This is a necessary condition for any
representation to be useful.

• Finally, this above level set formulation can be extended and ap-
plied in any dimension. For instance a surface can be represented
implicitely by the zero level set of a function defined in a volume.

Figure 4.11. Illustration of the change of topology

☛ This representation is useful as soon as the evolution of an hypersur-
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face is involved and that the motion can be expressed as a velocity along
the normal.

This approach has been extensively used in computer vision as well as
in other domains.

Level sets method [229, 198, 223]

In image analysis, [57, 166, 58, 165, 144] are some of the papers that first ap-
peared in this direction. All these papers rely on the same ideas. The major
difference between them is that [58, 144, 165] start from an energy concept
(the minimization of the weighted length) while [57, 166, 165] formulate
directly their problem in terms of level sets.

To give an example, let us come back to the segmentation problem. We
can show that the level sets expression of (4.28) is:

∂u

∂t
=

(
(κ + α) g + 〈∇g, ∇u|∇u| 〉

)
|∇u|

or, remembering that the curvature κ is given by κ = div
(
∇u
|∇u|

)
:

∂u

∂t
= g(|∇I|)

(
div

( ∇u
|∇u|

)
+ α

)
|∇u|+ 〈∇g,∇u〉, (4.34)

with the boundary and initial conditions of (4.33). In the first term, the
coefficient g(|∇I|) permits to stop the evolving curve when it arrives to
the object boundaries2. The action of the second term, 〈∇g,∇u〉, is less
obvious. To better understand its contribution, let us consider the following
one-dimensional example. Let I(x) be the Heaviside function: I(x) = 1 if
x ≥ 0 and I(x) = 0 otherwise, and let Iε be a regularization of I by a cubic
function:

Iε(x) =


1 if x ≥ ε

− x3

4ε3
+ 3x

4ε + 1
2 if − ε ≤ x ≤ ε

0 if x ≤ −ε

Then, if we note gε(x) = 1
1 + |I ′

ε(x)|2 , it is easy to verify that in a neigh-

borhood of x = 0 we have gε(x) ≈ ε2 and g′
ε(x) ≈ 9

4ε4
x (see Figure 4.12).

Therefore, the leading term in (4.34) is (in this one-dimensional case) the
transport term g′

ε(x)u′(x). Thus, the front evolves from the right to the
left for x > 0 and from the left to the right for x < 0. The point x = 0

2Notice that in practice, because of the presence of additional noise in the image, we
use a smoothed version of I
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Iε

−ε ε

gε g′
ε

Figure 4.12. The initial signal Iε and the functions gε(x), g′
ε(x)

(the discontinuity front) can be seen as an attractive point. This effect is
the same for images.

☛ the term 〈∇g,∇u〉 increases the attraction of the deforming contour
towards the boundary of objects.

Before proceeding with the approximation we now present results re-
garding the existence and the uniqueness of a solution for (4.34), using the
theory of viscosity solutions (see Section 2.3).
According to the identity:

div
( ∇u
|∇u|

)
=

1
|∇u|2 [(ux1)

2ux2x2 + (ux2)
2ux1x1 − 2ux1ux2ux1x2 ],

where uxi = ∂u
∂xi

, the equation (4.34) rewrites as:

∂u

∂t
= g(x)

2∑
i,j=1

ai,j(∇u)uxixj
+ H(x,∇u) (4.35)

where:

ai,j(p) = δi,j − pipj

|p|2 if p �= 0 (δi,j is the Kronecker symbol) (4.36)

H(x, p) = α g(x) |p|+
2∑

i=1

∂g

∂xi
(x) pi with g(x) = g(|∇I(x)|). (4.37)

To avoid some tedious technicalities at corners, instead of the Neumann
boundary condition ∂u

∂N
= 0 on ]0,+∞[×∂Ω, we will work with periodic

solutions (see Section 3.3.1 to extend the function u0 defined on Ω, to a
periodic function defined on R2). Of course, we also suppose that the initial
condition u(0, x) = u0(x) is periodic.

Let us recall the definition of viscosity solutions, adapting the Definition
2.3.1 for the parabolic equation (4.35):

Definition 4.3.3 (viscosity subsolution, supersolution, solution) Let
u in C([0, T ]×R2), 0 < T <∞, then u is a viscosity subsolution of (4.35) if
for ϕ ∈ C2([0, T ]×R2) the following condition holds: at any point (t0, x0)
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in ]0, T [×R2 which is a local maximum of (u− ϕ) then:

∂ϕ

∂t
(t0, x0)− g(x0)

2∑
i,j=1

ai,j(∇ϕ(t0, x0))ϕxixj (t0, x0)−H(x0,∇ϕ(t0, x0)) ≤ 0

if |∇ϕ(t0, x0)| �= 0,

∂ϕ

∂t
(t0, x0)− g(x0) lim

p→0

2∑
i,j=1

ai,j(p)ϕxixj
(t0, x0) ≤ 0 if |∇ϕ(t0, x0)| = 0.

Similarly, we define the notion of viscosity supersolution changing local
maximum by local minimum, ≤ 0 by ≥ 0, and limsup by liminf. A viscosity
solution is a continuous function which is both a sub and a supersolution.

If V is a Banach space, we recall that L∞((0, T );V ) is the space defined
by:

L∞((0, T );V ) =
{

f : (0, T )→ V such that
|f |L∞((0,T );V ) = inf {c; |f |V ≤ c, a.e. t} <∞

}
We may now state the main result.

Theorem 4.3.2 Let us assume that g ≥ 0, g and
√
g are Lipschitz

continuous.

(i) Let u0(x) be the initial condition, be Lipschitz continuous. Then (4.35)
has a unique viscosity solution in C([ 0,∞ [×R2)∩L∞((0, T ); W 1,∞(R2))
for any T <∞. Moreover:

inf
R2

u0(x) ≤ u(t, x) ≤ sup
R2

u0(x).

(ii) Let v be a viscosity solution of (4.35) with u0 replaced by v0. Then
for all T in [0,+∞[ we have:

sup
0≤t≤T

|u(t, .)− v(t, .)|L∞(R2) ≤ |u0 − v0|L∞(R2) . (4.38)

Proof The proof follows [57]. It is rather technical and long and we divide
it into three steps.

Step 1: Stability and uniqueness
We begin with the stability estimate (4.38) from which we will deduce the
uniqueness of a solution. Let u and v be two (viscosity) solutions asso-
ciated respectively to u0 and v0. We are interested in the maximum of
(u(t, x) − v(t, x)) and in showing that it is nonpositive. If u and v are
smooth we can proceed as described in Section 2.3.4. Otherwise we need a
trick which is the duplication of variables. Let us define:

l(t, x, y) = u(t, x)−v(t, y)− 1
4ε
|x− y |2−λ t, x, y ∈ R2, t ∈ [ 0, T ] (4.39)
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where ε, λ ∈]0,+∞[ will be determined later. Now we are interested in the
maximum of l. Let (t0, x0, y0) be a maximum point of l on [0, T ]×R2×R2

(ε fixed).
We claim that t0 = 0. Otherwise the maximum would be attained at some
point (t0, x0, y0) with t0 > 0. In that case thanks to the Crandall-Ishii’s
Lemma (Lemma 2.3.2), we can find for any µ > 0 two real numbers a, b
and two symmetric (2 x 2) matrices X and Y such that:

a− b = λ ,

(
X 0
0 Y

)
≤

(
B + µB2 −B − µB2

−B − µB2 B + µB2

)
(4.40)

with:

Bi,j = ε−1 |x0 − y0|2 δi,j + 2 ε−1 (x0 − y0)i(x0 − y0)j .

Moreover, if x0 �= y0 one has:

a− g(x0)ai,j(ε−1 |x0 − y0|2(x0 − y0))Xi,j− (4.41)

−H(x0, ε−1 |x0 − y0|2 (x0 − y0)) ≤ 0,

b− g(x0)ai,j(ε−1 |x0 − y0|2(x0 − y0))Yi,j− (4.42)

−H(y0, ε−1 |x0 − y0|2 (x0 − y0)) ≥ 0.

In fact if x0 = y0 the two last inequalities have to be interpreted in terms
of suitable limits. In that case B = 0, X ≤ 0, Y ≥ 0 and (4.41), (4.42)
writes as

a− g(x0)lim
p→0

ai,j(p) Xi,j ≤ 0

b− g(x0)lim
p→0

ai,j(p) Yi,j ≥ 0

Hence, in particular a ≤ 0, b ≥ 0 which contradicts a − b = λ > 0. So we
have x0 �= y0.

Next, we choose µ = ε |x0 − y0|−2 (which is now possible) and deduce
from (4.40): (

X 0
0 −Y

)
≤ 2ε−1

(
C −C
−C C

)
(4.43)

where ci,j = |x0 − y0|2 δi,j + 5(x0 − y0)i(x0 − y0)j . Then we set:

G =
(

g(x0)A
√
g(x0)g(y0)A√

g(x0)g(y0)A g(y0)A

)
where A = ai,j(ε−1 |x0 − y0|2 (x0 − y0)). G is a non-negative symmetric
matrix so that multiplying (4.43) to the left by G and taking the trace we
get:

g(x0)
∑
i,j

ai,jXi,j − g(y0)
∑
i,j

ai,jYi,j ≤ 2ε−1(
√
g(x0)−

√
g(y0))2trace(AC)

(4.44)



4.3. Geodesic active contours and the level sets method 177

Next combining (4.40), (4.41), (4.42), (4.44) and carrying out some
manipulations we obtain:

λ ≤ c1
ε
≤ |x0 − y0|4 (4.45)

where c1 is a constant depending only on ai,j(p) and g. We now estimate
|x0 − y0|. According to the definition of (t0, x0, y0) we have:

u(t0, x0)− v(t0, y0)− 1
4ε
|x0 − y0|4 − λt0 ≥ u(t0, y0)− v(t0, y0)− λt0

and thus:
1
4ε
|x0 − y0|4 ≤ c2 |x0 − y0| (4.46)

where c2 is the Lipschitz constant of u(t0, .) on [0, T ]×R2. Therefore from
(4.45):

λ ≤ c3ε
1
3 with c3 = c14

4
3 c

4
3
2 .

Now, recall that λ and ε are arbitrary. Without a loss of generality we may
suppose that sup

[0,T ]×R2
|u− v| �= 0 (otherwise we conclude) and we choose:

ε
1
3 = δ sup

[0,T ]×R2
|u− v| (δ > 0), (4.47)

λ = 2δc3 sup
[0,T ]×R2

|u− v| . (4.48)

This choice contradicts (4.46) and so t0 = 0.
Next let us estimate sup

[0,T ]×R2
|u− v|. We fix λ and ε as before. Since

t0 = 0 we have for all (t, x, y):

u(t, x)− v(t, y)− 1
4ε
|x− y|4−λt ≤ u0(x0)− v0(y0)− 1

4ε
|x0 − y0|4 (4.49)

but observing that:

u0(x0)− v0(y0) = u0(y0)− v0(y0) + u0(x0)− u0(y0) ≤
≤ |u0(y0)− v0(y0)|+ c2 |x0 − y0|

and letting x = y in (4.49), we get:

sup
[0,T ]×R2

(u(t, x)− v(t, x))− λt ≤ sup
y∈R2

(u0(y)− v0(y)) + sup
r>0

(
c2r − 1

4ε
r4
)

i.e.

sup
[0,T ]×R2

(u(t, x)− v(t, x))− λt ≤ sup
y∈R2

(u0(y)− v0(y)) +
3
4
c

4
3
2 ε

1
3 .

By (4.47) and (4.48) we find:

sup
[0,T ]×R2

(u−v) ≤ sup
y
|u0(y)− v0(y)|+3

4
c

4
3
2 δ sup
[0,T ]×R2

|u− v|+2δc3 sup
[0,T ]×R2

|u− v|T.
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Exchanging the role of u and v and letting δ → 0, we obtain:

sup
[0,T ]×R2

(u− v) ≤ sup
y
|u0(y)− v0(y)| .

This proves the part (ii) of Theorem 4.3.2 and the uniqueness in part (i).
Remark that by using the definition of viscosity solutions we may also
obtain the following bound: inf u0(x) ≤ u(t, x) ≤ supu0(x) for all (t, x).

We now prove the existence part of the theorem. We begin by setting an
a priori estimate on ∇u.

Step 2: Estimate of ∇u on L∞(R2)
In this step we suppose that all the coefficients of (4.35) have been smoothed
as much as necessary (notations are unchanged) and that (4.35) admits a
regular solution (we will come back on this question in step 3). Thus let u
be a regular solution of:

∂u

∂t
= g(x)

∑
i,j

ai,j(∇u)uxixj + H(x,∇u).

We are going to apply the classical Bernstein method and derive a parabolic
inequality for w = |∇u|2. To this end we differentiate (4.35) with respect
to xl:

∂uxl

∂t
− ∂g

∂xl

∑
i,j

ai,j(∇u)uxixj − g
[∑

i,j

∑
k

∂ai,j(∇u)
∂pk

uxkxl
uxixj +

+ai,j(∇u)uxlxixj

]
− ∂H

∂xl
−

∑
k

∂H

∂pk
uxkxl

= 0

We multiply this equation by 2uxl
and sum over l to find:

∂w

∂t
− g

[∑
i,j

ai,j(∇u)wxixj
+

∑
i,j

∑
k

∂ai,j(∇u)
∂pk

uxixj
wxk

]
−
∑
k

∂H

∂pk
wxk

=

(4.50)

= 2
∑
l

∂g

∂xl
uxl

∑
i,j

ai,j(∇u)uxixj−2
∑
l

∂H

∂xl
uxl
−2g

∑
l

∑
i,j

ai,j(∇u)uxlxiuxlxj

where w = |∇u|2. We note Lw the left-hand side of (4.50). On the other
hand for the right-hand side of (4.50), since g is smooth we have:

(i)
∑
l

uxl

∂H
∂xl

=
∑
l

uxl

[
α
∂g
∂xl
|∇u|+ ∑

i

∂2g
∂xi∂xl

uxi

]
≤ k1 |∇u|2 = k1w,

where k1 is a constant depending only on g.

(ii) Since the matrix ai,j is symmetric semi-definite we can reduce it to
its principal axes and we easily get:(∑

i,j

ai,juxi
uxj

)2
≤ k2

∑
k

∑
i,j

ai,juxixk
uxjxk

for some constant k2.
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Using the Cauchy-Schwarz inequality, the obvious inequality 2ab ≤ a2 + b2

and again that ai,j is symmetric semi-definite, we obtain:

2
∑
k

∂g

∂xk
uxk

∑
i,j

ai,juxi
uxj − 2g

∑
k

∑
i,j

ai,juxixk
uxjxk

≤ k3w.

Inserting these bounds in (4.50) we have just proved the existence of a
constant k3 > 0 so that Lw ≤ k3w. Unfortunately, since k3 > 0 we cannot
directly apply the maximum principle to get a result of the kind:

|w(t, .)|L∞(R2) ≤ |w0(.)|L∞(R2) a.e.

However we can still show that (see the remark at the end this proof):

|w(t, .)|L∞(R2) ≤ (1 + ct ect) |w0(.)|L∞(R2) a.e.

where c is a constant depending only on k3. For u this means:

|∇u(t, .)|L∞(R2) ≤ ect |∇u0|L∞(R2) ≤ ecT |∇u0|L∞(R2) (4.51)

where the constant c only depends on |g|L∞(R2) and |∇g|L∞(R2). In partic-
ular, c does not depend on the way the coefficients have been regularized.
This inequality is proved in the remark following the proof. Notice that
this result is only interesting because we consider t bounded.

Step 3: Approximation and existence of a viscosity solution
In order to conclude, we are going to approximate (4.35) by a similar equa-
tion for which we are able to prove the existence of a smooth solution
satisfying (4.51). To this end we consider a periodic-C∞ function uε0 such
that uε0 → u0 uniformly satisfying:

|∇uε0|L∞(R2) ≤ |∇u0|L∞(R2) , |uε0|L∞(R2) ≤ |u0|L∞(R2) .

We also replace ai,j , g, and H respectively by:

aεi,j(p) = εδi,j + δi,j − pipj

|p|2 + ε

gε = g + ε

Hε(x, p) = αgε(x)
√
|p|2 + ε +

∑
i

∂gε
∂xi

(x)pi.

According to the general theory of quasilinear parabolic equations [156],
we know there exists a smooth solution uε of:

∂u
∂t

= gε(x)
∑
i,j

aεi,j(∇u)uxixj + Hε(x,∇u)

u(0, x) = uε0(x).
(4.52)

Thanks to (4.51) we have:

|∇uε(t, .)|L∞(R2) ≤ ecT |∇uε0|L∞(R2) ≤ ecT |∇u0|L∞(R2) ≡ cT .
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This means:

|uε(t, x)− uε(t, y)| ≤ cT |x− y| for all x, y ∈ R2 and t ∈ [0, T ] (4.53)

We can also show from (4.52) and (4.53) that:

|uε(t, x)− uε(s, x)| ≤ cT |t− s| 12 for all x ∈ R2 and t, s ∈ [0, T ]. (4.54)

Inequalities (4.53) and (4.54) together with |u|L∞((0,T )×R2) ≤ cte allow
us to conclude by means of Arzelà-Ascoli theorem (see Section 2.5.4) that
there exists a subsequence of uε converging uniformly on [0, T ] × R2 to
a function u ∈ C[(0, T ) × R2] ∩ L∞[(0, T );W 1,∞(R2)] for T < ∞. Then
by applying a stability result for viscosity solutions (see Lemma 2.3.1) we
conclude that u is a viscosity of (4.35). �

Remark (About the maximum principle in the parabolic case)

Most uniqueness results for linear parabolic (or elliptic) PDEs follow from
maximum or comparison principles. Roughly speaking, they state that if u
is a solution of a parabolic PDE on UT = (0, T )×U then the maximum and
the minimum of u are attained on the parabolic boundary of UT defined
by ΓT = ∂(0, T ) × U ∪ U × {t = 0}. More precisely, let us consider the
operator:

Lu = −
∑
i,j

ai,juxixj
+

∑
i

biuxi

with
∑
i,j

ai,jξiξj ≥ θ|ξ|2 ∀(t, x) ∈ UT , ai,j , bi continuous and U bounded. If

u is a regular solution of ut + Lu ≤ 0, then we have [105]

max
UT

u = max
ΓT

u.

Likewise, if ut + Lu ≥ 0, then we have [105]

min
UT

u = min
ΓT

u.

So it is clear that if two solutions coincide on ΓT , they coincide on UT .
From the above result, we can deduce the following corollaries:

• Let ũ such that: {
ũt + Lũ = g(t) ≥ 0
ũ(0, x) = u0(x)

then ũ = v +
∫ t

0
g(s)ds where v is the solution of:{

vt + Lv = 0
v(0, x) = u0(x).

So we have min
x

u0(x) ≤ v(t, x) ≤ max
x

u0(x).
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• Let us consider: {
ut + Lu ≤ g(t) = ũt + Lũ
ũ(0, x) = u0(x).

This can be rewritten:{
(u− ũ)t + L(u− ũ) ≤ 0
(u− ũ)(0, x) = 0.

Thanks to the maximum principle, we have
max
UT

(u− ũ) = max
ΓT

(u− ũ) = 0 that is u ≤ ũ. But:

ũ = v +
∫ t

0
g(s)ds ≤ |u0|L∞(UT ) +

∫ t

0
g(s)ds

so we have:

u ≤ |u0|L∞(UT ) +
∫ t

0
g(s) ds.

• Finally, let us consider:{
wt + Lw ≤ cw with c ≥ 0
w(0, x) = u0(x).

The classical maximum principle can no longer be applied (because
c ≥ 0). However, we have wt + Lw ≤ c max

x
w(t, x) = g(t), so:

w(t, x) ≤ |u0|L∞(U) + c

∫ t

0
max
x

w(x, s)ds

and then:

|w|L∞(U) (t) ≤ |u0|L∞(U) + c

∫ t

0
|w|L∞(U) (s)ds.

By applying the Gronwall inequality, (see Section 2.5), we obtain:

|w|L∞(U) (t) ≤ |u0|L∞(U)

(
1 + ct ect

) ≤ k |u0|L∞(U)

with k depending on c and T . Remark that on ∂(0, T ) × U , we can
choose Neumann or periodic boundary conditions. �

Finally, we would like to check the correctness of the geometric model
that is to show that the zero level set of u(t, x) asymptotically fits the de-
sired contour Γ =

{
x ∈ [0, 1]2; g(x) = 0

}
. Let us recall the result proven in

[57]. We assume that Γ is smooth and separates [0, 1]2 into two regions, the
inside I(Γ) and the outside E(Γ) (i.e. Γ is a Jordan curve). We recall that
P(RN ) the set of all subsets of RN can be equipped with the Hausdorff
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metric:

d(A,B) = max
(

sup
x∈A

d(x,B), sup
x∈B

d(x,A)
)
,

where d(x,A) denotes as usually the distance of the point x to the set A:

d(x,A) = inf
y∈A

d(x, y).

Theorem 4.3.3 [57] Let Γ =
{
x ∈ [0, 1]2; g(x) = 0

}
be a Jordan curve of

class C2 and ∇g(x) = 0 on Γ. Assume that u0(x) is smooth and bounded
and that the set

{
x ∈ R2; u0(x) ≤ 0

}
contains Γ and its interior. Let u(t, x)

be the viscosity solution of (4.35) and Γ(t) = {x; u(t, x) = 0}. Then if α
(the constant component of the velocity) is sufficiently large, Γ(t) → Γ as
t→∞ in the Hausdorff metric.

4.3.4 Experimental results
This section concerns the experimental results that can be obtained with
(4.34). In fact, we will only show the result obtained on the “objects”
image which clearly illustrates the behaviour of the method.

As far as the discretization is concerned, it is classical to use finite dif-
ferences schemes. As it is recalled in the Appendix, these schemes are
well-adapted to the structure of digital images since we can associate a
natural regular grid. Now, coming back to our problem we can rewrite
(4.34) as the sum of three separated terms:

∂u

∂t
= g(|∇I|) |∇u|div

( ∇u
|∇u|

)
+ αg(|∇I|) |∇u|+ 〈∇g,∇u〉. (4.55)

This reveals two kinds of terms:

• The first term in (4.55) acts as a parabolic term.

• The second and the third terms are hyperbolic terms. The second
term describes motion in the normal direction to the front while the
third (linear) term corresponds to pure advection.

As one would imagine, this difference must be taken into account at the
discrete level. So discretizing equation (4.55) is not straightforward. To
better understand, we refer the reader to the Appendix where main ideas
of finite differences are explained and more precisely to Section A.3.4 where
the discretization of (4.55) is presented. Given the discrete scheme, one
can implement and test this approach. An example of result is presented
in Figure 4.13 on the “objects” image. During the evolution, the curve is
shrinking, stopping as soon as it is close from an object boundary (high
gradients) and splitting in order to detect the five objects. However, it can
be noticed that:
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Figure 4.13. Segmentation of the “objects” image using the geodesic active con-
tour model (4.55). From top left to bottom right, different iterations (solution
as time evolves) are displayed. Initialized by the boundaries of the images, the
curve is shrinking and splitting until it isolates each object.
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• The interior of the objects is not segmented (for instance the interior
of the disk). Once the curve has detected a contours it stops.

• Because of the level sets description, we always have closed curves.
This is not really a problem in this image but one may think about
situations where open contours are present.

We review in the next section recent work which consider these two issues.

4.3.5 About some recent advances
Global stopping criterion

We have previously presented active contour models and snakes which use
the gradient as a criterion to stop the curve. However, there are some
objects whose boundaries cannot be defined or are badly defined through
the gradient. This include for example smeared boundaries, or cognitive
contours (boundaries of larger objects defined by grouping smaller ones,
see G. Kanizsa [141]) as shown in Figure 4.14.

We present here a different active contour model called “without edges”
[66, 69]. The main idea is to consider also the information inside the regions,
and not only at their boundaries. Let us describe the model. Let u0 be the
original image to be segmented, c denote the evolving curve and i1, i2 be
two unknown constants. In [66, 69] the authors introduced the following
minimization problem:

inf
i1,i2,c

F (i1, i2, c) = µ|c|+
∫

inside(c)

|u0 − i1|2 dx +
∫

outside(c)

|u0 − i2|2 dx,

where µ is a positive parameter. This model looks for the best approxima-
tion of the image u0 as a set of regions with only two different intensities
(i1 and i2). Typically, one of the regions represents the objects to be de-
tected (inside(c)) and the second region corresponds to the background
(outside(c)). The snake c will be the boundary between these two regions.
We see that this model is closely related to a binary segmentation. This
model has many advantages. It allows to detect both contours with or
without gradient, automatically detects interior contours (think about the
interior of the CD in the “objects” image), and it is robust in the presence
of noise.
This approach has been implemented using the level sets method that we
presented in the Section 4.3.3. Using the Heaviside function H the energy
F can be rewritten as:

F̃ (i1, i2, φ) = µ

∫
Ω

|∇H(φ)|+
∫
Ω

|u0−i1|2H(φ) dx+
∫
Ω

|u0−i2|2(1−H(φ)) dx,

where φ is the level sets function. To find the minimum, we need to con-
sider the problem that the functional F̃ is not Gâteaux differentiable with
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Smeared contours Cognitive contours

Figure 4.14. The gradient is not always adapted to segment. . .

Figure 4.15. Smeared contours of a galaxy

Figure 4.16. Contour of a blurred circular object

Figure 4.17. Cognitive contour for an image representing Europe night-lights

Figure 4.18. Cognitive contours. Another example which illustrates grouping
based on chromatic identity
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respect to the third variable. The reason is simply because the Heaviside
function is not differentiable. It is then classical to regularize the problem
by changing H into Hε (a C1-approximation of H) to be able to compute
the derivatives3. So, to minimize F̃ with respect to i1, i2 and φ, we need to
solve the equations:

i1 =

∫
Ω

u0H(φ) dx

∫
Ω

H(φ) dx
, i2 =

∫
Ω

u0(1−H(φ)) dx

∫
Ω

(1−H(φ)) dx
,

∂φ

∂t
= δε(φ)

(
µdiv

( ∇φ
|∇φ|

)
− |u0 − i1|2 + |u0 − i2|2

)
,

where δε = H ′
ε. Notice that we do not need Hε for the first two equations.

These equations can then implemented using standard finite difference.
We display in Figure 4.15 to 4.18 some numerical results from [66, 69]
illustrating the possibilities of the approach.
On a theoretical point of view, we can prove the existence of minimizers of
the energy F̃ , but the convergence of the algorithm is an open problem.

To conclude we mention that this kind of model is also used in other
segmentation problems like Mumford-Shah [67, 68], vector-valued images
[65], texture [204, 206], classification [221], etc

Toward more general shape representation

As seen in previous sections, level sets are a very convenient way to describe
and implement the evolution of hypersurfaces, and it has been extensively
used in numerous applications. Unfortunately, this description has two
main limitations. The first is that level sets do not permit to represent
shapes with a codimension different than one or open shapes (see Figure
4.19). The second is that level sets do not permit to describe the motion of
self interecting interfaces.

open curveregion self−intersecting curvespoint

Figure 4.19. Examples of shapes in the 2D case that cannot be described using
level sets

3This problem is closely related to the classification problem from [221], presented in
Section 5.2.2. In particular, the reader will find more details regarding the functionals
regularizations.
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To overcome these difficulties, we mention some recent contributions in
which an alternative of the level sets is proposed [219, 124]. Instead of
considering the distance function d(x,Γ) = |x − y| for representing and
evolving objects, the idea is to keep the vector distance function u(x,Γ) =
x − y (see Figure 4.20 for some examples). This vectorial function has
remarkable properties and related PDEs satisfied by u(x) allow to envisage
more complicated motions than those treated with the classical level sets
method (see [124]).

u  x,    (      )Γ

y

x

Γ

VDF of a segmentVDF of a pointVDF definition

Figure 4.20. Vector distance function (VDF). Definition and examples

This direction is very promising and should be more investigated in
particular from a numerical point of view.
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Other Challenging Applications

How to read this chapter?

In this last chapter, we would like to present some recent extensions of the
ideas developed previously. Two directions are considered.

The first is the case of sequences of images (Section 5.1).

• As it is shown in Section 5.1.1, a sequence contains many informations
like motion, objects, depth, etc. Our aim is to show how some of these
informations may be recovered only from the sequence.

• We start with studying the problem of motion estimation. We show in
Section 5.1.2 how it can be estimated using variational formulations.

• Another task which is becoming more and more important is the
segmentation of the sequence, which consists in describing it by its
different elements or objects (typically background and foreground).
Little work exists in this direction using PDEs and we present in
Section 5.1.3 an approach developed in [154] which has interesting
mathematical properties.

• Finally, if image restoration is quite a well-known problem, sequence
restoration is still an important challenge. In Section 5.1.4 we try to
analyze the variety of problems involved, propose a classification of
defects and emphasize on the importance of perception.

The second subject that we would like to consider in this chapter is the
problem of classification of aerial images, which presents some similarities
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with the segmentation problem (Section 5.2). We present two different and
original approaches from Samson et al [221, 222].

• In the first one (Section 5.2.2) the evolution of a given number of
curves (level sets) is used to describe a partition of the image. The
difficulty comes from the opposite actions imposed on the curves (to
cover the whole image without overlaping).

• In the second one (Section 5.2.3), an optimization problem is consid-
ered where classification is performed with restoration. The form of
the energy is borrowed from the Van der Walls, Cahn-Hilliard theory
of phase transitions in mechanics. This is also the occasion to give a
complete proof of a Γ-convergence theorem.

Although some theoretical results are given and proved, the goal of this
chapter is to show the variety of domains for which PDEs can be useful.
There are naturally many other applications of PDEs in image analysis that
we do not study here. Some examples include diffusion on vector-valued
images and diffusion on nonflat manifolds (see [223]), shape from shad-
ing, desocclusion (inpainting), image interpolation, shapes interpolation,
stereovision, etc.

5.1 Sequence analysis

5.1.1 Introduction
When dealing with digital sequences, we already have to deal with all the
characteristics of static digital images. As it is mentioned in Section 1.2
of the introduction, we have to consider problems like low resolution, low
contrasts and the same variety of gray level information like graduated
shadings, sharp transitions and fine elements (see Figure 1.3). It is natu-
rally more complex because of the temporal dimension which intrinsically
contains a lot of informations like motion, depth, the differents objects
in the scene, etc. To illustrate this, let us comment on the real sequence
presented in Figure 5.1. From this sequence, we may remark the following:

• As one can observe, this sequence has a static background and three
objects are moving (two people and a car) with motions of different
ranges. This velocity is naturally linked with the sampling in time
of the sequence (the number of frame per second), or equivalently,
the time  t between the acquisition of two consecutive frames. Nat-
urally, the more images we have, the easier motion can be understood
because the variations between two consecutive images will be small.

• The nature of the motions is also quite different. The car has a smooth
trajectory, the two people can change quickly of direction, and the
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t0 t0 + t t0 + 2 t

t0 + 3 t t0 + 4 t t0 + 5 t

t0 + 6 t t0 + 7 t t0 + 8 t
Figure 5.1. The “Street” sequence shows different ranges of motion, spurious
motions (from the bushes or from the shadows), occlusions, the effect of noise,
etc. Notice that the noise visible in the sequence has been added afterwards (it
is a Gaussian additive noise of variance σ = 20).

bushes on the bottom right-hand side corner have a “random” motion
(due to the wind).

• As we will discuss in the next section, the motion that we perceive
is based on intensity variations. Thus we can already wonder which
interpretation of the motion that may be recovered. For instance,
should we consider the shadows as a motion? This question is actu-
ally unclear and we see that to answer it, we see need all our “life
experience” and knowledge about the sequence to know the difference
between a real object and its shadow. Another concern will be the
sensitivity of the motion perception with respect to noise.

• There is also partially contained in the sequence the notion of depth.
For instance one can distinguish elements from the background and
the moving objects as foreground. This information is obtained by
analyzing the occlusions and we will see in Section 5.1.3 how this can
be used. More generally, if we have a sequence taken with a moving
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camera, we can imagine that more precise depth informations from
the scene may be recovered.

Beyond these remarks, we can also imagine that analyzing a weather fore-
cast sequence or a soccer game may involve different problems and models
to interpret them. In the case of clouds motion for instance, it is especially
important to better take into account the physics and have an appropriate
notion of smoothness for the motion, while for the soccer game sequence
motions are discontinuous and occlusions are very important.

5.1.2 The optical flow: an apparent motion
As soon as we consider a sequence, there is the idea of motion. Coming
from displacements in the physical world, we can only observe a projection
of it. This is illustrated in Figure 5.2.

Unfortunately, we are not able to measure the 2D motion field (the
projection on the image plane of the 3D velocity of the scene). As it is
mentioned in the title of this section, what we are able to perceive is just
an apparent motion also called the optical flow. By apparent, we mean that
this 2D motion is only observable through intensity variations. Unfortu-
nately, the optical flow and the 2D motion field are in general quantitatively
different, unless very special conditions are satisfied. We refer to the dis-
cussion of Verri and Poggio [243, 244] for more details. Just to illustrate
this difference, we show in Figure 5.3 two caricatural examples.

Still, if the optical flow and the 2D motion field are quantitatively dif-
ferent, they often share the same qualitative properties, like for instance
motion discontinuities. The optical flow is then a rich source of informa-
tion about the 3D kinematic behaviour of objects (see for instance [112])
or the geometrical structure of the world. It is also used in many other
applications: segmentation, time to collision, earth sciences,. . .

In this last decade, numerous methods have been proposed to compute
optical flow and it is still an active field of research. Three different strate-
gies can be distinguished. Correlation-based techniques compare parts of the
first image with parts of the second in terms of the similarity in brightness
patterns in order to determine the motion vectors. Correlation is generally
used to aid the matching of image features or to find image motion once
features have been determined by alternative methods. Feature-based ap-
proaches aim at computing and analyzing the optic flow at a small number
of well-defined image features (such as corners, edges, blobs) in a scene.
Gradient-based methods (also called differential techniques) make use of
spatio-temporal partial derivatives to estimate the image flow at each point
in the image.

There is also a wide range of methodologies: wavelets, Markov Ran-
dom Fields, Fourier analysis and naturally partial differential equations.
In [26], Barron, Fleet and Beauchemin present the main different classes
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1

=image brightnessu x,t( )

O

Image domain
Optical center

2 x

x

D motion field

3D motion field

Figure 5.2. Simplified illustration of a camera (the pinhole camera model)

(a) (b) (b)(a)
Example 1 Example 2

Figure 5.3. The optical flow is not always the motion field. Example 1 (see also
[137]): In (a), no motion is perceived because intensity keeps constant while in (b)
a static sphere is illuminated by a moving source, producing intensity variations.
Example 2: the barber’s pole. (a) shows the flow field and (b) the optical flow
that is the motion perceived.

of techniques and perform numerical quantitative experiments to compare
them. We also mention to the interested reader other interesting reviews:
[197, 178, 242, 201, 113, 17].

According to the scope of the book, we now focus on differential
techniques for which variational formulations can be proposed.

The Optical Flow Constraint (OFC)

One of the first point to clarify and to formalize is the link between the
intensity variations and the motion. A common and widely used assumption
is that the intensity of a point keeps constant along its trajectory. We can
consider it as reasonable for small displacements for which changes of the
light source are small, and as long as there is no occlusion. More precisely,
let u(t, x) denote the intensity of the pixel x = (x1, x2) at time t. Starting
from a point x0 at the time t0, we define the trajectory:

t 1→ (t, x(t))
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such that:

u(t, x(t)) = u(t0, x0) ∀t (5.1)
(t0, x(t0)) = (t0, x0). (5.2)

By formally differentiating (5.1) with respect to t, we obtain at t = t0:

dx

dt
(t0) · ∇u(t0, x0) +

∂u

∂t
(t0, x0) = 0. (5.3)

So we will search the optical flow as the velocity field σ(x0) = dx
dt

(t0)
verifying (5.3).

u

σ?

σ?

σ?

To summarize, for a given sequence u(t, x) and a time of ob-
servation t0, the aim is to find the instantaneous apparent
velocity σ(x) such that:

σ(x) · ∇u(t, x0) + ut(t, x0) = 0. (5.4)

This equation is called the optical flow constraint, also
noted OFC1.

☛ Unfortunately, one scalar equation is not enough to find both com-
ponents of the velocity field. It only gives the component in the direction
of ∇u, that is the normal to the isophotes of the images. It is called the
normal flow. This problem is usually designated by the aperture problem.

Solving the aperture problem

As we just saw, the equation (5.4) is not sufficient to compute the optical
flow. Several ideas have been proposed to overcome this difficulty.

• Use second order derivative constraints. For instance, one could
impose the conservation of ∇u(t, x) along trajectories that is to say:

d∇u
dt

(t, x) = 0.

This is a stronger restriction than (5.4) on permissible motion
fields. This implies that rigid deformations are not considered. This
condition can be rewritten in the following form:[

ux1x1 ux2x1

ux1x2 ux2x2

](
σ1
σ2

)
+

(
ux1t

ux2t

)
=

(
0
0

)
. (5.5)

These equations can be used alone or together with the optical flow
constraint. Several possibilities are then proposed (see [202, 240].
However, this kind of method is often noise sensitive because we need
to compute second order derivatives.

1Notice that (5.4) is just an approximation at the first order of (5.1) and is valid only
for small time differences. This will be commented next



5.1. Sequence analysis 195

• Another possibility is to solve the problem using a weighted least
square approach [163, 164]. The central point of this method is a
model of constant velocities in a small spatial neighborhood. For
instance, to compute the velocity σ at point x0, the idea is to
minimized:

inf
σ(x0)

∫
B(x0,r)

w2(x) (σ(x0) · ∇u + ut)
2
dx,

where B(x0, r) is the ball of center x0 and radius r (the neigborhood),
and w(x) is a window function that gives more influence to the con-
straint at the center of the neighborhood than at the periphery. This
approach which gives good results, has been extended and it is still
often used to compute the optical flow. However, it is local and there
is no notion of global regularity for the resulting flow.

• Using parametric models of velocity that respect as much as possible
the optical flow constraint. In the affine case, one looks for σ such
that:

σ(x) = σθ(x) =
(

θ1 + θ2x1 + θ3x2
θ4 + θ5x1 + θ6x2

)
where the unknown parameter vector θ ∈ R6 is determined by
minimizing:

E(θ) =
∫
Ω

φ(σθ · ∇u + ut) dx

where φ is a suitable given function. In general this minimization
leads to non quadratic (and possibly nonconvex) optimization prob-
lems that we can solve by half quadratic techniques if φ satisfying
hypotheses of Section 3.2.4. Naturally, other models may be proposed
[139, 196].

• Regularizing the velocity field is another possibility. The idea is to
consider a minimization problem of the form:

inf
σ

(A(σ) + S(σ)) (5.6)

where A(σ) is the fidelity attach term for instance based on (5.4) or
(5.1), and S(σ) is the smoothing term.
Amongst the first ones, Horn and Schunck [138] (see also [224])
proposed to solve the following problem:

inf
σ

∫
Ω

(σ · ∇u + ut)2 dx

︸ ︷︷ ︸
A(σ)

+α
2∑

j=1

∫
Ω

|∇σj |2 dx
︸ ︷︷ ︸

S(σ)

(5.7)
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Figure 5.4. The method of Horn and Schunck applied on a synthetic example.
Notice that this example is very caricatural since we do not have any texture
information on the background and on the moving object. One may observe that
the discontinuities near the edges are lost.

where α is a constant. However, this kind of penalty term introduced
by Tikhonov and Arsenin [239] is well-known to smooth isotropically
without taking into account the discontinuities (see Figure 5.4 and
also Section 3.2.2 where a similar term arise for image restoration).
Unfortunately, as it has been mentioned, the discontinuities of the
optical flow field are a very important cue for sequence analysis.
Since then, many research have been carried out to compute discon-
tinuous optical flow fields by changing the smoothing term S(σ). We
describe below some of the most significant ones:

– Modifying the Horn and Schunck functional was pioneered by
Black et al [34, 37]. The idea was to change the regularization
term into:

2∑
j=1

∫
Ω

φ(|∇σj |) dx (5.8)

where the function φ would permit noise removal and edge
conservation. Some examples include Cohen [77], Kumar, Tan-
nenbaum and Balas [155] with the L1 norm (i.e. the total
variation, φ(s) = s) or Aubert, Deriche et al [92, 17, 18] and
Blanc-Féraud, Barlaud et al [40] with the φ functions tradition-
ally used for image restoration to preserve discontinuities. This
was also proposed at the same time in a statistical framework
where φ functions are called robust estimators (see for instance
[35, 177]).

– Suter [236], Gupta and Prince [132] or Guichard and Rudin
[131] add some penalty terms based on the divergence and the
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rotational of the flow field:∫
Ω

ϕ(div(σ), rot(σ)) dx (5.9)

where several possibilities for ϕ may be proposed. For instance,
in [131] the authors choose ϕ(div(σ), rot(σ)) = |div(σ)| which is
adapted to rigid 2D objects with a “2D” motion.

– Nagel and Enkelmann [188, 103] propose an oriented smooth-
ness constraint in which smoothness is not imposed across steep
intensity gradients (edges) in an attempt to handle occlusions.
So the penalty term is of the form:∫

Ω

1
|∇u|2 + 2λ2

trace
(
(∇σ)TD(∇u)(∇σ)

)
dx

with D(∇u) = n nT + λ2Id and n =
(

ux2

−ux1

)
(5.10)

where λ is a constant. The idea is to attenuate the blurring of the
flow across the boundaries of the intensity, when |∇u| . λ. In
this case, the smoothing is essentially in the direction tangent
to the isophotes. Otherwise, the smoothing is isotropic. This
is a major difference with (5.8) or (5.9) since the characteris-
tics of the smoothing depend here on the intensity and not on
the motion itself. However, one can wonder about the action of
this term (5.10) for highly textured scenes where the gradient is
varying a lot and isnot ver representative of objects boundaries

– Nési [193] adapts the formulation of Horn and Schunck intro-
ducing the length of the discontinuity set of σ (noted |Sσ|). We
recall that this kind of idea has been introduced by Mumford
and Shah [187] for image segmentation (see Chapter 4). The
regularization term is of the form:

2∑
j=1

∫
Ω

|∇σj |2 dx + α|Sσ|,

where α is a constant. Numerically, like for the image segmenta-
tion problem, the main difficulty is to approximate the last term.
One possible solution is to use the notion of Γ-convergence (see
Section 2.1.4). We introduce a sequence of functionals so that
the sequence of minimizers converge to the unique minimum
of the initial functional. Typically, the way to approximate the
regularization term is (see Section 4.2.4 and [13] for more detail):

2∑
j=1

∫
Ω

z2|∇σj |2 dx + α

∫
Ω

( |∇z|2
k

+
k(1− z)2

4

)
dx
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where z is an additional function and k is a parameter which is
destined to tend to infinity. The function z can be considered
as a control variable which is equal to zero near discontinuities
and close to 1 in homogeneous regions.

Overview of a discontinuity preserving variational approach

Although many models have been proposed to find the optical flow, little
work considered its mathematical analysis. We summarize below some re-
sults presented in [17, 18, 151], where the smoothing term is the same as
in the restoration problem of Section 3.2.3.
Given a sequence u(t, x) we search for the velocity field σ which realizes
the minimum of the energy:

E(σ) =
∫
Ω

|σ ·Du + ut|
︸ ︷︷ ︸

A(σ)

+αs
2∑

j=1

∫
Ω

φ(Dσj)

︸ ︷︷ ︸
S(σ)

+αh
∫
Ω

c(Du)|σ|2 dx
︸ ︷︷ ︸

H(σ)

(5.11)

where αs, αh are positive constants. From now on, unless specified other-
wise all the derivative are written in a formal setting (in the distributional
sense). Since we look for discontinuous optical flows the suitable theoretical
background to study this problem will be BV(Ω), the space of bounded
variation (see Section 2.2). The energy is compounded of three terms:

• A(σ) is the “L1”-norm of the OFC (5.4). In fact it is formal and has
to be interpreted as a measure.

• S(σ) is the smoothing term. Like for image restoration (see Section
3.2), one would like to find conditions on φ so that discontinuities
may be kept. We recall the assumptions of Section 3.2.3:

φ is a strictly convex, nondecreasing function from R+

to R+, with φ(0) = 0 (without a loss of generality) (5.12)

lim
s→+∞φ(s) = +∞ (5.13)

There exist two constants c ¿ 0 and b ≥ 0 such that
cs− b ≤ φ(s) ≤ cs + b ∀s ≥ 0. (5.14)

Notice that these conditions will guarantee the well-posedness of
the theoretical problem. Regarding the edge preservation properties,
other qualitative conditions should be added (see Section 3.2.2, con-
ditions (3.10) and (3.12)). Under these assumptions, S(σ) has to be
interpreted as a convex function of measures (see Section 2.2.4). We
recall that this term is l.s.c. for the BV − w∗ topology.

• H(σ) is related to homogeneous regions. The idea is that if there is
no texture that is to say no gradient, there is no way to estimate
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correctly the flow field. Then one may force it to be zero. This is
done through a weigthed L2-norm, where the function c is such that:

lim
s→0

c(s) = 1 and lim
s→∞c(s) = 0.

Since u (and then Du) is given, we will simply denote c(x) instead of
c(Du(x)). Without any loss of generality, we assume that:

c ∈ C∞(Ω) (5.15)
There exists mc > 0 such that c(x) ∈ [mc, 1] for all x ∈ Ω (5.16)

Although this term may be criticized on a modelization point of view,
it is necessary for the coercivity of the functional. Let us also remark
that this term is well-defined on BV(Ω) thanks to the inclusion of
BV(Ω) into L2(Ω) (N = 2).

Now that we have stated the problem, let us consider its theoretical study.
Up to now nothing has been told about the regularity of the data u. Inter-
estingly this will influence very importantly the nature of the problem. As
a first example, let us consider that the data is Lipschitz in space and time
[17, 151]:

u ∈W 1,∞(R× Ω). (5.17)

The derivatives in A(σ) are then functions and A(σ) is simply the L1-norm
of the OFC. Notice that this assumption is realistic from a numerical point
of view because a pre-smoothing is usually carried out to diminish noise
effects, remove small amounts of temporal aliasing and improve the subse-
quent derivative estimates2. Then, we have the following result:

Theorem 5.1.1 [17] Under the hypotheses (5.12)-(5.14), (5.15)-(5.16)
and (5.17), the minimization problem:

inf
σ∈BV(Ω)

E(σ) =
∫
Ω

|σ · ∇u+ ut| dx+
2∑

j=1

∫
Ω

φ(Dσj) +
∫
Ω

c(x)|σ|2 dx (5.18)

admits a unique solution in BV(Ω).

In this case, the proof follows from classical arguments. According to (5.14)-
(5.16), the functional E is coercive on BV (Ω). Thus, we can uniformly
bound the minimizing sequences and extract a converging subsequence for
the BV − w∗ topology. Since E is lower semi-continuous (l.s.c.) for this
topology, we easily deduce the existence of a minimum.

2As mentioned in [26] differential techniques are naturally very sensitive to the quality
of the estimation of the spatiotemporal derivative. Along the same lines, on a discrete
point of view the method of numerical differentiation is very important.
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Now the problem is to get an approximation of the solution. As in the
case of image restoration, an algorithm based on Γ-convergence and half-
quadratic minimization can be proposed (see Section 3.2.4 and [17]). We
show in Figure 5.5 a typical result where one can observe the qualitative
differences with the original Horn and Schunck’s model.

Horn and Schunck [138] Aubert, Deriche et al[17]

Figure 5.5. Example of result obtained on the rotating cube sequence. A close-up
of the lower part of the plate is displayed to highlight the qualitative differences.
One can observe that the diffusion is controled in the right-hand side case

Unfortunately, the regularity assumption (5.17) on the data u may not
always be verified and one can wonder what would be the problem if we
only assume that u is a function of bounded variation. This is considered in
[18, 151] and the fact that u may have jumps induces not trivial theoretical
questions. The first difficulty is to give a sense to the first term A(σ).
It is now a measure. To be more explicit, one needs to find an integral
representation of this term3. The precise assumptions on u are:

u ∈ SBV (R× Ω) ∩ L∞(R× Ω) (5.19)

There exists h1 ∈ L1(Ω) and h2 ∈ L1
H1(Su)

such that ut = h1 dx + h2H1|Su

(5.20)

where SBV (R×Ω) is the space of special functions of bounded variation (no
Cantor part) andH1 is the one-dimensional Hausdorff measure. Notice that
(5.20) means that the measure ut is absolutely continuous with respect to
|Du|. This is physically correct since when there is no texture (no gradient)
no intensity variation should be observed. Then, under these assumptions,
it can be established that the energy E defined in (5.11) can be rewritten

3By integral representation, we mean finding a measure µ and a function h ∈ L1
µ(Ω)

such that A(σ) =
∫
Ω

hdµ.
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as:

E(σ) =
∫
Ω

|σ · ∇u + h1| dx +
∫
Su

|•σ · nu(u+ − u−) + h2| ds+

+
2∑

j=1

∫
Ω

φ(Dσj) +
∫
Ω

c(x)|σ|2 dx

where Su is the jump set of u and
•
σ is the precise representation of σ (see

Section 2.2.3). We recall that
•
σ belongs to the same class as σ but is now

defined H1-a.e. by:

•
σ(x) = lim

r→0

1
|B(x, r)|

∫
B(x,r)

σ(y)dy

where B(x, r) is the ball of center x and radius r. We also recall that:

•
σ(x) = σ(x) dx− a.e. and

•
σ(x) =

σ+(x) + σ−(x)
2

H1 a.e. on Sσ.

So, we can observe that the OFC is now splitted into two parts: an ab-
solutely continuous part and a length part on the jump set of u. To study
the existence of a solution for this problem the difficulty is that the func-
tional is no longer l.s.c. for the BV−w∗ topology because of the term on Su.
Basically, the problem is that the trace function is l.s.c. for the strong topol-
ogy of BV (Ω) (even continuous, see Section 2.2.3) but not for the BV−w∗

topology. If σn is a minimizing sequence of E such that σn −−−→
BV−w∗

σ then

in general:

tr(σn)→ ν ∈M(Ω) and ν �= tr(σ),

where tr(.) is the trace operator. It is then necessary to compute the relaxed
functional. This leads to long and technical calculus and we refer to [18]
for more details.

Alternatives of the OFC

Is the OFC unavoidable? Even if it is widely used to compute optical flow,
several reasons may invite us to look for something different.

The first one is that one may wonder about the validity of using the
OFC (5.4) in case of large displacements. If we denote by  t the time
interval between two consecutive images (in the discrete temporal case), the
differentiation (5.1) is only valid for “small”  t or equivalently for “small”
displacements. To deal with large displacements there are two possibilities:

• One can use a multiresolution approach with computations at each
resolution level according to a coarse to fine strategy (see for instance
[103, 176]). It is then a modified OFC which is considered at each
resolution level.
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• One may prefer to keep the conservation equation (5.1) without dif-
ferentiating it i.e. the displacement frame difference. So the fidelity
attach term in (5.6) is of the form [188, 131, 8]:

A(σ) =
∫
Ω

(u(x + σ t, t + t)− u(t, x))2 dx,

which is now nonlinear with respect to σ. It is then more similar
to a correlation problem. If this approach gives satisfying numerical
results it is not clear on a theoretical point of view (how to give a
sense to a possibly discontinuous function u depending on another
discontinuous function σ?).

The second is related to the a priori knowledge that we may have on
the origins of the sequence. Typical examples include fluid flow estimation
[252, 78] or weather forecast sequence analysis [31, 257] (see also [94, 2, 189,
225, 226]). For instance, for fluid motion, one should impose a conservation
of mass:

div(ρV ) +
∂ρ

∂t
= 0

where ρ(t, x) is the density of the fluid at position X ∈ R3 and time t, and
V (t, x) ∈ R3 is the velocity. Now the problem is to know the link between
the density ρ and the image brightness. For example, in the case of 2D
transmittance image of a 3D fluid flow the intensities are proportional to
the density integrated along the path of impinging energy. Then, it can be
shown [108, 252] that the mass conservation equation implies that:

div(uσ) + ut = 0

which is different from the classical optical flow constraint.
The third is that we may simply want to relax the brightness consistancy

assumption, which is true when the scene surface is Lambertian and is either
stationary as the camera moves or moves parallel to the image plane. It
is also a good approximation as soon as the surface has rich texture, such
that the brightness change due to shadings or surface lightning conditions
are negligible relative to that due to the motion effects. Unfortunately,
this is not the case in many applications [190] and one needs to relax this
assumption. For instance, the models proposed by Negahdaripour and Yu
[192] or Mattavelli and Nicoulin [175] permit an affine variation of the
intensity during time (and not a conservation). We also refer the interested
reader to [135, 36, 133, 191] for other possibilities.

✺ The optical flow problem is not near to being completely solved. The
choice of the data term is not yet well-established and there is not a unique
possibility. As far as the regularity is concerned, when presenting the short
overview of possible regularization terms, we may have noticed that:
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• Most of them are intrinsic: the diffusion is only controlled by the flow
itself.

• Few of them are extrinsic: the diffusion is controlled by the intensity
image itself (see (5.10)).

It is not clear actually which solution is “the best” in terms of modelization
and numerical results.

Another point which would need further developments is to better un-
derstand the link between u and σ in terms of their discontinuity sets. If
it seems clear that the set Sσ should be contained in Su, this should be
taken into account in the model and one should do a finer analysis of these
relationships.

Finally one can not ignore the coupling between the fidelity attach term
and the regularization term.

5.1.3 Sequence segmentation
Introduction

As suggested in the introduction, another important task in sequence analy-
sis is segmentation. Here segmentation means finding the different objects
in a scene, and this is naturally in relation with velocity estimation or op-
tical flow. Two kinds of approaches based on motion estimation can be
distinguished: either they detect flow discontinuities (local operators) or
they extract patches of self consistant motion (global measurements). In
any case, this is dependent on the quality of the flow that can be obtained.
As suggested in the previous section, this estimation may be hard or im-
possible to obtain (for instance it is necessary to have a reasonable time
sampling, with a limited amount of noise). Unfortunately, this is not always
the case for many real applications. Just think about video-surveillance
where sensors are often of poor quality and for which low images rates are
usually considered because of storage capacity.

To avoid these difficulties, another possibility is to consider that the
sequence is compounded of layers, typically a background and a foreground.
To make this point more clear, let us focus on the case of sequences with
static background (see for example Figure 5.1 or the synthetic sequence in
Figure 5.6). The idea is that the background has a “persistancy” and then
the objects can be seen as occluding it, “being on top of it” (see Figure
5.7). Naturally, this means that only the objects with a different color than
the background can be detected. However as this is not motion based an
object stopping for a while will still be detected.

This idea of comparing a reference image with the current image is very
intuitive but not always applicable in real applications, especially when
noise is present. This is illustrated for the sequence presented in Figure 5.8.
If we simply compute the difference between one image of the sequence and
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the ideal background (see Figure 5.9) we obtain an image which enhances
the objects but also the noise. A threshold can be used to turn this image
into a binary one. Examples are shown in Figure 5.10. It can be observed
that the choice of this threshold is not an easy task: either noise is kept or
objects are partially lost. Another important question is how a reference
image (i.e. the background image) can be obtained? A simple idea is to
compute the temporal mean of the sequence4 (see Figure 5.10). It can be
noticed that some shades of the objects are still present and thus making the
difference with an image of the sequence will not be satisfying. This effect is
even stronger given that the sequence is short. It is then necessary to have
a robust technique to estimate the background and classical approaches
compute statistical background models [107, 126, 254, 205, 203].

Something important which comes out of this discussion is that in the
case of noisy sequences obtaining a reference image is as difficult as seg-
menting the sequence. In fact. . .

☛ Having a reference image means that we have previously extracted the
objects. Conversely, being able to extract the objects means having some-
where a reference image.

This remark suggests strong links in the estimation of background and
of moving objects. It should then be more efficient to estimate both at the
same time.

A variational formulation (the time-continuous case)

According to the previous discussion, let us present the variational ap-
proach proposed by Kornprobst, Deriche and Aubert [154]. Let N(t, x)
denotes the given noisy sequence (t ∈ [0, tmax],x ∈ Ω) for which the back-
ground is assumed to be static. We look simultaneously for (see Figure
5.11):

• The restored background B(x).

• The sequence C(t, x) which indicates the moving regions. Typically,
C(t, x) = 0 if the pixel x belongs to a moving object, and 1 otherwise.

4In this example where the sequence is given by 5 images noted (Ni)i=1..5, the

temporal mean is M(x) = 1
5

5∑
i=1

Ni(x), x ∈ Ω.
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Figure 5.6. Example of synthetic sequence of 5 images with 3 moving objects

Figure 5.7. Interpretation of the sequence presented in Figure 5.6 as two layers:
background and foreground

Figure 5.8. Synthetic sequence with Gaussian additive noise (σ = 20)

– = → A need to
threshold

Image sequence Clear background Image of detection

Figure 5.9. Example of background substraction for the second image (The
resulting image needs to be thresholded to extract the objects)

Image of detection with different thresholds Temporal mean

Figure 5.10. Difficulties of background substraction method
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Figure 5.11. Objectives of the approach [154] on a typical example

To solve this problem it is proposed in [154] to minimize with respect to B
and C:∫∫

V

[
C2(B −N)2 + αc(C − 1)2

]
dxdt

︸ ︷︷ ︸
A(σ)

+αrb

∫
Ω

φ1(DB) + αrc

∫∫
V

φ2(DC)

︸ ︷︷ ︸
S(σ)

(5.21)
where V = [0, tmax]×Ω and αc , αrb , α

r
c are positive constants. As usual all

the derivative are written in a formal setting (in the distributional sense).
The energy is compounded of two kinds of terms:

• A(σ) realizes the coupling between the two variables B and C. The
second term forces the function C to be equal to 1, which corresponds
to the background. However if the current image N is too different
from the background (meaning that an object is present) then the
first term will be too high, which will force C to be 0.

• S(σ) is the smoothing term. Like for image restoration (see Section
3.2) one would like to find conditions on (φi)i=1,2 so that disconti-
nuities may be kept (for the background as well as for the images of
detection). We recall the assumptions of Section 3.2.3:

φi is a strictly convex, nondecreasing function from R+

to R+, with φi(0) = 0 (without a loss of generality) (5.22)

lim
s→+∞φi(s) = +∞ (5.23)

There exist two constants c ¿ 0 and b ≥ 0 such that
cs− b ≤ φi(s) ≤ cs + b ∀s ≥ 0. (5.24)

As noticed previously, these conditions will guarantee the well-
posedness of the theoretical problem. Regarding the edge preservation
properties, other qualitative conditions should be added (see Section
3.2.2, conditions (3.10) and (3.12)). Under these assumptions, S(σ)
has to be interpreted as a convex function of measures (see Section
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2.2.4). We recall that this term is l.s.c. for the BV−w∗ topology. In
the sequel, as there is no reason to choose, φ1 �= φ2 we will simply
denote φ = φ1 = φ2.

Mathematical study of the time sampled energy

In fact we do not have a continuum of images. A sequence is represented by
a finite number of images. From the continuum [0, tmax] we have T images
noted N1(x), . . . , NT (x). For the theoretical framework it is assumed that:

Nh ∈ BV (Ω) ∩ L∞(Ω) ∀ h = 1..T. (5.25)

The bounds of the gray-value levels over the sequence are denoted by:
mN = ess− inf

h∈[0..T ],x∈Ω
Nh(x)

MN = ess− sup
h∈[0..T ],x∈Ω

Nh(x). (5.26)

where ess-inf (resp. ess-sup) is the essential infimum (resp. essential
supremum), that is the infimum up to Lebesgue measurable sets.

Again, the unknowns are B (the image of the restored background) and
C1, . . . , CT (the T images of detection). The suitable functional space for
studying this problem is the space of bounded variation (see Section 2.2)
since both B and Ch are likely to have discontinuities across some contours.
The time discretized version of (5.21) is then to search for the solution of:

inf
(B,C1,...,CT )∈BV (Ω)T+1

E(B,C1, ..., CT ) with (5.27)

E(B,C1, ..., CT ) = (5.28)

=
T∑

h=1

∫
Ω

[
Ch

2(B −Nh)2 + αc(Ch − 1)2
]
dx + αrb

∫
Ω

φ(DB) + αrc

T∑
h=1

∫
Ω

φ(DCh).

We are now interested in proving the existence and the uniqueness for this
problem. Before going further let us point out two main difficulties:

• The functional E is degenerated because of the first term. As a con-
sequence, applying the direct method of the calculus of variations as
described in Section (2.1.2) does not give any result: if we choose a
minimizing sequence (Bn)n∈N , (Ch

n)n∈N , we can easily bound the se-
quence (Ch

n)n∈N thanks to the second term but nothing can be said
as for (Bn)n∈N because the functions (Ch

n)n∈N have no lower bound.

• Though the functional E is convex with respect to each variable, it
is nonconvex globally. This is naturally an issue as far as uniqueness
is concerned.



208 5. Other Challenging Applications

To overcome the first difficulty, let us consider the problem (5.27)-(5.28)
set over the constrained space:

B(Ω) =
{

(B,C1, . . . , CT ) ∈ BV (Ω)T+1 such that mN ≤ B ≤MN

and 0 ≤ Ch ≤ 1 ∀ h
}
.

One can remark that these constraints are quite natural: it is not expected
that B would have values never reached in the original sequence and con-
sidering the functions Ch bounded is a priori reasonable Since the variables
are now uniformly bounded it is now clear that the problem:

inf
(B,C1,...,CT )∈ B(Ω)

E(B,C1, ..., CT ) (5.29)

admits a solution in B(Ω). However this result is not satisfying as soon as
we are interested in finding a numerical solution: the optimality conditions
are now inequations instead of equations, and one would need to use La-
grange multipliers.

☛ Interestingly, if there is a solution of the problem (5.27) then the so-
lution belongs to B(Ω). As a consequence, we can prove the existence of a
solution for the problem (5.27).

The following technical lemma is helpful to prove the main result:

Lemma 5.1.1 Let u ∈ BV (Ω), φ a function verifying hypotheses (5.22),
(5.23), (5.24) and ϕα,β the cut-off function defined by:

ϕα,β(x) =


α if x ≤ α

x if α ≤ x ≤ β

β if x ≥ β

(5.30)

Then we have: ∫
Ω

φ(Dϕα,β(u)) ≤
∫
Ω

φ(Du).

Proof This lemma is very intuitive but the proof requires some attention.
Let us first recall the Lebesgue decomposition of the measure φ(Du):∫

Ω

φ(Du) =
∫
Ω

φ(|∇u|) dx
︸ ︷︷ ︸

term 1

+
∫
Su

|u+ − u−|HN−1

︸ ︷︷ ︸
term 2

+
∫

Ω−Su

|Cu|
︸ ︷︷ ︸
term 3

.
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We are going to show that cutting the fonction u using the fonction ϕα,β
permits to reduce each term. To simplify the notations we will denote û
instead of ϕα,β(u).

Term 1: let Ωc = {x ∈ Ω; u(x) ≤ α or u(x) ≥ β} and Ωi = Ω− Ωc.

Thanks to [146], we have
∫
Ωi

φ(|∇û|) dx =
∫
Ωi

φ(|∇u|) dx. Consequently:

∫
Ω

φ(|∇û|) dx =
∫
Ωi

φ(|∇u|) dx +
∫
Ωc

φ(|∇û|)
(≡0)

dx ≤
∫
Ω

φ(|∇u|) dx. (5.31)

Term 2: using results proved in [9], we know that:

Sû ⊂ Su and û+ = ϕα,β(u+), û− = ϕα,β(u−).

Since ϕα,β is Lipschitz continuous with a constant equals to 1, we then
have:∫

Sû

|û+ − û−|HN−1 ≤
∫
Sû

|u+ − u−|HN−1 ≤
∫
Su

|u+ − u−|HN−1. (5.32)

Term 3: we need to understand how is the Cantor part of the distributional
derivative of the composed function ϕα,β(u). Vol’pert [247] first proposed
a chain rule formula for functions v = ϕ(u) for u ∈ BV (Ω) and when ϕ
is continuously differentiable. Ambrosio and Dal Maso [12] gave extended
results for functions ϕ uniformly Lipschitz continuous. Since u is scalar, it
is demonstrated in [12] that we can write:

C(ϕα,β(u)) = ϕ′
α,β(ũ)C(u) |Du|-a.e. on Ω− Su (5.33)

where ũ is the approximate limit (see Section 2.2.3) of u defined by:

lim
r→0+

1
|B(x, r)|

∫
B(x,r)

|u(y)− ũ(x)|dy = 0

where B(x, r) is the closed ball with center x and radius r. Moreover, we
have: ∫

Ω−Sû

|Cû| =
∫

Ω−Su

|Cû|+
∫

Su/Sû

|Cû| (5.34)
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where the last term over Su/Sû is zero5. Then, using the chain rule formula
(5.33), we have: ∫

Ω−Sû

|Cû| ≤
∣∣ϕ′

α,β

∣∣
L∞

(≤1)

∫
Ω−Su

|Cu| ≤
∫

Ω−Su

|Cu|. (5.35)

The inequalities (5.31), (5.32) and (5.35) conclude the proof. �

Then, the following result can be established:

Theorem 5.1.2 The problem (5.27) admits a solution on BV (Ω)T+1.
If moreover:

αc ≥ 3(MN −mN )2, (5.36)

then the solution is unique.

Proof Existence is proven showing that minimizing (5.28) over B(Ω) is
equivalent to the same problem posed over BV (Ω)T+1, that is to say with-
out any constraint (this is a direct consequence of Lemma 5.1.1) for which
we apply the direct method of the calculus of variations

As far as uniqueness is concerned, the difficulty comes from the
nonconvexity of the function:

(B,C1, .., CT )→
T∑

h=1

C2
h(B −Nh)2 + αc

T∑
h=1

(Ch − 1)2.

However, if αC is large enough, it can be proved that this functional is
strictly convex over B which permits to conclude (see [154] for more de-
tails). �

Remark The condition (5.36) is in fact quite natural. It means that the
background must be sufficiently taken into account. �

Experiments

An important consequence of Theorem 5.1.2 is that it permits to consider
the minimization problem over all BV (Ω)T+1 without any constraint. Con-
sequently, on a numerical point of view, the difficulties and techniques are
the same as for the previous variational approaches studied in this book,
for image restoration (Section 3.2.4) or optical flow (Section 5.1.2).
Although optimality equations may be written, they remain hard to han-
dle (see Section 3.2.4). Similarly, an algorithm based on Γ-convergence
and half-quadratic minimization can be proposed. We refer to [154] where
convergence results are proved.

5We recall that for any v ∈ BV (Ω) and any set S of Hausdorff dimension at most
N − 1, we have Cv(S) = 0.
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t0 t0 + t t0 + 2 t

t0 + 3 t t0 + 4 t t0 + 5 t

shadow

bush

t0 + 6 t t0 + 7 t t0 + 8 t
Figure 5.12. “Street” sequence (see also Figure 5.1): sequence of detections.

original image sequence temporal mean restored background

Figure 5.13. “Street” sequence (see also Figure 5.1). Close-ups on the same
area (top right-hand corner) for the initial sequence, the temporal mean of the
sequence and the restored background.

To illustrate this approach, let us present some results on real sequences.
We first show some results on the “Street” sequence presented in Section
5.1.1 (Figure 5.1). Figure 5.12 shows an example of detection. Notice that
the motions of the bush and the shadow are detected. We illustrate in
Figure 5.13 the restoration aspect. The temporal mean of the sequence is
still noisy (because the motion of the persons is taken into account and
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Figure 5.14. “Walking in Finland” sequence, from University of Oulu, 55 images.
Three images of the sequence N the corresponding C functions.

the noise is not of zero mean), while the restored background has a very
good quality.
We show in Figure 5.14 another real sequence where the reflections on the
ground are detected as “motion”.
We also recall that this method permits to detect objects by comparison
with a reference image. As it is not based on motion, a person stopping
for some time and walking again will be detected. We refer the interested
reader to [154] for more results and for quantitative experiments on the
noise influence with respect to the results.

Finally, let us mention that this approach can be extended in the
case of video-streams instead of batch (that is post-processing a set of
given images). This is the case of most real applications, for instance in
video-surveillance applications. There is a continuous flux of images to be
analyzed. In this case, one can only update the last image Ci and consider
all the others as fixed. If computations have been done for t = 1, .., T and
that a new image NT+1 is available, it is enough to minimize:

Ẽ(B,CT+1) = E(B,C1, .., CT , CT+1)

where Ci are the detections previously computed. We refer to [151] for more
details.

5.1.4 Sequence restoration
This section concerns the problem of restoration as applied to sequences.
Unlike static images, very little research has been carried out on this sub-
ject. The aim of this section is essentially to show the difficulties and



5.1. Sequence analysis 213

specificities of this problem by focusing on the problem of the restoration
of degraded movies. If sound track restoration now is pretty well resolved
as a problem, it is not the same case as far as image is concerned.

There are two main reasons at the origin of this lack of research. The
first is economic. The decision to restore a movie may either come from
political institutions or from the broadcasting market companies. In both
cases, budgets for this are limited as these investments do not always pay.
The second is simply because it is a very difficult problem. . .

To begin with there are the technical problems associated to the storage
and processing of the data. With 24 or 25 frames per second (US) size
1920×1080 (new High Definition Progressive Video Format), we let the
reader see for himself the memory size necessary for the storage of a 90 or
120 minutes long movie. . .
Then, by simply trying to define what movie restoration is, this becomes
quite impossible because of the numerous types of degradation. First defects
may affect the base of the film or the emulsion side or both. They may be
mechanical, due to lack of precaution while handling manually the film or
caused by cameras, printers, developing tanks, all the various equipments
used. It is the case for scratches (on one frame, caused by manual han-
dling), vertical scratches on many contiguous frames (caused by mechanical
devices), dirt or dust spots, hairs, emulsion tearing off, water marks. They
may also be chemical, degradation of the nitrate base for old film or of the
acetate base for more recent ones, or some kind of mushrooms, or irregular
shades. They may also be a combination of mechanical and chemical like
the vertical blue scratches caused by obstructed orifices in the development
tank. The splices that tie pieces of film together may be deteriorated and
the film may be shrinked because of too much drying. The original film may
be missing, leaving only a copy that may exhibit part or all the preceding
defects plus some photographed defects. That is, dust spots and scratches
that have been present on the original have been transferred to the copy
in a blurred form which render their detection less evident. During the
transfer operation a badly adjusted equipment may leave ”hot spot” due
to improper focusing of the illumination. Some of these degradations are
illustrated in Figures 5.15 to 5.19. These images have been provided by the
company Dust Restauration6 which is in particular specialized in digital
restoration of sequences at film resolution.

☛ From this quick overview alone, it is clear that movie restoration cannot
be defined as being a unique and simple problem.

Faced with this variety of defects, it may be interesting to classify them. As
presented in a report by “Commission Supérieure Technique de l’image et

6http://www.dust.fr/



214 5. Other Challenging Applications

Figure 5.15. By courtesy of “association des frères Lumière”. These images show
general intensity variations throughout the sequence (observe the posters at the
right-hand side of the images, or the background brightness). These variations
are due to the nonuniform aperture time since this was manually controlled. . ..

Figure 5.16. Images of Duke Ellington, “document amateur”, by courtesy of
“Cinémathèque de la Danse (Paris)”. In the left-hand side image, the film has
burnt. In the right-hand side image, there are many spots and rays.
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−→

Figure 5.17. By courtesy of DUST Restauration7. Example of chemical stain.

−→

Figure 5.18. By courtesy of DUST Restauration7. In this image there is an
example of a ray and there is also clearly a problem with the grain.

−→

Figure 5.19. By courtesy of DUST Restauration7. Example of interlaced video.

7Original images in color
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du son” [93], they can be characterized by the amount of human interaction
needed to detect and correct them. This can be summarized in table 5.1.
Let us comment:

Detection
Interactive Automatic

C
orrection

Interactive

Defects who might be identi-
fied as an element of the im-
age and correction of which
could not be done without
contextual information.

Emulsion tearing off or spots
of every kind, non station-
ary and wide (mushrooms,
irregular shades,. . .)

A
utom

atic

Static defects of small area
(hairs, static spots), stable
irregularities, “hot spots”,
contrast, color or sharpness
differences in the sequence.

Defects whose mathemati-
cal model cannot be con-
fused with an image element
(dusts, scratches, small in-
stabilities in the position or
the exposition)

Table 5.1. Proposal of a classification for defects [93]

• In the left-hand side column, can be found everything that cannot be
detected automatically, that is to say elements that could be identified
as image elements like shadow effects or reflexions that may be wanted
in the scenario. The discrimination of such defects seems to be beyond
reach for a long time. Any correction requiring an esthetic choice,
like color grading, will also come into this category. Conversely, the
right-hand side column presents all the defects that can be detected
automatically.

• On the upper line, are all the defects that cannot be corrected
automatically. This may be due to:

– The impossibility to measure a variation precisely, that is to
define a norm.

– The impossibility to define an automatic rule for the correction.
– The definitive loss of information that cannot be reconstructed

without human intervention.

Interestingly, this degree of interaction/automation can also be found in
the different systems that are proposed nowadays:

• Paint system is the standard fully manual system, which is also widely
used in the special effects industry. Still, it does not allow us to correct
all the problems like some colorimetry defects for instance. If subtle
color variation occurs in a sequence, it is impossible for the human
eye to perceive it and correct it frame by frame, while this is perfectly
visible at the projection rate.
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• A different strategy is to focus on degradation, to detect and to
correct them as automatically as possible, but with a manual prese-
lection. For each kind of degradation, one needs to develop a suitable
tool. Some such systems are Limelight or Da Vinci. Limelight is a Eu-
reka project (1993 to 1997) whose purpose was the development of a
prototype restoration system. Dedicated software were developed by
University of La Rochelle in France and by the Joanneum research in
Graz, Austria. A combination of mathematical morphology and tem-
poral comparison with adjacent frames is used to detect dirt and dust.
Da Vinci provides digital film, HDTV and SDTV color enhancement
technology and is now distributing “Revival” a software developed
initially within the Singapore University. This software focus also on
degraded area of the picture.

• Some fully automatic systems also exist and even real time. They are
based on a temporal diffusion process of the sequence. Such methods
have been developed using wavelets or Markov Random Fields (see
for instance [150, 149]). Within this framework, we can mention the
system Archangel proposed by Snell & Wilcox. This system follow the
research effort of BBC Research, Snell & Wilcox, INA, the University
of Cambridge and the University of Delft inside the Eureka project
AURORA. A hardware embeds all the necessary memory to allow
temporal filtering on many adjacent frames. However, even if the
temporal filtering is adaptive, since it acts on all the image domain
it is unavoidable to have some blur effect, loss of grain and loss of
resolution for fine textures.

So we can see that from fully manual to fully automatic, nobody can
pretend to have a “perfect” restoration tool. But what would “perfect”
restoration mean?...

✺ This is one of the main and probably most difficult questions: how can
a restoration be judged? Clearly, one cannot be satisfied with the results
obtained on one image, even if it looks good. One needs to see the result
at a rate of 24 frames per second. A typical example is vertical scratches
correction. Imagine that a ray is well corrected for each frame except at
some locations which differ from frame to frame. The result is that the ray
will still be visible when playing the sequence. This example clearly shows
the temporal aspect but also the importance of perception. In other words,
the main objective of movie restoration is not to reconstruct but to focus on
perception: it will be sufficient for a defect to no longer be perceived even if
it has not been completely removed. More than any other domain in com-
puter vision, movie restoration should benefit from advances and studies of
human perception (see [141] for instance).
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Could PDEs help with this problem? In fact, very little research has been
carried out up to now. Some approaches have recently been proposed for the
problem of disocclusion [172, 171, 32], which consists of reconstructing the
image in a specified lost area (a ray, a spot,. . .). They provide satisfying
results when the regions to be reconstructed have smooth isophotes. There
is in general a loss of grain and the case of textures has not yet been consid-
ered. As far as diffusion is concerned few approaches have been developed
(see for instance [128, 181, 162]) and, by observing the success of PDEs in
image restoration, it will certainly be very interesting to continue work in
this direction, taking perception more into account.

5.2 Image classification

5.2.1 Introduction
In this section, we present two supervised classification models for satel-
lite images. We show in Figure 5.20 some typical images to be analyzed.
Classification aims at finding in the image some classes that have been
previously defined, in terms of intensity. This intensity usually corresponds
to different ground natures. This kind of techniques is especially useful to
study forests evolutions, ground natures, city developments, etc. . .

Figure 5.20. Examples of satellite images. By courtesy of the CNES (Centre
National d’Etudes Spatiales).

The classification problem is closely related to the segmentation one, in
the sense that we want to get a partition composed of homogeneous regions.
The main difference is that the number of classes and their characteristics
are fixed. Many models can be found in the field of stochastic approaches,
with the use of Markov Random Field (MRF) theory [33, 258]. Hereafter,
we present two different variational models. The first one is only concerned
with classification and is based on a level sets formulation [221]. The second
one is coupled with a restoration process [222] and is inspired by work about
phase transition in mechanics. The latter is purely variational and relies
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on approximation principles via the Γ-convergence theory. For the sake of
simplicity, we will make for the two models the following assumptions:

• The discriminating criterion is based on the intensity level of pixels.

• Each class Ci has a Gaussian distribution of intensity N(µi, σi) where
µi and σi are respectively the mean and the standard deviation of the
class Ci.

• The number K of classes and the parameters (µi, σi) are known (it
is a supervised classification).

5.2.2 A level sets approach for image classification [221]
The classification procedure consists in two steps:

• Defining the classes according to discriminating features. In our
case, according to our hypotheses, we choose the parameters of
the Gaussian distribution µi and σi. Of course, other discriminant
attributes, as textures parameters for example, could be chosen.

• Defining a partitioning process that:
– Takes into account the first step.
– Penalizes overlapping regions (pixels with two labels) and the

formation of vacuum.
– Exhibits regular interfaces between classes, i.e. interfaces with

minimal perimeter.

These three properties need to be taken into account in the model. Let
us write the precise mathematical formulation. Let Ω be an open bounded
domain of R

2
and let u0 : Ω → R the observed data function (the gray

level intensity). Let Ωi be the region defined as:8

Ωi =
{
x ∈ Ω; x belongs to the ith class

}
. (5.37)

A partitioning of Ω consists in finding a family of sets {Ωi}i=1,..,K so that:

Ω =
K⋃
i=1

(Ωi ∪ Γi) and Ωi ∩ Ωj = ∅, i �= j

where Γi = ∂Ωi ∩ Ω is the intersection of the boundary of Ωi with Ω and
Γij = Γji = Γi ∩ Γj , i �= j, the interface between Ωi and Ωj . Of course, we
have Γi =

⋃
i =j

Γij (eventually Γij = ∅). We note |Γi | the one-dimensional

Hausdorff measure of Γi. We have: |Γi | =
∑
i =j
|Γij |, (|∅| = 0).

The classification model we propose for an observed image u0 consists in
searching for a family of sets {Ωi}i=1,..,K defined by (5.37) and satisfying:

8Ωi can actually be a set of non connected regions
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(A) {Ωi}i=1,..,K is a partition of Ω , i.e. Ω =
K⋃
i=1

Ωi ∪ Γi and

Ωi ∩ Ωj = ∅, i �= j.

(B) The partition {Ωi}i=1,..,K takes into account the Gaussian distribu-
tion property of the classes (data term):

Ωi =
{
x ∈ Ω; the intensity u0(x) has a Gaussian distribution of

mean µi and of standard deviation σi

}
.

(C) The classification is regular, in the sense that the length of each
interface Γij is minimal.

Conditions (B) and (C) can be expressed in terms of energy minimization:

(B) Minimize with respect to Ωi:∑
i

∫
Ωi

(u0(x)− µi)2

σ2i
dx. (5.38)

In fact, in a probabilistic framework, (5.38) means that we want to
maximize the conditional probability Pr(u0(x)/x ∈ Ωi).

(C) Minimize with respect to Γij :∑
i,j

ξij |Γij | (5.39)

the parameter ξij ∈ R+ being fixed and permitting to take into
account an eventual information about the length of contours.

The main difficulty in the above formulation comes from the fact that
the unknowns are sets and not functions. To overcome this difficulty we
propose to use a level sets method inspired by the work of Zhao et al [256]
concerning multiphase evolution in fluid dynamics.
Let us suppose that for each i = 1, ..,K, there exists a Lipschitz function
φi such that: 

φi(x) > 0 if x ∈ Ωi

φi(x) = 0 if x ∈ Γi

φi(x) < 0 otherwise
(5.40)

i.e. the region Ωi is entirely described by the function φi. Now, let us look at
the writing of conditions (A), (B) and (C) in terms of an energy functional
involving {φi}i=1,..,K . This functional will have to contain three terms:

• A term related to condition (A) (partition condition):

FA(φ1, .., φK) =
λ

2

∫
Ω

( K∑
i=1

H(φi(x))− 1
)2
dx, λ ∈ R+
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where H(s) is the Heaviside function: H(s) = 1 if s > 0 and H(s) = 0
if s < 0. The minimization of FA with respect to {φi}i=1,..,K , leads to
a solution where the formation of vacuum (pixels with no labels) and
regions overlapping (pixels with more than one label) are penalized.

• A term related to condition (B):

FB(φ1, .., φK) =
K∑
i=1

ei

∫
Ω

H(φi(x))
(u0(x)− µi)2

σ2i
dx, with ei ∈ R+

where {ei}i=1,..,K are constants which could be useful to take into
account, for instance, a bad estimation of the statistics for one of the
K classes.

• A third term related to condition (C) (length shortening of interface
set):

FC(φ1, .., φK) =
K∑
i=1

γi

∫
φi=0

ds, with γi ∈ R+.

Therefore the complete functional is:

F (φ1, .., φK) = FAφ1, .., φK) + FBφ1, .., φK) + FCφ1, .., φK). (5.41)

Remark In fact, the functional F is closely related to the Mumford and
Shah functional (see Section 4.2.2) for which solutions are expected to be
piecewise constant. �

Unfortunately, stated as above the functional F has still some drawbacks
from a practical point of view: F is not Gâteaux-differentiable and the
length term is not easy to handle numerically. So we have to regularize F .
To do this, let δα and Hα be respectively the following approximations of
the Dirac and Heaviside distributions:

δα(s) =

{
1

2α
(
1 + cos

(π s
α

))
if | s | ≤ α

0 if | s | ≥ α

Hα(s) =


1
2

(
1 + s

α + 1
π sin

(π s
α

))
if | s | ≤ α

1 if s > α

0 if s < −α −1 1−α α x

1

1/

αH

δα

α

Then, we approximate F by:

Fα(φ1, .., φK) = FA
α (φ1, .., φK) + FB

α (φ1, .., φK) + FC
α (φ1, .., φK) (5.42)
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where:

FA
α (φ1, .., φK) =

λ

2

∫
Ω

( K∑
i=1

Hα (φi(x))− 1
)2

dx

FB
α (φ1, .., φK) =

K∑
i=1

ei

∫
Ω

Hα (φi(x))
(u0(x)− µi)2

σ2i
dx

FC
α (φ1, .., φK) =

K∑
i=1

γi

∫
Ωi

δα(φi(x)) | ∇φi(x) | dx .

If the definition of the approximated functionals FA
α and FB

α comes very
naturally, the one of FC

α is less immediate and relies upon the following
lemma.

Lemma 5.2.1 Let φ : RN → R be Lipschitz continuous then:

lim
α→0

∫
Ω

δα(φ(x)) |∇φ(x)| dx =
∫

φ=0

ds

Proof Thanks to the coarea formula (Section 2.5.2) we have:

Lα(φ) =
∫
Ω

δα(φ(x)) | ∇φ(x) | dx =
∫
R

[
δα(t)

∫
φ=t

ds
]
dt.

By setting h(t) =
∫
φ=t

ds, we get:

Lα(φ) =
∫
R

δα(t)h(t) dt =
1

2α

∫ +α

−α

(
1 + cos

(
π t

α

))
h(t) dt.

If we take θ = t
α , then:

Lα(φ) =
1
2

∫ +1

−1
(1 + cos(π θ))h(αθ) dθ

and when α→ 0, we obtain:

lim
α→0

Lα(φ) =
1
2
h(0)

∫ +1

−1
(1 + cos(π θ)) dθ =

∫
φ=0

ds.

�

By construction, Fα is Gâteaux-differentiable with respect to {φi}i=1,..,K
and all the integrals are defined over Ω (which is fixed).
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Another improvment to avoid oversmoothing of the interfaces between
classes (where the gradient of u0 is high) is to introduce into FC

α the
stopping function:

g(u0) =
1

1 + |∇Gρ ∗ u0|2

where Gρ is the usual Gaussian kernel. This is particularly useful if the data
is very noisy since in this case the parameters γi are chosen large enough
to ensure a good smoothing inside the classes. So the final minimization
problem is:

inf
φi

Fα(φ1, .., φK) (5.43)

with:

Fα(φ1, .., φK) =

=
λ

2

∫
Ω

( K∑
i=1

Hα(φi(x))− 1
)2
dx +

K∑
i=1

ei

∫
Ω

Hα(φi(x))
(u0(x)− µi)2

σ2i
dx+

+
K∑
i=1

γi

∫
Ωi

g(u0(x)) δα(φi(x)) | ∇φi(x) | dx.

And the classification problem we are interested in, can be formulated as:
We do not know whether or not (5.43) has a solution. The question is
open and is under investigation. Nevertheless, we may write formally the
associated Euler-Lagrange equations. We get a system of K-coupled PDEs:

δα(φi)

[
ei

(u0 − µi)2

σ2i
− γi g(u0) div

( ∇φi
| ∇φi |

)
− ∇g · ∇φi|∇φi| (5.44)

+ λ

(
K∑
i=1

Hα(φi)− 1

)]
= 0

for i = 1, ..,K, with Neumann boundary conditions. Remark that unlike
the classical active contour equation (see Chapter 4, equation (4.34), the
divergence term is multiplied by δα(φi) and not by |∇φi| which clearly
give to this equation a different nature than (4.34). If its theoretical study
remains an open question, it is an advantage numerically to have the term
δα(φi) which delimits a natural narrow band (where the ith is non zero.
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To solve numerically (5.44), we embed it into a dynamical process:

∂φi
∂t

= δα(φi)

[
ei

(u0 − µi)2

σ2i
− γi g(u0) div

( ∇φi
| ∇φi |

)
− ∇g · ∇φi|∇φi| (5.45)

+ λ

(
K∑
i=1

Hα(φi)− 1

)]
.

We discretize (5.45) by using similar finite difference schemes than for the
discretization of (4.34) and we refer to Section A.3.4 for more details.

To illustrate this approach, we present in Figures 5.21 and 5.22 two
examples on a synthetic image and on the SPOT image8.

• In the first example (Figure 5.21) we illustrate how regions interact
to avoid overlaping while covering all the space.

• The second example (Figure 5.22) illustrates the algorithm on a
real image. Notice in particular the initialization. We use an auto-
matic method for the initialization of the {φi}i=1,..,K that we call
seed initialization. This method consists in cutting the data image
u0 into n windows wp, p = 1, .., n of predefined size. We compute
the mean mp and the standard deviation sp for the Gaussian dis-
tribution of u0 other each window wp. Then we select the index
k such that k = argmin

j
dB(N(mp, sp), N(µj , σj)) where dB is the

Bhattacharyya distance8 which measures the distance between two
Gaussian distributions N(mp, sp) and N(µj , σj). Finally we initialize
the corresponding signed distance functions φk on each wp. Windows
are not overlapping and each of them is supporting one and only one
function φk. The size of the windows is related to the smallest de-
tails we expect to detect. The major advantages of this initialization
are: it is automatic (only the size of the windows has to be fixed), it
accelerates the speed of convergence, and it is less sensitive to noise.

5.2.3 A variational model for image classification and
restoration [222]

The objectives are the same as those described in Section 5.2.2, but in
addition we want to add a restoration process. In [222], it is proposed to
minimize:

Jε(u) =
∫
Ω

(u(x)−u0(x))2 dx+λ2ε

∫
Ω

ϕ(|∇u(x)|) dx+
η2

ε

∫
Ω

W (u(x), µ, σ) dx

8Results provided by the INRIA project ARIANA: http://www.inria.fr/ariana/

8dB(N(µa, σa), N(µb, σb)) =
(µa − µb)2

4(σ2
a + σ2

b )
+ 1

2 log
|σ2

a + σ2
b |

2σaσb
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class 3

class 2

class 1

Data Result

class 3

class 2 class 1

Iteration 0 Iteration 30 Iteration 70

Iteration 100 Iteration 130 Iteration 160

Iteration 230 Iteration 280 Iteration 360

Figure 5.21. Synthetic example (3 classes). Upper row shows the initial image and
the result. Iterations of the algorithm are displayed below. This simple example
illustrates what is required on the regions: no overlap and full coverage.
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Data Result

Iteration 0 Iteration 50 Iteration 300

Figure 5.22. The SPOT image (4 classes). Upper row shows the initial image
and the result. Iterations of the algorithm are displayed below with two repre-
sentations: the boundaries of the actual regions and below regions are colored
according to their class.
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where:

• u0 is the initial image (the data) and u(x) the image we want to
restore and segment into K homogeneous and disjoint classes.

• The function ϕ(.) is a regularization function (with the same role and
properties than those defined in Section 3.2 and used several times
in this book).

• The last term W is a potential inducing a classification constraint.
It takes into account the intensity and the parameters (µi, σi) of the
classes8. W has as many minima as the number of classes. It has to
attract the values of u toward the label of classes. We will come back
further on the precise description of W .

• The parameters λ ≥ 0 and η ≥ 0 permit to adjust the weight of each
term.

• ε > 0 is a parameter to be destined to tend to zero. During the first
steps of convergence the weight of the third term in Jε is negligeable
and the restoration process (with the two first terms) is predominent.
As ε tends to zero, we progressively get a weakened diffusion while
raising the classification since the third term becomes preponderant.

The form of the energy Jε is borrowed from the Van der Walls, Cahn-
Hilliard theory of phase transitions in mechanics (see for example [3, 53,
111, 179, 235]). To better understand the model, let us recall some results
about phase transitions.
Let us consider a mechanical system made of two instable components
(or phases). These components may be liquids having different levels of
density distribution. The problem is to describe stable configurations and to
characterize the interface between the two phases while the system reaches
its stability. For the sake of clarity, let us consider a single fluid whose
energy per unit of volume is a function W of the density distribution u.

W

a b u

The function W is supposed to be non negative
having two minima in a and b such that W (a) =
W (b) = 0. Moreover, it is assumed that W is
quadratic around a and b and is growing at least
linearly at infinity. W is known as a double-well
potential. The stable configurations of the system
are obtained by solving the following variational

8We recall that each class Ci is characterized by a Gaussian distribution N(µi, σi)
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problem (see for instance [111, 179, 235]):

Pε



inf
u

Eε(u) with

Eε(u) = ε

∫
Ω

|∇u(x)|2 dx + 1
ε

∫
Ω

W (u(x)) dx

subject to the constraint
∫
Ω

u(x) dx = m

where Ω is a bounded open subset of RN (the region occupied by the fluid)
and m is the total mass of the fluid.

Remark The introduction of the perturbation term permits to solve
the uniqueness problem for:

inf
u

{∫
Ω

W (u(x)) dx;
∫
Ω

u(x) dx = m
}
.

�

The asymptotic behaviour as ε tends to zero of the model allows to
characterize stable configurations. This rely on the Γ-convergence theory.

Theorem 5.2.1 If W verifies the previously described conditions, then:

(i) Eε Γ-converges to E0 (for the L1-strong topology) with:

E0(u) =

{
K PerΩ(R1) if u(x) ∈ {a, b} a.e.
+∞ otherwise

with R1 = {x ∈ Ω; u(x) = a}, K defined by:

K = 2 inf
γ

{∫ 1

−1

√
W (γ(s))|γ′(s)| ds; γ piecewise C1, (5.46)

γ(−1) = a, γ(1) = b
}

and PerΩ(R1) stands for the perimeter of R1:

PerΩ(R1) = sup
{∫
Ω

χR1(x)div(ϕ) dx; ϕ ∈ C1
0 (Ω)N , |ϕ|L∞(Ω) ≤ 1

}
which is the total variation of the characteristic function χR1(x).

(ii) If uε is a sequence of minimizers of Eε such that uε converges to u
in L1(Ω), then u is a solution of the problem:

inf
u∈BV (Ω)

{
PerΩ(x ∈ Ω;u(x) = a); W (u(x)) = 0 a.e.;

∫
Ω

u(x) dx = m
}
.
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(iii) Any sequence (vε) such that Eε(vε) ≤ cte <∞, ∀ε, admits a
subsequence converging in L1(Ω).

We will give the proof of Theorem 5.2.1 (which is rather technical) at the
end of this section.
As a consequence of this result, the action of the term W is quite clear: it
forces the solution to take one of the two values a and b. Moreover, since
the perimeter of the interface between the two phases {u(x) = a} and
{u(x) = b} is minimal, it follows that this interface is not too irregular.

The transposition of the previous ideas in image analysis is straightfor-
ward. Let u : Ω→ R be a function that represents the intensity of each pixel
and let us consider a feature criterion of classification, only based upon the
distribution of intensity. Let us assume that the image is compounded of
two regions R1 = {x ∈ Ω; u(x) = a} and R2 = {x ∈ Ω; u(x) = b}. Let
u0 be the observed data corrupted by an additive white Gaussian noise.
Following the previous discussion, let us define the energy:

Eε(u) =
∫
Ω

(u(x)− u0(x))2 dx +
∫
Ω

[
ε|∇u|2 +

1
ε
W (u(x))

]
dx

R1

R1

R1

R2

with W as before. According to Theorem
5.2.1, as ε → 0, there exists a subsequence of
minimizers uε of Eε converging to a smooth
segmented image8, closed to u0, and whose
pixels belong to R1 or R2 a.e. (these two re-
gions being separated by sharp regularized i.e.
minimal edges). When ε > 0 is fixed (not
too small), the second term in Eε induces an isotropic smoothing. As ε
decreases, the third term in Eε forces the solution to choose the two char-
acterizing regions R1 and R2. The two values a and b are the labels of R1
and R2.

Until now, we have presented the model with two phases (or labels). The
extension to multiple-wells (and even vectorial wells) exists but it is not
quite obvious from a mathematical point of view. The most complete result
is due to Baldo:

Theorem 5.2.2 [21] Let Ω ⊂ RN , N ≥ 2 be open and bounded with
Lipschitz boundary. Let W : Rn

+ = {u = (u1, .., un), ui > 0} → [0,+∞[
be a continuous function such that W (u) = 0 ⇐⇒ u = µ1, µ2, .., µk,
µi ∈ Rn

+. We also assume the technical hypothesis: ∃α1, α2, 0 < α1 < α2,
such that W (u) ≥ sup {W (v); v ∈ [α1, α2]n} for every u /∈ [α1, α2]n. For

8The introduction of the additional term
∫
Ω

(u(x) − u0(x))2 dx has no consequence

on the conclusions of the Theorem 5.2.1.
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u0 ∈ L2(Ω)n, let us define the functional:

Eε(u) =
∫
Ω

|u(x)− u0(x)|2Rn dx +
∫
Ω

[
ε|∇u|2 +

1
ε
W (u(x))

]
dx.

For each ε, let uε be a solution of inf
u∈W 1,2(Ω)n

Eε(u). Let us suppose that

uε → u ∈ L2(Ω). Then:

u(x) =
k∑

i=1

µi χΩi(x)

where Ω1,Ω2, ..,Ωk is a partition of Ω which minimizes the energy:

k∑
i=1

∫
Ωi

|u(x)− u0(x)|2Rn dx +
k∑

i=1

d(µi, µj)HN−1(∂Ωi ∩ ∂Ωj)

with:

d(µi, µj) = inf
g

{∫ 1

0

√
W (g(s))|g′(s)|; g ∈ C1(0, 1)n, g(0) = µi, g(1) = µj

}
.

Baldo’s result allows to solve classification problems when the number of la-
bels is greater than two. The discriminating function W (u) is such that the
label of a class Ωi is the corresponding mean µi, i.e. Ωi = {x ∈ Ω; u(x) =
µi}, i = 1..k. So, W necessarily verifies W (µi) = 0, i = 1..k, and W (v) > 0
for v �= µi, i = 1..k. There exists several ways of constructing such a po-
tential W . A piecewise quadratic potential can be used (see [222] for more
details).
As far as the regularization is concerned, it has been shown previously that
the quadratic smoothing term was too strong (see Section 3.2.2). We can
then propose a modifed version of the Baldo functional:

Eε(u) =
∫
Ω

(u(x)− u0(x))2 dx +
∫
Ω

[
λε ϕ (|∇u|) +

η

ε
W (u(x))

]
dx

with ϕ(.) to be choosen. Let us comment some experiments8:

• To show the interest of changing the smoothing term, the original
Baldo functional (i.e. ϕ(s) = s2) has been compared with the follow-

ing regularization functions: ϕ(s) = logcosh(s) and ϕ(s) = s2

1 + s2

(see Figure 5.23). Of course, for the two last functions ϕ(.), no
mathematical result of convergence does exist. Results are purely

8Results provided by the INRIA project ARIANA: http://www.inria.fr/ariana/
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experimental and numerical algorithms are based on half-quadratic
minimization, as described in Section 3.2.4. It can be observed that
more point are misclassified using ϕ(s) = s2 which is due to the
oversmoothing of the image.

• The convergence as ε→ 0 is illustrated in the synthetic example from
Figure 5.24. For various ε, the minimizer and its associated dual vari-
able are displayed. This example permits to observe the transition
between the restoration process and the classification. As for the de-
cay of ε, it is usually chosen εn = εn0 , where n is the iteration number
in ε, and ε0 may depend on the amount of noise in the sequence.
Typical values lie in the interval 0.9 to 0.98 (strong noise). We refer
to [220] for more details.

• Finally, we show in Figure 5.25 the results obtained on the SPOT
image, already processed using the previous approach (see Figure
5.22). It can be noticed that this approach permits to keep smaller
details.

We close this section by showing how asymptotical results (as ε tend to
zero) can be rigorously established via the Γ-convergence theory. We do
not prove the general case given in Theorem 5.2.2 but we only examine the
two phases case and the Γ-convergence part (i) of Theorem 5.2.1.
Let W : R→ R satisfying the following properties:

W ∈ C2(R), W ≥ 0 (5.47)

W has exactly two roots, that we label a and b(a < b).
We suppose W ′(a) = W ′(b) = 0,W ′′(a) > 0,W ′′(a) > 0 (5.48)

There exist positive constants c1, c2 and m, and an integer
p ≥ 2 such that c1|u|p ≤W (u) ≤ c2|u|p for |u| ≥ m.

(5.49)

Now, let us define the functionals:

Eε(u) =


1
ε

∫
Ω

W (u) dx + ε

∫
Ω

|∇u|2 dx if u ∈ H1(Ω)

+∞ otherwise

and:

E0(u) =

{
K PerΩ({u = a}), u ∈ BV (Ω), W (u(x)) = 0 a.e.
+∞ otherwise

where K is defined by (5.46). To prove that Eε Γ-converges to E0, we need
to define an auxiliary function g(.) which will play a crucial role afterwards:

g(u) = inf
γ(−1) = a
γ(1) = u

∫ 1

−1

√
W (γ(s))|γ′(s)| ds
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Original image ϕ(s) = s2 ϕ(s) = logcosh(s) ϕ(s) = s2

1 + s2

Figure 5.23. Influence of the function ϕ(.). The lower line shows a close-up.

Data Result

ε=1 ε=90/100 ε=4/100 ε=3/100 ε=1/100

Figure 5.24. Illustration of the convergence as ε → 0. In this example 6 classes
are searched even if a continous regions is present in the image. From ε = 1 to
ε = 4/100 the restoration acts whereas from ε = 3/100 to the end the classifica-
tion seems predominent (regions appear). This is especially visible on the edge
indicator functions (the dual variable) in the lower row.
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Data Result

ε=6/10 ε=3/10 ε=2/10

Figure 5.25. The SPOT image (4 classes). Upper row shows the initial image
and the result. Iterations of the algorithm as ε tend to zero are displayed below
with the associated dual variables. A close-up of the upper left corner is shown.
Similar behaviour as in Figure 5.24 may be observed.
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where the infimum is taken over functions γ(.) which are Lipschitz-
continuous. We summarize the properties of g(.) in the following lemma:

Lemma 5.2.2 For every u ∈ R, there exists a function γu : [−1, 1] → R
such that γ(−1) = a, γ(1) = u and:

g(u) =
∫ 1

−1

√
W (γu(s))|γ′

u(s)| ds. (5.50)

The function g is Lipschitz continuous and satisfies:

|g′(u)| =
√
W (u) for a.e. u. (5.51)

There exists a smooth increasing function β :] −∞,+∞[→] − 1, 1[ such
that the function ξ(τ) = γb(β(τ)) satisfies:

2g(b) =
∫ +∞

−∞

[
W (ξ(τ)) + |ξ′(τ)|2] dτ (5.52)

lim
τ→−∞ξ(τ) = a, lim

τ→+∞ξ(τ) = b (5.53)

with these limits being attained at an exponential rate.

We refer to Sternberg [234, 235] for the proof.

Proof of (i) of Theorem 5.2.1. Eε Γ-converges to E0 for the L1-strong
topology. We follow the proof of Sternberg [234]. According to the definition
of the Γ-convergence, we have to show:

• If vε → v0 as ε→ 0, then:

lim
ε→0

Eε(vε) ≥ E0(v0). (5.54)

• For any v0 ∈ L1(Ω), there exists a sequence ρε with ρε → v0 in L1(Ω)
and:

lim
ε→0

Eε(vε) ≤ E0(v0). (5.55)

Step 1: Proof of (5.54). One need only to consider v0 of the form:

v0(x) =

{
a if x ∈ A

b if x ∈ B
(5.56)

for two disjoint sets A and B with A ∪ B = Ω. Otherwise vε → v0 in
L1(Ω) implies Fε(vε) → +∞ (and (5.54) is obvious). So, let us suppose
that vε → v0 in L1(Ω) and define hε(x) = g(vε(x)). It follows from Lemma
5.2.2:

|∇hε(x)| = |∇vε(x)|
√
W (vε(x)). (5.57)

But it is clear that:

hε −−−→
L1(Ω)

g(v0) =

{
0 if x ∈ A

g(b) if x ∈ B.
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Then, from the inequality a2 + b2 ≥ 2ab, (5.57) and the lower
semi-continuity of the BV (Ω)-norm for the L1-strong convergence, we
obtain:

lim
ε→0

Eε(vε) ≥ lim
ε→0

2
∫
Ω

√
W (vε)|∇vε| dx = lim

ε→0
2
∫
Ω

|∇hε(x)| dx ≥ 2
∫
Ω

|∇g(v0)|.

But an easy computation gives:∫
Ω

|∇g(v0)| = g(b)PerΩ({x; v0(x) = a}).

Thus, we get the desired inequality (5.54):

lim
ε→0

Eε(vε) ≥ K PerΩ({x; v0(x) = a})

with K = 2g(b).

Step 2: Proof of (5.55). One may assume v0 ∈ BV (Ω) and again take
v0 of the form (5.56), or otherwise the trivial choice ρε ≡ v0 for each ε is
suitable. Let Γ = ∂A∪ ∂B and assume Γ ∈ C2 without a loss of generality
(since one can always approximate a set of finite perimeter by a sequence of
sets having smooth boundary [120]). Then, let us define the signed distance
function D : Ω→ R by:

d(x) =

{
−dist(x,Γ) if x ∈ A

+dist(x,Γ) if x ∈ B.

Near Γ, d(.) is smooth and verifies:

|∇d| = 1, lim
s→0
HN−1{x; d(x) = s} = HN−1(Γ) = PerΩA. (5.58)

Finally, let us define the sequence ρε(x) by:

ρε(x) =



ξ

(
−1√
ε

)
if d(x) < −√ε

ξ

(
d(x)
ε

)
if |d(x)| ≤ √ε

ξ

(
1√
ε

)
if d(x) ≥ √ε

where the function ξ(.) is the one defined in Lemma 5.2.2. The L1 conver-
gence of ρε to v0 follows directly from (5.52). Then, thanks to (5.52)-(5.53),



236 5. Other Challenging Applications

(5.58) and the coarea formula, we get:

lim
ε→0

Eε(ρε) = lim
ε→0

1
ε

∫
{|d(x)|≤√

ε}

W

(
ξ

(
d(x)
ε

))
+

∣∣∣∣ξ′
(
d(x)
ε

)∣∣∣∣2 dx =

= lim
ε→0

1
ε

∫ √
ε

−√
ε

W
(
ξ
(s
ε

))
+

∣∣∣ξ′
(s
ε

)∣∣∣2HN−1{x; d(x) = s} ds =

= lim
ε→

∫ 1/
√
ε

−1/
√
ε

W (ξ(τ)) + |ξ′(τ)|2HN−1{x; d(x) = ετ}dτ ≤

≤ 2g(b)
(

lim
ε→0

max
|s|≤√

ε
HN−1{x; d(x) = s}

)
= E0(v0)

i.e. lim
ε→0

Eε(ρε) ≤ E0(v0), and (5.55) is proven. �

Remark The part (ii) and (iii) of Theorem 5.2.1 are not difficult to prove.
We refer to Sternberg [234] for the complete proof. �



AppendixA
Introduction to Finite Difference

How to read this chapter?

This chapter concerns the problem of solving numerically the partial differ-
ential equations that we have encountered in this book. Although several
kinds of approaches can be considered (like finite elements or spectral meth-
ods), the success of finite differences in image analysis is due to the structure
of digital images for which we can associate a natural regular grid. This
chapter is an introduction to the main notions that are commonly used
when one wants to solve a Partial Differential Equation. From Section A.1
to Section A.2, we will only consider the one dimensional case and focus
on the main ideas of finite differences. Section A.3 will be more applied: it
will concern the discretization of certain approaches detailed in this book.
More precisely:

• Section A.1 introduces the main definitions and theoretical consider-
ations about finite difference schemes (convergence, consistency and
stability, Lax Theorem). Every notion is illustrated by developing
explicit calculus for the case of the one dimensional heat equation.
Besides the precise definitions, this will help the reader to understand
them in a simple situation.

• Section A.2 concerns hyperbolic equations. We start with the linear
case and show that if we do not choose an upwind scheme, then the
scheme is always unstable. We then investigate the nonlinear case by
focusing on the Burgers equation.
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• The purpose of Section A.3 is to show how finite difference schemes
can be used in image analysis. We first introduce in Section A.3.1 the
main notations and consider the 2-D heat equation. The remainder
of Section A.3 is concerned with the discretization of certain PDEs
studied in this book:

– Restoration by energy minimization (Section A.3.2): we detail
the discretization of the divergence term which can also be found
for the Perona and Malik equation.

– Enhancement by Osher and Rudin’s shock filters (Section A.3.3):
the main interest is to use a flux limiter called minmod.

– Curves evolution with level sets and especially segmentation
with geodesic active contours (Section A.3.4). For the sake
of simplicity, we examine separately each term of the model
(mean curvature motion, constant speed motion, advection
equation). We essentially write their discretization and give some
experimental results.

To complete this introduction, we refer the interested reader to [238, 76,
136] for general presentation and to [122, 157] for more details on hyperbolic
equations.

A.1 Definitions and theoretical considerations
illustrated by the 1-D parabolic heat equation

A.1.1 Getting started
There are many approaches that are used for discretizating a partial differ-
ential equation. Amongst the most important ones, we can mention finite
differences, finite elements and spectral methods.

We focus here on finite differences which are widely used in image
processing. This is due to the structure of a digital image as a set of
uniformly distributed pixels (see Section A.3).

To present the main ideas we will consider the following well-posed initial-
value problem, written in the one dimensional case:8{

Lv = F x ∈ R, t > 0
v(0, x) = f(x) x ∈ R

(A.1)

where v and F are defined on R and L is a differential linear operator. The
function v denotes the exact solution of (A.1).

8This is a initial-value problem, which means that there is no boundary condition. For
initial-boundary-value problems, the discussion that follows needs to be slightly adapted
and we refer to [238] for more details.
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Example: One of the easiest equation that we may consider is the 1-D heat equation:

∂v

∂t
= ν

∂2v

∂x2 x ∈ R, t > 0 (A.2)

where ν > 0 is a constant, which is equivalent to:

Lv = 0 with Lv =
∂v

∂t
− ν

∂2v

∂x2 .

The initial condition is v(0, x) = f(x). From now on, we shall use this equation to illus-
trate the different notions to be defined. �

Our aim is to solve the PDE (A.1) numerically. We begin by discretiz-
ing the spatial domain by placing a grid over the domain. For convenience,
we will use a uniform grid, with grid spacing  x. Likewise the temporal
domain can be discretized and we denote by  t the temporal grid spacing.
The resulting grid in the time space domain is illustrated in Figure A.1.
Solving the problem numerically means finding a function u defined at the

t =00

2∆t =      t2

∆t =    t1

x xxx xx =0 0 1 2−1−2

∆t =      t33

t

x∆

Figure A.1. Grid on time-space domain

points (n t, i x) (we will denote by uni the value of u at these points)
which is a “good approximation” of v. The function u will be obtained as
the solution of a discrete equation which will be an approximation of (A.1):{

Ln
i u

n
i = Gn

i i = −∞, . . . ,+∞
u0i = f(i x) (A.3)

where Ln
i (resp. Gn

i ) corresponds to the discrete approximation of L (resp.
F 8). Notice that both spatial and temporal derivatives have to be approx-
imated.

Example: Let us show on the 1-D heat equation (A.2) how the disrete equation can be
obtained. In fact, the starting point for writing any finite difference scheme are Taylor

8Because of discretization, Gn
i is a priori different from Fn

i which is simply the value
of F in (n	t, i	x)
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expansions. For 	t and 	x small, we have:

v((n+ 1)	t, i	x) =

(
v + 	t

∂v

∂t
+

	t2

2
∂2v

∂t2

)
(n	t, i	x) + O(	t3) (A.4)

v(n	t, (i+ 1)	x) =

(
v + 	x

∂v

∂x
+

	x2

2
∂2v

∂x2

)
(n	t, i	x) + O(	x3) (A.5)

v(n	t, (i − 1)	x) =

(
v − 	x

∂v

∂x
+

	x2

2
∂2v

∂x2

)
(n	t, i	x) + O(	x3). (A.6)

We recall that g = O(φ(s)) for s ∈ S if there exists a constant C such that |f(s)| ≤
C|φ(s)| for all s ∈ S. We say that g(s) is a “big O” of φ(s) or that g(s) is of order φ(s).
In the previous Taylor expansions, notice that the constant C naturally depends on the
high-order derivatives of v.

By Equation (A.4), we have

∂v

∂t
(n	t, i	x) =

vn+1
i − vn

i

	t
+ O(	t)

where we noted vn
i = v(n	t, i	x). Similarly, by using previous Taylor expansions, we

may propose an approximation of the second spatial derivative. By adding (A.5) and
(A.6), we have:

∂2v

∂x2 (n	t, i	x) =
vn

i+1 − 2vn
i + vn

i−1

	x
+ O(	x2). (A.7)

Consequently, if we consider the differential operator L from (A.2), we have:

∂v

∂t
(n	t, i	x)−ν

∂2v

∂x2 (n	t, i	x) =
vn+1

i − vn
i

	t
−ν

vn
i+1 − 2vn

i + vn
i−1

	x2 +O(	t)+O(	x2).

(A.8)
So a reasonable approximation of the equation (A.2) is

Ln
i u = 0 with Ln

i =
un+1

i − un
i

	t
− ν

un
i+1 − 2un

i + un
i−1

	x2 . (A.9)

This difference Equation (A.9) can also be rewritten in the following form:

un+1
i = (1 − 2r)un

i + r
(
un

i+1 + un
i−1
)

where r = ν	t/	x2. (A.10)

This shows clearly that this scheme is explicit which means that the values at time
(n+1)	t are obtained only from the values at time n	t. We will mention how to write
implicit schemes in the end of this section. �

☛ It is important to realize that the discretized equation replaces the original
equation with a new one, and that even an exact solution of the discretized
problem will lead to an approximate solution of the original PDE, since we
introduce a discretization error (the error of replacing a continuous equa-
tion by a discrete one).

For a given approximation (A.3), we would like to know precisely the re-
lations between the discrete equation with the PDE and their respective
solutions. In other words, what does it mean that u is an approximation of
v and can we quantify it? Are there any conditions requested on the grid
size ( t,  x) to have a “good” approximation? To answer these questions
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we define precisely the notions of convergence, consistence and stability in
the next sections.

A.1.2 Convergence
The first notion which is essential is to understand what it means that
the discrete solution u of (A.3) is an approximation of, or converges to
the solution v of (A.1). To be more precise, we can define the pointwise
convergence as follows:

Definition A.1.1 (pointwise convergent scheme) The scheme (A.3)
approximating the partial differential equation (A.1) is pointwise convergent
if for any x and t, as ((n+1) t, i x) converges to (t, x), then uni converges
to v(t, x) as  x and  t converge to 0.

Example: Let us show that the solution of the difference scheme (A.10):{
un+1

i = (1 − 2r)un
i + r

(
un

i+1 + un
i−1

)
x ∈ R

u0
i = f(i	x)

(A.11)

where r = ν	t/	x2, converges pointwise to the solution of the initial-value problem
(A.2): {

∂v
∂t

= ν ∂
2v

∂x2 x ∈ R

v(0, x) = f(x)
(A.12)

We will assume that 0 ≤ r ≤ 1/2 in order to have all the coefficients positive in the
difference equation. We need to estimate:

zn
i = un

i − v(n	t, i	x).

where v is the exact solution of the initial-value problem (A.12). Equation (A.8) becomes

vn+1
i = (1 − 2r)vn

i + r
(
vn

i+1 + vn
i−1
)
+ O(	t2) + O(	t	x2). (A.13)

Then by substracting equation (A.13) from (A.11), we have:

zn+1
i = (1 − 2r)zn

i + r
(
zn
i+1 + zn

i−1
)
+ O(	t2) + O(	t	x2), (A.14)

and then (since we assumed 0 ≤ r ≤ 1/2):

|zn+1
i | ≤ (1 − 2r)|zn

i | + r|zn
i+1| + r|zn

i−1| + C(	t2 + 	t	x2), (A.15)

where C is a constant associated to the “big O” terms and depends on the assumed
bounds of the higher order derivatives of v, in space and time. In fact we will assume
that the derivatives vtt and vxxxx (which would appear in the subsequent terms of
the Taylor expansion of (A.8)) are uniformly bounded on [0, t] × R. So, by taking the
supremum with respect to i in (A.15) we obtain:

Zn+1 ≤ Zn + C(	t2 + 	t	x2) with Zn = |zn|�∞ ≡ sup
i∈Z

{|zn
i |}. (A.16)

Applying (A.16) repeatedly yields

Zn+1 ≤ Zn + C(	t2 + 	t	x2) ≤ Zn−1 + 2C(	t2 + 	t	x2) ≤
≤ . . . ≤ Z0 + (n+ 1)C(	t2 + 	t	x2).

Since Z0 = 0, the previous inequality implies:

|un+1
i − v((n+ 1)	t, i	x)| ≤ (n+ 1)	t C(	t+ 	x2). (A.17)
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Thus we see that the right-hand side of (A.17) goes to zero as (n + 1)	t → t and 	t,
	x → 0 which means that u converges to v pointwise. Notice that in fact we have just
proven a stronger result than the pointwise convergence

Zn+1 =
∣∣zn+1∣∣

�∞ → 0 (A.18)

as (n+ 1)	t → t and 	t, 	x → 0. �

The pointwise convergence is in general difficult to prove. So we shall in-
stead use a definition of convergence in terms of a lp-norm (p < ∞) of a
difference between the solution of the PDE and the solution of the difference
equation. In the following definition, we will use the notation:

un+1 = (. . . , un−1, u
n
0 , u

n
1 , . . .)

vn+1 = (. . . , vn−1, v
n
0 , v

n
1 , . . .).

Definition A.1.2 (convergent scheme) The scheme (A.3) approximat-
ing the partial differential equation (A.1) is a convergent scheme at time t
if, as (n + 1) t→ t ∣∣un+1 − vn+1

∣∣
∗ → 0 (A.19)

as  x→ 0 and  t→ 0, and where | . |∗ is a norm to be specified.

This definition shows that whenever the convergence is being discussed, the
norm that is used must be specified. Its choice depends on the problem to
be solved. For z = (. . . , z−1, z0, z1, . . .), typical examples include:

|z|B∞ = sup
i∈Z

{|zi|}, |z|B2 =

√√√√i=+∞∑
i=−∞

|zi|2 or |z|B2,�x =

√√√√i=+∞∑
i=−∞

|zi|2 x.

(A.20)
Another important information that we may be interested in is the rate of
convergence, i.e. how fast the solution of the difference equation converges
to the solution of the PDE. This order of convergence is defined by:

Definition A.1.3 (order of convergence) A difference scheme (A.3)
approximating the partial differential equation (A.1) is a convergent scheme
of order (p, q) if for any t, as (n + 1) t converges to t,∣∣un+1 − vn+1

∣∣ = O( xp) +O( tq) (A.21)

as  x and  t converge to 0.

Example: For the approximation (A.11) of the heat equation, we have in fact proven
its convergence for the /∞ norm (A.18). Moreover, we can verify that this scheme is of
order (2,1). �

The convergence is usually something difficult to prove. Most of the time,
its proof is based on the Lax Theorem that we present in the next section.
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A.1.3 The Lax Theorem
This theorem gives a sufficient condition for a two-level difference8 scheme
to be convergent:

Theorem A.1.1 (Lax) A consistent, two level difference scheme for a
well-posed linear initial value problem is convergent if and only if it is
stable.

In this theorem, we introduced two new notions:

• Consistence: it concerns the error introduced by the discretization of
the equation. This error should tend to zero as  t and  x go to zero.

• Stability: the intuitive idea is that small errors in the initial condi-
tion should cause small errors in the solution. This is similar to the
definition of well-posedness of a PDEs.

Pratically, most of the schemes that are used are consistent. The major
problem will be to prove their stability.

The two next sections define precisely these two notions and give the
main ideas to ensure that they are satisfied.

A.1.4 Consistency
As in the case of convergence, we can first define the property of a scheme
to be pointwise consistent with the PDE:

Definition A.1.4 (pointwise consistent) The scheme (A.3) approxi-
mating the partial differential equation (A.1) is pointwise consistent at point
(t, x) if for any smooth function φ = φ(t, x),

(Lφ− F )|ni − [Ln
i φ(n t, i x)−Gn

i ]→ 0 (A.22)

as  x,  t→ 0 and ((n + 1) t, i x)→ (t, x).

Example: Notice that from equality (A.8), we have in fact just proven that the scheme
(A.10) is pointwise consistent with the PDE (A.2). �

As in the case of convergence, it is usually more interesting to have a defi-
nition in terms of norms and not only pointwise. If we write the two-level
scheme by:

un+1 = Qun + t Gn (A.23)

8A two-level difference scheme is a scheme where only two different levels of time are
present in the difference equation, typically H(un+1, un) = 0.
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where un = (. . . , un−1, u
n
0 , u

n
1 , . . .), G

n+1 = (. . . , Gn
−1, G

n
0 , G

n
1 , . . .) and Q is

an operator acting on the appropriate space, then a stronger definition of
consistency can be given as follows:

Definition A.1.5 (consistent) The scheme (A.3) is consistent with the
partial differential equation (A.1) in a norm | . |∗ if the solution of the
partial differential equation, v, satisfies:

vn+1 = Qvn + tGn + tτn

where τn is sucht that

|τn|∗ → 0

as  x,  t→ 0.

The term τn is called the truncature term. We may be more precise and
define also the order in which τn goes to 0.

Definition A.1.6 (truncature error, order of accuracy) The differ-
ence scheme (A.3) is said to be accurate of order (p, q) if

|τn|∗ = O( xp) +O( tq).

Remark It is easy to see that if a scheme is of order (p, q), p, q ≥ 1, then
it is a consistent scheme. Also, it can be verified that if a scheme is either
consistent or accurate of order (p, q), the scheme is pointwise consistent. �

Example: Let us discuss the consistency of the scheme:

un+1
i − un

i

	t
= ν

un
i+1 − 2un

i + un
i−1

	x

with the PDE ∂v
∂t

= ν ∂
2v

∂x2 , x ∈ R, t > 0. If we denote by v the solution of the PDE,

then the Equation (A.8) becomes:

vn+1
i − vn

i

	t
− ν

vn
i+1 − 2vn

i + vn
i−1

	x2 = O(	t) + O(	x2).

As we can see, we need to be more precise to apply Definitions A.1.6 and A.1.5. In
particular, we need to know what are exactly the terms in O(	t) + O(	x2). In fact,
similar calculations have to be done but using Taylor expansions with remainder instead
of standard Taylor expansions.

After rewriting the difference scheme in the form of (A.23):

un+1
i = (1 − 2r)un

i + r
(
un

i+1 + un
i−1
)

where r = ν	t/	x2,

we can define the truncature error by:

	tτn
i = vn+1

i − {(1 − 2r)vn
i + r

(
vn

i+1 + vn
i−1
)}

. (A.24)

where v is a solution of the PDE. Then we need to develop the rigth-hand side term of
(A.24) by using Taylor expansions with remainder. After some calculation, there exists
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t1 ∈]n	t, (n+ 1)	t[, x1 ∈](i − 1)	x, i	x[ and x2 ∈]i	x, (i+ 1)	x[ such that:

	tτn
i = ∂2v

∂t2
(t1, i	x)

	t

2
− ν

(
∂4v
∂x4 (n	t, x1) + ∂4v

∂x4 (n	t, x2)
) 	x2

24
(A.25)

Notice that, as we mentioned it, when we write simply O(	t) +O(	x2), we have to be
aware that the coefficients involved are not constants but depend on certain derivatives
of the solution. This also means that as soon as we will talk about consistency, we will
need to make some smoothness assumptions.

To apply Definition A.1.5, we need to choose a norm. If we assume that

∂2v

∂t2
and

∂4v

∂x4 are uniformly bounded on [0, T ] × R for some T ,

then we can then choose the sup-norm to get that this scheme is accurate of order (2, 1)
with respect to this norm. Otherwise, if we assume

i=+∞∑
i=−∞

∣∣∣(∂2v

∂t2

)n

i

∣∣∣2	x < A < ∞ and
i=+∞∑
i=−∞

∣∣∣( ∂4v

∂x4

)n

i

∣∣∣2	x < B < ∞,

for any 	x and 	t, then the difference scheme is accurate order (2, 1) with respect to
the /2,�x norm. �

One important remark which comes out from the previous example is that
as soon as one considers the problem of consistency, one needs to choose a
norm. It is also important to note that this choice is in fact related to some
smoothness assumptions on the solution.

Finally, we would like to mention that proving consistency can be very
difficult, especially for implicit schemes. We refer the interested reader to
[238] for more details.

A.1.5 Stability
To conclude this section, we need to discuss the problem of stability, which
is necessary to apply the Lax Theorem. Though stability is much easier to
establish than convergence, it is still often difficult to prove that a given
scheme is stable. Many definitions of stability can be found in the literature,
and we present below one which is commonly used:

Definition A.1.7 (stable scheme) The two-level difference scheme{
un+1 = Qun, n ≥ 0
u0 given (A.26)

where un = (. . . , un−1, u
n
0 , u

n
1 , . . .) is said to be stable with respect to the

norm | . |∗ if there exist positive constants  x0 and  t0, and non-negative
constants K and β such that∣∣un+1∣∣∗ ≤ Keβt

∣∣u0∣∣∗ (A.27)

for 0 ≤ t = (n + 1) t, 0 <  x ≤  x0 and 0 <  t ≤  t0.
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Remarks From Definition A.1.7, we may remark the following:

• This definition has been established for homogeneous schemes (A.26).
If we have a nonhomogeneous scheme, it can be proved that the
stability of the associated homogeneous scheme, along with the
convergence, is enough to prove its convergence.

• As for convergence and consistency, we will need to define which norm
is used.

• This definition of stability does allow the solution to grow with time.

�

As we already mentioned, there are other definitions for stability. In partic-
ular, another common definition is one that does not allow for exponential
growth. The inequality (A.27) then becomes:∣∣un+1∣∣∗ ≤ K

∣∣u0∣∣∗ (A.28)

which clearly implies (A.27). The interest of (A.27) is that it permits to
include more general situations.

Example: Let us show that the scheme

un+1
i = (1 − 2r)un

i + r
(
un

i+1 + un
i−1
)

(A.29)

is stable for the sup-norm. If we assume that r ≤ 1/2, (A.29) yields:

|un+1
i | ≤ (1 − 2r)|un

i | + r|un
i+1| + r|un

i−1| ≤ |un|�∞ .

If we take the supremum over the right-hand side, we get∣∣un+1∣∣
�∞ ≤ |un|�∞ .

Hence inequality (A.27) is satisfied with K = 1 and β = 0. Notice that in order to prove
the stability, we have assumed that r = ν	t/	x2 ≤ 1/2. In this case we say that the
scheme is conditionally stable. In the case where there is no restriction on 	x and 	t,
we say that the scheme is unconditionally stable. �

The previous example was a simple case where we were able to prove di-
rectly stability, i.e. inequalities (A.27) or (A.28). In fact, there are several
tools that can be used to prove it. The one which is probably the most
commonly used is the Fourier analysis which is used for linear difference
schemes with constant coefficients. We recall in Table A.1 the definitions of
the Fourier transform and the inverse Fourier transform, for the continuous
and discrete setting (i.e. for a vector un = (. . . , un−1, u

n
0 , u

n
1 , . . .) ∈ R2). We

also recall an important property of Fourier transform which is the Parse-
val’s identity (see [110] for more details).
Interestingly, the discrete transform has similar properties than the con-
tinuous one. In particular, to prove the stability of a difference scheme, we
will use two main ideas:
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Continuous setting Discrete setting

Fourier
transform v̂(t, ω) = 1√

2π

+∞∫
−∞

e−iωxv(t, x)dx û(ξ) = 1√
2π

m=+∞∑
m=−∞

e−imξum

inverse
Fourier

transform
v(t, x) = 1√

2π

+∞∫
−∞

eiωxv̂(t, ω)dω um = 1√
2π

+π∫
−π

eimξû(ξ)dξ

Parseval’s
identity |v|L2(R) = |v̂|L2(R) |u|L2(R) = |û|L2(−π,π)

Table A.1. Some recalls about Fourier transform (i2 = 1)

• The first is that taking the Fourier transform of a PDE turns it into
an EDO. Spatial derivatives are turned into products. For example,
we can easily verify that:

v̂xx(t, ω) = − ω2 v̂(t, ω).

Analogous idea is valid in the discrete case. Let us consider the “stan-
dard” approximation of the second order derivative that we have been
using until now (with  x = 1 just to simplify notations):

uxx|k = uk+1 − 2uk + uk−1. (A.30)

Then the Fourier tranform of {uxx} in the discrete setting is:

(̂uxx) =
1√
2π

k=+∞∑
k=−∞

e−ikξuxx|k =
(A.30)

(A.31)

=
1√
2π

k=+∞∑
k=−∞

e−ikξuk+1 − 2
1√
2π

k=+∞∑
k=−∞

e−ikξuk︸ ︷︷ ︸
û(ξ)

+
1√
2π

k=+∞∑
k=−∞

e−ikξuk−1.

By doing suitable changes of variable in the previous expression for
the first sum (m = k + 1) and third one (m = k − 1), we have:

(̂uxx) =
1√
2π

m=+∞∑
m=−∞

e−i(m−1)ξum − 2û(ξ) +
1√
2π

m=+∞∑
m=−∞

e−i(m+1)ξum

= (e−iξ − 2 + e+iξ)û(ξ) = −4 sin2
(
ξ
2

)
û(ξ). (A.32)

• The second concerns the Parseval’s identity. The main interest of
this identity is that it is equivalent to prove the inequality (A.27) in
the transform space or in the solution space. As a matter of fact, in
Definition A.1.7 of stability, the inequality that was required in terms
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of energy norm was of the form:∣∣un+1∣∣
B2
≤ Keβ(n+1)�t

∣∣u0∣∣
B2

(A.33)

But since |u|B2,�x =
√ x |u|B2 =

√ x |û|B2 , if we can find a K and
a β such that: ∣∣ûn+1∣∣

B2
≤ Keβ(n+1)�t

∣∣û0∣∣
B2
, (A.34)

then the same K and β will also satisfy (A.33). So the sequence {un}
will be stable if and only if the sequence {ûn} is stable in L2(−π, π).

These ideas are applied in the following example where we show how to
prove the stability of the discrete scheme associated to the 1-D heat equa-
tion.

Example: Let us prove the stability of the difference scheme

un+1
k = run

k+1 + (1 − 2r)un
k + run

k−1 (A.35)

where r = ν	t/	x2 ≤ 1/2. By doing similiar computations as in (A.31)-(A.32) taking
the Fourier transform of un+1 with (A.35) leads to:

ûn+1(ξ) = r
1√
2π

k=+∞∑
k=−∞

e−ikξun+1
k+1 + (1 − 2r)û(ξ) + r

1√
2π

k=+∞∑
k=−∞

e−ikξun+1
k−1 =

=
(
1 − 4r sin2

(
ξ

2

))
ûn(ξ). (A.36)

The coefficient of ûn in the right-hand side of (A.36) is called the symbol of difference
scheme (A.35). We denote it by ρ(ξ). Then if we apply the result of (A.36) n+ 1 times,
we get

ûn+1(ξ) = (ρ(ξ))n+1û0(ξ).

So the condition (A.34) will be verified with K = 1 and β = 0 as soon as |ρ(ξ)| ≤ 1 for
all ξ ∈ [−π, π], i.e. ∣∣∣∣1 − 4r sin2

(
ξ

2

)∣∣∣∣ ≤ 1. (A.37)

This condition implies that r ≤ 1/2. Thus r ≤ 1/2 is a sufficient condition for stability
(and along with the consistency, for convergence). It is also necessary indeed. If r > 1/2,
then at least for some ξ, |ρ(ξ)| > 1 and then |ρ(ξ)|n+1 will be greater than Keβ(n+1)�t

for any K and β8. �

Another approach which is often used is to consider a discrete Fourier
mode for the problem:

unk = ξneijkπ�x (A.38)

8This is true since for any sequence of 	t (chosen so that (n+1)	t → t) and choice
of 	x (so that r remains constant), the expression |ρ(ξ)|n+1 becomes unbounded while
for sufficiently large values of n, Keβ(n+1)�t will be bounded by Keβ(t0+1) for some
t0 > t, t0 near t.
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where 0 ≤ j ≤ M and the superscript on the ξ term is a multiplicative
exponent. The idea is then to insert this general Fourier mode into the
difference scheme and find the expression for ξ. A necessary condition for
stability is obtained by restricting  x and  t so that |ξ| ≤ 1 (the ξn

term will not grow without bound). This method is usually refered to as
the discrete von Neumann criterion to stability (see [238] for more details).

Example: Let us apply the discrete von Neumann criterion for stability for the difference
scheme

un+1
k = run

k+1 + (1 − 2r)un
k + run

k−1. (A.39)

By inserting the general Fourier mode

un
k = ξneijkπ�x

in the difference scheme, we easily obtain:

ξn+1eijkπ�x = ξneijkπ�x
(
re−ijπ�x + (1 − 2r) + re+ijπ�x

)
.

Thus if we divide both sides of the above equation by ξneijkπ�x, we get

ξ = re−ijπ�x + (1 − 2r) + re+ijπ�x = 1 − 4r sin2
(
jπ	x

2

)
.

By saying that |ξ| ≤ 1, we recover previous result (A.37). �

Example: As we already mentioned, the discretization (A.9) initially proposed for the
one dimensional heat equation was explicit. The values of u at time (n+1)	t were fully
determined by the values of u at time n	t. One may investigate more general schemes
like:

un+1
i = un

i +
ν	t

h2

(
λ(un+1

i+1 − 2un+1
i + un+1

i−1 ) + (1 − λ)(un
i+1 − 2un

i + un
i−1)

)
If λ �= 0 the scheme is now implicit: one needs to solve a linear system in order to know
the solution at time (n + 1)	t. For λ = 1 the scheme is fully implicit and for λ = 0.5
the so-called Crank-Nicholson scheme is obtained. This difference between explicit and
implicit schemes can simply be represented as in Figure A.2

known value

unknown value

time

∆ t

t∆

n
i

?

Explicit scheme

time

∆ t

t∆

n
i

? ??

Implicit scheme

x x

11

i− i+ i− i+1 1 1 1

(n+  )(n+  )

Figure A.2. Relations of dependency: the estimation of un+1
i depends on the

neighbors indicated by an arrow

Depending on the value of λ, we have:

• For λ = 0, the scheme is explicit, of order O(	t, h2) and stable under the condi-

tion 	t ≤ h2

2ν . This condition implies that the time step has to be chosen small
enough which will naturally slow down the resolution of the equation.

• For λ = 1/2, the scheme is implicit, of order O(	t2, h2) and unconditionaly
stable.
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• For λ > 1/2, the scheme is implicit, of order O(	t, h2) and unconditionaly stable.

We leave it as an exercise to the reader to verify these results, that is proving consistence8

and stability. �

A.2 Hyperbolic equations

Let us consider the one-dimensional linear advection equation (also called
transport or wave equation):{

∂v
∂t

(t, x) + a∂v
∂x

(t, x) = 0 x ∈ R

v(0, x) = v0(x)
(A.40)

where a is a constant. It can be easily verified that the solution is

v(t, x) = v0(x− at) (A.41)

Consequently v(t, x) is constant on lines of slope a which are called char-
acteristics. It means that the information is propagated in the direction of
the sign of a, for example from the left to the right if a is positive.

In order to solve (A.40) numerically we have to approximate the temporal
and spatial derivatives of u. As for the case of the heat equation (see Section
A.1), the method is based on the Taylor expansions of v that we recall here:

v((n + 1) t, i x) =
(
v + t∂v

∂t
+
 t2
2

∂2v

∂t2

)
(n t, i x) +O( t3)

(A.42)

v(n t, (i + 1) x) =
(
v + x∂v

∂x
+
 x2

2
∂2v

∂x2

)
(n t, i x) +O( x3)

(A.43)

v(n t, (i− 1) x) =
(
v − x∂v

∂x
+
 x2

2
∂2v

∂x2

)
(n t, i x) +O( x3).

(A.44)

The temporal derivative can be approximated using (A.42) by

∂v

∂t
(n t, i x) =

vn+1i − vni
 t +O( t).

8In the example considered throughout this section, we have expanded the functions
about the index point (n	t, i	x), and it was reasonably obvious that this was the correct
point about which to expand. However, in some situations, the consistency cannot be
proved if the point about which to extend is not adapted. The decision about which
point to expand must be made by carefully considering how we expect the difference
scheme to approximate the PDE. Typically, to prove the consistency of the Crank-
Nicholson scheme, it is logical to consider the consistency of the scheme at the point
(n+ 1/2	t, i	x).
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As far as the spatial derivative is concerned, there are several possibilities:

• From (A.43) we have ∂v
∂x

(n t, i x) =
vni+1 − vni
 x +O( x) (forward

difference).

• From (A.44) we have ∂v
∂x

(n t, i x) =
vni − vni−1
 x +O( x) (backward

difference).

• By substracting (A.44) to (A.43) we have
∂v
∂x

(n t, i x) =
vni+1 − vni−1

2 x +O( x2) (centered difference).

Consequently, there are three different possibilities for the discrete scheme
of (A.40):

un+1i = uni + a t



δ+x u
n
i

(
≡ uni+1 − uni

 x
)

foreward scheme

δxu
n
i

(
≡ uni+1 − uni−1

2 x
)

centered scheme

δ−
x u

n
i

(
≡ uni − uni−1

 x
)

backward scheme

Let us first consider the centered approximation which is of order (2, 1):

un+1n = uni − a tδxuni = uni −
a t
2 x (uni+1 − uni−1). (A.45)

Let us examine its stability. As explained in Section A.1.5, a common
approach is to use the discrete von Neumann criterion which consists in
inserting the general Fourier mode

unk = ξneijkπ�x (0 ≤ j ≤M) (A.46)

into the difference scheme. We recall that the superscript on the ξ term
is a multiplicative exponent. By doing analogous calculations as for the
difference scheme (A.39), we find that

ξ = 1− i
a t
 x sin(jπ x) and then |ξ|2 = 1 +

(
a t
 x

)2

sin2(jπ x) ≥ 1 ∀j,

which means that this scheme is always unstable.

☛ The reason for this is that we did not take into account the nature of the
equation. As there is a propagation, that is the information is propagated
in a certain direction, the numerical scheme should take it into account.

To take this observation into account, one may propose the following
scheme:

un+1i = uni −
{
a  t δ−

x u
n
i if a > 0

a  t δ+x uni if a < 0
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This can be rewritten as

un+1i = uni − t[max(0, a)δ−
x u

n
i + min(0, a)δ+x u

n
i ]. (A.47)

We call (A.47) an upwind scheme because it uses values in the direction of
information propagation. Let us see again the stability.

• Case a > 0: by replacing (A.46) in (A.47), we let the reader see for
himself that we get

|ξ| = 1− 2C(1− C)(1− cos(jπ x)) with C =
a t
 x > 0.

It will be less than or equal to 1 if and only if C ≤ 1.

• Case a < 0: if we denote C = a t
 x < 0, similar calculus yield to

−C ≤ 1.

To summarize, the stability condition is

|a|  t x ≤ 1. (A.48)

It is usually called CFL, as a reference to their authors Courant-Friedrichs-
Lewy (in 1928).

u

∆

n
i

t

xi    x

+1

∆t)+1n(

(a) Discrete domain of dependence of
un+1

i for (A.47) with a > 0

∆ t

∆x
a
1dt

dx
=

∆ t
∆x

t

x

(b) Interpretation of the CFL
condition

Figure A.3. Definition and interpretation of the discrete domain of dependence

This condition may be interpreted in terms of domain of dependence. In the
continuous case, as it has been mentioned, the information is propagated
along the characteristics, and their equation is dt

dx
= 1

a . In the discrete
case, if a > 0 then (A.47) becomes:

un+1i =
(

1− a t
 x

)
uni +

a t
 x uni−1 .
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This allows to define the discrete domain of dependence of un+1i : un+1i

depends on uni and uni−1, u
n
i depends on un−1

i and un−1
i−1 , etc (see Figure

A.3). Moreover, the CFL condition means:

 t
 x ≤

1
a

=
dt

dx

which significates that the characteristic line has to be included in the dis-
crete domain of dependence.

☛ The discrete domain of dependence must contain the exact continu-
ous domain of dependence

In the nonlinear case the study is of course more complicated. For
example, let us examine the nonlinear Burgers equation:

∂v

∂t
+ v

∂v

∂x
= 0 (A.49)

with the initial condition:

v(0, x) = v0(x) =


1 if x ≤ 0
1− x if 0 < x < 1
0 if x ≥ 1.

(A.50)

Here the propagation speed depends on the value of u itself. We may try
as in the linear case to get an explicit solution of (A.49)-(A.50). As it
is classical for hyperbolic equations, the method of characteristics can be
used. Let us suppose that u is a smooth solution of (A.49)-(A.50) and let
x(t) be an integral curve of the differential equation:

dx

dt
(t) = v(t, x(t)), x(0) = x0.

We claim that u is constant along the characteristic curve x(t). Indeed,
since u is a solution of (A.49), we have

d

dt
(v(t, x(t)) =

∂v

∂t
(t, x(t)) +

dx

dt
(t)

∂v

∂x
(t, x(t))

=
∂v

∂t
(t, x(t)) + v(t, x(t))

∂v

∂x
(t, x(t)) = 0

Therefore:

dx

dt
(t) = v(0, x(0)) = v0(x0)

and:

x(t) = x0 + t v0(x0).
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According to the definition of u0 we deduce that:

x(t) =


x0 + t if x0 ≤ 0
x0 + (1− x0) t if 0 ≤ x0 ≤ 1
x0 if x0 ≥ 1.

t

1

1 x

?

(a) Characteristics

t=0 t=1

u

1 x

(b) Solution at different times

Figure A.4. Behavior of the Burgers Equation (A.49). The left-hand side figure
represents the characteristics while the right-hand side one shows some solution
at different times. As we can observe, characteristics intersect at t = 1 and after
this time, it is not clear to define the solution.

For t < 1 the characteristics do not intersect. Hence, given a point (t, x), t <
1, we draw the characteristic passing through this point and we determine
the corresponding point x0:

x0 =


x− t if x ≤ t
x− t
1− t if t ≤ x ≤ 1

x if x ≥ 1

and we get the following continuous solution for t < 1

u(t, x) =


1 if x ≤ t
1− x
1− t if t ≤ x ≤ 1

0 if x ≥ 1

It consists of a front moving from the left to the right for t < 1. At t = 1,
the characteristics collide and beyond this collision time it is not clear how
to define the solution uniquely. This discontinuity phenomenon is known
as shock. What about for t ≥ 1? Is it possible to define a unique solution?
We must devise some way to interpret a less regular notion of solution.
Let ϕ : [ 0,+∞ [×R → R be smooth with compact support. We call ϕ a
test function. We first observe that (A.49) can be written in a conservative
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form:

∂v

∂t
+

1
2
∂

∂x
(v2) = 0

then multiplying the above equality by ϕ, we deduce:

∞∫
0

∞∫
−∞

(
∂v

∂t
+

1
2
∂

∂x
(v2)

)
ϕdxdt = 0

and by integrating by parts this last equation:

∞∫
0

∞∫
−∞

v(t, x)
∂ϕ

∂t
(t, x) dxdt +

∞∫
−∞

v0(x)ϕ(0, x) dx+ (A.51)

+

∞∫
0

∞∫
−∞

1
2
v2(t, x)

∂ϕ

∂x
(t, x) dxdt = 0.

We derive (A.51) supposing v to be smooth but it is still valid if v is only
bounded.

Definition A.2.1 We say that v ∈ L∞((0,∞)× R) is a weak solution of
(A.49) provided equality (A.51) holds for each test function ϕ.

So according to this definition we are going now to search for discontinuous
solutions. But before doing that what can be deduced from (A.51)? Let us
suppose in some open domain Ω ⊂ (0,∞) × R that v is smooth on either
side of a smooth curve x = ξ(t). Let us denote by ΩL (respectively ΩR) the
part of Ω on the left (respectively on the right) of x = ξ(t). We assume that
v has limits v− and v+ on each side of x = ξ(t): v± = lim

ε→0
u((t, ξ(t))± εN)

where N is the normal vector to x = ξ(t) given by N =
(−ξ′(t)

1

)
.

Now by choosing a test function ϕ with compact support in Ω but which
does not vanish along x = ξ(t) we get:∫∫

ΩL

(
v(t, x)

∂ϕ

∂t
(t, x) +

1
2
v2(t, x)

∂ϕ

∂x
(t, x)

)
dxdt+

∫∫
ΩR

(
v(t, x)

∂ϕ

∂t
(t, x) +

1
2
v2(t, x)

∂ϕ

∂x
(t, x)

)
dxdt = 0.
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But since ϕ has compact support within Ω we have:∫∫
ΩL

(
v(t, x)

∂ϕ

∂t
(t, x) +

1
2
v2(t, x)

∂ϕ

∂x
(t, x)

)
dxdt =

= −
∫∫
ΩL

(
∂v

∂t
+

1
2
∂

∂x
(v2)

)
ϕ(t, x)dxdt +

∫
x=ξ(t)

(
−ξ′(t)v− +

v2−
2

)
ϕ(t, x)dl

=
∫

x=ξ(t)

(
−ξ′(t)v− +

v2−
2

)
ϕdl

since v is a smooth solution satisfying (A.49) in ΩL. Similarly we have:∫∫
ΩR

(
v(t, x)

∂ϕ

∂t
(t, x)+

1
2
v2(t, x)

∂ϕ

∂x
(t, x)

)
dxdt =

= −
∫

x=ξ(t)

(
− ξ ′(t)v+ +

v2+
2

)
ϕ(t, x)dl.

Adding these two last identities we obtain:∫
x=ξ(t)

(
− ξ ′(t)v− +

v2−
2

)
ϕ(t, x)dl −

∫
x=ξ(t)

(
− ξ ′(t)v+ +

v2+
2

)
ϕ(t, x)dl = 0.

(A.52)
Since ϕ is arbitrary, we easily deduce from (A.52):

ξ ′(t) ( v+ − v−) =
1
2

( v2+ − v2− ). (A.53)

For a general equation of the form ∂v
∂t

+ ∂
∂x

(f(v)) = 0 , we should have
obtained:

ξ ′(t) ( v+ − v−) = (f(v+)− f(v−)). (A.54)

Identity (A.54) is known as the Rankine-Hugoniot condition. It may be
read as:

Speed of discontinuity × jump of v = jump of f(v).

Unfortunately if (A.53) or (A.54) are necessary conditions for the existence
of discontinuous solutions they are not sufficient to ensure the uniqueness.
For example if we consider again (A.49) with the initial condition

v0(x) =
{

0 x < 0
1 x ≥ 0 then it is easy to check that:

v(t, x) =

{
0 if x < t/2
1 if x > t/2
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is a weak solution of (A.49) satisfying the Rankine-Hugoniot condition.
However we can find another such solution

û(t, x) =


1 if x > t

x/t if 0 < x < t

0 if x < 0

☛ Thus, in general, weak solutions are not unique and we have to find fur-
ther criterion that ensures uniqueness. Such a condition exists, it is called
entropy.

We do not continue the investigation of the theoretical difficulties of hy-
perbolic equations of conservation laws since the general theory is complex
and it is far beyond the scope of this Appendix to review it. We refer the
interested reader to [122, 157] for the complete theory. Of course, these
difficulties are still present when trying to discretize these equations. For
example, let us consider again Burgers equation:

∂v
∂t

+ 1
2
∂
∂x

(v2) = 0

v(0, x) =

{
1 if x < 0,
0 otherwise.

(A.55)

If we rewrite (A.55) in the quasilinear form:

∂v

∂t
+ v

∂v

∂x
= 0 (A.56)

then a natural finite difference scheme inspired from the upwind method
for (A.40) and assuming that v ≥ 0 is:

un+1i = uni −  t xuni (uni − uni−1)

u0i =

{
1 if j < 0,
0 otherwise.

(A.57)

Then it is easy to verify that uni = u0i for all i and n regardless of the step
sizes  t and  x. Therefore as  t and  x tend to zero, the numerical solu-
tion converges to the function v(t, x) = v0(x). Unfortunately, v(t, x) is not
a weak solution. The reason is that discretizing Burgers equation written in
the form (A.56) is not equivalent for non smooth solutions. For non smooth
solutions, the product vvx has not necessarily a meaning (even weakly). So,
studying Burgers equation written in a conservative form is the right ap-
proach. But in this case we have to define the numerical schemes that
agrees with this form. These schemes does exist and are called conservative
schemes.
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Let us consider a general hyperbolic equation of conservation laws:{
∂v
∂t

+ 1
2
∂
∂x

(f(v)) = 0
v(0, x) = v0(x).

(A.58)

We say that the numerical scheme is in conservation form if it writes as:

un+1i = uni −
 t
 x

[
F (uni−p, u

n
i−p+1, . . . , u

n
i+q)− F (uni−p−1, u

n
i−p, . . . , u

n
i+q−1)

]
(A.59)

for some function F of (p+q+1) arguments. F is called the numerical flux
function. Of course, some consistency relations between F and f have to
be satisfied. For example, if p = 0 and q = 1, then (A.59) becomes:

un+1i = uni −
 t
 x

[
F (uni , u

n
i+1)− F (uni−1, u

n
i )
]
. (A.60)

In fact, for hyperbolic equations, it is often preferable to view uni as an
approximation of an average of v(n t, x) defined by:

uni =
1
 x

∫ x
i+ 1

2

x
i− 1

2

v(n t, x) dx (A.61)

where xi±1/2 = (i ± 1/2) x. From the definition of a weak solution of
(A.58) and by choosing a particular test function ϕ, we can show that if u
is a weak solution then:∫ x

i+ 1
2

x
i− 1

2

v((n + 1) t, x) dx =

=
∫ x

i+ 1
2

x
i− 1

2

v(n t, x) dx−
∫ (n+1)�t

n�t

[f(v(t, xi+ 1
2
))− f(v(t, xi− 1

2
))] dt

Then dividing by  x, we get from (A.61):

un+1i = uni −
1
 x

∫ (n+1)�t

n�t

[f(v(t, xi+ 1
2
))− f(v(t, xi− 1

2
))] dt (A.62)

So, comparing (A.60) and (A.62) it is natural to choose:

F (uni , u
n
i+1) =

1
 t

∫ (n+1)�t

n�t

f(v(t, xi+ 1
2
)) dt (A.63)

and then the scheme defined by (A.60) will be consistent with the original
conservation law if F reduces to f for the case of constant solution, i.e. if
v(t, x) ≡ c then necessarily:

F (c, c) = f(c) ∀c ∈ R. (A.64)

This is the definition of a consistent scheme. This notion is very important
since, according to the Lax-Wendroff Theorem [122, 157], if the numerical
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scheme is consistent and in a conservative form, and if the resulting se-
quence of approximated solutions converges then necessarily the limiting
function is a weak solution of the conservation law.

Unfortunately, consistence and conservative form are not sufficient in
general to capture the correct discontinuous solution. For example schemes
might develop undesirable oscillations. These conditions are related to the
entropy condition mentioned above. Since we have not developed at all this
notion, we will say no more on the numerical approximation of hyperbolic
equations and we refer to [122, 157] for more development.

We summarize all the numerical concerns by saying that a monotone
(which means that the numerical flux function F is a monotone increasing
function of each of its arguments), consistent and conservative scheme al-
ways captures the solution we would like to get (the unique entropic weak
solution).

A.3 Difference schemes in image analysis

A.3.1 Getting started
In this section we would like to show how certain PDEs studied in this
book can be discretized. The generic form of these PDEs is:

Lv = F (x, y) ∈ Ω ⊂ R2

∂v
∂N

(t, x, y) = 0 on ∂Ω (Neumann boundary condition)

v(0, x, y) = f(x, y) (initial condition)

(A.65)

where Ω is the image domain and N is the normal to the boundary of Ω
noted ∂Ω. L is generally a second order differential operator like (see for
example Section 3.3):

∂v

∂t
(t, x, y) + H(x, y, v(t, x, y),∇v(t, x, y),∇2v(t, x, y)) = 0.

Example: One of the simplest PDE which is presented in image analysis is the heat
equation (see Section 3.3.1 where it is analyzed):


∂v
∂t

= ν∆v = ν

(
∂2v
∂x2 + ∂2v

∂y2

)
(x, y) ∈ Ω, t ≥ 0

∂v
∂N

(t, x, y) = 0 on ∂Ω
v(0, x, y) = f(x, y)

(A.66)

where ν is a positive constant. �

As already mentioned, finite differences are widely used in image processing
which is due to the digital structure of an image, as a set of pixels uniformly
distributed (see Section 1.2). It is then very easy and natural to associate
to an image a uniform grid, as presented in Figure A.5. Since there is no
reason to choose it differently, the grid spacing in the x and y directions is
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usually equal:

 x =  y = h.

Notice that in many articles from the computer vision literature, it is even
choosen h = 1 which means that the pixel size is choosen as the unit of
reference. We will call the positions (ih, jh) vertices, nodes or pixels equiv-
alently. We will denote by vni,j (resp. uni,j) the value of the exact solution
(resp. the discrete solution) at location (ih, jh) and time n t.

(i,j)

x

hy

h

pixel

Figure A.5. Grid on the space domain. The circles indicates the vertices which
belong to the 3 × 3 neighborhood of the vertex (i, j).

Example: The PDE (A.66) is a initial-boundary value problem. To discretize it, we
need to consider:

• The equation. To find the difference scheme associated to the heat equation
(A.66), we can proceed as in the one dimensional case (see Section A.1.1), that
is by using Taylor expansions expanded about the index point (n	t, ih, jh). Nat-
urally, the simplest method is to consider separately the discretization of each
second order derivative in x and y, which is equivalent to use the one dimensional
approximation. By doing so, we obtain:

∂v

∂t
− ν	v

∣∣∣∣n
i,j

=
vn+1

i,j − vn
i,j

	t
−

− ν
vn

i+1,j + vn
i−1,j + vn

i,j+1 + vn
i,j−1 − 4vn

i,j

h2 + O(	t) + O(h2).

Then the difference scheme that we can propose is:

un+1
i,j = un

i,j +
ν	t

h2

(
un

i+1,j + un
i−1,j + un

i,j+1 + un
i,j−1 − 4un

i,j

)
(A.67)

It is of order (2, 1).

• The boundary condition. The Neumann boundary condition can be taken into
account by a symmetry procedure. If the value of a pixel (vertex) which is outside
the domain is needed, we use the value of the pixel which is symmetric with respect
to the boundaries.

• The initial condition is simply: u0
i,j = gi,j where g is the discretization of f .

To illustrate this algorithm, we show in figure A.6 some iterations as applied to a very
simple image.
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n = 0 n = 1 n = 2 n = 3 n = 4 n = 5 n = 10

Figure A.6. Example of results with the scheme (A.67) at different times
(iterations), as applied to a simple and small size image (32 × 32)

Notice that this example shows clearly the propagation of the information as the number
of iterations increases. �

Remark The scheme (A.67) has been obtained by discretizing the
Laplacian as a sum of the second order derivatives in the x and y directions:

 v|i,j ≈
vni+1,j + vni−1,j + vni,j+1 + vni,j−1 − 4vni,j

h2
. (A.68)

Clearly, this discretization does not take into account the 2-D nature and
properties of this operator. To illustrate what we mean by “2-D nature
and properties”, we can remark that the Laplacian operator is rotationally
invariant. If we apply a rotation of center (x, y) to the image v (with any
angle θ ∈ [0, 2π[), then  v(x, y) keeps constant for all θ. So should it be
for the discretization. Naturally, as we consider a discrete domain, we may
just ask that  v|i,j keeps constant under rotations of π/4, as depicted in
Figure A.7. This is not the case of discretization (A.68) since we obtain 1
or 2 (for h = 1) depending on the situation.

0

1

(  ,  )i j

Figure A.7. Example of binary image representing a vertical edge and the same
image after a rotation of π/4 radians. Rotationally invariant operators estimated
at the point in the middle (indicated by a dotted circle) should yield the same
value in both situations.

To overcome this difficulty, we need to use the complete 3×3 neighborhood.
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We may propose the following approximation:

 v|i,j ≈λvi+1,j + vi−1,j + vi,j+1 + vi,j−1 − 4vi,j
h2

+ (A.69)

+ (1− λ)
vi+1,j+1 + vi−1,j+1 + vi+1,j−1 + vi−1,j−1 − 4vi,j

2h2

where λ ∈ [0, 1] is a constant to be choosen. We can verify that this ap-
proximation is consistent. By applying this operator (A.69) in the two
situations from Figure A.7 and saying that both results should be equal
yields λ = 1/3, hence the approximation.

Similarly, we can propose a discretization for the first order derivatives
in x and y which is coherent with the fact that the norm of the gradient
is invariant under rotation. As we will see further, a second order centered
approximation of the first derivative in x is:

∂v

∂x

∣∣∣
i,j
≈ δxvi,j =

vi+1,j − vi−1,j

2h
(A.70)

which can also be written in the y direction. The vertices involved in the
estimation (A.70) are represented in Figure A.9.

 v|i,j

x

y

(i,j)

• approximation (A.68)

◦ approximation (A.69)

Figure A.8. Representation of the vertices involved in the finite difference schemes

∂v
∂x

∣∣∣
i,j

x

y

(i,j)

• approximation (A.70)

◦ approximation (A.71)

Figure A.9. Representation of the vertices involved in the finite difference schemes

As for the case of the Laplacian, these approximations are in fact “one
dimensional” and do not really take an advantage that the data is of di-
mension 2. This is visible if we consider the value of the norm of the gradient
of u in the two situations described in Figure A.7: we obtain either 1/2 or
1/
√

2. The solution is to use more pixels in the estimation of the derivatives.
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In particular, we may suggest the following approximation:

∂v

∂x

∣∣∣
i,j
≈ λ

vi+1,j − vi−1,j

2h
+ (A.71)

+
(1− λ)

2

(
vi+1,j+1 − vi−1,j+1

2h
+
vi+1,j−1 − vi−1,j−1

2h

)
where λ is a parameter to be chosen. By applying the operator (A.71) in
the two situations of Figure A.9 and by saying that both results should be
equal yields λ =

√
2− 1, hence the approximation.

Finally, we would like to mention that using more points in the approxi-
mations is not only good for rotation invariance properties, but, pratically,
the result is also less sensitive to noise. The reason is that it is equivalent
to perform a smoothing of the data before the estimation. �

A.3.2 Image restoration by energy minimization
We first consider the image restoration problem as presented in Section
3.2. By introducing a dual variable b, the problem became to minimize
with respect to v and b the functional:

Jε(v, b) =
1
2

∫
Ω

|Rv − v0|2 dx + λ

∫
Ω

(b |∇v|2 + ψε(b))dx.

The so-called half-quadratic minimization algorithm consists in minimizing
successively Jε with respect to each variable. The algorithm is (see Section
3.2.4 for more detail):

For (v0, b0) given

• vn+1 = argmin
v

Jε(v, bn) i.e.

R∗Rvn+1 − div(bn∇vn+1) = 0inΩ

bn ∂v
n+1

∂N
= 0 on ∂Ω

• bn+1 = argmin
b

Jε(vn+1, b) i.e. bn+1 =
φ′ (∣∣∇vn+1∣∣)

2
∣∣∇vn+1∣∣

• Go back to first step until convergence.

The limit (v∞, b∞) is the solution

As far as discretization is concerned, the only term which may be diffi-
cult to approximate is the divergence operator. So for b ≥ 0 and v given
at nodes (i, j) the problem is to find an approximation at the node (i, j)
for div(b∇v). This kind of term is naturally present as soon as there is a
regularization with a φ function (see for instance optical flow, Section 5.1.2,
or sequence segmentation, Section 5.1.3). The diffusion operator used in
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the Perona and Malik model is also of the same kind (see Sections 3.3.1
and 3.3.2).

Since this divergence operator may be rewritten:

div(b∇v) =
∂

∂x

(
b
∂v

∂x

)
+

∂

∂y

(
b
∂v

∂y

)
we can use previous one-dimensional approximation and combine them.
For example, if we use the central finite difference approximation (A.70),
we have:

div(b∇v)|i,j ≈ δx(bi,jδxvi,j) + δy(bi,jδyvi,j) = (A.72)

=
1

4h2
(
bi+1,jvi+2,j + bi−1,jvi−2,j + bi,j+1vi,j+2 + bi,j−1vi,j−2−

− (bi+1,j + bi−1,j + bi,j+1 + bi,j−1)vi,j
)
.

The main drawback of this representation is that it involves only the points
((i ± 2)h, (j ± 2)h), and none of the 3 × 3 neighborhood (see also Figure
A.10). This may be non robust for noisy data or when there is a lot of
variations in this region. Another possibility is to combine forward and
backward differences (see Section A.2)

div(b∇v)|i,j ≈ δ+x (bi,jδ−
x vi,j) + δ+y (bi,jδ−

y vi,j) =

=
1
h2

(
bi+1,jvi+1,j + bi,jvi−1,j + bi,j+1vi,j+1 + bi,jvi,j−1−

− (bi+1,j + bi,j+1 + 2bi,j)vi,j
)
.

This approximation now involves the 3×3 neighborhood, but it introduces
a dissymetry: the values of b at ((i−1)h, jh) and (ih, (j−1)h) are not used.
A solution is to use the following approximation for the derivatives:

δ∗
xvi,j =

vi+ 1
2 ,j
− vi− 1

2 ,j

h
and δ∗

yvi,j =
vi,j+ 1

2
− vi,j− 1

2

h
.

where vi± 1
2 ,j± 1

2
is the value of v at location ((i± 1

2 )h, (j± 1
2 )h) which can be

obtained by interpolation. As for (A.70) it is a second order approximation.
Then we have:

div(b∇v)|i,j ≈ δ∗
x(bi,jδ∗

xvi,j) + δ∗
y(bi,jδ∗

yvi,j) = (A.73)

=
1
h2

(
b+0vi+1,j + b−0vi−1,j + b0+vi,j+1 + b0−vi,j−1−

− (b+0 + b−0 + b0+ + b0−)vi,j
)

where b±0 = bi∓ 1
2 ,j

, b±∓ = bi± 1
2 ,j∓ 1

2
, etc. Notice that since we applied

twice the operators δ∗
x and δ∗

y this approximation only uses the values of v
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at ((i ± 1)h, (j ± 1)h) (see Figure A.10). However, interpolation is needed
for b.

div(b∇v)
∣∣∣
i,j (i,j)

x

y

× approximation (A.72)

• approximation (A.73)

◦ approximation (A.74)

Figure A.10. Vertices involved in the approximation of the divergence term for
the different schemes

As mentioned previously for the estimation of the Laplacian, it would
also be interesting to take into account also the diagonal values. Then, we
can look for an approximation such that:

div(b∇v)|i,j ≈ (A.74)

≈ λp

h2
(b+0vi+1,j + b−0vi−1,j + b0+vi,j+1 + b0−vi,j−1 − βpvi,j)

+
λd

h2
(b++vi+1,j+1 + b−−vi−1,j−1 + b−+vi−1,j+1 + b+−vi+1,j−1 − βdvi,j)

with
{

βp = b0+ + b0− + b+0 + b−0
βd = b++ + b−− + b+− + b−+

where λp and λd are two weights to be chosen. The first condition is that
the scheme must be consistent and it can be verified that this implies:

λp + 2λd = 1. (A.75)

Now, there remains one degree of freedom. Two possibilities can been
considered:

• The first is to choose (λp, λd) constant, and for instance equal to
(1/2, 1/4), giving a privilege to the principal directions.

• The second is to choose (λp, λd) by taking into account the orientation
of the gradient of v, as described in Figure A.11.

We tested these different discretizations as applied to a simple image with
geometric structures (see Figure A.12). From left to right, an improvement
in the results can be perceived (by observing the restoration of the hori-
zontal and vertical edges). It is the adaptative choice that gives the best
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x

y

x

y

π/4

λp

θ

(i,j) (i,j) θ=0
θ=π/4

Figure A.11. Adaptative choice of the coefficients (λp, λd) as a function of θ, the
orientation of ∇v. The two right-hand side figures show which points will be used
in the discretization of the divergence term in two specific situations

result.

Initial image (1.0, 0.0) (0.5, 0.25) Adaptative
SNR=19.2 SNR=20.9 SNR=21.5

Figure A.12. Numerical tests for the different discretizations of the divergence
term (the choice of (λp, λd) is indicated below the images).

A.3.3 Image enhancement by the Osher and Rudin’s
shock-filters

This section concerns the shock-filters equation discussed in Section 3.3.3
and proposed by Osher and Rudin [199].

∂v

∂t
= − |∇v| F (L(v)) (A.76)

where:

• F is a Lipschitz function satisfying F (0) = 0, sign(s)F (s) > 0 (s �= 0),
for example F (s) = sign(s).

• L is a second-order edge-detector, for example

L(v) = ∆v = vxx+vyy or L(v) =
1

| ∇v |2 (v2x vxx+2vxvyvxy+v2yvyy)
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which corresponds to the second derivative of v in the direction of
the normal to the isophotes.

Equation (A.76) involves two kinds of terms: a first order term |∇v| and a
second order term F (L(v)):

• L is discretized with central finite differences.

• |∇v| has to be approximated with more care. vx and vy are
approximated using the minmod operator m(α, β). For instance

vx|i = m(δ−
x vi, δ

+
x vi)

where

m(α, β) =

{
sign(α) min(|α| , |β|) if αβ > 0
0 if αβ ≤ 0.

This function is usually called a flux limiter. As shown in Figure
A.13, it permits to choose the lowest slope, or zero in case of a local
extremum (this prevents instabilities due to noise).

β

α

xi+1−1i i

(a) vx ≈ min(α, β)

β

α

xi+1−1i i

(b) vx ≈ 0

Figure A.13. Approximation of the first derivative using the minmod function

To summarize, the approximation of (A.76) is then given by

un+1i,j = uni,j−
∆t

h

√
(m(δ+x uni,j , δ

−
x uni,j)2 + (m(δ+y uni,j , δ

−
y uni,j))2 Fi,j(L(un))

where Fi,j(L(u)) = F (Li,j(u)). We show in Figure A.14 an example of
result and refer to Section 3.3.3 for more detail.

A.3.4 Curves evolution with the level sets method
In this section we briefly discuss the discretization of the PDEs governing
curve evolutions. We only examine the case when these curves are identified
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t = 0 t = 1 t = 2 t = 4 t = 10

Figure A.14. Example of the shock filter on a blurred image of a face. It shows
clearly that this filter reconstructs a piecewise constant image which is not sat-
isfying on a perception point of view (the result does not look like a real image).

as level sets of the same function u(t, x) (Eulerian formulation). Of course,
we have in mind the geodesic active contours model given by (see Section
4.3.3):

∂v

∂t
= g( |∇I| ) |∇v| div

( ∇v
|∇v|

)
+ α g( |∇I| ) |∇v|+∇g · ∇v. (A.77)

As mentioned before, (A.77) involves two kinds of terms: a parabolic term
(the first one) and hyperbolic terms (the two last ones). One can easily
imagine that the discretization of each term needs an appropriate treat-
ment, according to its nature (parabolic or hyperbolic). The main idea is
that parabolic terms can be discretized by central finite differences while hy-
perbolic terms need to be approximated by non-oscillatory upwind schemes.
For the sake of clarity we start by examining the evolution driven by each
of these terms.

For a detailed description of the above schemes and other numerical
questions not developed here, we refer the reader to [229, 200].

Mean curvature motion

Let us consider:  ∂v
∂t

= |∇v| div
(
∇v
|∇v|

)
v(0, x, y) = v0(x, y).

(A.78)

Equation (A.78) is a parabolic equation and has diffusive effects (like the
heat equation). So, the use of upwinf schemes is inappropriate and classical
central differences are used:

un+1i,j = uni,j + t
√

(δxuni,j)2 + (δyuni,j)2 K
n
i,j

where Kn
i,j is the central finite difference approximation of the curvature:

K = div
( ∇v
|∇v|

)
=

vxxv
2
y + vyyv

2
x − 2vxvyvxy

(v2x + v2y)
3/2 .
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We let the reader write the expression of Kn
i,j . Unfortunately, the discretiza-

tion of (A.78) is not as easy as it may appear. At some points (t, x), ∇v
can be undefined, or |∇v| = 0, or |∇v| = +∞. This situation can occur
even in very simple cases [208]. For example, let us consider the shrinking
of a unit circle in 2-D which corresponds to:

v(0, x, y) =
√
x2 + y2 − 1 (A.79)

i.e. v0 is the signed distance to the unit circle. This equation is rotationally
invariant and if we search for the solution of the form:

v(t, x, y) = φ(t,
√
x2 + y2)

we easily get v(t, x, y) =
√
x2 + y2 + 2t− 1 from which we deduce:

∇v =
1√

x2 + y2 + 2t

(
x
y

)
, |∇v| =

√
x2 + y2√

x2 + y2 + 2t
,

∇v
|∇v| =

1√
x2 + y2

(
x
y

)
and div

( ∇v
|∇v|

)
=

1√
x2 + y2

so the two last quantities are not defined at the origin and effectively
a spike occurs at the origin (see [208]). Moreover, the interface Γ(t) =
{(x, y); u(t, x, y) = 0} is the circle x2 + y2 = 1 − 2t and on Γ(t) we have
|∇v|(t) =

√
1− 2t. Therefore v(t, x, y) becomes more and more flat as the

interface evolves and disppears at t = 1/2. To circumvent this type of prob-
lem, we have to find a numerical trick that prevents the gradient norm to
vanish (or blow up). This can be realized by reinitializing the function v
from time to time to a signed distance function.
More precisely, we run (A.78) until some step n, then we solve the auxiliary
PDE: {

∂φ
∂t

+ sign(φ)(|∇φ| − 1) = 0
φ(0, x, y) = v(n t, x, y).

(A.80)

The resulting solution (as t tend to infinity), noted φ∞, is a signed distance
function whose zero level set is the same as the function v(n t, x, y). Then
we can run again (A.78) with the initial data v(0, x, y) = φ∞(x, y). Prac-
tically, this reinitialization has to be done every n = 20 iterations of the
curve evolution equation and it is usually performed about 5 to 10 itera-
tions of (A.80)8.

Remark There exists another way to avoid doing the reinitialization step.
It consists in considering a modified equation (A.78) which has the prop-
erty of maintaining the norm of the gradient of the solution equal to one.

8These numbers are just an indication and naturally depend on the kind of equation
to be solved and on the time steps.
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For further details see [125, 208] �

An example of mean curvature motion is shown in Figure A.15. Notice
that if we let the evolution run until convergence, any curve transforms
into a circle and then collapses.

Figure A.15. Example of mean curvature motion

Constant speed evolution

The second example is given by:{
∂v
∂t

= c |∇v|
v(0, x, y) = v0(x, y).

(A.81)

where c is a constant. This equation describes a motion in the direction
normal to the front (the corresponding Lagrangian formulation of (A.81)
is ∂Γ

∂t
(t, p) = c N(t, p) where N is the normal to Γ(t)). For c = 1, it is also

refered to as grass fire since it simulates a grass fire wavefront propagation.
Equation (A.81) is approximated by a non-oscillatory upwind scheme:

un+1i,j = uni,j + t∇+uni,j

where:

∇+uni,j =
[

max(δ−
x u

n
i,j , 0)2 + min(δ+x u

n
i,j , 0)2+

+ max(δ−
y u

n
i,j , 0)2 + min(δ+y u

n
i,j , 0)2

] 1
2

We show in Figures A.16 and A.17 two examples of constant speed motions.

Remark Motions like equation (A.81) and more generally with a
monotone speed have the following property: every point is crossed once
and only once by the curve during its evolution. Notice that this is not the
case for mean curvature motion. This property can be used do derive an
efficient numerical approach called fast marching algorithm [241, 228]. It is
beyond the scope of this Appendix to explain this method and we refer to
the original articles and to [229] for more detail. �
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Figure A.16. Example constant speed motion (c = 1, grass fire)

Figure A.17. Example constant speed motion (c = −1)

The pure advection equation

We consider here the equation:{
∂v
∂t

= A(x, y) · ∇v
v(0, x, y) = v0(x, y).

(A.82)

where A(x, y) = (A1(x, y), A2(x, y)). For (A.82) we use a simple upwind
scheme i.e. we check the sign of each component of A and construct a
one-side upwind difference in the appropriate direction:

un+1i,j = uni,j + t
[

max((A1)ni,j , 0)δ−
x u

n
i,j + min((A1)ni,j , 0)δ+x u

n
i,j+

max((A2)ni,j , 0)δ−
y u

n
i,j + min((A2)ni,j , 0)δ+y u

n
i,j

]
.

Image segmentation by the geodesic active contour model

Now, we can consider the geodesic active contour model (A.77) which can
be seen as the sum of the previous discretization. So the discrete scheme
is:

un+1i,j = uni,j + t


gi,j K

n
i,j [(δxu

n
i,j)

2 + (δyuni,j)
2]

1
2 +

+α[max(gi,j , 0)∇+ + min(gi,j , 0)∇−]ui,j+
+ max((gx)ni,j , 0)δ−

x u
n
i,j + min((gx)ni,j , 0) δ+x u

n
i,j ]+

+[max((gy)ni,j , 0) δ−
y u

n
i,j + min((gy)ni,j , 0) δ+y u

n
i,j ].


where ∇−uni,j is obtained from ∇+uni,j by inverting the signs plus and
minus.

Figure A.18 shows a typical example of result (see Figure 4.13 for the
complete evolution).

Remark On a numerical point of view, all the equations presented in
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Figure A.18. Example of segmentation. Different iterations are displayed

this section involve local operations. As we are only interested in the curve,
it is enough to update the values in a band around the current position of
the curve, also called narrow band. Naturally, this region (band) has to be
updated as the curve evolves. See for instance [229] for more details. �
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derivative, 49, 78
limit, 50, 209
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Bernstein method, 178
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Camera model, 193
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curve, 129
equations, 130
lines, 250
method of, 128, 253

Classification, 218
regular, 220
supervised, 219

Coarea formula, 64, 222, 236
Coercive, 34, 159, 199
Compactness
weak sequential, 34
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CFL, 252

entropy, 257, 259
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Conjecture
Mumford-Shah, 141, 145, 153
Osher-Rudin conjecture, 134

Convergence
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Gamma-convergence, 42, 78, 154,
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strong, 32
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Crack tip, 141, 150
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tensor, 59
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of domain integral, 147
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nonlinear, 96
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tensor, 113

Direct method of the calculus of
variations, 34, 142, 199, 207

Discrete image, 3, 126, 156, 259
Domain of dependence, 252
Dual variable, 78, 80, 200, 210, 231,

263

Edge, 120, 168
Elliptic
approximation by elliptic

functionals, 154
degenerate, 54
equation, 73

Equation
backward heat, 121
Burgers, 253
eikonal, 52
Euler-Lagrange equation, 38, 71,

72, 78, 80, 86, 117, 162
Hamilton Jacobi equations, 54, 172
heat, 93, 259
mean curvature motion, 167, 268
transport, 250

Equicontinuous
uniformly, 65

Eulerian formulation, 170, 172

Fast marching algorithm, 270
Filter
Gaussian, 93
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low-pass, 94, 120
Osher and Rudin’s shock-filters,

127, 133
Finite
differences, 238
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elements, 238
Fixed-point
Schauder’s fixed point Theorem,
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Formula
chain rule, 209, 210
coarea, 64, 222, 236

integration by part, 63
Functional
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convex, 35
equicoercive, 42
lower semi-continuous, 34, 52, 75,
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Mumford-Shah, 141
nonconvex, 88, 207
relaxed, 39, 75, 101, 201

Gamma-convergence, 42, 78, 154,
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200, 210, 231, 263

Hamiltonian, 54
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Cauchy, 61
Cauchy-Schwarz, 61, 166, 179
Gronwall, 61, 124, 181
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Minkowski, 62
Poincaré, 62
Poincaré-Wirtinger, 62, 76, 88
Young, 63

Invariance, 85
gray-level, 86, 96, 106
gray-scale, 111
isometry, 86, 96, 110
projection, 111
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translation, 86, 96, 106
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Lebesgue
Lebesgue decomposition Theorem,
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Limit
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Hausdorff, 49
mutually singular, 46
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Minmod function, 267
Model
Alvarez-Guichard-Lions-Morel

scale space theory, 105
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Catté et al, 122
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Horn and Schunck, 195
Kass-Witkin-Terzopoulos, 161
Nitzberg-Shiota, 126
Osher-Rudin, 127
Perona-Malik, 97, 120, 121, 264
smoothing-enhancing, 98
variational model for restoration,

72, 263
Weickert, 112

Mollifier, 64
Motion
2D motion field, 192
apparent, 192

Movies, 111

Narrow band, 223, 272
Negligible set, 45

Operator
divergence, 263
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maximal monotone, 99–101
minmod, 267
monotone, 99
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Optical flow, 192, 203, 263
constraint (OFC), 194, 201

Partition condition, 220
Partitioning process, 219
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backward parabolic, 92, 98
enhancing PDEs, 127
forward parabolic, 92, 98
hyperbolic, 92, 250
smoothing enhancing PDEs, 120
smoothing PDEs, 93, 94
smoothing-enhancing, 98
system of coupled, 223

Perimeter, 48, 228
minimal, 219

Phases transitions, 227
Polar function, 40, 156
Precise representation, 51, 201
Principle
comparison, 106
extremum, 113
maximum, 58, 95, 180

Process
dynamical, 224
restoration, 224

Regularity
Bonnet results, 153
heat equation, 96
of the edge set, 150
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edge preserving, 73, 88
of the Perona and Malik model, 122
Tikhonov-Arsenin regularization,

71
Relaxed functional, 39, 75, 101, 201

Scale
Alvarez-Guichard-Lions-Morel

scale space theory, 105
parameter, 94
space, 88
variable, 92

Scheme
conservative, 257, 259
consistent, 244, 258, 259
convergent, 242
Crank-Nicholson, 249
explicit, 240
implicit, 249
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pointwise convergent, 241
stable, 245, 251
(un)conditionally, 246

symbol, 248
truncature error, 244
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Seed initialization, 224
Semi-group, 96, 99
Sequence, 190
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sampling, 190
segmentation, 203, 263

Snakes, 162
Space
Banach, 32
of bounded variation, 47, 75, 143,

198, 207
of special functions of bounded

variation, 144
reflexive, 33, 75
separable, 33

Sub-jet, 57
Subdifferential, 100
of a convex function, 100

Super-jet, 56

Theorem
Arzelà-Ascoli, 65, 180
Dominated convergence, 65
Fubini, 96
Gauss-Green, 63
Green, 63, 87, 102, 148
Lax-Wendroff, 258
Lebesgue decomposition Theorem,

46
Schauder, 125

Topology
BV-weak*, 48, 52
strong, 32
weak, 32
weak*, 33

Total variation, 27, 45, 51, 71, 78,
118, 134, 196

Triple junction, 141, 150

Vector distance function, 187

Viscosity
Crandall-Ishii’s Lemma, 57, 176
duplication of variables, 58, 175
solution, 55, 107, 175, 182
subsolution, 55, 175
supersolution, 55, 175
vanishing viscosity method, 56

von Neumann criterion, 249, 251

Weak solution, 255
Well-posed, 66, 97, 122, 123, 198, 206,
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